Fallout from recent bfd_reloc_outofrange changes
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 sec, 0, NULL, FALSE,
82 get_elf_backend_data (abfd)->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_linker_section (abfd, ".got");
109 if (s != NULL)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_anyway_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191 struct elf_link_hash_entry *h;
192
193 if (! is_elf_hash_table (info->hash))
194 return FALSE;
195
196 if (elf_hash_table (info)->dynamic_sections_created)
197 return TRUE;
198
199 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 return FALSE;
201
202 abfd = elf_hash_table (info)->dynobj;
203 bed = get_elf_backend_data (abfd);
204
205 flags = bed->dynamic_sec_flags;
206
207 /* A dynamically linked executable has a .interp section, but a
208 shared library does not. */
209 if (info->executable)
210 {
211 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
212 flags | SEC_READONLY);
213 if (s == NULL)
214 return FALSE;
215 }
216
217 /* Create sections to hold version informations. These are removed
218 if they are not needed. */
219 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
220 flags | SEC_READONLY);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
226 flags | SEC_READONLY);
227 if (s == NULL
228 || ! bfd_set_section_alignment (abfd, s, 1))
229 return FALSE;
230
231 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
232 flags | SEC_READONLY);
233 if (s == NULL
234 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 return FALSE;
236
237 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
238 flags | SEC_READONLY);
239 if (s == NULL
240 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 return FALSE;
242
243 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
244 flags | SEC_READONLY);
245 if (s == NULL)
246 return FALSE;
247
248 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 if (s == NULL
250 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 return FALSE;
252
253 /* The special symbol _DYNAMIC is always set to the start of the
254 .dynamic section. We could set _DYNAMIC in a linker script, but we
255 only want to define it if we are, in fact, creating a .dynamic
256 section. We don't want to define it if there is no .dynamic
257 section, since on some ELF platforms the start up code examines it
258 to decide how to initialize the process. */
259 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
260 elf_hash_table (info)->hdynamic = h;
261 if (h == NULL)
262 return FALSE;
263
264 if (info->emit_hash)
265 {
266 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
267 flags | SEC_READONLY);
268 if (s == NULL
269 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 return FALSE;
271 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
272 }
273
274 if (info->emit_gnu_hash)
275 {
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
282 4 32-bit words followed by variable count of 64-bit words, then
283 variable count of 32-bit words. */
284 if (bed->s->arch_size == 64)
285 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 else
287 elf_section_data (s)->this_hdr.sh_entsize = 4;
288 }
289
290 /* Let the backend create the rest of the sections. This lets the
291 backend set the right flags. The backend will normally create
292 the .got and .plt sections. */
293 if (bed->elf_backend_create_dynamic_sections == NULL
294 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
295 return FALSE;
296
297 elf_hash_table (info)->dynamic_sections_created = TRUE;
298
299 return TRUE;
300 }
301
302 /* Create dynamic sections when linking against a dynamic object. */
303
304 bfd_boolean
305 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 {
307 flagword flags, pltflags;
308 struct elf_link_hash_entry *h;
309 asection *s;
310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
311 struct elf_link_hash_table *htab = elf_hash_table (info);
312
313 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
314 .rel[a].bss sections. */
315 flags = bed->dynamic_sec_flags;
316
317 pltflags = flags;
318 if (bed->plt_not_loaded)
319 /* We do not clear SEC_ALLOC here because we still want the OS to
320 allocate space for the section; it's just that there's nothing
321 to read in from the object file. */
322 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 else
324 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
325 if (bed->plt_readonly)
326 pltflags |= SEC_READONLY;
327
328 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
331 return FALSE;
332 htab->splt = s;
333
334 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 .plt section. */
336 if (bed->want_plt_sym)
337 {
338 h = _bfd_elf_define_linkage_sym (abfd, info, s,
339 "_PROCEDURE_LINKAGE_TABLE_");
340 elf_hash_table (info)->hplt = h;
341 if (h == NULL)
342 return FALSE;
343 }
344
345 s = bfd_make_section_anyway_with_flags (abfd,
346 (bed->rela_plts_and_copies_p
347 ? ".rela.plt" : ".rel.plt"),
348 flags | SEC_READONLY);
349 if (s == NULL
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
352 htab->srelplt = s;
353
354 if (! _bfd_elf_create_got_section (abfd, info))
355 return FALSE;
356
357 if (bed->want_dynbss)
358 {
359 /* The .dynbss section is a place to put symbols which are defined
360 by dynamic objects, are referenced by regular objects, and are
361 not functions. We must allocate space for them in the process
362 image and use a R_*_COPY reloc to tell the dynamic linker to
363 initialize them at run time. The linker script puts the .dynbss
364 section into the .bss section of the final image. */
365 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
366 (SEC_ALLOC | SEC_LINKER_CREATED));
367 if (s == NULL)
368 return FALSE;
369
370 /* The .rel[a].bss section holds copy relocs. This section is not
371 normally needed. We need to create it here, though, so that the
372 linker will map it to an output section. We can't just create it
373 only if we need it, because we will not know whether we need it
374 until we have seen all the input files, and the first time the
375 main linker code calls BFD after examining all the input files
376 (size_dynamic_sections) the input sections have already been
377 mapped to the output sections. If the section turns out not to
378 be needed, we can discard it later. We will never need this
379 section when generating a shared object, since they do not use
380 copy relocs. */
381 if (! info->shared)
382 {
383 s = bfd_make_section_anyway_with_flags (abfd,
384 (bed->rela_plts_and_copies_p
385 ? ".rela.bss" : ".rel.bss"),
386 flags | SEC_READONLY);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
389 return FALSE;
390 }
391 }
392
393 return TRUE;
394 }
395 \f
396 /* Record a new dynamic symbol. We record the dynamic symbols as we
397 read the input files, since we need to have a list of all of them
398 before we can determine the final sizes of the output sections.
399 Note that we may actually call this function even though we are not
400 going to output any dynamic symbols; in some cases we know that a
401 symbol should be in the dynamic symbol table, but only if there is
402 one. */
403
404 bfd_boolean
405 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *h)
407 {
408 if (h->dynindx == -1)
409 {
410 struct elf_strtab_hash *dynstr;
411 char *p;
412 const char *name;
413 bfd_size_type indx;
414
415 /* XXX: The ABI draft says the linker must turn hidden and
416 internal symbols into STB_LOCAL symbols when producing the
417 DSO. However, if ld.so honors st_other in the dynamic table,
418 this would not be necessary. */
419 switch (ELF_ST_VISIBILITY (h->other))
420 {
421 case STV_INTERNAL:
422 case STV_HIDDEN:
423 if (h->root.type != bfd_link_hash_undefined
424 && h->root.type != bfd_link_hash_undefweak)
425 {
426 h->forced_local = 1;
427 if (!elf_hash_table (info)->is_relocatable_executable)
428 return TRUE;
429 }
430
431 default:
432 break;
433 }
434
435 h->dynindx = elf_hash_table (info)->dynsymcount;
436 ++elf_hash_table (info)->dynsymcount;
437
438 dynstr = elf_hash_table (info)->dynstr;
439 if (dynstr == NULL)
440 {
441 /* Create a strtab to hold the dynamic symbol names. */
442 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 if (dynstr == NULL)
444 return FALSE;
445 }
446
447 /* We don't put any version information in the dynamic string
448 table. */
449 name = h->root.root.string;
450 p = strchr (name, ELF_VER_CHR);
451 if (p != NULL)
452 /* We know that the p points into writable memory. In fact,
453 there are only a few symbols that have read-only names, being
454 those like _GLOBAL_OFFSET_TABLE_ that are created specially
455 by the backends. Most symbols will have names pointing into
456 an ELF string table read from a file, or to objalloc memory. */
457 *p = 0;
458
459 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460
461 if (p != NULL)
462 *p = ELF_VER_CHR;
463
464 if (indx == (bfd_size_type) -1)
465 return FALSE;
466 h->dynstr_index = indx;
467 }
468
469 return TRUE;
470 }
471 \f
472 /* Mark a symbol dynamic. */
473
474 static void
475 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
476 struct elf_link_hash_entry *h,
477 Elf_Internal_Sym *sym)
478 {
479 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480
481 /* It may be called more than once on the same H. */
482 if(h->dynamic || info->relocatable)
483 return;
484
485 if ((info->dynamic_data
486 && (h->type == STT_OBJECT
487 || (sym != NULL
488 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 || (d != NULL
490 && h->root.type == bfd_link_hash_new
491 && (*d->match) (&d->head, NULL, h->root.root.string)))
492 h->dynamic = 1;
493 }
494
495 /* Record an assignment to a symbol made by a linker script. We need
496 this in case some dynamic object refers to this symbol. */
497
498 bfd_boolean
499 bfd_elf_record_link_assignment (bfd *output_bfd,
500 struct bfd_link_info *info,
501 const char *name,
502 bfd_boolean provide,
503 bfd_boolean hidden)
504 {
505 struct elf_link_hash_entry *h, *hv;
506 struct elf_link_hash_table *htab;
507 const struct elf_backend_data *bed;
508
509 if (!is_elf_hash_table (info->hash))
510 return TRUE;
511
512 htab = elf_hash_table (info);
513 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
514 if (h == NULL)
515 return provide;
516
517 switch (h->root.type)
518 {
519 case bfd_link_hash_defined:
520 case bfd_link_hash_defweak:
521 case bfd_link_hash_common:
522 break;
523 case bfd_link_hash_undefweak:
524 case bfd_link_hash_undefined:
525 /* Since we're defining the symbol, don't let it seem to have not
526 been defined. record_dynamic_symbol and size_dynamic_sections
527 may depend on this. */
528 h->root.type = bfd_link_hash_new;
529 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
530 bfd_link_repair_undef_list (&htab->root);
531 break;
532 case bfd_link_hash_new:
533 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
534 h->non_elf = 0;
535 break;
536 case bfd_link_hash_indirect:
537 /* We had a versioned symbol in a dynamic library. We make the
538 the versioned symbol point to this one. */
539 bed = get_elf_backend_data (output_bfd);
540 hv = h;
541 while (hv->root.type == bfd_link_hash_indirect
542 || hv->root.type == bfd_link_hash_warning)
543 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
544 /* We don't need to update h->root.u since linker will set them
545 later. */
546 h->root.type = bfd_link_hash_undefined;
547 hv->root.type = bfd_link_hash_indirect;
548 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
549 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 break;
551 case bfd_link_hash_warning:
552 abort ();
553 break;
554 }
555
556 /* If this symbol is being provided by the linker script, and it is
557 currently defined by a dynamic object, but not by a regular
558 object, then mark it as undefined so that the generic linker will
559 force the correct value. */
560 if (provide
561 && h->def_dynamic
562 && !h->def_regular)
563 h->root.type = bfd_link_hash_undefined;
564
565 /* If this symbol is not being provided by the linker script, and it is
566 currently defined by a dynamic object, but not by a regular object,
567 then clear out any version information because the symbol will not be
568 associated with the dynamic object any more. */
569 if (!provide
570 && h->def_dynamic
571 && !h->def_regular)
572 h->verinfo.verdef = NULL;
573
574 h->def_regular = 1;
575
576 if (hidden)
577 {
578 bed = get_elf_backend_data (output_bfd);
579 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
580 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
581 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 }
583
584 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
585 and executables. */
586 if (!info->relocatable
587 && h->dynindx != -1
588 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
589 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 h->forced_local = 1;
591
592 if ((h->def_dynamic
593 || h->ref_dynamic
594 || info->shared
595 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 && h->dynindx == -1)
597 {
598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 return FALSE;
600
601 /* If this is a weak defined symbol, and we know a corresponding
602 real symbol from the same dynamic object, make sure the real
603 symbol is also made into a dynamic symbol. */
604 if (h->u.weakdef != NULL
605 && h->u.weakdef->dynindx == -1)
606 {
607 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
608 return FALSE;
609 }
610 }
611
612 return TRUE;
613 }
614
615 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
616 success, and 2 on a failure caused by attempting to record a symbol
617 in a discarded section, eg. a discarded link-once section symbol. */
618
619 int
620 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
621 bfd *input_bfd,
622 long input_indx)
623 {
624 bfd_size_type amt;
625 struct elf_link_local_dynamic_entry *entry;
626 struct elf_link_hash_table *eht;
627 struct elf_strtab_hash *dynstr;
628 unsigned long dynstr_index;
629 char *name;
630 Elf_External_Sym_Shndx eshndx;
631 char esym[sizeof (Elf64_External_Sym)];
632
633 if (! is_elf_hash_table (info->hash))
634 return 0;
635
636 /* See if the entry exists already. */
637 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
638 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 return 1;
640
641 amt = sizeof (*entry);
642 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
643 if (entry == NULL)
644 return 0;
645
646 /* Go find the symbol, so that we can find it's name. */
647 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
648 1, input_indx, &entry->isym, esym, &eshndx))
649 {
650 bfd_release (input_bfd, entry);
651 return 0;
652 }
653
654 if (entry->isym.st_shndx != SHN_UNDEF
655 && entry->isym.st_shndx < SHN_LORESERVE)
656 {
657 asection *s;
658
659 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
660 if (s == NULL || bfd_is_abs_section (s->output_section))
661 {
662 /* We can still bfd_release here as nothing has done another
663 bfd_alloc. We can't do this later in this function. */
664 bfd_release (input_bfd, entry);
665 return 2;
666 }
667 }
668
669 name = (bfd_elf_string_from_elf_section
670 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
671 entry->isym.st_name));
672
673 dynstr = elf_hash_table (info)->dynstr;
674 if (dynstr == NULL)
675 {
676 /* Create a strtab to hold the dynamic symbol names. */
677 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
678 if (dynstr == NULL)
679 return 0;
680 }
681
682 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
683 if (dynstr_index == (unsigned long) -1)
684 return 0;
685 entry->isym.st_name = dynstr_index;
686
687 eht = elf_hash_table (info);
688
689 entry->next = eht->dynlocal;
690 eht->dynlocal = entry;
691 entry->input_bfd = input_bfd;
692 entry->input_indx = input_indx;
693 eht->dynsymcount++;
694
695 /* Whatever binding the symbol had before, it's now local. */
696 entry->isym.st_info
697 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
698
699 /* The dynindx will be set at the end of size_dynamic_sections. */
700
701 return 1;
702 }
703
704 /* Return the dynindex of a local dynamic symbol. */
705
706 long
707 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
708 bfd *input_bfd,
709 long input_indx)
710 {
711 struct elf_link_local_dynamic_entry *e;
712
713 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
714 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
715 return e->dynindx;
716 return -1;
717 }
718
719 /* This function is used to renumber the dynamic symbols, if some of
720 them are removed because they are marked as local. This is called
721 via elf_link_hash_traverse. */
722
723 static bfd_boolean
724 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 void *data)
726 {
727 size_t *count = (size_t *) data;
728
729 if (h->forced_local)
730 return TRUE;
731
732 if (h->dynindx != -1)
733 h->dynindx = ++(*count);
734
735 return TRUE;
736 }
737
738
739 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
740 STB_LOCAL binding. */
741
742 static bfd_boolean
743 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 void *data)
745 {
746 size_t *count = (size_t *) data;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765 asection *ip;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 return (htab->dynobj != NULL
782 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
783 && ip->output_section == p);
784
785 /* There shouldn't be section relative relocations
786 against any other section. */
787 default:
788 return TRUE;
789 }
790 }
791
792 /* Assign dynsym indices. In a shared library we generate a section
793 symbol for each output section, which come first. Next come symbols
794 which have been forced to local binding. Then all of the back-end
795 allocated local dynamic syms, followed by the rest of the global
796 symbols. */
797
798 static unsigned long
799 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
800 struct bfd_link_info *info,
801 unsigned long *section_sym_count)
802 {
803 unsigned long dynsymcount = 0;
804
805 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
806 {
807 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
808 asection *p;
809 for (p = output_bfd->sections; p ; p = p->next)
810 if ((p->flags & SEC_EXCLUDE) == 0
811 && (p->flags & SEC_ALLOC) != 0
812 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
813 elf_section_data (p)->dynindx = ++dynsymcount;
814 else
815 elf_section_data (p)->dynindx = 0;
816 }
817 *section_sym_count = dynsymcount;
818
819 elf_link_hash_traverse (elf_hash_table (info),
820 elf_link_renumber_local_hash_table_dynsyms,
821 &dynsymcount);
822
823 if (elf_hash_table (info)->dynlocal)
824 {
825 struct elf_link_local_dynamic_entry *p;
826 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
827 p->dynindx = ++dynsymcount;
828 }
829
830 elf_link_hash_traverse (elf_hash_table (info),
831 elf_link_renumber_hash_table_dynsyms,
832 &dynsymcount);
833
834 /* There is an unused NULL entry at the head of the table which
835 we must account for in our count. Unless there weren't any
836 symbols, which means we'll have no table at all. */
837 if (dynsymcount != 0)
838 ++dynsymcount;
839
840 elf_hash_table (info)->dynsymcount = dynsymcount;
841 return dynsymcount;
842 }
843
844 /* Merge st_other field. */
845
846 static void
847 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
848 const Elf_Internal_Sym *isym,
849 bfd_boolean definition, bfd_boolean dynamic)
850 {
851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
852
853 /* If st_other has a processor-specific meaning, specific
854 code might be needed here. */
855 if (bed->elf_backend_merge_symbol_attribute)
856 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
857 dynamic);
858
859 if (!dynamic)
860 {
861 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
862 unsigned hvis = ELF_ST_VISIBILITY (h->other);
863
864 /* Keep the most constraining visibility. Leave the remainder
865 of the st_other field to elf_backend_merge_symbol_attribute. */
866 if (symvis - 1 < hvis - 1)
867 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
868 }
869 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
870 h->protected_def = 1;
871 }
872
873 /* This function is called when we want to merge a new symbol with an
874 existing symbol. It handles the various cases which arise when we
875 find a definition in a dynamic object, or when there is already a
876 definition in a dynamic object. The new symbol is described by
877 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
878 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
879 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
880 of an old common symbol. We set OVERRIDE if the old symbol is
881 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
882 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
883 to change. By OK to change, we mean that we shouldn't warn if the
884 type or size does change. */
885
886 static bfd_boolean
887 _bfd_elf_merge_symbol (bfd *abfd,
888 struct bfd_link_info *info,
889 const char *name,
890 Elf_Internal_Sym *sym,
891 asection **psec,
892 bfd_vma *pvalue,
893 struct elf_link_hash_entry **sym_hash,
894 bfd **poldbfd,
895 bfd_boolean *pold_weak,
896 unsigned int *pold_alignment,
897 bfd_boolean *skip,
898 bfd_boolean *override,
899 bfd_boolean *type_change_ok,
900 bfd_boolean *size_change_ok)
901 {
902 asection *sec, *oldsec;
903 struct elf_link_hash_entry *h;
904 struct elf_link_hash_entry *hi;
905 struct elf_link_hash_entry *flip;
906 int bind;
907 bfd *oldbfd;
908 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
909 bfd_boolean newweak, oldweak, newfunc, oldfunc;
910 const struct elf_backend_data *bed;
911
912 *skip = FALSE;
913 *override = FALSE;
914
915 sec = *psec;
916 bind = ELF_ST_BIND (sym->st_info);
917
918 if (! bfd_is_und_section (sec))
919 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
920 else
921 h = ((struct elf_link_hash_entry *)
922 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
923 if (h == NULL)
924 return FALSE;
925 *sym_hash = h;
926
927 bed = get_elf_backend_data (abfd);
928
929 /* For merging, we only care about real symbols. But we need to make
930 sure that indirect symbol dynamic flags are updated. */
931 hi = h;
932 while (h->root.type == bfd_link_hash_indirect
933 || h->root.type == bfd_link_hash_warning)
934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
935
936 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
937 existing symbol. */
938
939 oldbfd = NULL;
940 oldsec = NULL;
941 switch (h->root.type)
942 {
943 default:
944 break;
945
946 case bfd_link_hash_undefined:
947 case bfd_link_hash_undefweak:
948 oldbfd = h->root.u.undef.abfd;
949 break;
950
951 case bfd_link_hash_defined:
952 case bfd_link_hash_defweak:
953 oldbfd = h->root.u.def.section->owner;
954 oldsec = h->root.u.def.section;
955 break;
956
957 case bfd_link_hash_common:
958 oldbfd = h->root.u.c.p->section->owner;
959 oldsec = h->root.u.c.p->section;
960 if (pold_alignment)
961 *pold_alignment = h->root.u.c.p->alignment_power;
962 break;
963 }
964 if (poldbfd && *poldbfd == NULL)
965 *poldbfd = oldbfd;
966
967 /* Differentiate strong and weak symbols. */
968 newweak = bind == STB_WEAK;
969 oldweak = (h->root.type == bfd_link_hash_defweak
970 || h->root.type == bfd_link_hash_undefweak);
971 if (pold_weak)
972 *pold_weak = oldweak;
973
974 /* This code is for coping with dynamic objects, and is only useful
975 if we are doing an ELF link. */
976 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
977 return TRUE;
978
979 /* We have to check it for every instance since the first few may be
980 references and not all compilers emit symbol type for undefined
981 symbols. */
982 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
983
984 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
985 respectively, is from a dynamic object. */
986
987 newdyn = (abfd->flags & DYNAMIC) != 0;
988
989 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
990 syms and defined syms in dynamic libraries respectively.
991 ref_dynamic on the other hand can be set for a symbol defined in
992 a dynamic library, and def_dynamic may not be set; When the
993 definition in a dynamic lib is overridden by a definition in the
994 executable use of the symbol in the dynamic lib becomes a
995 reference to the executable symbol. */
996 if (newdyn)
997 {
998 if (bfd_is_und_section (sec))
999 {
1000 if (bind != STB_WEAK)
1001 {
1002 h->ref_dynamic_nonweak = 1;
1003 hi->ref_dynamic_nonweak = 1;
1004 }
1005 }
1006 else
1007 {
1008 h->dynamic_def = 1;
1009 hi->dynamic_def = 1;
1010 }
1011 }
1012
1013 /* If we just created the symbol, mark it as being an ELF symbol.
1014 Other than that, there is nothing to do--there is no merge issue
1015 with a newly defined symbol--so we just return. */
1016
1017 if (h->root.type == bfd_link_hash_new)
1018 {
1019 h->non_elf = 0;
1020 return TRUE;
1021 }
1022
1023 /* In cases involving weak versioned symbols, we may wind up trying
1024 to merge a symbol with itself. Catch that here, to avoid the
1025 confusion that results if we try to override a symbol with
1026 itself. The additional tests catch cases like
1027 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1028 dynamic object, which we do want to handle here. */
1029 if (abfd == oldbfd
1030 && (newweak || oldweak)
1031 && ((abfd->flags & DYNAMIC) == 0
1032 || !h->def_regular))
1033 return TRUE;
1034
1035 olddyn = FALSE;
1036 if (oldbfd != NULL)
1037 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1038 else if (oldsec != NULL)
1039 {
1040 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1041 indices used by MIPS ELF. */
1042 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 }
1044
1045 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1046 respectively, appear to be a definition rather than reference. */
1047
1048 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1049
1050 olddef = (h->root.type != bfd_link_hash_undefined
1051 && h->root.type != bfd_link_hash_undefweak
1052 && h->root.type != bfd_link_hash_common);
1053
1054 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1055 respectively, appear to be a function. */
1056
1057 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1058 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1059
1060 oldfunc = (h->type != STT_NOTYPE
1061 && bed->is_function_type (h->type));
1062
1063 /* When we try to create a default indirect symbol from the dynamic
1064 definition with the default version, we skip it if its type and
1065 the type of existing regular definition mismatch. */
1066 if (pold_alignment == NULL
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (((olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1075 || (olddef
1076 && ((h->type == STT_GNU_IFUNC)
1077 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1078 {
1079 *skip = TRUE;
1080 return TRUE;
1081 }
1082
1083 /* Check TLS symbols. We don't check undefined symbols introduced
1084 by "ld -u" which have no type (and oldbfd NULL), and we don't
1085 check symbols from plugins because they also have no type. */
1086 if (oldbfd != NULL
1087 && (oldbfd->flags & BFD_PLUGIN) == 0
1088 && (abfd->flags & BFD_PLUGIN) == 0
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A "
1118 "mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B "
1123 "mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A "
1128 "mismatches non-TLS reference in %B"),
1129 tbfd, tsec, ntbfd, h->root.root.string);
1130 else
1131 (*_bfd_error_handler)
1132 (_("%s: TLS reference in %B "
1133 "mismatches non-TLS definition in %B section %A"),
1134 tbfd, ntbfd, ntsec, h->root.root.string);
1135
1136 bfd_set_error (bfd_error_bad_value);
1137 return FALSE;
1138 }
1139
1140 /* If the old symbol has non-default visibility, we ignore the new
1141 definition from a dynamic object. */
1142 if (newdyn
1143 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1144 && !bfd_is_und_section (sec))
1145 {
1146 *skip = TRUE;
1147 /* Make sure this symbol is dynamic. */
1148 h->ref_dynamic = 1;
1149 hi->ref_dynamic = 1;
1150 /* A protected symbol has external availability. Make sure it is
1151 recorded as dynamic.
1152
1153 FIXME: Should we check type and size for protected symbol? */
1154 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1155 return bfd_elf_link_record_dynamic_symbol (info, h);
1156 else
1157 return TRUE;
1158 }
1159 else if (!newdyn
1160 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1161 && h->def_dynamic)
1162 {
1163 /* If the new symbol with non-default visibility comes from a
1164 relocatable file and the old definition comes from a dynamic
1165 object, we remove the old definition. */
1166 if (hi->root.type == bfd_link_hash_indirect)
1167 {
1168 /* Handle the case where the old dynamic definition is
1169 default versioned. We need to copy the symbol info from
1170 the symbol with default version to the normal one if it
1171 was referenced before. */
1172 if (h->ref_regular)
1173 {
1174 hi->root.type = h->root.type;
1175 h->root.type = bfd_link_hash_indirect;
1176 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1177
1178 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1179 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1180 {
1181 /* If the new symbol is hidden or internal, completely undo
1182 any dynamic link state. */
1183 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1184 h->forced_local = 0;
1185 h->ref_dynamic = 0;
1186 }
1187 else
1188 h->ref_dynamic = 1;
1189
1190 h->def_dynamic = 0;
1191 /* FIXME: Should we check type and size for protected symbol? */
1192 h->size = 0;
1193 h->type = 0;
1194
1195 h = hi;
1196 }
1197 else
1198 h = hi;
1199 }
1200
1201 /* If the old symbol was undefined before, then it will still be
1202 on the undefs list. If the new symbol is undefined or
1203 common, we can't make it bfd_link_hash_new here, because new
1204 undefined or common symbols will be added to the undefs list
1205 by _bfd_generic_link_add_one_symbol. Symbols may not be
1206 added twice to the undefs list. Also, if the new symbol is
1207 undefweak then we don't want to lose the strong undef. */
1208 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1209 {
1210 h->root.type = bfd_link_hash_undefined;
1211 h->root.u.undef.abfd = abfd;
1212 }
1213 else
1214 {
1215 h->root.type = bfd_link_hash_new;
1216 h->root.u.undef.abfd = NULL;
1217 }
1218
1219 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1220 {
1221 /* If the new symbol is hidden or internal, completely undo
1222 any dynamic link state. */
1223 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1224 h->forced_local = 0;
1225 h->ref_dynamic = 0;
1226 }
1227 else
1228 h->ref_dynamic = 1;
1229 h->def_dynamic = 0;
1230 /* FIXME: Should we check type and size for protected symbol? */
1231 h->size = 0;
1232 h->type = 0;
1233 return TRUE;
1234 }
1235
1236 /* If a new weak symbol definition comes from a regular file and the
1237 old symbol comes from a dynamic library, we treat the new one as
1238 strong. Similarly, an old weak symbol definition from a regular
1239 file is treated as strong when the new symbol comes from a dynamic
1240 library. Further, an old weak symbol from a dynamic library is
1241 treated as strong if the new symbol is from a dynamic library.
1242 This reflects the way glibc's ld.so works.
1243
1244 Do this before setting *type_change_ok or *size_change_ok so that
1245 we warn properly when dynamic library symbols are overridden. */
1246
1247 if (newdef && !newdyn && olddyn)
1248 newweak = FALSE;
1249 if (olddef && newdyn)
1250 oldweak = FALSE;
1251
1252 /* Allow changes between different types of function symbol. */
1253 if (newfunc && oldfunc)
1254 *type_change_ok = TRUE;
1255
1256 /* It's OK to change the type if either the existing symbol or the
1257 new symbol is weak. A type change is also OK if the old symbol
1258 is undefined and the new symbol is defined. */
1259
1260 if (oldweak
1261 || newweak
1262 || (newdef
1263 && h->root.type == bfd_link_hash_undefined))
1264 *type_change_ok = TRUE;
1265
1266 /* It's OK to change the size if either the existing symbol or the
1267 new symbol is weak, or if the old symbol is undefined. */
1268
1269 if (*type_change_ok
1270 || h->root.type == bfd_link_hash_undefined)
1271 *size_change_ok = TRUE;
1272
1273 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1274 symbol, respectively, appears to be a common symbol in a dynamic
1275 object. If a symbol appears in an uninitialized section, and is
1276 not weak, and is not a function, then it may be a common symbol
1277 which was resolved when the dynamic object was created. We want
1278 to treat such symbols specially, because they raise special
1279 considerations when setting the symbol size: if the symbol
1280 appears as a common symbol in a regular object, and the size in
1281 the regular object is larger, we must make sure that we use the
1282 larger size. This problematic case can always be avoided in C,
1283 but it must be handled correctly when using Fortran shared
1284 libraries.
1285
1286 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1287 likewise for OLDDYNCOMMON and OLDDEF.
1288
1289 Note that this test is just a heuristic, and that it is quite
1290 possible to have an uninitialized symbol in a shared object which
1291 is really a definition, rather than a common symbol. This could
1292 lead to some minor confusion when the symbol really is a common
1293 symbol in some regular object. However, I think it will be
1294 harmless. */
1295
1296 if (newdyn
1297 && newdef
1298 && !newweak
1299 && (sec->flags & SEC_ALLOC) != 0
1300 && (sec->flags & SEC_LOAD) == 0
1301 && sym->st_size > 0
1302 && !newfunc)
1303 newdyncommon = TRUE;
1304 else
1305 newdyncommon = FALSE;
1306
1307 if (olddyn
1308 && olddef
1309 && h->root.type == bfd_link_hash_defined
1310 && h->def_dynamic
1311 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1312 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1313 && h->size > 0
1314 && !oldfunc)
1315 olddyncommon = TRUE;
1316 else
1317 olddyncommon = FALSE;
1318
1319 /* We now know everything about the old and new symbols. We ask the
1320 backend to check if we can merge them. */
1321 if (bed->merge_symbol != NULL)
1322 {
1323 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1324 return FALSE;
1325 sec = *psec;
1326 }
1327
1328 /* If both the old and the new symbols look like common symbols in a
1329 dynamic object, set the size of the symbol to the larger of the
1330 two. */
1331
1332 if (olddyncommon
1333 && newdyncommon
1334 && sym->st_size != h->size)
1335 {
1336 /* Since we think we have two common symbols, issue a multiple
1337 common warning if desired. Note that we only warn if the
1338 size is different. If the size is the same, we simply let
1339 the old symbol override the new one as normally happens with
1340 symbols defined in dynamic objects. */
1341
1342 if (! ((*info->callbacks->multiple_common)
1343 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1344 return FALSE;
1345
1346 if (sym->st_size > h->size)
1347 h->size = sym->st_size;
1348
1349 *size_change_ok = TRUE;
1350 }
1351
1352 /* If we are looking at a dynamic object, and we have found a
1353 definition, we need to see if the symbol was already defined by
1354 some other object. If so, we want to use the existing
1355 definition, and we do not want to report a multiple symbol
1356 definition error; we do this by clobbering *PSEC to be
1357 bfd_und_section_ptr.
1358
1359 We treat a common symbol as a definition if the symbol in the
1360 shared library is a function, since common symbols always
1361 represent variables; this can cause confusion in principle, but
1362 any such confusion would seem to indicate an erroneous program or
1363 shared library. We also permit a common symbol in a regular
1364 object to override a weak symbol in a shared object. */
1365
1366 if (newdyn
1367 && newdef
1368 && (olddef
1369 || (h->root.type == bfd_link_hash_common
1370 && (newweak || newfunc))))
1371 {
1372 *override = TRUE;
1373 newdef = FALSE;
1374 newdyncommon = FALSE;
1375
1376 *psec = sec = bfd_und_section_ptr;
1377 *size_change_ok = TRUE;
1378
1379 /* If we get here when the old symbol is a common symbol, then
1380 we are explicitly letting it override a weak symbol or
1381 function in a dynamic object, and we don't want to warn about
1382 a type change. If the old symbol is a defined symbol, a type
1383 change warning may still be appropriate. */
1384
1385 if (h->root.type == bfd_link_hash_common)
1386 *type_change_ok = TRUE;
1387 }
1388
1389 /* Handle the special case of an old common symbol merging with a
1390 new symbol which looks like a common symbol in a shared object.
1391 We change *PSEC and *PVALUE to make the new symbol look like a
1392 common symbol, and let _bfd_generic_link_add_one_symbol do the
1393 right thing. */
1394
1395 if (newdyncommon
1396 && h->root.type == bfd_link_hash_common)
1397 {
1398 *override = TRUE;
1399 newdef = FALSE;
1400 newdyncommon = FALSE;
1401 *pvalue = sym->st_size;
1402 *psec = sec = bed->common_section (oldsec);
1403 *size_change_ok = TRUE;
1404 }
1405
1406 /* Skip weak definitions of symbols that are already defined. */
1407 if (newdef && olddef && newweak)
1408 {
1409 /* Don't skip new non-IR weak syms. */
1410 if (!(oldbfd != NULL
1411 && (oldbfd->flags & BFD_PLUGIN) != 0
1412 && (abfd->flags & BFD_PLUGIN) == 0))
1413 {
1414 newdef = FALSE;
1415 *skip = TRUE;
1416 }
1417
1418 /* Merge st_other. If the symbol already has a dynamic index,
1419 but visibility says it should not be visible, turn it into a
1420 local symbol. */
1421 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1422 if (h->dynindx != -1)
1423 switch (ELF_ST_VISIBILITY (h->other))
1424 {
1425 case STV_INTERNAL:
1426 case STV_HIDDEN:
1427 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1428 break;
1429 }
1430 }
1431
1432 /* If the old symbol is from a dynamic object, and the new symbol is
1433 a definition which is not from a dynamic object, then the new
1434 symbol overrides the old symbol. Symbols from regular files
1435 always take precedence over symbols from dynamic objects, even if
1436 they are defined after the dynamic object in the link.
1437
1438 As above, we again permit a common symbol in a regular object to
1439 override a definition in a shared object if the shared object
1440 symbol is a function or is weak. */
1441
1442 flip = NULL;
1443 if (!newdyn
1444 && (newdef
1445 || (bfd_is_com_section (sec)
1446 && (oldweak || oldfunc)))
1447 && olddyn
1448 && olddef
1449 && h->def_dynamic)
1450 {
1451 /* Change the hash table entry to undefined, and let
1452 _bfd_generic_link_add_one_symbol do the right thing with the
1453 new definition. */
1454
1455 h->root.type = bfd_link_hash_undefined;
1456 h->root.u.undef.abfd = h->root.u.def.section->owner;
1457 *size_change_ok = TRUE;
1458
1459 olddef = FALSE;
1460 olddyncommon = FALSE;
1461
1462 /* We again permit a type change when a common symbol may be
1463 overriding a function. */
1464
1465 if (bfd_is_com_section (sec))
1466 {
1467 if (oldfunc)
1468 {
1469 /* If a common symbol overrides a function, make sure
1470 that it isn't defined dynamically nor has type
1471 function. */
1472 h->def_dynamic = 0;
1473 h->type = STT_NOTYPE;
1474 }
1475 *type_change_ok = TRUE;
1476 }
1477
1478 if (hi->root.type == bfd_link_hash_indirect)
1479 flip = hi;
1480 else
1481 /* This union may have been set to be non-NULL when this symbol
1482 was seen in a dynamic object. We must force the union to be
1483 NULL, so that it is correct for a regular symbol. */
1484 h->verinfo.vertree = NULL;
1485 }
1486
1487 /* Handle the special case of a new common symbol merging with an
1488 old symbol that looks like it might be a common symbol defined in
1489 a shared object. Note that we have already handled the case in
1490 which a new common symbol should simply override the definition
1491 in the shared library. */
1492
1493 if (! newdyn
1494 && bfd_is_com_section (sec)
1495 && olddyncommon)
1496 {
1497 /* It would be best if we could set the hash table entry to a
1498 common symbol, but we don't know what to use for the section
1499 or the alignment. */
1500 if (! ((*info->callbacks->multiple_common)
1501 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1502 return FALSE;
1503
1504 /* If the presumed common symbol in the dynamic object is
1505 larger, pretend that the new symbol has its size. */
1506
1507 if (h->size > *pvalue)
1508 *pvalue = h->size;
1509
1510 /* We need to remember the alignment required by the symbol
1511 in the dynamic object. */
1512 BFD_ASSERT (pold_alignment);
1513 *pold_alignment = h->root.u.def.section->alignment_power;
1514
1515 olddef = FALSE;
1516 olddyncommon = FALSE;
1517
1518 h->root.type = bfd_link_hash_undefined;
1519 h->root.u.undef.abfd = h->root.u.def.section->owner;
1520
1521 *size_change_ok = TRUE;
1522 *type_change_ok = TRUE;
1523
1524 if (hi->root.type == bfd_link_hash_indirect)
1525 flip = hi;
1526 else
1527 h->verinfo.vertree = NULL;
1528 }
1529
1530 if (flip != NULL)
1531 {
1532 /* Handle the case where we had a versioned symbol in a dynamic
1533 library and now find a definition in a normal object. In this
1534 case, we make the versioned symbol point to the normal one. */
1535 flip->root.type = h->root.type;
1536 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1537 h->root.type = bfd_link_hash_indirect;
1538 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1539 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1540 if (h->def_dynamic)
1541 {
1542 h->def_dynamic = 0;
1543 flip->ref_dynamic = 1;
1544 }
1545 }
1546
1547 return TRUE;
1548 }
1549
1550 /* This function is called to create an indirect symbol from the
1551 default for the symbol with the default version if needed. The
1552 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1553 set DYNSYM if the new indirect symbol is dynamic. */
1554
1555 static bfd_boolean
1556 _bfd_elf_add_default_symbol (bfd *abfd,
1557 struct bfd_link_info *info,
1558 struct elf_link_hash_entry *h,
1559 const char *name,
1560 Elf_Internal_Sym *sym,
1561 asection *sec,
1562 bfd_vma value,
1563 bfd **poldbfd,
1564 bfd_boolean *dynsym)
1565 {
1566 bfd_boolean type_change_ok;
1567 bfd_boolean size_change_ok;
1568 bfd_boolean skip;
1569 char *shortname;
1570 struct elf_link_hash_entry *hi;
1571 struct bfd_link_hash_entry *bh;
1572 const struct elf_backend_data *bed;
1573 bfd_boolean collect;
1574 bfd_boolean dynamic;
1575 bfd_boolean override;
1576 char *p;
1577 size_t len, shortlen;
1578 asection *tmp_sec;
1579
1580 /* If this symbol has a version, and it is the default version, we
1581 create an indirect symbol from the default name to the fully
1582 decorated name. This will cause external references which do not
1583 specify a version to be bound to this version of the symbol. */
1584 p = strchr (name, ELF_VER_CHR);
1585 if (p == NULL || p[1] != ELF_VER_CHR)
1586 return TRUE;
1587
1588 bed = get_elf_backend_data (abfd);
1589 collect = bed->collect;
1590 dynamic = (abfd->flags & DYNAMIC) != 0;
1591
1592 shortlen = p - name;
1593 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1594 if (shortname == NULL)
1595 return FALSE;
1596 memcpy (shortname, name, shortlen);
1597 shortname[shortlen] = '\0';
1598
1599 /* We are going to create a new symbol. Merge it with any existing
1600 symbol with this name. For the purposes of the merge, act as
1601 though we were defining the symbol we just defined, although we
1602 actually going to define an indirect symbol. */
1603 type_change_ok = FALSE;
1604 size_change_ok = FALSE;
1605 tmp_sec = sec;
1606 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1607 &hi, poldbfd, NULL, NULL, &skip, &override,
1608 &type_change_ok, &size_change_ok))
1609 return FALSE;
1610
1611 if (skip)
1612 goto nondefault;
1613
1614 if (! override)
1615 {
1616 bh = &hi->root;
1617 if (! (_bfd_generic_link_add_one_symbol
1618 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1619 0, name, FALSE, collect, &bh)))
1620 return FALSE;
1621 hi = (struct elf_link_hash_entry *) bh;
1622 }
1623 else
1624 {
1625 /* In this case the symbol named SHORTNAME is overriding the
1626 indirect symbol we want to add. We were planning on making
1627 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1628 is the name without a version. NAME is the fully versioned
1629 name, and it is the default version.
1630
1631 Overriding means that we already saw a definition for the
1632 symbol SHORTNAME in a regular object, and it is overriding
1633 the symbol defined in the dynamic object.
1634
1635 When this happens, we actually want to change NAME, the
1636 symbol we just added, to refer to SHORTNAME. This will cause
1637 references to NAME in the shared object to become references
1638 to SHORTNAME in the regular object. This is what we expect
1639 when we override a function in a shared object: that the
1640 references in the shared object will be mapped to the
1641 definition in the regular object. */
1642
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1645 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1646
1647 h->root.type = bfd_link_hash_indirect;
1648 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1649 if (h->def_dynamic)
1650 {
1651 h->def_dynamic = 0;
1652 hi->ref_dynamic = 1;
1653 if (hi->ref_regular
1654 || hi->def_regular)
1655 {
1656 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1657 return FALSE;
1658 }
1659 }
1660
1661 /* Now set HI to H, so that the following code will set the
1662 other fields correctly. */
1663 hi = h;
1664 }
1665
1666 /* Check if HI is a warning symbol. */
1667 if (hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1669
1670 /* If there is a duplicate definition somewhere, then HI may not
1671 point to an indirect symbol. We will have reported an error to
1672 the user in that case. */
1673
1674 if (hi->root.type == bfd_link_hash_indirect)
1675 {
1676 struct elf_link_hash_entry *ht;
1677
1678 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1680
1681 /* A reference to the SHORTNAME symbol from a dynamic library
1682 will be satisfied by the versioned symbol at runtime. In
1683 effect, we have a reference to the versioned symbol. */
1684 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1685 hi->dynamic_def |= ht->dynamic_def;
1686
1687 /* See if the new flags lead us to realize that the symbol must
1688 be dynamic. */
1689 if (! *dynsym)
1690 {
1691 if (! dynamic)
1692 {
1693 if (! info->executable
1694 || hi->def_dynamic
1695 || hi->ref_dynamic)
1696 *dynsym = TRUE;
1697 }
1698 else
1699 {
1700 if (hi->ref_regular)
1701 *dynsym = TRUE;
1702 }
1703 }
1704 }
1705
1706 /* We also need to define an indirection from the nondefault version
1707 of the symbol. */
1708
1709 nondefault:
1710 len = strlen (name);
1711 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1712 if (shortname == NULL)
1713 return FALSE;
1714 memcpy (shortname, name, shortlen);
1715 memcpy (shortname + shortlen, p + 1, len - shortlen);
1716
1717 /* Once again, merge with any existing symbol. */
1718 type_change_ok = FALSE;
1719 size_change_ok = FALSE;
1720 tmp_sec = sec;
1721 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1722 &hi, poldbfd, NULL, NULL, &skip, &override,
1723 &type_change_ok, &size_change_ok))
1724 return FALSE;
1725
1726 if (skip)
1727 return TRUE;
1728
1729 if (override)
1730 {
1731 /* Here SHORTNAME is a versioned name, so we don't expect to see
1732 the type of override we do in the case above unless it is
1733 overridden by a versioned definition. */
1734 if (hi->root.type != bfd_link_hash_defined
1735 && hi->root.type != bfd_link_hash_defweak)
1736 (*_bfd_error_handler)
1737 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1738 abfd, shortname);
1739 }
1740 else
1741 {
1742 bh = &hi->root;
1743 if (! (_bfd_generic_link_add_one_symbol
1744 (info, abfd, shortname, BSF_INDIRECT,
1745 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1746 return FALSE;
1747 hi = (struct elf_link_hash_entry *) bh;
1748
1749 /* If there is a duplicate definition somewhere, then HI may not
1750 point to an indirect symbol. We will have reported an error
1751 to the user in that case. */
1752
1753 if (hi->root.type == bfd_link_hash_indirect)
1754 {
1755 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1756 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1757 hi->dynamic_def |= h->dynamic_def;
1758
1759 /* See if the new flags lead us to realize that the symbol
1760 must be dynamic. */
1761 if (! *dynsym)
1762 {
1763 if (! dynamic)
1764 {
1765 if (! info->executable
1766 || hi->ref_dynamic)
1767 *dynsym = TRUE;
1768 }
1769 else
1770 {
1771 if (hi->ref_regular)
1772 *dynsym = TRUE;
1773 }
1774 }
1775 }
1776 }
1777
1778 return TRUE;
1779 }
1780 \f
1781 /* This routine is used to export all defined symbols into the dynamic
1782 symbol table. It is called via elf_link_hash_traverse. */
1783
1784 static bfd_boolean
1785 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1786 {
1787 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1788
1789 /* Ignore indirect symbols. These are added by the versioning code. */
1790 if (h->root.type == bfd_link_hash_indirect)
1791 return TRUE;
1792
1793 /* Ignore this if we won't export it. */
1794 if (!eif->info->export_dynamic && !h->dynamic)
1795 return TRUE;
1796
1797 if (h->dynindx == -1
1798 && (h->def_regular || h->ref_regular)
1799 && ! bfd_hide_sym_by_version (eif->info->version_info,
1800 h->root.root.string))
1801 {
1802 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1803 {
1804 eif->failed = TRUE;
1805 return FALSE;
1806 }
1807 }
1808
1809 return TRUE;
1810 }
1811 \f
1812 /* Look through the symbols which are defined in other shared
1813 libraries and referenced here. Update the list of version
1814 dependencies. This will be put into the .gnu.version_r section.
1815 This function is called via elf_link_hash_traverse. */
1816
1817 static bfd_boolean
1818 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1819 void *data)
1820 {
1821 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1822 Elf_Internal_Verneed *t;
1823 Elf_Internal_Vernaux *a;
1824 bfd_size_type amt;
1825
1826 /* We only care about symbols defined in shared objects with version
1827 information. */
1828 if (!h->def_dynamic
1829 || h->def_regular
1830 || h->dynindx == -1
1831 || h->verinfo.verdef == NULL
1832 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1833 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1834 return TRUE;
1835
1836 /* See if we already know about this version. */
1837 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1838 t != NULL;
1839 t = t->vn_nextref)
1840 {
1841 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1842 continue;
1843
1844 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1845 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1846 return TRUE;
1847
1848 break;
1849 }
1850
1851 /* This is a new version. Add it to tree we are building. */
1852
1853 if (t == NULL)
1854 {
1855 amt = sizeof *t;
1856 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1857 if (t == NULL)
1858 {
1859 rinfo->failed = TRUE;
1860 return FALSE;
1861 }
1862
1863 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1864 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1865 elf_tdata (rinfo->info->output_bfd)->verref = t;
1866 }
1867
1868 amt = sizeof *a;
1869 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1870 if (a == NULL)
1871 {
1872 rinfo->failed = TRUE;
1873 return FALSE;
1874 }
1875
1876 /* Note that we are copying a string pointer here, and testing it
1877 above. If bfd_elf_string_from_elf_section is ever changed to
1878 discard the string data when low in memory, this will have to be
1879 fixed. */
1880 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1881
1882 a->vna_flags = h->verinfo.verdef->vd_flags;
1883 a->vna_nextptr = t->vn_auxptr;
1884
1885 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1886 ++rinfo->vers;
1887
1888 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1889
1890 t->vn_auxptr = a;
1891
1892 return TRUE;
1893 }
1894
1895 /* Figure out appropriate versions for all the symbols. We may not
1896 have the version number script until we have read all of the input
1897 files, so until that point we don't know which symbols should be
1898 local. This function is called via elf_link_hash_traverse. */
1899
1900 static bfd_boolean
1901 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1902 {
1903 struct elf_info_failed *sinfo;
1904 struct bfd_link_info *info;
1905 const struct elf_backend_data *bed;
1906 struct elf_info_failed eif;
1907 char *p;
1908 bfd_size_type amt;
1909
1910 sinfo = (struct elf_info_failed *) data;
1911 info = sinfo->info;
1912
1913 /* Fix the symbol flags. */
1914 eif.failed = FALSE;
1915 eif.info = info;
1916 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1917 {
1918 if (eif.failed)
1919 sinfo->failed = TRUE;
1920 return FALSE;
1921 }
1922
1923 /* We only need version numbers for symbols defined in regular
1924 objects. */
1925 if (!h->def_regular)
1926 return TRUE;
1927
1928 bed = get_elf_backend_data (info->output_bfd);
1929 p = strchr (h->root.root.string, ELF_VER_CHR);
1930 if (p != NULL && h->verinfo.vertree == NULL)
1931 {
1932 struct bfd_elf_version_tree *t;
1933 bfd_boolean hidden;
1934
1935 hidden = TRUE;
1936
1937 /* There are two consecutive ELF_VER_CHR characters if this is
1938 not a hidden symbol. */
1939 ++p;
1940 if (*p == ELF_VER_CHR)
1941 {
1942 hidden = FALSE;
1943 ++p;
1944 }
1945
1946 /* If there is no version string, we can just return out. */
1947 if (*p == '\0')
1948 {
1949 if (hidden)
1950 h->hidden = 1;
1951 return TRUE;
1952 }
1953
1954 /* Look for the version. If we find it, it is no longer weak. */
1955 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1956 {
1957 if (strcmp (t->name, p) == 0)
1958 {
1959 size_t len;
1960 char *alc;
1961 struct bfd_elf_version_expr *d;
1962
1963 len = p - h->root.root.string;
1964 alc = (char *) bfd_malloc (len);
1965 if (alc == NULL)
1966 {
1967 sinfo->failed = TRUE;
1968 return FALSE;
1969 }
1970 memcpy (alc, h->root.root.string, len - 1);
1971 alc[len - 1] = '\0';
1972 if (alc[len - 2] == ELF_VER_CHR)
1973 alc[len - 2] = '\0';
1974
1975 h->verinfo.vertree = t;
1976 t->used = TRUE;
1977 d = NULL;
1978
1979 if (t->globals.list != NULL)
1980 d = (*t->match) (&t->globals, NULL, alc);
1981
1982 /* See if there is anything to force this symbol to
1983 local scope. */
1984 if (d == NULL && t->locals.list != NULL)
1985 {
1986 d = (*t->match) (&t->locals, NULL, alc);
1987 if (d != NULL
1988 && h->dynindx != -1
1989 && ! info->export_dynamic)
1990 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1991 }
1992
1993 free (alc);
1994 break;
1995 }
1996 }
1997
1998 /* If we are building an application, we need to create a
1999 version node for this version. */
2000 if (t == NULL && info->executable)
2001 {
2002 struct bfd_elf_version_tree **pp;
2003 int version_index;
2004
2005 /* If we aren't going to export this symbol, we don't need
2006 to worry about it. */
2007 if (h->dynindx == -1)
2008 return TRUE;
2009
2010 amt = sizeof *t;
2011 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2012 if (t == NULL)
2013 {
2014 sinfo->failed = TRUE;
2015 return FALSE;
2016 }
2017
2018 t->name = p;
2019 t->name_indx = (unsigned int) -1;
2020 t->used = TRUE;
2021
2022 version_index = 1;
2023 /* Don't count anonymous version tag. */
2024 if (sinfo->info->version_info != NULL
2025 && sinfo->info->version_info->vernum == 0)
2026 version_index = 0;
2027 for (pp = &sinfo->info->version_info;
2028 *pp != NULL;
2029 pp = &(*pp)->next)
2030 ++version_index;
2031 t->vernum = version_index;
2032
2033 *pp = t;
2034
2035 h->verinfo.vertree = t;
2036 }
2037 else if (t == NULL)
2038 {
2039 /* We could not find the version for a symbol when
2040 generating a shared archive. Return an error. */
2041 (*_bfd_error_handler)
2042 (_("%B: version node not found for symbol %s"),
2043 info->output_bfd, h->root.root.string);
2044 bfd_set_error (bfd_error_bad_value);
2045 sinfo->failed = TRUE;
2046 return FALSE;
2047 }
2048
2049 if (hidden)
2050 h->hidden = 1;
2051 }
2052
2053 /* If we don't have a version for this symbol, see if we can find
2054 something. */
2055 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2056 {
2057 bfd_boolean hide;
2058
2059 h->verinfo.vertree
2060 = bfd_find_version_for_sym (sinfo->info->version_info,
2061 h->root.root.string, &hide);
2062 if (h->verinfo.vertree != NULL && hide)
2063 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2064 }
2065
2066 return TRUE;
2067 }
2068 \f
2069 /* Read and swap the relocs from the section indicated by SHDR. This
2070 may be either a REL or a RELA section. The relocations are
2071 translated into RELA relocations and stored in INTERNAL_RELOCS,
2072 which should have already been allocated to contain enough space.
2073 The EXTERNAL_RELOCS are a buffer where the external form of the
2074 relocations should be stored.
2075
2076 Returns FALSE if something goes wrong. */
2077
2078 static bfd_boolean
2079 elf_link_read_relocs_from_section (bfd *abfd,
2080 asection *sec,
2081 Elf_Internal_Shdr *shdr,
2082 void *external_relocs,
2083 Elf_Internal_Rela *internal_relocs)
2084 {
2085 const struct elf_backend_data *bed;
2086 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2087 const bfd_byte *erela;
2088 const bfd_byte *erelaend;
2089 Elf_Internal_Rela *irela;
2090 Elf_Internal_Shdr *symtab_hdr;
2091 size_t nsyms;
2092
2093 /* Position ourselves at the start of the section. */
2094 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2095 return FALSE;
2096
2097 /* Read the relocations. */
2098 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2099 return FALSE;
2100
2101 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2102 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2103
2104 bed = get_elf_backend_data (abfd);
2105
2106 /* Convert the external relocations to the internal format. */
2107 if (shdr->sh_entsize == bed->s->sizeof_rel)
2108 swap_in = bed->s->swap_reloc_in;
2109 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2110 swap_in = bed->s->swap_reloca_in;
2111 else
2112 {
2113 bfd_set_error (bfd_error_wrong_format);
2114 return FALSE;
2115 }
2116
2117 erela = (const bfd_byte *) external_relocs;
2118 erelaend = erela + shdr->sh_size;
2119 irela = internal_relocs;
2120 while (erela < erelaend)
2121 {
2122 bfd_vma r_symndx;
2123
2124 (*swap_in) (abfd, erela, irela);
2125 r_symndx = ELF32_R_SYM (irela->r_info);
2126 if (bed->s->arch_size == 64)
2127 r_symndx >>= 24;
2128 if (nsyms > 0)
2129 {
2130 if ((size_t) r_symndx >= nsyms)
2131 {
2132 (*_bfd_error_handler)
2133 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2134 " for offset 0x%lx in section `%A'"),
2135 abfd, sec,
2136 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2137 bfd_set_error (bfd_error_bad_value);
2138 return FALSE;
2139 }
2140 }
2141 else if (r_symndx != STN_UNDEF)
2142 {
2143 (*_bfd_error_handler)
2144 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2145 " when the object file has no symbol table"),
2146 abfd, sec,
2147 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2148 bfd_set_error (bfd_error_bad_value);
2149 return FALSE;
2150 }
2151 irela += bed->s->int_rels_per_ext_rel;
2152 erela += shdr->sh_entsize;
2153 }
2154
2155 return TRUE;
2156 }
2157
2158 /* Read and swap the relocs for a section O. They may have been
2159 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2160 not NULL, they are used as buffers to read into. They are known to
2161 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2162 the return value is allocated using either malloc or bfd_alloc,
2163 according to the KEEP_MEMORY argument. If O has two relocation
2164 sections (both REL and RELA relocations), then the REL_HDR
2165 relocations will appear first in INTERNAL_RELOCS, followed by the
2166 RELA_HDR relocations. */
2167
2168 Elf_Internal_Rela *
2169 _bfd_elf_link_read_relocs (bfd *abfd,
2170 asection *o,
2171 void *external_relocs,
2172 Elf_Internal_Rela *internal_relocs,
2173 bfd_boolean keep_memory)
2174 {
2175 void *alloc1 = NULL;
2176 Elf_Internal_Rela *alloc2 = NULL;
2177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2178 struct bfd_elf_section_data *esdo = elf_section_data (o);
2179 Elf_Internal_Rela *internal_rela_relocs;
2180
2181 if (esdo->relocs != NULL)
2182 return esdo->relocs;
2183
2184 if (o->reloc_count == 0)
2185 return NULL;
2186
2187 if (internal_relocs == NULL)
2188 {
2189 bfd_size_type size;
2190
2191 size = o->reloc_count;
2192 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2193 if (keep_memory)
2194 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2195 else
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2197 if (internal_relocs == NULL)
2198 goto error_return;
2199 }
2200
2201 if (external_relocs == NULL)
2202 {
2203 bfd_size_type size = 0;
2204
2205 if (esdo->rel.hdr)
2206 size += esdo->rel.hdr->sh_size;
2207 if (esdo->rela.hdr)
2208 size += esdo->rela.hdr->sh_size;
2209
2210 alloc1 = bfd_malloc (size);
2211 if (alloc1 == NULL)
2212 goto error_return;
2213 external_relocs = alloc1;
2214 }
2215
2216 internal_rela_relocs = internal_relocs;
2217 if (esdo->rel.hdr)
2218 {
2219 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2220 external_relocs,
2221 internal_relocs))
2222 goto error_return;
2223 external_relocs = (((bfd_byte *) external_relocs)
2224 + esdo->rel.hdr->sh_size);
2225 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2226 * bed->s->int_rels_per_ext_rel);
2227 }
2228
2229 if (esdo->rela.hdr
2230 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2231 external_relocs,
2232 internal_rela_relocs)))
2233 goto error_return;
2234
2235 /* Cache the results for next time, if we can. */
2236 if (keep_memory)
2237 esdo->relocs = internal_relocs;
2238
2239 if (alloc1 != NULL)
2240 free (alloc1);
2241
2242 /* Don't free alloc2, since if it was allocated we are passing it
2243 back (under the name of internal_relocs). */
2244
2245 return internal_relocs;
2246
2247 error_return:
2248 if (alloc1 != NULL)
2249 free (alloc1);
2250 if (alloc2 != NULL)
2251 {
2252 if (keep_memory)
2253 bfd_release (abfd, alloc2);
2254 else
2255 free (alloc2);
2256 }
2257 return NULL;
2258 }
2259
2260 /* Compute the size of, and allocate space for, REL_HDR which is the
2261 section header for a section containing relocations for O. */
2262
2263 static bfd_boolean
2264 _bfd_elf_link_size_reloc_section (bfd *abfd,
2265 struct bfd_elf_section_reloc_data *reldata)
2266 {
2267 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2268
2269 /* That allows us to calculate the size of the section. */
2270 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2271
2272 /* The contents field must last into write_object_contents, so we
2273 allocate it with bfd_alloc rather than malloc. Also since we
2274 cannot be sure that the contents will actually be filled in,
2275 we zero the allocated space. */
2276 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2277 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2278 return FALSE;
2279
2280 if (reldata->hashes == NULL && reldata->count)
2281 {
2282 struct elf_link_hash_entry **p;
2283
2284 p = (struct elf_link_hash_entry **)
2285 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2286 if (p == NULL)
2287 return FALSE;
2288
2289 reldata->hashes = p;
2290 }
2291
2292 return TRUE;
2293 }
2294
2295 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2296 originated from the section given by INPUT_REL_HDR) to the
2297 OUTPUT_BFD. */
2298
2299 bfd_boolean
2300 _bfd_elf_link_output_relocs (bfd *output_bfd,
2301 asection *input_section,
2302 Elf_Internal_Shdr *input_rel_hdr,
2303 Elf_Internal_Rela *internal_relocs,
2304 struct elf_link_hash_entry **rel_hash
2305 ATTRIBUTE_UNUSED)
2306 {
2307 Elf_Internal_Rela *irela;
2308 Elf_Internal_Rela *irelaend;
2309 bfd_byte *erel;
2310 struct bfd_elf_section_reloc_data *output_reldata;
2311 asection *output_section;
2312 const struct elf_backend_data *bed;
2313 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2314 struct bfd_elf_section_data *esdo;
2315
2316 output_section = input_section->output_section;
2317
2318 bed = get_elf_backend_data (output_bfd);
2319 esdo = elf_section_data (output_section);
2320 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2321 {
2322 output_reldata = &esdo->rel;
2323 swap_out = bed->s->swap_reloc_out;
2324 }
2325 else if (esdo->rela.hdr
2326 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2327 {
2328 output_reldata = &esdo->rela;
2329 swap_out = bed->s->swap_reloca_out;
2330 }
2331 else
2332 {
2333 (*_bfd_error_handler)
2334 (_("%B: relocation size mismatch in %B section %A"),
2335 output_bfd, input_section->owner, input_section);
2336 bfd_set_error (bfd_error_wrong_format);
2337 return FALSE;
2338 }
2339
2340 erel = output_reldata->hdr->contents;
2341 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2342 irela = internal_relocs;
2343 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2344 * bed->s->int_rels_per_ext_rel);
2345 while (irela < irelaend)
2346 {
2347 (*swap_out) (output_bfd, irela, erel);
2348 irela += bed->s->int_rels_per_ext_rel;
2349 erel += input_rel_hdr->sh_entsize;
2350 }
2351
2352 /* Bump the counter, so that we know where to add the next set of
2353 relocations. */
2354 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2355
2356 return TRUE;
2357 }
2358 \f
2359 /* Make weak undefined symbols in PIE dynamic. */
2360
2361 bfd_boolean
2362 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2363 struct elf_link_hash_entry *h)
2364 {
2365 if (info->pie
2366 && h->dynindx == -1
2367 && h->root.type == bfd_link_hash_undefweak)
2368 return bfd_elf_link_record_dynamic_symbol (info, h);
2369
2370 return TRUE;
2371 }
2372
2373 /* Fix up the flags for a symbol. This handles various cases which
2374 can only be fixed after all the input files are seen. This is
2375 currently called by both adjust_dynamic_symbol and
2376 assign_sym_version, which is unnecessary but perhaps more robust in
2377 the face of future changes. */
2378
2379 static bfd_boolean
2380 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2381 struct elf_info_failed *eif)
2382 {
2383 const struct elf_backend_data *bed;
2384
2385 /* If this symbol was mentioned in a non-ELF file, try to set
2386 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2387 permit a non-ELF file to correctly refer to a symbol defined in
2388 an ELF dynamic object. */
2389 if (h->non_elf)
2390 {
2391 while (h->root.type == bfd_link_hash_indirect)
2392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2393
2394 if (h->root.type != bfd_link_hash_defined
2395 && h->root.type != bfd_link_hash_defweak)
2396 {
2397 h->ref_regular = 1;
2398 h->ref_regular_nonweak = 1;
2399 }
2400 else
2401 {
2402 if (h->root.u.def.section->owner != NULL
2403 && (bfd_get_flavour (h->root.u.def.section->owner)
2404 == bfd_target_elf_flavour))
2405 {
2406 h->ref_regular = 1;
2407 h->ref_regular_nonweak = 1;
2408 }
2409 else
2410 h->def_regular = 1;
2411 }
2412
2413 if (h->dynindx == -1
2414 && (h->def_dynamic
2415 || h->ref_dynamic))
2416 {
2417 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2418 {
2419 eif->failed = TRUE;
2420 return FALSE;
2421 }
2422 }
2423 }
2424 else
2425 {
2426 /* Unfortunately, NON_ELF is only correct if the symbol
2427 was first seen in a non-ELF file. Fortunately, if the symbol
2428 was first seen in an ELF file, we're probably OK unless the
2429 symbol was defined in a non-ELF file. Catch that case here.
2430 FIXME: We're still in trouble if the symbol was first seen in
2431 a dynamic object, and then later in a non-ELF regular object. */
2432 if ((h->root.type == bfd_link_hash_defined
2433 || h->root.type == bfd_link_hash_defweak)
2434 && !h->def_regular
2435 && (h->root.u.def.section->owner != NULL
2436 ? (bfd_get_flavour (h->root.u.def.section->owner)
2437 != bfd_target_elf_flavour)
2438 : (bfd_is_abs_section (h->root.u.def.section)
2439 && !h->def_dynamic)))
2440 h->def_regular = 1;
2441 }
2442
2443 /* Backend specific symbol fixup. */
2444 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2445 if (bed->elf_backend_fixup_symbol
2446 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2447 return FALSE;
2448
2449 /* If this is a final link, and the symbol was defined as a common
2450 symbol in a regular object file, and there was no definition in
2451 any dynamic object, then the linker will have allocated space for
2452 the symbol in a common section but the DEF_REGULAR
2453 flag will not have been set. */
2454 if (h->root.type == bfd_link_hash_defined
2455 && !h->def_regular
2456 && h->ref_regular
2457 && !h->def_dynamic
2458 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2459 h->def_regular = 1;
2460
2461 /* If -Bsymbolic was used (which means to bind references to global
2462 symbols to the definition within the shared object), and this
2463 symbol was defined in a regular object, then it actually doesn't
2464 need a PLT entry. Likewise, if the symbol has non-default
2465 visibility. If the symbol has hidden or internal visibility, we
2466 will force it local. */
2467 if (h->needs_plt
2468 && eif->info->shared
2469 && is_elf_hash_table (eif->info->hash)
2470 && (SYMBOLIC_BIND (eif->info, h)
2471 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2472 && h->def_regular)
2473 {
2474 bfd_boolean force_local;
2475
2476 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2477 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2478 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2479 }
2480
2481 /* If a weak undefined symbol has non-default visibility, we also
2482 hide it from the dynamic linker. */
2483 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2484 && h->root.type == bfd_link_hash_undefweak)
2485 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2486
2487 /* If this is a weak defined symbol in a dynamic object, and we know
2488 the real definition in the dynamic object, copy interesting flags
2489 over to the real definition. */
2490 if (h->u.weakdef != NULL)
2491 {
2492 /* If the real definition is defined by a regular object file,
2493 don't do anything special. See the longer description in
2494 _bfd_elf_adjust_dynamic_symbol, below. */
2495 if (h->u.weakdef->def_regular)
2496 h->u.weakdef = NULL;
2497 else
2498 {
2499 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2500
2501 while (h->root.type == bfd_link_hash_indirect)
2502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2503
2504 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2505 || h->root.type == bfd_link_hash_defweak);
2506 BFD_ASSERT (weakdef->def_dynamic);
2507 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2508 || weakdef->root.type == bfd_link_hash_defweak);
2509 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2510 }
2511 }
2512
2513 return TRUE;
2514 }
2515
2516 /* Make the backend pick a good value for a dynamic symbol. This is
2517 called via elf_link_hash_traverse, and also calls itself
2518 recursively. */
2519
2520 static bfd_boolean
2521 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2522 {
2523 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2524 bfd *dynobj;
2525 const struct elf_backend_data *bed;
2526
2527 if (! is_elf_hash_table (eif->info->hash))
2528 return FALSE;
2529
2530 /* Ignore indirect symbols. These are added by the versioning code. */
2531 if (h->root.type == bfd_link_hash_indirect)
2532 return TRUE;
2533
2534 /* Fix the symbol flags. */
2535 if (! _bfd_elf_fix_symbol_flags (h, eif))
2536 return FALSE;
2537
2538 /* If this symbol does not require a PLT entry, and it is not
2539 defined by a dynamic object, or is not referenced by a regular
2540 object, ignore it. We do have to handle a weak defined symbol,
2541 even if no regular object refers to it, if we decided to add it
2542 to the dynamic symbol table. FIXME: Do we normally need to worry
2543 about symbols which are defined by one dynamic object and
2544 referenced by another one? */
2545 if (!h->needs_plt
2546 && h->type != STT_GNU_IFUNC
2547 && (h->def_regular
2548 || !h->def_dynamic
2549 || (!h->ref_regular
2550 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2551 {
2552 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2553 return TRUE;
2554 }
2555
2556 /* If we've already adjusted this symbol, don't do it again. This
2557 can happen via a recursive call. */
2558 if (h->dynamic_adjusted)
2559 return TRUE;
2560
2561 /* Don't look at this symbol again. Note that we must set this
2562 after checking the above conditions, because we may look at a
2563 symbol once, decide not to do anything, and then get called
2564 recursively later after REF_REGULAR is set below. */
2565 h->dynamic_adjusted = 1;
2566
2567 /* If this is a weak definition, and we know a real definition, and
2568 the real symbol is not itself defined by a regular object file,
2569 then get a good value for the real definition. We handle the
2570 real symbol first, for the convenience of the backend routine.
2571
2572 Note that there is a confusing case here. If the real definition
2573 is defined by a regular object file, we don't get the real symbol
2574 from the dynamic object, but we do get the weak symbol. If the
2575 processor backend uses a COPY reloc, then if some routine in the
2576 dynamic object changes the real symbol, we will not see that
2577 change in the corresponding weak symbol. This is the way other
2578 ELF linkers work as well, and seems to be a result of the shared
2579 library model.
2580
2581 I will clarify this issue. Most SVR4 shared libraries define the
2582 variable _timezone and define timezone as a weak synonym. The
2583 tzset call changes _timezone. If you write
2584 extern int timezone;
2585 int _timezone = 5;
2586 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2587 you might expect that, since timezone is a synonym for _timezone,
2588 the same number will print both times. However, if the processor
2589 backend uses a COPY reloc, then actually timezone will be copied
2590 into your process image, and, since you define _timezone
2591 yourself, _timezone will not. Thus timezone and _timezone will
2592 wind up at different memory locations. The tzset call will set
2593 _timezone, leaving timezone unchanged. */
2594
2595 if (h->u.weakdef != NULL)
2596 {
2597 /* If we get to this point, there is an implicit reference to
2598 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2599 h->u.weakdef->ref_regular = 1;
2600
2601 /* Ensure that the backend adjust_dynamic_symbol function sees
2602 H->U.WEAKDEF before H by recursively calling ourselves. */
2603 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2604 return FALSE;
2605 }
2606
2607 /* If a symbol has no type and no size and does not require a PLT
2608 entry, then we are probably about to do the wrong thing here: we
2609 are probably going to create a COPY reloc for an empty object.
2610 This case can arise when a shared object is built with assembly
2611 code, and the assembly code fails to set the symbol type. */
2612 if (h->size == 0
2613 && h->type == STT_NOTYPE
2614 && !h->needs_plt)
2615 (*_bfd_error_handler)
2616 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2617 h->root.root.string);
2618
2619 dynobj = elf_hash_table (eif->info)->dynobj;
2620 bed = get_elf_backend_data (dynobj);
2621
2622 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2623 {
2624 eif->failed = TRUE;
2625 return FALSE;
2626 }
2627
2628 return TRUE;
2629 }
2630
2631 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2632 DYNBSS. */
2633
2634 bfd_boolean
2635 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2636 struct elf_link_hash_entry *h,
2637 asection *dynbss)
2638 {
2639 unsigned int power_of_two;
2640 bfd_vma mask;
2641 asection *sec = h->root.u.def.section;
2642
2643 /* The section aligment of definition is the maximum alignment
2644 requirement of symbols defined in the section. Since we don't
2645 know the symbol alignment requirement, we start with the
2646 maximum alignment and check low bits of the symbol address
2647 for the minimum alignment. */
2648 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2649 mask = ((bfd_vma) 1 << power_of_two) - 1;
2650 while ((h->root.u.def.value & mask) != 0)
2651 {
2652 mask >>= 1;
2653 --power_of_two;
2654 }
2655
2656 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2657 dynbss))
2658 {
2659 /* Adjust the section alignment if needed. */
2660 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2661 power_of_two))
2662 return FALSE;
2663 }
2664
2665 /* We make sure that the symbol will be aligned properly. */
2666 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2667
2668 /* Define the symbol as being at this point in DYNBSS. */
2669 h->root.u.def.section = dynbss;
2670 h->root.u.def.value = dynbss->size;
2671
2672 /* Increment the size of DYNBSS to make room for the symbol. */
2673 dynbss->size += h->size;
2674
2675 if (h->protected_def)
2676 {
2677 info->callbacks->einfo
2678 (_("%P: copy reloc against protected `%T' is invalid\n"),
2679 h->root.root.string);
2680 bfd_set_error (bfd_error_bad_value);
2681 return FALSE;
2682 }
2683
2684 return TRUE;
2685 }
2686
2687 /* Adjust all external symbols pointing into SEC_MERGE sections
2688 to reflect the object merging within the sections. */
2689
2690 static bfd_boolean
2691 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2692 {
2693 asection *sec;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = (bfd *) data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean not_local_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!not_local_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols. The two functions are virtually identical except
2779 for the place where forced_local and dynindx == -1 are tested. If
2780 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2781 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2782 the symbol is local only for defined symbols.
2783 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2784 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2785 treatment of undefined weak symbols. For those that do not make
2786 undefined weak symbols dynamic, both functions may return false. */
2787
2788 bfd_boolean
2789 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2790 struct bfd_link_info *info,
2791 bfd_boolean local_protected)
2792 {
2793 const struct elf_backend_data *bed;
2794 struct elf_link_hash_table *hash_table;
2795
2796 /* If it's a local sym, of course we resolve locally. */
2797 if (h == NULL)
2798 return TRUE;
2799
2800 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2801 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2802 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2803 return TRUE;
2804
2805 /* Common symbols that become definitions don't get the DEF_REGULAR
2806 flag set, so test it first, and don't bail out. */
2807 if (ELF_COMMON_DEF_P (h))
2808 /* Do nothing. */;
2809 /* If we don't have a definition in a regular file, then we can't
2810 resolve locally. The sym is either undefined or dynamic. */
2811 else if (!h->def_regular)
2812 return FALSE;
2813
2814 /* Forced local symbols resolve locally. */
2815 if (h->forced_local)
2816 return TRUE;
2817
2818 /* As do non-dynamic symbols. */
2819 if (h->dynindx == -1)
2820 return TRUE;
2821
2822 /* At this point, we know the symbol is defined and dynamic. In an
2823 executable it must resolve locally, likewise when building symbolic
2824 shared libraries. */
2825 if (info->executable || SYMBOLIC_BIND (info, h))
2826 return TRUE;
2827
2828 /* Now deal with defined dynamic symbols in shared libraries. Ones
2829 with default visibility might not resolve locally. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2831 return FALSE;
2832
2833 hash_table = elf_hash_table (info);
2834 if (!is_elf_hash_table (hash_table))
2835 return TRUE;
2836
2837 bed = get_elf_backend_data (hash_table->dynobj);
2838
2839 /* STV_PROTECTED non-function symbols are local. */
2840 if (!bed->is_function_type (h->type))
2841 return TRUE;
2842
2843 /* Function pointer equality tests may require that STV_PROTECTED
2844 symbols be treated as dynamic symbols. If the address of a
2845 function not defined in an executable is set to that function's
2846 plt entry in the executable, then the address of the function in
2847 a shared library must also be the plt entry in the executable. */
2848 return local_protected;
2849 }
2850
2851 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2852 aligned. Returns the first TLS output section. */
2853
2854 struct bfd_section *
2855 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2856 {
2857 struct bfd_section *sec, *tls;
2858 unsigned int align = 0;
2859
2860 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2861 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2862 break;
2863 tls = sec;
2864
2865 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2866 if (sec->alignment_power > align)
2867 align = sec->alignment_power;
2868
2869 elf_hash_table (info)->tls_sec = tls;
2870
2871 /* Ensure the alignment of the first section is the largest alignment,
2872 so that the tls segment starts aligned. */
2873 if (tls != NULL)
2874 tls->alignment_power = align;
2875
2876 return tls;
2877 }
2878
2879 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2880 static bfd_boolean
2881 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2882 Elf_Internal_Sym *sym)
2883 {
2884 const struct elf_backend_data *bed;
2885
2886 /* Local symbols do not count, but target specific ones might. */
2887 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2888 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2889 return FALSE;
2890
2891 bed = get_elf_backend_data (abfd);
2892 /* Function symbols do not count. */
2893 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2894 return FALSE;
2895
2896 /* If the section is undefined, then so is the symbol. */
2897 if (sym->st_shndx == SHN_UNDEF)
2898 return FALSE;
2899
2900 /* If the symbol is defined in the common section, then
2901 it is a common definition and so does not count. */
2902 if (bed->common_definition (sym))
2903 return FALSE;
2904
2905 /* If the symbol is in a target specific section then we
2906 must rely upon the backend to tell us what it is. */
2907 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2908 /* FIXME - this function is not coded yet:
2909
2910 return _bfd_is_global_symbol_definition (abfd, sym);
2911
2912 Instead for now assume that the definition is not global,
2913 Even if this is wrong, at least the linker will behave
2914 in the same way that it used to do. */
2915 return FALSE;
2916
2917 return TRUE;
2918 }
2919
2920 /* Search the symbol table of the archive element of the archive ABFD
2921 whose archive map contains a mention of SYMDEF, and determine if
2922 the symbol is defined in this element. */
2923 static bfd_boolean
2924 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2925 {
2926 Elf_Internal_Shdr * hdr;
2927 bfd_size_type symcount;
2928 bfd_size_type extsymcount;
2929 bfd_size_type extsymoff;
2930 Elf_Internal_Sym *isymbuf;
2931 Elf_Internal_Sym *isym;
2932 Elf_Internal_Sym *isymend;
2933 bfd_boolean result;
2934
2935 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2936 if (abfd == NULL)
2937 return FALSE;
2938
2939 if (! bfd_check_format (abfd, bfd_object))
2940 return FALSE;
2941
2942 /* Select the appropriate symbol table. */
2943 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2944 hdr = &elf_tdata (abfd)->symtab_hdr;
2945 else
2946 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2947
2948 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2949
2950 /* The sh_info field of the symtab header tells us where the
2951 external symbols start. We don't care about the local symbols. */
2952 if (elf_bad_symtab (abfd))
2953 {
2954 extsymcount = symcount;
2955 extsymoff = 0;
2956 }
2957 else
2958 {
2959 extsymcount = symcount - hdr->sh_info;
2960 extsymoff = hdr->sh_info;
2961 }
2962
2963 if (extsymcount == 0)
2964 return FALSE;
2965
2966 /* Read in the symbol table. */
2967 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2968 NULL, NULL, NULL);
2969 if (isymbuf == NULL)
2970 return FALSE;
2971
2972 /* Scan the symbol table looking for SYMDEF. */
2973 result = FALSE;
2974 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2975 {
2976 const char *name;
2977
2978 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2979 isym->st_name);
2980 if (name == NULL)
2981 break;
2982
2983 if (strcmp (name, symdef->name) == 0)
2984 {
2985 result = is_global_data_symbol_definition (abfd, isym);
2986 break;
2987 }
2988 }
2989
2990 free (isymbuf);
2991
2992 return result;
2993 }
2994 \f
2995 /* Add an entry to the .dynamic table. */
2996
2997 bfd_boolean
2998 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2999 bfd_vma tag,
3000 bfd_vma val)
3001 {
3002 struct elf_link_hash_table *hash_table;
3003 const struct elf_backend_data *bed;
3004 asection *s;
3005 bfd_size_type newsize;
3006 bfd_byte *newcontents;
3007 Elf_Internal_Dyn dyn;
3008
3009 hash_table = elf_hash_table (info);
3010 if (! is_elf_hash_table (hash_table))
3011 return FALSE;
3012
3013 bed = get_elf_backend_data (hash_table->dynobj);
3014 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3015 BFD_ASSERT (s != NULL);
3016
3017 newsize = s->size + bed->s->sizeof_dyn;
3018 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3019 if (newcontents == NULL)
3020 return FALSE;
3021
3022 dyn.d_tag = tag;
3023 dyn.d_un.d_val = val;
3024 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3025
3026 s->size = newsize;
3027 s->contents = newcontents;
3028
3029 return TRUE;
3030 }
3031
3032 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3033 otherwise just check whether one already exists. Returns -1 on error,
3034 1 if a DT_NEEDED tag already exists, and 0 on success. */
3035
3036 static int
3037 elf_add_dt_needed_tag (bfd *abfd,
3038 struct bfd_link_info *info,
3039 const char *soname,
3040 bfd_boolean do_it)
3041 {
3042 struct elf_link_hash_table *hash_table;
3043 bfd_size_type strindex;
3044
3045 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3046 return -1;
3047
3048 hash_table = elf_hash_table (info);
3049 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3050 if (strindex == (bfd_size_type) -1)
3051 return -1;
3052
3053 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3054 {
3055 asection *sdyn;
3056 const struct elf_backend_data *bed;
3057 bfd_byte *extdyn;
3058
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3061 if (sdyn != NULL)
3062 for (extdyn = sdyn->contents;
3063 extdyn < sdyn->contents + sdyn->size;
3064 extdyn += bed->s->sizeof_dyn)
3065 {
3066 Elf_Internal_Dyn dyn;
3067
3068 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3069 if (dyn.d_tag == DT_NEEDED
3070 && dyn.d_un.d_val == strindex)
3071 {
3072 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3073 return 1;
3074 }
3075 }
3076 }
3077
3078 if (do_it)
3079 {
3080 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3081 return -1;
3082
3083 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3084 return -1;
3085 }
3086 else
3087 /* We were just checking for existence of the tag. */
3088 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3089
3090 return 0;
3091 }
3092
3093 static bfd_boolean
3094 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3095 {
3096 for (; needed != NULL; needed = needed->next)
3097 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3098 && strcmp (soname, needed->name) == 0)
3099 return TRUE;
3100
3101 return FALSE;
3102 }
3103
3104 /* Sort symbol by value, section, and size. */
3105 static int
3106 elf_sort_symbol (const void *arg1, const void *arg2)
3107 {
3108 const struct elf_link_hash_entry *h1;
3109 const struct elf_link_hash_entry *h2;
3110 bfd_signed_vma vdiff;
3111
3112 h1 = *(const struct elf_link_hash_entry **) arg1;
3113 h2 = *(const struct elf_link_hash_entry **) arg2;
3114 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3115 if (vdiff != 0)
3116 return vdiff > 0 ? 1 : -1;
3117 else
3118 {
3119 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3120 if (sdiff != 0)
3121 return sdiff > 0 ? 1 : -1;
3122 }
3123 vdiff = h1->size - h2->size;
3124 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3125 }
3126
3127 /* This function is used to adjust offsets into .dynstr for
3128 dynamic symbols. This is called via elf_link_hash_traverse. */
3129
3130 static bfd_boolean
3131 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3132 {
3133 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3134
3135 if (h->dynindx != -1)
3136 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3137 return TRUE;
3138 }
3139
3140 /* Assign string offsets in .dynstr, update all structures referencing
3141 them. */
3142
3143 static bfd_boolean
3144 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3145 {
3146 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3147 struct elf_link_local_dynamic_entry *entry;
3148 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3149 bfd *dynobj = hash_table->dynobj;
3150 asection *sdyn;
3151 bfd_size_type size;
3152 const struct elf_backend_data *bed;
3153 bfd_byte *extdyn;
3154
3155 _bfd_elf_strtab_finalize (dynstr);
3156 size = _bfd_elf_strtab_size (dynstr);
3157
3158 bed = get_elf_backend_data (dynobj);
3159 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3160 BFD_ASSERT (sdyn != NULL);
3161
3162 /* Update all .dynamic entries referencing .dynstr strings. */
3163 for (extdyn = sdyn->contents;
3164 extdyn < sdyn->contents + sdyn->size;
3165 extdyn += bed->s->sizeof_dyn)
3166 {
3167 Elf_Internal_Dyn dyn;
3168
3169 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3170 switch (dyn.d_tag)
3171 {
3172 case DT_STRSZ:
3173 dyn.d_un.d_val = size;
3174 break;
3175 case DT_NEEDED:
3176 case DT_SONAME:
3177 case DT_RPATH:
3178 case DT_RUNPATH:
3179 case DT_FILTER:
3180 case DT_AUXILIARY:
3181 case DT_AUDIT:
3182 case DT_DEPAUDIT:
3183 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3184 break;
3185 default:
3186 continue;
3187 }
3188 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3189 }
3190
3191 /* Now update local dynamic symbols. */
3192 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3193 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3194 entry->isym.st_name);
3195
3196 /* And the rest of dynamic symbols. */
3197 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3198
3199 /* Adjust version definitions. */
3200 if (elf_tdata (output_bfd)->cverdefs)
3201 {
3202 asection *s;
3203 bfd_byte *p;
3204 bfd_size_type i;
3205 Elf_Internal_Verdef def;
3206 Elf_Internal_Verdaux defaux;
3207
3208 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3209 p = s->contents;
3210 do
3211 {
3212 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3213 &def);
3214 p += sizeof (Elf_External_Verdef);
3215 if (def.vd_aux != sizeof (Elf_External_Verdef))
3216 continue;
3217 for (i = 0; i < def.vd_cnt; ++i)
3218 {
3219 _bfd_elf_swap_verdaux_in (output_bfd,
3220 (Elf_External_Verdaux *) p, &defaux);
3221 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3222 defaux.vda_name);
3223 _bfd_elf_swap_verdaux_out (output_bfd,
3224 &defaux, (Elf_External_Verdaux *) p);
3225 p += sizeof (Elf_External_Verdaux);
3226 }
3227 }
3228 while (def.vd_next);
3229 }
3230
3231 /* Adjust version references. */
3232 if (elf_tdata (output_bfd)->verref)
3233 {
3234 asection *s;
3235 bfd_byte *p;
3236 bfd_size_type i;
3237 Elf_Internal_Verneed need;
3238 Elf_Internal_Vernaux needaux;
3239
3240 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3241 p = s->contents;
3242 do
3243 {
3244 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3245 &need);
3246 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3247 _bfd_elf_swap_verneed_out (output_bfd, &need,
3248 (Elf_External_Verneed *) p);
3249 p += sizeof (Elf_External_Verneed);
3250 for (i = 0; i < need.vn_cnt; ++i)
3251 {
3252 _bfd_elf_swap_vernaux_in (output_bfd,
3253 (Elf_External_Vernaux *) p, &needaux);
3254 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3255 needaux.vna_name);
3256 _bfd_elf_swap_vernaux_out (output_bfd,
3257 &needaux,
3258 (Elf_External_Vernaux *) p);
3259 p += sizeof (Elf_External_Vernaux);
3260 }
3261 }
3262 while (need.vn_next);
3263 }
3264
3265 return TRUE;
3266 }
3267 \f
3268 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3269 The default is to only match when the INPUT and OUTPUT are exactly
3270 the same target. */
3271
3272 bfd_boolean
3273 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3274 const bfd_target *output)
3275 {
3276 return input == output;
3277 }
3278
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 This version is used when different targets for the same architecture
3281 are virtually identical. */
3282
3283 bfd_boolean
3284 _bfd_elf_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 const struct elf_backend_data *obed, *ibed;
3288
3289 if (input == output)
3290 return TRUE;
3291
3292 ibed = xvec_get_elf_backend_data (input);
3293 obed = xvec_get_elf_backend_data (output);
3294
3295 if (ibed->arch != obed->arch)
3296 return FALSE;
3297
3298 /* If both backends are using this function, deem them compatible. */
3299 return ibed->relocs_compatible == obed->relocs_compatible;
3300 }
3301
3302 /* Make a special call to the linker "notice" function to tell it that
3303 we are about to handle an as-needed lib, or have finished
3304 processing the lib. */
3305
3306 bfd_boolean
3307 _bfd_elf_notice_as_needed (bfd *ibfd,
3308 struct bfd_link_info *info,
3309 enum notice_asneeded_action act)
3310 {
3311 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3312 }
3313
3314 /* Add symbols from an ELF object file to the linker hash table. */
3315
3316 static bfd_boolean
3317 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3318 {
3319 Elf_Internal_Ehdr *ehdr;
3320 Elf_Internal_Shdr *hdr;
3321 bfd_size_type symcount;
3322 bfd_size_type extsymcount;
3323 bfd_size_type extsymoff;
3324 struct elf_link_hash_entry **sym_hash;
3325 bfd_boolean dynamic;
3326 Elf_External_Versym *extversym = NULL;
3327 Elf_External_Versym *ever;
3328 struct elf_link_hash_entry *weaks;
3329 struct elf_link_hash_entry **nondeflt_vers = NULL;
3330 bfd_size_type nondeflt_vers_cnt = 0;
3331 Elf_Internal_Sym *isymbuf = NULL;
3332 Elf_Internal_Sym *isym;
3333 Elf_Internal_Sym *isymend;
3334 const struct elf_backend_data *bed;
3335 bfd_boolean add_needed;
3336 struct elf_link_hash_table *htab;
3337 bfd_size_type amt;
3338 void *alloc_mark = NULL;
3339 struct bfd_hash_entry **old_table = NULL;
3340 unsigned int old_size = 0;
3341 unsigned int old_count = 0;
3342 void *old_tab = NULL;
3343 void *old_ent;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3348 size_t tabsize = 0;
3349 asection *s;
3350 bfd_boolean just_syms;
3351
3352 htab = elf_hash_table (info);
3353 bed = get_elf_backend_data (abfd);
3354
3355 if ((abfd->flags & DYNAMIC) == 0)
3356 dynamic = FALSE;
3357 else
3358 {
3359 dynamic = TRUE;
3360
3361 /* You can't use -r against a dynamic object. Also, there's no
3362 hope of using a dynamic object which does not exactly match
3363 the format of the output file. */
3364 if (info->relocatable
3365 || !is_elf_hash_table (htab)
3366 || info->output_bfd->xvec != abfd->xvec)
3367 {
3368 if (info->relocatable)
3369 bfd_set_error (bfd_error_invalid_operation);
3370 else
3371 bfd_set_error (bfd_error_wrong_format);
3372 goto error_return;
3373 }
3374 }
3375
3376 ehdr = elf_elfheader (abfd);
3377 if (info->warn_alternate_em
3378 && bed->elf_machine_code != ehdr->e_machine
3379 && ((bed->elf_machine_alt1 != 0
3380 && ehdr->e_machine == bed->elf_machine_alt1)
3381 || (bed->elf_machine_alt2 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt2)))
3383 info->callbacks->einfo
3384 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3385 ehdr->e_machine, abfd, bed->elf_machine_code);
3386
3387 /* As a GNU extension, any input sections which are named
3388 .gnu.warning.SYMBOL are treated as warning symbols for the given
3389 symbol. This differs from .gnu.warning sections, which generate
3390 warnings when they are included in an output file. */
3391 /* PR 12761: Also generate this warning when building shared libraries. */
3392 for (s = abfd->sections; s != NULL; s = s->next)
3393 {
3394 const char *name;
3395
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3398 {
3399 char *msg;
3400 bfd_size_type sz;
3401
3402 name += sizeof ".gnu.warning." - 1;
3403
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3412 link. */
3413 if (dynamic)
3414 {
3415 struct elf_link_hash_entry *h;
3416
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3418
3419 /* FIXME: What about bfd_link_hash_common? */
3420 if (h != NULL
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3423 continue;
3424 }
3425
3426 sz = s->size;
3427 msg = (char *) bfd_alloc (abfd, sz + 1);
3428 if (msg == NULL)
3429 goto error_return;
3430
3431 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3432 goto error_return;
3433
3434 msg[sz] = '\0';
3435
3436 if (! (_bfd_generic_link_add_one_symbol
3437 (info, abfd, name, BSF_WARNING, s, 0, msg,
3438 FALSE, bed->collect, NULL)))
3439 goto error_return;
3440
3441 if (!info->relocatable && info->executable)
3442 {
3443 /* Clobber the section size so that the warning does
3444 not get copied into the output file. */
3445 s->size = 0;
3446
3447 /* Also set SEC_EXCLUDE, so that symbols defined in
3448 the warning section don't get copied to the output. */
3449 s->flags |= SEC_EXCLUDE;
3450 }
3451 }
3452 }
3453
3454 just_syms = ((s = abfd->sections) != NULL
3455 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3456
3457 add_needed = TRUE;
3458 if (! dynamic)
3459 {
3460 /* If we are creating a shared library, create all the dynamic
3461 sections immediately. We need to attach them to something,
3462 so we attach them to this BFD, provided it is the right
3463 format and is not from ld --just-symbols. FIXME: If there
3464 are no input BFD's of the same format as the output, we can't
3465 make a shared library. */
3466 if (!just_syms
3467 && info->shared
3468 && is_elf_hash_table (htab)
3469 && info->output_bfd->xvec == abfd->xvec
3470 && !htab->dynamic_sections_created)
3471 {
3472 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3473 goto error_return;
3474 }
3475 }
3476 else if (!is_elf_hash_table (htab))
3477 goto error_return;
3478 else
3479 {
3480 const char *soname = NULL;
3481 char *audit = NULL;
3482 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3483 int ret;
3484
3485 /* ld --just-symbols and dynamic objects don't mix very well.
3486 ld shouldn't allow it. */
3487 if (just_syms)
3488 abort ();
3489
3490 /* If this dynamic lib was specified on the command line with
3491 --as-needed in effect, then we don't want to add a DT_NEEDED
3492 tag unless the lib is actually used. Similary for libs brought
3493 in by another lib's DT_NEEDED. When --no-add-needed is used
3494 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3495 any dynamic library in DT_NEEDED tags in the dynamic lib at
3496 all. */
3497 add_needed = (elf_dyn_lib_class (abfd)
3498 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3499 | DYN_NO_NEEDED)) == 0;
3500
3501 s = bfd_get_section_by_name (abfd, ".dynamic");
3502 if (s != NULL)
3503 {
3504 bfd_byte *dynbuf;
3505 bfd_byte *extdyn;
3506 unsigned int elfsec;
3507 unsigned long shlink;
3508
3509 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3510 {
3511 error_free_dyn:
3512 free (dynbuf);
3513 goto error_return;
3514 }
3515
3516 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3517 if (elfsec == SHN_BAD)
3518 goto error_free_dyn;
3519 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3520
3521 for (extdyn = dynbuf;
3522 extdyn < dynbuf + s->size;
3523 extdyn += bed->s->sizeof_dyn)
3524 {
3525 Elf_Internal_Dyn dyn;
3526
3527 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3528 if (dyn.d_tag == DT_SONAME)
3529 {
3530 unsigned int tagv = dyn.d_un.d_val;
3531 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3532 if (soname == NULL)
3533 goto error_free_dyn;
3534 }
3535 if (dyn.d_tag == DT_NEEDED)
3536 {
3537 struct bfd_link_needed_list *n, **pn;
3538 char *fnm, *anm;
3539 unsigned int tagv = dyn.d_un.d_val;
3540
3541 amt = sizeof (struct bfd_link_needed_list);
3542 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3543 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3544 if (n == NULL || fnm == NULL)
3545 goto error_free_dyn;
3546 amt = strlen (fnm) + 1;
3547 anm = (char *) bfd_alloc (abfd, amt);
3548 if (anm == NULL)
3549 goto error_free_dyn;
3550 memcpy (anm, fnm, amt);
3551 n->name = anm;
3552 n->by = abfd;
3553 n->next = NULL;
3554 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3555 ;
3556 *pn = n;
3557 }
3558 if (dyn.d_tag == DT_RUNPATH)
3559 {
3560 struct bfd_link_needed_list *n, **pn;
3561 char *fnm, *anm;
3562 unsigned int tagv = dyn.d_un.d_val;
3563
3564 amt = sizeof (struct bfd_link_needed_list);
3565 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3566 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3567 if (n == NULL || fnm == NULL)
3568 goto error_free_dyn;
3569 amt = strlen (fnm) + 1;
3570 anm = (char *) bfd_alloc (abfd, amt);
3571 if (anm == NULL)
3572 goto error_free_dyn;
3573 memcpy (anm, fnm, amt);
3574 n->name = anm;
3575 n->by = abfd;
3576 n->next = NULL;
3577 for (pn = & runpath;
3578 *pn != NULL;
3579 pn = &(*pn)->next)
3580 ;
3581 *pn = n;
3582 }
3583 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3584 if (!runpath && dyn.d_tag == DT_RPATH)
3585 {
3586 struct bfd_link_needed_list *n, **pn;
3587 char *fnm, *anm;
3588 unsigned int tagv = dyn.d_un.d_val;
3589
3590 amt = sizeof (struct bfd_link_needed_list);
3591 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3592 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3593 if (n == NULL || fnm == NULL)
3594 goto error_free_dyn;
3595 amt = strlen (fnm) + 1;
3596 anm = (char *) bfd_alloc (abfd, amt);
3597 if (anm == NULL)
3598 goto error_free_dyn;
3599 memcpy (anm, fnm, amt);
3600 n->name = anm;
3601 n->by = abfd;
3602 n->next = NULL;
3603 for (pn = & rpath;
3604 *pn != NULL;
3605 pn = &(*pn)->next)
3606 ;
3607 *pn = n;
3608 }
3609 if (dyn.d_tag == DT_AUDIT)
3610 {
3611 unsigned int tagv = dyn.d_un.d_val;
3612 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3613 }
3614 }
3615
3616 free (dynbuf);
3617 }
3618
3619 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3620 frees all more recently bfd_alloc'd blocks as well. */
3621 if (runpath)
3622 rpath = runpath;
3623
3624 if (rpath)
3625 {
3626 struct bfd_link_needed_list **pn;
3627 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3628 ;
3629 *pn = rpath;
3630 }
3631
3632 /* We do not want to include any of the sections in a dynamic
3633 object in the output file. We hack by simply clobbering the
3634 list of sections in the BFD. This could be handled more
3635 cleanly by, say, a new section flag; the existing
3636 SEC_NEVER_LOAD flag is not the one we want, because that one
3637 still implies that the section takes up space in the output
3638 file. */
3639 bfd_section_list_clear (abfd);
3640
3641 /* Find the name to use in a DT_NEEDED entry that refers to this
3642 object. If the object has a DT_SONAME entry, we use it.
3643 Otherwise, if the generic linker stuck something in
3644 elf_dt_name, we use that. Otherwise, we just use the file
3645 name. */
3646 if (soname == NULL || *soname == '\0')
3647 {
3648 soname = elf_dt_name (abfd);
3649 if (soname == NULL || *soname == '\0')
3650 soname = bfd_get_filename (abfd);
3651 }
3652
3653 /* Save the SONAME because sometimes the linker emulation code
3654 will need to know it. */
3655 elf_dt_name (abfd) = soname;
3656
3657 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3658 if (ret < 0)
3659 goto error_return;
3660
3661 /* If we have already included this dynamic object in the
3662 link, just ignore it. There is no reason to include a
3663 particular dynamic object more than once. */
3664 if (ret > 0)
3665 return TRUE;
3666
3667 /* Save the DT_AUDIT entry for the linker emulation code. */
3668 elf_dt_audit (abfd) = audit;
3669 }
3670
3671 /* If this is a dynamic object, we always link against the .dynsym
3672 symbol table, not the .symtab symbol table. The dynamic linker
3673 will only see the .dynsym symbol table, so there is no reason to
3674 look at .symtab for a dynamic object. */
3675
3676 if (! dynamic || elf_dynsymtab (abfd) == 0)
3677 hdr = &elf_tdata (abfd)->symtab_hdr;
3678 else
3679 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3680
3681 symcount = hdr->sh_size / bed->s->sizeof_sym;
3682
3683 /* The sh_info field of the symtab header tells us where the
3684 external symbols start. We don't care about the local symbols at
3685 this point. */
3686 if (elf_bad_symtab (abfd))
3687 {
3688 extsymcount = symcount;
3689 extsymoff = 0;
3690 }
3691 else
3692 {
3693 extsymcount = symcount - hdr->sh_info;
3694 extsymoff = hdr->sh_info;
3695 }
3696
3697 sym_hash = elf_sym_hashes (abfd);
3698 if (extsymcount != 0)
3699 {
3700 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3701 NULL, NULL, NULL);
3702 if (isymbuf == NULL)
3703 goto error_return;
3704
3705 if (sym_hash == NULL)
3706 {
3707 /* We store a pointer to the hash table entry for each
3708 external symbol. */
3709 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3710 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3711 if (sym_hash == NULL)
3712 goto error_free_sym;
3713 elf_sym_hashes (abfd) = sym_hash;
3714 }
3715 }
3716
3717 if (dynamic)
3718 {
3719 /* Read in any version definitions. */
3720 if (!_bfd_elf_slurp_version_tables (abfd,
3721 info->default_imported_symver))
3722 goto error_free_sym;
3723
3724 /* Read in the symbol versions, but don't bother to convert them
3725 to internal format. */
3726 if (elf_dynversym (abfd) != 0)
3727 {
3728 Elf_Internal_Shdr *versymhdr;
3729
3730 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3731 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3732 if (extversym == NULL)
3733 goto error_free_sym;
3734 amt = versymhdr->sh_size;
3735 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3736 || bfd_bread (extversym, amt, abfd) != amt)
3737 goto error_free_vers;
3738 }
3739 }
3740
3741 /* If we are loading an as-needed shared lib, save the symbol table
3742 state before we start adding symbols. If the lib turns out
3743 to be unneeded, restore the state. */
3744 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3745 {
3746 unsigned int i;
3747 size_t entsize;
3748
3749 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3750 {
3751 struct bfd_hash_entry *p;
3752 struct elf_link_hash_entry *h;
3753
3754 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3755 {
3756 h = (struct elf_link_hash_entry *) p;
3757 entsize += htab->root.table.entsize;
3758 if (h->root.type == bfd_link_hash_warning)
3759 entsize += htab->root.table.entsize;
3760 }
3761 }
3762
3763 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3764 old_tab = bfd_malloc (tabsize + entsize);
3765 if (old_tab == NULL)
3766 goto error_free_vers;
3767
3768 /* Remember the current objalloc pointer, so that all mem for
3769 symbols added can later be reclaimed. */
3770 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3771 if (alloc_mark == NULL)
3772 goto error_free_vers;
3773
3774 /* Make a special call to the linker "notice" function to
3775 tell it that we are about to handle an as-needed lib. */
3776 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3777 goto error_free_vers;
3778
3779 /* Clone the symbol table. Remember some pointers into the
3780 symbol table, and dynamic symbol count. */
3781 old_ent = (char *) old_tab + tabsize;
3782 memcpy (old_tab, htab->root.table.table, tabsize);
3783 old_undefs = htab->root.undefs;
3784 old_undefs_tail = htab->root.undefs_tail;
3785 old_table = htab->root.table.table;
3786 old_size = htab->root.table.size;
3787 old_count = htab->root.table.count;
3788 old_dynsymcount = htab->dynsymcount;
3789 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3790
3791 for (i = 0; i < htab->root.table.size; i++)
3792 {
3793 struct bfd_hash_entry *p;
3794 struct elf_link_hash_entry *h;
3795
3796 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3797 {
3798 memcpy (old_ent, p, htab->root.table.entsize);
3799 old_ent = (char *) old_ent + htab->root.table.entsize;
3800 h = (struct elf_link_hash_entry *) p;
3801 if (h->root.type == bfd_link_hash_warning)
3802 {
3803 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 }
3806 }
3807 }
3808 }
3809
3810 weaks = NULL;
3811 ever = extversym != NULL ? extversym + extsymoff : NULL;
3812 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3813 isym < isymend;
3814 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3815 {
3816 int bind;
3817 bfd_vma value;
3818 asection *sec, *new_sec;
3819 flagword flags;
3820 const char *name;
3821 struct elf_link_hash_entry *h;
3822 struct elf_link_hash_entry *hi;
3823 bfd_boolean definition;
3824 bfd_boolean size_change_ok;
3825 bfd_boolean type_change_ok;
3826 bfd_boolean new_weakdef;
3827 bfd_boolean new_weak;
3828 bfd_boolean old_weak;
3829 bfd_boolean override;
3830 bfd_boolean common;
3831 unsigned int old_alignment;
3832 bfd *old_bfd;
3833
3834 override = FALSE;
3835
3836 flags = BSF_NO_FLAGS;
3837 sec = NULL;
3838 value = isym->st_value;
3839 common = bed->common_definition (isym);
3840
3841 bind = ELF_ST_BIND (isym->st_info);
3842 switch (bind)
3843 {
3844 case STB_LOCAL:
3845 /* This should be impossible, since ELF requires that all
3846 global symbols follow all local symbols, and that sh_info
3847 point to the first global symbol. Unfortunately, Irix 5
3848 screws this up. */
3849 continue;
3850
3851 case STB_GLOBAL:
3852 if (isym->st_shndx != SHN_UNDEF && !common)
3853 flags = BSF_GLOBAL;
3854 break;
3855
3856 case STB_WEAK:
3857 flags = BSF_WEAK;
3858 break;
3859
3860 case STB_GNU_UNIQUE:
3861 flags = BSF_GNU_UNIQUE;
3862 break;
3863
3864 default:
3865 /* Leave it up to the processor backend. */
3866 break;
3867 }
3868
3869 if (isym->st_shndx == SHN_UNDEF)
3870 sec = bfd_und_section_ptr;
3871 else if (isym->st_shndx == SHN_ABS)
3872 sec = bfd_abs_section_ptr;
3873 else if (isym->st_shndx == SHN_COMMON)
3874 {
3875 sec = bfd_com_section_ptr;
3876 /* What ELF calls the size we call the value. What ELF
3877 calls the value we call the alignment. */
3878 value = isym->st_size;
3879 }
3880 else
3881 {
3882 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3883 if (sec == NULL)
3884 sec = bfd_abs_section_ptr;
3885 else if (discarded_section (sec))
3886 {
3887 /* Symbols from discarded section are undefined. We keep
3888 its visibility. */
3889 sec = bfd_und_section_ptr;
3890 isym->st_shndx = SHN_UNDEF;
3891 }
3892 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3893 value -= sec->vma;
3894 }
3895
3896 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3897 isym->st_name);
3898 if (name == NULL)
3899 goto error_free_vers;
3900
3901 if (isym->st_shndx == SHN_COMMON
3902 && (abfd->flags & BFD_PLUGIN) != 0)
3903 {
3904 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3905
3906 if (xc == NULL)
3907 {
3908 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3909 | SEC_EXCLUDE);
3910 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3911 if (xc == NULL)
3912 goto error_free_vers;
3913 }
3914 sec = xc;
3915 }
3916 else if (isym->st_shndx == SHN_COMMON
3917 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3918 && !info->relocatable)
3919 {
3920 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3921
3922 if (tcomm == NULL)
3923 {
3924 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3925 | SEC_LINKER_CREATED);
3926 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3927 if (tcomm == NULL)
3928 goto error_free_vers;
3929 }
3930 sec = tcomm;
3931 }
3932 else if (bed->elf_add_symbol_hook)
3933 {
3934 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3935 &sec, &value))
3936 goto error_free_vers;
3937
3938 /* The hook function sets the name to NULL if this symbol
3939 should be skipped for some reason. */
3940 if (name == NULL)
3941 continue;
3942 }
3943
3944 /* Sanity check that all possibilities were handled. */
3945 if (sec == NULL)
3946 {
3947 bfd_set_error (bfd_error_bad_value);
3948 goto error_free_vers;
3949 }
3950
3951 /* Silently discard TLS symbols from --just-syms. There's
3952 no way to combine a static TLS block with a new TLS block
3953 for this executable. */
3954 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3955 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3956 continue;
3957
3958 if (bfd_is_und_section (sec)
3959 || bfd_is_com_section (sec))
3960 definition = FALSE;
3961 else
3962 definition = TRUE;
3963
3964 size_change_ok = FALSE;
3965 type_change_ok = bed->type_change_ok;
3966 old_weak = FALSE;
3967 old_alignment = 0;
3968 old_bfd = NULL;
3969 new_sec = sec;
3970
3971 if (is_elf_hash_table (htab))
3972 {
3973 Elf_Internal_Versym iver;
3974 unsigned int vernum = 0;
3975 bfd_boolean skip;
3976
3977 if (ever == NULL)
3978 {
3979 if (info->default_imported_symver)
3980 /* Use the default symbol version created earlier. */
3981 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3982 else
3983 iver.vs_vers = 0;
3984 }
3985 else
3986 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3987
3988 vernum = iver.vs_vers & VERSYM_VERSION;
3989
3990 /* If this is a hidden symbol, or if it is not version
3991 1, we append the version name to the symbol name.
3992 However, we do not modify a non-hidden absolute symbol
3993 if it is not a function, because it might be the version
3994 symbol itself. FIXME: What if it isn't? */
3995 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3996 || (vernum > 1
3997 && (!bfd_is_abs_section (sec)
3998 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3999 {
4000 const char *verstr;
4001 size_t namelen, verlen, newlen;
4002 char *newname, *p;
4003
4004 if (isym->st_shndx != SHN_UNDEF)
4005 {
4006 if (vernum > elf_tdata (abfd)->cverdefs)
4007 verstr = NULL;
4008 else if (vernum > 1)
4009 verstr =
4010 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4011 else
4012 verstr = "";
4013
4014 if (verstr == NULL)
4015 {
4016 (*_bfd_error_handler)
4017 (_("%B: %s: invalid version %u (max %d)"),
4018 abfd, name, vernum,
4019 elf_tdata (abfd)->cverdefs);
4020 bfd_set_error (bfd_error_bad_value);
4021 goto error_free_vers;
4022 }
4023 }
4024 else
4025 {
4026 /* We cannot simply test for the number of
4027 entries in the VERNEED section since the
4028 numbers for the needed versions do not start
4029 at 0. */
4030 Elf_Internal_Verneed *t;
4031
4032 verstr = NULL;
4033 for (t = elf_tdata (abfd)->verref;
4034 t != NULL;
4035 t = t->vn_nextref)
4036 {
4037 Elf_Internal_Vernaux *a;
4038
4039 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4040 {
4041 if (a->vna_other == vernum)
4042 {
4043 verstr = a->vna_nodename;
4044 break;
4045 }
4046 }
4047 if (a != NULL)
4048 break;
4049 }
4050 if (verstr == NULL)
4051 {
4052 (*_bfd_error_handler)
4053 (_("%B: %s: invalid needed version %d"),
4054 abfd, name, vernum);
4055 bfd_set_error (bfd_error_bad_value);
4056 goto error_free_vers;
4057 }
4058 }
4059
4060 namelen = strlen (name);
4061 verlen = strlen (verstr);
4062 newlen = namelen + verlen + 2;
4063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4064 && isym->st_shndx != SHN_UNDEF)
4065 ++newlen;
4066
4067 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4068 if (newname == NULL)
4069 goto error_free_vers;
4070 memcpy (newname, name, namelen);
4071 p = newname + namelen;
4072 *p++ = ELF_VER_CHR;
4073 /* If this is a defined non-hidden version symbol,
4074 we add another @ to the name. This indicates the
4075 default version of the symbol. */
4076 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4077 && isym->st_shndx != SHN_UNDEF)
4078 *p++ = ELF_VER_CHR;
4079 memcpy (p, verstr, verlen + 1);
4080
4081 name = newname;
4082 }
4083
4084 /* If this symbol has default visibility and the user has
4085 requested we not re-export it, then mark it as hidden. */
4086 if (definition
4087 && !dynamic
4088 && (abfd->no_export
4089 || (abfd->my_archive && abfd->my_archive->no_export))
4090 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4091 isym->st_other = (STV_HIDDEN
4092 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4093
4094 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4095 sym_hash, &old_bfd, &old_weak,
4096 &old_alignment, &skip, &override,
4097 &type_change_ok, &size_change_ok))
4098 goto error_free_vers;
4099
4100 if (skip)
4101 continue;
4102
4103 if (override)
4104 definition = FALSE;
4105
4106 h = *sym_hash;
4107 while (h->root.type == bfd_link_hash_indirect
4108 || h->root.type == bfd_link_hash_warning)
4109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4110
4111 if (elf_tdata (abfd)->verdef != NULL
4112 && vernum > 1
4113 && definition)
4114 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4115 }
4116
4117 if (! (_bfd_generic_link_add_one_symbol
4118 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4119 (struct bfd_link_hash_entry **) sym_hash)))
4120 goto error_free_vers;
4121
4122 h = *sym_hash;
4123 /* We need to make sure that indirect symbol dynamic flags are
4124 updated. */
4125 hi = h;
4126 while (h->root.type == bfd_link_hash_indirect
4127 || h->root.type == bfd_link_hash_warning)
4128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4129
4130 *sym_hash = h;
4131
4132 new_weak = (flags & BSF_WEAK) != 0;
4133 new_weakdef = FALSE;
4134 if (dynamic
4135 && definition
4136 && new_weak
4137 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4138 && is_elf_hash_table (htab)
4139 && h->u.weakdef == NULL)
4140 {
4141 /* Keep a list of all weak defined non function symbols from
4142 a dynamic object, using the weakdef field. Later in this
4143 function we will set the weakdef field to the correct
4144 value. We only put non-function symbols from dynamic
4145 objects on this list, because that happens to be the only
4146 time we need to know the normal symbol corresponding to a
4147 weak symbol, and the information is time consuming to
4148 figure out. If the weakdef field is not already NULL,
4149 then this symbol was already defined by some previous
4150 dynamic object, and we will be using that previous
4151 definition anyhow. */
4152
4153 h->u.weakdef = weaks;
4154 weaks = h;
4155 new_weakdef = TRUE;
4156 }
4157
4158 /* Set the alignment of a common symbol. */
4159 if ((common || bfd_is_com_section (sec))
4160 && h->root.type == bfd_link_hash_common)
4161 {
4162 unsigned int align;
4163
4164 if (common)
4165 align = bfd_log2 (isym->st_value);
4166 else
4167 {
4168 /* The new symbol is a common symbol in a shared object.
4169 We need to get the alignment from the section. */
4170 align = new_sec->alignment_power;
4171 }
4172 if (align > old_alignment)
4173 h->root.u.c.p->alignment_power = align;
4174 else
4175 h->root.u.c.p->alignment_power = old_alignment;
4176 }
4177
4178 if (is_elf_hash_table (htab))
4179 {
4180 /* Set a flag in the hash table entry indicating the type of
4181 reference or definition we just found. A dynamic symbol
4182 is one which is referenced or defined by both a regular
4183 object and a shared object. */
4184 bfd_boolean dynsym = FALSE;
4185
4186 /* Plugin symbols aren't normal. Don't set def_regular or
4187 ref_regular for them, or make them dynamic. */
4188 if ((abfd->flags & BFD_PLUGIN) != 0)
4189 ;
4190 else if (! dynamic)
4191 {
4192 if (! definition)
4193 {
4194 h->ref_regular = 1;
4195 if (bind != STB_WEAK)
4196 h->ref_regular_nonweak = 1;
4197 }
4198 else
4199 {
4200 h->def_regular = 1;
4201 if (h->def_dynamic)
4202 {
4203 h->def_dynamic = 0;
4204 h->ref_dynamic = 1;
4205 }
4206 }
4207
4208 /* If the indirect symbol has been forced local, don't
4209 make the real symbol dynamic. */
4210 if ((h == hi || !hi->forced_local)
4211 && (! info->executable
4212 || h->def_dynamic
4213 || h->ref_dynamic))
4214 dynsym = TRUE;
4215 }
4216 else
4217 {
4218 if (! definition)
4219 {
4220 h->ref_dynamic = 1;
4221 hi->ref_dynamic = 1;
4222 }
4223 else
4224 {
4225 h->def_dynamic = 1;
4226 hi->def_dynamic = 1;
4227 }
4228
4229 /* If the indirect symbol has been forced local, don't
4230 make the real symbol dynamic. */
4231 if ((h == hi || !hi->forced_local)
4232 && (h->def_regular
4233 || h->ref_regular
4234 || (h->u.weakdef != NULL
4235 && ! new_weakdef
4236 && h->u.weakdef->dynindx != -1)))
4237 dynsym = TRUE;
4238 }
4239
4240 /* Check to see if we need to add an indirect symbol for
4241 the default name. */
4242 if (definition
4243 || (!override && h->root.type == bfd_link_hash_common))
4244 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4245 sec, value, &old_bfd, &dynsym))
4246 goto error_free_vers;
4247
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4255 {
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4259 bfd *normal_bfd;
4260 bfd *common_bfd;
4261
4262 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4263 || h->root.type == bfd_link_hash_defweak);
4264
4265 symbol_align = ffs (h->root.u.def.value) - 1;
4266 if (h->root.u.def.section->owner != NULL
4267 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4268 {
4269 normal_align = h->root.u.def.section->alignment_power;
4270 if (normal_align > symbol_align)
4271 normal_align = symbol_align;
4272 }
4273 else
4274 normal_align = symbol_align;
4275
4276 if (old_alignment)
4277 {
4278 common_align = old_alignment;
4279 common_bfd = old_bfd;
4280 normal_bfd = abfd;
4281 }
4282 else
4283 {
4284 common_align = bfd_log2 (isym->st_value);
4285 common_bfd = abfd;
4286 normal_bfd = old_bfd;
4287 }
4288
4289 if (normal_align < common_align)
4290 {
4291 /* PR binutils/2735 */
4292 if (normal_bfd == NULL)
4293 (*_bfd_error_handler)
4294 (_("Warning: alignment %u of common symbol `%s' in %B is"
4295 " greater than the alignment (%u) of its section %A"),
4296 common_bfd, h->root.u.def.section,
4297 1 << common_align, name, 1 << normal_align);
4298 else
4299 (*_bfd_error_handler)
4300 (_("Warning: alignment %u of symbol `%s' in %B"
4301 " is smaller than %u in %B"),
4302 normal_bfd, common_bfd,
4303 1 << normal_align, name, 1 << common_align);
4304 }
4305 }
4306
4307 /* Remember the symbol size if it isn't undefined. */
4308 if (isym->st_size != 0
4309 && isym->st_shndx != SHN_UNDEF
4310 && (definition || h->size == 0))
4311 {
4312 if (h->size != 0
4313 && h->size != isym->st_size
4314 && ! size_change_ok)
4315 (*_bfd_error_handler)
4316 (_("Warning: size of symbol `%s' changed"
4317 " from %lu in %B to %lu in %B"),
4318 old_bfd, abfd,
4319 name, (unsigned long) h->size,
4320 (unsigned long) isym->st_size);
4321
4322 h->size = isym->st_size;
4323 }
4324
4325 /* If this is a common symbol, then we always want H->SIZE
4326 to be the size of the common symbol. The code just above
4327 won't fix the size if a common symbol becomes larger. We
4328 don't warn about a size change here, because that is
4329 covered by --warn-common. Allow changes between different
4330 function types. */
4331 if (h->root.type == bfd_link_hash_common)
4332 h->size = h->root.u.c.size;
4333
4334 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4335 && ((definition && !new_weak)
4336 || (old_weak && h->root.type == bfd_link_hash_common)
4337 || h->type == STT_NOTYPE))
4338 {
4339 unsigned int type = ELF_ST_TYPE (isym->st_info);
4340
4341 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4342 symbol. */
4343 if (type == STT_GNU_IFUNC
4344 && (abfd->flags & DYNAMIC) != 0)
4345 type = STT_FUNC;
4346
4347 if (h->type != type)
4348 {
4349 if (h->type != STT_NOTYPE && ! type_change_ok)
4350 (*_bfd_error_handler)
4351 (_("Warning: type of symbol `%s' changed"
4352 " from %d to %d in %B"),
4353 abfd, name, h->type, type);
4354
4355 h->type = type;
4356 }
4357 }
4358
4359 /* Merge st_other field. */
4360 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4361
4362 /* We don't want to make debug symbol dynamic. */
4363 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4364 dynsym = FALSE;
4365
4366 /* Nor should we make plugin symbols dynamic. */
4367 if ((abfd->flags & BFD_PLUGIN) != 0)
4368 dynsym = FALSE;
4369
4370 if (definition)
4371 {
4372 h->target_internal = isym->st_target_internal;
4373 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4374 }
4375
4376 if (definition && !dynamic)
4377 {
4378 char *p = strchr (name, ELF_VER_CHR);
4379 if (p != NULL && p[1] != ELF_VER_CHR)
4380 {
4381 /* Queue non-default versions so that .symver x, x@FOO
4382 aliases can be checked. */
4383 if (!nondeflt_vers)
4384 {
4385 amt = ((isymend - isym + 1)
4386 * sizeof (struct elf_link_hash_entry *));
4387 nondeflt_vers =
4388 (struct elf_link_hash_entry **) bfd_malloc (amt);
4389 if (!nondeflt_vers)
4390 goto error_free_vers;
4391 }
4392 nondeflt_vers[nondeflt_vers_cnt++] = h;
4393 }
4394 }
4395
4396 if (dynsym && h->dynindx == -1)
4397 {
4398 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4399 goto error_free_vers;
4400 if (h->u.weakdef != NULL
4401 && ! new_weakdef
4402 && h->u.weakdef->dynindx == -1)
4403 {
4404 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4405 goto error_free_vers;
4406 }
4407 }
4408 else if (dynsym && h->dynindx != -1)
4409 /* If the symbol already has a dynamic index, but
4410 visibility says it should not be visible, turn it into
4411 a local symbol. */
4412 switch (ELF_ST_VISIBILITY (h->other))
4413 {
4414 case STV_INTERNAL:
4415 case STV_HIDDEN:
4416 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4417 dynsym = FALSE;
4418 break;
4419 }
4420
4421 /* Don't add DT_NEEDED for references from the dummy bfd. */
4422 if (!add_needed
4423 && definition
4424 && ((dynsym
4425 && h->ref_regular_nonweak
4426 && (old_bfd == NULL
4427 || (old_bfd->flags & BFD_PLUGIN) == 0))
4428 || (h->ref_dynamic_nonweak
4429 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4430 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4431 {
4432 int ret;
4433 const char *soname = elf_dt_name (abfd);
4434
4435 info->callbacks->minfo ("%!", soname, old_bfd,
4436 h->root.root.string);
4437
4438 /* A symbol from a library loaded via DT_NEEDED of some
4439 other library is referenced by a regular object.
4440 Add a DT_NEEDED entry for it. Issue an error if
4441 --no-add-needed is used and the reference was not
4442 a weak one. */
4443 if (old_bfd != NULL
4444 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4445 {
4446 (*_bfd_error_handler)
4447 (_("%B: undefined reference to symbol '%s'"),
4448 old_bfd, name);
4449 bfd_set_error (bfd_error_missing_dso);
4450 goto error_free_vers;
4451 }
4452
4453 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4454 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4455
4456 add_needed = TRUE;
4457 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4458 if (ret < 0)
4459 goto error_free_vers;
4460
4461 BFD_ASSERT (ret == 0);
4462 }
4463 }
4464 }
4465
4466 if (extversym != NULL)
4467 {
4468 free (extversym);
4469 extversym = NULL;
4470 }
4471
4472 if (isymbuf != NULL)
4473 {
4474 free (isymbuf);
4475 isymbuf = NULL;
4476 }
4477
4478 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4479 {
4480 unsigned int i;
4481
4482 /* Restore the symbol table. */
4483 old_ent = (char *) old_tab + tabsize;
4484 memset (elf_sym_hashes (abfd), 0,
4485 extsymcount * sizeof (struct elf_link_hash_entry *));
4486 htab->root.table.table = old_table;
4487 htab->root.table.size = old_size;
4488 htab->root.table.count = old_count;
4489 memcpy (htab->root.table.table, old_tab, tabsize);
4490 htab->root.undefs = old_undefs;
4491 htab->root.undefs_tail = old_undefs_tail;
4492 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4493 for (i = 0; i < htab->root.table.size; i++)
4494 {
4495 struct bfd_hash_entry *p;
4496 struct elf_link_hash_entry *h;
4497 bfd_size_type size;
4498 unsigned int alignment_power;
4499
4500 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4501 {
4502 h = (struct elf_link_hash_entry *) p;
4503 if (h->root.type == bfd_link_hash_warning)
4504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4505 if (h->dynindx >= old_dynsymcount
4506 && h->dynstr_index < old_dynstr_size)
4507 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4508
4509 /* Preserve the maximum alignment and size for common
4510 symbols even if this dynamic lib isn't on DT_NEEDED
4511 since it can still be loaded at run time by another
4512 dynamic lib. */
4513 if (h->root.type == bfd_link_hash_common)
4514 {
4515 size = h->root.u.c.size;
4516 alignment_power = h->root.u.c.p->alignment_power;
4517 }
4518 else
4519 {
4520 size = 0;
4521 alignment_power = 0;
4522 }
4523 memcpy (p, old_ent, htab->root.table.entsize);
4524 old_ent = (char *) old_ent + htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) p;
4526 if (h->root.type == bfd_link_hash_warning)
4527 {
4528 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4531 }
4532 if (h->root.type == bfd_link_hash_common)
4533 {
4534 if (size > h->root.u.c.size)
4535 h->root.u.c.size = size;
4536 if (alignment_power > h->root.u.c.p->alignment_power)
4537 h->root.u.c.p->alignment_power = alignment_power;
4538 }
4539 }
4540 }
4541
4542 /* Make a special call to the linker "notice" function to
4543 tell it that symbols added for crefs may need to be removed. */
4544 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4545 goto error_free_vers;
4546
4547 free (old_tab);
4548 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4549 alloc_mark);
4550 if (nondeflt_vers != NULL)
4551 free (nondeflt_vers);
4552 return TRUE;
4553 }
4554
4555 if (old_tab != NULL)
4556 {
4557 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4558 goto error_free_vers;
4559 free (old_tab);
4560 old_tab = NULL;
4561 }
4562
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers != NULL)
4566 {
4567 bfd_size_type cnt, symidx;
4568
4569 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4570 {
4571 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4572 char *shortname, *p;
4573
4574 p = strchr (h->root.root.string, ELF_VER_CHR);
4575 if (p == NULL
4576 || (h->root.type != bfd_link_hash_defined
4577 && h->root.type != bfd_link_hash_defweak))
4578 continue;
4579
4580 amt = p - h->root.root.string;
4581 shortname = (char *) bfd_malloc (amt + 1);
4582 if (!shortname)
4583 goto error_free_vers;
4584 memcpy (shortname, h->root.root.string, amt);
4585 shortname[amt] = '\0';
4586
4587 hi = (struct elf_link_hash_entry *)
4588 bfd_link_hash_lookup (&htab->root, shortname,
4589 FALSE, FALSE, FALSE);
4590 if (hi != NULL
4591 && hi->root.type == h->root.type
4592 && hi->root.u.def.value == h->root.u.def.value
4593 && hi->root.u.def.section == h->root.u.def.section)
4594 {
4595 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4596 hi->root.type = bfd_link_hash_indirect;
4597 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4598 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4599 sym_hash = elf_sym_hashes (abfd);
4600 if (sym_hash)
4601 for (symidx = 0; symidx < extsymcount; ++symidx)
4602 if (sym_hash[symidx] == hi)
4603 {
4604 sym_hash[symidx] = h;
4605 break;
4606 }
4607 }
4608 free (shortname);
4609 }
4610 free (nondeflt_vers);
4611 nondeflt_vers = NULL;
4612 }
4613
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4626 either. */
4627 if (weaks != NULL)
4628 {
4629 struct elf_link_hash_entry **hpp;
4630 struct elf_link_hash_entry **hppend;
4631 struct elf_link_hash_entry **sorted_sym_hash;
4632 struct elf_link_hash_entry *h;
4633 size_t sym_count;
4634
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4639 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4640 if (sorted_sym_hash == NULL)
4641 goto error_return;
4642 sym_hash = sorted_sym_hash;
4643 hpp = elf_sym_hashes (abfd);
4644 hppend = hpp + extsymcount;
4645 sym_count = 0;
4646 for (; hpp < hppend; hpp++)
4647 {
4648 h = *hpp;
4649 if (h != NULL
4650 && h->root.type == bfd_link_hash_defined
4651 && !bed->is_function_type (h->type))
4652 {
4653 *sym_hash = h;
4654 sym_hash++;
4655 sym_count++;
4656 }
4657 }
4658
4659 qsort (sorted_sym_hash, sym_count,
4660 sizeof (struct elf_link_hash_entry *),
4661 elf_sort_symbol);
4662
4663 while (weaks != NULL)
4664 {
4665 struct elf_link_hash_entry *hlook;
4666 asection *slook;
4667 bfd_vma vlook;
4668 size_t i, j, idx = 0;
4669
4670 hlook = weaks;
4671 weaks = hlook->u.weakdef;
4672 hlook->u.weakdef = NULL;
4673
4674 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4675 || hlook->root.type == bfd_link_hash_defweak
4676 || hlook->root.type == bfd_link_hash_common
4677 || hlook->root.type == bfd_link_hash_indirect);
4678 slook = hlook->root.u.def.section;
4679 vlook = hlook->root.u.def.value;
4680
4681 i = 0;
4682 j = sym_count;
4683 while (i != j)
4684 {
4685 bfd_signed_vma vdiff;
4686 idx = (i + j) / 2;
4687 h = sorted_sym_hash[idx];
4688 vdiff = vlook - h->root.u.def.value;
4689 if (vdiff < 0)
4690 j = idx;
4691 else if (vdiff > 0)
4692 i = idx + 1;
4693 else
4694 {
4695 long sdiff = slook->id - h->root.u.def.section->id;
4696 if (sdiff < 0)
4697 j = idx;
4698 else if (sdiff > 0)
4699 i = idx + 1;
4700 else
4701 break;
4702 }
4703 }
4704
4705 /* We didn't find a value/section match. */
4706 if (i == j)
4707 continue;
4708
4709 /* With multiple aliases, or when the weak symbol is already
4710 strongly defined, we have multiple matching symbols and
4711 the binary search above may land on any of them. Step
4712 one past the matching symbol(s). */
4713 while (++idx != j)
4714 {
4715 h = sorted_sym_hash[idx];
4716 if (h->root.u.def.section != slook
4717 || h->root.u.def.value != vlook)
4718 break;
4719 }
4720
4721 /* Now look back over the aliases. Since we sorted by size
4722 as well as value and section, we'll choose the one with
4723 the largest size. */
4724 while (idx-- != i)
4725 {
4726 h = sorted_sym_hash[idx];
4727
4728 /* Stop if value or section doesn't match. */
4729 if (h->root.u.def.section != slook
4730 || h->root.u.def.value != vlook)
4731 break;
4732 else if (h != hlook)
4733 {
4734 hlook->u.weakdef = h;
4735
4736 /* If the weak definition is in the list of dynamic
4737 symbols, make sure the real definition is put
4738 there as well. */
4739 if (hlook->dynindx != -1 && h->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4742 {
4743 err_free_sym_hash:
4744 free (sorted_sym_hash);
4745 goto error_return;
4746 }
4747 }
4748
4749 /* If the real definition is in the list of dynamic
4750 symbols, make sure the weak definition is put
4751 there as well. If we don't do this, then the
4752 dynamic loader might not merge the entries for the
4753 real definition and the weak definition. */
4754 if (h->dynindx != -1 && hlook->dynindx == -1)
4755 {
4756 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4757 goto err_free_sym_hash;
4758 }
4759 break;
4760 }
4761 }
4762 }
4763
4764 free (sorted_sym_hash);
4765 }
4766
4767 if (bed->check_directives
4768 && !(*bed->check_directives) (abfd, info))
4769 return FALSE;
4770
4771 /* If this object is the same format as the output object, and it is
4772 not a shared library, then let the backend look through the
4773 relocs.
4774
4775 This is required to build global offset table entries and to
4776 arrange for dynamic relocs. It is not required for the
4777 particular common case of linking non PIC code, even when linking
4778 against shared libraries, but unfortunately there is no way of
4779 knowing whether an object file has been compiled PIC or not.
4780 Looking through the relocs is not particularly time consuming.
4781 The problem is that we must either (1) keep the relocs in memory,
4782 which causes the linker to require additional runtime memory or
4783 (2) read the relocs twice from the input file, which wastes time.
4784 This would be a good case for using mmap.
4785
4786 I have no idea how to handle linking PIC code into a file of a
4787 different format. It probably can't be done. */
4788 if (! dynamic
4789 && is_elf_hash_table (htab)
4790 && bed->check_relocs != NULL
4791 && elf_object_id (abfd) == elf_hash_table_id (htab)
4792 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4793 {
4794 asection *o;
4795
4796 for (o = abfd->sections; o != NULL; o = o->next)
4797 {
4798 Elf_Internal_Rela *internal_relocs;
4799 bfd_boolean ok;
4800
4801 if ((o->flags & SEC_RELOC) == 0
4802 || o->reloc_count == 0
4803 || ((info->strip == strip_all || info->strip == strip_debugger)
4804 && (o->flags & SEC_DEBUGGING) != 0)
4805 || bfd_is_abs_section (o->output_section))
4806 continue;
4807
4808 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4809 info->keep_memory);
4810 if (internal_relocs == NULL)
4811 goto error_return;
4812
4813 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4814
4815 if (elf_section_data (o)->relocs != internal_relocs)
4816 free (internal_relocs);
4817
4818 if (! ok)
4819 goto error_return;
4820 }
4821 }
4822
4823 /* If this is a non-traditional link, try to optimize the handling
4824 of the .stab/.stabstr sections. */
4825 if (! dynamic
4826 && ! info->traditional_format
4827 && is_elf_hash_table (htab)
4828 && (info->strip != strip_all && info->strip != strip_debugger))
4829 {
4830 asection *stabstr;
4831
4832 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4833 if (stabstr != NULL)
4834 {
4835 bfd_size_type string_offset = 0;
4836 asection *stab;
4837
4838 for (stab = abfd->sections; stab; stab = stab->next)
4839 if (CONST_STRNEQ (stab->name, ".stab")
4840 && (!stab->name[5] ||
4841 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4842 && (stab->flags & SEC_MERGE) == 0
4843 && !bfd_is_abs_section (stab->output_section))
4844 {
4845 struct bfd_elf_section_data *secdata;
4846
4847 secdata = elf_section_data (stab);
4848 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4849 stabstr, &secdata->sec_info,
4850 &string_offset))
4851 goto error_return;
4852 if (secdata->sec_info)
4853 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4854 }
4855 }
4856 }
4857
4858 if (is_elf_hash_table (htab) && add_needed)
4859 {
4860 /* Add this bfd to the loaded list. */
4861 struct elf_link_loaded_list *n;
4862
4863 n = (struct elf_link_loaded_list *)
4864 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because we need to
4939 handle versioned symbols.
4940
4941 Fortunately, ELF archive handling is simpler than that done by
4942 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943 oddities. In ELF, if we find a symbol in the archive map, and the
4944 symbol is currently undefined, we know that we must pull in that
4945 object file.
4946
4947 Unfortunately, we do have to make multiple passes over the symbol
4948 table until nothing further is resolved. */
4949
4950 static bfd_boolean
4951 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4952 {
4953 symindex c;
4954 unsigned char *included = NULL;
4955 carsym *symdefs;
4956 bfd_boolean loop;
4957 bfd_size_type amt;
4958 const struct elf_backend_data *bed;
4959 struct elf_link_hash_entry * (*archive_symbol_lookup)
4960 (bfd *, struct bfd_link_info *, const char *);
4961
4962 if (! bfd_has_map (abfd))
4963 {
4964 /* An empty archive is a special case. */
4965 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4966 return TRUE;
4967 bfd_set_error (bfd_error_no_armap);
4968 return FALSE;
4969 }
4970
4971 /* Keep track of all symbols we know to be already defined, and all
4972 files we know to be already included. This is to speed up the
4973 second and subsequent passes. */
4974 c = bfd_ardata (abfd)->symdef_count;
4975 if (c == 0)
4976 return TRUE;
4977 amt = c;
4978 amt *= sizeof (*included);
4979 included = (unsigned char *) bfd_zmalloc (amt);
4980 if (included == NULL)
4981 return FALSE;
4982
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4986
4987 do
4988 {
4989 file_ptr last;
4990 symindex i;
4991 carsym *symdef;
4992 carsym *symdefend;
4993
4994 loop = FALSE;
4995 last = -1;
4996
4997 symdef = symdefs;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5000 {
5001 struct elf_link_hash_entry *h;
5002 bfd *element;
5003 struct bfd_link_hash_entry *undefs_tail;
5004 symindex mark;
5005
5006 if (included[i])
5007 continue;
5008 if (symdef->file_offset == last)
5009 {
5010 included[i] = TRUE;
5011 continue;
5012 }
5013
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5016 goto error_return;
5017
5018 if (h == NULL)
5019 continue;
5020
5021 if (h->root.type == bfd_link_hash_common)
5022 {
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5027 declaration of it.
5028
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5034 this is. */
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5036 continue;
5037 }
5038 else if (h->root.type != bfd_link_hash_undefined)
5039 {
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 /* Symbol must be defined. Don't check it again. */
5042 included[i] = TRUE;
5043 continue;
5044 }
5045
5046 /* We need to include this archive member. */
5047 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5048 if (element == NULL)
5049 goto error_return;
5050
5051 if (! bfd_check_format (element, bfd_object))
5052 goto error_return;
5053
5054 undefs_tail = info->hash->undefs_tail;
5055
5056 if (!(*info->callbacks
5057 ->add_archive_element) (info, element, symdef->name, &element))
5058 goto error_return;
5059 if (!bfd_link_add_symbols (element, info))
5060 goto error_return;
5061
5062 /* If there are any new undefined symbols, we need to make
5063 another pass through the archive in order to see whether
5064 they can be defined. FIXME: This isn't perfect, because
5065 common symbols wind up on undefs_tail and because an
5066 undefined symbol which is defined later on in this pass
5067 does not require another pass. This isn't a bug, but it
5068 does make the code less efficient than it could be. */
5069 if (undefs_tail != info->hash->undefs_tail)
5070 loop = TRUE;
5071
5072 /* Look backward to mark all symbols from this object file
5073 which we have already seen in this pass. */
5074 mark = i;
5075 do
5076 {
5077 included[mark] = TRUE;
5078 if (mark == 0)
5079 break;
5080 --mark;
5081 }
5082 while (symdefs[mark].file_offset == symdef->file_offset);
5083
5084 /* We mark subsequent symbols from this object file as we go
5085 on through the loop. */
5086 last = symdef->file_offset;
5087 }
5088 }
5089 while (loop);
5090
5091 free (included);
5092
5093 return TRUE;
5094
5095 error_return:
5096 if (included != NULL)
5097 free (included);
5098 return FALSE;
5099 }
5100
5101 /* Given an ELF BFD, add symbols to the global hash table as
5102 appropriate. */
5103
5104 bfd_boolean
5105 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5106 {
5107 switch (bfd_get_format (abfd))
5108 {
5109 case bfd_object:
5110 return elf_link_add_object_symbols (abfd, info);
5111 case bfd_archive:
5112 return elf_link_add_archive_symbols (abfd, info);
5113 default:
5114 bfd_set_error (bfd_error_wrong_format);
5115 return FALSE;
5116 }
5117 }
5118 \f
5119 struct hash_codes_info
5120 {
5121 unsigned long *hashcodes;
5122 bfd_boolean error;
5123 };
5124
5125 /* This function will be called though elf_link_hash_traverse to store
5126 all hash value of the exported symbols in an array. */
5127
5128 static bfd_boolean
5129 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5130 {
5131 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5132 const char *name;
5133 char *p;
5134 unsigned long ha;
5135 char *alc = NULL;
5136
5137 /* Ignore indirect symbols. These are added by the versioning code. */
5138 if (h->dynindx == -1)
5139 return TRUE;
5140
5141 name = h->root.root.string;
5142 p = strchr (name, ELF_VER_CHR);
5143 if (p != NULL)
5144 {
5145 alc = (char *) bfd_malloc (p - name + 1);
5146 if (alc == NULL)
5147 {
5148 inf->error = TRUE;
5149 return FALSE;
5150 }
5151 memcpy (alc, name, p - name);
5152 alc[p - name] = '\0';
5153 name = alc;
5154 }
5155
5156 /* Compute the hash value. */
5157 ha = bfd_elf_hash (name);
5158
5159 /* Store the found hash value in the array given as the argument. */
5160 *(inf->hashcodes)++ = ha;
5161
5162 /* And store it in the struct so that we can put it in the hash table
5163 later. */
5164 h->u.elf_hash_value = ha;
5165
5166 if (alc != NULL)
5167 free (alc);
5168
5169 return TRUE;
5170 }
5171
5172 struct collect_gnu_hash_codes
5173 {
5174 bfd *output_bfd;
5175 const struct elf_backend_data *bed;
5176 unsigned long int nsyms;
5177 unsigned long int maskbits;
5178 unsigned long int *hashcodes;
5179 unsigned long int *hashval;
5180 unsigned long int *indx;
5181 unsigned long int *counts;
5182 bfd_vma *bitmask;
5183 bfd_byte *contents;
5184 long int min_dynindx;
5185 unsigned long int bucketcount;
5186 unsigned long int symindx;
5187 long int local_indx;
5188 long int shift1, shift2;
5189 unsigned long int mask;
5190 bfd_boolean error;
5191 };
5192
5193 /* This function will be called though elf_link_hash_traverse to store
5194 all hash value of the exported symbols in an array. */
5195
5196 static bfd_boolean
5197 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5198 {
5199 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5200 const char *name;
5201 char *p;
5202 unsigned long ha;
5203 char *alc = NULL;
5204
5205 /* Ignore indirect symbols. These are added by the versioning code. */
5206 if (h->dynindx == -1)
5207 return TRUE;
5208
5209 /* Ignore also local symbols and undefined symbols. */
5210 if (! (*s->bed->elf_hash_symbol) (h))
5211 return TRUE;
5212
5213 name = h->root.root.string;
5214 p = strchr (name, ELF_VER_CHR);
5215 if (p != NULL)
5216 {
5217 alc = (char *) bfd_malloc (p - name + 1);
5218 if (alc == NULL)
5219 {
5220 s->error = TRUE;
5221 return FALSE;
5222 }
5223 memcpy (alc, name, p - name);
5224 alc[p - name] = '\0';
5225 name = alc;
5226 }
5227
5228 /* Compute the hash value. */
5229 ha = bfd_elf_gnu_hash (name);
5230
5231 /* Store the found hash value in the array for compute_bucket_count,
5232 and also for .dynsym reordering purposes. */
5233 s->hashcodes[s->nsyms] = ha;
5234 s->hashval[h->dynindx] = ha;
5235 ++s->nsyms;
5236 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5237 s->min_dynindx = h->dynindx;
5238
5239 if (alc != NULL)
5240 free (alc);
5241
5242 return TRUE;
5243 }
5244
5245 /* This function will be called though elf_link_hash_traverse to do
5246 final dynaminc symbol renumbering. */
5247
5248 static bfd_boolean
5249 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5250 {
5251 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5252 unsigned long int bucket;
5253 unsigned long int val;
5254
5255 /* Ignore indirect symbols. */
5256 if (h->dynindx == -1)
5257 return TRUE;
5258
5259 /* Ignore also local symbols and undefined symbols. */
5260 if (! (*s->bed->elf_hash_symbol) (h))
5261 {
5262 if (h->dynindx >= s->min_dynindx)
5263 h->dynindx = s->local_indx++;
5264 return TRUE;
5265 }
5266
5267 bucket = s->hashval[h->dynindx] % s->bucketcount;
5268 val = (s->hashval[h->dynindx] >> s->shift1)
5269 & ((s->maskbits >> s->shift1) - 1);
5270 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5271 s->bitmask[val]
5272 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5273 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5274 if (s->counts[bucket] == 1)
5275 /* Last element terminates the chain. */
5276 val |= 1;
5277 bfd_put_32 (s->output_bfd, val,
5278 s->contents + (s->indx[bucket] - s->symindx) * 4);
5279 --s->counts[bucket];
5280 h->dynindx = s->indx[bucket]++;
5281 return TRUE;
5282 }
5283
5284 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5285
5286 bfd_boolean
5287 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5288 {
5289 return !(h->forced_local
5290 || h->root.type == bfd_link_hash_undefined
5291 || h->root.type == bfd_link_hash_undefweak
5292 || ((h->root.type == bfd_link_hash_defined
5293 || h->root.type == bfd_link_hash_defweak)
5294 && h->root.u.def.section->output_section == NULL));
5295 }
5296
5297 /* Array used to determine the number of hash table buckets to use
5298 based on the number of symbols there are. If there are fewer than
5299 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5300 fewer than 37 we use 17 buckets, and so forth. We never use more
5301 than 32771 buckets. */
5302
5303 static const size_t elf_buckets[] =
5304 {
5305 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5306 16411, 32771, 0
5307 };
5308
5309 /* Compute bucket count for hashing table. We do not use a static set
5310 of possible tables sizes anymore. Instead we determine for all
5311 possible reasonable sizes of the table the outcome (i.e., the
5312 number of collisions etc) and choose the best solution. The
5313 weighting functions are not too simple to allow the table to grow
5314 without bounds. Instead one of the weighting factors is the size.
5315 Therefore the result is always a good payoff between few collisions
5316 (= short chain lengths) and table size. */
5317 static size_t
5318 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5319 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5320 unsigned long int nsyms,
5321 int gnu_hash)
5322 {
5323 size_t best_size = 0;
5324 unsigned long int i;
5325
5326 /* We have a problem here. The following code to optimize the table
5327 size requires an integer type with more the 32 bits. If
5328 BFD_HOST_U_64_BIT is set we know about such a type. */
5329 #ifdef BFD_HOST_U_64_BIT
5330 if (info->optimize)
5331 {
5332 size_t minsize;
5333 size_t maxsize;
5334 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5335 bfd *dynobj = elf_hash_table (info)->dynobj;
5336 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5337 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5338 unsigned long int *counts;
5339 bfd_size_type amt;
5340 unsigned int no_improvement_count = 0;
5341
5342 /* Possible optimization parameters: if we have NSYMS symbols we say
5343 that the hashing table must at least have NSYMS/4 and at most
5344 2*NSYMS buckets. */
5345 minsize = nsyms / 4;
5346 if (minsize == 0)
5347 minsize = 1;
5348 best_size = maxsize = nsyms * 2;
5349 if (gnu_hash)
5350 {
5351 if (minsize < 2)
5352 minsize = 2;
5353 if ((best_size & 31) == 0)
5354 ++best_size;
5355 }
5356
5357 /* Create array where we count the collisions in. We must use bfd_malloc
5358 since the size could be large. */
5359 amt = maxsize;
5360 amt *= sizeof (unsigned long int);
5361 counts = (unsigned long int *) bfd_malloc (amt);
5362 if (counts == NULL)
5363 return 0;
5364
5365 /* Compute the "optimal" size for the hash table. The criteria is a
5366 minimal chain length. The minor criteria is (of course) the size
5367 of the table. */
5368 for (i = minsize; i < maxsize; ++i)
5369 {
5370 /* Walk through the array of hashcodes and count the collisions. */
5371 BFD_HOST_U_64_BIT max;
5372 unsigned long int j;
5373 unsigned long int fact;
5374
5375 if (gnu_hash && (i & 31) == 0)
5376 continue;
5377
5378 memset (counts, '\0', i * sizeof (unsigned long int));
5379
5380 /* Determine how often each hash bucket is used. */
5381 for (j = 0; j < nsyms; ++j)
5382 ++counts[hashcodes[j] % i];
5383
5384 /* For the weight function we need some information about the
5385 pagesize on the target. This is information need not be 100%
5386 accurate. Since this information is not available (so far) we
5387 define it here to a reasonable default value. If it is crucial
5388 to have a better value some day simply define this value. */
5389 # ifndef BFD_TARGET_PAGESIZE
5390 # define BFD_TARGET_PAGESIZE (4096)
5391 # endif
5392
5393 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5394 and the chains. */
5395 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5396
5397 # if 1
5398 /* Variant 1: optimize for short chains. We add the squares
5399 of all the chain lengths (which favors many small chain
5400 over a few long chains). */
5401 for (j = 0; j < i; ++j)
5402 max += counts[j] * counts[j];
5403
5404 /* This adds penalties for the overall size of the table. */
5405 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5406 max *= fact * fact;
5407 # else
5408 /* Variant 2: Optimize a lot more for small table. Here we
5409 also add squares of the size but we also add penalties for
5410 empty slots (the +1 term). */
5411 for (j = 0; j < i; ++j)
5412 max += (1 + counts[j]) * (1 + counts[j]);
5413
5414 /* The overall size of the table is considered, but not as
5415 strong as in variant 1, where it is squared. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5417 max *= fact;
5418 # endif
5419
5420 /* Compare with current best results. */
5421 if (max < best_chlen)
5422 {
5423 best_chlen = max;
5424 best_size = i;
5425 no_improvement_count = 0;
5426 }
5427 /* PR 11843: Avoid futile long searches for the best bucket size
5428 when there are a large number of symbols. */
5429 else if (++no_improvement_count == 100)
5430 break;
5431 }
5432
5433 free (counts);
5434 }
5435 else
5436 #endif /* defined (BFD_HOST_U_64_BIT) */
5437 {
5438 /* This is the fallback solution if no 64bit type is available or if we
5439 are not supposed to spend much time on optimizations. We select the
5440 bucket count using a fixed set of numbers. */
5441 for (i = 0; elf_buckets[i] != 0; i++)
5442 {
5443 best_size = elf_buckets[i];
5444 if (nsyms < elf_buckets[i + 1])
5445 break;
5446 }
5447 if (gnu_hash && best_size < 2)
5448 best_size = 2;
5449 }
5450
5451 return best_size;
5452 }
5453
5454 /* Size any SHT_GROUP section for ld -r. */
5455
5456 bfd_boolean
5457 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5458 {
5459 bfd *ibfd;
5460
5461 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5462 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5463 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5464 return FALSE;
5465 return TRUE;
5466 }
5467
5468 /* Set a default stack segment size. The value in INFO wins. If it
5469 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5470 undefined it is initialized. */
5471
5472 bfd_boolean
5473 bfd_elf_stack_segment_size (bfd *output_bfd,
5474 struct bfd_link_info *info,
5475 const char *legacy_symbol,
5476 bfd_vma default_size)
5477 {
5478 struct elf_link_hash_entry *h = NULL;
5479
5480 /* Look for legacy symbol. */
5481 if (legacy_symbol)
5482 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5483 FALSE, FALSE, FALSE);
5484 if (h && (h->root.type == bfd_link_hash_defined
5485 || h->root.type == bfd_link_hash_defweak)
5486 && h->def_regular
5487 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5488 {
5489 /* The symbol has no type if specified on the command line. */
5490 h->type = STT_OBJECT;
5491 if (info->stacksize)
5492 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5493 output_bfd, legacy_symbol);
5494 else if (h->root.u.def.section != bfd_abs_section_ptr)
5495 (*_bfd_error_handler) (_("%B: %s not absolute"),
5496 output_bfd, legacy_symbol);
5497 else
5498 info->stacksize = h->root.u.def.value;
5499 }
5500
5501 if (!info->stacksize)
5502 /* If the user didn't set a size, or explicitly inhibit the
5503 size, set it now. */
5504 info->stacksize = default_size;
5505
5506 /* Provide the legacy symbol, if it is referenced. */
5507 if (h && (h->root.type == bfd_link_hash_undefined
5508 || h->root.type == bfd_link_hash_undefweak))
5509 {
5510 struct bfd_link_hash_entry *bh = NULL;
5511
5512 if (!(_bfd_generic_link_add_one_symbol
5513 (info, output_bfd, legacy_symbol,
5514 BSF_GLOBAL, bfd_abs_section_ptr,
5515 info->stacksize >= 0 ? info->stacksize : 0,
5516 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5517 return FALSE;
5518
5519 h = (struct elf_link_hash_entry *) bh;
5520 h->def_regular = 1;
5521 h->type = STT_OBJECT;
5522 }
5523
5524 return TRUE;
5525 }
5526
5527 /* Set up the sizes and contents of the ELF dynamic sections. This is
5528 called by the ELF linker emulation before_allocation routine. We
5529 must set the sizes of the sections before the linker sets the
5530 addresses of the various sections. */
5531
5532 bfd_boolean
5533 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5534 const char *soname,
5535 const char *rpath,
5536 const char *filter_shlib,
5537 const char *audit,
5538 const char *depaudit,
5539 const char * const *auxiliary_filters,
5540 struct bfd_link_info *info,
5541 asection **sinterpptr)
5542 {
5543 bfd_size_type soname_indx;
5544 bfd *dynobj;
5545 const struct elf_backend_data *bed;
5546 struct elf_info_failed asvinfo;
5547
5548 *sinterpptr = NULL;
5549
5550 soname_indx = (bfd_size_type) -1;
5551
5552 if (!is_elf_hash_table (info->hash))
5553 return TRUE;
5554
5555 bed = get_elf_backend_data (output_bfd);
5556
5557 /* Any syms created from now on start with -1 in
5558 got.refcount/offset and plt.refcount/offset. */
5559 elf_hash_table (info)->init_got_refcount
5560 = elf_hash_table (info)->init_got_offset;
5561 elf_hash_table (info)->init_plt_refcount
5562 = elf_hash_table (info)->init_plt_offset;
5563
5564 if (info->relocatable
5565 && !_bfd_elf_size_group_sections (info))
5566 return FALSE;
5567
5568 /* The backend may have to create some sections regardless of whether
5569 we're dynamic or not. */
5570 if (bed->elf_backend_always_size_sections
5571 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5572 return FALSE;
5573
5574 /* Determine any GNU_STACK segment requirements, after the backend
5575 has had a chance to set a default segment size. */
5576 if (info->execstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5578 else if (info->noexecstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W;
5580 else
5581 {
5582 bfd *inputobj;
5583 asection *notesec = NULL;
5584 int exec = 0;
5585
5586 for (inputobj = info->input_bfds;
5587 inputobj;
5588 inputobj = inputobj->link.next)
5589 {
5590 asection *s;
5591
5592 if (inputobj->flags
5593 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5594 continue;
5595 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5596 if (s)
5597 {
5598 if (s->flags & SEC_CODE)
5599 exec = PF_X;
5600 notesec = s;
5601 }
5602 else if (bed->default_execstack)
5603 exec = PF_X;
5604 }
5605 if (notesec || info->stacksize > 0)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5607 if (notesec && exec && info->relocatable
5608 && notesec->output_section != bfd_abs_section_ptr)
5609 notesec->output_section->flags |= SEC_CODE;
5610 }
5611
5612 dynobj = elf_hash_table (info)->dynobj;
5613
5614 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5615 {
5616 struct elf_info_failed eif;
5617 struct elf_link_hash_entry *h;
5618 asection *dynstr;
5619 struct bfd_elf_version_tree *t;
5620 struct bfd_elf_version_expr *d;
5621 asection *s;
5622 bfd_boolean all_defined;
5623
5624 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5625 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5626
5627 if (soname != NULL)
5628 {
5629 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5630 soname, TRUE);
5631 if (soname_indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5633 return FALSE;
5634 }
5635
5636 if (info->symbolic)
5637 {
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5639 return FALSE;
5640 info->flags |= DF_SYMBOLIC;
5641 }
5642
5643 if (rpath != NULL)
5644 {
5645 bfd_size_type indx;
5646 bfd_vma tag;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5649 TRUE);
5650 if (indx == (bfd_size_type) -1)
5651 return FALSE;
5652
5653 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5654 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5655 return FALSE;
5656 }
5657
5658 if (filter_shlib != NULL)
5659 {
5660 bfd_size_type indx;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 filter_shlib, TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5666 return FALSE;
5667 }
5668
5669 if (auxiliary_filters != NULL)
5670 {
5671 const char * const *p;
5672
5673 for (p = auxiliary_filters; *p != NULL; p++)
5674 {
5675 bfd_size_type indx;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678 *p, TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5681 return FALSE;
5682 }
5683 }
5684
5685 if (audit != NULL)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5690 TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5693 return FALSE;
5694 }
5695
5696 if (depaudit != NULL)
5697 {
5698 bfd_size_type indx;
5699
5700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5701 TRUE);
5702 if (indx == (bfd_size_type) -1
5703 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5704 return FALSE;
5705 }
5706
5707 eif.info = info;
5708 eif.failed = FALSE;
5709
5710 /* If we are supposed to export all symbols into the dynamic symbol
5711 table (this is not the normal case), then do so. */
5712 if (info->export_dynamic
5713 || (info->executable && info->dynamic))
5714 {
5715 elf_link_hash_traverse (elf_hash_table (info),
5716 _bfd_elf_export_symbol,
5717 &eif);
5718 if (eif.failed)
5719 return FALSE;
5720 }
5721
5722 /* Make all global versions with definition. */
5723 for (t = info->version_info; t != NULL; t = t->next)
5724 for (d = t->globals.list; d != NULL; d = d->next)
5725 if (!d->symver && d->literal)
5726 {
5727 const char *verstr, *name;
5728 size_t namelen, verlen, newlen;
5729 char *newname, *p, leading_char;
5730 struct elf_link_hash_entry *newh;
5731
5732 leading_char = bfd_get_symbol_leading_char (output_bfd);
5733 name = d->pattern;
5734 namelen = strlen (name) + (leading_char != '\0');
5735 verstr = t->name;
5736 verlen = strlen (verstr);
5737 newlen = namelen + verlen + 3;
5738
5739 newname = (char *) bfd_malloc (newlen);
5740 if (newname == NULL)
5741 return FALSE;
5742 newname[0] = leading_char;
5743 memcpy (newname + (leading_char != '\0'), name, namelen);
5744
5745 /* Check the hidden versioned definition. */
5746 p = newname + namelen;
5747 *p++ = ELF_VER_CHR;
5748 memcpy (p, verstr, verlen + 1);
5749 newh = elf_link_hash_lookup (elf_hash_table (info),
5750 newname, FALSE, FALSE,
5751 FALSE);
5752 if (newh == NULL
5753 || (newh->root.type != bfd_link_hash_defined
5754 && newh->root.type != bfd_link_hash_defweak))
5755 {
5756 /* Check the default versioned definition. */
5757 *p++ = ELF_VER_CHR;
5758 memcpy (p, verstr, verlen + 1);
5759 newh = elf_link_hash_lookup (elf_hash_table (info),
5760 newname, FALSE, FALSE,
5761 FALSE);
5762 }
5763 free (newname);
5764
5765 /* Mark this version if there is a definition and it is
5766 not defined in a shared object. */
5767 if (newh != NULL
5768 && !newh->def_dynamic
5769 && (newh->root.type == bfd_link_hash_defined
5770 || newh->root.type == bfd_link_hash_defweak))
5771 d->symver = 1;
5772 }
5773
5774 /* Attach all the symbols to their version information. */
5775 asvinfo.info = info;
5776 asvinfo.failed = FALSE;
5777
5778 elf_link_hash_traverse (elf_hash_table (info),
5779 _bfd_elf_link_assign_sym_version,
5780 &asvinfo);
5781 if (asvinfo.failed)
5782 return FALSE;
5783
5784 if (!info->allow_undefined_version)
5785 {
5786 /* Check if all global versions have a definition. */
5787 all_defined = TRUE;
5788 for (t = info->version_info; t != NULL; t = t->next)
5789 for (d = t->globals.list; d != NULL; d = d->next)
5790 if (d->literal && !d->symver && !d->script)
5791 {
5792 (*_bfd_error_handler)
5793 (_("%s: undefined version: %s"),
5794 d->pattern, t->name);
5795 all_defined = FALSE;
5796 }
5797
5798 if (!all_defined)
5799 {
5800 bfd_set_error (bfd_error_bad_value);
5801 return FALSE;
5802 }
5803 }
5804
5805 /* Find all symbols which were defined in a dynamic object and make
5806 the backend pick a reasonable value for them. */
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_adjust_dynamic_symbol,
5809 &eif);
5810 if (eif.failed)
5811 return FALSE;
5812
5813 /* Add some entries to the .dynamic section. We fill in some of the
5814 values later, in bfd_elf_final_link, but we must add the entries
5815 now so that we know the final size of the .dynamic section. */
5816
5817 /* If there are initialization and/or finalization functions to
5818 call then add the corresponding DT_INIT/DT_FINI entries. */
5819 h = (info->init_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->init_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5829 return FALSE;
5830 }
5831 h = (info->fini_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->fini_function, FALSE,
5834 FALSE, FALSE)
5835 : NULL);
5836 if (h != NULL
5837 && (h->ref_regular
5838 || h->def_regular))
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5841 return FALSE;
5842 }
5843
5844 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5845 if (s != NULL && s->linker_has_input)
5846 {
5847 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5848 if (! info->executable)
5849 {
5850 bfd *sub;
5851 asection *o;
5852
5853 for (sub = info->input_bfds; sub != NULL;
5854 sub = sub->link.next)
5855 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5856 for (o = sub->sections; o != NULL; o = o->next)
5857 if (elf_section_data (o)->this_hdr.sh_type
5858 == SHT_PREINIT_ARRAY)
5859 {
5860 (*_bfd_error_handler)
5861 (_("%B: .preinit_array section is not allowed in DSO"),
5862 sub);
5863 break;
5864 }
5865
5866 bfd_set_error (bfd_error_nonrepresentable_section);
5867 return FALSE;
5868 }
5869
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874 s = bfd_get_section_by_name (output_bfd, ".init_array");
5875 if (s != NULL && s->linker_has_input)
5876 {
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5879 return FALSE;
5880 }
5881 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5882 if (s != NULL && s->linker_has_input)
5883 {
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888
5889 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5890 /* If .dynstr is excluded from the link, we don't want any of
5891 these tags. Strictly, we should be checking each section
5892 individually; This quick check covers for the case where
5893 someone does a /DISCARD/ : { *(*) }. */
5894 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5895 {
5896 bfd_size_type strsize;
5897
5898 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5899 if ((info->emit_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5901 || (info->emit_gnu_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5907 bed->s->sizeof_sym))
5908 return FALSE;
5909 }
5910 }
5911
5912 /* The backend must work out the sizes of all the other dynamic
5913 sections. */
5914 if (dynobj != NULL
5915 && bed->elf_backend_size_dynamic_sections != NULL
5916 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5917 return FALSE;
5918
5919 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5920 return FALSE;
5921
5922 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5923 {
5924 unsigned long section_sym_count;
5925 struct bfd_elf_version_tree *verdefs;
5926 asection *s;
5927
5928 /* Set up the version definition section. */
5929 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5930 BFD_ASSERT (s != NULL);
5931
5932 /* We may have created additional version definitions if we are
5933 just linking a regular application. */
5934 verdefs = info->version_info;
5935
5936 /* Skip anonymous version tag. */
5937 if (verdefs != NULL && verdefs->vernum == 0)
5938 verdefs = verdefs->next;
5939
5940 if (verdefs == NULL && !info->create_default_symver)
5941 s->flags |= SEC_EXCLUDE;
5942 else
5943 {
5944 unsigned int cdefs;
5945 bfd_size_type size;
5946 struct bfd_elf_version_tree *t;
5947 bfd_byte *p;
5948 Elf_Internal_Verdef def;
5949 Elf_Internal_Verdaux defaux;
5950 struct bfd_link_hash_entry *bh;
5951 struct elf_link_hash_entry *h;
5952 const char *name;
5953
5954 cdefs = 0;
5955 size = 0;
5956
5957 /* Make space for the base version. */
5958 size += sizeof (Elf_External_Verdef);
5959 size += sizeof (Elf_External_Verdaux);
5960 ++cdefs;
5961
5962 /* Make space for the default version. */
5963 if (info->create_default_symver)
5964 {
5965 size += sizeof (Elf_External_Verdef);
5966 ++cdefs;
5967 }
5968
5969 for (t = verdefs; t != NULL; t = t->next)
5970 {
5971 struct bfd_elf_version_deps *n;
5972
5973 /* Don't emit base version twice. */
5974 if (t->vernum == 0)
5975 continue;
5976
5977 size += sizeof (Elf_External_Verdef);
5978 size += sizeof (Elf_External_Verdaux);
5979 ++cdefs;
5980
5981 for (n = t->deps; n != NULL; n = n->next)
5982 size += sizeof (Elf_External_Verdaux);
5983 }
5984
5985 s->size = size;
5986 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5987 if (s->contents == NULL && s->size != 0)
5988 return FALSE;
5989
5990 /* Fill in the version definition section. */
5991
5992 p = s->contents;
5993
5994 def.vd_version = VER_DEF_CURRENT;
5995 def.vd_flags = VER_FLG_BASE;
5996 def.vd_ndx = 1;
5997 def.vd_cnt = 1;
5998 if (info->create_default_symver)
5999 {
6000 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6001 def.vd_next = sizeof (Elf_External_Verdef);
6002 }
6003 else
6004 {
6005 def.vd_aux = sizeof (Elf_External_Verdef);
6006 def.vd_next = (sizeof (Elf_External_Verdef)
6007 + sizeof (Elf_External_Verdaux));
6008 }
6009
6010 if (soname_indx != (bfd_size_type) -1)
6011 {
6012 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6013 soname_indx);
6014 def.vd_hash = bfd_elf_hash (soname);
6015 defaux.vda_name = soname_indx;
6016 name = soname;
6017 }
6018 else
6019 {
6020 bfd_size_type indx;
6021
6022 name = lbasename (output_bfd->filename);
6023 def.vd_hash = bfd_elf_hash (name);
6024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6025 name, FALSE);
6026 if (indx == (bfd_size_type) -1)
6027 return FALSE;
6028 defaux.vda_name = indx;
6029 }
6030 defaux.vda_next = 0;
6031
6032 _bfd_elf_swap_verdef_out (output_bfd, &def,
6033 (Elf_External_Verdef *) p);
6034 p += sizeof (Elf_External_Verdef);
6035 if (info->create_default_symver)
6036 {
6037 /* Add a symbol representing this version. */
6038 bh = NULL;
6039 if (! (_bfd_generic_link_add_one_symbol
6040 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6041 0, NULL, FALSE,
6042 get_elf_backend_data (dynobj)->collect, &bh)))
6043 return FALSE;
6044 h = (struct elf_link_hash_entry *) bh;
6045 h->non_elf = 0;
6046 h->def_regular = 1;
6047 h->type = STT_OBJECT;
6048 h->verinfo.vertree = NULL;
6049
6050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6051 return FALSE;
6052
6053 /* Create a duplicate of the base version with the same
6054 aux block, but different flags. */
6055 def.vd_flags = 0;
6056 def.vd_ndx = 2;
6057 def.vd_aux = sizeof (Elf_External_Verdef);
6058 if (verdefs)
6059 def.vd_next = (sizeof (Elf_External_Verdef)
6060 + sizeof (Elf_External_Verdaux));
6061 else
6062 def.vd_next = 0;
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6066 }
6067 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6068 (Elf_External_Verdaux *) p);
6069 p += sizeof (Elf_External_Verdaux);
6070
6071 for (t = verdefs; t != NULL; t = t->next)
6072 {
6073 unsigned int cdeps;
6074 struct bfd_elf_version_deps *n;
6075
6076 /* Don't emit the base version twice. */
6077 if (t->vernum == 0)
6078 continue;
6079
6080 cdeps = 0;
6081 for (n = t->deps; n != NULL; n = n->next)
6082 ++cdeps;
6083
6084 /* Add a symbol representing this version. */
6085 bh = NULL;
6086 if (! (_bfd_generic_link_add_one_symbol
6087 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6088 0, NULL, FALSE,
6089 get_elf_backend_data (dynobj)->collect, &bh)))
6090 return FALSE;
6091 h = (struct elf_link_hash_entry *) bh;
6092 h->non_elf = 0;
6093 h->def_regular = 1;
6094 h->type = STT_OBJECT;
6095 h->verinfo.vertree = t;
6096
6097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6098 return FALSE;
6099
6100 def.vd_version = VER_DEF_CURRENT;
6101 def.vd_flags = 0;
6102 if (t->globals.list == NULL
6103 && t->locals.list == NULL
6104 && ! t->used)
6105 def.vd_flags |= VER_FLG_WEAK;
6106 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6107 def.vd_cnt = cdeps + 1;
6108 def.vd_hash = bfd_elf_hash (t->name);
6109 def.vd_aux = sizeof (Elf_External_Verdef);
6110 def.vd_next = 0;
6111
6112 /* If a basever node is next, it *must* be the last node in
6113 the chain, otherwise Verdef construction breaks. */
6114 if (t->next != NULL && t->next->vernum == 0)
6115 BFD_ASSERT (t->next->next == NULL);
6116
6117 if (t->next != NULL && t->next->vernum != 0)
6118 def.vd_next = (sizeof (Elf_External_Verdef)
6119 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6120
6121 _bfd_elf_swap_verdef_out (output_bfd, &def,
6122 (Elf_External_Verdef *) p);
6123 p += sizeof (Elf_External_Verdef);
6124
6125 defaux.vda_name = h->dynstr_index;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6127 h->dynstr_index);
6128 defaux.vda_next = 0;
6129 if (t->deps != NULL)
6130 defaux.vda_next = sizeof (Elf_External_Verdaux);
6131 t->name_indx = defaux.vda_name;
6132
6133 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6134 (Elf_External_Verdaux *) p);
6135 p += sizeof (Elf_External_Verdaux);
6136
6137 for (n = t->deps; n != NULL; n = n->next)
6138 {
6139 if (n->version_needed == NULL)
6140 {
6141 /* This can happen if there was an error in the
6142 version script. */
6143 defaux.vda_name = 0;
6144 }
6145 else
6146 {
6147 defaux.vda_name = n->version_needed->name_indx;
6148 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6149 defaux.vda_name);
6150 }
6151 if (n->next == NULL)
6152 defaux.vda_next = 0;
6153 else
6154 defaux.vda_next = sizeof (Elf_External_Verdaux);
6155
6156 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6157 (Elf_External_Verdaux *) p);
6158 p += sizeof (Elf_External_Verdaux);
6159 }
6160 }
6161
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6163 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6164 return FALSE;
6165
6166 elf_tdata (output_bfd)->cverdefs = cdefs;
6167 }
6168
6169 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6170 {
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6172 return FALSE;
6173 }
6174 else if (info->flags & DF_BIND_NOW)
6175 {
6176 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6177 return FALSE;
6178 }
6179
6180 if (info->flags_1)
6181 {
6182 if (info->executable)
6183 info->flags_1 &= ~ (DF_1_INITFIRST
6184 | DF_1_NODELETE
6185 | DF_1_NOOPEN);
6186 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6187 return FALSE;
6188 }
6189
6190 /* Work out the size of the version reference section. */
6191
6192 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6193 BFD_ASSERT (s != NULL);
6194 {
6195 struct elf_find_verdep_info sinfo;
6196
6197 sinfo.info = info;
6198 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6199 if (sinfo.vers == 0)
6200 sinfo.vers = 1;
6201 sinfo.failed = FALSE;
6202
6203 elf_link_hash_traverse (elf_hash_table (info),
6204 _bfd_elf_link_find_version_dependencies,
6205 &sinfo);
6206 if (sinfo.failed)
6207 return FALSE;
6208
6209 if (elf_tdata (output_bfd)->verref == NULL)
6210 s->flags |= SEC_EXCLUDE;
6211 else
6212 {
6213 Elf_Internal_Verneed *t;
6214 unsigned int size;
6215 unsigned int crefs;
6216 bfd_byte *p;
6217
6218 /* Build the version dependency section. */
6219 size = 0;
6220 crefs = 0;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6224 {
6225 Elf_Internal_Vernaux *a;
6226
6227 size += sizeof (Elf_External_Verneed);
6228 ++crefs;
6229 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6230 size += sizeof (Elf_External_Vernaux);
6231 }
6232
6233 s->size = size;
6234 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6236 return FALSE;
6237
6238 p = s->contents;
6239 for (t = elf_tdata (output_bfd)->verref;
6240 t != NULL;
6241 t = t->vn_nextref)
6242 {
6243 unsigned int caux;
6244 Elf_Internal_Vernaux *a;
6245 bfd_size_type indx;
6246
6247 caux = 0;
6248 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6249 ++caux;
6250
6251 t->vn_version = VER_NEED_CURRENT;
6252 t->vn_cnt = caux;
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 elf_dt_name (t->vn_bfd) != NULL
6255 ? elf_dt_name (t->vn_bfd)
6256 : lbasename (t->vn_bfd->filename),
6257 FALSE);
6258 if (indx == (bfd_size_type) -1)
6259 return FALSE;
6260 t->vn_file = indx;
6261 t->vn_aux = sizeof (Elf_External_Verneed);
6262 if (t->vn_nextref == NULL)
6263 t->vn_next = 0;
6264 else
6265 t->vn_next = (sizeof (Elf_External_Verneed)
6266 + caux * sizeof (Elf_External_Vernaux));
6267
6268 _bfd_elf_swap_verneed_out (output_bfd, t,
6269 (Elf_External_Verneed *) p);
6270 p += sizeof (Elf_External_Verneed);
6271
6272 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6273 {
6274 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6275 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 a->vna_nodename, FALSE);
6277 if (indx == (bfd_size_type) -1)
6278 return FALSE;
6279 a->vna_name = indx;
6280 if (a->vna_nextptr == NULL)
6281 a->vna_next = 0;
6282 else
6283 a->vna_next = sizeof (Elf_External_Vernaux);
6284
6285 _bfd_elf_swap_vernaux_out (output_bfd, a,
6286 (Elf_External_Vernaux *) p);
6287 p += sizeof (Elf_External_Vernaux);
6288 }
6289 }
6290
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6292 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6293 return FALSE;
6294
6295 elf_tdata (output_bfd)->cverrefs = crefs;
6296 }
6297 }
6298
6299 if ((elf_tdata (output_bfd)->cverrefs == 0
6300 && elf_tdata (output_bfd)->cverdefs == 0)
6301 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6302 &section_sym_count) == 0)
6303 {
6304 s = bfd_get_linker_section (dynobj, ".gnu.version");
6305 s->flags |= SEC_EXCLUDE;
6306 }
6307 }
6308 return TRUE;
6309 }
6310
6311 /* Find the first non-excluded output section. We'll use its
6312 section symbol for some emitted relocs. */
6313 void
6314 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6321 {
6322 elf_hash_table (info)->text_index_section = s;
6323 break;
6324 }
6325 }
6326
6327 /* Find two non-excluded output sections, one for code, one for data.
6328 We'll use their section symbols for some emitted relocs. */
6329 void
6330 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6331 {
6332 asection *s;
6333
6334 /* Data first, since setting text_index_section changes
6335 _bfd_elf_link_omit_section_dynsym. */
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6339 {
6340 elf_hash_table (info)->data_index_section = s;
6341 break;
6342 }
6343
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6346 == (SEC_ALLOC | SEC_READONLY))
6347 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6348 {
6349 elf_hash_table (info)->text_index_section = s;
6350 break;
6351 }
6352
6353 if (elf_hash_table (info)->text_index_section == NULL)
6354 elf_hash_table (info)->text_index_section
6355 = elf_hash_table (info)->data_index_section;
6356 }
6357
6358 bfd_boolean
6359 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6360 {
6361 const struct elf_backend_data *bed;
6362
6363 if (!is_elf_hash_table (info->hash))
6364 return TRUE;
6365
6366 bed = get_elf_backend_data (output_bfd);
6367 (*bed->elf_backend_init_index_section) (output_bfd, info);
6368
6369 if (elf_hash_table (info)->dynamic_sections_created)
6370 {
6371 bfd *dynobj;
6372 asection *s;
6373 bfd_size_type dynsymcount;
6374 unsigned long section_sym_count;
6375 unsigned int dtagcount;
6376
6377 dynobj = elf_hash_table (info)->dynobj;
6378
6379 /* Assign dynsym indicies. In a shared library we generate a
6380 section symbol for each output section, which come first.
6381 Next come all of the back-end allocated local dynamic syms,
6382 followed by the rest of the global symbols. */
6383
6384 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6385 &section_sym_count);
6386
6387 /* Work out the size of the symbol version section. */
6388 s = bfd_get_linker_section (dynobj, ".gnu.version");
6389 BFD_ASSERT (s != NULL);
6390 if (dynsymcount != 0
6391 && (s->flags & SEC_EXCLUDE) == 0)
6392 {
6393 s->size = dynsymcount * sizeof (Elf_External_Versym);
6394 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6396 return FALSE;
6397
6398 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6399 return FALSE;
6400 }
6401
6402 /* Set the size of the .dynsym and .hash sections. We counted
6403 the number of dynamic symbols in elf_link_add_object_symbols.
6404 We will build the contents of .dynsym and .hash when we build
6405 the final symbol table, because until then we do not know the
6406 correct value to give the symbols. We built the .dynstr
6407 section as we went along in elf_link_add_object_symbols. */
6408 s = bfd_get_linker_section (dynobj, ".dynsym");
6409 BFD_ASSERT (s != NULL);
6410 s->size = dynsymcount * bed->s->sizeof_sym;
6411
6412 if (dynsymcount != 0)
6413 {
6414 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6415 if (s->contents == NULL)
6416 return FALSE;
6417
6418 /* The first entry in .dynsym is a dummy symbol.
6419 Clear all the section syms, in case we don't output them all. */
6420 ++section_sym_count;
6421 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6422 }
6423
6424 elf_hash_table (info)->bucketcount = 0;
6425
6426 /* Compute the size of the hashing table. As a side effect this
6427 computes the hash values for all the names we export. */
6428 if (info->emit_hash)
6429 {
6430 unsigned long int *hashcodes;
6431 struct hash_codes_info hashinf;
6432 bfd_size_type amt;
6433 unsigned long int nsyms;
6434 size_t bucketcount;
6435 size_t hash_entry_size;
6436
6437 /* Compute the hash values for all exported symbols. At the same
6438 time store the values in an array so that we could use them for
6439 optimizations. */
6440 amt = dynsymcount * sizeof (unsigned long int);
6441 hashcodes = (unsigned long int *) bfd_malloc (amt);
6442 if (hashcodes == NULL)
6443 return FALSE;
6444 hashinf.hashcodes = hashcodes;
6445 hashinf.error = FALSE;
6446
6447 /* Put all hash values in HASHCODES. */
6448 elf_link_hash_traverse (elf_hash_table (info),
6449 elf_collect_hash_codes, &hashinf);
6450 if (hashinf.error)
6451 {
6452 free (hashcodes);
6453 return FALSE;
6454 }
6455
6456 nsyms = hashinf.hashcodes - hashcodes;
6457 bucketcount
6458 = compute_bucket_count (info, hashcodes, nsyms, 0);
6459 free (hashcodes);
6460
6461 if (bucketcount == 0)
6462 return FALSE;
6463
6464 elf_hash_table (info)->bucketcount = bucketcount;
6465
6466 s = bfd_get_linker_section (dynobj, ".hash");
6467 BFD_ASSERT (s != NULL);
6468 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6469 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6470 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6471 if (s->contents == NULL)
6472 return FALSE;
6473
6474 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6475 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6476 s->contents + hash_entry_size);
6477 }
6478
6479 if (info->emit_gnu_hash)
6480 {
6481 size_t i, cnt;
6482 unsigned char *contents;
6483 struct collect_gnu_hash_codes cinfo;
6484 bfd_size_type amt;
6485 size_t bucketcount;
6486
6487 memset (&cinfo, 0, sizeof (cinfo));
6488
6489 /* Compute the hash values for all exported symbols. At the same
6490 time store the values in an array so that we could use them for
6491 optimizations. */
6492 amt = dynsymcount * 2 * sizeof (unsigned long int);
6493 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6494 if (cinfo.hashcodes == NULL)
6495 return FALSE;
6496
6497 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6498 cinfo.min_dynindx = -1;
6499 cinfo.output_bfd = output_bfd;
6500 cinfo.bed = bed;
6501
6502 /* Put all hash values in HASHCODES. */
6503 elf_link_hash_traverse (elf_hash_table (info),
6504 elf_collect_gnu_hash_codes, &cinfo);
6505 if (cinfo.error)
6506 {
6507 free (cinfo.hashcodes);
6508 return FALSE;
6509 }
6510
6511 bucketcount
6512 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6513
6514 if (bucketcount == 0)
6515 {
6516 free (cinfo.hashcodes);
6517 return FALSE;
6518 }
6519
6520 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6521 BFD_ASSERT (s != NULL);
6522
6523 if (cinfo.nsyms == 0)
6524 {
6525 /* Empty .gnu.hash section is special. */
6526 BFD_ASSERT (cinfo.min_dynindx == -1);
6527 free (cinfo.hashcodes);
6528 s->size = 5 * 4 + bed->s->arch_size / 8;
6529 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6530 if (contents == NULL)
6531 return FALSE;
6532 s->contents = contents;
6533 /* 1 empty bucket. */
6534 bfd_put_32 (output_bfd, 1, contents);
6535 /* SYMIDX above the special symbol 0. */
6536 bfd_put_32 (output_bfd, 1, contents + 4);
6537 /* Just one word for bitmask. */
6538 bfd_put_32 (output_bfd, 1, contents + 8);
6539 /* Only hash fn bloom filter. */
6540 bfd_put_32 (output_bfd, 0, contents + 12);
6541 /* No hashes are valid - empty bitmask. */
6542 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6543 /* No hashes in the only bucket. */
6544 bfd_put_32 (output_bfd, 0,
6545 contents + 16 + bed->s->arch_size / 8);
6546 }
6547 else
6548 {
6549 unsigned long int maskwords, maskbitslog2, x;
6550 BFD_ASSERT (cinfo.min_dynindx != -1);
6551
6552 x = cinfo.nsyms;
6553 maskbitslog2 = 1;
6554 while ((x >>= 1) != 0)
6555 ++maskbitslog2;
6556 if (maskbitslog2 < 3)
6557 maskbitslog2 = 5;
6558 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6559 maskbitslog2 = maskbitslog2 + 3;
6560 else
6561 maskbitslog2 = maskbitslog2 + 2;
6562 if (bed->s->arch_size == 64)
6563 {
6564 if (maskbitslog2 == 5)
6565 maskbitslog2 = 6;
6566 cinfo.shift1 = 6;
6567 }
6568 else
6569 cinfo.shift1 = 5;
6570 cinfo.mask = (1 << cinfo.shift1) - 1;
6571 cinfo.shift2 = maskbitslog2;
6572 cinfo.maskbits = 1 << maskbitslog2;
6573 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6574 amt = bucketcount * sizeof (unsigned long int) * 2;
6575 amt += maskwords * sizeof (bfd_vma);
6576 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6577 if (cinfo.bitmask == NULL)
6578 {
6579 free (cinfo.hashcodes);
6580 return FALSE;
6581 }
6582
6583 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6584 cinfo.indx = cinfo.counts + bucketcount;
6585 cinfo.symindx = dynsymcount - cinfo.nsyms;
6586 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6587
6588 /* Determine how often each hash bucket is used. */
6589 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6590 for (i = 0; i < cinfo.nsyms; ++i)
6591 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6592
6593 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6594 if (cinfo.counts[i] != 0)
6595 {
6596 cinfo.indx[i] = cnt;
6597 cnt += cinfo.counts[i];
6598 }
6599 BFD_ASSERT (cnt == dynsymcount);
6600 cinfo.bucketcount = bucketcount;
6601 cinfo.local_indx = cinfo.min_dynindx;
6602
6603 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6604 s->size += cinfo.maskbits / 8;
6605 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6606 if (contents == NULL)
6607 {
6608 free (cinfo.bitmask);
6609 free (cinfo.hashcodes);
6610 return FALSE;
6611 }
6612
6613 s->contents = contents;
6614 bfd_put_32 (output_bfd, bucketcount, contents);
6615 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6616 bfd_put_32 (output_bfd, maskwords, contents + 8);
6617 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6618 contents += 16 + cinfo.maskbits / 8;
6619
6620 for (i = 0; i < bucketcount; ++i)
6621 {
6622 if (cinfo.counts[i] == 0)
6623 bfd_put_32 (output_bfd, 0, contents);
6624 else
6625 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6626 contents += 4;
6627 }
6628
6629 cinfo.contents = contents;
6630
6631 /* Renumber dynamic symbols, populate .gnu.hash section. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 elf_renumber_gnu_hash_syms, &cinfo);
6634
6635 contents = s->contents + 16;
6636 for (i = 0; i < maskwords; ++i)
6637 {
6638 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6639 contents);
6640 contents += bed->s->arch_size / 8;
6641 }
6642
6643 free (cinfo.bitmask);
6644 free (cinfo.hashcodes);
6645 }
6646 }
6647
6648 s = bfd_get_linker_section (dynobj, ".dynstr");
6649 BFD_ASSERT (s != NULL);
6650
6651 elf_finalize_dynstr (output_bfd, info);
6652
6653 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6654
6655 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6656 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6657 return FALSE;
6658 }
6659
6660 return TRUE;
6661 }
6662 \f
6663 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6664
6665 static void
6666 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6667 asection *sec)
6668 {
6669 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6670 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6671 }
6672
6673 /* Finish SHF_MERGE section merging. */
6674
6675 bfd_boolean
6676 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6677 {
6678 bfd *ibfd;
6679 asection *sec;
6680
6681 if (!is_elf_hash_table (info->hash))
6682 return FALSE;
6683
6684 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6685 if ((ibfd->flags & DYNAMIC) == 0)
6686 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6687 if ((sec->flags & SEC_MERGE) != 0
6688 && !bfd_is_abs_section (sec->output_section))
6689 {
6690 struct bfd_elf_section_data *secdata;
6691
6692 secdata = elf_section_data (sec);
6693 if (! _bfd_add_merge_section (abfd,
6694 &elf_hash_table (info)->merge_info,
6695 sec, &secdata->sec_info))
6696 return FALSE;
6697 else if (secdata->sec_info)
6698 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6699 }
6700
6701 if (elf_hash_table (info)->merge_info != NULL)
6702 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6703 merge_sections_remove_hook);
6704 return TRUE;
6705 }
6706
6707 /* Create an entry in an ELF linker hash table. */
6708
6709 struct bfd_hash_entry *
6710 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6711 struct bfd_hash_table *table,
6712 const char *string)
6713 {
6714 /* Allocate the structure if it has not already been allocated by a
6715 subclass. */
6716 if (entry == NULL)
6717 {
6718 entry = (struct bfd_hash_entry *)
6719 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6720 if (entry == NULL)
6721 return entry;
6722 }
6723
6724 /* Call the allocation method of the superclass. */
6725 entry = _bfd_link_hash_newfunc (entry, table, string);
6726 if (entry != NULL)
6727 {
6728 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6729 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6730
6731 /* Set local fields. */
6732 ret->indx = -1;
6733 ret->dynindx = -1;
6734 ret->got = htab->init_got_refcount;
6735 ret->plt = htab->init_plt_refcount;
6736 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6737 - offsetof (struct elf_link_hash_entry, size)));
6738 /* Assume that we have been called by a non-ELF symbol reader.
6739 This flag is then reset by the code which reads an ELF input
6740 file. This ensures that a symbol created by a non-ELF symbol
6741 reader will have the flag set correctly. */
6742 ret->non_elf = 1;
6743 }
6744
6745 return entry;
6746 }
6747
6748 /* Copy data from an indirect symbol to its direct symbol, hiding the
6749 old indirect symbol. Also used for copying flags to a weakdef. */
6750
6751 void
6752 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6753 struct elf_link_hash_entry *dir,
6754 struct elf_link_hash_entry *ind)
6755 {
6756 struct elf_link_hash_table *htab;
6757
6758 /* Copy down any references that we may have already seen to the
6759 symbol which just became indirect. */
6760
6761 dir->ref_dynamic |= ind->ref_dynamic;
6762 dir->ref_regular |= ind->ref_regular;
6763 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6764 dir->non_got_ref |= ind->non_got_ref;
6765 dir->needs_plt |= ind->needs_plt;
6766 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6767
6768 if (ind->root.type != bfd_link_hash_indirect)
6769 return;
6770
6771 /* Copy over the global and procedure linkage table refcount entries.
6772 These may have been already set up by a check_relocs routine. */
6773 htab = elf_hash_table (info);
6774 if (ind->got.refcount > htab->init_got_refcount.refcount)
6775 {
6776 if (dir->got.refcount < 0)
6777 dir->got.refcount = 0;
6778 dir->got.refcount += ind->got.refcount;
6779 ind->got.refcount = htab->init_got_refcount.refcount;
6780 }
6781
6782 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6783 {
6784 if (dir->plt.refcount < 0)
6785 dir->plt.refcount = 0;
6786 dir->plt.refcount += ind->plt.refcount;
6787 ind->plt.refcount = htab->init_plt_refcount.refcount;
6788 }
6789
6790 if (ind->dynindx != -1)
6791 {
6792 if (dir->dynindx != -1)
6793 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6794 dir->dynindx = ind->dynindx;
6795 dir->dynstr_index = ind->dynstr_index;
6796 ind->dynindx = -1;
6797 ind->dynstr_index = 0;
6798 }
6799 }
6800
6801 void
6802 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6803 struct elf_link_hash_entry *h,
6804 bfd_boolean force_local)
6805 {
6806 /* STT_GNU_IFUNC symbol must go through PLT. */
6807 if (h->type != STT_GNU_IFUNC)
6808 {
6809 h->plt = elf_hash_table (info)->init_plt_offset;
6810 h->needs_plt = 0;
6811 }
6812 if (force_local)
6813 {
6814 h->forced_local = 1;
6815 if (h->dynindx != -1)
6816 {
6817 h->dynindx = -1;
6818 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6819 h->dynstr_index);
6820 }
6821 }
6822 }
6823
6824 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6825 caller. */
6826
6827 bfd_boolean
6828 _bfd_elf_link_hash_table_init
6829 (struct elf_link_hash_table *table,
6830 bfd *abfd,
6831 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6832 struct bfd_hash_table *,
6833 const char *),
6834 unsigned int entsize,
6835 enum elf_target_id target_id)
6836 {
6837 bfd_boolean ret;
6838 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6839
6840 table->init_got_refcount.refcount = can_refcount - 1;
6841 table->init_plt_refcount.refcount = can_refcount - 1;
6842 table->init_got_offset.offset = -(bfd_vma) 1;
6843 table->init_plt_offset.offset = -(bfd_vma) 1;
6844 /* The first dynamic symbol is a dummy. */
6845 table->dynsymcount = 1;
6846
6847 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6848
6849 table->root.type = bfd_link_elf_hash_table;
6850 table->hash_table_id = target_id;
6851
6852 return ret;
6853 }
6854
6855 /* Create an ELF linker hash table. */
6856
6857 struct bfd_link_hash_table *
6858 _bfd_elf_link_hash_table_create (bfd *abfd)
6859 {
6860 struct elf_link_hash_table *ret;
6861 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6862
6863 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6864 if (ret == NULL)
6865 return NULL;
6866
6867 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6868 sizeof (struct elf_link_hash_entry),
6869 GENERIC_ELF_DATA))
6870 {
6871 free (ret);
6872 return NULL;
6873 }
6874 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6875
6876 return &ret->root;
6877 }
6878
6879 /* Destroy an ELF linker hash table. */
6880
6881 void
6882 _bfd_elf_link_hash_table_free (bfd *obfd)
6883 {
6884 struct elf_link_hash_table *htab;
6885
6886 htab = (struct elf_link_hash_table *) obfd->link.hash;
6887 if (htab->dynstr != NULL)
6888 _bfd_elf_strtab_free (htab->dynstr);
6889 _bfd_merge_sections_free (htab->merge_info);
6890 _bfd_generic_link_hash_table_free (obfd);
6891 }
6892
6893 /* This is a hook for the ELF emulation code in the generic linker to
6894 tell the backend linker what file name to use for the DT_NEEDED
6895 entry for a dynamic object. */
6896
6897 void
6898 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6899 {
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dt_name (abfd) = name;
6903 }
6904
6905 int
6906 bfd_elf_get_dyn_lib_class (bfd *abfd)
6907 {
6908 int lib_class;
6909 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6910 && bfd_get_format (abfd) == bfd_object)
6911 lib_class = elf_dyn_lib_class (abfd);
6912 else
6913 lib_class = 0;
6914 return lib_class;
6915 }
6916
6917 void
6918 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6919 {
6920 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6921 && bfd_get_format (abfd) == bfd_object)
6922 elf_dyn_lib_class (abfd) = lib_class;
6923 }
6924
6925 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6926 the linker ELF emulation code. */
6927
6928 struct bfd_link_needed_list *
6929 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6930 struct bfd_link_info *info)
6931 {
6932 if (! is_elf_hash_table (info->hash))
6933 return NULL;
6934 return elf_hash_table (info)->needed;
6935 }
6936
6937 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6938 hook for the linker ELF emulation code. */
6939
6940 struct bfd_link_needed_list *
6941 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6942 struct bfd_link_info *info)
6943 {
6944 if (! is_elf_hash_table (info->hash))
6945 return NULL;
6946 return elf_hash_table (info)->runpath;
6947 }
6948
6949 /* Get the name actually used for a dynamic object for a link. This
6950 is the SONAME entry if there is one. Otherwise, it is the string
6951 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6952
6953 const char *
6954 bfd_elf_get_dt_soname (bfd *abfd)
6955 {
6956 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6957 && bfd_get_format (abfd) == bfd_object)
6958 return elf_dt_name (abfd);
6959 return NULL;
6960 }
6961
6962 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6963 the ELF linker emulation code. */
6964
6965 bfd_boolean
6966 bfd_elf_get_bfd_needed_list (bfd *abfd,
6967 struct bfd_link_needed_list **pneeded)
6968 {
6969 asection *s;
6970 bfd_byte *dynbuf = NULL;
6971 unsigned int elfsec;
6972 unsigned long shlink;
6973 bfd_byte *extdyn, *extdynend;
6974 size_t extdynsize;
6975 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6976
6977 *pneeded = NULL;
6978
6979 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6980 || bfd_get_format (abfd) != bfd_object)
6981 return TRUE;
6982
6983 s = bfd_get_section_by_name (abfd, ".dynamic");
6984 if (s == NULL || s->size == 0)
6985 return TRUE;
6986
6987 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6988 goto error_return;
6989
6990 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6991 if (elfsec == SHN_BAD)
6992 goto error_return;
6993
6994 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6995
6996 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6997 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6998
6999 extdyn = dynbuf;
7000 extdynend = extdyn + s->size;
7001 for (; extdyn < extdynend; extdyn += extdynsize)
7002 {
7003 Elf_Internal_Dyn dyn;
7004
7005 (*swap_dyn_in) (abfd, extdyn, &dyn);
7006
7007 if (dyn.d_tag == DT_NULL)
7008 break;
7009
7010 if (dyn.d_tag == DT_NEEDED)
7011 {
7012 const char *string;
7013 struct bfd_link_needed_list *l;
7014 unsigned int tagv = dyn.d_un.d_val;
7015 bfd_size_type amt;
7016
7017 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7018 if (string == NULL)
7019 goto error_return;
7020
7021 amt = sizeof *l;
7022 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7023 if (l == NULL)
7024 goto error_return;
7025
7026 l->by = abfd;
7027 l->name = string;
7028 l->next = *pneeded;
7029 *pneeded = l;
7030 }
7031 }
7032
7033 free (dynbuf);
7034
7035 return TRUE;
7036
7037 error_return:
7038 if (dynbuf != NULL)
7039 free (dynbuf);
7040 return FALSE;
7041 }
7042
7043 struct elf_symbuf_symbol
7044 {
7045 unsigned long st_name; /* Symbol name, index in string tbl */
7046 unsigned char st_info; /* Type and binding attributes */
7047 unsigned char st_other; /* Visibilty, and target specific */
7048 };
7049
7050 struct elf_symbuf_head
7051 {
7052 struct elf_symbuf_symbol *ssym;
7053 bfd_size_type count;
7054 unsigned int st_shndx;
7055 };
7056
7057 struct elf_symbol
7058 {
7059 union
7060 {
7061 Elf_Internal_Sym *isym;
7062 struct elf_symbuf_symbol *ssym;
7063 } u;
7064 const char *name;
7065 };
7066
7067 /* Sort references to symbols by ascending section number. */
7068
7069 static int
7070 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7071 {
7072 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7073 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7074
7075 return s1->st_shndx - s2->st_shndx;
7076 }
7077
7078 static int
7079 elf_sym_name_compare (const void *arg1, const void *arg2)
7080 {
7081 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7082 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7083 return strcmp (s1->name, s2->name);
7084 }
7085
7086 static struct elf_symbuf_head *
7087 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7088 {
7089 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7090 struct elf_symbuf_symbol *ssym;
7091 struct elf_symbuf_head *ssymbuf, *ssymhead;
7092 bfd_size_type i, shndx_count, total_size;
7093
7094 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7095 if (indbuf == NULL)
7096 return NULL;
7097
7098 for (ind = indbuf, i = 0; i < symcount; i++)
7099 if (isymbuf[i].st_shndx != SHN_UNDEF)
7100 *ind++ = &isymbuf[i];
7101 indbufend = ind;
7102
7103 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7104 elf_sort_elf_symbol);
7105
7106 shndx_count = 0;
7107 if (indbufend > indbuf)
7108 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7109 if (ind[0]->st_shndx != ind[1]->st_shndx)
7110 shndx_count++;
7111
7112 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7113 + (indbufend - indbuf) * sizeof (*ssym));
7114 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7115 if (ssymbuf == NULL)
7116 {
7117 free (indbuf);
7118 return NULL;
7119 }
7120
7121 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7122 ssymbuf->ssym = NULL;
7123 ssymbuf->count = shndx_count;
7124 ssymbuf->st_shndx = 0;
7125 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7126 {
7127 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7128 {
7129 ssymhead++;
7130 ssymhead->ssym = ssym;
7131 ssymhead->count = 0;
7132 ssymhead->st_shndx = (*ind)->st_shndx;
7133 }
7134 ssym->st_name = (*ind)->st_name;
7135 ssym->st_info = (*ind)->st_info;
7136 ssym->st_other = (*ind)->st_other;
7137 ssymhead->count++;
7138 }
7139 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7140 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7141 == total_size));
7142
7143 free (indbuf);
7144 return ssymbuf;
7145 }
7146
7147 /* Check if 2 sections define the same set of local and global
7148 symbols. */
7149
7150 static bfd_boolean
7151 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7152 struct bfd_link_info *info)
7153 {
7154 bfd *bfd1, *bfd2;
7155 const struct elf_backend_data *bed1, *bed2;
7156 Elf_Internal_Shdr *hdr1, *hdr2;
7157 bfd_size_type symcount1, symcount2;
7158 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7159 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7160 Elf_Internal_Sym *isym, *isymend;
7161 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7162 bfd_size_type count1, count2, i;
7163 unsigned int shndx1, shndx2;
7164 bfd_boolean result;
7165
7166 bfd1 = sec1->owner;
7167 bfd2 = sec2->owner;
7168
7169 /* Both sections have to be in ELF. */
7170 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7171 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7172 return FALSE;
7173
7174 if (elf_section_type (sec1) != elf_section_type (sec2))
7175 return FALSE;
7176
7177 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7178 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7179 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7180 return FALSE;
7181
7182 bed1 = get_elf_backend_data (bfd1);
7183 bed2 = get_elf_backend_data (bfd2);
7184 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7185 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7186 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7187 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7188
7189 if (symcount1 == 0 || symcount2 == 0)
7190 return FALSE;
7191
7192 result = FALSE;
7193 isymbuf1 = NULL;
7194 isymbuf2 = NULL;
7195 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7196 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7197
7198 if (ssymbuf1 == NULL)
7199 {
7200 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7201 NULL, NULL, NULL);
7202 if (isymbuf1 == NULL)
7203 goto done;
7204
7205 if (!info->reduce_memory_overheads)
7206 elf_tdata (bfd1)->symbuf = ssymbuf1
7207 = elf_create_symbuf (symcount1, isymbuf1);
7208 }
7209
7210 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7211 {
7212 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7213 NULL, NULL, NULL);
7214 if (isymbuf2 == NULL)
7215 goto done;
7216
7217 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7218 elf_tdata (bfd2)->symbuf = ssymbuf2
7219 = elf_create_symbuf (symcount2, isymbuf2);
7220 }
7221
7222 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7223 {
7224 /* Optimized faster version. */
7225 bfd_size_type lo, hi, mid;
7226 struct elf_symbol *symp;
7227 struct elf_symbuf_symbol *ssym, *ssymend;
7228
7229 lo = 0;
7230 hi = ssymbuf1->count;
7231 ssymbuf1++;
7232 count1 = 0;
7233 while (lo < hi)
7234 {
7235 mid = (lo + hi) / 2;
7236 if (shndx1 < ssymbuf1[mid].st_shndx)
7237 hi = mid;
7238 else if (shndx1 > ssymbuf1[mid].st_shndx)
7239 lo = mid + 1;
7240 else
7241 {
7242 count1 = ssymbuf1[mid].count;
7243 ssymbuf1 += mid;
7244 break;
7245 }
7246 }
7247
7248 lo = 0;
7249 hi = ssymbuf2->count;
7250 ssymbuf2++;
7251 count2 = 0;
7252 while (lo < hi)
7253 {
7254 mid = (lo + hi) / 2;
7255 if (shndx2 < ssymbuf2[mid].st_shndx)
7256 hi = mid;
7257 else if (shndx2 > ssymbuf2[mid].st_shndx)
7258 lo = mid + 1;
7259 else
7260 {
7261 count2 = ssymbuf2[mid].count;
7262 ssymbuf2 += mid;
7263 break;
7264 }
7265 }
7266
7267 if (count1 == 0 || count2 == 0 || count1 != count2)
7268 goto done;
7269
7270 symtable1 = (struct elf_symbol *)
7271 bfd_malloc (count1 * sizeof (struct elf_symbol));
7272 symtable2 = (struct elf_symbol *)
7273 bfd_malloc (count2 * sizeof (struct elf_symbol));
7274 if (symtable1 == NULL || symtable2 == NULL)
7275 goto done;
7276
7277 symp = symtable1;
7278 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7279 ssym < ssymend; ssym++, symp++)
7280 {
7281 symp->u.ssym = ssym;
7282 symp->name = bfd_elf_string_from_elf_section (bfd1,
7283 hdr1->sh_link,
7284 ssym->st_name);
7285 }
7286
7287 symp = symtable2;
7288 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7289 ssym < ssymend; ssym++, symp++)
7290 {
7291 symp->u.ssym = ssym;
7292 symp->name = bfd_elf_string_from_elf_section (bfd2,
7293 hdr2->sh_link,
7294 ssym->st_name);
7295 }
7296
7297 /* Sort symbol by name. */
7298 qsort (symtable1, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300 qsort (symtable2, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302
7303 for (i = 0; i < count1; i++)
7304 /* Two symbols must have the same binding, type and name. */
7305 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7306 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7307 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7308 goto done;
7309
7310 result = TRUE;
7311 goto done;
7312 }
7313
7314 symtable1 = (struct elf_symbol *)
7315 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7316 symtable2 = (struct elf_symbol *)
7317 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7318 if (symtable1 == NULL || symtable2 == NULL)
7319 goto done;
7320
7321 /* Count definitions in the section. */
7322 count1 = 0;
7323 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx1)
7325 symtable1[count1++].u.isym = isym;
7326
7327 count2 = 0;
7328 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7329 if (isym->st_shndx == shndx2)
7330 symtable2[count2++].u.isym = isym;
7331
7332 if (count1 == 0 || count2 == 0 || count1 != count2)
7333 goto done;
7334
7335 for (i = 0; i < count1; i++)
7336 symtable1[i].name
7337 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7338 symtable1[i].u.isym->st_name);
7339
7340 for (i = 0; i < count2; i++)
7341 symtable2[i].name
7342 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7343 symtable2[i].u.isym->st_name);
7344
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7354 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7356 goto done;
7357
7358 result = TRUE;
7359
7360 done:
7361 if (symtable1)
7362 free (symtable1);
7363 if (symtable2)
7364 free (symtable2);
7365 if (isymbuf1)
7366 free (isymbuf1);
7367 if (isymbuf2)
7368 free (isymbuf2);
7369
7370 return result;
7371 }
7372
7373 /* Return TRUE if 2 section types are compatible. */
7374
7375 bfd_boolean
7376 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7377 bfd *bbfd, const asection *bsec)
7378 {
7379 if (asec == NULL
7380 || bsec == NULL
7381 || abfd->xvec->flavour != bfd_target_elf_flavour
7382 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7383 return TRUE;
7384
7385 return elf_section_type (asec) == elf_section_type (bsec);
7386 }
7387 \f
7388 /* Final phase of ELF linker. */
7389
7390 /* A structure we use to avoid passing large numbers of arguments. */
7391
7392 struct elf_final_link_info
7393 {
7394 /* General link information. */
7395 struct bfd_link_info *info;
7396 /* Output BFD. */
7397 bfd *output_bfd;
7398 /* Symbol string table. */
7399 struct bfd_strtab_hash *symstrtab;
7400 /* .dynsym section. */
7401 asection *dynsym_sec;
7402 /* .hash section. */
7403 asection *hash_sec;
7404 /* symbol version section (.gnu.version). */
7405 asection *symver_sec;
7406 /* Buffer large enough to hold contents of any section. */
7407 bfd_byte *contents;
7408 /* Buffer large enough to hold external relocs of any section. */
7409 void *external_relocs;
7410 /* Buffer large enough to hold internal relocs of any section. */
7411 Elf_Internal_Rela *internal_relocs;
7412 /* Buffer large enough to hold external local symbols of any input
7413 BFD. */
7414 bfd_byte *external_syms;
7415 /* And a buffer for symbol section indices. */
7416 Elf_External_Sym_Shndx *locsym_shndx;
7417 /* Buffer large enough to hold internal local symbols of any input
7418 BFD. */
7419 Elf_Internal_Sym *internal_syms;
7420 /* Array large enough to hold a symbol index for each local symbol
7421 of any input BFD. */
7422 long *indices;
7423 /* Array large enough to hold a section pointer for each local
7424 symbol of any input BFD. */
7425 asection **sections;
7426 /* Buffer to hold swapped out symbols. */
7427 bfd_byte *symbuf;
7428 /* And one for symbol section indices. */
7429 Elf_External_Sym_Shndx *symshndxbuf;
7430 /* Number of swapped out symbols in buffer. */
7431 size_t symbuf_count;
7432 /* Number of symbols which fit in symbuf. */
7433 size_t symbuf_size;
7434 /* And same for symshndxbuf. */
7435 size_t shndxbuf_size;
7436 /* Number of STT_FILE syms seen. */
7437 size_t filesym_count;
7438 };
7439
7440 /* This struct is used to pass information to elf_link_output_extsym. */
7441
7442 struct elf_outext_info
7443 {
7444 bfd_boolean failed;
7445 bfd_boolean localsyms;
7446 bfd_boolean need_second_pass;
7447 bfd_boolean second_pass;
7448 bfd_boolean file_sym_done;
7449 struct elf_final_link_info *flinfo;
7450 };
7451
7452
7453 /* Support for evaluating a complex relocation.
7454
7455 Complex relocations are generalized, self-describing relocations. The
7456 implementation of them consists of two parts: complex symbols, and the
7457 relocations themselves.
7458
7459 The relocations are use a reserved elf-wide relocation type code (R_RELC
7460 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7461 information (start bit, end bit, word width, etc) into the addend. This
7462 information is extracted from CGEN-generated operand tables within gas.
7463
7464 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7465 internal) representing prefix-notation expressions, including but not
7466 limited to those sorts of expressions normally encoded as addends in the
7467 addend field. The symbol mangling format is:
7468
7469 <node> := <literal>
7470 | <unary-operator> ':' <node>
7471 | <binary-operator> ':' <node> ':' <node>
7472 ;
7473
7474 <literal> := 's' <digits=N> ':' <N character symbol name>
7475 | 'S' <digits=N> ':' <N character section name>
7476 | '#' <hexdigits>
7477 ;
7478
7479 <binary-operator> := as in C
7480 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7481
7482 static void
7483 set_symbol_value (bfd *bfd_with_globals,
7484 Elf_Internal_Sym *isymbuf,
7485 size_t locsymcount,
7486 size_t symidx,
7487 bfd_vma val)
7488 {
7489 struct elf_link_hash_entry **sym_hashes;
7490 struct elf_link_hash_entry *h;
7491 size_t extsymoff = locsymcount;
7492
7493 if (symidx < locsymcount)
7494 {
7495 Elf_Internal_Sym *sym;
7496
7497 sym = isymbuf + symidx;
7498 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7499 {
7500 /* It is a local symbol: move it to the
7501 "absolute" section and give it a value. */
7502 sym->st_shndx = SHN_ABS;
7503 sym->st_value = val;
7504 return;
7505 }
7506 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7507 extsymoff = 0;
7508 }
7509
7510 /* It is a global symbol: set its link type
7511 to "defined" and give it a value. */
7512
7513 sym_hashes = elf_sym_hashes (bfd_with_globals);
7514 h = sym_hashes [symidx - extsymoff];
7515 while (h->root.type == bfd_link_hash_indirect
7516 || h->root.type == bfd_link_hash_warning)
7517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7518 h->root.type = bfd_link_hash_defined;
7519 h->root.u.def.value = val;
7520 h->root.u.def.section = bfd_abs_section_ptr;
7521 }
7522
7523 static bfd_boolean
7524 resolve_symbol (const char *name,
7525 bfd *input_bfd,
7526 struct elf_final_link_info *flinfo,
7527 bfd_vma *result,
7528 Elf_Internal_Sym *isymbuf,
7529 size_t locsymcount)
7530 {
7531 Elf_Internal_Sym *sym;
7532 struct bfd_link_hash_entry *global_entry;
7533 const char *candidate = NULL;
7534 Elf_Internal_Shdr *symtab_hdr;
7535 size_t i;
7536
7537 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7538
7539 for (i = 0; i < locsymcount; ++ i)
7540 {
7541 sym = isymbuf + i;
7542
7543 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7544 continue;
7545
7546 candidate = bfd_elf_string_from_elf_section (input_bfd,
7547 symtab_hdr->sh_link,
7548 sym->st_name);
7549 #ifdef DEBUG
7550 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7551 name, candidate, (unsigned long) sym->st_value);
7552 #endif
7553 if (candidate && strcmp (candidate, name) == 0)
7554 {
7555 asection *sec = flinfo->sections [i];
7556
7557 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7558 *result += sec->output_offset + sec->output_section->vma;
7559 #ifdef DEBUG
7560 printf ("Found symbol with value %8.8lx\n",
7561 (unsigned long) *result);
7562 #endif
7563 return TRUE;
7564 }
7565 }
7566
7567 /* Hmm, haven't found it yet. perhaps it is a global. */
7568 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7569 FALSE, FALSE, TRUE);
7570 if (!global_entry)
7571 return FALSE;
7572
7573 if (global_entry->type == bfd_link_hash_defined
7574 || global_entry->type == bfd_link_hash_defweak)
7575 {
7576 *result = (global_entry->u.def.value
7577 + global_entry->u.def.section->output_section->vma
7578 + global_entry->u.def.section->output_offset);
7579 #ifdef DEBUG
7580 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7581 global_entry->root.string, (unsigned long) *result);
7582 #endif
7583 return TRUE;
7584 }
7585
7586 return FALSE;
7587 }
7588
7589 static bfd_boolean
7590 resolve_section (const char *name,
7591 asection *sections,
7592 bfd_vma *result)
7593 {
7594 asection *curr;
7595 unsigned int len;
7596
7597 for (curr = sections; curr; curr = curr->next)
7598 if (strcmp (curr->name, name) == 0)
7599 {
7600 *result = curr->vma;
7601 return TRUE;
7602 }
7603
7604 /* Hmm. still haven't found it. try pseudo-section names. */
7605 for (curr = sections; curr; curr = curr->next)
7606 {
7607 len = strlen (curr->name);
7608 if (len > strlen (name))
7609 continue;
7610
7611 if (strncmp (curr->name, name, len) == 0)
7612 {
7613 if (strncmp (".end", name + len, 4) == 0)
7614 {
7615 *result = curr->vma + curr->size;
7616 return TRUE;
7617 }
7618
7619 /* Insert more pseudo-section names here, if you like. */
7620 }
7621 }
7622
7623 return FALSE;
7624 }
7625
7626 static void
7627 undefined_reference (const char *reftype, const char *name)
7628 {
7629 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7630 reftype, name);
7631 }
7632
7633 static bfd_boolean
7634 eval_symbol (bfd_vma *result,
7635 const char **symp,
7636 bfd *input_bfd,
7637 struct elf_final_link_info *flinfo,
7638 bfd_vma dot,
7639 Elf_Internal_Sym *isymbuf,
7640 size_t locsymcount,
7641 int signed_p)
7642 {
7643 size_t len;
7644 size_t symlen;
7645 bfd_vma a;
7646 bfd_vma b;
7647 char symbuf[4096];
7648 const char *sym = *symp;
7649 const char *symend;
7650 bfd_boolean symbol_is_section = FALSE;
7651
7652 len = strlen (sym);
7653 symend = sym + len;
7654
7655 if (len < 1 || len > sizeof (symbuf))
7656 {
7657 bfd_set_error (bfd_error_invalid_operation);
7658 return FALSE;
7659 }
7660
7661 switch (* sym)
7662 {
7663 case '.':
7664 *result = dot;
7665 *symp = sym + 1;
7666 return TRUE;
7667
7668 case '#':
7669 ++sym;
7670 *result = strtoul (sym, (char **) symp, 16);
7671 return TRUE;
7672
7673 case 'S':
7674 symbol_is_section = TRUE;
7675 case 's':
7676 ++sym;
7677 symlen = strtol (sym, (char **) symp, 10);
7678 sym = *symp + 1; /* Skip the trailing ':'. */
7679
7680 if (symend < sym || symlen + 1 > sizeof (symbuf))
7681 {
7682 bfd_set_error (bfd_error_invalid_operation);
7683 return FALSE;
7684 }
7685
7686 memcpy (symbuf, sym, symlen);
7687 symbuf[symlen] = '\0';
7688 *symp = sym + symlen;
7689
7690 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7691 the symbol as a section, or vice-versa. so we're pretty liberal in our
7692 interpretation here; section means "try section first", not "must be a
7693 section", and likewise with symbol. */
7694
7695 if (symbol_is_section)
7696 {
7697 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7698 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7699 isymbuf, locsymcount))
7700 {
7701 undefined_reference ("section", symbuf);
7702 return FALSE;
7703 }
7704 }
7705 else
7706 {
7707 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7708 isymbuf, locsymcount)
7709 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7710 result))
7711 {
7712 undefined_reference ("symbol", symbuf);
7713 return FALSE;
7714 }
7715 }
7716
7717 return TRUE;
7718
7719 /* All that remains are operators. */
7720
7721 #define UNARY_OP(op) \
7722 if (strncmp (sym, #op, strlen (#op)) == 0) \
7723 { \
7724 sym += strlen (#op); \
7725 if (*sym == ':') \
7726 ++sym; \
7727 *symp = sym; \
7728 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7729 isymbuf, locsymcount, signed_p)) \
7730 return FALSE; \
7731 if (signed_p) \
7732 *result = op ((bfd_signed_vma) a); \
7733 else \
7734 *result = op a; \
7735 return TRUE; \
7736 }
7737
7738 #define BINARY_OP(op) \
7739 if (strncmp (sym, #op, strlen (#op)) == 0) \
7740 { \
7741 sym += strlen (#op); \
7742 if (*sym == ':') \
7743 ++sym; \
7744 *symp = sym; \
7745 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7746 isymbuf, locsymcount, signed_p)) \
7747 return FALSE; \
7748 ++*symp; \
7749 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7750 isymbuf, locsymcount, signed_p)) \
7751 return FALSE; \
7752 if (signed_p) \
7753 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7754 else \
7755 *result = a op b; \
7756 return TRUE; \
7757 }
7758
7759 default:
7760 UNARY_OP (0-);
7761 BINARY_OP (<<);
7762 BINARY_OP (>>);
7763 BINARY_OP (==);
7764 BINARY_OP (!=);
7765 BINARY_OP (<=);
7766 BINARY_OP (>=);
7767 BINARY_OP (&&);
7768 BINARY_OP (||);
7769 UNARY_OP (~);
7770 UNARY_OP (!);
7771 BINARY_OP (*);
7772 BINARY_OP (/);
7773 BINARY_OP (%);
7774 BINARY_OP (^);
7775 BINARY_OP (|);
7776 BINARY_OP (&);
7777 BINARY_OP (+);
7778 BINARY_OP (-);
7779 BINARY_OP (<);
7780 BINARY_OP (>);
7781 #undef UNARY_OP
7782 #undef BINARY_OP
7783 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7784 bfd_set_error (bfd_error_invalid_operation);
7785 return FALSE;
7786 }
7787 }
7788
7789 static void
7790 put_value (bfd_vma size,
7791 unsigned long chunksz,
7792 bfd *input_bfd,
7793 bfd_vma x,
7794 bfd_byte *location)
7795 {
7796 location += (size - chunksz);
7797
7798 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7799 {
7800 switch (chunksz)
7801 {
7802 default:
7803 case 0:
7804 abort ();
7805 case 1:
7806 bfd_put_8 (input_bfd, x, location);
7807 break;
7808 case 2:
7809 bfd_put_16 (input_bfd, x, location);
7810 break;
7811 case 4:
7812 bfd_put_32 (input_bfd, x, location);
7813 break;
7814 case 8:
7815 #ifdef BFD64
7816 bfd_put_64 (input_bfd, x, location);
7817 #else
7818 abort ();
7819 #endif
7820 break;
7821 }
7822 }
7823 }
7824
7825 static bfd_vma
7826 get_value (bfd_vma size,
7827 unsigned long chunksz,
7828 bfd *input_bfd,
7829 bfd_byte *location)
7830 {
7831 int shift;
7832 bfd_vma x = 0;
7833
7834 /* Sanity checks. */
7835 BFD_ASSERT (chunksz <= sizeof (x)
7836 && size >= chunksz
7837 && chunksz != 0
7838 && (size % chunksz) == 0
7839 && input_bfd != NULL
7840 && location != NULL);
7841
7842 if (chunksz == sizeof (x))
7843 {
7844 BFD_ASSERT (size == chunksz);
7845
7846 /* Make sure that we do not perform an undefined shift operation.
7847 We know that size == chunksz so there will only be one iteration
7848 of the loop below. */
7849 shift = 0;
7850 }
7851 else
7852 shift = 8 * chunksz;
7853
7854 for (; size; size -= chunksz, location += chunksz)
7855 {
7856 switch (chunksz)
7857 {
7858 case 1:
7859 x = (x << shift) | bfd_get_8 (input_bfd, location);
7860 break;
7861 case 2:
7862 x = (x << shift) | bfd_get_16 (input_bfd, location);
7863 break;
7864 case 4:
7865 x = (x << shift) | bfd_get_32 (input_bfd, location);
7866 break;
7867 #ifdef BFD64
7868 case 8:
7869 x = (x << shift) | bfd_get_64 (input_bfd, location);
7870 break;
7871 #endif
7872 default:
7873 abort ();
7874 }
7875 }
7876 return x;
7877 }
7878
7879 static void
7880 decode_complex_addend (unsigned long *start, /* in bits */
7881 unsigned long *oplen, /* in bits */
7882 unsigned long *len, /* in bits */
7883 unsigned long *wordsz, /* in bytes */
7884 unsigned long *chunksz, /* in bytes */
7885 unsigned long *lsb0_p,
7886 unsigned long *signed_p,
7887 unsigned long *trunc_p,
7888 unsigned long encoded)
7889 {
7890 * start = encoded & 0x3F;
7891 * len = (encoded >> 6) & 0x3F;
7892 * oplen = (encoded >> 12) & 0x3F;
7893 * wordsz = (encoded >> 18) & 0xF;
7894 * chunksz = (encoded >> 22) & 0xF;
7895 * lsb0_p = (encoded >> 27) & 1;
7896 * signed_p = (encoded >> 28) & 1;
7897 * trunc_p = (encoded >> 29) & 1;
7898 }
7899
7900 bfd_reloc_status_type
7901 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7902 asection *input_section ATTRIBUTE_UNUSED,
7903 bfd_byte *contents,
7904 Elf_Internal_Rela *rel,
7905 bfd_vma relocation)
7906 {
7907 bfd_vma shift, x, mask;
7908 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7909 bfd_reloc_status_type r;
7910
7911 /* Perform this reloc, since it is complex.
7912 (this is not to say that it necessarily refers to a complex
7913 symbol; merely that it is a self-describing CGEN based reloc.
7914 i.e. the addend has the complete reloc information (bit start, end,
7915 word size, etc) encoded within it.). */
7916
7917 decode_complex_addend (&start, &oplen, &len, &wordsz,
7918 &chunksz, &lsb0_p, &signed_p,
7919 &trunc_p, rel->r_addend);
7920
7921 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7922
7923 if (lsb0_p)
7924 shift = (start + 1) - len;
7925 else
7926 shift = (8 * wordsz) - (start + len);
7927
7928 /* FIXME: octets_per_byte. */
7929 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7930
7931 #ifdef DEBUG
7932 printf ("Doing complex reloc: "
7933 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7934 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7935 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7936 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7937 oplen, (unsigned long) x, (unsigned long) mask,
7938 (unsigned long) relocation);
7939 #endif
7940
7941 r = bfd_reloc_ok;
7942 if (! trunc_p)
7943 /* Now do an overflow check. */
7944 r = bfd_check_overflow ((signed_p
7945 ? complain_overflow_signed
7946 : complain_overflow_unsigned),
7947 len, 0, (8 * wordsz),
7948 relocation);
7949
7950 /* Do the deed. */
7951 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7952
7953 #ifdef DEBUG
7954 printf (" relocation: %8.8lx\n"
7955 " shifted mask: %8.8lx\n"
7956 " shifted/masked reloc: %8.8lx\n"
7957 " result: %8.8lx\n",
7958 (unsigned long) relocation, (unsigned long) (mask << shift),
7959 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7960 #endif
7961 /* FIXME: octets_per_byte. */
7962 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7963 return r;
7964 }
7965
7966 /* qsort comparison functions sorting external relocs by r_offset. */
7967
7968 static int
7969 cmp_ext32l_r_offset (const void *p, const void *q)
7970 {
7971 union aligned32
7972 {
7973 uint32_t v;
7974 unsigned char c[4];
7975 };
7976 const union aligned32 *a
7977 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7978 const union aligned32 *b
7979 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7980
7981 uint32_t aval = ( (uint32_t) a->c[0]
7982 | (uint32_t) a->c[1] << 8
7983 | (uint32_t) a->c[2] << 16
7984 | (uint32_t) a->c[3] << 24);
7985 uint32_t bval = ( (uint32_t) b->c[0]
7986 | (uint32_t) b->c[1] << 8
7987 | (uint32_t) b->c[2] << 16
7988 | (uint32_t) b->c[3] << 24);
7989 if (aval < bval)
7990 return -1;
7991 else if (aval > bval)
7992 return 1;
7993 return 0;
7994 }
7995
7996 static int
7997 cmp_ext32b_r_offset (const void *p, const void *q)
7998 {
7999 union aligned32
8000 {
8001 uint32_t v;
8002 unsigned char c[4];
8003 };
8004 const union aligned32 *a
8005 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8006 const union aligned32 *b
8007 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8008
8009 uint32_t aval = ( (uint32_t) a->c[0] << 24
8010 | (uint32_t) a->c[1] << 16
8011 | (uint32_t) a->c[2] << 8
8012 | (uint32_t) a->c[3]);
8013 uint32_t bval = ( (uint32_t) b->c[0] << 24
8014 | (uint32_t) b->c[1] << 16
8015 | (uint32_t) b->c[2] << 8
8016 | (uint32_t) b->c[3]);
8017 if (aval < bval)
8018 return -1;
8019 else if (aval > bval)
8020 return 1;
8021 return 0;
8022 }
8023
8024 #ifdef BFD_HOST_64_BIT
8025 static int
8026 cmp_ext64l_r_offset (const void *p, const void *q)
8027 {
8028 union aligned64
8029 {
8030 uint64_t v;
8031 unsigned char c[8];
8032 };
8033 const union aligned64 *a
8034 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8035 const union aligned64 *b
8036 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8037
8038 uint64_t aval = ( (uint64_t) a->c[0]
8039 | (uint64_t) a->c[1] << 8
8040 | (uint64_t) a->c[2] << 16
8041 | (uint64_t) a->c[3] << 24
8042 | (uint64_t) a->c[4] << 32
8043 | (uint64_t) a->c[5] << 40
8044 | (uint64_t) a->c[6] << 48
8045 | (uint64_t) a->c[7] << 56);
8046 uint64_t bval = ( (uint64_t) b->c[0]
8047 | (uint64_t) b->c[1] << 8
8048 | (uint64_t) b->c[2] << 16
8049 | (uint64_t) b->c[3] << 24
8050 | (uint64_t) b->c[4] << 32
8051 | (uint64_t) b->c[5] << 40
8052 | (uint64_t) b->c[6] << 48
8053 | (uint64_t) b->c[7] << 56);
8054 if (aval < bval)
8055 return -1;
8056 else if (aval > bval)
8057 return 1;
8058 return 0;
8059 }
8060
8061 static int
8062 cmp_ext64b_r_offset (const void *p, const void *q)
8063 {
8064 union aligned64
8065 {
8066 uint64_t v;
8067 unsigned char c[8];
8068 };
8069 const union aligned64 *a
8070 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8071 const union aligned64 *b
8072 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8073
8074 uint64_t aval = ( (uint64_t) a->c[0] << 56
8075 | (uint64_t) a->c[1] << 48
8076 | (uint64_t) a->c[2] << 40
8077 | (uint64_t) a->c[3] << 32
8078 | (uint64_t) a->c[4] << 24
8079 | (uint64_t) a->c[5] << 16
8080 | (uint64_t) a->c[6] << 8
8081 | (uint64_t) a->c[7]);
8082 uint64_t bval = ( (uint64_t) b->c[0] << 56
8083 | (uint64_t) b->c[1] << 48
8084 | (uint64_t) b->c[2] << 40
8085 | (uint64_t) b->c[3] << 32
8086 | (uint64_t) b->c[4] << 24
8087 | (uint64_t) b->c[5] << 16
8088 | (uint64_t) b->c[6] << 8
8089 | (uint64_t) b->c[7]);
8090 if (aval < bval)
8091 return -1;
8092 else if (aval > bval)
8093 return 1;
8094 return 0;
8095 }
8096 #endif
8097
8098 /* When performing a relocatable link, the input relocations are
8099 preserved. But, if they reference global symbols, the indices
8100 referenced must be updated. Update all the relocations found in
8101 RELDATA. */
8102
8103 static void
8104 elf_link_adjust_relocs (bfd *abfd,
8105 struct bfd_elf_section_reloc_data *reldata,
8106 bfd_boolean sort)
8107 {
8108 unsigned int i;
8109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8110 bfd_byte *erela;
8111 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8112 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8113 bfd_vma r_type_mask;
8114 int r_sym_shift;
8115 unsigned int count = reldata->count;
8116 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8117
8118 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8119 {
8120 swap_in = bed->s->swap_reloc_in;
8121 swap_out = bed->s->swap_reloc_out;
8122 }
8123 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8124 {
8125 swap_in = bed->s->swap_reloca_in;
8126 swap_out = bed->s->swap_reloca_out;
8127 }
8128 else
8129 abort ();
8130
8131 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8132 abort ();
8133
8134 if (bed->s->arch_size == 32)
8135 {
8136 r_type_mask = 0xff;
8137 r_sym_shift = 8;
8138 }
8139 else
8140 {
8141 r_type_mask = 0xffffffff;
8142 r_sym_shift = 32;
8143 }
8144
8145 erela = reldata->hdr->contents;
8146 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8147 {
8148 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8149 unsigned int j;
8150
8151 if (*rel_hash == NULL)
8152 continue;
8153
8154 BFD_ASSERT ((*rel_hash)->indx >= 0);
8155
8156 (*swap_in) (abfd, erela, irela);
8157 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8158 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8159 | (irela[j].r_info & r_type_mask));
8160 (*swap_out) (abfd, irela, erela);
8161 }
8162
8163 if (sort)
8164 {
8165 int (*compare) (const void *, const void *);
8166
8167 if (bed->s->arch_size == 32)
8168 {
8169 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8170 compare = cmp_ext32l_r_offset;
8171 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8172 compare = cmp_ext32b_r_offset;
8173 else
8174 abort ();
8175 }
8176 else
8177 {
8178 #ifdef BFD_HOST_64_BIT
8179 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8180 compare = cmp_ext64l_r_offset;
8181 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8182 compare = cmp_ext64b_r_offset;
8183 else
8184 #endif
8185 abort ();
8186 }
8187 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8188 free (reldata->hashes);
8189 reldata->hashes = NULL;
8190 }
8191 }
8192
8193 struct elf_link_sort_rela
8194 {
8195 union {
8196 bfd_vma offset;
8197 bfd_vma sym_mask;
8198 } u;
8199 enum elf_reloc_type_class type;
8200 /* We use this as an array of size int_rels_per_ext_rel. */
8201 Elf_Internal_Rela rela[1];
8202 };
8203
8204 static int
8205 elf_link_sort_cmp1 (const void *A, const void *B)
8206 {
8207 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8208 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8209 int relativea, relativeb;
8210
8211 relativea = a->type == reloc_class_relative;
8212 relativeb = b->type == reloc_class_relative;
8213
8214 if (relativea < relativeb)
8215 return 1;
8216 if (relativea > relativeb)
8217 return -1;
8218 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8219 return -1;
8220 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8221 return 1;
8222 if (a->rela->r_offset < b->rela->r_offset)
8223 return -1;
8224 if (a->rela->r_offset > b->rela->r_offset)
8225 return 1;
8226 return 0;
8227 }
8228
8229 static int
8230 elf_link_sort_cmp2 (const void *A, const void *B)
8231 {
8232 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8233 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8234
8235 if (a->type < b->type)
8236 return -1;
8237 if (a->type > b->type)
8238 return 1;
8239 if (a->u.offset < b->u.offset)
8240 return -1;
8241 if (a->u.offset > b->u.offset)
8242 return 1;
8243 if (a->rela->r_offset < b->rela->r_offset)
8244 return -1;
8245 if (a->rela->r_offset > b->rela->r_offset)
8246 return 1;
8247 return 0;
8248 }
8249
8250 static size_t
8251 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8252 {
8253 asection *dynamic_relocs;
8254 asection *rela_dyn;
8255 asection *rel_dyn;
8256 bfd_size_type count, size;
8257 size_t i, ret, sort_elt, ext_size;
8258 bfd_byte *sort, *s_non_relative, *p;
8259 struct elf_link_sort_rela *sq;
8260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8261 int i2e = bed->s->int_rels_per_ext_rel;
8262 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8263 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8264 struct bfd_link_order *lo;
8265 bfd_vma r_sym_mask;
8266 bfd_boolean use_rela;
8267
8268 /* Find a dynamic reloc section. */
8269 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8270 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8271 if (rela_dyn != NULL && rela_dyn->size > 0
8272 && rel_dyn != NULL && rel_dyn->size > 0)
8273 {
8274 bfd_boolean use_rela_initialised = FALSE;
8275
8276 /* This is just here to stop gcc from complaining.
8277 It's initialization checking code is not perfect. */
8278 use_rela = TRUE;
8279
8280 /* Both sections are present. Examine the sizes
8281 of the indirect sections to help us choose. */
8282 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8283 if (lo->type == bfd_indirect_link_order)
8284 {
8285 asection *o = lo->u.indirect.section;
8286
8287 if ((o->size % bed->s->sizeof_rela) == 0)
8288 {
8289 if ((o->size % bed->s->sizeof_rel) == 0)
8290 /* Section size is divisible by both rel and rela sizes.
8291 It is of no help to us. */
8292 ;
8293 else
8294 {
8295 /* Section size is only divisible by rela. */
8296 if (use_rela_initialised && (use_rela == FALSE))
8297 {
8298 _bfd_error_handler
8299 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8300 bfd_set_error (bfd_error_invalid_operation);
8301 return 0;
8302 }
8303 else
8304 {
8305 use_rela = TRUE;
8306 use_rela_initialised = TRUE;
8307 }
8308 }
8309 }
8310 else if ((o->size % bed->s->sizeof_rel) == 0)
8311 {
8312 /* Section size is only divisible by rel. */
8313 if (use_rela_initialised && (use_rela == TRUE))
8314 {
8315 _bfd_error_handler
8316 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8317 bfd_set_error (bfd_error_invalid_operation);
8318 return 0;
8319 }
8320 else
8321 {
8322 use_rela = FALSE;
8323 use_rela_initialised = TRUE;
8324 }
8325 }
8326 else
8327 {
8328 /* The section size is not divisible by either - something is wrong. */
8329 _bfd_error_handler
8330 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8331 bfd_set_error (bfd_error_invalid_operation);
8332 return 0;
8333 }
8334 }
8335
8336 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8337 if (lo->type == bfd_indirect_link_order)
8338 {
8339 asection *o = lo->u.indirect.section;
8340
8341 if ((o->size % bed->s->sizeof_rela) == 0)
8342 {
8343 if ((o->size % bed->s->sizeof_rel) == 0)
8344 /* Section size is divisible by both rel and rela sizes.
8345 It is of no help to us. */
8346 ;
8347 else
8348 {
8349 /* Section size is only divisible by rela. */
8350 if (use_rela_initialised && (use_rela == FALSE))
8351 {
8352 _bfd_error_handler
8353 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8354 bfd_set_error (bfd_error_invalid_operation);
8355 return 0;
8356 }
8357 else
8358 {
8359 use_rela = TRUE;
8360 use_rela_initialised = TRUE;
8361 }
8362 }
8363 }
8364 else if ((o->size % bed->s->sizeof_rel) == 0)
8365 {
8366 /* Section size is only divisible by rel. */
8367 if (use_rela_initialised && (use_rela == TRUE))
8368 {
8369 _bfd_error_handler
8370 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8371 bfd_set_error (bfd_error_invalid_operation);
8372 return 0;
8373 }
8374 else
8375 {
8376 use_rela = FALSE;
8377 use_rela_initialised = TRUE;
8378 }
8379 }
8380 else
8381 {
8382 /* The section size is not divisible by either - something is wrong. */
8383 _bfd_error_handler
8384 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8385 bfd_set_error (bfd_error_invalid_operation);
8386 return 0;
8387 }
8388 }
8389
8390 if (! use_rela_initialised)
8391 /* Make a guess. */
8392 use_rela = TRUE;
8393 }
8394 else if (rela_dyn != NULL && rela_dyn->size > 0)
8395 use_rela = TRUE;
8396 else if (rel_dyn != NULL && rel_dyn->size > 0)
8397 use_rela = FALSE;
8398 else
8399 return 0;
8400
8401 if (use_rela)
8402 {
8403 dynamic_relocs = rela_dyn;
8404 ext_size = bed->s->sizeof_rela;
8405 swap_in = bed->s->swap_reloca_in;
8406 swap_out = bed->s->swap_reloca_out;
8407 }
8408 else
8409 {
8410 dynamic_relocs = rel_dyn;
8411 ext_size = bed->s->sizeof_rel;
8412 swap_in = bed->s->swap_reloc_in;
8413 swap_out = bed->s->swap_reloc_out;
8414 }
8415
8416 size = 0;
8417 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8418 if (lo->type == bfd_indirect_link_order)
8419 size += lo->u.indirect.section->size;
8420
8421 if (size != dynamic_relocs->size)
8422 return 0;
8423
8424 sort_elt = (sizeof (struct elf_link_sort_rela)
8425 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8426
8427 count = dynamic_relocs->size / ext_size;
8428 if (count == 0)
8429 return 0;
8430 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8431
8432 if (sort == NULL)
8433 {
8434 (*info->callbacks->warning)
8435 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8436 return 0;
8437 }
8438
8439 if (bed->s->arch_size == 32)
8440 r_sym_mask = ~(bfd_vma) 0xff;
8441 else
8442 r_sym_mask = ~(bfd_vma) 0xffffffff;
8443
8444 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8445 if (lo->type == bfd_indirect_link_order)
8446 {
8447 bfd_byte *erel, *erelend;
8448 asection *o = lo->u.indirect.section;
8449
8450 if (o->contents == NULL && o->size != 0)
8451 {
8452 /* This is a reloc section that is being handled as a normal
8453 section. See bfd_section_from_shdr. We can't combine
8454 relocs in this case. */
8455 free (sort);
8456 return 0;
8457 }
8458 erel = o->contents;
8459 erelend = o->contents + o->size;
8460 /* FIXME: octets_per_byte. */
8461 p = sort + o->output_offset / ext_size * sort_elt;
8462
8463 while (erel < erelend)
8464 {
8465 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8466
8467 (*swap_in) (abfd, erel, s->rela);
8468 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8469 s->u.sym_mask = r_sym_mask;
8470 p += sort_elt;
8471 erel += ext_size;
8472 }
8473 }
8474
8475 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8476
8477 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8478 {
8479 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8480 if (s->type != reloc_class_relative)
8481 break;
8482 }
8483 ret = i;
8484 s_non_relative = p;
8485
8486 sq = (struct elf_link_sort_rela *) s_non_relative;
8487 for (; i < count; i++, p += sort_elt)
8488 {
8489 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8490 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8491 sq = sp;
8492 sp->u.offset = sq->rela->r_offset;
8493 }
8494
8495 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8496
8497 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8498 if (lo->type == bfd_indirect_link_order)
8499 {
8500 bfd_byte *erel, *erelend;
8501 asection *o = lo->u.indirect.section;
8502
8503 erel = o->contents;
8504 erelend = o->contents + o->size;
8505 /* FIXME: octets_per_byte. */
8506 p = sort + o->output_offset / ext_size * sort_elt;
8507 while (erel < erelend)
8508 {
8509 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8510 (*swap_out) (abfd, s->rela, erel);
8511 p += sort_elt;
8512 erel += ext_size;
8513 }
8514 }
8515
8516 free (sort);
8517 *psec = dynamic_relocs;
8518 return ret;
8519 }
8520
8521 /* Flush the output symbols to the file. */
8522
8523 static bfd_boolean
8524 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8525 const struct elf_backend_data *bed)
8526 {
8527 if (flinfo->symbuf_count > 0)
8528 {
8529 Elf_Internal_Shdr *hdr;
8530 file_ptr pos;
8531 bfd_size_type amt;
8532
8533 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8534 pos = hdr->sh_offset + hdr->sh_size;
8535 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8536 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8537 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8538 return FALSE;
8539
8540 hdr->sh_size += amt;
8541 flinfo->symbuf_count = 0;
8542 }
8543
8544 return TRUE;
8545 }
8546
8547 /* Add a symbol to the output symbol table. */
8548
8549 static int
8550 elf_link_output_sym (struct elf_final_link_info *flinfo,
8551 const char *name,
8552 Elf_Internal_Sym *elfsym,
8553 asection *input_sec,
8554 struct elf_link_hash_entry *h)
8555 {
8556 bfd_byte *dest;
8557 Elf_External_Sym_Shndx *destshndx;
8558 int (*output_symbol_hook)
8559 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8560 struct elf_link_hash_entry *);
8561 const struct elf_backend_data *bed;
8562
8563 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8564
8565 bed = get_elf_backend_data (flinfo->output_bfd);
8566 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8567 if (output_symbol_hook != NULL)
8568 {
8569 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8570 if (ret != 1)
8571 return ret;
8572 }
8573
8574 if (name == NULL || *name == '\0')
8575 elfsym->st_name = 0;
8576 else if (input_sec->flags & SEC_EXCLUDE)
8577 elfsym->st_name = 0;
8578 else
8579 {
8580 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8581 name, TRUE, FALSE);
8582 if (elfsym->st_name == (unsigned long) -1)
8583 return 0;
8584 }
8585
8586 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8587 {
8588 if (! elf_link_flush_output_syms (flinfo, bed))
8589 return 0;
8590 }
8591
8592 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8593 destshndx = flinfo->symshndxbuf;
8594 if (destshndx != NULL)
8595 {
8596 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8597 {
8598 bfd_size_type amt;
8599
8600 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8601 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8602 amt * 2);
8603 if (destshndx == NULL)
8604 return 0;
8605 flinfo->symshndxbuf = destshndx;
8606 memset ((char *) destshndx + amt, 0, amt);
8607 flinfo->shndxbuf_size *= 2;
8608 }
8609 destshndx += bfd_get_symcount (flinfo->output_bfd);
8610 }
8611
8612 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8613 flinfo->symbuf_count += 1;
8614 bfd_get_symcount (flinfo->output_bfd) += 1;
8615
8616 return 1;
8617 }
8618
8619 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8620
8621 static bfd_boolean
8622 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8623 {
8624 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8625 && sym->st_shndx < SHN_LORESERVE)
8626 {
8627 /* The gABI doesn't support dynamic symbols in output sections
8628 beyond 64k. */
8629 (*_bfd_error_handler)
8630 (_("%B: Too many sections: %d (>= %d)"),
8631 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8632 bfd_set_error (bfd_error_nonrepresentable_section);
8633 return FALSE;
8634 }
8635 return TRUE;
8636 }
8637
8638 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8639 allowing an unsatisfied unversioned symbol in the DSO to match a
8640 versioned symbol that would normally require an explicit version.
8641 We also handle the case that a DSO references a hidden symbol
8642 which may be satisfied by a versioned symbol in another DSO. */
8643
8644 static bfd_boolean
8645 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8646 const struct elf_backend_data *bed,
8647 struct elf_link_hash_entry *h)
8648 {
8649 bfd *abfd;
8650 struct elf_link_loaded_list *loaded;
8651
8652 if (!is_elf_hash_table (info->hash))
8653 return FALSE;
8654
8655 /* Check indirect symbol. */
8656 while (h->root.type == bfd_link_hash_indirect)
8657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8658
8659 switch (h->root.type)
8660 {
8661 default:
8662 abfd = NULL;
8663 break;
8664
8665 case bfd_link_hash_undefined:
8666 case bfd_link_hash_undefweak:
8667 abfd = h->root.u.undef.abfd;
8668 if ((abfd->flags & DYNAMIC) == 0
8669 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8670 return FALSE;
8671 break;
8672
8673 case bfd_link_hash_defined:
8674 case bfd_link_hash_defweak:
8675 abfd = h->root.u.def.section->owner;
8676 break;
8677
8678 case bfd_link_hash_common:
8679 abfd = h->root.u.c.p->section->owner;
8680 break;
8681 }
8682 BFD_ASSERT (abfd != NULL);
8683
8684 for (loaded = elf_hash_table (info)->loaded;
8685 loaded != NULL;
8686 loaded = loaded->next)
8687 {
8688 bfd *input;
8689 Elf_Internal_Shdr *hdr;
8690 bfd_size_type symcount;
8691 bfd_size_type extsymcount;
8692 bfd_size_type extsymoff;
8693 Elf_Internal_Shdr *versymhdr;
8694 Elf_Internal_Sym *isym;
8695 Elf_Internal_Sym *isymend;
8696 Elf_Internal_Sym *isymbuf;
8697 Elf_External_Versym *ever;
8698 Elf_External_Versym *extversym;
8699
8700 input = loaded->abfd;
8701
8702 /* We check each DSO for a possible hidden versioned definition. */
8703 if (input == abfd
8704 || (input->flags & DYNAMIC) == 0
8705 || elf_dynversym (input) == 0)
8706 continue;
8707
8708 hdr = &elf_tdata (input)->dynsymtab_hdr;
8709
8710 symcount = hdr->sh_size / bed->s->sizeof_sym;
8711 if (elf_bad_symtab (input))
8712 {
8713 extsymcount = symcount;
8714 extsymoff = 0;
8715 }
8716 else
8717 {
8718 extsymcount = symcount - hdr->sh_info;
8719 extsymoff = hdr->sh_info;
8720 }
8721
8722 if (extsymcount == 0)
8723 continue;
8724
8725 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8726 NULL, NULL, NULL);
8727 if (isymbuf == NULL)
8728 return FALSE;
8729
8730 /* Read in any version definitions. */
8731 versymhdr = &elf_tdata (input)->dynversym_hdr;
8732 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8733 if (extversym == NULL)
8734 goto error_ret;
8735
8736 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8737 || (bfd_bread (extversym, versymhdr->sh_size, input)
8738 != versymhdr->sh_size))
8739 {
8740 free (extversym);
8741 error_ret:
8742 free (isymbuf);
8743 return FALSE;
8744 }
8745
8746 ever = extversym + extsymoff;
8747 isymend = isymbuf + extsymcount;
8748 for (isym = isymbuf; isym < isymend; isym++, ever++)
8749 {
8750 const char *name;
8751 Elf_Internal_Versym iver;
8752 unsigned short version_index;
8753
8754 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8755 || isym->st_shndx == SHN_UNDEF)
8756 continue;
8757
8758 name = bfd_elf_string_from_elf_section (input,
8759 hdr->sh_link,
8760 isym->st_name);
8761 if (strcmp (name, h->root.root.string) != 0)
8762 continue;
8763
8764 _bfd_elf_swap_versym_in (input, ever, &iver);
8765
8766 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8767 && !(h->def_regular
8768 && h->forced_local))
8769 {
8770 /* If we have a non-hidden versioned sym, then it should
8771 have provided a definition for the undefined sym unless
8772 it is defined in a non-shared object and forced local.
8773 */
8774 abort ();
8775 }
8776
8777 version_index = iver.vs_vers & VERSYM_VERSION;
8778 if (version_index == 1 || version_index == 2)
8779 {
8780 /* This is the base or first version. We can use it. */
8781 free (extversym);
8782 free (isymbuf);
8783 return TRUE;
8784 }
8785 }
8786
8787 free (extversym);
8788 free (isymbuf);
8789 }
8790
8791 return FALSE;
8792 }
8793
8794 /* Add an external symbol to the symbol table. This is called from
8795 the hash table traversal routine. When generating a shared object,
8796 we go through the symbol table twice. The first time we output
8797 anything that might have been forced to local scope in a version
8798 script. The second time we output the symbols that are still
8799 global symbols. */
8800
8801 static bfd_boolean
8802 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8803 {
8804 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8805 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8806 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8807 bfd_boolean strip;
8808 Elf_Internal_Sym sym;
8809 asection *input_sec;
8810 const struct elf_backend_data *bed;
8811 long indx;
8812 int ret;
8813
8814 if (h->root.type == bfd_link_hash_warning)
8815 {
8816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8817 if (h->root.type == bfd_link_hash_new)
8818 return TRUE;
8819 }
8820
8821 /* Decide whether to output this symbol in this pass. */
8822 if (eoinfo->localsyms)
8823 {
8824 if (!h->forced_local)
8825 return TRUE;
8826 if (eoinfo->second_pass
8827 && !((h->root.type == bfd_link_hash_defined
8828 || h->root.type == bfd_link_hash_defweak)
8829 && h->root.u.def.section->output_section != NULL))
8830 return TRUE;
8831
8832 if (!eoinfo->file_sym_done
8833 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8834 : eoinfo->flinfo->filesym_count > 1))
8835 {
8836 /* Output a FILE symbol so that following locals are not associated
8837 with the wrong input file. */
8838 memset (&sym, 0, sizeof (sym));
8839 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8840 sym.st_shndx = SHN_ABS;
8841 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8842 bfd_und_section_ptr, NULL))
8843 return FALSE;
8844
8845 eoinfo->file_sym_done = TRUE;
8846 }
8847 }
8848 else
8849 {
8850 if (h->forced_local)
8851 return TRUE;
8852 }
8853
8854 bed = get_elf_backend_data (flinfo->output_bfd);
8855
8856 if (h->root.type == bfd_link_hash_undefined)
8857 {
8858 /* If we have an undefined symbol reference here then it must have
8859 come from a shared library that is being linked in. (Undefined
8860 references in regular files have already been handled unless
8861 they are in unreferenced sections which are removed by garbage
8862 collection). */
8863 bfd_boolean ignore_undef = FALSE;
8864
8865 /* Some symbols may be special in that the fact that they're
8866 undefined can be safely ignored - let backend determine that. */
8867 if (bed->elf_backend_ignore_undef_symbol)
8868 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8869
8870 /* If we are reporting errors for this situation then do so now. */
8871 if (!ignore_undef
8872 && h->ref_dynamic
8873 && (!h->ref_regular || flinfo->info->gc_sections)
8874 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8875 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8876 {
8877 if (!(flinfo->info->callbacks->undefined_symbol
8878 (flinfo->info, h->root.root.string,
8879 h->ref_regular ? NULL : h->root.u.undef.abfd,
8880 NULL, 0,
8881 (flinfo->info->unresolved_syms_in_shared_libs
8882 == RM_GENERATE_ERROR))))
8883 {
8884 bfd_set_error (bfd_error_bad_value);
8885 eoinfo->failed = TRUE;
8886 return FALSE;
8887 }
8888 }
8889 }
8890
8891 /* We should also warn if a forced local symbol is referenced from
8892 shared libraries. */
8893 if (!flinfo->info->relocatable
8894 && flinfo->info->executable
8895 && h->forced_local
8896 && h->ref_dynamic
8897 && h->def_regular
8898 && !h->dynamic_def
8899 && h->ref_dynamic_nonweak
8900 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8901 {
8902 bfd *def_bfd;
8903 const char *msg;
8904 struct elf_link_hash_entry *hi = h;
8905
8906 /* Check indirect symbol. */
8907 while (hi->root.type == bfd_link_hash_indirect)
8908 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8909
8910 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8911 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8912 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8913 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8914 else
8915 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8916 def_bfd = flinfo->output_bfd;
8917 if (hi->root.u.def.section != bfd_abs_section_ptr)
8918 def_bfd = hi->root.u.def.section->owner;
8919 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8920 h->root.root.string);
8921 bfd_set_error (bfd_error_bad_value);
8922 eoinfo->failed = TRUE;
8923 return FALSE;
8924 }
8925
8926 /* We don't want to output symbols that have never been mentioned by
8927 a regular file, or that we have been told to strip. However, if
8928 h->indx is set to -2, the symbol is used by a reloc and we must
8929 output it. */
8930 if (h->indx == -2)
8931 strip = FALSE;
8932 else if ((h->def_dynamic
8933 || h->ref_dynamic
8934 || h->root.type == bfd_link_hash_new)
8935 && !h->def_regular
8936 && !h->ref_regular)
8937 strip = TRUE;
8938 else if (flinfo->info->strip == strip_all)
8939 strip = TRUE;
8940 else if (flinfo->info->strip == strip_some
8941 && bfd_hash_lookup (flinfo->info->keep_hash,
8942 h->root.root.string, FALSE, FALSE) == NULL)
8943 strip = TRUE;
8944 else if ((h->root.type == bfd_link_hash_defined
8945 || h->root.type == bfd_link_hash_defweak)
8946 && ((flinfo->info->strip_discarded
8947 && discarded_section (h->root.u.def.section))
8948 || (h->root.u.def.section->owner != NULL
8949 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8950 strip = TRUE;
8951 else if ((h->root.type == bfd_link_hash_undefined
8952 || h->root.type == bfd_link_hash_undefweak)
8953 && h->root.u.undef.abfd != NULL
8954 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8955 strip = TRUE;
8956 else
8957 strip = FALSE;
8958
8959 /* If we're stripping it, and it's not a dynamic symbol, there's
8960 nothing else to do unless it is a forced local symbol or a
8961 STT_GNU_IFUNC symbol. */
8962 if (strip
8963 && h->dynindx == -1
8964 && h->type != STT_GNU_IFUNC
8965 && !h->forced_local)
8966 return TRUE;
8967
8968 sym.st_value = 0;
8969 sym.st_size = h->size;
8970 sym.st_other = h->other;
8971 if (h->forced_local)
8972 {
8973 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8974 /* Turn off visibility on local symbol. */
8975 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8976 }
8977 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8978 else if (h->unique_global && h->def_regular)
8979 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8980 else if (h->root.type == bfd_link_hash_undefweak
8981 || h->root.type == bfd_link_hash_defweak)
8982 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8983 else
8984 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8985 sym.st_target_internal = h->target_internal;
8986
8987 switch (h->root.type)
8988 {
8989 default:
8990 case bfd_link_hash_new:
8991 case bfd_link_hash_warning:
8992 abort ();
8993 return FALSE;
8994
8995 case bfd_link_hash_undefined:
8996 case bfd_link_hash_undefweak:
8997 input_sec = bfd_und_section_ptr;
8998 sym.st_shndx = SHN_UNDEF;
8999 break;
9000
9001 case bfd_link_hash_defined:
9002 case bfd_link_hash_defweak:
9003 {
9004 input_sec = h->root.u.def.section;
9005 if (input_sec->output_section != NULL)
9006 {
9007 if (eoinfo->localsyms && flinfo->filesym_count == 1)
9008 {
9009 bfd_boolean second_pass_sym
9010 = (input_sec->owner == flinfo->output_bfd
9011 || input_sec->owner == NULL
9012 || (input_sec->flags & SEC_LINKER_CREATED) != 0
9013 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
9014
9015 eoinfo->need_second_pass |= second_pass_sym;
9016 if (eoinfo->second_pass != second_pass_sym)
9017 return TRUE;
9018 }
9019
9020 sym.st_shndx =
9021 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9022 input_sec->output_section);
9023 if (sym.st_shndx == SHN_BAD)
9024 {
9025 (*_bfd_error_handler)
9026 (_("%B: could not find output section %A for input section %A"),
9027 flinfo->output_bfd, input_sec->output_section, input_sec);
9028 bfd_set_error (bfd_error_nonrepresentable_section);
9029 eoinfo->failed = TRUE;
9030 return FALSE;
9031 }
9032
9033 /* ELF symbols in relocatable files are section relative,
9034 but in nonrelocatable files they are virtual
9035 addresses. */
9036 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9037 if (!flinfo->info->relocatable)
9038 {
9039 sym.st_value += input_sec->output_section->vma;
9040 if (h->type == STT_TLS)
9041 {
9042 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9043 if (tls_sec != NULL)
9044 sym.st_value -= tls_sec->vma;
9045 else
9046 {
9047 /* The TLS section may have been garbage collected. */
9048 BFD_ASSERT (flinfo->info->gc_sections
9049 && !input_sec->gc_mark);
9050 }
9051 }
9052 }
9053 }
9054 else
9055 {
9056 BFD_ASSERT (input_sec->owner == NULL
9057 || (input_sec->owner->flags & DYNAMIC) != 0);
9058 sym.st_shndx = SHN_UNDEF;
9059 input_sec = bfd_und_section_ptr;
9060 }
9061 }
9062 break;
9063
9064 case bfd_link_hash_common:
9065 input_sec = h->root.u.c.p->section;
9066 sym.st_shndx = bed->common_section_index (input_sec);
9067 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9068 break;
9069
9070 case bfd_link_hash_indirect:
9071 /* These symbols are created by symbol versioning. They point
9072 to the decorated version of the name. For example, if the
9073 symbol foo@@GNU_1.2 is the default, which should be used when
9074 foo is used with no version, then we add an indirect symbol
9075 foo which points to foo@@GNU_1.2. We ignore these symbols,
9076 since the indirected symbol is already in the hash table. */
9077 return TRUE;
9078 }
9079
9080 /* Give the processor backend a chance to tweak the symbol value,
9081 and also to finish up anything that needs to be done for this
9082 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9083 forced local syms when non-shared is due to a historical quirk.
9084 STT_GNU_IFUNC symbol must go through PLT. */
9085 if ((h->type == STT_GNU_IFUNC
9086 && h->def_regular
9087 && !flinfo->info->relocatable)
9088 || ((h->dynindx != -1
9089 || h->forced_local)
9090 && ((flinfo->info->shared
9091 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9092 || h->root.type != bfd_link_hash_undefweak))
9093 || !h->forced_local)
9094 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9095 {
9096 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9097 (flinfo->output_bfd, flinfo->info, h, &sym)))
9098 {
9099 eoinfo->failed = TRUE;
9100 return FALSE;
9101 }
9102 }
9103
9104 /* If we are marking the symbol as undefined, and there are no
9105 non-weak references to this symbol from a regular object, then
9106 mark the symbol as weak undefined; if there are non-weak
9107 references, mark the symbol as strong. We can't do this earlier,
9108 because it might not be marked as undefined until the
9109 finish_dynamic_symbol routine gets through with it. */
9110 if (sym.st_shndx == SHN_UNDEF
9111 && h->ref_regular
9112 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9113 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9114 {
9115 int bindtype;
9116 unsigned int type = ELF_ST_TYPE (sym.st_info);
9117
9118 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9119 if (type == STT_GNU_IFUNC)
9120 type = STT_FUNC;
9121
9122 if (h->ref_regular_nonweak)
9123 bindtype = STB_GLOBAL;
9124 else
9125 bindtype = STB_WEAK;
9126 sym.st_info = ELF_ST_INFO (bindtype, type);
9127 }
9128
9129 /* If this is a symbol defined in a dynamic library, don't use the
9130 symbol size from the dynamic library. Relinking an executable
9131 against a new library may introduce gratuitous changes in the
9132 executable's symbols if we keep the size. */
9133 if (sym.st_shndx == SHN_UNDEF
9134 && !h->def_regular
9135 && h->def_dynamic)
9136 sym.st_size = 0;
9137
9138 /* If a non-weak symbol with non-default visibility is not defined
9139 locally, it is a fatal error. */
9140 if (!flinfo->info->relocatable
9141 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9142 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9143 && h->root.type == bfd_link_hash_undefined
9144 && !h->def_regular)
9145 {
9146 const char *msg;
9147
9148 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9149 msg = _("%B: protected symbol `%s' isn't defined");
9150 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9151 msg = _("%B: internal symbol `%s' isn't defined");
9152 else
9153 msg = _("%B: hidden symbol `%s' isn't defined");
9154 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9155 bfd_set_error (bfd_error_bad_value);
9156 eoinfo->failed = TRUE;
9157 return FALSE;
9158 }
9159
9160 /* If this symbol should be put in the .dynsym section, then put it
9161 there now. We already know the symbol index. We also fill in
9162 the entry in the .hash section. */
9163 if (flinfo->dynsym_sec != NULL
9164 && h->dynindx != -1
9165 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9166 {
9167 bfd_byte *esym;
9168
9169 /* Since there is no version information in the dynamic string,
9170 if there is no version info in symbol version section, we will
9171 have a run-time problem. */
9172 if (h->verinfo.verdef == NULL)
9173 {
9174 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9175
9176 if (p && p [1] != '\0')
9177 {
9178 (*_bfd_error_handler)
9179 (_("%B: No symbol version section for versioned symbol `%s'"),
9180 flinfo->output_bfd, h->root.root.string);
9181 eoinfo->failed = TRUE;
9182 return FALSE;
9183 }
9184 }
9185
9186 sym.st_name = h->dynstr_index;
9187 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9188 if (!check_dynsym (flinfo->output_bfd, &sym))
9189 {
9190 eoinfo->failed = TRUE;
9191 return FALSE;
9192 }
9193 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9194
9195 if (flinfo->hash_sec != NULL)
9196 {
9197 size_t hash_entry_size;
9198 bfd_byte *bucketpos;
9199 bfd_vma chain;
9200 size_t bucketcount;
9201 size_t bucket;
9202
9203 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9204 bucket = h->u.elf_hash_value % bucketcount;
9205
9206 hash_entry_size
9207 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9208 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9209 + (bucket + 2) * hash_entry_size);
9210 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9211 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9212 bucketpos);
9213 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9214 ((bfd_byte *) flinfo->hash_sec->contents
9215 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9216 }
9217
9218 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9219 {
9220 Elf_Internal_Versym iversym;
9221 Elf_External_Versym *eversym;
9222
9223 if (!h->def_regular)
9224 {
9225 if (h->verinfo.verdef == NULL
9226 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9227 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9228 iversym.vs_vers = 0;
9229 else
9230 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9231 }
9232 else
9233 {
9234 if (h->verinfo.vertree == NULL)
9235 iversym.vs_vers = 1;
9236 else
9237 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9238 if (flinfo->info->create_default_symver)
9239 iversym.vs_vers++;
9240 }
9241
9242 if (h->hidden)
9243 iversym.vs_vers |= VERSYM_HIDDEN;
9244
9245 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9246 eversym += h->dynindx;
9247 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9248 }
9249 }
9250
9251 /* If we're stripping it, then it was just a dynamic symbol, and
9252 there's nothing else to do. */
9253 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9254 return TRUE;
9255
9256 indx = bfd_get_symcount (flinfo->output_bfd);
9257 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9258 if (ret == 0)
9259 {
9260 eoinfo->failed = TRUE;
9261 return FALSE;
9262 }
9263 else if (ret == 1)
9264 h->indx = indx;
9265 else if (h->indx == -2)
9266 abort();
9267
9268 return TRUE;
9269 }
9270
9271 /* Return TRUE if special handling is done for relocs in SEC against
9272 symbols defined in discarded sections. */
9273
9274 static bfd_boolean
9275 elf_section_ignore_discarded_relocs (asection *sec)
9276 {
9277 const struct elf_backend_data *bed;
9278
9279 switch (sec->sec_info_type)
9280 {
9281 case SEC_INFO_TYPE_STABS:
9282 case SEC_INFO_TYPE_EH_FRAME:
9283 return TRUE;
9284 default:
9285 break;
9286 }
9287
9288 bed = get_elf_backend_data (sec->owner);
9289 if (bed->elf_backend_ignore_discarded_relocs != NULL
9290 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9291 return TRUE;
9292
9293 return FALSE;
9294 }
9295
9296 /* Return a mask saying how ld should treat relocations in SEC against
9297 symbols defined in discarded sections. If this function returns
9298 COMPLAIN set, ld will issue a warning message. If this function
9299 returns PRETEND set, and the discarded section was link-once and the
9300 same size as the kept link-once section, ld will pretend that the
9301 symbol was actually defined in the kept section. Otherwise ld will
9302 zero the reloc (at least that is the intent, but some cooperation by
9303 the target dependent code is needed, particularly for REL targets). */
9304
9305 unsigned int
9306 _bfd_elf_default_action_discarded (asection *sec)
9307 {
9308 if (sec->flags & SEC_DEBUGGING)
9309 return PRETEND;
9310
9311 if (strcmp (".eh_frame", sec->name) == 0)
9312 return 0;
9313
9314 if (strcmp (".gcc_except_table", sec->name) == 0)
9315 return 0;
9316
9317 return COMPLAIN | PRETEND;
9318 }
9319
9320 /* Find a match between a section and a member of a section group. */
9321
9322 static asection *
9323 match_group_member (asection *sec, asection *group,
9324 struct bfd_link_info *info)
9325 {
9326 asection *first = elf_next_in_group (group);
9327 asection *s = first;
9328
9329 while (s != NULL)
9330 {
9331 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9332 return s;
9333
9334 s = elf_next_in_group (s);
9335 if (s == first)
9336 break;
9337 }
9338
9339 return NULL;
9340 }
9341
9342 /* Check if the kept section of a discarded section SEC can be used
9343 to replace it. Return the replacement if it is OK. Otherwise return
9344 NULL. */
9345
9346 asection *
9347 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9348 {
9349 asection *kept;
9350
9351 kept = sec->kept_section;
9352 if (kept != NULL)
9353 {
9354 if ((kept->flags & SEC_GROUP) != 0)
9355 kept = match_group_member (sec, kept, info);
9356 if (kept != NULL
9357 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9358 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9359 kept = NULL;
9360 sec->kept_section = kept;
9361 }
9362 return kept;
9363 }
9364
9365 /* Link an input file into the linker output file. This function
9366 handles all the sections and relocations of the input file at once.
9367 This is so that we only have to read the local symbols once, and
9368 don't have to keep them in memory. */
9369
9370 static bfd_boolean
9371 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9372 {
9373 int (*relocate_section)
9374 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9375 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9376 bfd *output_bfd;
9377 Elf_Internal_Shdr *symtab_hdr;
9378 size_t locsymcount;
9379 size_t extsymoff;
9380 Elf_Internal_Sym *isymbuf;
9381 Elf_Internal_Sym *isym;
9382 Elf_Internal_Sym *isymend;
9383 long *pindex;
9384 asection **ppsection;
9385 asection *o;
9386 const struct elf_backend_data *bed;
9387 struct elf_link_hash_entry **sym_hashes;
9388 bfd_size_type address_size;
9389 bfd_vma r_type_mask;
9390 int r_sym_shift;
9391 bfd_boolean have_file_sym = FALSE;
9392
9393 output_bfd = flinfo->output_bfd;
9394 bed = get_elf_backend_data (output_bfd);
9395 relocate_section = bed->elf_backend_relocate_section;
9396
9397 /* If this is a dynamic object, we don't want to do anything here:
9398 we don't want the local symbols, and we don't want the section
9399 contents. */
9400 if ((input_bfd->flags & DYNAMIC) != 0)
9401 return TRUE;
9402
9403 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9404 if (elf_bad_symtab (input_bfd))
9405 {
9406 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9407 extsymoff = 0;
9408 }
9409 else
9410 {
9411 locsymcount = symtab_hdr->sh_info;
9412 extsymoff = symtab_hdr->sh_info;
9413 }
9414
9415 /* Read the local symbols. */
9416 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9417 if (isymbuf == NULL && locsymcount != 0)
9418 {
9419 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9420 flinfo->internal_syms,
9421 flinfo->external_syms,
9422 flinfo->locsym_shndx);
9423 if (isymbuf == NULL)
9424 return FALSE;
9425 }
9426
9427 /* Find local symbol sections and adjust values of symbols in
9428 SEC_MERGE sections. Write out those local symbols we know are
9429 going into the output file. */
9430 isymend = isymbuf + locsymcount;
9431 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9432 isym < isymend;
9433 isym++, pindex++, ppsection++)
9434 {
9435 asection *isec;
9436 const char *name;
9437 Elf_Internal_Sym osym;
9438 long indx;
9439 int ret;
9440
9441 *pindex = -1;
9442
9443 if (elf_bad_symtab (input_bfd))
9444 {
9445 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9446 {
9447 *ppsection = NULL;
9448 continue;
9449 }
9450 }
9451
9452 if (isym->st_shndx == SHN_UNDEF)
9453 isec = bfd_und_section_ptr;
9454 else if (isym->st_shndx == SHN_ABS)
9455 isec = bfd_abs_section_ptr;
9456 else if (isym->st_shndx == SHN_COMMON)
9457 isec = bfd_com_section_ptr;
9458 else
9459 {
9460 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9461 if (isec == NULL)
9462 {
9463 /* Don't attempt to output symbols with st_shnx in the
9464 reserved range other than SHN_ABS and SHN_COMMON. */
9465 *ppsection = NULL;
9466 continue;
9467 }
9468 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9469 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9470 isym->st_value =
9471 _bfd_merged_section_offset (output_bfd, &isec,
9472 elf_section_data (isec)->sec_info,
9473 isym->st_value);
9474 }
9475
9476 *ppsection = isec;
9477
9478 /* Don't output the first, undefined, symbol. */
9479 if (ppsection == flinfo->sections)
9480 continue;
9481
9482 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9483 {
9484 /* We never output section symbols. Instead, we use the
9485 section symbol of the corresponding section in the output
9486 file. */
9487 continue;
9488 }
9489
9490 /* If we are stripping all symbols, we don't want to output this
9491 one. */
9492 if (flinfo->info->strip == strip_all)
9493 continue;
9494
9495 /* If we are discarding all local symbols, we don't want to
9496 output this one. If we are generating a relocatable output
9497 file, then some of the local symbols may be required by
9498 relocs; we output them below as we discover that they are
9499 needed. */
9500 if (flinfo->info->discard == discard_all)
9501 continue;
9502
9503 /* If this symbol is defined in a section which we are
9504 discarding, we don't need to keep it. */
9505 if (isym->st_shndx != SHN_UNDEF
9506 && isym->st_shndx < SHN_LORESERVE
9507 && bfd_section_removed_from_list (output_bfd,
9508 isec->output_section))
9509 continue;
9510
9511 /* Get the name of the symbol. */
9512 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9513 isym->st_name);
9514 if (name == NULL)
9515 return FALSE;
9516
9517 /* See if we are discarding symbols with this name. */
9518 if ((flinfo->info->strip == strip_some
9519 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9520 == NULL))
9521 || (((flinfo->info->discard == discard_sec_merge
9522 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9523 || flinfo->info->discard == discard_l)
9524 && bfd_is_local_label_name (input_bfd, name)))
9525 continue;
9526
9527 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9528 {
9529 have_file_sym = TRUE;
9530 flinfo->filesym_count += 1;
9531 }
9532 if (!have_file_sym)
9533 {
9534 /* In the absence of debug info, bfd_find_nearest_line uses
9535 FILE symbols to determine the source file for local
9536 function symbols. Provide a FILE symbol here if input
9537 files lack such, so that their symbols won't be
9538 associated with a previous input file. It's not the
9539 source file, but the best we can do. */
9540 have_file_sym = TRUE;
9541 flinfo->filesym_count += 1;
9542 memset (&osym, 0, sizeof (osym));
9543 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9544 osym.st_shndx = SHN_ABS;
9545 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9546 bfd_abs_section_ptr, NULL))
9547 return FALSE;
9548 }
9549
9550 osym = *isym;
9551
9552 /* Adjust the section index for the output file. */
9553 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9554 isec->output_section);
9555 if (osym.st_shndx == SHN_BAD)
9556 return FALSE;
9557
9558 /* ELF symbols in relocatable files are section relative, but
9559 in executable files they are virtual addresses. Note that
9560 this code assumes that all ELF sections have an associated
9561 BFD section with a reasonable value for output_offset; below
9562 we assume that they also have a reasonable value for
9563 output_section. Any special sections must be set up to meet
9564 these requirements. */
9565 osym.st_value += isec->output_offset;
9566 if (!flinfo->info->relocatable)
9567 {
9568 osym.st_value += isec->output_section->vma;
9569 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9570 {
9571 /* STT_TLS symbols are relative to PT_TLS segment base. */
9572 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9573 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9574 }
9575 }
9576
9577 indx = bfd_get_symcount (output_bfd);
9578 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9579 if (ret == 0)
9580 return FALSE;
9581 else if (ret == 1)
9582 *pindex = indx;
9583 }
9584
9585 if (bed->s->arch_size == 32)
9586 {
9587 r_type_mask = 0xff;
9588 r_sym_shift = 8;
9589 address_size = 4;
9590 }
9591 else
9592 {
9593 r_type_mask = 0xffffffff;
9594 r_sym_shift = 32;
9595 address_size = 8;
9596 }
9597
9598 /* Relocate the contents of each section. */
9599 sym_hashes = elf_sym_hashes (input_bfd);
9600 for (o = input_bfd->sections; o != NULL; o = o->next)
9601 {
9602 bfd_byte *contents;
9603
9604 if (! o->linker_mark)
9605 {
9606 /* This section was omitted from the link. */
9607 continue;
9608 }
9609
9610 if (flinfo->info->relocatable
9611 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9612 {
9613 /* Deal with the group signature symbol. */
9614 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9615 unsigned long symndx = sec_data->this_hdr.sh_info;
9616 asection *osec = o->output_section;
9617
9618 if (symndx >= locsymcount
9619 || (elf_bad_symtab (input_bfd)
9620 && flinfo->sections[symndx] == NULL))
9621 {
9622 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9623 while (h->root.type == bfd_link_hash_indirect
9624 || h->root.type == bfd_link_hash_warning)
9625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9626 /* Arrange for symbol to be output. */
9627 h->indx = -2;
9628 elf_section_data (osec)->this_hdr.sh_info = -2;
9629 }
9630 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9631 {
9632 /* We'll use the output section target_index. */
9633 asection *sec = flinfo->sections[symndx]->output_section;
9634 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9635 }
9636 else
9637 {
9638 if (flinfo->indices[symndx] == -1)
9639 {
9640 /* Otherwise output the local symbol now. */
9641 Elf_Internal_Sym sym = isymbuf[symndx];
9642 asection *sec = flinfo->sections[symndx]->output_section;
9643 const char *name;
9644 long indx;
9645 int ret;
9646
9647 name = bfd_elf_string_from_elf_section (input_bfd,
9648 symtab_hdr->sh_link,
9649 sym.st_name);
9650 if (name == NULL)
9651 return FALSE;
9652
9653 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9654 sec);
9655 if (sym.st_shndx == SHN_BAD)
9656 return FALSE;
9657
9658 sym.st_value += o->output_offset;
9659
9660 indx = bfd_get_symcount (output_bfd);
9661 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9662 if (ret == 0)
9663 return FALSE;
9664 else if (ret == 1)
9665 flinfo->indices[symndx] = indx;
9666 else
9667 abort ();
9668 }
9669 elf_section_data (osec)->this_hdr.sh_info
9670 = flinfo->indices[symndx];
9671 }
9672 }
9673
9674 if ((o->flags & SEC_HAS_CONTENTS) == 0
9675 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9676 continue;
9677
9678 if ((o->flags & SEC_LINKER_CREATED) != 0)
9679 {
9680 /* Section was created by _bfd_elf_link_create_dynamic_sections
9681 or somesuch. */
9682 continue;
9683 }
9684
9685 /* Get the contents of the section. They have been cached by a
9686 relaxation routine. Note that o is a section in an input
9687 file, so the contents field will not have been set by any of
9688 the routines which work on output files. */
9689 if (elf_section_data (o)->this_hdr.contents != NULL)
9690 {
9691 contents = elf_section_data (o)->this_hdr.contents;
9692 if (bed->caches_rawsize
9693 && o->rawsize != 0
9694 && o->rawsize < o->size)
9695 {
9696 memcpy (flinfo->contents, contents, o->rawsize);
9697 contents = flinfo->contents;
9698 }
9699 }
9700 else
9701 {
9702 contents = flinfo->contents;
9703 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9704 return FALSE;
9705 }
9706
9707 if ((o->flags & SEC_RELOC) != 0)
9708 {
9709 Elf_Internal_Rela *internal_relocs;
9710 Elf_Internal_Rela *rel, *relend;
9711 int action_discarded;
9712 int ret;
9713
9714 /* Get the swapped relocs. */
9715 internal_relocs
9716 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9717 flinfo->internal_relocs, FALSE);
9718 if (internal_relocs == NULL
9719 && o->reloc_count > 0)
9720 return FALSE;
9721
9722 /* We need to reverse-copy input .ctors/.dtors sections if
9723 they are placed in .init_array/.finit_array for output. */
9724 if (o->size > address_size
9725 && ((strncmp (o->name, ".ctors", 6) == 0
9726 && strcmp (o->output_section->name,
9727 ".init_array") == 0)
9728 || (strncmp (o->name, ".dtors", 6) == 0
9729 && strcmp (o->output_section->name,
9730 ".fini_array") == 0))
9731 && (o->name[6] == 0 || o->name[6] == '.'))
9732 {
9733 if (o->size != o->reloc_count * address_size)
9734 {
9735 (*_bfd_error_handler)
9736 (_("error: %B: size of section %A is not "
9737 "multiple of address size"),
9738 input_bfd, o);
9739 bfd_set_error (bfd_error_on_input);
9740 return FALSE;
9741 }
9742 o->flags |= SEC_ELF_REVERSE_COPY;
9743 }
9744
9745 action_discarded = -1;
9746 if (!elf_section_ignore_discarded_relocs (o))
9747 action_discarded = (*bed->action_discarded) (o);
9748
9749 /* Run through the relocs evaluating complex reloc symbols and
9750 looking for relocs against symbols from discarded sections
9751 or section symbols from removed link-once sections.
9752 Complain about relocs against discarded sections. Zero
9753 relocs against removed link-once sections. */
9754
9755 rel = internal_relocs;
9756 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9757 for ( ; rel < relend; rel++)
9758 {
9759 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9760 unsigned int s_type;
9761 asection **ps, *sec;
9762 struct elf_link_hash_entry *h = NULL;
9763 const char *sym_name;
9764
9765 if (r_symndx == STN_UNDEF)
9766 continue;
9767
9768 if (r_symndx >= locsymcount
9769 || (elf_bad_symtab (input_bfd)
9770 && flinfo->sections[r_symndx] == NULL))
9771 {
9772 h = sym_hashes[r_symndx - extsymoff];
9773
9774 /* Badly formatted input files can contain relocs that
9775 reference non-existant symbols. Check here so that
9776 we do not seg fault. */
9777 if (h == NULL)
9778 {
9779 char buffer [32];
9780
9781 sprintf_vma (buffer, rel->r_info);
9782 (*_bfd_error_handler)
9783 (_("error: %B contains a reloc (0x%s) for section %A "
9784 "that references a non-existent global symbol"),
9785 input_bfd, o, buffer);
9786 bfd_set_error (bfd_error_bad_value);
9787 return FALSE;
9788 }
9789
9790 while (h->root.type == bfd_link_hash_indirect
9791 || h->root.type == bfd_link_hash_warning)
9792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9793
9794 s_type = h->type;
9795
9796 ps = NULL;
9797 if (h->root.type == bfd_link_hash_defined
9798 || h->root.type == bfd_link_hash_defweak)
9799 ps = &h->root.u.def.section;
9800
9801 sym_name = h->root.root.string;
9802 }
9803 else
9804 {
9805 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9806
9807 s_type = ELF_ST_TYPE (sym->st_info);
9808 ps = &flinfo->sections[r_symndx];
9809 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9810 sym, *ps);
9811 }
9812
9813 if ((s_type == STT_RELC || s_type == STT_SRELC)
9814 && !flinfo->info->relocatable)
9815 {
9816 bfd_vma val;
9817 bfd_vma dot = (rel->r_offset
9818 + o->output_offset + o->output_section->vma);
9819 #ifdef DEBUG
9820 printf ("Encountered a complex symbol!");
9821 printf (" (input_bfd %s, section %s, reloc %ld\n",
9822 input_bfd->filename, o->name,
9823 (long) (rel - internal_relocs));
9824 printf (" symbol: idx %8.8lx, name %s\n",
9825 r_symndx, sym_name);
9826 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9827 (unsigned long) rel->r_info,
9828 (unsigned long) rel->r_offset);
9829 #endif
9830 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9831 isymbuf, locsymcount, s_type == STT_SRELC))
9832 return FALSE;
9833
9834 /* Symbol evaluated OK. Update to absolute value. */
9835 set_symbol_value (input_bfd, isymbuf, locsymcount,
9836 r_symndx, val);
9837 continue;
9838 }
9839
9840 if (action_discarded != -1 && ps != NULL)
9841 {
9842 /* Complain if the definition comes from a
9843 discarded section. */
9844 if ((sec = *ps) != NULL && discarded_section (sec))
9845 {
9846 BFD_ASSERT (r_symndx != STN_UNDEF);
9847 if (action_discarded & COMPLAIN)
9848 (*flinfo->info->callbacks->einfo)
9849 (_("%X`%s' referenced in section `%A' of %B: "
9850 "defined in discarded section `%A' of %B\n"),
9851 sym_name, o, input_bfd, sec, sec->owner);
9852
9853 /* Try to do the best we can to support buggy old
9854 versions of gcc. Pretend that the symbol is
9855 really defined in the kept linkonce section.
9856 FIXME: This is quite broken. Modifying the
9857 symbol here means we will be changing all later
9858 uses of the symbol, not just in this section. */
9859 if (action_discarded & PRETEND)
9860 {
9861 asection *kept;
9862
9863 kept = _bfd_elf_check_kept_section (sec,
9864 flinfo->info);
9865 if (kept != NULL)
9866 {
9867 *ps = kept;
9868 continue;
9869 }
9870 }
9871 }
9872 }
9873 }
9874
9875 /* Relocate the section by invoking a back end routine.
9876
9877 The back end routine is responsible for adjusting the
9878 section contents as necessary, and (if using Rela relocs
9879 and generating a relocatable output file) adjusting the
9880 reloc addend as necessary.
9881
9882 The back end routine does not have to worry about setting
9883 the reloc address or the reloc symbol index.
9884
9885 The back end routine is given a pointer to the swapped in
9886 internal symbols, and can access the hash table entries
9887 for the external symbols via elf_sym_hashes (input_bfd).
9888
9889 When generating relocatable output, the back end routine
9890 must handle STB_LOCAL/STT_SECTION symbols specially. The
9891 output symbol is going to be a section symbol
9892 corresponding to the output section, which will require
9893 the addend to be adjusted. */
9894
9895 ret = (*relocate_section) (output_bfd, flinfo->info,
9896 input_bfd, o, contents,
9897 internal_relocs,
9898 isymbuf,
9899 flinfo->sections);
9900 if (!ret)
9901 return FALSE;
9902
9903 if (ret == 2
9904 || flinfo->info->relocatable
9905 || flinfo->info->emitrelocations)
9906 {
9907 Elf_Internal_Rela *irela;
9908 Elf_Internal_Rela *irelaend, *irelamid;
9909 bfd_vma last_offset;
9910 struct elf_link_hash_entry **rel_hash;
9911 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9912 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9913 unsigned int next_erel;
9914 bfd_boolean rela_normal;
9915 struct bfd_elf_section_data *esdi, *esdo;
9916
9917 esdi = elf_section_data (o);
9918 esdo = elf_section_data (o->output_section);
9919 rela_normal = FALSE;
9920
9921 /* Adjust the reloc addresses and symbol indices. */
9922
9923 irela = internal_relocs;
9924 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9925 rel_hash = esdo->rel.hashes + esdo->rel.count;
9926 /* We start processing the REL relocs, if any. When we reach
9927 IRELAMID in the loop, we switch to the RELA relocs. */
9928 irelamid = irela;
9929 if (esdi->rel.hdr != NULL)
9930 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9931 * bed->s->int_rels_per_ext_rel);
9932 rel_hash_list = rel_hash;
9933 rela_hash_list = NULL;
9934 last_offset = o->output_offset;
9935 if (!flinfo->info->relocatable)
9936 last_offset += o->output_section->vma;
9937 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9938 {
9939 unsigned long r_symndx;
9940 asection *sec;
9941 Elf_Internal_Sym sym;
9942
9943 if (next_erel == bed->s->int_rels_per_ext_rel)
9944 {
9945 rel_hash++;
9946 next_erel = 0;
9947 }
9948
9949 if (irela == irelamid)
9950 {
9951 rel_hash = esdo->rela.hashes + esdo->rela.count;
9952 rela_hash_list = rel_hash;
9953 rela_normal = bed->rela_normal;
9954 }
9955
9956 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9957 flinfo->info, o,
9958 irela->r_offset);
9959 if (irela->r_offset >= (bfd_vma) -2)
9960 {
9961 /* This is a reloc for a deleted entry or somesuch.
9962 Turn it into an R_*_NONE reloc, at the same
9963 offset as the last reloc. elf_eh_frame.c and
9964 bfd_elf_discard_info rely on reloc offsets
9965 being ordered. */
9966 irela->r_offset = last_offset;
9967 irela->r_info = 0;
9968 irela->r_addend = 0;
9969 continue;
9970 }
9971
9972 irela->r_offset += o->output_offset;
9973
9974 /* Relocs in an executable have to be virtual addresses. */
9975 if (!flinfo->info->relocatable)
9976 irela->r_offset += o->output_section->vma;
9977
9978 last_offset = irela->r_offset;
9979
9980 r_symndx = irela->r_info >> r_sym_shift;
9981 if (r_symndx == STN_UNDEF)
9982 continue;
9983
9984 if (r_symndx >= locsymcount
9985 || (elf_bad_symtab (input_bfd)
9986 && flinfo->sections[r_symndx] == NULL))
9987 {
9988 struct elf_link_hash_entry *rh;
9989 unsigned long indx;
9990
9991 /* This is a reloc against a global symbol. We
9992 have not yet output all the local symbols, so
9993 we do not know the symbol index of any global
9994 symbol. We set the rel_hash entry for this
9995 reloc to point to the global hash table entry
9996 for this symbol. The symbol index is then
9997 set at the end of bfd_elf_final_link. */
9998 indx = r_symndx - extsymoff;
9999 rh = elf_sym_hashes (input_bfd)[indx];
10000 while (rh->root.type == bfd_link_hash_indirect
10001 || rh->root.type == bfd_link_hash_warning)
10002 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10003
10004 /* Setting the index to -2 tells
10005 elf_link_output_extsym that this symbol is
10006 used by a reloc. */
10007 BFD_ASSERT (rh->indx < 0);
10008 rh->indx = -2;
10009
10010 *rel_hash = rh;
10011
10012 continue;
10013 }
10014
10015 /* This is a reloc against a local symbol. */
10016
10017 *rel_hash = NULL;
10018 sym = isymbuf[r_symndx];
10019 sec = flinfo->sections[r_symndx];
10020 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10021 {
10022 /* I suppose the backend ought to fill in the
10023 section of any STT_SECTION symbol against a
10024 processor specific section. */
10025 r_symndx = STN_UNDEF;
10026 if (bfd_is_abs_section (sec))
10027 ;
10028 else if (sec == NULL || sec->owner == NULL)
10029 {
10030 bfd_set_error (bfd_error_bad_value);
10031 return FALSE;
10032 }
10033 else
10034 {
10035 asection *osec = sec->output_section;
10036
10037 /* If we have discarded a section, the output
10038 section will be the absolute section. In
10039 case of discarded SEC_MERGE sections, use
10040 the kept section. relocate_section should
10041 have already handled discarded linkonce
10042 sections. */
10043 if (bfd_is_abs_section (osec)
10044 && sec->kept_section != NULL
10045 && sec->kept_section->output_section != NULL)
10046 {
10047 osec = sec->kept_section->output_section;
10048 irela->r_addend -= osec->vma;
10049 }
10050
10051 if (!bfd_is_abs_section (osec))
10052 {
10053 r_symndx = osec->target_index;
10054 if (r_symndx == STN_UNDEF)
10055 {
10056 irela->r_addend += osec->vma;
10057 osec = _bfd_nearby_section (output_bfd, osec,
10058 osec->vma);
10059 irela->r_addend -= osec->vma;
10060 r_symndx = osec->target_index;
10061 }
10062 }
10063 }
10064
10065 /* Adjust the addend according to where the
10066 section winds up in the output section. */
10067 if (rela_normal)
10068 irela->r_addend += sec->output_offset;
10069 }
10070 else
10071 {
10072 if (flinfo->indices[r_symndx] == -1)
10073 {
10074 unsigned long shlink;
10075 const char *name;
10076 asection *osec;
10077 long indx;
10078
10079 if (flinfo->info->strip == strip_all)
10080 {
10081 /* You can't do ld -r -s. */
10082 bfd_set_error (bfd_error_invalid_operation);
10083 return FALSE;
10084 }
10085
10086 /* This symbol was skipped earlier, but
10087 since it is needed by a reloc, we
10088 must output it now. */
10089 shlink = symtab_hdr->sh_link;
10090 name = (bfd_elf_string_from_elf_section
10091 (input_bfd, shlink, sym.st_name));
10092 if (name == NULL)
10093 return FALSE;
10094
10095 osec = sec->output_section;
10096 sym.st_shndx =
10097 _bfd_elf_section_from_bfd_section (output_bfd,
10098 osec);
10099 if (sym.st_shndx == SHN_BAD)
10100 return FALSE;
10101
10102 sym.st_value += sec->output_offset;
10103 if (!flinfo->info->relocatable)
10104 {
10105 sym.st_value += osec->vma;
10106 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10107 {
10108 /* STT_TLS symbols are relative to PT_TLS
10109 segment base. */
10110 BFD_ASSERT (elf_hash_table (flinfo->info)
10111 ->tls_sec != NULL);
10112 sym.st_value -= (elf_hash_table (flinfo->info)
10113 ->tls_sec->vma);
10114 }
10115 }
10116
10117 indx = bfd_get_symcount (output_bfd);
10118 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10119 NULL);
10120 if (ret == 0)
10121 return FALSE;
10122 else if (ret == 1)
10123 flinfo->indices[r_symndx] = indx;
10124 else
10125 abort ();
10126 }
10127
10128 r_symndx = flinfo->indices[r_symndx];
10129 }
10130
10131 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10132 | (irela->r_info & r_type_mask));
10133 }
10134
10135 /* Swap out the relocs. */
10136 input_rel_hdr = esdi->rel.hdr;
10137 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10138 {
10139 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10140 input_rel_hdr,
10141 internal_relocs,
10142 rel_hash_list))
10143 return FALSE;
10144 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10145 * bed->s->int_rels_per_ext_rel);
10146 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10147 }
10148
10149 input_rela_hdr = esdi->rela.hdr;
10150 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10151 {
10152 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10153 input_rela_hdr,
10154 internal_relocs,
10155 rela_hash_list))
10156 return FALSE;
10157 }
10158 }
10159 }
10160
10161 /* Write out the modified section contents. */
10162 if (bed->elf_backend_write_section
10163 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10164 contents))
10165 {
10166 /* Section written out. */
10167 }
10168 else switch (o->sec_info_type)
10169 {
10170 case SEC_INFO_TYPE_STABS:
10171 if (! (_bfd_write_section_stabs
10172 (output_bfd,
10173 &elf_hash_table (flinfo->info)->stab_info,
10174 o, &elf_section_data (o)->sec_info, contents)))
10175 return FALSE;
10176 break;
10177 case SEC_INFO_TYPE_MERGE:
10178 if (! _bfd_write_merged_section (output_bfd, o,
10179 elf_section_data (o)->sec_info))
10180 return FALSE;
10181 break;
10182 case SEC_INFO_TYPE_EH_FRAME:
10183 {
10184 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10185 o, contents))
10186 return FALSE;
10187 }
10188 break;
10189 default:
10190 {
10191 /* FIXME: octets_per_byte. */
10192 if (! (o->flags & SEC_EXCLUDE))
10193 {
10194 file_ptr offset = (file_ptr) o->output_offset;
10195 bfd_size_type todo = o->size;
10196 if ((o->flags & SEC_ELF_REVERSE_COPY))
10197 {
10198 /* Reverse-copy input section to output. */
10199 do
10200 {
10201 todo -= address_size;
10202 if (! bfd_set_section_contents (output_bfd,
10203 o->output_section,
10204 contents + todo,
10205 offset,
10206 address_size))
10207 return FALSE;
10208 if (todo == 0)
10209 break;
10210 offset += address_size;
10211 }
10212 while (1);
10213 }
10214 else if (! bfd_set_section_contents (output_bfd,
10215 o->output_section,
10216 contents,
10217 offset, todo))
10218 return FALSE;
10219 }
10220 }
10221 break;
10222 }
10223 }
10224
10225 return TRUE;
10226 }
10227
10228 /* Generate a reloc when linking an ELF file. This is a reloc
10229 requested by the linker, and does not come from any input file. This
10230 is used to build constructor and destructor tables when linking
10231 with -Ur. */
10232
10233 static bfd_boolean
10234 elf_reloc_link_order (bfd *output_bfd,
10235 struct bfd_link_info *info,
10236 asection *output_section,
10237 struct bfd_link_order *link_order)
10238 {
10239 reloc_howto_type *howto;
10240 long indx;
10241 bfd_vma offset;
10242 bfd_vma addend;
10243 struct bfd_elf_section_reloc_data *reldata;
10244 struct elf_link_hash_entry **rel_hash_ptr;
10245 Elf_Internal_Shdr *rel_hdr;
10246 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10247 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10248 bfd_byte *erel;
10249 unsigned int i;
10250 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10251
10252 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10253 if (howto == NULL)
10254 {
10255 bfd_set_error (bfd_error_bad_value);
10256 return FALSE;
10257 }
10258
10259 addend = link_order->u.reloc.p->addend;
10260
10261 if (esdo->rel.hdr)
10262 reldata = &esdo->rel;
10263 else if (esdo->rela.hdr)
10264 reldata = &esdo->rela;
10265 else
10266 {
10267 reldata = NULL;
10268 BFD_ASSERT (0);
10269 }
10270
10271 /* Figure out the symbol index. */
10272 rel_hash_ptr = reldata->hashes + reldata->count;
10273 if (link_order->type == bfd_section_reloc_link_order)
10274 {
10275 indx = link_order->u.reloc.p->u.section->target_index;
10276 BFD_ASSERT (indx != 0);
10277 *rel_hash_ptr = NULL;
10278 }
10279 else
10280 {
10281 struct elf_link_hash_entry *h;
10282
10283 /* Treat a reloc against a defined symbol as though it were
10284 actually against the section. */
10285 h = ((struct elf_link_hash_entry *)
10286 bfd_wrapped_link_hash_lookup (output_bfd, info,
10287 link_order->u.reloc.p->u.name,
10288 FALSE, FALSE, TRUE));
10289 if (h != NULL
10290 && (h->root.type == bfd_link_hash_defined
10291 || h->root.type == bfd_link_hash_defweak))
10292 {
10293 asection *section;
10294
10295 section = h->root.u.def.section;
10296 indx = section->output_section->target_index;
10297 *rel_hash_ptr = NULL;
10298 /* It seems that we ought to add the symbol value to the
10299 addend here, but in practice it has already been added
10300 because it was passed to constructor_callback. */
10301 addend += section->output_section->vma + section->output_offset;
10302 }
10303 else if (h != NULL)
10304 {
10305 /* Setting the index to -2 tells elf_link_output_extsym that
10306 this symbol is used by a reloc. */
10307 h->indx = -2;
10308 *rel_hash_ptr = h;
10309 indx = 0;
10310 }
10311 else
10312 {
10313 if (! ((*info->callbacks->unattached_reloc)
10314 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10315 return FALSE;
10316 indx = 0;
10317 }
10318 }
10319
10320 /* If this is an inplace reloc, we must write the addend into the
10321 object file. */
10322 if (howto->partial_inplace && addend != 0)
10323 {
10324 bfd_size_type size;
10325 bfd_reloc_status_type rstat;
10326 bfd_byte *buf;
10327 bfd_boolean ok;
10328 const char *sym_name;
10329
10330 size = (bfd_size_type) bfd_get_reloc_size (howto);
10331 buf = (bfd_byte *) bfd_zmalloc (size);
10332 if (buf == NULL && size != 0)
10333 return FALSE;
10334 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10335 switch (rstat)
10336 {
10337 case bfd_reloc_ok:
10338 break;
10339
10340 default:
10341 case bfd_reloc_outofrange:
10342 abort ();
10343
10344 case bfd_reloc_overflow:
10345 if (link_order->type == bfd_section_reloc_link_order)
10346 sym_name = bfd_section_name (output_bfd,
10347 link_order->u.reloc.p->u.section);
10348 else
10349 sym_name = link_order->u.reloc.p->u.name;
10350 if (! ((*info->callbacks->reloc_overflow)
10351 (info, NULL, sym_name, howto->name, addend, NULL,
10352 NULL, (bfd_vma) 0)))
10353 {
10354 free (buf);
10355 return FALSE;
10356 }
10357 break;
10358 }
10359 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10360 link_order->offset, size);
10361 free (buf);
10362 if (! ok)
10363 return FALSE;
10364 }
10365
10366 /* The address of a reloc is relative to the section in a
10367 relocatable file, and is a virtual address in an executable
10368 file. */
10369 offset = link_order->offset;
10370 if (! info->relocatable)
10371 offset += output_section->vma;
10372
10373 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10374 {
10375 irel[i].r_offset = offset;
10376 irel[i].r_info = 0;
10377 irel[i].r_addend = 0;
10378 }
10379 if (bed->s->arch_size == 32)
10380 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10381 else
10382 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10383
10384 rel_hdr = reldata->hdr;
10385 erel = rel_hdr->contents;
10386 if (rel_hdr->sh_type == SHT_REL)
10387 {
10388 erel += reldata->count * bed->s->sizeof_rel;
10389 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10390 }
10391 else
10392 {
10393 irel[0].r_addend = addend;
10394 erel += reldata->count * bed->s->sizeof_rela;
10395 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10396 }
10397
10398 ++reldata->count;
10399
10400 return TRUE;
10401 }
10402
10403
10404 /* Get the output vma of the section pointed to by the sh_link field. */
10405
10406 static bfd_vma
10407 elf_get_linked_section_vma (struct bfd_link_order *p)
10408 {
10409 Elf_Internal_Shdr **elf_shdrp;
10410 asection *s;
10411 int elfsec;
10412
10413 s = p->u.indirect.section;
10414 elf_shdrp = elf_elfsections (s->owner);
10415 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10416 elfsec = elf_shdrp[elfsec]->sh_link;
10417 /* PR 290:
10418 The Intel C compiler generates SHT_IA_64_UNWIND with
10419 SHF_LINK_ORDER. But it doesn't set the sh_link or
10420 sh_info fields. Hence we could get the situation
10421 where elfsec is 0. */
10422 if (elfsec == 0)
10423 {
10424 const struct elf_backend_data *bed
10425 = get_elf_backend_data (s->owner);
10426 if (bed->link_order_error_handler)
10427 bed->link_order_error_handler
10428 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10429 return 0;
10430 }
10431 else
10432 {
10433 s = elf_shdrp[elfsec]->bfd_section;
10434 return s->output_section->vma + s->output_offset;
10435 }
10436 }
10437
10438
10439 /* Compare two sections based on the locations of the sections they are
10440 linked to. Used by elf_fixup_link_order. */
10441
10442 static int
10443 compare_link_order (const void * a, const void * b)
10444 {
10445 bfd_vma apos;
10446 bfd_vma bpos;
10447
10448 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10449 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10450 if (apos < bpos)
10451 return -1;
10452 return apos > bpos;
10453 }
10454
10455
10456 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10457 order as their linked sections. Returns false if this could not be done
10458 because an output section includes both ordered and unordered
10459 sections. Ideally we'd do this in the linker proper. */
10460
10461 static bfd_boolean
10462 elf_fixup_link_order (bfd *abfd, asection *o)
10463 {
10464 int seen_linkorder;
10465 int seen_other;
10466 int n;
10467 struct bfd_link_order *p;
10468 bfd *sub;
10469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10470 unsigned elfsec;
10471 struct bfd_link_order **sections;
10472 asection *s, *other_sec, *linkorder_sec;
10473 bfd_vma offset;
10474
10475 other_sec = NULL;
10476 linkorder_sec = NULL;
10477 seen_other = 0;
10478 seen_linkorder = 0;
10479 for (p = o->map_head.link_order; p != NULL; p = p->next)
10480 {
10481 if (p->type == bfd_indirect_link_order)
10482 {
10483 s = p->u.indirect.section;
10484 sub = s->owner;
10485 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10486 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10487 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10488 && elfsec < elf_numsections (sub)
10489 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10490 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10491 {
10492 seen_linkorder++;
10493 linkorder_sec = s;
10494 }
10495 else
10496 {
10497 seen_other++;
10498 other_sec = s;
10499 }
10500 }
10501 else
10502 seen_other++;
10503
10504 if (seen_other && seen_linkorder)
10505 {
10506 if (other_sec && linkorder_sec)
10507 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10508 o, linkorder_sec,
10509 linkorder_sec->owner, other_sec,
10510 other_sec->owner);
10511 else
10512 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10513 o);
10514 bfd_set_error (bfd_error_bad_value);
10515 return FALSE;
10516 }
10517 }
10518
10519 if (!seen_linkorder)
10520 return TRUE;
10521
10522 sections = (struct bfd_link_order **)
10523 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10524 if (sections == NULL)
10525 return FALSE;
10526 seen_linkorder = 0;
10527
10528 for (p = o->map_head.link_order; p != NULL; p = p->next)
10529 {
10530 sections[seen_linkorder++] = p;
10531 }
10532 /* Sort the input sections in the order of their linked section. */
10533 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10534 compare_link_order);
10535
10536 /* Change the offsets of the sections. */
10537 offset = 0;
10538 for (n = 0; n < seen_linkorder; n++)
10539 {
10540 s = sections[n]->u.indirect.section;
10541 offset &= ~(bfd_vma) 0 << s->alignment_power;
10542 s->output_offset = offset;
10543 sections[n]->offset = offset;
10544 /* FIXME: octets_per_byte. */
10545 offset += sections[n]->size;
10546 }
10547
10548 free (sections);
10549 return TRUE;
10550 }
10551
10552 static void
10553 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10554 {
10555 asection *o;
10556
10557 if (flinfo->symstrtab != NULL)
10558 _bfd_stringtab_free (flinfo->symstrtab);
10559 if (flinfo->contents != NULL)
10560 free (flinfo->contents);
10561 if (flinfo->external_relocs != NULL)
10562 free (flinfo->external_relocs);
10563 if (flinfo->internal_relocs != NULL)
10564 free (flinfo->internal_relocs);
10565 if (flinfo->external_syms != NULL)
10566 free (flinfo->external_syms);
10567 if (flinfo->locsym_shndx != NULL)
10568 free (flinfo->locsym_shndx);
10569 if (flinfo->internal_syms != NULL)
10570 free (flinfo->internal_syms);
10571 if (flinfo->indices != NULL)
10572 free (flinfo->indices);
10573 if (flinfo->sections != NULL)
10574 free (flinfo->sections);
10575 if (flinfo->symbuf != NULL)
10576 free (flinfo->symbuf);
10577 if (flinfo->symshndxbuf != NULL)
10578 free (flinfo->symshndxbuf);
10579 for (o = obfd->sections; o != NULL; o = o->next)
10580 {
10581 struct bfd_elf_section_data *esdo = elf_section_data (o);
10582 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10583 free (esdo->rel.hashes);
10584 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10585 free (esdo->rela.hashes);
10586 }
10587 }
10588
10589 /* Do the final step of an ELF link. */
10590
10591 bfd_boolean
10592 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10593 {
10594 bfd_boolean dynamic;
10595 bfd_boolean emit_relocs;
10596 bfd *dynobj;
10597 struct elf_final_link_info flinfo;
10598 asection *o;
10599 struct bfd_link_order *p;
10600 bfd *sub;
10601 bfd_size_type max_contents_size;
10602 bfd_size_type max_external_reloc_size;
10603 bfd_size_type max_internal_reloc_count;
10604 bfd_size_type max_sym_count;
10605 bfd_size_type max_sym_shndx_count;
10606 Elf_Internal_Sym elfsym;
10607 unsigned int i;
10608 Elf_Internal_Shdr *symtab_hdr;
10609 Elf_Internal_Shdr *symtab_shndx_hdr;
10610 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10611 struct elf_outext_info eoinfo;
10612 bfd_boolean merged;
10613 size_t relativecount = 0;
10614 asection *reldyn = 0;
10615 bfd_size_type amt;
10616 asection *attr_section = NULL;
10617 bfd_vma attr_size = 0;
10618 const char *std_attrs_section;
10619
10620 if (! is_elf_hash_table (info->hash))
10621 return FALSE;
10622
10623 if (info->shared)
10624 abfd->flags |= DYNAMIC;
10625
10626 dynamic = elf_hash_table (info)->dynamic_sections_created;
10627 dynobj = elf_hash_table (info)->dynobj;
10628
10629 emit_relocs = (info->relocatable
10630 || info->emitrelocations);
10631
10632 flinfo.info = info;
10633 flinfo.output_bfd = abfd;
10634 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10635 if (flinfo.symstrtab == NULL)
10636 return FALSE;
10637
10638 if (! dynamic)
10639 {
10640 flinfo.dynsym_sec = NULL;
10641 flinfo.hash_sec = NULL;
10642 flinfo.symver_sec = NULL;
10643 }
10644 else
10645 {
10646 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10647 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10648 /* Note that dynsym_sec can be NULL (on VMS). */
10649 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10650 /* Note that it is OK if symver_sec is NULL. */
10651 }
10652
10653 flinfo.contents = NULL;
10654 flinfo.external_relocs = NULL;
10655 flinfo.internal_relocs = NULL;
10656 flinfo.external_syms = NULL;
10657 flinfo.locsym_shndx = NULL;
10658 flinfo.internal_syms = NULL;
10659 flinfo.indices = NULL;
10660 flinfo.sections = NULL;
10661 flinfo.symbuf = NULL;
10662 flinfo.symshndxbuf = NULL;
10663 flinfo.symbuf_count = 0;
10664 flinfo.shndxbuf_size = 0;
10665 flinfo.filesym_count = 0;
10666
10667 /* The object attributes have been merged. Remove the input
10668 sections from the link, and set the contents of the output
10669 secton. */
10670 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10671 for (o = abfd->sections; o != NULL; o = o->next)
10672 {
10673 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10674 || strcmp (o->name, ".gnu.attributes") == 0)
10675 {
10676 for (p = o->map_head.link_order; p != NULL; p = p->next)
10677 {
10678 asection *input_section;
10679
10680 if (p->type != bfd_indirect_link_order)
10681 continue;
10682 input_section = p->u.indirect.section;
10683 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10684 elf_link_input_bfd ignores this section. */
10685 input_section->flags &= ~SEC_HAS_CONTENTS;
10686 }
10687
10688 attr_size = bfd_elf_obj_attr_size (abfd);
10689 if (attr_size)
10690 {
10691 bfd_set_section_size (abfd, o, attr_size);
10692 attr_section = o;
10693 /* Skip this section later on. */
10694 o->map_head.link_order = NULL;
10695 }
10696 else
10697 o->flags |= SEC_EXCLUDE;
10698 }
10699 }
10700
10701 /* Count up the number of relocations we will output for each output
10702 section, so that we know the sizes of the reloc sections. We
10703 also figure out some maximum sizes. */
10704 max_contents_size = 0;
10705 max_external_reloc_size = 0;
10706 max_internal_reloc_count = 0;
10707 max_sym_count = 0;
10708 max_sym_shndx_count = 0;
10709 merged = FALSE;
10710 for (o = abfd->sections; o != NULL; o = o->next)
10711 {
10712 struct bfd_elf_section_data *esdo = elf_section_data (o);
10713 o->reloc_count = 0;
10714
10715 for (p = o->map_head.link_order; p != NULL; p = p->next)
10716 {
10717 unsigned int reloc_count = 0;
10718 struct bfd_elf_section_data *esdi = NULL;
10719
10720 if (p->type == bfd_section_reloc_link_order
10721 || p->type == bfd_symbol_reloc_link_order)
10722 reloc_count = 1;
10723 else if (p->type == bfd_indirect_link_order)
10724 {
10725 asection *sec;
10726
10727 sec = p->u.indirect.section;
10728 esdi = elf_section_data (sec);
10729
10730 /* Mark all sections which are to be included in the
10731 link. This will normally be every section. We need
10732 to do this so that we can identify any sections which
10733 the linker has decided to not include. */
10734 sec->linker_mark = TRUE;
10735
10736 if (sec->flags & SEC_MERGE)
10737 merged = TRUE;
10738
10739 if (esdo->this_hdr.sh_type == SHT_REL
10740 || esdo->this_hdr.sh_type == SHT_RELA)
10741 /* Some backends use reloc_count in relocation sections
10742 to count particular types of relocs. Of course,
10743 reloc sections themselves can't have relocations. */
10744 reloc_count = 0;
10745 else if (info->relocatable || info->emitrelocations)
10746 reloc_count = sec->reloc_count;
10747 else if (bed->elf_backend_count_relocs)
10748 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10749
10750 if (sec->rawsize > max_contents_size)
10751 max_contents_size = sec->rawsize;
10752 if (sec->size > max_contents_size)
10753 max_contents_size = sec->size;
10754
10755 /* We are interested in just local symbols, not all
10756 symbols. */
10757 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10758 && (sec->owner->flags & DYNAMIC) == 0)
10759 {
10760 size_t sym_count;
10761
10762 if (elf_bad_symtab (sec->owner))
10763 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10764 / bed->s->sizeof_sym);
10765 else
10766 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10767
10768 if (sym_count > max_sym_count)
10769 max_sym_count = sym_count;
10770
10771 if (sym_count > max_sym_shndx_count
10772 && elf_symtab_shndx (sec->owner) != 0)
10773 max_sym_shndx_count = sym_count;
10774
10775 if ((sec->flags & SEC_RELOC) != 0)
10776 {
10777 size_t ext_size = 0;
10778
10779 if (esdi->rel.hdr != NULL)
10780 ext_size = esdi->rel.hdr->sh_size;
10781 if (esdi->rela.hdr != NULL)
10782 ext_size += esdi->rela.hdr->sh_size;
10783
10784 if (ext_size > max_external_reloc_size)
10785 max_external_reloc_size = ext_size;
10786 if (sec->reloc_count > max_internal_reloc_count)
10787 max_internal_reloc_count = sec->reloc_count;
10788 }
10789 }
10790 }
10791
10792 if (reloc_count == 0)
10793 continue;
10794
10795 o->reloc_count += reloc_count;
10796
10797 if (p->type == bfd_indirect_link_order
10798 && (info->relocatable || info->emitrelocations))
10799 {
10800 if (esdi->rel.hdr)
10801 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10802 if (esdi->rela.hdr)
10803 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10804 }
10805 else
10806 {
10807 if (o->use_rela_p)
10808 esdo->rela.count += reloc_count;
10809 else
10810 esdo->rel.count += reloc_count;
10811 }
10812 }
10813
10814 if (o->reloc_count > 0)
10815 o->flags |= SEC_RELOC;
10816 else
10817 {
10818 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10819 set it (this is probably a bug) and if it is set
10820 assign_section_numbers will create a reloc section. */
10821 o->flags &=~ SEC_RELOC;
10822 }
10823
10824 /* If the SEC_ALLOC flag is not set, force the section VMA to
10825 zero. This is done in elf_fake_sections as well, but forcing
10826 the VMA to 0 here will ensure that relocs against these
10827 sections are handled correctly. */
10828 if ((o->flags & SEC_ALLOC) == 0
10829 && ! o->user_set_vma)
10830 o->vma = 0;
10831 }
10832
10833 if (! info->relocatable && merged)
10834 elf_link_hash_traverse (elf_hash_table (info),
10835 _bfd_elf_link_sec_merge_syms, abfd);
10836
10837 /* Figure out the file positions for everything but the symbol table
10838 and the relocs. We set symcount to force assign_section_numbers
10839 to create a symbol table. */
10840 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10841 BFD_ASSERT (! abfd->output_has_begun);
10842 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10843 goto error_return;
10844
10845 /* Set sizes, and assign file positions for reloc sections. */
10846 for (o = abfd->sections; o != NULL; o = o->next)
10847 {
10848 struct bfd_elf_section_data *esdo = elf_section_data (o);
10849 if ((o->flags & SEC_RELOC) != 0)
10850 {
10851 if (esdo->rel.hdr
10852 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10853 goto error_return;
10854
10855 if (esdo->rela.hdr
10856 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10857 goto error_return;
10858 }
10859
10860 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10861 to count upwards while actually outputting the relocations. */
10862 esdo->rel.count = 0;
10863 esdo->rela.count = 0;
10864 }
10865
10866 /* We have now assigned file positions for all the sections except
10867 .symtab, .strtab, and non-loaded reloc sections. We start the
10868 .symtab section at the current file position, and write directly
10869 to it. We build the .strtab section in memory. */
10870 bfd_get_symcount (abfd) = 0;
10871 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10872 /* sh_name is set in prep_headers. */
10873 symtab_hdr->sh_type = SHT_SYMTAB;
10874 /* sh_flags, sh_addr and sh_size all start off zero. */
10875 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10876 /* sh_link is set in assign_section_numbers. */
10877 /* sh_info is set below. */
10878 /* sh_offset is set just below. */
10879 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10880
10881 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10882 continuously seeking to the right position in the file. */
10883 if (! info->keep_memory || max_sym_count < 20)
10884 flinfo.symbuf_size = 20;
10885 else
10886 flinfo.symbuf_size = max_sym_count;
10887 amt = flinfo.symbuf_size;
10888 amt *= bed->s->sizeof_sym;
10889 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10890 if (flinfo.symbuf == NULL)
10891 goto error_return;
10892 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10893 {
10894 /* Wild guess at number of output symbols. realloc'd as needed. */
10895 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10896 flinfo.shndxbuf_size = amt;
10897 amt *= sizeof (Elf_External_Sym_Shndx);
10898 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10899 if (flinfo.symshndxbuf == NULL)
10900 goto error_return;
10901 }
10902
10903 if (info->strip != strip_all || emit_relocs)
10904 {
10905 file_ptr off = elf_next_file_pos (abfd);
10906
10907 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10908
10909 /* Note that at this point elf_next_file_pos (abfd) is
10910 incorrect. We do not yet know the size of the .symtab section.
10911 We correct next_file_pos below, after we do know the size. */
10912
10913 /* Start writing out the symbol table. The first symbol is always a
10914 dummy symbol. */
10915 elfsym.st_value = 0;
10916 elfsym.st_size = 0;
10917 elfsym.st_info = 0;
10918 elfsym.st_other = 0;
10919 elfsym.st_shndx = SHN_UNDEF;
10920 elfsym.st_target_internal = 0;
10921 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10922 NULL) != 1)
10923 goto error_return;
10924
10925 /* Output a symbol for each section. We output these even if we are
10926 discarding local symbols, since they are used for relocs. These
10927 symbols have no names. We store the index of each one in the
10928 index field of the section, so that we can find it again when
10929 outputting relocs. */
10930
10931 elfsym.st_size = 0;
10932 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10933 elfsym.st_other = 0;
10934 elfsym.st_value = 0;
10935 elfsym.st_target_internal = 0;
10936 for (i = 1; i < elf_numsections (abfd); i++)
10937 {
10938 o = bfd_section_from_elf_index (abfd, i);
10939 if (o != NULL)
10940 {
10941 o->target_index = bfd_get_symcount (abfd);
10942 elfsym.st_shndx = i;
10943 if (!info->relocatable)
10944 elfsym.st_value = o->vma;
10945 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10946 goto error_return;
10947 }
10948 }
10949 }
10950
10951 /* Allocate some memory to hold information read in from the input
10952 files. */
10953 if (max_contents_size != 0)
10954 {
10955 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10956 if (flinfo.contents == NULL)
10957 goto error_return;
10958 }
10959
10960 if (max_external_reloc_size != 0)
10961 {
10962 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10963 if (flinfo.external_relocs == NULL)
10964 goto error_return;
10965 }
10966
10967 if (max_internal_reloc_count != 0)
10968 {
10969 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10970 amt *= sizeof (Elf_Internal_Rela);
10971 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10972 if (flinfo.internal_relocs == NULL)
10973 goto error_return;
10974 }
10975
10976 if (max_sym_count != 0)
10977 {
10978 amt = max_sym_count * bed->s->sizeof_sym;
10979 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10980 if (flinfo.external_syms == NULL)
10981 goto error_return;
10982
10983 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10984 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10985 if (flinfo.internal_syms == NULL)
10986 goto error_return;
10987
10988 amt = max_sym_count * sizeof (long);
10989 flinfo.indices = (long int *) bfd_malloc (amt);
10990 if (flinfo.indices == NULL)
10991 goto error_return;
10992
10993 amt = max_sym_count * sizeof (asection *);
10994 flinfo.sections = (asection **) bfd_malloc (amt);
10995 if (flinfo.sections == NULL)
10996 goto error_return;
10997 }
10998
10999 if (max_sym_shndx_count != 0)
11000 {
11001 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11002 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11003 if (flinfo.locsym_shndx == NULL)
11004 goto error_return;
11005 }
11006
11007 if (elf_hash_table (info)->tls_sec)
11008 {
11009 bfd_vma base, end = 0;
11010 asection *sec;
11011
11012 for (sec = elf_hash_table (info)->tls_sec;
11013 sec && (sec->flags & SEC_THREAD_LOCAL);
11014 sec = sec->next)
11015 {
11016 bfd_size_type size = sec->size;
11017
11018 if (size == 0
11019 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11020 {
11021 struct bfd_link_order *ord = sec->map_tail.link_order;
11022
11023 if (ord != NULL)
11024 size = ord->offset + ord->size;
11025 }
11026 end = sec->vma + size;
11027 }
11028 base = elf_hash_table (info)->tls_sec->vma;
11029 /* Only align end of TLS section if static TLS doesn't have special
11030 alignment requirements. */
11031 if (bed->static_tls_alignment == 1)
11032 end = align_power (end,
11033 elf_hash_table (info)->tls_sec->alignment_power);
11034 elf_hash_table (info)->tls_size = end - base;
11035 }
11036
11037 /* Reorder SHF_LINK_ORDER sections. */
11038 for (o = abfd->sections; o != NULL; o = o->next)
11039 {
11040 if (!elf_fixup_link_order (abfd, o))
11041 return FALSE;
11042 }
11043
11044 /* Since ELF permits relocations to be against local symbols, we
11045 must have the local symbols available when we do the relocations.
11046 Since we would rather only read the local symbols once, and we
11047 would rather not keep them in memory, we handle all the
11048 relocations for a single input file at the same time.
11049
11050 Unfortunately, there is no way to know the total number of local
11051 symbols until we have seen all of them, and the local symbol
11052 indices precede the global symbol indices. This means that when
11053 we are generating relocatable output, and we see a reloc against
11054 a global symbol, we can not know the symbol index until we have
11055 finished examining all the local symbols to see which ones we are
11056 going to output. To deal with this, we keep the relocations in
11057 memory, and don't output them until the end of the link. This is
11058 an unfortunate waste of memory, but I don't see a good way around
11059 it. Fortunately, it only happens when performing a relocatable
11060 link, which is not the common case. FIXME: If keep_memory is set
11061 we could write the relocs out and then read them again; I don't
11062 know how bad the memory loss will be. */
11063
11064 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11065 sub->output_has_begun = FALSE;
11066 for (o = abfd->sections; o != NULL; o = o->next)
11067 {
11068 for (p = o->map_head.link_order; p != NULL; p = p->next)
11069 {
11070 if (p->type == bfd_indirect_link_order
11071 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11072 == bfd_target_elf_flavour)
11073 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11074 {
11075 if (! sub->output_has_begun)
11076 {
11077 if (! elf_link_input_bfd (&flinfo, sub))
11078 goto error_return;
11079 sub->output_has_begun = TRUE;
11080 }
11081 }
11082 else if (p->type == bfd_section_reloc_link_order
11083 || p->type == bfd_symbol_reloc_link_order)
11084 {
11085 if (! elf_reloc_link_order (abfd, info, o, p))
11086 goto error_return;
11087 }
11088 else
11089 {
11090 if (! _bfd_default_link_order (abfd, info, o, p))
11091 {
11092 if (p->type == bfd_indirect_link_order
11093 && (bfd_get_flavour (sub)
11094 == bfd_target_elf_flavour)
11095 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11096 != bed->s->elfclass))
11097 {
11098 const char *iclass, *oclass;
11099
11100 if (bed->s->elfclass == ELFCLASS64)
11101 {
11102 iclass = "ELFCLASS32";
11103 oclass = "ELFCLASS64";
11104 }
11105 else
11106 {
11107 iclass = "ELFCLASS64";
11108 oclass = "ELFCLASS32";
11109 }
11110
11111 bfd_set_error (bfd_error_wrong_format);
11112 (*_bfd_error_handler)
11113 (_("%B: file class %s incompatible with %s"),
11114 sub, iclass, oclass);
11115 }
11116
11117 goto error_return;
11118 }
11119 }
11120 }
11121 }
11122
11123 /* Free symbol buffer if needed. */
11124 if (!info->reduce_memory_overheads)
11125 {
11126 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11127 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11128 && elf_tdata (sub)->symbuf)
11129 {
11130 free (elf_tdata (sub)->symbuf);
11131 elf_tdata (sub)->symbuf = NULL;
11132 }
11133 }
11134
11135 /* Output any global symbols that got converted to local in a
11136 version script or due to symbol visibility. We do this in a
11137 separate step since ELF requires all local symbols to appear
11138 prior to any global symbols. FIXME: We should only do this if
11139 some global symbols were, in fact, converted to become local.
11140 FIXME: Will this work correctly with the Irix 5 linker? */
11141 eoinfo.failed = FALSE;
11142 eoinfo.flinfo = &flinfo;
11143 eoinfo.localsyms = TRUE;
11144 eoinfo.need_second_pass = FALSE;
11145 eoinfo.second_pass = FALSE;
11146 eoinfo.file_sym_done = FALSE;
11147 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11148 if (eoinfo.failed)
11149 return FALSE;
11150
11151 if (eoinfo.need_second_pass)
11152 {
11153 eoinfo.second_pass = TRUE;
11154 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11155 if (eoinfo.failed)
11156 return FALSE;
11157 }
11158
11159 /* If backend needs to output some local symbols not present in the hash
11160 table, do it now. */
11161 if (bed->elf_backend_output_arch_local_syms
11162 && (info->strip != strip_all || emit_relocs))
11163 {
11164 typedef int (*out_sym_func)
11165 (void *, const char *, Elf_Internal_Sym *, asection *,
11166 struct elf_link_hash_entry *);
11167
11168 if (! ((*bed->elf_backend_output_arch_local_syms)
11169 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11170 return FALSE;
11171 }
11172
11173 /* That wrote out all the local symbols. Finish up the symbol table
11174 with the global symbols. Even if we want to strip everything we
11175 can, we still need to deal with those global symbols that got
11176 converted to local in a version script. */
11177
11178 /* The sh_info field records the index of the first non local symbol. */
11179 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11180
11181 if (dynamic
11182 && flinfo.dynsym_sec != NULL
11183 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11184 {
11185 Elf_Internal_Sym sym;
11186 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11187 long last_local = 0;
11188
11189 /* Write out the section symbols for the output sections. */
11190 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11191 {
11192 asection *s;
11193
11194 sym.st_size = 0;
11195 sym.st_name = 0;
11196 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11197 sym.st_other = 0;
11198 sym.st_target_internal = 0;
11199
11200 for (s = abfd->sections; s != NULL; s = s->next)
11201 {
11202 int indx;
11203 bfd_byte *dest;
11204 long dynindx;
11205
11206 dynindx = elf_section_data (s)->dynindx;
11207 if (dynindx <= 0)
11208 continue;
11209 indx = elf_section_data (s)->this_idx;
11210 BFD_ASSERT (indx > 0);
11211 sym.st_shndx = indx;
11212 if (! check_dynsym (abfd, &sym))
11213 return FALSE;
11214 sym.st_value = s->vma;
11215 dest = dynsym + dynindx * bed->s->sizeof_sym;
11216 if (last_local < dynindx)
11217 last_local = dynindx;
11218 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11219 }
11220 }
11221
11222 /* Write out the local dynsyms. */
11223 if (elf_hash_table (info)->dynlocal)
11224 {
11225 struct elf_link_local_dynamic_entry *e;
11226 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11227 {
11228 asection *s;
11229 bfd_byte *dest;
11230
11231 /* Copy the internal symbol and turn off visibility.
11232 Note that we saved a word of storage and overwrote
11233 the original st_name with the dynstr_index. */
11234 sym = e->isym;
11235 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11236
11237 s = bfd_section_from_elf_index (e->input_bfd,
11238 e->isym.st_shndx);
11239 if (s != NULL)
11240 {
11241 sym.st_shndx =
11242 elf_section_data (s->output_section)->this_idx;
11243 if (! check_dynsym (abfd, &sym))
11244 return FALSE;
11245 sym.st_value = (s->output_section->vma
11246 + s->output_offset
11247 + e->isym.st_value);
11248 }
11249
11250 if (last_local < e->dynindx)
11251 last_local = e->dynindx;
11252
11253 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11254 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11255 }
11256 }
11257
11258 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11259 last_local + 1;
11260 }
11261
11262 /* We get the global symbols from the hash table. */
11263 eoinfo.failed = FALSE;
11264 eoinfo.localsyms = FALSE;
11265 eoinfo.flinfo = &flinfo;
11266 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11267 if (eoinfo.failed)
11268 return FALSE;
11269
11270 /* If backend needs to output some symbols not present in the hash
11271 table, do it now. */
11272 if (bed->elf_backend_output_arch_syms
11273 && (info->strip != strip_all || emit_relocs))
11274 {
11275 typedef int (*out_sym_func)
11276 (void *, const char *, Elf_Internal_Sym *, asection *,
11277 struct elf_link_hash_entry *);
11278
11279 if (! ((*bed->elf_backend_output_arch_syms)
11280 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11281 return FALSE;
11282 }
11283
11284 /* Flush all symbols to the file. */
11285 if (! elf_link_flush_output_syms (&flinfo, bed))
11286 return FALSE;
11287
11288 /* Now we know the size of the symtab section. */
11289 if (bfd_get_symcount (abfd) > 0)
11290 {
11291 /* Finish up and write out the symbol string table (.strtab)
11292 section. */
11293 Elf_Internal_Shdr *symstrtab_hdr;
11294 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11295
11296 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11297 if (symtab_shndx_hdr->sh_name != 0)
11298 {
11299 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11300 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11301 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11302 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11303 symtab_shndx_hdr->sh_size = amt;
11304
11305 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11306 off, TRUE);
11307
11308 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11309 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11310 return FALSE;
11311 }
11312
11313 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11314 /* sh_name was set in prep_headers. */
11315 symstrtab_hdr->sh_type = SHT_STRTAB;
11316 symstrtab_hdr->sh_flags = 0;
11317 symstrtab_hdr->sh_addr = 0;
11318 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11319 symstrtab_hdr->sh_entsize = 0;
11320 symstrtab_hdr->sh_link = 0;
11321 symstrtab_hdr->sh_info = 0;
11322 /* sh_offset is set just below. */
11323 symstrtab_hdr->sh_addralign = 1;
11324
11325 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11326 off, TRUE);
11327 elf_next_file_pos (abfd) = off;
11328
11329 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11330 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11331 return FALSE;
11332 }
11333
11334 /* Adjust the relocs to have the correct symbol indices. */
11335 for (o = abfd->sections; o != NULL; o = o->next)
11336 {
11337 struct bfd_elf_section_data *esdo = elf_section_data (o);
11338 bfd_boolean sort;
11339 if ((o->flags & SEC_RELOC) == 0)
11340 continue;
11341
11342 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11343 if (esdo->rel.hdr != NULL)
11344 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11345 if (esdo->rela.hdr != NULL)
11346 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11347
11348 /* Set the reloc_count field to 0 to prevent write_relocs from
11349 trying to swap the relocs out itself. */
11350 o->reloc_count = 0;
11351 }
11352
11353 if (dynamic && info->combreloc && dynobj != NULL)
11354 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11355
11356 /* If we are linking against a dynamic object, or generating a
11357 shared library, finish up the dynamic linking information. */
11358 if (dynamic)
11359 {
11360 bfd_byte *dyncon, *dynconend;
11361
11362 /* Fix up .dynamic entries. */
11363 o = bfd_get_linker_section (dynobj, ".dynamic");
11364 BFD_ASSERT (o != NULL);
11365
11366 dyncon = o->contents;
11367 dynconend = o->contents + o->size;
11368 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11369 {
11370 Elf_Internal_Dyn dyn;
11371 const char *name;
11372 unsigned int type;
11373
11374 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11375
11376 switch (dyn.d_tag)
11377 {
11378 default:
11379 continue;
11380 case DT_NULL:
11381 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11382 {
11383 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11384 {
11385 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11386 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11387 default: continue;
11388 }
11389 dyn.d_un.d_val = relativecount;
11390 relativecount = 0;
11391 break;
11392 }
11393 continue;
11394
11395 case DT_INIT:
11396 name = info->init_function;
11397 goto get_sym;
11398 case DT_FINI:
11399 name = info->fini_function;
11400 get_sym:
11401 {
11402 struct elf_link_hash_entry *h;
11403
11404 h = elf_link_hash_lookup (elf_hash_table (info), name,
11405 FALSE, FALSE, TRUE);
11406 if (h != NULL
11407 && (h->root.type == bfd_link_hash_defined
11408 || h->root.type == bfd_link_hash_defweak))
11409 {
11410 dyn.d_un.d_ptr = h->root.u.def.value;
11411 o = h->root.u.def.section;
11412 if (o->output_section != NULL)
11413 dyn.d_un.d_ptr += (o->output_section->vma
11414 + o->output_offset);
11415 else
11416 {
11417 /* The symbol is imported from another shared
11418 library and does not apply to this one. */
11419 dyn.d_un.d_ptr = 0;
11420 }
11421 break;
11422 }
11423 }
11424 continue;
11425
11426 case DT_PREINIT_ARRAYSZ:
11427 name = ".preinit_array";
11428 goto get_size;
11429 case DT_INIT_ARRAYSZ:
11430 name = ".init_array";
11431 goto get_size;
11432 case DT_FINI_ARRAYSZ:
11433 name = ".fini_array";
11434 get_size:
11435 o = bfd_get_section_by_name (abfd, name);
11436 if (o == NULL)
11437 {
11438 (*_bfd_error_handler)
11439 (_("%B: could not find output section %s"), abfd, name);
11440 goto error_return;
11441 }
11442 if (o->size == 0)
11443 (*_bfd_error_handler)
11444 (_("warning: %s section has zero size"), name);
11445 dyn.d_un.d_val = o->size;
11446 break;
11447
11448 case DT_PREINIT_ARRAY:
11449 name = ".preinit_array";
11450 goto get_vma;
11451 case DT_INIT_ARRAY:
11452 name = ".init_array";
11453 goto get_vma;
11454 case DT_FINI_ARRAY:
11455 name = ".fini_array";
11456 goto get_vma;
11457
11458 case DT_HASH:
11459 name = ".hash";
11460 goto get_vma;
11461 case DT_GNU_HASH:
11462 name = ".gnu.hash";
11463 goto get_vma;
11464 case DT_STRTAB:
11465 name = ".dynstr";
11466 goto get_vma;
11467 case DT_SYMTAB:
11468 name = ".dynsym";
11469 goto get_vma;
11470 case DT_VERDEF:
11471 name = ".gnu.version_d";
11472 goto get_vma;
11473 case DT_VERNEED:
11474 name = ".gnu.version_r";
11475 goto get_vma;
11476 case DT_VERSYM:
11477 name = ".gnu.version";
11478 get_vma:
11479 o = bfd_get_section_by_name (abfd, name);
11480 if (o == NULL)
11481 {
11482 (*_bfd_error_handler)
11483 (_("%B: could not find output section %s"), abfd, name);
11484 goto error_return;
11485 }
11486 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11487 {
11488 (*_bfd_error_handler)
11489 (_("warning: section '%s' is being made into a note"), name);
11490 bfd_set_error (bfd_error_nonrepresentable_section);
11491 goto error_return;
11492 }
11493 dyn.d_un.d_ptr = o->vma;
11494 break;
11495
11496 case DT_REL:
11497 case DT_RELA:
11498 case DT_RELSZ:
11499 case DT_RELASZ:
11500 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11501 type = SHT_REL;
11502 else
11503 type = SHT_RELA;
11504 dyn.d_un.d_val = 0;
11505 dyn.d_un.d_ptr = 0;
11506 for (i = 1; i < elf_numsections (abfd); i++)
11507 {
11508 Elf_Internal_Shdr *hdr;
11509
11510 hdr = elf_elfsections (abfd)[i];
11511 if (hdr->sh_type == type
11512 && (hdr->sh_flags & SHF_ALLOC) != 0)
11513 {
11514 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11515 dyn.d_un.d_val += hdr->sh_size;
11516 else
11517 {
11518 if (dyn.d_un.d_ptr == 0
11519 || hdr->sh_addr < dyn.d_un.d_ptr)
11520 dyn.d_un.d_ptr = hdr->sh_addr;
11521 }
11522 }
11523 }
11524 break;
11525 }
11526 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11527 }
11528 }
11529
11530 /* If we have created any dynamic sections, then output them. */
11531 if (dynobj != NULL)
11532 {
11533 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11534 goto error_return;
11535
11536 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11537 if (((info->warn_shared_textrel && info->shared)
11538 || info->error_textrel)
11539 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11540 {
11541 bfd_byte *dyncon, *dynconend;
11542
11543 dyncon = o->contents;
11544 dynconend = o->contents + o->size;
11545 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11546 {
11547 Elf_Internal_Dyn dyn;
11548
11549 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11550
11551 if (dyn.d_tag == DT_TEXTREL)
11552 {
11553 if (info->error_textrel)
11554 info->callbacks->einfo
11555 (_("%P%X: read-only segment has dynamic relocations.\n"));
11556 else
11557 info->callbacks->einfo
11558 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11559 break;
11560 }
11561 }
11562 }
11563
11564 for (o = dynobj->sections; o != NULL; o = o->next)
11565 {
11566 if ((o->flags & SEC_HAS_CONTENTS) == 0
11567 || o->size == 0
11568 || o->output_section == bfd_abs_section_ptr)
11569 continue;
11570 if ((o->flags & SEC_LINKER_CREATED) == 0)
11571 {
11572 /* At this point, we are only interested in sections
11573 created by _bfd_elf_link_create_dynamic_sections. */
11574 continue;
11575 }
11576 if (elf_hash_table (info)->stab_info.stabstr == o)
11577 continue;
11578 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11579 continue;
11580 if (strcmp (o->name, ".dynstr") != 0)
11581 {
11582 /* FIXME: octets_per_byte. */
11583 if (! bfd_set_section_contents (abfd, o->output_section,
11584 o->contents,
11585 (file_ptr) o->output_offset,
11586 o->size))
11587 goto error_return;
11588 }
11589 else
11590 {
11591 /* The contents of the .dynstr section are actually in a
11592 stringtab. */
11593 file_ptr off;
11594
11595 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11596 if (bfd_seek (abfd, off, SEEK_SET) != 0
11597 || ! _bfd_elf_strtab_emit (abfd,
11598 elf_hash_table (info)->dynstr))
11599 goto error_return;
11600 }
11601 }
11602 }
11603
11604 if (info->relocatable)
11605 {
11606 bfd_boolean failed = FALSE;
11607
11608 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11609 if (failed)
11610 goto error_return;
11611 }
11612
11613 /* If we have optimized stabs strings, output them. */
11614 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11615 {
11616 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11617 goto error_return;
11618 }
11619
11620 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11621 goto error_return;
11622
11623 elf_final_link_free (abfd, &flinfo);
11624
11625 elf_linker (abfd) = TRUE;
11626
11627 if (attr_section)
11628 {
11629 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11630 if (contents == NULL)
11631 return FALSE; /* Bail out and fail. */
11632 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11633 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11634 free (contents);
11635 }
11636
11637 return TRUE;
11638
11639 error_return:
11640 elf_final_link_free (abfd, &flinfo);
11641 return FALSE;
11642 }
11643 \f
11644 /* Initialize COOKIE for input bfd ABFD. */
11645
11646 static bfd_boolean
11647 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11648 struct bfd_link_info *info, bfd *abfd)
11649 {
11650 Elf_Internal_Shdr *symtab_hdr;
11651 const struct elf_backend_data *bed;
11652
11653 bed = get_elf_backend_data (abfd);
11654 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11655
11656 cookie->abfd = abfd;
11657 cookie->sym_hashes = elf_sym_hashes (abfd);
11658 cookie->bad_symtab = elf_bad_symtab (abfd);
11659 if (cookie->bad_symtab)
11660 {
11661 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11662 cookie->extsymoff = 0;
11663 }
11664 else
11665 {
11666 cookie->locsymcount = symtab_hdr->sh_info;
11667 cookie->extsymoff = symtab_hdr->sh_info;
11668 }
11669
11670 if (bed->s->arch_size == 32)
11671 cookie->r_sym_shift = 8;
11672 else
11673 cookie->r_sym_shift = 32;
11674
11675 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11676 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11677 {
11678 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11679 cookie->locsymcount, 0,
11680 NULL, NULL, NULL);
11681 if (cookie->locsyms == NULL)
11682 {
11683 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11684 return FALSE;
11685 }
11686 if (info->keep_memory)
11687 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11688 }
11689 return TRUE;
11690 }
11691
11692 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11693
11694 static void
11695 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11696 {
11697 Elf_Internal_Shdr *symtab_hdr;
11698
11699 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11700 if (cookie->locsyms != NULL
11701 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11702 free (cookie->locsyms);
11703 }
11704
11705 /* Initialize the relocation information in COOKIE for input section SEC
11706 of input bfd ABFD. */
11707
11708 static bfd_boolean
11709 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11710 struct bfd_link_info *info, bfd *abfd,
11711 asection *sec)
11712 {
11713 const struct elf_backend_data *bed;
11714
11715 if (sec->reloc_count == 0)
11716 {
11717 cookie->rels = NULL;
11718 cookie->relend = NULL;
11719 }
11720 else
11721 {
11722 bed = get_elf_backend_data (abfd);
11723
11724 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11725 info->keep_memory);
11726 if (cookie->rels == NULL)
11727 return FALSE;
11728 cookie->rel = cookie->rels;
11729 cookie->relend = (cookie->rels
11730 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11731 }
11732 cookie->rel = cookie->rels;
11733 return TRUE;
11734 }
11735
11736 /* Free the memory allocated by init_reloc_cookie_rels,
11737 if appropriate. */
11738
11739 static void
11740 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11741 asection *sec)
11742 {
11743 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11744 free (cookie->rels);
11745 }
11746
11747 /* Initialize the whole of COOKIE for input section SEC. */
11748
11749 static bfd_boolean
11750 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11751 struct bfd_link_info *info,
11752 asection *sec)
11753 {
11754 if (!init_reloc_cookie (cookie, info, sec->owner))
11755 goto error1;
11756 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11757 goto error2;
11758 return TRUE;
11759
11760 error2:
11761 fini_reloc_cookie (cookie, sec->owner);
11762 error1:
11763 return FALSE;
11764 }
11765
11766 /* Free the memory allocated by init_reloc_cookie_for_section,
11767 if appropriate. */
11768
11769 static void
11770 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11771 asection *sec)
11772 {
11773 fini_reloc_cookie_rels (cookie, sec);
11774 fini_reloc_cookie (cookie, sec->owner);
11775 }
11776 \f
11777 /* Garbage collect unused sections. */
11778
11779 /* Default gc_mark_hook. */
11780
11781 asection *
11782 _bfd_elf_gc_mark_hook (asection *sec,
11783 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11784 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11785 struct elf_link_hash_entry *h,
11786 Elf_Internal_Sym *sym)
11787 {
11788 const char *sec_name;
11789
11790 if (h != NULL)
11791 {
11792 switch (h->root.type)
11793 {
11794 case bfd_link_hash_defined:
11795 case bfd_link_hash_defweak:
11796 return h->root.u.def.section;
11797
11798 case bfd_link_hash_common:
11799 return h->root.u.c.p->section;
11800
11801 case bfd_link_hash_undefined:
11802 case bfd_link_hash_undefweak:
11803 /* To work around a glibc bug, keep all XXX input sections
11804 when there is an as yet undefined reference to __start_XXX
11805 or __stop_XXX symbols. The linker will later define such
11806 symbols for orphan input sections that have a name
11807 representable as a C identifier. */
11808 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11809 sec_name = h->root.root.string + 8;
11810 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11811 sec_name = h->root.root.string + 7;
11812 else
11813 sec_name = NULL;
11814
11815 if (sec_name && *sec_name != '\0')
11816 {
11817 bfd *i;
11818
11819 for (i = info->input_bfds; i; i = i->link.next)
11820 {
11821 sec = bfd_get_section_by_name (i, sec_name);
11822 if (sec)
11823 sec->flags |= SEC_KEEP;
11824 }
11825 }
11826 break;
11827
11828 default:
11829 break;
11830 }
11831 }
11832 else
11833 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11834
11835 return NULL;
11836 }
11837
11838 /* COOKIE->rel describes a relocation against section SEC, which is
11839 a section we've decided to keep. Return the section that contains
11840 the relocation symbol, or NULL if no section contains it. */
11841
11842 asection *
11843 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11844 elf_gc_mark_hook_fn gc_mark_hook,
11845 struct elf_reloc_cookie *cookie)
11846 {
11847 unsigned long r_symndx;
11848 struct elf_link_hash_entry *h;
11849
11850 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11851 if (r_symndx == STN_UNDEF)
11852 return NULL;
11853
11854 if (r_symndx >= cookie->locsymcount
11855 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11856 {
11857 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11858 if (h == NULL)
11859 {
11860 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11861 sec->owner);
11862 return NULL;
11863 }
11864 while (h->root.type == bfd_link_hash_indirect
11865 || h->root.type == bfd_link_hash_warning)
11866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11867 h->mark = 1;
11868 /* If this symbol is weak and there is a non-weak definition, we
11869 keep the non-weak definition because many backends put
11870 dynamic reloc info on the non-weak definition for code
11871 handling copy relocs. */
11872 if (h->u.weakdef != NULL)
11873 h->u.weakdef->mark = 1;
11874 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11875 }
11876
11877 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11878 &cookie->locsyms[r_symndx]);
11879 }
11880
11881 /* COOKIE->rel describes a relocation against section SEC, which is
11882 a section we've decided to keep. Mark the section that contains
11883 the relocation symbol. */
11884
11885 bfd_boolean
11886 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11887 asection *sec,
11888 elf_gc_mark_hook_fn gc_mark_hook,
11889 struct elf_reloc_cookie *cookie)
11890 {
11891 asection *rsec;
11892
11893 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11894 if (rsec && !rsec->gc_mark)
11895 {
11896 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11897 || (rsec->owner->flags & DYNAMIC) != 0)
11898 rsec->gc_mark = 1;
11899 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11900 return FALSE;
11901 }
11902 return TRUE;
11903 }
11904
11905 /* The mark phase of garbage collection. For a given section, mark
11906 it and any sections in this section's group, and all the sections
11907 which define symbols to which it refers. */
11908
11909 bfd_boolean
11910 _bfd_elf_gc_mark (struct bfd_link_info *info,
11911 asection *sec,
11912 elf_gc_mark_hook_fn gc_mark_hook)
11913 {
11914 bfd_boolean ret;
11915 asection *group_sec, *eh_frame;
11916
11917 sec->gc_mark = 1;
11918
11919 /* Mark all the sections in the group. */
11920 group_sec = elf_section_data (sec)->next_in_group;
11921 if (group_sec && !group_sec->gc_mark)
11922 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11923 return FALSE;
11924
11925 /* Look through the section relocs. */
11926 ret = TRUE;
11927 eh_frame = elf_eh_frame_section (sec->owner);
11928 if ((sec->flags & SEC_RELOC) != 0
11929 && sec->reloc_count > 0
11930 && sec != eh_frame)
11931 {
11932 struct elf_reloc_cookie cookie;
11933
11934 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11935 ret = FALSE;
11936 else
11937 {
11938 for (; cookie.rel < cookie.relend; cookie.rel++)
11939 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11940 {
11941 ret = FALSE;
11942 break;
11943 }
11944 fini_reloc_cookie_for_section (&cookie, sec);
11945 }
11946 }
11947
11948 if (ret && eh_frame && elf_fde_list (sec))
11949 {
11950 struct elf_reloc_cookie cookie;
11951
11952 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11953 ret = FALSE;
11954 else
11955 {
11956 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11957 gc_mark_hook, &cookie))
11958 ret = FALSE;
11959 fini_reloc_cookie_for_section (&cookie, eh_frame);
11960 }
11961 }
11962
11963 return ret;
11964 }
11965
11966 /* Scan and mark sections in a special or debug section group. */
11967
11968 static void
11969 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11970 {
11971 /* Point to first section of section group. */
11972 asection *ssec;
11973 /* Used to iterate the section group. */
11974 asection *msec;
11975
11976 bfd_boolean is_special_grp = TRUE;
11977 bfd_boolean is_debug_grp = TRUE;
11978
11979 /* First scan to see if group contains any section other than debug
11980 and special section. */
11981 ssec = msec = elf_next_in_group (grp);
11982 do
11983 {
11984 if ((msec->flags & SEC_DEBUGGING) == 0)
11985 is_debug_grp = FALSE;
11986
11987 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11988 is_special_grp = FALSE;
11989
11990 msec = elf_next_in_group (msec);
11991 }
11992 while (msec != ssec);
11993
11994 /* If this is a pure debug section group or pure special section group,
11995 keep all sections in this group. */
11996 if (is_debug_grp || is_special_grp)
11997 {
11998 do
11999 {
12000 msec->gc_mark = 1;
12001 msec = elf_next_in_group (msec);
12002 }
12003 while (msec != ssec);
12004 }
12005 }
12006
12007 /* Keep debug and special sections. */
12008
12009 bfd_boolean
12010 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12011 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12012 {
12013 bfd *ibfd;
12014
12015 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12016 {
12017 asection *isec;
12018 bfd_boolean some_kept;
12019 bfd_boolean debug_frag_seen;
12020
12021 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12022 continue;
12023
12024 /* Ensure all linker created sections are kept,
12025 see if any other section is already marked,
12026 and note if we have any fragmented debug sections. */
12027 debug_frag_seen = some_kept = FALSE;
12028 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12029 {
12030 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12031 isec->gc_mark = 1;
12032 else if (isec->gc_mark)
12033 some_kept = TRUE;
12034
12035 if (debug_frag_seen == FALSE
12036 && (isec->flags & SEC_DEBUGGING)
12037 && CONST_STRNEQ (isec->name, ".debug_line."))
12038 debug_frag_seen = TRUE;
12039 }
12040
12041 /* If no section in this file will be kept, then we can
12042 toss out the debug and special sections. */
12043 if (!some_kept)
12044 continue;
12045
12046 /* Keep debug and special sections like .comment when they are
12047 not part of a group. Also keep section groups that contain
12048 just debug sections or special sections. */
12049 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12050 {
12051 if ((isec->flags & SEC_GROUP) != 0)
12052 _bfd_elf_gc_mark_debug_special_section_group (isec);
12053 else if (((isec->flags & SEC_DEBUGGING) != 0
12054 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12055 && elf_next_in_group (isec) == NULL)
12056 isec->gc_mark = 1;
12057 }
12058
12059 if (! debug_frag_seen)
12060 continue;
12061
12062 /* Look for CODE sections which are going to be discarded,
12063 and find and discard any fragmented debug sections which
12064 are associated with that code section. */
12065 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12066 if ((isec->flags & SEC_CODE) != 0
12067 && isec->gc_mark == 0)
12068 {
12069 unsigned int ilen;
12070 asection *dsec;
12071
12072 ilen = strlen (isec->name);
12073
12074 /* Association is determined by the name of the debug section
12075 containing the name of the code section as a suffix. For
12076 example .debug_line.text.foo is a debug section associated
12077 with .text.foo. */
12078 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12079 {
12080 unsigned int dlen;
12081
12082 if (dsec->gc_mark == 0
12083 || (dsec->flags & SEC_DEBUGGING) == 0)
12084 continue;
12085
12086 dlen = strlen (dsec->name);
12087
12088 if (dlen > ilen
12089 && strncmp (dsec->name + (dlen - ilen),
12090 isec->name, ilen) == 0)
12091 {
12092 dsec->gc_mark = 0;
12093 break;
12094 }
12095 }
12096 }
12097 }
12098 return TRUE;
12099 }
12100
12101 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12102
12103 struct elf_gc_sweep_symbol_info
12104 {
12105 struct bfd_link_info *info;
12106 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12107 bfd_boolean);
12108 };
12109
12110 static bfd_boolean
12111 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12112 {
12113 if (!h->mark
12114 && (((h->root.type == bfd_link_hash_defined
12115 || h->root.type == bfd_link_hash_defweak)
12116 && !(h->def_regular
12117 && h->root.u.def.section->gc_mark))
12118 || h->root.type == bfd_link_hash_undefined
12119 || h->root.type == bfd_link_hash_undefweak))
12120 {
12121 struct elf_gc_sweep_symbol_info *inf;
12122
12123 inf = (struct elf_gc_sweep_symbol_info *) data;
12124 (*inf->hide_symbol) (inf->info, h, TRUE);
12125 h->def_regular = 0;
12126 h->ref_regular = 0;
12127 h->ref_regular_nonweak = 0;
12128 }
12129
12130 return TRUE;
12131 }
12132
12133 /* The sweep phase of garbage collection. Remove all garbage sections. */
12134
12135 typedef bfd_boolean (*gc_sweep_hook_fn)
12136 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12137
12138 static bfd_boolean
12139 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12140 {
12141 bfd *sub;
12142 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12143 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12144 unsigned long section_sym_count;
12145 struct elf_gc_sweep_symbol_info sweep_info;
12146
12147 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12148 {
12149 asection *o;
12150
12151 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12152 continue;
12153
12154 for (o = sub->sections; o != NULL; o = o->next)
12155 {
12156 /* When any section in a section group is kept, we keep all
12157 sections in the section group. If the first member of
12158 the section group is excluded, we will also exclude the
12159 group section. */
12160 if (o->flags & SEC_GROUP)
12161 {
12162 asection *first = elf_next_in_group (o);
12163 o->gc_mark = first->gc_mark;
12164 }
12165
12166 if (o->gc_mark)
12167 continue;
12168
12169 /* Skip sweeping sections already excluded. */
12170 if (o->flags & SEC_EXCLUDE)
12171 continue;
12172
12173 /* Since this is early in the link process, it is simple
12174 to remove a section from the output. */
12175 o->flags |= SEC_EXCLUDE;
12176
12177 if (info->print_gc_sections && o->size != 0)
12178 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12179
12180 /* But we also have to update some of the relocation
12181 info we collected before. */
12182 if (gc_sweep_hook
12183 && (o->flags & SEC_RELOC) != 0
12184 && o->reloc_count != 0
12185 && !((info->strip == strip_all || info->strip == strip_debugger)
12186 && (o->flags & SEC_DEBUGGING) != 0)
12187 && !bfd_is_abs_section (o->output_section))
12188 {
12189 Elf_Internal_Rela *internal_relocs;
12190 bfd_boolean r;
12191
12192 internal_relocs
12193 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12194 info->keep_memory);
12195 if (internal_relocs == NULL)
12196 return FALSE;
12197
12198 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12199
12200 if (elf_section_data (o)->relocs != internal_relocs)
12201 free (internal_relocs);
12202
12203 if (!r)
12204 return FALSE;
12205 }
12206 }
12207 }
12208
12209 /* Remove the symbols that were in the swept sections from the dynamic
12210 symbol table. GCFIXME: Anyone know how to get them out of the
12211 static symbol table as well? */
12212 sweep_info.info = info;
12213 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12214 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12215 &sweep_info);
12216
12217 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12218 return TRUE;
12219 }
12220
12221 /* Propagate collected vtable information. This is called through
12222 elf_link_hash_traverse. */
12223
12224 static bfd_boolean
12225 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12226 {
12227 /* Those that are not vtables. */
12228 if (h->vtable == NULL || h->vtable->parent == NULL)
12229 return TRUE;
12230
12231 /* Those vtables that do not have parents, we cannot merge. */
12232 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12233 return TRUE;
12234
12235 /* If we've already been done, exit. */
12236 if (h->vtable->used && h->vtable->used[-1])
12237 return TRUE;
12238
12239 /* Make sure the parent's table is up to date. */
12240 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12241
12242 if (h->vtable->used == NULL)
12243 {
12244 /* None of this table's entries were referenced. Re-use the
12245 parent's table. */
12246 h->vtable->used = h->vtable->parent->vtable->used;
12247 h->vtable->size = h->vtable->parent->vtable->size;
12248 }
12249 else
12250 {
12251 size_t n;
12252 bfd_boolean *cu, *pu;
12253
12254 /* Or the parent's entries into ours. */
12255 cu = h->vtable->used;
12256 cu[-1] = TRUE;
12257 pu = h->vtable->parent->vtable->used;
12258 if (pu != NULL)
12259 {
12260 const struct elf_backend_data *bed;
12261 unsigned int log_file_align;
12262
12263 bed = get_elf_backend_data (h->root.u.def.section->owner);
12264 log_file_align = bed->s->log_file_align;
12265 n = h->vtable->parent->vtable->size >> log_file_align;
12266 while (n--)
12267 {
12268 if (*pu)
12269 *cu = TRUE;
12270 pu++;
12271 cu++;
12272 }
12273 }
12274 }
12275
12276 return TRUE;
12277 }
12278
12279 static bfd_boolean
12280 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12281 {
12282 asection *sec;
12283 bfd_vma hstart, hend;
12284 Elf_Internal_Rela *relstart, *relend, *rel;
12285 const struct elf_backend_data *bed;
12286 unsigned int log_file_align;
12287
12288 /* Take care of both those symbols that do not describe vtables as
12289 well as those that are not loaded. */
12290 if (h->vtable == NULL || h->vtable->parent == NULL)
12291 return TRUE;
12292
12293 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12294 || h->root.type == bfd_link_hash_defweak);
12295
12296 sec = h->root.u.def.section;
12297 hstart = h->root.u.def.value;
12298 hend = hstart + h->size;
12299
12300 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12301 if (!relstart)
12302 return *(bfd_boolean *) okp = FALSE;
12303 bed = get_elf_backend_data (sec->owner);
12304 log_file_align = bed->s->log_file_align;
12305
12306 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12307
12308 for (rel = relstart; rel < relend; ++rel)
12309 if (rel->r_offset >= hstart && rel->r_offset < hend)
12310 {
12311 /* If the entry is in use, do nothing. */
12312 if (h->vtable->used
12313 && (rel->r_offset - hstart) < h->vtable->size)
12314 {
12315 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12316 if (h->vtable->used[entry])
12317 continue;
12318 }
12319 /* Otherwise, kill it. */
12320 rel->r_offset = rel->r_info = rel->r_addend = 0;
12321 }
12322
12323 return TRUE;
12324 }
12325
12326 /* Mark sections containing dynamically referenced symbols. When
12327 building shared libraries, we must assume that any visible symbol is
12328 referenced. */
12329
12330 bfd_boolean
12331 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12332 {
12333 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12334 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12335
12336 if ((h->root.type == bfd_link_hash_defined
12337 || h->root.type == bfd_link_hash_defweak)
12338 && (h->ref_dynamic
12339 || (h->def_regular
12340 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12341 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12342 && (!info->executable
12343 || info->export_dynamic
12344 || (h->dynamic
12345 && d != NULL
12346 && (*d->match) (&d->head, NULL, h->root.root.string)))
12347 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12348 || !bfd_hide_sym_by_version (info->version_info,
12349 h->root.root.string)))))
12350 h->root.u.def.section->flags |= SEC_KEEP;
12351
12352 return TRUE;
12353 }
12354
12355 /* Keep all sections containing symbols undefined on the command-line,
12356 and the section containing the entry symbol. */
12357
12358 void
12359 _bfd_elf_gc_keep (struct bfd_link_info *info)
12360 {
12361 struct bfd_sym_chain *sym;
12362
12363 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12364 {
12365 struct elf_link_hash_entry *h;
12366
12367 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12368 FALSE, FALSE, FALSE);
12369
12370 if (h != NULL
12371 && (h->root.type == bfd_link_hash_defined
12372 || h->root.type == bfd_link_hash_defweak)
12373 && !bfd_is_abs_section (h->root.u.def.section))
12374 h->root.u.def.section->flags |= SEC_KEEP;
12375 }
12376 }
12377
12378 /* Do mark and sweep of unused sections. */
12379
12380 bfd_boolean
12381 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12382 {
12383 bfd_boolean ok = TRUE;
12384 bfd *sub;
12385 elf_gc_mark_hook_fn gc_mark_hook;
12386 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12387 struct elf_link_hash_table *htab;
12388
12389 if (!bed->can_gc_sections
12390 || !is_elf_hash_table (info->hash))
12391 {
12392 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12393 return TRUE;
12394 }
12395
12396 bed->gc_keep (info);
12397 htab = elf_hash_table (info);
12398
12399 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12400 at the .eh_frame section if we can mark the FDEs individually. */
12401 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12402 {
12403 asection *sec;
12404 struct elf_reloc_cookie cookie;
12405
12406 sec = bfd_get_section_by_name (sub, ".eh_frame");
12407 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12408 {
12409 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12410 if (elf_section_data (sec)->sec_info
12411 && (sec->flags & SEC_LINKER_CREATED) == 0)
12412 elf_eh_frame_section (sub) = sec;
12413 fini_reloc_cookie_for_section (&cookie, sec);
12414 sec = bfd_get_next_section_by_name (sec);
12415 }
12416 }
12417
12418 /* Apply transitive closure to the vtable entry usage info. */
12419 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12420 if (!ok)
12421 return FALSE;
12422
12423 /* Kill the vtable relocations that were not used. */
12424 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12425 if (!ok)
12426 return FALSE;
12427
12428 /* Mark dynamically referenced symbols. */
12429 if (htab->dynamic_sections_created)
12430 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12431
12432 /* Grovel through relocs to find out who stays ... */
12433 gc_mark_hook = bed->gc_mark_hook;
12434 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12435 {
12436 asection *o;
12437
12438 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12439 continue;
12440
12441 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12442 Also treat note sections as a root, if the section is not part
12443 of a group. */
12444 for (o = sub->sections; o != NULL; o = o->next)
12445 if (!o->gc_mark
12446 && (o->flags & SEC_EXCLUDE) == 0
12447 && ((o->flags & SEC_KEEP) != 0
12448 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12449 && elf_next_in_group (o) == NULL )))
12450 {
12451 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12452 return FALSE;
12453 }
12454 }
12455
12456 /* Allow the backend to mark additional target specific sections. */
12457 bed->gc_mark_extra_sections (info, gc_mark_hook);
12458
12459 /* ... and mark SEC_EXCLUDE for those that go. */
12460 return elf_gc_sweep (abfd, info);
12461 }
12462 \f
12463 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12464
12465 bfd_boolean
12466 bfd_elf_gc_record_vtinherit (bfd *abfd,
12467 asection *sec,
12468 struct elf_link_hash_entry *h,
12469 bfd_vma offset)
12470 {
12471 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12472 struct elf_link_hash_entry **search, *child;
12473 bfd_size_type extsymcount;
12474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12475
12476 /* The sh_info field of the symtab header tells us where the
12477 external symbols start. We don't care about the local symbols at
12478 this point. */
12479 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12480 if (!elf_bad_symtab (abfd))
12481 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12482
12483 sym_hashes = elf_sym_hashes (abfd);
12484 sym_hashes_end = sym_hashes + extsymcount;
12485
12486 /* Hunt down the child symbol, which is in this section at the same
12487 offset as the relocation. */
12488 for (search = sym_hashes; search != sym_hashes_end; ++search)
12489 {
12490 if ((child = *search) != NULL
12491 && (child->root.type == bfd_link_hash_defined
12492 || child->root.type == bfd_link_hash_defweak)
12493 && child->root.u.def.section == sec
12494 && child->root.u.def.value == offset)
12495 goto win;
12496 }
12497
12498 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12499 abfd, sec, (unsigned long) offset);
12500 bfd_set_error (bfd_error_invalid_operation);
12501 return FALSE;
12502
12503 win:
12504 if (!child->vtable)
12505 {
12506 child->vtable = (struct elf_link_virtual_table_entry *)
12507 bfd_zalloc (abfd, sizeof (*child->vtable));
12508 if (!child->vtable)
12509 return FALSE;
12510 }
12511 if (!h)
12512 {
12513 /* This *should* only be the absolute section. It could potentially
12514 be that someone has defined a non-global vtable though, which
12515 would be bad. It isn't worth paging in the local symbols to be
12516 sure though; that case should simply be handled by the assembler. */
12517
12518 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12519 }
12520 else
12521 child->vtable->parent = h;
12522
12523 return TRUE;
12524 }
12525
12526 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12527
12528 bfd_boolean
12529 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12530 asection *sec ATTRIBUTE_UNUSED,
12531 struct elf_link_hash_entry *h,
12532 bfd_vma addend)
12533 {
12534 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12535 unsigned int log_file_align = bed->s->log_file_align;
12536
12537 if (!h->vtable)
12538 {
12539 h->vtable = (struct elf_link_virtual_table_entry *)
12540 bfd_zalloc (abfd, sizeof (*h->vtable));
12541 if (!h->vtable)
12542 return FALSE;
12543 }
12544
12545 if (addend >= h->vtable->size)
12546 {
12547 size_t size, bytes, file_align;
12548 bfd_boolean *ptr = h->vtable->used;
12549
12550 /* While the symbol is undefined, we have to be prepared to handle
12551 a zero size. */
12552 file_align = 1 << log_file_align;
12553 if (h->root.type == bfd_link_hash_undefined)
12554 size = addend + file_align;
12555 else
12556 {
12557 size = h->size;
12558 if (addend >= size)
12559 {
12560 /* Oops! We've got a reference past the defined end of
12561 the table. This is probably a bug -- shall we warn? */
12562 size = addend + file_align;
12563 }
12564 }
12565 size = (size + file_align - 1) & -file_align;
12566
12567 /* Allocate one extra entry for use as a "done" flag for the
12568 consolidation pass. */
12569 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12570
12571 if (ptr)
12572 {
12573 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12574
12575 if (ptr != NULL)
12576 {
12577 size_t oldbytes;
12578
12579 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12580 * sizeof (bfd_boolean));
12581 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12582 }
12583 }
12584 else
12585 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12586
12587 if (ptr == NULL)
12588 return FALSE;
12589
12590 /* And arrange for that done flag to be at index -1. */
12591 h->vtable->used = ptr + 1;
12592 h->vtable->size = size;
12593 }
12594
12595 h->vtable->used[addend >> log_file_align] = TRUE;
12596
12597 return TRUE;
12598 }
12599
12600 /* Map an ELF section header flag to its corresponding string. */
12601 typedef struct
12602 {
12603 char *flag_name;
12604 flagword flag_value;
12605 } elf_flags_to_name_table;
12606
12607 static elf_flags_to_name_table elf_flags_to_names [] =
12608 {
12609 { "SHF_WRITE", SHF_WRITE },
12610 { "SHF_ALLOC", SHF_ALLOC },
12611 { "SHF_EXECINSTR", SHF_EXECINSTR },
12612 { "SHF_MERGE", SHF_MERGE },
12613 { "SHF_STRINGS", SHF_STRINGS },
12614 { "SHF_INFO_LINK", SHF_INFO_LINK},
12615 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12616 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12617 { "SHF_GROUP", SHF_GROUP },
12618 { "SHF_TLS", SHF_TLS },
12619 { "SHF_MASKOS", SHF_MASKOS },
12620 { "SHF_EXCLUDE", SHF_EXCLUDE },
12621 };
12622
12623 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12624 bfd_boolean
12625 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12626 struct flag_info *flaginfo,
12627 asection *section)
12628 {
12629 const bfd_vma sh_flags = elf_section_flags (section);
12630
12631 if (!flaginfo->flags_initialized)
12632 {
12633 bfd *obfd = info->output_bfd;
12634 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12635 struct flag_info_list *tf = flaginfo->flag_list;
12636 int with_hex = 0;
12637 int without_hex = 0;
12638
12639 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12640 {
12641 unsigned i;
12642 flagword (*lookup) (char *);
12643
12644 lookup = bed->elf_backend_lookup_section_flags_hook;
12645 if (lookup != NULL)
12646 {
12647 flagword hexval = (*lookup) ((char *) tf->name);
12648
12649 if (hexval != 0)
12650 {
12651 if (tf->with == with_flags)
12652 with_hex |= hexval;
12653 else if (tf->with == without_flags)
12654 without_hex |= hexval;
12655 tf->valid = TRUE;
12656 continue;
12657 }
12658 }
12659 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12660 {
12661 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12662 {
12663 if (tf->with == with_flags)
12664 with_hex |= elf_flags_to_names[i].flag_value;
12665 else if (tf->with == without_flags)
12666 without_hex |= elf_flags_to_names[i].flag_value;
12667 tf->valid = TRUE;
12668 break;
12669 }
12670 }
12671 if (!tf->valid)
12672 {
12673 info->callbacks->einfo
12674 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12675 return FALSE;
12676 }
12677 }
12678 flaginfo->flags_initialized = TRUE;
12679 flaginfo->only_with_flags |= with_hex;
12680 flaginfo->not_with_flags |= without_hex;
12681 }
12682
12683 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12684 return FALSE;
12685
12686 if ((flaginfo->not_with_flags & sh_flags) != 0)
12687 return FALSE;
12688
12689 return TRUE;
12690 }
12691
12692 struct alloc_got_off_arg {
12693 bfd_vma gotoff;
12694 struct bfd_link_info *info;
12695 };
12696
12697 /* We need a special top-level link routine to convert got reference counts
12698 to real got offsets. */
12699
12700 static bfd_boolean
12701 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12702 {
12703 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12704 bfd *obfd = gofarg->info->output_bfd;
12705 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12706
12707 if (h->got.refcount > 0)
12708 {
12709 h->got.offset = gofarg->gotoff;
12710 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12711 }
12712 else
12713 h->got.offset = (bfd_vma) -1;
12714
12715 return TRUE;
12716 }
12717
12718 /* And an accompanying bit to work out final got entry offsets once
12719 we're done. Should be called from final_link. */
12720
12721 bfd_boolean
12722 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12723 struct bfd_link_info *info)
12724 {
12725 bfd *i;
12726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12727 bfd_vma gotoff;
12728 struct alloc_got_off_arg gofarg;
12729
12730 BFD_ASSERT (abfd == info->output_bfd);
12731
12732 if (! is_elf_hash_table (info->hash))
12733 return FALSE;
12734
12735 /* The GOT offset is relative to the .got section, but the GOT header is
12736 put into the .got.plt section, if the backend uses it. */
12737 if (bed->want_got_plt)
12738 gotoff = 0;
12739 else
12740 gotoff = bed->got_header_size;
12741
12742 /* Do the local .got entries first. */
12743 for (i = info->input_bfds; i; i = i->link.next)
12744 {
12745 bfd_signed_vma *local_got;
12746 bfd_size_type j, locsymcount;
12747 Elf_Internal_Shdr *symtab_hdr;
12748
12749 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12750 continue;
12751
12752 local_got = elf_local_got_refcounts (i);
12753 if (!local_got)
12754 continue;
12755
12756 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12757 if (elf_bad_symtab (i))
12758 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12759 else
12760 locsymcount = symtab_hdr->sh_info;
12761
12762 for (j = 0; j < locsymcount; ++j)
12763 {
12764 if (local_got[j] > 0)
12765 {
12766 local_got[j] = gotoff;
12767 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12768 }
12769 else
12770 local_got[j] = (bfd_vma) -1;
12771 }
12772 }
12773
12774 /* Then the global .got entries. .plt refcounts are handled by
12775 adjust_dynamic_symbol */
12776 gofarg.gotoff = gotoff;
12777 gofarg.info = info;
12778 elf_link_hash_traverse (elf_hash_table (info),
12779 elf_gc_allocate_got_offsets,
12780 &gofarg);
12781 return TRUE;
12782 }
12783
12784 /* Many folk need no more in the way of final link than this, once
12785 got entry reference counting is enabled. */
12786
12787 bfd_boolean
12788 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12789 {
12790 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12791 return FALSE;
12792
12793 /* Invoke the regular ELF backend linker to do all the work. */
12794 return bfd_elf_final_link (abfd, info);
12795 }
12796
12797 bfd_boolean
12798 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12799 {
12800 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12801
12802 if (rcookie->bad_symtab)
12803 rcookie->rel = rcookie->rels;
12804
12805 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12806 {
12807 unsigned long r_symndx;
12808
12809 if (! rcookie->bad_symtab)
12810 if (rcookie->rel->r_offset > offset)
12811 return FALSE;
12812 if (rcookie->rel->r_offset != offset)
12813 continue;
12814
12815 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12816 if (r_symndx == STN_UNDEF)
12817 return TRUE;
12818
12819 if (r_symndx >= rcookie->locsymcount
12820 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12821 {
12822 struct elf_link_hash_entry *h;
12823
12824 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12825
12826 while (h->root.type == bfd_link_hash_indirect
12827 || h->root.type == bfd_link_hash_warning)
12828 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12829
12830 if ((h->root.type == bfd_link_hash_defined
12831 || h->root.type == bfd_link_hash_defweak)
12832 && (h->root.u.def.section->owner != rcookie->abfd
12833 || h->root.u.def.section->kept_section != NULL
12834 || discarded_section (h->root.u.def.section)))
12835 return TRUE;
12836 }
12837 else
12838 {
12839 /* It's not a relocation against a global symbol,
12840 but it could be a relocation against a local
12841 symbol for a discarded section. */
12842 asection *isec;
12843 Elf_Internal_Sym *isym;
12844
12845 /* Need to: get the symbol; get the section. */
12846 isym = &rcookie->locsyms[r_symndx];
12847 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12848 if (isec != NULL
12849 && (isec->kept_section != NULL
12850 || discarded_section (isec)))
12851 return TRUE;
12852 }
12853 return FALSE;
12854 }
12855 return FALSE;
12856 }
12857
12858 /* Discard unneeded references to discarded sections.
12859 Returns -1 on error, 1 if any section's size was changed, 0 if
12860 nothing changed. This function assumes that the relocations are in
12861 sorted order, which is true for all known assemblers. */
12862
12863 int
12864 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12865 {
12866 struct elf_reloc_cookie cookie;
12867 asection *o;
12868 bfd *abfd;
12869 int changed = 0;
12870
12871 if (info->traditional_format
12872 || !is_elf_hash_table (info->hash))
12873 return 0;
12874
12875 o = bfd_get_section_by_name (output_bfd, ".stab");
12876 if (o != NULL)
12877 {
12878 asection *i;
12879
12880 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12881 {
12882 if (i->size == 0
12883 || i->reloc_count == 0
12884 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12885 continue;
12886
12887 abfd = i->owner;
12888 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12889 continue;
12890
12891 if (!init_reloc_cookie_for_section (&cookie, info, i))
12892 return -1;
12893
12894 if (_bfd_discard_section_stabs (abfd, i,
12895 elf_section_data (i)->sec_info,
12896 bfd_elf_reloc_symbol_deleted_p,
12897 &cookie))
12898 changed = 1;
12899
12900 fini_reloc_cookie_for_section (&cookie, i);
12901 }
12902 }
12903
12904 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12905 if (o != NULL)
12906 {
12907 asection *i;
12908
12909 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12910 {
12911 if (i->size == 0)
12912 continue;
12913
12914 abfd = i->owner;
12915 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12916 continue;
12917
12918 if (!init_reloc_cookie_for_section (&cookie, info, i))
12919 return -1;
12920
12921 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12922 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12923 bfd_elf_reloc_symbol_deleted_p,
12924 &cookie))
12925 changed = 1;
12926
12927 fini_reloc_cookie_for_section (&cookie, i);
12928 }
12929 }
12930
12931 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12932 {
12933 const struct elf_backend_data *bed;
12934
12935 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12936 continue;
12937
12938 bed = get_elf_backend_data (abfd);
12939
12940 if (bed->elf_backend_discard_info != NULL)
12941 {
12942 if (!init_reloc_cookie (&cookie, info, abfd))
12943 return -1;
12944
12945 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12946 changed = 1;
12947
12948 fini_reloc_cookie (&cookie, abfd);
12949 }
12950 }
12951
12952 if (info->eh_frame_hdr
12953 && !info->relocatable
12954 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12955 changed = 1;
12956
12957 return changed;
12958 }
12959
12960 bfd_boolean
12961 _bfd_elf_section_already_linked (bfd *abfd,
12962 asection *sec,
12963 struct bfd_link_info *info)
12964 {
12965 flagword flags;
12966 const char *name, *key;
12967 struct bfd_section_already_linked *l;
12968 struct bfd_section_already_linked_hash_entry *already_linked_list;
12969
12970 if (sec->output_section == bfd_abs_section_ptr)
12971 return FALSE;
12972
12973 flags = sec->flags;
12974
12975 /* Return if it isn't a linkonce section. A comdat group section
12976 also has SEC_LINK_ONCE set. */
12977 if ((flags & SEC_LINK_ONCE) == 0)
12978 return FALSE;
12979
12980 /* Don't put group member sections on our list of already linked
12981 sections. They are handled as a group via their group section. */
12982 if (elf_sec_group (sec) != NULL)
12983 return FALSE;
12984
12985 /* For a SHT_GROUP section, use the group signature as the key. */
12986 name = sec->name;
12987 if ((flags & SEC_GROUP) != 0
12988 && elf_next_in_group (sec) != NULL
12989 && elf_group_name (elf_next_in_group (sec)) != NULL)
12990 key = elf_group_name (elf_next_in_group (sec));
12991 else
12992 {
12993 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12994 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12995 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12996 key++;
12997 else
12998 /* Must be a user linkonce section that doesn't follow gcc's
12999 naming convention. In this case we won't be matching
13000 single member groups. */
13001 key = name;
13002 }
13003
13004 already_linked_list = bfd_section_already_linked_table_lookup (key);
13005
13006 for (l = already_linked_list->entry; l != NULL; l = l->next)
13007 {
13008 /* We may have 2 different types of sections on the list: group
13009 sections with a signature of <key> (<key> is some string),
13010 and linkonce sections named .gnu.linkonce.<type>.<key>.
13011 Match like sections. LTO plugin sections are an exception.
13012 They are always named .gnu.linkonce.t.<key> and match either
13013 type of section. */
13014 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13015 && ((flags & SEC_GROUP) != 0
13016 || strcmp (name, l->sec->name) == 0))
13017 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13018 {
13019 /* The section has already been linked. See if we should
13020 issue a warning. */
13021 if (!_bfd_handle_already_linked (sec, l, info))
13022 return FALSE;
13023
13024 if (flags & SEC_GROUP)
13025 {
13026 asection *first = elf_next_in_group (sec);
13027 asection *s = first;
13028
13029 while (s != NULL)
13030 {
13031 s->output_section = bfd_abs_section_ptr;
13032 /* Record which group discards it. */
13033 s->kept_section = l->sec;
13034 s = elf_next_in_group (s);
13035 /* These lists are circular. */
13036 if (s == first)
13037 break;
13038 }
13039 }
13040
13041 return TRUE;
13042 }
13043 }
13044
13045 /* A single member comdat group section may be discarded by a
13046 linkonce section and vice versa. */
13047 if ((flags & SEC_GROUP) != 0)
13048 {
13049 asection *first = elf_next_in_group (sec);
13050
13051 if (first != NULL && elf_next_in_group (first) == first)
13052 /* Check this single member group against linkonce sections. */
13053 for (l = already_linked_list->entry; l != NULL; l = l->next)
13054 if ((l->sec->flags & SEC_GROUP) == 0
13055 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13056 {
13057 first->output_section = bfd_abs_section_ptr;
13058 first->kept_section = l->sec;
13059 sec->output_section = bfd_abs_section_ptr;
13060 break;
13061 }
13062 }
13063 else
13064 /* Check this linkonce section against single member groups. */
13065 for (l = already_linked_list->entry; l != NULL; l = l->next)
13066 if (l->sec->flags & SEC_GROUP)
13067 {
13068 asection *first = elf_next_in_group (l->sec);
13069
13070 if (first != NULL
13071 && elf_next_in_group (first) == first
13072 && bfd_elf_match_symbols_in_sections (first, sec, info))
13073 {
13074 sec->output_section = bfd_abs_section_ptr;
13075 sec->kept_section = first;
13076 break;
13077 }
13078 }
13079
13080 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13081 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13082 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13083 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13084 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13085 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13086 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13087 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13088 The reverse order cannot happen as there is never a bfd with only the
13089 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13090 matter as here were are looking only for cross-bfd sections. */
13091
13092 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13093 for (l = already_linked_list->entry; l != NULL; l = l->next)
13094 if ((l->sec->flags & SEC_GROUP) == 0
13095 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13096 {
13097 if (abfd != l->sec->owner)
13098 sec->output_section = bfd_abs_section_ptr;
13099 break;
13100 }
13101
13102 /* This is the first section with this name. Record it. */
13103 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13104 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13105 return sec->output_section == bfd_abs_section_ptr;
13106 }
13107
13108 bfd_boolean
13109 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13110 {
13111 return sym->st_shndx == SHN_COMMON;
13112 }
13113
13114 unsigned int
13115 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13116 {
13117 return SHN_COMMON;
13118 }
13119
13120 asection *
13121 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13122 {
13123 return bfd_com_section_ptr;
13124 }
13125
13126 bfd_vma
13127 _bfd_elf_default_got_elt_size (bfd *abfd,
13128 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13129 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13130 bfd *ibfd ATTRIBUTE_UNUSED,
13131 unsigned long symndx ATTRIBUTE_UNUSED)
13132 {
13133 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13134 return bed->s->arch_size / 8;
13135 }
13136
13137 /* Routines to support the creation of dynamic relocs. */
13138
13139 /* Returns the name of the dynamic reloc section associated with SEC. */
13140
13141 static const char *
13142 get_dynamic_reloc_section_name (bfd * abfd,
13143 asection * sec,
13144 bfd_boolean is_rela)
13145 {
13146 char *name;
13147 const char *old_name = bfd_get_section_name (NULL, sec);
13148 const char *prefix = is_rela ? ".rela" : ".rel";
13149
13150 if (old_name == NULL)
13151 return NULL;
13152
13153 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13154 sprintf (name, "%s%s", prefix, old_name);
13155
13156 return name;
13157 }
13158
13159 /* Returns the dynamic reloc section associated with SEC.
13160 If necessary compute the name of the dynamic reloc section based
13161 on SEC's name (looked up in ABFD's string table) and the setting
13162 of IS_RELA. */
13163
13164 asection *
13165 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13166 asection * sec,
13167 bfd_boolean is_rela)
13168 {
13169 asection * reloc_sec = elf_section_data (sec)->sreloc;
13170
13171 if (reloc_sec == NULL)
13172 {
13173 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13174
13175 if (name != NULL)
13176 {
13177 reloc_sec = bfd_get_linker_section (abfd, name);
13178
13179 if (reloc_sec != NULL)
13180 elf_section_data (sec)->sreloc = reloc_sec;
13181 }
13182 }
13183
13184 return reloc_sec;
13185 }
13186
13187 /* Returns the dynamic reloc section associated with SEC. If the
13188 section does not exist it is created and attached to the DYNOBJ
13189 bfd and stored in the SRELOC field of SEC's elf_section_data
13190 structure.
13191
13192 ALIGNMENT is the alignment for the newly created section and
13193 IS_RELA defines whether the name should be .rela.<SEC's name>
13194 or .rel.<SEC's name>. The section name is looked up in the
13195 string table associated with ABFD. */
13196
13197 asection *
13198 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13199 bfd * dynobj,
13200 unsigned int alignment,
13201 bfd * abfd,
13202 bfd_boolean is_rela)
13203 {
13204 asection * reloc_sec = elf_section_data (sec)->sreloc;
13205
13206 if (reloc_sec == NULL)
13207 {
13208 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13209
13210 if (name == NULL)
13211 return NULL;
13212
13213 reloc_sec = bfd_get_linker_section (dynobj, name);
13214
13215 if (reloc_sec == NULL)
13216 {
13217 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13218 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13219 if ((sec->flags & SEC_ALLOC) != 0)
13220 flags |= SEC_ALLOC | SEC_LOAD;
13221
13222 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13223 if (reloc_sec != NULL)
13224 {
13225 /* _bfd_elf_get_sec_type_attr chooses a section type by
13226 name. Override as it may be wrong, eg. for a user
13227 section named "auto" we'll get ".relauto" which is
13228 seen to be a .rela section. */
13229 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13230 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13231 reloc_sec = NULL;
13232 }
13233 }
13234
13235 elf_section_data (sec)->sreloc = reloc_sec;
13236 }
13237
13238 return reloc_sec;
13239 }
13240
13241 /* Copy the ELF symbol type and other attributes for a linker script
13242 assignment from HSRC to HDEST. Generally this should be treated as
13243 if we found a strong non-dynamic definition for HDEST (except that
13244 ld ignores multiple definition errors). */
13245 void
13246 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13247 struct bfd_link_hash_entry *hdest,
13248 struct bfd_link_hash_entry *hsrc)
13249 {
13250 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13251 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13252 Elf_Internal_Sym isym;
13253
13254 ehdest->type = ehsrc->type;
13255 ehdest->target_internal = ehsrc->target_internal;
13256
13257 isym.st_other = ehsrc->other;
13258 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13259 }
13260
13261 /* Append a RELA relocation REL to section S in BFD. */
13262
13263 void
13264 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13265 {
13266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13267 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13268 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13269 bed->s->swap_reloca_out (abfd, rel, loc);
13270 }
13271
13272 /* Append a REL relocation REL to section S in BFD. */
13273
13274 void
13275 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13276 {
13277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13278 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13279 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13280 bed->s->swap_reloc_out (abfd, rel, loc);
13281 }
This page took 0.287128 seconds and 5 git commands to generate.