PR ld/13470
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
263 flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
292
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
294
295 return TRUE;
296 }
297
298 /* Create dynamic sections when linking against a dynamic object. */
299
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 {
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
308
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
312
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
323
324 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
329
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
333 {
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
339 }
340
341 s = bfd_make_section_anyway_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
349
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
352
353 if (bed->want_dynbss)
354 {
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_anyway_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 }
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1246 }
1247
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1363
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1366
1367 *size_change_ok = TRUE;
1368 }
1369
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1376
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1383
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1389 {
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1393
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1396
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1402
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1405 }
1406
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1412
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1415 {
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1422 }
1423
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1426 {
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 struct elf_link_hash_entry *weakdef;
2514
2515 weakdef = h->u.weakdef;
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522
2523 /* If the real definition is defined by a regular object file,
2524 don't do anything special. See the longer description in
2525 _bfd_elf_adjust_dynamic_symbol, below. */
2526 if (weakdef->def_regular)
2527 h->u.weakdef = NULL;
2528 else
2529 {
2530 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2531 || weakdef->root.type == bfd_link_hash_defweak);
2532 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2533 }
2534 }
2535
2536 return TRUE;
2537 }
2538
2539 /* Make the backend pick a good value for a dynamic symbol. This is
2540 called via elf_link_hash_traverse, and also calls itself
2541 recursively. */
2542
2543 static bfd_boolean
2544 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2545 {
2546 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2547 bfd *dynobj;
2548 const struct elf_backend_data *bed;
2549
2550 if (! is_elf_hash_table (eif->info->hash))
2551 return FALSE;
2552
2553 /* Ignore indirect symbols. These are added by the versioning code. */
2554 if (h->root.type == bfd_link_hash_indirect)
2555 return TRUE;
2556
2557 /* Fix the symbol flags. */
2558 if (! _bfd_elf_fix_symbol_flags (h, eif))
2559 return FALSE;
2560
2561 /* If this symbol does not require a PLT entry, and it is not
2562 defined by a dynamic object, or is not referenced by a regular
2563 object, ignore it. We do have to handle a weak defined symbol,
2564 even if no regular object refers to it, if we decided to add it
2565 to the dynamic symbol table. FIXME: Do we normally need to worry
2566 about symbols which are defined by one dynamic object and
2567 referenced by another one? */
2568 if (!h->needs_plt
2569 && h->type != STT_GNU_IFUNC
2570 && (h->def_regular
2571 || !h->def_dynamic
2572 || (!h->ref_regular
2573 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2574 {
2575 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2576 return TRUE;
2577 }
2578
2579 /* If we've already adjusted this symbol, don't do it again. This
2580 can happen via a recursive call. */
2581 if (h->dynamic_adjusted)
2582 return TRUE;
2583
2584 /* Don't look at this symbol again. Note that we must set this
2585 after checking the above conditions, because we may look at a
2586 symbol once, decide not to do anything, and then get called
2587 recursively later after REF_REGULAR is set below. */
2588 h->dynamic_adjusted = 1;
2589
2590 /* If this is a weak definition, and we know a real definition, and
2591 the real symbol is not itself defined by a regular object file,
2592 then get a good value for the real definition. We handle the
2593 real symbol first, for the convenience of the backend routine.
2594
2595 Note that there is a confusing case here. If the real definition
2596 is defined by a regular object file, we don't get the real symbol
2597 from the dynamic object, but we do get the weak symbol. If the
2598 processor backend uses a COPY reloc, then if some routine in the
2599 dynamic object changes the real symbol, we will not see that
2600 change in the corresponding weak symbol. This is the way other
2601 ELF linkers work as well, and seems to be a result of the shared
2602 library model.
2603
2604 I will clarify this issue. Most SVR4 shared libraries define the
2605 variable _timezone and define timezone as a weak synonym. The
2606 tzset call changes _timezone. If you write
2607 extern int timezone;
2608 int _timezone = 5;
2609 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2610 you might expect that, since timezone is a synonym for _timezone,
2611 the same number will print both times. However, if the processor
2612 backend uses a COPY reloc, then actually timezone will be copied
2613 into your process image, and, since you define _timezone
2614 yourself, _timezone will not. Thus timezone and _timezone will
2615 wind up at different memory locations. The tzset call will set
2616 _timezone, leaving timezone unchanged. */
2617
2618 if (h->u.weakdef != NULL)
2619 {
2620 /* If we get to this point, there is an implicit reference to
2621 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2622 h->u.weakdef->ref_regular = 1;
2623
2624 /* Ensure that the backend adjust_dynamic_symbol function sees
2625 H->U.WEAKDEF before H by recursively calling ourselves. */
2626 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2627 return FALSE;
2628 }
2629
2630 /* If a symbol has no type and no size and does not require a PLT
2631 entry, then we are probably about to do the wrong thing here: we
2632 are probably going to create a COPY reloc for an empty object.
2633 This case can arise when a shared object is built with assembly
2634 code, and the assembly code fails to set the symbol type. */
2635 if (h->size == 0
2636 && h->type == STT_NOTYPE
2637 && !h->needs_plt)
2638 (*_bfd_error_handler)
2639 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2640 h->root.root.string);
2641
2642 dynobj = elf_hash_table (eif->info)->dynobj;
2643 bed = get_elf_backend_data (dynobj);
2644
2645 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2646 {
2647 eif->failed = TRUE;
2648 return FALSE;
2649 }
2650
2651 return TRUE;
2652 }
2653
2654 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2655 DYNBSS. */
2656
2657 bfd_boolean
2658 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2659 asection *dynbss)
2660 {
2661 unsigned int power_of_two;
2662 bfd_vma mask;
2663 asection *sec = h->root.u.def.section;
2664
2665 /* The section aligment of definition is the maximum alignment
2666 requirement of symbols defined in the section. Since we don't
2667 know the symbol alignment requirement, we start with the
2668 maximum alignment and check low bits of the symbol address
2669 for the minimum alignment. */
2670 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2671 mask = ((bfd_vma) 1 << power_of_two) - 1;
2672 while ((h->root.u.def.value & mask) != 0)
2673 {
2674 mask >>= 1;
2675 --power_of_two;
2676 }
2677
2678 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2679 dynbss))
2680 {
2681 /* Adjust the section alignment if needed. */
2682 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2683 power_of_two))
2684 return FALSE;
2685 }
2686
2687 /* We make sure that the symbol will be aligned properly. */
2688 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2689
2690 /* Define the symbol as being at this point in DYNBSS. */
2691 h->root.u.def.section = dynbss;
2692 h->root.u.def.value = dynbss->size;
2693
2694 /* Increment the size of DYNBSS to make room for the symbol. */
2695 dynbss->size += h->size;
2696
2697 return TRUE;
2698 }
2699
2700 /* Adjust all external symbols pointing into SEC_MERGE sections
2701 to reflect the object merging within the sections. */
2702
2703 static bfd_boolean
2704 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2705 {
2706 asection *sec;
2707
2708 if ((h->root.type == bfd_link_hash_defined
2709 || h->root.type == bfd_link_hash_defweak)
2710 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2711 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2712 {
2713 bfd *output_bfd = (bfd *) data;
2714
2715 h->root.u.def.value =
2716 _bfd_merged_section_offset (output_bfd,
2717 &h->root.u.def.section,
2718 elf_section_data (sec)->sec_info,
2719 h->root.u.def.value);
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Returns false if the symbol referred to by H should be considered
2726 to resolve local to the current module, and true if it should be
2727 considered to bind dynamically. */
2728
2729 bfd_boolean
2730 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2731 struct bfd_link_info *info,
2732 bfd_boolean not_local_protected)
2733 {
2734 bfd_boolean binding_stays_local_p;
2735 const struct elf_backend_data *bed;
2736 struct elf_link_hash_table *hash_table;
2737
2738 if (h == NULL)
2739 return FALSE;
2740
2741 while (h->root.type == bfd_link_hash_indirect
2742 || h->root.type == bfd_link_hash_warning)
2743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2744
2745 /* If it was forced local, then clearly it's not dynamic. */
2746 if (h->dynindx == -1)
2747 return FALSE;
2748 if (h->forced_local)
2749 return FALSE;
2750
2751 /* Identify the cases where name binding rules say that a
2752 visible symbol resolves locally. */
2753 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2754
2755 switch (ELF_ST_VISIBILITY (h->other))
2756 {
2757 case STV_INTERNAL:
2758 case STV_HIDDEN:
2759 return FALSE;
2760
2761 case STV_PROTECTED:
2762 hash_table = elf_hash_table (info);
2763 if (!is_elf_hash_table (hash_table))
2764 return FALSE;
2765
2766 bed = get_elf_backend_data (hash_table->dynobj);
2767
2768 /* Proper resolution for function pointer equality may require
2769 that these symbols perhaps be resolved dynamically, even though
2770 we should be resolving them to the current module. */
2771 if (!not_local_protected || !bed->is_function_type (h->type))
2772 binding_stays_local_p = TRUE;
2773 break;
2774
2775 default:
2776 break;
2777 }
2778
2779 /* If it isn't defined locally, then clearly it's dynamic. */
2780 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2781 return TRUE;
2782
2783 /* Otherwise, the symbol is dynamic if binding rules don't tell
2784 us that it remains local. */
2785 return !binding_stays_local_p;
2786 }
2787
2788 /* Return true if the symbol referred to by H should be considered
2789 to resolve local to the current module, and false otherwise. Differs
2790 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2791 undefined symbols. The two functions are virtually identical except
2792 for the place where forced_local and dynindx == -1 are tested. If
2793 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2794 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2795 the symbol is local only for defined symbols.
2796 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2797 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2798 treatment of undefined weak symbols. For those that do not make
2799 undefined weak symbols dynamic, both functions may return false. */
2800
2801 bfd_boolean
2802 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2803 struct bfd_link_info *info,
2804 bfd_boolean local_protected)
2805 {
2806 const struct elf_backend_data *bed;
2807 struct elf_link_hash_table *hash_table;
2808
2809 /* If it's a local sym, of course we resolve locally. */
2810 if (h == NULL)
2811 return TRUE;
2812
2813 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2814 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2815 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2816 return TRUE;
2817
2818 /* Common symbols that become definitions don't get the DEF_REGULAR
2819 flag set, so test it first, and don't bail out. */
2820 if (ELF_COMMON_DEF_P (h))
2821 /* Do nothing. */;
2822 /* If we don't have a definition in a regular file, then we can't
2823 resolve locally. The sym is either undefined or dynamic. */
2824 else if (!h->def_regular)
2825 return FALSE;
2826
2827 /* Forced local symbols resolve locally. */
2828 if (h->forced_local)
2829 return TRUE;
2830
2831 /* As do non-dynamic symbols. */
2832 if (h->dynindx == -1)
2833 return TRUE;
2834
2835 /* At this point, we know the symbol is defined and dynamic. In an
2836 executable it must resolve locally, likewise when building symbolic
2837 shared libraries. */
2838 if (info->executable || SYMBOLIC_BIND (info, h))
2839 return TRUE;
2840
2841 /* Now deal with defined dynamic symbols in shared libraries. Ones
2842 with default visibility might not resolve locally. */
2843 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2844 return FALSE;
2845
2846 hash_table = elf_hash_table (info);
2847 if (!is_elf_hash_table (hash_table))
2848 return TRUE;
2849
2850 bed = get_elf_backend_data (hash_table->dynobj);
2851
2852 /* STV_PROTECTED non-function symbols are local. */
2853 if (!bed->is_function_type (h->type))
2854 return TRUE;
2855
2856 /* Function pointer equality tests may require that STV_PROTECTED
2857 symbols be treated as dynamic symbols. If the address of a
2858 function not defined in an executable is set to that function's
2859 plt entry in the executable, then the address of the function in
2860 a shared library must also be the plt entry in the executable. */
2861 return local_protected;
2862 }
2863
2864 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2865 aligned. Returns the first TLS output section. */
2866
2867 struct bfd_section *
2868 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2869 {
2870 struct bfd_section *sec, *tls;
2871 unsigned int align = 0;
2872
2873 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2874 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2875 break;
2876 tls = sec;
2877
2878 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2879 if (sec->alignment_power > align)
2880 align = sec->alignment_power;
2881
2882 elf_hash_table (info)->tls_sec = tls;
2883
2884 /* Ensure the alignment of the first section is the largest alignment,
2885 so that the tls segment starts aligned. */
2886 if (tls != NULL)
2887 tls->alignment_power = align;
2888
2889 return tls;
2890 }
2891
2892 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2893 static bfd_boolean
2894 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2895 Elf_Internal_Sym *sym)
2896 {
2897 const struct elf_backend_data *bed;
2898
2899 /* Local symbols do not count, but target specific ones might. */
2900 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2901 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2902 return FALSE;
2903
2904 bed = get_elf_backend_data (abfd);
2905 /* Function symbols do not count. */
2906 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2907 return FALSE;
2908
2909 /* If the section is undefined, then so is the symbol. */
2910 if (sym->st_shndx == SHN_UNDEF)
2911 return FALSE;
2912
2913 /* If the symbol is defined in the common section, then
2914 it is a common definition and so does not count. */
2915 if (bed->common_definition (sym))
2916 return FALSE;
2917
2918 /* If the symbol is in a target specific section then we
2919 must rely upon the backend to tell us what it is. */
2920 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2921 /* FIXME - this function is not coded yet:
2922
2923 return _bfd_is_global_symbol_definition (abfd, sym);
2924
2925 Instead for now assume that the definition is not global,
2926 Even if this is wrong, at least the linker will behave
2927 in the same way that it used to do. */
2928 return FALSE;
2929
2930 return TRUE;
2931 }
2932
2933 /* Search the symbol table of the archive element of the archive ABFD
2934 whose archive map contains a mention of SYMDEF, and determine if
2935 the symbol is defined in this element. */
2936 static bfd_boolean
2937 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2938 {
2939 Elf_Internal_Shdr * hdr;
2940 bfd_size_type symcount;
2941 bfd_size_type extsymcount;
2942 bfd_size_type extsymoff;
2943 Elf_Internal_Sym *isymbuf;
2944 Elf_Internal_Sym *isym;
2945 Elf_Internal_Sym *isymend;
2946 bfd_boolean result;
2947
2948 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2949 if (abfd == NULL)
2950 return FALSE;
2951
2952 if (! bfd_check_format (abfd, bfd_object))
2953 return FALSE;
2954
2955 /* If we have already included the element containing this symbol in the
2956 link then we do not need to include it again. Just claim that any symbol
2957 it contains is not a definition, so that our caller will not decide to
2958 (re)include this element. */
2959 if (abfd->archive_pass)
2960 return FALSE;
2961
2962 /* Select the appropriate symbol table. */
2963 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2964 hdr = &elf_tdata (abfd)->symtab_hdr;
2965 else
2966 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2967
2968 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2969
2970 /* The sh_info field of the symtab header tells us where the
2971 external symbols start. We don't care about the local symbols. */
2972 if (elf_bad_symtab (abfd))
2973 {
2974 extsymcount = symcount;
2975 extsymoff = 0;
2976 }
2977 else
2978 {
2979 extsymcount = symcount - hdr->sh_info;
2980 extsymoff = hdr->sh_info;
2981 }
2982
2983 if (extsymcount == 0)
2984 return FALSE;
2985
2986 /* Read in the symbol table. */
2987 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2988 NULL, NULL, NULL);
2989 if (isymbuf == NULL)
2990 return FALSE;
2991
2992 /* Scan the symbol table looking for SYMDEF. */
2993 result = FALSE;
2994 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2995 {
2996 const char *name;
2997
2998 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2999 isym->st_name);
3000 if (name == NULL)
3001 break;
3002
3003 if (strcmp (name, symdef->name) == 0)
3004 {
3005 result = is_global_data_symbol_definition (abfd, isym);
3006 break;
3007 }
3008 }
3009
3010 free (isymbuf);
3011
3012 return result;
3013 }
3014 \f
3015 /* Add an entry to the .dynamic table. */
3016
3017 bfd_boolean
3018 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3019 bfd_vma tag,
3020 bfd_vma val)
3021 {
3022 struct elf_link_hash_table *hash_table;
3023 const struct elf_backend_data *bed;
3024 asection *s;
3025 bfd_size_type newsize;
3026 bfd_byte *newcontents;
3027 Elf_Internal_Dyn dyn;
3028
3029 hash_table = elf_hash_table (info);
3030 if (! is_elf_hash_table (hash_table))
3031 return FALSE;
3032
3033 bed = get_elf_backend_data (hash_table->dynobj);
3034 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3035 BFD_ASSERT (s != NULL);
3036
3037 newsize = s->size + bed->s->sizeof_dyn;
3038 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3039 if (newcontents == NULL)
3040 return FALSE;
3041
3042 dyn.d_tag = tag;
3043 dyn.d_un.d_val = val;
3044 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3045
3046 s->size = newsize;
3047 s->contents = newcontents;
3048
3049 return TRUE;
3050 }
3051
3052 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3053 otherwise just check whether one already exists. Returns -1 on error,
3054 1 if a DT_NEEDED tag already exists, and 0 on success. */
3055
3056 static int
3057 elf_add_dt_needed_tag (bfd *abfd,
3058 struct bfd_link_info *info,
3059 const char *soname,
3060 bfd_boolean do_it)
3061 {
3062 struct elf_link_hash_table *hash_table;
3063 bfd_size_type oldsize;
3064 bfd_size_type strindex;
3065
3066 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3067 return -1;
3068
3069 hash_table = elf_hash_table (info);
3070 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3071 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3072 if (strindex == (bfd_size_type) -1)
3073 return -1;
3074
3075 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3076 {
3077 asection *sdyn;
3078 const struct elf_backend_data *bed;
3079 bfd_byte *extdyn;
3080
3081 bed = get_elf_backend_data (hash_table->dynobj);
3082 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3083 if (sdyn != NULL)
3084 for (extdyn = sdyn->contents;
3085 extdyn < sdyn->contents + sdyn->size;
3086 extdyn += bed->s->sizeof_dyn)
3087 {
3088 Elf_Internal_Dyn dyn;
3089
3090 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3091 if (dyn.d_tag == DT_NEEDED
3092 && dyn.d_un.d_val == strindex)
3093 {
3094 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3095 return 1;
3096 }
3097 }
3098 }
3099
3100 if (do_it)
3101 {
3102 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3103 return -1;
3104
3105 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3106 return -1;
3107 }
3108 else
3109 /* We were just checking for existence of the tag. */
3110 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3111
3112 return 0;
3113 }
3114
3115 static bfd_boolean
3116 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3117 {
3118 for (; needed != NULL; needed = needed->next)
3119 if (strcmp (soname, needed->name) == 0)
3120 return TRUE;
3121
3122 return FALSE;
3123 }
3124
3125 /* Sort symbol by value and section. */
3126 static int
3127 elf_sort_symbol (const void *arg1, const void *arg2)
3128 {
3129 const struct elf_link_hash_entry *h1;
3130 const struct elf_link_hash_entry *h2;
3131 bfd_signed_vma vdiff;
3132
3133 h1 = *(const struct elf_link_hash_entry **) arg1;
3134 h2 = *(const struct elf_link_hash_entry **) arg2;
3135 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3136 if (vdiff != 0)
3137 return vdiff > 0 ? 1 : -1;
3138 else
3139 {
3140 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3141 if (sdiff != 0)
3142 return sdiff > 0 ? 1 : -1;
3143 }
3144 return 0;
3145 }
3146
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3149
3150 static bfd_boolean
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3152 {
3153 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3154
3155 if (h->dynindx != -1)
3156 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3157 return TRUE;
3158 }
3159
3160 /* Assign string offsets in .dynstr, update all structures referencing
3161 them. */
3162
3163 static bfd_boolean
3164 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3165 {
3166 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3167 struct elf_link_local_dynamic_entry *entry;
3168 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3169 bfd *dynobj = hash_table->dynobj;
3170 asection *sdyn;
3171 bfd_size_type size;
3172 const struct elf_backend_data *bed;
3173 bfd_byte *extdyn;
3174
3175 _bfd_elf_strtab_finalize (dynstr);
3176 size = _bfd_elf_strtab_size (dynstr);
3177
3178 bed = get_elf_backend_data (dynobj);
3179 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3180 BFD_ASSERT (sdyn != NULL);
3181
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn = sdyn->contents;
3184 extdyn < sdyn->contents + sdyn->size;
3185 extdyn += bed->s->sizeof_dyn)
3186 {
3187 Elf_Internal_Dyn dyn;
3188
3189 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3190 switch (dyn.d_tag)
3191 {
3192 case DT_STRSZ:
3193 dyn.d_un.d_val = size;
3194 break;
3195 case DT_NEEDED:
3196 case DT_SONAME:
3197 case DT_RPATH:
3198 case DT_RUNPATH:
3199 case DT_FILTER:
3200 case DT_AUXILIARY:
3201 case DT_AUDIT:
3202 case DT_DEPAUDIT:
3203 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3204 break;
3205 default:
3206 continue;
3207 }
3208 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 }
3210
3211 /* Now update local dynamic symbols. */
3212 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3213 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3214 entry->isym.st_name);
3215
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3218
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd)->cverdefs)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verdef def;
3226 Elf_Internal_Verdaux defaux;
3227
3228 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3233 &def);
3234 p += sizeof (Elf_External_Verdef);
3235 if (def.vd_aux != sizeof (Elf_External_Verdef))
3236 continue;
3237 for (i = 0; i < def.vd_cnt; ++i)
3238 {
3239 _bfd_elf_swap_verdaux_in (output_bfd,
3240 (Elf_External_Verdaux *) p, &defaux);
3241 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3242 defaux.vda_name);
3243 _bfd_elf_swap_verdaux_out (output_bfd,
3244 &defaux, (Elf_External_Verdaux *) p);
3245 p += sizeof (Elf_External_Verdaux);
3246 }
3247 }
3248 while (def.vd_next);
3249 }
3250
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd)->verref)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verneed need;
3258 Elf_Internal_Vernaux needaux;
3259
3260 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3265 &need);
3266 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3267 _bfd_elf_swap_verneed_out (output_bfd, &need,
3268 (Elf_External_Verneed *) p);
3269 p += sizeof (Elf_External_Verneed);
3270 for (i = 0; i < need.vn_cnt; ++i)
3271 {
3272 _bfd_elf_swap_vernaux_in (output_bfd,
3273 (Elf_External_Vernaux *) p, &needaux);
3274 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3275 needaux.vna_name);
3276 _bfd_elf_swap_vernaux_out (output_bfd,
3277 &needaux,
3278 (Elf_External_Vernaux *) p);
3279 p += sizeof (Elf_External_Vernaux);
3280 }
3281 }
3282 while (need.vn_next);
3283 }
3284
3285 return TRUE;
3286 }
3287 \f
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3290 the same target. */
3291
3292 bfd_boolean
3293 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3295 {
3296 return input == output;
3297 }
3298
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3302
3303 bfd_boolean
3304 _bfd_elf_relocs_compatible (const bfd_target *input,
3305 const bfd_target *output)
3306 {
3307 const struct elf_backend_data *obed, *ibed;
3308
3309 if (input == output)
3310 return TRUE;
3311
3312 ibed = xvec_get_elf_backend_data (input);
3313 obed = xvec_get_elf_backend_data (output);
3314
3315 if (ibed->arch != obed->arch)
3316 return FALSE;
3317
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed->relocs_compatible == obed->relocs_compatible;
3320 }
3321
3322 /* Add symbols from an ELF object file to the linker hash table. */
3323
3324 static bfd_boolean
3325 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3326 {
3327 Elf_Internal_Ehdr *ehdr;
3328 Elf_Internal_Shdr *hdr;
3329 bfd_size_type symcount;
3330 bfd_size_type extsymcount;
3331 bfd_size_type extsymoff;
3332 struct elf_link_hash_entry **sym_hash;
3333 bfd_boolean dynamic;
3334 Elf_External_Versym *extversym = NULL;
3335 Elf_External_Versym *ever;
3336 struct elf_link_hash_entry *weaks;
3337 struct elf_link_hash_entry **nondeflt_vers = NULL;
3338 bfd_size_type nondeflt_vers_cnt = 0;
3339 Elf_Internal_Sym *isymbuf = NULL;
3340 Elf_Internal_Sym *isym;
3341 Elf_Internal_Sym *isymend;
3342 const struct elf_backend_data *bed;
3343 bfd_boolean add_needed;
3344 struct elf_link_hash_table *htab;
3345 bfd_size_type amt;
3346 void *alloc_mark = NULL;
3347 struct bfd_hash_entry **old_table = NULL;
3348 unsigned int old_size = 0;
3349 unsigned int old_count = 0;
3350 void *old_tab = NULL;
3351 void *old_hash;
3352 void *old_ent;
3353 struct bfd_link_hash_entry *old_undefs = NULL;
3354 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3355 long old_dynsymcount = 0;
3356 size_t tabsize = 0;
3357 size_t hashsize = 0;
3358
3359 htab = elf_hash_table (info);
3360 bed = get_elf_backend_data (abfd);
3361
3362 if ((abfd->flags & DYNAMIC) == 0)
3363 dynamic = FALSE;
3364 else
3365 {
3366 dynamic = TRUE;
3367
3368 /* You can't use -r against a dynamic object. Also, there's no
3369 hope of using a dynamic object which does not exactly match
3370 the format of the output file. */
3371 if (info->relocatable
3372 || !is_elf_hash_table (htab)
3373 || info->output_bfd->xvec != abfd->xvec)
3374 {
3375 if (info->relocatable)
3376 bfd_set_error (bfd_error_invalid_operation);
3377 else
3378 bfd_set_error (bfd_error_wrong_format);
3379 goto error_return;
3380 }
3381 }
3382
3383 ehdr = elf_elfheader (abfd);
3384 if (info->warn_alternate_em
3385 && bed->elf_machine_code != ehdr->e_machine
3386 && ((bed->elf_machine_alt1 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt1)
3388 || (bed->elf_machine_alt2 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt2)))
3390 info->callbacks->einfo
3391 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3392 ehdr->e_machine, abfd, bed->elf_machine_code);
3393
3394 /* As a GNU extension, any input sections which are named
3395 .gnu.warning.SYMBOL are treated as warning symbols for the given
3396 symbol. This differs from .gnu.warning sections, which generate
3397 warnings when they are included in an output file. */
3398 /* PR 12761: Also generate this warning when building shared libraries. */
3399 if (info->executable || info->shared)
3400 {
3401 asection *s;
3402
3403 for (s = abfd->sections; s != NULL; s = s->next)
3404 {
3405 const char *name;
3406
3407 name = bfd_get_section_name (abfd, s);
3408 if (CONST_STRNEQ (name, ".gnu.warning."))
3409 {
3410 char *msg;
3411 bfd_size_type sz;
3412
3413 name += sizeof ".gnu.warning." - 1;
3414
3415 /* If this is a shared object, then look up the symbol
3416 in the hash table. If it is there, and it is already
3417 been defined, then we will not be using the entry
3418 from this shared object, so we don't need to warn.
3419 FIXME: If we see the definition in a regular object
3420 later on, we will warn, but we shouldn't. The only
3421 fix is to keep track of what warnings we are supposed
3422 to emit, and then handle them all at the end of the
3423 link. */
3424 if (dynamic)
3425 {
3426 struct elf_link_hash_entry *h;
3427
3428 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3429
3430 /* FIXME: What about bfd_link_hash_common? */
3431 if (h != NULL
3432 && (h->root.type == bfd_link_hash_defined
3433 || h->root.type == bfd_link_hash_defweak))
3434 {
3435 /* We don't want to issue this warning. Clobber
3436 the section size so that the warning does not
3437 get copied into the output file. */
3438 s->size = 0;
3439 continue;
3440 }
3441 }
3442
3443 sz = s->size;
3444 msg = (char *) bfd_alloc (abfd, sz + 1);
3445 if (msg == NULL)
3446 goto error_return;
3447
3448 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3449 goto error_return;
3450
3451 msg[sz] = '\0';
3452
3453 if (! (_bfd_generic_link_add_one_symbol
3454 (info, abfd, name, BSF_WARNING, s, 0, msg,
3455 FALSE, bed->collect, NULL)))
3456 goto error_return;
3457
3458 if (! info->relocatable)
3459 {
3460 /* Clobber the section size so that the warning does
3461 not get copied into the output file. */
3462 s->size = 0;
3463
3464 /* Also set SEC_EXCLUDE, so that symbols defined in
3465 the warning section don't get copied to the output. */
3466 s->flags |= SEC_EXCLUDE;
3467 }
3468 }
3469 }
3470 }
3471
3472 add_needed = TRUE;
3473 if (! dynamic)
3474 {
3475 /* If we are creating a shared library, create all the dynamic
3476 sections immediately. We need to attach them to something,
3477 so we attach them to this BFD, provided it is the right
3478 format. FIXME: If there are no input BFD's of the same
3479 format as the output, we can't make a shared library. */
3480 if (info->shared
3481 && is_elf_hash_table (htab)
3482 && info->output_bfd->xvec == abfd->xvec
3483 && !htab->dynamic_sections_created)
3484 {
3485 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3486 goto error_return;
3487 }
3488 }
3489 else if (!is_elf_hash_table (htab))
3490 goto error_return;
3491 else
3492 {
3493 asection *s;
3494 const char *soname = NULL;
3495 char *audit = NULL;
3496 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 int ret;
3498
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s = abfd->sections) != NULL
3502 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3503 abort ();
3504
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3511 all. */
3512 add_needed = (elf_dyn_lib_class (abfd)
3513 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3514 | DYN_NO_NEEDED)) == 0;
3515
3516 s = bfd_get_section_by_name (abfd, ".dynamic");
3517 if (s != NULL)
3518 {
3519 bfd_byte *dynbuf;
3520 bfd_byte *extdyn;
3521 unsigned int elfsec;
3522 unsigned long shlink;
3523
3524 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3525 {
3526 error_free_dyn:
3527 free (dynbuf);
3528 goto error_return;
3529 }
3530
3531 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3532 if (elfsec == SHN_BAD)
3533 goto error_free_dyn;
3534 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3535
3536 for (extdyn = dynbuf;
3537 extdyn < dynbuf + s->size;
3538 extdyn += bed->s->sizeof_dyn)
3539 {
3540 Elf_Internal_Dyn dyn;
3541
3542 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3543 if (dyn.d_tag == DT_SONAME)
3544 {
3545 unsigned int tagv = dyn.d_un.d_val;
3546 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3547 if (soname == NULL)
3548 goto error_free_dyn;
3549 }
3550 if (dyn.d_tag == DT_NEEDED)
3551 {
3552 struct bfd_link_needed_list *n, **pn;
3553 char *fnm, *anm;
3554 unsigned int tagv = dyn.d_un.d_val;
3555
3556 amt = sizeof (struct bfd_link_needed_list);
3557 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 if (n == NULL || fnm == NULL)
3560 goto error_free_dyn;
3561 amt = strlen (fnm) + 1;
3562 anm = (char *) bfd_alloc (abfd, amt);
3563 if (anm == NULL)
3564 goto error_free_dyn;
3565 memcpy (anm, fnm, amt);
3566 n->name = anm;
3567 n->by = abfd;
3568 n->next = NULL;
3569 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3570 ;
3571 *pn = n;
3572 }
3573 if (dyn.d_tag == DT_RUNPATH)
3574 {
3575 struct bfd_link_needed_list *n, **pn;
3576 char *fnm, *anm;
3577 unsigned int tagv = dyn.d_un.d_val;
3578
3579 amt = sizeof (struct bfd_link_needed_list);
3580 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3581 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (n == NULL || fnm == NULL)
3583 goto error_free_dyn;
3584 amt = strlen (fnm) + 1;
3585 anm = (char *) bfd_alloc (abfd, amt);
3586 if (anm == NULL)
3587 goto error_free_dyn;
3588 memcpy (anm, fnm, amt);
3589 n->name = anm;
3590 n->by = abfd;
3591 n->next = NULL;
3592 for (pn = & runpath;
3593 *pn != NULL;
3594 pn = &(*pn)->next)
3595 ;
3596 *pn = n;
3597 }
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath && dyn.d_tag == DT_RPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & rpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 if (dyn.d_tag == DT_AUDIT)
3625 {
3626 unsigned int tagv = dyn.d_un.d_val;
3627 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 }
3629 }
3630
3631 free (dynbuf);
3632 }
3633
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3636 if (runpath)
3637 rpath = runpath;
3638
3639 if (rpath)
3640 {
3641 struct bfd_link_needed_list **pn;
3642 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3643 ;
3644 *pn = rpath;
3645 }
3646
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3653 file. */
3654 bfd_section_list_clear (abfd);
3655
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3660 name. */
3661 if (soname == NULL || *soname == '\0')
3662 {
3663 soname = elf_dt_name (abfd);
3664 if (soname == NULL || *soname == '\0')
3665 soname = bfd_get_filename (abfd);
3666 }
3667
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd) = soname;
3671
3672 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3673 if (ret < 0)
3674 goto error_return;
3675
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3679 if (ret > 0)
3680 return TRUE;
3681
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd) = audit;
3684 }
3685
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3690
3691 if (! dynamic || elf_dynsymtab (abfd) == 0)
3692 hdr = &elf_tdata (abfd)->symtab_hdr;
3693 else
3694 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3695
3696 symcount = hdr->sh_size / bed->s->sizeof_sym;
3697
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3700 this point. */
3701 if (elf_bad_symtab (abfd))
3702 {
3703 extsymcount = symcount;
3704 extsymoff = 0;
3705 }
3706 else
3707 {
3708 extsymcount = symcount - hdr->sh_info;
3709 extsymoff = hdr->sh_info;
3710 }
3711
3712 sym_hash = NULL;
3713 if (extsymcount != 0)
3714 {
3715 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3716 NULL, NULL, NULL);
3717 if (isymbuf == NULL)
3718 goto error_return;
3719
3720 /* We store a pointer to the hash table entry for each external
3721 symbol. */
3722 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3723 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3724 if (sym_hash == NULL)
3725 goto error_free_sym;
3726 elf_sym_hashes (abfd) = sym_hash;
3727 }
3728
3729 if (dynamic)
3730 {
3731 /* Read in any version definitions. */
3732 if (!_bfd_elf_slurp_version_tables (abfd,
3733 info->default_imported_symver))
3734 goto error_free_sym;
3735
3736 /* Read in the symbol versions, but don't bother to convert them
3737 to internal format. */
3738 if (elf_dynversym (abfd) != 0)
3739 {
3740 Elf_Internal_Shdr *versymhdr;
3741
3742 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3744 if (extversym == NULL)
3745 goto error_free_sym;
3746 amt = versymhdr->sh_size;
3747 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3748 || bfd_bread (extversym, amt, abfd) != amt)
3749 goto error_free_vers;
3750 }
3751 }
3752
3753 /* If we are loading an as-needed shared lib, save the symbol table
3754 state before we start adding symbols. If the lib turns out
3755 to be unneeded, restore the state. */
3756 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3757 {
3758 unsigned int i;
3759 size_t entsize;
3760
3761 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3762 {
3763 struct bfd_hash_entry *p;
3764 struct elf_link_hash_entry *h;
3765
3766 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3767 {
3768 h = (struct elf_link_hash_entry *) p;
3769 entsize += htab->root.table.entsize;
3770 if (h->root.type == bfd_link_hash_warning)
3771 entsize += htab->root.table.entsize;
3772 }
3773 }
3774
3775 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3776 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3777 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3778 if (old_tab == NULL)
3779 goto error_free_vers;
3780
3781 /* Remember the current objalloc pointer, so that all mem for
3782 symbols added can later be reclaimed. */
3783 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3784 if (alloc_mark == NULL)
3785 goto error_free_vers;
3786
3787 /* Make a special call to the linker "notice" function to
3788 tell it that we are about to handle an as-needed lib. */
3789 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3790 notice_as_needed, 0, NULL))
3791 goto error_free_vers;
3792
3793 /* Clone the symbol table and sym hashes. Remember some
3794 pointers into the symbol table, and dynamic symbol count. */
3795 old_hash = (char *) old_tab + tabsize;
3796 old_ent = (char *) old_hash + hashsize;
3797 memcpy (old_tab, htab->root.table.table, tabsize);
3798 memcpy (old_hash, sym_hash, hashsize);
3799 old_undefs = htab->root.undefs;
3800 old_undefs_tail = htab->root.undefs_tail;
3801 old_table = htab->root.table.table;
3802 old_size = htab->root.table.size;
3803 old_count = htab->root.table.count;
3804 old_dynsymcount = htab->dynsymcount;
3805
3806 for (i = 0; i < htab->root.table.size; i++)
3807 {
3808 struct bfd_hash_entry *p;
3809 struct elf_link_hash_entry *h;
3810
3811 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3812 {
3813 memcpy (old_ent, p, htab->root.table.entsize);
3814 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 h = (struct elf_link_hash_entry *) p;
3816 if (h->root.type == bfd_link_hash_warning)
3817 {
3818 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3819 old_ent = (char *) old_ent + htab->root.table.entsize;
3820 }
3821 }
3822 }
3823 }
3824
3825 weaks = NULL;
3826 ever = extversym != NULL ? extversym + extsymoff : NULL;
3827 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3828 isym < isymend;
3829 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3830 {
3831 int bind;
3832 bfd_vma value;
3833 asection *sec, *new_sec;
3834 flagword flags;
3835 const char *name;
3836 struct elf_link_hash_entry *h;
3837 bfd_boolean definition;
3838 bfd_boolean size_change_ok;
3839 bfd_boolean type_change_ok;
3840 bfd_boolean new_weakdef;
3841 bfd_boolean override;
3842 bfd_boolean common;
3843 unsigned int old_alignment;
3844 bfd *old_bfd;
3845 bfd * undef_bfd = NULL;
3846
3847 override = FALSE;
3848
3849 flags = BSF_NO_FLAGS;
3850 sec = NULL;
3851 value = isym->st_value;
3852 *sym_hash = NULL;
3853 common = bed->common_definition (isym);
3854
3855 bind = ELF_ST_BIND (isym->st_info);
3856 switch (bind)
3857 {
3858 case STB_LOCAL:
3859 /* This should be impossible, since ELF requires that all
3860 global symbols follow all local symbols, and that sh_info
3861 point to the first global symbol. Unfortunately, Irix 5
3862 screws this up. */
3863 continue;
3864
3865 case STB_GLOBAL:
3866 if (isym->st_shndx != SHN_UNDEF && !common)
3867 flags = BSF_GLOBAL;
3868 break;
3869
3870 case STB_WEAK:
3871 flags = BSF_WEAK;
3872 break;
3873
3874 case STB_GNU_UNIQUE:
3875 flags = BSF_GNU_UNIQUE;
3876 break;
3877
3878 default:
3879 /* Leave it up to the processor backend. */
3880 break;
3881 }
3882
3883 if (isym->st_shndx == SHN_UNDEF)
3884 sec = bfd_und_section_ptr;
3885 else if (isym->st_shndx == SHN_ABS)
3886 sec = bfd_abs_section_ptr;
3887 else if (isym->st_shndx == SHN_COMMON)
3888 {
3889 sec = bfd_com_section_ptr;
3890 /* What ELF calls the size we call the value. What ELF
3891 calls the value we call the alignment. */
3892 value = isym->st_size;
3893 }
3894 else
3895 {
3896 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3897 if (sec == NULL)
3898 sec = bfd_abs_section_ptr;
3899 else if (elf_discarded_section (sec))
3900 {
3901 /* Symbols from discarded section are undefined. We keep
3902 its visibility. */
3903 sec = bfd_und_section_ptr;
3904 isym->st_shndx = SHN_UNDEF;
3905 }
3906 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3907 value -= sec->vma;
3908 }
3909
3910 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3911 isym->st_name);
3912 if (name == NULL)
3913 goto error_free_vers;
3914
3915 if (isym->st_shndx == SHN_COMMON
3916 && (abfd->flags & BFD_PLUGIN) != 0)
3917 {
3918 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3919
3920 if (xc == NULL)
3921 {
3922 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3923 | SEC_EXCLUDE);
3924 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3925 if (xc == NULL)
3926 goto error_free_vers;
3927 }
3928 sec = xc;
3929 }
3930 else if (isym->st_shndx == SHN_COMMON
3931 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3932 && !info->relocatable)
3933 {
3934 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3935
3936 if (tcomm == NULL)
3937 {
3938 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3939 | SEC_LINKER_CREATED);
3940 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3941 if (tcomm == NULL)
3942 goto error_free_vers;
3943 }
3944 sec = tcomm;
3945 }
3946 else if (bed->elf_add_symbol_hook)
3947 {
3948 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3949 &sec, &value))
3950 goto error_free_vers;
3951
3952 /* The hook function sets the name to NULL if this symbol
3953 should be skipped for some reason. */
3954 if (name == NULL)
3955 continue;
3956 }
3957
3958 /* Sanity check that all possibilities were handled. */
3959 if (sec == NULL)
3960 {
3961 bfd_set_error (bfd_error_bad_value);
3962 goto error_free_vers;
3963 }
3964
3965 if (bfd_is_und_section (sec)
3966 || bfd_is_com_section (sec))
3967 definition = FALSE;
3968 else
3969 definition = TRUE;
3970
3971 size_change_ok = FALSE;
3972 type_change_ok = bed->type_change_ok;
3973 old_alignment = 0;
3974 old_bfd = NULL;
3975 new_sec = sec;
3976
3977 if (is_elf_hash_table (htab))
3978 {
3979 Elf_Internal_Versym iver;
3980 unsigned int vernum = 0;
3981 bfd_boolean skip;
3982
3983 /* If this is a definition of a symbol which was previously
3984 referenced in a non-weak manner then make a note of the bfd
3985 that contained the reference. This is used if we need to
3986 refer to the source of the reference later on. */
3987 if (! bfd_is_und_section (sec))
3988 {
3989 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3990
3991 if (h != NULL
3992 && h->root.type == bfd_link_hash_undefined
3993 && h->root.u.undef.abfd)
3994 undef_bfd = h->root.u.undef.abfd;
3995 }
3996
3997 if (ever == NULL)
3998 {
3999 if (info->default_imported_symver)
4000 /* Use the default symbol version created earlier. */
4001 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4002 else
4003 iver.vs_vers = 0;
4004 }
4005 else
4006 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4007
4008 vernum = iver.vs_vers & VERSYM_VERSION;
4009
4010 /* If this is a hidden symbol, or if it is not version
4011 1, we append the version name to the symbol name.
4012 However, we do not modify a non-hidden absolute symbol
4013 if it is not a function, because it might be the version
4014 symbol itself. FIXME: What if it isn't? */
4015 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4016 || (vernum > 1
4017 && (!bfd_is_abs_section (sec)
4018 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4019 {
4020 const char *verstr;
4021 size_t namelen, verlen, newlen;
4022 char *newname, *p;
4023
4024 if (isym->st_shndx != SHN_UNDEF)
4025 {
4026 if (vernum > elf_tdata (abfd)->cverdefs)
4027 verstr = NULL;
4028 else if (vernum > 1)
4029 verstr =
4030 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4031 else
4032 verstr = "";
4033
4034 if (verstr == NULL)
4035 {
4036 (*_bfd_error_handler)
4037 (_("%B: %s: invalid version %u (max %d)"),
4038 abfd, name, vernum,
4039 elf_tdata (abfd)->cverdefs);
4040 bfd_set_error (bfd_error_bad_value);
4041 goto error_free_vers;
4042 }
4043 }
4044 else
4045 {
4046 /* We cannot simply test for the number of
4047 entries in the VERNEED section since the
4048 numbers for the needed versions do not start
4049 at 0. */
4050 Elf_Internal_Verneed *t;
4051
4052 verstr = NULL;
4053 for (t = elf_tdata (abfd)->verref;
4054 t != NULL;
4055 t = t->vn_nextref)
4056 {
4057 Elf_Internal_Vernaux *a;
4058
4059 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4060 {
4061 if (a->vna_other == vernum)
4062 {
4063 verstr = a->vna_nodename;
4064 break;
4065 }
4066 }
4067 if (a != NULL)
4068 break;
4069 }
4070 if (verstr == NULL)
4071 {
4072 (*_bfd_error_handler)
4073 (_("%B: %s: invalid needed version %d"),
4074 abfd, name, vernum);
4075 bfd_set_error (bfd_error_bad_value);
4076 goto error_free_vers;
4077 }
4078 }
4079
4080 namelen = strlen (name);
4081 verlen = strlen (verstr);
4082 newlen = namelen + verlen + 2;
4083 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4084 && isym->st_shndx != SHN_UNDEF)
4085 ++newlen;
4086
4087 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4088 if (newname == NULL)
4089 goto error_free_vers;
4090 memcpy (newname, name, namelen);
4091 p = newname + namelen;
4092 *p++ = ELF_VER_CHR;
4093 /* If this is a defined non-hidden version symbol,
4094 we add another @ to the name. This indicates the
4095 default version of the symbol. */
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 *p++ = ELF_VER_CHR;
4099 memcpy (p, verstr, verlen + 1);
4100
4101 name = newname;
4102 }
4103
4104 /* If necessary, make a second attempt to locate the bfd
4105 containing an unresolved, non-weak reference to the
4106 current symbol. */
4107 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4108 {
4109 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4110
4111 if (h != NULL
4112 && h->root.type == bfd_link_hash_undefined
4113 && h->root.u.undef.abfd)
4114 undef_bfd = h->root.u.undef.abfd;
4115 }
4116
4117 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4118 &value, &old_alignment,
4119 sym_hash, &skip, &override,
4120 &type_change_ok, &size_change_ok))
4121 goto error_free_vers;
4122
4123 if (skip)
4124 continue;
4125
4126 if (override)
4127 definition = FALSE;
4128
4129 h = *sym_hash;
4130 while (h->root.type == bfd_link_hash_indirect
4131 || h->root.type == bfd_link_hash_warning)
4132 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4133
4134 /* Remember the old alignment if this is a common symbol, so
4135 that we don't reduce the alignment later on. We can't
4136 check later, because _bfd_generic_link_add_one_symbol
4137 will set a default for the alignment which we want to
4138 override. We also remember the old bfd where the existing
4139 definition comes from. */
4140 switch (h->root.type)
4141 {
4142 default:
4143 break;
4144
4145 case bfd_link_hash_defined:
4146 case bfd_link_hash_defweak:
4147 old_bfd = h->root.u.def.section->owner;
4148 break;
4149
4150 case bfd_link_hash_common:
4151 old_bfd = h->root.u.c.p->section->owner;
4152 old_alignment = h->root.u.c.p->alignment_power;
4153 break;
4154 }
4155
4156 if (elf_tdata (abfd)->verdef != NULL
4157 && ! override
4158 && vernum > 1
4159 && definition)
4160 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4161 }
4162
4163 if (! (_bfd_generic_link_add_one_symbol
4164 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4165 (struct bfd_link_hash_entry **) sym_hash)))
4166 goto error_free_vers;
4167
4168 h = *sym_hash;
4169 while (h->root.type == bfd_link_hash_indirect
4170 || h->root.type == bfd_link_hash_warning)
4171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4172
4173 *sym_hash = h;
4174 if (is_elf_hash_table (htab))
4175 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4176
4177 new_weakdef = FALSE;
4178 if (dynamic
4179 && definition
4180 && (flags & BSF_WEAK) != 0
4181 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4182 && is_elf_hash_table (htab)
4183 && h->u.weakdef == NULL)
4184 {
4185 /* Keep a list of all weak defined non function symbols from
4186 a dynamic object, using the weakdef field. Later in this
4187 function we will set the weakdef field to the correct
4188 value. We only put non-function symbols from dynamic
4189 objects on this list, because that happens to be the only
4190 time we need to know the normal symbol corresponding to a
4191 weak symbol, and the information is time consuming to
4192 figure out. If the weakdef field is not already NULL,
4193 then this symbol was already defined by some previous
4194 dynamic object, and we will be using that previous
4195 definition anyhow. */
4196
4197 h->u.weakdef = weaks;
4198 weaks = h;
4199 new_weakdef = TRUE;
4200 }
4201
4202 /* Set the alignment of a common symbol. */
4203 if ((common || bfd_is_com_section (sec))
4204 && h->root.type == bfd_link_hash_common)
4205 {
4206 unsigned int align;
4207
4208 if (common)
4209 align = bfd_log2 (isym->st_value);
4210 else
4211 {
4212 /* The new symbol is a common symbol in a shared object.
4213 We need to get the alignment from the section. */
4214 align = new_sec->alignment_power;
4215 }
4216 if (align > old_alignment)
4217 h->root.u.c.p->alignment_power = align;
4218 else
4219 h->root.u.c.p->alignment_power = old_alignment;
4220 }
4221
4222 if (is_elf_hash_table (htab))
4223 {
4224 bfd_boolean dynsym;
4225
4226 /* Check the alignment when a common symbol is involved. This
4227 can change when a common symbol is overridden by a normal
4228 definition or a common symbol is ignored due to the old
4229 normal definition. We need to make sure the maximum
4230 alignment is maintained. */
4231 if ((old_alignment || common)
4232 && h->root.type != bfd_link_hash_common)
4233 {
4234 unsigned int common_align;
4235 unsigned int normal_align;
4236 unsigned int symbol_align;
4237 bfd *normal_bfd;
4238 bfd *common_bfd;
4239
4240 symbol_align = ffs (h->root.u.def.value) - 1;
4241 if (h->root.u.def.section->owner != NULL
4242 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4243 {
4244 normal_align = h->root.u.def.section->alignment_power;
4245 if (normal_align > symbol_align)
4246 normal_align = symbol_align;
4247 }
4248 else
4249 normal_align = symbol_align;
4250
4251 if (old_alignment)
4252 {
4253 common_align = old_alignment;
4254 common_bfd = old_bfd;
4255 normal_bfd = abfd;
4256 }
4257 else
4258 {
4259 common_align = bfd_log2 (isym->st_value);
4260 common_bfd = abfd;
4261 normal_bfd = old_bfd;
4262 }
4263
4264 if (normal_align < common_align)
4265 {
4266 /* PR binutils/2735 */
4267 if (normal_bfd == NULL)
4268 (*_bfd_error_handler)
4269 (_("Warning: alignment %u of common symbol `%s' in %B"
4270 " is greater than the alignment (%u) of its section %A"),
4271 common_bfd, h->root.u.def.section,
4272 1 << common_align, name, 1 << normal_align);
4273 else
4274 (*_bfd_error_handler)
4275 (_("Warning: alignment %u of symbol `%s' in %B"
4276 " is smaller than %u in %B"),
4277 normal_bfd, common_bfd,
4278 1 << normal_align, name, 1 << common_align);
4279 }
4280 }
4281
4282 /* Remember the symbol size if it isn't undefined. */
4283 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4284 && (definition || h->size == 0))
4285 {
4286 if (h->size != 0
4287 && h->size != isym->st_size
4288 && ! size_change_ok)
4289 (*_bfd_error_handler)
4290 (_("Warning: size of symbol `%s' changed"
4291 " from %lu in %B to %lu in %B"),
4292 old_bfd, abfd,
4293 name, (unsigned long) h->size,
4294 (unsigned long) isym->st_size);
4295
4296 h->size = isym->st_size;
4297 }
4298
4299 /* If this is a common symbol, then we always want H->SIZE
4300 to be the size of the common symbol. The code just above
4301 won't fix the size if a common symbol becomes larger. We
4302 don't warn about a size change here, because that is
4303 covered by --warn-common. Allow changed between different
4304 function types. */
4305 if (h->root.type == bfd_link_hash_common)
4306 h->size = h->root.u.c.size;
4307
4308 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4309 && (definition || h->type == STT_NOTYPE))
4310 {
4311 unsigned int type = ELF_ST_TYPE (isym->st_info);
4312
4313 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4314 symbol. */
4315 if (type == STT_GNU_IFUNC
4316 && (abfd->flags & DYNAMIC) != 0)
4317 type = STT_FUNC;
4318
4319 if (h->type != type)
4320 {
4321 if (h->type != STT_NOTYPE && ! type_change_ok)
4322 (*_bfd_error_handler)
4323 (_("Warning: type of symbol `%s' changed"
4324 " from %d to %d in %B"),
4325 abfd, name, h->type, type);
4326
4327 h->type = type;
4328 }
4329 }
4330
4331 /* Merge st_other field. */
4332 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4333
4334 /* Set a flag in the hash table entry indicating the type of
4335 reference or definition we just found. Keep a count of
4336 the number of dynamic symbols we find. A dynamic symbol
4337 is one which is referenced or defined by both a regular
4338 object and a shared object. */
4339 dynsym = FALSE;
4340 if (! dynamic)
4341 {
4342 if (! definition)
4343 {
4344 h->ref_regular = 1;
4345 if (bind != STB_WEAK)
4346 h->ref_regular_nonweak = 1;
4347 }
4348 else
4349 {
4350 h->def_regular = 1;
4351 if (h->def_dynamic)
4352 {
4353 h->def_dynamic = 0;
4354 h->ref_dynamic = 1;
4355 }
4356 }
4357 if (! info->executable
4358 || h->def_dynamic
4359 || h->ref_dynamic)
4360 dynsym = TRUE;
4361 }
4362 else
4363 {
4364 if (! definition)
4365 h->ref_dynamic = 1;
4366 else
4367 {
4368 h->def_dynamic = 1;
4369 h->dynamic_def = 1;
4370 }
4371 if (h->def_regular
4372 || h->ref_regular
4373 || (h->u.weakdef != NULL
4374 && ! new_weakdef
4375 && h->u.weakdef->dynindx != -1))
4376 dynsym = TRUE;
4377 }
4378
4379 /* We don't want to make debug symbol dynamic. */
4380 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4381 dynsym = FALSE;
4382
4383 /* Nor should we make plugin symbols dynamic. */
4384 if ((abfd->flags & BFD_PLUGIN) != 0)
4385 dynsym = FALSE;
4386
4387 if (definition)
4388 h->target_internal = isym->st_target_internal;
4389
4390 /* Check to see if we need to add an indirect symbol for
4391 the default name. */
4392 if (definition || h->root.type == bfd_link_hash_common)
4393 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4394 &sec, &value, &dynsym,
4395 override))
4396 goto error_free_vers;
4397
4398 if (definition && !dynamic)
4399 {
4400 char *p = strchr (name, ELF_VER_CHR);
4401 if (p != NULL && p[1] != ELF_VER_CHR)
4402 {
4403 /* Queue non-default versions so that .symver x, x@FOO
4404 aliases can be checked. */
4405 if (!nondeflt_vers)
4406 {
4407 amt = ((isymend - isym + 1)
4408 * sizeof (struct elf_link_hash_entry *));
4409 nondeflt_vers =
4410 (struct elf_link_hash_entry **) bfd_malloc (amt);
4411 if (!nondeflt_vers)
4412 goto error_free_vers;
4413 }
4414 nondeflt_vers[nondeflt_vers_cnt++] = h;
4415 }
4416 }
4417
4418 if (dynsym && h->dynindx == -1)
4419 {
4420 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4421 goto error_free_vers;
4422 if (h->u.weakdef != NULL
4423 && ! new_weakdef
4424 && h->u.weakdef->dynindx == -1)
4425 {
4426 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4427 goto error_free_vers;
4428 }
4429 }
4430 else if (dynsym && h->dynindx != -1)
4431 /* If the symbol already has a dynamic index, but
4432 visibility says it should not be visible, turn it into
4433 a local symbol. */
4434 switch (ELF_ST_VISIBILITY (h->other))
4435 {
4436 case STV_INTERNAL:
4437 case STV_HIDDEN:
4438 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4439 dynsym = FALSE;
4440 break;
4441 }
4442
4443 if (!add_needed
4444 && definition
4445 && ((dynsym
4446 && h->ref_regular)
4447 || (h->ref_dynamic
4448 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4449 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4450 {
4451 int ret;
4452 const char *soname = elf_dt_name (abfd);
4453
4454 /* A symbol from a library loaded via DT_NEEDED of some
4455 other library is referenced by a regular object.
4456 Add a DT_NEEDED entry for it. Issue an error if
4457 --no-add-needed is used and the reference was not
4458 a weak one. */
4459 if (undef_bfd != NULL
4460 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4461 {
4462 (*_bfd_error_handler)
4463 (_("%B: undefined reference to symbol '%s'"),
4464 undef_bfd, name);
4465 (*_bfd_error_handler)
4466 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4467 abfd, name);
4468 bfd_set_error (bfd_error_invalid_operation);
4469 goto error_free_vers;
4470 }
4471
4472 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4473 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4474
4475 add_needed = TRUE;
4476 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4477 if (ret < 0)
4478 goto error_free_vers;
4479
4480 BFD_ASSERT (ret == 0);
4481 }
4482 }
4483 }
4484
4485 if (extversym != NULL)
4486 {
4487 free (extversym);
4488 extversym = NULL;
4489 }
4490
4491 if (isymbuf != NULL)
4492 {
4493 free (isymbuf);
4494 isymbuf = NULL;
4495 }
4496
4497 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4498 {
4499 unsigned int i;
4500
4501 /* Restore the symbol table. */
4502 if (bed->as_needed_cleanup)
4503 (*bed->as_needed_cleanup) (abfd, info);
4504 old_hash = (char *) old_tab + tabsize;
4505 old_ent = (char *) old_hash + hashsize;
4506 sym_hash = elf_sym_hashes (abfd);
4507 htab->root.table.table = old_table;
4508 htab->root.table.size = old_size;
4509 htab->root.table.count = old_count;
4510 memcpy (htab->root.table.table, old_tab, tabsize);
4511 memcpy (sym_hash, old_hash, hashsize);
4512 htab->root.undefs = old_undefs;
4513 htab->root.undefs_tail = old_undefs_tail;
4514 for (i = 0; i < htab->root.table.size; i++)
4515 {
4516 struct bfd_hash_entry *p;
4517 struct elf_link_hash_entry *h;
4518 bfd_size_type size;
4519 unsigned int alignment_power;
4520
4521 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4522 {
4523 h = (struct elf_link_hash_entry *) p;
4524 if (h->root.type == bfd_link_hash_warning)
4525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 if (h->dynindx >= old_dynsymcount)
4527 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4528
4529 /* Preserve the maximum alignment and size for common
4530 symbols even if this dynamic lib isn't on DT_NEEDED
4531 since it can still be loaded at the run-time by another
4532 dynamic lib. */
4533 if (h->root.type == bfd_link_hash_common)
4534 {
4535 size = h->root.u.c.size;
4536 alignment_power = h->root.u.c.p->alignment_power;
4537 }
4538 else
4539 {
4540 size = 0;
4541 alignment_power = 0;
4542 }
4543 memcpy (p, old_ent, htab->root.table.entsize);
4544 old_ent = (char *) old_ent + htab->root.table.entsize;
4545 h = (struct elf_link_hash_entry *) p;
4546 if (h->root.type == bfd_link_hash_warning)
4547 {
4548 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4549 old_ent = (char *) old_ent + htab->root.table.entsize;
4550 }
4551 else if (h->root.type == bfd_link_hash_common)
4552 {
4553 if (size > h->root.u.c.size)
4554 h->root.u.c.size = size;
4555 if (alignment_power > h->root.u.c.p->alignment_power)
4556 h->root.u.c.p->alignment_power = alignment_power;
4557 }
4558 }
4559 }
4560
4561 /* Make a special call to the linker "notice" function to
4562 tell it that symbols added for crefs may need to be removed. */
4563 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4564 notice_not_needed, 0, NULL))
4565 goto error_free_vers;
4566
4567 free (old_tab);
4568 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4569 alloc_mark);
4570 if (nondeflt_vers != NULL)
4571 free (nondeflt_vers);
4572 return TRUE;
4573 }
4574
4575 if (old_tab != NULL)
4576 {
4577 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4578 notice_needed, 0, NULL))
4579 goto error_free_vers;
4580 free (old_tab);
4581 old_tab = NULL;
4582 }
4583
4584 /* Now that all the symbols from this input file are created, handle
4585 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4586 if (nondeflt_vers != NULL)
4587 {
4588 bfd_size_type cnt, symidx;
4589
4590 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4591 {
4592 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4593 char *shortname, *p;
4594
4595 p = strchr (h->root.root.string, ELF_VER_CHR);
4596 if (p == NULL
4597 || (h->root.type != bfd_link_hash_defined
4598 && h->root.type != bfd_link_hash_defweak))
4599 continue;
4600
4601 amt = p - h->root.root.string;
4602 shortname = (char *) bfd_malloc (amt + 1);
4603 if (!shortname)
4604 goto error_free_vers;
4605 memcpy (shortname, h->root.root.string, amt);
4606 shortname[amt] = '\0';
4607
4608 hi = (struct elf_link_hash_entry *)
4609 bfd_link_hash_lookup (&htab->root, shortname,
4610 FALSE, FALSE, FALSE);
4611 if (hi != NULL
4612 && hi->root.type == h->root.type
4613 && hi->root.u.def.value == h->root.u.def.value
4614 && hi->root.u.def.section == h->root.u.def.section)
4615 {
4616 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4617 hi->root.type = bfd_link_hash_indirect;
4618 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4619 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4620 sym_hash = elf_sym_hashes (abfd);
4621 if (sym_hash)
4622 for (symidx = 0; symidx < extsymcount; ++symidx)
4623 if (sym_hash[symidx] == hi)
4624 {
4625 sym_hash[symidx] = h;
4626 break;
4627 }
4628 }
4629 free (shortname);
4630 }
4631 free (nondeflt_vers);
4632 nondeflt_vers = NULL;
4633 }
4634
4635 /* Now set the weakdefs field correctly for all the weak defined
4636 symbols we found. The only way to do this is to search all the
4637 symbols. Since we only need the information for non functions in
4638 dynamic objects, that's the only time we actually put anything on
4639 the list WEAKS. We need this information so that if a regular
4640 object refers to a symbol defined weakly in a dynamic object, the
4641 real symbol in the dynamic object is also put in the dynamic
4642 symbols; we also must arrange for both symbols to point to the
4643 same memory location. We could handle the general case of symbol
4644 aliasing, but a general symbol alias can only be generated in
4645 assembler code, handling it correctly would be very time
4646 consuming, and other ELF linkers don't handle general aliasing
4647 either. */
4648 if (weaks != NULL)
4649 {
4650 struct elf_link_hash_entry **hpp;
4651 struct elf_link_hash_entry **hppend;
4652 struct elf_link_hash_entry **sorted_sym_hash;
4653 struct elf_link_hash_entry *h;
4654 size_t sym_count;
4655
4656 /* Since we have to search the whole symbol list for each weak
4657 defined symbol, search time for N weak defined symbols will be
4658 O(N^2). Binary search will cut it down to O(NlogN). */
4659 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4660 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4661 if (sorted_sym_hash == NULL)
4662 goto error_return;
4663 sym_hash = sorted_sym_hash;
4664 hpp = elf_sym_hashes (abfd);
4665 hppend = hpp + extsymcount;
4666 sym_count = 0;
4667 for (; hpp < hppend; hpp++)
4668 {
4669 h = *hpp;
4670 if (h != NULL
4671 && h->root.type == bfd_link_hash_defined
4672 && !bed->is_function_type (h->type))
4673 {
4674 *sym_hash = h;
4675 sym_hash++;
4676 sym_count++;
4677 }
4678 }
4679
4680 qsort (sorted_sym_hash, sym_count,
4681 sizeof (struct elf_link_hash_entry *),
4682 elf_sort_symbol);
4683
4684 while (weaks != NULL)
4685 {
4686 struct elf_link_hash_entry *hlook;
4687 asection *slook;
4688 bfd_vma vlook;
4689 long ilook;
4690 size_t i, j, idx;
4691
4692 hlook = weaks;
4693 weaks = hlook->u.weakdef;
4694 hlook->u.weakdef = NULL;
4695
4696 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4697 || hlook->root.type == bfd_link_hash_defweak
4698 || hlook->root.type == bfd_link_hash_common
4699 || hlook->root.type == bfd_link_hash_indirect);
4700 slook = hlook->root.u.def.section;
4701 vlook = hlook->root.u.def.value;
4702
4703 ilook = -1;
4704 i = 0;
4705 j = sym_count;
4706 while (i < j)
4707 {
4708 bfd_signed_vma vdiff;
4709 idx = (i + j) / 2;
4710 h = sorted_sym_hash [idx];
4711 vdiff = vlook - h->root.u.def.value;
4712 if (vdiff < 0)
4713 j = idx;
4714 else if (vdiff > 0)
4715 i = idx + 1;
4716 else
4717 {
4718 long sdiff = slook->id - h->root.u.def.section->id;
4719 if (sdiff < 0)
4720 j = idx;
4721 else if (sdiff > 0)
4722 i = idx + 1;
4723 else
4724 {
4725 ilook = idx;
4726 break;
4727 }
4728 }
4729 }
4730
4731 /* We didn't find a value/section match. */
4732 if (ilook == -1)
4733 continue;
4734
4735 for (i = ilook; i < sym_count; i++)
4736 {
4737 h = sorted_sym_hash [i];
4738
4739 /* Stop if value or section doesn't match. */
4740 if (h->root.u.def.value != vlook
4741 || h->root.u.def.section != slook)
4742 break;
4743 else if (h != hlook)
4744 {
4745 hlook->u.weakdef = h;
4746
4747 /* If the weak definition is in the list of dynamic
4748 symbols, make sure the real definition is put
4749 there as well. */
4750 if (hlook->dynindx != -1 && h->dynindx == -1)
4751 {
4752 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4753 {
4754 err_free_sym_hash:
4755 free (sorted_sym_hash);
4756 goto error_return;
4757 }
4758 }
4759
4760 /* If the real definition is in the list of dynamic
4761 symbols, make sure the weak definition is put
4762 there as well. If we don't do this, then the
4763 dynamic loader might not merge the entries for the
4764 real definition and the weak definition. */
4765 if (h->dynindx != -1 && hlook->dynindx == -1)
4766 {
4767 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4768 goto err_free_sym_hash;
4769 }
4770 break;
4771 }
4772 }
4773 }
4774
4775 free (sorted_sym_hash);
4776 }
4777
4778 if (bed->check_directives
4779 && !(*bed->check_directives) (abfd, info))
4780 return FALSE;
4781
4782 /* If this object is the same format as the output object, and it is
4783 not a shared library, then let the backend look through the
4784 relocs.
4785
4786 This is required to build global offset table entries and to
4787 arrange for dynamic relocs. It is not required for the
4788 particular common case of linking non PIC code, even when linking
4789 against shared libraries, but unfortunately there is no way of
4790 knowing whether an object file has been compiled PIC or not.
4791 Looking through the relocs is not particularly time consuming.
4792 The problem is that we must either (1) keep the relocs in memory,
4793 which causes the linker to require additional runtime memory or
4794 (2) read the relocs twice from the input file, which wastes time.
4795 This would be a good case for using mmap.
4796
4797 I have no idea how to handle linking PIC code into a file of a
4798 different format. It probably can't be done. */
4799 if (! dynamic
4800 && is_elf_hash_table (htab)
4801 && bed->check_relocs != NULL
4802 && elf_object_id (abfd) == elf_hash_table_id (htab)
4803 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4804 {
4805 asection *o;
4806
4807 for (o = abfd->sections; o != NULL; o = o->next)
4808 {
4809 Elf_Internal_Rela *internal_relocs;
4810 bfd_boolean ok;
4811
4812 if ((o->flags & SEC_RELOC) == 0
4813 || o->reloc_count == 0
4814 || ((info->strip == strip_all || info->strip == strip_debugger)
4815 && (o->flags & SEC_DEBUGGING) != 0)
4816 || bfd_is_abs_section (o->output_section))
4817 continue;
4818
4819 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4820 info->keep_memory);
4821 if (internal_relocs == NULL)
4822 goto error_return;
4823
4824 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4825
4826 if (elf_section_data (o)->relocs != internal_relocs)
4827 free (internal_relocs);
4828
4829 if (! ok)
4830 goto error_return;
4831 }
4832 }
4833
4834 /* If this is a non-traditional link, try to optimize the handling
4835 of the .stab/.stabstr sections. */
4836 if (! dynamic
4837 && ! info->traditional_format
4838 && is_elf_hash_table (htab)
4839 && (info->strip != strip_all && info->strip != strip_debugger))
4840 {
4841 asection *stabstr;
4842
4843 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4844 if (stabstr != NULL)
4845 {
4846 bfd_size_type string_offset = 0;
4847 asection *stab;
4848
4849 for (stab = abfd->sections; stab; stab = stab->next)
4850 if (CONST_STRNEQ (stab->name, ".stab")
4851 && (!stab->name[5] ||
4852 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4853 && (stab->flags & SEC_MERGE) == 0
4854 && !bfd_is_abs_section (stab->output_section))
4855 {
4856 struct bfd_elf_section_data *secdata;
4857
4858 secdata = elf_section_data (stab);
4859 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4860 stabstr, &secdata->sec_info,
4861 &string_offset))
4862 goto error_return;
4863 if (secdata->sec_info)
4864 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4865 }
4866 }
4867 }
4868
4869 if (is_elf_hash_table (htab) && add_needed)
4870 {
4871 /* Add this bfd to the loaded list. */
4872 struct elf_link_loaded_list *n;
4873
4874 n = (struct elf_link_loaded_list *)
4875 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4876 if (n == NULL)
4877 goto error_return;
4878 n->abfd = abfd;
4879 n->next = htab->loaded;
4880 htab->loaded = n;
4881 }
4882
4883 return TRUE;
4884
4885 error_free_vers:
4886 if (old_tab != NULL)
4887 free (old_tab);
4888 if (nondeflt_vers != NULL)
4889 free (nondeflt_vers);
4890 if (extversym != NULL)
4891 free (extversym);
4892 error_free_sym:
4893 if (isymbuf != NULL)
4894 free (isymbuf);
4895 error_return:
4896 return FALSE;
4897 }
4898
4899 /* Return the linker hash table entry of a symbol that might be
4900 satisfied by an archive symbol. Return -1 on error. */
4901
4902 struct elf_link_hash_entry *
4903 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4904 struct bfd_link_info *info,
4905 const char *name)
4906 {
4907 struct elf_link_hash_entry *h;
4908 char *p, *copy;
4909 size_t len, first;
4910
4911 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4912 if (h != NULL)
4913 return h;
4914
4915 /* If this is a default version (the name contains @@), look up the
4916 symbol again with only one `@' as well as without the version.
4917 The effect is that references to the symbol with and without the
4918 version will be matched by the default symbol in the archive. */
4919
4920 p = strchr (name, ELF_VER_CHR);
4921 if (p == NULL || p[1] != ELF_VER_CHR)
4922 return h;
4923
4924 /* First check with only one `@'. */
4925 len = strlen (name);
4926 copy = (char *) bfd_alloc (abfd, len);
4927 if (copy == NULL)
4928 return (struct elf_link_hash_entry *) 0 - 1;
4929
4930 first = p - name + 1;
4931 memcpy (copy, name, first);
4932 memcpy (copy + first, name + first + 1, len - first);
4933
4934 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4935 if (h == NULL)
4936 {
4937 /* We also need to check references to the symbol without the
4938 version. */
4939 copy[first - 1] = '\0';
4940 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4941 FALSE, FALSE, TRUE);
4942 }
4943
4944 bfd_release (abfd, copy);
4945 return h;
4946 }
4947
4948 /* Add symbols from an ELF archive file to the linker hash table. We
4949 don't use _bfd_generic_link_add_archive_symbols because of a
4950 problem which arises on UnixWare. The UnixWare libc.so is an
4951 archive which includes an entry libc.so.1 which defines a bunch of
4952 symbols. The libc.so archive also includes a number of other
4953 object files, which also define symbols, some of which are the same
4954 as those defined in libc.so.1. Correct linking requires that we
4955 consider each object file in turn, and include it if it defines any
4956 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4957 this; it looks through the list of undefined symbols, and includes
4958 any object file which defines them. When this algorithm is used on
4959 UnixWare, it winds up pulling in libc.so.1 early and defining a
4960 bunch of symbols. This means that some of the other objects in the
4961 archive are not included in the link, which is incorrect since they
4962 precede libc.so.1 in the archive.
4963
4964 Fortunately, ELF archive handling is simpler than that done by
4965 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4966 oddities. In ELF, if we find a symbol in the archive map, and the
4967 symbol is currently undefined, we know that we must pull in that
4968 object file.
4969
4970 Unfortunately, we do have to make multiple passes over the symbol
4971 table until nothing further is resolved. */
4972
4973 static bfd_boolean
4974 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4975 {
4976 symindex c;
4977 bfd_boolean *defined = NULL;
4978 bfd_boolean *included = NULL;
4979 carsym *symdefs;
4980 bfd_boolean loop;
4981 bfd_size_type amt;
4982 const struct elf_backend_data *bed;
4983 struct elf_link_hash_entry * (*archive_symbol_lookup)
4984 (bfd *, struct bfd_link_info *, const char *);
4985
4986 if (! bfd_has_map (abfd))
4987 {
4988 /* An empty archive is a special case. */
4989 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4990 return TRUE;
4991 bfd_set_error (bfd_error_no_armap);
4992 return FALSE;
4993 }
4994
4995 /* Keep track of all symbols we know to be already defined, and all
4996 files we know to be already included. This is to speed up the
4997 second and subsequent passes. */
4998 c = bfd_ardata (abfd)->symdef_count;
4999 if (c == 0)
5000 return TRUE;
5001 amt = c;
5002 amt *= sizeof (bfd_boolean);
5003 defined = (bfd_boolean *) bfd_zmalloc (amt);
5004 included = (bfd_boolean *) bfd_zmalloc (amt);
5005 if (defined == NULL || included == NULL)
5006 goto error_return;
5007
5008 symdefs = bfd_ardata (abfd)->symdefs;
5009 bed = get_elf_backend_data (abfd);
5010 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5011
5012 do
5013 {
5014 file_ptr last;
5015 symindex i;
5016 carsym *symdef;
5017 carsym *symdefend;
5018
5019 loop = FALSE;
5020 last = -1;
5021
5022 symdef = symdefs;
5023 symdefend = symdef + c;
5024 for (i = 0; symdef < symdefend; symdef++, i++)
5025 {
5026 struct elf_link_hash_entry *h;
5027 bfd *element;
5028 struct bfd_link_hash_entry *undefs_tail;
5029 symindex mark;
5030
5031 if (defined[i] || included[i])
5032 continue;
5033 if (symdef->file_offset == last)
5034 {
5035 included[i] = TRUE;
5036 continue;
5037 }
5038
5039 h = archive_symbol_lookup (abfd, info, symdef->name);
5040 if (h == (struct elf_link_hash_entry *) 0 - 1)
5041 goto error_return;
5042
5043 if (h == NULL)
5044 continue;
5045
5046 if (h->root.type == bfd_link_hash_common)
5047 {
5048 /* We currently have a common symbol. The archive map contains
5049 a reference to this symbol, so we may want to include it. We
5050 only want to include it however, if this archive element
5051 contains a definition of the symbol, not just another common
5052 declaration of it.
5053
5054 Unfortunately some archivers (including GNU ar) will put
5055 declarations of common symbols into their archive maps, as
5056 well as real definitions, so we cannot just go by the archive
5057 map alone. Instead we must read in the element's symbol
5058 table and check that to see what kind of symbol definition
5059 this is. */
5060 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5061 continue;
5062 }
5063 else if (h->root.type != bfd_link_hash_undefined)
5064 {
5065 if (h->root.type != bfd_link_hash_undefweak)
5066 defined[i] = TRUE;
5067 continue;
5068 }
5069
5070 /* We need to include this archive member. */
5071 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5072 if (element == NULL)
5073 goto error_return;
5074
5075 if (! bfd_check_format (element, bfd_object))
5076 goto error_return;
5077
5078 /* Doublecheck that we have not included this object
5079 already--it should be impossible, but there may be
5080 something wrong with the archive. */
5081 if (element->archive_pass != 0)
5082 {
5083 bfd_set_error (bfd_error_bad_value);
5084 goto error_return;
5085 }
5086 element->archive_pass = 1;
5087
5088 undefs_tail = info->hash->undefs_tail;
5089
5090 if (!(*info->callbacks
5091 ->add_archive_element) (info, element, symdef->name, &element))
5092 goto error_return;
5093 if (!bfd_link_add_symbols (element, info))
5094 goto error_return;
5095
5096 /* If there are any new undefined symbols, we need to make
5097 another pass through the archive in order to see whether
5098 they can be defined. FIXME: This isn't perfect, because
5099 common symbols wind up on undefs_tail and because an
5100 undefined symbol which is defined later on in this pass
5101 does not require another pass. This isn't a bug, but it
5102 does make the code less efficient than it could be. */
5103 if (undefs_tail != info->hash->undefs_tail)
5104 loop = TRUE;
5105
5106 /* Look backward to mark all symbols from this object file
5107 which we have already seen in this pass. */
5108 mark = i;
5109 do
5110 {
5111 included[mark] = TRUE;
5112 if (mark == 0)
5113 break;
5114 --mark;
5115 }
5116 while (symdefs[mark].file_offset == symdef->file_offset);
5117
5118 /* We mark subsequent symbols from this object file as we go
5119 on through the loop. */
5120 last = symdef->file_offset;
5121 }
5122 }
5123 while (loop);
5124
5125 free (defined);
5126 free (included);
5127
5128 return TRUE;
5129
5130 error_return:
5131 if (defined != NULL)
5132 free (defined);
5133 if (included != NULL)
5134 free (included);
5135 return FALSE;
5136 }
5137
5138 /* Given an ELF BFD, add symbols to the global hash table as
5139 appropriate. */
5140
5141 bfd_boolean
5142 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5143 {
5144 switch (bfd_get_format (abfd))
5145 {
5146 case bfd_object:
5147 return elf_link_add_object_symbols (abfd, info);
5148 case bfd_archive:
5149 return elf_link_add_archive_symbols (abfd, info);
5150 default:
5151 bfd_set_error (bfd_error_wrong_format);
5152 return FALSE;
5153 }
5154 }
5155 \f
5156 struct hash_codes_info
5157 {
5158 unsigned long *hashcodes;
5159 bfd_boolean error;
5160 };
5161
5162 /* This function will be called though elf_link_hash_traverse to store
5163 all hash value of the exported symbols in an array. */
5164
5165 static bfd_boolean
5166 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5167 {
5168 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5169 const char *name;
5170 char *p;
5171 unsigned long ha;
5172 char *alc = NULL;
5173
5174 /* Ignore indirect symbols. These are added by the versioning code. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5177
5178 name = h->root.root.string;
5179 p = strchr (name, ELF_VER_CHR);
5180 if (p != NULL)
5181 {
5182 alc = (char *) bfd_malloc (p - name + 1);
5183 if (alc == NULL)
5184 {
5185 inf->error = TRUE;
5186 return FALSE;
5187 }
5188 memcpy (alc, name, p - name);
5189 alc[p - name] = '\0';
5190 name = alc;
5191 }
5192
5193 /* Compute the hash value. */
5194 ha = bfd_elf_hash (name);
5195
5196 /* Store the found hash value in the array given as the argument. */
5197 *(inf->hashcodes)++ = ha;
5198
5199 /* And store it in the struct so that we can put it in the hash table
5200 later. */
5201 h->u.elf_hash_value = ha;
5202
5203 if (alc != NULL)
5204 free (alc);
5205
5206 return TRUE;
5207 }
5208
5209 struct collect_gnu_hash_codes
5210 {
5211 bfd *output_bfd;
5212 const struct elf_backend_data *bed;
5213 unsigned long int nsyms;
5214 unsigned long int maskbits;
5215 unsigned long int *hashcodes;
5216 unsigned long int *hashval;
5217 unsigned long int *indx;
5218 unsigned long int *counts;
5219 bfd_vma *bitmask;
5220 bfd_byte *contents;
5221 long int min_dynindx;
5222 unsigned long int bucketcount;
5223 unsigned long int symindx;
5224 long int local_indx;
5225 long int shift1, shift2;
5226 unsigned long int mask;
5227 bfd_boolean error;
5228 };
5229
5230 /* This function will be called though elf_link_hash_traverse to store
5231 all hash value of the exported symbols in an array. */
5232
5233 static bfd_boolean
5234 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5235 {
5236 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5237 const char *name;
5238 char *p;
5239 unsigned long ha;
5240 char *alc = NULL;
5241
5242 /* Ignore indirect symbols. These are added by the versioning code. */
5243 if (h->dynindx == -1)
5244 return TRUE;
5245
5246 /* Ignore also local symbols and undefined symbols. */
5247 if (! (*s->bed->elf_hash_symbol) (h))
5248 return TRUE;
5249
5250 name = h->root.root.string;
5251 p = strchr (name, ELF_VER_CHR);
5252 if (p != NULL)
5253 {
5254 alc = (char *) bfd_malloc (p - name + 1);
5255 if (alc == NULL)
5256 {
5257 s->error = TRUE;
5258 return FALSE;
5259 }
5260 memcpy (alc, name, p - name);
5261 alc[p - name] = '\0';
5262 name = alc;
5263 }
5264
5265 /* Compute the hash value. */
5266 ha = bfd_elf_gnu_hash (name);
5267
5268 /* Store the found hash value in the array for compute_bucket_count,
5269 and also for .dynsym reordering purposes. */
5270 s->hashcodes[s->nsyms] = ha;
5271 s->hashval[h->dynindx] = ha;
5272 ++s->nsyms;
5273 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5274 s->min_dynindx = h->dynindx;
5275
5276 if (alc != NULL)
5277 free (alc);
5278
5279 return TRUE;
5280 }
5281
5282 /* This function will be called though elf_link_hash_traverse to do
5283 final dynaminc symbol renumbering. */
5284
5285 static bfd_boolean
5286 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5287 {
5288 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5289 unsigned long int bucket;
5290 unsigned long int val;
5291
5292 /* Ignore indirect symbols. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5295
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5298 {
5299 if (h->dynindx >= s->min_dynindx)
5300 h->dynindx = s->local_indx++;
5301 return TRUE;
5302 }
5303
5304 bucket = s->hashval[h->dynindx] % s->bucketcount;
5305 val = (s->hashval[h->dynindx] >> s->shift1)
5306 & ((s->maskbits >> s->shift1) - 1);
5307 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5308 s->bitmask[val]
5309 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5310 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5311 if (s->counts[bucket] == 1)
5312 /* Last element terminates the chain. */
5313 val |= 1;
5314 bfd_put_32 (s->output_bfd, val,
5315 s->contents + (s->indx[bucket] - s->symindx) * 4);
5316 --s->counts[bucket];
5317 h->dynindx = s->indx[bucket]++;
5318 return TRUE;
5319 }
5320
5321 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5322
5323 bfd_boolean
5324 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5325 {
5326 return !(h->forced_local
5327 || h->root.type == bfd_link_hash_undefined
5328 || h->root.type == bfd_link_hash_undefweak
5329 || ((h->root.type == bfd_link_hash_defined
5330 || h->root.type == bfd_link_hash_defweak)
5331 && h->root.u.def.section->output_section == NULL));
5332 }
5333
5334 /* Array used to determine the number of hash table buckets to use
5335 based on the number of symbols there are. If there are fewer than
5336 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5337 fewer than 37 we use 17 buckets, and so forth. We never use more
5338 than 32771 buckets. */
5339
5340 static const size_t elf_buckets[] =
5341 {
5342 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5343 16411, 32771, 0
5344 };
5345
5346 /* Compute bucket count for hashing table. We do not use a static set
5347 of possible tables sizes anymore. Instead we determine for all
5348 possible reasonable sizes of the table the outcome (i.e., the
5349 number of collisions etc) and choose the best solution. The
5350 weighting functions are not too simple to allow the table to grow
5351 without bounds. Instead one of the weighting factors is the size.
5352 Therefore the result is always a good payoff between few collisions
5353 (= short chain lengths) and table size. */
5354 static size_t
5355 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5356 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5357 unsigned long int nsyms,
5358 int gnu_hash)
5359 {
5360 size_t best_size = 0;
5361 unsigned long int i;
5362
5363 /* We have a problem here. The following code to optimize the table
5364 size requires an integer type with more the 32 bits. If
5365 BFD_HOST_U_64_BIT is set we know about such a type. */
5366 #ifdef BFD_HOST_U_64_BIT
5367 if (info->optimize)
5368 {
5369 size_t minsize;
5370 size_t maxsize;
5371 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5372 bfd *dynobj = elf_hash_table (info)->dynobj;
5373 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5374 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5375 unsigned long int *counts;
5376 bfd_size_type amt;
5377 unsigned int no_improvement_count = 0;
5378
5379 /* Possible optimization parameters: if we have NSYMS symbols we say
5380 that the hashing table must at least have NSYMS/4 and at most
5381 2*NSYMS buckets. */
5382 minsize = nsyms / 4;
5383 if (minsize == 0)
5384 minsize = 1;
5385 best_size = maxsize = nsyms * 2;
5386 if (gnu_hash)
5387 {
5388 if (minsize < 2)
5389 minsize = 2;
5390 if ((best_size & 31) == 0)
5391 ++best_size;
5392 }
5393
5394 /* Create array where we count the collisions in. We must use bfd_malloc
5395 since the size could be large. */
5396 amt = maxsize;
5397 amt *= sizeof (unsigned long int);
5398 counts = (unsigned long int *) bfd_malloc (amt);
5399 if (counts == NULL)
5400 return 0;
5401
5402 /* Compute the "optimal" size for the hash table. The criteria is a
5403 minimal chain length. The minor criteria is (of course) the size
5404 of the table. */
5405 for (i = minsize; i < maxsize; ++i)
5406 {
5407 /* Walk through the array of hashcodes and count the collisions. */
5408 BFD_HOST_U_64_BIT max;
5409 unsigned long int j;
5410 unsigned long int fact;
5411
5412 if (gnu_hash && (i & 31) == 0)
5413 continue;
5414
5415 memset (counts, '\0', i * sizeof (unsigned long int));
5416
5417 /* Determine how often each hash bucket is used. */
5418 for (j = 0; j < nsyms; ++j)
5419 ++counts[hashcodes[j] % i];
5420
5421 /* For the weight function we need some information about the
5422 pagesize on the target. This is information need not be 100%
5423 accurate. Since this information is not available (so far) we
5424 define it here to a reasonable default value. If it is crucial
5425 to have a better value some day simply define this value. */
5426 # ifndef BFD_TARGET_PAGESIZE
5427 # define BFD_TARGET_PAGESIZE (4096)
5428 # endif
5429
5430 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5431 and the chains. */
5432 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5433
5434 # if 1
5435 /* Variant 1: optimize for short chains. We add the squares
5436 of all the chain lengths (which favors many small chain
5437 over a few long chains). */
5438 for (j = 0; j < i; ++j)
5439 max += counts[j] * counts[j];
5440
5441 /* This adds penalties for the overall size of the table. */
5442 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5443 max *= fact * fact;
5444 # else
5445 /* Variant 2: Optimize a lot more for small table. Here we
5446 also add squares of the size but we also add penalties for
5447 empty slots (the +1 term). */
5448 for (j = 0; j < i; ++j)
5449 max += (1 + counts[j]) * (1 + counts[j]);
5450
5451 /* The overall size of the table is considered, but not as
5452 strong as in variant 1, where it is squared. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact;
5455 # endif
5456
5457 /* Compare with current best results. */
5458 if (max < best_chlen)
5459 {
5460 best_chlen = max;
5461 best_size = i;
5462 no_improvement_count = 0;
5463 }
5464 /* PR 11843: Avoid futile long searches for the best bucket size
5465 when there are a large number of symbols. */
5466 else if (++no_improvement_count == 100)
5467 break;
5468 }
5469
5470 free (counts);
5471 }
5472 else
5473 #endif /* defined (BFD_HOST_U_64_BIT) */
5474 {
5475 /* This is the fallback solution if no 64bit type is available or if we
5476 are not supposed to spend much time on optimizations. We select the
5477 bucket count using a fixed set of numbers. */
5478 for (i = 0; elf_buckets[i] != 0; i++)
5479 {
5480 best_size = elf_buckets[i];
5481 if (nsyms < elf_buckets[i + 1])
5482 break;
5483 }
5484 if (gnu_hash && best_size < 2)
5485 best_size = 2;
5486 }
5487
5488 return best_size;
5489 }
5490
5491 /* Size any SHT_GROUP section for ld -r. */
5492
5493 bfd_boolean
5494 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5495 {
5496 bfd *ibfd;
5497
5498 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5499 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5500 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5501 return FALSE;
5502 return TRUE;
5503 }
5504
5505 /* Set up the sizes and contents of the ELF dynamic sections. This is
5506 called by the ELF linker emulation before_allocation routine. We
5507 must set the sizes of the sections before the linker sets the
5508 addresses of the various sections. */
5509
5510 bfd_boolean
5511 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5512 const char *soname,
5513 const char *rpath,
5514 const char *filter_shlib,
5515 const char *audit,
5516 const char *depaudit,
5517 const char * const *auxiliary_filters,
5518 struct bfd_link_info *info,
5519 asection **sinterpptr)
5520 {
5521 bfd_size_type soname_indx;
5522 bfd *dynobj;
5523 const struct elf_backend_data *bed;
5524 struct elf_info_failed asvinfo;
5525
5526 *sinterpptr = NULL;
5527
5528 soname_indx = (bfd_size_type) -1;
5529
5530 if (!is_elf_hash_table (info->hash))
5531 return TRUE;
5532
5533 bed = get_elf_backend_data (output_bfd);
5534 if (info->execstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5536 else if (info->noexecstack)
5537 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5538 else
5539 {
5540 bfd *inputobj;
5541 asection *notesec = NULL;
5542 int exec = 0;
5543
5544 for (inputobj = info->input_bfds;
5545 inputobj;
5546 inputobj = inputobj->link_next)
5547 {
5548 asection *s;
5549
5550 if (inputobj->flags
5551 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5552 continue;
5553 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5554 if (s)
5555 {
5556 if (s->flags & SEC_CODE)
5557 exec = PF_X;
5558 notesec = s;
5559 }
5560 else if (bed->default_execstack)
5561 exec = PF_X;
5562 }
5563 if (notesec)
5564 {
5565 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5566 if (exec && info->relocatable
5567 && notesec->output_section != bfd_abs_section_ptr)
5568 notesec->output_section->flags |= SEC_CODE;
5569 }
5570 }
5571
5572 /* Any syms created from now on start with -1 in
5573 got.refcount/offset and plt.refcount/offset. */
5574 elf_hash_table (info)->init_got_refcount
5575 = elf_hash_table (info)->init_got_offset;
5576 elf_hash_table (info)->init_plt_refcount
5577 = elf_hash_table (info)->init_plt_offset;
5578
5579 if (info->relocatable
5580 && !_bfd_elf_size_group_sections (info))
5581 return FALSE;
5582
5583 /* The backend may have to create some sections regardless of whether
5584 we're dynamic or not. */
5585 if (bed->elf_backend_always_size_sections
5586 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5587 return FALSE;
5588
5589 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5590 return FALSE;
5591
5592 dynobj = elf_hash_table (info)->dynobj;
5593
5594 /* If there were no dynamic objects in the link, there is nothing to
5595 do here. */
5596 if (dynobj == NULL)
5597 return TRUE;
5598
5599 if (elf_hash_table (info)->dynamic_sections_created)
5600 {
5601 struct elf_info_failed eif;
5602 struct elf_link_hash_entry *h;
5603 asection *dynstr;
5604 struct bfd_elf_version_tree *t;
5605 struct bfd_elf_version_expr *d;
5606 asection *s;
5607 bfd_boolean all_defined;
5608
5609 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5610 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5611
5612 if (soname != NULL)
5613 {
5614 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5615 soname, TRUE);
5616 if (soname_indx == (bfd_size_type) -1
5617 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5618 return FALSE;
5619 }
5620
5621 if (info->symbolic)
5622 {
5623 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5624 return FALSE;
5625 info->flags |= DF_SYMBOLIC;
5626 }
5627
5628 if (rpath != NULL)
5629 {
5630 bfd_size_type indx;
5631
5632 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5633 TRUE);
5634 if (indx == (bfd_size_type) -1
5635 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5636 return FALSE;
5637
5638 if (info->new_dtags)
5639 {
5640 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5641 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5642 return FALSE;
5643 }
5644 }
5645
5646 if (filter_shlib != NULL)
5647 {
5648 bfd_size_type indx;
5649
5650 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5651 filter_shlib, TRUE);
5652 if (indx == (bfd_size_type) -1
5653 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5654 return FALSE;
5655 }
5656
5657 if (auxiliary_filters != NULL)
5658 {
5659 const char * const *p;
5660
5661 for (p = auxiliary_filters; *p != NULL; p++)
5662 {
5663 bfd_size_type indx;
5664
5665 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5666 *p, TRUE);
5667 if (indx == (bfd_size_type) -1
5668 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5669 return FALSE;
5670 }
5671 }
5672
5673 if (audit != NULL)
5674 {
5675 bfd_size_type indx;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5678 TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5681 return FALSE;
5682 }
5683
5684 if (depaudit != NULL)
5685 {
5686 bfd_size_type indx;
5687
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5689 TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5692 return FALSE;
5693 }
5694
5695 eif.info = info;
5696 eif.failed = FALSE;
5697
5698 /* If we are supposed to export all symbols into the dynamic symbol
5699 table (this is not the normal case), then do so. */
5700 if (info->export_dynamic
5701 || (info->executable && info->dynamic))
5702 {
5703 elf_link_hash_traverse (elf_hash_table (info),
5704 _bfd_elf_export_symbol,
5705 &eif);
5706 if (eif.failed)
5707 return FALSE;
5708 }
5709
5710 /* Make all global versions with definition. */
5711 for (t = info->version_info; t != NULL; t = t->next)
5712 for (d = t->globals.list; d != NULL; d = d->next)
5713 if (!d->symver && d->literal)
5714 {
5715 const char *verstr, *name;
5716 size_t namelen, verlen, newlen;
5717 char *newname, *p, leading_char;
5718 struct elf_link_hash_entry *newh;
5719
5720 leading_char = bfd_get_symbol_leading_char (output_bfd);
5721 name = d->pattern;
5722 namelen = strlen (name) + (leading_char != '\0');
5723 verstr = t->name;
5724 verlen = strlen (verstr);
5725 newlen = namelen + verlen + 3;
5726
5727 newname = (char *) bfd_malloc (newlen);
5728 if (newname == NULL)
5729 return FALSE;
5730 newname[0] = leading_char;
5731 memcpy (newname + (leading_char != '\0'), name, namelen);
5732
5733 /* Check the hidden versioned definition. */
5734 p = newname + namelen;
5735 *p++ = ELF_VER_CHR;
5736 memcpy (p, verstr, verlen + 1);
5737 newh = elf_link_hash_lookup (elf_hash_table (info),
5738 newname, FALSE, FALSE,
5739 FALSE);
5740 if (newh == NULL
5741 || (newh->root.type != bfd_link_hash_defined
5742 && newh->root.type != bfd_link_hash_defweak))
5743 {
5744 /* Check the default versioned definition. */
5745 *p++ = ELF_VER_CHR;
5746 memcpy (p, verstr, verlen + 1);
5747 newh = elf_link_hash_lookup (elf_hash_table (info),
5748 newname, FALSE, FALSE,
5749 FALSE);
5750 }
5751 free (newname);
5752
5753 /* Mark this version if there is a definition and it is
5754 not defined in a shared object. */
5755 if (newh != NULL
5756 && !newh->def_dynamic
5757 && (newh->root.type == bfd_link_hash_defined
5758 || newh->root.type == bfd_link_hash_defweak))
5759 d->symver = 1;
5760 }
5761
5762 /* Attach all the symbols to their version information. */
5763 asvinfo.info = info;
5764 asvinfo.failed = FALSE;
5765
5766 elf_link_hash_traverse (elf_hash_table (info),
5767 _bfd_elf_link_assign_sym_version,
5768 &asvinfo);
5769 if (asvinfo.failed)
5770 return FALSE;
5771
5772 if (!info->allow_undefined_version)
5773 {
5774 /* Check if all global versions have a definition. */
5775 all_defined = TRUE;
5776 for (t = info->version_info; t != NULL; t = t->next)
5777 for (d = t->globals.list; d != NULL; d = d->next)
5778 if (d->literal && !d->symver && !d->script)
5779 {
5780 (*_bfd_error_handler)
5781 (_("%s: undefined version: %s"),
5782 d->pattern, t->name);
5783 all_defined = FALSE;
5784 }
5785
5786 if (!all_defined)
5787 {
5788 bfd_set_error (bfd_error_bad_value);
5789 return FALSE;
5790 }
5791 }
5792
5793 /* Find all symbols which were defined in a dynamic object and make
5794 the backend pick a reasonable value for them. */
5795 elf_link_hash_traverse (elf_hash_table (info),
5796 _bfd_elf_adjust_dynamic_symbol,
5797 &eif);
5798 if (eif.failed)
5799 return FALSE;
5800
5801 /* Add some entries to the .dynamic section. We fill in some of the
5802 values later, in bfd_elf_final_link, but we must add the entries
5803 now so that we know the final size of the .dynamic section. */
5804
5805 /* If there are initialization and/or finalization functions to
5806 call then add the corresponding DT_INIT/DT_FINI entries. */
5807 h = (info->init_function
5808 ? elf_link_hash_lookup (elf_hash_table (info),
5809 info->init_function, FALSE,
5810 FALSE, FALSE)
5811 : NULL);
5812 if (h != NULL
5813 && (h->ref_regular
5814 || h->def_regular))
5815 {
5816 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5817 return FALSE;
5818 }
5819 h = (info->fini_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->fini_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5829 return FALSE;
5830 }
5831
5832 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5833 if (s != NULL && s->linker_has_input)
5834 {
5835 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5836 if (! info->executable)
5837 {
5838 bfd *sub;
5839 asection *o;
5840
5841 for (sub = info->input_bfds; sub != NULL;
5842 sub = sub->link_next)
5843 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5844 for (o = sub->sections; o != NULL; o = o->next)
5845 if (elf_section_data (o)->this_hdr.sh_type
5846 == SHT_PREINIT_ARRAY)
5847 {
5848 (*_bfd_error_handler)
5849 (_("%B: .preinit_array section is not allowed in DSO"),
5850 sub);
5851 break;
5852 }
5853
5854 bfd_set_error (bfd_error_nonrepresentable_section);
5855 return FALSE;
5856 }
5857
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5859 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5860 return FALSE;
5861 }
5862 s = bfd_get_section_by_name (output_bfd, ".init_array");
5863 if (s != NULL && s->linker_has_input)
5864 {
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5870 if (s != NULL && s->linker_has_input)
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5874 return FALSE;
5875 }
5876
5877 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5878 /* If .dynstr is excluded from the link, we don't want any of
5879 these tags. Strictly, we should be checking each section
5880 individually; This quick check covers for the case where
5881 someone does a /DISCARD/ : { *(*) }. */
5882 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5883 {
5884 bfd_size_type strsize;
5885
5886 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5887 if ((info->emit_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5889 || (info->emit_gnu_hash
5890 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5894 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5895 bed->s->sizeof_sym))
5896 return FALSE;
5897 }
5898 }
5899
5900 /* The backend must work out the sizes of all the other dynamic
5901 sections. */
5902 if (bed->elf_backend_size_dynamic_sections
5903 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5904 return FALSE;
5905
5906 if (elf_hash_table (info)->dynamic_sections_created)
5907 {
5908 unsigned long section_sym_count;
5909 struct bfd_elf_version_tree *verdefs;
5910 asection *s;
5911
5912 /* Set up the version definition section. */
5913 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5914 BFD_ASSERT (s != NULL);
5915
5916 /* We may have created additional version definitions if we are
5917 just linking a regular application. */
5918 verdefs = info->version_info;
5919
5920 /* Skip anonymous version tag. */
5921 if (verdefs != NULL && verdefs->vernum == 0)
5922 verdefs = verdefs->next;
5923
5924 if (verdefs == NULL && !info->create_default_symver)
5925 s->flags |= SEC_EXCLUDE;
5926 else
5927 {
5928 unsigned int cdefs;
5929 bfd_size_type size;
5930 struct bfd_elf_version_tree *t;
5931 bfd_byte *p;
5932 Elf_Internal_Verdef def;
5933 Elf_Internal_Verdaux defaux;
5934 struct bfd_link_hash_entry *bh;
5935 struct elf_link_hash_entry *h;
5936 const char *name;
5937
5938 cdefs = 0;
5939 size = 0;
5940
5941 /* Make space for the base version. */
5942 size += sizeof (Elf_External_Verdef);
5943 size += sizeof (Elf_External_Verdaux);
5944 ++cdefs;
5945
5946 /* Make space for the default version. */
5947 if (info->create_default_symver)
5948 {
5949 size += sizeof (Elf_External_Verdef);
5950 ++cdefs;
5951 }
5952
5953 for (t = verdefs; t != NULL; t = t->next)
5954 {
5955 struct bfd_elf_version_deps *n;
5956
5957 /* Don't emit base version twice. */
5958 if (t->vernum == 0)
5959 continue;
5960
5961 size += sizeof (Elf_External_Verdef);
5962 size += sizeof (Elf_External_Verdaux);
5963 ++cdefs;
5964
5965 for (n = t->deps; n != NULL; n = n->next)
5966 size += sizeof (Elf_External_Verdaux);
5967 }
5968
5969 s->size = size;
5970 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5971 if (s->contents == NULL && s->size != 0)
5972 return FALSE;
5973
5974 /* Fill in the version definition section. */
5975
5976 p = s->contents;
5977
5978 def.vd_version = VER_DEF_CURRENT;
5979 def.vd_flags = VER_FLG_BASE;
5980 def.vd_ndx = 1;
5981 def.vd_cnt = 1;
5982 if (info->create_default_symver)
5983 {
5984 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5985 def.vd_next = sizeof (Elf_External_Verdef);
5986 }
5987 else
5988 {
5989 def.vd_aux = sizeof (Elf_External_Verdef);
5990 def.vd_next = (sizeof (Elf_External_Verdef)
5991 + sizeof (Elf_External_Verdaux));
5992 }
5993
5994 if (soname_indx != (bfd_size_type) -1)
5995 {
5996 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5997 soname_indx);
5998 def.vd_hash = bfd_elf_hash (soname);
5999 defaux.vda_name = soname_indx;
6000 name = soname;
6001 }
6002 else
6003 {
6004 bfd_size_type indx;
6005
6006 name = lbasename (output_bfd->filename);
6007 def.vd_hash = bfd_elf_hash (name);
6008 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6009 name, FALSE);
6010 if (indx == (bfd_size_type) -1)
6011 return FALSE;
6012 defaux.vda_name = indx;
6013 }
6014 defaux.vda_next = 0;
6015
6016 _bfd_elf_swap_verdef_out (output_bfd, &def,
6017 (Elf_External_Verdef *) p);
6018 p += sizeof (Elf_External_Verdef);
6019 if (info->create_default_symver)
6020 {
6021 /* Add a symbol representing this version. */
6022 bh = NULL;
6023 if (! (_bfd_generic_link_add_one_symbol
6024 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6025 0, NULL, FALSE,
6026 get_elf_backend_data (dynobj)->collect, &bh)))
6027 return FALSE;
6028 h = (struct elf_link_hash_entry *) bh;
6029 h->non_elf = 0;
6030 h->def_regular = 1;
6031 h->type = STT_OBJECT;
6032 h->verinfo.vertree = NULL;
6033
6034 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6035 return FALSE;
6036
6037 /* Create a duplicate of the base version with the same
6038 aux block, but different flags. */
6039 def.vd_flags = 0;
6040 def.vd_ndx = 2;
6041 def.vd_aux = sizeof (Elf_External_Verdef);
6042 if (verdefs)
6043 def.vd_next = (sizeof (Elf_External_Verdef)
6044 + sizeof (Elf_External_Verdaux));
6045 else
6046 def.vd_next = 0;
6047 _bfd_elf_swap_verdef_out (output_bfd, &def,
6048 (Elf_External_Verdef *) p);
6049 p += sizeof (Elf_External_Verdef);
6050 }
6051 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6052 (Elf_External_Verdaux *) p);
6053 p += sizeof (Elf_External_Verdaux);
6054
6055 for (t = verdefs; t != NULL; t = t->next)
6056 {
6057 unsigned int cdeps;
6058 struct bfd_elf_version_deps *n;
6059
6060 /* Don't emit the base version twice. */
6061 if (t->vernum == 0)
6062 continue;
6063
6064 cdeps = 0;
6065 for (n = t->deps; n != NULL; n = n->next)
6066 ++cdeps;
6067
6068 /* Add a symbol representing this version. */
6069 bh = NULL;
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6072 0, NULL, FALSE,
6073 get_elf_backend_data (dynobj)->collect, &bh)))
6074 return FALSE;
6075 h = (struct elf_link_hash_entry *) bh;
6076 h->non_elf = 0;
6077 h->def_regular = 1;
6078 h->type = STT_OBJECT;
6079 h->verinfo.vertree = t;
6080
6081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6082 return FALSE;
6083
6084 def.vd_version = VER_DEF_CURRENT;
6085 def.vd_flags = 0;
6086 if (t->globals.list == NULL
6087 && t->locals.list == NULL
6088 && ! t->used)
6089 def.vd_flags |= VER_FLG_WEAK;
6090 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6091 def.vd_cnt = cdeps + 1;
6092 def.vd_hash = bfd_elf_hash (t->name);
6093 def.vd_aux = sizeof (Elf_External_Verdef);
6094 def.vd_next = 0;
6095
6096 /* If a basever node is next, it *must* be the last node in
6097 the chain, otherwise Verdef construction breaks. */
6098 if (t->next != NULL && t->next->vernum == 0)
6099 BFD_ASSERT (t->next->next == NULL);
6100
6101 if (t->next != NULL && t->next->vernum != 0)
6102 def.vd_next = (sizeof (Elf_External_Verdef)
6103 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6104
6105 _bfd_elf_swap_verdef_out (output_bfd, &def,
6106 (Elf_External_Verdef *) p);
6107 p += sizeof (Elf_External_Verdef);
6108
6109 defaux.vda_name = h->dynstr_index;
6110 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6111 h->dynstr_index);
6112 defaux.vda_next = 0;
6113 if (t->deps != NULL)
6114 defaux.vda_next = sizeof (Elf_External_Verdaux);
6115 t->name_indx = defaux.vda_name;
6116
6117 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6118 (Elf_External_Verdaux *) p);
6119 p += sizeof (Elf_External_Verdaux);
6120
6121 for (n = t->deps; n != NULL; n = n->next)
6122 {
6123 if (n->version_needed == NULL)
6124 {
6125 /* This can happen if there was an error in the
6126 version script. */
6127 defaux.vda_name = 0;
6128 }
6129 else
6130 {
6131 defaux.vda_name = n->version_needed->name_indx;
6132 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6133 defaux.vda_name);
6134 }
6135 if (n->next == NULL)
6136 defaux.vda_next = 0;
6137 else
6138 defaux.vda_next = sizeof (Elf_External_Verdaux);
6139
6140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6141 (Elf_External_Verdaux *) p);
6142 p += sizeof (Elf_External_Verdaux);
6143 }
6144 }
6145
6146 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6147 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6148 return FALSE;
6149
6150 elf_tdata (output_bfd)->cverdefs = cdefs;
6151 }
6152
6153 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6154 {
6155 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6156 return FALSE;
6157 }
6158 else if (info->flags & DF_BIND_NOW)
6159 {
6160 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6161 return FALSE;
6162 }
6163
6164 if (info->flags_1)
6165 {
6166 if (info->executable)
6167 info->flags_1 &= ~ (DF_1_INITFIRST
6168 | DF_1_NODELETE
6169 | DF_1_NOOPEN);
6170 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6171 return FALSE;
6172 }
6173
6174 /* Work out the size of the version reference section. */
6175
6176 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6177 BFD_ASSERT (s != NULL);
6178 {
6179 struct elf_find_verdep_info sinfo;
6180
6181 sinfo.info = info;
6182 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6183 if (sinfo.vers == 0)
6184 sinfo.vers = 1;
6185 sinfo.failed = FALSE;
6186
6187 elf_link_hash_traverse (elf_hash_table (info),
6188 _bfd_elf_link_find_version_dependencies,
6189 &sinfo);
6190 if (sinfo.failed)
6191 return FALSE;
6192
6193 if (elf_tdata (output_bfd)->verref == NULL)
6194 s->flags |= SEC_EXCLUDE;
6195 else
6196 {
6197 Elf_Internal_Verneed *t;
6198 unsigned int size;
6199 unsigned int crefs;
6200 bfd_byte *p;
6201
6202 /* Build the version dependency section. */
6203 size = 0;
6204 crefs = 0;
6205 for (t = elf_tdata (output_bfd)->verref;
6206 t != NULL;
6207 t = t->vn_nextref)
6208 {
6209 Elf_Internal_Vernaux *a;
6210
6211 size += sizeof (Elf_External_Verneed);
6212 ++crefs;
6213 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6214 size += sizeof (Elf_External_Vernaux);
6215 }
6216
6217 s->size = size;
6218 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6219 if (s->contents == NULL)
6220 return FALSE;
6221
6222 p = s->contents;
6223 for (t = elf_tdata (output_bfd)->verref;
6224 t != NULL;
6225 t = t->vn_nextref)
6226 {
6227 unsigned int caux;
6228 Elf_Internal_Vernaux *a;
6229 bfd_size_type indx;
6230
6231 caux = 0;
6232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6233 ++caux;
6234
6235 t->vn_version = VER_NEED_CURRENT;
6236 t->vn_cnt = caux;
6237 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6238 elf_dt_name (t->vn_bfd) != NULL
6239 ? elf_dt_name (t->vn_bfd)
6240 : lbasename (t->vn_bfd->filename),
6241 FALSE);
6242 if (indx == (bfd_size_type) -1)
6243 return FALSE;
6244 t->vn_file = indx;
6245 t->vn_aux = sizeof (Elf_External_Verneed);
6246 if (t->vn_nextref == NULL)
6247 t->vn_next = 0;
6248 else
6249 t->vn_next = (sizeof (Elf_External_Verneed)
6250 + caux * sizeof (Elf_External_Vernaux));
6251
6252 _bfd_elf_swap_verneed_out (output_bfd, t,
6253 (Elf_External_Verneed *) p);
6254 p += sizeof (Elf_External_Verneed);
6255
6256 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6257 {
6258 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6259 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6260 a->vna_nodename, FALSE);
6261 if (indx == (bfd_size_type) -1)
6262 return FALSE;
6263 a->vna_name = indx;
6264 if (a->vna_nextptr == NULL)
6265 a->vna_next = 0;
6266 else
6267 a->vna_next = sizeof (Elf_External_Vernaux);
6268
6269 _bfd_elf_swap_vernaux_out (output_bfd, a,
6270 (Elf_External_Vernaux *) p);
6271 p += sizeof (Elf_External_Vernaux);
6272 }
6273 }
6274
6275 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6276 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6277 return FALSE;
6278
6279 elf_tdata (output_bfd)->cverrefs = crefs;
6280 }
6281 }
6282
6283 if ((elf_tdata (output_bfd)->cverrefs == 0
6284 && elf_tdata (output_bfd)->cverdefs == 0)
6285 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6286 &section_sym_count) == 0)
6287 {
6288 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6289 s->flags |= SEC_EXCLUDE;
6290 }
6291 }
6292 return TRUE;
6293 }
6294
6295 /* Find the first non-excluded output section. We'll use its
6296 section symbol for some emitted relocs. */
6297 void
6298 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6299 {
6300 asection *s;
6301
6302 for (s = output_bfd->sections; s != NULL; s = s->next)
6303 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6304 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6305 {
6306 elf_hash_table (info)->text_index_section = s;
6307 break;
6308 }
6309 }
6310
6311 /* Find two non-excluded output sections, one for code, one for data.
6312 We'll use their section symbols for some emitted relocs. */
6313 void
6314 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 /* Data first, since setting text_index_section changes
6319 _bfd_elf_link_omit_section_dynsym. */
6320 for (s = output_bfd->sections; s != NULL; s = s->next)
6321 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6322 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6323 {
6324 elf_hash_table (info)->data_index_section = s;
6325 break;
6326 }
6327
6328 for (s = output_bfd->sections; s != NULL; s = s->next)
6329 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6330 == (SEC_ALLOC | SEC_READONLY))
6331 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6332 {
6333 elf_hash_table (info)->text_index_section = s;
6334 break;
6335 }
6336
6337 if (elf_hash_table (info)->text_index_section == NULL)
6338 elf_hash_table (info)->text_index_section
6339 = elf_hash_table (info)->data_index_section;
6340 }
6341
6342 bfd_boolean
6343 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6344 {
6345 const struct elf_backend_data *bed;
6346
6347 if (!is_elf_hash_table (info->hash))
6348 return TRUE;
6349
6350 bed = get_elf_backend_data (output_bfd);
6351 (*bed->elf_backend_init_index_section) (output_bfd, info);
6352
6353 if (elf_hash_table (info)->dynamic_sections_created)
6354 {
6355 bfd *dynobj;
6356 asection *s;
6357 bfd_size_type dynsymcount;
6358 unsigned long section_sym_count;
6359 unsigned int dtagcount;
6360
6361 dynobj = elf_hash_table (info)->dynobj;
6362
6363 /* Assign dynsym indicies. In a shared library we generate a
6364 section symbol for each output section, which come first.
6365 Next come all of the back-end allocated local dynamic syms,
6366 followed by the rest of the global symbols. */
6367
6368 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6369 &section_sym_count);
6370
6371 /* Work out the size of the symbol version section. */
6372 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6373 BFD_ASSERT (s != NULL);
6374 if (dynsymcount != 0
6375 && (s->flags & SEC_EXCLUDE) == 0)
6376 {
6377 s->size = dynsymcount * sizeof (Elf_External_Versym);
6378 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6379 if (s->contents == NULL)
6380 return FALSE;
6381
6382 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6383 return FALSE;
6384 }
6385
6386 /* Set the size of the .dynsym and .hash sections. We counted
6387 the number of dynamic symbols in elf_link_add_object_symbols.
6388 We will build the contents of .dynsym and .hash when we build
6389 the final symbol table, because until then we do not know the
6390 correct value to give the symbols. We built the .dynstr
6391 section as we went along in elf_link_add_object_symbols. */
6392 s = bfd_get_section_by_name (dynobj, ".dynsym");
6393 BFD_ASSERT (s != NULL);
6394 s->size = dynsymcount * bed->s->sizeof_sym;
6395
6396 if (dynsymcount != 0)
6397 {
6398 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6399 if (s->contents == NULL)
6400 return FALSE;
6401
6402 /* The first entry in .dynsym is a dummy symbol.
6403 Clear all the section syms, in case we don't output them all. */
6404 ++section_sym_count;
6405 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6406 }
6407
6408 elf_hash_table (info)->bucketcount = 0;
6409
6410 /* Compute the size of the hashing table. As a side effect this
6411 computes the hash values for all the names we export. */
6412 if (info->emit_hash)
6413 {
6414 unsigned long int *hashcodes;
6415 struct hash_codes_info hashinf;
6416 bfd_size_type amt;
6417 unsigned long int nsyms;
6418 size_t bucketcount;
6419 size_t hash_entry_size;
6420
6421 /* Compute the hash values for all exported symbols. At the same
6422 time store the values in an array so that we could use them for
6423 optimizations. */
6424 amt = dynsymcount * sizeof (unsigned long int);
6425 hashcodes = (unsigned long int *) bfd_malloc (amt);
6426 if (hashcodes == NULL)
6427 return FALSE;
6428 hashinf.hashcodes = hashcodes;
6429 hashinf.error = FALSE;
6430
6431 /* Put all hash values in HASHCODES. */
6432 elf_link_hash_traverse (elf_hash_table (info),
6433 elf_collect_hash_codes, &hashinf);
6434 if (hashinf.error)
6435 {
6436 free (hashcodes);
6437 return FALSE;
6438 }
6439
6440 nsyms = hashinf.hashcodes - hashcodes;
6441 bucketcount
6442 = compute_bucket_count (info, hashcodes, nsyms, 0);
6443 free (hashcodes);
6444
6445 if (bucketcount == 0)
6446 return FALSE;
6447
6448 elf_hash_table (info)->bucketcount = bucketcount;
6449
6450 s = bfd_get_section_by_name (dynobj, ".hash");
6451 BFD_ASSERT (s != NULL);
6452 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6453 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6454 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6455 if (s->contents == NULL)
6456 return FALSE;
6457
6458 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6459 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6460 s->contents + hash_entry_size);
6461 }
6462
6463 if (info->emit_gnu_hash)
6464 {
6465 size_t i, cnt;
6466 unsigned char *contents;
6467 struct collect_gnu_hash_codes cinfo;
6468 bfd_size_type amt;
6469 size_t bucketcount;
6470
6471 memset (&cinfo, 0, sizeof (cinfo));
6472
6473 /* Compute the hash values for all exported symbols. At the same
6474 time store the values in an array so that we could use them for
6475 optimizations. */
6476 amt = dynsymcount * 2 * sizeof (unsigned long int);
6477 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6478 if (cinfo.hashcodes == NULL)
6479 return FALSE;
6480
6481 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6482 cinfo.min_dynindx = -1;
6483 cinfo.output_bfd = output_bfd;
6484 cinfo.bed = bed;
6485
6486 /* Put all hash values in HASHCODES. */
6487 elf_link_hash_traverse (elf_hash_table (info),
6488 elf_collect_gnu_hash_codes, &cinfo);
6489 if (cinfo.error)
6490 {
6491 free (cinfo.hashcodes);
6492 return FALSE;
6493 }
6494
6495 bucketcount
6496 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6497
6498 if (bucketcount == 0)
6499 {
6500 free (cinfo.hashcodes);
6501 return FALSE;
6502 }
6503
6504 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6505 BFD_ASSERT (s != NULL);
6506
6507 if (cinfo.nsyms == 0)
6508 {
6509 /* Empty .gnu.hash section is special. */
6510 BFD_ASSERT (cinfo.min_dynindx == -1);
6511 free (cinfo.hashcodes);
6512 s->size = 5 * 4 + bed->s->arch_size / 8;
6513 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6514 if (contents == NULL)
6515 return FALSE;
6516 s->contents = contents;
6517 /* 1 empty bucket. */
6518 bfd_put_32 (output_bfd, 1, contents);
6519 /* SYMIDX above the special symbol 0. */
6520 bfd_put_32 (output_bfd, 1, contents + 4);
6521 /* Just one word for bitmask. */
6522 bfd_put_32 (output_bfd, 1, contents + 8);
6523 /* Only hash fn bloom filter. */
6524 bfd_put_32 (output_bfd, 0, contents + 12);
6525 /* No hashes are valid - empty bitmask. */
6526 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6527 /* No hashes in the only bucket. */
6528 bfd_put_32 (output_bfd, 0,
6529 contents + 16 + bed->s->arch_size / 8);
6530 }
6531 else
6532 {
6533 unsigned long int maskwords, maskbitslog2, x;
6534 BFD_ASSERT (cinfo.min_dynindx != -1);
6535
6536 x = cinfo.nsyms;
6537 maskbitslog2 = 1;
6538 while ((x >>= 1) != 0)
6539 ++maskbitslog2;
6540 if (maskbitslog2 < 3)
6541 maskbitslog2 = 5;
6542 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6543 maskbitslog2 = maskbitslog2 + 3;
6544 else
6545 maskbitslog2 = maskbitslog2 + 2;
6546 if (bed->s->arch_size == 64)
6547 {
6548 if (maskbitslog2 == 5)
6549 maskbitslog2 = 6;
6550 cinfo.shift1 = 6;
6551 }
6552 else
6553 cinfo.shift1 = 5;
6554 cinfo.mask = (1 << cinfo.shift1) - 1;
6555 cinfo.shift2 = maskbitslog2;
6556 cinfo.maskbits = 1 << maskbitslog2;
6557 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6558 amt = bucketcount * sizeof (unsigned long int) * 2;
6559 amt += maskwords * sizeof (bfd_vma);
6560 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6561 if (cinfo.bitmask == NULL)
6562 {
6563 free (cinfo.hashcodes);
6564 return FALSE;
6565 }
6566
6567 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6568 cinfo.indx = cinfo.counts + bucketcount;
6569 cinfo.symindx = dynsymcount - cinfo.nsyms;
6570 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6571
6572 /* Determine how often each hash bucket is used. */
6573 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6574 for (i = 0; i < cinfo.nsyms; ++i)
6575 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6576
6577 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6578 if (cinfo.counts[i] != 0)
6579 {
6580 cinfo.indx[i] = cnt;
6581 cnt += cinfo.counts[i];
6582 }
6583 BFD_ASSERT (cnt == dynsymcount);
6584 cinfo.bucketcount = bucketcount;
6585 cinfo.local_indx = cinfo.min_dynindx;
6586
6587 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6588 s->size += cinfo.maskbits / 8;
6589 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6590 if (contents == NULL)
6591 {
6592 free (cinfo.bitmask);
6593 free (cinfo.hashcodes);
6594 return FALSE;
6595 }
6596
6597 s->contents = contents;
6598 bfd_put_32 (output_bfd, bucketcount, contents);
6599 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6600 bfd_put_32 (output_bfd, maskwords, contents + 8);
6601 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6602 contents += 16 + cinfo.maskbits / 8;
6603
6604 for (i = 0; i < bucketcount; ++i)
6605 {
6606 if (cinfo.counts[i] == 0)
6607 bfd_put_32 (output_bfd, 0, contents);
6608 else
6609 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6610 contents += 4;
6611 }
6612
6613 cinfo.contents = contents;
6614
6615 /* Renumber dynamic symbols, populate .gnu.hash section. */
6616 elf_link_hash_traverse (elf_hash_table (info),
6617 elf_renumber_gnu_hash_syms, &cinfo);
6618
6619 contents = s->contents + 16;
6620 for (i = 0; i < maskwords; ++i)
6621 {
6622 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6623 contents);
6624 contents += bed->s->arch_size / 8;
6625 }
6626
6627 free (cinfo.bitmask);
6628 free (cinfo.hashcodes);
6629 }
6630 }
6631
6632 s = bfd_get_section_by_name (dynobj, ".dynstr");
6633 BFD_ASSERT (s != NULL);
6634
6635 elf_finalize_dynstr (output_bfd, info);
6636
6637 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6638
6639 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6640 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6641 return FALSE;
6642 }
6643
6644 return TRUE;
6645 }
6646 \f
6647 /* Indicate that we are only retrieving symbol values from this
6648 section. */
6649
6650 void
6651 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6652 {
6653 if (is_elf_hash_table (info->hash))
6654 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6655 _bfd_generic_link_just_syms (sec, info);
6656 }
6657
6658 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6659
6660 static void
6661 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6662 asection *sec)
6663 {
6664 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6665 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6666 }
6667
6668 /* Finish SHF_MERGE section merging. */
6669
6670 bfd_boolean
6671 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6672 {
6673 bfd *ibfd;
6674 asection *sec;
6675
6676 if (!is_elf_hash_table (info->hash))
6677 return FALSE;
6678
6679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6680 if ((ibfd->flags & DYNAMIC) == 0)
6681 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6682 if ((sec->flags & SEC_MERGE) != 0
6683 && !bfd_is_abs_section (sec->output_section))
6684 {
6685 struct bfd_elf_section_data *secdata;
6686
6687 secdata = elf_section_data (sec);
6688 if (! _bfd_add_merge_section (abfd,
6689 &elf_hash_table (info)->merge_info,
6690 sec, &secdata->sec_info))
6691 return FALSE;
6692 else if (secdata->sec_info)
6693 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6694 }
6695
6696 if (elf_hash_table (info)->merge_info != NULL)
6697 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6698 merge_sections_remove_hook);
6699 return TRUE;
6700 }
6701
6702 /* Create an entry in an ELF linker hash table. */
6703
6704 struct bfd_hash_entry *
6705 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6706 struct bfd_hash_table *table,
6707 const char *string)
6708 {
6709 /* Allocate the structure if it has not already been allocated by a
6710 subclass. */
6711 if (entry == NULL)
6712 {
6713 entry = (struct bfd_hash_entry *)
6714 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6715 if (entry == NULL)
6716 return entry;
6717 }
6718
6719 /* Call the allocation method of the superclass. */
6720 entry = _bfd_link_hash_newfunc (entry, table, string);
6721 if (entry != NULL)
6722 {
6723 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6724 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6725
6726 /* Set local fields. */
6727 ret->indx = -1;
6728 ret->dynindx = -1;
6729 ret->got = htab->init_got_refcount;
6730 ret->plt = htab->init_plt_refcount;
6731 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6732 - offsetof (struct elf_link_hash_entry, size)));
6733 /* Assume that we have been called by a non-ELF symbol reader.
6734 This flag is then reset by the code which reads an ELF input
6735 file. This ensures that a symbol created by a non-ELF symbol
6736 reader will have the flag set correctly. */
6737 ret->non_elf = 1;
6738 }
6739
6740 return entry;
6741 }
6742
6743 /* Copy data from an indirect symbol to its direct symbol, hiding the
6744 old indirect symbol. Also used for copying flags to a weakdef. */
6745
6746 void
6747 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6748 struct elf_link_hash_entry *dir,
6749 struct elf_link_hash_entry *ind)
6750 {
6751 struct elf_link_hash_table *htab;
6752
6753 /* Copy down any references that we may have already seen to the
6754 symbol which just became indirect. */
6755
6756 dir->ref_dynamic |= ind->ref_dynamic;
6757 dir->ref_regular |= ind->ref_regular;
6758 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6759 dir->non_got_ref |= ind->non_got_ref;
6760 dir->needs_plt |= ind->needs_plt;
6761 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6762
6763 if (ind->root.type != bfd_link_hash_indirect)
6764 return;
6765
6766 /* Copy over the global and procedure linkage table refcount entries.
6767 These may have been already set up by a check_relocs routine. */
6768 htab = elf_hash_table (info);
6769 if (ind->got.refcount > htab->init_got_refcount.refcount)
6770 {
6771 if (dir->got.refcount < 0)
6772 dir->got.refcount = 0;
6773 dir->got.refcount += ind->got.refcount;
6774 ind->got.refcount = htab->init_got_refcount.refcount;
6775 }
6776
6777 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6778 {
6779 if (dir->plt.refcount < 0)
6780 dir->plt.refcount = 0;
6781 dir->plt.refcount += ind->plt.refcount;
6782 ind->plt.refcount = htab->init_plt_refcount.refcount;
6783 }
6784
6785 if (ind->dynindx != -1)
6786 {
6787 if (dir->dynindx != -1)
6788 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6789 dir->dynindx = ind->dynindx;
6790 dir->dynstr_index = ind->dynstr_index;
6791 ind->dynindx = -1;
6792 ind->dynstr_index = 0;
6793 }
6794 }
6795
6796 void
6797 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6798 struct elf_link_hash_entry *h,
6799 bfd_boolean force_local)
6800 {
6801 /* STT_GNU_IFUNC symbol must go through PLT. */
6802 if (h->type != STT_GNU_IFUNC)
6803 {
6804 h->plt = elf_hash_table (info)->init_plt_offset;
6805 h->needs_plt = 0;
6806 }
6807 if (force_local)
6808 {
6809 h->forced_local = 1;
6810 if (h->dynindx != -1)
6811 {
6812 h->dynindx = -1;
6813 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6814 h->dynstr_index);
6815 }
6816 }
6817 }
6818
6819 /* Initialize an ELF linker hash table. */
6820
6821 bfd_boolean
6822 _bfd_elf_link_hash_table_init
6823 (struct elf_link_hash_table *table,
6824 bfd *abfd,
6825 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6826 struct bfd_hash_table *,
6827 const char *),
6828 unsigned int entsize,
6829 enum elf_target_id target_id)
6830 {
6831 bfd_boolean ret;
6832 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6833
6834 memset (table, 0, sizeof * table);
6835 table->init_got_refcount.refcount = can_refcount - 1;
6836 table->init_plt_refcount.refcount = can_refcount - 1;
6837 table->init_got_offset.offset = -(bfd_vma) 1;
6838 table->init_plt_offset.offset = -(bfd_vma) 1;
6839 /* The first dynamic symbol is a dummy. */
6840 table->dynsymcount = 1;
6841
6842 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6843
6844 table->root.type = bfd_link_elf_hash_table;
6845 table->hash_table_id = target_id;
6846
6847 return ret;
6848 }
6849
6850 /* Create an ELF linker hash table. */
6851
6852 struct bfd_link_hash_table *
6853 _bfd_elf_link_hash_table_create (bfd *abfd)
6854 {
6855 struct elf_link_hash_table *ret;
6856 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6857
6858 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6859 if (ret == NULL)
6860 return NULL;
6861
6862 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6863 sizeof (struct elf_link_hash_entry),
6864 GENERIC_ELF_DATA))
6865 {
6866 free (ret);
6867 return NULL;
6868 }
6869
6870 return &ret->root;
6871 }
6872
6873 /* This is a hook for the ELF emulation code in the generic linker to
6874 tell the backend linker what file name to use for the DT_NEEDED
6875 entry for a dynamic object. */
6876
6877 void
6878 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6879 {
6880 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6881 && bfd_get_format (abfd) == bfd_object)
6882 elf_dt_name (abfd) = name;
6883 }
6884
6885 int
6886 bfd_elf_get_dyn_lib_class (bfd *abfd)
6887 {
6888 int lib_class;
6889 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6890 && bfd_get_format (abfd) == bfd_object)
6891 lib_class = elf_dyn_lib_class (abfd);
6892 else
6893 lib_class = 0;
6894 return lib_class;
6895 }
6896
6897 void
6898 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6899 {
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dyn_lib_class (abfd) = lib_class;
6903 }
6904
6905 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6906 the linker ELF emulation code. */
6907
6908 struct bfd_link_needed_list *
6909 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6910 struct bfd_link_info *info)
6911 {
6912 if (! is_elf_hash_table (info->hash))
6913 return NULL;
6914 return elf_hash_table (info)->needed;
6915 }
6916
6917 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6918 hook for the linker ELF emulation code. */
6919
6920 struct bfd_link_needed_list *
6921 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6922 struct bfd_link_info *info)
6923 {
6924 if (! is_elf_hash_table (info->hash))
6925 return NULL;
6926 return elf_hash_table (info)->runpath;
6927 }
6928
6929 /* Get the name actually used for a dynamic object for a link. This
6930 is the SONAME entry if there is one. Otherwise, it is the string
6931 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6932
6933 const char *
6934 bfd_elf_get_dt_soname (bfd *abfd)
6935 {
6936 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6937 && bfd_get_format (abfd) == bfd_object)
6938 return elf_dt_name (abfd);
6939 return NULL;
6940 }
6941
6942 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6943 the ELF linker emulation code. */
6944
6945 bfd_boolean
6946 bfd_elf_get_bfd_needed_list (bfd *abfd,
6947 struct bfd_link_needed_list **pneeded)
6948 {
6949 asection *s;
6950 bfd_byte *dynbuf = NULL;
6951 unsigned int elfsec;
6952 unsigned long shlink;
6953 bfd_byte *extdyn, *extdynend;
6954 size_t extdynsize;
6955 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6956
6957 *pneeded = NULL;
6958
6959 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6960 || bfd_get_format (abfd) != bfd_object)
6961 return TRUE;
6962
6963 s = bfd_get_section_by_name (abfd, ".dynamic");
6964 if (s == NULL || s->size == 0)
6965 return TRUE;
6966
6967 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6968 goto error_return;
6969
6970 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6971 if (elfsec == SHN_BAD)
6972 goto error_return;
6973
6974 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6975
6976 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6977 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6978
6979 extdyn = dynbuf;
6980 extdynend = extdyn + s->size;
6981 for (; extdyn < extdynend; extdyn += extdynsize)
6982 {
6983 Elf_Internal_Dyn dyn;
6984
6985 (*swap_dyn_in) (abfd, extdyn, &dyn);
6986
6987 if (dyn.d_tag == DT_NULL)
6988 break;
6989
6990 if (dyn.d_tag == DT_NEEDED)
6991 {
6992 const char *string;
6993 struct bfd_link_needed_list *l;
6994 unsigned int tagv = dyn.d_un.d_val;
6995 bfd_size_type amt;
6996
6997 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6998 if (string == NULL)
6999 goto error_return;
7000
7001 amt = sizeof *l;
7002 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7003 if (l == NULL)
7004 goto error_return;
7005
7006 l->by = abfd;
7007 l->name = string;
7008 l->next = *pneeded;
7009 *pneeded = l;
7010 }
7011 }
7012
7013 free (dynbuf);
7014
7015 return TRUE;
7016
7017 error_return:
7018 if (dynbuf != NULL)
7019 free (dynbuf);
7020 return FALSE;
7021 }
7022
7023 struct elf_symbuf_symbol
7024 {
7025 unsigned long st_name; /* Symbol name, index in string tbl */
7026 unsigned char st_info; /* Type and binding attributes */
7027 unsigned char st_other; /* Visibilty, and target specific */
7028 };
7029
7030 struct elf_symbuf_head
7031 {
7032 struct elf_symbuf_symbol *ssym;
7033 bfd_size_type count;
7034 unsigned int st_shndx;
7035 };
7036
7037 struct elf_symbol
7038 {
7039 union
7040 {
7041 Elf_Internal_Sym *isym;
7042 struct elf_symbuf_symbol *ssym;
7043 } u;
7044 const char *name;
7045 };
7046
7047 /* Sort references to symbols by ascending section number. */
7048
7049 static int
7050 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7051 {
7052 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7053 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7054
7055 return s1->st_shndx - s2->st_shndx;
7056 }
7057
7058 static int
7059 elf_sym_name_compare (const void *arg1, const void *arg2)
7060 {
7061 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7062 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7063 return strcmp (s1->name, s2->name);
7064 }
7065
7066 static struct elf_symbuf_head *
7067 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7068 {
7069 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7070 struct elf_symbuf_symbol *ssym;
7071 struct elf_symbuf_head *ssymbuf, *ssymhead;
7072 bfd_size_type i, shndx_count, total_size;
7073
7074 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7075 if (indbuf == NULL)
7076 return NULL;
7077
7078 for (ind = indbuf, i = 0; i < symcount; i++)
7079 if (isymbuf[i].st_shndx != SHN_UNDEF)
7080 *ind++ = &isymbuf[i];
7081 indbufend = ind;
7082
7083 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7084 elf_sort_elf_symbol);
7085
7086 shndx_count = 0;
7087 if (indbufend > indbuf)
7088 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7089 if (ind[0]->st_shndx != ind[1]->st_shndx)
7090 shndx_count++;
7091
7092 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7093 + (indbufend - indbuf) * sizeof (*ssym));
7094 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7095 if (ssymbuf == NULL)
7096 {
7097 free (indbuf);
7098 return NULL;
7099 }
7100
7101 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7102 ssymbuf->ssym = NULL;
7103 ssymbuf->count = shndx_count;
7104 ssymbuf->st_shndx = 0;
7105 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7106 {
7107 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7108 {
7109 ssymhead++;
7110 ssymhead->ssym = ssym;
7111 ssymhead->count = 0;
7112 ssymhead->st_shndx = (*ind)->st_shndx;
7113 }
7114 ssym->st_name = (*ind)->st_name;
7115 ssym->st_info = (*ind)->st_info;
7116 ssym->st_other = (*ind)->st_other;
7117 ssymhead->count++;
7118 }
7119 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7120 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7121 == total_size));
7122
7123 free (indbuf);
7124 return ssymbuf;
7125 }
7126
7127 /* Check if 2 sections define the same set of local and global
7128 symbols. */
7129
7130 static bfd_boolean
7131 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7132 struct bfd_link_info *info)
7133 {
7134 bfd *bfd1, *bfd2;
7135 const struct elf_backend_data *bed1, *bed2;
7136 Elf_Internal_Shdr *hdr1, *hdr2;
7137 bfd_size_type symcount1, symcount2;
7138 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7139 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7140 Elf_Internal_Sym *isym, *isymend;
7141 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7142 bfd_size_type count1, count2, i;
7143 unsigned int shndx1, shndx2;
7144 bfd_boolean result;
7145
7146 bfd1 = sec1->owner;
7147 bfd2 = sec2->owner;
7148
7149 /* Both sections have to be in ELF. */
7150 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7151 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7152 return FALSE;
7153
7154 if (elf_section_type (sec1) != elf_section_type (sec2))
7155 return FALSE;
7156
7157 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7158 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7159 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7160 return FALSE;
7161
7162 bed1 = get_elf_backend_data (bfd1);
7163 bed2 = get_elf_backend_data (bfd2);
7164 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7165 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7166 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7167 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7168
7169 if (symcount1 == 0 || symcount2 == 0)
7170 return FALSE;
7171
7172 result = FALSE;
7173 isymbuf1 = NULL;
7174 isymbuf2 = NULL;
7175 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7176 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7177
7178 if (ssymbuf1 == NULL)
7179 {
7180 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7181 NULL, NULL, NULL);
7182 if (isymbuf1 == NULL)
7183 goto done;
7184
7185 if (!info->reduce_memory_overheads)
7186 elf_tdata (bfd1)->symbuf = ssymbuf1
7187 = elf_create_symbuf (symcount1, isymbuf1);
7188 }
7189
7190 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7191 {
7192 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7193 NULL, NULL, NULL);
7194 if (isymbuf2 == NULL)
7195 goto done;
7196
7197 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7198 elf_tdata (bfd2)->symbuf = ssymbuf2
7199 = elf_create_symbuf (symcount2, isymbuf2);
7200 }
7201
7202 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7203 {
7204 /* Optimized faster version. */
7205 bfd_size_type lo, hi, mid;
7206 struct elf_symbol *symp;
7207 struct elf_symbuf_symbol *ssym, *ssymend;
7208
7209 lo = 0;
7210 hi = ssymbuf1->count;
7211 ssymbuf1++;
7212 count1 = 0;
7213 while (lo < hi)
7214 {
7215 mid = (lo + hi) / 2;
7216 if (shndx1 < ssymbuf1[mid].st_shndx)
7217 hi = mid;
7218 else if (shndx1 > ssymbuf1[mid].st_shndx)
7219 lo = mid + 1;
7220 else
7221 {
7222 count1 = ssymbuf1[mid].count;
7223 ssymbuf1 += mid;
7224 break;
7225 }
7226 }
7227
7228 lo = 0;
7229 hi = ssymbuf2->count;
7230 ssymbuf2++;
7231 count2 = 0;
7232 while (lo < hi)
7233 {
7234 mid = (lo + hi) / 2;
7235 if (shndx2 < ssymbuf2[mid].st_shndx)
7236 hi = mid;
7237 else if (shndx2 > ssymbuf2[mid].st_shndx)
7238 lo = mid + 1;
7239 else
7240 {
7241 count2 = ssymbuf2[mid].count;
7242 ssymbuf2 += mid;
7243 break;
7244 }
7245 }
7246
7247 if (count1 == 0 || count2 == 0 || count1 != count2)
7248 goto done;
7249
7250 symtable1 = (struct elf_symbol *)
7251 bfd_malloc (count1 * sizeof (struct elf_symbol));
7252 symtable2 = (struct elf_symbol *)
7253 bfd_malloc (count2 * sizeof (struct elf_symbol));
7254 if (symtable1 == NULL || symtable2 == NULL)
7255 goto done;
7256
7257 symp = symtable1;
7258 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7259 ssym < ssymend; ssym++, symp++)
7260 {
7261 symp->u.ssym = ssym;
7262 symp->name = bfd_elf_string_from_elf_section (bfd1,
7263 hdr1->sh_link,
7264 ssym->st_name);
7265 }
7266
7267 symp = symtable2;
7268 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7269 ssym < ssymend; ssym++, symp++)
7270 {
7271 symp->u.ssym = ssym;
7272 symp->name = bfd_elf_string_from_elf_section (bfd2,
7273 hdr2->sh_link,
7274 ssym->st_name);
7275 }
7276
7277 /* Sort symbol by name. */
7278 qsort (symtable1, count1, sizeof (struct elf_symbol),
7279 elf_sym_name_compare);
7280 qsort (symtable2, count1, sizeof (struct elf_symbol),
7281 elf_sym_name_compare);
7282
7283 for (i = 0; i < count1; i++)
7284 /* Two symbols must have the same binding, type and name. */
7285 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7286 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7287 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7288 goto done;
7289
7290 result = TRUE;
7291 goto done;
7292 }
7293
7294 symtable1 = (struct elf_symbol *)
7295 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7296 symtable2 = (struct elf_symbol *)
7297 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7298 if (symtable1 == NULL || symtable2 == NULL)
7299 goto done;
7300
7301 /* Count definitions in the section. */
7302 count1 = 0;
7303 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7304 if (isym->st_shndx == shndx1)
7305 symtable1[count1++].u.isym = isym;
7306
7307 count2 = 0;
7308 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7309 if (isym->st_shndx == shndx2)
7310 symtable2[count2++].u.isym = isym;
7311
7312 if (count1 == 0 || count2 == 0 || count1 != count2)
7313 goto done;
7314
7315 for (i = 0; i < count1; i++)
7316 symtable1[i].name
7317 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7318 symtable1[i].u.isym->st_name);
7319
7320 for (i = 0; i < count2; i++)
7321 symtable2[i].name
7322 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7323 symtable2[i].u.isym->st_name);
7324
7325 /* Sort symbol by name. */
7326 qsort (symtable1, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328 qsort (symtable2, count1, sizeof (struct elf_symbol),
7329 elf_sym_name_compare);
7330
7331 for (i = 0; i < count1; i++)
7332 /* Two symbols must have the same binding, type and name. */
7333 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7334 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7335 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7336 goto done;
7337
7338 result = TRUE;
7339
7340 done:
7341 if (symtable1)
7342 free (symtable1);
7343 if (symtable2)
7344 free (symtable2);
7345 if (isymbuf1)
7346 free (isymbuf1);
7347 if (isymbuf2)
7348 free (isymbuf2);
7349
7350 return result;
7351 }
7352
7353 /* Return TRUE if 2 section types are compatible. */
7354
7355 bfd_boolean
7356 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7357 bfd *bbfd, const asection *bsec)
7358 {
7359 if (asec == NULL
7360 || bsec == NULL
7361 || abfd->xvec->flavour != bfd_target_elf_flavour
7362 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7363 return TRUE;
7364
7365 return elf_section_type (asec) == elf_section_type (bsec);
7366 }
7367 \f
7368 /* Final phase of ELF linker. */
7369
7370 /* A structure we use to avoid passing large numbers of arguments. */
7371
7372 struct elf_final_link_info
7373 {
7374 /* General link information. */
7375 struct bfd_link_info *info;
7376 /* Output BFD. */
7377 bfd *output_bfd;
7378 /* Symbol string table. */
7379 struct bfd_strtab_hash *symstrtab;
7380 /* .dynsym section. */
7381 asection *dynsym_sec;
7382 /* .hash section. */
7383 asection *hash_sec;
7384 /* symbol version section (.gnu.version). */
7385 asection *symver_sec;
7386 /* Buffer large enough to hold contents of any section. */
7387 bfd_byte *contents;
7388 /* Buffer large enough to hold external relocs of any section. */
7389 void *external_relocs;
7390 /* Buffer large enough to hold internal relocs of any section. */
7391 Elf_Internal_Rela *internal_relocs;
7392 /* Buffer large enough to hold external local symbols of any input
7393 BFD. */
7394 bfd_byte *external_syms;
7395 /* And a buffer for symbol section indices. */
7396 Elf_External_Sym_Shndx *locsym_shndx;
7397 /* Buffer large enough to hold internal local symbols of any input
7398 BFD. */
7399 Elf_Internal_Sym *internal_syms;
7400 /* Array large enough to hold a symbol index for each local symbol
7401 of any input BFD. */
7402 long *indices;
7403 /* Array large enough to hold a section pointer for each local
7404 symbol of any input BFD. */
7405 asection **sections;
7406 /* Buffer to hold swapped out symbols. */
7407 bfd_byte *symbuf;
7408 /* And one for symbol section indices. */
7409 Elf_External_Sym_Shndx *symshndxbuf;
7410 /* Number of swapped out symbols in buffer. */
7411 size_t symbuf_count;
7412 /* Number of symbols which fit in symbuf. */
7413 size_t symbuf_size;
7414 /* And same for symshndxbuf. */
7415 size_t shndxbuf_size;
7416 };
7417
7418 /* This struct is used to pass information to elf_link_output_extsym. */
7419
7420 struct elf_outext_info
7421 {
7422 bfd_boolean failed;
7423 bfd_boolean localsyms;
7424 struct elf_final_link_info *finfo;
7425 };
7426
7427
7428 /* Support for evaluating a complex relocation.
7429
7430 Complex relocations are generalized, self-describing relocations. The
7431 implementation of them consists of two parts: complex symbols, and the
7432 relocations themselves.
7433
7434 The relocations are use a reserved elf-wide relocation type code (R_RELC
7435 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7436 information (start bit, end bit, word width, etc) into the addend. This
7437 information is extracted from CGEN-generated operand tables within gas.
7438
7439 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7440 internal) representing prefix-notation expressions, including but not
7441 limited to those sorts of expressions normally encoded as addends in the
7442 addend field. The symbol mangling format is:
7443
7444 <node> := <literal>
7445 | <unary-operator> ':' <node>
7446 | <binary-operator> ':' <node> ':' <node>
7447 ;
7448
7449 <literal> := 's' <digits=N> ':' <N character symbol name>
7450 | 'S' <digits=N> ':' <N character section name>
7451 | '#' <hexdigits>
7452 ;
7453
7454 <binary-operator> := as in C
7455 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7456
7457 static void
7458 set_symbol_value (bfd *bfd_with_globals,
7459 Elf_Internal_Sym *isymbuf,
7460 size_t locsymcount,
7461 size_t symidx,
7462 bfd_vma val)
7463 {
7464 struct elf_link_hash_entry **sym_hashes;
7465 struct elf_link_hash_entry *h;
7466 size_t extsymoff = locsymcount;
7467
7468 if (symidx < locsymcount)
7469 {
7470 Elf_Internal_Sym *sym;
7471
7472 sym = isymbuf + symidx;
7473 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7474 {
7475 /* It is a local symbol: move it to the
7476 "absolute" section and give it a value. */
7477 sym->st_shndx = SHN_ABS;
7478 sym->st_value = val;
7479 return;
7480 }
7481 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7482 extsymoff = 0;
7483 }
7484
7485 /* It is a global symbol: set its link type
7486 to "defined" and give it a value. */
7487
7488 sym_hashes = elf_sym_hashes (bfd_with_globals);
7489 h = sym_hashes [symidx - extsymoff];
7490 while (h->root.type == bfd_link_hash_indirect
7491 || h->root.type == bfd_link_hash_warning)
7492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7493 h->root.type = bfd_link_hash_defined;
7494 h->root.u.def.value = val;
7495 h->root.u.def.section = bfd_abs_section_ptr;
7496 }
7497
7498 static bfd_boolean
7499 resolve_symbol (const char *name,
7500 bfd *input_bfd,
7501 struct elf_final_link_info *finfo,
7502 bfd_vma *result,
7503 Elf_Internal_Sym *isymbuf,
7504 size_t locsymcount)
7505 {
7506 Elf_Internal_Sym *sym;
7507 struct bfd_link_hash_entry *global_entry;
7508 const char *candidate = NULL;
7509 Elf_Internal_Shdr *symtab_hdr;
7510 size_t i;
7511
7512 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7513
7514 for (i = 0; i < locsymcount; ++ i)
7515 {
7516 sym = isymbuf + i;
7517
7518 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7519 continue;
7520
7521 candidate = bfd_elf_string_from_elf_section (input_bfd,
7522 symtab_hdr->sh_link,
7523 sym->st_name);
7524 #ifdef DEBUG
7525 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7526 name, candidate, (unsigned long) sym->st_value);
7527 #endif
7528 if (candidate && strcmp (candidate, name) == 0)
7529 {
7530 asection *sec = finfo->sections [i];
7531
7532 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7533 *result += sec->output_offset + sec->output_section->vma;
7534 #ifdef DEBUG
7535 printf ("Found symbol with value %8.8lx\n",
7536 (unsigned long) *result);
7537 #endif
7538 return TRUE;
7539 }
7540 }
7541
7542 /* Hmm, haven't found it yet. perhaps it is a global. */
7543 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7544 FALSE, FALSE, TRUE);
7545 if (!global_entry)
7546 return FALSE;
7547
7548 if (global_entry->type == bfd_link_hash_defined
7549 || global_entry->type == bfd_link_hash_defweak)
7550 {
7551 *result = (global_entry->u.def.value
7552 + global_entry->u.def.section->output_section->vma
7553 + global_entry->u.def.section->output_offset);
7554 #ifdef DEBUG
7555 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7556 global_entry->root.string, (unsigned long) *result);
7557 #endif
7558 return TRUE;
7559 }
7560
7561 return FALSE;
7562 }
7563
7564 static bfd_boolean
7565 resolve_section (const char *name,
7566 asection *sections,
7567 bfd_vma *result)
7568 {
7569 asection *curr;
7570 unsigned int len;
7571
7572 for (curr = sections; curr; curr = curr->next)
7573 if (strcmp (curr->name, name) == 0)
7574 {
7575 *result = curr->vma;
7576 return TRUE;
7577 }
7578
7579 /* Hmm. still haven't found it. try pseudo-section names. */
7580 for (curr = sections; curr; curr = curr->next)
7581 {
7582 len = strlen (curr->name);
7583 if (len > strlen (name))
7584 continue;
7585
7586 if (strncmp (curr->name, name, len) == 0)
7587 {
7588 if (strncmp (".end", name + len, 4) == 0)
7589 {
7590 *result = curr->vma + curr->size;
7591 return TRUE;
7592 }
7593
7594 /* Insert more pseudo-section names here, if you like. */
7595 }
7596 }
7597
7598 return FALSE;
7599 }
7600
7601 static void
7602 undefined_reference (const char *reftype, const char *name)
7603 {
7604 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7605 reftype, name);
7606 }
7607
7608 static bfd_boolean
7609 eval_symbol (bfd_vma *result,
7610 const char **symp,
7611 bfd *input_bfd,
7612 struct elf_final_link_info *finfo,
7613 bfd_vma dot,
7614 Elf_Internal_Sym *isymbuf,
7615 size_t locsymcount,
7616 int signed_p)
7617 {
7618 size_t len;
7619 size_t symlen;
7620 bfd_vma a;
7621 bfd_vma b;
7622 char symbuf[4096];
7623 const char *sym = *symp;
7624 const char *symend;
7625 bfd_boolean symbol_is_section = FALSE;
7626
7627 len = strlen (sym);
7628 symend = sym + len;
7629
7630 if (len < 1 || len > sizeof (symbuf))
7631 {
7632 bfd_set_error (bfd_error_invalid_operation);
7633 return FALSE;
7634 }
7635
7636 switch (* sym)
7637 {
7638 case '.':
7639 *result = dot;
7640 *symp = sym + 1;
7641 return TRUE;
7642
7643 case '#':
7644 ++sym;
7645 *result = strtoul (sym, (char **) symp, 16);
7646 return TRUE;
7647
7648 case 'S':
7649 symbol_is_section = TRUE;
7650 case 's':
7651 ++sym;
7652 symlen = strtol (sym, (char **) symp, 10);
7653 sym = *symp + 1; /* Skip the trailing ':'. */
7654
7655 if (symend < sym || symlen + 1 > sizeof (symbuf))
7656 {
7657 bfd_set_error (bfd_error_invalid_operation);
7658 return FALSE;
7659 }
7660
7661 memcpy (symbuf, sym, symlen);
7662 symbuf[symlen] = '\0';
7663 *symp = sym + symlen;
7664
7665 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7666 the symbol as a section, or vice-versa. so we're pretty liberal in our
7667 interpretation here; section means "try section first", not "must be a
7668 section", and likewise with symbol. */
7669
7670 if (symbol_is_section)
7671 {
7672 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7673 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7674 isymbuf, locsymcount))
7675 {
7676 undefined_reference ("section", symbuf);
7677 return FALSE;
7678 }
7679 }
7680 else
7681 {
7682 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7683 isymbuf, locsymcount)
7684 && !resolve_section (symbuf, finfo->output_bfd->sections,
7685 result))
7686 {
7687 undefined_reference ("symbol", symbuf);
7688 return FALSE;
7689 }
7690 }
7691
7692 return TRUE;
7693
7694 /* All that remains are operators. */
7695
7696 #define UNARY_OP(op) \
7697 if (strncmp (sym, #op, strlen (#op)) == 0) \
7698 { \
7699 sym += strlen (#op); \
7700 if (*sym == ':') \
7701 ++sym; \
7702 *symp = sym; \
7703 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7704 isymbuf, locsymcount, signed_p)) \
7705 return FALSE; \
7706 if (signed_p) \
7707 *result = op ((bfd_signed_vma) a); \
7708 else \
7709 *result = op a; \
7710 return TRUE; \
7711 }
7712
7713 #define BINARY_OP(op) \
7714 if (strncmp (sym, #op, strlen (#op)) == 0) \
7715 { \
7716 sym += strlen (#op); \
7717 if (*sym == ':') \
7718 ++sym; \
7719 *symp = sym; \
7720 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7721 isymbuf, locsymcount, signed_p)) \
7722 return FALSE; \
7723 ++*symp; \
7724 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7725 isymbuf, locsymcount, signed_p)) \
7726 return FALSE; \
7727 if (signed_p) \
7728 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7729 else \
7730 *result = a op b; \
7731 return TRUE; \
7732 }
7733
7734 default:
7735 UNARY_OP (0-);
7736 BINARY_OP (<<);
7737 BINARY_OP (>>);
7738 BINARY_OP (==);
7739 BINARY_OP (!=);
7740 BINARY_OP (<=);
7741 BINARY_OP (>=);
7742 BINARY_OP (&&);
7743 BINARY_OP (||);
7744 UNARY_OP (~);
7745 UNARY_OP (!);
7746 BINARY_OP (*);
7747 BINARY_OP (/);
7748 BINARY_OP (%);
7749 BINARY_OP (^);
7750 BINARY_OP (|);
7751 BINARY_OP (&);
7752 BINARY_OP (+);
7753 BINARY_OP (-);
7754 BINARY_OP (<);
7755 BINARY_OP (>);
7756 #undef UNARY_OP
7757 #undef BINARY_OP
7758 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7759 bfd_set_error (bfd_error_invalid_operation);
7760 return FALSE;
7761 }
7762 }
7763
7764 static void
7765 put_value (bfd_vma size,
7766 unsigned long chunksz,
7767 bfd *input_bfd,
7768 bfd_vma x,
7769 bfd_byte *location)
7770 {
7771 location += (size - chunksz);
7772
7773 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7774 {
7775 switch (chunksz)
7776 {
7777 default:
7778 case 0:
7779 abort ();
7780 case 1:
7781 bfd_put_8 (input_bfd, x, location);
7782 break;
7783 case 2:
7784 bfd_put_16 (input_bfd, x, location);
7785 break;
7786 case 4:
7787 bfd_put_32 (input_bfd, x, location);
7788 break;
7789 case 8:
7790 #ifdef BFD64
7791 bfd_put_64 (input_bfd, x, location);
7792 #else
7793 abort ();
7794 #endif
7795 break;
7796 }
7797 }
7798 }
7799
7800 static bfd_vma
7801 get_value (bfd_vma size,
7802 unsigned long chunksz,
7803 bfd *input_bfd,
7804 bfd_byte *location)
7805 {
7806 bfd_vma x = 0;
7807
7808 for (; size; size -= chunksz, location += chunksz)
7809 {
7810 switch (chunksz)
7811 {
7812 default:
7813 case 0:
7814 abort ();
7815 case 1:
7816 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7817 break;
7818 case 2:
7819 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7820 break;
7821 case 4:
7822 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7823 break;
7824 case 8:
7825 #ifdef BFD64
7826 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7827 #else
7828 abort ();
7829 #endif
7830 break;
7831 }
7832 }
7833 return x;
7834 }
7835
7836 static void
7837 decode_complex_addend (unsigned long *start, /* in bits */
7838 unsigned long *oplen, /* in bits */
7839 unsigned long *len, /* in bits */
7840 unsigned long *wordsz, /* in bytes */
7841 unsigned long *chunksz, /* in bytes */
7842 unsigned long *lsb0_p,
7843 unsigned long *signed_p,
7844 unsigned long *trunc_p,
7845 unsigned long encoded)
7846 {
7847 * start = encoded & 0x3F;
7848 * len = (encoded >> 6) & 0x3F;
7849 * oplen = (encoded >> 12) & 0x3F;
7850 * wordsz = (encoded >> 18) & 0xF;
7851 * chunksz = (encoded >> 22) & 0xF;
7852 * lsb0_p = (encoded >> 27) & 1;
7853 * signed_p = (encoded >> 28) & 1;
7854 * trunc_p = (encoded >> 29) & 1;
7855 }
7856
7857 bfd_reloc_status_type
7858 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7859 asection *input_section ATTRIBUTE_UNUSED,
7860 bfd_byte *contents,
7861 Elf_Internal_Rela *rel,
7862 bfd_vma relocation)
7863 {
7864 bfd_vma shift, x, mask;
7865 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7866 bfd_reloc_status_type r;
7867
7868 /* Perform this reloc, since it is complex.
7869 (this is not to say that it necessarily refers to a complex
7870 symbol; merely that it is a self-describing CGEN based reloc.
7871 i.e. the addend has the complete reloc information (bit start, end,
7872 word size, etc) encoded within it.). */
7873
7874 decode_complex_addend (&start, &oplen, &len, &wordsz,
7875 &chunksz, &lsb0_p, &signed_p,
7876 &trunc_p, rel->r_addend);
7877
7878 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7879
7880 if (lsb0_p)
7881 shift = (start + 1) - len;
7882 else
7883 shift = (8 * wordsz) - (start + len);
7884
7885 /* FIXME: octets_per_byte. */
7886 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7887
7888 #ifdef DEBUG
7889 printf ("Doing complex reloc: "
7890 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7891 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7892 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7893 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7894 oplen, (unsigned long) x, (unsigned long) mask,
7895 (unsigned long) relocation);
7896 #endif
7897
7898 r = bfd_reloc_ok;
7899 if (! trunc_p)
7900 /* Now do an overflow check. */
7901 r = bfd_check_overflow ((signed_p
7902 ? complain_overflow_signed
7903 : complain_overflow_unsigned),
7904 len, 0, (8 * wordsz),
7905 relocation);
7906
7907 /* Do the deed. */
7908 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7909
7910 #ifdef DEBUG
7911 printf (" relocation: %8.8lx\n"
7912 " shifted mask: %8.8lx\n"
7913 " shifted/masked reloc: %8.8lx\n"
7914 " result: %8.8lx\n",
7915 (unsigned long) relocation, (unsigned long) (mask << shift),
7916 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7917 #endif
7918 /* FIXME: octets_per_byte. */
7919 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7920 return r;
7921 }
7922
7923 /* When performing a relocatable link, the input relocations are
7924 preserved. But, if they reference global symbols, the indices
7925 referenced must be updated. Update all the relocations found in
7926 RELDATA. */
7927
7928 static void
7929 elf_link_adjust_relocs (bfd *abfd,
7930 struct bfd_elf_section_reloc_data *reldata)
7931 {
7932 unsigned int i;
7933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7934 bfd_byte *erela;
7935 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7936 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7937 bfd_vma r_type_mask;
7938 int r_sym_shift;
7939 unsigned int count = reldata->count;
7940 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7941
7942 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7943 {
7944 swap_in = bed->s->swap_reloc_in;
7945 swap_out = bed->s->swap_reloc_out;
7946 }
7947 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7948 {
7949 swap_in = bed->s->swap_reloca_in;
7950 swap_out = bed->s->swap_reloca_out;
7951 }
7952 else
7953 abort ();
7954
7955 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7956 abort ();
7957
7958 if (bed->s->arch_size == 32)
7959 {
7960 r_type_mask = 0xff;
7961 r_sym_shift = 8;
7962 }
7963 else
7964 {
7965 r_type_mask = 0xffffffff;
7966 r_sym_shift = 32;
7967 }
7968
7969 erela = reldata->hdr->contents;
7970 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7971 {
7972 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7973 unsigned int j;
7974
7975 if (*rel_hash == NULL)
7976 continue;
7977
7978 BFD_ASSERT ((*rel_hash)->indx >= 0);
7979
7980 (*swap_in) (abfd, erela, irela);
7981 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7982 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7983 | (irela[j].r_info & r_type_mask));
7984 (*swap_out) (abfd, irela, erela);
7985 }
7986 }
7987
7988 struct elf_link_sort_rela
7989 {
7990 union {
7991 bfd_vma offset;
7992 bfd_vma sym_mask;
7993 } u;
7994 enum elf_reloc_type_class type;
7995 /* We use this as an array of size int_rels_per_ext_rel. */
7996 Elf_Internal_Rela rela[1];
7997 };
7998
7999 static int
8000 elf_link_sort_cmp1 (const void *A, const void *B)
8001 {
8002 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8003 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8004 int relativea, relativeb;
8005
8006 relativea = a->type == reloc_class_relative;
8007 relativeb = b->type == reloc_class_relative;
8008
8009 if (relativea < relativeb)
8010 return 1;
8011 if (relativea > relativeb)
8012 return -1;
8013 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8014 return -1;
8015 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8016 return 1;
8017 if (a->rela->r_offset < b->rela->r_offset)
8018 return -1;
8019 if (a->rela->r_offset > b->rela->r_offset)
8020 return 1;
8021 return 0;
8022 }
8023
8024 static int
8025 elf_link_sort_cmp2 (const void *A, const void *B)
8026 {
8027 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8028 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8029 int copya, copyb;
8030
8031 if (a->u.offset < b->u.offset)
8032 return -1;
8033 if (a->u.offset > b->u.offset)
8034 return 1;
8035 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8036 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8037 if (copya < copyb)
8038 return -1;
8039 if (copya > copyb)
8040 return 1;
8041 if (a->rela->r_offset < b->rela->r_offset)
8042 return -1;
8043 if (a->rela->r_offset > b->rela->r_offset)
8044 return 1;
8045 return 0;
8046 }
8047
8048 static size_t
8049 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8050 {
8051 asection *dynamic_relocs;
8052 asection *rela_dyn;
8053 asection *rel_dyn;
8054 bfd_size_type count, size;
8055 size_t i, ret, sort_elt, ext_size;
8056 bfd_byte *sort, *s_non_relative, *p;
8057 struct elf_link_sort_rela *sq;
8058 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8059 int i2e = bed->s->int_rels_per_ext_rel;
8060 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8061 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8062 struct bfd_link_order *lo;
8063 bfd_vma r_sym_mask;
8064 bfd_boolean use_rela;
8065
8066 /* Find a dynamic reloc section. */
8067 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8068 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8069 if (rela_dyn != NULL && rela_dyn->size > 0
8070 && rel_dyn != NULL && rel_dyn->size > 0)
8071 {
8072 bfd_boolean use_rela_initialised = FALSE;
8073
8074 /* This is just here to stop gcc from complaining.
8075 It's initialization checking code is not perfect. */
8076 use_rela = TRUE;
8077
8078 /* Both sections are present. Examine the sizes
8079 of the indirect sections to help us choose. */
8080 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8081 if (lo->type == bfd_indirect_link_order)
8082 {
8083 asection *o = lo->u.indirect.section;
8084
8085 if ((o->size % bed->s->sizeof_rela) == 0)
8086 {
8087 if ((o->size % bed->s->sizeof_rel) == 0)
8088 /* Section size is divisible by both rel and rela sizes.
8089 It is of no help to us. */
8090 ;
8091 else
8092 {
8093 /* Section size is only divisible by rela. */
8094 if (use_rela_initialised && (use_rela == FALSE))
8095 {
8096 _bfd_error_handler
8097 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8098 bfd_set_error (bfd_error_invalid_operation);
8099 return 0;
8100 }
8101 else
8102 {
8103 use_rela = TRUE;
8104 use_rela_initialised = TRUE;
8105 }
8106 }
8107 }
8108 else if ((o->size % bed->s->sizeof_rel) == 0)
8109 {
8110 /* Section size is only divisible by rel. */
8111 if (use_rela_initialised && (use_rela == TRUE))
8112 {
8113 _bfd_error_handler
8114 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8115 bfd_set_error (bfd_error_invalid_operation);
8116 return 0;
8117 }
8118 else
8119 {
8120 use_rela = FALSE;
8121 use_rela_initialised = TRUE;
8122 }
8123 }
8124 else
8125 {
8126 /* The section size is not divisible by either - something is wrong. */
8127 _bfd_error_handler
8128 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8129 bfd_set_error (bfd_error_invalid_operation);
8130 return 0;
8131 }
8132 }
8133
8134 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8135 if (lo->type == bfd_indirect_link_order)
8136 {
8137 asection *o = lo->u.indirect.section;
8138
8139 if ((o->size % bed->s->sizeof_rela) == 0)
8140 {
8141 if ((o->size % bed->s->sizeof_rel) == 0)
8142 /* Section size is divisible by both rel and rela sizes.
8143 It is of no help to us. */
8144 ;
8145 else
8146 {
8147 /* Section size is only divisible by rela. */
8148 if (use_rela_initialised && (use_rela == FALSE))
8149 {
8150 _bfd_error_handler
8151 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8152 bfd_set_error (bfd_error_invalid_operation);
8153 return 0;
8154 }
8155 else
8156 {
8157 use_rela = TRUE;
8158 use_rela_initialised = TRUE;
8159 }
8160 }
8161 }
8162 else if ((o->size % bed->s->sizeof_rel) == 0)
8163 {
8164 /* Section size is only divisible by rel. */
8165 if (use_rela_initialised && (use_rela == TRUE))
8166 {
8167 _bfd_error_handler
8168 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8169 bfd_set_error (bfd_error_invalid_operation);
8170 return 0;
8171 }
8172 else
8173 {
8174 use_rela = FALSE;
8175 use_rela_initialised = TRUE;
8176 }
8177 }
8178 else
8179 {
8180 /* The section size is not divisible by either - something is wrong. */
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8185 }
8186 }
8187
8188 if (! use_rela_initialised)
8189 /* Make a guess. */
8190 use_rela = TRUE;
8191 }
8192 else if (rela_dyn != NULL && rela_dyn->size > 0)
8193 use_rela = TRUE;
8194 else if (rel_dyn != NULL && rel_dyn->size > 0)
8195 use_rela = FALSE;
8196 else
8197 return 0;
8198
8199 if (use_rela)
8200 {
8201 dynamic_relocs = rela_dyn;
8202 ext_size = bed->s->sizeof_rela;
8203 swap_in = bed->s->swap_reloca_in;
8204 swap_out = bed->s->swap_reloca_out;
8205 }
8206 else
8207 {
8208 dynamic_relocs = rel_dyn;
8209 ext_size = bed->s->sizeof_rel;
8210 swap_in = bed->s->swap_reloc_in;
8211 swap_out = bed->s->swap_reloc_out;
8212 }
8213
8214 size = 0;
8215 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8216 if (lo->type == bfd_indirect_link_order)
8217 size += lo->u.indirect.section->size;
8218
8219 if (size != dynamic_relocs->size)
8220 return 0;
8221
8222 sort_elt = (sizeof (struct elf_link_sort_rela)
8223 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8224
8225 count = dynamic_relocs->size / ext_size;
8226 if (count == 0)
8227 return 0;
8228 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8229
8230 if (sort == NULL)
8231 {
8232 (*info->callbacks->warning)
8233 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8234 return 0;
8235 }
8236
8237 if (bed->s->arch_size == 32)
8238 r_sym_mask = ~(bfd_vma) 0xff;
8239 else
8240 r_sym_mask = ~(bfd_vma) 0xffffffff;
8241
8242 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8243 if (lo->type == bfd_indirect_link_order)
8244 {
8245 bfd_byte *erel, *erelend;
8246 asection *o = lo->u.indirect.section;
8247
8248 if (o->contents == NULL && o->size != 0)
8249 {
8250 /* This is a reloc section that is being handled as a normal
8251 section. See bfd_section_from_shdr. We can't combine
8252 relocs in this case. */
8253 free (sort);
8254 return 0;
8255 }
8256 erel = o->contents;
8257 erelend = o->contents + o->size;
8258 /* FIXME: octets_per_byte. */
8259 p = sort + o->output_offset / ext_size * sort_elt;
8260
8261 while (erel < erelend)
8262 {
8263 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8264
8265 (*swap_in) (abfd, erel, s->rela);
8266 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8267 s->u.sym_mask = r_sym_mask;
8268 p += sort_elt;
8269 erel += ext_size;
8270 }
8271 }
8272
8273 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8274
8275 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8276 {
8277 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8278 if (s->type != reloc_class_relative)
8279 break;
8280 }
8281 ret = i;
8282 s_non_relative = p;
8283
8284 sq = (struct elf_link_sort_rela *) s_non_relative;
8285 for (; i < count; i++, p += sort_elt)
8286 {
8287 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8288 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8289 sq = sp;
8290 sp->u.offset = sq->rela->r_offset;
8291 }
8292
8293 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8294
8295 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8296 if (lo->type == bfd_indirect_link_order)
8297 {
8298 bfd_byte *erel, *erelend;
8299 asection *o = lo->u.indirect.section;
8300
8301 erel = o->contents;
8302 erelend = o->contents + o->size;
8303 /* FIXME: octets_per_byte. */
8304 p = sort + o->output_offset / ext_size * sort_elt;
8305 while (erel < erelend)
8306 {
8307 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8308 (*swap_out) (abfd, s->rela, erel);
8309 p += sort_elt;
8310 erel += ext_size;
8311 }
8312 }
8313
8314 free (sort);
8315 *psec = dynamic_relocs;
8316 return ret;
8317 }
8318
8319 /* Flush the output symbols to the file. */
8320
8321 static bfd_boolean
8322 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8323 const struct elf_backend_data *bed)
8324 {
8325 if (finfo->symbuf_count > 0)
8326 {
8327 Elf_Internal_Shdr *hdr;
8328 file_ptr pos;
8329 bfd_size_type amt;
8330
8331 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8332 pos = hdr->sh_offset + hdr->sh_size;
8333 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8334 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8335 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8336 return FALSE;
8337
8338 hdr->sh_size += amt;
8339 finfo->symbuf_count = 0;
8340 }
8341
8342 return TRUE;
8343 }
8344
8345 /* Add a symbol to the output symbol table. */
8346
8347 static int
8348 elf_link_output_sym (struct elf_final_link_info *finfo,
8349 const char *name,
8350 Elf_Internal_Sym *elfsym,
8351 asection *input_sec,
8352 struct elf_link_hash_entry *h)
8353 {
8354 bfd_byte *dest;
8355 Elf_External_Sym_Shndx *destshndx;
8356 int (*output_symbol_hook)
8357 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8358 struct elf_link_hash_entry *);
8359 const struct elf_backend_data *bed;
8360
8361 bed = get_elf_backend_data (finfo->output_bfd);
8362 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8363 if (output_symbol_hook != NULL)
8364 {
8365 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8366 if (ret != 1)
8367 return ret;
8368 }
8369
8370 if (name == NULL || *name == '\0')
8371 elfsym->st_name = 0;
8372 else if (input_sec->flags & SEC_EXCLUDE)
8373 elfsym->st_name = 0;
8374 else
8375 {
8376 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8377 name, TRUE, FALSE);
8378 if (elfsym->st_name == (unsigned long) -1)
8379 return 0;
8380 }
8381
8382 if (finfo->symbuf_count >= finfo->symbuf_size)
8383 {
8384 if (! elf_link_flush_output_syms (finfo, bed))
8385 return 0;
8386 }
8387
8388 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8389 destshndx = finfo->symshndxbuf;
8390 if (destshndx != NULL)
8391 {
8392 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8393 {
8394 bfd_size_type amt;
8395
8396 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8397 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8398 amt * 2);
8399 if (destshndx == NULL)
8400 return 0;
8401 finfo->symshndxbuf = destshndx;
8402 memset ((char *) destshndx + amt, 0, amt);
8403 finfo->shndxbuf_size *= 2;
8404 }
8405 destshndx += bfd_get_symcount (finfo->output_bfd);
8406 }
8407
8408 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8409 finfo->symbuf_count += 1;
8410 bfd_get_symcount (finfo->output_bfd) += 1;
8411
8412 return 1;
8413 }
8414
8415 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8416
8417 static bfd_boolean
8418 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8419 {
8420 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8421 && sym->st_shndx < SHN_LORESERVE)
8422 {
8423 /* The gABI doesn't support dynamic symbols in output sections
8424 beyond 64k. */
8425 (*_bfd_error_handler)
8426 (_("%B: Too many sections: %d (>= %d)"),
8427 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8428 bfd_set_error (bfd_error_nonrepresentable_section);
8429 return FALSE;
8430 }
8431 return TRUE;
8432 }
8433
8434 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8435 allowing an unsatisfied unversioned symbol in the DSO to match a
8436 versioned symbol that would normally require an explicit version.
8437 We also handle the case that a DSO references a hidden symbol
8438 which may be satisfied by a versioned symbol in another DSO. */
8439
8440 static bfd_boolean
8441 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8442 const struct elf_backend_data *bed,
8443 struct elf_link_hash_entry *h)
8444 {
8445 bfd *abfd;
8446 struct elf_link_loaded_list *loaded;
8447
8448 if (!is_elf_hash_table (info->hash))
8449 return FALSE;
8450
8451 switch (h->root.type)
8452 {
8453 default:
8454 abfd = NULL;
8455 break;
8456
8457 case bfd_link_hash_undefined:
8458 case bfd_link_hash_undefweak:
8459 abfd = h->root.u.undef.abfd;
8460 if ((abfd->flags & DYNAMIC) == 0
8461 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8462 return FALSE;
8463 break;
8464
8465 case bfd_link_hash_defined:
8466 case bfd_link_hash_defweak:
8467 abfd = h->root.u.def.section->owner;
8468 break;
8469
8470 case bfd_link_hash_common:
8471 abfd = h->root.u.c.p->section->owner;
8472 break;
8473 }
8474 BFD_ASSERT (abfd != NULL);
8475
8476 for (loaded = elf_hash_table (info)->loaded;
8477 loaded != NULL;
8478 loaded = loaded->next)
8479 {
8480 bfd *input;
8481 Elf_Internal_Shdr *hdr;
8482 bfd_size_type symcount;
8483 bfd_size_type extsymcount;
8484 bfd_size_type extsymoff;
8485 Elf_Internal_Shdr *versymhdr;
8486 Elf_Internal_Sym *isym;
8487 Elf_Internal_Sym *isymend;
8488 Elf_Internal_Sym *isymbuf;
8489 Elf_External_Versym *ever;
8490 Elf_External_Versym *extversym;
8491
8492 input = loaded->abfd;
8493
8494 /* We check each DSO for a possible hidden versioned definition. */
8495 if (input == abfd
8496 || (input->flags & DYNAMIC) == 0
8497 || elf_dynversym (input) == 0)
8498 continue;
8499
8500 hdr = &elf_tdata (input)->dynsymtab_hdr;
8501
8502 symcount = hdr->sh_size / bed->s->sizeof_sym;
8503 if (elf_bad_symtab (input))
8504 {
8505 extsymcount = symcount;
8506 extsymoff = 0;
8507 }
8508 else
8509 {
8510 extsymcount = symcount - hdr->sh_info;
8511 extsymoff = hdr->sh_info;
8512 }
8513
8514 if (extsymcount == 0)
8515 continue;
8516
8517 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8518 NULL, NULL, NULL);
8519 if (isymbuf == NULL)
8520 return FALSE;
8521
8522 /* Read in any version definitions. */
8523 versymhdr = &elf_tdata (input)->dynversym_hdr;
8524 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8525 if (extversym == NULL)
8526 goto error_ret;
8527
8528 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8529 || (bfd_bread (extversym, versymhdr->sh_size, input)
8530 != versymhdr->sh_size))
8531 {
8532 free (extversym);
8533 error_ret:
8534 free (isymbuf);
8535 return FALSE;
8536 }
8537
8538 ever = extversym + extsymoff;
8539 isymend = isymbuf + extsymcount;
8540 for (isym = isymbuf; isym < isymend; isym++, ever++)
8541 {
8542 const char *name;
8543 Elf_Internal_Versym iver;
8544 unsigned short version_index;
8545
8546 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8547 || isym->st_shndx == SHN_UNDEF)
8548 continue;
8549
8550 name = bfd_elf_string_from_elf_section (input,
8551 hdr->sh_link,
8552 isym->st_name);
8553 if (strcmp (name, h->root.root.string) != 0)
8554 continue;
8555
8556 _bfd_elf_swap_versym_in (input, ever, &iver);
8557
8558 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8559 && !(h->def_regular
8560 && h->forced_local))
8561 {
8562 /* If we have a non-hidden versioned sym, then it should
8563 have provided a definition for the undefined sym unless
8564 it is defined in a non-shared object and forced local.
8565 */
8566 abort ();
8567 }
8568
8569 version_index = iver.vs_vers & VERSYM_VERSION;
8570 if (version_index == 1 || version_index == 2)
8571 {
8572 /* This is the base or first version. We can use it. */
8573 free (extversym);
8574 free (isymbuf);
8575 return TRUE;
8576 }
8577 }
8578
8579 free (extversym);
8580 free (isymbuf);
8581 }
8582
8583 return FALSE;
8584 }
8585
8586 /* Add an external symbol to the symbol table. This is called from
8587 the hash table traversal routine. When generating a shared object,
8588 we go through the symbol table twice. The first time we output
8589 anything that might have been forced to local scope in a version
8590 script. The second time we output the symbols that are still
8591 global symbols. */
8592
8593 static bfd_boolean
8594 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8595 {
8596 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8597 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8598 struct elf_final_link_info *finfo = eoinfo->finfo;
8599 bfd_boolean strip;
8600 Elf_Internal_Sym sym;
8601 asection *input_sec;
8602 const struct elf_backend_data *bed;
8603 long indx;
8604 int ret;
8605
8606 if (h->root.type == bfd_link_hash_warning)
8607 {
8608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8609 if (h->root.type == bfd_link_hash_new)
8610 return TRUE;
8611 }
8612
8613 /* Decide whether to output this symbol in this pass. */
8614 if (eoinfo->localsyms)
8615 {
8616 if (!h->forced_local)
8617 return TRUE;
8618 }
8619 else
8620 {
8621 if (h->forced_local)
8622 return TRUE;
8623 }
8624
8625 bed = get_elf_backend_data (finfo->output_bfd);
8626
8627 if (h->root.type == bfd_link_hash_undefined)
8628 {
8629 /* If we have an undefined symbol reference here then it must have
8630 come from a shared library that is being linked in. (Undefined
8631 references in regular files have already been handled unless
8632 they are in unreferenced sections which are removed by garbage
8633 collection). */
8634 bfd_boolean ignore_undef = FALSE;
8635
8636 /* Some symbols may be special in that the fact that they're
8637 undefined can be safely ignored - let backend determine that. */
8638 if (bed->elf_backend_ignore_undef_symbol)
8639 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8640
8641 /* If we are reporting errors for this situation then do so now. */
8642 if (!ignore_undef
8643 && h->ref_dynamic
8644 && (!h->ref_regular || finfo->info->gc_sections)
8645 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8646 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8647 {
8648 if (! (finfo->info->callbacks->undefined_symbol
8649 (finfo->info, h->root.root.string,
8650 h->ref_regular ? NULL : h->root.u.undef.abfd,
8651 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8652 {
8653 bfd_set_error (bfd_error_bad_value);
8654 eoinfo->failed = TRUE;
8655 return FALSE;
8656 }
8657 }
8658 }
8659
8660 /* We should also warn if a forced local symbol is referenced from
8661 shared libraries. */
8662 if (!finfo->info->relocatable
8663 && finfo->info->executable
8664 && h->forced_local
8665 && h->ref_dynamic
8666 && h->def_regular
8667 && !h->dynamic_def
8668 && !h->dynamic_weak
8669 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8670 {
8671 bfd *def_bfd;
8672 const char *msg;
8673
8674 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8675 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8676 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8677 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8678 else
8679 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8680 def_bfd = finfo->output_bfd;
8681 if (h->root.u.def.section != bfd_abs_section_ptr)
8682 def_bfd = h->root.u.def.section->owner;
8683 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8684 h->root.root.string);
8685 bfd_set_error (bfd_error_bad_value);
8686 eoinfo->failed = TRUE;
8687 return FALSE;
8688 }
8689
8690 /* We don't want to output symbols that have never been mentioned by
8691 a regular file, or that we have been told to strip. However, if
8692 h->indx is set to -2, the symbol is used by a reloc and we must
8693 output it. */
8694 if (h->indx == -2)
8695 strip = FALSE;
8696 else if ((h->def_dynamic
8697 || h->ref_dynamic
8698 || h->root.type == bfd_link_hash_new)
8699 && !h->def_regular
8700 && !h->ref_regular)
8701 strip = TRUE;
8702 else if (finfo->info->strip == strip_all)
8703 strip = TRUE;
8704 else if (finfo->info->strip == strip_some
8705 && bfd_hash_lookup (finfo->info->keep_hash,
8706 h->root.root.string, FALSE, FALSE) == NULL)
8707 strip = TRUE;
8708 else if ((h->root.type == bfd_link_hash_defined
8709 || h->root.type == bfd_link_hash_defweak)
8710 && ((finfo->info->strip_discarded
8711 && elf_discarded_section (h->root.u.def.section))
8712 || (h->root.u.def.section->owner != NULL
8713 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8714 strip = TRUE;
8715 else if ((h->root.type == bfd_link_hash_undefined
8716 || h->root.type == bfd_link_hash_undefweak)
8717 && h->root.u.undef.abfd != NULL
8718 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8719 strip = TRUE;
8720 else
8721 strip = FALSE;
8722
8723 /* If we're stripping it, and it's not a dynamic symbol, there's
8724 nothing else to do unless it is a forced local symbol or a
8725 STT_GNU_IFUNC symbol. */
8726 if (strip
8727 && h->dynindx == -1
8728 && h->type != STT_GNU_IFUNC
8729 && !h->forced_local)
8730 return TRUE;
8731
8732 sym.st_value = 0;
8733 sym.st_size = h->size;
8734 sym.st_other = h->other;
8735 if (h->forced_local)
8736 {
8737 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8738 /* Turn off visibility on local symbol. */
8739 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8740 }
8741 else if (h->unique_global)
8742 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8743 else if (h->root.type == bfd_link_hash_undefweak
8744 || h->root.type == bfd_link_hash_defweak)
8745 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8746 else
8747 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8748 sym.st_target_internal = h->target_internal;
8749
8750 switch (h->root.type)
8751 {
8752 default:
8753 case bfd_link_hash_new:
8754 case bfd_link_hash_warning:
8755 abort ();
8756 return FALSE;
8757
8758 case bfd_link_hash_undefined:
8759 case bfd_link_hash_undefweak:
8760 input_sec = bfd_und_section_ptr;
8761 sym.st_shndx = SHN_UNDEF;
8762 break;
8763
8764 case bfd_link_hash_defined:
8765 case bfd_link_hash_defweak:
8766 {
8767 input_sec = h->root.u.def.section;
8768 if (input_sec->output_section != NULL)
8769 {
8770 sym.st_shndx =
8771 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8772 input_sec->output_section);
8773 if (sym.st_shndx == SHN_BAD)
8774 {
8775 (*_bfd_error_handler)
8776 (_("%B: could not find output section %A for input section %A"),
8777 finfo->output_bfd, input_sec->output_section, input_sec);
8778 bfd_set_error (bfd_error_nonrepresentable_section);
8779 eoinfo->failed = TRUE;
8780 return FALSE;
8781 }
8782
8783 /* ELF symbols in relocatable files are section relative,
8784 but in nonrelocatable files they are virtual
8785 addresses. */
8786 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8787 if (! finfo->info->relocatable)
8788 {
8789 sym.st_value += input_sec->output_section->vma;
8790 if (h->type == STT_TLS)
8791 {
8792 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8793 if (tls_sec != NULL)
8794 sym.st_value -= tls_sec->vma;
8795 else
8796 {
8797 /* The TLS section may have been garbage collected. */
8798 BFD_ASSERT (finfo->info->gc_sections
8799 && !input_sec->gc_mark);
8800 }
8801 }
8802 }
8803 }
8804 else
8805 {
8806 BFD_ASSERT (input_sec->owner == NULL
8807 || (input_sec->owner->flags & DYNAMIC) != 0);
8808 sym.st_shndx = SHN_UNDEF;
8809 input_sec = bfd_und_section_ptr;
8810 }
8811 }
8812 break;
8813
8814 case bfd_link_hash_common:
8815 input_sec = h->root.u.c.p->section;
8816 sym.st_shndx = bed->common_section_index (input_sec);
8817 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8818 break;
8819
8820 case bfd_link_hash_indirect:
8821 /* These symbols are created by symbol versioning. They point
8822 to the decorated version of the name. For example, if the
8823 symbol foo@@GNU_1.2 is the default, which should be used when
8824 foo is used with no version, then we add an indirect symbol
8825 foo which points to foo@@GNU_1.2. We ignore these symbols,
8826 since the indirected symbol is already in the hash table. */
8827 return TRUE;
8828 }
8829
8830 /* Give the processor backend a chance to tweak the symbol value,
8831 and also to finish up anything that needs to be done for this
8832 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8833 forced local syms when non-shared is due to a historical quirk.
8834 STT_GNU_IFUNC symbol must go through PLT. */
8835 if ((h->type == STT_GNU_IFUNC
8836 && h->def_regular
8837 && !finfo->info->relocatable)
8838 || ((h->dynindx != -1
8839 || h->forced_local)
8840 && ((finfo->info->shared
8841 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8842 || h->root.type != bfd_link_hash_undefweak))
8843 || !h->forced_local)
8844 && elf_hash_table (finfo->info)->dynamic_sections_created))
8845 {
8846 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8847 (finfo->output_bfd, finfo->info, h, &sym)))
8848 {
8849 eoinfo->failed = TRUE;
8850 return FALSE;
8851 }
8852 }
8853
8854 /* If we are marking the symbol as undefined, and there are no
8855 non-weak references to this symbol from a regular object, then
8856 mark the symbol as weak undefined; if there are non-weak
8857 references, mark the symbol as strong. We can't do this earlier,
8858 because it might not be marked as undefined until the
8859 finish_dynamic_symbol routine gets through with it. */
8860 if (sym.st_shndx == SHN_UNDEF
8861 && h->ref_regular
8862 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8863 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8864 {
8865 int bindtype;
8866 unsigned int type = ELF_ST_TYPE (sym.st_info);
8867
8868 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8869 if (type == STT_GNU_IFUNC)
8870 type = STT_FUNC;
8871
8872 if (h->ref_regular_nonweak)
8873 bindtype = STB_GLOBAL;
8874 else
8875 bindtype = STB_WEAK;
8876 sym.st_info = ELF_ST_INFO (bindtype, type);
8877 }
8878
8879 /* If this is a symbol defined in a dynamic library, don't use the
8880 symbol size from the dynamic library. Relinking an executable
8881 against a new library may introduce gratuitous changes in the
8882 executable's symbols if we keep the size. */
8883 if (sym.st_shndx == SHN_UNDEF
8884 && !h->def_regular
8885 && h->def_dynamic)
8886 sym.st_size = 0;
8887
8888 /* If a non-weak symbol with non-default visibility is not defined
8889 locally, it is a fatal error. */
8890 if (! finfo->info->relocatable
8891 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8892 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8893 && h->root.type == bfd_link_hash_undefined
8894 && !h->def_regular)
8895 {
8896 const char *msg;
8897
8898 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8899 msg = _("%B: protected symbol `%s' isn't defined");
8900 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8901 msg = _("%B: internal symbol `%s' isn't defined");
8902 else
8903 msg = _("%B: hidden symbol `%s' isn't defined");
8904 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8905 bfd_set_error (bfd_error_bad_value);
8906 eoinfo->failed = TRUE;
8907 return FALSE;
8908 }
8909
8910 /* If this symbol should be put in the .dynsym section, then put it
8911 there now. We already know the symbol index. We also fill in
8912 the entry in the .hash section. */
8913 if (h->dynindx != -1
8914 && elf_hash_table (finfo->info)->dynamic_sections_created)
8915 {
8916 bfd_byte *esym;
8917
8918 sym.st_name = h->dynstr_index;
8919 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8920 if (! check_dynsym (finfo->output_bfd, &sym))
8921 {
8922 eoinfo->failed = TRUE;
8923 return FALSE;
8924 }
8925 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8926
8927 if (finfo->hash_sec != NULL)
8928 {
8929 size_t hash_entry_size;
8930 bfd_byte *bucketpos;
8931 bfd_vma chain;
8932 size_t bucketcount;
8933 size_t bucket;
8934
8935 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8936 bucket = h->u.elf_hash_value % bucketcount;
8937
8938 hash_entry_size
8939 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8940 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8941 + (bucket + 2) * hash_entry_size);
8942 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8943 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8944 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8945 ((bfd_byte *) finfo->hash_sec->contents
8946 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8947 }
8948
8949 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8950 {
8951 Elf_Internal_Versym iversym;
8952 Elf_External_Versym *eversym;
8953
8954 if (!h->def_regular)
8955 {
8956 if (h->verinfo.verdef == NULL)
8957 iversym.vs_vers = 0;
8958 else
8959 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8960 }
8961 else
8962 {
8963 if (h->verinfo.vertree == NULL)
8964 iversym.vs_vers = 1;
8965 else
8966 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8967 if (finfo->info->create_default_symver)
8968 iversym.vs_vers++;
8969 }
8970
8971 if (h->hidden)
8972 iversym.vs_vers |= VERSYM_HIDDEN;
8973
8974 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8975 eversym += h->dynindx;
8976 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8977 }
8978 }
8979
8980 /* If we're stripping it, then it was just a dynamic symbol, and
8981 there's nothing else to do. */
8982 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8983 return TRUE;
8984
8985 indx = bfd_get_symcount (finfo->output_bfd);
8986 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8987 if (ret == 0)
8988 {
8989 eoinfo->failed = TRUE;
8990 return FALSE;
8991 }
8992 else if (ret == 1)
8993 h->indx = indx;
8994 else if (h->indx == -2)
8995 abort();
8996
8997 return TRUE;
8998 }
8999
9000 /* Return TRUE if special handling is done for relocs in SEC against
9001 symbols defined in discarded sections. */
9002
9003 static bfd_boolean
9004 elf_section_ignore_discarded_relocs (asection *sec)
9005 {
9006 const struct elf_backend_data *bed;
9007
9008 switch (sec->sec_info_type)
9009 {
9010 case ELF_INFO_TYPE_STABS:
9011 case ELF_INFO_TYPE_EH_FRAME:
9012 return TRUE;
9013 default:
9014 break;
9015 }
9016
9017 bed = get_elf_backend_data (sec->owner);
9018 if (bed->elf_backend_ignore_discarded_relocs != NULL
9019 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9020 return TRUE;
9021
9022 return FALSE;
9023 }
9024
9025 /* Return a mask saying how ld should treat relocations in SEC against
9026 symbols defined in discarded sections. If this function returns
9027 COMPLAIN set, ld will issue a warning message. If this function
9028 returns PRETEND set, and the discarded section was link-once and the
9029 same size as the kept link-once section, ld will pretend that the
9030 symbol was actually defined in the kept section. Otherwise ld will
9031 zero the reloc (at least that is the intent, but some cooperation by
9032 the target dependent code is needed, particularly for REL targets). */
9033
9034 unsigned int
9035 _bfd_elf_default_action_discarded (asection *sec)
9036 {
9037 if (sec->flags & SEC_DEBUGGING)
9038 return PRETEND;
9039
9040 if (strcmp (".eh_frame", sec->name) == 0)
9041 return 0;
9042
9043 if (strcmp (".gcc_except_table", sec->name) == 0)
9044 return 0;
9045
9046 return COMPLAIN | PRETEND;
9047 }
9048
9049 /* Find a match between a section and a member of a section group. */
9050
9051 static asection *
9052 match_group_member (asection *sec, asection *group,
9053 struct bfd_link_info *info)
9054 {
9055 asection *first = elf_next_in_group (group);
9056 asection *s = first;
9057
9058 while (s != NULL)
9059 {
9060 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9061 return s;
9062
9063 s = elf_next_in_group (s);
9064 if (s == first)
9065 break;
9066 }
9067
9068 return NULL;
9069 }
9070
9071 /* Check if the kept section of a discarded section SEC can be used
9072 to replace it. Return the replacement if it is OK. Otherwise return
9073 NULL. */
9074
9075 asection *
9076 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9077 {
9078 asection *kept;
9079
9080 kept = sec->kept_section;
9081 if (kept != NULL)
9082 {
9083 if ((kept->flags & SEC_GROUP) != 0)
9084 kept = match_group_member (sec, kept, info);
9085 if (kept != NULL
9086 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9087 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9088 kept = NULL;
9089 sec->kept_section = kept;
9090 }
9091 return kept;
9092 }
9093
9094 /* Link an input file into the linker output file. This function
9095 handles all the sections and relocations of the input file at once.
9096 This is so that we only have to read the local symbols once, and
9097 don't have to keep them in memory. */
9098
9099 static bfd_boolean
9100 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9101 {
9102 int (*relocate_section)
9103 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9104 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9105 bfd *output_bfd;
9106 Elf_Internal_Shdr *symtab_hdr;
9107 size_t locsymcount;
9108 size_t extsymoff;
9109 Elf_Internal_Sym *isymbuf;
9110 Elf_Internal_Sym *isym;
9111 Elf_Internal_Sym *isymend;
9112 long *pindex;
9113 asection **ppsection;
9114 asection *o;
9115 const struct elf_backend_data *bed;
9116 struct elf_link_hash_entry **sym_hashes;
9117 bfd_size_type address_size;
9118 bfd_vma r_type_mask;
9119 int r_sym_shift;
9120
9121 output_bfd = finfo->output_bfd;
9122 bed = get_elf_backend_data (output_bfd);
9123 relocate_section = bed->elf_backend_relocate_section;
9124
9125 /* If this is a dynamic object, we don't want to do anything here:
9126 we don't want the local symbols, and we don't want the section
9127 contents. */
9128 if ((input_bfd->flags & DYNAMIC) != 0)
9129 return TRUE;
9130
9131 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9132 if (elf_bad_symtab (input_bfd))
9133 {
9134 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9135 extsymoff = 0;
9136 }
9137 else
9138 {
9139 locsymcount = symtab_hdr->sh_info;
9140 extsymoff = symtab_hdr->sh_info;
9141 }
9142
9143 /* Read the local symbols. */
9144 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9145 if (isymbuf == NULL && locsymcount != 0)
9146 {
9147 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9148 finfo->internal_syms,
9149 finfo->external_syms,
9150 finfo->locsym_shndx);
9151 if (isymbuf == NULL)
9152 return FALSE;
9153 }
9154
9155 /* Find local symbol sections and adjust values of symbols in
9156 SEC_MERGE sections. Write out those local symbols we know are
9157 going into the output file. */
9158 isymend = isymbuf + locsymcount;
9159 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9160 isym < isymend;
9161 isym++, pindex++, ppsection++)
9162 {
9163 asection *isec;
9164 const char *name;
9165 Elf_Internal_Sym osym;
9166 long indx;
9167 int ret;
9168
9169 *pindex = -1;
9170
9171 if (elf_bad_symtab (input_bfd))
9172 {
9173 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9174 {
9175 *ppsection = NULL;
9176 continue;
9177 }
9178 }
9179
9180 if (isym->st_shndx == SHN_UNDEF)
9181 isec = bfd_und_section_ptr;
9182 else if (isym->st_shndx == SHN_ABS)
9183 isec = bfd_abs_section_ptr;
9184 else if (isym->st_shndx == SHN_COMMON)
9185 isec = bfd_com_section_ptr;
9186 else
9187 {
9188 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9189 if (isec == NULL)
9190 {
9191 /* Don't attempt to output symbols with st_shnx in the
9192 reserved range other than SHN_ABS and SHN_COMMON. */
9193 *ppsection = NULL;
9194 continue;
9195 }
9196 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9197 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9198 isym->st_value =
9199 _bfd_merged_section_offset (output_bfd, &isec,
9200 elf_section_data (isec)->sec_info,
9201 isym->st_value);
9202 }
9203
9204 *ppsection = isec;
9205
9206 /* Don't output the first, undefined, symbol. */
9207 if (ppsection == finfo->sections)
9208 continue;
9209
9210 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9211 {
9212 /* We never output section symbols. Instead, we use the
9213 section symbol of the corresponding section in the output
9214 file. */
9215 continue;
9216 }
9217
9218 /* If we are stripping all symbols, we don't want to output this
9219 one. */
9220 if (finfo->info->strip == strip_all)
9221 continue;
9222
9223 /* If we are discarding all local symbols, we don't want to
9224 output this one. If we are generating a relocatable output
9225 file, then some of the local symbols may be required by
9226 relocs; we output them below as we discover that they are
9227 needed. */
9228 if (finfo->info->discard == discard_all)
9229 continue;
9230
9231 /* If this symbol is defined in a section which we are
9232 discarding, we don't need to keep it. */
9233 if (isym->st_shndx != SHN_UNDEF
9234 && isym->st_shndx < SHN_LORESERVE
9235 && bfd_section_removed_from_list (output_bfd,
9236 isec->output_section))
9237 continue;
9238
9239 /* Get the name of the symbol. */
9240 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9241 isym->st_name);
9242 if (name == NULL)
9243 return FALSE;
9244
9245 /* See if we are discarding symbols with this name. */
9246 if ((finfo->info->strip == strip_some
9247 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9248 == NULL))
9249 || (((finfo->info->discard == discard_sec_merge
9250 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9251 || finfo->info->discard == discard_l)
9252 && bfd_is_local_label_name (input_bfd, name)))
9253 continue;
9254
9255 osym = *isym;
9256
9257 /* Adjust the section index for the output file. */
9258 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9259 isec->output_section);
9260 if (osym.st_shndx == SHN_BAD)
9261 return FALSE;
9262
9263 /* ELF symbols in relocatable files are section relative, but
9264 in executable files they are virtual addresses. Note that
9265 this code assumes that all ELF sections have an associated
9266 BFD section with a reasonable value for output_offset; below
9267 we assume that they also have a reasonable value for
9268 output_section. Any special sections must be set up to meet
9269 these requirements. */
9270 osym.st_value += isec->output_offset;
9271 if (! finfo->info->relocatable)
9272 {
9273 osym.st_value += isec->output_section->vma;
9274 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9275 {
9276 /* STT_TLS symbols are relative to PT_TLS segment base. */
9277 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9278 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9279 }
9280 }
9281
9282 indx = bfd_get_symcount (output_bfd);
9283 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9284 if (ret == 0)
9285 return FALSE;
9286 else if (ret == 1)
9287 *pindex = indx;
9288 }
9289
9290 if (bed->s->arch_size == 32)
9291 {
9292 r_type_mask = 0xff;
9293 r_sym_shift = 8;
9294 address_size = 4;
9295 }
9296 else
9297 {
9298 r_type_mask = 0xffffffff;
9299 r_sym_shift = 32;
9300 address_size = 8;
9301 }
9302
9303 /* Relocate the contents of each section. */
9304 sym_hashes = elf_sym_hashes (input_bfd);
9305 for (o = input_bfd->sections; o != NULL; o = o->next)
9306 {
9307 bfd_byte *contents;
9308
9309 if (! o->linker_mark)
9310 {
9311 /* This section was omitted from the link. */
9312 continue;
9313 }
9314
9315 if (finfo->info->relocatable
9316 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9317 {
9318 /* Deal with the group signature symbol. */
9319 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9320 unsigned long symndx = sec_data->this_hdr.sh_info;
9321 asection *osec = o->output_section;
9322
9323 if (symndx >= locsymcount
9324 || (elf_bad_symtab (input_bfd)
9325 && finfo->sections[symndx] == NULL))
9326 {
9327 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9328 while (h->root.type == bfd_link_hash_indirect
9329 || h->root.type == bfd_link_hash_warning)
9330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9331 /* Arrange for symbol to be output. */
9332 h->indx = -2;
9333 elf_section_data (osec)->this_hdr.sh_info = -2;
9334 }
9335 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9336 {
9337 /* We'll use the output section target_index. */
9338 asection *sec = finfo->sections[symndx]->output_section;
9339 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9340 }
9341 else
9342 {
9343 if (finfo->indices[symndx] == -1)
9344 {
9345 /* Otherwise output the local symbol now. */
9346 Elf_Internal_Sym sym = isymbuf[symndx];
9347 asection *sec = finfo->sections[symndx]->output_section;
9348 const char *name;
9349 long indx;
9350 int ret;
9351
9352 name = bfd_elf_string_from_elf_section (input_bfd,
9353 symtab_hdr->sh_link,
9354 sym.st_name);
9355 if (name == NULL)
9356 return FALSE;
9357
9358 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9359 sec);
9360 if (sym.st_shndx == SHN_BAD)
9361 return FALSE;
9362
9363 sym.st_value += o->output_offset;
9364
9365 indx = bfd_get_symcount (output_bfd);
9366 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9367 if (ret == 0)
9368 return FALSE;
9369 else if (ret == 1)
9370 finfo->indices[symndx] = indx;
9371 else
9372 abort ();
9373 }
9374 elf_section_data (osec)->this_hdr.sh_info
9375 = finfo->indices[symndx];
9376 }
9377 }
9378
9379 if ((o->flags & SEC_HAS_CONTENTS) == 0
9380 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9381 continue;
9382
9383 if ((o->flags & SEC_LINKER_CREATED) != 0)
9384 {
9385 /* Section was created by _bfd_elf_link_create_dynamic_sections
9386 or somesuch. */
9387 continue;
9388 }
9389
9390 /* Get the contents of the section. They have been cached by a
9391 relaxation routine. Note that o is a section in an input
9392 file, so the contents field will not have been set by any of
9393 the routines which work on output files. */
9394 if (elf_section_data (o)->this_hdr.contents != NULL)
9395 contents = elf_section_data (o)->this_hdr.contents;
9396 else
9397 {
9398 contents = finfo->contents;
9399 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9400 return FALSE;
9401 }
9402
9403 if ((o->flags & SEC_RELOC) != 0)
9404 {
9405 Elf_Internal_Rela *internal_relocs;
9406 Elf_Internal_Rela *rel, *relend;
9407 int action_discarded;
9408 int ret;
9409
9410 /* Get the swapped relocs. */
9411 internal_relocs
9412 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9413 finfo->internal_relocs, FALSE);
9414 if (internal_relocs == NULL
9415 && o->reloc_count > 0)
9416 return FALSE;
9417
9418 /* We need to reverse-copy input .ctors/.dtors sections if
9419 they are placed in .init_array/.finit_array for output. */
9420 if (o->size > address_size
9421 && ((strncmp (o->name, ".ctors", 6) == 0
9422 && strcmp (o->output_section->name,
9423 ".init_array") == 0)
9424 || (strncmp (o->name, ".dtors", 6) == 0
9425 && strcmp (o->output_section->name,
9426 ".fini_array") == 0))
9427 && (o->name[6] == 0 || o->name[6] == '.'))
9428 {
9429 if (o->size != o->reloc_count * address_size)
9430 {
9431 (*_bfd_error_handler)
9432 (_("error: %B: size of section %A is not "
9433 "multiple of address size"),
9434 input_bfd, o);
9435 bfd_set_error (bfd_error_on_input);
9436 return FALSE;
9437 }
9438 o->flags |= SEC_ELF_REVERSE_COPY;
9439 }
9440
9441 action_discarded = -1;
9442 if (!elf_section_ignore_discarded_relocs (o))
9443 action_discarded = (*bed->action_discarded) (o);
9444
9445 /* Run through the relocs evaluating complex reloc symbols and
9446 looking for relocs against symbols from discarded sections
9447 or section symbols from removed link-once sections.
9448 Complain about relocs against discarded sections. Zero
9449 relocs against removed link-once sections. */
9450
9451 rel = internal_relocs;
9452 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9453 for ( ; rel < relend; rel++)
9454 {
9455 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9456 unsigned int s_type;
9457 asection **ps, *sec;
9458 struct elf_link_hash_entry *h = NULL;
9459 const char *sym_name;
9460
9461 if (r_symndx == STN_UNDEF)
9462 continue;
9463
9464 if (r_symndx >= locsymcount
9465 || (elf_bad_symtab (input_bfd)
9466 && finfo->sections[r_symndx] == NULL))
9467 {
9468 h = sym_hashes[r_symndx - extsymoff];
9469
9470 /* Badly formatted input files can contain relocs that
9471 reference non-existant symbols. Check here so that
9472 we do not seg fault. */
9473 if (h == NULL)
9474 {
9475 char buffer [32];
9476
9477 sprintf_vma (buffer, rel->r_info);
9478 (*_bfd_error_handler)
9479 (_("error: %B contains a reloc (0x%s) for section %A "
9480 "that references a non-existent global symbol"),
9481 input_bfd, o, buffer);
9482 bfd_set_error (bfd_error_bad_value);
9483 return FALSE;
9484 }
9485
9486 while (h->root.type == bfd_link_hash_indirect
9487 || h->root.type == bfd_link_hash_warning)
9488 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9489
9490 s_type = h->type;
9491
9492 ps = NULL;
9493 if (h->root.type == bfd_link_hash_defined
9494 || h->root.type == bfd_link_hash_defweak)
9495 ps = &h->root.u.def.section;
9496
9497 sym_name = h->root.root.string;
9498 }
9499 else
9500 {
9501 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9502
9503 s_type = ELF_ST_TYPE (sym->st_info);
9504 ps = &finfo->sections[r_symndx];
9505 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9506 sym, *ps);
9507 }
9508
9509 if ((s_type == STT_RELC || s_type == STT_SRELC)
9510 && !finfo->info->relocatable)
9511 {
9512 bfd_vma val;
9513 bfd_vma dot = (rel->r_offset
9514 + o->output_offset + o->output_section->vma);
9515 #ifdef DEBUG
9516 printf ("Encountered a complex symbol!");
9517 printf (" (input_bfd %s, section %s, reloc %ld\n",
9518 input_bfd->filename, o->name,
9519 (long) (rel - internal_relocs));
9520 printf (" symbol: idx %8.8lx, name %s\n",
9521 r_symndx, sym_name);
9522 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9523 (unsigned long) rel->r_info,
9524 (unsigned long) rel->r_offset);
9525 #endif
9526 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9527 isymbuf, locsymcount, s_type == STT_SRELC))
9528 return FALSE;
9529
9530 /* Symbol evaluated OK. Update to absolute value. */
9531 set_symbol_value (input_bfd, isymbuf, locsymcount,
9532 r_symndx, val);
9533 continue;
9534 }
9535
9536 if (action_discarded != -1 && ps != NULL)
9537 {
9538 /* Complain if the definition comes from a
9539 discarded section. */
9540 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9541 {
9542 BFD_ASSERT (r_symndx != STN_UNDEF);
9543 if (action_discarded & COMPLAIN)
9544 (*finfo->info->callbacks->einfo)
9545 (_("%X`%s' referenced in section `%A' of %B: "
9546 "defined in discarded section `%A' of %B\n"),
9547 sym_name, o, input_bfd, sec, sec->owner);
9548
9549 /* Try to do the best we can to support buggy old
9550 versions of gcc. Pretend that the symbol is
9551 really defined in the kept linkonce section.
9552 FIXME: This is quite broken. Modifying the
9553 symbol here means we will be changing all later
9554 uses of the symbol, not just in this section. */
9555 if (action_discarded & PRETEND)
9556 {
9557 asection *kept;
9558
9559 kept = _bfd_elf_check_kept_section (sec,
9560 finfo->info);
9561 if (kept != NULL)
9562 {
9563 *ps = kept;
9564 continue;
9565 }
9566 }
9567 }
9568 }
9569 }
9570
9571 /* Relocate the section by invoking a back end routine.
9572
9573 The back end routine is responsible for adjusting the
9574 section contents as necessary, and (if using Rela relocs
9575 and generating a relocatable output file) adjusting the
9576 reloc addend as necessary.
9577
9578 The back end routine does not have to worry about setting
9579 the reloc address or the reloc symbol index.
9580
9581 The back end routine is given a pointer to the swapped in
9582 internal symbols, and can access the hash table entries
9583 for the external symbols via elf_sym_hashes (input_bfd).
9584
9585 When generating relocatable output, the back end routine
9586 must handle STB_LOCAL/STT_SECTION symbols specially. The
9587 output symbol is going to be a section symbol
9588 corresponding to the output section, which will require
9589 the addend to be adjusted. */
9590
9591 ret = (*relocate_section) (output_bfd, finfo->info,
9592 input_bfd, o, contents,
9593 internal_relocs,
9594 isymbuf,
9595 finfo->sections);
9596 if (!ret)
9597 return FALSE;
9598
9599 if (ret == 2
9600 || finfo->info->relocatable
9601 || finfo->info->emitrelocations)
9602 {
9603 Elf_Internal_Rela *irela;
9604 Elf_Internal_Rela *irelaend, *irelamid;
9605 bfd_vma last_offset;
9606 struct elf_link_hash_entry **rel_hash;
9607 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9608 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9609 unsigned int next_erel;
9610 bfd_boolean rela_normal;
9611 struct bfd_elf_section_data *esdi, *esdo;
9612
9613 esdi = elf_section_data (o);
9614 esdo = elf_section_data (o->output_section);
9615 rela_normal = FALSE;
9616
9617 /* Adjust the reloc addresses and symbol indices. */
9618
9619 irela = internal_relocs;
9620 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9621 rel_hash = esdo->rel.hashes + esdo->rel.count;
9622 /* We start processing the REL relocs, if any. When we reach
9623 IRELAMID in the loop, we switch to the RELA relocs. */
9624 irelamid = irela;
9625 if (esdi->rel.hdr != NULL)
9626 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9627 * bed->s->int_rels_per_ext_rel);
9628 rel_hash_list = rel_hash;
9629 rela_hash_list = NULL;
9630 last_offset = o->output_offset;
9631 if (!finfo->info->relocatable)
9632 last_offset += o->output_section->vma;
9633 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9634 {
9635 unsigned long r_symndx;
9636 asection *sec;
9637 Elf_Internal_Sym sym;
9638
9639 if (next_erel == bed->s->int_rels_per_ext_rel)
9640 {
9641 rel_hash++;
9642 next_erel = 0;
9643 }
9644
9645 if (irela == irelamid)
9646 {
9647 rel_hash = esdo->rela.hashes + esdo->rela.count;
9648 rela_hash_list = rel_hash;
9649 rela_normal = bed->rela_normal;
9650 }
9651
9652 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9653 finfo->info, o,
9654 irela->r_offset);
9655 if (irela->r_offset >= (bfd_vma) -2)
9656 {
9657 /* This is a reloc for a deleted entry or somesuch.
9658 Turn it into an R_*_NONE reloc, at the same
9659 offset as the last reloc. elf_eh_frame.c and
9660 bfd_elf_discard_info rely on reloc offsets
9661 being ordered. */
9662 irela->r_offset = last_offset;
9663 irela->r_info = 0;
9664 irela->r_addend = 0;
9665 continue;
9666 }
9667
9668 irela->r_offset += o->output_offset;
9669
9670 /* Relocs in an executable have to be virtual addresses. */
9671 if (!finfo->info->relocatable)
9672 irela->r_offset += o->output_section->vma;
9673
9674 last_offset = irela->r_offset;
9675
9676 r_symndx = irela->r_info >> r_sym_shift;
9677 if (r_symndx == STN_UNDEF)
9678 continue;
9679
9680 if (r_symndx >= locsymcount
9681 || (elf_bad_symtab (input_bfd)
9682 && finfo->sections[r_symndx] == NULL))
9683 {
9684 struct elf_link_hash_entry *rh;
9685 unsigned long indx;
9686
9687 /* This is a reloc against a global symbol. We
9688 have not yet output all the local symbols, so
9689 we do not know the symbol index of any global
9690 symbol. We set the rel_hash entry for this
9691 reloc to point to the global hash table entry
9692 for this symbol. The symbol index is then
9693 set at the end of bfd_elf_final_link. */
9694 indx = r_symndx - extsymoff;
9695 rh = elf_sym_hashes (input_bfd)[indx];
9696 while (rh->root.type == bfd_link_hash_indirect
9697 || rh->root.type == bfd_link_hash_warning)
9698 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9699
9700 /* Setting the index to -2 tells
9701 elf_link_output_extsym that this symbol is
9702 used by a reloc. */
9703 BFD_ASSERT (rh->indx < 0);
9704 rh->indx = -2;
9705
9706 *rel_hash = rh;
9707
9708 continue;
9709 }
9710
9711 /* This is a reloc against a local symbol. */
9712
9713 *rel_hash = NULL;
9714 sym = isymbuf[r_symndx];
9715 sec = finfo->sections[r_symndx];
9716 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9717 {
9718 /* I suppose the backend ought to fill in the
9719 section of any STT_SECTION symbol against a
9720 processor specific section. */
9721 r_symndx = STN_UNDEF;
9722 if (bfd_is_abs_section (sec))
9723 ;
9724 else if (sec == NULL || sec->owner == NULL)
9725 {
9726 bfd_set_error (bfd_error_bad_value);
9727 return FALSE;
9728 }
9729 else
9730 {
9731 asection *osec = sec->output_section;
9732
9733 /* If we have discarded a section, the output
9734 section will be the absolute section. In
9735 case of discarded SEC_MERGE sections, use
9736 the kept section. relocate_section should
9737 have already handled discarded linkonce
9738 sections. */
9739 if (bfd_is_abs_section (osec)
9740 && sec->kept_section != NULL
9741 && sec->kept_section->output_section != NULL)
9742 {
9743 osec = sec->kept_section->output_section;
9744 irela->r_addend -= osec->vma;
9745 }
9746
9747 if (!bfd_is_abs_section (osec))
9748 {
9749 r_symndx = osec->target_index;
9750 if (r_symndx == STN_UNDEF)
9751 {
9752 struct elf_link_hash_table *htab;
9753 asection *oi;
9754
9755 htab = elf_hash_table (finfo->info);
9756 oi = htab->text_index_section;
9757 if ((osec->flags & SEC_READONLY) == 0
9758 && htab->data_index_section != NULL)
9759 oi = htab->data_index_section;
9760
9761 if (oi != NULL)
9762 {
9763 irela->r_addend += osec->vma - oi->vma;
9764 r_symndx = oi->target_index;
9765 }
9766 }
9767
9768 BFD_ASSERT (r_symndx != STN_UNDEF);
9769 }
9770 }
9771
9772 /* Adjust the addend according to where the
9773 section winds up in the output section. */
9774 if (rela_normal)
9775 irela->r_addend += sec->output_offset;
9776 }
9777 else
9778 {
9779 if (finfo->indices[r_symndx] == -1)
9780 {
9781 unsigned long shlink;
9782 const char *name;
9783 asection *osec;
9784 long indx;
9785
9786 if (finfo->info->strip == strip_all)
9787 {
9788 /* You can't do ld -r -s. */
9789 bfd_set_error (bfd_error_invalid_operation);
9790 return FALSE;
9791 }
9792
9793 /* This symbol was skipped earlier, but
9794 since it is needed by a reloc, we
9795 must output it now. */
9796 shlink = symtab_hdr->sh_link;
9797 name = (bfd_elf_string_from_elf_section
9798 (input_bfd, shlink, sym.st_name));
9799 if (name == NULL)
9800 return FALSE;
9801
9802 osec = sec->output_section;
9803 sym.st_shndx =
9804 _bfd_elf_section_from_bfd_section (output_bfd,
9805 osec);
9806 if (sym.st_shndx == SHN_BAD)
9807 return FALSE;
9808
9809 sym.st_value += sec->output_offset;
9810 if (! finfo->info->relocatable)
9811 {
9812 sym.st_value += osec->vma;
9813 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9814 {
9815 /* STT_TLS symbols are relative to PT_TLS
9816 segment base. */
9817 BFD_ASSERT (elf_hash_table (finfo->info)
9818 ->tls_sec != NULL);
9819 sym.st_value -= (elf_hash_table (finfo->info)
9820 ->tls_sec->vma);
9821 }
9822 }
9823
9824 indx = bfd_get_symcount (output_bfd);
9825 ret = elf_link_output_sym (finfo, name, &sym, sec,
9826 NULL);
9827 if (ret == 0)
9828 return FALSE;
9829 else if (ret == 1)
9830 finfo->indices[r_symndx] = indx;
9831 else
9832 abort ();
9833 }
9834
9835 r_symndx = finfo->indices[r_symndx];
9836 }
9837
9838 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9839 | (irela->r_info & r_type_mask));
9840 }
9841
9842 /* Swap out the relocs. */
9843 input_rel_hdr = esdi->rel.hdr;
9844 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9845 {
9846 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9847 input_rel_hdr,
9848 internal_relocs,
9849 rel_hash_list))
9850 return FALSE;
9851 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9852 * bed->s->int_rels_per_ext_rel);
9853 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9854 }
9855
9856 input_rela_hdr = esdi->rela.hdr;
9857 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9858 {
9859 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9860 input_rela_hdr,
9861 internal_relocs,
9862 rela_hash_list))
9863 return FALSE;
9864 }
9865 }
9866 }
9867
9868 /* Write out the modified section contents. */
9869 if (bed->elf_backend_write_section
9870 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9871 contents))
9872 {
9873 /* Section written out. */
9874 }
9875 else switch (o->sec_info_type)
9876 {
9877 case ELF_INFO_TYPE_STABS:
9878 if (! (_bfd_write_section_stabs
9879 (output_bfd,
9880 &elf_hash_table (finfo->info)->stab_info,
9881 o, &elf_section_data (o)->sec_info, contents)))
9882 return FALSE;
9883 break;
9884 case ELF_INFO_TYPE_MERGE:
9885 if (! _bfd_write_merged_section (output_bfd, o,
9886 elf_section_data (o)->sec_info))
9887 return FALSE;
9888 break;
9889 case ELF_INFO_TYPE_EH_FRAME:
9890 {
9891 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9892 o, contents))
9893 return FALSE;
9894 }
9895 break;
9896 default:
9897 {
9898 /* FIXME: octets_per_byte. */
9899 if (! (o->flags & SEC_EXCLUDE))
9900 {
9901 file_ptr offset = (file_ptr) o->output_offset;
9902 bfd_size_type todo = o->size;
9903 if ((o->flags & SEC_ELF_REVERSE_COPY))
9904 {
9905 /* Reverse-copy input section to output. */
9906 do
9907 {
9908 todo -= address_size;
9909 if (! bfd_set_section_contents (output_bfd,
9910 o->output_section,
9911 contents + todo,
9912 offset,
9913 address_size))
9914 return FALSE;
9915 if (todo == 0)
9916 break;
9917 offset += address_size;
9918 }
9919 while (1);
9920 }
9921 else if (! bfd_set_section_contents (output_bfd,
9922 o->output_section,
9923 contents,
9924 offset, todo))
9925 return FALSE;
9926 }
9927 }
9928 break;
9929 }
9930 }
9931
9932 return TRUE;
9933 }
9934
9935 /* Generate a reloc when linking an ELF file. This is a reloc
9936 requested by the linker, and does not come from any input file. This
9937 is used to build constructor and destructor tables when linking
9938 with -Ur. */
9939
9940 static bfd_boolean
9941 elf_reloc_link_order (bfd *output_bfd,
9942 struct bfd_link_info *info,
9943 asection *output_section,
9944 struct bfd_link_order *link_order)
9945 {
9946 reloc_howto_type *howto;
9947 long indx;
9948 bfd_vma offset;
9949 bfd_vma addend;
9950 struct bfd_elf_section_reloc_data *reldata;
9951 struct elf_link_hash_entry **rel_hash_ptr;
9952 Elf_Internal_Shdr *rel_hdr;
9953 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9954 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9955 bfd_byte *erel;
9956 unsigned int i;
9957 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9958
9959 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9960 if (howto == NULL)
9961 {
9962 bfd_set_error (bfd_error_bad_value);
9963 return FALSE;
9964 }
9965
9966 addend = link_order->u.reloc.p->addend;
9967
9968 if (esdo->rel.hdr)
9969 reldata = &esdo->rel;
9970 else if (esdo->rela.hdr)
9971 reldata = &esdo->rela;
9972 else
9973 {
9974 reldata = NULL;
9975 BFD_ASSERT (0);
9976 }
9977
9978 /* Figure out the symbol index. */
9979 rel_hash_ptr = reldata->hashes + reldata->count;
9980 if (link_order->type == bfd_section_reloc_link_order)
9981 {
9982 indx = link_order->u.reloc.p->u.section->target_index;
9983 BFD_ASSERT (indx != 0);
9984 *rel_hash_ptr = NULL;
9985 }
9986 else
9987 {
9988 struct elf_link_hash_entry *h;
9989
9990 /* Treat a reloc against a defined symbol as though it were
9991 actually against the section. */
9992 h = ((struct elf_link_hash_entry *)
9993 bfd_wrapped_link_hash_lookup (output_bfd, info,
9994 link_order->u.reloc.p->u.name,
9995 FALSE, FALSE, TRUE));
9996 if (h != NULL
9997 && (h->root.type == bfd_link_hash_defined
9998 || h->root.type == bfd_link_hash_defweak))
9999 {
10000 asection *section;
10001
10002 section = h->root.u.def.section;
10003 indx = section->output_section->target_index;
10004 *rel_hash_ptr = NULL;
10005 /* It seems that we ought to add the symbol value to the
10006 addend here, but in practice it has already been added
10007 because it was passed to constructor_callback. */
10008 addend += section->output_section->vma + section->output_offset;
10009 }
10010 else if (h != NULL)
10011 {
10012 /* Setting the index to -2 tells elf_link_output_extsym that
10013 this symbol is used by a reloc. */
10014 h->indx = -2;
10015 *rel_hash_ptr = h;
10016 indx = 0;
10017 }
10018 else
10019 {
10020 if (! ((*info->callbacks->unattached_reloc)
10021 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10022 return FALSE;
10023 indx = 0;
10024 }
10025 }
10026
10027 /* If this is an inplace reloc, we must write the addend into the
10028 object file. */
10029 if (howto->partial_inplace && addend != 0)
10030 {
10031 bfd_size_type size;
10032 bfd_reloc_status_type rstat;
10033 bfd_byte *buf;
10034 bfd_boolean ok;
10035 const char *sym_name;
10036
10037 size = (bfd_size_type) bfd_get_reloc_size (howto);
10038 buf = (bfd_byte *) bfd_zmalloc (size);
10039 if (buf == NULL)
10040 return FALSE;
10041 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10042 switch (rstat)
10043 {
10044 case bfd_reloc_ok:
10045 break;
10046
10047 default:
10048 case bfd_reloc_outofrange:
10049 abort ();
10050
10051 case bfd_reloc_overflow:
10052 if (link_order->type == bfd_section_reloc_link_order)
10053 sym_name = bfd_section_name (output_bfd,
10054 link_order->u.reloc.p->u.section);
10055 else
10056 sym_name = link_order->u.reloc.p->u.name;
10057 if (! ((*info->callbacks->reloc_overflow)
10058 (info, NULL, sym_name, howto->name, addend, NULL,
10059 NULL, (bfd_vma) 0)))
10060 {
10061 free (buf);
10062 return FALSE;
10063 }
10064 break;
10065 }
10066 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10067 link_order->offset, size);
10068 free (buf);
10069 if (! ok)
10070 return FALSE;
10071 }
10072
10073 /* The address of a reloc is relative to the section in a
10074 relocatable file, and is a virtual address in an executable
10075 file. */
10076 offset = link_order->offset;
10077 if (! info->relocatable)
10078 offset += output_section->vma;
10079
10080 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10081 {
10082 irel[i].r_offset = offset;
10083 irel[i].r_info = 0;
10084 irel[i].r_addend = 0;
10085 }
10086 if (bed->s->arch_size == 32)
10087 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10088 else
10089 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10090
10091 rel_hdr = reldata->hdr;
10092 erel = rel_hdr->contents;
10093 if (rel_hdr->sh_type == SHT_REL)
10094 {
10095 erel += reldata->count * bed->s->sizeof_rel;
10096 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10097 }
10098 else
10099 {
10100 irel[0].r_addend = addend;
10101 erel += reldata->count * bed->s->sizeof_rela;
10102 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10103 }
10104
10105 ++reldata->count;
10106
10107 return TRUE;
10108 }
10109
10110
10111 /* Get the output vma of the section pointed to by the sh_link field. */
10112
10113 static bfd_vma
10114 elf_get_linked_section_vma (struct bfd_link_order *p)
10115 {
10116 Elf_Internal_Shdr **elf_shdrp;
10117 asection *s;
10118 int elfsec;
10119
10120 s = p->u.indirect.section;
10121 elf_shdrp = elf_elfsections (s->owner);
10122 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10123 elfsec = elf_shdrp[elfsec]->sh_link;
10124 /* PR 290:
10125 The Intel C compiler generates SHT_IA_64_UNWIND with
10126 SHF_LINK_ORDER. But it doesn't set the sh_link or
10127 sh_info fields. Hence we could get the situation
10128 where elfsec is 0. */
10129 if (elfsec == 0)
10130 {
10131 const struct elf_backend_data *bed
10132 = get_elf_backend_data (s->owner);
10133 if (bed->link_order_error_handler)
10134 bed->link_order_error_handler
10135 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10136 return 0;
10137 }
10138 else
10139 {
10140 s = elf_shdrp[elfsec]->bfd_section;
10141 return s->output_section->vma + s->output_offset;
10142 }
10143 }
10144
10145
10146 /* Compare two sections based on the locations of the sections they are
10147 linked to. Used by elf_fixup_link_order. */
10148
10149 static int
10150 compare_link_order (const void * a, const void * b)
10151 {
10152 bfd_vma apos;
10153 bfd_vma bpos;
10154
10155 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10156 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10157 if (apos < bpos)
10158 return -1;
10159 return apos > bpos;
10160 }
10161
10162
10163 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10164 order as their linked sections. Returns false if this could not be done
10165 because an output section includes both ordered and unordered
10166 sections. Ideally we'd do this in the linker proper. */
10167
10168 static bfd_boolean
10169 elf_fixup_link_order (bfd *abfd, asection *o)
10170 {
10171 int seen_linkorder;
10172 int seen_other;
10173 int n;
10174 struct bfd_link_order *p;
10175 bfd *sub;
10176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10177 unsigned elfsec;
10178 struct bfd_link_order **sections;
10179 asection *s, *other_sec, *linkorder_sec;
10180 bfd_vma offset;
10181
10182 other_sec = NULL;
10183 linkorder_sec = NULL;
10184 seen_other = 0;
10185 seen_linkorder = 0;
10186 for (p = o->map_head.link_order; p != NULL; p = p->next)
10187 {
10188 if (p->type == bfd_indirect_link_order)
10189 {
10190 s = p->u.indirect.section;
10191 sub = s->owner;
10192 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10193 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10194 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10195 && elfsec < elf_numsections (sub)
10196 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10197 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10198 {
10199 seen_linkorder++;
10200 linkorder_sec = s;
10201 }
10202 else
10203 {
10204 seen_other++;
10205 other_sec = s;
10206 }
10207 }
10208 else
10209 seen_other++;
10210
10211 if (seen_other && seen_linkorder)
10212 {
10213 if (other_sec && linkorder_sec)
10214 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10215 o, linkorder_sec,
10216 linkorder_sec->owner, other_sec,
10217 other_sec->owner);
10218 else
10219 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10220 o);
10221 bfd_set_error (bfd_error_bad_value);
10222 return FALSE;
10223 }
10224 }
10225
10226 if (!seen_linkorder)
10227 return TRUE;
10228
10229 sections = (struct bfd_link_order **)
10230 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10231 if (sections == NULL)
10232 return FALSE;
10233 seen_linkorder = 0;
10234
10235 for (p = o->map_head.link_order; p != NULL; p = p->next)
10236 {
10237 sections[seen_linkorder++] = p;
10238 }
10239 /* Sort the input sections in the order of their linked section. */
10240 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10241 compare_link_order);
10242
10243 /* Change the offsets of the sections. */
10244 offset = 0;
10245 for (n = 0; n < seen_linkorder; n++)
10246 {
10247 s = sections[n]->u.indirect.section;
10248 offset &= ~(bfd_vma) 0 << s->alignment_power;
10249 s->output_offset = offset;
10250 sections[n]->offset = offset;
10251 /* FIXME: octets_per_byte. */
10252 offset += sections[n]->size;
10253 }
10254
10255 free (sections);
10256 return TRUE;
10257 }
10258
10259
10260 /* Do the final step of an ELF link. */
10261
10262 bfd_boolean
10263 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10264 {
10265 bfd_boolean dynamic;
10266 bfd_boolean emit_relocs;
10267 bfd *dynobj;
10268 struct elf_final_link_info finfo;
10269 asection *o;
10270 struct bfd_link_order *p;
10271 bfd *sub;
10272 bfd_size_type max_contents_size;
10273 bfd_size_type max_external_reloc_size;
10274 bfd_size_type max_internal_reloc_count;
10275 bfd_size_type max_sym_count;
10276 bfd_size_type max_sym_shndx_count;
10277 file_ptr off;
10278 Elf_Internal_Sym elfsym;
10279 unsigned int i;
10280 Elf_Internal_Shdr *symtab_hdr;
10281 Elf_Internal_Shdr *symtab_shndx_hdr;
10282 Elf_Internal_Shdr *symstrtab_hdr;
10283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10284 struct elf_outext_info eoinfo;
10285 bfd_boolean merged;
10286 size_t relativecount = 0;
10287 asection *reldyn = 0;
10288 bfd_size_type amt;
10289 asection *attr_section = NULL;
10290 bfd_vma attr_size = 0;
10291 const char *std_attrs_section;
10292
10293 if (! is_elf_hash_table (info->hash))
10294 return FALSE;
10295
10296 if (info->shared)
10297 abfd->flags |= DYNAMIC;
10298
10299 dynamic = elf_hash_table (info)->dynamic_sections_created;
10300 dynobj = elf_hash_table (info)->dynobj;
10301
10302 emit_relocs = (info->relocatable
10303 || info->emitrelocations);
10304
10305 finfo.info = info;
10306 finfo.output_bfd = abfd;
10307 finfo.symstrtab = _bfd_elf_stringtab_init ();
10308 if (finfo.symstrtab == NULL)
10309 return FALSE;
10310
10311 if (! dynamic)
10312 {
10313 finfo.dynsym_sec = NULL;
10314 finfo.hash_sec = NULL;
10315 finfo.symver_sec = NULL;
10316 }
10317 else
10318 {
10319 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10320 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10321 BFD_ASSERT (finfo.dynsym_sec != NULL);
10322 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10323 /* Note that it is OK if symver_sec is NULL. */
10324 }
10325
10326 finfo.contents = NULL;
10327 finfo.external_relocs = NULL;
10328 finfo.internal_relocs = NULL;
10329 finfo.external_syms = NULL;
10330 finfo.locsym_shndx = NULL;
10331 finfo.internal_syms = NULL;
10332 finfo.indices = NULL;
10333 finfo.sections = NULL;
10334 finfo.symbuf = NULL;
10335 finfo.symshndxbuf = NULL;
10336 finfo.symbuf_count = 0;
10337 finfo.shndxbuf_size = 0;
10338
10339 /* The object attributes have been merged. Remove the input
10340 sections from the link, and set the contents of the output
10341 secton. */
10342 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10343 for (o = abfd->sections; o != NULL; o = o->next)
10344 {
10345 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10346 || strcmp (o->name, ".gnu.attributes") == 0)
10347 {
10348 for (p = o->map_head.link_order; p != NULL; p = p->next)
10349 {
10350 asection *input_section;
10351
10352 if (p->type != bfd_indirect_link_order)
10353 continue;
10354 input_section = p->u.indirect.section;
10355 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10356 elf_link_input_bfd ignores this section. */
10357 input_section->flags &= ~SEC_HAS_CONTENTS;
10358 }
10359
10360 attr_size = bfd_elf_obj_attr_size (abfd);
10361 if (attr_size)
10362 {
10363 bfd_set_section_size (abfd, o, attr_size);
10364 attr_section = o;
10365 /* Skip this section later on. */
10366 o->map_head.link_order = NULL;
10367 }
10368 else
10369 o->flags |= SEC_EXCLUDE;
10370 }
10371 }
10372
10373 /* Count up the number of relocations we will output for each output
10374 section, so that we know the sizes of the reloc sections. We
10375 also figure out some maximum sizes. */
10376 max_contents_size = 0;
10377 max_external_reloc_size = 0;
10378 max_internal_reloc_count = 0;
10379 max_sym_count = 0;
10380 max_sym_shndx_count = 0;
10381 merged = FALSE;
10382 for (o = abfd->sections; o != NULL; o = o->next)
10383 {
10384 struct bfd_elf_section_data *esdo = elf_section_data (o);
10385 o->reloc_count = 0;
10386
10387 for (p = o->map_head.link_order; p != NULL; p = p->next)
10388 {
10389 unsigned int reloc_count = 0;
10390 struct bfd_elf_section_data *esdi = NULL;
10391
10392 if (p->type == bfd_section_reloc_link_order
10393 || p->type == bfd_symbol_reloc_link_order)
10394 reloc_count = 1;
10395 else if (p->type == bfd_indirect_link_order)
10396 {
10397 asection *sec;
10398
10399 sec = p->u.indirect.section;
10400 esdi = elf_section_data (sec);
10401
10402 /* Mark all sections which are to be included in the
10403 link. This will normally be every section. We need
10404 to do this so that we can identify any sections which
10405 the linker has decided to not include. */
10406 sec->linker_mark = TRUE;
10407
10408 if (sec->flags & SEC_MERGE)
10409 merged = TRUE;
10410
10411 if (info->relocatable || info->emitrelocations)
10412 reloc_count = sec->reloc_count;
10413 else if (bed->elf_backend_count_relocs)
10414 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10415
10416 if (sec->rawsize > max_contents_size)
10417 max_contents_size = sec->rawsize;
10418 if (sec->size > max_contents_size)
10419 max_contents_size = sec->size;
10420
10421 /* We are interested in just local symbols, not all
10422 symbols. */
10423 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10424 && (sec->owner->flags & DYNAMIC) == 0)
10425 {
10426 size_t sym_count;
10427
10428 if (elf_bad_symtab (sec->owner))
10429 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10430 / bed->s->sizeof_sym);
10431 else
10432 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10433
10434 if (sym_count > max_sym_count)
10435 max_sym_count = sym_count;
10436
10437 if (sym_count > max_sym_shndx_count
10438 && elf_symtab_shndx (sec->owner) != 0)
10439 max_sym_shndx_count = sym_count;
10440
10441 if ((sec->flags & SEC_RELOC) != 0)
10442 {
10443 size_t ext_size = 0;
10444
10445 if (esdi->rel.hdr != NULL)
10446 ext_size = esdi->rel.hdr->sh_size;
10447 if (esdi->rela.hdr != NULL)
10448 ext_size += esdi->rela.hdr->sh_size;
10449
10450 if (ext_size > max_external_reloc_size)
10451 max_external_reloc_size = ext_size;
10452 if (sec->reloc_count > max_internal_reloc_count)
10453 max_internal_reloc_count = sec->reloc_count;
10454 }
10455 }
10456 }
10457
10458 if (reloc_count == 0)
10459 continue;
10460
10461 o->reloc_count += reloc_count;
10462
10463 if (p->type == bfd_indirect_link_order
10464 && (info->relocatable || info->emitrelocations))
10465 {
10466 if (esdi->rel.hdr)
10467 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10468 if (esdi->rela.hdr)
10469 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10470 }
10471 else
10472 {
10473 if (o->use_rela_p)
10474 esdo->rela.count += reloc_count;
10475 else
10476 esdo->rel.count += reloc_count;
10477 }
10478 }
10479
10480 if (o->reloc_count > 0)
10481 o->flags |= SEC_RELOC;
10482 else
10483 {
10484 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10485 set it (this is probably a bug) and if it is set
10486 assign_section_numbers will create a reloc section. */
10487 o->flags &=~ SEC_RELOC;
10488 }
10489
10490 /* If the SEC_ALLOC flag is not set, force the section VMA to
10491 zero. This is done in elf_fake_sections as well, but forcing
10492 the VMA to 0 here will ensure that relocs against these
10493 sections are handled correctly. */
10494 if ((o->flags & SEC_ALLOC) == 0
10495 && ! o->user_set_vma)
10496 o->vma = 0;
10497 }
10498
10499 if (! info->relocatable && merged)
10500 elf_link_hash_traverse (elf_hash_table (info),
10501 _bfd_elf_link_sec_merge_syms, abfd);
10502
10503 /* Figure out the file positions for everything but the symbol table
10504 and the relocs. We set symcount to force assign_section_numbers
10505 to create a symbol table. */
10506 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10507 BFD_ASSERT (! abfd->output_has_begun);
10508 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10509 goto error_return;
10510
10511 /* Set sizes, and assign file positions for reloc sections. */
10512 for (o = abfd->sections; o != NULL; o = o->next)
10513 {
10514 struct bfd_elf_section_data *esdo = elf_section_data (o);
10515 if ((o->flags & SEC_RELOC) != 0)
10516 {
10517 if (esdo->rel.hdr
10518 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10519 goto error_return;
10520
10521 if (esdo->rela.hdr
10522 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10523 goto error_return;
10524 }
10525
10526 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10527 to count upwards while actually outputting the relocations. */
10528 esdo->rel.count = 0;
10529 esdo->rela.count = 0;
10530 }
10531
10532 _bfd_elf_assign_file_positions_for_relocs (abfd);
10533
10534 /* We have now assigned file positions for all the sections except
10535 .symtab and .strtab. We start the .symtab section at the current
10536 file position, and write directly to it. We build the .strtab
10537 section in memory. */
10538 bfd_get_symcount (abfd) = 0;
10539 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10540 /* sh_name is set in prep_headers. */
10541 symtab_hdr->sh_type = SHT_SYMTAB;
10542 /* sh_flags, sh_addr and sh_size all start off zero. */
10543 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10544 /* sh_link is set in assign_section_numbers. */
10545 /* sh_info is set below. */
10546 /* sh_offset is set just below. */
10547 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10548
10549 off = elf_tdata (abfd)->next_file_pos;
10550 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10551
10552 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10553 incorrect. We do not yet know the size of the .symtab section.
10554 We correct next_file_pos below, after we do know the size. */
10555
10556 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10557 continuously seeking to the right position in the file. */
10558 if (! info->keep_memory || max_sym_count < 20)
10559 finfo.symbuf_size = 20;
10560 else
10561 finfo.symbuf_size = max_sym_count;
10562 amt = finfo.symbuf_size;
10563 amt *= bed->s->sizeof_sym;
10564 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10565 if (finfo.symbuf == NULL)
10566 goto error_return;
10567 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10568 {
10569 /* Wild guess at number of output symbols. realloc'd as needed. */
10570 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10571 finfo.shndxbuf_size = amt;
10572 amt *= sizeof (Elf_External_Sym_Shndx);
10573 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10574 if (finfo.symshndxbuf == NULL)
10575 goto error_return;
10576 }
10577
10578 /* Start writing out the symbol table. The first symbol is always a
10579 dummy symbol. */
10580 if (info->strip != strip_all
10581 || emit_relocs)
10582 {
10583 elfsym.st_value = 0;
10584 elfsym.st_size = 0;
10585 elfsym.st_info = 0;
10586 elfsym.st_other = 0;
10587 elfsym.st_shndx = SHN_UNDEF;
10588 elfsym.st_target_internal = 0;
10589 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10590 NULL) != 1)
10591 goto error_return;
10592 }
10593
10594 /* Output a symbol for each section. We output these even if we are
10595 discarding local symbols, since they are used for relocs. These
10596 symbols have no names. We store the index of each one in the
10597 index field of the section, so that we can find it again when
10598 outputting relocs. */
10599 if (info->strip != strip_all
10600 || emit_relocs)
10601 {
10602 elfsym.st_size = 0;
10603 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10604 elfsym.st_other = 0;
10605 elfsym.st_value = 0;
10606 elfsym.st_target_internal = 0;
10607 for (i = 1; i < elf_numsections (abfd); i++)
10608 {
10609 o = bfd_section_from_elf_index (abfd, i);
10610 if (o != NULL)
10611 {
10612 o->target_index = bfd_get_symcount (abfd);
10613 elfsym.st_shndx = i;
10614 if (!info->relocatable)
10615 elfsym.st_value = o->vma;
10616 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10617 goto error_return;
10618 }
10619 }
10620 }
10621
10622 /* Allocate some memory to hold information read in from the input
10623 files. */
10624 if (max_contents_size != 0)
10625 {
10626 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10627 if (finfo.contents == NULL)
10628 goto error_return;
10629 }
10630
10631 if (max_external_reloc_size != 0)
10632 {
10633 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10634 if (finfo.external_relocs == NULL)
10635 goto error_return;
10636 }
10637
10638 if (max_internal_reloc_count != 0)
10639 {
10640 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10641 amt *= sizeof (Elf_Internal_Rela);
10642 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10643 if (finfo.internal_relocs == NULL)
10644 goto error_return;
10645 }
10646
10647 if (max_sym_count != 0)
10648 {
10649 amt = max_sym_count * bed->s->sizeof_sym;
10650 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10651 if (finfo.external_syms == NULL)
10652 goto error_return;
10653
10654 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10655 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10656 if (finfo.internal_syms == NULL)
10657 goto error_return;
10658
10659 amt = max_sym_count * sizeof (long);
10660 finfo.indices = (long int *) bfd_malloc (amt);
10661 if (finfo.indices == NULL)
10662 goto error_return;
10663
10664 amt = max_sym_count * sizeof (asection *);
10665 finfo.sections = (asection **) bfd_malloc (amt);
10666 if (finfo.sections == NULL)
10667 goto error_return;
10668 }
10669
10670 if (max_sym_shndx_count != 0)
10671 {
10672 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10673 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10674 if (finfo.locsym_shndx == NULL)
10675 goto error_return;
10676 }
10677
10678 if (elf_hash_table (info)->tls_sec)
10679 {
10680 bfd_vma base, end = 0;
10681 asection *sec;
10682
10683 for (sec = elf_hash_table (info)->tls_sec;
10684 sec && (sec->flags & SEC_THREAD_LOCAL);
10685 sec = sec->next)
10686 {
10687 bfd_size_type size = sec->size;
10688
10689 if (size == 0
10690 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10691 {
10692 struct bfd_link_order *ord = sec->map_tail.link_order;
10693
10694 if (ord != NULL)
10695 size = ord->offset + ord->size;
10696 }
10697 end = sec->vma + size;
10698 }
10699 base = elf_hash_table (info)->tls_sec->vma;
10700 /* Only align end of TLS section if static TLS doesn't have special
10701 alignment requirements. */
10702 if (bed->static_tls_alignment == 1)
10703 end = align_power (end,
10704 elf_hash_table (info)->tls_sec->alignment_power);
10705 elf_hash_table (info)->tls_size = end - base;
10706 }
10707
10708 /* Reorder SHF_LINK_ORDER sections. */
10709 for (o = abfd->sections; o != NULL; o = o->next)
10710 {
10711 if (!elf_fixup_link_order (abfd, o))
10712 return FALSE;
10713 }
10714
10715 /* Since ELF permits relocations to be against local symbols, we
10716 must have the local symbols available when we do the relocations.
10717 Since we would rather only read the local symbols once, and we
10718 would rather not keep them in memory, we handle all the
10719 relocations for a single input file at the same time.
10720
10721 Unfortunately, there is no way to know the total number of local
10722 symbols until we have seen all of them, and the local symbol
10723 indices precede the global symbol indices. This means that when
10724 we are generating relocatable output, and we see a reloc against
10725 a global symbol, we can not know the symbol index until we have
10726 finished examining all the local symbols to see which ones we are
10727 going to output. To deal with this, we keep the relocations in
10728 memory, and don't output them until the end of the link. This is
10729 an unfortunate waste of memory, but I don't see a good way around
10730 it. Fortunately, it only happens when performing a relocatable
10731 link, which is not the common case. FIXME: If keep_memory is set
10732 we could write the relocs out and then read them again; I don't
10733 know how bad the memory loss will be. */
10734
10735 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10736 sub->output_has_begun = FALSE;
10737 for (o = abfd->sections; o != NULL; o = o->next)
10738 {
10739 for (p = o->map_head.link_order; p != NULL; p = p->next)
10740 {
10741 if (p->type == bfd_indirect_link_order
10742 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10743 == bfd_target_elf_flavour)
10744 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10745 {
10746 if (! sub->output_has_begun)
10747 {
10748 if (! elf_link_input_bfd (&finfo, sub))
10749 goto error_return;
10750 sub->output_has_begun = TRUE;
10751 }
10752 }
10753 else if (p->type == bfd_section_reloc_link_order
10754 || p->type == bfd_symbol_reloc_link_order)
10755 {
10756 if (! elf_reloc_link_order (abfd, info, o, p))
10757 goto error_return;
10758 }
10759 else
10760 {
10761 if (! _bfd_default_link_order (abfd, info, o, p))
10762 {
10763 if (p->type == bfd_indirect_link_order
10764 && (bfd_get_flavour (sub)
10765 == bfd_target_elf_flavour)
10766 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10767 != bed->s->elfclass))
10768 {
10769 const char *iclass, *oclass;
10770
10771 if (bed->s->elfclass == ELFCLASS64)
10772 {
10773 iclass = "ELFCLASS32";
10774 oclass = "ELFCLASS64";
10775 }
10776 else
10777 {
10778 iclass = "ELFCLASS64";
10779 oclass = "ELFCLASS32";
10780 }
10781
10782 bfd_set_error (bfd_error_wrong_format);
10783 (*_bfd_error_handler)
10784 (_("%B: file class %s incompatible with %s"),
10785 sub, iclass, oclass);
10786 }
10787
10788 goto error_return;
10789 }
10790 }
10791 }
10792 }
10793
10794 /* Free symbol buffer if needed. */
10795 if (!info->reduce_memory_overheads)
10796 {
10797 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10798 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10799 && elf_tdata (sub)->symbuf)
10800 {
10801 free (elf_tdata (sub)->symbuf);
10802 elf_tdata (sub)->symbuf = NULL;
10803 }
10804 }
10805
10806 /* Output any global symbols that got converted to local in a
10807 version script or due to symbol visibility. We do this in a
10808 separate step since ELF requires all local symbols to appear
10809 prior to any global symbols. FIXME: We should only do this if
10810 some global symbols were, in fact, converted to become local.
10811 FIXME: Will this work correctly with the Irix 5 linker? */
10812 eoinfo.failed = FALSE;
10813 eoinfo.finfo = &finfo;
10814 eoinfo.localsyms = TRUE;
10815 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10816 if (eoinfo.failed)
10817 return FALSE;
10818
10819 /* If backend needs to output some local symbols not present in the hash
10820 table, do it now. */
10821 if (bed->elf_backend_output_arch_local_syms)
10822 {
10823 typedef int (*out_sym_func)
10824 (void *, const char *, Elf_Internal_Sym *, asection *,
10825 struct elf_link_hash_entry *);
10826
10827 if (! ((*bed->elf_backend_output_arch_local_syms)
10828 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10829 return FALSE;
10830 }
10831
10832 /* That wrote out all the local symbols. Finish up the symbol table
10833 with the global symbols. Even if we want to strip everything we
10834 can, we still need to deal with those global symbols that got
10835 converted to local in a version script. */
10836
10837 /* The sh_info field records the index of the first non local symbol. */
10838 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10839
10840 if (dynamic
10841 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10842 {
10843 Elf_Internal_Sym sym;
10844 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10845 long last_local = 0;
10846
10847 /* Write out the section symbols for the output sections. */
10848 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10849 {
10850 asection *s;
10851
10852 sym.st_size = 0;
10853 sym.st_name = 0;
10854 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10855 sym.st_other = 0;
10856 sym.st_target_internal = 0;
10857
10858 for (s = abfd->sections; s != NULL; s = s->next)
10859 {
10860 int indx;
10861 bfd_byte *dest;
10862 long dynindx;
10863
10864 dynindx = elf_section_data (s)->dynindx;
10865 if (dynindx <= 0)
10866 continue;
10867 indx = elf_section_data (s)->this_idx;
10868 BFD_ASSERT (indx > 0);
10869 sym.st_shndx = indx;
10870 if (! check_dynsym (abfd, &sym))
10871 return FALSE;
10872 sym.st_value = s->vma;
10873 dest = dynsym + dynindx * bed->s->sizeof_sym;
10874 if (last_local < dynindx)
10875 last_local = dynindx;
10876 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10877 }
10878 }
10879
10880 /* Write out the local dynsyms. */
10881 if (elf_hash_table (info)->dynlocal)
10882 {
10883 struct elf_link_local_dynamic_entry *e;
10884 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10885 {
10886 asection *s;
10887 bfd_byte *dest;
10888
10889 /* Copy the internal symbol and turn off visibility.
10890 Note that we saved a word of storage and overwrote
10891 the original st_name with the dynstr_index. */
10892 sym = e->isym;
10893 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10894
10895 s = bfd_section_from_elf_index (e->input_bfd,
10896 e->isym.st_shndx);
10897 if (s != NULL)
10898 {
10899 sym.st_shndx =
10900 elf_section_data (s->output_section)->this_idx;
10901 if (! check_dynsym (abfd, &sym))
10902 return FALSE;
10903 sym.st_value = (s->output_section->vma
10904 + s->output_offset
10905 + e->isym.st_value);
10906 }
10907
10908 if (last_local < e->dynindx)
10909 last_local = e->dynindx;
10910
10911 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10912 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10913 }
10914 }
10915
10916 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10917 last_local + 1;
10918 }
10919
10920 /* We get the global symbols from the hash table. */
10921 eoinfo.failed = FALSE;
10922 eoinfo.localsyms = FALSE;
10923 eoinfo.finfo = &finfo;
10924 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10925 if (eoinfo.failed)
10926 return FALSE;
10927
10928 /* If backend needs to output some symbols not present in the hash
10929 table, do it now. */
10930 if (bed->elf_backend_output_arch_syms)
10931 {
10932 typedef int (*out_sym_func)
10933 (void *, const char *, Elf_Internal_Sym *, asection *,
10934 struct elf_link_hash_entry *);
10935
10936 if (! ((*bed->elf_backend_output_arch_syms)
10937 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10938 return FALSE;
10939 }
10940
10941 /* Flush all symbols to the file. */
10942 if (! elf_link_flush_output_syms (&finfo, bed))
10943 return FALSE;
10944
10945 /* Now we know the size of the symtab section. */
10946 off += symtab_hdr->sh_size;
10947
10948 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10949 if (symtab_shndx_hdr->sh_name != 0)
10950 {
10951 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10952 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10953 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10954 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10955 symtab_shndx_hdr->sh_size = amt;
10956
10957 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10958 off, TRUE);
10959
10960 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10961 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10962 return FALSE;
10963 }
10964
10965
10966 /* Finish up and write out the symbol string table (.strtab)
10967 section. */
10968 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10969 /* sh_name was set in prep_headers. */
10970 symstrtab_hdr->sh_type = SHT_STRTAB;
10971 symstrtab_hdr->sh_flags = 0;
10972 symstrtab_hdr->sh_addr = 0;
10973 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10974 symstrtab_hdr->sh_entsize = 0;
10975 symstrtab_hdr->sh_link = 0;
10976 symstrtab_hdr->sh_info = 0;
10977 /* sh_offset is set just below. */
10978 symstrtab_hdr->sh_addralign = 1;
10979
10980 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10981 elf_tdata (abfd)->next_file_pos = off;
10982
10983 if (bfd_get_symcount (abfd) > 0)
10984 {
10985 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10986 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10987 return FALSE;
10988 }
10989
10990 /* Adjust the relocs to have the correct symbol indices. */
10991 for (o = abfd->sections; o != NULL; o = o->next)
10992 {
10993 struct bfd_elf_section_data *esdo = elf_section_data (o);
10994 if ((o->flags & SEC_RELOC) == 0)
10995 continue;
10996
10997 if (esdo->rel.hdr != NULL)
10998 elf_link_adjust_relocs (abfd, &esdo->rel);
10999 if (esdo->rela.hdr != NULL)
11000 elf_link_adjust_relocs (abfd, &esdo->rela);
11001
11002 /* Set the reloc_count field to 0 to prevent write_relocs from
11003 trying to swap the relocs out itself. */
11004 o->reloc_count = 0;
11005 }
11006
11007 if (dynamic && info->combreloc && dynobj != NULL)
11008 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11009
11010 /* If we are linking against a dynamic object, or generating a
11011 shared library, finish up the dynamic linking information. */
11012 if (dynamic)
11013 {
11014 bfd_byte *dyncon, *dynconend;
11015
11016 /* Fix up .dynamic entries. */
11017 o = bfd_get_section_by_name (dynobj, ".dynamic");
11018 BFD_ASSERT (o != NULL);
11019
11020 dyncon = o->contents;
11021 dynconend = o->contents + o->size;
11022 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11023 {
11024 Elf_Internal_Dyn dyn;
11025 const char *name;
11026 unsigned int type;
11027
11028 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11029
11030 switch (dyn.d_tag)
11031 {
11032 default:
11033 continue;
11034 case DT_NULL:
11035 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11036 {
11037 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11038 {
11039 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11040 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11041 default: continue;
11042 }
11043 dyn.d_un.d_val = relativecount;
11044 relativecount = 0;
11045 break;
11046 }
11047 continue;
11048
11049 case DT_INIT:
11050 name = info->init_function;
11051 goto get_sym;
11052 case DT_FINI:
11053 name = info->fini_function;
11054 get_sym:
11055 {
11056 struct elf_link_hash_entry *h;
11057
11058 h = elf_link_hash_lookup (elf_hash_table (info), name,
11059 FALSE, FALSE, TRUE);
11060 if (h != NULL
11061 && (h->root.type == bfd_link_hash_defined
11062 || h->root.type == bfd_link_hash_defweak))
11063 {
11064 dyn.d_un.d_ptr = h->root.u.def.value;
11065 o = h->root.u.def.section;
11066 if (o->output_section != NULL)
11067 dyn.d_un.d_ptr += (o->output_section->vma
11068 + o->output_offset);
11069 else
11070 {
11071 /* The symbol is imported from another shared
11072 library and does not apply to this one. */
11073 dyn.d_un.d_ptr = 0;
11074 }
11075 break;
11076 }
11077 }
11078 continue;
11079
11080 case DT_PREINIT_ARRAYSZ:
11081 name = ".preinit_array";
11082 goto get_size;
11083 case DT_INIT_ARRAYSZ:
11084 name = ".init_array";
11085 goto get_size;
11086 case DT_FINI_ARRAYSZ:
11087 name = ".fini_array";
11088 get_size:
11089 o = bfd_get_section_by_name (abfd, name);
11090 if (o == NULL)
11091 {
11092 (*_bfd_error_handler)
11093 (_("%B: could not find output section %s"), abfd, name);
11094 goto error_return;
11095 }
11096 if (o->size == 0)
11097 (*_bfd_error_handler)
11098 (_("warning: %s section has zero size"), name);
11099 dyn.d_un.d_val = o->size;
11100 break;
11101
11102 case DT_PREINIT_ARRAY:
11103 name = ".preinit_array";
11104 goto get_vma;
11105 case DT_INIT_ARRAY:
11106 name = ".init_array";
11107 goto get_vma;
11108 case DT_FINI_ARRAY:
11109 name = ".fini_array";
11110 goto get_vma;
11111
11112 case DT_HASH:
11113 name = ".hash";
11114 goto get_vma;
11115 case DT_GNU_HASH:
11116 name = ".gnu.hash";
11117 goto get_vma;
11118 case DT_STRTAB:
11119 name = ".dynstr";
11120 goto get_vma;
11121 case DT_SYMTAB:
11122 name = ".dynsym";
11123 goto get_vma;
11124 case DT_VERDEF:
11125 name = ".gnu.version_d";
11126 goto get_vma;
11127 case DT_VERNEED:
11128 name = ".gnu.version_r";
11129 goto get_vma;
11130 case DT_VERSYM:
11131 name = ".gnu.version";
11132 get_vma:
11133 o = bfd_get_section_by_name (abfd, name);
11134 if (o == NULL)
11135 {
11136 (*_bfd_error_handler)
11137 (_("%B: could not find output section %s"), abfd, name);
11138 goto error_return;
11139 }
11140 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11141 {
11142 (*_bfd_error_handler)
11143 (_("warning: section '%s' is being made into a note"), name);
11144 bfd_set_error (bfd_error_nonrepresentable_section);
11145 goto error_return;
11146 }
11147 dyn.d_un.d_ptr = o->vma;
11148 break;
11149
11150 case DT_REL:
11151 case DT_RELA:
11152 case DT_RELSZ:
11153 case DT_RELASZ:
11154 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11155 type = SHT_REL;
11156 else
11157 type = SHT_RELA;
11158 dyn.d_un.d_val = 0;
11159 dyn.d_un.d_ptr = 0;
11160 for (i = 1; i < elf_numsections (abfd); i++)
11161 {
11162 Elf_Internal_Shdr *hdr;
11163
11164 hdr = elf_elfsections (abfd)[i];
11165 if (hdr->sh_type == type
11166 && (hdr->sh_flags & SHF_ALLOC) != 0)
11167 {
11168 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11169 dyn.d_un.d_val += hdr->sh_size;
11170 else
11171 {
11172 if (dyn.d_un.d_ptr == 0
11173 || hdr->sh_addr < dyn.d_un.d_ptr)
11174 dyn.d_un.d_ptr = hdr->sh_addr;
11175 }
11176 }
11177 }
11178 break;
11179 }
11180 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11181 }
11182 }
11183
11184 /* If we have created any dynamic sections, then output them. */
11185 if (dynobj != NULL)
11186 {
11187 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11188 goto error_return;
11189
11190 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11191 if ((info->warn_shared_textrel && info->shared)
11192 || info->error_textrel)
11193 {
11194 bfd_byte *dyncon, *dynconend;
11195
11196 /* Fix up .dynamic entries. */
11197 o = bfd_get_section_by_name (dynobj, ".dynamic");
11198 BFD_ASSERT (o != NULL);
11199
11200 dyncon = o->contents;
11201 dynconend = o->contents + o->size;
11202 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11203 {
11204 Elf_Internal_Dyn dyn;
11205
11206 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11207
11208 if (dyn.d_tag == DT_TEXTREL)
11209 {
11210 if (info->error_textrel)
11211 info->callbacks->einfo
11212 (_("%P%X: read-only segment has dynamic relocations.\n"));
11213 else
11214 info->callbacks->einfo
11215 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11216 break;
11217 }
11218 }
11219 }
11220
11221 for (o = dynobj->sections; o != NULL; o = o->next)
11222 {
11223 if ((o->flags & SEC_HAS_CONTENTS) == 0
11224 || o->size == 0
11225 || o->output_section == bfd_abs_section_ptr)
11226 continue;
11227 if ((o->flags & SEC_LINKER_CREATED) == 0)
11228 {
11229 /* At this point, we are only interested in sections
11230 created by _bfd_elf_link_create_dynamic_sections. */
11231 continue;
11232 }
11233 if (elf_hash_table (info)->stab_info.stabstr == o)
11234 continue;
11235 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11236 continue;
11237 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11238 != SHT_STRTAB)
11239 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11240 {
11241 /* FIXME: octets_per_byte. */
11242 if (! bfd_set_section_contents (abfd, o->output_section,
11243 o->contents,
11244 (file_ptr) o->output_offset,
11245 o->size))
11246 goto error_return;
11247 }
11248 else
11249 {
11250 /* The contents of the .dynstr section are actually in a
11251 stringtab. */
11252 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11253 if (bfd_seek (abfd, off, SEEK_SET) != 0
11254 || ! _bfd_elf_strtab_emit (abfd,
11255 elf_hash_table (info)->dynstr))
11256 goto error_return;
11257 }
11258 }
11259 }
11260
11261 if (info->relocatable)
11262 {
11263 bfd_boolean failed = FALSE;
11264
11265 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11266 if (failed)
11267 goto error_return;
11268 }
11269
11270 /* If we have optimized stabs strings, output them. */
11271 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11272 {
11273 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11274 goto error_return;
11275 }
11276
11277 if (info->eh_frame_hdr)
11278 {
11279 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11280 goto error_return;
11281 }
11282
11283 if (finfo.symstrtab != NULL)
11284 _bfd_stringtab_free (finfo.symstrtab);
11285 if (finfo.contents != NULL)
11286 free (finfo.contents);
11287 if (finfo.external_relocs != NULL)
11288 free (finfo.external_relocs);
11289 if (finfo.internal_relocs != NULL)
11290 free (finfo.internal_relocs);
11291 if (finfo.external_syms != NULL)
11292 free (finfo.external_syms);
11293 if (finfo.locsym_shndx != NULL)
11294 free (finfo.locsym_shndx);
11295 if (finfo.internal_syms != NULL)
11296 free (finfo.internal_syms);
11297 if (finfo.indices != NULL)
11298 free (finfo.indices);
11299 if (finfo.sections != NULL)
11300 free (finfo.sections);
11301 if (finfo.symbuf != NULL)
11302 free (finfo.symbuf);
11303 if (finfo.symshndxbuf != NULL)
11304 free (finfo.symshndxbuf);
11305 for (o = abfd->sections; o != NULL; o = o->next)
11306 {
11307 struct bfd_elf_section_data *esdo = elf_section_data (o);
11308 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11309 free (esdo->rel.hashes);
11310 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11311 free (esdo->rela.hashes);
11312 }
11313
11314 elf_tdata (abfd)->linker = TRUE;
11315
11316 if (attr_section)
11317 {
11318 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11319 if (contents == NULL)
11320 return FALSE; /* Bail out and fail. */
11321 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11322 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11323 free (contents);
11324 }
11325
11326 return TRUE;
11327
11328 error_return:
11329 if (finfo.symstrtab != NULL)
11330 _bfd_stringtab_free (finfo.symstrtab);
11331 if (finfo.contents != NULL)
11332 free (finfo.contents);
11333 if (finfo.external_relocs != NULL)
11334 free (finfo.external_relocs);
11335 if (finfo.internal_relocs != NULL)
11336 free (finfo.internal_relocs);
11337 if (finfo.external_syms != NULL)
11338 free (finfo.external_syms);
11339 if (finfo.locsym_shndx != NULL)
11340 free (finfo.locsym_shndx);
11341 if (finfo.internal_syms != NULL)
11342 free (finfo.internal_syms);
11343 if (finfo.indices != NULL)
11344 free (finfo.indices);
11345 if (finfo.sections != NULL)
11346 free (finfo.sections);
11347 if (finfo.symbuf != NULL)
11348 free (finfo.symbuf);
11349 if (finfo.symshndxbuf != NULL)
11350 free (finfo.symshndxbuf);
11351 for (o = abfd->sections; o != NULL; o = o->next)
11352 {
11353 struct bfd_elf_section_data *esdo = elf_section_data (o);
11354 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11355 free (esdo->rel.hashes);
11356 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11357 free (esdo->rela.hashes);
11358 }
11359
11360 return FALSE;
11361 }
11362 \f
11363 /* Initialize COOKIE for input bfd ABFD. */
11364
11365 static bfd_boolean
11366 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11367 struct bfd_link_info *info, bfd *abfd)
11368 {
11369 Elf_Internal_Shdr *symtab_hdr;
11370 const struct elf_backend_data *bed;
11371
11372 bed = get_elf_backend_data (abfd);
11373 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11374
11375 cookie->abfd = abfd;
11376 cookie->sym_hashes = elf_sym_hashes (abfd);
11377 cookie->bad_symtab = elf_bad_symtab (abfd);
11378 if (cookie->bad_symtab)
11379 {
11380 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11381 cookie->extsymoff = 0;
11382 }
11383 else
11384 {
11385 cookie->locsymcount = symtab_hdr->sh_info;
11386 cookie->extsymoff = symtab_hdr->sh_info;
11387 }
11388
11389 if (bed->s->arch_size == 32)
11390 cookie->r_sym_shift = 8;
11391 else
11392 cookie->r_sym_shift = 32;
11393
11394 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11395 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11396 {
11397 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11398 cookie->locsymcount, 0,
11399 NULL, NULL, NULL);
11400 if (cookie->locsyms == NULL)
11401 {
11402 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11403 return FALSE;
11404 }
11405 if (info->keep_memory)
11406 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11407 }
11408 return TRUE;
11409 }
11410
11411 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11412
11413 static void
11414 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11415 {
11416 Elf_Internal_Shdr *symtab_hdr;
11417
11418 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11419 if (cookie->locsyms != NULL
11420 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11421 free (cookie->locsyms);
11422 }
11423
11424 /* Initialize the relocation information in COOKIE for input section SEC
11425 of input bfd ABFD. */
11426
11427 static bfd_boolean
11428 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11429 struct bfd_link_info *info, bfd *abfd,
11430 asection *sec)
11431 {
11432 const struct elf_backend_data *bed;
11433
11434 if (sec->reloc_count == 0)
11435 {
11436 cookie->rels = NULL;
11437 cookie->relend = NULL;
11438 }
11439 else
11440 {
11441 bed = get_elf_backend_data (abfd);
11442
11443 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11444 info->keep_memory);
11445 if (cookie->rels == NULL)
11446 return FALSE;
11447 cookie->rel = cookie->rels;
11448 cookie->relend = (cookie->rels
11449 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11450 }
11451 cookie->rel = cookie->rels;
11452 return TRUE;
11453 }
11454
11455 /* Free the memory allocated by init_reloc_cookie_rels,
11456 if appropriate. */
11457
11458 static void
11459 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11460 asection *sec)
11461 {
11462 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11463 free (cookie->rels);
11464 }
11465
11466 /* Initialize the whole of COOKIE for input section SEC. */
11467
11468 static bfd_boolean
11469 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11470 struct bfd_link_info *info,
11471 asection *sec)
11472 {
11473 if (!init_reloc_cookie (cookie, info, sec->owner))
11474 goto error1;
11475 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11476 goto error2;
11477 return TRUE;
11478
11479 error2:
11480 fini_reloc_cookie (cookie, sec->owner);
11481 error1:
11482 return FALSE;
11483 }
11484
11485 /* Free the memory allocated by init_reloc_cookie_for_section,
11486 if appropriate. */
11487
11488 static void
11489 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11490 asection *sec)
11491 {
11492 fini_reloc_cookie_rels (cookie, sec);
11493 fini_reloc_cookie (cookie, sec->owner);
11494 }
11495 \f
11496 /* Garbage collect unused sections. */
11497
11498 /* Default gc_mark_hook. */
11499
11500 asection *
11501 _bfd_elf_gc_mark_hook (asection *sec,
11502 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11503 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11504 struct elf_link_hash_entry *h,
11505 Elf_Internal_Sym *sym)
11506 {
11507 const char *sec_name;
11508
11509 if (h != NULL)
11510 {
11511 switch (h->root.type)
11512 {
11513 case bfd_link_hash_defined:
11514 case bfd_link_hash_defweak:
11515 return h->root.u.def.section;
11516
11517 case bfd_link_hash_common:
11518 return h->root.u.c.p->section;
11519
11520 case bfd_link_hash_undefined:
11521 case bfd_link_hash_undefweak:
11522 /* To work around a glibc bug, keep all XXX input sections
11523 when there is an as yet undefined reference to __start_XXX
11524 or __stop_XXX symbols. The linker will later define such
11525 symbols for orphan input sections that have a name
11526 representable as a C identifier. */
11527 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11528 sec_name = h->root.root.string + 8;
11529 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11530 sec_name = h->root.root.string + 7;
11531 else
11532 sec_name = NULL;
11533
11534 if (sec_name && *sec_name != '\0')
11535 {
11536 bfd *i;
11537
11538 for (i = info->input_bfds; i; i = i->link_next)
11539 {
11540 sec = bfd_get_section_by_name (i, sec_name);
11541 if (sec)
11542 sec->flags |= SEC_KEEP;
11543 }
11544 }
11545 break;
11546
11547 default:
11548 break;
11549 }
11550 }
11551 else
11552 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11553
11554 return NULL;
11555 }
11556
11557 /* COOKIE->rel describes a relocation against section SEC, which is
11558 a section we've decided to keep. Return the section that contains
11559 the relocation symbol, or NULL if no section contains it. */
11560
11561 asection *
11562 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11563 elf_gc_mark_hook_fn gc_mark_hook,
11564 struct elf_reloc_cookie *cookie)
11565 {
11566 unsigned long r_symndx;
11567 struct elf_link_hash_entry *h;
11568
11569 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11570 if (r_symndx == STN_UNDEF)
11571 return NULL;
11572
11573 if (r_symndx >= cookie->locsymcount
11574 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11575 {
11576 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11577 while (h->root.type == bfd_link_hash_indirect
11578 || h->root.type == bfd_link_hash_warning)
11579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11580 h->mark = 1;
11581 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11582 }
11583
11584 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11585 &cookie->locsyms[r_symndx]);
11586 }
11587
11588 /* COOKIE->rel describes a relocation against section SEC, which is
11589 a section we've decided to keep. Mark the section that contains
11590 the relocation symbol. */
11591
11592 bfd_boolean
11593 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11594 asection *sec,
11595 elf_gc_mark_hook_fn gc_mark_hook,
11596 struct elf_reloc_cookie *cookie)
11597 {
11598 asection *rsec;
11599
11600 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11601 if (rsec && !rsec->gc_mark)
11602 {
11603 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11604 rsec->gc_mark = 1;
11605 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11606 return FALSE;
11607 }
11608 return TRUE;
11609 }
11610
11611 /* The mark phase of garbage collection. For a given section, mark
11612 it and any sections in this section's group, and all the sections
11613 which define symbols to which it refers. */
11614
11615 bfd_boolean
11616 _bfd_elf_gc_mark (struct bfd_link_info *info,
11617 asection *sec,
11618 elf_gc_mark_hook_fn gc_mark_hook)
11619 {
11620 bfd_boolean ret;
11621 asection *group_sec, *eh_frame;
11622
11623 sec->gc_mark = 1;
11624
11625 /* Mark all the sections in the group. */
11626 group_sec = elf_section_data (sec)->next_in_group;
11627 if (group_sec && !group_sec->gc_mark)
11628 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11629 return FALSE;
11630
11631 /* Look through the section relocs. */
11632 ret = TRUE;
11633 eh_frame = elf_eh_frame_section (sec->owner);
11634 if ((sec->flags & SEC_RELOC) != 0
11635 && sec->reloc_count > 0
11636 && sec != eh_frame)
11637 {
11638 struct elf_reloc_cookie cookie;
11639
11640 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11641 ret = FALSE;
11642 else
11643 {
11644 for (; cookie.rel < cookie.relend; cookie.rel++)
11645 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11646 {
11647 ret = FALSE;
11648 break;
11649 }
11650 fini_reloc_cookie_for_section (&cookie, sec);
11651 }
11652 }
11653
11654 if (ret && eh_frame && elf_fde_list (sec))
11655 {
11656 struct elf_reloc_cookie cookie;
11657
11658 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11659 ret = FALSE;
11660 else
11661 {
11662 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11663 gc_mark_hook, &cookie))
11664 ret = FALSE;
11665 fini_reloc_cookie_for_section (&cookie, eh_frame);
11666 }
11667 }
11668
11669 return ret;
11670 }
11671
11672 /* Keep debug and special sections. */
11673
11674 bfd_boolean
11675 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11676 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11677 {
11678 bfd *ibfd;
11679
11680 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11681 {
11682 asection *isec;
11683 bfd_boolean some_kept;
11684
11685 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11686 continue;
11687
11688 /* Ensure all linker created sections are kept, and see whether
11689 any other section is already marked. */
11690 some_kept = FALSE;
11691 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11692 {
11693 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11694 isec->gc_mark = 1;
11695 else if (isec->gc_mark)
11696 some_kept = TRUE;
11697 }
11698
11699 /* If no section in this file will be kept, then we can
11700 toss out debug sections. */
11701 if (!some_kept)
11702 continue;
11703
11704 /* Keep debug and special sections like .comment when they are
11705 not part of a group, or when we have single-member groups. */
11706 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11707 if ((elf_next_in_group (isec) == NULL
11708 || elf_next_in_group (isec) == isec)
11709 && ((isec->flags & SEC_DEBUGGING) != 0
11710 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11711 isec->gc_mark = 1;
11712 }
11713 return TRUE;
11714 }
11715
11716 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11717
11718 struct elf_gc_sweep_symbol_info
11719 {
11720 struct bfd_link_info *info;
11721 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11722 bfd_boolean);
11723 };
11724
11725 static bfd_boolean
11726 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11727 {
11728 if (!h->mark
11729 && (((h->root.type == bfd_link_hash_defined
11730 || h->root.type == bfd_link_hash_defweak)
11731 && !h->root.u.def.section->gc_mark)
11732 || h->root.type == bfd_link_hash_undefined
11733 || h->root.type == bfd_link_hash_undefweak))
11734 {
11735 struct elf_gc_sweep_symbol_info *inf;
11736
11737 inf = (struct elf_gc_sweep_symbol_info *) data;
11738 (*inf->hide_symbol) (inf->info, h, TRUE);
11739 h->def_regular = 0;
11740 h->ref_regular = 0;
11741 h->ref_regular_nonweak = 0;
11742 }
11743
11744 return TRUE;
11745 }
11746
11747 /* The sweep phase of garbage collection. Remove all garbage sections. */
11748
11749 typedef bfd_boolean (*gc_sweep_hook_fn)
11750 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11751
11752 static bfd_boolean
11753 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11754 {
11755 bfd *sub;
11756 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11757 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11758 unsigned long section_sym_count;
11759 struct elf_gc_sweep_symbol_info sweep_info;
11760
11761 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11762 {
11763 asection *o;
11764
11765 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11766 continue;
11767
11768 for (o = sub->sections; o != NULL; o = o->next)
11769 {
11770 /* When any section in a section group is kept, we keep all
11771 sections in the section group. If the first member of
11772 the section group is excluded, we will also exclude the
11773 group section. */
11774 if (o->flags & SEC_GROUP)
11775 {
11776 asection *first = elf_next_in_group (o);
11777 o->gc_mark = first->gc_mark;
11778 }
11779
11780 if (o->gc_mark)
11781 continue;
11782
11783 /* Skip sweeping sections already excluded. */
11784 if (o->flags & SEC_EXCLUDE)
11785 continue;
11786
11787 /* Since this is early in the link process, it is simple
11788 to remove a section from the output. */
11789 o->flags |= SEC_EXCLUDE;
11790
11791 if (info->print_gc_sections && o->size != 0)
11792 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11793
11794 /* But we also have to update some of the relocation
11795 info we collected before. */
11796 if (gc_sweep_hook
11797 && (o->flags & SEC_RELOC) != 0
11798 && o->reloc_count > 0
11799 && !bfd_is_abs_section (o->output_section))
11800 {
11801 Elf_Internal_Rela *internal_relocs;
11802 bfd_boolean r;
11803
11804 internal_relocs
11805 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11806 info->keep_memory);
11807 if (internal_relocs == NULL)
11808 return FALSE;
11809
11810 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11811
11812 if (elf_section_data (o)->relocs != internal_relocs)
11813 free (internal_relocs);
11814
11815 if (!r)
11816 return FALSE;
11817 }
11818 }
11819 }
11820
11821 /* Remove the symbols that were in the swept sections from the dynamic
11822 symbol table. GCFIXME: Anyone know how to get them out of the
11823 static symbol table as well? */
11824 sweep_info.info = info;
11825 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11826 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11827 &sweep_info);
11828
11829 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11830 return TRUE;
11831 }
11832
11833 /* Propagate collected vtable information. This is called through
11834 elf_link_hash_traverse. */
11835
11836 static bfd_boolean
11837 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11838 {
11839 /* Those that are not vtables. */
11840 if (h->vtable == NULL || h->vtable->parent == NULL)
11841 return TRUE;
11842
11843 /* Those vtables that do not have parents, we cannot merge. */
11844 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11845 return TRUE;
11846
11847 /* If we've already been done, exit. */
11848 if (h->vtable->used && h->vtable->used[-1])
11849 return TRUE;
11850
11851 /* Make sure the parent's table is up to date. */
11852 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11853
11854 if (h->vtable->used == NULL)
11855 {
11856 /* None of this table's entries were referenced. Re-use the
11857 parent's table. */
11858 h->vtable->used = h->vtable->parent->vtable->used;
11859 h->vtable->size = h->vtable->parent->vtable->size;
11860 }
11861 else
11862 {
11863 size_t n;
11864 bfd_boolean *cu, *pu;
11865
11866 /* Or the parent's entries into ours. */
11867 cu = h->vtable->used;
11868 cu[-1] = TRUE;
11869 pu = h->vtable->parent->vtable->used;
11870 if (pu != NULL)
11871 {
11872 const struct elf_backend_data *bed;
11873 unsigned int log_file_align;
11874
11875 bed = get_elf_backend_data (h->root.u.def.section->owner);
11876 log_file_align = bed->s->log_file_align;
11877 n = h->vtable->parent->vtable->size >> log_file_align;
11878 while (n--)
11879 {
11880 if (*pu)
11881 *cu = TRUE;
11882 pu++;
11883 cu++;
11884 }
11885 }
11886 }
11887
11888 return TRUE;
11889 }
11890
11891 static bfd_boolean
11892 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11893 {
11894 asection *sec;
11895 bfd_vma hstart, hend;
11896 Elf_Internal_Rela *relstart, *relend, *rel;
11897 const struct elf_backend_data *bed;
11898 unsigned int log_file_align;
11899
11900 /* Take care of both those symbols that do not describe vtables as
11901 well as those that are not loaded. */
11902 if (h->vtable == NULL || h->vtable->parent == NULL)
11903 return TRUE;
11904
11905 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11906 || h->root.type == bfd_link_hash_defweak);
11907
11908 sec = h->root.u.def.section;
11909 hstart = h->root.u.def.value;
11910 hend = hstart + h->size;
11911
11912 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11913 if (!relstart)
11914 return *(bfd_boolean *) okp = FALSE;
11915 bed = get_elf_backend_data (sec->owner);
11916 log_file_align = bed->s->log_file_align;
11917
11918 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11919
11920 for (rel = relstart; rel < relend; ++rel)
11921 if (rel->r_offset >= hstart && rel->r_offset < hend)
11922 {
11923 /* If the entry is in use, do nothing. */
11924 if (h->vtable->used
11925 && (rel->r_offset - hstart) < h->vtable->size)
11926 {
11927 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11928 if (h->vtable->used[entry])
11929 continue;
11930 }
11931 /* Otherwise, kill it. */
11932 rel->r_offset = rel->r_info = rel->r_addend = 0;
11933 }
11934
11935 return TRUE;
11936 }
11937
11938 /* Mark sections containing dynamically referenced symbols. When
11939 building shared libraries, we must assume that any visible symbol is
11940 referenced. */
11941
11942 bfd_boolean
11943 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11944 {
11945 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11946
11947 if ((h->root.type == bfd_link_hash_defined
11948 || h->root.type == bfd_link_hash_defweak)
11949 && (h->ref_dynamic
11950 || ((!info->executable || info->export_dynamic)
11951 && h->def_regular
11952 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11953 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11954 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11955 || !bfd_hide_sym_by_version (info->version_info,
11956 h->root.root.string)))))
11957 h->root.u.def.section->flags |= SEC_KEEP;
11958
11959 return TRUE;
11960 }
11961
11962 /* Keep all sections containing symbols undefined on the command-line,
11963 and the section containing the entry symbol. */
11964
11965 void
11966 _bfd_elf_gc_keep (struct bfd_link_info *info)
11967 {
11968 struct bfd_sym_chain *sym;
11969
11970 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11971 {
11972 struct elf_link_hash_entry *h;
11973
11974 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11975 FALSE, FALSE, FALSE);
11976
11977 if (h != NULL
11978 && (h->root.type == bfd_link_hash_defined
11979 || h->root.type == bfd_link_hash_defweak)
11980 && !bfd_is_abs_section (h->root.u.def.section))
11981 h->root.u.def.section->flags |= SEC_KEEP;
11982 }
11983 }
11984
11985 /* Do mark and sweep of unused sections. */
11986
11987 bfd_boolean
11988 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11989 {
11990 bfd_boolean ok = TRUE;
11991 bfd *sub;
11992 elf_gc_mark_hook_fn gc_mark_hook;
11993 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11994
11995 if (!bed->can_gc_sections
11996 || !is_elf_hash_table (info->hash))
11997 {
11998 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11999 return TRUE;
12000 }
12001
12002 bed->gc_keep (info);
12003
12004 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12005 at the .eh_frame section if we can mark the FDEs individually. */
12006 _bfd_elf_begin_eh_frame_parsing (info);
12007 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12008 {
12009 asection *sec;
12010 struct elf_reloc_cookie cookie;
12011
12012 sec = bfd_get_section_by_name (sub, ".eh_frame");
12013 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12014 {
12015 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12016 if (elf_section_data (sec)->sec_info)
12017 elf_eh_frame_section (sub) = sec;
12018 fini_reloc_cookie_for_section (&cookie, sec);
12019 }
12020 }
12021 _bfd_elf_end_eh_frame_parsing (info);
12022
12023 /* Apply transitive closure to the vtable entry usage info. */
12024 elf_link_hash_traverse (elf_hash_table (info),
12025 elf_gc_propagate_vtable_entries_used,
12026 &ok);
12027 if (!ok)
12028 return FALSE;
12029
12030 /* Kill the vtable relocations that were not used. */
12031 elf_link_hash_traverse (elf_hash_table (info),
12032 elf_gc_smash_unused_vtentry_relocs,
12033 &ok);
12034 if (!ok)
12035 return FALSE;
12036
12037 /* Mark dynamically referenced symbols. */
12038 if (elf_hash_table (info)->dynamic_sections_created)
12039 elf_link_hash_traverse (elf_hash_table (info),
12040 bed->gc_mark_dynamic_ref,
12041 info);
12042
12043 /* Grovel through relocs to find out who stays ... */
12044 gc_mark_hook = bed->gc_mark_hook;
12045 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12046 {
12047 asection *o;
12048
12049 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12050 continue;
12051
12052 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12053 Also treat note sections as a root, if the section is not part
12054 of a group. */
12055 for (o = sub->sections; o != NULL; o = o->next)
12056 if (!o->gc_mark
12057 && (o->flags & SEC_EXCLUDE) == 0
12058 && ((o->flags & SEC_KEEP) != 0
12059 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12060 && elf_next_in_group (o) == NULL )))
12061 {
12062 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12063 return FALSE;
12064 }
12065 }
12066
12067 /* Allow the backend to mark additional target specific sections. */
12068 bed->gc_mark_extra_sections (info, gc_mark_hook);
12069
12070 /* ... and mark SEC_EXCLUDE for those that go. */
12071 return elf_gc_sweep (abfd, info);
12072 }
12073 \f
12074 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12075
12076 bfd_boolean
12077 bfd_elf_gc_record_vtinherit (bfd *abfd,
12078 asection *sec,
12079 struct elf_link_hash_entry *h,
12080 bfd_vma offset)
12081 {
12082 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12083 struct elf_link_hash_entry **search, *child;
12084 bfd_size_type extsymcount;
12085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12086
12087 /* The sh_info field of the symtab header tells us where the
12088 external symbols start. We don't care about the local symbols at
12089 this point. */
12090 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12091 if (!elf_bad_symtab (abfd))
12092 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12093
12094 sym_hashes = elf_sym_hashes (abfd);
12095 sym_hashes_end = sym_hashes + extsymcount;
12096
12097 /* Hunt down the child symbol, which is in this section at the same
12098 offset as the relocation. */
12099 for (search = sym_hashes; search != sym_hashes_end; ++search)
12100 {
12101 if ((child = *search) != NULL
12102 && (child->root.type == bfd_link_hash_defined
12103 || child->root.type == bfd_link_hash_defweak)
12104 && child->root.u.def.section == sec
12105 && child->root.u.def.value == offset)
12106 goto win;
12107 }
12108
12109 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12110 abfd, sec, (unsigned long) offset);
12111 bfd_set_error (bfd_error_invalid_operation);
12112 return FALSE;
12113
12114 win:
12115 if (!child->vtable)
12116 {
12117 child->vtable = (struct elf_link_virtual_table_entry *)
12118 bfd_zalloc (abfd, sizeof (*child->vtable));
12119 if (!child->vtable)
12120 return FALSE;
12121 }
12122 if (!h)
12123 {
12124 /* This *should* only be the absolute section. It could potentially
12125 be that someone has defined a non-global vtable though, which
12126 would be bad. It isn't worth paging in the local symbols to be
12127 sure though; that case should simply be handled by the assembler. */
12128
12129 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12130 }
12131 else
12132 child->vtable->parent = h;
12133
12134 return TRUE;
12135 }
12136
12137 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12138
12139 bfd_boolean
12140 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12141 asection *sec ATTRIBUTE_UNUSED,
12142 struct elf_link_hash_entry *h,
12143 bfd_vma addend)
12144 {
12145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12146 unsigned int log_file_align = bed->s->log_file_align;
12147
12148 if (!h->vtable)
12149 {
12150 h->vtable = (struct elf_link_virtual_table_entry *)
12151 bfd_zalloc (abfd, sizeof (*h->vtable));
12152 if (!h->vtable)
12153 return FALSE;
12154 }
12155
12156 if (addend >= h->vtable->size)
12157 {
12158 size_t size, bytes, file_align;
12159 bfd_boolean *ptr = h->vtable->used;
12160
12161 /* While the symbol is undefined, we have to be prepared to handle
12162 a zero size. */
12163 file_align = 1 << log_file_align;
12164 if (h->root.type == bfd_link_hash_undefined)
12165 size = addend + file_align;
12166 else
12167 {
12168 size = h->size;
12169 if (addend >= size)
12170 {
12171 /* Oops! We've got a reference past the defined end of
12172 the table. This is probably a bug -- shall we warn? */
12173 size = addend + file_align;
12174 }
12175 }
12176 size = (size + file_align - 1) & -file_align;
12177
12178 /* Allocate one extra entry for use as a "done" flag for the
12179 consolidation pass. */
12180 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12181
12182 if (ptr)
12183 {
12184 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12185
12186 if (ptr != NULL)
12187 {
12188 size_t oldbytes;
12189
12190 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12191 * sizeof (bfd_boolean));
12192 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12193 }
12194 }
12195 else
12196 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12197
12198 if (ptr == NULL)
12199 return FALSE;
12200
12201 /* And arrange for that done flag to be at index -1. */
12202 h->vtable->used = ptr + 1;
12203 h->vtable->size = size;
12204 }
12205
12206 h->vtable->used[addend >> log_file_align] = TRUE;
12207
12208 return TRUE;
12209 }
12210
12211 /* Map an ELF section header flag to its corresponding string. */
12212 typedef struct
12213 {
12214 char *flag_name;
12215 flagword flag_value;
12216 } elf_flags_to_name_table;
12217
12218 static elf_flags_to_name_table elf_flags_to_names [] =
12219 {
12220 { "SHF_WRITE", SHF_WRITE },
12221 { "SHF_ALLOC", SHF_ALLOC },
12222 { "SHF_EXECINSTR", SHF_EXECINSTR },
12223 { "SHF_MERGE", SHF_MERGE },
12224 { "SHF_STRINGS", SHF_STRINGS },
12225 { "SHF_INFO_LINK", SHF_INFO_LINK},
12226 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12227 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12228 { "SHF_GROUP", SHF_GROUP },
12229 { "SHF_TLS", SHF_TLS },
12230 { "SHF_MASKOS", SHF_MASKOS },
12231 { "SHF_EXCLUDE", SHF_EXCLUDE },
12232 };
12233
12234 void
12235 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12236 struct flag_info *finfo)
12237 {
12238 bfd *output_bfd = info->output_bfd;
12239 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12240 struct flag_info_list *tf = finfo->flag_list;
12241 int with_hex = 0;
12242 int without_hex = 0;
12243
12244 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12245 {
12246 int i;
12247 if (bed->elf_backend_lookup_section_flags_hook)
12248 {
12249 flagword hexval =
12250 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12251
12252 if (hexval != 0)
12253 {
12254 if (tf->with == with_flags)
12255 with_hex |= hexval;
12256 else if (tf->with == without_flags)
12257 without_hex |= hexval;
12258 tf->valid = TRUE;
12259 continue;
12260 }
12261 }
12262 for (i = 0; i < 12; i++)
12263 {
12264 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12265 {
12266 if (tf->with == with_flags)
12267 with_hex |= elf_flags_to_names[i].flag_value;
12268 else if (tf->with == without_flags)
12269 without_hex |= elf_flags_to_names[i].flag_value;
12270 tf->valid = TRUE;
12271 continue;
12272 }
12273 }
12274 if (tf->valid == FALSE)
12275 {
12276 info->callbacks->einfo
12277 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12278 return;
12279 }
12280 }
12281 finfo->flags_initialized = TRUE;
12282 finfo->only_with_flags |= with_hex;
12283 finfo->not_with_flags |= without_hex;
12284
12285 return;
12286 }
12287
12288 struct alloc_got_off_arg {
12289 bfd_vma gotoff;
12290 struct bfd_link_info *info;
12291 };
12292
12293 /* We need a special top-level link routine to convert got reference counts
12294 to real got offsets. */
12295
12296 static bfd_boolean
12297 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12298 {
12299 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12300 bfd *obfd = gofarg->info->output_bfd;
12301 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12302
12303 if (h->got.refcount > 0)
12304 {
12305 h->got.offset = gofarg->gotoff;
12306 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12307 }
12308 else
12309 h->got.offset = (bfd_vma) -1;
12310
12311 return TRUE;
12312 }
12313
12314 /* And an accompanying bit to work out final got entry offsets once
12315 we're done. Should be called from final_link. */
12316
12317 bfd_boolean
12318 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12319 struct bfd_link_info *info)
12320 {
12321 bfd *i;
12322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12323 bfd_vma gotoff;
12324 struct alloc_got_off_arg gofarg;
12325
12326 BFD_ASSERT (abfd == info->output_bfd);
12327
12328 if (! is_elf_hash_table (info->hash))
12329 return FALSE;
12330
12331 /* The GOT offset is relative to the .got section, but the GOT header is
12332 put into the .got.plt section, if the backend uses it. */
12333 if (bed->want_got_plt)
12334 gotoff = 0;
12335 else
12336 gotoff = bed->got_header_size;
12337
12338 /* Do the local .got entries first. */
12339 for (i = info->input_bfds; i; i = i->link_next)
12340 {
12341 bfd_signed_vma *local_got;
12342 bfd_size_type j, locsymcount;
12343 Elf_Internal_Shdr *symtab_hdr;
12344
12345 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12346 continue;
12347
12348 local_got = elf_local_got_refcounts (i);
12349 if (!local_got)
12350 continue;
12351
12352 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12353 if (elf_bad_symtab (i))
12354 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12355 else
12356 locsymcount = symtab_hdr->sh_info;
12357
12358 for (j = 0; j < locsymcount; ++j)
12359 {
12360 if (local_got[j] > 0)
12361 {
12362 local_got[j] = gotoff;
12363 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12364 }
12365 else
12366 local_got[j] = (bfd_vma) -1;
12367 }
12368 }
12369
12370 /* Then the global .got entries. .plt refcounts are handled by
12371 adjust_dynamic_symbol */
12372 gofarg.gotoff = gotoff;
12373 gofarg.info = info;
12374 elf_link_hash_traverse (elf_hash_table (info),
12375 elf_gc_allocate_got_offsets,
12376 &gofarg);
12377 return TRUE;
12378 }
12379
12380 /* Many folk need no more in the way of final link than this, once
12381 got entry reference counting is enabled. */
12382
12383 bfd_boolean
12384 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12385 {
12386 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12387 return FALSE;
12388
12389 /* Invoke the regular ELF backend linker to do all the work. */
12390 return bfd_elf_final_link (abfd, info);
12391 }
12392
12393 bfd_boolean
12394 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12395 {
12396 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12397
12398 if (rcookie->bad_symtab)
12399 rcookie->rel = rcookie->rels;
12400
12401 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12402 {
12403 unsigned long r_symndx;
12404
12405 if (! rcookie->bad_symtab)
12406 if (rcookie->rel->r_offset > offset)
12407 return FALSE;
12408 if (rcookie->rel->r_offset != offset)
12409 continue;
12410
12411 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12412 if (r_symndx == STN_UNDEF)
12413 return TRUE;
12414
12415 if (r_symndx >= rcookie->locsymcount
12416 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12417 {
12418 struct elf_link_hash_entry *h;
12419
12420 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12421
12422 while (h->root.type == bfd_link_hash_indirect
12423 || h->root.type == bfd_link_hash_warning)
12424 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12425
12426 if ((h->root.type == bfd_link_hash_defined
12427 || h->root.type == bfd_link_hash_defweak)
12428 && elf_discarded_section (h->root.u.def.section))
12429 return TRUE;
12430 else
12431 return FALSE;
12432 }
12433 else
12434 {
12435 /* It's not a relocation against a global symbol,
12436 but it could be a relocation against a local
12437 symbol for a discarded section. */
12438 asection *isec;
12439 Elf_Internal_Sym *isym;
12440
12441 /* Need to: get the symbol; get the section. */
12442 isym = &rcookie->locsyms[r_symndx];
12443 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12444 if (isec != NULL && elf_discarded_section (isec))
12445 return TRUE;
12446 }
12447 return FALSE;
12448 }
12449 return FALSE;
12450 }
12451
12452 /* Discard unneeded references to discarded sections.
12453 Returns TRUE if any section's size was changed. */
12454 /* This function assumes that the relocations are in sorted order,
12455 which is true for all known assemblers. */
12456
12457 bfd_boolean
12458 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12459 {
12460 struct elf_reloc_cookie cookie;
12461 asection *stab, *eh;
12462 const struct elf_backend_data *bed;
12463 bfd *abfd;
12464 bfd_boolean ret = FALSE;
12465
12466 if (info->traditional_format
12467 || !is_elf_hash_table (info->hash))
12468 return FALSE;
12469
12470 _bfd_elf_begin_eh_frame_parsing (info);
12471 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12472 {
12473 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12474 continue;
12475
12476 bed = get_elf_backend_data (abfd);
12477
12478 if ((abfd->flags & DYNAMIC) != 0)
12479 continue;
12480
12481 eh = NULL;
12482 if (!info->relocatable)
12483 {
12484 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12485 if (eh != NULL
12486 && (eh->size == 0
12487 || bfd_is_abs_section (eh->output_section)))
12488 eh = NULL;
12489 }
12490
12491 stab = bfd_get_section_by_name (abfd, ".stab");
12492 if (stab != NULL
12493 && (stab->size == 0
12494 || bfd_is_abs_section (stab->output_section)
12495 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12496 stab = NULL;
12497
12498 if (stab == NULL
12499 && eh == NULL
12500 && bed->elf_backend_discard_info == NULL)
12501 continue;
12502
12503 if (!init_reloc_cookie (&cookie, info, abfd))
12504 return FALSE;
12505
12506 if (stab != NULL
12507 && stab->reloc_count > 0
12508 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12509 {
12510 if (_bfd_discard_section_stabs (abfd, stab,
12511 elf_section_data (stab)->sec_info,
12512 bfd_elf_reloc_symbol_deleted_p,
12513 &cookie))
12514 ret = TRUE;
12515 fini_reloc_cookie_rels (&cookie, stab);
12516 }
12517
12518 if (eh != NULL
12519 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12520 {
12521 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12522 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12523 bfd_elf_reloc_symbol_deleted_p,
12524 &cookie))
12525 ret = TRUE;
12526 fini_reloc_cookie_rels (&cookie, eh);
12527 }
12528
12529 if (bed->elf_backend_discard_info != NULL
12530 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12531 ret = TRUE;
12532
12533 fini_reloc_cookie (&cookie, abfd);
12534 }
12535 _bfd_elf_end_eh_frame_parsing (info);
12536
12537 if (info->eh_frame_hdr
12538 && !info->relocatable
12539 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12540 ret = TRUE;
12541
12542 return ret;
12543 }
12544
12545 bfd_boolean
12546 _bfd_elf_section_already_linked (bfd *abfd,
12547 asection *sec,
12548 struct bfd_link_info *info)
12549 {
12550 flagword flags;
12551 const char *name, *key;
12552 struct bfd_section_already_linked *l;
12553 struct bfd_section_already_linked_hash_entry *already_linked_list;
12554
12555 if (sec->output_section == bfd_abs_section_ptr)
12556 return FALSE;
12557
12558 flags = sec->flags;
12559
12560 /* Return if it isn't a linkonce section. A comdat group section
12561 also has SEC_LINK_ONCE set. */
12562 if ((flags & SEC_LINK_ONCE) == 0)
12563 return FALSE;
12564
12565 /* Don't put group member sections on our list of already linked
12566 sections. They are handled as a group via their group section. */
12567 if (elf_sec_group (sec) != NULL)
12568 return FALSE;
12569
12570 /* For a SHT_GROUP section, use the group signature as the key. */
12571 name = sec->name;
12572 if ((flags & SEC_GROUP) != 0
12573 && elf_next_in_group (sec) != NULL
12574 && elf_group_name (elf_next_in_group (sec)) != NULL)
12575 key = elf_group_name (elf_next_in_group (sec));
12576 else
12577 {
12578 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12579 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12580 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12581 key++;
12582 else
12583 /* Must be a user linkonce section that doesn't follow gcc's
12584 naming convention. In this case we won't be matching
12585 single member groups. */
12586 key = name;
12587 }
12588
12589 already_linked_list = bfd_section_already_linked_table_lookup (key);
12590
12591 for (l = already_linked_list->entry; l != NULL; l = l->next)
12592 {
12593 /* We may have 2 different types of sections on the list: group
12594 sections with a signature of <key> (<key> is some string),
12595 and linkonce sections named .gnu.linkonce.<type>.<key>.
12596 Match like sections. LTO plugin sections are an exception.
12597 They are always named .gnu.linkonce.t.<key> and match either
12598 type of section. */
12599 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12600 && ((flags & SEC_GROUP) != 0
12601 || strcmp (name, l->sec->name) == 0))
12602 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12603 {
12604 /* The section has already been linked. See if we should
12605 issue a warning. */
12606 if (!_bfd_handle_already_linked (sec, l, info))
12607 return FALSE;
12608
12609 if (flags & SEC_GROUP)
12610 {
12611 asection *first = elf_next_in_group (sec);
12612 asection *s = first;
12613
12614 while (s != NULL)
12615 {
12616 s->output_section = bfd_abs_section_ptr;
12617 /* Record which group discards it. */
12618 s->kept_section = l->sec;
12619 s = elf_next_in_group (s);
12620 /* These lists are circular. */
12621 if (s == first)
12622 break;
12623 }
12624 }
12625
12626 return TRUE;
12627 }
12628 }
12629
12630 /* A single member comdat group section may be discarded by a
12631 linkonce section and vice versa. */
12632 if ((flags & SEC_GROUP) != 0)
12633 {
12634 asection *first = elf_next_in_group (sec);
12635
12636 if (first != NULL && elf_next_in_group (first) == first)
12637 /* Check this single member group against linkonce sections. */
12638 for (l = already_linked_list->entry; l != NULL; l = l->next)
12639 if ((l->sec->flags & SEC_GROUP) == 0
12640 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12641 {
12642 first->output_section = bfd_abs_section_ptr;
12643 first->kept_section = l->sec;
12644 sec->output_section = bfd_abs_section_ptr;
12645 break;
12646 }
12647 }
12648 else
12649 /* Check this linkonce section against single member groups. */
12650 for (l = already_linked_list->entry; l != NULL; l = l->next)
12651 if (l->sec->flags & SEC_GROUP)
12652 {
12653 asection *first = elf_next_in_group (l->sec);
12654
12655 if (first != NULL
12656 && elf_next_in_group (first) == first
12657 && bfd_elf_match_symbols_in_sections (first, sec, info))
12658 {
12659 sec->output_section = bfd_abs_section_ptr;
12660 sec->kept_section = first;
12661 break;
12662 }
12663 }
12664
12665 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12666 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12667 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12668 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12669 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12670 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12671 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12672 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12673 The reverse order cannot happen as there is never a bfd with only the
12674 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12675 matter as here were are looking only for cross-bfd sections. */
12676
12677 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12678 for (l = already_linked_list->entry; l != NULL; l = l->next)
12679 if ((l->sec->flags & SEC_GROUP) == 0
12680 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12681 {
12682 if (abfd != l->sec->owner)
12683 sec->output_section = bfd_abs_section_ptr;
12684 break;
12685 }
12686
12687 /* This is the first section with this name. Record it. */
12688 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12689 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12690 return sec->output_section == bfd_abs_section_ptr;
12691 }
12692
12693 bfd_boolean
12694 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12695 {
12696 return sym->st_shndx == SHN_COMMON;
12697 }
12698
12699 unsigned int
12700 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12701 {
12702 return SHN_COMMON;
12703 }
12704
12705 asection *
12706 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12707 {
12708 return bfd_com_section_ptr;
12709 }
12710
12711 bfd_vma
12712 _bfd_elf_default_got_elt_size (bfd *abfd,
12713 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12714 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12715 bfd *ibfd ATTRIBUTE_UNUSED,
12716 unsigned long symndx ATTRIBUTE_UNUSED)
12717 {
12718 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12719 return bed->s->arch_size / 8;
12720 }
12721
12722 /* Routines to support the creation of dynamic relocs. */
12723
12724 /* Returns the name of the dynamic reloc section associated with SEC. */
12725
12726 static const char *
12727 get_dynamic_reloc_section_name (bfd * abfd,
12728 asection * sec,
12729 bfd_boolean is_rela)
12730 {
12731 char *name;
12732 const char *old_name = bfd_get_section_name (NULL, sec);
12733 const char *prefix = is_rela ? ".rela" : ".rel";
12734
12735 if (old_name == NULL)
12736 return NULL;
12737
12738 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12739 sprintf (name, "%s%s", prefix, old_name);
12740
12741 return name;
12742 }
12743
12744 /* Returns the dynamic reloc section associated with SEC.
12745 If necessary compute the name of the dynamic reloc section based
12746 on SEC's name (looked up in ABFD's string table) and the setting
12747 of IS_RELA. */
12748
12749 asection *
12750 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12751 asection * sec,
12752 bfd_boolean is_rela)
12753 {
12754 asection * reloc_sec = elf_section_data (sec)->sreloc;
12755
12756 if (reloc_sec == NULL)
12757 {
12758 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12759
12760 if (name != NULL)
12761 {
12762 reloc_sec = bfd_get_section_by_name (abfd, name);
12763
12764 if (reloc_sec != NULL)
12765 elf_section_data (sec)->sreloc = reloc_sec;
12766 }
12767 }
12768
12769 return reloc_sec;
12770 }
12771
12772 /* Returns the dynamic reloc section associated with SEC. If the
12773 section does not exist it is created and attached to the DYNOBJ
12774 bfd and stored in the SRELOC field of SEC's elf_section_data
12775 structure.
12776
12777 ALIGNMENT is the alignment for the newly created section and
12778 IS_RELA defines whether the name should be .rela.<SEC's name>
12779 or .rel.<SEC's name>. The section name is looked up in the
12780 string table associated with ABFD. */
12781
12782 asection *
12783 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12784 bfd * dynobj,
12785 unsigned int alignment,
12786 bfd * abfd,
12787 bfd_boolean is_rela)
12788 {
12789 asection * reloc_sec = elf_section_data (sec)->sreloc;
12790
12791 if (reloc_sec == NULL)
12792 {
12793 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12794
12795 if (name == NULL)
12796 return NULL;
12797
12798 reloc_sec = bfd_get_section_by_name (dynobj, name);
12799
12800 if (reloc_sec == NULL)
12801 {
12802 flagword flags;
12803
12804 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12805 if ((sec->flags & SEC_ALLOC) != 0)
12806 flags |= SEC_ALLOC | SEC_LOAD;
12807
12808 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12809 if (reloc_sec != NULL)
12810 {
12811 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12812 reloc_sec = NULL;
12813 }
12814 }
12815
12816 elf_section_data (sec)->sreloc = reloc_sec;
12817 }
12818
12819 return reloc_sec;
12820 }
12821
12822 /* Copy the ELF symbol type associated with a linker hash entry. */
12823 void
12824 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12825 struct bfd_link_hash_entry * hdest,
12826 struct bfd_link_hash_entry * hsrc)
12827 {
12828 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12829 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12830
12831 ehdest->type = ehsrc->type;
12832 ehdest->target_internal = ehsrc->target_internal;
12833 }
12834
12835 /* Append a RELA relocation REL to section S in BFD. */
12836
12837 void
12838 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12839 {
12840 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12841 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12842 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12843 bed->s->swap_reloca_out (abfd, rel, loc);
12844 }
12845
12846 /* Append a REL relocation REL to section S in BFD. */
12847
12848 void
12849 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12850 {
12851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12852 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12853 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12854 bed->s->swap_reloca_out (abfd, rel, loc);
12855 }
This page took 0.305107 seconds and 5 git commands to generate.