Create PLT eh_frame section if there is .eh_frame section
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
263 flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
292
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
294
295 return TRUE;
296 }
297
298 /* Create dynamic sections when linking against a dynamic object. */
299
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 {
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
308
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
312
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
323
324 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
329
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
333 {
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
339 }
340
341 s = bfd_make_section_anyway_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
349
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
352
353 if (bed->want_dynbss)
354 {
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_anyway_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 }
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1246 }
1247
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1363
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1366
1367 *size_change_ok = TRUE;
1368 }
1369
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1376
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1383
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1389 {
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1393
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1396
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1402
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1405 }
1406
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1412
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1415 {
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1422 }
1423
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1426 {
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 /* If the real definition is defined by a regular object file,
2514 don't do anything special. See the longer description in
2515 _bfd_elf_adjust_dynamic_symbol, below. */
2516 if (h->u.weakdef->def_regular)
2517 h->u.weakdef = NULL;
2518 else
2519 {
2520 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2521
2522 while (h->root.type == bfd_link_hash_indirect)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524
2525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2526 || h->root.type == bfd_link_hash_defweak);
2527 BFD_ASSERT (weakdef->def_dynamic);
2528 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2529 || weakdef->root.type == bfd_link_hash_defweak);
2530 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2531 }
2532 }
2533
2534 return TRUE;
2535 }
2536
2537 /* Make the backend pick a good value for a dynamic symbol. This is
2538 called via elf_link_hash_traverse, and also calls itself
2539 recursively. */
2540
2541 static bfd_boolean
2542 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2543 {
2544 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2545 bfd *dynobj;
2546 const struct elf_backend_data *bed;
2547
2548 if (! is_elf_hash_table (eif->info->hash))
2549 return FALSE;
2550
2551 /* Ignore indirect symbols. These are added by the versioning code. */
2552 if (h->root.type == bfd_link_hash_indirect)
2553 return TRUE;
2554
2555 /* Fix the symbol flags. */
2556 if (! _bfd_elf_fix_symbol_flags (h, eif))
2557 return FALSE;
2558
2559 /* If this symbol does not require a PLT entry, and it is not
2560 defined by a dynamic object, or is not referenced by a regular
2561 object, ignore it. We do have to handle a weak defined symbol,
2562 even if no regular object refers to it, if we decided to add it
2563 to the dynamic symbol table. FIXME: Do we normally need to worry
2564 about symbols which are defined by one dynamic object and
2565 referenced by another one? */
2566 if (!h->needs_plt
2567 && h->type != STT_GNU_IFUNC
2568 && (h->def_regular
2569 || !h->def_dynamic
2570 || (!h->ref_regular
2571 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2572 {
2573 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2574 return TRUE;
2575 }
2576
2577 /* If we've already adjusted this symbol, don't do it again. This
2578 can happen via a recursive call. */
2579 if (h->dynamic_adjusted)
2580 return TRUE;
2581
2582 /* Don't look at this symbol again. Note that we must set this
2583 after checking the above conditions, because we may look at a
2584 symbol once, decide not to do anything, and then get called
2585 recursively later after REF_REGULAR is set below. */
2586 h->dynamic_adjusted = 1;
2587
2588 /* If this is a weak definition, and we know a real definition, and
2589 the real symbol is not itself defined by a regular object file,
2590 then get a good value for the real definition. We handle the
2591 real symbol first, for the convenience of the backend routine.
2592
2593 Note that there is a confusing case here. If the real definition
2594 is defined by a regular object file, we don't get the real symbol
2595 from the dynamic object, but we do get the weak symbol. If the
2596 processor backend uses a COPY reloc, then if some routine in the
2597 dynamic object changes the real symbol, we will not see that
2598 change in the corresponding weak symbol. This is the way other
2599 ELF linkers work as well, and seems to be a result of the shared
2600 library model.
2601
2602 I will clarify this issue. Most SVR4 shared libraries define the
2603 variable _timezone and define timezone as a weak synonym. The
2604 tzset call changes _timezone. If you write
2605 extern int timezone;
2606 int _timezone = 5;
2607 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2608 you might expect that, since timezone is a synonym for _timezone,
2609 the same number will print both times. However, if the processor
2610 backend uses a COPY reloc, then actually timezone will be copied
2611 into your process image, and, since you define _timezone
2612 yourself, _timezone will not. Thus timezone and _timezone will
2613 wind up at different memory locations. The tzset call will set
2614 _timezone, leaving timezone unchanged. */
2615
2616 if (h->u.weakdef != NULL)
2617 {
2618 /* If we get to this point, there is an implicit reference to
2619 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2620 h->u.weakdef->ref_regular = 1;
2621
2622 /* Ensure that the backend adjust_dynamic_symbol function sees
2623 H->U.WEAKDEF before H by recursively calling ourselves. */
2624 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2625 return FALSE;
2626 }
2627
2628 /* If a symbol has no type and no size and does not require a PLT
2629 entry, then we are probably about to do the wrong thing here: we
2630 are probably going to create a COPY reloc for an empty object.
2631 This case can arise when a shared object is built with assembly
2632 code, and the assembly code fails to set the symbol type. */
2633 if (h->size == 0
2634 && h->type == STT_NOTYPE
2635 && !h->needs_plt)
2636 (*_bfd_error_handler)
2637 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2638 h->root.root.string);
2639
2640 dynobj = elf_hash_table (eif->info)->dynobj;
2641 bed = get_elf_backend_data (dynobj);
2642
2643 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2644 {
2645 eif->failed = TRUE;
2646 return FALSE;
2647 }
2648
2649 return TRUE;
2650 }
2651
2652 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2653 DYNBSS. */
2654
2655 bfd_boolean
2656 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2657 asection *dynbss)
2658 {
2659 unsigned int power_of_two;
2660 bfd_vma mask;
2661 asection *sec = h->root.u.def.section;
2662
2663 /* The section aligment of definition is the maximum alignment
2664 requirement of symbols defined in the section. Since we don't
2665 know the symbol alignment requirement, we start with the
2666 maximum alignment and check low bits of the symbol address
2667 for the minimum alignment. */
2668 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2669 mask = ((bfd_vma) 1 << power_of_two) - 1;
2670 while ((h->root.u.def.value & mask) != 0)
2671 {
2672 mask >>= 1;
2673 --power_of_two;
2674 }
2675
2676 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2677 dynbss))
2678 {
2679 /* Adjust the section alignment if needed. */
2680 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2681 power_of_two))
2682 return FALSE;
2683 }
2684
2685 /* We make sure that the symbol will be aligned properly. */
2686 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2687
2688 /* Define the symbol as being at this point in DYNBSS. */
2689 h->root.u.def.section = dynbss;
2690 h->root.u.def.value = dynbss->size;
2691
2692 /* Increment the size of DYNBSS to make room for the symbol. */
2693 dynbss->size += h->size;
2694
2695 return TRUE;
2696 }
2697
2698 /* Adjust all external symbols pointing into SEC_MERGE sections
2699 to reflect the object merging within the sections. */
2700
2701 static bfd_boolean
2702 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2703 {
2704 asection *sec;
2705
2706 if ((h->root.type == bfd_link_hash_defined
2707 || h->root.type == bfd_link_hash_defweak)
2708 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2709 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2710 {
2711 bfd *output_bfd = (bfd *) data;
2712
2713 h->root.u.def.value =
2714 _bfd_merged_section_offset (output_bfd,
2715 &h->root.u.def.section,
2716 elf_section_data (sec)->sec_info,
2717 h->root.u.def.value);
2718 }
2719
2720 return TRUE;
2721 }
2722
2723 /* Returns false if the symbol referred to by H should be considered
2724 to resolve local to the current module, and true if it should be
2725 considered to bind dynamically. */
2726
2727 bfd_boolean
2728 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2729 struct bfd_link_info *info,
2730 bfd_boolean not_local_protected)
2731 {
2732 bfd_boolean binding_stays_local_p;
2733 const struct elf_backend_data *bed;
2734 struct elf_link_hash_table *hash_table;
2735
2736 if (h == NULL)
2737 return FALSE;
2738
2739 while (h->root.type == bfd_link_hash_indirect
2740 || h->root.type == bfd_link_hash_warning)
2741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2742
2743 /* If it was forced local, then clearly it's not dynamic. */
2744 if (h->dynindx == -1)
2745 return FALSE;
2746 if (h->forced_local)
2747 return FALSE;
2748
2749 /* Identify the cases where name binding rules say that a
2750 visible symbol resolves locally. */
2751 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2752
2753 switch (ELF_ST_VISIBILITY (h->other))
2754 {
2755 case STV_INTERNAL:
2756 case STV_HIDDEN:
2757 return FALSE;
2758
2759 case STV_PROTECTED:
2760 hash_table = elf_hash_table (info);
2761 if (!is_elf_hash_table (hash_table))
2762 return FALSE;
2763
2764 bed = get_elf_backend_data (hash_table->dynobj);
2765
2766 /* Proper resolution for function pointer equality may require
2767 that these symbols perhaps be resolved dynamically, even though
2768 we should be resolving them to the current module. */
2769 if (!not_local_protected || !bed->is_function_type (h->type))
2770 binding_stays_local_p = TRUE;
2771 break;
2772
2773 default:
2774 break;
2775 }
2776
2777 /* If it isn't defined locally, then clearly it's dynamic. */
2778 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2779 return TRUE;
2780
2781 /* Otherwise, the symbol is dynamic if binding rules don't tell
2782 us that it remains local. */
2783 return !binding_stays_local_p;
2784 }
2785
2786 /* Return true if the symbol referred to by H should be considered
2787 to resolve local to the current module, and false otherwise. Differs
2788 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2789 undefined symbols. The two functions are virtually identical except
2790 for the place where forced_local and dynindx == -1 are tested. If
2791 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2792 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2793 the symbol is local only for defined symbols.
2794 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2795 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2796 treatment of undefined weak symbols. For those that do not make
2797 undefined weak symbols dynamic, both functions may return false. */
2798
2799 bfd_boolean
2800 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2801 struct bfd_link_info *info,
2802 bfd_boolean local_protected)
2803 {
2804 const struct elf_backend_data *bed;
2805 struct elf_link_hash_table *hash_table;
2806
2807 /* If it's a local sym, of course we resolve locally. */
2808 if (h == NULL)
2809 return TRUE;
2810
2811 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2812 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2813 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2814 return TRUE;
2815
2816 /* Common symbols that become definitions don't get the DEF_REGULAR
2817 flag set, so test it first, and don't bail out. */
2818 if (ELF_COMMON_DEF_P (h))
2819 /* Do nothing. */;
2820 /* If we don't have a definition in a regular file, then we can't
2821 resolve locally. The sym is either undefined or dynamic. */
2822 else if (!h->def_regular)
2823 return FALSE;
2824
2825 /* Forced local symbols resolve locally. */
2826 if (h->forced_local)
2827 return TRUE;
2828
2829 /* As do non-dynamic symbols. */
2830 if (h->dynindx == -1)
2831 return TRUE;
2832
2833 /* At this point, we know the symbol is defined and dynamic. In an
2834 executable it must resolve locally, likewise when building symbolic
2835 shared libraries. */
2836 if (info->executable || SYMBOLIC_BIND (info, h))
2837 return TRUE;
2838
2839 /* Now deal with defined dynamic symbols in shared libraries. Ones
2840 with default visibility might not resolve locally. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2842 return FALSE;
2843
2844 hash_table = elf_hash_table (info);
2845 if (!is_elf_hash_table (hash_table))
2846 return TRUE;
2847
2848 bed = get_elf_backend_data (hash_table->dynobj);
2849
2850 /* STV_PROTECTED non-function symbols are local. */
2851 if (!bed->is_function_type (h->type))
2852 return TRUE;
2853
2854 /* Function pointer equality tests may require that STV_PROTECTED
2855 symbols be treated as dynamic symbols. If the address of a
2856 function not defined in an executable is set to that function's
2857 plt entry in the executable, then the address of the function in
2858 a shared library must also be the plt entry in the executable. */
2859 return local_protected;
2860 }
2861
2862 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2863 aligned. Returns the first TLS output section. */
2864
2865 struct bfd_section *
2866 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2867 {
2868 struct bfd_section *sec, *tls;
2869 unsigned int align = 0;
2870
2871 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2872 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2873 break;
2874 tls = sec;
2875
2876 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2877 if (sec->alignment_power > align)
2878 align = sec->alignment_power;
2879
2880 elf_hash_table (info)->tls_sec = tls;
2881
2882 /* Ensure the alignment of the first section is the largest alignment,
2883 so that the tls segment starts aligned. */
2884 if (tls != NULL)
2885 tls->alignment_power = align;
2886
2887 return tls;
2888 }
2889
2890 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2891 static bfd_boolean
2892 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2893 Elf_Internal_Sym *sym)
2894 {
2895 const struct elf_backend_data *bed;
2896
2897 /* Local symbols do not count, but target specific ones might. */
2898 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2899 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2900 return FALSE;
2901
2902 bed = get_elf_backend_data (abfd);
2903 /* Function symbols do not count. */
2904 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2905 return FALSE;
2906
2907 /* If the section is undefined, then so is the symbol. */
2908 if (sym->st_shndx == SHN_UNDEF)
2909 return FALSE;
2910
2911 /* If the symbol is defined in the common section, then
2912 it is a common definition and so does not count. */
2913 if (bed->common_definition (sym))
2914 return FALSE;
2915
2916 /* If the symbol is in a target specific section then we
2917 must rely upon the backend to tell us what it is. */
2918 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2919 /* FIXME - this function is not coded yet:
2920
2921 return _bfd_is_global_symbol_definition (abfd, sym);
2922
2923 Instead for now assume that the definition is not global,
2924 Even if this is wrong, at least the linker will behave
2925 in the same way that it used to do. */
2926 return FALSE;
2927
2928 return TRUE;
2929 }
2930
2931 /* Search the symbol table of the archive element of the archive ABFD
2932 whose archive map contains a mention of SYMDEF, and determine if
2933 the symbol is defined in this element. */
2934 static bfd_boolean
2935 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2936 {
2937 Elf_Internal_Shdr * hdr;
2938 bfd_size_type symcount;
2939 bfd_size_type extsymcount;
2940 bfd_size_type extsymoff;
2941 Elf_Internal_Sym *isymbuf;
2942 Elf_Internal_Sym *isym;
2943 Elf_Internal_Sym *isymend;
2944 bfd_boolean result;
2945
2946 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2947 if (abfd == NULL)
2948 return FALSE;
2949
2950 if (! bfd_check_format (abfd, bfd_object))
2951 return FALSE;
2952
2953 /* If we have already included the element containing this symbol in the
2954 link then we do not need to include it again. Just claim that any symbol
2955 it contains is not a definition, so that our caller will not decide to
2956 (re)include this element. */
2957 if (abfd->archive_pass)
2958 return FALSE;
2959
2960 /* Select the appropriate symbol table. */
2961 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2962 hdr = &elf_tdata (abfd)->symtab_hdr;
2963 else
2964 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2965
2966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2967
2968 /* The sh_info field of the symtab header tells us where the
2969 external symbols start. We don't care about the local symbols. */
2970 if (elf_bad_symtab (abfd))
2971 {
2972 extsymcount = symcount;
2973 extsymoff = 0;
2974 }
2975 else
2976 {
2977 extsymcount = symcount - hdr->sh_info;
2978 extsymoff = hdr->sh_info;
2979 }
2980
2981 if (extsymcount == 0)
2982 return FALSE;
2983
2984 /* Read in the symbol table. */
2985 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2986 NULL, NULL, NULL);
2987 if (isymbuf == NULL)
2988 return FALSE;
2989
2990 /* Scan the symbol table looking for SYMDEF. */
2991 result = FALSE;
2992 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2993 {
2994 const char *name;
2995
2996 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2997 isym->st_name);
2998 if (name == NULL)
2999 break;
3000
3001 if (strcmp (name, symdef->name) == 0)
3002 {
3003 result = is_global_data_symbol_definition (abfd, isym);
3004 break;
3005 }
3006 }
3007
3008 free (isymbuf);
3009
3010 return result;
3011 }
3012 \f
3013 /* Add an entry to the .dynamic table. */
3014
3015 bfd_boolean
3016 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3017 bfd_vma tag,
3018 bfd_vma val)
3019 {
3020 struct elf_link_hash_table *hash_table;
3021 const struct elf_backend_data *bed;
3022 asection *s;
3023 bfd_size_type newsize;
3024 bfd_byte *newcontents;
3025 Elf_Internal_Dyn dyn;
3026
3027 hash_table = elf_hash_table (info);
3028 if (! is_elf_hash_table (hash_table))
3029 return FALSE;
3030
3031 bed = get_elf_backend_data (hash_table->dynobj);
3032 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3033 BFD_ASSERT (s != NULL);
3034
3035 newsize = s->size + bed->s->sizeof_dyn;
3036 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3037 if (newcontents == NULL)
3038 return FALSE;
3039
3040 dyn.d_tag = tag;
3041 dyn.d_un.d_val = val;
3042 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3043
3044 s->size = newsize;
3045 s->contents = newcontents;
3046
3047 return TRUE;
3048 }
3049
3050 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3051 otherwise just check whether one already exists. Returns -1 on error,
3052 1 if a DT_NEEDED tag already exists, and 0 on success. */
3053
3054 static int
3055 elf_add_dt_needed_tag (bfd *abfd,
3056 struct bfd_link_info *info,
3057 const char *soname,
3058 bfd_boolean do_it)
3059 {
3060 struct elf_link_hash_table *hash_table;
3061 bfd_size_type oldsize;
3062 bfd_size_type strindex;
3063
3064 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3065 return -1;
3066
3067 hash_table = elf_hash_table (info);
3068 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3069 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3070 if (strindex == (bfd_size_type) -1)
3071 return -1;
3072
3073 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3074 {
3075 asection *sdyn;
3076 const struct elf_backend_data *bed;
3077 bfd_byte *extdyn;
3078
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3081 if (sdyn != NULL)
3082 for (extdyn = sdyn->contents;
3083 extdyn < sdyn->contents + sdyn->size;
3084 extdyn += bed->s->sizeof_dyn)
3085 {
3086 Elf_Internal_Dyn dyn;
3087
3088 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3089 if (dyn.d_tag == DT_NEEDED
3090 && dyn.d_un.d_val == strindex)
3091 {
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3093 return 1;
3094 }
3095 }
3096 }
3097
3098 if (do_it)
3099 {
3100 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3101 return -1;
3102
3103 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3104 return -1;
3105 }
3106 else
3107 /* We were just checking for existence of the tag. */
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109
3110 return 0;
3111 }
3112
3113 static bfd_boolean
3114 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3115 {
3116 for (; needed != NULL; needed = needed->next)
3117 if (strcmp (soname, needed->name) == 0)
3118 return TRUE;
3119
3120 return FALSE;
3121 }
3122
3123 /* Sort symbol by value and section. */
3124 static int
3125 elf_sort_symbol (const void *arg1, const void *arg2)
3126 {
3127 const struct elf_link_hash_entry *h1;
3128 const struct elf_link_hash_entry *h2;
3129 bfd_signed_vma vdiff;
3130
3131 h1 = *(const struct elf_link_hash_entry **) arg1;
3132 h2 = *(const struct elf_link_hash_entry **) arg2;
3133 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3134 if (vdiff != 0)
3135 return vdiff > 0 ? 1 : -1;
3136 else
3137 {
3138 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3139 if (sdiff != 0)
3140 return sdiff > 0 ? 1 : -1;
3141 }
3142 return 0;
3143 }
3144
3145 /* This function is used to adjust offsets into .dynstr for
3146 dynamic symbols. This is called via elf_link_hash_traverse. */
3147
3148 static bfd_boolean
3149 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3150 {
3151 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3152
3153 if (h->dynindx != -1)
3154 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3155 return TRUE;
3156 }
3157
3158 /* Assign string offsets in .dynstr, update all structures referencing
3159 them. */
3160
3161 static bfd_boolean
3162 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3163 {
3164 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3165 struct elf_link_local_dynamic_entry *entry;
3166 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3167 bfd *dynobj = hash_table->dynobj;
3168 asection *sdyn;
3169 bfd_size_type size;
3170 const struct elf_backend_data *bed;
3171 bfd_byte *extdyn;
3172
3173 _bfd_elf_strtab_finalize (dynstr);
3174 size = _bfd_elf_strtab_size (dynstr);
3175
3176 bed = get_elf_backend_data (dynobj);
3177 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3178 BFD_ASSERT (sdyn != NULL);
3179
3180 /* Update all .dynamic entries referencing .dynstr strings. */
3181 for (extdyn = sdyn->contents;
3182 extdyn < sdyn->contents + sdyn->size;
3183 extdyn += bed->s->sizeof_dyn)
3184 {
3185 Elf_Internal_Dyn dyn;
3186
3187 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3188 switch (dyn.d_tag)
3189 {
3190 case DT_STRSZ:
3191 dyn.d_un.d_val = size;
3192 break;
3193 case DT_NEEDED:
3194 case DT_SONAME:
3195 case DT_RPATH:
3196 case DT_RUNPATH:
3197 case DT_FILTER:
3198 case DT_AUXILIARY:
3199 case DT_AUDIT:
3200 case DT_DEPAUDIT:
3201 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3202 break;
3203 default:
3204 continue;
3205 }
3206 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3207 }
3208
3209 /* Now update local dynamic symbols. */
3210 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3211 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3212 entry->isym.st_name);
3213
3214 /* And the rest of dynamic symbols. */
3215 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3216
3217 /* Adjust version definitions. */
3218 if (elf_tdata (output_bfd)->cverdefs)
3219 {
3220 asection *s;
3221 bfd_byte *p;
3222 bfd_size_type i;
3223 Elf_Internal_Verdef def;
3224 Elf_Internal_Verdaux defaux;
3225
3226 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3227 p = s->contents;
3228 do
3229 {
3230 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3231 &def);
3232 p += sizeof (Elf_External_Verdef);
3233 if (def.vd_aux != sizeof (Elf_External_Verdef))
3234 continue;
3235 for (i = 0; i < def.vd_cnt; ++i)
3236 {
3237 _bfd_elf_swap_verdaux_in (output_bfd,
3238 (Elf_External_Verdaux *) p, &defaux);
3239 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3240 defaux.vda_name);
3241 _bfd_elf_swap_verdaux_out (output_bfd,
3242 &defaux, (Elf_External_Verdaux *) p);
3243 p += sizeof (Elf_External_Verdaux);
3244 }
3245 }
3246 while (def.vd_next);
3247 }
3248
3249 /* Adjust version references. */
3250 if (elf_tdata (output_bfd)->verref)
3251 {
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verneed need;
3256 Elf_Internal_Vernaux needaux;
3257
3258 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3259 p = s->contents;
3260 do
3261 {
3262 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3263 &need);
3264 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3265 _bfd_elf_swap_verneed_out (output_bfd, &need,
3266 (Elf_External_Verneed *) p);
3267 p += sizeof (Elf_External_Verneed);
3268 for (i = 0; i < need.vn_cnt; ++i)
3269 {
3270 _bfd_elf_swap_vernaux_in (output_bfd,
3271 (Elf_External_Vernaux *) p, &needaux);
3272 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3273 needaux.vna_name);
3274 _bfd_elf_swap_vernaux_out (output_bfd,
3275 &needaux,
3276 (Elf_External_Vernaux *) p);
3277 p += sizeof (Elf_External_Vernaux);
3278 }
3279 }
3280 while (need.vn_next);
3281 }
3282
3283 return TRUE;
3284 }
3285 \f
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 The default is to only match when the INPUT and OUTPUT are exactly
3288 the same target. */
3289
3290 bfd_boolean
3291 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3293 {
3294 return input == output;
3295 }
3296
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 This version is used when different targets for the same architecture
3299 are virtually identical. */
3300
3301 bfd_boolean
3302 _bfd_elf_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3304 {
3305 const struct elf_backend_data *obed, *ibed;
3306
3307 if (input == output)
3308 return TRUE;
3309
3310 ibed = xvec_get_elf_backend_data (input);
3311 obed = xvec_get_elf_backend_data (output);
3312
3313 if (ibed->arch != obed->arch)
3314 return FALSE;
3315
3316 /* If both backends are using this function, deem them compatible. */
3317 return ibed->relocs_compatible == obed->relocs_compatible;
3318 }
3319
3320 /* Add symbols from an ELF object file to the linker hash table. */
3321
3322 static bfd_boolean
3323 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3324 {
3325 Elf_Internal_Ehdr *ehdr;
3326 Elf_Internal_Shdr *hdr;
3327 bfd_size_type symcount;
3328 bfd_size_type extsymcount;
3329 bfd_size_type extsymoff;
3330 struct elf_link_hash_entry **sym_hash;
3331 bfd_boolean dynamic;
3332 Elf_External_Versym *extversym = NULL;
3333 Elf_External_Versym *ever;
3334 struct elf_link_hash_entry *weaks;
3335 struct elf_link_hash_entry **nondeflt_vers = NULL;
3336 bfd_size_type nondeflt_vers_cnt = 0;
3337 Elf_Internal_Sym *isymbuf = NULL;
3338 Elf_Internal_Sym *isym;
3339 Elf_Internal_Sym *isymend;
3340 const struct elf_backend_data *bed;
3341 bfd_boolean add_needed;
3342 struct elf_link_hash_table *htab;
3343 bfd_size_type amt;
3344 void *alloc_mark = NULL;
3345 struct bfd_hash_entry **old_table = NULL;
3346 unsigned int old_size = 0;
3347 unsigned int old_count = 0;
3348 void *old_tab = NULL;
3349 void *old_hash;
3350 void *old_ent;
3351 struct bfd_link_hash_entry *old_undefs = NULL;
3352 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3353 long old_dynsymcount = 0;
3354 size_t tabsize = 0;
3355 size_t hashsize = 0;
3356
3357 htab = elf_hash_table (info);
3358 bed = get_elf_backend_data (abfd);
3359
3360 if ((abfd->flags & DYNAMIC) == 0)
3361 dynamic = FALSE;
3362 else
3363 {
3364 dynamic = TRUE;
3365
3366 /* You can't use -r against a dynamic object. Also, there's no
3367 hope of using a dynamic object which does not exactly match
3368 the format of the output file. */
3369 if (info->relocatable
3370 || !is_elf_hash_table (htab)
3371 || info->output_bfd->xvec != abfd->xvec)
3372 {
3373 if (info->relocatable)
3374 bfd_set_error (bfd_error_invalid_operation);
3375 else
3376 bfd_set_error (bfd_error_wrong_format);
3377 goto error_return;
3378 }
3379 }
3380
3381 ehdr = elf_elfheader (abfd);
3382 if (info->warn_alternate_em
3383 && bed->elf_machine_code != ehdr->e_machine
3384 && ((bed->elf_machine_alt1 != 0
3385 && ehdr->e_machine == bed->elf_machine_alt1)
3386 || (bed->elf_machine_alt2 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt2)))
3388 info->callbacks->einfo
3389 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3390 ehdr->e_machine, abfd, bed->elf_machine_code);
3391
3392 /* As a GNU extension, any input sections which are named
3393 .gnu.warning.SYMBOL are treated as warning symbols for the given
3394 symbol. This differs from .gnu.warning sections, which generate
3395 warnings when they are included in an output file. */
3396 /* PR 12761: Also generate this warning when building shared libraries. */
3397 if (info->executable || info->shared)
3398 {
3399 asection *s;
3400
3401 for (s = abfd->sections; s != NULL; s = s->next)
3402 {
3403 const char *name;
3404
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3407 {
3408 char *msg;
3409 bfd_size_type sz;
3410
3411 name += sizeof ".gnu.warning." - 1;
3412
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3423 {
3424 struct elf_link_hash_entry *h;
3425
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3427
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3432 {
3433 /* We don't want to issue this warning. Clobber
3434 the section size so that the warning does not
3435 get copied into the output file. */
3436 s->size = 0;
3437 continue;
3438 }
3439 }
3440
3441 sz = s->size;
3442 msg = (char *) bfd_alloc (abfd, sz + 1);
3443 if (msg == NULL)
3444 goto error_return;
3445
3446 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3447 goto error_return;
3448
3449 msg[sz] = '\0';
3450
3451 if (! (_bfd_generic_link_add_one_symbol
3452 (info, abfd, name, BSF_WARNING, s, 0, msg,
3453 FALSE, bed->collect, NULL)))
3454 goto error_return;
3455
3456 if (! info->relocatable)
3457 {
3458 /* Clobber the section size so that the warning does
3459 not get copied into the output file. */
3460 s->size = 0;
3461
3462 /* Also set SEC_EXCLUDE, so that symbols defined in
3463 the warning section don't get copied to the output. */
3464 s->flags |= SEC_EXCLUDE;
3465 }
3466 }
3467 }
3468 }
3469
3470 add_needed = TRUE;
3471 if (! dynamic)
3472 {
3473 /* If we are creating a shared library, create all the dynamic
3474 sections immediately. We need to attach them to something,
3475 so we attach them to this BFD, provided it is the right
3476 format. FIXME: If there are no input BFD's of the same
3477 format as the output, we can't make a shared library. */
3478 if (info->shared
3479 && is_elf_hash_table (htab)
3480 && info->output_bfd->xvec == abfd->xvec
3481 && !htab->dynamic_sections_created)
3482 {
3483 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3484 goto error_return;
3485 }
3486 }
3487 else if (!is_elf_hash_table (htab))
3488 goto error_return;
3489 else
3490 {
3491 asection *s;
3492 const char *soname = NULL;
3493 char *audit = NULL;
3494 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3495 int ret;
3496
3497 /* ld --just-symbols and dynamic objects don't mix very well.
3498 ld shouldn't allow it. */
3499 if ((s = abfd->sections) != NULL
3500 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3501 abort ();
3502
3503 /* If this dynamic lib was specified on the command line with
3504 --as-needed in effect, then we don't want to add a DT_NEEDED
3505 tag unless the lib is actually used. Similary for libs brought
3506 in by another lib's DT_NEEDED. When --no-add-needed is used
3507 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3508 any dynamic library in DT_NEEDED tags in the dynamic lib at
3509 all. */
3510 add_needed = (elf_dyn_lib_class (abfd)
3511 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3512 | DYN_NO_NEEDED)) == 0;
3513
3514 s = bfd_get_section_by_name (abfd, ".dynamic");
3515 if (s != NULL)
3516 {
3517 bfd_byte *dynbuf;
3518 bfd_byte *extdyn;
3519 unsigned int elfsec;
3520 unsigned long shlink;
3521
3522 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3523 {
3524 error_free_dyn:
3525 free (dynbuf);
3526 goto error_return;
3527 }
3528
3529 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3530 if (elfsec == SHN_BAD)
3531 goto error_free_dyn;
3532 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3533
3534 for (extdyn = dynbuf;
3535 extdyn < dynbuf + s->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3541 if (dyn.d_tag == DT_SONAME)
3542 {
3543 unsigned int tagv = dyn.d_un.d_val;
3544 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3545 if (soname == NULL)
3546 goto error_free_dyn;
3547 }
3548 if (dyn.d_tag == DT_NEEDED)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = (char *) bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 goto error_free_dyn;
3563 memcpy (anm, fnm, amt);
3564 n->name = anm;
3565 n->by = abfd;
3566 n->next = NULL;
3567 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3568 ;
3569 *pn = n;
3570 }
3571 if (dyn.d_tag == DT_RUNPATH)
3572 {
3573 struct bfd_link_needed_list *n, **pn;
3574 char *fnm, *anm;
3575 unsigned int tagv = dyn.d_un.d_val;
3576
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3584 if (anm == NULL)
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3587 n->name = anm;
3588 n->by = abfd;
3589 n->next = NULL;
3590 for (pn = & runpath;
3591 *pn != NULL;
3592 pn = &(*pn)->next)
3593 ;
3594 *pn = n;
3595 }
3596 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3597 if (!runpath && dyn.d_tag == DT_RPATH)
3598 {
3599 struct bfd_link_needed_list *n, **pn;
3600 char *fnm, *anm;
3601 unsigned int tagv = dyn.d_un.d_val;
3602
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3610 if (anm == NULL)
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3613 n->name = anm;
3614 n->by = abfd;
3615 n->next = NULL;
3616 for (pn = & rpath;
3617 *pn != NULL;
3618 pn = &(*pn)->next)
3619 ;
3620 *pn = n;
3621 }
3622 if (dyn.d_tag == DT_AUDIT)
3623 {
3624 unsigned int tagv = dyn.d_un.d_val;
3625 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3626 }
3627 }
3628
3629 free (dynbuf);
3630 }
3631
3632 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3633 frees all more recently bfd_alloc'd blocks as well. */
3634 if (runpath)
3635 rpath = runpath;
3636
3637 if (rpath)
3638 {
3639 struct bfd_link_needed_list **pn;
3640 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3641 ;
3642 *pn = rpath;
3643 }
3644
3645 /* We do not want to include any of the sections in a dynamic
3646 object in the output file. We hack by simply clobbering the
3647 list of sections in the BFD. This could be handled more
3648 cleanly by, say, a new section flag; the existing
3649 SEC_NEVER_LOAD flag is not the one we want, because that one
3650 still implies that the section takes up space in the output
3651 file. */
3652 bfd_section_list_clear (abfd);
3653
3654 /* Find the name to use in a DT_NEEDED entry that refers to this
3655 object. If the object has a DT_SONAME entry, we use it.
3656 Otherwise, if the generic linker stuck something in
3657 elf_dt_name, we use that. Otherwise, we just use the file
3658 name. */
3659 if (soname == NULL || *soname == '\0')
3660 {
3661 soname = elf_dt_name (abfd);
3662 if (soname == NULL || *soname == '\0')
3663 soname = bfd_get_filename (abfd);
3664 }
3665
3666 /* Save the SONAME because sometimes the linker emulation code
3667 will need to know it. */
3668 elf_dt_name (abfd) = soname;
3669
3670 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3671 if (ret < 0)
3672 goto error_return;
3673
3674 /* If we have already included this dynamic object in the
3675 link, just ignore it. There is no reason to include a
3676 particular dynamic object more than once. */
3677 if (ret > 0)
3678 return TRUE;
3679
3680 /* Save the DT_AUDIT entry for the linker emulation code. */
3681 elf_dt_audit (abfd) = audit;
3682 }
3683
3684 /* If this is a dynamic object, we always link against the .dynsym
3685 symbol table, not the .symtab symbol table. The dynamic linker
3686 will only see the .dynsym symbol table, so there is no reason to
3687 look at .symtab for a dynamic object. */
3688
3689 if (! dynamic || elf_dynsymtab (abfd) == 0)
3690 hdr = &elf_tdata (abfd)->symtab_hdr;
3691 else
3692 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3693
3694 symcount = hdr->sh_size / bed->s->sizeof_sym;
3695
3696 /* The sh_info field of the symtab header tells us where the
3697 external symbols start. We don't care about the local symbols at
3698 this point. */
3699 if (elf_bad_symtab (abfd))
3700 {
3701 extsymcount = symcount;
3702 extsymoff = 0;
3703 }
3704 else
3705 {
3706 extsymcount = symcount - hdr->sh_info;
3707 extsymoff = hdr->sh_info;
3708 }
3709
3710 sym_hash = NULL;
3711 if (extsymcount != 0)
3712 {
3713 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3714 NULL, NULL, NULL);
3715 if (isymbuf == NULL)
3716 goto error_return;
3717
3718 /* We store a pointer to the hash table entry for each external
3719 symbol. */
3720 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3721 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3722 if (sym_hash == NULL)
3723 goto error_free_sym;
3724 elf_sym_hashes (abfd) = sym_hash;
3725 }
3726
3727 if (dynamic)
3728 {
3729 /* Read in any version definitions. */
3730 if (!_bfd_elf_slurp_version_tables (abfd,
3731 info->default_imported_symver))
3732 goto error_free_sym;
3733
3734 /* Read in the symbol versions, but don't bother to convert them
3735 to internal format. */
3736 if (elf_dynversym (abfd) != 0)
3737 {
3738 Elf_Internal_Shdr *versymhdr;
3739
3740 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3741 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3742 if (extversym == NULL)
3743 goto error_free_sym;
3744 amt = versymhdr->sh_size;
3745 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3746 || bfd_bread (extversym, amt, abfd) != amt)
3747 goto error_free_vers;
3748 }
3749 }
3750
3751 /* If we are loading an as-needed shared lib, save the symbol table
3752 state before we start adding symbols. If the lib turns out
3753 to be unneeded, restore the state. */
3754 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3755 {
3756 unsigned int i;
3757 size_t entsize;
3758
3759 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3760 {
3761 struct bfd_hash_entry *p;
3762 struct elf_link_hash_entry *h;
3763
3764 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3765 {
3766 h = (struct elf_link_hash_entry *) p;
3767 entsize += htab->root.table.entsize;
3768 if (h->root.type == bfd_link_hash_warning)
3769 entsize += htab->root.table.entsize;
3770 }
3771 }
3772
3773 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3774 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3775 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3776 if (old_tab == NULL)
3777 goto error_free_vers;
3778
3779 /* Remember the current objalloc pointer, so that all mem for
3780 symbols added can later be reclaimed. */
3781 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3782 if (alloc_mark == NULL)
3783 goto error_free_vers;
3784
3785 /* Make a special call to the linker "notice" function to
3786 tell it that we are about to handle an as-needed lib. */
3787 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3788 notice_as_needed, 0, NULL))
3789 goto error_free_vers;
3790
3791 /* Clone the symbol table and sym hashes. Remember some
3792 pointers into the symbol table, and dynamic symbol count. */
3793 old_hash = (char *) old_tab + tabsize;
3794 old_ent = (char *) old_hash + hashsize;
3795 memcpy (old_tab, htab->root.table.table, tabsize);
3796 memcpy (old_hash, sym_hash, hashsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3803
3804 for (i = 0; i < htab->root.table.size; i++)
3805 {
3806 struct bfd_hash_entry *p;
3807 struct elf_link_hash_entry *h;
3808
3809 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3810 {
3811 memcpy (old_ent, p, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 h = (struct elf_link_hash_entry *) p;
3814 if (h->root.type == bfd_link_hash_warning)
3815 {
3816 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3817 old_ent = (char *) old_ent + htab->root.table.entsize;
3818 }
3819 }
3820 }
3821 }
3822
3823 weaks = NULL;
3824 ever = extversym != NULL ? extversym + extsymoff : NULL;
3825 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3826 isym < isymend;
3827 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3828 {
3829 int bind;
3830 bfd_vma value;
3831 asection *sec, *new_sec;
3832 flagword flags;
3833 const char *name;
3834 struct elf_link_hash_entry *h;
3835 bfd_boolean definition;
3836 bfd_boolean size_change_ok;
3837 bfd_boolean type_change_ok;
3838 bfd_boolean new_weakdef;
3839 bfd_boolean override;
3840 bfd_boolean common;
3841 unsigned int old_alignment;
3842 bfd *old_bfd;
3843 bfd * undef_bfd = NULL;
3844
3845 override = FALSE;
3846
3847 flags = BSF_NO_FLAGS;
3848 sec = NULL;
3849 value = isym->st_value;
3850 *sym_hash = NULL;
3851 common = bed->common_definition (isym);
3852
3853 bind = ELF_ST_BIND (isym->st_info);
3854 switch (bind)
3855 {
3856 case STB_LOCAL:
3857 /* This should be impossible, since ELF requires that all
3858 global symbols follow all local symbols, and that sh_info
3859 point to the first global symbol. Unfortunately, Irix 5
3860 screws this up. */
3861 continue;
3862
3863 case STB_GLOBAL:
3864 if (isym->st_shndx != SHN_UNDEF && !common)
3865 flags = BSF_GLOBAL;
3866 break;
3867
3868 case STB_WEAK:
3869 flags = BSF_WEAK;
3870 break;
3871
3872 case STB_GNU_UNIQUE:
3873 flags = BSF_GNU_UNIQUE;
3874 break;
3875
3876 default:
3877 /* Leave it up to the processor backend. */
3878 break;
3879 }
3880
3881 if (isym->st_shndx == SHN_UNDEF)
3882 sec = bfd_und_section_ptr;
3883 else if (isym->st_shndx == SHN_ABS)
3884 sec = bfd_abs_section_ptr;
3885 else if (isym->st_shndx == SHN_COMMON)
3886 {
3887 sec = bfd_com_section_ptr;
3888 /* What ELF calls the size we call the value. What ELF
3889 calls the value we call the alignment. */
3890 value = isym->st_size;
3891 }
3892 else
3893 {
3894 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3895 if (sec == NULL)
3896 sec = bfd_abs_section_ptr;
3897 else if (discarded_section (sec))
3898 {
3899 /* Symbols from discarded section are undefined. We keep
3900 its visibility. */
3901 sec = bfd_und_section_ptr;
3902 isym->st_shndx = SHN_UNDEF;
3903 }
3904 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3905 value -= sec->vma;
3906 }
3907
3908 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3909 isym->st_name);
3910 if (name == NULL)
3911 goto error_free_vers;
3912
3913 if (isym->st_shndx == SHN_COMMON
3914 && (abfd->flags & BFD_PLUGIN) != 0)
3915 {
3916 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3917
3918 if (xc == NULL)
3919 {
3920 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3921 | SEC_EXCLUDE);
3922 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3923 if (xc == NULL)
3924 goto error_free_vers;
3925 }
3926 sec = xc;
3927 }
3928 else if (isym->st_shndx == SHN_COMMON
3929 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3930 && !info->relocatable)
3931 {
3932 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3933
3934 if (tcomm == NULL)
3935 {
3936 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED);
3938 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 /* If this is a definition of a symbol which was previously
3982 referenced in a non-weak manner then make a note of the bfd
3983 that contained the reference. This is used if we need to
3984 refer to the source of the reference later on. */
3985 if (! bfd_is_und_section (sec))
3986 {
3987 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3988
3989 if (h != NULL
3990 && h->root.type == bfd_link_hash_undefined
3991 && h->root.u.undef.abfd)
3992 undef_bfd = h->root.u.undef.abfd;
3993 }
3994
3995 if (ever == NULL)
3996 {
3997 if (info->default_imported_symver)
3998 /* Use the default symbol version created earlier. */
3999 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4000 else
4001 iver.vs_vers = 0;
4002 }
4003 else
4004 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4005
4006 vernum = iver.vs_vers & VERSYM_VERSION;
4007
4008 /* If this is a hidden symbol, or if it is not version
4009 1, we append the version name to the symbol name.
4010 However, we do not modify a non-hidden absolute symbol
4011 if it is not a function, because it might be the version
4012 symbol itself. FIXME: What if it isn't? */
4013 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4014 || (vernum > 1
4015 && (!bfd_is_abs_section (sec)
4016 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4017 {
4018 const char *verstr;
4019 size_t namelen, verlen, newlen;
4020 char *newname, *p;
4021
4022 if (isym->st_shndx != SHN_UNDEF)
4023 {
4024 if (vernum > elf_tdata (abfd)->cverdefs)
4025 verstr = NULL;
4026 else if (vernum > 1)
4027 verstr =
4028 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4029 else
4030 verstr = "";
4031
4032 if (verstr == NULL)
4033 {
4034 (*_bfd_error_handler)
4035 (_("%B: %s: invalid version %u (max %d)"),
4036 abfd, name, vernum,
4037 elf_tdata (abfd)->cverdefs);
4038 bfd_set_error (bfd_error_bad_value);
4039 goto error_free_vers;
4040 }
4041 }
4042 else
4043 {
4044 /* We cannot simply test for the number of
4045 entries in the VERNEED section since the
4046 numbers for the needed versions do not start
4047 at 0. */
4048 Elf_Internal_Verneed *t;
4049
4050 verstr = NULL;
4051 for (t = elf_tdata (abfd)->verref;
4052 t != NULL;
4053 t = t->vn_nextref)
4054 {
4055 Elf_Internal_Vernaux *a;
4056
4057 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4058 {
4059 if (a->vna_other == vernum)
4060 {
4061 verstr = a->vna_nodename;
4062 break;
4063 }
4064 }
4065 if (a != NULL)
4066 break;
4067 }
4068 if (verstr == NULL)
4069 {
4070 (*_bfd_error_handler)
4071 (_("%B: %s: invalid needed version %d"),
4072 abfd, name, vernum);
4073 bfd_set_error (bfd_error_bad_value);
4074 goto error_free_vers;
4075 }
4076 }
4077
4078 namelen = strlen (name);
4079 verlen = strlen (verstr);
4080 newlen = namelen + verlen + 2;
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 ++newlen;
4084
4085 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4086 if (newname == NULL)
4087 goto error_free_vers;
4088 memcpy (newname, name, namelen);
4089 p = newname + namelen;
4090 *p++ = ELF_VER_CHR;
4091 /* If this is a defined non-hidden version symbol,
4092 we add another @ to the name. This indicates the
4093 default version of the symbol. */
4094 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4095 && isym->st_shndx != SHN_UNDEF)
4096 *p++ = ELF_VER_CHR;
4097 memcpy (p, verstr, verlen + 1);
4098
4099 name = newname;
4100 }
4101
4102 /* If necessary, make a second attempt to locate the bfd
4103 containing an unresolved, non-weak reference to the
4104 current symbol. */
4105 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4106 {
4107 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4108
4109 if (h != NULL
4110 && h->root.type == bfd_link_hash_undefined
4111 && h->root.u.undef.abfd)
4112 undef_bfd = h->root.u.undef.abfd;
4113 }
4114
4115 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4116 &value, &old_alignment,
4117 sym_hash, &skip, &override,
4118 &type_change_ok, &size_change_ok))
4119 goto error_free_vers;
4120
4121 if (skip)
4122 continue;
4123
4124 if (override)
4125 definition = FALSE;
4126
4127 h = *sym_hash;
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4131
4132 /* Remember the old alignment if this is a common symbol, so
4133 that we don't reduce the alignment later on. We can't
4134 check later, because _bfd_generic_link_add_one_symbol
4135 will set a default for the alignment which we want to
4136 override. We also remember the old bfd where the existing
4137 definition comes from. */
4138 switch (h->root.type)
4139 {
4140 default:
4141 break;
4142
4143 case bfd_link_hash_defined:
4144 case bfd_link_hash_defweak:
4145 old_bfd = h->root.u.def.section->owner;
4146 break;
4147
4148 case bfd_link_hash_common:
4149 old_bfd = h->root.u.c.p->section->owner;
4150 old_alignment = h->root.u.c.p->alignment_power;
4151 break;
4152 }
4153
4154 if (elf_tdata (abfd)->verdef != NULL
4155 && ! override
4156 && vernum > 1
4157 && definition)
4158 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4159 }
4160
4161 if (! (_bfd_generic_link_add_one_symbol
4162 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4163 (struct bfd_link_hash_entry **) sym_hash)))
4164 goto error_free_vers;
4165
4166 h = *sym_hash;
4167 while (h->root.type == bfd_link_hash_indirect
4168 || h->root.type == bfd_link_hash_warning)
4169 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4170
4171 *sym_hash = h;
4172 if (is_elf_hash_table (htab))
4173 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4174
4175 new_weakdef = FALSE;
4176 if (dynamic
4177 && definition
4178 && (flags & BSF_WEAK) != 0
4179 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4180 && is_elf_hash_table (htab)
4181 && h->u.weakdef == NULL)
4182 {
4183 /* Keep a list of all weak defined non function symbols from
4184 a dynamic object, using the weakdef field. Later in this
4185 function we will set the weakdef field to the correct
4186 value. We only put non-function symbols from dynamic
4187 objects on this list, because that happens to be the only
4188 time we need to know the normal symbol corresponding to a
4189 weak symbol, and the information is time consuming to
4190 figure out. If the weakdef field is not already NULL,
4191 then this symbol was already defined by some previous
4192 dynamic object, and we will be using that previous
4193 definition anyhow. */
4194
4195 h->u.weakdef = weaks;
4196 weaks = h;
4197 new_weakdef = TRUE;
4198 }
4199
4200 /* Set the alignment of a common symbol. */
4201 if ((common || bfd_is_com_section (sec))
4202 && h->root.type == bfd_link_hash_common)
4203 {
4204 unsigned int align;
4205
4206 if (common)
4207 align = bfd_log2 (isym->st_value);
4208 else
4209 {
4210 /* The new symbol is a common symbol in a shared object.
4211 We need to get the alignment from the section. */
4212 align = new_sec->alignment_power;
4213 }
4214 if (align > old_alignment)
4215 h->root.u.c.p->alignment_power = align;
4216 else
4217 h->root.u.c.p->alignment_power = old_alignment;
4218 }
4219
4220 if (is_elf_hash_table (htab))
4221 {
4222 bfd_boolean dynsym;
4223
4224 /* Check the alignment when a common symbol is involved. This
4225 can change when a common symbol is overridden by a normal
4226 definition or a common symbol is ignored due to the old
4227 normal definition. We need to make sure the maximum
4228 alignment is maintained. */
4229 if ((old_alignment || common)
4230 && h->root.type != bfd_link_hash_common)
4231 {
4232 unsigned int common_align;
4233 unsigned int normal_align;
4234 unsigned int symbol_align;
4235 bfd *normal_bfd;
4236 bfd *common_bfd;
4237
4238 symbol_align = ffs (h->root.u.def.value) - 1;
4239 if (h->root.u.def.section->owner != NULL
4240 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4241 {
4242 normal_align = h->root.u.def.section->alignment_power;
4243 if (normal_align > symbol_align)
4244 normal_align = symbol_align;
4245 }
4246 else
4247 normal_align = symbol_align;
4248
4249 if (old_alignment)
4250 {
4251 common_align = old_alignment;
4252 common_bfd = old_bfd;
4253 normal_bfd = abfd;
4254 }
4255 else
4256 {
4257 common_align = bfd_log2 (isym->st_value);
4258 common_bfd = abfd;
4259 normal_bfd = old_bfd;
4260 }
4261
4262 if (normal_align < common_align)
4263 {
4264 /* PR binutils/2735 */
4265 if (normal_bfd == NULL)
4266 (*_bfd_error_handler)
4267 (_("Warning: alignment %u of common symbol `%s' in %B"
4268 " is greater than the alignment (%u) of its section %A"),
4269 common_bfd, h->root.u.def.section,
4270 1 << common_align, name, 1 << normal_align);
4271 else
4272 (*_bfd_error_handler)
4273 (_("Warning: alignment %u of symbol `%s' in %B"
4274 " is smaller than %u in %B"),
4275 normal_bfd, common_bfd,
4276 1 << normal_align, name, 1 << common_align);
4277 }
4278 }
4279
4280 /* Remember the symbol size if it isn't undefined. */
4281 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4282 && (definition || h->size == 0))
4283 {
4284 if (h->size != 0
4285 && h->size != isym->st_size
4286 && ! size_change_ok)
4287 (*_bfd_error_handler)
4288 (_("Warning: size of symbol `%s' changed"
4289 " from %lu in %B to %lu in %B"),
4290 old_bfd, abfd,
4291 name, (unsigned long) h->size,
4292 (unsigned long) isym->st_size);
4293
4294 h->size = isym->st_size;
4295 }
4296
4297 /* If this is a common symbol, then we always want H->SIZE
4298 to be the size of the common symbol. The code just above
4299 won't fix the size if a common symbol becomes larger. We
4300 don't warn about a size change here, because that is
4301 covered by --warn-common. Allow changed between different
4302 function types. */
4303 if (h->root.type == bfd_link_hash_common)
4304 h->size = h->root.u.c.size;
4305
4306 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4307 && (definition || h->type == STT_NOTYPE))
4308 {
4309 unsigned int type = ELF_ST_TYPE (isym->st_info);
4310
4311 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4312 symbol. */
4313 if (type == STT_GNU_IFUNC
4314 && (abfd->flags & DYNAMIC) != 0)
4315 type = STT_FUNC;
4316
4317 if (h->type != type)
4318 {
4319 if (h->type != STT_NOTYPE && ! type_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: type of symbol `%s' changed"
4322 " from %d to %d in %B"),
4323 abfd, name, h->type, type);
4324
4325 h->type = type;
4326 }
4327 }
4328
4329 /* Merge st_other field. */
4330 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4331
4332 /* Set a flag in the hash table entry indicating the type of
4333 reference or definition we just found. Keep a count of
4334 the number of dynamic symbols we find. A dynamic symbol
4335 is one which is referenced or defined by both a regular
4336 object and a shared object. */
4337 dynsym = FALSE;
4338 if (! dynamic)
4339 {
4340 if (! definition)
4341 {
4342 h->ref_regular = 1;
4343 if (bind != STB_WEAK)
4344 h->ref_regular_nonweak = 1;
4345 }
4346 else
4347 {
4348 h->def_regular = 1;
4349 if (h->def_dynamic)
4350 {
4351 h->def_dynamic = 0;
4352 h->ref_dynamic = 1;
4353 }
4354 }
4355 if (! info->executable
4356 || h->def_dynamic
4357 || h->ref_dynamic)
4358 dynsym = TRUE;
4359 }
4360 else
4361 {
4362 if (! definition)
4363 h->ref_dynamic = 1;
4364 else
4365 {
4366 h->def_dynamic = 1;
4367 h->dynamic_def = 1;
4368 }
4369 if (h->def_regular
4370 || h->ref_regular
4371 || (h->u.weakdef != NULL
4372 && ! new_weakdef
4373 && h->u.weakdef->dynindx != -1))
4374 dynsym = TRUE;
4375 }
4376
4377 /* We don't want to make debug symbol dynamic. */
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4379 dynsym = FALSE;
4380
4381 /* Nor should we make plugin symbols dynamic. */
4382 if ((abfd->flags & BFD_PLUGIN) != 0)
4383 dynsym = FALSE;
4384
4385 if (definition)
4386 h->target_internal = isym->st_target_internal;
4387
4388 /* Check to see if we need to add an indirect symbol for
4389 the default name. */
4390 if (definition || h->root.type == bfd_link_hash_common)
4391 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4392 &sec, &value, &dynsym,
4393 override))
4394 goto error_free_vers;
4395
4396 if (definition && !dynamic)
4397 {
4398 char *p = strchr (name, ELF_VER_CHR);
4399 if (p != NULL && p[1] != ELF_VER_CHR)
4400 {
4401 /* Queue non-default versions so that .symver x, x@FOO
4402 aliases can be checked. */
4403 if (!nondeflt_vers)
4404 {
4405 amt = ((isymend - isym + 1)
4406 * sizeof (struct elf_link_hash_entry *));
4407 nondeflt_vers =
4408 (struct elf_link_hash_entry **) bfd_malloc (amt);
4409 if (!nondeflt_vers)
4410 goto error_free_vers;
4411 }
4412 nondeflt_vers[nondeflt_vers_cnt++] = h;
4413 }
4414 }
4415
4416 if (dynsym && h->dynindx == -1)
4417 {
4418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4419 goto error_free_vers;
4420 if (h->u.weakdef != NULL
4421 && ! new_weakdef
4422 && h->u.weakdef->dynindx == -1)
4423 {
4424 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4425 goto error_free_vers;
4426 }
4427 }
4428 else if (dynsym && h->dynindx != -1)
4429 /* If the symbol already has a dynamic index, but
4430 visibility says it should not be visible, turn it into
4431 a local symbol. */
4432 switch (ELF_ST_VISIBILITY (h->other))
4433 {
4434 case STV_INTERNAL:
4435 case STV_HIDDEN:
4436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4437 dynsym = FALSE;
4438 break;
4439 }
4440
4441 if (!add_needed
4442 && definition
4443 && ((dynsym
4444 && h->ref_regular)
4445 || (h->ref_dynamic
4446 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4447 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4448 {
4449 int ret;
4450 const char *soname = elf_dt_name (abfd);
4451
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4456 a weak one. */
4457 if (undef_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4459 {
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4462 undef_bfd, name);
4463 (*_bfd_error_handler)
4464 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4465 abfd, name);
4466 bfd_set_error (bfd_error_invalid_operation);
4467 goto error_free_vers;
4468 }
4469
4470 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4471 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4472
4473 add_needed = TRUE;
4474 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4475 if (ret < 0)
4476 goto error_free_vers;
4477
4478 BFD_ASSERT (ret == 0);
4479 }
4480 }
4481 }
4482
4483 if (extversym != NULL)
4484 {
4485 free (extversym);
4486 extversym = NULL;
4487 }
4488
4489 if (isymbuf != NULL)
4490 {
4491 free (isymbuf);
4492 isymbuf = NULL;
4493 }
4494
4495 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4496 {
4497 unsigned int i;
4498
4499 /* Restore the symbol table. */
4500 if (bed->as_needed_cleanup)
4501 (*bed->as_needed_cleanup) (abfd, info);
4502 old_hash = (char *) old_tab + tabsize;
4503 old_ent = (char *) old_hash + hashsize;
4504 sym_hash = elf_sym_hashes (abfd);
4505 htab->root.table.table = old_table;
4506 htab->root.table.size = old_size;
4507 htab->root.table.count = old_count;
4508 memcpy (htab->root.table.table, old_tab, tabsize);
4509 memcpy (sym_hash, old_hash, hashsize);
4510 htab->root.undefs = old_undefs;
4511 htab->root.undefs_tail = old_undefs_tail;
4512 for (i = 0; i < htab->root.table.size; i++)
4513 {
4514 struct bfd_hash_entry *p;
4515 struct elf_link_hash_entry *h;
4516 bfd_size_type size;
4517 unsigned int alignment_power;
4518
4519 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4520 {
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->dynindx >= old_dynsymcount)
4525 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4526
4527 /* Preserve the maximum alignment and size for common
4528 symbols even if this dynamic lib isn't on DT_NEEDED
4529 since it can still be loaded at the run-time by another
4530 dynamic lib. */
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 size = h->root.u.c.size;
4534 alignment_power = h->root.u.c.p->alignment_power;
4535 }
4536 else
4537 {
4538 size = 0;
4539 alignment_power = 0;
4540 }
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4545 {
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4548 }
4549 else if (h->root.type == bfd_link_hash_common)
4550 {
4551 if (size > h->root.u.c.size)
4552 h->root.u.c.size = size;
4553 if (alignment_power > h->root.u.c.p->alignment_power)
4554 h->root.u.c.p->alignment_power = alignment_power;
4555 }
4556 }
4557 }
4558
4559 /* Make a special call to the linker "notice" function to
4560 tell it that symbols added for crefs may need to be removed. */
4561 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4562 notice_not_needed, 0, NULL))
4563 goto error_free_vers;
4564
4565 free (old_tab);
4566 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4567 alloc_mark);
4568 if (nondeflt_vers != NULL)
4569 free (nondeflt_vers);
4570 return TRUE;
4571 }
4572
4573 if (old_tab != NULL)
4574 {
4575 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4576 notice_needed, 0, NULL))
4577 goto error_free_vers;
4578 free (old_tab);
4579 old_tab = NULL;
4580 }
4581
4582 /* Now that all the symbols from this input file are created, handle
4583 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4584 if (nondeflt_vers != NULL)
4585 {
4586 bfd_size_type cnt, symidx;
4587
4588 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4589 {
4590 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4591 char *shortname, *p;
4592
4593 p = strchr (h->root.root.string, ELF_VER_CHR);
4594 if (p == NULL
4595 || (h->root.type != bfd_link_hash_defined
4596 && h->root.type != bfd_link_hash_defweak))
4597 continue;
4598
4599 amt = p - h->root.root.string;
4600 shortname = (char *) bfd_malloc (amt + 1);
4601 if (!shortname)
4602 goto error_free_vers;
4603 memcpy (shortname, h->root.root.string, amt);
4604 shortname[amt] = '\0';
4605
4606 hi = (struct elf_link_hash_entry *)
4607 bfd_link_hash_lookup (&htab->root, shortname,
4608 FALSE, FALSE, FALSE);
4609 if (hi != NULL
4610 && hi->root.type == h->root.type
4611 && hi->root.u.def.value == h->root.u.def.value
4612 && hi->root.u.def.section == h->root.u.def.section)
4613 {
4614 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4615 hi->root.type = bfd_link_hash_indirect;
4616 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4617 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4618 sym_hash = elf_sym_hashes (abfd);
4619 if (sym_hash)
4620 for (symidx = 0; symidx < extsymcount; ++symidx)
4621 if (sym_hash[symidx] == hi)
4622 {
4623 sym_hash[symidx] = h;
4624 break;
4625 }
4626 }
4627 free (shortname);
4628 }
4629 free (nondeflt_vers);
4630 nondeflt_vers = NULL;
4631 }
4632
4633 /* Now set the weakdefs field correctly for all the weak defined
4634 symbols we found. The only way to do this is to search all the
4635 symbols. Since we only need the information for non functions in
4636 dynamic objects, that's the only time we actually put anything on
4637 the list WEAKS. We need this information so that if a regular
4638 object refers to a symbol defined weakly in a dynamic object, the
4639 real symbol in the dynamic object is also put in the dynamic
4640 symbols; we also must arrange for both symbols to point to the
4641 same memory location. We could handle the general case of symbol
4642 aliasing, but a general symbol alias can only be generated in
4643 assembler code, handling it correctly would be very time
4644 consuming, and other ELF linkers don't handle general aliasing
4645 either. */
4646 if (weaks != NULL)
4647 {
4648 struct elf_link_hash_entry **hpp;
4649 struct elf_link_hash_entry **hppend;
4650 struct elf_link_hash_entry **sorted_sym_hash;
4651 struct elf_link_hash_entry *h;
4652 size_t sym_count;
4653
4654 /* Since we have to search the whole symbol list for each weak
4655 defined symbol, search time for N weak defined symbols will be
4656 O(N^2). Binary search will cut it down to O(NlogN). */
4657 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4658 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4659 if (sorted_sym_hash == NULL)
4660 goto error_return;
4661 sym_hash = sorted_sym_hash;
4662 hpp = elf_sym_hashes (abfd);
4663 hppend = hpp + extsymcount;
4664 sym_count = 0;
4665 for (; hpp < hppend; hpp++)
4666 {
4667 h = *hpp;
4668 if (h != NULL
4669 && h->root.type == bfd_link_hash_defined
4670 && !bed->is_function_type (h->type))
4671 {
4672 *sym_hash = h;
4673 sym_hash++;
4674 sym_count++;
4675 }
4676 }
4677
4678 qsort (sorted_sym_hash, sym_count,
4679 sizeof (struct elf_link_hash_entry *),
4680 elf_sort_symbol);
4681
4682 while (weaks != NULL)
4683 {
4684 struct elf_link_hash_entry *hlook;
4685 asection *slook;
4686 bfd_vma vlook;
4687 long ilook;
4688 size_t i, j, idx;
4689
4690 hlook = weaks;
4691 weaks = hlook->u.weakdef;
4692 hlook->u.weakdef = NULL;
4693
4694 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4695 || hlook->root.type == bfd_link_hash_defweak
4696 || hlook->root.type == bfd_link_hash_common
4697 || hlook->root.type == bfd_link_hash_indirect);
4698 slook = hlook->root.u.def.section;
4699 vlook = hlook->root.u.def.value;
4700
4701 ilook = -1;
4702 i = 0;
4703 j = sym_count;
4704 while (i < j)
4705 {
4706 bfd_signed_vma vdiff;
4707 idx = (i + j) / 2;
4708 h = sorted_sym_hash [idx];
4709 vdiff = vlook - h->root.u.def.value;
4710 if (vdiff < 0)
4711 j = idx;
4712 else if (vdiff > 0)
4713 i = idx + 1;
4714 else
4715 {
4716 long sdiff = slook->id - h->root.u.def.section->id;
4717 if (sdiff < 0)
4718 j = idx;
4719 else if (sdiff > 0)
4720 i = idx + 1;
4721 else
4722 {
4723 ilook = idx;
4724 break;
4725 }
4726 }
4727 }
4728
4729 /* We didn't find a value/section match. */
4730 if (ilook == -1)
4731 continue;
4732
4733 for (i = ilook; i < sym_count; i++)
4734 {
4735 h = sorted_sym_hash [i];
4736
4737 /* Stop if value or section doesn't match. */
4738 if (h->root.u.def.value != vlook
4739 || h->root.u.def.section != slook)
4740 break;
4741 else if (h != hlook)
4742 {
4743 hlook->u.weakdef = h;
4744
4745 /* If the weak definition is in the list of dynamic
4746 symbols, make sure the real definition is put
4747 there as well. */
4748 if (hlook->dynindx != -1 && h->dynindx == -1)
4749 {
4750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4751 {
4752 err_free_sym_hash:
4753 free (sorted_sym_hash);
4754 goto error_return;
4755 }
4756 }
4757
4758 /* If the real definition is in the list of dynamic
4759 symbols, make sure the weak definition is put
4760 there as well. If we don't do this, then the
4761 dynamic loader might not merge the entries for the
4762 real definition and the weak definition. */
4763 if (h->dynindx != -1 && hlook->dynindx == -1)
4764 {
4765 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4766 goto err_free_sym_hash;
4767 }
4768 break;
4769 }
4770 }
4771 }
4772
4773 free (sorted_sym_hash);
4774 }
4775
4776 if (bed->check_directives
4777 && !(*bed->check_directives) (abfd, info))
4778 return FALSE;
4779
4780 /* If this object is the same format as the output object, and it is
4781 not a shared library, then let the backend look through the
4782 relocs.
4783
4784 This is required to build global offset table entries and to
4785 arrange for dynamic relocs. It is not required for the
4786 particular common case of linking non PIC code, even when linking
4787 against shared libraries, but unfortunately there is no way of
4788 knowing whether an object file has been compiled PIC or not.
4789 Looking through the relocs is not particularly time consuming.
4790 The problem is that we must either (1) keep the relocs in memory,
4791 which causes the linker to require additional runtime memory or
4792 (2) read the relocs twice from the input file, which wastes time.
4793 This would be a good case for using mmap.
4794
4795 I have no idea how to handle linking PIC code into a file of a
4796 different format. It probably can't be done. */
4797 if (! dynamic
4798 && is_elf_hash_table (htab)
4799 && bed->check_relocs != NULL
4800 && elf_object_id (abfd) == elf_hash_table_id (htab)
4801 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4802 {
4803 asection *o;
4804
4805 for (o = abfd->sections; o != NULL; o = o->next)
4806 {
4807 Elf_Internal_Rela *internal_relocs;
4808 bfd_boolean ok;
4809
4810 if ((o->flags & SEC_RELOC) == 0
4811 || o->reloc_count == 0
4812 || ((info->strip == strip_all || info->strip == strip_debugger)
4813 && (o->flags & SEC_DEBUGGING) != 0)
4814 || bfd_is_abs_section (o->output_section))
4815 continue;
4816
4817 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4818 info->keep_memory);
4819 if (internal_relocs == NULL)
4820 goto error_return;
4821
4822 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4823
4824 if (elf_section_data (o)->relocs != internal_relocs)
4825 free (internal_relocs);
4826
4827 if (! ok)
4828 goto error_return;
4829 }
4830 }
4831
4832 /* If this is a non-traditional link, try to optimize the handling
4833 of the .stab/.stabstr sections. */
4834 if (! dynamic
4835 && ! info->traditional_format
4836 && is_elf_hash_table (htab)
4837 && (info->strip != strip_all && info->strip != strip_debugger))
4838 {
4839 asection *stabstr;
4840
4841 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4842 if (stabstr != NULL)
4843 {
4844 bfd_size_type string_offset = 0;
4845 asection *stab;
4846
4847 for (stab = abfd->sections; stab; stab = stab->next)
4848 if (CONST_STRNEQ (stab->name, ".stab")
4849 && (!stab->name[5] ||
4850 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4851 && (stab->flags & SEC_MERGE) == 0
4852 && !bfd_is_abs_section (stab->output_section))
4853 {
4854 struct bfd_elf_section_data *secdata;
4855
4856 secdata = elf_section_data (stab);
4857 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4858 stabstr, &secdata->sec_info,
4859 &string_offset))
4860 goto error_return;
4861 if (secdata->sec_info)
4862 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4863 }
4864 }
4865 }
4866
4867 if (is_elf_hash_table (htab) && add_needed)
4868 {
4869 /* Add this bfd to the loaded list. */
4870 struct elf_link_loaded_list *n;
4871
4872 n = (struct elf_link_loaded_list *)
4873 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4874 if (n == NULL)
4875 goto error_return;
4876 n->abfd = abfd;
4877 n->next = htab->loaded;
4878 htab->loaded = n;
4879 }
4880
4881 return TRUE;
4882
4883 error_free_vers:
4884 if (old_tab != NULL)
4885 free (old_tab);
4886 if (nondeflt_vers != NULL)
4887 free (nondeflt_vers);
4888 if (extversym != NULL)
4889 free (extversym);
4890 error_free_sym:
4891 if (isymbuf != NULL)
4892 free (isymbuf);
4893 error_return:
4894 return FALSE;
4895 }
4896
4897 /* Return the linker hash table entry of a symbol that might be
4898 satisfied by an archive symbol. Return -1 on error. */
4899
4900 struct elf_link_hash_entry *
4901 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4902 struct bfd_link_info *info,
4903 const char *name)
4904 {
4905 struct elf_link_hash_entry *h;
4906 char *p, *copy;
4907 size_t len, first;
4908
4909 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4910 if (h != NULL)
4911 return h;
4912
4913 /* If this is a default version (the name contains @@), look up the
4914 symbol again with only one `@' as well as without the version.
4915 The effect is that references to the symbol with and without the
4916 version will be matched by the default symbol in the archive. */
4917
4918 p = strchr (name, ELF_VER_CHR);
4919 if (p == NULL || p[1] != ELF_VER_CHR)
4920 return h;
4921
4922 /* First check with only one `@'. */
4923 len = strlen (name);
4924 copy = (char *) bfd_alloc (abfd, len);
4925 if (copy == NULL)
4926 return (struct elf_link_hash_entry *) 0 - 1;
4927
4928 first = p - name + 1;
4929 memcpy (copy, name, first);
4930 memcpy (copy + first, name + first + 1, len - first);
4931
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4933 if (h == NULL)
4934 {
4935 /* We also need to check references to the symbol without the
4936 version. */
4937 copy[first - 1] = '\0';
4938 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4939 FALSE, FALSE, TRUE);
4940 }
4941
4942 bfd_release (abfd, copy);
4943 return h;
4944 }
4945
4946 /* Add symbols from an ELF archive file to the linker hash table. We
4947 don't use _bfd_generic_link_add_archive_symbols because of a
4948 problem which arises on UnixWare. The UnixWare libc.so is an
4949 archive which includes an entry libc.so.1 which defines a bunch of
4950 symbols. The libc.so archive also includes a number of other
4951 object files, which also define symbols, some of which are the same
4952 as those defined in libc.so.1. Correct linking requires that we
4953 consider each object file in turn, and include it if it defines any
4954 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4955 this; it looks through the list of undefined symbols, and includes
4956 any object file which defines them. When this algorithm is used on
4957 UnixWare, it winds up pulling in libc.so.1 early and defining a
4958 bunch of symbols. This means that some of the other objects in the
4959 archive are not included in the link, which is incorrect since they
4960 precede libc.so.1 in the archive.
4961
4962 Fortunately, ELF archive handling is simpler than that done by
4963 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4964 oddities. In ELF, if we find a symbol in the archive map, and the
4965 symbol is currently undefined, we know that we must pull in that
4966 object file.
4967
4968 Unfortunately, we do have to make multiple passes over the symbol
4969 table until nothing further is resolved. */
4970
4971 static bfd_boolean
4972 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4973 {
4974 symindex c;
4975 bfd_boolean *defined = NULL;
4976 bfd_boolean *included = NULL;
4977 carsym *symdefs;
4978 bfd_boolean loop;
4979 bfd_size_type amt;
4980 const struct elf_backend_data *bed;
4981 struct elf_link_hash_entry * (*archive_symbol_lookup)
4982 (bfd *, struct bfd_link_info *, const char *);
4983
4984 if (! bfd_has_map (abfd))
4985 {
4986 /* An empty archive is a special case. */
4987 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4988 return TRUE;
4989 bfd_set_error (bfd_error_no_armap);
4990 return FALSE;
4991 }
4992
4993 /* Keep track of all symbols we know to be already defined, and all
4994 files we know to be already included. This is to speed up the
4995 second and subsequent passes. */
4996 c = bfd_ardata (abfd)->symdef_count;
4997 if (c == 0)
4998 return TRUE;
4999 amt = c;
5000 amt *= sizeof (bfd_boolean);
5001 defined = (bfd_boolean *) bfd_zmalloc (amt);
5002 included = (bfd_boolean *) bfd_zmalloc (amt);
5003 if (defined == NULL || included == NULL)
5004 goto error_return;
5005
5006 symdefs = bfd_ardata (abfd)->symdefs;
5007 bed = get_elf_backend_data (abfd);
5008 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5009
5010 do
5011 {
5012 file_ptr last;
5013 symindex i;
5014 carsym *symdef;
5015 carsym *symdefend;
5016
5017 loop = FALSE;
5018 last = -1;
5019
5020 symdef = symdefs;
5021 symdefend = symdef + c;
5022 for (i = 0; symdef < symdefend; symdef++, i++)
5023 {
5024 struct elf_link_hash_entry *h;
5025 bfd *element;
5026 struct bfd_link_hash_entry *undefs_tail;
5027 symindex mark;
5028
5029 if (defined[i] || included[i])
5030 continue;
5031 if (symdef->file_offset == last)
5032 {
5033 included[i] = TRUE;
5034 continue;
5035 }
5036
5037 h = archive_symbol_lookup (abfd, info, symdef->name);
5038 if (h == (struct elf_link_hash_entry *) 0 - 1)
5039 goto error_return;
5040
5041 if (h == NULL)
5042 continue;
5043
5044 if (h->root.type == bfd_link_hash_common)
5045 {
5046 /* We currently have a common symbol. The archive map contains
5047 a reference to this symbol, so we may want to include it. We
5048 only want to include it however, if this archive element
5049 contains a definition of the symbol, not just another common
5050 declaration of it.
5051
5052 Unfortunately some archivers (including GNU ar) will put
5053 declarations of common symbols into their archive maps, as
5054 well as real definitions, so we cannot just go by the archive
5055 map alone. Instead we must read in the element's symbol
5056 table and check that to see what kind of symbol definition
5057 this is. */
5058 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5059 continue;
5060 }
5061 else if (h->root.type != bfd_link_hash_undefined)
5062 {
5063 if (h->root.type != bfd_link_hash_undefweak)
5064 defined[i] = TRUE;
5065 continue;
5066 }
5067
5068 /* We need to include this archive member. */
5069 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5070 if (element == NULL)
5071 goto error_return;
5072
5073 if (! bfd_check_format (element, bfd_object))
5074 goto error_return;
5075
5076 /* Doublecheck that we have not included this object
5077 already--it should be impossible, but there may be
5078 something wrong with the archive. */
5079 if (element->archive_pass != 0)
5080 {
5081 bfd_set_error (bfd_error_bad_value);
5082 goto error_return;
5083 }
5084 element->archive_pass = 1;
5085
5086 undefs_tail = info->hash->undefs_tail;
5087
5088 if (!(*info->callbacks
5089 ->add_archive_element) (info, element, symdef->name, &element))
5090 goto error_return;
5091 if (!bfd_link_add_symbols (element, info))
5092 goto error_return;
5093
5094 /* If there are any new undefined symbols, we need to make
5095 another pass through the archive in order to see whether
5096 they can be defined. FIXME: This isn't perfect, because
5097 common symbols wind up on undefs_tail and because an
5098 undefined symbol which is defined later on in this pass
5099 does not require another pass. This isn't a bug, but it
5100 does make the code less efficient than it could be. */
5101 if (undefs_tail != info->hash->undefs_tail)
5102 loop = TRUE;
5103
5104 /* Look backward to mark all symbols from this object file
5105 which we have already seen in this pass. */
5106 mark = i;
5107 do
5108 {
5109 included[mark] = TRUE;
5110 if (mark == 0)
5111 break;
5112 --mark;
5113 }
5114 while (symdefs[mark].file_offset == symdef->file_offset);
5115
5116 /* We mark subsequent symbols from this object file as we go
5117 on through the loop. */
5118 last = symdef->file_offset;
5119 }
5120 }
5121 while (loop);
5122
5123 free (defined);
5124 free (included);
5125
5126 return TRUE;
5127
5128 error_return:
5129 if (defined != NULL)
5130 free (defined);
5131 if (included != NULL)
5132 free (included);
5133 return FALSE;
5134 }
5135
5136 /* Given an ELF BFD, add symbols to the global hash table as
5137 appropriate. */
5138
5139 bfd_boolean
5140 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5141 {
5142 switch (bfd_get_format (abfd))
5143 {
5144 case bfd_object:
5145 return elf_link_add_object_symbols (abfd, info);
5146 case bfd_archive:
5147 return elf_link_add_archive_symbols (abfd, info);
5148 default:
5149 bfd_set_error (bfd_error_wrong_format);
5150 return FALSE;
5151 }
5152 }
5153 \f
5154 struct hash_codes_info
5155 {
5156 unsigned long *hashcodes;
5157 bfd_boolean error;
5158 };
5159
5160 /* This function will be called though elf_link_hash_traverse to store
5161 all hash value of the exported symbols in an array. */
5162
5163 static bfd_boolean
5164 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5165 {
5166 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5167 const char *name;
5168 char *p;
5169 unsigned long ha;
5170 char *alc = NULL;
5171
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h->dynindx == -1)
5174 return TRUE;
5175
5176 name = h->root.root.string;
5177 p = strchr (name, ELF_VER_CHR);
5178 if (p != NULL)
5179 {
5180 alc = (char *) bfd_malloc (p - name + 1);
5181 if (alc == NULL)
5182 {
5183 inf->error = TRUE;
5184 return FALSE;
5185 }
5186 memcpy (alc, name, p - name);
5187 alc[p - name] = '\0';
5188 name = alc;
5189 }
5190
5191 /* Compute the hash value. */
5192 ha = bfd_elf_hash (name);
5193
5194 /* Store the found hash value in the array given as the argument. */
5195 *(inf->hashcodes)++ = ha;
5196
5197 /* And store it in the struct so that we can put it in the hash table
5198 later. */
5199 h->u.elf_hash_value = ha;
5200
5201 if (alc != NULL)
5202 free (alc);
5203
5204 return TRUE;
5205 }
5206
5207 struct collect_gnu_hash_codes
5208 {
5209 bfd *output_bfd;
5210 const struct elf_backend_data *bed;
5211 unsigned long int nsyms;
5212 unsigned long int maskbits;
5213 unsigned long int *hashcodes;
5214 unsigned long int *hashval;
5215 unsigned long int *indx;
5216 unsigned long int *counts;
5217 bfd_vma *bitmask;
5218 bfd_byte *contents;
5219 long int min_dynindx;
5220 unsigned long int bucketcount;
5221 unsigned long int symindx;
5222 long int local_indx;
5223 long int shift1, shift2;
5224 unsigned long int mask;
5225 bfd_boolean error;
5226 };
5227
5228 /* This function will be called though elf_link_hash_traverse to store
5229 all hash value of the exported symbols in an array. */
5230
5231 static bfd_boolean
5232 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5233 {
5234 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5235 const char *name;
5236 char *p;
5237 unsigned long ha;
5238 char *alc = NULL;
5239
5240 /* Ignore indirect symbols. These are added by the versioning code. */
5241 if (h->dynindx == -1)
5242 return TRUE;
5243
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5246 return TRUE;
5247
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5250 if (p != NULL)
5251 {
5252 alc = (char *) bfd_malloc (p - name + 1);
5253 if (alc == NULL)
5254 {
5255 s->error = TRUE;
5256 return FALSE;
5257 }
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5260 name = alc;
5261 }
5262
5263 /* Compute the hash value. */
5264 ha = bfd_elf_gnu_hash (name);
5265
5266 /* Store the found hash value in the array for compute_bucket_count,
5267 and also for .dynsym reordering purposes. */
5268 s->hashcodes[s->nsyms] = ha;
5269 s->hashval[h->dynindx] = ha;
5270 ++s->nsyms;
5271 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5272 s->min_dynindx = h->dynindx;
5273
5274 if (alc != NULL)
5275 free (alc);
5276
5277 return TRUE;
5278 }
5279
5280 /* This function will be called though elf_link_hash_traverse to do
5281 final dynaminc symbol renumbering. */
5282
5283 static bfd_boolean
5284 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 unsigned long int bucket;
5288 unsigned long int val;
5289
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5292 return TRUE;
5293
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5296 {
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5299 return TRUE;
5300 }
5301
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5306 s->bitmask[val]
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5311 val |= 1;
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5316 return TRUE;
5317 }
5318
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5320
5321 bfd_boolean
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5323 {
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5330 }
5331
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5337
5338 static const size_t elf_buckets[] =
5339 {
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 16411, 32771, 0
5342 };
5343
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5352 static size_t
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5356 int gnu_hash)
5357 {
5358 size_t best_size = 0;
5359 unsigned long int i;
5360
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5365 if (info->optimize)
5366 {
5367 size_t minsize;
5368 size_t maxsize;
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5374 bfd_size_type amt;
5375 unsigned int no_improvement_count = 0;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 no_improvement_count = 0;
5461 }
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5465 break;
5466 }
5467
5468 free (counts);
5469 }
5470 else
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5472 {
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5477 {
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5480 break;
5481 }
5482 if (gnu_hash && best_size < 2)
5483 best_size = 2;
5484 }
5485
5486 return best_size;
5487 }
5488
5489 /* Size any SHT_GROUP section for ld -r. */
5490
5491 bfd_boolean
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5493 {
5494 bfd *ibfd;
5495
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 return FALSE;
5500 return TRUE;
5501 }
5502
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5507
5508 bfd_boolean
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5510 const char *soname,
5511 const char *rpath,
5512 const char *filter_shlib,
5513 const char *audit,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr)
5518 {
5519 bfd_size_type soname_indx;
5520 bfd *dynobj;
5521 const struct elf_backend_data *bed;
5522 struct elf_info_failed asvinfo;
5523
5524 *sinterpptr = NULL;
5525
5526 soname_indx = (bfd_size_type) -1;
5527
5528 if (!is_elf_hash_table (info->hash))
5529 return TRUE;
5530
5531 bed = get_elf_backend_data (output_bfd);
5532 if (info->execstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5534 else if (info->noexecstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5536 else
5537 {
5538 bfd *inputobj;
5539 asection *notesec = NULL;
5540 int exec = 0;
5541
5542 for (inputobj = info->input_bfds;
5543 inputobj;
5544 inputobj = inputobj->link_next)
5545 {
5546 asection *s;
5547
5548 if (inputobj->flags
5549 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5550 continue;
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5552 if (s)
5553 {
5554 if (s->flags & SEC_CODE)
5555 exec = PF_X;
5556 notesec = s;
5557 }
5558 else if (bed->default_execstack)
5559 exec = PF_X;
5560 }
5561 if (notesec)
5562 {
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5567 }
5568 }
5569
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5576
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5579 return FALSE;
5580
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5585 return FALSE;
5586
5587 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5588 return FALSE;
5589
5590 dynobj = elf_hash_table (info)->dynobj;
5591
5592 /* If there were no dynamic objects in the link, there is nothing to
5593 do here. */
5594 if (dynobj == NULL)
5595 return TRUE;
5596
5597 if (elf_hash_table (info)->dynamic_sections_created)
5598 {
5599 struct elf_info_failed eif;
5600 struct elf_link_hash_entry *h;
5601 asection *dynstr;
5602 struct bfd_elf_version_tree *t;
5603 struct bfd_elf_version_expr *d;
5604 asection *s;
5605 bfd_boolean all_defined;
5606
5607 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5608 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5609
5610 if (soname != NULL)
5611 {
5612 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5613 soname, TRUE);
5614 if (soname_indx == (bfd_size_type) -1
5615 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5616 return FALSE;
5617 }
5618
5619 if (info->symbolic)
5620 {
5621 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5622 return FALSE;
5623 info->flags |= DF_SYMBOLIC;
5624 }
5625
5626 if (rpath != NULL)
5627 {
5628 bfd_size_type indx;
5629
5630 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5631 TRUE);
5632 if (indx == (bfd_size_type) -1
5633 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5634 return FALSE;
5635
5636 if (info->new_dtags)
5637 {
5638 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5640 return FALSE;
5641 }
5642 }
5643
5644 if (filter_shlib != NULL)
5645 {
5646 bfd_size_type indx;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5652 return FALSE;
5653 }
5654
5655 if (auxiliary_filters != NULL)
5656 {
5657 const char * const *p;
5658
5659 for (p = auxiliary_filters; *p != NULL; p++)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 *p, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5667 return FALSE;
5668 }
5669 }
5670
5671 if (audit != NULL)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5679 return FALSE;
5680 }
5681
5682 if (depaudit != NULL)
5683 {
5684 bfd_size_type indx;
5685
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5687 TRUE);
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5690 return FALSE;
5691 }
5692
5693 eif.info = info;
5694 eif.failed = FALSE;
5695
5696 /* If we are supposed to export all symbols into the dynamic symbol
5697 table (this is not the normal case), then do so. */
5698 if (info->export_dynamic
5699 || (info->executable && info->dynamic))
5700 {
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_export_symbol,
5703 &eif);
5704 if (eif.failed)
5705 return FALSE;
5706 }
5707
5708 /* Make all global versions with definition. */
5709 for (t = info->version_info; t != NULL; t = t->next)
5710 for (d = t->globals.list; d != NULL; d = d->next)
5711 if (!d->symver && d->literal)
5712 {
5713 const char *verstr, *name;
5714 size_t namelen, verlen, newlen;
5715 char *newname, *p, leading_char;
5716 struct elf_link_hash_entry *newh;
5717
5718 leading_char = bfd_get_symbol_leading_char (output_bfd);
5719 name = d->pattern;
5720 namelen = strlen (name) + (leading_char != '\0');
5721 verstr = t->name;
5722 verlen = strlen (verstr);
5723 newlen = namelen + verlen + 3;
5724
5725 newname = (char *) bfd_malloc (newlen);
5726 if (newname == NULL)
5727 return FALSE;
5728 newname[0] = leading_char;
5729 memcpy (newname + (leading_char != '\0'), name, namelen);
5730
5731 /* Check the hidden versioned definition. */
5732 p = newname + namelen;
5733 *p++ = ELF_VER_CHR;
5734 memcpy (p, verstr, verlen + 1);
5735 newh = elf_link_hash_lookup (elf_hash_table (info),
5736 newname, FALSE, FALSE,
5737 FALSE);
5738 if (newh == NULL
5739 || (newh->root.type != bfd_link_hash_defined
5740 && newh->root.type != bfd_link_hash_defweak))
5741 {
5742 /* Check the default versioned definition. */
5743 *p++ = ELF_VER_CHR;
5744 memcpy (p, verstr, verlen + 1);
5745 newh = elf_link_hash_lookup (elf_hash_table (info),
5746 newname, FALSE, FALSE,
5747 FALSE);
5748 }
5749 free (newname);
5750
5751 /* Mark this version if there is a definition and it is
5752 not defined in a shared object. */
5753 if (newh != NULL
5754 && !newh->def_dynamic
5755 && (newh->root.type == bfd_link_hash_defined
5756 || newh->root.type == bfd_link_hash_defweak))
5757 d->symver = 1;
5758 }
5759
5760 /* Attach all the symbols to their version information. */
5761 asvinfo.info = info;
5762 asvinfo.failed = FALSE;
5763
5764 elf_link_hash_traverse (elf_hash_table (info),
5765 _bfd_elf_link_assign_sym_version,
5766 &asvinfo);
5767 if (asvinfo.failed)
5768 return FALSE;
5769
5770 if (!info->allow_undefined_version)
5771 {
5772 /* Check if all global versions have a definition. */
5773 all_defined = TRUE;
5774 for (t = info->version_info; t != NULL; t = t->next)
5775 for (d = t->globals.list; d != NULL; d = d->next)
5776 if (d->literal && !d->symver && !d->script)
5777 {
5778 (*_bfd_error_handler)
5779 (_("%s: undefined version: %s"),
5780 d->pattern, t->name);
5781 all_defined = FALSE;
5782 }
5783
5784 if (!all_defined)
5785 {
5786 bfd_set_error (bfd_error_bad_value);
5787 return FALSE;
5788 }
5789 }
5790
5791 /* Find all symbols which were defined in a dynamic object and make
5792 the backend pick a reasonable value for them. */
5793 elf_link_hash_traverse (elf_hash_table (info),
5794 _bfd_elf_adjust_dynamic_symbol,
5795 &eif);
5796 if (eif.failed)
5797 return FALSE;
5798
5799 /* Add some entries to the .dynamic section. We fill in some of the
5800 values later, in bfd_elf_final_link, but we must add the entries
5801 now so that we know the final size of the .dynamic section. */
5802
5803 /* If there are initialization and/or finalization functions to
5804 call then add the corresponding DT_INIT/DT_FINI entries. */
5805 h = (info->init_function
5806 ? elf_link_hash_lookup (elf_hash_table (info),
5807 info->init_function, FALSE,
5808 FALSE, FALSE)
5809 : NULL);
5810 if (h != NULL
5811 && (h->ref_regular
5812 || h->def_regular))
5813 {
5814 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5815 return FALSE;
5816 }
5817 h = (info->fini_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->fini_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5825 {
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5827 return FALSE;
5828 }
5829
5830 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5831 if (s != NULL && s->linker_has_input)
5832 {
5833 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5834 if (! info->executable)
5835 {
5836 bfd *sub;
5837 asection *o;
5838
5839 for (sub = info->input_bfds; sub != NULL;
5840 sub = sub->link_next)
5841 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5842 for (o = sub->sections; o != NULL; o = o->next)
5843 if (elf_section_data (o)->this_hdr.sh_type
5844 == SHT_PREINIT_ARRAY)
5845 {
5846 (*_bfd_error_handler)
5847 (_("%B: .preinit_array section is not allowed in DSO"),
5848 sub);
5849 break;
5850 }
5851
5852 bfd_set_error (bfd_error_nonrepresentable_section);
5853 return FALSE;
5854 }
5855
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5858 return FALSE;
5859 }
5860 s = bfd_get_section_by_name (output_bfd, ".init_array");
5861 if (s != NULL && s->linker_has_input)
5862 {
5863 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5864 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5865 return FALSE;
5866 }
5867 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5868 if (s != NULL && s->linker_has_input)
5869 {
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874
5875 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5876 /* If .dynstr is excluded from the link, we don't want any of
5877 these tags. Strictly, we should be checking each section
5878 individually; This quick check covers for the case where
5879 someone does a /DISCARD/ : { *(*) }. */
5880 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5881 {
5882 bfd_size_type strsize;
5883
5884 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5885 if ((info->emit_hash
5886 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5887 || (info->emit_gnu_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5889 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5893 bed->s->sizeof_sym))
5894 return FALSE;
5895 }
5896 }
5897
5898 /* The backend must work out the sizes of all the other dynamic
5899 sections. */
5900 if (bed->elf_backend_size_dynamic_sections
5901 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5902 return FALSE;
5903
5904 if (elf_hash_table (info)->dynamic_sections_created)
5905 {
5906 unsigned long section_sym_count;
5907 struct bfd_elf_version_tree *verdefs;
5908 asection *s;
5909
5910 /* Set up the version definition section. */
5911 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5912 BFD_ASSERT (s != NULL);
5913
5914 /* We may have created additional version definitions if we are
5915 just linking a regular application. */
5916 verdefs = info->version_info;
5917
5918 /* Skip anonymous version tag. */
5919 if (verdefs != NULL && verdefs->vernum == 0)
5920 verdefs = verdefs->next;
5921
5922 if (verdefs == NULL && !info->create_default_symver)
5923 s->flags |= SEC_EXCLUDE;
5924 else
5925 {
5926 unsigned int cdefs;
5927 bfd_size_type size;
5928 struct bfd_elf_version_tree *t;
5929 bfd_byte *p;
5930 Elf_Internal_Verdef def;
5931 Elf_Internal_Verdaux defaux;
5932 struct bfd_link_hash_entry *bh;
5933 struct elf_link_hash_entry *h;
5934 const char *name;
5935
5936 cdefs = 0;
5937 size = 0;
5938
5939 /* Make space for the base version. */
5940 size += sizeof (Elf_External_Verdef);
5941 size += sizeof (Elf_External_Verdaux);
5942 ++cdefs;
5943
5944 /* Make space for the default version. */
5945 if (info->create_default_symver)
5946 {
5947 size += sizeof (Elf_External_Verdef);
5948 ++cdefs;
5949 }
5950
5951 for (t = verdefs; t != NULL; t = t->next)
5952 {
5953 struct bfd_elf_version_deps *n;
5954
5955 /* Don't emit base version twice. */
5956 if (t->vernum == 0)
5957 continue;
5958
5959 size += sizeof (Elf_External_Verdef);
5960 size += sizeof (Elf_External_Verdaux);
5961 ++cdefs;
5962
5963 for (n = t->deps; n != NULL; n = n->next)
5964 size += sizeof (Elf_External_Verdaux);
5965 }
5966
5967 s->size = size;
5968 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5969 if (s->contents == NULL && s->size != 0)
5970 return FALSE;
5971
5972 /* Fill in the version definition section. */
5973
5974 p = s->contents;
5975
5976 def.vd_version = VER_DEF_CURRENT;
5977 def.vd_flags = VER_FLG_BASE;
5978 def.vd_ndx = 1;
5979 def.vd_cnt = 1;
5980 if (info->create_default_symver)
5981 {
5982 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5983 def.vd_next = sizeof (Elf_External_Verdef);
5984 }
5985 else
5986 {
5987 def.vd_aux = sizeof (Elf_External_Verdef);
5988 def.vd_next = (sizeof (Elf_External_Verdef)
5989 + sizeof (Elf_External_Verdaux));
5990 }
5991
5992 if (soname_indx != (bfd_size_type) -1)
5993 {
5994 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5995 soname_indx);
5996 def.vd_hash = bfd_elf_hash (soname);
5997 defaux.vda_name = soname_indx;
5998 name = soname;
5999 }
6000 else
6001 {
6002 bfd_size_type indx;
6003
6004 name = lbasename (output_bfd->filename);
6005 def.vd_hash = bfd_elf_hash (name);
6006 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6007 name, FALSE);
6008 if (indx == (bfd_size_type) -1)
6009 return FALSE;
6010 defaux.vda_name = indx;
6011 }
6012 defaux.vda_next = 0;
6013
6014 _bfd_elf_swap_verdef_out (output_bfd, &def,
6015 (Elf_External_Verdef *) p);
6016 p += sizeof (Elf_External_Verdef);
6017 if (info->create_default_symver)
6018 {
6019 /* Add a symbol representing this version. */
6020 bh = NULL;
6021 if (! (_bfd_generic_link_add_one_symbol
6022 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6023 0, NULL, FALSE,
6024 get_elf_backend_data (dynobj)->collect, &bh)))
6025 return FALSE;
6026 h = (struct elf_link_hash_entry *) bh;
6027 h->non_elf = 0;
6028 h->def_regular = 1;
6029 h->type = STT_OBJECT;
6030 h->verinfo.vertree = NULL;
6031
6032 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6033 return FALSE;
6034
6035 /* Create a duplicate of the base version with the same
6036 aux block, but different flags. */
6037 def.vd_flags = 0;
6038 def.vd_ndx = 2;
6039 def.vd_aux = sizeof (Elf_External_Verdef);
6040 if (verdefs)
6041 def.vd_next = (sizeof (Elf_External_Verdef)
6042 + sizeof (Elf_External_Verdaux));
6043 else
6044 def.vd_next = 0;
6045 _bfd_elf_swap_verdef_out (output_bfd, &def,
6046 (Elf_External_Verdef *) p);
6047 p += sizeof (Elf_External_Verdef);
6048 }
6049 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6050 (Elf_External_Verdaux *) p);
6051 p += sizeof (Elf_External_Verdaux);
6052
6053 for (t = verdefs; t != NULL; t = t->next)
6054 {
6055 unsigned int cdeps;
6056 struct bfd_elf_version_deps *n;
6057
6058 /* Don't emit the base version twice. */
6059 if (t->vernum == 0)
6060 continue;
6061
6062 cdeps = 0;
6063 for (n = t->deps; n != NULL; n = n->next)
6064 ++cdeps;
6065
6066 /* Add a symbol representing this version. */
6067 bh = NULL;
6068 if (! (_bfd_generic_link_add_one_symbol
6069 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6070 0, NULL, FALSE,
6071 get_elf_backend_data (dynobj)->collect, &bh)))
6072 return FALSE;
6073 h = (struct elf_link_hash_entry *) bh;
6074 h->non_elf = 0;
6075 h->def_regular = 1;
6076 h->type = STT_OBJECT;
6077 h->verinfo.vertree = t;
6078
6079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6080 return FALSE;
6081
6082 def.vd_version = VER_DEF_CURRENT;
6083 def.vd_flags = 0;
6084 if (t->globals.list == NULL
6085 && t->locals.list == NULL
6086 && ! t->used)
6087 def.vd_flags |= VER_FLG_WEAK;
6088 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6089 def.vd_cnt = cdeps + 1;
6090 def.vd_hash = bfd_elf_hash (t->name);
6091 def.vd_aux = sizeof (Elf_External_Verdef);
6092 def.vd_next = 0;
6093
6094 /* If a basever node is next, it *must* be the last node in
6095 the chain, otherwise Verdef construction breaks. */
6096 if (t->next != NULL && t->next->vernum == 0)
6097 BFD_ASSERT (t->next->next == NULL);
6098
6099 if (t->next != NULL && t->next->vernum != 0)
6100 def.vd_next = (sizeof (Elf_External_Verdef)
6101 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6102
6103 _bfd_elf_swap_verdef_out (output_bfd, &def,
6104 (Elf_External_Verdef *) p);
6105 p += sizeof (Elf_External_Verdef);
6106
6107 defaux.vda_name = h->dynstr_index;
6108 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6109 h->dynstr_index);
6110 defaux.vda_next = 0;
6111 if (t->deps != NULL)
6112 defaux.vda_next = sizeof (Elf_External_Verdaux);
6113 t->name_indx = defaux.vda_name;
6114
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6118
6119 for (n = t->deps; n != NULL; n = n->next)
6120 {
6121 if (n->version_needed == NULL)
6122 {
6123 /* This can happen if there was an error in the
6124 version script. */
6125 defaux.vda_name = 0;
6126 }
6127 else
6128 {
6129 defaux.vda_name = n->version_needed->name_indx;
6130 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6131 defaux.vda_name);
6132 }
6133 if (n->next == NULL)
6134 defaux.vda_next = 0;
6135 else
6136 defaux.vda_next = sizeof (Elf_External_Verdaux);
6137
6138 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6139 (Elf_External_Verdaux *) p);
6140 p += sizeof (Elf_External_Verdaux);
6141 }
6142 }
6143
6144 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6145 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6146 return FALSE;
6147
6148 elf_tdata (output_bfd)->cverdefs = cdefs;
6149 }
6150
6151 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6152 {
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6154 return FALSE;
6155 }
6156 else if (info->flags & DF_BIND_NOW)
6157 {
6158 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6159 return FALSE;
6160 }
6161
6162 if (info->flags_1)
6163 {
6164 if (info->executable)
6165 info->flags_1 &= ~ (DF_1_INITFIRST
6166 | DF_1_NODELETE
6167 | DF_1_NOOPEN);
6168 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6169 return FALSE;
6170 }
6171
6172 /* Work out the size of the version reference section. */
6173
6174 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6175 BFD_ASSERT (s != NULL);
6176 {
6177 struct elf_find_verdep_info sinfo;
6178
6179 sinfo.info = info;
6180 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6181 if (sinfo.vers == 0)
6182 sinfo.vers = 1;
6183 sinfo.failed = FALSE;
6184
6185 elf_link_hash_traverse (elf_hash_table (info),
6186 _bfd_elf_link_find_version_dependencies,
6187 &sinfo);
6188 if (sinfo.failed)
6189 return FALSE;
6190
6191 if (elf_tdata (output_bfd)->verref == NULL)
6192 s->flags |= SEC_EXCLUDE;
6193 else
6194 {
6195 Elf_Internal_Verneed *t;
6196 unsigned int size;
6197 unsigned int crefs;
6198 bfd_byte *p;
6199
6200 /* Build the version dependency section. */
6201 size = 0;
6202 crefs = 0;
6203 for (t = elf_tdata (output_bfd)->verref;
6204 t != NULL;
6205 t = t->vn_nextref)
6206 {
6207 Elf_Internal_Vernaux *a;
6208
6209 size += sizeof (Elf_External_Verneed);
6210 ++crefs;
6211 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6212 size += sizeof (Elf_External_Vernaux);
6213 }
6214
6215 s->size = size;
6216 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6217 if (s->contents == NULL)
6218 return FALSE;
6219
6220 p = s->contents;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6224 {
6225 unsigned int caux;
6226 Elf_Internal_Vernaux *a;
6227 bfd_size_type indx;
6228
6229 caux = 0;
6230 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6231 ++caux;
6232
6233 t->vn_version = VER_NEED_CURRENT;
6234 t->vn_cnt = caux;
6235 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6236 elf_dt_name (t->vn_bfd) != NULL
6237 ? elf_dt_name (t->vn_bfd)
6238 : lbasename (t->vn_bfd->filename),
6239 FALSE);
6240 if (indx == (bfd_size_type) -1)
6241 return FALSE;
6242 t->vn_file = indx;
6243 t->vn_aux = sizeof (Elf_External_Verneed);
6244 if (t->vn_nextref == NULL)
6245 t->vn_next = 0;
6246 else
6247 t->vn_next = (sizeof (Elf_External_Verneed)
6248 + caux * sizeof (Elf_External_Vernaux));
6249
6250 _bfd_elf_swap_verneed_out (output_bfd, t,
6251 (Elf_External_Verneed *) p);
6252 p += sizeof (Elf_External_Verneed);
6253
6254 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6255 {
6256 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6257 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6258 a->vna_nodename, FALSE);
6259 if (indx == (bfd_size_type) -1)
6260 return FALSE;
6261 a->vna_name = indx;
6262 if (a->vna_nextptr == NULL)
6263 a->vna_next = 0;
6264 else
6265 a->vna_next = sizeof (Elf_External_Vernaux);
6266
6267 _bfd_elf_swap_vernaux_out (output_bfd, a,
6268 (Elf_External_Vernaux *) p);
6269 p += sizeof (Elf_External_Vernaux);
6270 }
6271 }
6272
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6274 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6275 return FALSE;
6276
6277 elf_tdata (output_bfd)->cverrefs = crefs;
6278 }
6279 }
6280
6281 if ((elf_tdata (output_bfd)->cverrefs == 0
6282 && elf_tdata (output_bfd)->cverdefs == 0)
6283 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6284 &section_sym_count) == 0)
6285 {
6286 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6287 s->flags |= SEC_EXCLUDE;
6288 }
6289 }
6290 return TRUE;
6291 }
6292
6293 /* Find the first non-excluded output section. We'll use its
6294 section symbol for some emitted relocs. */
6295 void
6296 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6297 {
6298 asection *s;
6299
6300 for (s = output_bfd->sections; s != NULL; s = s->next)
6301 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6302 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6303 {
6304 elf_hash_table (info)->text_index_section = s;
6305 break;
6306 }
6307 }
6308
6309 /* Find two non-excluded output sections, one for code, one for data.
6310 We'll use their section symbols for some emitted relocs. */
6311 void
6312 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6313 {
6314 asection *s;
6315
6316 /* Data first, since setting text_index_section changes
6317 _bfd_elf_link_omit_section_dynsym. */
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6321 {
6322 elf_hash_table (info)->data_index_section = s;
6323 break;
6324 }
6325
6326 for (s = output_bfd->sections; s != NULL; s = s->next)
6327 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6328 == (SEC_ALLOC | SEC_READONLY))
6329 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6330 {
6331 elf_hash_table (info)->text_index_section = s;
6332 break;
6333 }
6334
6335 if (elf_hash_table (info)->text_index_section == NULL)
6336 elf_hash_table (info)->text_index_section
6337 = elf_hash_table (info)->data_index_section;
6338 }
6339
6340 bfd_boolean
6341 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6342 {
6343 const struct elf_backend_data *bed;
6344
6345 if (!is_elf_hash_table (info->hash))
6346 return TRUE;
6347
6348 bed = get_elf_backend_data (output_bfd);
6349 (*bed->elf_backend_init_index_section) (output_bfd, info);
6350
6351 if (elf_hash_table (info)->dynamic_sections_created)
6352 {
6353 bfd *dynobj;
6354 asection *s;
6355 bfd_size_type dynsymcount;
6356 unsigned long section_sym_count;
6357 unsigned int dtagcount;
6358
6359 dynobj = elf_hash_table (info)->dynobj;
6360
6361 /* Assign dynsym indicies. In a shared library we generate a
6362 section symbol for each output section, which come first.
6363 Next come all of the back-end allocated local dynamic syms,
6364 followed by the rest of the global symbols. */
6365
6366 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6367 &section_sym_count);
6368
6369 /* Work out the size of the symbol version section. */
6370 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6371 BFD_ASSERT (s != NULL);
6372 if (dynsymcount != 0
6373 && (s->flags & SEC_EXCLUDE) == 0)
6374 {
6375 s->size = dynsymcount * sizeof (Elf_External_Versym);
6376 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6377 if (s->contents == NULL)
6378 return FALSE;
6379
6380 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6381 return FALSE;
6382 }
6383
6384 /* Set the size of the .dynsym and .hash sections. We counted
6385 the number of dynamic symbols in elf_link_add_object_symbols.
6386 We will build the contents of .dynsym and .hash when we build
6387 the final symbol table, because until then we do not know the
6388 correct value to give the symbols. We built the .dynstr
6389 section as we went along in elf_link_add_object_symbols. */
6390 s = bfd_get_section_by_name (dynobj, ".dynsym");
6391 BFD_ASSERT (s != NULL);
6392 s->size = dynsymcount * bed->s->sizeof_sym;
6393
6394 if (dynsymcount != 0)
6395 {
6396 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6398 return FALSE;
6399
6400 /* The first entry in .dynsym is a dummy symbol.
6401 Clear all the section syms, in case we don't output them all. */
6402 ++section_sym_count;
6403 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6404 }
6405
6406 elf_hash_table (info)->bucketcount = 0;
6407
6408 /* Compute the size of the hashing table. As a side effect this
6409 computes the hash values for all the names we export. */
6410 if (info->emit_hash)
6411 {
6412 unsigned long int *hashcodes;
6413 struct hash_codes_info hashinf;
6414 bfd_size_type amt;
6415 unsigned long int nsyms;
6416 size_t bucketcount;
6417 size_t hash_entry_size;
6418
6419 /* Compute the hash values for all exported symbols. At the same
6420 time store the values in an array so that we could use them for
6421 optimizations. */
6422 amt = dynsymcount * sizeof (unsigned long int);
6423 hashcodes = (unsigned long int *) bfd_malloc (amt);
6424 if (hashcodes == NULL)
6425 return FALSE;
6426 hashinf.hashcodes = hashcodes;
6427 hashinf.error = FALSE;
6428
6429 /* Put all hash values in HASHCODES. */
6430 elf_link_hash_traverse (elf_hash_table (info),
6431 elf_collect_hash_codes, &hashinf);
6432 if (hashinf.error)
6433 {
6434 free (hashcodes);
6435 return FALSE;
6436 }
6437
6438 nsyms = hashinf.hashcodes - hashcodes;
6439 bucketcount
6440 = compute_bucket_count (info, hashcodes, nsyms, 0);
6441 free (hashcodes);
6442
6443 if (bucketcount == 0)
6444 return FALSE;
6445
6446 elf_hash_table (info)->bucketcount = bucketcount;
6447
6448 s = bfd_get_section_by_name (dynobj, ".hash");
6449 BFD_ASSERT (s != NULL);
6450 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6451 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6452 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6453 if (s->contents == NULL)
6454 return FALSE;
6455
6456 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6457 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6458 s->contents + hash_entry_size);
6459 }
6460
6461 if (info->emit_gnu_hash)
6462 {
6463 size_t i, cnt;
6464 unsigned char *contents;
6465 struct collect_gnu_hash_codes cinfo;
6466 bfd_size_type amt;
6467 size_t bucketcount;
6468
6469 memset (&cinfo, 0, sizeof (cinfo));
6470
6471 /* Compute the hash values for all exported symbols. At the same
6472 time store the values in an array so that we could use them for
6473 optimizations. */
6474 amt = dynsymcount * 2 * sizeof (unsigned long int);
6475 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6476 if (cinfo.hashcodes == NULL)
6477 return FALSE;
6478
6479 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6480 cinfo.min_dynindx = -1;
6481 cinfo.output_bfd = output_bfd;
6482 cinfo.bed = bed;
6483
6484 /* Put all hash values in HASHCODES. */
6485 elf_link_hash_traverse (elf_hash_table (info),
6486 elf_collect_gnu_hash_codes, &cinfo);
6487 if (cinfo.error)
6488 {
6489 free (cinfo.hashcodes);
6490 return FALSE;
6491 }
6492
6493 bucketcount
6494 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6495
6496 if (bucketcount == 0)
6497 {
6498 free (cinfo.hashcodes);
6499 return FALSE;
6500 }
6501
6502 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6503 BFD_ASSERT (s != NULL);
6504
6505 if (cinfo.nsyms == 0)
6506 {
6507 /* Empty .gnu.hash section is special. */
6508 BFD_ASSERT (cinfo.min_dynindx == -1);
6509 free (cinfo.hashcodes);
6510 s->size = 5 * 4 + bed->s->arch_size / 8;
6511 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6512 if (contents == NULL)
6513 return FALSE;
6514 s->contents = contents;
6515 /* 1 empty bucket. */
6516 bfd_put_32 (output_bfd, 1, contents);
6517 /* SYMIDX above the special symbol 0. */
6518 bfd_put_32 (output_bfd, 1, contents + 4);
6519 /* Just one word for bitmask. */
6520 bfd_put_32 (output_bfd, 1, contents + 8);
6521 /* Only hash fn bloom filter. */
6522 bfd_put_32 (output_bfd, 0, contents + 12);
6523 /* No hashes are valid - empty bitmask. */
6524 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6525 /* No hashes in the only bucket. */
6526 bfd_put_32 (output_bfd, 0,
6527 contents + 16 + bed->s->arch_size / 8);
6528 }
6529 else
6530 {
6531 unsigned long int maskwords, maskbitslog2, x;
6532 BFD_ASSERT (cinfo.min_dynindx != -1);
6533
6534 x = cinfo.nsyms;
6535 maskbitslog2 = 1;
6536 while ((x >>= 1) != 0)
6537 ++maskbitslog2;
6538 if (maskbitslog2 < 3)
6539 maskbitslog2 = 5;
6540 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6541 maskbitslog2 = maskbitslog2 + 3;
6542 else
6543 maskbitslog2 = maskbitslog2 + 2;
6544 if (bed->s->arch_size == 64)
6545 {
6546 if (maskbitslog2 == 5)
6547 maskbitslog2 = 6;
6548 cinfo.shift1 = 6;
6549 }
6550 else
6551 cinfo.shift1 = 5;
6552 cinfo.mask = (1 << cinfo.shift1) - 1;
6553 cinfo.shift2 = maskbitslog2;
6554 cinfo.maskbits = 1 << maskbitslog2;
6555 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6556 amt = bucketcount * sizeof (unsigned long int) * 2;
6557 amt += maskwords * sizeof (bfd_vma);
6558 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6559 if (cinfo.bitmask == NULL)
6560 {
6561 free (cinfo.hashcodes);
6562 return FALSE;
6563 }
6564
6565 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6566 cinfo.indx = cinfo.counts + bucketcount;
6567 cinfo.symindx = dynsymcount - cinfo.nsyms;
6568 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6569
6570 /* Determine how often each hash bucket is used. */
6571 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6572 for (i = 0; i < cinfo.nsyms; ++i)
6573 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6574
6575 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6576 if (cinfo.counts[i] != 0)
6577 {
6578 cinfo.indx[i] = cnt;
6579 cnt += cinfo.counts[i];
6580 }
6581 BFD_ASSERT (cnt == dynsymcount);
6582 cinfo.bucketcount = bucketcount;
6583 cinfo.local_indx = cinfo.min_dynindx;
6584
6585 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6586 s->size += cinfo.maskbits / 8;
6587 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6588 if (contents == NULL)
6589 {
6590 free (cinfo.bitmask);
6591 free (cinfo.hashcodes);
6592 return FALSE;
6593 }
6594
6595 s->contents = contents;
6596 bfd_put_32 (output_bfd, bucketcount, contents);
6597 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6598 bfd_put_32 (output_bfd, maskwords, contents + 8);
6599 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6600 contents += 16 + cinfo.maskbits / 8;
6601
6602 for (i = 0; i < bucketcount; ++i)
6603 {
6604 if (cinfo.counts[i] == 0)
6605 bfd_put_32 (output_bfd, 0, contents);
6606 else
6607 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6608 contents += 4;
6609 }
6610
6611 cinfo.contents = contents;
6612
6613 /* Renumber dynamic symbols, populate .gnu.hash section. */
6614 elf_link_hash_traverse (elf_hash_table (info),
6615 elf_renumber_gnu_hash_syms, &cinfo);
6616
6617 contents = s->contents + 16;
6618 for (i = 0; i < maskwords; ++i)
6619 {
6620 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6621 contents);
6622 contents += bed->s->arch_size / 8;
6623 }
6624
6625 free (cinfo.bitmask);
6626 free (cinfo.hashcodes);
6627 }
6628 }
6629
6630 s = bfd_get_section_by_name (dynobj, ".dynstr");
6631 BFD_ASSERT (s != NULL);
6632
6633 elf_finalize_dynstr (output_bfd, info);
6634
6635 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6636
6637 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6639 return FALSE;
6640 }
6641
6642 return TRUE;
6643 }
6644 \f
6645 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6646
6647 static void
6648 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6649 asection *sec)
6650 {
6651 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6652 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6653 }
6654
6655 /* Finish SHF_MERGE section merging. */
6656
6657 bfd_boolean
6658 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6659 {
6660 bfd *ibfd;
6661 asection *sec;
6662
6663 if (!is_elf_hash_table (info->hash))
6664 return FALSE;
6665
6666 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6667 if ((ibfd->flags & DYNAMIC) == 0)
6668 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6669 if ((sec->flags & SEC_MERGE) != 0
6670 && !bfd_is_abs_section (sec->output_section))
6671 {
6672 struct bfd_elf_section_data *secdata;
6673
6674 secdata = elf_section_data (sec);
6675 if (! _bfd_add_merge_section (abfd,
6676 &elf_hash_table (info)->merge_info,
6677 sec, &secdata->sec_info))
6678 return FALSE;
6679 else if (secdata->sec_info)
6680 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6681 }
6682
6683 if (elf_hash_table (info)->merge_info != NULL)
6684 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6685 merge_sections_remove_hook);
6686 return TRUE;
6687 }
6688
6689 /* Create an entry in an ELF linker hash table. */
6690
6691 struct bfd_hash_entry *
6692 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6693 struct bfd_hash_table *table,
6694 const char *string)
6695 {
6696 /* Allocate the structure if it has not already been allocated by a
6697 subclass. */
6698 if (entry == NULL)
6699 {
6700 entry = (struct bfd_hash_entry *)
6701 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6702 if (entry == NULL)
6703 return entry;
6704 }
6705
6706 /* Call the allocation method of the superclass. */
6707 entry = _bfd_link_hash_newfunc (entry, table, string);
6708 if (entry != NULL)
6709 {
6710 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6711 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6712
6713 /* Set local fields. */
6714 ret->indx = -1;
6715 ret->dynindx = -1;
6716 ret->got = htab->init_got_refcount;
6717 ret->plt = htab->init_plt_refcount;
6718 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6719 - offsetof (struct elf_link_hash_entry, size)));
6720 /* Assume that we have been called by a non-ELF symbol reader.
6721 This flag is then reset by the code which reads an ELF input
6722 file. This ensures that a symbol created by a non-ELF symbol
6723 reader will have the flag set correctly. */
6724 ret->non_elf = 1;
6725 }
6726
6727 return entry;
6728 }
6729
6730 /* Copy data from an indirect symbol to its direct symbol, hiding the
6731 old indirect symbol. Also used for copying flags to a weakdef. */
6732
6733 void
6734 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6735 struct elf_link_hash_entry *dir,
6736 struct elf_link_hash_entry *ind)
6737 {
6738 struct elf_link_hash_table *htab;
6739
6740 /* Copy down any references that we may have already seen to the
6741 symbol which just became indirect. */
6742
6743 dir->ref_dynamic |= ind->ref_dynamic;
6744 dir->ref_regular |= ind->ref_regular;
6745 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6746 dir->non_got_ref |= ind->non_got_ref;
6747 dir->needs_plt |= ind->needs_plt;
6748 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6749
6750 if (ind->root.type != bfd_link_hash_indirect)
6751 return;
6752
6753 /* Copy over the global and procedure linkage table refcount entries.
6754 These may have been already set up by a check_relocs routine. */
6755 htab = elf_hash_table (info);
6756 if (ind->got.refcount > htab->init_got_refcount.refcount)
6757 {
6758 if (dir->got.refcount < 0)
6759 dir->got.refcount = 0;
6760 dir->got.refcount += ind->got.refcount;
6761 ind->got.refcount = htab->init_got_refcount.refcount;
6762 }
6763
6764 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6765 {
6766 if (dir->plt.refcount < 0)
6767 dir->plt.refcount = 0;
6768 dir->plt.refcount += ind->plt.refcount;
6769 ind->plt.refcount = htab->init_plt_refcount.refcount;
6770 }
6771
6772 if (ind->dynindx != -1)
6773 {
6774 if (dir->dynindx != -1)
6775 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6776 dir->dynindx = ind->dynindx;
6777 dir->dynstr_index = ind->dynstr_index;
6778 ind->dynindx = -1;
6779 ind->dynstr_index = 0;
6780 }
6781 }
6782
6783 void
6784 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6785 struct elf_link_hash_entry *h,
6786 bfd_boolean force_local)
6787 {
6788 /* STT_GNU_IFUNC symbol must go through PLT. */
6789 if (h->type != STT_GNU_IFUNC)
6790 {
6791 h->plt = elf_hash_table (info)->init_plt_offset;
6792 h->needs_plt = 0;
6793 }
6794 if (force_local)
6795 {
6796 h->forced_local = 1;
6797 if (h->dynindx != -1)
6798 {
6799 h->dynindx = -1;
6800 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6801 h->dynstr_index);
6802 }
6803 }
6804 }
6805
6806 /* Initialize an ELF linker hash table. */
6807
6808 bfd_boolean
6809 _bfd_elf_link_hash_table_init
6810 (struct elf_link_hash_table *table,
6811 bfd *abfd,
6812 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6813 struct bfd_hash_table *,
6814 const char *),
6815 unsigned int entsize,
6816 enum elf_target_id target_id)
6817 {
6818 bfd_boolean ret;
6819 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6820
6821 memset (table, 0, sizeof * table);
6822 table->init_got_refcount.refcount = can_refcount - 1;
6823 table->init_plt_refcount.refcount = can_refcount - 1;
6824 table->init_got_offset.offset = -(bfd_vma) 1;
6825 table->init_plt_offset.offset = -(bfd_vma) 1;
6826 /* The first dynamic symbol is a dummy. */
6827 table->dynsymcount = 1;
6828
6829 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6830
6831 table->root.type = bfd_link_elf_hash_table;
6832 table->hash_table_id = target_id;
6833
6834 return ret;
6835 }
6836
6837 /* Create an ELF linker hash table. */
6838
6839 struct bfd_link_hash_table *
6840 _bfd_elf_link_hash_table_create (bfd *abfd)
6841 {
6842 struct elf_link_hash_table *ret;
6843 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6844
6845 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6846 if (ret == NULL)
6847 return NULL;
6848
6849 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6850 sizeof (struct elf_link_hash_entry),
6851 GENERIC_ELF_DATA))
6852 {
6853 free (ret);
6854 return NULL;
6855 }
6856
6857 return &ret->root;
6858 }
6859
6860 /* This is a hook for the ELF emulation code in the generic linker to
6861 tell the backend linker what file name to use for the DT_NEEDED
6862 entry for a dynamic object. */
6863
6864 void
6865 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6866 {
6867 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6868 && bfd_get_format (abfd) == bfd_object)
6869 elf_dt_name (abfd) = name;
6870 }
6871
6872 int
6873 bfd_elf_get_dyn_lib_class (bfd *abfd)
6874 {
6875 int lib_class;
6876 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6877 && bfd_get_format (abfd) == bfd_object)
6878 lib_class = elf_dyn_lib_class (abfd);
6879 else
6880 lib_class = 0;
6881 return lib_class;
6882 }
6883
6884 void
6885 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6886 {
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 elf_dyn_lib_class (abfd) = lib_class;
6890 }
6891
6892 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6893 the linker ELF emulation code. */
6894
6895 struct bfd_link_needed_list *
6896 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6897 struct bfd_link_info *info)
6898 {
6899 if (! is_elf_hash_table (info->hash))
6900 return NULL;
6901 return elf_hash_table (info)->needed;
6902 }
6903
6904 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6905 hook for the linker ELF emulation code. */
6906
6907 struct bfd_link_needed_list *
6908 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6909 struct bfd_link_info *info)
6910 {
6911 if (! is_elf_hash_table (info->hash))
6912 return NULL;
6913 return elf_hash_table (info)->runpath;
6914 }
6915
6916 /* Get the name actually used for a dynamic object for a link. This
6917 is the SONAME entry if there is one. Otherwise, it is the string
6918 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6919
6920 const char *
6921 bfd_elf_get_dt_soname (bfd *abfd)
6922 {
6923 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6924 && bfd_get_format (abfd) == bfd_object)
6925 return elf_dt_name (abfd);
6926 return NULL;
6927 }
6928
6929 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6930 the ELF linker emulation code. */
6931
6932 bfd_boolean
6933 bfd_elf_get_bfd_needed_list (bfd *abfd,
6934 struct bfd_link_needed_list **pneeded)
6935 {
6936 asection *s;
6937 bfd_byte *dynbuf = NULL;
6938 unsigned int elfsec;
6939 unsigned long shlink;
6940 bfd_byte *extdyn, *extdynend;
6941 size_t extdynsize;
6942 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6943
6944 *pneeded = NULL;
6945
6946 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6947 || bfd_get_format (abfd) != bfd_object)
6948 return TRUE;
6949
6950 s = bfd_get_section_by_name (abfd, ".dynamic");
6951 if (s == NULL || s->size == 0)
6952 return TRUE;
6953
6954 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6955 goto error_return;
6956
6957 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6958 if (elfsec == SHN_BAD)
6959 goto error_return;
6960
6961 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6962
6963 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6964 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6965
6966 extdyn = dynbuf;
6967 extdynend = extdyn + s->size;
6968 for (; extdyn < extdynend; extdyn += extdynsize)
6969 {
6970 Elf_Internal_Dyn dyn;
6971
6972 (*swap_dyn_in) (abfd, extdyn, &dyn);
6973
6974 if (dyn.d_tag == DT_NULL)
6975 break;
6976
6977 if (dyn.d_tag == DT_NEEDED)
6978 {
6979 const char *string;
6980 struct bfd_link_needed_list *l;
6981 unsigned int tagv = dyn.d_un.d_val;
6982 bfd_size_type amt;
6983
6984 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6985 if (string == NULL)
6986 goto error_return;
6987
6988 amt = sizeof *l;
6989 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6990 if (l == NULL)
6991 goto error_return;
6992
6993 l->by = abfd;
6994 l->name = string;
6995 l->next = *pneeded;
6996 *pneeded = l;
6997 }
6998 }
6999
7000 free (dynbuf);
7001
7002 return TRUE;
7003
7004 error_return:
7005 if (dynbuf != NULL)
7006 free (dynbuf);
7007 return FALSE;
7008 }
7009
7010 struct elf_symbuf_symbol
7011 {
7012 unsigned long st_name; /* Symbol name, index in string tbl */
7013 unsigned char st_info; /* Type and binding attributes */
7014 unsigned char st_other; /* Visibilty, and target specific */
7015 };
7016
7017 struct elf_symbuf_head
7018 {
7019 struct elf_symbuf_symbol *ssym;
7020 bfd_size_type count;
7021 unsigned int st_shndx;
7022 };
7023
7024 struct elf_symbol
7025 {
7026 union
7027 {
7028 Elf_Internal_Sym *isym;
7029 struct elf_symbuf_symbol *ssym;
7030 } u;
7031 const char *name;
7032 };
7033
7034 /* Sort references to symbols by ascending section number. */
7035
7036 static int
7037 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7038 {
7039 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7040 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7041
7042 return s1->st_shndx - s2->st_shndx;
7043 }
7044
7045 static int
7046 elf_sym_name_compare (const void *arg1, const void *arg2)
7047 {
7048 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7049 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7050 return strcmp (s1->name, s2->name);
7051 }
7052
7053 static struct elf_symbuf_head *
7054 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7055 {
7056 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7057 struct elf_symbuf_symbol *ssym;
7058 struct elf_symbuf_head *ssymbuf, *ssymhead;
7059 bfd_size_type i, shndx_count, total_size;
7060
7061 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7062 if (indbuf == NULL)
7063 return NULL;
7064
7065 for (ind = indbuf, i = 0; i < symcount; i++)
7066 if (isymbuf[i].st_shndx != SHN_UNDEF)
7067 *ind++ = &isymbuf[i];
7068 indbufend = ind;
7069
7070 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7071 elf_sort_elf_symbol);
7072
7073 shndx_count = 0;
7074 if (indbufend > indbuf)
7075 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7076 if (ind[0]->st_shndx != ind[1]->st_shndx)
7077 shndx_count++;
7078
7079 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7080 + (indbufend - indbuf) * sizeof (*ssym));
7081 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7082 if (ssymbuf == NULL)
7083 {
7084 free (indbuf);
7085 return NULL;
7086 }
7087
7088 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7089 ssymbuf->ssym = NULL;
7090 ssymbuf->count = shndx_count;
7091 ssymbuf->st_shndx = 0;
7092 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7093 {
7094 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7095 {
7096 ssymhead++;
7097 ssymhead->ssym = ssym;
7098 ssymhead->count = 0;
7099 ssymhead->st_shndx = (*ind)->st_shndx;
7100 }
7101 ssym->st_name = (*ind)->st_name;
7102 ssym->st_info = (*ind)->st_info;
7103 ssym->st_other = (*ind)->st_other;
7104 ssymhead->count++;
7105 }
7106 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7107 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7108 == total_size));
7109
7110 free (indbuf);
7111 return ssymbuf;
7112 }
7113
7114 /* Check if 2 sections define the same set of local and global
7115 symbols. */
7116
7117 static bfd_boolean
7118 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7119 struct bfd_link_info *info)
7120 {
7121 bfd *bfd1, *bfd2;
7122 const struct elf_backend_data *bed1, *bed2;
7123 Elf_Internal_Shdr *hdr1, *hdr2;
7124 bfd_size_type symcount1, symcount2;
7125 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7126 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7127 Elf_Internal_Sym *isym, *isymend;
7128 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7129 bfd_size_type count1, count2, i;
7130 unsigned int shndx1, shndx2;
7131 bfd_boolean result;
7132
7133 bfd1 = sec1->owner;
7134 bfd2 = sec2->owner;
7135
7136 /* Both sections have to be in ELF. */
7137 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7138 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7139 return FALSE;
7140
7141 if (elf_section_type (sec1) != elf_section_type (sec2))
7142 return FALSE;
7143
7144 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7145 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7146 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7147 return FALSE;
7148
7149 bed1 = get_elf_backend_data (bfd1);
7150 bed2 = get_elf_backend_data (bfd2);
7151 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7152 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7153 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7154 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7155
7156 if (symcount1 == 0 || symcount2 == 0)
7157 return FALSE;
7158
7159 result = FALSE;
7160 isymbuf1 = NULL;
7161 isymbuf2 = NULL;
7162 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7163 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7164
7165 if (ssymbuf1 == NULL)
7166 {
7167 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7168 NULL, NULL, NULL);
7169 if (isymbuf1 == NULL)
7170 goto done;
7171
7172 if (!info->reduce_memory_overheads)
7173 elf_tdata (bfd1)->symbuf = ssymbuf1
7174 = elf_create_symbuf (symcount1, isymbuf1);
7175 }
7176
7177 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7178 {
7179 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7180 NULL, NULL, NULL);
7181 if (isymbuf2 == NULL)
7182 goto done;
7183
7184 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7185 elf_tdata (bfd2)->symbuf = ssymbuf2
7186 = elf_create_symbuf (symcount2, isymbuf2);
7187 }
7188
7189 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7190 {
7191 /* Optimized faster version. */
7192 bfd_size_type lo, hi, mid;
7193 struct elf_symbol *symp;
7194 struct elf_symbuf_symbol *ssym, *ssymend;
7195
7196 lo = 0;
7197 hi = ssymbuf1->count;
7198 ssymbuf1++;
7199 count1 = 0;
7200 while (lo < hi)
7201 {
7202 mid = (lo + hi) / 2;
7203 if (shndx1 < ssymbuf1[mid].st_shndx)
7204 hi = mid;
7205 else if (shndx1 > ssymbuf1[mid].st_shndx)
7206 lo = mid + 1;
7207 else
7208 {
7209 count1 = ssymbuf1[mid].count;
7210 ssymbuf1 += mid;
7211 break;
7212 }
7213 }
7214
7215 lo = 0;
7216 hi = ssymbuf2->count;
7217 ssymbuf2++;
7218 count2 = 0;
7219 while (lo < hi)
7220 {
7221 mid = (lo + hi) / 2;
7222 if (shndx2 < ssymbuf2[mid].st_shndx)
7223 hi = mid;
7224 else if (shndx2 > ssymbuf2[mid].st_shndx)
7225 lo = mid + 1;
7226 else
7227 {
7228 count2 = ssymbuf2[mid].count;
7229 ssymbuf2 += mid;
7230 break;
7231 }
7232 }
7233
7234 if (count1 == 0 || count2 == 0 || count1 != count2)
7235 goto done;
7236
7237 symtable1 = (struct elf_symbol *)
7238 bfd_malloc (count1 * sizeof (struct elf_symbol));
7239 symtable2 = (struct elf_symbol *)
7240 bfd_malloc (count2 * sizeof (struct elf_symbol));
7241 if (symtable1 == NULL || symtable2 == NULL)
7242 goto done;
7243
7244 symp = symtable1;
7245 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7246 ssym < ssymend; ssym++, symp++)
7247 {
7248 symp->u.ssym = ssym;
7249 symp->name = bfd_elf_string_from_elf_section (bfd1,
7250 hdr1->sh_link,
7251 ssym->st_name);
7252 }
7253
7254 symp = symtable2;
7255 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7256 ssym < ssymend; ssym++, symp++)
7257 {
7258 symp->u.ssym = ssym;
7259 symp->name = bfd_elf_string_from_elf_section (bfd2,
7260 hdr2->sh_link,
7261 ssym->st_name);
7262 }
7263
7264 /* Sort symbol by name. */
7265 qsort (symtable1, count1, sizeof (struct elf_symbol),
7266 elf_sym_name_compare);
7267 qsort (symtable2, count1, sizeof (struct elf_symbol),
7268 elf_sym_name_compare);
7269
7270 for (i = 0; i < count1; i++)
7271 /* Two symbols must have the same binding, type and name. */
7272 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7273 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7274 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7275 goto done;
7276
7277 result = TRUE;
7278 goto done;
7279 }
7280
7281 symtable1 = (struct elf_symbol *)
7282 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7283 symtable2 = (struct elf_symbol *)
7284 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7285 if (symtable1 == NULL || symtable2 == NULL)
7286 goto done;
7287
7288 /* Count definitions in the section. */
7289 count1 = 0;
7290 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7291 if (isym->st_shndx == shndx1)
7292 symtable1[count1++].u.isym = isym;
7293
7294 count2 = 0;
7295 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7296 if (isym->st_shndx == shndx2)
7297 symtable2[count2++].u.isym = isym;
7298
7299 if (count1 == 0 || count2 == 0 || count1 != count2)
7300 goto done;
7301
7302 for (i = 0; i < count1; i++)
7303 symtable1[i].name
7304 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7305 symtable1[i].u.isym->st_name);
7306
7307 for (i = 0; i < count2; i++)
7308 symtable2[i].name
7309 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7310 symtable2[i].u.isym->st_name);
7311
7312 /* Sort symbol by name. */
7313 qsort (symtable1, count1, sizeof (struct elf_symbol),
7314 elf_sym_name_compare);
7315 qsort (symtable2, count1, sizeof (struct elf_symbol),
7316 elf_sym_name_compare);
7317
7318 for (i = 0; i < count1; i++)
7319 /* Two symbols must have the same binding, type and name. */
7320 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7321 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7322 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7323 goto done;
7324
7325 result = TRUE;
7326
7327 done:
7328 if (symtable1)
7329 free (symtable1);
7330 if (symtable2)
7331 free (symtable2);
7332 if (isymbuf1)
7333 free (isymbuf1);
7334 if (isymbuf2)
7335 free (isymbuf2);
7336
7337 return result;
7338 }
7339
7340 /* Return TRUE if 2 section types are compatible. */
7341
7342 bfd_boolean
7343 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7344 bfd *bbfd, const asection *bsec)
7345 {
7346 if (asec == NULL
7347 || bsec == NULL
7348 || abfd->xvec->flavour != bfd_target_elf_flavour
7349 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7350 return TRUE;
7351
7352 return elf_section_type (asec) == elf_section_type (bsec);
7353 }
7354 \f
7355 /* Final phase of ELF linker. */
7356
7357 /* A structure we use to avoid passing large numbers of arguments. */
7358
7359 struct elf_final_link_info
7360 {
7361 /* General link information. */
7362 struct bfd_link_info *info;
7363 /* Output BFD. */
7364 bfd *output_bfd;
7365 /* Symbol string table. */
7366 struct bfd_strtab_hash *symstrtab;
7367 /* .dynsym section. */
7368 asection *dynsym_sec;
7369 /* .hash section. */
7370 asection *hash_sec;
7371 /* symbol version section (.gnu.version). */
7372 asection *symver_sec;
7373 /* Buffer large enough to hold contents of any section. */
7374 bfd_byte *contents;
7375 /* Buffer large enough to hold external relocs of any section. */
7376 void *external_relocs;
7377 /* Buffer large enough to hold internal relocs of any section. */
7378 Elf_Internal_Rela *internal_relocs;
7379 /* Buffer large enough to hold external local symbols of any input
7380 BFD. */
7381 bfd_byte *external_syms;
7382 /* And a buffer for symbol section indices. */
7383 Elf_External_Sym_Shndx *locsym_shndx;
7384 /* Buffer large enough to hold internal local symbols of any input
7385 BFD. */
7386 Elf_Internal_Sym *internal_syms;
7387 /* Array large enough to hold a symbol index for each local symbol
7388 of any input BFD. */
7389 long *indices;
7390 /* Array large enough to hold a section pointer for each local
7391 symbol of any input BFD. */
7392 asection **sections;
7393 /* Buffer to hold swapped out symbols. */
7394 bfd_byte *symbuf;
7395 /* And one for symbol section indices. */
7396 Elf_External_Sym_Shndx *symshndxbuf;
7397 /* Number of swapped out symbols in buffer. */
7398 size_t symbuf_count;
7399 /* Number of symbols which fit in symbuf. */
7400 size_t symbuf_size;
7401 /* And same for symshndxbuf. */
7402 size_t shndxbuf_size;
7403 };
7404
7405 /* This struct is used to pass information to elf_link_output_extsym. */
7406
7407 struct elf_outext_info
7408 {
7409 bfd_boolean failed;
7410 bfd_boolean localsyms;
7411 struct elf_final_link_info *flinfo;
7412 };
7413
7414
7415 /* Support for evaluating a complex relocation.
7416
7417 Complex relocations are generalized, self-describing relocations. The
7418 implementation of them consists of two parts: complex symbols, and the
7419 relocations themselves.
7420
7421 The relocations are use a reserved elf-wide relocation type code (R_RELC
7422 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7423 information (start bit, end bit, word width, etc) into the addend. This
7424 information is extracted from CGEN-generated operand tables within gas.
7425
7426 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7427 internal) representing prefix-notation expressions, including but not
7428 limited to those sorts of expressions normally encoded as addends in the
7429 addend field. The symbol mangling format is:
7430
7431 <node> := <literal>
7432 | <unary-operator> ':' <node>
7433 | <binary-operator> ':' <node> ':' <node>
7434 ;
7435
7436 <literal> := 's' <digits=N> ':' <N character symbol name>
7437 | 'S' <digits=N> ':' <N character section name>
7438 | '#' <hexdigits>
7439 ;
7440
7441 <binary-operator> := as in C
7442 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7443
7444 static void
7445 set_symbol_value (bfd *bfd_with_globals,
7446 Elf_Internal_Sym *isymbuf,
7447 size_t locsymcount,
7448 size_t symidx,
7449 bfd_vma val)
7450 {
7451 struct elf_link_hash_entry **sym_hashes;
7452 struct elf_link_hash_entry *h;
7453 size_t extsymoff = locsymcount;
7454
7455 if (symidx < locsymcount)
7456 {
7457 Elf_Internal_Sym *sym;
7458
7459 sym = isymbuf + symidx;
7460 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7461 {
7462 /* It is a local symbol: move it to the
7463 "absolute" section and give it a value. */
7464 sym->st_shndx = SHN_ABS;
7465 sym->st_value = val;
7466 return;
7467 }
7468 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7469 extsymoff = 0;
7470 }
7471
7472 /* It is a global symbol: set its link type
7473 to "defined" and give it a value. */
7474
7475 sym_hashes = elf_sym_hashes (bfd_with_globals);
7476 h = sym_hashes [symidx - extsymoff];
7477 while (h->root.type == bfd_link_hash_indirect
7478 || h->root.type == bfd_link_hash_warning)
7479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7480 h->root.type = bfd_link_hash_defined;
7481 h->root.u.def.value = val;
7482 h->root.u.def.section = bfd_abs_section_ptr;
7483 }
7484
7485 static bfd_boolean
7486 resolve_symbol (const char *name,
7487 bfd *input_bfd,
7488 struct elf_final_link_info *flinfo,
7489 bfd_vma *result,
7490 Elf_Internal_Sym *isymbuf,
7491 size_t locsymcount)
7492 {
7493 Elf_Internal_Sym *sym;
7494 struct bfd_link_hash_entry *global_entry;
7495 const char *candidate = NULL;
7496 Elf_Internal_Shdr *symtab_hdr;
7497 size_t i;
7498
7499 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7500
7501 for (i = 0; i < locsymcount; ++ i)
7502 {
7503 sym = isymbuf + i;
7504
7505 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7506 continue;
7507
7508 candidate = bfd_elf_string_from_elf_section (input_bfd,
7509 symtab_hdr->sh_link,
7510 sym->st_name);
7511 #ifdef DEBUG
7512 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7513 name, candidate, (unsigned long) sym->st_value);
7514 #endif
7515 if (candidate && strcmp (candidate, name) == 0)
7516 {
7517 asection *sec = flinfo->sections [i];
7518
7519 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7520 *result += sec->output_offset + sec->output_section->vma;
7521 #ifdef DEBUG
7522 printf ("Found symbol with value %8.8lx\n",
7523 (unsigned long) *result);
7524 #endif
7525 return TRUE;
7526 }
7527 }
7528
7529 /* Hmm, haven't found it yet. perhaps it is a global. */
7530 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7531 FALSE, FALSE, TRUE);
7532 if (!global_entry)
7533 return FALSE;
7534
7535 if (global_entry->type == bfd_link_hash_defined
7536 || global_entry->type == bfd_link_hash_defweak)
7537 {
7538 *result = (global_entry->u.def.value
7539 + global_entry->u.def.section->output_section->vma
7540 + global_entry->u.def.section->output_offset);
7541 #ifdef DEBUG
7542 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7543 global_entry->root.string, (unsigned long) *result);
7544 #endif
7545 return TRUE;
7546 }
7547
7548 return FALSE;
7549 }
7550
7551 static bfd_boolean
7552 resolve_section (const char *name,
7553 asection *sections,
7554 bfd_vma *result)
7555 {
7556 asection *curr;
7557 unsigned int len;
7558
7559 for (curr = sections; curr; curr = curr->next)
7560 if (strcmp (curr->name, name) == 0)
7561 {
7562 *result = curr->vma;
7563 return TRUE;
7564 }
7565
7566 /* Hmm. still haven't found it. try pseudo-section names. */
7567 for (curr = sections; curr; curr = curr->next)
7568 {
7569 len = strlen (curr->name);
7570 if (len > strlen (name))
7571 continue;
7572
7573 if (strncmp (curr->name, name, len) == 0)
7574 {
7575 if (strncmp (".end", name + len, 4) == 0)
7576 {
7577 *result = curr->vma + curr->size;
7578 return TRUE;
7579 }
7580
7581 /* Insert more pseudo-section names here, if you like. */
7582 }
7583 }
7584
7585 return FALSE;
7586 }
7587
7588 static void
7589 undefined_reference (const char *reftype, const char *name)
7590 {
7591 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7592 reftype, name);
7593 }
7594
7595 static bfd_boolean
7596 eval_symbol (bfd_vma *result,
7597 const char **symp,
7598 bfd *input_bfd,
7599 struct elf_final_link_info *flinfo,
7600 bfd_vma dot,
7601 Elf_Internal_Sym *isymbuf,
7602 size_t locsymcount,
7603 int signed_p)
7604 {
7605 size_t len;
7606 size_t symlen;
7607 bfd_vma a;
7608 bfd_vma b;
7609 char symbuf[4096];
7610 const char *sym = *symp;
7611 const char *symend;
7612 bfd_boolean symbol_is_section = FALSE;
7613
7614 len = strlen (sym);
7615 symend = sym + len;
7616
7617 if (len < 1 || len > sizeof (symbuf))
7618 {
7619 bfd_set_error (bfd_error_invalid_operation);
7620 return FALSE;
7621 }
7622
7623 switch (* sym)
7624 {
7625 case '.':
7626 *result = dot;
7627 *symp = sym + 1;
7628 return TRUE;
7629
7630 case '#':
7631 ++sym;
7632 *result = strtoul (sym, (char **) symp, 16);
7633 return TRUE;
7634
7635 case 'S':
7636 symbol_is_section = TRUE;
7637 case 's':
7638 ++sym;
7639 symlen = strtol (sym, (char **) symp, 10);
7640 sym = *symp + 1; /* Skip the trailing ':'. */
7641
7642 if (symend < sym || symlen + 1 > sizeof (symbuf))
7643 {
7644 bfd_set_error (bfd_error_invalid_operation);
7645 return FALSE;
7646 }
7647
7648 memcpy (symbuf, sym, symlen);
7649 symbuf[symlen] = '\0';
7650 *symp = sym + symlen;
7651
7652 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7653 the symbol as a section, or vice-versa. so we're pretty liberal in our
7654 interpretation here; section means "try section first", not "must be a
7655 section", and likewise with symbol. */
7656
7657 if (symbol_is_section)
7658 {
7659 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7660 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7661 isymbuf, locsymcount))
7662 {
7663 undefined_reference ("section", symbuf);
7664 return FALSE;
7665 }
7666 }
7667 else
7668 {
7669 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7670 isymbuf, locsymcount)
7671 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7672 result))
7673 {
7674 undefined_reference ("symbol", symbuf);
7675 return FALSE;
7676 }
7677 }
7678
7679 return TRUE;
7680
7681 /* All that remains are operators. */
7682
7683 #define UNARY_OP(op) \
7684 if (strncmp (sym, #op, strlen (#op)) == 0) \
7685 { \
7686 sym += strlen (#op); \
7687 if (*sym == ':') \
7688 ++sym; \
7689 *symp = sym; \
7690 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7691 isymbuf, locsymcount, signed_p)) \
7692 return FALSE; \
7693 if (signed_p) \
7694 *result = op ((bfd_signed_vma) a); \
7695 else \
7696 *result = op a; \
7697 return TRUE; \
7698 }
7699
7700 #define BINARY_OP(op) \
7701 if (strncmp (sym, #op, strlen (#op)) == 0) \
7702 { \
7703 sym += strlen (#op); \
7704 if (*sym == ':') \
7705 ++sym; \
7706 *symp = sym; \
7707 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7708 isymbuf, locsymcount, signed_p)) \
7709 return FALSE; \
7710 ++*symp; \
7711 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7712 isymbuf, locsymcount, signed_p)) \
7713 return FALSE; \
7714 if (signed_p) \
7715 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7716 else \
7717 *result = a op b; \
7718 return TRUE; \
7719 }
7720
7721 default:
7722 UNARY_OP (0-);
7723 BINARY_OP (<<);
7724 BINARY_OP (>>);
7725 BINARY_OP (==);
7726 BINARY_OP (!=);
7727 BINARY_OP (<=);
7728 BINARY_OP (>=);
7729 BINARY_OP (&&);
7730 BINARY_OP (||);
7731 UNARY_OP (~);
7732 UNARY_OP (!);
7733 BINARY_OP (*);
7734 BINARY_OP (/);
7735 BINARY_OP (%);
7736 BINARY_OP (^);
7737 BINARY_OP (|);
7738 BINARY_OP (&);
7739 BINARY_OP (+);
7740 BINARY_OP (-);
7741 BINARY_OP (<);
7742 BINARY_OP (>);
7743 #undef UNARY_OP
7744 #undef BINARY_OP
7745 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7746 bfd_set_error (bfd_error_invalid_operation);
7747 return FALSE;
7748 }
7749 }
7750
7751 static void
7752 put_value (bfd_vma size,
7753 unsigned long chunksz,
7754 bfd *input_bfd,
7755 bfd_vma x,
7756 bfd_byte *location)
7757 {
7758 location += (size - chunksz);
7759
7760 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7761 {
7762 switch (chunksz)
7763 {
7764 default:
7765 case 0:
7766 abort ();
7767 case 1:
7768 bfd_put_8 (input_bfd, x, location);
7769 break;
7770 case 2:
7771 bfd_put_16 (input_bfd, x, location);
7772 break;
7773 case 4:
7774 bfd_put_32 (input_bfd, x, location);
7775 break;
7776 case 8:
7777 #ifdef BFD64
7778 bfd_put_64 (input_bfd, x, location);
7779 #else
7780 abort ();
7781 #endif
7782 break;
7783 }
7784 }
7785 }
7786
7787 static bfd_vma
7788 get_value (bfd_vma size,
7789 unsigned long chunksz,
7790 bfd *input_bfd,
7791 bfd_byte *location)
7792 {
7793 bfd_vma x = 0;
7794
7795 for (; size; size -= chunksz, location += chunksz)
7796 {
7797 switch (chunksz)
7798 {
7799 default:
7800 case 0:
7801 abort ();
7802 case 1:
7803 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7804 break;
7805 case 2:
7806 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7807 break;
7808 case 4:
7809 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7810 break;
7811 case 8:
7812 #ifdef BFD64
7813 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7814 #else
7815 abort ();
7816 #endif
7817 break;
7818 }
7819 }
7820 return x;
7821 }
7822
7823 static void
7824 decode_complex_addend (unsigned long *start, /* in bits */
7825 unsigned long *oplen, /* in bits */
7826 unsigned long *len, /* in bits */
7827 unsigned long *wordsz, /* in bytes */
7828 unsigned long *chunksz, /* in bytes */
7829 unsigned long *lsb0_p,
7830 unsigned long *signed_p,
7831 unsigned long *trunc_p,
7832 unsigned long encoded)
7833 {
7834 * start = encoded & 0x3F;
7835 * len = (encoded >> 6) & 0x3F;
7836 * oplen = (encoded >> 12) & 0x3F;
7837 * wordsz = (encoded >> 18) & 0xF;
7838 * chunksz = (encoded >> 22) & 0xF;
7839 * lsb0_p = (encoded >> 27) & 1;
7840 * signed_p = (encoded >> 28) & 1;
7841 * trunc_p = (encoded >> 29) & 1;
7842 }
7843
7844 bfd_reloc_status_type
7845 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7846 asection *input_section ATTRIBUTE_UNUSED,
7847 bfd_byte *contents,
7848 Elf_Internal_Rela *rel,
7849 bfd_vma relocation)
7850 {
7851 bfd_vma shift, x, mask;
7852 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7853 bfd_reloc_status_type r;
7854
7855 /* Perform this reloc, since it is complex.
7856 (this is not to say that it necessarily refers to a complex
7857 symbol; merely that it is a self-describing CGEN based reloc.
7858 i.e. the addend has the complete reloc information (bit start, end,
7859 word size, etc) encoded within it.). */
7860
7861 decode_complex_addend (&start, &oplen, &len, &wordsz,
7862 &chunksz, &lsb0_p, &signed_p,
7863 &trunc_p, rel->r_addend);
7864
7865 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7866
7867 if (lsb0_p)
7868 shift = (start + 1) - len;
7869 else
7870 shift = (8 * wordsz) - (start + len);
7871
7872 /* FIXME: octets_per_byte. */
7873 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7874
7875 #ifdef DEBUG
7876 printf ("Doing complex reloc: "
7877 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7878 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7879 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7880 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7881 oplen, (unsigned long) x, (unsigned long) mask,
7882 (unsigned long) relocation);
7883 #endif
7884
7885 r = bfd_reloc_ok;
7886 if (! trunc_p)
7887 /* Now do an overflow check. */
7888 r = bfd_check_overflow ((signed_p
7889 ? complain_overflow_signed
7890 : complain_overflow_unsigned),
7891 len, 0, (8 * wordsz),
7892 relocation);
7893
7894 /* Do the deed. */
7895 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7896
7897 #ifdef DEBUG
7898 printf (" relocation: %8.8lx\n"
7899 " shifted mask: %8.8lx\n"
7900 " shifted/masked reloc: %8.8lx\n"
7901 " result: %8.8lx\n",
7902 (unsigned long) relocation, (unsigned long) (mask << shift),
7903 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7904 #endif
7905 /* FIXME: octets_per_byte. */
7906 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7907 return r;
7908 }
7909
7910 /* When performing a relocatable link, the input relocations are
7911 preserved. But, if they reference global symbols, the indices
7912 referenced must be updated. Update all the relocations found in
7913 RELDATA. */
7914
7915 static void
7916 elf_link_adjust_relocs (bfd *abfd,
7917 struct bfd_elf_section_reloc_data *reldata)
7918 {
7919 unsigned int i;
7920 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7921 bfd_byte *erela;
7922 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7923 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7924 bfd_vma r_type_mask;
7925 int r_sym_shift;
7926 unsigned int count = reldata->count;
7927 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7928
7929 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7930 {
7931 swap_in = bed->s->swap_reloc_in;
7932 swap_out = bed->s->swap_reloc_out;
7933 }
7934 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7935 {
7936 swap_in = bed->s->swap_reloca_in;
7937 swap_out = bed->s->swap_reloca_out;
7938 }
7939 else
7940 abort ();
7941
7942 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7943 abort ();
7944
7945 if (bed->s->arch_size == 32)
7946 {
7947 r_type_mask = 0xff;
7948 r_sym_shift = 8;
7949 }
7950 else
7951 {
7952 r_type_mask = 0xffffffff;
7953 r_sym_shift = 32;
7954 }
7955
7956 erela = reldata->hdr->contents;
7957 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7958 {
7959 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7960 unsigned int j;
7961
7962 if (*rel_hash == NULL)
7963 continue;
7964
7965 BFD_ASSERT ((*rel_hash)->indx >= 0);
7966
7967 (*swap_in) (abfd, erela, irela);
7968 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7969 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7970 | (irela[j].r_info & r_type_mask));
7971 (*swap_out) (abfd, irela, erela);
7972 }
7973 }
7974
7975 struct elf_link_sort_rela
7976 {
7977 union {
7978 bfd_vma offset;
7979 bfd_vma sym_mask;
7980 } u;
7981 enum elf_reloc_type_class type;
7982 /* We use this as an array of size int_rels_per_ext_rel. */
7983 Elf_Internal_Rela rela[1];
7984 };
7985
7986 static int
7987 elf_link_sort_cmp1 (const void *A, const void *B)
7988 {
7989 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7990 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7991 int relativea, relativeb;
7992
7993 relativea = a->type == reloc_class_relative;
7994 relativeb = b->type == reloc_class_relative;
7995
7996 if (relativea < relativeb)
7997 return 1;
7998 if (relativea > relativeb)
7999 return -1;
8000 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8001 return -1;
8002 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8003 return 1;
8004 if (a->rela->r_offset < b->rela->r_offset)
8005 return -1;
8006 if (a->rela->r_offset > b->rela->r_offset)
8007 return 1;
8008 return 0;
8009 }
8010
8011 static int
8012 elf_link_sort_cmp2 (const void *A, const void *B)
8013 {
8014 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8015 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8016 int copya, copyb;
8017
8018 if (a->u.offset < b->u.offset)
8019 return -1;
8020 if (a->u.offset > b->u.offset)
8021 return 1;
8022 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8023 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8024 if (copya < copyb)
8025 return -1;
8026 if (copya > copyb)
8027 return 1;
8028 if (a->rela->r_offset < b->rela->r_offset)
8029 return -1;
8030 if (a->rela->r_offset > b->rela->r_offset)
8031 return 1;
8032 return 0;
8033 }
8034
8035 static size_t
8036 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8037 {
8038 asection *dynamic_relocs;
8039 asection *rela_dyn;
8040 asection *rel_dyn;
8041 bfd_size_type count, size;
8042 size_t i, ret, sort_elt, ext_size;
8043 bfd_byte *sort, *s_non_relative, *p;
8044 struct elf_link_sort_rela *sq;
8045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8046 int i2e = bed->s->int_rels_per_ext_rel;
8047 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8048 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8049 struct bfd_link_order *lo;
8050 bfd_vma r_sym_mask;
8051 bfd_boolean use_rela;
8052
8053 /* Find a dynamic reloc section. */
8054 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8055 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8056 if (rela_dyn != NULL && rela_dyn->size > 0
8057 && rel_dyn != NULL && rel_dyn->size > 0)
8058 {
8059 bfd_boolean use_rela_initialised = FALSE;
8060
8061 /* This is just here to stop gcc from complaining.
8062 It's initialization checking code is not perfect. */
8063 use_rela = TRUE;
8064
8065 /* Both sections are present. Examine the sizes
8066 of the indirect sections to help us choose. */
8067 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8068 if (lo->type == bfd_indirect_link_order)
8069 {
8070 asection *o = lo->u.indirect.section;
8071
8072 if ((o->size % bed->s->sizeof_rela) == 0)
8073 {
8074 if ((o->size % bed->s->sizeof_rel) == 0)
8075 /* Section size is divisible by both rel and rela sizes.
8076 It is of no help to us. */
8077 ;
8078 else
8079 {
8080 /* Section size is only divisible by rela. */
8081 if (use_rela_initialised && (use_rela == FALSE))
8082 {
8083 _bfd_error_handler
8084 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8085 bfd_set_error (bfd_error_invalid_operation);
8086 return 0;
8087 }
8088 else
8089 {
8090 use_rela = TRUE;
8091 use_rela_initialised = TRUE;
8092 }
8093 }
8094 }
8095 else if ((o->size % bed->s->sizeof_rel) == 0)
8096 {
8097 /* Section size is only divisible by rel. */
8098 if (use_rela_initialised && (use_rela == TRUE))
8099 {
8100 _bfd_error_handler
8101 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8102 bfd_set_error (bfd_error_invalid_operation);
8103 return 0;
8104 }
8105 else
8106 {
8107 use_rela = FALSE;
8108 use_rela_initialised = TRUE;
8109 }
8110 }
8111 else
8112 {
8113 /* The section size is not divisible by either - something is wrong. */
8114 _bfd_error_handler
8115 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8116 bfd_set_error (bfd_error_invalid_operation);
8117 return 0;
8118 }
8119 }
8120
8121 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8122 if (lo->type == bfd_indirect_link_order)
8123 {
8124 asection *o = lo->u.indirect.section;
8125
8126 if ((o->size % bed->s->sizeof_rela) == 0)
8127 {
8128 if ((o->size % bed->s->sizeof_rel) == 0)
8129 /* Section size is divisible by both rel and rela sizes.
8130 It is of no help to us. */
8131 ;
8132 else
8133 {
8134 /* Section size is only divisible by rela. */
8135 if (use_rela_initialised && (use_rela == FALSE))
8136 {
8137 _bfd_error_handler
8138 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8139 bfd_set_error (bfd_error_invalid_operation);
8140 return 0;
8141 }
8142 else
8143 {
8144 use_rela = TRUE;
8145 use_rela_initialised = TRUE;
8146 }
8147 }
8148 }
8149 else if ((o->size % bed->s->sizeof_rel) == 0)
8150 {
8151 /* Section size is only divisible by rel. */
8152 if (use_rela_initialised && (use_rela == TRUE))
8153 {
8154 _bfd_error_handler
8155 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8156 bfd_set_error (bfd_error_invalid_operation);
8157 return 0;
8158 }
8159 else
8160 {
8161 use_rela = FALSE;
8162 use_rela_initialised = TRUE;
8163 }
8164 }
8165 else
8166 {
8167 /* The section size is not divisible by either - something is wrong. */
8168 _bfd_error_handler
8169 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8170 bfd_set_error (bfd_error_invalid_operation);
8171 return 0;
8172 }
8173 }
8174
8175 if (! use_rela_initialised)
8176 /* Make a guess. */
8177 use_rela = TRUE;
8178 }
8179 else if (rela_dyn != NULL && rela_dyn->size > 0)
8180 use_rela = TRUE;
8181 else if (rel_dyn != NULL && rel_dyn->size > 0)
8182 use_rela = FALSE;
8183 else
8184 return 0;
8185
8186 if (use_rela)
8187 {
8188 dynamic_relocs = rela_dyn;
8189 ext_size = bed->s->sizeof_rela;
8190 swap_in = bed->s->swap_reloca_in;
8191 swap_out = bed->s->swap_reloca_out;
8192 }
8193 else
8194 {
8195 dynamic_relocs = rel_dyn;
8196 ext_size = bed->s->sizeof_rel;
8197 swap_in = bed->s->swap_reloc_in;
8198 swap_out = bed->s->swap_reloc_out;
8199 }
8200
8201 size = 0;
8202 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8203 if (lo->type == bfd_indirect_link_order)
8204 size += lo->u.indirect.section->size;
8205
8206 if (size != dynamic_relocs->size)
8207 return 0;
8208
8209 sort_elt = (sizeof (struct elf_link_sort_rela)
8210 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8211
8212 count = dynamic_relocs->size / ext_size;
8213 if (count == 0)
8214 return 0;
8215 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8216
8217 if (sort == NULL)
8218 {
8219 (*info->callbacks->warning)
8220 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8221 return 0;
8222 }
8223
8224 if (bed->s->arch_size == 32)
8225 r_sym_mask = ~(bfd_vma) 0xff;
8226 else
8227 r_sym_mask = ~(bfd_vma) 0xffffffff;
8228
8229 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8230 if (lo->type == bfd_indirect_link_order)
8231 {
8232 bfd_byte *erel, *erelend;
8233 asection *o = lo->u.indirect.section;
8234
8235 if (o->contents == NULL && o->size != 0)
8236 {
8237 /* This is a reloc section that is being handled as a normal
8238 section. See bfd_section_from_shdr. We can't combine
8239 relocs in this case. */
8240 free (sort);
8241 return 0;
8242 }
8243 erel = o->contents;
8244 erelend = o->contents + o->size;
8245 /* FIXME: octets_per_byte. */
8246 p = sort + o->output_offset / ext_size * sort_elt;
8247
8248 while (erel < erelend)
8249 {
8250 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8251
8252 (*swap_in) (abfd, erel, s->rela);
8253 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8254 s->u.sym_mask = r_sym_mask;
8255 p += sort_elt;
8256 erel += ext_size;
8257 }
8258 }
8259
8260 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8261
8262 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8263 {
8264 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8265 if (s->type != reloc_class_relative)
8266 break;
8267 }
8268 ret = i;
8269 s_non_relative = p;
8270
8271 sq = (struct elf_link_sort_rela *) s_non_relative;
8272 for (; i < count; i++, p += sort_elt)
8273 {
8274 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8275 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8276 sq = sp;
8277 sp->u.offset = sq->rela->r_offset;
8278 }
8279
8280 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8281
8282 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8283 if (lo->type == bfd_indirect_link_order)
8284 {
8285 bfd_byte *erel, *erelend;
8286 asection *o = lo->u.indirect.section;
8287
8288 erel = o->contents;
8289 erelend = o->contents + o->size;
8290 /* FIXME: octets_per_byte. */
8291 p = sort + o->output_offset / ext_size * sort_elt;
8292 while (erel < erelend)
8293 {
8294 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8295 (*swap_out) (abfd, s->rela, erel);
8296 p += sort_elt;
8297 erel += ext_size;
8298 }
8299 }
8300
8301 free (sort);
8302 *psec = dynamic_relocs;
8303 return ret;
8304 }
8305
8306 /* Flush the output symbols to the file. */
8307
8308 static bfd_boolean
8309 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8310 const struct elf_backend_data *bed)
8311 {
8312 if (flinfo->symbuf_count > 0)
8313 {
8314 Elf_Internal_Shdr *hdr;
8315 file_ptr pos;
8316 bfd_size_type amt;
8317
8318 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8319 pos = hdr->sh_offset + hdr->sh_size;
8320 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8321 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8322 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8323 return FALSE;
8324
8325 hdr->sh_size += amt;
8326 flinfo->symbuf_count = 0;
8327 }
8328
8329 return TRUE;
8330 }
8331
8332 /* Add a symbol to the output symbol table. */
8333
8334 static int
8335 elf_link_output_sym (struct elf_final_link_info *flinfo,
8336 const char *name,
8337 Elf_Internal_Sym *elfsym,
8338 asection *input_sec,
8339 struct elf_link_hash_entry *h)
8340 {
8341 bfd_byte *dest;
8342 Elf_External_Sym_Shndx *destshndx;
8343 int (*output_symbol_hook)
8344 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8345 struct elf_link_hash_entry *);
8346 const struct elf_backend_data *bed;
8347
8348 bed = get_elf_backend_data (flinfo->output_bfd);
8349 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8350 if (output_symbol_hook != NULL)
8351 {
8352 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8353 if (ret != 1)
8354 return ret;
8355 }
8356
8357 if (name == NULL || *name == '\0')
8358 elfsym->st_name = 0;
8359 else if (input_sec->flags & SEC_EXCLUDE)
8360 elfsym->st_name = 0;
8361 else
8362 {
8363 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8364 name, TRUE, FALSE);
8365 if (elfsym->st_name == (unsigned long) -1)
8366 return 0;
8367 }
8368
8369 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8370 {
8371 if (! elf_link_flush_output_syms (flinfo, bed))
8372 return 0;
8373 }
8374
8375 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8376 destshndx = flinfo->symshndxbuf;
8377 if (destshndx != NULL)
8378 {
8379 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8380 {
8381 bfd_size_type amt;
8382
8383 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8384 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8385 amt * 2);
8386 if (destshndx == NULL)
8387 return 0;
8388 flinfo->symshndxbuf = destshndx;
8389 memset ((char *) destshndx + amt, 0, amt);
8390 flinfo->shndxbuf_size *= 2;
8391 }
8392 destshndx += bfd_get_symcount (flinfo->output_bfd);
8393 }
8394
8395 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8396 flinfo->symbuf_count += 1;
8397 bfd_get_symcount (flinfo->output_bfd) += 1;
8398
8399 return 1;
8400 }
8401
8402 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8403
8404 static bfd_boolean
8405 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8406 {
8407 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8408 && sym->st_shndx < SHN_LORESERVE)
8409 {
8410 /* The gABI doesn't support dynamic symbols in output sections
8411 beyond 64k. */
8412 (*_bfd_error_handler)
8413 (_("%B: Too many sections: %d (>= %d)"),
8414 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8415 bfd_set_error (bfd_error_nonrepresentable_section);
8416 return FALSE;
8417 }
8418 return TRUE;
8419 }
8420
8421 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8422 allowing an unsatisfied unversioned symbol in the DSO to match a
8423 versioned symbol that would normally require an explicit version.
8424 We also handle the case that a DSO references a hidden symbol
8425 which may be satisfied by a versioned symbol in another DSO. */
8426
8427 static bfd_boolean
8428 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8429 const struct elf_backend_data *bed,
8430 struct elf_link_hash_entry *h)
8431 {
8432 bfd *abfd;
8433 struct elf_link_loaded_list *loaded;
8434
8435 if (!is_elf_hash_table (info->hash))
8436 return FALSE;
8437
8438 switch (h->root.type)
8439 {
8440 default:
8441 abfd = NULL;
8442 break;
8443
8444 case bfd_link_hash_undefined:
8445 case bfd_link_hash_undefweak:
8446 abfd = h->root.u.undef.abfd;
8447 if ((abfd->flags & DYNAMIC) == 0
8448 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8449 return FALSE;
8450 break;
8451
8452 case bfd_link_hash_defined:
8453 case bfd_link_hash_defweak:
8454 abfd = h->root.u.def.section->owner;
8455 break;
8456
8457 case bfd_link_hash_common:
8458 abfd = h->root.u.c.p->section->owner;
8459 break;
8460 }
8461 BFD_ASSERT (abfd != NULL);
8462
8463 for (loaded = elf_hash_table (info)->loaded;
8464 loaded != NULL;
8465 loaded = loaded->next)
8466 {
8467 bfd *input;
8468 Elf_Internal_Shdr *hdr;
8469 bfd_size_type symcount;
8470 bfd_size_type extsymcount;
8471 bfd_size_type extsymoff;
8472 Elf_Internal_Shdr *versymhdr;
8473 Elf_Internal_Sym *isym;
8474 Elf_Internal_Sym *isymend;
8475 Elf_Internal_Sym *isymbuf;
8476 Elf_External_Versym *ever;
8477 Elf_External_Versym *extversym;
8478
8479 input = loaded->abfd;
8480
8481 /* We check each DSO for a possible hidden versioned definition. */
8482 if (input == abfd
8483 || (input->flags & DYNAMIC) == 0
8484 || elf_dynversym (input) == 0)
8485 continue;
8486
8487 hdr = &elf_tdata (input)->dynsymtab_hdr;
8488
8489 symcount = hdr->sh_size / bed->s->sizeof_sym;
8490 if (elf_bad_symtab (input))
8491 {
8492 extsymcount = symcount;
8493 extsymoff = 0;
8494 }
8495 else
8496 {
8497 extsymcount = symcount - hdr->sh_info;
8498 extsymoff = hdr->sh_info;
8499 }
8500
8501 if (extsymcount == 0)
8502 continue;
8503
8504 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8505 NULL, NULL, NULL);
8506 if (isymbuf == NULL)
8507 return FALSE;
8508
8509 /* Read in any version definitions. */
8510 versymhdr = &elf_tdata (input)->dynversym_hdr;
8511 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8512 if (extversym == NULL)
8513 goto error_ret;
8514
8515 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8516 || (bfd_bread (extversym, versymhdr->sh_size, input)
8517 != versymhdr->sh_size))
8518 {
8519 free (extversym);
8520 error_ret:
8521 free (isymbuf);
8522 return FALSE;
8523 }
8524
8525 ever = extversym + extsymoff;
8526 isymend = isymbuf + extsymcount;
8527 for (isym = isymbuf; isym < isymend; isym++, ever++)
8528 {
8529 const char *name;
8530 Elf_Internal_Versym iver;
8531 unsigned short version_index;
8532
8533 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8534 || isym->st_shndx == SHN_UNDEF)
8535 continue;
8536
8537 name = bfd_elf_string_from_elf_section (input,
8538 hdr->sh_link,
8539 isym->st_name);
8540 if (strcmp (name, h->root.root.string) != 0)
8541 continue;
8542
8543 _bfd_elf_swap_versym_in (input, ever, &iver);
8544
8545 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8546 && !(h->def_regular
8547 && h->forced_local))
8548 {
8549 /* If we have a non-hidden versioned sym, then it should
8550 have provided a definition for the undefined sym unless
8551 it is defined in a non-shared object and forced local.
8552 */
8553 abort ();
8554 }
8555
8556 version_index = iver.vs_vers & VERSYM_VERSION;
8557 if (version_index == 1 || version_index == 2)
8558 {
8559 /* This is the base or first version. We can use it. */
8560 free (extversym);
8561 free (isymbuf);
8562 return TRUE;
8563 }
8564 }
8565
8566 free (extversym);
8567 free (isymbuf);
8568 }
8569
8570 return FALSE;
8571 }
8572
8573 /* Add an external symbol to the symbol table. This is called from
8574 the hash table traversal routine. When generating a shared object,
8575 we go through the symbol table twice. The first time we output
8576 anything that might have been forced to local scope in a version
8577 script. The second time we output the symbols that are still
8578 global symbols. */
8579
8580 static bfd_boolean
8581 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8582 {
8583 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8584 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8585 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8586 bfd_boolean strip;
8587 Elf_Internal_Sym sym;
8588 asection *input_sec;
8589 const struct elf_backend_data *bed;
8590 long indx;
8591 int ret;
8592
8593 if (h->root.type == bfd_link_hash_warning)
8594 {
8595 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8596 if (h->root.type == bfd_link_hash_new)
8597 return TRUE;
8598 }
8599
8600 /* Decide whether to output this symbol in this pass. */
8601 if (eoinfo->localsyms)
8602 {
8603 if (!h->forced_local)
8604 return TRUE;
8605 }
8606 else
8607 {
8608 if (h->forced_local)
8609 return TRUE;
8610 }
8611
8612 bed = get_elf_backend_data (flinfo->output_bfd);
8613
8614 if (h->root.type == bfd_link_hash_undefined)
8615 {
8616 /* If we have an undefined symbol reference here then it must have
8617 come from a shared library that is being linked in. (Undefined
8618 references in regular files have already been handled unless
8619 they are in unreferenced sections which are removed by garbage
8620 collection). */
8621 bfd_boolean ignore_undef = FALSE;
8622
8623 /* Some symbols may be special in that the fact that they're
8624 undefined can be safely ignored - let backend determine that. */
8625 if (bed->elf_backend_ignore_undef_symbol)
8626 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8627
8628 /* If we are reporting errors for this situation then do so now. */
8629 if (!ignore_undef
8630 && h->ref_dynamic
8631 && (!h->ref_regular || flinfo->info->gc_sections)
8632 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8633 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8634 {
8635 if (!(flinfo->info->callbacks->undefined_symbol
8636 (flinfo->info, h->root.root.string,
8637 h->ref_regular ? NULL : h->root.u.undef.abfd,
8638 NULL, 0,
8639 (flinfo->info->unresolved_syms_in_shared_libs
8640 == RM_GENERATE_ERROR))))
8641 {
8642 bfd_set_error (bfd_error_bad_value);
8643 eoinfo->failed = TRUE;
8644 return FALSE;
8645 }
8646 }
8647 }
8648
8649 /* We should also warn if a forced local symbol is referenced from
8650 shared libraries. */
8651 if (!flinfo->info->relocatable
8652 && flinfo->info->executable
8653 && h->forced_local
8654 && h->ref_dynamic
8655 && h->def_regular
8656 && !h->dynamic_def
8657 && !h->dynamic_weak
8658 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8659 {
8660 bfd *def_bfd;
8661 const char *msg;
8662
8663 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8664 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8665 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8666 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8667 else
8668 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8669 def_bfd = flinfo->output_bfd;
8670 if (h->root.u.def.section != bfd_abs_section_ptr)
8671 def_bfd = h->root.u.def.section->owner;
8672 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8673 h->root.root.string);
8674 bfd_set_error (bfd_error_bad_value);
8675 eoinfo->failed = TRUE;
8676 return FALSE;
8677 }
8678
8679 /* We don't want to output symbols that have never been mentioned by
8680 a regular file, or that we have been told to strip. However, if
8681 h->indx is set to -2, the symbol is used by a reloc and we must
8682 output it. */
8683 if (h->indx == -2)
8684 strip = FALSE;
8685 else if ((h->def_dynamic
8686 || h->ref_dynamic
8687 || h->root.type == bfd_link_hash_new)
8688 && !h->def_regular
8689 && !h->ref_regular)
8690 strip = TRUE;
8691 else if (flinfo->info->strip == strip_all)
8692 strip = TRUE;
8693 else if (flinfo->info->strip == strip_some
8694 && bfd_hash_lookup (flinfo->info->keep_hash,
8695 h->root.root.string, FALSE, FALSE) == NULL)
8696 strip = TRUE;
8697 else if ((h->root.type == bfd_link_hash_defined
8698 || h->root.type == bfd_link_hash_defweak)
8699 && ((flinfo->info->strip_discarded
8700 && discarded_section (h->root.u.def.section))
8701 || (h->root.u.def.section->owner != NULL
8702 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8703 strip = TRUE;
8704 else if ((h->root.type == bfd_link_hash_undefined
8705 || h->root.type == bfd_link_hash_undefweak)
8706 && h->root.u.undef.abfd != NULL
8707 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8708 strip = TRUE;
8709 else
8710 strip = FALSE;
8711
8712 /* If we're stripping it, and it's not a dynamic symbol, there's
8713 nothing else to do unless it is a forced local symbol or a
8714 STT_GNU_IFUNC symbol. */
8715 if (strip
8716 && h->dynindx == -1
8717 && h->type != STT_GNU_IFUNC
8718 && !h->forced_local)
8719 return TRUE;
8720
8721 sym.st_value = 0;
8722 sym.st_size = h->size;
8723 sym.st_other = h->other;
8724 if (h->forced_local)
8725 {
8726 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8727 /* Turn off visibility on local symbol. */
8728 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8729 }
8730 else if (h->unique_global)
8731 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8732 else if (h->root.type == bfd_link_hash_undefweak
8733 || h->root.type == bfd_link_hash_defweak)
8734 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8735 else
8736 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8737 sym.st_target_internal = h->target_internal;
8738
8739 switch (h->root.type)
8740 {
8741 default:
8742 case bfd_link_hash_new:
8743 case bfd_link_hash_warning:
8744 abort ();
8745 return FALSE;
8746
8747 case bfd_link_hash_undefined:
8748 case bfd_link_hash_undefweak:
8749 input_sec = bfd_und_section_ptr;
8750 sym.st_shndx = SHN_UNDEF;
8751 break;
8752
8753 case bfd_link_hash_defined:
8754 case bfd_link_hash_defweak:
8755 {
8756 input_sec = h->root.u.def.section;
8757 if (input_sec->output_section != NULL)
8758 {
8759 sym.st_shndx =
8760 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8761 input_sec->output_section);
8762 if (sym.st_shndx == SHN_BAD)
8763 {
8764 (*_bfd_error_handler)
8765 (_("%B: could not find output section %A for input section %A"),
8766 flinfo->output_bfd, input_sec->output_section, input_sec);
8767 bfd_set_error (bfd_error_nonrepresentable_section);
8768 eoinfo->failed = TRUE;
8769 return FALSE;
8770 }
8771
8772 /* ELF symbols in relocatable files are section relative,
8773 but in nonrelocatable files they are virtual
8774 addresses. */
8775 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8776 if (!flinfo->info->relocatable)
8777 {
8778 sym.st_value += input_sec->output_section->vma;
8779 if (h->type == STT_TLS)
8780 {
8781 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8782 if (tls_sec != NULL)
8783 sym.st_value -= tls_sec->vma;
8784 else
8785 {
8786 /* The TLS section may have been garbage collected. */
8787 BFD_ASSERT (flinfo->info->gc_sections
8788 && !input_sec->gc_mark);
8789 }
8790 }
8791 }
8792 }
8793 else
8794 {
8795 BFD_ASSERT (input_sec->owner == NULL
8796 || (input_sec->owner->flags & DYNAMIC) != 0);
8797 sym.st_shndx = SHN_UNDEF;
8798 input_sec = bfd_und_section_ptr;
8799 }
8800 }
8801 break;
8802
8803 case bfd_link_hash_common:
8804 input_sec = h->root.u.c.p->section;
8805 sym.st_shndx = bed->common_section_index (input_sec);
8806 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8807 break;
8808
8809 case bfd_link_hash_indirect:
8810 /* These symbols are created by symbol versioning. They point
8811 to the decorated version of the name. For example, if the
8812 symbol foo@@GNU_1.2 is the default, which should be used when
8813 foo is used with no version, then we add an indirect symbol
8814 foo which points to foo@@GNU_1.2. We ignore these symbols,
8815 since the indirected symbol is already in the hash table. */
8816 return TRUE;
8817 }
8818
8819 /* Give the processor backend a chance to tweak the symbol value,
8820 and also to finish up anything that needs to be done for this
8821 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8822 forced local syms when non-shared is due to a historical quirk.
8823 STT_GNU_IFUNC symbol must go through PLT. */
8824 if ((h->type == STT_GNU_IFUNC
8825 && h->def_regular
8826 && !flinfo->info->relocatable)
8827 || ((h->dynindx != -1
8828 || h->forced_local)
8829 && ((flinfo->info->shared
8830 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8831 || h->root.type != bfd_link_hash_undefweak))
8832 || !h->forced_local)
8833 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8834 {
8835 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8836 (flinfo->output_bfd, flinfo->info, h, &sym)))
8837 {
8838 eoinfo->failed = TRUE;
8839 return FALSE;
8840 }
8841 }
8842
8843 /* If we are marking the symbol as undefined, and there are no
8844 non-weak references to this symbol from a regular object, then
8845 mark the symbol as weak undefined; if there are non-weak
8846 references, mark the symbol as strong. We can't do this earlier,
8847 because it might not be marked as undefined until the
8848 finish_dynamic_symbol routine gets through with it. */
8849 if (sym.st_shndx == SHN_UNDEF
8850 && h->ref_regular
8851 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8852 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8853 {
8854 int bindtype;
8855 unsigned int type = ELF_ST_TYPE (sym.st_info);
8856
8857 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8858 if (type == STT_GNU_IFUNC)
8859 type = STT_FUNC;
8860
8861 if (h->ref_regular_nonweak)
8862 bindtype = STB_GLOBAL;
8863 else
8864 bindtype = STB_WEAK;
8865 sym.st_info = ELF_ST_INFO (bindtype, type);
8866 }
8867
8868 /* If this is a symbol defined in a dynamic library, don't use the
8869 symbol size from the dynamic library. Relinking an executable
8870 against a new library may introduce gratuitous changes in the
8871 executable's symbols if we keep the size. */
8872 if (sym.st_shndx == SHN_UNDEF
8873 && !h->def_regular
8874 && h->def_dynamic)
8875 sym.st_size = 0;
8876
8877 /* If a non-weak symbol with non-default visibility is not defined
8878 locally, it is a fatal error. */
8879 if (!flinfo->info->relocatable
8880 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8881 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8882 && h->root.type == bfd_link_hash_undefined
8883 && !h->def_regular)
8884 {
8885 const char *msg;
8886
8887 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8888 msg = _("%B: protected symbol `%s' isn't defined");
8889 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8890 msg = _("%B: internal symbol `%s' isn't defined");
8891 else
8892 msg = _("%B: hidden symbol `%s' isn't defined");
8893 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8894 bfd_set_error (bfd_error_bad_value);
8895 eoinfo->failed = TRUE;
8896 return FALSE;
8897 }
8898
8899 /* If this symbol should be put in the .dynsym section, then put it
8900 there now. We already know the symbol index. We also fill in
8901 the entry in the .hash section. */
8902 if (flinfo->dynsym_sec != NULL
8903 && h->dynindx != -1
8904 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8905 {
8906 bfd_byte *esym;
8907
8908 sym.st_name = h->dynstr_index;
8909 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8910 if (!check_dynsym (flinfo->output_bfd, &sym))
8911 {
8912 eoinfo->failed = TRUE;
8913 return FALSE;
8914 }
8915 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
8916
8917 if (flinfo->hash_sec != NULL)
8918 {
8919 size_t hash_entry_size;
8920 bfd_byte *bucketpos;
8921 bfd_vma chain;
8922 size_t bucketcount;
8923 size_t bucket;
8924
8925 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
8926 bucket = h->u.elf_hash_value % bucketcount;
8927
8928 hash_entry_size
8929 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
8930 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
8931 + (bucket + 2) * hash_entry_size);
8932 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
8933 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
8934 bucketpos);
8935 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
8936 ((bfd_byte *) flinfo->hash_sec->contents
8937 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8938 }
8939
8940 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
8941 {
8942 Elf_Internal_Versym iversym;
8943 Elf_External_Versym *eversym;
8944
8945 if (!h->def_regular)
8946 {
8947 if (h->verinfo.verdef == NULL)
8948 iversym.vs_vers = 0;
8949 else
8950 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8951 }
8952 else
8953 {
8954 if (h->verinfo.vertree == NULL)
8955 iversym.vs_vers = 1;
8956 else
8957 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8958 if (flinfo->info->create_default_symver)
8959 iversym.vs_vers++;
8960 }
8961
8962 if (h->hidden)
8963 iversym.vs_vers |= VERSYM_HIDDEN;
8964
8965 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
8966 eversym += h->dynindx;
8967 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
8968 }
8969 }
8970
8971 /* If we're stripping it, then it was just a dynamic symbol, and
8972 there's nothing else to do. */
8973 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8974 return TRUE;
8975
8976 indx = bfd_get_symcount (flinfo->output_bfd);
8977 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
8978 if (ret == 0)
8979 {
8980 eoinfo->failed = TRUE;
8981 return FALSE;
8982 }
8983 else if (ret == 1)
8984 h->indx = indx;
8985 else if (h->indx == -2)
8986 abort();
8987
8988 return TRUE;
8989 }
8990
8991 /* Return TRUE if special handling is done for relocs in SEC against
8992 symbols defined in discarded sections. */
8993
8994 static bfd_boolean
8995 elf_section_ignore_discarded_relocs (asection *sec)
8996 {
8997 const struct elf_backend_data *bed;
8998
8999 switch (sec->sec_info_type)
9000 {
9001 case SEC_INFO_TYPE_STABS:
9002 case SEC_INFO_TYPE_EH_FRAME:
9003 return TRUE;
9004 default:
9005 break;
9006 }
9007
9008 bed = get_elf_backend_data (sec->owner);
9009 if (bed->elf_backend_ignore_discarded_relocs != NULL
9010 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9011 return TRUE;
9012
9013 return FALSE;
9014 }
9015
9016 /* Return a mask saying how ld should treat relocations in SEC against
9017 symbols defined in discarded sections. If this function returns
9018 COMPLAIN set, ld will issue a warning message. If this function
9019 returns PRETEND set, and the discarded section was link-once and the
9020 same size as the kept link-once section, ld will pretend that the
9021 symbol was actually defined in the kept section. Otherwise ld will
9022 zero the reloc (at least that is the intent, but some cooperation by
9023 the target dependent code is needed, particularly for REL targets). */
9024
9025 unsigned int
9026 _bfd_elf_default_action_discarded (asection *sec)
9027 {
9028 if (sec->flags & SEC_DEBUGGING)
9029 return PRETEND;
9030
9031 if (strcmp (".eh_frame", sec->name) == 0)
9032 return 0;
9033
9034 if (strcmp (".gcc_except_table", sec->name) == 0)
9035 return 0;
9036
9037 return COMPLAIN | PRETEND;
9038 }
9039
9040 /* Find a match between a section and a member of a section group. */
9041
9042 static asection *
9043 match_group_member (asection *sec, asection *group,
9044 struct bfd_link_info *info)
9045 {
9046 asection *first = elf_next_in_group (group);
9047 asection *s = first;
9048
9049 while (s != NULL)
9050 {
9051 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9052 return s;
9053
9054 s = elf_next_in_group (s);
9055 if (s == first)
9056 break;
9057 }
9058
9059 return NULL;
9060 }
9061
9062 /* Check if the kept section of a discarded section SEC can be used
9063 to replace it. Return the replacement if it is OK. Otherwise return
9064 NULL. */
9065
9066 asection *
9067 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9068 {
9069 asection *kept;
9070
9071 kept = sec->kept_section;
9072 if (kept != NULL)
9073 {
9074 if ((kept->flags & SEC_GROUP) != 0)
9075 kept = match_group_member (sec, kept, info);
9076 if (kept != NULL
9077 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9078 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9079 kept = NULL;
9080 sec->kept_section = kept;
9081 }
9082 return kept;
9083 }
9084
9085 /* Link an input file into the linker output file. This function
9086 handles all the sections and relocations of the input file at once.
9087 This is so that we only have to read the local symbols once, and
9088 don't have to keep them in memory. */
9089
9090 static bfd_boolean
9091 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9092 {
9093 int (*relocate_section)
9094 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9095 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9096 bfd *output_bfd;
9097 Elf_Internal_Shdr *symtab_hdr;
9098 size_t locsymcount;
9099 size_t extsymoff;
9100 Elf_Internal_Sym *isymbuf;
9101 Elf_Internal_Sym *isym;
9102 Elf_Internal_Sym *isymend;
9103 long *pindex;
9104 asection **ppsection;
9105 asection *o;
9106 const struct elf_backend_data *bed;
9107 struct elf_link_hash_entry **sym_hashes;
9108 bfd_size_type address_size;
9109 bfd_vma r_type_mask;
9110 int r_sym_shift;
9111
9112 output_bfd = flinfo->output_bfd;
9113 bed = get_elf_backend_data (output_bfd);
9114 relocate_section = bed->elf_backend_relocate_section;
9115
9116 /* If this is a dynamic object, we don't want to do anything here:
9117 we don't want the local symbols, and we don't want the section
9118 contents. */
9119 if ((input_bfd->flags & DYNAMIC) != 0)
9120 return TRUE;
9121
9122 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9123 if (elf_bad_symtab (input_bfd))
9124 {
9125 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9126 extsymoff = 0;
9127 }
9128 else
9129 {
9130 locsymcount = symtab_hdr->sh_info;
9131 extsymoff = symtab_hdr->sh_info;
9132 }
9133
9134 /* Read the local symbols. */
9135 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9136 if (isymbuf == NULL && locsymcount != 0)
9137 {
9138 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9139 flinfo->internal_syms,
9140 flinfo->external_syms,
9141 flinfo->locsym_shndx);
9142 if (isymbuf == NULL)
9143 return FALSE;
9144 }
9145
9146 /* Find local symbol sections and adjust values of symbols in
9147 SEC_MERGE sections. Write out those local symbols we know are
9148 going into the output file. */
9149 isymend = isymbuf + locsymcount;
9150 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9151 isym < isymend;
9152 isym++, pindex++, ppsection++)
9153 {
9154 asection *isec;
9155 const char *name;
9156 Elf_Internal_Sym osym;
9157 long indx;
9158 int ret;
9159
9160 *pindex = -1;
9161
9162 if (elf_bad_symtab (input_bfd))
9163 {
9164 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9165 {
9166 *ppsection = NULL;
9167 continue;
9168 }
9169 }
9170
9171 if (isym->st_shndx == SHN_UNDEF)
9172 isec = bfd_und_section_ptr;
9173 else if (isym->st_shndx == SHN_ABS)
9174 isec = bfd_abs_section_ptr;
9175 else if (isym->st_shndx == SHN_COMMON)
9176 isec = bfd_com_section_ptr;
9177 else
9178 {
9179 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9180 if (isec == NULL)
9181 {
9182 /* Don't attempt to output symbols with st_shnx in the
9183 reserved range other than SHN_ABS and SHN_COMMON. */
9184 *ppsection = NULL;
9185 continue;
9186 }
9187 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9188 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9189 isym->st_value =
9190 _bfd_merged_section_offset (output_bfd, &isec,
9191 elf_section_data (isec)->sec_info,
9192 isym->st_value);
9193 }
9194
9195 *ppsection = isec;
9196
9197 /* Don't output the first, undefined, symbol. */
9198 if (ppsection == flinfo->sections)
9199 continue;
9200
9201 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9202 {
9203 /* We never output section symbols. Instead, we use the
9204 section symbol of the corresponding section in the output
9205 file. */
9206 continue;
9207 }
9208
9209 /* If we are stripping all symbols, we don't want to output this
9210 one. */
9211 if (flinfo->info->strip == strip_all)
9212 continue;
9213
9214 /* If we are discarding all local symbols, we don't want to
9215 output this one. If we are generating a relocatable output
9216 file, then some of the local symbols may be required by
9217 relocs; we output them below as we discover that they are
9218 needed. */
9219 if (flinfo->info->discard == discard_all)
9220 continue;
9221
9222 /* If this symbol is defined in a section which we are
9223 discarding, we don't need to keep it. */
9224 if (isym->st_shndx != SHN_UNDEF
9225 && isym->st_shndx < SHN_LORESERVE
9226 && bfd_section_removed_from_list (output_bfd,
9227 isec->output_section))
9228 continue;
9229
9230 /* Get the name of the symbol. */
9231 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9232 isym->st_name);
9233 if (name == NULL)
9234 return FALSE;
9235
9236 /* See if we are discarding symbols with this name. */
9237 if ((flinfo->info->strip == strip_some
9238 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9239 == NULL))
9240 || (((flinfo->info->discard == discard_sec_merge
9241 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9242 || flinfo->info->discard == discard_l)
9243 && bfd_is_local_label_name (input_bfd, name)))
9244 continue;
9245
9246 osym = *isym;
9247
9248 /* Adjust the section index for the output file. */
9249 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9250 isec->output_section);
9251 if (osym.st_shndx == SHN_BAD)
9252 return FALSE;
9253
9254 /* ELF symbols in relocatable files are section relative, but
9255 in executable files they are virtual addresses. Note that
9256 this code assumes that all ELF sections have an associated
9257 BFD section with a reasonable value for output_offset; below
9258 we assume that they also have a reasonable value for
9259 output_section. Any special sections must be set up to meet
9260 these requirements. */
9261 osym.st_value += isec->output_offset;
9262 if (!flinfo->info->relocatable)
9263 {
9264 osym.st_value += isec->output_section->vma;
9265 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9266 {
9267 /* STT_TLS symbols are relative to PT_TLS segment base. */
9268 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9269 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9270 }
9271 }
9272
9273 indx = bfd_get_symcount (output_bfd);
9274 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9275 if (ret == 0)
9276 return FALSE;
9277 else if (ret == 1)
9278 *pindex = indx;
9279 }
9280
9281 if (bed->s->arch_size == 32)
9282 {
9283 r_type_mask = 0xff;
9284 r_sym_shift = 8;
9285 address_size = 4;
9286 }
9287 else
9288 {
9289 r_type_mask = 0xffffffff;
9290 r_sym_shift = 32;
9291 address_size = 8;
9292 }
9293
9294 /* Relocate the contents of each section. */
9295 sym_hashes = elf_sym_hashes (input_bfd);
9296 for (o = input_bfd->sections; o != NULL; o = o->next)
9297 {
9298 bfd_byte *contents;
9299
9300 if (! o->linker_mark)
9301 {
9302 /* This section was omitted from the link. */
9303 continue;
9304 }
9305
9306 if (flinfo->info->relocatable
9307 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9308 {
9309 /* Deal with the group signature symbol. */
9310 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9311 unsigned long symndx = sec_data->this_hdr.sh_info;
9312 asection *osec = o->output_section;
9313
9314 if (symndx >= locsymcount
9315 || (elf_bad_symtab (input_bfd)
9316 && flinfo->sections[symndx] == NULL))
9317 {
9318 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9319 while (h->root.type == bfd_link_hash_indirect
9320 || h->root.type == bfd_link_hash_warning)
9321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9322 /* Arrange for symbol to be output. */
9323 h->indx = -2;
9324 elf_section_data (osec)->this_hdr.sh_info = -2;
9325 }
9326 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9327 {
9328 /* We'll use the output section target_index. */
9329 asection *sec = flinfo->sections[symndx]->output_section;
9330 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9331 }
9332 else
9333 {
9334 if (flinfo->indices[symndx] == -1)
9335 {
9336 /* Otherwise output the local symbol now. */
9337 Elf_Internal_Sym sym = isymbuf[symndx];
9338 asection *sec = flinfo->sections[symndx]->output_section;
9339 const char *name;
9340 long indx;
9341 int ret;
9342
9343 name = bfd_elf_string_from_elf_section (input_bfd,
9344 symtab_hdr->sh_link,
9345 sym.st_name);
9346 if (name == NULL)
9347 return FALSE;
9348
9349 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9350 sec);
9351 if (sym.st_shndx == SHN_BAD)
9352 return FALSE;
9353
9354 sym.st_value += o->output_offset;
9355
9356 indx = bfd_get_symcount (output_bfd);
9357 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9358 if (ret == 0)
9359 return FALSE;
9360 else if (ret == 1)
9361 flinfo->indices[symndx] = indx;
9362 else
9363 abort ();
9364 }
9365 elf_section_data (osec)->this_hdr.sh_info
9366 = flinfo->indices[symndx];
9367 }
9368 }
9369
9370 if ((o->flags & SEC_HAS_CONTENTS) == 0
9371 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9372 continue;
9373
9374 if ((o->flags & SEC_LINKER_CREATED) != 0)
9375 {
9376 /* Section was created by _bfd_elf_link_create_dynamic_sections
9377 or somesuch. */
9378 continue;
9379 }
9380
9381 /* Get the contents of the section. They have been cached by a
9382 relaxation routine. Note that o is a section in an input
9383 file, so the contents field will not have been set by any of
9384 the routines which work on output files. */
9385 if (elf_section_data (o)->this_hdr.contents != NULL)
9386 contents = elf_section_data (o)->this_hdr.contents;
9387 else
9388 {
9389 contents = flinfo->contents;
9390 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9391 return FALSE;
9392 }
9393
9394 if ((o->flags & SEC_RELOC) != 0)
9395 {
9396 Elf_Internal_Rela *internal_relocs;
9397 Elf_Internal_Rela *rel, *relend;
9398 int action_discarded;
9399 int ret;
9400
9401 /* Get the swapped relocs. */
9402 internal_relocs
9403 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9404 flinfo->internal_relocs, FALSE);
9405 if (internal_relocs == NULL
9406 && o->reloc_count > 0)
9407 return FALSE;
9408
9409 /* We need to reverse-copy input .ctors/.dtors sections if
9410 they are placed in .init_array/.finit_array for output. */
9411 if (o->size > address_size
9412 && ((strncmp (o->name, ".ctors", 6) == 0
9413 && strcmp (o->output_section->name,
9414 ".init_array") == 0)
9415 || (strncmp (o->name, ".dtors", 6) == 0
9416 && strcmp (o->output_section->name,
9417 ".fini_array") == 0))
9418 && (o->name[6] == 0 || o->name[6] == '.'))
9419 {
9420 if (o->size != o->reloc_count * address_size)
9421 {
9422 (*_bfd_error_handler)
9423 (_("error: %B: size of section %A is not "
9424 "multiple of address size"),
9425 input_bfd, o);
9426 bfd_set_error (bfd_error_on_input);
9427 return FALSE;
9428 }
9429 o->flags |= SEC_ELF_REVERSE_COPY;
9430 }
9431
9432 action_discarded = -1;
9433 if (!elf_section_ignore_discarded_relocs (o))
9434 action_discarded = (*bed->action_discarded) (o);
9435
9436 /* Run through the relocs evaluating complex reloc symbols and
9437 looking for relocs against symbols from discarded sections
9438 or section symbols from removed link-once sections.
9439 Complain about relocs against discarded sections. Zero
9440 relocs against removed link-once sections. */
9441
9442 rel = internal_relocs;
9443 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9444 for ( ; rel < relend; rel++)
9445 {
9446 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9447 unsigned int s_type;
9448 asection **ps, *sec;
9449 struct elf_link_hash_entry *h = NULL;
9450 const char *sym_name;
9451
9452 if (r_symndx == STN_UNDEF)
9453 continue;
9454
9455 if (r_symndx >= locsymcount
9456 || (elf_bad_symtab (input_bfd)
9457 && flinfo->sections[r_symndx] == NULL))
9458 {
9459 h = sym_hashes[r_symndx - extsymoff];
9460
9461 /* Badly formatted input files can contain relocs that
9462 reference non-existant symbols. Check here so that
9463 we do not seg fault. */
9464 if (h == NULL)
9465 {
9466 char buffer [32];
9467
9468 sprintf_vma (buffer, rel->r_info);
9469 (*_bfd_error_handler)
9470 (_("error: %B contains a reloc (0x%s) for section %A "
9471 "that references a non-existent global symbol"),
9472 input_bfd, o, buffer);
9473 bfd_set_error (bfd_error_bad_value);
9474 return FALSE;
9475 }
9476
9477 while (h->root.type == bfd_link_hash_indirect
9478 || h->root.type == bfd_link_hash_warning)
9479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9480
9481 s_type = h->type;
9482
9483 ps = NULL;
9484 if (h->root.type == bfd_link_hash_defined
9485 || h->root.type == bfd_link_hash_defweak)
9486 ps = &h->root.u.def.section;
9487
9488 sym_name = h->root.root.string;
9489 }
9490 else
9491 {
9492 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9493
9494 s_type = ELF_ST_TYPE (sym->st_info);
9495 ps = &flinfo->sections[r_symndx];
9496 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9497 sym, *ps);
9498 }
9499
9500 if ((s_type == STT_RELC || s_type == STT_SRELC)
9501 && !flinfo->info->relocatable)
9502 {
9503 bfd_vma val;
9504 bfd_vma dot = (rel->r_offset
9505 + o->output_offset + o->output_section->vma);
9506 #ifdef DEBUG
9507 printf ("Encountered a complex symbol!");
9508 printf (" (input_bfd %s, section %s, reloc %ld\n",
9509 input_bfd->filename, o->name,
9510 (long) (rel - internal_relocs));
9511 printf (" symbol: idx %8.8lx, name %s\n",
9512 r_symndx, sym_name);
9513 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9514 (unsigned long) rel->r_info,
9515 (unsigned long) rel->r_offset);
9516 #endif
9517 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9518 isymbuf, locsymcount, s_type == STT_SRELC))
9519 return FALSE;
9520
9521 /* Symbol evaluated OK. Update to absolute value. */
9522 set_symbol_value (input_bfd, isymbuf, locsymcount,
9523 r_symndx, val);
9524 continue;
9525 }
9526
9527 if (action_discarded != -1 && ps != NULL)
9528 {
9529 /* Complain if the definition comes from a
9530 discarded section. */
9531 if ((sec = *ps) != NULL && discarded_section (sec))
9532 {
9533 BFD_ASSERT (r_symndx != STN_UNDEF);
9534 if (action_discarded & COMPLAIN)
9535 (*flinfo->info->callbacks->einfo)
9536 (_("%X`%s' referenced in section `%A' of %B: "
9537 "defined in discarded section `%A' of %B\n"),
9538 sym_name, o, input_bfd, sec, sec->owner);
9539
9540 /* Try to do the best we can to support buggy old
9541 versions of gcc. Pretend that the symbol is
9542 really defined in the kept linkonce section.
9543 FIXME: This is quite broken. Modifying the
9544 symbol here means we will be changing all later
9545 uses of the symbol, not just in this section. */
9546 if (action_discarded & PRETEND)
9547 {
9548 asection *kept;
9549
9550 kept = _bfd_elf_check_kept_section (sec,
9551 flinfo->info);
9552 if (kept != NULL)
9553 {
9554 *ps = kept;
9555 continue;
9556 }
9557 }
9558 }
9559 }
9560 }
9561
9562 /* Relocate the section by invoking a back end routine.
9563
9564 The back end routine is responsible for adjusting the
9565 section contents as necessary, and (if using Rela relocs
9566 and generating a relocatable output file) adjusting the
9567 reloc addend as necessary.
9568
9569 The back end routine does not have to worry about setting
9570 the reloc address or the reloc symbol index.
9571
9572 The back end routine is given a pointer to the swapped in
9573 internal symbols, and can access the hash table entries
9574 for the external symbols via elf_sym_hashes (input_bfd).
9575
9576 When generating relocatable output, the back end routine
9577 must handle STB_LOCAL/STT_SECTION symbols specially. The
9578 output symbol is going to be a section symbol
9579 corresponding to the output section, which will require
9580 the addend to be adjusted. */
9581
9582 ret = (*relocate_section) (output_bfd, flinfo->info,
9583 input_bfd, o, contents,
9584 internal_relocs,
9585 isymbuf,
9586 flinfo->sections);
9587 if (!ret)
9588 return FALSE;
9589
9590 if (ret == 2
9591 || flinfo->info->relocatable
9592 || flinfo->info->emitrelocations)
9593 {
9594 Elf_Internal_Rela *irela;
9595 Elf_Internal_Rela *irelaend, *irelamid;
9596 bfd_vma last_offset;
9597 struct elf_link_hash_entry **rel_hash;
9598 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9599 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9600 unsigned int next_erel;
9601 bfd_boolean rela_normal;
9602 struct bfd_elf_section_data *esdi, *esdo;
9603
9604 esdi = elf_section_data (o);
9605 esdo = elf_section_data (o->output_section);
9606 rela_normal = FALSE;
9607
9608 /* Adjust the reloc addresses and symbol indices. */
9609
9610 irela = internal_relocs;
9611 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9612 rel_hash = esdo->rel.hashes + esdo->rel.count;
9613 /* We start processing the REL relocs, if any. When we reach
9614 IRELAMID in the loop, we switch to the RELA relocs. */
9615 irelamid = irela;
9616 if (esdi->rel.hdr != NULL)
9617 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9618 * bed->s->int_rels_per_ext_rel);
9619 rel_hash_list = rel_hash;
9620 rela_hash_list = NULL;
9621 last_offset = o->output_offset;
9622 if (!flinfo->info->relocatable)
9623 last_offset += o->output_section->vma;
9624 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9625 {
9626 unsigned long r_symndx;
9627 asection *sec;
9628 Elf_Internal_Sym sym;
9629
9630 if (next_erel == bed->s->int_rels_per_ext_rel)
9631 {
9632 rel_hash++;
9633 next_erel = 0;
9634 }
9635
9636 if (irela == irelamid)
9637 {
9638 rel_hash = esdo->rela.hashes + esdo->rela.count;
9639 rela_hash_list = rel_hash;
9640 rela_normal = bed->rela_normal;
9641 }
9642
9643 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9644 flinfo->info, o,
9645 irela->r_offset);
9646 if (irela->r_offset >= (bfd_vma) -2)
9647 {
9648 /* This is a reloc for a deleted entry or somesuch.
9649 Turn it into an R_*_NONE reloc, at the same
9650 offset as the last reloc. elf_eh_frame.c and
9651 bfd_elf_discard_info rely on reloc offsets
9652 being ordered. */
9653 irela->r_offset = last_offset;
9654 irela->r_info = 0;
9655 irela->r_addend = 0;
9656 continue;
9657 }
9658
9659 irela->r_offset += o->output_offset;
9660
9661 /* Relocs in an executable have to be virtual addresses. */
9662 if (!flinfo->info->relocatable)
9663 irela->r_offset += o->output_section->vma;
9664
9665 last_offset = irela->r_offset;
9666
9667 r_symndx = irela->r_info >> r_sym_shift;
9668 if (r_symndx == STN_UNDEF)
9669 continue;
9670
9671 if (r_symndx >= locsymcount
9672 || (elf_bad_symtab (input_bfd)
9673 && flinfo->sections[r_symndx] == NULL))
9674 {
9675 struct elf_link_hash_entry *rh;
9676 unsigned long indx;
9677
9678 /* This is a reloc against a global symbol. We
9679 have not yet output all the local symbols, so
9680 we do not know the symbol index of any global
9681 symbol. We set the rel_hash entry for this
9682 reloc to point to the global hash table entry
9683 for this symbol. The symbol index is then
9684 set at the end of bfd_elf_final_link. */
9685 indx = r_symndx - extsymoff;
9686 rh = elf_sym_hashes (input_bfd)[indx];
9687 while (rh->root.type == bfd_link_hash_indirect
9688 || rh->root.type == bfd_link_hash_warning)
9689 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9690
9691 /* Setting the index to -2 tells
9692 elf_link_output_extsym that this symbol is
9693 used by a reloc. */
9694 BFD_ASSERT (rh->indx < 0);
9695 rh->indx = -2;
9696
9697 *rel_hash = rh;
9698
9699 continue;
9700 }
9701
9702 /* This is a reloc against a local symbol. */
9703
9704 *rel_hash = NULL;
9705 sym = isymbuf[r_symndx];
9706 sec = flinfo->sections[r_symndx];
9707 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9708 {
9709 /* I suppose the backend ought to fill in the
9710 section of any STT_SECTION symbol against a
9711 processor specific section. */
9712 r_symndx = STN_UNDEF;
9713 if (bfd_is_abs_section (sec))
9714 ;
9715 else if (sec == NULL || sec->owner == NULL)
9716 {
9717 bfd_set_error (bfd_error_bad_value);
9718 return FALSE;
9719 }
9720 else
9721 {
9722 asection *osec = sec->output_section;
9723
9724 /* If we have discarded a section, the output
9725 section will be the absolute section. In
9726 case of discarded SEC_MERGE sections, use
9727 the kept section. relocate_section should
9728 have already handled discarded linkonce
9729 sections. */
9730 if (bfd_is_abs_section (osec)
9731 && sec->kept_section != NULL
9732 && sec->kept_section->output_section != NULL)
9733 {
9734 osec = sec->kept_section->output_section;
9735 irela->r_addend -= osec->vma;
9736 }
9737
9738 if (!bfd_is_abs_section (osec))
9739 {
9740 r_symndx = osec->target_index;
9741 if (r_symndx == STN_UNDEF)
9742 {
9743 irela->r_addend += osec->vma;
9744 osec = _bfd_nearby_section (output_bfd, osec,
9745 osec->vma);
9746 irela->r_addend -= osec->vma;
9747 r_symndx = osec->target_index;
9748 }
9749 }
9750 }
9751
9752 /* Adjust the addend according to where the
9753 section winds up in the output section. */
9754 if (rela_normal)
9755 irela->r_addend += sec->output_offset;
9756 }
9757 else
9758 {
9759 if (flinfo->indices[r_symndx] == -1)
9760 {
9761 unsigned long shlink;
9762 const char *name;
9763 asection *osec;
9764 long indx;
9765
9766 if (flinfo->info->strip == strip_all)
9767 {
9768 /* You can't do ld -r -s. */
9769 bfd_set_error (bfd_error_invalid_operation);
9770 return FALSE;
9771 }
9772
9773 /* This symbol was skipped earlier, but
9774 since it is needed by a reloc, we
9775 must output it now. */
9776 shlink = symtab_hdr->sh_link;
9777 name = (bfd_elf_string_from_elf_section
9778 (input_bfd, shlink, sym.st_name));
9779 if (name == NULL)
9780 return FALSE;
9781
9782 osec = sec->output_section;
9783 sym.st_shndx =
9784 _bfd_elf_section_from_bfd_section (output_bfd,
9785 osec);
9786 if (sym.st_shndx == SHN_BAD)
9787 return FALSE;
9788
9789 sym.st_value += sec->output_offset;
9790 if (!flinfo->info->relocatable)
9791 {
9792 sym.st_value += osec->vma;
9793 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9794 {
9795 /* STT_TLS symbols are relative to PT_TLS
9796 segment base. */
9797 BFD_ASSERT (elf_hash_table (flinfo->info)
9798 ->tls_sec != NULL);
9799 sym.st_value -= (elf_hash_table (flinfo->info)
9800 ->tls_sec->vma);
9801 }
9802 }
9803
9804 indx = bfd_get_symcount (output_bfd);
9805 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9806 NULL);
9807 if (ret == 0)
9808 return FALSE;
9809 else if (ret == 1)
9810 flinfo->indices[r_symndx] = indx;
9811 else
9812 abort ();
9813 }
9814
9815 r_symndx = flinfo->indices[r_symndx];
9816 }
9817
9818 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9819 | (irela->r_info & r_type_mask));
9820 }
9821
9822 /* Swap out the relocs. */
9823 input_rel_hdr = esdi->rel.hdr;
9824 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9825 {
9826 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9827 input_rel_hdr,
9828 internal_relocs,
9829 rel_hash_list))
9830 return FALSE;
9831 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9832 * bed->s->int_rels_per_ext_rel);
9833 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9834 }
9835
9836 input_rela_hdr = esdi->rela.hdr;
9837 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9838 {
9839 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9840 input_rela_hdr,
9841 internal_relocs,
9842 rela_hash_list))
9843 return FALSE;
9844 }
9845 }
9846 }
9847
9848 /* Write out the modified section contents. */
9849 if (bed->elf_backend_write_section
9850 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9851 contents))
9852 {
9853 /* Section written out. */
9854 }
9855 else switch (o->sec_info_type)
9856 {
9857 case SEC_INFO_TYPE_STABS:
9858 if (! (_bfd_write_section_stabs
9859 (output_bfd,
9860 &elf_hash_table (flinfo->info)->stab_info,
9861 o, &elf_section_data (o)->sec_info, contents)))
9862 return FALSE;
9863 break;
9864 case SEC_INFO_TYPE_MERGE:
9865 if (! _bfd_write_merged_section (output_bfd, o,
9866 elf_section_data (o)->sec_info))
9867 return FALSE;
9868 break;
9869 case SEC_INFO_TYPE_EH_FRAME:
9870 {
9871 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
9872 o, contents))
9873 return FALSE;
9874 }
9875 break;
9876 default:
9877 {
9878 /* FIXME: octets_per_byte. */
9879 if (! (o->flags & SEC_EXCLUDE))
9880 {
9881 file_ptr offset = (file_ptr) o->output_offset;
9882 bfd_size_type todo = o->size;
9883 if ((o->flags & SEC_ELF_REVERSE_COPY))
9884 {
9885 /* Reverse-copy input section to output. */
9886 do
9887 {
9888 todo -= address_size;
9889 if (! bfd_set_section_contents (output_bfd,
9890 o->output_section,
9891 contents + todo,
9892 offset,
9893 address_size))
9894 return FALSE;
9895 if (todo == 0)
9896 break;
9897 offset += address_size;
9898 }
9899 while (1);
9900 }
9901 else if (! bfd_set_section_contents (output_bfd,
9902 o->output_section,
9903 contents,
9904 offset, todo))
9905 return FALSE;
9906 }
9907 }
9908 break;
9909 }
9910 }
9911
9912 return TRUE;
9913 }
9914
9915 /* Generate a reloc when linking an ELF file. This is a reloc
9916 requested by the linker, and does not come from any input file. This
9917 is used to build constructor and destructor tables when linking
9918 with -Ur. */
9919
9920 static bfd_boolean
9921 elf_reloc_link_order (bfd *output_bfd,
9922 struct bfd_link_info *info,
9923 asection *output_section,
9924 struct bfd_link_order *link_order)
9925 {
9926 reloc_howto_type *howto;
9927 long indx;
9928 bfd_vma offset;
9929 bfd_vma addend;
9930 struct bfd_elf_section_reloc_data *reldata;
9931 struct elf_link_hash_entry **rel_hash_ptr;
9932 Elf_Internal_Shdr *rel_hdr;
9933 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9934 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9935 bfd_byte *erel;
9936 unsigned int i;
9937 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9938
9939 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9940 if (howto == NULL)
9941 {
9942 bfd_set_error (bfd_error_bad_value);
9943 return FALSE;
9944 }
9945
9946 addend = link_order->u.reloc.p->addend;
9947
9948 if (esdo->rel.hdr)
9949 reldata = &esdo->rel;
9950 else if (esdo->rela.hdr)
9951 reldata = &esdo->rela;
9952 else
9953 {
9954 reldata = NULL;
9955 BFD_ASSERT (0);
9956 }
9957
9958 /* Figure out the symbol index. */
9959 rel_hash_ptr = reldata->hashes + reldata->count;
9960 if (link_order->type == bfd_section_reloc_link_order)
9961 {
9962 indx = link_order->u.reloc.p->u.section->target_index;
9963 BFD_ASSERT (indx != 0);
9964 *rel_hash_ptr = NULL;
9965 }
9966 else
9967 {
9968 struct elf_link_hash_entry *h;
9969
9970 /* Treat a reloc against a defined symbol as though it were
9971 actually against the section. */
9972 h = ((struct elf_link_hash_entry *)
9973 bfd_wrapped_link_hash_lookup (output_bfd, info,
9974 link_order->u.reloc.p->u.name,
9975 FALSE, FALSE, TRUE));
9976 if (h != NULL
9977 && (h->root.type == bfd_link_hash_defined
9978 || h->root.type == bfd_link_hash_defweak))
9979 {
9980 asection *section;
9981
9982 section = h->root.u.def.section;
9983 indx = section->output_section->target_index;
9984 *rel_hash_ptr = NULL;
9985 /* It seems that we ought to add the symbol value to the
9986 addend here, but in practice it has already been added
9987 because it was passed to constructor_callback. */
9988 addend += section->output_section->vma + section->output_offset;
9989 }
9990 else if (h != NULL)
9991 {
9992 /* Setting the index to -2 tells elf_link_output_extsym that
9993 this symbol is used by a reloc. */
9994 h->indx = -2;
9995 *rel_hash_ptr = h;
9996 indx = 0;
9997 }
9998 else
9999 {
10000 if (! ((*info->callbacks->unattached_reloc)
10001 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10002 return FALSE;
10003 indx = 0;
10004 }
10005 }
10006
10007 /* If this is an inplace reloc, we must write the addend into the
10008 object file. */
10009 if (howto->partial_inplace && addend != 0)
10010 {
10011 bfd_size_type size;
10012 bfd_reloc_status_type rstat;
10013 bfd_byte *buf;
10014 bfd_boolean ok;
10015 const char *sym_name;
10016
10017 size = (bfd_size_type) bfd_get_reloc_size (howto);
10018 buf = (bfd_byte *) bfd_zmalloc (size);
10019 if (buf == NULL)
10020 return FALSE;
10021 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10022 switch (rstat)
10023 {
10024 case bfd_reloc_ok:
10025 break;
10026
10027 default:
10028 case bfd_reloc_outofrange:
10029 abort ();
10030
10031 case bfd_reloc_overflow:
10032 if (link_order->type == bfd_section_reloc_link_order)
10033 sym_name = bfd_section_name (output_bfd,
10034 link_order->u.reloc.p->u.section);
10035 else
10036 sym_name = link_order->u.reloc.p->u.name;
10037 if (! ((*info->callbacks->reloc_overflow)
10038 (info, NULL, sym_name, howto->name, addend, NULL,
10039 NULL, (bfd_vma) 0)))
10040 {
10041 free (buf);
10042 return FALSE;
10043 }
10044 break;
10045 }
10046 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10047 link_order->offset, size);
10048 free (buf);
10049 if (! ok)
10050 return FALSE;
10051 }
10052
10053 /* The address of a reloc is relative to the section in a
10054 relocatable file, and is a virtual address in an executable
10055 file. */
10056 offset = link_order->offset;
10057 if (! info->relocatable)
10058 offset += output_section->vma;
10059
10060 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10061 {
10062 irel[i].r_offset = offset;
10063 irel[i].r_info = 0;
10064 irel[i].r_addend = 0;
10065 }
10066 if (bed->s->arch_size == 32)
10067 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10068 else
10069 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10070
10071 rel_hdr = reldata->hdr;
10072 erel = rel_hdr->contents;
10073 if (rel_hdr->sh_type == SHT_REL)
10074 {
10075 erel += reldata->count * bed->s->sizeof_rel;
10076 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10077 }
10078 else
10079 {
10080 irel[0].r_addend = addend;
10081 erel += reldata->count * bed->s->sizeof_rela;
10082 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10083 }
10084
10085 ++reldata->count;
10086
10087 return TRUE;
10088 }
10089
10090
10091 /* Get the output vma of the section pointed to by the sh_link field. */
10092
10093 static bfd_vma
10094 elf_get_linked_section_vma (struct bfd_link_order *p)
10095 {
10096 Elf_Internal_Shdr **elf_shdrp;
10097 asection *s;
10098 int elfsec;
10099
10100 s = p->u.indirect.section;
10101 elf_shdrp = elf_elfsections (s->owner);
10102 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10103 elfsec = elf_shdrp[elfsec]->sh_link;
10104 /* PR 290:
10105 The Intel C compiler generates SHT_IA_64_UNWIND with
10106 SHF_LINK_ORDER. But it doesn't set the sh_link or
10107 sh_info fields. Hence we could get the situation
10108 where elfsec is 0. */
10109 if (elfsec == 0)
10110 {
10111 const struct elf_backend_data *bed
10112 = get_elf_backend_data (s->owner);
10113 if (bed->link_order_error_handler)
10114 bed->link_order_error_handler
10115 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10116 return 0;
10117 }
10118 else
10119 {
10120 s = elf_shdrp[elfsec]->bfd_section;
10121 return s->output_section->vma + s->output_offset;
10122 }
10123 }
10124
10125
10126 /* Compare two sections based on the locations of the sections they are
10127 linked to. Used by elf_fixup_link_order. */
10128
10129 static int
10130 compare_link_order (const void * a, const void * b)
10131 {
10132 bfd_vma apos;
10133 bfd_vma bpos;
10134
10135 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10136 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10137 if (apos < bpos)
10138 return -1;
10139 return apos > bpos;
10140 }
10141
10142
10143 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10144 order as their linked sections. Returns false if this could not be done
10145 because an output section includes both ordered and unordered
10146 sections. Ideally we'd do this in the linker proper. */
10147
10148 static bfd_boolean
10149 elf_fixup_link_order (bfd *abfd, asection *o)
10150 {
10151 int seen_linkorder;
10152 int seen_other;
10153 int n;
10154 struct bfd_link_order *p;
10155 bfd *sub;
10156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10157 unsigned elfsec;
10158 struct bfd_link_order **sections;
10159 asection *s, *other_sec, *linkorder_sec;
10160 bfd_vma offset;
10161
10162 other_sec = NULL;
10163 linkorder_sec = NULL;
10164 seen_other = 0;
10165 seen_linkorder = 0;
10166 for (p = o->map_head.link_order; p != NULL; p = p->next)
10167 {
10168 if (p->type == bfd_indirect_link_order)
10169 {
10170 s = p->u.indirect.section;
10171 sub = s->owner;
10172 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10173 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10174 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10175 && elfsec < elf_numsections (sub)
10176 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10177 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10178 {
10179 seen_linkorder++;
10180 linkorder_sec = s;
10181 }
10182 else
10183 {
10184 seen_other++;
10185 other_sec = s;
10186 }
10187 }
10188 else
10189 seen_other++;
10190
10191 if (seen_other && seen_linkorder)
10192 {
10193 if (other_sec && linkorder_sec)
10194 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10195 o, linkorder_sec,
10196 linkorder_sec->owner, other_sec,
10197 other_sec->owner);
10198 else
10199 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10200 o);
10201 bfd_set_error (bfd_error_bad_value);
10202 return FALSE;
10203 }
10204 }
10205
10206 if (!seen_linkorder)
10207 return TRUE;
10208
10209 sections = (struct bfd_link_order **)
10210 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10211 if (sections == NULL)
10212 return FALSE;
10213 seen_linkorder = 0;
10214
10215 for (p = o->map_head.link_order; p != NULL; p = p->next)
10216 {
10217 sections[seen_linkorder++] = p;
10218 }
10219 /* Sort the input sections in the order of their linked section. */
10220 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10221 compare_link_order);
10222
10223 /* Change the offsets of the sections. */
10224 offset = 0;
10225 for (n = 0; n < seen_linkorder; n++)
10226 {
10227 s = sections[n]->u.indirect.section;
10228 offset &= ~(bfd_vma) 0 << s->alignment_power;
10229 s->output_offset = offset;
10230 sections[n]->offset = offset;
10231 /* FIXME: octets_per_byte. */
10232 offset += sections[n]->size;
10233 }
10234
10235 free (sections);
10236 return TRUE;
10237 }
10238
10239
10240 /* Do the final step of an ELF link. */
10241
10242 bfd_boolean
10243 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10244 {
10245 bfd_boolean dynamic;
10246 bfd_boolean emit_relocs;
10247 bfd *dynobj;
10248 struct elf_final_link_info flinfo;
10249 asection *o;
10250 struct bfd_link_order *p;
10251 bfd *sub;
10252 bfd_size_type max_contents_size;
10253 bfd_size_type max_external_reloc_size;
10254 bfd_size_type max_internal_reloc_count;
10255 bfd_size_type max_sym_count;
10256 bfd_size_type max_sym_shndx_count;
10257 file_ptr off;
10258 Elf_Internal_Sym elfsym;
10259 unsigned int i;
10260 Elf_Internal_Shdr *symtab_hdr;
10261 Elf_Internal_Shdr *symtab_shndx_hdr;
10262 Elf_Internal_Shdr *symstrtab_hdr;
10263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10264 struct elf_outext_info eoinfo;
10265 bfd_boolean merged;
10266 size_t relativecount = 0;
10267 asection *reldyn = 0;
10268 bfd_size_type amt;
10269 asection *attr_section = NULL;
10270 bfd_vma attr_size = 0;
10271 const char *std_attrs_section;
10272
10273 if (! is_elf_hash_table (info->hash))
10274 return FALSE;
10275
10276 if (info->shared)
10277 abfd->flags |= DYNAMIC;
10278
10279 dynamic = elf_hash_table (info)->dynamic_sections_created;
10280 dynobj = elf_hash_table (info)->dynobj;
10281
10282 emit_relocs = (info->relocatable
10283 || info->emitrelocations);
10284
10285 flinfo.info = info;
10286 flinfo.output_bfd = abfd;
10287 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10288 if (flinfo.symstrtab == NULL)
10289 return FALSE;
10290
10291 if (! dynamic)
10292 {
10293 flinfo.dynsym_sec = NULL;
10294 flinfo.hash_sec = NULL;
10295 flinfo.symver_sec = NULL;
10296 }
10297 else
10298 {
10299 flinfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10300 flinfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10301 /* Note that dynsym_sec can be NULL (on VMS). */
10302 flinfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10303 /* Note that it is OK if symver_sec is NULL. */
10304 }
10305
10306 flinfo.contents = NULL;
10307 flinfo.external_relocs = NULL;
10308 flinfo.internal_relocs = NULL;
10309 flinfo.external_syms = NULL;
10310 flinfo.locsym_shndx = NULL;
10311 flinfo.internal_syms = NULL;
10312 flinfo.indices = NULL;
10313 flinfo.sections = NULL;
10314 flinfo.symbuf = NULL;
10315 flinfo.symshndxbuf = NULL;
10316 flinfo.symbuf_count = 0;
10317 flinfo.shndxbuf_size = 0;
10318
10319 /* The object attributes have been merged. Remove the input
10320 sections from the link, and set the contents of the output
10321 secton. */
10322 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10323 for (o = abfd->sections; o != NULL; o = o->next)
10324 {
10325 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10326 || strcmp (o->name, ".gnu.attributes") == 0)
10327 {
10328 for (p = o->map_head.link_order; p != NULL; p = p->next)
10329 {
10330 asection *input_section;
10331
10332 if (p->type != bfd_indirect_link_order)
10333 continue;
10334 input_section = p->u.indirect.section;
10335 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10336 elf_link_input_bfd ignores this section. */
10337 input_section->flags &= ~SEC_HAS_CONTENTS;
10338 }
10339
10340 attr_size = bfd_elf_obj_attr_size (abfd);
10341 if (attr_size)
10342 {
10343 bfd_set_section_size (abfd, o, attr_size);
10344 attr_section = o;
10345 /* Skip this section later on. */
10346 o->map_head.link_order = NULL;
10347 }
10348 else
10349 o->flags |= SEC_EXCLUDE;
10350 }
10351 }
10352
10353 /* Count up the number of relocations we will output for each output
10354 section, so that we know the sizes of the reloc sections. We
10355 also figure out some maximum sizes. */
10356 max_contents_size = 0;
10357 max_external_reloc_size = 0;
10358 max_internal_reloc_count = 0;
10359 max_sym_count = 0;
10360 max_sym_shndx_count = 0;
10361 merged = FALSE;
10362 for (o = abfd->sections; o != NULL; o = o->next)
10363 {
10364 struct bfd_elf_section_data *esdo = elf_section_data (o);
10365 o->reloc_count = 0;
10366
10367 for (p = o->map_head.link_order; p != NULL; p = p->next)
10368 {
10369 unsigned int reloc_count = 0;
10370 struct bfd_elf_section_data *esdi = NULL;
10371
10372 if (p->type == bfd_section_reloc_link_order
10373 || p->type == bfd_symbol_reloc_link_order)
10374 reloc_count = 1;
10375 else if (p->type == bfd_indirect_link_order)
10376 {
10377 asection *sec;
10378
10379 sec = p->u.indirect.section;
10380 esdi = elf_section_data (sec);
10381
10382 /* Mark all sections which are to be included in the
10383 link. This will normally be every section. We need
10384 to do this so that we can identify any sections which
10385 the linker has decided to not include. */
10386 sec->linker_mark = TRUE;
10387
10388 if (sec->flags & SEC_MERGE)
10389 merged = TRUE;
10390
10391 if (esdo->this_hdr.sh_type == SHT_REL
10392 || esdo->this_hdr.sh_type == SHT_RELA)
10393 /* Some backends use reloc_count in relocation sections
10394 to count particular types of relocs. Of course,
10395 reloc sections themselves can't have relocations. */
10396 reloc_count = 0;
10397 else if (info->relocatable || info->emitrelocations)
10398 reloc_count = sec->reloc_count;
10399 else if (bed->elf_backend_count_relocs)
10400 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10401
10402 if (sec->rawsize > max_contents_size)
10403 max_contents_size = sec->rawsize;
10404 if (sec->size > max_contents_size)
10405 max_contents_size = sec->size;
10406
10407 /* We are interested in just local symbols, not all
10408 symbols. */
10409 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10410 && (sec->owner->flags & DYNAMIC) == 0)
10411 {
10412 size_t sym_count;
10413
10414 if (elf_bad_symtab (sec->owner))
10415 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10416 / bed->s->sizeof_sym);
10417 else
10418 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10419
10420 if (sym_count > max_sym_count)
10421 max_sym_count = sym_count;
10422
10423 if (sym_count > max_sym_shndx_count
10424 && elf_symtab_shndx (sec->owner) != 0)
10425 max_sym_shndx_count = sym_count;
10426
10427 if ((sec->flags & SEC_RELOC) != 0)
10428 {
10429 size_t ext_size = 0;
10430
10431 if (esdi->rel.hdr != NULL)
10432 ext_size = esdi->rel.hdr->sh_size;
10433 if (esdi->rela.hdr != NULL)
10434 ext_size += esdi->rela.hdr->sh_size;
10435
10436 if (ext_size > max_external_reloc_size)
10437 max_external_reloc_size = ext_size;
10438 if (sec->reloc_count > max_internal_reloc_count)
10439 max_internal_reloc_count = sec->reloc_count;
10440 }
10441 }
10442 }
10443
10444 if (reloc_count == 0)
10445 continue;
10446
10447 o->reloc_count += reloc_count;
10448
10449 if (p->type == bfd_indirect_link_order
10450 && (info->relocatable || info->emitrelocations))
10451 {
10452 if (esdi->rel.hdr)
10453 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10454 if (esdi->rela.hdr)
10455 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10456 }
10457 else
10458 {
10459 if (o->use_rela_p)
10460 esdo->rela.count += reloc_count;
10461 else
10462 esdo->rel.count += reloc_count;
10463 }
10464 }
10465
10466 if (o->reloc_count > 0)
10467 o->flags |= SEC_RELOC;
10468 else
10469 {
10470 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10471 set it (this is probably a bug) and if it is set
10472 assign_section_numbers will create a reloc section. */
10473 o->flags &=~ SEC_RELOC;
10474 }
10475
10476 /* If the SEC_ALLOC flag is not set, force the section VMA to
10477 zero. This is done in elf_fake_sections as well, but forcing
10478 the VMA to 0 here will ensure that relocs against these
10479 sections are handled correctly. */
10480 if ((o->flags & SEC_ALLOC) == 0
10481 && ! o->user_set_vma)
10482 o->vma = 0;
10483 }
10484
10485 if (! info->relocatable && merged)
10486 elf_link_hash_traverse (elf_hash_table (info),
10487 _bfd_elf_link_sec_merge_syms, abfd);
10488
10489 /* Figure out the file positions for everything but the symbol table
10490 and the relocs. We set symcount to force assign_section_numbers
10491 to create a symbol table. */
10492 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10493 BFD_ASSERT (! abfd->output_has_begun);
10494 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10495 goto error_return;
10496
10497 /* Set sizes, and assign file positions for reloc sections. */
10498 for (o = abfd->sections; o != NULL; o = o->next)
10499 {
10500 struct bfd_elf_section_data *esdo = elf_section_data (o);
10501 if ((o->flags & SEC_RELOC) != 0)
10502 {
10503 if (esdo->rel.hdr
10504 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10505 goto error_return;
10506
10507 if (esdo->rela.hdr
10508 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10509 goto error_return;
10510 }
10511
10512 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10513 to count upwards while actually outputting the relocations. */
10514 esdo->rel.count = 0;
10515 esdo->rela.count = 0;
10516 }
10517
10518 _bfd_elf_assign_file_positions_for_relocs (abfd);
10519
10520 /* We have now assigned file positions for all the sections except
10521 .symtab and .strtab. We start the .symtab section at the current
10522 file position, and write directly to it. We build the .strtab
10523 section in memory. */
10524 bfd_get_symcount (abfd) = 0;
10525 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10526 /* sh_name is set in prep_headers. */
10527 symtab_hdr->sh_type = SHT_SYMTAB;
10528 /* sh_flags, sh_addr and sh_size all start off zero. */
10529 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10530 /* sh_link is set in assign_section_numbers. */
10531 /* sh_info is set below. */
10532 /* sh_offset is set just below. */
10533 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10534
10535 off = elf_tdata (abfd)->next_file_pos;
10536 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10537
10538 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10539 incorrect. We do not yet know the size of the .symtab section.
10540 We correct next_file_pos below, after we do know the size. */
10541
10542 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10543 continuously seeking to the right position in the file. */
10544 if (! info->keep_memory || max_sym_count < 20)
10545 flinfo.symbuf_size = 20;
10546 else
10547 flinfo.symbuf_size = max_sym_count;
10548 amt = flinfo.symbuf_size;
10549 amt *= bed->s->sizeof_sym;
10550 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10551 if (flinfo.symbuf == NULL)
10552 goto error_return;
10553 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10554 {
10555 /* Wild guess at number of output symbols. realloc'd as needed. */
10556 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10557 flinfo.shndxbuf_size = amt;
10558 amt *= sizeof (Elf_External_Sym_Shndx);
10559 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10560 if (flinfo.symshndxbuf == NULL)
10561 goto error_return;
10562 }
10563
10564 /* Start writing out the symbol table. The first symbol is always a
10565 dummy symbol. */
10566 if (info->strip != strip_all
10567 || emit_relocs)
10568 {
10569 elfsym.st_value = 0;
10570 elfsym.st_size = 0;
10571 elfsym.st_info = 0;
10572 elfsym.st_other = 0;
10573 elfsym.st_shndx = SHN_UNDEF;
10574 elfsym.st_target_internal = 0;
10575 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10576 NULL) != 1)
10577 goto error_return;
10578 }
10579
10580 /* Output a symbol for each section. We output these even if we are
10581 discarding local symbols, since they are used for relocs. These
10582 symbols have no names. We store the index of each one in the
10583 index field of the section, so that we can find it again when
10584 outputting relocs. */
10585 if (info->strip != strip_all
10586 || emit_relocs)
10587 {
10588 elfsym.st_size = 0;
10589 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10590 elfsym.st_other = 0;
10591 elfsym.st_value = 0;
10592 elfsym.st_target_internal = 0;
10593 for (i = 1; i < elf_numsections (abfd); i++)
10594 {
10595 o = bfd_section_from_elf_index (abfd, i);
10596 if (o != NULL)
10597 {
10598 o->target_index = bfd_get_symcount (abfd);
10599 elfsym.st_shndx = i;
10600 if (!info->relocatable)
10601 elfsym.st_value = o->vma;
10602 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10603 goto error_return;
10604 }
10605 }
10606 }
10607
10608 /* Allocate some memory to hold information read in from the input
10609 files. */
10610 if (max_contents_size != 0)
10611 {
10612 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10613 if (flinfo.contents == NULL)
10614 goto error_return;
10615 }
10616
10617 if (max_external_reloc_size != 0)
10618 {
10619 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10620 if (flinfo.external_relocs == NULL)
10621 goto error_return;
10622 }
10623
10624 if (max_internal_reloc_count != 0)
10625 {
10626 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10627 amt *= sizeof (Elf_Internal_Rela);
10628 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10629 if (flinfo.internal_relocs == NULL)
10630 goto error_return;
10631 }
10632
10633 if (max_sym_count != 0)
10634 {
10635 amt = max_sym_count * bed->s->sizeof_sym;
10636 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10637 if (flinfo.external_syms == NULL)
10638 goto error_return;
10639
10640 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10641 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10642 if (flinfo.internal_syms == NULL)
10643 goto error_return;
10644
10645 amt = max_sym_count * sizeof (long);
10646 flinfo.indices = (long int *) bfd_malloc (amt);
10647 if (flinfo.indices == NULL)
10648 goto error_return;
10649
10650 amt = max_sym_count * sizeof (asection *);
10651 flinfo.sections = (asection **) bfd_malloc (amt);
10652 if (flinfo.sections == NULL)
10653 goto error_return;
10654 }
10655
10656 if (max_sym_shndx_count != 0)
10657 {
10658 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10659 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10660 if (flinfo.locsym_shndx == NULL)
10661 goto error_return;
10662 }
10663
10664 if (elf_hash_table (info)->tls_sec)
10665 {
10666 bfd_vma base, end = 0;
10667 asection *sec;
10668
10669 for (sec = elf_hash_table (info)->tls_sec;
10670 sec && (sec->flags & SEC_THREAD_LOCAL);
10671 sec = sec->next)
10672 {
10673 bfd_size_type size = sec->size;
10674
10675 if (size == 0
10676 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10677 {
10678 struct bfd_link_order *ord = sec->map_tail.link_order;
10679
10680 if (ord != NULL)
10681 size = ord->offset + ord->size;
10682 }
10683 end = sec->vma + size;
10684 }
10685 base = elf_hash_table (info)->tls_sec->vma;
10686 /* Only align end of TLS section if static TLS doesn't have special
10687 alignment requirements. */
10688 if (bed->static_tls_alignment == 1)
10689 end = align_power (end,
10690 elf_hash_table (info)->tls_sec->alignment_power);
10691 elf_hash_table (info)->tls_size = end - base;
10692 }
10693
10694 /* Reorder SHF_LINK_ORDER sections. */
10695 for (o = abfd->sections; o != NULL; o = o->next)
10696 {
10697 if (!elf_fixup_link_order (abfd, o))
10698 return FALSE;
10699 }
10700
10701 /* Since ELF permits relocations to be against local symbols, we
10702 must have the local symbols available when we do the relocations.
10703 Since we would rather only read the local symbols once, and we
10704 would rather not keep them in memory, we handle all the
10705 relocations for a single input file at the same time.
10706
10707 Unfortunately, there is no way to know the total number of local
10708 symbols until we have seen all of them, and the local symbol
10709 indices precede the global symbol indices. This means that when
10710 we are generating relocatable output, and we see a reloc against
10711 a global symbol, we can not know the symbol index until we have
10712 finished examining all the local symbols to see which ones we are
10713 going to output. To deal with this, we keep the relocations in
10714 memory, and don't output them until the end of the link. This is
10715 an unfortunate waste of memory, but I don't see a good way around
10716 it. Fortunately, it only happens when performing a relocatable
10717 link, which is not the common case. FIXME: If keep_memory is set
10718 we could write the relocs out and then read them again; I don't
10719 know how bad the memory loss will be. */
10720
10721 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10722 sub->output_has_begun = FALSE;
10723 for (o = abfd->sections; o != NULL; o = o->next)
10724 {
10725 for (p = o->map_head.link_order; p != NULL; p = p->next)
10726 {
10727 if (p->type == bfd_indirect_link_order
10728 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10729 == bfd_target_elf_flavour)
10730 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10731 {
10732 if (! sub->output_has_begun)
10733 {
10734 if (! elf_link_input_bfd (&flinfo, sub))
10735 goto error_return;
10736 sub->output_has_begun = TRUE;
10737 }
10738 }
10739 else if (p->type == bfd_section_reloc_link_order
10740 || p->type == bfd_symbol_reloc_link_order)
10741 {
10742 if (! elf_reloc_link_order (abfd, info, o, p))
10743 goto error_return;
10744 }
10745 else
10746 {
10747 if (! _bfd_default_link_order (abfd, info, o, p))
10748 {
10749 if (p->type == bfd_indirect_link_order
10750 && (bfd_get_flavour (sub)
10751 == bfd_target_elf_flavour)
10752 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10753 != bed->s->elfclass))
10754 {
10755 const char *iclass, *oclass;
10756
10757 if (bed->s->elfclass == ELFCLASS64)
10758 {
10759 iclass = "ELFCLASS32";
10760 oclass = "ELFCLASS64";
10761 }
10762 else
10763 {
10764 iclass = "ELFCLASS64";
10765 oclass = "ELFCLASS32";
10766 }
10767
10768 bfd_set_error (bfd_error_wrong_format);
10769 (*_bfd_error_handler)
10770 (_("%B: file class %s incompatible with %s"),
10771 sub, iclass, oclass);
10772 }
10773
10774 goto error_return;
10775 }
10776 }
10777 }
10778 }
10779
10780 /* Free symbol buffer if needed. */
10781 if (!info->reduce_memory_overheads)
10782 {
10783 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10784 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10785 && elf_tdata (sub)->symbuf)
10786 {
10787 free (elf_tdata (sub)->symbuf);
10788 elf_tdata (sub)->symbuf = NULL;
10789 }
10790 }
10791
10792 /* Output any global symbols that got converted to local in a
10793 version script or due to symbol visibility. We do this in a
10794 separate step since ELF requires all local symbols to appear
10795 prior to any global symbols. FIXME: We should only do this if
10796 some global symbols were, in fact, converted to become local.
10797 FIXME: Will this work correctly with the Irix 5 linker? */
10798 eoinfo.failed = FALSE;
10799 eoinfo.flinfo = &flinfo;
10800 eoinfo.localsyms = TRUE;
10801 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10802 if (eoinfo.failed)
10803 return FALSE;
10804
10805 /* If backend needs to output some local symbols not present in the hash
10806 table, do it now. */
10807 if (bed->elf_backend_output_arch_local_syms)
10808 {
10809 typedef int (*out_sym_func)
10810 (void *, const char *, Elf_Internal_Sym *, asection *,
10811 struct elf_link_hash_entry *);
10812
10813 if (! ((*bed->elf_backend_output_arch_local_syms)
10814 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10815 return FALSE;
10816 }
10817
10818 /* That wrote out all the local symbols. Finish up the symbol table
10819 with the global symbols. Even if we want to strip everything we
10820 can, we still need to deal with those global symbols that got
10821 converted to local in a version script. */
10822
10823 /* The sh_info field records the index of the first non local symbol. */
10824 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10825
10826 if (dynamic
10827 && flinfo.dynsym_sec != NULL
10828 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10829 {
10830 Elf_Internal_Sym sym;
10831 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
10832 long last_local = 0;
10833
10834 /* Write out the section symbols for the output sections. */
10835 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10836 {
10837 asection *s;
10838
10839 sym.st_size = 0;
10840 sym.st_name = 0;
10841 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10842 sym.st_other = 0;
10843 sym.st_target_internal = 0;
10844
10845 for (s = abfd->sections; s != NULL; s = s->next)
10846 {
10847 int indx;
10848 bfd_byte *dest;
10849 long dynindx;
10850
10851 dynindx = elf_section_data (s)->dynindx;
10852 if (dynindx <= 0)
10853 continue;
10854 indx = elf_section_data (s)->this_idx;
10855 BFD_ASSERT (indx > 0);
10856 sym.st_shndx = indx;
10857 if (! check_dynsym (abfd, &sym))
10858 return FALSE;
10859 sym.st_value = s->vma;
10860 dest = dynsym + dynindx * bed->s->sizeof_sym;
10861 if (last_local < dynindx)
10862 last_local = dynindx;
10863 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10864 }
10865 }
10866
10867 /* Write out the local dynsyms. */
10868 if (elf_hash_table (info)->dynlocal)
10869 {
10870 struct elf_link_local_dynamic_entry *e;
10871 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10872 {
10873 asection *s;
10874 bfd_byte *dest;
10875
10876 /* Copy the internal symbol and turn off visibility.
10877 Note that we saved a word of storage and overwrote
10878 the original st_name with the dynstr_index. */
10879 sym = e->isym;
10880 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10881
10882 s = bfd_section_from_elf_index (e->input_bfd,
10883 e->isym.st_shndx);
10884 if (s != NULL)
10885 {
10886 sym.st_shndx =
10887 elf_section_data (s->output_section)->this_idx;
10888 if (! check_dynsym (abfd, &sym))
10889 return FALSE;
10890 sym.st_value = (s->output_section->vma
10891 + s->output_offset
10892 + e->isym.st_value);
10893 }
10894
10895 if (last_local < e->dynindx)
10896 last_local = e->dynindx;
10897
10898 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10899 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10900 }
10901 }
10902
10903 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
10904 last_local + 1;
10905 }
10906
10907 /* We get the global symbols from the hash table. */
10908 eoinfo.failed = FALSE;
10909 eoinfo.localsyms = FALSE;
10910 eoinfo.flinfo = &flinfo;
10911 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10912 if (eoinfo.failed)
10913 return FALSE;
10914
10915 /* If backend needs to output some symbols not present in the hash
10916 table, do it now. */
10917 if (bed->elf_backend_output_arch_syms)
10918 {
10919 typedef int (*out_sym_func)
10920 (void *, const char *, Elf_Internal_Sym *, asection *,
10921 struct elf_link_hash_entry *);
10922
10923 if (! ((*bed->elf_backend_output_arch_syms)
10924 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10925 return FALSE;
10926 }
10927
10928 /* Flush all symbols to the file. */
10929 if (! elf_link_flush_output_syms (&flinfo, bed))
10930 return FALSE;
10931
10932 /* Now we know the size of the symtab section. */
10933 off += symtab_hdr->sh_size;
10934
10935 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10936 if (symtab_shndx_hdr->sh_name != 0)
10937 {
10938 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10939 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10940 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10941 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10942 symtab_shndx_hdr->sh_size = amt;
10943
10944 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10945 off, TRUE);
10946
10947 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10948 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
10949 return FALSE;
10950 }
10951
10952
10953 /* Finish up and write out the symbol string table (.strtab)
10954 section. */
10955 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10956 /* sh_name was set in prep_headers. */
10957 symstrtab_hdr->sh_type = SHT_STRTAB;
10958 symstrtab_hdr->sh_flags = 0;
10959 symstrtab_hdr->sh_addr = 0;
10960 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
10961 symstrtab_hdr->sh_entsize = 0;
10962 symstrtab_hdr->sh_link = 0;
10963 symstrtab_hdr->sh_info = 0;
10964 /* sh_offset is set just below. */
10965 symstrtab_hdr->sh_addralign = 1;
10966
10967 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10968 elf_tdata (abfd)->next_file_pos = off;
10969
10970 if (bfd_get_symcount (abfd) > 0)
10971 {
10972 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10973 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
10974 return FALSE;
10975 }
10976
10977 /* Adjust the relocs to have the correct symbol indices. */
10978 for (o = abfd->sections; o != NULL; o = o->next)
10979 {
10980 struct bfd_elf_section_data *esdo = elf_section_data (o);
10981 if ((o->flags & SEC_RELOC) == 0)
10982 continue;
10983
10984 if (esdo->rel.hdr != NULL)
10985 elf_link_adjust_relocs (abfd, &esdo->rel);
10986 if (esdo->rela.hdr != NULL)
10987 elf_link_adjust_relocs (abfd, &esdo->rela);
10988
10989 /* Set the reloc_count field to 0 to prevent write_relocs from
10990 trying to swap the relocs out itself. */
10991 o->reloc_count = 0;
10992 }
10993
10994 if (dynamic && info->combreloc && dynobj != NULL)
10995 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10996
10997 /* If we are linking against a dynamic object, or generating a
10998 shared library, finish up the dynamic linking information. */
10999 if (dynamic)
11000 {
11001 bfd_byte *dyncon, *dynconend;
11002
11003 /* Fix up .dynamic entries. */
11004 o = bfd_get_section_by_name (dynobj, ".dynamic");
11005 BFD_ASSERT (o != NULL);
11006
11007 dyncon = o->contents;
11008 dynconend = o->contents + o->size;
11009 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11010 {
11011 Elf_Internal_Dyn dyn;
11012 const char *name;
11013 unsigned int type;
11014
11015 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11016
11017 switch (dyn.d_tag)
11018 {
11019 default:
11020 continue;
11021 case DT_NULL:
11022 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11023 {
11024 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11025 {
11026 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11027 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11028 default: continue;
11029 }
11030 dyn.d_un.d_val = relativecount;
11031 relativecount = 0;
11032 break;
11033 }
11034 continue;
11035
11036 case DT_INIT:
11037 name = info->init_function;
11038 goto get_sym;
11039 case DT_FINI:
11040 name = info->fini_function;
11041 get_sym:
11042 {
11043 struct elf_link_hash_entry *h;
11044
11045 h = elf_link_hash_lookup (elf_hash_table (info), name,
11046 FALSE, FALSE, TRUE);
11047 if (h != NULL
11048 && (h->root.type == bfd_link_hash_defined
11049 || h->root.type == bfd_link_hash_defweak))
11050 {
11051 dyn.d_un.d_ptr = h->root.u.def.value;
11052 o = h->root.u.def.section;
11053 if (o->output_section != NULL)
11054 dyn.d_un.d_ptr += (o->output_section->vma
11055 + o->output_offset);
11056 else
11057 {
11058 /* The symbol is imported from another shared
11059 library and does not apply to this one. */
11060 dyn.d_un.d_ptr = 0;
11061 }
11062 break;
11063 }
11064 }
11065 continue;
11066
11067 case DT_PREINIT_ARRAYSZ:
11068 name = ".preinit_array";
11069 goto get_size;
11070 case DT_INIT_ARRAYSZ:
11071 name = ".init_array";
11072 goto get_size;
11073 case DT_FINI_ARRAYSZ:
11074 name = ".fini_array";
11075 get_size:
11076 o = bfd_get_section_by_name (abfd, name);
11077 if (o == NULL)
11078 {
11079 (*_bfd_error_handler)
11080 (_("%B: could not find output section %s"), abfd, name);
11081 goto error_return;
11082 }
11083 if (o->size == 0)
11084 (*_bfd_error_handler)
11085 (_("warning: %s section has zero size"), name);
11086 dyn.d_un.d_val = o->size;
11087 break;
11088
11089 case DT_PREINIT_ARRAY:
11090 name = ".preinit_array";
11091 goto get_vma;
11092 case DT_INIT_ARRAY:
11093 name = ".init_array";
11094 goto get_vma;
11095 case DT_FINI_ARRAY:
11096 name = ".fini_array";
11097 goto get_vma;
11098
11099 case DT_HASH:
11100 name = ".hash";
11101 goto get_vma;
11102 case DT_GNU_HASH:
11103 name = ".gnu.hash";
11104 goto get_vma;
11105 case DT_STRTAB:
11106 name = ".dynstr";
11107 goto get_vma;
11108 case DT_SYMTAB:
11109 name = ".dynsym";
11110 goto get_vma;
11111 case DT_VERDEF:
11112 name = ".gnu.version_d";
11113 goto get_vma;
11114 case DT_VERNEED:
11115 name = ".gnu.version_r";
11116 goto get_vma;
11117 case DT_VERSYM:
11118 name = ".gnu.version";
11119 get_vma:
11120 o = bfd_get_section_by_name (abfd, name);
11121 if (o == NULL)
11122 {
11123 (*_bfd_error_handler)
11124 (_("%B: could not find output section %s"), abfd, name);
11125 goto error_return;
11126 }
11127 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11128 {
11129 (*_bfd_error_handler)
11130 (_("warning: section '%s' is being made into a note"), name);
11131 bfd_set_error (bfd_error_nonrepresentable_section);
11132 goto error_return;
11133 }
11134 dyn.d_un.d_ptr = o->vma;
11135 break;
11136
11137 case DT_REL:
11138 case DT_RELA:
11139 case DT_RELSZ:
11140 case DT_RELASZ:
11141 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11142 type = SHT_REL;
11143 else
11144 type = SHT_RELA;
11145 dyn.d_un.d_val = 0;
11146 dyn.d_un.d_ptr = 0;
11147 for (i = 1; i < elf_numsections (abfd); i++)
11148 {
11149 Elf_Internal_Shdr *hdr;
11150
11151 hdr = elf_elfsections (abfd)[i];
11152 if (hdr->sh_type == type
11153 && (hdr->sh_flags & SHF_ALLOC) != 0)
11154 {
11155 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11156 dyn.d_un.d_val += hdr->sh_size;
11157 else
11158 {
11159 if (dyn.d_un.d_ptr == 0
11160 || hdr->sh_addr < dyn.d_un.d_ptr)
11161 dyn.d_un.d_ptr = hdr->sh_addr;
11162 }
11163 }
11164 }
11165 break;
11166 }
11167 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11168 }
11169 }
11170
11171 /* If we have created any dynamic sections, then output them. */
11172 if (dynobj != NULL)
11173 {
11174 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11175 goto error_return;
11176
11177 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11178 if (((info->warn_shared_textrel && info->shared)
11179 || info->error_textrel)
11180 && (o = bfd_get_section_by_name (dynobj, ".dynamic")) != NULL)
11181 {
11182 bfd_byte *dyncon, *dynconend;
11183
11184 dyncon = o->contents;
11185 dynconend = o->contents + o->size;
11186 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11187 {
11188 Elf_Internal_Dyn dyn;
11189
11190 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11191
11192 if (dyn.d_tag == DT_TEXTREL)
11193 {
11194 if (info->error_textrel)
11195 info->callbacks->einfo
11196 (_("%P%X: read-only segment has dynamic relocations.\n"));
11197 else
11198 info->callbacks->einfo
11199 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11200 break;
11201 }
11202 }
11203 }
11204
11205 for (o = dynobj->sections; o != NULL; o = o->next)
11206 {
11207 if ((o->flags & SEC_HAS_CONTENTS) == 0
11208 || o->size == 0
11209 || o->output_section == bfd_abs_section_ptr)
11210 continue;
11211 if ((o->flags & SEC_LINKER_CREATED) == 0)
11212 {
11213 /* At this point, we are only interested in sections
11214 created by _bfd_elf_link_create_dynamic_sections. */
11215 continue;
11216 }
11217 if (elf_hash_table (info)->stab_info.stabstr == o)
11218 continue;
11219 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11220 continue;
11221 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11222 != SHT_STRTAB)
11223 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11224 {
11225 /* FIXME: octets_per_byte. */
11226 if (! bfd_set_section_contents (abfd, o->output_section,
11227 o->contents,
11228 (file_ptr) o->output_offset,
11229 o->size))
11230 goto error_return;
11231 }
11232 else
11233 {
11234 /* The contents of the .dynstr section are actually in a
11235 stringtab. */
11236 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11237 if (bfd_seek (abfd, off, SEEK_SET) != 0
11238 || ! _bfd_elf_strtab_emit (abfd,
11239 elf_hash_table (info)->dynstr))
11240 goto error_return;
11241 }
11242 }
11243 }
11244
11245 if (info->relocatable)
11246 {
11247 bfd_boolean failed = FALSE;
11248
11249 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11250 if (failed)
11251 goto error_return;
11252 }
11253
11254 /* If we have optimized stabs strings, output them. */
11255 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11256 {
11257 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11258 goto error_return;
11259 }
11260
11261 if (info->eh_frame_hdr)
11262 {
11263 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11264 goto error_return;
11265 }
11266
11267 if (flinfo.symstrtab != NULL)
11268 _bfd_stringtab_free (flinfo.symstrtab);
11269 if (flinfo.contents != NULL)
11270 free (flinfo.contents);
11271 if (flinfo.external_relocs != NULL)
11272 free (flinfo.external_relocs);
11273 if (flinfo.internal_relocs != NULL)
11274 free (flinfo.internal_relocs);
11275 if (flinfo.external_syms != NULL)
11276 free (flinfo.external_syms);
11277 if (flinfo.locsym_shndx != NULL)
11278 free (flinfo.locsym_shndx);
11279 if (flinfo.internal_syms != NULL)
11280 free (flinfo.internal_syms);
11281 if (flinfo.indices != NULL)
11282 free (flinfo.indices);
11283 if (flinfo.sections != NULL)
11284 free (flinfo.sections);
11285 if (flinfo.symbuf != NULL)
11286 free (flinfo.symbuf);
11287 if (flinfo.symshndxbuf != NULL)
11288 free (flinfo.symshndxbuf);
11289 for (o = abfd->sections; o != NULL; o = o->next)
11290 {
11291 struct bfd_elf_section_data *esdo = elf_section_data (o);
11292 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11293 free (esdo->rel.hashes);
11294 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11295 free (esdo->rela.hashes);
11296 }
11297
11298 elf_tdata (abfd)->linker = TRUE;
11299
11300 if (attr_section)
11301 {
11302 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11303 if (contents == NULL)
11304 return FALSE; /* Bail out and fail. */
11305 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11306 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11307 free (contents);
11308 }
11309
11310 return TRUE;
11311
11312 error_return:
11313 if (flinfo.symstrtab != NULL)
11314 _bfd_stringtab_free (flinfo.symstrtab);
11315 if (flinfo.contents != NULL)
11316 free (flinfo.contents);
11317 if (flinfo.external_relocs != NULL)
11318 free (flinfo.external_relocs);
11319 if (flinfo.internal_relocs != NULL)
11320 free (flinfo.internal_relocs);
11321 if (flinfo.external_syms != NULL)
11322 free (flinfo.external_syms);
11323 if (flinfo.locsym_shndx != NULL)
11324 free (flinfo.locsym_shndx);
11325 if (flinfo.internal_syms != NULL)
11326 free (flinfo.internal_syms);
11327 if (flinfo.indices != NULL)
11328 free (flinfo.indices);
11329 if (flinfo.sections != NULL)
11330 free (flinfo.sections);
11331 if (flinfo.symbuf != NULL)
11332 free (flinfo.symbuf);
11333 if (flinfo.symshndxbuf != NULL)
11334 free (flinfo.symshndxbuf);
11335 for (o = abfd->sections; o != NULL; o = o->next)
11336 {
11337 struct bfd_elf_section_data *esdo = elf_section_data (o);
11338 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11339 free (esdo->rel.hashes);
11340 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11341 free (esdo->rela.hashes);
11342 }
11343
11344 return FALSE;
11345 }
11346 \f
11347 /* Initialize COOKIE for input bfd ABFD. */
11348
11349 static bfd_boolean
11350 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11351 struct bfd_link_info *info, bfd *abfd)
11352 {
11353 Elf_Internal_Shdr *symtab_hdr;
11354 const struct elf_backend_data *bed;
11355
11356 bed = get_elf_backend_data (abfd);
11357 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11358
11359 cookie->abfd = abfd;
11360 cookie->sym_hashes = elf_sym_hashes (abfd);
11361 cookie->bad_symtab = elf_bad_symtab (abfd);
11362 if (cookie->bad_symtab)
11363 {
11364 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11365 cookie->extsymoff = 0;
11366 }
11367 else
11368 {
11369 cookie->locsymcount = symtab_hdr->sh_info;
11370 cookie->extsymoff = symtab_hdr->sh_info;
11371 }
11372
11373 if (bed->s->arch_size == 32)
11374 cookie->r_sym_shift = 8;
11375 else
11376 cookie->r_sym_shift = 32;
11377
11378 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11379 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11380 {
11381 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11382 cookie->locsymcount, 0,
11383 NULL, NULL, NULL);
11384 if (cookie->locsyms == NULL)
11385 {
11386 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11387 return FALSE;
11388 }
11389 if (info->keep_memory)
11390 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11391 }
11392 return TRUE;
11393 }
11394
11395 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11396
11397 static void
11398 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11399 {
11400 Elf_Internal_Shdr *symtab_hdr;
11401
11402 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11403 if (cookie->locsyms != NULL
11404 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11405 free (cookie->locsyms);
11406 }
11407
11408 /* Initialize the relocation information in COOKIE for input section SEC
11409 of input bfd ABFD. */
11410
11411 static bfd_boolean
11412 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11413 struct bfd_link_info *info, bfd *abfd,
11414 asection *sec)
11415 {
11416 const struct elf_backend_data *bed;
11417
11418 if (sec->reloc_count == 0)
11419 {
11420 cookie->rels = NULL;
11421 cookie->relend = NULL;
11422 }
11423 else
11424 {
11425 bed = get_elf_backend_data (abfd);
11426
11427 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11428 info->keep_memory);
11429 if (cookie->rels == NULL)
11430 return FALSE;
11431 cookie->rel = cookie->rels;
11432 cookie->relend = (cookie->rels
11433 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11434 }
11435 cookie->rel = cookie->rels;
11436 return TRUE;
11437 }
11438
11439 /* Free the memory allocated by init_reloc_cookie_rels,
11440 if appropriate. */
11441
11442 static void
11443 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11444 asection *sec)
11445 {
11446 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11447 free (cookie->rels);
11448 }
11449
11450 /* Initialize the whole of COOKIE for input section SEC. */
11451
11452 static bfd_boolean
11453 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11454 struct bfd_link_info *info,
11455 asection *sec)
11456 {
11457 if (!init_reloc_cookie (cookie, info, sec->owner))
11458 goto error1;
11459 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11460 goto error2;
11461 return TRUE;
11462
11463 error2:
11464 fini_reloc_cookie (cookie, sec->owner);
11465 error1:
11466 return FALSE;
11467 }
11468
11469 /* Free the memory allocated by init_reloc_cookie_for_section,
11470 if appropriate. */
11471
11472 static void
11473 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11474 asection *sec)
11475 {
11476 fini_reloc_cookie_rels (cookie, sec);
11477 fini_reloc_cookie (cookie, sec->owner);
11478 }
11479 \f
11480 /* Garbage collect unused sections. */
11481
11482 /* Default gc_mark_hook. */
11483
11484 asection *
11485 _bfd_elf_gc_mark_hook (asection *sec,
11486 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11487 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11488 struct elf_link_hash_entry *h,
11489 Elf_Internal_Sym *sym)
11490 {
11491 const char *sec_name;
11492
11493 if (h != NULL)
11494 {
11495 switch (h->root.type)
11496 {
11497 case bfd_link_hash_defined:
11498 case bfd_link_hash_defweak:
11499 return h->root.u.def.section;
11500
11501 case bfd_link_hash_common:
11502 return h->root.u.c.p->section;
11503
11504 case bfd_link_hash_undefined:
11505 case bfd_link_hash_undefweak:
11506 /* To work around a glibc bug, keep all XXX input sections
11507 when there is an as yet undefined reference to __start_XXX
11508 or __stop_XXX symbols. The linker will later define such
11509 symbols for orphan input sections that have a name
11510 representable as a C identifier. */
11511 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11512 sec_name = h->root.root.string + 8;
11513 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11514 sec_name = h->root.root.string + 7;
11515 else
11516 sec_name = NULL;
11517
11518 if (sec_name && *sec_name != '\0')
11519 {
11520 bfd *i;
11521
11522 for (i = info->input_bfds; i; i = i->link_next)
11523 {
11524 sec = bfd_get_section_by_name (i, sec_name);
11525 if (sec)
11526 sec->flags |= SEC_KEEP;
11527 }
11528 }
11529 break;
11530
11531 default:
11532 break;
11533 }
11534 }
11535 else
11536 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11537
11538 return NULL;
11539 }
11540
11541 /* COOKIE->rel describes a relocation against section SEC, which is
11542 a section we've decided to keep. Return the section that contains
11543 the relocation symbol, or NULL if no section contains it. */
11544
11545 asection *
11546 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11547 elf_gc_mark_hook_fn gc_mark_hook,
11548 struct elf_reloc_cookie *cookie)
11549 {
11550 unsigned long r_symndx;
11551 struct elf_link_hash_entry *h;
11552
11553 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11554 if (r_symndx == STN_UNDEF)
11555 return NULL;
11556
11557 if (r_symndx >= cookie->locsymcount
11558 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11559 {
11560 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11561 while (h->root.type == bfd_link_hash_indirect
11562 || h->root.type == bfd_link_hash_warning)
11563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11564 h->mark = 1;
11565 /* If this symbol is weak and there is a non-weak definition, we
11566 keep the non-weak definition because many backends put
11567 dynamic reloc info on the non-weak definition for code
11568 handling copy relocs. */
11569 if (h->u.weakdef != NULL)
11570 h->u.weakdef->mark = 1;
11571 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11572 }
11573
11574 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11575 &cookie->locsyms[r_symndx]);
11576 }
11577
11578 /* COOKIE->rel describes a relocation against section SEC, which is
11579 a section we've decided to keep. Mark the section that contains
11580 the relocation symbol. */
11581
11582 bfd_boolean
11583 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11584 asection *sec,
11585 elf_gc_mark_hook_fn gc_mark_hook,
11586 struct elf_reloc_cookie *cookie)
11587 {
11588 asection *rsec;
11589
11590 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11591 if (rsec && !rsec->gc_mark)
11592 {
11593 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11594 || (rsec->owner->flags & DYNAMIC) != 0)
11595 rsec->gc_mark = 1;
11596 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11597 return FALSE;
11598 }
11599 return TRUE;
11600 }
11601
11602 /* The mark phase of garbage collection. For a given section, mark
11603 it and any sections in this section's group, and all the sections
11604 which define symbols to which it refers. */
11605
11606 bfd_boolean
11607 _bfd_elf_gc_mark (struct bfd_link_info *info,
11608 asection *sec,
11609 elf_gc_mark_hook_fn gc_mark_hook)
11610 {
11611 bfd_boolean ret;
11612 asection *group_sec, *eh_frame;
11613
11614 sec->gc_mark = 1;
11615
11616 /* Mark all the sections in the group. */
11617 group_sec = elf_section_data (sec)->next_in_group;
11618 if (group_sec && !group_sec->gc_mark)
11619 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11620 return FALSE;
11621
11622 /* Look through the section relocs. */
11623 ret = TRUE;
11624 eh_frame = elf_eh_frame_section (sec->owner);
11625 if ((sec->flags & SEC_RELOC) != 0
11626 && sec->reloc_count > 0
11627 && sec != eh_frame)
11628 {
11629 struct elf_reloc_cookie cookie;
11630
11631 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11632 ret = FALSE;
11633 else
11634 {
11635 for (; cookie.rel < cookie.relend; cookie.rel++)
11636 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11637 {
11638 ret = FALSE;
11639 break;
11640 }
11641 fini_reloc_cookie_for_section (&cookie, sec);
11642 }
11643 }
11644
11645 if (ret && eh_frame && elf_fde_list (sec))
11646 {
11647 struct elf_reloc_cookie cookie;
11648
11649 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11650 ret = FALSE;
11651 else
11652 {
11653 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11654 gc_mark_hook, &cookie))
11655 ret = FALSE;
11656 fini_reloc_cookie_for_section (&cookie, eh_frame);
11657 }
11658 }
11659
11660 return ret;
11661 }
11662
11663 /* Keep debug and special sections. */
11664
11665 bfd_boolean
11666 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11667 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11668 {
11669 bfd *ibfd;
11670
11671 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11672 {
11673 asection *isec;
11674 bfd_boolean some_kept;
11675
11676 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11677 continue;
11678
11679 /* Ensure all linker created sections are kept, and see whether
11680 any other section is already marked. */
11681 some_kept = FALSE;
11682 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11683 {
11684 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11685 isec->gc_mark = 1;
11686 else if (isec->gc_mark)
11687 some_kept = TRUE;
11688 }
11689
11690 /* If no section in this file will be kept, then we can
11691 toss out debug sections. */
11692 if (!some_kept)
11693 continue;
11694
11695 /* Keep debug and special sections like .comment when they are
11696 not part of a group, or when we have single-member groups. */
11697 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11698 if ((elf_next_in_group (isec) == NULL
11699 || elf_next_in_group (isec) == isec)
11700 && ((isec->flags & SEC_DEBUGGING) != 0
11701 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11702 isec->gc_mark = 1;
11703 }
11704 return TRUE;
11705 }
11706
11707 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11708
11709 struct elf_gc_sweep_symbol_info
11710 {
11711 struct bfd_link_info *info;
11712 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11713 bfd_boolean);
11714 };
11715
11716 static bfd_boolean
11717 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11718 {
11719 if (!h->mark
11720 && (((h->root.type == bfd_link_hash_defined
11721 || h->root.type == bfd_link_hash_defweak)
11722 && !(h->def_regular
11723 && h->root.u.def.section->gc_mark))
11724 || h->root.type == bfd_link_hash_undefined
11725 || h->root.type == bfd_link_hash_undefweak))
11726 {
11727 struct elf_gc_sweep_symbol_info *inf;
11728
11729 inf = (struct elf_gc_sweep_symbol_info *) data;
11730 (*inf->hide_symbol) (inf->info, h, TRUE);
11731 h->def_regular = 0;
11732 h->ref_regular = 0;
11733 h->ref_regular_nonweak = 0;
11734 }
11735
11736 return TRUE;
11737 }
11738
11739 /* The sweep phase of garbage collection. Remove all garbage sections. */
11740
11741 typedef bfd_boolean (*gc_sweep_hook_fn)
11742 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11743
11744 static bfd_boolean
11745 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11746 {
11747 bfd *sub;
11748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11749 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11750 unsigned long section_sym_count;
11751 struct elf_gc_sweep_symbol_info sweep_info;
11752
11753 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11754 {
11755 asection *o;
11756
11757 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11758 continue;
11759
11760 for (o = sub->sections; o != NULL; o = o->next)
11761 {
11762 /* When any section in a section group is kept, we keep all
11763 sections in the section group. If the first member of
11764 the section group is excluded, we will also exclude the
11765 group section. */
11766 if (o->flags & SEC_GROUP)
11767 {
11768 asection *first = elf_next_in_group (o);
11769 o->gc_mark = first->gc_mark;
11770 }
11771
11772 if (o->gc_mark)
11773 continue;
11774
11775 /* Skip sweeping sections already excluded. */
11776 if (o->flags & SEC_EXCLUDE)
11777 continue;
11778
11779 /* Since this is early in the link process, it is simple
11780 to remove a section from the output. */
11781 o->flags |= SEC_EXCLUDE;
11782
11783 if (info->print_gc_sections && o->size != 0)
11784 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11785
11786 /* But we also have to update some of the relocation
11787 info we collected before. */
11788 if (gc_sweep_hook
11789 && (o->flags & SEC_RELOC) != 0
11790 && o->reloc_count > 0
11791 && !bfd_is_abs_section (o->output_section))
11792 {
11793 Elf_Internal_Rela *internal_relocs;
11794 bfd_boolean r;
11795
11796 internal_relocs
11797 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11798 info->keep_memory);
11799 if (internal_relocs == NULL)
11800 return FALSE;
11801
11802 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11803
11804 if (elf_section_data (o)->relocs != internal_relocs)
11805 free (internal_relocs);
11806
11807 if (!r)
11808 return FALSE;
11809 }
11810 }
11811 }
11812
11813 /* Remove the symbols that were in the swept sections from the dynamic
11814 symbol table. GCFIXME: Anyone know how to get them out of the
11815 static symbol table as well? */
11816 sweep_info.info = info;
11817 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11818 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11819 &sweep_info);
11820
11821 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11822 return TRUE;
11823 }
11824
11825 /* Propagate collected vtable information. This is called through
11826 elf_link_hash_traverse. */
11827
11828 static bfd_boolean
11829 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11830 {
11831 /* Those that are not vtables. */
11832 if (h->vtable == NULL || h->vtable->parent == NULL)
11833 return TRUE;
11834
11835 /* Those vtables that do not have parents, we cannot merge. */
11836 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11837 return TRUE;
11838
11839 /* If we've already been done, exit. */
11840 if (h->vtable->used && h->vtable->used[-1])
11841 return TRUE;
11842
11843 /* Make sure the parent's table is up to date. */
11844 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11845
11846 if (h->vtable->used == NULL)
11847 {
11848 /* None of this table's entries were referenced. Re-use the
11849 parent's table. */
11850 h->vtable->used = h->vtable->parent->vtable->used;
11851 h->vtable->size = h->vtable->parent->vtable->size;
11852 }
11853 else
11854 {
11855 size_t n;
11856 bfd_boolean *cu, *pu;
11857
11858 /* Or the parent's entries into ours. */
11859 cu = h->vtable->used;
11860 cu[-1] = TRUE;
11861 pu = h->vtable->parent->vtable->used;
11862 if (pu != NULL)
11863 {
11864 const struct elf_backend_data *bed;
11865 unsigned int log_file_align;
11866
11867 bed = get_elf_backend_data (h->root.u.def.section->owner);
11868 log_file_align = bed->s->log_file_align;
11869 n = h->vtable->parent->vtable->size >> log_file_align;
11870 while (n--)
11871 {
11872 if (*pu)
11873 *cu = TRUE;
11874 pu++;
11875 cu++;
11876 }
11877 }
11878 }
11879
11880 return TRUE;
11881 }
11882
11883 static bfd_boolean
11884 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11885 {
11886 asection *sec;
11887 bfd_vma hstart, hend;
11888 Elf_Internal_Rela *relstart, *relend, *rel;
11889 const struct elf_backend_data *bed;
11890 unsigned int log_file_align;
11891
11892 /* Take care of both those symbols that do not describe vtables as
11893 well as those that are not loaded. */
11894 if (h->vtable == NULL || h->vtable->parent == NULL)
11895 return TRUE;
11896
11897 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11898 || h->root.type == bfd_link_hash_defweak);
11899
11900 sec = h->root.u.def.section;
11901 hstart = h->root.u.def.value;
11902 hend = hstart + h->size;
11903
11904 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11905 if (!relstart)
11906 return *(bfd_boolean *) okp = FALSE;
11907 bed = get_elf_backend_data (sec->owner);
11908 log_file_align = bed->s->log_file_align;
11909
11910 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11911
11912 for (rel = relstart; rel < relend; ++rel)
11913 if (rel->r_offset >= hstart && rel->r_offset < hend)
11914 {
11915 /* If the entry is in use, do nothing. */
11916 if (h->vtable->used
11917 && (rel->r_offset - hstart) < h->vtable->size)
11918 {
11919 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11920 if (h->vtable->used[entry])
11921 continue;
11922 }
11923 /* Otherwise, kill it. */
11924 rel->r_offset = rel->r_info = rel->r_addend = 0;
11925 }
11926
11927 return TRUE;
11928 }
11929
11930 /* Mark sections containing dynamically referenced symbols. When
11931 building shared libraries, we must assume that any visible symbol is
11932 referenced. */
11933
11934 bfd_boolean
11935 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11936 {
11937 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11938
11939 if ((h->root.type == bfd_link_hash_defined
11940 || h->root.type == bfd_link_hash_defweak)
11941 && (h->ref_dynamic
11942 || ((!info->executable || info->export_dynamic)
11943 && h->def_regular
11944 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11945 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11946 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11947 || !bfd_hide_sym_by_version (info->version_info,
11948 h->root.root.string)))))
11949 h->root.u.def.section->flags |= SEC_KEEP;
11950
11951 return TRUE;
11952 }
11953
11954 /* Keep all sections containing symbols undefined on the command-line,
11955 and the section containing the entry symbol. */
11956
11957 void
11958 _bfd_elf_gc_keep (struct bfd_link_info *info)
11959 {
11960 struct bfd_sym_chain *sym;
11961
11962 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11963 {
11964 struct elf_link_hash_entry *h;
11965
11966 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11967 FALSE, FALSE, FALSE);
11968
11969 if (h != NULL
11970 && (h->root.type == bfd_link_hash_defined
11971 || h->root.type == bfd_link_hash_defweak)
11972 && !bfd_is_abs_section (h->root.u.def.section))
11973 h->root.u.def.section->flags |= SEC_KEEP;
11974 }
11975 }
11976
11977 /* Do mark and sweep of unused sections. */
11978
11979 bfd_boolean
11980 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11981 {
11982 bfd_boolean ok = TRUE;
11983 bfd *sub;
11984 elf_gc_mark_hook_fn gc_mark_hook;
11985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11986
11987 if (!bed->can_gc_sections
11988 || !is_elf_hash_table (info->hash))
11989 {
11990 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11991 return TRUE;
11992 }
11993
11994 bed->gc_keep (info);
11995
11996 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11997 at the .eh_frame section if we can mark the FDEs individually. */
11998 _bfd_elf_begin_eh_frame_parsing (info);
11999 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12000 {
12001 asection *sec;
12002 struct elf_reloc_cookie cookie;
12003
12004 sec = bfd_get_section_by_name (sub, ".eh_frame");
12005 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12006 {
12007 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12008 if (elf_section_data (sec)->sec_info)
12009 elf_eh_frame_section (sub) = sec;
12010 fini_reloc_cookie_for_section (&cookie, sec);
12011 }
12012 }
12013 _bfd_elf_end_eh_frame_parsing (info);
12014
12015 /* Apply transitive closure to the vtable entry usage info. */
12016 elf_link_hash_traverse (elf_hash_table (info),
12017 elf_gc_propagate_vtable_entries_used,
12018 &ok);
12019 if (!ok)
12020 return FALSE;
12021
12022 /* Kill the vtable relocations that were not used. */
12023 elf_link_hash_traverse (elf_hash_table (info),
12024 elf_gc_smash_unused_vtentry_relocs,
12025 &ok);
12026 if (!ok)
12027 return FALSE;
12028
12029 /* Mark dynamically referenced symbols. */
12030 if (elf_hash_table (info)->dynamic_sections_created)
12031 elf_link_hash_traverse (elf_hash_table (info),
12032 bed->gc_mark_dynamic_ref,
12033 info);
12034
12035 /* Grovel through relocs to find out who stays ... */
12036 gc_mark_hook = bed->gc_mark_hook;
12037 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12038 {
12039 asection *o;
12040
12041 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12042 continue;
12043
12044 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12045 Also treat note sections as a root, if the section is not part
12046 of a group. */
12047 for (o = sub->sections; o != NULL; o = o->next)
12048 if (!o->gc_mark
12049 && (o->flags & SEC_EXCLUDE) == 0
12050 && ((o->flags & SEC_KEEP) != 0
12051 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12052 && elf_next_in_group (o) == NULL )))
12053 {
12054 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12055 return FALSE;
12056 }
12057 }
12058
12059 /* Allow the backend to mark additional target specific sections. */
12060 bed->gc_mark_extra_sections (info, gc_mark_hook);
12061
12062 /* ... and mark SEC_EXCLUDE for those that go. */
12063 return elf_gc_sweep (abfd, info);
12064 }
12065 \f
12066 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12067
12068 bfd_boolean
12069 bfd_elf_gc_record_vtinherit (bfd *abfd,
12070 asection *sec,
12071 struct elf_link_hash_entry *h,
12072 bfd_vma offset)
12073 {
12074 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12075 struct elf_link_hash_entry **search, *child;
12076 bfd_size_type extsymcount;
12077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12078
12079 /* The sh_info field of the symtab header tells us where the
12080 external symbols start. We don't care about the local symbols at
12081 this point. */
12082 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12083 if (!elf_bad_symtab (abfd))
12084 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12085
12086 sym_hashes = elf_sym_hashes (abfd);
12087 sym_hashes_end = sym_hashes + extsymcount;
12088
12089 /* Hunt down the child symbol, which is in this section at the same
12090 offset as the relocation. */
12091 for (search = sym_hashes; search != sym_hashes_end; ++search)
12092 {
12093 if ((child = *search) != NULL
12094 && (child->root.type == bfd_link_hash_defined
12095 || child->root.type == bfd_link_hash_defweak)
12096 && child->root.u.def.section == sec
12097 && child->root.u.def.value == offset)
12098 goto win;
12099 }
12100
12101 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12102 abfd, sec, (unsigned long) offset);
12103 bfd_set_error (bfd_error_invalid_operation);
12104 return FALSE;
12105
12106 win:
12107 if (!child->vtable)
12108 {
12109 child->vtable = (struct elf_link_virtual_table_entry *)
12110 bfd_zalloc (abfd, sizeof (*child->vtable));
12111 if (!child->vtable)
12112 return FALSE;
12113 }
12114 if (!h)
12115 {
12116 /* This *should* only be the absolute section. It could potentially
12117 be that someone has defined a non-global vtable though, which
12118 would be bad. It isn't worth paging in the local symbols to be
12119 sure though; that case should simply be handled by the assembler. */
12120
12121 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12122 }
12123 else
12124 child->vtable->parent = h;
12125
12126 return TRUE;
12127 }
12128
12129 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12130
12131 bfd_boolean
12132 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12133 asection *sec ATTRIBUTE_UNUSED,
12134 struct elf_link_hash_entry *h,
12135 bfd_vma addend)
12136 {
12137 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12138 unsigned int log_file_align = bed->s->log_file_align;
12139
12140 if (!h->vtable)
12141 {
12142 h->vtable = (struct elf_link_virtual_table_entry *)
12143 bfd_zalloc (abfd, sizeof (*h->vtable));
12144 if (!h->vtable)
12145 return FALSE;
12146 }
12147
12148 if (addend >= h->vtable->size)
12149 {
12150 size_t size, bytes, file_align;
12151 bfd_boolean *ptr = h->vtable->used;
12152
12153 /* While the symbol is undefined, we have to be prepared to handle
12154 a zero size. */
12155 file_align = 1 << log_file_align;
12156 if (h->root.type == bfd_link_hash_undefined)
12157 size = addend + file_align;
12158 else
12159 {
12160 size = h->size;
12161 if (addend >= size)
12162 {
12163 /* Oops! We've got a reference past the defined end of
12164 the table. This is probably a bug -- shall we warn? */
12165 size = addend + file_align;
12166 }
12167 }
12168 size = (size + file_align - 1) & -file_align;
12169
12170 /* Allocate one extra entry for use as a "done" flag for the
12171 consolidation pass. */
12172 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12173
12174 if (ptr)
12175 {
12176 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12177
12178 if (ptr != NULL)
12179 {
12180 size_t oldbytes;
12181
12182 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12183 * sizeof (bfd_boolean));
12184 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12185 }
12186 }
12187 else
12188 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12189
12190 if (ptr == NULL)
12191 return FALSE;
12192
12193 /* And arrange for that done flag to be at index -1. */
12194 h->vtable->used = ptr + 1;
12195 h->vtable->size = size;
12196 }
12197
12198 h->vtable->used[addend >> log_file_align] = TRUE;
12199
12200 return TRUE;
12201 }
12202
12203 /* Map an ELF section header flag to its corresponding string. */
12204 typedef struct
12205 {
12206 char *flag_name;
12207 flagword flag_value;
12208 } elf_flags_to_name_table;
12209
12210 static elf_flags_to_name_table elf_flags_to_names [] =
12211 {
12212 { "SHF_WRITE", SHF_WRITE },
12213 { "SHF_ALLOC", SHF_ALLOC },
12214 { "SHF_EXECINSTR", SHF_EXECINSTR },
12215 { "SHF_MERGE", SHF_MERGE },
12216 { "SHF_STRINGS", SHF_STRINGS },
12217 { "SHF_INFO_LINK", SHF_INFO_LINK},
12218 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12219 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12220 { "SHF_GROUP", SHF_GROUP },
12221 { "SHF_TLS", SHF_TLS },
12222 { "SHF_MASKOS", SHF_MASKOS },
12223 { "SHF_EXCLUDE", SHF_EXCLUDE },
12224 };
12225
12226 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12227 bfd_boolean
12228 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12229 struct flag_info *flaginfo,
12230 asection *section)
12231 {
12232 const bfd_vma sh_flags = elf_section_flags (section);
12233
12234 if (!flaginfo->flags_initialized)
12235 {
12236 bfd *obfd = info->output_bfd;
12237 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12238 struct flag_info_list *tf = flaginfo->flag_list;
12239 int with_hex = 0;
12240 int without_hex = 0;
12241
12242 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12243 {
12244 unsigned i;
12245 flagword (*lookup) (char *);
12246
12247 lookup = bed->elf_backend_lookup_section_flags_hook;
12248 if (lookup != NULL)
12249 {
12250 flagword hexval = (*lookup) ((char *) tf->name);
12251
12252 if (hexval != 0)
12253 {
12254 if (tf->with == with_flags)
12255 with_hex |= hexval;
12256 else if (tf->with == without_flags)
12257 without_hex |= hexval;
12258 tf->valid = TRUE;
12259 continue;
12260 }
12261 }
12262 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12263 {
12264 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12265 {
12266 if (tf->with == with_flags)
12267 with_hex |= elf_flags_to_names[i].flag_value;
12268 else if (tf->with == without_flags)
12269 without_hex |= elf_flags_to_names[i].flag_value;
12270 tf->valid = TRUE;
12271 break;
12272 }
12273 }
12274 if (!tf->valid)
12275 {
12276 info->callbacks->einfo
12277 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12278 return FALSE;
12279 }
12280 }
12281 flaginfo->flags_initialized = TRUE;
12282 flaginfo->only_with_flags |= with_hex;
12283 flaginfo->not_with_flags |= without_hex;
12284 }
12285
12286 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12287 return FALSE;
12288
12289 if ((flaginfo->not_with_flags & sh_flags) != 0)
12290 return FALSE;
12291
12292 return TRUE;
12293 }
12294
12295 struct alloc_got_off_arg {
12296 bfd_vma gotoff;
12297 struct bfd_link_info *info;
12298 };
12299
12300 /* We need a special top-level link routine to convert got reference counts
12301 to real got offsets. */
12302
12303 static bfd_boolean
12304 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12305 {
12306 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12307 bfd *obfd = gofarg->info->output_bfd;
12308 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12309
12310 if (h->got.refcount > 0)
12311 {
12312 h->got.offset = gofarg->gotoff;
12313 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12314 }
12315 else
12316 h->got.offset = (bfd_vma) -1;
12317
12318 return TRUE;
12319 }
12320
12321 /* And an accompanying bit to work out final got entry offsets once
12322 we're done. Should be called from final_link. */
12323
12324 bfd_boolean
12325 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12326 struct bfd_link_info *info)
12327 {
12328 bfd *i;
12329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12330 bfd_vma gotoff;
12331 struct alloc_got_off_arg gofarg;
12332
12333 BFD_ASSERT (abfd == info->output_bfd);
12334
12335 if (! is_elf_hash_table (info->hash))
12336 return FALSE;
12337
12338 /* The GOT offset is relative to the .got section, but the GOT header is
12339 put into the .got.plt section, if the backend uses it. */
12340 if (bed->want_got_plt)
12341 gotoff = 0;
12342 else
12343 gotoff = bed->got_header_size;
12344
12345 /* Do the local .got entries first. */
12346 for (i = info->input_bfds; i; i = i->link_next)
12347 {
12348 bfd_signed_vma *local_got;
12349 bfd_size_type j, locsymcount;
12350 Elf_Internal_Shdr *symtab_hdr;
12351
12352 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12353 continue;
12354
12355 local_got = elf_local_got_refcounts (i);
12356 if (!local_got)
12357 continue;
12358
12359 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12360 if (elf_bad_symtab (i))
12361 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12362 else
12363 locsymcount = symtab_hdr->sh_info;
12364
12365 for (j = 0; j < locsymcount; ++j)
12366 {
12367 if (local_got[j] > 0)
12368 {
12369 local_got[j] = gotoff;
12370 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12371 }
12372 else
12373 local_got[j] = (bfd_vma) -1;
12374 }
12375 }
12376
12377 /* Then the global .got entries. .plt refcounts are handled by
12378 adjust_dynamic_symbol */
12379 gofarg.gotoff = gotoff;
12380 gofarg.info = info;
12381 elf_link_hash_traverse (elf_hash_table (info),
12382 elf_gc_allocate_got_offsets,
12383 &gofarg);
12384 return TRUE;
12385 }
12386
12387 /* Many folk need no more in the way of final link than this, once
12388 got entry reference counting is enabled. */
12389
12390 bfd_boolean
12391 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12392 {
12393 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12394 return FALSE;
12395
12396 /* Invoke the regular ELF backend linker to do all the work. */
12397 return bfd_elf_final_link (abfd, info);
12398 }
12399
12400 bfd_boolean
12401 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12402 {
12403 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12404
12405 if (rcookie->bad_symtab)
12406 rcookie->rel = rcookie->rels;
12407
12408 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12409 {
12410 unsigned long r_symndx;
12411
12412 if (! rcookie->bad_symtab)
12413 if (rcookie->rel->r_offset > offset)
12414 return FALSE;
12415 if (rcookie->rel->r_offset != offset)
12416 continue;
12417
12418 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12419 if (r_symndx == STN_UNDEF)
12420 return TRUE;
12421
12422 if (r_symndx >= rcookie->locsymcount
12423 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12424 {
12425 struct elf_link_hash_entry *h;
12426
12427 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12428
12429 while (h->root.type == bfd_link_hash_indirect
12430 || h->root.type == bfd_link_hash_warning)
12431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12432
12433 if ((h->root.type == bfd_link_hash_defined
12434 || h->root.type == bfd_link_hash_defweak)
12435 && discarded_section (h->root.u.def.section))
12436 return TRUE;
12437 else
12438 return FALSE;
12439 }
12440 else
12441 {
12442 /* It's not a relocation against a global symbol,
12443 but it could be a relocation against a local
12444 symbol for a discarded section. */
12445 asection *isec;
12446 Elf_Internal_Sym *isym;
12447
12448 /* Need to: get the symbol; get the section. */
12449 isym = &rcookie->locsyms[r_symndx];
12450 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12451 if (isec != NULL && discarded_section (isec))
12452 return TRUE;
12453 }
12454 return FALSE;
12455 }
12456 return FALSE;
12457 }
12458
12459 /* Discard unneeded references to discarded sections.
12460 Returns TRUE if any section's size was changed. */
12461 /* This function assumes that the relocations are in sorted order,
12462 which is true for all known assemblers. */
12463
12464 bfd_boolean
12465 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12466 {
12467 struct elf_reloc_cookie cookie;
12468 asection *stab, *eh;
12469 const struct elf_backend_data *bed;
12470 bfd *abfd;
12471 bfd_boolean ret = FALSE;
12472
12473 if (info->traditional_format
12474 || !is_elf_hash_table (info->hash))
12475 return FALSE;
12476
12477 _bfd_elf_begin_eh_frame_parsing (info);
12478 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12479 {
12480 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12481 continue;
12482
12483 bed = get_elf_backend_data (abfd);
12484
12485 if ((abfd->flags & DYNAMIC) != 0)
12486 continue;
12487
12488 eh = NULL;
12489 if (!info->relocatable)
12490 {
12491 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12492 if (eh != NULL
12493 && (eh->size == 0
12494 || bfd_is_abs_section (eh->output_section)))
12495 eh = NULL;
12496 }
12497
12498 stab = bfd_get_section_by_name (abfd, ".stab");
12499 if (stab != NULL
12500 && (stab->size == 0
12501 || bfd_is_abs_section (stab->output_section)
12502 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12503 stab = NULL;
12504
12505 if (stab == NULL
12506 && eh == NULL
12507 && bed->elf_backend_discard_info == NULL)
12508 continue;
12509
12510 if (!init_reloc_cookie (&cookie, info, abfd))
12511 return FALSE;
12512
12513 if (stab != NULL
12514 && stab->reloc_count > 0
12515 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12516 {
12517 if (_bfd_discard_section_stabs (abfd, stab,
12518 elf_section_data (stab)->sec_info,
12519 bfd_elf_reloc_symbol_deleted_p,
12520 &cookie))
12521 ret = TRUE;
12522 fini_reloc_cookie_rels (&cookie, stab);
12523 }
12524
12525 while (eh != NULL
12526 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12527 {
12528 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12529 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12530 bfd_elf_reloc_symbol_deleted_p,
12531 &cookie))
12532 ret = TRUE;
12533 fini_reloc_cookie_rels (&cookie, eh);
12534 eh = bfd_get_next_section_by_name (eh);
12535 }
12536
12537 if (bed->elf_backend_discard_info != NULL
12538 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12539 ret = TRUE;
12540
12541 fini_reloc_cookie (&cookie, abfd);
12542 }
12543 _bfd_elf_end_eh_frame_parsing (info);
12544
12545 if (info->eh_frame_hdr
12546 && !info->relocatable
12547 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12548 ret = TRUE;
12549
12550 return ret;
12551 }
12552
12553 bfd_boolean
12554 _bfd_elf_section_already_linked (bfd *abfd,
12555 asection *sec,
12556 struct bfd_link_info *info)
12557 {
12558 flagword flags;
12559 const char *name, *key;
12560 struct bfd_section_already_linked *l;
12561 struct bfd_section_already_linked_hash_entry *already_linked_list;
12562
12563 if (sec->output_section == bfd_abs_section_ptr)
12564 return FALSE;
12565
12566 flags = sec->flags;
12567
12568 /* Return if it isn't a linkonce section. A comdat group section
12569 also has SEC_LINK_ONCE set. */
12570 if ((flags & SEC_LINK_ONCE) == 0)
12571 return FALSE;
12572
12573 /* Don't put group member sections on our list of already linked
12574 sections. They are handled as a group via their group section. */
12575 if (elf_sec_group (sec) != NULL)
12576 return FALSE;
12577
12578 /* For a SHT_GROUP section, use the group signature as the key. */
12579 name = sec->name;
12580 if ((flags & SEC_GROUP) != 0
12581 && elf_next_in_group (sec) != NULL
12582 && elf_group_name (elf_next_in_group (sec)) != NULL)
12583 key = elf_group_name (elf_next_in_group (sec));
12584 else
12585 {
12586 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12587 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12588 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12589 key++;
12590 else
12591 /* Must be a user linkonce section that doesn't follow gcc's
12592 naming convention. In this case we won't be matching
12593 single member groups. */
12594 key = name;
12595 }
12596
12597 already_linked_list = bfd_section_already_linked_table_lookup (key);
12598
12599 for (l = already_linked_list->entry; l != NULL; l = l->next)
12600 {
12601 /* We may have 2 different types of sections on the list: group
12602 sections with a signature of <key> (<key> is some string),
12603 and linkonce sections named .gnu.linkonce.<type>.<key>.
12604 Match like sections. LTO plugin sections are an exception.
12605 They are always named .gnu.linkonce.t.<key> and match either
12606 type of section. */
12607 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12608 && ((flags & SEC_GROUP) != 0
12609 || strcmp (name, l->sec->name) == 0))
12610 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12611 {
12612 /* The section has already been linked. See if we should
12613 issue a warning. */
12614 if (!_bfd_handle_already_linked (sec, l, info))
12615 return FALSE;
12616
12617 if (flags & SEC_GROUP)
12618 {
12619 asection *first = elf_next_in_group (sec);
12620 asection *s = first;
12621
12622 while (s != NULL)
12623 {
12624 s->output_section = bfd_abs_section_ptr;
12625 /* Record which group discards it. */
12626 s->kept_section = l->sec;
12627 s = elf_next_in_group (s);
12628 /* These lists are circular. */
12629 if (s == first)
12630 break;
12631 }
12632 }
12633
12634 return TRUE;
12635 }
12636 }
12637
12638 /* A single member comdat group section may be discarded by a
12639 linkonce section and vice versa. */
12640 if ((flags & SEC_GROUP) != 0)
12641 {
12642 asection *first = elf_next_in_group (sec);
12643
12644 if (first != NULL && elf_next_in_group (first) == first)
12645 /* Check this single member group against linkonce sections. */
12646 for (l = already_linked_list->entry; l != NULL; l = l->next)
12647 if ((l->sec->flags & SEC_GROUP) == 0
12648 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12649 {
12650 first->output_section = bfd_abs_section_ptr;
12651 first->kept_section = l->sec;
12652 sec->output_section = bfd_abs_section_ptr;
12653 break;
12654 }
12655 }
12656 else
12657 /* Check this linkonce section against single member groups. */
12658 for (l = already_linked_list->entry; l != NULL; l = l->next)
12659 if (l->sec->flags & SEC_GROUP)
12660 {
12661 asection *first = elf_next_in_group (l->sec);
12662
12663 if (first != NULL
12664 && elf_next_in_group (first) == first
12665 && bfd_elf_match_symbols_in_sections (first, sec, info))
12666 {
12667 sec->output_section = bfd_abs_section_ptr;
12668 sec->kept_section = first;
12669 break;
12670 }
12671 }
12672
12673 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12674 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12675 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12676 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12677 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12678 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12679 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12680 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12681 The reverse order cannot happen as there is never a bfd with only the
12682 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12683 matter as here were are looking only for cross-bfd sections. */
12684
12685 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12686 for (l = already_linked_list->entry; l != NULL; l = l->next)
12687 if ((l->sec->flags & SEC_GROUP) == 0
12688 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12689 {
12690 if (abfd != l->sec->owner)
12691 sec->output_section = bfd_abs_section_ptr;
12692 break;
12693 }
12694
12695 /* This is the first section with this name. Record it. */
12696 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12697 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12698 return sec->output_section == bfd_abs_section_ptr;
12699 }
12700
12701 bfd_boolean
12702 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12703 {
12704 return sym->st_shndx == SHN_COMMON;
12705 }
12706
12707 unsigned int
12708 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12709 {
12710 return SHN_COMMON;
12711 }
12712
12713 asection *
12714 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12715 {
12716 return bfd_com_section_ptr;
12717 }
12718
12719 bfd_vma
12720 _bfd_elf_default_got_elt_size (bfd *abfd,
12721 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12722 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12723 bfd *ibfd ATTRIBUTE_UNUSED,
12724 unsigned long symndx ATTRIBUTE_UNUSED)
12725 {
12726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12727 return bed->s->arch_size / 8;
12728 }
12729
12730 /* Routines to support the creation of dynamic relocs. */
12731
12732 /* Returns the name of the dynamic reloc section associated with SEC. */
12733
12734 static const char *
12735 get_dynamic_reloc_section_name (bfd * abfd,
12736 asection * sec,
12737 bfd_boolean is_rela)
12738 {
12739 char *name;
12740 const char *old_name = bfd_get_section_name (NULL, sec);
12741 const char *prefix = is_rela ? ".rela" : ".rel";
12742
12743 if (old_name == NULL)
12744 return NULL;
12745
12746 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12747 sprintf (name, "%s%s", prefix, old_name);
12748
12749 return name;
12750 }
12751
12752 /* Returns the dynamic reloc section associated with SEC.
12753 If necessary compute the name of the dynamic reloc section based
12754 on SEC's name (looked up in ABFD's string table) and the setting
12755 of IS_RELA. */
12756
12757 asection *
12758 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12759 asection * sec,
12760 bfd_boolean is_rela)
12761 {
12762 asection * reloc_sec = elf_section_data (sec)->sreloc;
12763
12764 if (reloc_sec == NULL)
12765 {
12766 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12767
12768 if (name != NULL)
12769 {
12770 reloc_sec = bfd_get_section_by_name (abfd, name);
12771
12772 if (reloc_sec != NULL)
12773 elf_section_data (sec)->sreloc = reloc_sec;
12774 }
12775 }
12776
12777 return reloc_sec;
12778 }
12779
12780 /* Returns the dynamic reloc section associated with SEC. If the
12781 section does not exist it is created and attached to the DYNOBJ
12782 bfd and stored in the SRELOC field of SEC's elf_section_data
12783 structure.
12784
12785 ALIGNMENT is the alignment for the newly created section and
12786 IS_RELA defines whether the name should be .rela.<SEC's name>
12787 or .rel.<SEC's name>. The section name is looked up in the
12788 string table associated with ABFD. */
12789
12790 asection *
12791 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12792 bfd * dynobj,
12793 unsigned int alignment,
12794 bfd * abfd,
12795 bfd_boolean is_rela)
12796 {
12797 asection * reloc_sec = elf_section_data (sec)->sreloc;
12798
12799 if (reloc_sec == NULL)
12800 {
12801 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12802
12803 if (name == NULL)
12804 return NULL;
12805
12806 reloc_sec = bfd_get_section_by_name (dynobj, name);
12807
12808 if (reloc_sec == NULL)
12809 {
12810 flagword flags;
12811
12812 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12813 if ((sec->flags & SEC_ALLOC) != 0)
12814 flags |= SEC_ALLOC | SEC_LOAD;
12815
12816 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12817 if (reloc_sec != NULL)
12818 {
12819 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12820 reloc_sec = NULL;
12821 }
12822 }
12823
12824 elf_section_data (sec)->sreloc = reloc_sec;
12825 }
12826
12827 return reloc_sec;
12828 }
12829
12830 /* Copy the ELF symbol type associated with a linker hash entry. */
12831 void
12832 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12833 struct bfd_link_hash_entry * hdest,
12834 struct bfd_link_hash_entry * hsrc)
12835 {
12836 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12837 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12838
12839 ehdest->type = ehsrc->type;
12840 ehdest->target_internal = ehsrc->target_internal;
12841 }
12842
12843 /* Append a RELA relocation REL to section S in BFD. */
12844
12845 void
12846 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12847 {
12848 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12849 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12850 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12851 bed->s->swap_reloca_out (abfd, rel, loc);
12852 }
12853
12854 /* Append a REL relocation REL to section S in BFD. */
12855
12856 void
12857 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12858 {
12859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12860 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12861 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12862 bed->s->swap_reloca_out (abfd, rel, loc);
12863 }
This page took 0.350311 seconds and 5 git commands to generate.