Properly merge hidden versioned symbol
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (info->executable)
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282
283 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
284 flags | SEC_READONLY);
285 if (s == NULL)
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
289 if (s == NULL
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
291 return FALSE;
292
293 /* The special symbol _DYNAMIC is always set to the start of the
294 .dynamic section. We could set _DYNAMIC in a linker script, but we
295 only want to define it if we are, in fact, creating a .dynamic
296 section. We don't want to define it if there is no .dynamic
297 section, since on some ELF platforms the start up code examines it
298 to decide how to initialize the process. */
299 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
300 elf_hash_table (info)->hdynamic = h;
301 if (h == NULL)
302 return FALSE;
303
304 if (info->emit_hash)
305 {
306 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
307 flags | SEC_READONLY);
308 if (s == NULL
309 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
310 return FALSE;
311 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
312 }
313
314 if (info->emit_gnu_hash)
315 {
316 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
317 flags | SEC_READONLY);
318 if (s == NULL
319 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
320 return FALSE;
321 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
322 4 32-bit words followed by variable count of 64-bit words, then
323 variable count of 32-bit words. */
324 if (bed->s->arch_size == 64)
325 elf_section_data (s)->this_hdr.sh_entsize = 0;
326 else
327 elf_section_data (s)->this_hdr.sh_entsize = 4;
328 }
329
330 /* Let the backend create the rest of the sections. This lets the
331 backend set the right flags. The backend will normally create
332 the .got and .plt sections. */
333 if (bed->elf_backend_create_dynamic_sections == NULL
334 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
335 return FALSE;
336
337 elf_hash_table (info)->dynamic_sections_created = TRUE;
338
339 return TRUE;
340 }
341
342 /* Create dynamic sections when linking against a dynamic object. */
343
344 bfd_boolean
345 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
346 {
347 flagword flags, pltflags;
348 struct elf_link_hash_entry *h;
349 asection *s;
350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
351 struct elf_link_hash_table *htab = elf_hash_table (info);
352
353 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
354 .rel[a].bss sections. */
355 flags = bed->dynamic_sec_flags;
356
357 pltflags = flags;
358 if (bed->plt_not_loaded)
359 /* We do not clear SEC_ALLOC here because we still want the OS to
360 allocate space for the section; it's just that there's nothing
361 to read in from the object file. */
362 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
363 else
364 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
365 if (bed->plt_readonly)
366 pltflags |= SEC_READONLY;
367
368 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
369 if (s == NULL
370 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
371 return FALSE;
372 htab->splt = s;
373
374 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
375 .plt section. */
376 if (bed->want_plt_sym)
377 {
378 h = _bfd_elf_define_linkage_sym (abfd, info, s,
379 "_PROCEDURE_LINKAGE_TABLE_");
380 elf_hash_table (info)->hplt = h;
381 if (h == NULL)
382 return FALSE;
383 }
384
385 s = bfd_make_section_anyway_with_flags (abfd,
386 (bed->rela_plts_and_copies_p
387 ? ".rela.plt" : ".rel.plt"),
388 flags | SEC_READONLY);
389 if (s == NULL
390 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
391 return FALSE;
392 htab->srelplt = s;
393
394 if (! _bfd_elf_create_got_section (abfd, info))
395 return FALSE;
396
397 if (bed->want_dynbss)
398 {
399 /* The .dynbss section is a place to put symbols which are defined
400 by dynamic objects, are referenced by regular objects, and are
401 not functions. We must allocate space for them in the process
402 image and use a R_*_COPY reloc to tell the dynamic linker to
403 initialize them at run time. The linker script puts the .dynbss
404 section into the .bss section of the final image. */
405 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
406 (SEC_ALLOC | SEC_LINKER_CREATED));
407 if (s == NULL)
408 return FALSE;
409
410 /* The .rel[a].bss section holds copy relocs. This section is not
411 normally needed. We need to create it here, though, so that the
412 linker will map it to an output section. We can't just create it
413 only if we need it, because we will not know whether we need it
414 until we have seen all the input files, and the first time the
415 main linker code calls BFD after examining all the input files
416 (size_dynamic_sections) the input sections have already been
417 mapped to the output sections. If the section turns out not to
418 be needed, we can discard it later. We will never need this
419 section when generating a shared object, since they do not use
420 copy relocs. */
421 if (! info->shared)
422 {
423 s = bfd_make_section_anyway_with_flags (abfd,
424 (bed->rela_plts_and_copies_p
425 ? ".rela.bss" : ".rel.bss"),
426 flags | SEC_READONLY);
427 if (s == NULL
428 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
429 return FALSE;
430 }
431 }
432
433 return TRUE;
434 }
435 \f
436 /* Record a new dynamic symbol. We record the dynamic symbols as we
437 read the input files, since we need to have a list of all of them
438 before we can determine the final sizes of the output sections.
439 Note that we may actually call this function even though we are not
440 going to output any dynamic symbols; in some cases we know that a
441 symbol should be in the dynamic symbol table, but only if there is
442 one. */
443
444 bfd_boolean
445 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
446 struct elf_link_hash_entry *h)
447 {
448 if (h->dynindx == -1)
449 {
450 struct elf_strtab_hash *dynstr;
451 char *p;
452 const char *name;
453 bfd_size_type indx;
454
455 /* XXX: The ABI draft says the linker must turn hidden and
456 internal symbols into STB_LOCAL symbols when producing the
457 DSO. However, if ld.so honors st_other in the dynamic table,
458 this would not be necessary. */
459 switch (ELF_ST_VISIBILITY (h->other))
460 {
461 case STV_INTERNAL:
462 case STV_HIDDEN:
463 if (h->root.type != bfd_link_hash_undefined
464 && h->root.type != bfd_link_hash_undefweak)
465 {
466 h->forced_local = 1;
467 if (!elf_hash_table (info)->is_relocatable_executable)
468 return TRUE;
469 }
470
471 default:
472 break;
473 }
474
475 h->dynindx = elf_hash_table (info)->dynsymcount;
476 ++elf_hash_table (info)->dynsymcount;
477
478 dynstr = elf_hash_table (info)->dynstr;
479 if (dynstr == NULL)
480 {
481 /* Create a strtab to hold the dynamic symbol names. */
482 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
483 if (dynstr == NULL)
484 return FALSE;
485 }
486
487 /* We don't put any version information in the dynamic string
488 table. */
489 name = h->root.root.string;
490 p = strchr (name, ELF_VER_CHR);
491 if (p != NULL)
492 /* We know that the p points into writable memory. In fact,
493 there are only a few symbols that have read-only names, being
494 those like _GLOBAL_OFFSET_TABLE_ that are created specially
495 by the backends. Most symbols will have names pointing into
496 an ELF string table read from a file, or to objalloc memory. */
497 *p = 0;
498
499 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
500
501 if (p != NULL)
502 *p = ELF_VER_CHR;
503
504 if (indx == (bfd_size_type) -1)
505 return FALSE;
506 h->dynstr_index = indx;
507 }
508
509 return TRUE;
510 }
511 \f
512 /* Mark a symbol dynamic. */
513
514 static void
515 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
516 struct elf_link_hash_entry *h,
517 Elf_Internal_Sym *sym)
518 {
519 struct bfd_elf_dynamic_list *d = info->dynamic_list;
520
521 /* It may be called more than once on the same H. */
522 if(h->dynamic || info->relocatable)
523 return;
524
525 if ((info->dynamic_data
526 && (h->type == STT_OBJECT
527 || (sym != NULL
528 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
529 || (d != NULL
530 && h->root.type == bfd_link_hash_new
531 && (*d->match) (&d->head, NULL, h->root.root.string)))
532 h->dynamic = 1;
533 }
534
535 /* Record an assignment to a symbol made by a linker script. We need
536 this in case some dynamic object refers to this symbol. */
537
538 bfd_boolean
539 bfd_elf_record_link_assignment (bfd *output_bfd,
540 struct bfd_link_info *info,
541 const char *name,
542 bfd_boolean provide,
543 bfd_boolean hidden)
544 {
545 struct elf_link_hash_entry *h, *hv;
546 struct elf_link_hash_table *htab;
547 const struct elf_backend_data *bed;
548
549 if (!is_elf_hash_table (info->hash))
550 return TRUE;
551
552 htab = elf_hash_table (info);
553 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
554 if (h == NULL)
555 return provide;
556
557 switch (h->root.type)
558 {
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 case bfd_link_hash_common:
562 break;
563 case bfd_link_hash_undefweak:
564 case bfd_link_hash_undefined:
565 /* Since we're defining the symbol, don't let it seem to have not
566 been defined. record_dynamic_symbol and size_dynamic_sections
567 may depend on this. */
568 h->root.type = bfd_link_hash_new;
569 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
570 bfd_link_repair_undef_list (&htab->root);
571 break;
572 case bfd_link_hash_new:
573 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
574 h->non_elf = 0;
575 break;
576 case bfd_link_hash_indirect:
577 /* We had a versioned symbol in a dynamic library. We make the
578 the versioned symbol point to this one. */
579 bed = get_elf_backend_data (output_bfd);
580 hv = h;
581 while (hv->root.type == bfd_link_hash_indirect
582 || hv->root.type == bfd_link_hash_warning)
583 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
584 /* We don't need to update h->root.u since linker will set them
585 later. */
586 h->root.type = bfd_link_hash_undefined;
587 hv->root.type = bfd_link_hash_indirect;
588 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
589 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
590 break;
591 case bfd_link_hash_warning:
592 abort ();
593 break;
594 }
595
596 /* If this symbol is being provided by the linker script, and it is
597 currently defined by a dynamic object, but not by a regular
598 object, then mark it as undefined so that the generic linker will
599 force the correct value. */
600 if (provide
601 && h->def_dynamic
602 && !h->def_regular)
603 h->root.type = bfd_link_hash_undefined;
604
605 /* If this symbol is not being provided by the linker script, and it is
606 currently defined by a dynamic object, but not by a regular object,
607 then clear out any version information because the symbol will not be
608 associated with the dynamic object any more. */
609 if (!provide
610 && h->def_dynamic
611 && !h->def_regular)
612 h->verinfo.verdef = NULL;
613
614 h->def_regular = 1;
615
616 if (hidden)
617 {
618 bed = get_elf_backend_data (output_bfd);
619 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
620 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
621 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
622 }
623
624 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
625 and executables. */
626 if (!info->relocatable
627 && h->dynindx != -1
628 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
629 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
630 h->forced_local = 1;
631
632 if ((h->def_dynamic
633 || h->ref_dynamic
634 || info->shared
635 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
636 && h->dynindx == -1)
637 {
638 if (! bfd_elf_link_record_dynamic_symbol (info, h))
639 return FALSE;
640
641 /* If this is a weak defined symbol, and we know a corresponding
642 real symbol from the same dynamic object, make sure the real
643 symbol is also made into a dynamic symbol. */
644 if (h->u.weakdef != NULL
645 && h->u.weakdef->dynindx == -1)
646 {
647 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
648 return FALSE;
649 }
650 }
651
652 return TRUE;
653 }
654
655 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
656 success, and 2 on a failure caused by attempting to record a symbol
657 in a discarded section, eg. a discarded link-once section symbol. */
658
659 int
660 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
661 bfd *input_bfd,
662 long input_indx)
663 {
664 bfd_size_type amt;
665 struct elf_link_local_dynamic_entry *entry;
666 struct elf_link_hash_table *eht;
667 struct elf_strtab_hash *dynstr;
668 unsigned long dynstr_index;
669 char *name;
670 Elf_External_Sym_Shndx eshndx;
671 char esym[sizeof (Elf64_External_Sym)];
672
673 if (! is_elf_hash_table (info->hash))
674 return 0;
675
676 /* See if the entry exists already. */
677 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
678 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
679 return 1;
680
681 amt = sizeof (*entry);
682 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
683 if (entry == NULL)
684 return 0;
685
686 /* Go find the symbol, so that we can find it's name. */
687 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
688 1, input_indx, &entry->isym, esym, &eshndx))
689 {
690 bfd_release (input_bfd, entry);
691 return 0;
692 }
693
694 if (entry->isym.st_shndx != SHN_UNDEF
695 && entry->isym.st_shndx < SHN_LORESERVE)
696 {
697 asection *s;
698
699 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
700 if (s == NULL || bfd_is_abs_section (s->output_section))
701 {
702 /* We can still bfd_release here as nothing has done another
703 bfd_alloc. We can't do this later in this function. */
704 bfd_release (input_bfd, entry);
705 return 2;
706 }
707 }
708
709 name = (bfd_elf_string_from_elf_section
710 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
711 entry->isym.st_name));
712
713 dynstr = elf_hash_table (info)->dynstr;
714 if (dynstr == NULL)
715 {
716 /* Create a strtab to hold the dynamic symbol names. */
717 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
718 if (dynstr == NULL)
719 return 0;
720 }
721
722 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
723 if (dynstr_index == (unsigned long) -1)
724 return 0;
725 entry->isym.st_name = dynstr_index;
726
727 eht = elf_hash_table (info);
728
729 entry->next = eht->dynlocal;
730 eht->dynlocal = entry;
731 entry->input_bfd = input_bfd;
732 entry->input_indx = input_indx;
733 eht->dynsymcount++;
734
735 /* Whatever binding the symbol had before, it's now local. */
736 entry->isym.st_info
737 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
738
739 /* The dynindx will be set at the end of size_dynamic_sections. */
740
741 return 1;
742 }
743
744 /* Return the dynindex of a local dynamic symbol. */
745
746 long
747 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
748 bfd *input_bfd,
749 long input_indx)
750 {
751 struct elf_link_local_dynamic_entry *e;
752
753 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
754 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
755 return e->dynindx;
756 return -1;
757 }
758
759 /* This function is used to renumber the dynamic symbols, if some of
760 them are removed because they are marked as local. This is called
761 via elf_link_hash_traverse. */
762
763 static bfd_boolean
764 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
765 void *data)
766 {
767 size_t *count = (size_t *) data;
768
769 if (h->forced_local)
770 return TRUE;
771
772 if (h->dynindx != -1)
773 h->dynindx = ++(*count);
774
775 return TRUE;
776 }
777
778
779 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
780 STB_LOCAL binding. */
781
782 static bfd_boolean
783 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
784 void *data)
785 {
786 size_t *count = (size_t *) data;
787
788 if (!h->forced_local)
789 return TRUE;
790
791 if (h->dynindx != -1)
792 h->dynindx = ++(*count);
793
794 return TRUE;
795 }
796
797 /* Return true if the dynamic symbol for a given section should be
798 omitted when creating a shared library. */
799 bfd_boolean
800 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
801 struct bfd_link_info *info,
802 asection *p)
803 {
804 struct elf_link_hash_table *htab;
805 asection *ip;
806
807 switch (elf_section_data (p)->this_hdr.sh_type)
808 {
809 case SHT_PROGBITS:
810 case SHT_NOBITS:
811 /* If sh_type is yet undecided, assume it could be
812 SHT_PROGBITS/SHT_NOBITS. */
813 case SHT_NULL:
814 htab = elf_hash_table (info);
815 if (p == htab->tls_sec)
816 return FALSE;
817
818 if (htab->text_index_section != NULL)
819 return p != htab->text_index_section && p != htab->data_index_section;
820
821 return (htab->dynobj != NULL
822 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
823 && ip->output_section == p);
824
825 /* There shouldn't be section relative relocations
826 against any other section. */
827 default:
828 return TRUE;
829 }
830 }
831
832 /* Assign dynsym indices. In a shared library we generate a section
833 symbol for each output section, which come first. Next come symbols
834 which have been forced to local binding. Then all of the back-end
835 allocated local dynamic syms, followed by the rest of the global
836 symbols. */
837
838 static unsigned long
839 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
840 struct bfd_link_info *info,
841 unsigned long *section_sym_count)
842 {
843 unsigned long dynsymcount = 0;
844
845 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
848 asection *p;
849 for (p = output_bfd->sections; p ; p = p->next)
850 if ((p->flags & SEC_EXCLUDE) == 0
851 && (p->flags & SEC_ALLOC) != 0
852 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
853 elf_section_data (p)->dynindx = ++dynsymcount;
854 else
855 elf_section_data (p)->dynindx = 0;
856 }
857 *section_sym_count = dynsymcount;
858
859 elf_link_hash_traverse (elf_hash_table (info),
860 elf_link_renumber_local_hash_table_dynsyms,
861 &dynsymcount);
862
863 if (elf_hash_table (info)->dynlocal)
864 {
865 struct elf_link_local_dynamic_entry *p;
866 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
867 p->dynindx = ++dynsymcount;
868 }
869
870 elf_link_hash_traverse (elf_hash_table (info),
871 elf_link_renumber_hash_table_dynsyms,
872 &dynsymcount);
873
874 /* There is an unused NULL entry at the head of the table which
875 we must account for in our count. Unless there weren't any
876 symbols, which means we'll have no table at all. */
877 if (dynsymcount != 0)
878 ++dynsymcount;
879
880 elf_hash_table (info)->dynsymcount = dynsymcount;
881 return dynsymcount;
882 }
883
884 /* Merge st_other field. */
885
886 static void
887 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
888 const Elf_Internal_Sym *isym, asection *sec,
889 bfd_boolean definition, bfd_boolean dynamic)
890 {
891 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
892
893 /* If st_other has a processor-specific meaning, specific
894 code might be needed here. */
895 if (bed->elf_backend_merge_symbol_attribute)
896 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
897 dynamic);
898
899 if (!dynamic)
900 {
901 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
902 unsigned hvis = ELF_ST_VISIBILITY (h->other);
903
904 /* Keep the most constraining visibility. Leave the remainder
905 of the st_other field to elf_backend_merge_symbol_attribute. */
906 if (symvis - 1 < hvis - 1)
907 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
908 }
909 else if (definition
910 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
911 && (sec->flags & SEC_READONLY) == 0)
912 h->protected_def = 1;
913 }
914
915 /* This function is called when we want to merge a new symbol with an
916 existing symbol. It handles the various cases which arise when we
917 find a definition in a dynamic object, or when there is already a
918 definition in a dynamic object. The new symbol is described by
919 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
920 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
921 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
922 of an old common symbol. We set OVERRIDE if the old symbol is
923 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
924 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
925 to change. By OK to change, we mean that we shouldn't warn if the
926 type or size does change. */
927
928 static bfd_boolean
929 _bfd_elf_merge_symbol (bfd *abfd,
930 struct bfd_link_info *info,
931 const char *name,
932 Elf_Internal_Sym *sym,
933 asection **psec,
934 bfd_vma *pvalue,
935 struct elf_link_hash_entry **sym_hash,
936 bfd **poldbfd,
937 bfd_boolean *pold_weak,
938 unsigned int *pold_alignment,
939 bfd_boolean *skip,
940 bfd_boolean *override,
941 bfd_boolean *type_change_ok,
942 bfd_boolean *size_change_ok,
943 bfd_boolean *matched)
944 {
945 asection *sec, *oldsec;
946 struct elf_link_hash_entry *h;
947 struct elf_link_hash_entry *hi;
948 struct elf_link_hash_entry *flip;
949 int bind;
950 bfd *oldbfd;
951 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
952 bfd_boolean newweak, oldweak, newfunc, oldfunc;
953 const struct elf_backend_data *bed;
954 char *new_version;
955
956 *skip = FALSE;
957 *override = FALSE;
958
959 sec = *psec;
960 bind = ELF_ST_BIND (sym->st_info);
961
962 if (! bfd_is_und_section (sec))
963 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
964 else
965 h = ((struct elf_link_hash_entry *)
966 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
967 if (h == NULL)
968 return FALSE;
969 *sym_hash = h;
970
971 bed = get_elf_backend_data (abfd);
972
973 /* NEW_VERSION is the symbol version of the new symbol. */
974 new_version = strrchr (name, ELF_VER_CHR);
975 if (new_version)
976 {
977 if (new_version > name && new_version[-1] != ELF_VER_CHR)
978 h->hidden = 1;
979 new_version += 1;
980 if (new_version[0] == '\0')
981 new_version = NULL;
982 }
983
984 /* For merging, we only care about real symbols. But we need to make
985 sure that indirect symbol dynamic flags are updated. */
986 hi = h;
987 while (h->root.type == bfd_link_hash_indirect
988 || h->root.type == bfd_link_hash_warning)
989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
990
991 if (!*matched)
992 {
993 if (hi == h || h->root.type == bfd_link_hash_new)
994 *matched = TRUE;
995 else
996 {
997 /* OLD_HIDDEN is true if the existing symbol is only visibile
998 to the symbol with the same symbol version. NEW_HIDDEN is
999 true if the new symbol is only visibile to the symbol with
1000 the same symbol version. */
1001 bfd_boolean old_hidden = h->hidden;
1002 bfd_boolean new_hidden = hi->hidden;
1003 if (!old_hidden && !new_hidden)
1004 /* The new symbol matches the existing symbol if both
1005 aren't hidden. */
1006 *matched = TRUE;
1007 else
1008 {
1009 /* OLD_VERSION is the symbol version of the existing
1010 symbol. */
1011 char *old_version = strrchr (h->root.root.string,
1012 ELF_VER_CHR);
1013 if (old_version)
1014 {
1015 old_version += 1;
1016 if (old_version[0] == '\0')
1017 old_version = NULL;
1018 }
1019
1020 /* The new symbol matches the existing symbol if they
1021 have the same symbol version. */
1022 *matched = (old_version == new_version
1023 || (old_version != NULL
1024 && new_version != NULL
1025 && strcmp (old_version, new_version) == 0));
1026 }
1027 }
1028 }
1029
1030 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1031 existing symbol. */
1032
1033 oldbfd = NULL;
1034 oldsec = NULL;
1035 switch (h->root.type)
1036 {
1037 default:
1038 break;
1039
1040 case bfd_link_hash_undefined:
1041 case bfd_link_hash_undefweak:
1042 oldbfd = h->root.u.undef.abfd;
1043 break;
1044
1045 case bfd_link_hash_defined:
1046 case bfd_link_hash_defweak:
1047 oldbfd = h->root.u.def.section->owner;
1048 oldsec = h->root.u.def.section;
1049 break;
1050
1051 case bfd_link_hash_common:
1052 oldbfd = h->root.u.c.p->section->owner;
1053 oldsec = h->root.u.c.p->section;
1054 if (pold_alignment)
1055 *pold_alignment = h->root.u.c.p->alignment_power;
1056 break;
1057 }
1058 if (poldbfd && *poldbfd == NULL)
1059 *poldbfd = oldbfd;
1060
1061 /* Differentiate strong and weak symbols. */
1062 newweak = bind == STB_WEAK;
1063 oldweak = (h->root.type == bfd_link_hash_defweak
1064 || h->root.type == bfd_link_hash_undefweak);
1065 if (pold_weak)
1066 *pold_weak = oldweak;
1067
1068 /* This code is for coping with dynamic objects, and is only useful
1069 if we are doing an ELF link. */
1070 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1071 return TRUE;
1072
1073 /* We have to check it for every instance since the first few may be
1074 references and not all compilers emit symbol type for undefined
1075 symbols. */
1076 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1077
1078 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1079 respectively, is from a dynamic object. */
1080
1081 newdyn = (abfd->flags & DYNAMIC) != 0;
1082
1083 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1084 syms and defined syms in dynamic libraries respectively.
1085 ref_dynamic on the other hand can be set for a symbol defined in
1086 a dynamic library, and def_dynamic may not be set; When the
1087 definition in a dynamic lib is overridden by a definition in the
1088 executable use of the symbol in the dynamic lib becomes a
1089 reference to the executable symbol. */
1090 if (newdyn)
1091 {
1092 if (bfd_is_und_section (sec))
1093 {
1094 if (bind != STB_WEAK)
1095 {
1096 h->ref_dynamic_nonweak = 1;
1097 hi->ref_dynamic_nonweak = 1;
1098 }
1099 }
1100 else
1101 {
1102 /* Update the existing symbol only if they match. */
1103 if (*matched)
1104 h->dynamic_def = 1;
1105 hi->dynamic_def = 1;
1106 }
1107 }
1108
1109 /* If we just created the symbol, mark it as being an ELF symbol.
1110 Other than that, there is nothing to do--there is no merge issue
1111 with a newly defined symbol--so we just return. */
1112
1113 if (h->root.type == bfd_link_hash_new)
1114 {
1115 h->non_elf = 0;
1116 return TRUE;
1117 }
1118
1119 /* In cases involving weak versioned symbols, we may wind up trying
1120 to merge a symbol with itself. Catch that here, to avoid the
1121 confusion that results if we try to override a symbol with
1122 itself. The additional tests catch cases like
1123 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1124 dynamic object, which we do want to handle here. */
1125 if (abfd == oldbfd
1126 && (newweak || oldweak)
1127 && ((abfd->flags & DYNAMIC) == 0
1128 || !h->def_regular))
1129 return TRUE;
1130
1131 olddyn = FALSE;
1132 if (oldbfd != NULL)
1133 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1134 else if (oldsec != NULL)
1135 {
1136 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1137 indices used by MIPS ELF. */
1138 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1139 }
1140
1141 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1142 respectively, appear to be a definition rather than reference. */
1143
1144 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1145
1146 olddef = (h->root.type != bfd_link_hash_undefined
1147 && h->root.type != bfd_link_hash_undefweak
1148 && h->root.type != bfd_link_hash_common);
1149
1150 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1151 respectively, appear to be a function. */
1152
1153 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1154 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1155
1156 oldfunc = (h->type != STT_NOTYPE
1157 && bed->is_function_type (h->type));
1158
1159 /* When we try to create a default indirect symbol from the dynamic
1160 definition with the default version, we skip it if its type and
1161 the type of existing regular definition mismatch. */
1162 if (pold_alignment == NULL
1163 && newdyn
1164 && newdef
1165 && !olddyn
1166 && (((olddef || h->root.type == bfd_link_hash_common)
1167 && ELF_ST_TYPE (sym->st_info) != h->type
1168 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1169 && h->type != STT_NOTYPE
1170 && !(newfunc && oldfunc))
1171 || (olddef
1172 && ((h->type == STT_GNU_IFUNC)
1173 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1174 {
1175 *skip = TRUE;
1176 return TRUE;
1177 }
1178
1179 /* Check TLS symbols. We don't check undefined symbols introduced
1180 by "ld -u" which have no type (and oldbfd NULL), and we don't
1181 check symbols from plugins because they also have no type. */
1182 if (oldbfd != NULL
1183 && (oldbfd->flags & BFD_PLUGIN) == 0
1184 && (abfd->flags & BFD_PLUGIN) == 0
1185 && ELF_ST_TYPE (sym->st_info) != h->type
1186 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1187 {
1188 bfd *ntbfd, *tbfd;
1189 bfd_boolean ntdef, tdef;
1190 asection *ntsec, *tsec;
1191
1192 if (h->type == STT_TLS)
1193 {
1194 ntbfd = abfd;
1195 ntsec = sec;
1196 ntdef = newdef;
1197 tbfd = oldbfd;
1198 tsec = oldsec;
1199 tdef = olddef;
1200 }
1201 else
1202 {
1203 ntbfd = oldbfd;
1204 ntsec = oldsec;
1205 ntdef = olddef;
1206 tbfd = abfd;
1207 tsec = sec;
1208 tdef = newdef;
1209 }
1210
1211 if (tdef && ntdef)
1212 (*_bfd_error_handler)
1213 (_("%s: TLS definition in %B section %A "
1214 "mismatches non-TLS definition in %B section %A"),
1215 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1216 else if (!tdef && !ntdef)
1217 (*_bfd_error_handler)
1218 (_("%s: TLS reference in %B "
1219 "mismatches non-TLS reference in %B"),
1220 tbfd, ntbfd, h->root.root.string);
1221 else if (tdef)
1222 (*_bfd_error_handler)
1223 (_("%s: TLS definition in %B section %A "
1224 "mismatches non-TLS reference in %B"),
1225 tbfd, tsec, ntbfd, h->root.root.string);
1226 else
1227 (*_bfd_error_handler)
1228 (_("%s: TLS reference in %B "
1229 "mismatches non-TLS definition in %B section %A"),
1230 tbfd, ntbfd, ntsec, h->root.root.string);
1231
1232 bfd_set_error (bfd_error_bad_value);
1233 return FALSE;
1234 }
1235
1236 /* If the old symbol has non-default visibility, we ignore the new
1237 definition from a dynamic object. */
1238 if (newdyn
1239 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1240 && !bfd_is_und_section (sec))
1241 {
1242 *skip = TRUE;
1243 /* Make sure this symbol is dynamic. */
1244 h->ref_dynamic = 1;
1245 hi->ref_dynamic = 1;
1246 /* A protected symbol has external availability. Make sure it is
1247 recorded as dynamic.
1248
1249 FIXME: Should we check type and size for protected symbol? */
1250 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1251 return bfd_elf_link_record_dynamic_symbol (info, h);
1252 else
1253 return TRUE;
1254 }
1255 else if (!newdyn
1256 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1257 && h->def_dynamic)
1258 {
1259 /* If the new symbol with non-default visibility comes from a
1260 relocatable file and the old definition comes from a dynamic
1261 object, we remove the old definition. */
1262 if (hi->root.type == bfd_link_hash_indirect)
1263 {
1264 /* Handle the case where the old dynamic definition is
1265 default versioned. We need to copy the symbol info from
1266 the symbol with default version to the normal one if it
1267 was referenced before. */
1268 if (h->ref_regular)
1269 {
1270 hi->root.type = h->root.type;
1271 h->root.type = bfd_link_hash_indirect;
1272 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1273
1274 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1275 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1276 {
1277 /* If the new symbol is hidden or internal, completely undo
1278 any dynamic link state. */
1279 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1280 h->forced_local = 0;
1281 h->ref_dynamic = 0;
1282 }
1283 else
1284 h->ref_dynamic = 1;
1285
1286 h->def_dynamic = 0;
1287 /* FIXME: Should we check type and size for protected symbol? */
1288 h->size = 0;
1289 h->type = 0;
1290
1291 h = hi;
1292 }
1293 else
1294 h = hi;
1295 }
1296
1297 /* If the old symbol was undefined before, then it will still be
1298 on the undefs list. If the new symbol is undefined or
1299 common, we can't make it bfd_link_hash_new here, because new
1300 undefined or common symbols will be added to the undefs list
1301 by _bfd_generic_link_add_one_symbol. Symbols may not be
1302 added twice to the undefs list. Also, if the new symbol is
1303 undefweak then we don't want to lose the strong undef. */
1304 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1305 {
1306 h->root.type = bfd_link_hash_undefined;
1307 h->root.u.undef.abfd = abfd;
1308 }
1309 else
1310 {
1311 h->root.type = bfd_link_hash_new;
1312 h->root.u.undef.abfd = NULL;
1313 }
1314
1315 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1316 {
1317 /* If the new symbol is hidden or internal, completely undo
1318 any dynamic link state. */
1319 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1320 h->forced_local = 0;
1321 h->ref_dynamic = 0;
1322 }
1323 else
1324 h->ref_dynamic = 1;
1325 h->def_dynamic = 0;
1326 /* FIXME: Should we check type and size for protected symbol? */
1327 h->size = 0;
1328 h->type = 0;
1329 return TRUE;
1330 }
1331
1332 /* If a new weak symbol definition comes from a regular file and the
1333 old symbol comes from a dynamic library, we treat the new one as
1334 strong. Similarly, an old weak symbol definition from a regular
1335 file is treated as strong when the new symbol comes from a dynamic
1336 library. Further, an old weak symbol from a dynamic library is
1337 treated as strong if the new symbol is from a dynamic library.
1338 This reflects the way glibc's ld.so works.
1339
1340 Do this before setting *type_change_ok or *size_change_ok so that
1341 we warn properly when dynamic library symbols are overridden. */
1342
1343 if (newdef && !newdyn && olddyn)
1344 newweak = FALSE;
1345 if (olddef && newdyn)
1346 oldweak = FALSE;
1347
1348 /* Allow changes between different types of function symbol. */
1349 if (newfunc && oldfunc)
1350 *type_change_ok = TRUE;
1351
1352 /* It's OK to change the type if either the existing symbol or the
1353 new symbol is weak. A type change is also OK if the old symbol
1354 is undefined and the new symbol is defined. */
1355
1356 if (oldweak
1357 || newweak
1358 || (newdef
1359 && h->root.type == bfd_link_hash_undefined))
1360 *type_change_ok = TRUE;
1361
1362 /* It's OK to change the size if either the existing symbol or the
1363 new symbol is weak, or if the old symbol is undefined. */
1364
1365 if (*type_change_ok
1366 || h->root.type == bfd_link_hash_undefined)
1367 *size_change_ok = TRUE;
1368
1369 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1370 symbol, respectively, appears to be a common symbol in a dynamic
1371 object. If a symbol appears in an uninitialized section, and is
1372 not weak, and is not a function, then it may be a common symbol
1373 which was resolved when the dynamic object was created. We want
1374 to treat such symbols specially, because they raise special
1375 considerations when setting the symbol size: if the symbol
1376 appears as a common symbol in a regular object, and the size in
1377 the regular object is larger, we must make sure that we use the
1378 larger size. This problematic case can always be avoided in C,
1379 but it must be handled correctly when using Fortran shared
1380 libraries.
1381
1382 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1383 likewise for OLDDYNCOMMON and OLDDEF.
1384
1385 Note that this test is just a heuristic, and that it is quite
1386 possible to have an uninitialized symbol in a shared object which
1387 is really a definition, rather than a common symbol. This could
1388 lead to some minor confusion when the symbol really is a common
1389 symbol in some regular object. However, I think it will be
1390 harmless. */
1391
1392 if (newdyn
1393 && newdef
1394 && !newweak
1395 && (sec->flags & SEC_ALLOC) != 0
1396 && (sec->flags & SEC_LOAD) == 0
1397 && sym->st_size > 0
1398 && !newfunc)
1399 newdyncommon = TRUE;
1400 else
1401 newdyncommon = FALSE;
1402
1403 if (olddyn
1404 && olddef
1405 && h->root.type == bfd_link_hash_defined
1406 && h->def_dynamic
1407 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1408 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1409 && h->size > 0
1410 && !oldfunc)
1411 olddyncommon = TRUE;
1412 else
1413 olddyncommon = FALSE;
1414
1415 /* We now know everything about the old and new symbols. We ask the
1416 backend to check if we can merge them. */
1417 if (bed->merge_symbol != NULL)
1418 {
1419 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1420 return FALSE;
1421 sec = *psec;
1422 }
1423
1424 /* If both the old and the new symbols look like common symbols in a
1425 dynamic object, set the size of the symbol to the larger of the
1426 two. */
1427
1428 if (olddyncommon
1429 && newdyncommon
1430 && sym->st_size != h->size)
1431 {
1432 /* Since we think we have two common symbols, issue a multiple
1433 common warning if desired. Note that we only warn if the
1434 size is different. If the size is the same, we simply let
1435 the old symbol override the new one as normally happens with
1436 symbols defined in dynamic objects. */
1437
1438 if (! ((*info->callbacks->multiple_common)
1439 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1440 return FALSE;
1441
1442 if (sym->st_size > h->size)
1443 h->size = sym->st_size;
1444
1445 *size_change_ok = TRUE;
1446 }
1447
1448 /* If we are looking at a dynamic object, and we have found a
1449 definition, we need to see if the symbol was already defined by
1450 some other object. If so, we want to use the existing
1451 definition, and we do not want to report a multiple symbol
1452 definition error; we do this by clobbering *PSEC to be
1453 bfd_und_section_ptr.
1454
1455 We treat a common symbol as a definition if the symbol in the
1456 shared library is a function, since common symbols always
1457 represent variables; this can cause confusion in principle, but
1458 any such confusion would seem to indicate an erroneous program or
1459 shared library. We also permit a common symbol in a regular
1460 object to override a weak symbol in a shared object. */
1461
1462 if (newdyn
1463 && newdef
1464 && (olddef
1465 || (h->root.type == bfd_link_hash_common
1466 && (newweak || newfunc))))
1467 {
1468 *override = TRUE;
1469 newdef = FALSE;
1470 newdyncommon = FALSE;
1471
1472 *psec = sec = bfd_und_section_ptr;
1473 *size_change_ok = TRUE;
1474
1475 /* If we get here when the old symbol is a common symbol, then
1476 we are explicitly letting it override a weak symbol or
1477 function in a dynamic object, and we don't want to warn about
1478 a type change. If the old symbol is a defined symbol, a type
1479 change warning may still be appropriate. */
1480
1481 if (h->root.type == bfd_link_hash_common)
1482 *type_change_ok = TRUE;
1483 }
1484
1485 /* Handle the special case of an old common symbol merging with a
1486 new symbol which looks like a common symbol in a shared object.
1487 We change *PSEC and *PVALUE to make the new symbol look like a
1488 common symbol, and let _bfd_generic_link_add_one_symbol do the
1489 right thing. */
1490
1491 if (newdyncommon
1492 && h->root.type == bfd_link_hash_common)
1493 {
1494 *override = TRUE;
1495 newdef = FALSE;
1496 newdyncommon = FALSE;
1497 *pvalue = sym->st_size;
1498 *psec = sec = bed->common_section (oldsec);
1499 *size_change_ok = TRUE;
1500 }
1501
1502 /* Skip weak definitions of symbols that are already defined. */
1503 if (newdef && olddef && newweak)
1504 {
1505 /* Don't skip new non-IR weak syms. */
1506 if (!(oldbfd != NULL
1507 && (oldbfd->flags & BFD_PLUGIN) != 0
1508 && (abfd->flags & BFD_PLUGIN) == 0))
1509 {
1510 newdef = FALSE;
1511 *skip = TRUE;
1512 }
1513
1514 /* Merge st_other. If the symbol already has a dynamic index,
1515 but visibility says it should not be visible, turn it into a
1516 local symbol. */
1517 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1518 if (h->dynindx != -1)
1519 switch (ELF_ST_VISIBILITY (h->other))
1520 {
1521 case STV_INTERNAL:
1522 case STV_HIDDEN:
1523 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1524 break;
1525 }
1526 }
1527
1528 /* If the old symbol is from a dynamic object, and the new symbol is
1529 a definition which is not from a dynamic object, then the new
1530 symbol overrides the old symbol. Symbols from regular files
1531 always take precedence over symbols from dynamic objects, even if
1532 they are defined after the dynamic object in the link.
1533
1534 As above, we again permit a common symbol in a regular object to
1535 override a definition in a shared object if the shared object
1536 symbol is a function or is weak. */
1537
1538 flip = NULL;
1539 if (!newdyn
1540 && (newdef
1541 || (bfd_is_com_section (sec)
1542 && (oldweak || oldfunc)))
1543 && olddyn
1544 && olddef
1545 && h->def_dynamic)
1546 {
1547 /* Change the hash table entry to undefined, and let
1548 _bfd_generic_link_add_one_symbol do the right thing with the
1549 new definition. */
1550
1551 h->root.type = bfd_link_hash_undefined;
1552 h->root.u.undef.abfd = h->root.u.def.section->owner;
1553 *size_change_ok = TRUE;
1554
1555 olddef = FALSE;
1556 olddyncommon = FALSE;
1557
1558 /* We again permit a type change when a common symbol may be
1559 overriding a function. */
1560
1561 if (bfd_is_com_section (sec))
1562 {
1563 if (oldfunc)
1564 {
1565 /* If a common symbol overrides a function, make sure
1566 that it isn't defined dynamically nor has type
1567 function. */
1568 h->def_dynamic = 0;
1569 h->type = STT_NOTYPE;
1570 }
1571 *type_change_ok = TRUE;
1572 }
1573
1574 if (hi->root.type == bfd_link_hash_indirect)
1575 flip = hi;
1576 else
1577 /* This union may have been set to be non-NULL when this symbol
1578 was seen in a dynamic object. We must force the union to be
1579 NULL, so that it is correct for a regular symbol. */
1580 h->verinfo.vertree = NULL;
1581 }
1582
1583 /* Handle the special case of a new common symbol merging with an
1584 old symbol that looks like it might be a common symbol defined in
1585 a shared object. Note that we have already handled the case in
1586 which a new common symbol should simply override the definition
1587 in the shared library. */
1588
1589 if (! newdyn
1590 && bfd_is_com_section (sec)
1591 && olddyncommon)
1592 {
1593 /* It would be best if we could set the hash table entry to a
1594 common symbol, but we don't know what to use for the section
1595 or the alignment. */
1596 if (! ((*info->callbacks->multiple_common)
1597 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1598 return FALSE;
1599
1600 /* If the presumed common symbol in the dynamic object is
1601 larger, pretend that the new symbol has its size. */
1602
1603 if (h->size > *pvalue)
1604 *pvalue = h->size;
1605
1606 /* We need to remember the alignment required by the symbol
1607 in the dynamic object. */
1608 BFD_ASSERT (pold_alignment);
1609 *pold_alignment = h->root.u.def.section->alignment_power;
1610
1611 olddef = FALSE;
1612 olddyncommon = FALSE;
1613
1614 h->root.type = bfd_link_hash_undefined;
1615 h->root.u.undef.abfd = h->root.u.def.section->owner;
1616
1617 *size_change_ok = TRUE;
1618 *type_change_ok = TRUE;
1619
1620 if (hi->root.type == bfd_link_hash_indirect)
1621 flip = hi;
1622 else
1623 h->verinfo.vertree = NULL;
1624 }
1625
1626 if (flip != NULL)
1627 {
1628 /* Handle the case where we had a versioned symbol in a dynamic
1629 library and now find a definition in a normal object. In this
1630 case, we make the versioned symbol point to the normal one. */
1631 flip->root.type = h->root.type;
1632 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1633 h->root.type = bfd_link_hash_indirect;
1634 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1635 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1636 if (h->def_dynamic)
1637 {
1638 h->def_dynamic = 0;
1639 flip->ref_dynamic = 1;
1640 }
1641 }
1642
1643 return TRUE;
1644 }
1645
1646 /* This function is called to create an indirect symbol from the
1647 default for the symbol with the default version if needed. The
1648 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1649 set DYNSYM if the new indirect symbol is dynamic. */
1650
1651 static bfd_boolean
1652 _bfd_elf_add_default_symbol (bfd *abfd,
1653 struct bfd_link_info *info,
1654 struct elf_link_hash_entry *h,
1655 const char *name,
1656 Elf_Internal_Sym *sym,
1657 asection *sec,
1658 bfd_vma value,
1659 bfd **poldbfd,
1660 bfd_boolean *dynsym)
1661 {
1662 bfd_boolean type_change_ok;
1663 bfd_boolean size_change_ok;
1664 bfd_boolean skip;
1665 char *shortname;
1666 struct elf_link_hash_entry *hi;
1667 struct bfd_link_hash_entry *bh;
1668 const struct elf_backend_data *bed;
1669 bfd_boolean collect;
1670 bfd_boolean dynamic;
1671 bfd_boolean override;
1672 char *p;
1673 size_t len, shortlen;
1674 asection *tmp_sec;
1675 bfd_boolean matched;
1676
1677 /* If this symbol has a version, and it is the default version, we
1678 create an indirect symbol from the default name to the fully
1679 decorated name. This will cause external references which do not
1680 specify a version to be bound to this version of the symbol. */
1681 p = strchr (name, ELF_VER_CHR);
1682 if (p == NULL || p[1] != ELF_VER_CHR)
1683 return TRUE;
1684
1685 bed = get_elf_backend_data (abfd);
1686 collect = bed->collect;
1687 dynamic = (abfd->flags & DYNAMIC) != 0;
1688
1689 shortlen = p - name;
1690 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1691 if (shortname == NULL)
1692 return FALSE;
1693 memcpy (shortname, name, shortlen);
1694 shortname[shortlen] = '\0';
1695
1696 /* We are going to create a new symbol. Merge it with any existing
1697 symbol with this name. For the purposes of the merge, act as
1698 though we were defining the symbol we just defined, although we
1699 actually going to define an indirect symbol. */
1700 type_change_ok = FALSE;
1701 size_change_ok = FALSE;
1702 matched = TRUE;
1703 tmp_sec = sec;
1704 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1705 &hi, poldbfd, NULL, NULL, &skip, &override,
1706 &type_change_ok, &size_change_ok, &matched))
1707 return FALSE;
1708
1709 if (skip)
1710 goto nondefault;
1711
1712 if (! override)
1713 {
1714 /* Add the default symbol if not performing a relocatable link. */
1715 if (! info->relocatable)
1716 {
1717 bh = &hi->root;
1718 if (! (_bfd_generic_link_add_one_symbol
1719 (info, abfd, shortname, BSF_INDIRECT,
1720 bfd_ind_section_ptr,
1721 0, name, FALSE, collect, &bh)))
1722 return FALSE;
1723 hi = (struct elf_link_hash_entry *) bh;
1724 }
1725 }
1726 else
1727 {
1728 /* In this case the symbol named SHORTNAME is overriding the
1729 indirect symbol we want to add. We were planning on making
1730 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1731 is the name without a version. NAME is the fully versioned
1732 name, and it is the default version.
1733
1734 Overriding means that we already saw a definition for the
1735 symbol SHORTNAME in a regular object, and it is overriding
1736 the symbol defined in the dynamic object.
1737
1738 When this happens, we actually want to change NAME, the
1739 symbol we just added, to refer to SHORTNAME. This will cause
1740 references to NAME in the shared object to become references
1741 to SHORTNAME in the regular object. This is what we expect
1742 when we override a function in a shared object: that the
1743 references in the shared object will be mapped to the
1744 definition in the regular object. */
1745
1746 while (hi->root.type == bfd_link_hash_indirect
1747 || hi->root.type == bfd_link_hash_warning)
1748 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1749
1750 h->root.type = bfd_link_hash_indirect;
1751 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1752 if (h->def_dynamic)
1753 {
1754 h->def_dynamic = 0;
1755 hi->ref_dynamic = 1;
1756 if (hi->ref_regular
1757 || hi->def_regular)
1758 {
1759 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1760 return FALSE;
1761 }
1762 }
1763
1764 /* Now set HI to H, so that the following code will set the
1765 other fields correctly. */
1766 hi = h;
1767 }
1768
1769 /* Check if HI is a warning symbol. */
1770 if (hi->root.type == bfd_link_hash_warning)
1771 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error to
1775 the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 struct elf_link_hash_entry *ht;
1780
1781 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1782 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1783
1784 /* A reference to the SHORTNAME symbol from a dynamic library
1785 will be satisfied by the versioned symbol at runtime. In
1786 effect, we have a reference to the versioned symbol. */
1787 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1788 hi->dynamic_def |= ht->dynamic_def;
1789
1790 /* See if the new flags lead us to realize that the symbol must
1791 be dynamic. */
1792 if (! *dynsym)
1793 {
1794 if (! dynamic)
1795 {
1796 if (! info->executable
1797 || hi->def_dynamic
1798 || hi->ref_dynamic)
1799 *dynsym = TRUE;
1800 }
1801 else
1802 {
1803 if (hi->ref_regular)
1804 *dynsym = TRUE;
1805 }
1806 }
1807 }
1808
1809 /* We also need to define an indirection from the nondefault version
1810 of the symbol. */
1811
1812 nondefault:
1813 len = strlen (name);
1814 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1815 if (shortname == NULL)
1816 return FALSE;
1817 memcpy (shortname, name, shortlen);
1818 memcpy (shortname + shortlen, p + 1, len - shortlen);
1819
1820 /* Once again, merge with any existing symbol. */
1821 type_change_ok = FALSE;
1822 size_change_ok = FALSE;
1823 tmp_sec = sec;
1824 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1825 &hi, poldbfd, NULL, NULL, &skip, &override,
1826 &type_change_ok, &size_change_ok, &matched))
1827 return FALSE;
1828
1829 if (skip)
1830 return TRUE;
1831
1832 if (override)
1833 {
1834 /* Here SHORTNAME is a versioned name, so we don't expect to see
1835 the type of override we do in the case above unless it is
1836 overridden by a versioned definition. */
1837 if (hi->root.type != bfd_link_hash_defined
1838 && hi->root.type != bfd_link_hash_defweak)
1839 (*_bfd_error_handler)
1840 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1841 abfd, shortname);
1842 }
1843 else
1844 {
1845 bh = &hi->root;
1846 if (! (_bfd_generic_link_add_one_symbol
1847 (info, abfd, shortname, BSF_INDIRECT,
1848 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1849 return FALSE;
1850 hi = (struct elf_link_hash_entry *) bh;
1851
1852 /* If there is a duplicate definition somewhere, then HI may not
1853 point to an indirect symbol. We will have reported an error
1854 to the user in that case. */
1855
1856 if (hi->root.type == bfd_link_hash_indirect)
1857 {
1858 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1859 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1860 hi->dynamic_def |= h->dynamic_def;
1861
1862 /* See if the new flags lead us to realize that the symbol
1863 must be dynamic. */
1864 if (! *dynsym)
1865 {
1866 if (! dynamic)
1867 {
1868 if (! info->executable
1869 || hi->ref_dynamic)
1870 *dynsym = TRUE;
1871 }
1872 else
1873 {
1874 if (hi->ref_regular)
1875 *dynsym = TRUE;
1876 }
1877 }
1878 }
1879 }
1880
1881 return TRUE;
1882 }
1883 \f
1884 /* This routine is used to export all defined symbols into the dynamic
1885 symbol table. It is called via elf_link_hash_traverse. */
1886
1887 static bfd_boolean
1888 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1889 {
1890 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1891
1892 /* Ignore indirect symbols. These are added by the versioning code. */
1893 if (h->root.type == bfd_link_hash_indirect)
1894 return TRUE;
1895
1896 /* Ignore this if we won't export it. */
1897 if (!eif->info->export_dynamic && !h->dynamic)
1898 return TRUE;
1899
1900 if (h->dynindx == -1
1901 && (h->def_regular || h->ref_regular)
1902 && ! bfd_hide_sym_by_version (eif->info->version_info,
1903 h->root.root.string))
1904 {
1905 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1906 {
1907 eif->failed = TRUE;
1908 return FALSE;
1909 }
1910 }
1911
1912 return TRUE;
1913 }
1914 \f
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1919
1920 static bfd_boolean
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1922 void *data)
1923 {
1924 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1925 Elf_Internal_Verneed *t;
1926 Elf_Internal_Vernaux *a;
1927 bfd_size_type amt;
1928
1929 /* We only care about symbols defined in shared objects with version
1930 information. */
1931 if (!h->def_dynamic
1932 || h->def_regular
1933 || h->dynindx == -1
1934 || h->verinfo.verdef == NULL
1935 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1936 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1937 return TRUE;
1938
1939 /* See if we already know about this version. */
1940 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1941 t != NULL;
1942 t = t->vn_nextref)
1943 {
1944 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1945 continue;
1946
1947 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1948 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1949 return TRUE;
1950
1951 break;
1952 }
1953
1954 /* This is a new version. Add it to tree we are building. */
1955
1956 if (t == NULL)
1957 {
1958 amt = sizeof *t;
1959 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1960 if (t == NULL)
1961 {
1962 rinfo->failed = TRUE;
1963 return FALSE;
1964 }
1965
1966 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1967 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1968 elf_tdata (rinfo->info->output_bfd)->verref = t;
1969 }
1970
1971 amt = sizeof *a;
1972 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1973 if (a == NULL)
1974 {
1975 rinfo->failed = TRUE;
1976 return FALSE;
1977 }
1978
1979 /* Note that we are copying a string pointer here, and testing it
1980 above. If bfd_elf_string_from_elf_section is ever changed to
1981 discard the string data when low in memory, this will have to be
1982 fixed. */
1983 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1984
1985 a->vna_flags = h->verinfo.verdef->vd_flags;
1986 a->vna_nextptr = t->vn_auxptr;
1987
1988 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1989 ++rinfo->vers;
1990
1991 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1992
1993 t->vn_auxptr = a;
1994
1995 return TRUE;
1996 }
1997
1998 /* Figure out appropriate versions for all the symbols. We may not
1999 have the version number script until we have read all of the input
2000 files, so until that point we don't know which symbols should be
2001 local. This function is called via elf_link_hash_traverse. */
2002
2003 static bfd_boolean
2004 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2005 {
2006 struct elf_info_failed *sinfo;
2007 struct bfd_link_info *info;
2008 const struct elf_backend_data *bed;
2009 struct elf_info_failed eif;
2010 char *p;
2011 bfd_size_type amt;
2012
2013 sinfo = (struct elf_info_failed *) data;
2014 info = sinfo->info;
2015
2016 /* Fix the symbol flags. */
2017 eif.failed = FALSE;
2018 eif.info = info;
2019 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2020 {
2021 if (eif.failed)
2022 sinfo->failed = TRUE;
2023 return FALSE;
2024 }
2025
2026 /* We only need version numbers for symbols defined in regular
2027 objects. */
2028 if (!h->def_regular)
2029 return TRUE;
2030
2031 bed = get_elf_backend_data (info->output_bfd);
2032 p = strchr (h->root.root.string, ELF_VER_CHR);
2033 if (p != NULL && h->verinfo.vertree == NULL)
2034 {
2035 struct bfd_elf_version_tree *t;
2036
2037 ++p;
2038 if (*p == ELF_VER_CHR)
2039 ++p;
2040
2041 /* If there is no version string, we can just return out. */
2042 if (*p == '\0')
2043 return TRUE;
2044
2045 /* Look for the version. If we find it, it is no longer weak. */
2046 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2047 {
2048 if (strcmp (t->name, p) == 0)
2049 {
2050 size_t len;
2051 char *alc;
2052 struct bfd_elf_version_expr *d;
2053
2054 len = p - h->root.root.string;
2055 alc = (char *) bfd_malloc (len);
2056 if (alc == NULL)
2057 {
2058 sinfo->failed = TRUE;
2059 return FALSE;
2060 }
2061 memcpy (alc, h->root.root.string, len - 1);
2062 alc[len - 1] = '\0';
2063 if (alc[len - 2] == ELF_VER_CHR)
2064 alc[len - 2] = '\0';
2065
2066 h->verinfo.vertree = t;
2067 t->used = TRUE;
2068 d = NULL;
2069
2070 if (t->globals.list != NULL)
2071 d = (*t->match) (&t->globals, NULL, alc);
2072
2073 /* See if there is anything to force this symbol to
2074 local scope. */
2075 if (d == NULL && t->locals.list != NULL)
2076 {
2077 d = (*t->match) (&t->locals, NULL, alc);
2078 if (d != NULL
2079 && h->dynindx != -1
2080 && ! info->export_dynamic)
2081 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2082 }
2083
2084 free (alc);
2085 break;
2086 }
2087 }
2088
2089 /* If we are building an application, we need to create a
2090 version node for this version. */
2091 if (t == NULL && info->executable)
2092 {
2093 struct bfd_elf_version_tree **pp;
2094 int version_index;
2095
2096 /* If we aren't going to export this symbol, we don't need
2097 to worry about it. */
2098 if (h->dynindx == -1)
2099 return TRUE;
2100
2101 amt = sizeof *t;
2102 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2103 if (t == NULL)
2104 {
2105 sinfo->failed = TRUE;
2106 return FALSE;
2107 }
2108
2109 t->name = p;
2110 t->name_indx = (unsigned int) -1;
2111 t->used = TRUE;
2112
2113 version_index = 1;
2114 /* Don't count anonymous version tag. */
2115 if (sinfo->info->version_info != NULL
2116 && sinfo->info->version_info->vernum == 0)
2117 version_index = 0;
2118 for (pp = &sinfo->info->version_info;
2119 *pp != NULL;
2120 pp = &(*pp)->next)
2121 ++version_index;
2122 t->vernum = version_index;
2123
2124 *pp = t;
2125
2126 h->verinfo.vertree = t;
2127 }
2128 else if (t == NULL)
2129 {
2130 /* We could not find the version for a symbol when
2131 generating a shared archive. Return an error. */
2132 (*_bfd_error_handler)
2133 (_("%B: version node not found for symbol %s"),
2134 info->output_bfd, h->root.root.string);
2135 bfd_set_error (bfd_error_bad_value);
2136 sinfo->failed = TRUE;
2137 return FALSE;
2138 }
2139 }
2140
2141 /* If we don't have a version for this symbol, see if we can find
2142 something. */
2143 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2144 {
2145 bfd_boolean hide;
2146
2147 h->verinfo.vertree
2148 = bfd_find_version_for_sym (sinfo->info->version_info,
2149 h->root.root.string, &hide);
2150 if (h->verinfo.vertree != NULL && hide)
2151 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2152 }
2153
2154 return TRUE;
2155 }
2156 \f
2157 /* Read and swap the relocs from the section indicated by SHDR. This
2158 may be either a REL or a RELA section. The relocations are
2159 translated into RELA relocations and stored in INTERNAL_RELOCS,
2160 which should have already been allocated to contain enough space.
2161 The EXTERNAL_RELOCS are a buffer where the external form of the
2162 relocations should be stored.
2163
2164 Returns FALSE if something goes wrong. */
2165
2166 static bfd_boolean
2167 elf_link_read_relocs_from_section (bfd *abfd,
2168 asection *sec,
2169 Elf_Internal_Shdr *shdr,
2170 void *external_relocs,
2171 Elf_Internal_Rela *internal_relocs)
2172 {
2173 const struct elf_backend_data *bed;
2174 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2175 const bfd_byte *erela;
2176 const bfd_byte *erelaend;
2177 Elf_Internal_Rela *irela;
2178 Elf_Internal_Shdr *symtab_hdr;
2179 size_t nsyms;
2180
2181 /* Position ourselves at the start of the section. */
2182 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2183 return FALSE;
2184
2185 /* Read the relocations. */
2186 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2187 return FALSE;
2188
2189 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2190 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2191
2192 bed = get_elf_backend_data (abfd);
2193
2194 /* Convert the external relocations to the internal format. */
2195 if (shdr->sh_entsize == bed->s->sizeof_rel)
2196 swap_in = bed->s->swap_reloc_in;
2197 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2198 swap_in = bed->s->swap_reloca_in;
2199 else
2200 {
2201 bfd_set_error (bfd_error_wrong_format);
2202 return FALSE;
2203 }
2204
2205 erela = (const bfd_byte *) external_relocs;
2206 erelaend = erela + shdr->sh_size;
2207 irela = internal_relocs;
2208 while (erela < erelaend)
2209 {
2210 bfd_vma r_symndx;
2211
2212 (*swap_in) (abfd, erela, irela);
2213 r_symndx = ELF32_R_SYM (irela->r_info);
2214 if (bed->s->arch_size == 64)
2215 r_symndx >>= 24;
2216 if (nsyms > 0)
2217 {
2218 if ((size_t) r_symndx >= nsyms)
2219 {
2220 (*_bfd_error_handler)
2221 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2222 " for offset 0x%lx in section `%A'"),
2223 abfd, sec,
2224 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2225 bfd_set_error (bfd_error_bad_value);
2226 return FALSE;
2227 }
2228 }
2229 else if (r_symndx != STN_UNDEF)
2230 {
2231 (*_bfd_error_handler)
2232 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2233 " when the object file has no symbol table"),
2234 abfd, sec,
2235 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2236 bfd_set_error (bfd_error_bad_value);
2237 return FALSE;
2238 }
2239 irela += bed->s->int_rels_per_ext_rel;
2240 erela += shdr->sh_entsize;
2241 }
2242
2243 return TRUE;
2244 }
2245
2246 /* Read and swap the relocs for a section O. They may have been
2247 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2248 not NULL, they are used as buffers to read into. They are known to
2249 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2250 the return value is allocated using either malloc or bfd_alloc,
2251 according to the KEEP_MEMORY argument. If O has two relocation
2252 sections (both REL and RELA relocations), then the REL_HDR
2253 relocations will appear first in INTERNAL_RELOCS, followed by the
2254 RELA_HDR relocations. */
2255
2256 Elf_Internal_Rela *
2257 _bfd_elf_link_read_relocs (bfd *abfd,
2258 asection *o,
2259 void *external_relocs,
2260 Elf_Internal_Rela *internal_relocs,
2261 bfd_boolean keep_memory)
2262 {
2263 void *alloc1 = NULL;
2264 Elf_Internal_Rela *alloc2 = NULL;
2265 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2266 struct bfd_elf_section_data *esdo = elf_section_data (o);
2267 Elf_Internal_Rela *internal_rela_relocs;
2268
2269 if (esdo->relocs != NULL)
2270 return esdo->relocs;
2271
2272 if (o->reloc_count == 0)
2273 return NULL;
2274
2275 if (internal_relocs == NULL)
2276 {
2277 bfd_size_type size;
2278
2279 size = o->reloc_count;
2280 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2281 if (keep_memory)
2282 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2283 else
2284 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2285 if (internal_relocs == NULL)
2286 goto error_return;
2287 }
2288
2289 if (external_relocs == NULL)
2290 {
2291 bfd_size_type size = 0;
2292
2293 if (esdo->rel.hdr)
2294 size += esdo->rel.hdr->sh_size;
2295 if (esdo->rela.hdr)
2296 size += esdo->rela.hdr->sh_size;
2297
2298 alloc1 = bfd_malloc (size);
2299 if (alloc1 == NULL)
2300 goto error_return;
2301 external_relocs = alloc1;
2302 }
2303
2304 internal_rela_relocs = internal_relocs;
2305 if (esdo->rel.hdr)
2306 {
2307 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2308 external_relocs,
2309 internal_relocs))
2310 goto error_return;
2311 external_relocs = (((bfd_byte *) external_relocs)
2312 + esdo->rel.hdr->sh_size);
2313 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2314 * bed->s->int_rels_per_ext_rel);
2315 }
2316
2317 if (esdo->rela.hdr
2318 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2319 external_relocs,
2320 internal_rela_relocs)))
2321 goto error_return;
2322
2323 /* Cache the results for next time, if we can. */
2324 if (keep_memory)
2325 esdo->relocs = internal_relocs;
2326
2327 if (alloc1 != NULL)
2328 free (alloc1);
2329
2330 /* Don't free alloc2, since if it was allocated we are passing it
2331 back (under the name of internal_relocs). */
2332
2333 return internal_relocs;
2334
2335 error_return:
2336 if (alloc1 != NULL)
2337 free (alloc1);
2338 if (alloc2 != NULL)
2339 {
2340 if (keep_memory)
2341 bfd_release (abfd, alloc2);
2342 else
2343 free (alloc2);
2344 }
2345 return NULL;
2346 }
2347
2348 /* Compute the size of, and allocate space for, REL_HDR which is the
2349 section header for a section containing relocations for O. */
2350
2351 static bfd_boolean
2352 _bfd_elf_link_size_reloc_section (bfd *abfd,
2353 struct bfd_elf_section_reloc_data *reldata)
2354 {
2355 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2356
2357 /* That allows us to calculate the size of the section. */
2358 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2359
2360 /* The contents field must last into write_object_contents, so we
2361 allocate it with bfd_alloc rather than malloc. Also since we
2362 cannot be sure that the contents will actually be filled in,
2363 we zero the allocated space. */
2364 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2365 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2366 return FALSE;
2367
2368 if (reldata->hashes == NULL && reldata->count)
2369 {
2370 struct elf_link_hash_entry **p;
2371
2372 p = ((struct elf_link_hash_entry **)
2373 bfd_zmalloc (reldata->count * sizeof (*p)));
2374 if (p == NULL)
2375 return FALSE;
2376
2377 reldata->hashes = p;
2378 }
2379
2380 return TRUE;
2381 }
2382
2383 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2384 originated from the section given by INPUT_REL_HDR) to the
2385 OUTPUT_BFD. */
2386
2387 bfd_boolean
2388 _bfd_elf_link_output_relocs (bfd *output_bfd,
2389 asection *input_section,
2390 Elf_Internal_Shdr *input_rel_hdr,
2391 Elf_Internal_Rela *internal_relocs,
2392 struct elf_link_hash_entry **rel_hash
2393 ATTRIBUTE_UNUSED)
2394 {
2395 Elf_Internal_Rela *irela;
2396 Elf_Internal_Rela *irelaend;
2397 bfd_byte *erel;
2398 struct bfd_elf_section_reloc_data *output_reldata;
2399 asection *output_section;
2400 const struct elf_backend_data *bed;
2401 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2402 struct bfd_elf_section_data *esdo;
2403
2404 output_section = input_section->output_section;
2405
2406 bed = get_elf_backend_data (output_bfd);
2407 esdo = elf_section_data (output_section);
2408 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2409 {
2410 output_reldata = &esdo->rel;
2411 swap_out = bed->s->swap_reloc_out;
2412 }
2413 else if (esdo->rela.hdr
2414 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2415 {
2416 output_reldata = &esdo->rela;
2417 swap_out = bed->s->swap_reloca_out;
2418 }
2419 else
2420 {
2421 (*_bfd_error_handler)
2422 (_("%B: relocation size mismatch in %B section %A"),
2423 output_bfd, input_section->owner, input_section);
2424 bfd_set_error (bfd_error_wrong_format);
2425 return FALSE;
2426 }
2427
2428 erel = output_reldata->hdr->contents;
2429 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2430 irela = internal_relocs;
2431 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2432 * bed->s->int_rels_per_ext_rel);
2433 while (irela < irelaend)
2434 {
2435 (*swap_out) (output_bfd, irela, erel);
2436 irela += bed->s->int_rels_per_ext_rel;
2437 erel += input_rel_hdr->sh_entsize;
2438 }
2439
2440 /* Bump the counter, so that we know where to add the next set of
2441 relocations. */
2442 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2443
2444 return TRUE;
2445 }
2446 \f
2447 /* Make weak undefined symbols in PIE dynamic. */
2448
2449 bfd_boolean
2450 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2451 struct elf_link_hash_entry *h)
2452 {
2453 if (info->pie
2454 && h->dynindx == -1
2455 && h->root.type == bfd_link_hash_undefweak)
2456 return bfd_elf_link_record_dynamic_symbol (info, h);
2457
2458 return TRUE;
2459 }
2460
2461 /* Fix up the flags for a symbol. This handles various cases which
2462 can only be fixed after all the input files are seen. This is
2463 currently called by both adjust_dynamic_symbol and
2464 assign_sym_version, which is unnecessary but perhaps more robust in
2465 the face of future changes. */
2466
2467 static bfd_boolean
2468 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2469 struct elf_info_failed *eif)
2470 {
2471 const struct elf_backend_data *bed;
2472
2473 /* If this symbol was mentioned in a non-ELF file, try to set
2474 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2475 permit a non-ELF file to correctly refer to a symbol defined in
2476 an ELF dynamic object. */
2477 if (h->non_elf)
2478 {
2479 while (h->root.type == bfd_link_hash_indirect)
2480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2481
2482 if (h->root.type != bfd_link_hash_defined
2483 && h->root.type != bfd_link_hash_defweak)
2484 {
2485 h->ref_regular = 1;
2486 h->ref_regular_nonweak = 1;
2487 }
2488 else
2489 {
2490 if (h->root.u.def.section->owner != NULL
2491 && (bfd_get_flavour (h->root.u.def.section->owner)
2492 == bfd_target_elf_flavour))
2493 {
2494 h->ref_regular = 1;
2495 h->ref_regular_nonweak = 1;
2496 }
2497 else
2498 h->def_regular = 1;
2499 }
2500
2501 if (h->dynindx == -1
2502 && (h->def_dynamic
2503 || h->ref_dynamic))
2504 {
2505 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2506 {
2507 eif->failed = TRUE;
2508 return FALSE;
2509 }
2510 }
2511 }
2512 else
2513 {
2514 /* Unfortunately, NON_ELF is only correct if the symbol
2515 was first seen in a non-ELF file. Fortunately, if the symbol
2516 was first seen in an ELF file, we're probably OK unless the
2517 symbol was defined in a non-ELF file. Catch that case here.
2518 FIXME: We're still in trouble if the symbol was first seen in
2519 a dynamic object, and then later in a non-ELF regular object. */
2520 if ((h->root.type == bfd_link_hash_defined
2521 || h->root.type == bfd_link_hash_defweak)
2522 && !h->def_regular
2523 && (h->root.u.def.section->owner != NULL
2524 ? (bfd_get_flavour (h->root.u.def.section->owner)
2525 != bfd_target_elf_flavour)
2526 : (bfd_is_abs_section (h->root.u.def.section)
2527 && !h->def_dynamic)))
2528 h->def_regular = 1;
2529 }
2530
2531 /* Backend specific symbol fixup. */
2532 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2533 if (bed->elf_backend_fixup_symbol
2534 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2535 return FALSE;
2536
2537 /* If this is a final link, and the symbol was defined as a common
2538 symbol in a regular object file, and there was no definition in
2539 any dynamic object, then the linker will have allocated space for
2540 the symbol in a common section but the DEF_REGULAR
2541 flag will not have been set. */
2542 if (h->root.type == bfd_link_hash_defined
2543 && !h->def_regular
2544 && h->ref_regular
2545 && !h->def_dynamic
2546 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2547 h->def_regular = 1;
2548
2549 /* If -Bsymbolic was used (which means to bind references to global
2550 symbols to the definition within the shared object), and this
2551 symbol was defined in a regular object, then it actually doesn't
2552 need a PLT entry. Likewise, if the symbol has non-default
2553 visibility. If the symbol has hidden or internal visibility, we
2554 will force it local. */
2555 if (h->needs_plt
2556 && eif->info->shared
2557 && is_elf_hash_table (eif->info->hash)
2558 && (SYMBOLIC_BIND (eif->info, h)
2559 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2560 && h->def_regular)
2561 {
2562 bfd_boolean force_local;
2563
2564 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2565 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2566 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2567 }
2568
2569 /* If a weak undefined symbol has non-default visibility, we also
2570 hide it from the dynamic linker. */
2571 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2572 && h->root.type == bfd_link_hash_undefweak)
2573 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2574
2575 /* If this is a weak defined symbol in a dynamic object, and we know
2576 the real definition in the dynamic object, copy interesting flags
2577 over to the real definition. */
2578 if (h->u.weakdef != NULL)
2579 {
2580 /* If the real definition is defined by a regular object file,
2581 don't do anything special. See the longer description in
2582 _bfd_elf_adjust_dynamic_symbol, below. */
2583 if (h->u.weakdef->def_regular)
2584 h->u.weakdef = NULL;
2585 else
2586 {
2587 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2588
2589 while (h->root.type == bfd_link_hash_indirect)
2590 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2591
2592 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2593 || h->root.type == bfd_link_hash_defweak);
2594 BFD_ASSERT (weakdef->def_dynamic);
2595 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2596 || weakdef->root.type == bfd_link_hash_defweak);
2597 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2598 }
2599 }
2600
2601 return TRUE;
2602 }
2603
2604 /* Make the backend pick a good value for a dynamic symbol. This is
2605 called via elf_link_hash_traverse, and also calls itself
2606 recursively. */
2607
2608 static bfd_boolean
2609 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2610 {
2611 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2612 bfd *dynobj;
2613 const struct elf_backend_data *bed;
2614
2615 if (! is_elf_hash_table (eif->info->hash))
2616 return FALSE;
2617
2618 /* Ignore indirect symbols. These are added by the versioning code. */
2619 if (h->root.type == bfd_link_hash_indirect)
2620 return TRUE;
2621
2622 /* Fix the symbol flags. */
2623 if (! _bfd_elf_fix_symbol_flags (h, eif))
2624 return FALSE;
2625
2626 /* If this symbol does not require a PLT entry, and it is not
2627 defined by a dynamic object, or is not referenced by a regular
2628 object, ignore it. We do have to handle a weak defined symbol,
2629 even if no regular object refers to it, if we decided to add it
2630 to the dynamic symbol table. FIXME: Do we normally need to worry
2631 about symbols which are defined by one dynamic object and
2632 referenced by another one? */
2633 if (!h->needs_plt
2634 && h->type != STT_GNU_IFUNC
2635 && (h->def_regular
2636 || !h->def_dynamic
2637 || (!h->ref_regular
2638 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2639 {
2640 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2641 return TRUE;
2642 }
2643
2644 /* If we've already adjusted this symbol, don't do it again. This
2645 can happen via a recursive call. */
2646 if (h->dynamic_adjusted)
2647 return TRUE;
2648
2649 /* Don't look at this symbol again. Note that we must set this
2650 after checking the above conditions, because we may look at a
2651 symbol once, decide not to do anything, and then get called
2652 recursively later after REF_REGULAR is set below. */
2653 h->dynamic_adjusted = 1;
2654
2655 /* If this is a weak definition, and we know a real definition, and
2656 the real symbol is not itself defined by a regular object file,
2657 then get a good value for the real definition. We handle the
2658 real symbol first, for the convenience of the backend routine.
2659
2660 Note that there is a confusing case here. If the real definition
2661 is defined by a regular object file, we don't get the real symbol
2662 from the dynamic object, but we do get the weak symbol. If the
2663 processor backend uses a COPY reloc, then if some routine in the
2664 dynamic object changes the real symbol, we will not see that
2665 change in the corresponding weak symbol. This is the way other
2666 ELF linkers work as well, and seems to be a result of the shared
2667 library model.
2668
2669 I will clarify this issue. Most SVR4 shared libraries define the
2670 variable _timezone and define timezone as a weak synonym. The
2671 tzset call changes _timezone. If you write
2672 extern int timezone;
2673 int _timezone = 5;
2674 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2675 you might expect that, since timezone is a synonym for _timezone,
2676 the same number will print both times. However, if the processor
2677 backend uses a COPY reloc, then actually timezone will be copied
2678 into your process image, and, since you define _timezone
2679 yourself, _timezone will not. Thus timezone and _timezone will
2680 wind up at different memory locations. The tzset call will set
2681 _timezone, leaving timezone unchanged. */
2682
2683 if (h->u.weakdef != NULL)
2684 {
2685 /* If we get to this point, there is an implicit reference to
2686 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2687 h->u.weakdef->ref_regular = 1;
2688
2689 /* Ensure that the backend adjust_dynamic_symbol function sees
2690 H->U.WEAKDEF before H by recursively calling ourselves. */
2691 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2692 return FALSE;
2693 }
2694
2695 /* If a symbol has no type and no size and does not require a PLT
2696 entry, then we are probably about to do the wrong thing here: we
2697 are probably going to create a COPY reloc for an empty object.
2698 This case can arise when a shared object is built with assembly
2699 code, and the assembly code fails to set the symbol type. */
2700 if (h->size == 0
2701 && h->type == STT_NOTYPE
2702 && !h->needs_plt)
2703 (*_bfd_error_handler)
2704 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2705 h->root.root.string);
2706
2707 dynobj = elf_hash_table (eif->info)->dynobj;
2708 bed = get_elf_backend_data (dynobj);
2709
2710 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2711 {
2712 eif->failed = TRUE;
2713 return FALSE;
2714 }
2715
2716 return TRUE;
2717 }
2718
2719 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2720 DYNBSS. */
2721
2722 bfd_boolean
2723 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2724 struct elf_link_hash_entry *h,
2725 asection *dynbss)
2726 {
2727 unsigned int power_of_two;
2728 bfd_vma mask;
2729 asection *sec = h->root.u.def.section;
2730
2731 /* The section aligment of definition is the maximum alignment
2732 requirement of symbols defined in the section. Since we don't
2733 know the symbol alignment requirement, we start with the
2734 maximum alignment and check low bits of the symbol address
2735 for the minimum alignment. */
2736 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2737 mask = ((bfd_vma) 1 << power_of_two) - 1;
2738 while ((h->root.u.def.value & mask) != 0)
2739 {
2740 mask >>= 1;
2741 --power_of_two;
2742 }
2743
2744 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2745 dynbss))
2746 {
2747 /* Adjust the section alignment if needed. */
2748 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2749 power_of_two))
2750 return FALSE;
2751 }
2752
2753 /* We make sure that the symbol will be aligned properly. */
2754 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2755
2756 /* Define the symbol as being at this point in DYNBSS. */
2757 h->root.u.def.section = dynbss;
2758 h->root.u.def.value = dynbss->size;
2759
2760 /* Increment the size of DYNBSS to make room for the symbol. */
2761 dynbss->size += h->size;
2762
2763 /* No error if extern_protected_data is true. */
2764 if (h->protected_def
2765 && (!info->extern_protected_data
2766 || (info->extern_protected_data < 0
2767 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2768 info->callbacks->einfo
2769 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2770 h->root.root.string);
2771
2772 return TRUE;
2773 }
2774
2775 /* Adjust all external symbols pointing into SEC_MERGE sections
2776 to reflect the object merging within the sections. */
2777
2778 static bfd_boolean
2779 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2780 {
2781 asection *sec;
2782
2783 if ((h->root.type == bfd_link_hash_defined
2784 || h->root.type == bfd_link_hash_defweak)
2785 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2786 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2787 {
2788 bfd *output_bfd = (bfd *) data;
2789
2790 h->root.u.def.value =
2791 _bfd_merged_section_offset (output_bfd,
2792 &h->root.u.def.section,
2793 elf_section_data (sec)->sec_info,
2794 h->root.u.def.value);
2795 }
2796
2797 return TRUE;
2798 }
2799
2800 /* Returns false if the symbol referred to by H should be considered
2801 to resolve local to the current module, and true if it should be
2802 considered to bind dynamically. */
2803
2804 bfd_boolean
2805 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2806 struct bfd_link_info *info,
2807 bfd_boolean not_local_protected)
2808 {
2809 bfd_boolean binding_stays_local_p;
2810 const struct elf_backend_data *bed;
2811 struct elf_link_hash_table *hash_table;
2812
2813 if (h == NULL)
2814 return FALSE;
2815
2816 while (h->root.type == bfd_link_hash_indirect
2817 || h->root.type == bfd_link_hash_warning)
2818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2819
2820 /* If it was forced local, then clearly it's not dynamic. */
2821 if (h->dynindx == -1)
2822 return FALSE;
2823 if (h->forced_local)
2824 return FALSE;
2825
2826 /* Identify the cases where name binding rules say that a
2827 visible symbol resolves locally. */
2828 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2829
2830 switch (ELF_ST_VISIBILITY (h->other))
2831 {
2832 case STV_INTERNAL:
2833 case STV_HIDDEN:
2834 return FALSE;
2835
2836 case STV_PROTECTED:
2837 hash_table = elf_hash_table (info);
2838 if (!is_elf_hash_table (hash_table))
2839 return FALSE;
2840
2841 bed = get_elf_backend_data (hash_table->dynobj);
2842
2843 /* Proper resolution for function pointer equality may require
2844 that these symbols perhaps be resolved dynamically, even though
2845 we should be resolving them to the current module. */
2846 if (!not_local_protected || !bed->is_function_type (h->type))
2847 binding_stays_local_p = TRUE;
2848 break;
2849
2850 default:
2851 break;
2852 }
2853
2854 /* If it isn't defined locally, then clearly it's dynamic. */
2855 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2856 return TRUE;
2857
2858 /* Otherwise, the symbol is dynamic if binding rules don't tell
2859 us that it remains local. */
2860 return !binding_stays_local_p;
2861 }
2862
2863 /* Return true if the symbol referred to by H should be considered
2864 to resolve local to the current module, and false otherwise. Differs
2865 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2866 undefined symbols. The two functions are virtually identical except
2867 for the place where forced_local and dynindx == -1 are tested. If
2868 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2869 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2870 the symbol is local only for defined symbols.
2871 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2872 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2873 treatment of undefined weak symbols. For those that do not make
2874 undefined weak symbols dynamic, both functions may return false. */
2875
2876 bfd_boolean
2877 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2878 struct bfd_link_info *info,
2879 bfd_boolean local_protected)
2880 {
2881 const struct elf_backend_data *bed;
2882 struct elf_link_hash_table *hash_table;
2883
2884 /* If it's a local sym, of course we resolve locally. */
2885 if (h == NULL)
2886 return TRUE;
2887
2888 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2889 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2890 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2891 return TRUE;
2892
2893 /* Common symbols that become definitions don't get the DEF_REGULAR
2894 flag set, so test it first, and don't bail out. */
2895 if (ELF_COMMON_DEF_P (h))
2896 /* Do nothing. */;
2897 /* If we don't have a definition in a regular file, then we can't
2898 resolve locally. The sym is either undefined or dynamic. */
2899 else if (!h->def_regular)
2900 return FALSE;
2901
2902 /* Forced local symbols resolve locally. */
2903 if (h->forced_local)
2904 return TRUE;
2905
2906 /* As do non-dynamic symbols. */
2907 if (h->dynindx == -1)
2908 return TRUE;
2909
2910 /* At this point, we know the symbol is defined and dynamic. In an
2911 executable it must resolve locally, likewise when building symbolic
2912 shared libraries. */
2913 if (info->executable || SYMBOLIC_BIND (info, h))
2914 return TRUE;
2915
2916 /* Now deal with defined dynamic symbols in shared libraries. Ones
2917 with default visibility might not resolve locally. */
2918 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2919 return FALSE;
2920
2921 hash_table = elf_hash_table (info);
2922 if (!is_elf_hash_table (hash_table))
2923 return TRUE;
2924
2925 bed = get_elf_backend_data (hash_table->dynobj);
2926
2927 /* If extern_protected_data is false, STV_PROTECTED non-function
2928 symbols are local. */
2929 if ((!info->extern_protected_data
2930 || (info->extern_protected_data < 0
2931 && !bed->extern_protected_data))
2932 && !bed->is_function_type (h->type))
2933 return TRUE;
2934
2935 /* Function pointer equality tests may require that STV_PROTECTED
2936 symbols be treated as dynamic symbols. If the address of a
2937 function not defined in an executable is set to that function's
2938 plt entry in the executable, then the address of the function in
2939 a shared library must also be the plt entry in the executable. */
2940 return local_protected;
2941 }
2942
2943 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2944 aligned. Returns the first TLS output section. */
2945
2946 struct bfd_section *
2947 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2948 {
2949 struct bfd_section *sec, *tls;
2950 unsigned int align = 0;
2951
2952 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2953 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2954 break;
2955 tls = sec;
2956
2957 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2958 if (sec->alignment_power > align)
2959 align = sec->alignment_power;
2960
2961 elf_hash_table (info)->tls_sec = tls;
2962
2963 /* Ensure the alignment of the first section is the largest alignment,
2964 so that the tls segment starts aligned. */
2965 if (tls != NULL)
2966 tls->alignment_power = align;
2967
2968 return tls;
2969 }
2970
2971 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2972 static bfd_boolean
2973 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2974 Elf_Internal_Sym *sym)
2975 {
2976 const struct elf_backend_data *bed;
2977
2978 /* Local symbols do not count, but target specific ones might. */
2979 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2980 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2981 return FALSE;
2982
2983 bed = get_elf_backend_data (abfd);
2984 /* Function symbols do not count. */
2985 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2986 return FALSE;
2987
2988 /* If the section is undefined, then so is the symbol. */
2989 if (sym->st_shndx == SHN_UNDEF)
2990 return FALSE;
2991
2992 /* If the symbol is defined in the common section, then
2993 it is a common definition and so does not count. */
2994 if (bed->common_definition (sym))
2995 return FALSE;
2996
2997 /* If the symbol is in a target specific section then we
2998 must rely upon the backend to tell us what it is. */
2999 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3000 /* FIXME - this function is not coded yet:
3001
3002 return _bfd_is_global_symbol_definition (abfd, sym);
3003
3004 Instead for now assume that the definition is not global,
3005 Even if this is wrong, at least the linker will behave
3006 in the same way that it used to do. */
3007 return FALSE;
3008
3009 return TRUE;
3010 }
3011
3012 /* Search the symbol table of the archive element of the archive ABFD
3013 whose archive map contains a mention of SYMDEF, and determine if
3014 the symbol is defined in this element. */
3015 static bfd_boolean
3016 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3017 {
3018 Elf_Internal_Shdr * hdr;
3019 bfd_size_type symcount;
3020 bfd_size_type extsymcount;
3021 bfd_size_type extsymoff;
3022 Elf_Internal_Sym *isymbuf;
3023 Elf_Internal_Sym *isym;
3024 Elf_Internal_Sym *isymend;
3025 bfd_boolean result;
3026
3027 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3028 if (abfd == NULL)
3029 return FALSE;
3030
3031 /* Return FALSE if the object has been claimed by plugin. */
3032 if (abfd->plugin_format == bfd_plugin_yes)
3033 return FALSE;
3034
3035 if (! bfd_check_format (abfd, bfd_object))
3036 return FALSE;
3037
3038 /* Select the appropriate symbol table. */
3039 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3040 hdr = &elf_tdata (abfd)->symtab_hdr;
3041 else
3042 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3043
3044 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3045
3046 /* The sh_info field of the symtab header tells us where the
3047 external symbols start. We don't care about the local symbols. */
3048 if (elf_bad_symtab (abfd))
3049 {
3050 extsymcount = symcount;
3051 extsymoff = 0;
3052 }
3053 else
3054 {
3055 extsymcount = symcount - hdr->sh_info;
3056 extsymoff = hdr->sh_info;
3057 }
3058
3059 if (extsymcount == 0)
3060 return FALSE;
3061
3062 /* Read in the symbol table. */
3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3064 NULL, NULL, NULL);
3065 if (isymbuf == NULL)
3066 return FALSE;
3067
3068 /* Scan the symbol table looking for SYMDEF. */
3069 result = FALSE;
3070 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3071 {
3072 const char *name;
3073
3074 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3075 isym->st_name);
3076 if (name == NULL)
3077 break;
3078
3079 if (strcmp (name, symdef->name) == 0)
3080 {
3081 result = is_global_data_symbol_definition (abfd, isym);
3082 break;
3083 }
3084 }
3085
3086 free (isymbuf);
3087
3088 return result;
3089 }
3090 \f
3091 /* Add an entry to the .dynamic table. */
3092
3093 bfd_boolean
3094 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3095 bfd_vma tag,
3096 bfd_vma val)
3097 {
3098 struct elf_link_hash_table *hash_table;
3099 const struct elf_backend_data *bed;
3100 asection *s;
3101 bfd_size_type newsize;
3102 bfd_byte *newcontents;
3103 Elf_Internal_Dyn dyn;
3104
3105 hash_table = elf_hash_table (info);
3106 if (! is_elf_hash_table (hash_table))
3107 return FALSE;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3111 BFD_ASSERT (s != NULL);
3112
3113 newsize = s->size + bed->s->sizeof_dyn;
3114 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3115 if (newcontents == NULL)
3116 return FALSE;
3117
3118 dyn.d_tag = tag;
3119 dyn.d_un.d_val = val;
3120 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3121
3122 s->size = newsize;
3123 s->contents = newcontents;
3124
3125 return TRUE;
3126 }
3127
3128 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3129 otherwise just check whether one already exists. Returns -1 on error,
3130 1 if a DT_NEEDED tag already exists, and 0 on success. */
3131
3132 static int
3133 elf_add_dt_needed_tag (bfd *abfd,
3134 struct bfd_link_info *info,
3135 const char *soname,
3136 bfd_boolean do_it)
3137 {
3138 struct elf_link_hash_table *hash_table;
3139 bfd_size_type strindex;
3140
3141 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3142 return -1;
3143
3144 hash_table = elf_hash_table (info);
3145 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3146 if (strindex == (bfd_size_type) -1)
3147 return -1;
3148
3149 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3150 {
3151 asection *sdyn;
3152 const struct elf_backend_data *bed;
3153 bfd_byte *extdyn;
3154
3155 bed = get_elf_backend_data (hash_table->dynobj);
3156 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3157 if (sdyn != NULL)
3158 for (extdyn = sdyn->contents;
3159 extdyn < sdyn->contents + sdyn->size;
3160 extdyn += bed->s->sizeof_dyn)
3161 {
3162 Elf_Internal_Dyn dyn;
3163
3164 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3165 if (dyn.d_tag == DT_NEEDED
3166 && dyn.d_un.d_val == strindex)
3167 {
3168 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3169 return 1;
3170 }
3171 }
3172 }
3173
3174 if (do_it)
3175 {
3176 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3177 return -1;
3178
3179 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3180 return -1;
3181 }
3182 else
3183 /* We were just checking for existence of the tag. */
3184 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3185
3186 return 0;
3187 }
3188
3189 static bfd_boolean
3190 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3191 {
3192 for (; needed != NULL; needed = needed->next)
3193 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3194 && strcmp (soname, needed->name) == 0)
3195 return TRUE;
3196
3197 return FALSE;
3198 }
3199
3200 /* Sort symbol by value, section, and size. */
3201 static int
3202 elf_sort_symbol (const void *arg1, const void *arg2)
3203 {
3204 const struct elf_link_hash_entry *h1;
3205 const struct elf_link_hash_entry *h2;
3206 bfd_signed_vma vdiff;
3207
3208 h1 = *(const struct elf_link_hash_entry **) arg1;
3209 h2 = *(const struct elf_link_hash_entry **) arg2;
3210 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3211 if (vdiff != 0)
3212 return vdiff > 0 ? 1 : -1;
3213 else
3214 {
3215 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3216 if (sdiff != 0)
3217 return sdiff > 0 ? 1 : -1;
3218 }
3219 vdiff = h1->size - h2->size;
3220 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3221 }
3222
3223 /* This function is used to adjust offsets into .dynstr for
3224 dynamic symbols. This is called via elf_link_hash_traverse. */
3225
3226 static bfd_boolean
3227 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3228 {
3229 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3230
3231 if (h->dynindx != -1)
3232 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3233 return TRUE;
3234 }
3235
3236 /* Assign string offsets in .dynstr, update all structures referencing
3237 them. */
3238
3239 static bfd_boolean
3240 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3241 {
3242 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3243 struct elf_link_local_dynamic_entry *entry;
3244 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3245 bfd *dynobj = hash_table->dynobj;
3246 asection *sdyn;
3247 bfd_size_type size;
3248 const struct elf_backend_data *bed;
3249 bfd_byte *extdyn;
3250
3251 _bfd_elf_strtab_finalize (dynstr);
3252 size = _bfd_elf_strtab_size (dynstr);
3253
3254 bed = get_elf_backend_data (dynobj);
3255 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3256 BFD_ASSERT (sdyn != NULL);
3257
3258 /* Update all .dynamic entries referencing .dynstr strings. */
3259 for (extdyn = sdyn->contents;
3260 extdyn < sdyn->contents + sdyn->size;
3261 extdyn += bed->s->sizeof_dyn)
3262 {
3263 Elf_Internal_Dyn dyn;
3264
3265 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3266 switch (dyn.d_tag)
3267 {
3268 case DT_STRSZ:
3269 dyn.d_un.d_val = size;
3270 break;
3271 case DT_NEEDED:
3272 case DT_SONAME:
3273 case DT_RPATH:
3274 case DT_RUNPATH:
3275 case DT_FILTER:
3276 case DT_AUXILIARY:
3277 case DT_AUDIT:
3278 case DT_DEPAUDIT:
3279 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3280 break;
3281 default:
3282 continue;
3283 }
3284 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3285 }
3286
3287 /* Now update local dynamic symbols. */
3288 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3289 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3290 entry->isym.st_name);
3291
3292 /* And the rest of dynamic symbols. */
3293 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3294
3295 /* Adjust version definitions. */
3296 if (elf_tdata (output_bfd)->cverdefs)
3297 {
3298 asection *s;
3299 bfd_byte *p;
3300 bfd_size_type i;
3301 Elf_Internal_Verdef def;
3302 Elf_Internal_Verdaux defaux;
3303
3304 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3305 p = s->contents;
3306 do
3307 {
3308 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3309 &def);
3310 p += sizeof (Elf_External_Verdef);
3311 if (def.vd_aux != sizeof (Elf_External_Verdef))
3312 continue;
3313 for (i = 0; i < def.vd_cnt; ++i)
3314 {
3315 _bfd_elf_swap_verdaux_in (output_bfd,
3316 (Elf_External_Verdaux *) p, &defaux);
3317 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3318 defaux.vda_name);
3319 _bfd_elf_swap_verdaux_out (output_bfd,
3320 &defaux, (Elf_External_Verdaux *) p);
3321 p += sizeof (Elf_External_Verdaux);
3322 }
3323 }
3324 while (def.vd_next);
3325 }
3326
3327 /* Adjust version references. */
3328 if (elf_tdata (output_bfd)->verref)
3329 {
3330 asection *s;
3331 bfd_byte *p;
3332 bfd_size_type i;
3333 Elf_Internal_Verneed need;
3334 Elf_Internal_Vernaux needaux;
3335
3336 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3337 p = s->contents;
3338 do
3339 {
3340 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3341 &need);
3342 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3343 _bfd_elf_swap_verneed_out (output_bfd, &need,
3344 (Elf_External_Verneed *) p);
3345 p += sizeof (Elf_External_Verneed);
3346 for (i = 0; i < need.vn_cnt; ++i)
3347 {
3348 _bfd_elf_swap_vernaux_in (output_bfd,
3349 (Elf_External_Vernaux *) p, &needaux);
3350 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3351 needaux.vna_name);
3352 _bfd_elf_swap_vernaux_out (output_bfd,
3353 &needaux,
3354 (Elf_External_Vernaux *) p);
3355 p += sizeof (Elf_External_Vernaux);
3356 }
3357 }
3358 while (need.vn_next);
3359 }
3360
3361 return TRUE;
3362 }
3363 \f
3364 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3365 The default is to only match when the INPUT and OUTPUT are exactly
3366 the same target. */
3367
3368 bfd_boolean
3369 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3370 const bfd_target *output)
3371 {
3372 return input == output;
3373 }
3374
3375 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3376 This version is used when different targets for the same architecture
3377 are virtually identical. */
3378
3379 bfd_boolean
3380 _bfd_elf_relocs_compatible (const bfd_target *input,
3381 const bfd_target *output)
3382 {
3383 const struct elf_backend_data *obed, *ibed;
3384
3385 if (input == output)
3386 return TRUE;
3387
3388 ibed = xvec_get_elf_backend_data (input);
3389 obed = xvec_get_elf_backend_data (output);
3390
3391 if (ibed->arch != obed->arch)
3392 return FALSE;
3393
3394 /* If both backends are using this function, deem them compatible. */
3395 return ibed->relocs_compatible == obed->relocs_compatible;
3396 }
3397
3398 /* Make a special call to the linker "notice" function to tell it that
3399 we are about to handle an as-needed lib, or have finished
3400 processing the lib. */
3401
3402 bfd_boolean
3403 _bfd_elf_notice_as_needed (bfd *ibfd,
3404 struct bfd_link_info *info,
3405 enum notice_asneeded_action act)
3406 {
3407 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3408 }
3409
3410 /* Add symbols from an ELF object file to the linker hash table. */
3411
3412 static bfd_boolean
3413 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3414 {
3415 Elf_Internal_Ehdr *ehdr;
3416 Elf_Internal_Shdr *hdr;
3417 bfd_size_type symcount;
3418 bfd_size_type extsymcount;
3419 bfd_size_type extsymoff;
3420 struct elf_link_hash_entry **sym_hash;
3421 bfd_boolean dynamic;
3422 Elf_External_Versym *extversym = NULL;
3423 Elf_External_Versym *ever;
3424 struct elf_link_hash_entry *weaks;
3425 struct elf_link_hash_entry **nondeflt_vers = NULL;
3426 bfd_size_type nondeflt_vers_cnt = 0;
3427 Elf_Internal_Sym *isymbuf = NULL;
3428 Elf_Internal_Sym *isym;
3429 Elf_Internal_Sym *isymend;
3430 const struct elf_backend_data *bed;
3431 bfd_boolean add_needed;
3432 struct elf_link_hash_table *htab;
3433 bfd_size_type amt;
3434 void *alloc_mark = NULL;
3435 struct bfd_hash_entry **old_table = NULL;
3436 unsigned int old_size = 0;
3437 unsigned int old_count = 0;
3438 void *old_tab = NULL;
3439 void *old_ent;
3440 struct bfd_link_hash_entry *old_undefs = NULL;
3441 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3442 long old_dynsymcount = 0;
3443 bfd_size_type old_dynstr_size = 0;
3444 size_t tabsize = 0;
3445 asection *s;
3446 bfd_boolean just_syms;
3447
3448 htab = elf_hash_table (info);
3449 bed = get_elf_backend_data (abfd);
3450
3451 if ((abfd->flags & DYNAMIC) == 0)
3452 dynamic = FALSE;
3453 else
3454 {
3455 dynamic = TRUE;
3456
3457 /* You can't use -r against a dynamic object. Also, there's no
3458 hope of using a dynamic object which does not exactly match
3459 the format of the output file. */
3460 if (info->relocatable
3461 || !is_elf_hash_table (htab)
3462 || info->output_bfd->xvec != abfd->xvec)
3463 {
3464 if (info->relocatable)
3465 bfd_set_error (bfd_error_invalid_operation);
3466 else
3467 bfd_set_error (bfd_error_wrong_format);
3468 goto error_return;
3469 }
3470 }
3471
3472 ehdr = elf_elfheader (abfd);
3473 if (info->warn_alternate_em
3474 && bed->elf_machine_code != ehdr->e_machine
3475 && ((bed->elf_machine_alt1 != 0
3476 && ehdr->e_machine == bed->elf_machine_alt1)
3477 || (bed->elf_machine_alt2 != 0
3478 && ehdr->e_machine == bed->elf_machine_alt2)))
3479 info->callbacks->einfo
3480 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3481 ehdr->e_machine, abfd, bed->elf_machine_code);
3482
3483 /* As a GNU extension, any input sections which are named
3484 .gnu.warning.SYMBOL are treated as warning symbols for the given
3485 symbol. This differs from .gnu.warning sections, which generate
3486 warnings when they are included in an output file. */
3487 /* PR 12761: Also generate this warning when building shared libraries. */
3488 for (s = abfd->sections; s != NULL; s = s->next)
3489 {
3490 const char *name;
3491
3492 name = bfd_get_section_name (abfd, s);
3493 if (CONST_STRNEQ (name, ".gnu.warning."))
3494 {
3495 char *msg;
3496 bfd_size_type sz;
3497
3498 name += sizeof ".gnu.warning." - 1;
3499
3500 /* If this is a shared object, then look up the symbol
3501 in the hash table. If it is there, and it is already
3502 been defined, then we will not be using the entry
3503 from this shared object, so we don't need to warn.
3504 FIXME: If we see the definition in a regular object
3505 later on, we will warn, but we shouldn't. The only
3506 fix is to keep track of what warnings we are supposed
3507 to emit, and then handle them all at the end of the
3508 link. */
3509 if (dynamic)
3510 {
3511 struct elf_link_hash_entry *h;
3512
3513 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3514
3515 /* FIXME: What about bfd_link_hash_common? */
3516 if (h != NULL
3517 && (h->root.type == bfd_link_hash_defined
3518 || h->root.type == bfd_link_hash_defweak))
3519 continue;
3520 }
3521
3522 sz = s->size;
3523 msg = (char *) bfd_alloc (abfd, sz + 1);
3524 if (msg == NULL)
3525 goto error_return;
3526
3527 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3528 goto error_return;
3529
3530 msg[sz] = '\0';
3531
3532 if (! (_bfd_generic_link_add_one_symbol
3533 (info, abfd, name, BSF_WARNING, s, 0, msg,
3534 FALSE, bed->collect, NULL)))
3535 goto error_return;
3536
3537 if (info->executable)
3538 {
3539 /* Clobber the section size so that the warning does
3540 not get copied into the output file. */
3541 s->size = 0;
3542
3543 /* Also set SEC_EXCLUDE, so that symbols defined in
3544 the warning section don't get copied to the output. */
3545 s->flags |= SEC_EXCLUDE;
3546 }
3547 }
3548 }
3549
3550 just_syms = ((s = abfd->sections) != NULL
3551 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3552
3553 add_needed = TRUE;
3554 if (! dynamic)
3555 {
3556 /* If we are creating a shared library, create all the dynamic
3557 sections immediately. We need to attach them to something,
3558 so we attach them to this BFD, provided it is the right
3559 format and is not from ld --just-symbols. FIXME: If there
3560 are no input BFD's of the same format as the output, we can't
3561 make a shared library. */
3562 if (!just_syms
3563 && info->shared
3564 && is_elf_hash_table (htab)
3565 && info->output_bfd->xvec == abfd->xvec
3566 && !htab->dynamic_sections_created)
3567 {
3568 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3569 goto error_return;
3570 }
3571 }
3572 else if (!is_elf_hash_table (htab))
3573 goto error_return;
3574 else
3575 {
3576 const char *soname = NULL;
3577 char *audit = NULL;
3578 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3579 int ret;
3580
3581 /* ld --just-symbols and dynamic objects don't mix very well.
3582 ld shouldn't allow it. */
3583 if (just_syms)
3584 abort ();
3585
3586 /* If this dynamic lib was specified on the command line with
3587 --as-needed in effect, then we don't want to add a DT_NEEDED
3588 tag unless the lib is actually used. Similary for libs brought
3589 in by another lib's DT_NEEDED. When --no-add-needed is used
3590 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3591 any dynamic library in DT_NEEDED tags in the dynamic lib at
3592 all. */
3593 add_needed = (elf_dyn_lib_class (abfd)
3594 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3595 | DYN_NO_NEEDED)) == 0;
3596
3597 s = bfd_get_section_by_name (abfd, ".dynamic");
3598 if (s != NULL)
3599 {
3600 bfd_byte *dynbuf;
3601 bfd_byte *extdyn;
3602 unsigned int elfsec;
3603 unsigned long shlink;
3604
3605 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3606 {
3607 error_free_dyn:
3608 free (dynbuf);
3609 goto error_return;
3610 }
3611
3612 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3613 if (elfsec == SHN_BAD)
3614 goto error_free_dyn;
3615 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3616
3617 for (extdyn = dynbuf;
3618 extdyn < dynbuf + s->size;
3619 extdyn += bed->s->sizeof_dyn)
3620 {
3621 Elf_Internal_Dyn dyn;
3622
3623 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3624 if (dyn.d_tag == DT_SONAME)
3625 {
3626 unsigned int tagv = dyn.d_un.d_val;
3627 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3628 if (soname == NULL)
3629 goto error_free_dyn;
3630 }
3631 if (dyn.d_tag == DT_NEEDED)
3632 {
3633 struct bfd_link_needed_list *n, **pn;
3634 char *fnm, *anm;
3635 unsigned int tagv = dyn.d_un.d_val;
3636
3637 amt = sizeof (struct bfd_link_needed_list);
3638 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 if (n == NULL || fnm == NULL)
3641 goto error_free_dyn;
3642 amt = strlen (fnm) + 1;
3643 anm = (char *) bfd_alloc (abfd, amt);
3644 if (anm == NULL)
3645 goto error_free_dyn;
3646 memcpy (anm, fnm, amt);
3647 n->name = anm;
3648 n->by = abfd;
3649 n->next = NULL;
3650 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3651 ;
3652 *pn = n;
3653 }
3654 if (dyn.d_tag == DT_RUNPATH)
3655 {
3656 struct bfd_link_needed_list *n, **pn;
3657 char *fnm, *anm;
3658 unsigned int tagv = dyn.d_un.d_val;
3659
3660 amt = sizeof (struct bfd_link_needed_list);
3661 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3662 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 if (n == NULL || fnm == NULL)
3664 goto error_free_dyn;
3665 amt = strlen (fnm) + 1;
3666 anm = (char *) bfd_alloc (abfd, amt);
3667 if (anm == NULL)
3668 goto error_free_dyn;
3669 memcpy (anm, fnm, amt);
3670 n->name = anm;
3671 n->by = abfd;
3672 n->next = NULL;
3673 for (pn = & runpath;
3674 *pn != NULL;
3675 pn = &(*pn)->next)
3676 ;
3677 *pn = n;
3678 }
3679 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3680 if (!runpath && dyn.d_tag == DT_RPATH)
3681 {
3682 struct bfd_link_needed_list *n, **pn;
3683 char *fnm, *anm;
3684 unsigned int tagv = dyn.d_un.d_val;
3685
3686 amt = sizeof (struct bfd_link_needed_list);
3687 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3688 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3689 if (n == NULL || fnm == NULL)
3690 goto error_free_dyn;
3691 amt = strlen (fnm) + 1;
3692 anm = (char *) bfd_alloc (abfd, amt);
3693 if (anm == NULL)
3694 goto error_free_dyn;
3695 memcpy (anm, fnm, amt);
3696 n->name = anm;
3697 n->by = abfd;
3698 n->next = NULL;
3699 for (pn = & rpath;
3700 *pn != NULL;
3701 pn = &(*pn)->next)
3702 ;
3703 *pn = n;
3704 }
3705 if (dyn.d_tag == DT_AUDIT)
3706 {
3707 unsigned int tagv = dyn.d_un.d_val;
3708 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3709 }
3710 }
3711
3712 free (dynbuf);
3713 }
3714
3715 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3716 frees all more recently bfd_alloc'd blocks as well. */
3717 if (runpath)
3718 rpath = runpath;
3719
3720 if (rpath)
3721 {
3722 struct bfd_link_needed_list **pn;
3723 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3724 ;
3725 *pn = rpath;
3726 }
3727
3728 /* We do not want to include any of the sections in a dynamic
3729 object in the output file. We hack by simply clobbering the
3730 list of sections in the BFD. This could be handled more
3731 cleanly by, say, a new section flag; the existing
3732 SEC_NEVER_LOAD flag is not the one we want, because that one
3733 still implies that the section takes up space in the output
3734 file. */
3735 bfd_section_list_clear (abfd);
3736
3737 /* Find the name to use in a DT_NEEDED entry that refers to this
3738 object. If the object has a DT_SONAME entry, we use it.
3739 Otherwise, if the generic linker stuck something in
3740 elf_dt_name, we use that. Otherwise, we just use the file
3741 name. */
3742 if (soname == NULL || *soname == '\0')
3743 {
3744 soname = elf_dt_name (abfd);
3745 if (soname == NULL || *soname == '\0')
3746 soname = bfd_get_filename (abfd);
3747 }
3748
3749 /* Save the SONAME because sometimes the linker emulation code
3750 will need to know it. */
3751 elf_dt_name (abfd) = soname;
3752
3753 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3754 if (ret < 0)
3755 goto error_return;
3756
3757 /* If we have already included this dynamic object in the
3758 link, just ignore it. There is no reason to include a
3759 particular dynamic object more than once. */
3760 if (ret > 0)
3761 return TRUE;
3762
3763 /* Save the DT_AUDIT entry for the linker emulation code. */
3764 elf_dt_audit (abfd) = audit;
3765 }
3766
3767 /* If this is a dynamic object, we always link against the .dynsym
3768 symbol table, not the .symtab symbol table. The dynamic linker
3769 will only see the .dynsym symbol table, so there is no reason to
3770 look at .symtab for a dynamic object. */
3771
3772 if (! dynamic || elf_dynsymtab (abfd) == 0)
3773 hdr = &elf_tdata (abfd)->symtab_hdr;
3774 else
3775 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3776
3777 symcount = hdr->sh_size / bed->s->sizeof_sym;
3778
3779 /* The sh_info field of the symtab header tells us where the
3780 external symbols start. We don't care about the local symbols at
3781 this point. */
3782 if (elf_bad_symtab (abfd))
3783 {
3784 extsymcount = symcount;
3785 extsymoff = 0;
3786 }
3787 else
3788 {
3789 extsymcount = symcount - hdr->sh_info;
3790 extsymoff = hdr->sh_info;
3791 }
3792
3793 sym_hash = elf_sym_hashes (abfd);
3794 if (extsymcount != 0)
3795 {
3796 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3797 NULL, NULL, NULL);
3798 if (isymbuf == NULL)
3799 goto error_return;
3800
3801 if (sym_hash == NULL)
3802 {
3803 /* We store a pointer to the hash table entry for each
3804 external symbol. */
3805 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3806 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3807 if (sym_hash == NULL)
3808 goto error_free_sym;
3809 elf_sym_hashes (abfd) = sym_hash;
3810 }
3811 }
3812
3813 if (dynamic)
3814 {
3815 /* Read in any version definitions. */
3816 if (!_bfd_elf_slurp_version_tables (abfd,
3817 info->default_imported_symver))
3818 goto error_free_sym;
3819
3820 /* Read in the symbol versions, but don't bother to convert them
3821 to internal format. */
3822 if (elf_dynversym (abfd) != 0)
3823 {
3824 Elf_Internal_Shdr *versymhdr;
3825
3826 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3827 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3828 if (extversym == NULL)
3829 goto error_free_sym;
3830 amt = versymhdr->sh_size;
3831 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3832 || bfd_bread (extversym, amt, abfd) != amt)
3833 goto error_free_vers;
3834 }
3835 }
3836
3837 /* If we are loading an as-needed shared lib, save the symbol table
3838 state before we start adding symbols. If the lib turns out
3839 to be unneeded, restore the state. */
3840 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3841 {
3842 unsigned int i;
3843 size_t entsize;
3844
3845 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3846 {
3847 struct bfd_hash_entry *p;
3848 struct elf_link_hash_entry *h;
3849
3850 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3851 {
3852 h = (struct elf_link_hash_entry *) p;
3853 entsize += htab->root.table.entsize;
3854 if (h->root.type == bfd_link_hash_warning)
3855 entsize += htab->root.table.entsize;
3856 }
3857 }
3858
3859 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3860 old_tab = bfd_malloc (tabsize + entsize);
3861 if (old_tab == NULL)
3862 goto error_free_vers;
3863
3864 /* Remember the current objalloc pointer, so that all mem for
3865 symbols added can later be reclaimed. */
3866 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3867 if (alloc_mark == NULL)
3868 goto error_free_vers;
3869
3870 /* Make a special call to the linker "notice" function to
3871 tell it that we are about to handle an as-needed lib. */
3872 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3873 goto error_free_vers;
3874
3875 /* Clone the symbol table. Remember some pointers into the
3876 symbol table, and dynamic symbol count. */
3877 old_ent = (char *) old_tab + tabsize;
3878 memcpy (old_tab, htab->root.table.table, tabsize);
3879 old_undefs = htab->root.undefs;
3880 old_undefs_tail = htab->root.undefs_tail;
3881 old_table = htab->root.table.table;
3882 old_size = htab->root.table.size;
3883 old_count = htab->root.table.count;
3884 old_dynsymcount = htab->dynsymcount;
3885 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3886
3887 for (i = 0; i < htab->root.table.size; i++)
3888 {
3889 struct bfd_hash_entry *p;
3890 struct elf_link_hash_entry *h;
3891
3892 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3893 {
3894 memcpy (old_ent, p, htab->root.table.entsize);
3895 old_ent = (char *) old_ent + htab->root.table.entsize;
3896 h = (struct elf_link_hash_entry *) p;
3897 if (h->root.type == bfd_link_hash_warning)
3898 {
3899 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3900 old_ent = (char *) old_ent + htab->root.table.entsize;
3901 }
3902 }
3903 }
3904 }
3905
3906 weaks = NULL;
3907 ever = extversym != NULL ? extversym + extsymoff : NULL;
3908 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3909 isym < isymend;
3910 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3911 {
3912 int bind;
3913 bfd_vma value;
3914 asection *sec, *new_sec;
3915 flagword flags;
3916 const char *name;
3917 struct elf_link_hash_entry *h;
3918 struct elf_link_hash_entry *hi;
3919 bfd_boolean definition;
3920 bfd_boolean size_change_ok;
3921 bfd_boolean type_change_ok;
3922 bfd_boolean new_weakdef;
3923 bfd_boolean new_weak;
3924 bfd_boolean old_weak;
3925 bfd_boolean override;
3926 bfd_boolean common;
3927 unsigned int old_alignment;
3928 bfd *old_bfd;
3929 bfd_boolean matched;
3930
3931 override = FALSE;
3932
3933 flags = BSF_NO_FLAGS;
3934 sec = NULL;
3935 value = isym->st_value;
3936 common = bed->common_definition (isym);
3937
3938 bind = ELF_ST_BIND (isym->st_info);
3939 switch (bind)
3940 {
3941 case STB_LOCAL:
3942 /* This should be impossible, since ELF requires that all
3943 global symbols follow all local symbols, and that sh_info
3944 point to the first global symbol. Unfortunately, Irix 5
3945 screws this up. */
3946 continue;
3947
3948 case STB_GLOBAL:
3949 if (isym->st_shndx != SHN_UNDEF && !common)
3950 flags = BSF_GLOBAL;
3951 break;
3952
3953 case STB_WEAK:
3954 flags = BSF_WEAK;
3955 break;
3956
3957 case STB_GNU_UNIQUE:
3958 flags = BSF_GNU_UNIQUE;
3959 break;
3960
3961 default:
3962 /* Leave it up to the processor backend. */
3963 break;
3964 }
3965
3966 if (isym->st_shndx == SHN_UNDEF)
3967 sec = bfd_und_section_ptr;
3968 else if (isym->st_shndx == SHN_ABS)
3969 sec = bfd_abs_section_ptr;
3970 else if (isym->st_shndx == SHN_COMMON)
3971 {
3972 sec = bfd_com_section_ptr;
3973 /* What ELF calls the size we call the value. What ELF
3974 calls the value we call the alignment. */
3975 value = isym->st_size;
3976 }
3977 else
3978 {
3979 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3980 if (sec == NULL)
3981 sec = bfd_abs_section_ptr;
3982 else if (discarded_section (sec))
3983 {
3984 /* Symbols from discarded section are undefined. We keep
3985 its visibility. */
3986 sec = bfd_und_section_ptr;
3987 isym->st_shndx = SHN_UNDEF;
3988 }
3989 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3990 value -= sec->vma;
3991 }
3992
3993 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3994 isym->st_name);
3995 if (name == NULL)
3996 goto error_free_vers;
3997
3998 if (isym->st_shndx == SHN_COMMON
3999 && (abfd->flags & BFD_PLUGIN) != 0)
4000 {
4001 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4002
4003 if (xc == NULL)
4004 {
4005 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4006 | SEC_EXCLUDE);
4007 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4008 if (xc == NULL)
4009 goto error_free_vers;
4010 }
4011 sec = xc;
4012 }
4013 else if (isym->st_shndx == SHN_COMMON
4014 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4015 && !info->relocatable)
4016 {
4017 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4018
4019 if (tcomm == NULL)
4020 {
4021 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4022 | SEC_LINKER_CREATED);
4023 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4024 if (tcomm == NULL)
4025 goto error_free_vers;
4026 }
4027 sec = tcomm;
4028 }
4029 else if (bed->elf_add_symbol_hook)
4030 {
4031 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4032 &sec, &value))
4033 goto error_free_vers;
4034
4035 /* The hook function sets the name to NULL if this symbol
4036 should be skipped for some reason. */
4037 if (name == NULL)
4038 continue;
4039 }
4040
4041 /* Sanity check that all possibilities were handled. */
4042 if (sec == NULL)
4043 {
4044 bfd_set_error (bfd_error_bad_value);
4045 goto error_free_vers;
4046 }
4047
4048 /* Silently discard TLS symbols from --just-syms. There's
4049 no way to combine a static TLS block with a new TLS block
4050 for this executable. */
4051 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4052 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4053 continue;
4054
4055 if (bfd_is_und_section (sec)
4056 || bfd_is_com_section (sec))
4057 definition = FALSE;
4058 else
4059 definition = TRUE;
4060
4061 size_change_ok = FALSE;
4062 type_change_ok = bed->type_change_ok;
4063 old_weak = FALSE;
4064 matched = FALSE;
4065 old_alignment = 0;
4066 old_bfd = NULL;
4067 new_sec = sec;
4068
4069 if (is_elf_hash_table (htab))
4070 {
4071 Elf_Internal_Versym iver;
4072 unsigned int vernum = 0;
4073 bfd_boolean skip;
4074
4075 if (ever == NULL)
4076 {
4077 if (info->default_imported_symver)
4078 /* Use the default symbol version created earlier. */
4079 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4080 else
4081 iver.vs_vers = 0;
4082 }
4083 else
4084 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4085
4086 vernum = iver.vs_vers & VERSYM_VERSION;
4087
4088 /* If this is a hidden symbol, or if it is not version
4089 1, we append the version name to the symbol name.
4090 However, we do not modify a non-hidden absolute symbol
4091 if it is not a function, because it might be the version
4092 symbol itself. FIXME: What if it isn't? */
4093 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4094 || (vernum > 1
4095 && (!bfd_is_abs_section (sec)
4096 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4097 {
4098 const char *verstr;
4099 size_t namelen, verlen, newlen;
4100 char *newname, *p;
4101
4102 if (isym->st_shndx != SHN_UNDEF)
4103 {
4104 if (vernum > elf_tdata (abfd)->cverdefs)
4105 verstr = NULL;
4106 else if (vernum > 1)
4107 verstr =
4108 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4109 else
4110 verstr = "";
4111
4112 if (verstr == NULL)
4113 {
4114 (*_bfd_error_handler)
4115 (_("%B: %s: invalid version %u (max %d)"),
4116 abfd, name, vernum,
4117 elf_tdata (abfd)->cverdefs);
4118 bfd_set_error (bfd_error_bad_value);
4119 goto error_free_vers;
4120 }
4121 }
4122 else
4123 {
4124 /* We cannot simply test for the number of
4125 entries in the VERNEED section since the
4126 numbers for the needed versions do not start
4127 at 0. */
4128 Elf_Internal_Verneed *t;
4129
4130 verstr = NULL;
4131 for (t = elf_tdata (abfd)->verref;
4132 t != NULL;
4133 t = t->vn_nextref)
4134 {
4135 Elf_Internal_Vernaux *a;
4136
4137 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4138 {
4139 if (a->vna_other == vernum)
4140 {
4141 verstr = a->vna_nodename;
4142 break;
4143 }
4144 }
4145 if (a != NULL)
4146 break;
4147 }
4148 if (verstr == NULL)
4149 {
4150 (*_bfd_error_handler)
4151 (_("%B: %s: invalid needed version %d"),
4152 abfd, name, vernum);
4153 bfd_set_error (bfd_error_bad_value);
4154 goto error_free_vers;
4155 }
4156 }
4157
4158 namelen = strlen (name);
4159 verlen = strlen (verstr);
4160 newlen = namelen + verlen + 2;
4161 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4162 && isym->st_shndx != SHN_UNDEF)
4163 ++newlen;
4164
4165 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4166 if (newname == NULL)
4167 goto error_free_vers;
4168 memcpy (newname, name, namelen);
4169 p = newname + namelen;
4170 *p++ = ELF_VER_CHR;
4171 /* If this is a defined non-hidden version symbol,
4172 we add another @ to the name. This indicates the
4173 default version of the symbol. */
4174 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4175 && isym->st_shndx != SHN_UNDEF)
4176 *p++ = ELF_VER_CHR;
4177 memcpy (p, verstr, verlen + 1);
4178
4179 name = newname;
4180 }
4181
4182 /* If this symbol has default visibility and the user has
4183 requested we not re-export it, then mark it as hidden. */
4184 if (definition
4185 && !dynamic
4186 && abfd->no_export
4187 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4188 isym->st_other = (STV_HIDDEN
4189 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4190
4191 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4192 sym_hash, &old_bfd, &old_weak,
4193 &old_alignment, &skip, &override,
4194 &type_change_ok, &size_change_ok,
4195 &matched))
4196 goto error_free_vers;
4197
4198 if (skip)
4199 continue;
4200
4201 /* Override a definition only if the new symbol matches the
4202 existing one. */
4203 if (override && matched)
4204 definition = FALSE;
4205
4206 h = *sym_hash;
4207 while (h->root.type == bfd_link_hash_indirect
4208 || h->root.type == bfd_link_hash_warning)
4209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4210
4211 if (elf_tdata (abfd)->verdef != NULL
4212 && vernum > 1
4213 && definition)
4214 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4215 }
4216
4217 if (! (_bfd_generic_link_add_one_symbol
4218 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4219 (struct bfd_link_hash_entry **) sym_hash)))
4220 goto error_free_vers;
4221
4222 h = *sym_hash;
4223 /* We need to make sure that indirect symbol dynamic flags are
4224 updated. */
4225 hi = h;
4226 while (h->root.type == bfd_link_hash_indirect
4227 || h->root.type == bfd_link_hash_warning)
4228 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4229
4230 *sym_hash = h;
4231
4232 new_weak = (flags & BSF_WEAK) != 0;
4233 new_weakdef = FALSE;
4234 if (dynamic
4235 && definition
4236 && new_weak
4237 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4238 && is_elf_hash_table (htab)
4239 && h->u.weakdef == NULL)
4240 {
4241 /* Keep a list of all weak defined non function symbols from
4242 a dynamic object, using the weakdef field. Later in this
4243 function we will set the weakdef field to the correct
4244 value. We only put non-function symbols from dynamic
4245 objects on this list, because that happens to be the only
4246 time we need to know the normal symbol corresponding to a
4247 weak symbol, and the information is time consuming to
4248 figure out. If the weakdef field is not already NULL,
4249 then this symbol was already defined by some previous
4250 dynamic object, and we will be using that previous
4251 definition anyhow. */
4252
4253 h->u.weakdef = weaks;
4254 weaks = h;
4255 new_weakdef = TRUE;
4256 }
4257
4258 /* Set the alignment of a common symbol. */
4259 if ((common || bfd_is_com_section (sec))
4260 && h->root.type == bfd_link_hash_common)
4261 {
4262 unsigned int align;
4263
4264 if (common)
4265 align = bfd_log2 (isym->st_value);
4266 else
4267 {
4268 /* The new symbol is a common symbol in a shared object.
4269 We need to get the alignment from the section. */
4270 align = new_sec->alignment_power;
4271 }
4272 if (align > old_alignment)
4273 h->root.u.c.p->alignment_power = align;
4274 else
4275 h->root.u.c.p->alignment_power = old_alignment;
4276 }
4277
4278 if (is_elf_hash_table (htab))
4279 {
4280 /* Set a flag in the hash table entry indicating the type of
4281 reference or definition we just found. A dynamic symbol
4282 is one which is referenced or defined by both a regular
4283 object and a shared object. */
4284 bfd_boolean dynsym = FALSE;
4285
4286 /* Plugin symbols aren't normal. Don't set def_regular or
4287 ref_regular for them, or make them dynamic. */
4288 if ((abfd->flags & BFD_PLUGIN) != 0)
4289 ;
4290 else if (! dynamic)
4291 {
4292 if (! definition)
4293 {
4294 h->ref_regular = 1;
4295 if (bind != STB_WEAK)
4296 h->ref_regular_nonweak = 1;
4297 }
4298 else
4299 {
4300 h->def_regular = 1;
4301 if (h->def_dynamic)
4302 {
4303 h->def_dynamic = 0;
4304 h->ref_dynamic = 1;
4305 }
4306 }
4307
4308 /* If the indirect symbol has been forced local, don't
4309 make the real symbol dynamic. */
4310 if ((h == hi || !hi->forced_local)
4311 && ((! info->executable && ! info->relocatable)
4312 || h->def_dynamic
4313 || h->ref_dynamic))
4314 dynsym = TRUE;
4315 }
4316 else
4317 {
4318 if (! definition)
4319 {
4320 h->ref_dynamic = 1;
4321 hi->ref_dynamic = 1;
4322 }
4323 else
4324 {
4325 h->def_dynamic = 1;
4326 hi->def_dynamic = 1;
4327 }
4328
4329 /* If the indirect symbol has been forced local, don't
4330 make the real symbol dynamic. */
4331 if ((h == hi || !hi->forced_local)
4332 && (h->def_regular
4333 || h->ref_regular
4334 || (h->u.weakdef != NULL
4335 && ! new_weakdef
4336 && h->u.weakdef->dynindx != -1)))
4337 dynsym = TRUE;
4338 }
4339
4340 /* Check to see if we need to add an indirect symbol for
4341 the default name. */
4342 if (definition
4343 || (!override && h->root.type == bfd_link_hash_common))
4344 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4345 sec, value, &old_bfd, &dynsym))
4346 goto error_free_vers;
4347
4348 /* Check the alignment when a common symbol is involved. This
4349 can change when a common symbol is overridden by a normal
4350 definition or a common symbol is ignored due to the old
4351 normal definition. We need to make sure the maximum
4352 alignment is maintained. */
4353 if ((old_alignment || common)
4354 && h->root.type != bfd_link_hash_common)
4355 {
4356 unsigned int common_align;
4357 unsigned int normal_align;
4358 unsigned int symbol_align;
4359 bfd *normal_bfd;
4360 bfd *common_bfd;
4361
4362 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4363 || h->root.type == bfd_link_hash_defweak);
4364
4365 symbol_align = ffs (h->root.u.def.value) - 1;
4366 if (h->root.u.def.section->owner != NULL
4367 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4368 {
4369 normal_align = h->root.u.def.section->alignment_power;
4370 if (normal_align > symbol_align)
4371 normal_align = symbol_align;
4372 }
4373 else
4374 normal_align = symbol_align;
4375
4376 if (old_alignment)
4377 {
4378 common_align = old_alignment;
4379 common_bfd = old_bfd;
4380 normal_bfd = abfd;
4381 }
4382 else
4383 {
4384 common_align = bfd_log2 (isym->st_value);
4385 common_bfd = abfd;
4386 normal_bfd = old_bfd;
4387 }
4388
4389 if (normal_align < common_align)
4390 {
4391 /* PR binutils/2735 */
4392 if (normal_bfd == NULL)
4393 (*_bfd_error_handler)
4394 (_("Warning: alignment %u of common symbol `%s' in %B is"
4395 " greater than the alignment (%u) of its section %A"),
4396 common_bfd, h->root.u.def.section,
4397 1 << common_align, name, 1 << normal_align);
4398 else
4399 (*_bfd_error_handler)
4400 (_("Warning: alignment %u of symbol `%s' in %B"
4401 " is smaller than %u in %B"),
4402 normal_bfd, common_bfd,
4403 1 << normal_align, name, 1 << common_align);
4404 }
4405 }
4406
4407 /* Remember the symbol size if it isn't undefined. */
4408 if (isym->st_size != 0
4409 && isym->st_shndx != SHN_UNDEF
4410 && (definition || h->size == 0))
4411 {
4412 if (h->size != 0
4413 && h->size != isym->st_size
4414 && ! size_change_ok)
4415 (*_bfd_error_handler)
4416 (_("Warning: size of symbol `%s' changed"
4417 " from %lu in %B to %lu in %B"),
4418 old_bfd, abfd,
4419 name, (unsigned long) h->size,
4420 (unsigned long) isym->st_size);
4421
4422 h->size = isym->st_size;
4423 }
4424
4425 /* If this is a common symbol, then we always want H->SIZE
4426 to be the size of the common symbol. The code just above
4427 won't fix the size if a common symbol becomes larger. We
4428 don't warn about a size change here, because that is
4429 covered by --warn-common. Allow changes between different
4430 function types. */
4431 if (h->root.type == bfd_link_hash_common)
4432 h->size = h->root.u.c.size;
4433
4434 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4435 && ((definition && !new_weak)
4436 || (old_weak && h->root.type == bfd_link_hash_common)
4437 || h->type == STT_NOTYPE))
4438 {
4439 unsigned int type = ELF_ST_TYPE (isym->st_info);
4440
4441 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4442 symbol. */
4443 if (type == STT_GNU_IFUNC
4444 && (abfd->flags & DYNAMIC) != 0)
4445 type = STT_FUNC;
4446
4447 if (h->type != type)
4448 {
4449 if (h->type != STT_NOTYPE && ! type_change_ok)
4450 (*_bfd_error_handler)
4451 (_("Warning: type of symbol `%s' changed"
4452 " from %d to %d in %B"),
4453 abfd, name, h->type, type);
4454
4455 h->type = type;
4456 }
4457 }
4458
4459 /* Merge st_other field. */
4460 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4461
4462 /* We don't want to make debug symbol dynamic. */
4463 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4464 dynsym = FALSE;
4465
4466 /* Nor should we make plugin symbols dynamic. */
4467 if ((abfd->flags & BFD_PLUGIN) != 0)
4468 dynsym = FALSE;
4469
4470 if (definition)
4471 {
4472 h->target_internal = isym->st_target_internal;
4473 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4474 }
4475
4476 if (definition && !dynamic)
4477 {
4478 char *p = strchr (name, ELF_VER_CHR);
4479 if (p != NULL && p[1] != ELF_VER_CHR)
4480 {
4481 /* Queue non-default versions so that .symver x, x@FOO
4482 aliases can be checked. */
4483 if (!nondeflt_vers)
4484 {
4485 amt = ((isymend - isym + 1)
4486 * sizeof (struct elf_link_hash_entry *));
4487 nondeflt_vers
4488 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4489 if (!nondeflt_vers)
4490 goto error_free_vers;
4491 }
4492 nondeflt_vers[nondeflt_vers_cnt++] = h;
4493 }
4494 }
4495
4496 if (dynsym && h->dynindx == -1)
4497 {
4498 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4499 goto error_free_vers;
4500 if (h->u.weakdef != NULL
4501 && ! new_weakdef
4502 && h->u.weakdef->dynindx == -1)
4503 {
4504 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4505 goto error_free_vers;
4506 }
4507 }
4508 else if (dynsym && h->dynindx != -1)
4509 /* If the symbol already has a dynamic index, but
4510 visibility says it should not be visible, turn it into
4511 a local symbol. */
4512 switch (ELF_ST_VISIBILITY (h->other))
4513 {
4514 case STV_INTERNAL:
4515 case STV_HIDDEN:
4516 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4517 dynsym = FALSE;
4518 break;
4519 }
4520
4521 /* Don't add DT_NEEDED for references from the dummy bfd. */
4522 if (!add_needed
4523 && definition
4524 && ((dynsym
4525 && h->ref_regular_nonweak
4526 && (old_bfd == NULL
4527 || (old_bfd->flags & BFD_PLUGIN) == 0))
4528 || (h->ref_dynamic_nonweak
4529 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4530 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4531 {
4532 int ret;
4533 const char *soname = elf_dt_name (abfd);
4534
4535 info->callbacks->minfo ("%!", soname, old_bfd,
4536 h->root.root.string);
4537
4538 /* A symbol from a library loaded via DT_NEEDED of some
4539 other library is referenced by a regular object.
4540 Add a DT_NEEDED entry for it. Issue an error if
4541 --no-add-needed is used and the reference was not
4542 a weak one. */
4543 if (old_bfd != NULL
4544 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4545 {
4546 (*_bfd_error_handler)
4547 (_("%B: undefined reference to symbol '%s'"),
4548 old_bfd, name);
4549 bfd_set_error (bfd_error_missing_dso);
4550 goto error_free_vers;
4551 }
4552
4553 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4554 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4555
4556 add_needed = TRUE;
4557 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4558 if (ret < 0)
4559 goto error_free_vers;
4560
4561 BFD_ASSERT (ret == 0);
4562 }
4563 }
4564 }
4565
4566 if (extversym != NULL)
4567 {
4568 free (extversym);
4569 extversym = NULL;
4570 }
4571
4572 if (isymbuf != NULL)
4573 {
4574 free (isymbuf);
4575 isymbuf = NULL;
4576 }
4577
4578 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4579 {
4580 unsigned int i;
4581
4582 /* Restore the symbol table. */
4583 old_ent = (char *) old_tab + tabsize;
4584 memset (elf_sym_hashes (abfd), 0,
4585 extsymcount * sizeof (struct elf_link_hash_entry *));
4586 htab->root.table.table = old_table;
4587 htab->root.table.size = old_size;
4588 htab->root.table.count = old_count;
4589 memcpy (htab->root.table.table, old_tab, tabsize);
4590 htab->root.undefs = old_undefs;
4591 htab->root.undefs_tail = old_undefs_tail;
4592 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4593 for (i = 0; i < htab->root.table.size; i++)
4594 {
4595 struct bfd_hash_entry *p;
4596 struct elf_link_hash_entry *h;
4597 bfd_size_type size;
4598 unsigned int alignment_power;
4599
4600 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4601 {
4602 h = (struct elf_link_hash_entry *) p;
4603 if (h->root.type == bfd_link_hash_warning)
4604 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4605 if (h->dynindx >= old_dynsymcount
4606 && h->dynstr_index < old_dynstr_size)
4607 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4608
4609 /* Preserve the maximum alignment and size for common
4610 symbols even if this dynamic lib isn't on DT_NEEDED
4611 since it can still be loaded at run time by another
4612 dynamic lib. */
4613 if (h->root.type == bfd_link_hash_common)
4614 {
4615 size = h->root.u.c.size;
4616 alignment_power = h->root.u.c.p->alignment_power;
4617 }
4618 else
4619 {
4620 size = 0;
4621 alignment_power = 0;
4622 }
4623 memcpy (p, old_ent, htab->root.table.entsize);
4624 old_ent = (char *) old_ent + htab->root.table.entsize;
4625 h = (struct elf_link_hash_entry *) p;
4626 if (h->root.type == bfd_link_hash_warning)
4627 {
4628 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4629 old_ent = (char *) old_ent + htab->root.table.entsize;
4630 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4631 }
4632 if (h->root.type == bfd_link_hash_common)
4633 {
4634 if (size > h->root.u.c.size)
4635 h->root.u.c.size = size;
4636 if (alignment_power > h->root.u.c.p->alignment_power)
4637 h->root.u.c.p->alignment_power = alignment_power;
4638 }
4639 }
4640 }
4641
4642 /* Make a special call to the linker "notice" function to
4643 tell it that symbols added for crefs may need to be removed. */
4644 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4645 goto error_free_vers;
4646
4647 free (old_tab);
4648 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4649 alloc_mark);
4650 if (nondeflt_vers != NULL)
4651 free (nondeflt_vers);
4652 return TRUE;
4653 }
4654
4655 if (old_tab != NULL)
4656 {
4657 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4658 goto error_free_vers;
4659 free (old_tab);
4660 old_tab = NULL;
4661 }
4662
4663 /* Now that all the symbols from this input file are created, if
4664 not performing a relocatable link, handle .symver foo, foo@BAR
4665 such that any relocs against foo become foo@BAR. */
4666 if (!info->relocatable && nondeflt_vers != NULL)
4667 {
4668 bfd_size_type cnt, symidx;
4669
4670 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4671 {
4672 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4673 char *shortname, *p;
4674
4675 p = strchr (h->root.root.string, ELF_VER_CHR);
4676 if (p == NULL
4677 || (h->root.type != bfd_link_hash_defined
4678 && h->root.type != bfd_link_hash_defweak))
4679 continue;
4680
4681 amt = p - h->root.root.string;
4682 shortname = (char *) bfd_malloc (amt + 1);
4683 if (!shortname)
4684 goto error_free_vers;
4685 memcpy (shortname, h->root.root.string, amt);
4686 shortname[amt] = '\0';
4687
4688 hi = (struct elf_link_hash_entry *)
4689 bfd_link_hash_lookup (&htab->root, shortname,
4690 FALSE, FALSE, FALSE);
4691 if (hi != NULL
4692 && hi->root.type == h->root.type
4693 && hi->root.u.def.value == h->root.u.def.value
4694 && hi->root.u.def.section == h->root.u.def.section)
4695 {
4696 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4697 hi->root.type = bfd_link_hash_indirect;
4698 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4699 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4700 sym_hash = elf_sym_hashes (abfd);
4701 if (sym_hash)
4702 for (symidx = 0; symidx < extsymcount; ++symidx)
4703 if (sym_hash[symidx] == hi)
4704 {
4705 sym_hash[symidx] = h;
4706 break;
4707 }
4708 }
4709 free (shortname);
4710 }
4711 free (nondeflt_vers);
4712 nondeflt_vers = NULL;
4713 }
4714
4715 /* Now set the weakdefs field correctly for all the weak defined
4716 symbols we found. The only way to do this is to search all the
4717 symbols. Since we only need the information for non functions in
4718 dynamic objects, that's the only time we actually put anything on
4719 the list WEAKS. We need this information so that if a regular
4720 object refers to a symbol defined weakly in a dynamic object, the
4721 real symbol in the dynamic object is also put in the dynamic
4722 symbols; we also must arrange for both symbols to point to the
4723 same memory location. We could handle the general case of symbol
4724 aliasing, but a general symbol alias can only be generated in
4725 assembler code, handling it correctly would be very time
4726 consuming, and other ELF linkers don't handle general aliasing
4727 either. */
4728 if (weaks != NULL)
4729 {
4730 struct elf_link_hash_entry **hpp;
4731 struct elf_link_hash_entry **hppend;
4732 struct elf_link_hash_entry **sorted_sym_hash;
4733 struct elf_link_hash_entry *h;
4734 size_t sym_count;
4735
4736 /* Since we have to search the whole symbol list for each weak
4737 defined symbol, search time for N weak defined symbols will be
4738 O(N^2). Binary search will cut it down to O(NlogN). */
4739 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4740 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4741 if (sorted_sym_hash == NULL)
4742 goto error_return;
4743 sym_hash = sorted_sym_hash;
4744 hpp = elf_sym_hashes (abfd);
4745 hppend = hpp + extsymcount;
4746 sym_count = 0;
4747 for (; hpp < hppend; hpp++)
4748 {
4749 h = *hpp;
4750 if (h != NULL
4751 && h->root.type == bfd_link_hash_defined
4752 && !bed->is_function_type (h->type))
4753 {
4754 *sym_hash = h;
4755 sym_hash++;
4756 sym_count++;
4757 }
4758 }
4759
4760 qsort (sorted_sym_hash, sym_count,
4761 sizeof (struct elf_link_hash_entry *),
4762 elf_sort_symbol);
4763
4764 while (weaks != NULL)
4765 {
4766 struct elf_link_hash_entry *hlook;
4767 asection *slook;
4768 bfd_vma vlook;
4769 size_t i, j, idx = 0;
4770
4771 hlook = weaks;
4772 weaks = hlook->u.weakdef;
4773 hlook->u.weakdef = NULL;
4774
4775 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4776 || hlook->root.type == bfd_link_hash_defweak
4777 || hlook->root.type == bfd_link_hash_common
4778 || hlook->root.type == bfd_link_hash_indirect);
4779 slook = hlook->root.u.def.section;
4780 vlook = hlook->root.u.def.value;
4781
4782 i = 0;
4783 j = sym_count;
4784 while (i != j)
4785 {
4786 bfd_signed_vma vdiff;
4787 idx = (i + j) / 2;
4788 h = sorted_sym_hash[idx];
4789 vdiff = vlook - h->root.u.def.value;
4790 if (vdiff < 0)
4791 j = idx;
4792 else if (vdiff > 0)
4793 i = idx + 1;
4794 else
4795 {
4796 long sdiff = slook->id - h->root.u.def.section->id;
4797 if (sdiff < 0)
4798 j = idx;
4799 else if (sdiff > 0)
4800 i = idx + 1;
4801 else
4802 break;
4803 }
4804 }
4805
4806 /* We didn't find a value/section match. */
4807 if (i == j)
4808 continue;
4809
4810 /* With multiple aliases, or when the weak symbol is already
4811 strongly defined, we have multiple matching symbols and
4812 the binary search above may land on any of them. Step
4813 one past the matching symbol(s). */
4814 while (++idx != j)
4815 {
4816 h = sorted_sym_hash[idx];
4817 if (h->root.u.def.section != slook
4818 || h->root.u.def.value != vlook)
4819 break;
4820 }
4821
4822 /* Now look back over the aliases. Since we sorted by size
4823 as well as value and section, we'll choose the one with
4824 the largest size. */
4825 while (idx-- != i)
4826 {
4827 h = sorted_sym_hash[idx];
4828
4829 /* Stop if value or section doesn't match. */
4830 if (h->root.u.def.section != slook
4831 || h->root.u.def.value != vlook)
4832 break;
4833 else if (h != hlook)
4834 {
4835 hlook->u.weakdef = h;
4836
4837 /* If the weak definition is in the list of dynamic
4838 symbols, make sure the real definition is put
4839 there as well. */
4840 if (hlook->dynindx != -1 && h->dynindx == -1)
4841 {
4842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4843 {
4844 err_free_sym_hash:
4845 free (sorted_sym_hash);
4846 goto error_return;
4847 }
4848 }
4849
4850 /* If the real definition is in the list of dynamic
4851 symbols, make sure the weak definition is put
4852 there as well. If we don't do this, then the
4853 dynamic loader might not merge the entries for the
4854 real definition and the weak definition. */
4855 if (h->dynindx != -1 && hlook->dynindx == -1)
4856 {
4857 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4858 goto err_free_sym_hash;
4859 }
4860 break;
4861 }
4862 }
4863 }
4864
4865 free (sorted_sym_hash);
4866 }
4867
4868 if (bed->check_directives
4869 && !(*bed->check_directives) (abfd, info))
4870 return FALSE;
4871
4872 /* If this object is the same format as the output object, and it is
4873 not a shared library, then let the backend look through the
4874 relocs.
4875
4876 This is required to build global offset table entries and to
4877 arrange for dynamic relocs. It is not required for the
4878 particular common case of linking non PIC code, even when linking
4879 against shared libraries, but unfortunately there is no way of
4880 knowing whether an object file has been compiled PIC or not.
4881 Looking through the relocs is not particularly time consuming.
4882 The problem is that we must either (1) keep the relocs in memory,
4883 which causes the linker to require additional runtime memory or
4884 (2) read the relocs twice from the input file, which wastes time.
4885 This would be a good case for using mmap.
4886
4887 I have no idea how to handle linking PIC code into a file of a
4888 different format. It probably can't be done. */
4889 if (! dynamic
4890 && is_elf_hash_table (htab)
4891 && bed->check_relocs != NULL
4892 && elf_object_id (abfd) == elf_hash_table_id (htab)
4893 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4894 {
4895 asection *o;
4896
4897 for (o = abfd->sections; o != NULL; o = o->next)
4898 {
4899 Elf_Internal_Rela *internal_relocs;
4900 bfd_boolean ok;
4901
4902 if ((o->flags & SEC_RELOC) == 0
4903 || o->reloc_count == 0
4904 || ((info->strip == strip_all || info->strip == strip_debugger)
4905 && (o->flags & SEC_DEBUGGING) != 0)
4906 || bfd_is_abs_section (o->output_section))
4907 continue;
4908
4909 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4910 info->keep_memory);
4911 if (internal_relocs == NULL)
4912 goto error_return;
4913
4914 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4915
4916 if (elf_section_data (o)->relocs != internal_relocs)
4917 free (internal_relocs);
4918
4919 if (! ok)
4920 goto error_return;
4921 }
4922 }
4923
4924 /* If this is a non-traditional link, try to optimize the handling
4925 of the .stab/.stabstr sections. */
4926 if (! dynamic
4927 && ! info->traditional_format
4928 && is_elf_hash_table (htab)
4929 && (info->strip != strip_all && info->strip != strip_debugger))
4930 {
4931 asection *stabstr;
4932
4933 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4934 if (stabstr != NULL)
4935 {
4936 bfd_size_type string_offset = 0;
4937 asection *stab;
4938
4939 for (stab = abfd->sections; stab; stab = stab->next)
4940 if (CONST_STRNEQ (stab->name, ".stab")
4941 && (!stab->name[5] ||
4942 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4943 && (stab->flags & SEC_MERGE) == 0
4944 && !bfd_is_abs_section (stab->output_section))
4945 {
4946 struct bfd_elf_section_data *secdata;
4947
4948 secdata = elf_section_data (stab);
4949 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4950 stabstr, &secdata->sec_info,
4951 &string_offset))
4952 goto error_return;
4953 if (secdata->sec_info)
4954 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4955 }
4956 }
4957 }
4958
4959 if (is_elf_hash_table (htab) && add_needed)
4960 {
4961 /* Add this bfd to the loaded list. */
4962 struct elf_link_loaded_list *n;
4963
4964 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4965 if (n == NULL)
4966 goto error_return;
4967 n->abfd = abfd;
4968 n->next = htab->loaded;
4969 htab->loaded = n;
4970 }
4971
4972 return TRUE;
4973
4974 error_free_vers:
4975 if (old_tab != NULL)
4976 free (old_tab);
4977 if (nondeflt_vers != NULL)
4978 free (nondeflt_vers);
4979 if (extversym != NULL)
4980 free (extversym);
4981 error_free_sym:
4982 if (isymbuf != NULL)
4983 free (isymbuf);
4984 error_return:
4985 return FALSE;
4986 }
4987
4988 /* Return the linker hash table entry of a symbol that might be
4989 satisfied by an archive symbol. Return -1 on error. */
4990
4991 struct elf_link_hash_entry *
4992 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4993 struct bfd_link_info *info,
4994 const char *name)
4995 {
4996 struct elf_link_hash_entry *h;
4997 char *p, *copy;
4998 size_t len, first;
4999
5000 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5001 if (h != NULL)
5002 return h;
5003
5004 /* If this is a default version (the name contains @@), look up the
5005 symbol again with only one `@' as well as without the version.
5006 The effect is that references to the symbol with and without the
5007 version will be matched by the default symbol in the archive. */
5008
5009 p = strchr (name, ELF_VER_CHR);
5010 if (p == NULL || p[1] != ELF_VER_CHR)
5011 return h;
5012
5013 /* First check with only one `@'. */
5014 len = strlen (name);
5015 copy = (char *) bfd_alloc (abfd, len);
5016 if (copy == NULL)
5017 return (struct elf_link_hash_entry *) 0 - 1;
5018
5019 first = p - name + 1;
5020 memcpy (copy, name, first);
5021 memcpy (copy + first, name + first + 1, len - first);
5022
5023 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5024 if (h == NULL)
5025 {
5026 /* We also need to check references to the symbol without the
5027 version. */
5028 copy[first - 1] = '\0';
5029 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5030 FALSE, FALSE, TRUE);
5031 }
5032
5033 bfd_release (abfd, copy);
5034 return h;
5035 }
5036
5037 /* Add symbols from an ELF archive file to the linker hash table. We
5038 don't use _bfd_generic_link_add_archive_symbols because we need to
5039 handle versioned symbols.
5040
5041 Fortunately, ELF archive handling is simpler than that done by
5042 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5043 oddities. In ELF, if we find a symbol in the archive map, and the
5044 symbol is currently undefined, we know that we must pull in that
5045 object file.
5046
5047 Unfortunately, we do have to make multiple passes over the symbol
5048 table until nothing further is resolved. */
5049
5050 static bfd_boolean
5051 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5052 {
5053 symindex c;
5054 unsigned char *included = NULL;
5055 carsym *symdefs;
5056 bfd_boolean loop;
5057 bfd_size_type amt;
5058 const struct elf_backend_data *bed;
5059 struct elf_link_hash_entry * (*archive_symbol_lookup)
5060 (bfd *, struct bfd_link_info *, const char *);
5061
5062 if (! bfd_has_map (abfd))
5063 {
5064 /* An empty archive is a special case. */
5065 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5066 return TRUE;
5067 bfd_set_error (bfd_error_no_armap);
5068 return FALSE;
5069 }
5070
5071 /* Keep track of all symbols we know to be already defined, and all
5072 files we know to be already included. This is to speed up the
5073 second and subsequent passes. */
5074 c = bfd_ardata (abfd)->symdef_count;
5075 if (c == 0)
5076 return TRUE;
5077 amt = c;
5078 amt *= sizeof (*included);
5079 included = (unsigned char *) bfd_zmalloc (amt);
5080 if (included == NULL)
5081 return FALSE;
5082
5083 symdefs = bfd_ardata (abfd)->symdefs;
5084 bed = get_elf_backend_data (abfd);
5085 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5086
5087 do
5088 {
5089 file_ptr last;
5090 symindex i;
5091 carsym *symdef;
5092 carsym *symdefend;
5093
5094 loop = FALSE;
5095 last = -1;
5096
5097 symdef = symdefs;
5098 symdefend = symdef + c;
5099 for (i = 0; symdef < symdefend; symdef++, i++)
5100 {
5101 struct elf_link_hash_entry *h;
5102 bfd *element;
5103 struct bfd_link_hash_entry *undefs_tail;
5104 symindex mark;
5105
5106 if (included[i])
5107 continue;
5108 if (symdef->file_offset == last)
5109 {
5110 included[i] = TRUE;
5111 continue;
5112 }
5113
5114 h = archive_symbol_lookup (abfd, info, symdef->name);
5115 if (h == (struct elf_link_hash_entry *) 0 - 1)
5116 goto error_return;
5117
5118 if (h == NULL)
5119 continue;
5120
5121 if (h->root.type == bfd_link_hash_common)
5122 {
5123 /* We currently have a common symbol. The archive map contains
5124 a reference to this symbol, so we may want to include it. We
5125 only want to include it however, if this archive element
5126 contains a definition of the symbol, not just another common
5127 declaration of it.
5128
5129 Unfortunately some archivers (including GNU ar) will put
5130 declarations of common symbols into their archive maps, as
5131 well as real definitions, so we cannot just go by the archive
5132 map alone. Instead we must read in the element's symbol
5133 table and check that to see what kind of symbol definition
5134 this is. */
5135 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5136 continue;
5137 }
5138 else if (h->root.type != bfd_link_hash_undefined)
5139 {
5140 if (h->root.type != bfd_link_hash_undefweak)
5141 /* Symbol must be defined. Don't check it again. */
5142 included[i] = TRUE;
5143 continue;
5144 }
5145
5146 /* We need to include this archive member. */
5147 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5148 if (element == NULL)
5149 goto error_return;
5150
5151 if (! bfd_check_format (element, bfd_object))
5152 goto error_return;
5153
5154 undefs_tail = info->hash->undefs_tail;
5155
5156 if (!(*info->callbacks
5157 ->add_archive_element) (info, element, symdef->name, &element))
5158 goto error_return;
5159 if (!bfd_link_add_symbols (element, info))
5160 goto error_return;
5161
5162 /* If there are any new undefined symbols, we need to make
5163 another pass through the archive in order to see whether
5164 they can be defined. FIXME: This isn't perfect, because
5165 common symbols wind up on undefs_tail and because an
5166 undefined symbol which is defined later on in this pass
5167 does not require another pass. This isn't a bug, but it
5168 does make the code less efficient than it could be. */
5169 if (undefs_tail != info->hash->undefs_tail)
5170 loop = TRUE;
5171
5172 /* Look backward to mark all symbols from this object file
5173 which we have already seen in this pass. */
5174 mark = i;
5175 do
5176 {
5177 included[mark] = TRUE;
5178 if (mark == 0)
5179 break;
5180 --mark;
5181 }
5182 while (symdefs[mark].file_offset == symdef->file_offset);
5183
5184 /* We mark subsequent symbols from this object file as we go
5185 on through the loop. */
5186 last = symdef->file_offset;
5187 }
5188 }
5189 while (loop);
5190
5191 free (included);
5192
5193 return TRUE;
5194
5195 error_return:
5196 if (included != NULL)
5197 free (included);
5198 return FALSE;
5199 }
5200
5201 /* Given an ELF BFD, add symbols to the global hash table as
5202 appropriate. */
5203
5204 bfd_boolean
5205 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5206 {
5207 switch (bfd_get_format (abfd))
5208 {
5209 case bfd_object:
5210 return elf_link_add_object_symbols (abfd, info);
5211 case bfd_archive:
5212 return elf_link_add_archive_symbols (abfd, info);
5213 default:
5214 bfd_set_error (bfd_error_wrong_format);
5215 return FALSE;
5216 }
5217 }
5218 \f
5219 struct hash_codes_info
5220 {
5221 unsigned long *hashcodes;
5222 bfd_boolean error;
5223 };
5224
5225 /* This function will be called though elf_link_hash_traverse to store
5226 all hash value of the exported symbols in an array. */
5227
5228 static bfd_boolean
5229 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5230 {
5231 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5232 const char *name;
5233 char *p;
5234 unsigned long ha;
5235 char *alc = NULL;
5236
5237 /* Ignore indirect symbols. These are added by the versioning code. */
5238 if (h->dynindx == -1)
5239 return TRUE;
5240
5241 name = h->root.root.string;
5242 p = strchr (name, ELF_VER_CHR);
5243 if (p != NULL)
5244 {
5245 alc = (char *) bfd_malloc (p - name + 1);
5246 if (alc == NULL)
5247 {
5248 inf->error = TRUE;
5249 return FALSE;
5250 }
5251 memcpy (alc, name, p - name);
5252 alc[p - name] = '\0';
5253 name = alc;
5254 }
5255
5256 /* Compute the hash value. */
5257 ha = bfd_elf_hash (name);
5258
5259 /* Store the found hash value in the array given as the argument. */
5260 *(inf->hashcodes)++ = ha;
5261
5262 /* And store it in the struct so that we can put it in the hash table
5263 later. */
5264 h->u.elf_hash_value = ha;
5265
5266 if (alc != NULL)
5267 free (alc);
5268
5269 return TRUE;
5270 }
5271
5272 struct collect_gnu_hash_codes
5273 {
5274 bfd *output_bfd;
5275 const struct elf_backend_data *bed;
5276 unsigned long int nsyms;
5277 unsigned long int maskbits;
5278 unsigned long int *hashcodes;
5279 unsigned long int *hashval;
5280 unsigned long int *indx;
5281 unsigned long int *counts;
5282 bfd_vma *bitmask;
5283 bfd_byte *contents;
5284 long int min_dynindx;
5285 unsigned long int bucketcount;
5286 unsigned long int symindx;
5287 long int local_indx;
5288 long int shift1, shift2;
5289 unsigned long int mask;
5290 bfd_boolean error;
5291 };
5292
5293 /* This function will be called though elf_link_hash_traverse to store
5294 all hash value of the exported symbols in an array. */
5295
5296 static bfd_boolean
5297 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5298 {
5299 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5300 const char *name;
5301 char *p;
5302 unsigned long ha;
5303 char *alc = NULL;
5304
5305 /* Ignore indirect symbols. These are added by the versioning code. */
5306 if (h->dynindx == -1)
5307 return TRUE;
5308
5309 /* Ignore also local symbols and undefined symbols. */
5310 if (! (*s->bed->elf_hash_symbol) (h))
5311 return TRUE;
5312
5313 name = h->root.root.string;
5314 p = strchr (name, ELF_VER_CHR);
5315 if (p != NULL)
5316 {
5317 alc = (char *) bfd_malloc (p - name + 1);
5318 if (alc == NULL)
5319 {
5320 s->error = TRUE;
5321 return FALSE;
5322 }
5323 memcpy (alc, name, p - name);
5324 alc[p - name] = '\0';
5325 name = alc;
5326 }
5327
5328 /* Compute the hash value. */
5329 ha = bfd_elf_gnu_hash (name);
5330
5331 /* Store the found hash value in the array for compute_bucket_count,
5332 and also for .dynsym reordering purposes. */
5333 s->hashcodes[s->nsyms] = ha;
5334 s->hashval[h->dynindx] = ha;
5335 ++s->nsyms;
5336 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5337 s->min_dynindx = h->dynindx;
5338
5339 if (alc != NULL)
5340 free (alc);
5341
5342 return TRUE;
5343 }
5344
5345 /* This function will be called though elf_link_hash_traverse to do
5346 final dynaminc symbol renumbering. */
5347
5348 static bfd_boolean
5349 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5350 {
5351 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5352 unsigned long int bucket;
5353 unsigned long int val;
5354
5355 /* Ignore indirect symbols. */
5356 if (h->dynindx == -1)
5357 return TRUE;
5358
5359 /* Ignore also local symbols and undefined symbols. */
5360 if (! (*s->bed->elf_hash_symbol) (h))
5361 {
5362 if (h->dynindx >= s->min_dynindx)
5363 h->dynindx = s->local_indx++;
5364 return TRUE;
5365 }
5366
5367 bucket = s->hashval[h->dynindx] % s->bucketcount;
5368 val = (s->hashval[h->dynindx] >> s->shift1)
5369 & ((s->maskbits >> s->shift1) - 1);
5370 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5371 s->bitmask[val]
5372 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5373 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5374 if (s->counts[bucket] == 1)
5375 /* Last element terminates the chain. */
5376 val |= 1;
5377 bfd_put_32 (s->output_bfd, val,
5378 s->contents + (s->indx[bucket] - s->symindx) * 4);
5379 --s->counts[bucket];
5380 h->dynindx = s->indx[bucket]++;
5381 return TRUE;
5382 }
5383
5384 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5385
5386 bfd_boolean
5387 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5388 {
5389 return !(h->forced_local
5390 || h->root.type == bfd_link_hash_undefined
5391 || h->root.type == bfd_link_hash_undefweak
5392 || ((h->root.type == bfd_link_hash_defined
5393 || h->root.type == bfd_link_hash_defweak)
5394 && h->root.u.def.section->output_section == NULL));
5395 }
5396
5397 /* Array used to determine the number of hash table buckets to use
5398 based on the number of symbols there are. If there are fewer than
5399 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5400 fewer than 37 we use 17 buckets, and so forth. We never use more
5401 than 32771 buckets. */
5402
5403 static const size_t elf_buckets[] =
5404 {
5405 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5406 16411, 32771, 0
5407 };
5408
5409 /* Compute bucket count for hashing table. We do not use a static set
5410 of possible tables sizes anymore. Instead we determine for all
5411 possible reasonable sizes of the table the outcome (i.e., the
5412 number of collisions etc) and choose the best solution. The
5413 weighting functions are not too simple to allow the table to grow
5414 without bounds. Instead one of the weighting factors is the size.
5415 Therefore the result is always a good payoff between few collisions
5416 (= short chain lengths) and table size. */
5417 static size_t
5418 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5419 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5420 unsigned long int nsyms,
5421 int gnu_hash)
5422 {
5423 size_t best_size = 0;
5424 unsigned long int i;
5425
5426 /* We have a problem here. The following code to optimize the table
5427 size requires an integer type with more the 32 bits. If
5428 BFD_HOST_U_64_BIT is set we know about such a type. */
5429 #ifdef BFD_HOST_U_64_BIT
5430 if (info->optimize)
5431 {
5432 size_t minsize;
5433 size_t maxsize;
5434 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5435 bfd *dynobj = elf_hash_table (info)->dynobj;
5436 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5437 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5438 unsigned long int *counts;
5439 bfd_size_type amt;
5440 unsigned int no_improvement_count = 0;
5441
5442 /* Possible optimization parameters: if we have NSYMS symbols we say
5443 that the hashing table must at least have NSYMS/4 and at most
5444 2*NSYMS buckets. */
5445 minsize = nsyms / 4;
5446 if (minsize == 0)
5447 minsize = 1;
5448 best_size = maxsize = nsyms * 2;
5449 if (gnu_hash)
5450 {
5451 if (minsize < 2)
5452 minsize = 2;
5453 if ((best_size & 31) == 0)
5454 ++best_size;
5455 }
5456
5457 /* Create array where we count the collisions in. We must use bfd_malloc
5458 since the size could be large. */
5459 amt = maxsize;
5460 amt *= sizeof (unsigned long int);
5461 counts = (unsigned long int *) bfd_malloc (amt);
5462 if (counts == NULL)
5463 return 0;
5464
5465 /* Compute the "optimal" size for the hash table. The criteria is a
5466 minimal chain length. The minor criteria is (of course) the size
5467 of the table. */
5468 for (i = minsize; i < maxsize; ++i)
5469 {
5470 /* Walk through the array of hashcodes and count the collisions. */
5471 BFD_HOST_U_64_BIT max;
5472 unsigned long int j;
5473 unsigned long int fact;
5474
5475 if (gnu_hash && (i & 31) == 0)
5476 continue;
5477
5478 memset (counts, '\0', i * sizeof (unsigned long int));
5479
5480 /* Determine how often each hash bucket is used. */
5481 for (j = 0; j < nsyms; ++j)
5482 ++counts[hashcodes[j] % i];
5483
5484 /* For the weight function we need some information about the
5485 pagesize on the target. This is information need not be 100%
5486 accurate. Since this information is not available (so far) we
5487 define it here to a reasonable default value. If it is crucial
5488 to have a better value some day simply define this value. */
5489 # ifndef BFD_TARGET_PAGESIZE
5490 # define BFD_TARGET_PAGESIZE (4096)
5491 # endif
5492
5493 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5494 and the chains. */
5495 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5496
5497 # if 1
5498 /* Variant 1: optimize for short chains. We add the squares
5499 of all the chain lengths (which favors many small chain
5500 over a few long chains). */
5501 for (j = 0; j < i; ++j)
5502 max += counts[j] * counts[j];
5503
5504 /* This adds penalties for the overall size of the table. */
5505 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5506 max *= fact * fact;
5507 # else
5508 /* Variant 2: Optimize a lot more for small table. Here we
5509 also add squares of the size but we also add penalties for
5510 empty slots (the +1 term). */
5511 for (j = 0; j < i; ++j)
5512 max += (1 + counts[j]) * (1 + counts[j]);
5513
5514 /* The overall size of the table is considered, but not as
5515 strong as in variant 1, where it is squared. */
5516 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5517 max *= fact;
5518 # endif
5519
5520 /* Compare with current best results. */
5521 if (max < best_chlen)
5522 {
5523 best_chlen = max;
5524 best_size = i;
5525 no_improvement_count = 0;
5526 }
5527 /* PR 11843: Avoid futile long searches for the best bucket size
5528 when there are a large number of symbols. */
5529 else if (++no_improvement_count == 100)
5530 break;
5531 }
5532
5533 free (counts);
5534 }
5535 else
5536 #endif /* defined (BFD_HOST_U_64_BIT) */
5537 {
5538 /* This is the fallback solution if no 64bit type is available or if we
5539 are not supposed to spend much time on optimizations. We select the
5540 bucket count using a fixed set of numbers. */
5541 for (i = 0; elf_buckets[i] != 0; i++)
5542 {
5543 best_size = elf_buckets[i];
5544 if (nsyms < elf_buckets[i + 1])
5545 break;
5546 }
5547 if (gnu_hash && best_size < 2)
5548 best_size = 2;
5549 }
5550
5551 return best_size;
5552 }
5553
5554 /* Size any SHT_GROUP section for ld -r. */
5555
5556 bfd_boolean
5557 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5558 {
5559 bfd *ibfd;
5560
5561 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5562 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5563 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5564 return FALSE;
5565 return TRUE;
5566 }
5567
5568 /* Set a default stack segment size. The value in INFO wins. If it
5569 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5570 undefined it is initialized. */
5571
5572 bfd_boolean
5573 bfd_elf_stack_segment_size (bfd *output_bfd,
5574 struct bfd_link_info *info,
5575 const char *legacy_symbol,
5576 bfd_vma default_size)
5577 {
5578 struct elf_link_hash_entry *h = NULL;
5579
5580 /* Look for legacy symbol. */
5581 if (legacy_symbol)
5582 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5583 FALSE, FALSE, FALSE);
5584 if (h && (h->root.type == bfd_link_hash_defined
5585 || h->root.type == bfd_link_hash_defweak)
5586 && h->def_regular
5587 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5588 {
5589 /* The symbol has no type if specified on the command line. */
5590 h->type = STT_OBJECT;
5591 if (info->stacksize)
5592 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5593 output_bfd, legacy_symbol);
5594 else if (h->root.u.def.section != bfd_abs_section_ptr)
5595 (*_bfd_error_handler) (_("%B: %s not absolute"),
5596 output_bfd, legacy_symbol);
5597 else
5598 info->stacksize = h->root.u.def.value;
5599 }
5600
5601 if (!info->stacksize)
5602 /* If the user didn't set a size, or explicitly inhibit the
5603 size, set it now. */
5604 info->stacksize = default_size;
5605
5606 /* Provide the legacy symbol, if it is referenced. */
5607 if (h && (h->root.type == bfd_link_hash_undefined
5608 || h->root.type == bfd_link_hash_undefweak))
5609 {
5610 struct bfd_link_hash_entry *bh = NULL;
5611
5612 if (!(_bfd_generic_link_add_one_symbol
5613 (info, output_bfd, legacy_symbol,
5614 BSF_GLOBAL, bfd_abs_section_ptr,
5615 info->stacksize >= 0 ? info->stacksize : 0,
5616 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5617 return FALSE;
5618
5619 h = (struct elf_link_hash_entry *) bh;
5620 h->def_regular = 1;
5621 h->type = STT_OBJECT;
5622 }
5623
5624 return TRUE;
5625 }
5626
5627 /* Set up the sizes and contents of the ELF dynamic sections. This is
5628 called by the ELF linker emulation before_allocation routine. We
5629 must set the sizes of the sections before the linker sets the
5630 addresses of the various sections. */
5631
5632 bfd_boolean
5633 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5634 const char *soname,
5635 const char *rpath,
5636 const char *filter_shlib,
5637 const char *audit,
5638 const char *depaudit,
5639 const char * const *auxiliary_filters,
5640 struct bfd_link_info *info,
5641 asection **sinterpptr)
5642 {
5643 bfd_size_type soname_indx;
5644 bfd *dynobj;
5645 const struct elf_backend_data *bed;
5646 struct elf_info_failed asvinfo;
5647
5648 *sinterpptr = NULL;
5649
5650 soname_indx = (bfd_size_type) -1;
5651
5652 if (!is_elf_hash_table (info->hash))
5653 return TRUE;
5654
5655 bed = get_elf_backend_data (output_bfd);
5656
5657 /* Any syms created from now on start with -1 in
5658 got.refcount/offset and plt.refcount/offset. */
5659 elf_hash_table (info)->init_got_refcount
5660 = elf_hash_table (info)->init_got_offset;
5661 elf_hash_table (info)->init_plt_refcount
5662 = elf_hash_table (info)->init_plt_offset;
5663
5664 if (info->relocatable
5665 && !_bfd_elf_size_group_sections (info))
5666 return FALSE;
5667
5668 /* The backend may have to create some sections regardless of whether
5669 we're dynamic or not. */
5670 if (bed->elf_backend_always_size_sections
5671 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5672 return FALSE;
5673
5674 /* Determine any GNU_STACK segment requirements, after the backend
5675 has had a chance to set a default segment size. */
5676 if (info->execstack)
5677 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5678 else if (info->noexecstack)
5679 elf_stack_flags (output_bfd) = PF_R | PF_W;
5680 else
5681 {
5682 bfd *inputobj;
5683 asection *notesec = NULL;
5684 int exec = 0;
5685
5686 for (inputobj = info->input_bfds;
5687 inputobj;
5688 inputobj = inputobj->link.next)
5689 {
5690 asection *s;
5691
5692 if (inputobj->flags
5693 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5694 continue;
5695 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5696 if (s)
5697 {
5698 if (s->flags & SEC_CODE)
5699 exec = PF_X;
5700 notesec = s;
5701 }
5702 else if (bed->default_execstack)
5703 exec = PF_X;
5704 }
5705 if (notesec || info->stacksize > 0)
5706 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5707 if (notesec && exec && info->relocatable
5708 && notesec->output_section != bfd_abs_section_ptr)
5709 notesec->output_section->flags |= SEC_CODE;
5710 }
5711
5712 dynobj = elf_hash_table (info)->dynobj;
5713
5714 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5715 {
5716 struct elf_info_failed eif;
5717 struct elf_link_hash_entry *h;
5718 asection *dynstr;
5719 struct bfd_elf_version_tree *t;
5720 struct bfd_elf_version_expr *d;
5721 asection *s;
5722 bfd_boolean all_defined;
5723
5724 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5725 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5726
5727 if (soname != NULL)
5728 {
5729 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5730 soname, TRUE);
5731 if (soname_indx == (bfd_size_type) -1
5732 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5733 return FALSE;
5734 }
5735
5736 if (info->symbolic)
5737 {
5738 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5739 return FALSE;
5740 info->flags |= DF_SYMBOLIC;
5741 }
5742
5743 if (rpath != NULL)
5744 {
5745 bfd_size_type indx;
5746 bfd_vma tag;
5747
5748 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5749 TRUE);
5750 if (indx == (bfd_size_type) -1)
5751 return FALSE;
5752
5753 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5754 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5755 return FALSE;
5756 }
5757
5758 if (filter_shlib != NULL)
5759 {
5760 bfd_size_type indx;
5761
5762 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5763 filter_shlib, TRUE);
5764 if (indx == (bfd_size_type) -1
5765 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5766 return FALSE;
5767 }
5768
5769 if (auxiliary_filters != NULL)
5770 {
5771 const char * const *p;
5772
5773 for (p = auxiliary_filters; *p != NULL; p++)
5774 {
5775 bfd_size_type indx;
5776
5777 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5778 *p, TRUE);
5779 if (indx == (bfd_size_type) -1
5780 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5781 return FALSE;
5782 }
5783 }
5784
5785 if (audit != NULL)
5786 {
5787 bfd_size_type indx;
5788
5789 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5790 TRUE);
5791 if (indx == (bfd_size_type) -1
5792 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5793 return FALSE;
5794 }
5795
5796 if (depaudit != NULL)
5797 {
5798 bfd_size_type indx;
5799
5800 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5801 TRUE);
5802 if (indx == (bfd_size_type) -1
5803 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5804 return FALSE;
5805 }
5806
5807 eif.info = info;
5808 eif.failed = FALSE;
5809
5810 /* If we are supposed to export all symbols into the dynamic symbol
5811 table (this is not the normal case), then do so. */
5812 if (info->export_dynamic
5813 || (info->executable && info->dynamic))
5814 {
5815 elf_link_hash_traverse (elf_hash_table (info),
5816 _bfd_elf_export_symbol,
5817 &eif);
5818 if (eif.failed)
5819 return FALSE;
5820 }
5821
5822 /* Make all global versions with definition. */
5823 for (t = info->version_info; t != NULL; t = t->next)
5824 for (d = t->globals.list; d != NULL; d = d->next)
5825 if (!d->symver && d->literal)
5826 {
5827 const char *verstr, *name;
5828 size_t namelen, verlen, newlen;
5829 char *newname, *p, leading_char;
5830 struct elf_link_hash_entry *newh;
5831
5832 leading_char = bfd_get_symbol_leading_char (output_bfd);
5833 name = d->pattern;
5834 namelen = strlen (name) + (leading_char != '\0');
5835 verstr = t->name;
5836 verlen = strlen (verstr);
5837 newlen = namelen + verlen + 3;
5838
5839 newname = (char *) bfd_malloc (newlen);
5840 if (newname == NULL)
5841 return FALSE;
5842 newname[0] = leading_char;
5843 memcpy (newname + (leading_char != '\0'), name, namelen);
5844
5845 /* Check the hidden versioned definition. */
5846 p = newname + namelen;
5847 *p++ = ELF_VER_CHR;
5848 memcpy (p, verstr, verlen + 1);
5849 newh = elf_link_hash_lookup (elf_hash_table (info),
5850 newname, FALSE, FALSE,
5851 FALSE);
5852 if (newh == NULL
5853 || (newh->root.type != bfd_link_hash_defined
5854 && newh->root.type != bfd_link_hash_defweak))
5855 {
5856 /* Check the default versioned definition. */
5857 *p++ = ELF_VER_CHR;
5858 memcpy (p, verstr, verlen + 1);
5859 newh = elf_link_hash_lookup (elf_hash_table (info),
5860 newname, FALSE, FALSE,
5861 FALSE);
5862 }
5863 free (newname);
5864
5865 /* Mark this version if there is a definition and it is
5866 not defined in a shared object. */
5867 if (newh != NULL
5868 && !newh->def_dynamic
5869 && (newh->root.type == bfd_link_hash_defined
5870 || newh->root.type == bfd_link_hash_defweak))
5871 d->symver = 1;
5872 }
5873
5874 /* Attach all the symbols to their version information. */
5875 asvinfo.info = info;
5876 asvinfo.failed = FALSE;
5877
5878 elf_link_hash_traverse (elf_hash_table (info),
5879 _bfd_elf_link_assign_sym_version,
5880 &asvinfo);
5881 if (asvinfo.failed)
5882 return FALSE;
5883
5884 if (!info->allow_undefined_version)
5885 {
5886 /* Check if all global versions have a definition. */
5887 all_defined = TRUE;
5888 for (t = info->version_info; t != NULL; t = t->next)
5889 for (d = t->globals.list; d != NULL; d = d->next)
5890 if (d->literal && !d->symver && !d->script)
5891 {
5892 (*_bfd_error_handler)
5893 (_("%s: undefined version: %s"),
5894 d->pattern, t->name);
5895 all_defined = FALSE;
5896 }
5897
5898 if (!all_defined)
5899 {
5900 bfd_set_error (bfd_error_bad_value);
5901 return FALSE;
5902 }
5903 }
5904
5905 /* Find all symbols which were defined in a dynamic object and make
5906 the backend pick a reasonable value for them. */
5907 elf_link_hash_traverse (elf_hash_table (info),
5908 _bfd_elf_adjust_dynamic_symbol,
5909 &eif);
5910 if (eif.failed)
5911 return FALSE;
5912
5913 /* Add some entries to the .dynamic section. We fill in some of the
5914 values later, in bfd_elf_final_link, but we must add the entries
5915 now so that we know the final size of the .dynamic section. */
5916
5917 /* If there are initialization and/or finalization functions to
5918 call then add the corresponding DT_INIT/DT_FINI entries. */
5919 h = (info->init_function
5920 ? elf_link_hash_lookup (elf_hash_table (info),
5921 info->init_function, FALSE,
5922 FALSE, FALSE)
5923 : NULL);
5924 if (h != NULL
5925 && (h->ref_regular
5926 || h->def_regular))
5927 {
5928 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5929 return FALSE;
5930 }
5931 h = (info->fini_function
5932 ? elf_link_hash_lookup (elf_hash_table (info),
5933 info->fini_function, FALSE,
5934 FALSE, FALSE)
5935 : NULL);
5936 if (h != NULL
5937 && (h->ref_regular
5938 || h->def_regular))
5939 {
5940 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5941 return FALSE;
5942 }
5943
5944 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5945 if (s != NULL && s->linker_has_input)
5946 {
5947 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5948 if (! info->executable)
5949 {
5950 bfd *sub;
5951 asection *o;
5952
5953 for (sub = info->input_bfds; sub != NULL;
5954 sub = sub->link.next)
5955 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5956 for (o = sub->sections; o != NULL; o = o->next)
5957 if (elf_section_data (o)->this_hdr.sh_type
5958 == SHT_PREINIT_ARRAY)
5959 {
5960 (*_bfd_error_handler)
5961 (_("%B: .preinit_array section is not allowed in DSO"),
5962 sub);
5963 break;
5964 }
5965
5966 bfd_set_error (bfd_error_nonrepresentable_section);
5967 return FALSE;
5968 }
5969
5970 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5971 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5972 return FALSE;
5973 }
5974 s = bfd_get_section_by_name (output_bfd, ".init_array");
5975 if (s != NULL && s->linker_has_input)
5976 {
5977 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5978 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5979 return FALSE;
5980 }
5981 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5982 if (s != NULL && s->linker_has_input)
5983 {
5984 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5985 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5986 return FALSE;
5987 }
5988
5989 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5990 /* If .dynstr is excluded from the link, we don't want any of
5991 these tags. Strictly, we should be checking each section
5992 individually; This quick check covers for the case where
5993 someone does a /DISCARD/ : { *(*) }. */
5994 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5995 {
5996 bfd_size_type strsize;
5997
5998 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5999 if ((info->emit_hash
6000 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6001 || (info->emit_gnu_hash
6002 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6003 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6004 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6005 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6006 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6007 bed->s->sizeof_sym))
6008 return FALSE;
6009 }
6010 }
6011
6012 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6013 return FALSE;
6014
6015 /* The backend must work out the sizes of all the other dynamic
6016 sections. */
6017 if (dynobj != NULL
6018 && bed->elf_backend_size_dynamic_sections != NULL
6019 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6020 return FALSE;
6021
6022 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6023 {
6024 unsigned long section_sym_count;
6025 struct bfd_elf_version_tree *verdefs;
6026 asection *s;
6027
6028 /* Set up the version definition section. */
6029 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6030 BFD_ASSERT (s != NULL);
6031
6032 /* We may have created additional version definitions if we are
6033 just linking a regular application. */
6034 verdefs = info->version_info;
6035
6036 /* Skip anonymous version tag. */
6037 if (verdefs != NULL && verdefs->vernum == 0)
6038 verdefs = verdefs->next;
6039
6040 if (verdefs == NULL && !info->create_default_symver)
6041 s->flags |= SEC_EXCLUDE;
6042 else
6043 {
6044 unsigned int cdefs;
6045 bfd_size_type size;
6046 struct bfd_elf_version_tree *t;
6047 bfd_byte *p;
6048 Elf_Internal_Verdef def;
6049 Elf_Internal_Verdaux defaux;
6050 struct bfd_link_hash_entry *bh;
6051 struct elf_link_hash_entry *h;
6052 const char *name;
6053
6054 cdefs = 0;
6055 size = 0;
6056
6057 /* Make space for the base version. */
6058 size += sizeof (Elf_External_Verdef);
6059 size += sizeof (Elf_External_Verdaux);
6060 ++cdefs;
6061
6062 /* Make space for the default version. */
6063 if (info->create_default_symver)
6064 {
6065 size += sizeof (Elf_External_Verdef);
6066 ++cdefs;
6067 }
6068
6069 for (t = verdefs; t != NULL; t = t->next)
6070 {
6071 struct bfd_elf_version_deps *n;
6072
6073 /* Don't emit base version twice. */
6074 if (t->vernum == 0)
6075 continue;
6076
6077 size += sizeof (Elf_External_Verdef);
6078 size += sizeof (Elf_External_Verdaux);
6079 ++cdefs;
6080
6081 for (n = t->deps; n != NULL; n = n->next)
6082 size += sizeof (Elf_External_Verdaux);
6083 }
6084
6085 s->size = size;
6086 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6087 if (s->contents == NULL && s->size != 0)
6088 return FALSE;
6089
6090 /* Fill in the version definition section. */
6091
6092 p = s->contents;
6093
6094 def.vd_version = VER_DEF_CURRENT;
6095 def.vd_flags = VER_FLG_BASE;
6096 def.vd_ndx = 1;
6097 def.vd_cnt = 1;
6098 if (info->create_default_symver)
6099 {
6100 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6101 def.vd_next = sizeof (Elf_External_Verdef);
6102 }
6103 else
6104 {
6105 def.vd_aux = sizeof (Elf_External_Verdef);
6106 def.vd_next = (sizeof (Elf_External_Verdef)
6107 + sizeof (Elf_External_Verdaux));
6108 }
6109
6110 if (soname_indx != (bfd_size_type) -1)
6111 {
6112 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6113 soname_indx);
6114 def.vd_hash = bfd_elf_hash (soname);
6115 defaux.vda_name = soname_indx;
6116 name = soname;
6117 }
6118 else
6119 {
6120 bfd_size_type indx;
6121
6122 name = lbasename (output_bfd->filename);
6123 def.vd_hash = bfd_elf_hash (name);
6124 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6125 name, FALSE);
6126 if (indx == (bfd_size_type) -1)
6127 return FALSE;
6128 defaux.vda_name = indx;
6129 }
6130 defaux.vda_next = 0;
6131
6132 _bfd_elf_swap_verdef_out (output_bfd, &def,
6133 (Elf_External_Verdef *) p);
6134 p += sizeof (Elf_External_Verdef);
6135 if (info->create_default_symver)
6136 {
6137 /* Add a symbol representing this version. */
6138 bh = NULL;
6139 if (! (_bfd_generic_link_add_one_symbol
6140 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6141 0, NULL, FALSE,
6142 get_elf_backend_data (dynobj)->collect, &bh)))
6143 return FALSE;
6144 h = (struct elf_link_hash_entry *) bh;
6145 h->non_elf = 0;
6146 h->def_regular = 1;
6147 h->type = STT_OBJECT;
6148 h->verinfo.vertree = NULL;
6149
6150 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6151 return FALSE;
6152
6153 /* Create a duplicate of the base version with the same
6154 aux block, but different flags. */
6155 def.vd_flags = 0;
6156 def.vd_ndx = 2;
6157 def.vd_aux = sizeof (Elf_External_Verdef);
6158 if (verdefs)
6159 def.vd_next = (sizeof (Elf_External_Verdef)
6160 + sizeof (Elf_External_Verdaux));
6161 else
6162 def.vd_next = 0;
6163 _bfd_elf_swap_verdef_out (output_bfd, &def,
6164 (Elf_External_Verdef *) p);
6165 p += sizeof (Elf_External_Verdef);
6166 }
6167 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6168 (Elf_External_Verdaux *) p);
6169 p += sizeof (Elf_External_Verdaux);
6170
6171 for (t = verdefs; t != NULL; t = t->next)
6172 {
6173 unsigned int cdeps;
6174 struct bfd_elf_version_deps *n;
6175
6176 /* Don't emit the base version twice. */
6177 if (t->vernum == 0)
6178 continue;
6179
6180 cdeps = 0;
6181 for (n = t->deps; n != NULL; n = n->next)
6182 ++cdeps;
6183
6184 /* Add a symbol representing this version. */
6185 bh = NULL;
6186 if (! (_bfd_generic_link_add_one_symbol
6187 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6188 0, NULL, FALSE,
6189 get_elf_backend_data (dynobj)->collect, &bh)))
6190 return FALSE;
6191 h = (struct elf_link_hash_entry *) bh;
6192 h->non_elf = 0;
6193 h->def_regular = 1;
6194 h->type = STT_OBJECT;
6195 h->verinfo.vertree = t;
6196
6197 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6198 return FALSE;
6199
6200 def.vd_version = VER_DEF_CURRENT;
6201 def.vd_flags = 0;
6202 if (t->globals.list == NULL
6203 && t->locals.list == NULL
6204 && ! t->used)
6205 def.vd_flags |= VER_FLG_WEAK;
6206 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6207 def.vd_cnt = cdeps + 1;
6208 def.vd_hash = bfd_elf_hash (t->name);
6209 def.vd_aux = sizeof (Elf_External_Verdef);
6210 def.vd_next = 0;
6211
6212 /* If a basever node is next, it *must* be the last node in
6213 the chain, otherwise Verdef construction breaks. */
6214 if (t->next != NULL && t->next->vernum == 0)
6215 BFD_ASSERT (t->next->next == NULL);
6216
6217 if (t->next != NULL && t->next->vernum != 0)
6218 def.vd_next = (sizeof (Elf_External_Verdef)
6219 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6220
6221 _bfd_elf_swap_verdef_out (output_bfd, &def,
6222 (Elf_External_Verdef *) p);
6223 p += sizeof (Elf_External_Verdef);
6224
6225 defaux.vda_name = h->dynstr_index;
6226 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6227 h->dynstr_index);
6228 defaux.vda_next = 0;
6229 if (t->deps != NULL)
6230 defaux.vda_next = sizeof (Elf_External_Verdaux);
6231 t->name_indx = defaux.vda_name;
6232
6233 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6234 (Elf_External_Verdaux *) p);
6235 p += sizeof (Elf_External_Verdaux);
6236
6237 for (n = t->deps; n != NULL; n = n->next)
6238 {
6239 if (n->version_needed == NULL)
6240 {
6241 /* This can happen if there was an error in the
6242 version script. */
6243 defaux.vda_name = 0;
6244 }
6245 else
6246 {
6247 defaux.vda_name = n->version_needed->name_indx;
6248 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6249 defaux.vda_name);
6250 }
6251 if (n->next == NULL)
6252 defaux.vda_next = 0;
6253 else
6254 defaux.vda_next = sizeof (Elf_External_Verdaux);
6255
6256 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6257 (Elf_External_Verdaux *) p);
6258 p += sizeof (Elf_External_Verdaux);
6259 }
6260 }
6261
6262 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6263 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6264 return FALSE;
6265
6266 elf_tdata (output_bfd)->cverdefs = cdefs;
6267 }
6268
6269 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6270 {
6271 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6272 return FALSE;
6273 }
6274 else if (info->flags & DF_BIND_NOW)
6275 {
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6277 return FALSE;
6278 }
6279
6280 if (info->flags_1)
6281 {
6282 if (info->executable)
6283 info->flags_1 &= ~ (DF_1_INITFIRST
6284 | DF_1_NODELETE
6285 | DF_1_NOOPEN);
6286 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6287 return FALSE;
6288 }
6289
6290 /* Work out the size of the version reference section. */
6291
6292 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6293 BFD_ASSERT (s != NULL);
6294 {
6295 struct elf_find_verdep_info sinfo;
6296
6297 sinfo.info = info;
6298 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6299 if (sinfo.vers == 0)
6300 sinfo.vers = 1;
6301 sinfo.failed = FALSE;
6302
6303 elf_link_hash_traverse (elf_hash_table (info),
6304 _bfd_elf_link_find_version_dependencies,
6305 &sinfo);
6306 if (sinfo.failed)
6307 return FALSE;
6308
6309 if (elf_tdata (output_bfd)->verref == NULL)
6310 s->flags |= SEC_EXCLUDE;
6311 else
6312 {
6313 Elf_Internal_Verneed *t;
6314 unsigned int size;
6315 unsigned int crefs;
6316 bfd_byte *p;
6317
6318 /* Build the version dependency section. */
6319 size = 0;
6320 crefs = 0;
6321 for (t = elf_tdata (output_bfd)->verref;
6322 t != NULL;
6323 t = t->vn_nextref)
6324 {
6325 Elf_Internal_Vernaux *a;
6326
6327 size += sizeof (Elf_External_Verneed);
6328 ++crefs;
6329 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6330 size += sizeof (Elf_External_Vernaux);
6331 }
6332
6333 s->size = size;
6334 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6335 if (s->contents == NULL)
6336 return FALSE;
6337
6338 p = s->contents;
6339 for (t = elf_tdata (output_bfd)->verref;
6340 t != NULL;
6341 t = t->vn_nextref)
6342 {
6343 unsigned int caux;
6344 Elf_Internal_Vernaux *a;
6345 bfd_size_type indx;
6346
6347 caux = 0;
6348 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6349 ++caux;
6350
6351 t->vn_version = VER_NEED_CURRENT;
6352 t->vn_cnt = caux;
6353 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6354 elf_dt_name (t->vn_bfd) != NULL
6355 ? elf_dt_name (t->vn_bfd)
6356 : lbasename (t->vn_bfd->filename),
6357 FALSE);
6358 if (indx == (bfd_size_type) -1)
6359 return FALSE;
6360 t->vn_file = indx;
6361 t->vn_aux = sizeof (Elf_External_Verneed);
6362 if (t->vn_nextref == NULL)
6363 t->vn_next = 0;
6364 else
6365 t->vn_next = (sizeof (Elf_External_Verneed)
6366 + caux * sizeof (Elf_External_Vernaux));
6367
6368 _bfd_elf_swap_verneed_out (output_bfd, t,
6369 (Elf_External_Verneed *) p);
6370 p += sizeof (Elf_External_Verneed);
6371
6372 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6373 {
6374 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6375 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6376 a->vna_nodename, FALSE);
6377 if (indx == (bfd_size_type) -1)
6378 return FALSE;
6379 a->vna_name = indx;
6380 if (a->vna_nextptr == NULL)
6381 a->vna_next = 0;
6382 else
6383 a->vna_next = sizeof (Elf_External_Vernaux);
6384
6385 _bfd_elf_swap_vernaux_out (output_bfd, a,
6386 (Elf_External_Vernaux *) p);
6387 p += sizeof (Elf_External_Vernaux);
6388 }
6389 }
6390
6391 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6392 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6393 return FALSE;
6394
6395 elf_tdata (output_bfd)->cverrefs = crefs;
6396 }
6397 }
6398
6399 if ((elf_tdata (output_bfd)->cverrefs == 0
6400 && elf_tdata (output_bfd)->cverdefs == 0)
6401 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6402 &section_sym_count) == 0)
6403 {
6404 s = bfd_get_linker_section (dynobj, ".gnu.version");
6405 s->flags |= SEC_EXCLUDE;
6406 }
6407 }
6408 return TRUE;
6409 }
6410
6411 /* Find the first non-excluded output section. We'll use its
6412 section symbol for some emitted relocs. */
6413 void
6414 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6415 {
6416 asection *s;
6417
6418 for (s = output_bfd->sections; s != NULL; s = s->next)
6419 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6420 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6421 {
6422 elf_hash_table (info)->text_index_section = s;
6423 break;
6424 }
6425 }
6426
6427 /* Find two non-excluded output sections, one for code, one for data.
6428 We'll use their section symbols for some emitted relocs. */
6429 void
6430 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6431 {
6432 asection *s;
6433
6434 /* Data first, since setting text_index_section changes
6435 _bfd_elf_link_omit_section_dynsym. */
6436 for (s = output_bfd->sections; s != NULL; s = s->next)
6437 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6438 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6439 {
6440 elf_hash_table (info)->data_index_section = s;
6441 break;
6442 }
6443
6444 for (s = output_bfd->sections; s != NULL; s = s->next)
6445 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6446 == (SEC_ALLOC | SEC_READONLY))
6447 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6448 {
6449 elf_hash_table (info)->text_index_section = s;
6450 break;
6451 }
6452
6453 if (elf_hash_table (info)->text_index_section == NULL)
6454 elf_hash_table (info)->text_index_section
6455 = elf_hash_table (info)->data_index_section;
6456 }
6457
6458 bfd_boolean
6459 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6460 {
6461 const struct elf_backend_data *bed;
6462
6463 if (!is_elf_hash_table (info->hash))
6464 return TRUE;
6465
6466 bed = get_elf_backend_data (output_bfd);
6467 (*bed->elf_backend_init_index_section) (output_bfd, info);
6468
6469 if (elf_hash_table (info)->dynamic_sections_created)
6470 {
6471 bfd *dynobj;
6472 asection *s;
6473 bfd_size_type dynsymcount;
6474 unsigned long section_sym_count;
6475 unsigned int dtagcount;
6476
6477 dynobj = elf_hash_table (info)->dynobj;
6478
6479 /* Assign dynsym indicies. In a shared library we generate a
6480 section symbol for each output section, which come first.
6481 Next come all of the back-end allocated local dynamic syms,
6482 followed by the rest of the global symbols. */
6483
6484 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6485 &section_sym_count);
6486
6487 /* Work out the size of the symbol version section. */
6488 s = bfd_get_linker_section (dynobj, ".gnu.version");
6489 BFD_ASSERT (s != NULL);
6490 if (dynsymcount != 0
6491 && (s->flags & SEC_EXCLUDE) == 0)
6492 {
6493 s->size = dynsymcount * sizeof (Elf_External_Versym);
6494 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6495 if (s->contents == NULL)
6496 return FALSE;
6497
6498 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6499 return FALSE;
6500 }
6501
6502 /* Set the size of the .dynsym and .hash sections. We counted
6503 the number of dynamic symbols in elf_link_add_object_symbols.
6504 We will build the contents of .dynsym and .hash when we build
6505 the final symbol table, because until then we do not know the
6506 correct value to give the symbols. We built the .dynstr
6507 section as we went along in elf_link_add_object_symbols. */
6508 s = bfd_get_linker_section (dynobj, ".dynsym");
6509 BFD_ASSERT (s != NULL);
6510 s->size = dynsymcount * bed->s->sizeof_sym;
6511
6512 if (dynsymcount != 0)
6513 {
6514 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6515 if (s->contents == NULL)
6516 return FALSE;
6517
6518 /* The first entry in .dynsym is a dummy symbol.
6519 Clear all the section syms, in case we don't output them all. */
6520 ++section_sym_count;
6521 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6522 }
6523
6524 elf_hash_table (info)->bucketcount = 0;
6525
6526 /* Compute the size of the hashing table. As a side effect this
6527 computes the hash values for all the names we export. */
6528 if (info->emit_hash)
6529 {
6530 unsigned long int *hashcodes;
6531 struct hash_codes_info hashinf;
6532 bfd_size_type amt;
6533 unsigned long int nsyms;
6534 size_t bucketcount;
6535 size_t hash_entry_size;
6536
6537 /* Compute the hash values for all exported symbols. At the same
6538 time store the values in an array so that we could use them for
6539 optimizations. */
6540 amt = dynsymcount * sizeof (unsigned long int);
6541 hashcodes = (unsigned long int *) bfd_malloc (amt);
6542 if (hashcodes == NULL)
6543 return FALSE;
6544 hashinf.hashcodes = hashcodes;
6545 hashinf.error = FALSE;
6546
6547 /* Put all hash values in HASHCODES. */
6548 elf_link_hash_traverse (elf_hash_table (info),
6549 elf_collect_hash_codes, &hashinf);
6550 if (hashinf.error)
6551 {
6552 free (hashcodes);
6553 return FALSE;
6554 }
6555
6556 nsyms = hashinf.hashcodes - hashcodes;
6557 bucketcount
6558 = compute_bucket_count (info, hashcodes, nsyms, 0);
6559 free (hashcodes);
6560
6561 if (bucketcount == 0)
6562 return FALSE;
6563
6564 elf_hash_table (info)->bucketcount = bucketcount;
6565
6566 s = bfd_get_linker_section (dynobj, ".hash");
6567 BFD_ASSERT (s != NULL);
6568 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6569 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6570 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6571 if (s->contents == NULL)
6572 return FALSE;
6573
6574 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6575 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6576 s->contents + hash_entry_size);
6577 }
6578
6579 if (info->emit_gnu_hash)
6580 {
6581 size_t i, cnt;
6582 unsigned char *contents;
6583 struct collect_gnu_hash_codes cinfo;
6584 bfd_size_type amt;
6585 size_t bucketcount;
6586
6587 memset (&cinfo, 0, sizeof (cinfo));
6588
6589 /* Compute the hash values for all exported symbols. At the same
6590 time store the values in an array so that we could use them for
6591 optimizations. */
6592 amt = dynsymcount * 2 * sizeof (unsigned long int);
6593 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6594 if (cinfo.hashcodes == NULL)
6595 return FALSE;
6596
6597 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6598 cinfo.min_dynindx = -1;
6599 cinfo.output_bfd = output_bfd;
6600 cinfo.bed = bed;
6601
6602 /* Put all hash values in HASHCODES. */
6603 elf_link_hash_traverse (elf_hash_table (info),
6604 elf_collect_gnu_hash_codes, &cinfo);
6605 if (cinfo.error)
6606 {
6607 free (cinfo.hashcodes);
6608 return FALSE;
6609 }
6610
6611 bucketcount
6612 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6613
6614 if (bucketcount == 0)
6615 {
6616 free (cinfo.hashcodes);
6617 return FALSE;
6618 }
6619
6620 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6621 BFD_ASSERT (s != NULL);
6622
6623 if (cinfo.nsyms == 0)
6624 {
6625 /* Empty .gnu.hash section is special. */
6626 BFD_ASSERT (cinfo.min_dynindx == -1);
6627 free (cinfo.hashcodes);
6628 s->size = 5 * 4 + bed->s->arch_size / 8;
6629 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6630 if (contents == NULL)
6631 return FALSE;
6632 s->contents = contents;
6633 /* 1 empty bucket. */
6634 bfd_put_32 (output_bfd, 1, contents);
6635 /* SYMIDX above the special symbol 0. */
6636 bfd_put_32 (output_bfd, 1, contents + 4);
6637 /* Just one word for bitmask. */
6638 bfd_put_32 (output_bfd, 1, contents + 8);
6639 /* Only hash fn bloom filter. */
6640 bfd_put_32 (output_bfd, 0, contents + 12);
6641 /* No hashes are valid - empty bitmask. */
6642 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6643 /* No hashes in the only bucket. */
6644 bfd_put_32 (output_bfd, 0,
6645 contents + 16 + bed->s->arch_size / 8);
6646 }
6647 else
6648 {
6649 unsigned long int maskwords, maskbitslog2, x;
6650 BFD_ASSERT (cinfo.min_dynindx != -1);
6651
6652 x = cinfo.nsyms;
6653 maskbitslog2 = 1;
6654 while ((x >>= 1) != 0)
6655 ++maskbitslog2;
6656 if (maskbitslog2 < 3)
6657 maskbitslog2 = 5;
6658 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6659 maskbitslog2 = maskbitslog2 + 3;
6660 else
6661 maskbitslog2 = maskbitslog2 + 2;
6662 if (bed->s->arch_size == 64)
6663 {
6664 if (maskbitslog2 == 5)
6665 maskbitslog2 = 6;
6666 cinfo.shift1 = 6;
6667 }
6668 else
6669 cinfo.shift1 = 5;
6670 cinfo.mask = (1 << cinfo.shift1) - 1;
6671 cinfo.shift2 = maskbitslog2;
6672 cinfo.maskbits = 1 << maskbitslog2;
6673 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6674 amt = bucketcount * sizeof (unsigned long int) * 2;
6675 amt += maskwords * sizeof (bfd_vma);
6676 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6677 if (cinfo.bitmask == NULL)
6678 {
6679 free (cinfo.hashcodes);
6680 return FALSE;
6681 }
6682
6683 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6684 cinfo.indx = cinfo.counts + bucketcount;
6685 cinfo.symindx = dynsymcount - cinfo.nsyms;
6686 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6687
6688 /* Determine how often each hash bucket is used. */
6689 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6690 for (i = 0; i < cinfo.nsyms; ++i)
6691 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6692
6693 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6694 if (cinfo.counts[i] != 0)
6695 {
6696 cinfo.indx[i] = cnt;
6697 cnt += cinfo.counts[i];
6698 }
6699 BFD_ASSERT (cnt == dynsymcount);
6700 cinfo.bucketcount = bucketcount;
6701 cinfo.local_indx = cinfo.min_dynindx;
6702
6703 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6704 s->size += cinfo.maskbits / 8;
6705 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6706 if (contents == NULL)
6707 {
6708 free (cinfo.bitmask);
6709 free (cinfo.hashcodes);
6710 return FALSE;
6711 }
6712
6713 s->contents = contents;
6714 bfd_put_32 (output_bfd, bucketcount, contents);
6715 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6716 bfd_put_32 (output_bfd, maskwords, contents + 8);
6717 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6718 contents += 16 + cinfo.maskbits / 8;
6719
6720 for (i = 0; i < bucketcount; ++i)
6721 {
6722 if (cinfo.counts[i] == 0)
6723 bfd_put_32 (output_bfd, 0, contents);
6724 else
6725 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6726 contents += 4;
6727 }
6728
6729 cinfo.contents = contents;
6730
6731 /* Renumber dynamic symbols, populate .gnu.hash section. */
6732 elf_link_hash_traverse (elf_hash_table (info),
6733 elf_renumber_gnu_hash_syms, &cinfo);
6734
6735 contents = s->contents + 16;
6736 for (i = 0; i < maskwords; ++i)
6737 {
6738 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6739 contents);
6740 contents += bed->s->arch_size / 8;
6741 }
6742
6743 free (cinfo.bitmask);
6744 free (cinfo.hashcodes);
6745 }
6746 }
6747
6748 s = bfd_get_linker_section (dynobj, ".dynstr");
6749 BFD_ASSERT (s != NULL);
6750
6751 elf_finalize_dynstr (output_bfd, info);
6752
6753 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6754
6755 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6756 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6757 return FALSE;
6758 }
6759
6760 return TRUE;
6761 }
6762 \f
6763 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6764
6765 static void
6766 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6767 asection *sec)
6768 {
6769 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6770 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6771 }
6772
6773 /* Finish SHF_MERGE section merging. */
6774
6775 bfd_boolean
6776 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6777 {
6778 bfd *ibfd;
6779 asection *sec;
6780
6781 if (!is_elf_hash_table (info->hash))
6782 return FALSE;
6783
6784 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6785 if ((ibfd->flags & DYNAMIC) == 0)
6786 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6787 if ((sec->flags & SEC_MERGE) != 0
6788 && !bfd_is_abs_section (sec->output_section))
6789 {
6790 struct bfd_elf_section_data *secdata;
6791
6792 secdata = elf_section_data (sec);
6793 if (! _bfd_add_merge_section (abfd,
6794 &elf_hash_table (info)->merge_info,
6795 sec, &secdata->sec_info))
6796 return FALSE;
6797 else if (secdata->sec_info)
6798 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6799 }
6800
6801 if (elf_hash_table (info)->merge_info != NULL)
6802 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6803 merge_sections_remove_hook);
6804 return TRUE;
6805 }
6806
6807 /* Create an entry in an ELF linker hash table. */
6808
6809 struct bfd_hash_entry *
6810 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6811 struct bfd_hash_table *table,
6812 const char *string)
6813 {
6814 /* Allocate the structure if it has not already been allocated by a
6815 subclass. */
6816 if (entry == NULL)
6817 {
6818 entry = (struct bfd_hash_entry *)
6819 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6820 if (entry == NULL)
6821 return entry;
6822 }
6823
6824 /* Call the allocation method of the superclass. */
6825 entry = _bfd_link_hash_newfunc (entry, table, string);
6826 if (entry != NULL)
6827 {
6828 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6829 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6830
6831 /* Set local fields. */
6832 ret->indx = -1;
6833 ret->dynindx = -1;
6834 ret->got = htab->init_got_refcount;
6835 ret->plt = htab->init_plt_refcount;
6836 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6837 - offsetof (struct elf_link_hash_entry, size)));
6838 /* Assume that we have been called by a non-ELF symbol reader.
6839 This flag is then reset by the code which reads an ELF input
6840 file. This ensures that a symbol created by a non-ELF symbol
6841 reader will have the flag set correctly. */
6842 ret->non_elf = 1;
6843 }
6844
6845 return entry;
6846 }
6847
6848 /* Copy data from an indirect symbol to its direct symbol, hiding the
6849 old indirect symbol. Also used for copying flags to a weakdef. */
6850
6851 void
6852 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6853 struct elf_link_hash_entry *dir,
6854 struct elf_link_hash_entry *ind)
6855 {
6856 struct elf_link_hash_table *htab;
6857
6858 /* Copy down any references that we may have already seen to the
6859 symbol which just became indirect if DIR isn't a hidden versioned
6860 symbol. */
6861
6862 if (!dir->hidden)
6863 {
6864 dir->ref_dynamic |= ind->ref_dynamic;
6865 dir->ref_regular |= ind->ref_regular;
6866 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6867 dir->non_got_ref |= ind->non_got_ref;
6868 dir->needs_plt |= ind->needs_plt;
6869 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6870 }
6871
6872 if (ind->root.type != bfd_link_hash_indirect)
6873 return;
6874
6875 /* Copy over the global and procedure linkage table refcount entries.
6876 These may have been already set up by a check_relocs routine. */
6877 htab = elf_hash_table (info);
6878 if (ind->got.refcount > htab->init_got_refcount.refcount)
6879 {
6880 if (dir->got.refcount < 0)
6881 dir->got.refcount = 0;
6882 dir->got.refcount += ind->got.refcount;
6883 ind->got.refcount = htab->init_got_refcount.refcount;
6884 }
6885
6886 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6887 {
6888 if (dir->plt.refcount < 0)
6889 dir->plt.refcount = 0;
6890 dir->plt.refcount += ind->plt.refcount;
6891 ind->plt.refcount = htab->init_plt_refcount.refcount;
6892 }
6893
6894 if (ind->dynindx != -1)
6895 {
6896 if (dir->dynindx != -1)
6897 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6898 dir->dynindx = ind->dynindx;
6899 dir->dynstr_index = ind->dynstr_index;
6900 ind->dynindx = -1;
6901 ind->dynstr_index = 0;
6902 }
6903 }
6904
6905 void
6906 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6907 struct elf_link_hash_entry *h,
6908 bfd_boolean force_local)
6909 {
6910 /* STT_GNU_IFUNC symbol must go through PLT. */
6911 if (h->type != STT_GNU_IFUNC)
6912 {
6913 h->plt = elf_hash_table (info)->init_plt_offset;
6914 h->needs_plt = 0;
6915 }
6916 if (force_local)
6917 {
6918 h->forced_local = 1;
6919 if (h->dynindx != -1)
6920 {
6921 h->dynindx = -1;
6922 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6923 h->dynstr_index);
6924 }
6925 }
6926 }
6927
6928 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6929 caller. */
6930
6931 bfd_boolean
6932 _bfd_elf_link_hash_table_init
6933 (struct elf_link_hash_table *table,
6934 bfd *abfd,
6935 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6936 struct bfd_hash_table *,
6937 const char *),
6938 unsigned int entsize,
6939 enum elf_target_id target_id)
6940 {
6941 bfd_boolean ret;
6942 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6943
6944 table->init_got_refcount.refcount = can_refcount - 1;
6945 table->init_plt_refcount.refcount = can_refcount - 1;
6946 table->init_got_offset.offset = -(bfd_vma) 1;
6947 table->init_plt_offset.offset = -(bfd_vma) 1;
6948 /* The first dynamic symbol is a dummy. */
6949 table->dynsymcount = 1;
6950
6951 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6952
6953 table->root.type = bfd_link_elf_hash_table;
6954 table->hash_table_id = target_id;
6955
6956 return ret;
6957 }
6958
6959 /* Create an ELF linker hash table. */
6960
6961 struct bfd_link_hash_table *
6962 _bfd_elf_link_hash_table_create (bfd *abfd)
6963 {
6964 struct elf_link_hash_table *ret;
6965 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6966
6967 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6968 if (ret == NULL)
6969 return NULL;
6970
6971 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6972 sizeof (struct elf_link_hash_entry),
6973 GENERIC_ELF_DATA))
6974 {
6975 free (ret);
6976 return NULL;
6977 }
6978 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6979
6980 return &ret->root;
6981 }
6982
6983 /* Destroy an ELF linker hash table. */
6984
6985 void
6986 _bfd_elf_link_hash_table_free (bfd *obfd)
6987 {
6988 struct elf_link_hash_table *htab;
6989
6990 htab = (struct elf_link_hash_table *) obfd->link.hash;
6991 if (htab->dynstr != NULL)
6992 _bfd_elf_strtab_free (htab->dynstr);
6993 _bfd_merge_sections_free (htab->merge_info);
6994 _bfd_generic_link_hash_table_free (obfd);
6995 }
6996
6997 /* This is a hook for the ELF emulation code in the generic linker to
6998 tell the backend linker what file name to use for the DT_NEEDED
6999 entry for a dynamic object. */
7000
7001 void
7002 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7003 {
7004 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7005 && bfd_get_format (abfd) == bfd_object)
7006 elf_dt_name (abfd) = name;
7007 }
7008
7009 int
7010 bfd_elf_get_dyn_lib_class (bfd *abfd)
7011 {
7012 int lib_class;
7013 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7014 && bfd_get_format (abfd) == bfd_object)
7015 lib_class = elf_dyn_lib_class (abfd);
7016 else
7017 lib_class = 0;
7018 return lib_class;
7019 }
7020
7021 void
7022 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7023 {
7024 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7025 && bfd_get_format (abfd) == bfd_object)
7026 elf_dyn_lib_class (abfd) = lib_class;
7027 }
7028
7029 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7030 the linker ELF emulation code. */
7031
7032 struct bfd_link_needed_list *
7033 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7034 struct bfd_link_info *info)
7035 {
7036 if (! is_elf_hash_table (info->hash))
7037 return NULL;
7038 return elf_hash_table (info)->needed;
7039 }
7040
7041 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7042 hook for the linker ELF emulation code. */
7043
7044 struct bfd_link_needed_list *
7045 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7046 struct bfd_link_info *info)
7047 {
7048 if (! is_elf_hash_table (info->hash))
7049 return NULL;
7050 return elf_hash_table (info)->runpath;
7051 }
7052
7053 /* Get the name actually used for a dynamic object for a link. This
7054 is the SONAME entry if there is one. Otherwise, it is the string
7055 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7056
7057 const char *
7058 bfd_elf_get_dt_soname (bfd *abfd)
7059 {
7060 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7061 && bfd_get_format (abfd) == bfd_object)
7062 return elf_dt_name (abfd);
7063 return NULL;
7064 }
7065
7066 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7067 the ELF linker emulation code. */
7068
7069 bfd_boolean
7070 bfd_elf_get_bfd_needed_list (bfd *abfd,
7071 struct bfd_link_needed_list **pneeded)
7072 {
7073 asection *s;
7074 bfd_byte *dynbuf = NULL;
7075 unsigned int elfsec;
7076 unsigned long shlink;
7077 bfd_byte *extdyn, *extdynend;
7078 size_t extdynsize;
7079 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7080
7081 *pneeded = NULL;
7082
7083 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7084 || bfd_get_format (abfd) != bfd_object)
7085 return TRUE;
7086
7087 s = bfd_get_section_by_name (abfd, ".dynamic");
7088 if (s == NULL || s->size == 0)
7089 return TRUE;
7090
7091 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7092 goto error_return;
7093
7094 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7095 if (elfsec == SHN_BAD)
7096 goto error_return;
7097
7098 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7099
7100 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7101 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7102
7103 extdyn = dynbuf;
7104 extdynend = extdyn + s->size;
7105 for (; extdyn < extdynend; extdyn += extdynsize)
7106 {
7107 Elf_Internal_Dyn dyn;
7108
7109 (*swap_dyn_in) (abfd, extdyn, &dyn);
7110
7111 if (dyn.d_tag == DT_NULL)
7112 break;
7113
7114 if (dyn.d_tag == DT_NEEDED)
7115 {
7116 const char *string;
7117 struct bfd_link_needed_list *l;
7118 unsigned int tagv = dyn.d_un.d_val;
7119 bfd_size_type amt;
7120
7121 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7122 if (string == NULL)
7123 goto error_return;
7124
7125 amt = sizeof *l;
7126 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7127 if (l == NULL)
7128 goto error_return;
7129
7130 l->by = abfd;
7131 l->name = string;
7132 l->next = *pneeded;
7133 *pneeded = l;
7134 }
7135 }
7136
7137 free (dynbuf);
7138
7139 return TRUE;
7140
7141 error_return:
7142 if (dynbuf != NULL)
7143 free (dynbuf);
7144 return FALSE;
7145 }
7146
7147 struct elf_symbuf_symbol
7148 {
7149 unsigned long st_name; /* Symbol name, index in string tbl */
7150 unsigned char st_info; /* Type and binding attributes */
7151 unsigned char st_other; /* Visibilty, and target specific */
7152 };
7153
7154 struct elf_symbuf_head
7155 {
7156 struct elf_symbuf_symbol *ssym;
7157 bfd_size_type count;
7158 unsigned int st_shndx;
7159 };
7160
7161 struct elf_symbol
7162 {
7163 union
7164 {
7165 Elf_Internal_Sym *isym;
7166 struct elf_symbuf_symbol *ssym;
7167 } u;
7168 const char *name;
7169 };
7170
7171 /* Sort references to symbols by ascending section number. */
7172
7173 static int
7174 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7175 {
7176 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7177 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7178
7179 return s1->st_shndx - s2->st_shndx;
7180 }
7181
7182 static int
7183 elf_sym_name_compare (const void *arg1, const void *arg2)
7184 {
7185 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7186 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7187 return strcmp (s1->name, s2->name);
7188 }
7189
7190 static struct elf_symbuf_head *
7191 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7192 {
7193 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7194 struct elf_symbuf_symbol *ssym;
7195 struct elf_symbuf_head *ssymbuf, *ssymhead;
7196 bfd_size_type i, shndx_count, total_size;
7197
7198 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7199 if (indbuf == NULL)
7200 return NULL;
7201
7202 for (ind = indbuf, i = 0; i < symcount; i++)
7203 if (isymbuf[i].st_shndx != SHN_UNDEF)
7204 *ind++ = &isymbuf[i];
7205 indbufend = ind;
7206
7207 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7208 elf_sort_elf_symbol);
7209
7210 shndx_count = 0;
7211 if (indbufend > indbuf)
7212 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7213 if (ind[0]->st_shndx != ind[1]->st_shndx)
7214 shndx_count++;
7215
7216 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7217 + (indbufend - indbuf) * sizeof (*ssym));
7218 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7219 if (ssymbuf == NULL)
7220 {
7221 free (indbuf);
7222 return NULL;
7223 }
7224
7225 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7226 ssymbuf->ssym = NULL;
7227 ssymbuf->count = shndx_count;
7228 ssymbuf->st_shndx = 0;
7229 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7230 {
7231 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7232 {
7233 ssymhead++;
7234 ssymhead->ssym = ssym;
7235 ssymhead->count = 0;
7236 ssymhead->st_shndx = (*ind)->st_shndx;
7237 }
7238 ssym->st_name = (*ind)->st_name;
7239 ssym->st_info = (*ind)->st_info;
7240 ssym->st_other = (*ind)->st_other;
7241 ssymhead->count++;
7242 }
7243 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7244 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7245 == total_size));
7246
7247 free (indbuf);
7248 return ssymbuf;
7249 }
7250
7251 /* Check if 2 sections define the same set of local and global
7252 symbols. */
7253
7254 static bfd_boolean
7255 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7256 struct bfd_link_info *info)
7257 {
7258 bfd *bfd1, *bfd2;
7259 const struct elf_backend_data *bed1, *bed2;
7260 Elf_Internal_Shdr *hdr1, *hdr2;
7261 bfd_size_type symcount1, symcount2;
7262 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7263 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7264 Elf_Internal_Sym *isym, *isymend;
7265 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7266 bfd_size_type count1, count2, i;
7267 unsigned int shndx1, shndx2;
7268 bfd_boolean result;
7269
7270 bfd1 = sec1->owner;
7271 bfd2 = sec2->owner;
7272
7273 /* Both sections have to be in ELF. */
7274 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7275 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7276 return FALSE;
7277
7278 if (elf_section_type (sec1) != elf_section_type (sec2))
7279 return FALSE;
7280
7281 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7282 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7283 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7284 return FALSE;
7285
7286 bed1 = get_elf_backend_data (bfd1);
7287 bed2 = get_elf_backend_data (bfd2);
7288 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7289 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7290 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7291 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7292
7293 if (symcount1 == 0 || symcount2 == 0)
7294 return FALSE;
7295
7296 result = FALSE;
7297 isymbuf1 = NULL;
7298 isymbuf2 = NULL;
7299 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7300 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7301
7302 if (ssymbuf1 == NULL)
7303 {
7304 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7305 NULL, NULL, NULL);
7306 if (isymbuf1 == NULL)
7307 goto done;
7308
7309 if (!info->reduce_memory_overheads)
7310 elf_tdata (bfd1)->symbuf = ssymbuf1
7311 = elf_create_symbuf (symcount1, isymbuf1);
7312 }
7313
7314 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7315 {
7316 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7317 NULL, NULL, NULL);
7318 if (isymbuf2 == NULL)
7319 goto done;
7320
7321 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7322 elf_tdata (bfd2)->symbuf = ssymbuf2
7323 = elf_create_symbuf (symcount2, isymbuf2);
7324 }
7325
7326 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7327 {
7328 /* Optimized faster version. */
7329 bfd_size_type lo, hi, mid;
7330 struct elf_symbol *symp;
7331 struct elf_symbuf_symbol *ssym, *ssymend;
7332
7333 lo = 0;
7334 hi = ssymbuf1->count;
7335 ssymbuf1++;
7336 count1 = 0;
7337 while (lo < hi)
7338 {
7339 mid = (lo + hi) / 2;
7340 if (shndx1 < ssymbuf1[mid].st_shndx)
7341 hi = mid;
7342 else if (shndx1 > ssymbuf1[mid].st_shndx)
7343 lo = mid + 1;
7344 else
7345 {
7346 count1 = ssymbuf1[mid].count;
7347 ssymbuf1 += mid;
7348 break;
7349 }
7350 }
7351
7352 lo = 0;
7353 hi = ssymbuf2->count;
7354 ssymbuf2++;
7355 count2 = 0;
7356 while (lo < hi)
7357 {
7358 mid = (lo + hi) / 2;
7359 if (shndx2 < ssymbuf2[mid].st_shndx)
7360 hi = mid;
7361 else if (shndx2 > ssymbuf2[mid].st_shndx)
7362 lo = mid + 1;
7363 else
7364 {
7365 count2 = ssymbuf2[mid].count;
7366 ssymbuf2 += mid;
7367 break;
7368 }
7369 }
7370
7371 if (count1 == 0 || count2 == 0 || count1 != count2)
7372 goto done;
7373
7374 symtable1
7375 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7376 symtable2
7377 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7378 if (symtable1 == NULL || symtable2 == NULL)
7379 goto done;
7380
7381 symp = symtable1;
7382 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7383 ssym < ssymend; ssym++, symp++)
7384 {
7385 symp->u.ssym = ssym;
7386 symp->name = bfd_elf_string_from_elf_section (bfd1,
7387 hdr1->sh_link,
7388 ssym->st_name);
7389 }
7390
7391 symp = symtable2;
7392 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7393 ssym < ssymend; ssym++, symp++)
7394 {
7395 symp->u.ssym = ssym;
7396 symp->name = bfd_elf_string_from_elf_section (bfd2,
7397 hdr2->sh_link,
7398 ssym->st_name);
7399 }
7400
7401 /* Sort symbol by name. */
7402 qsort (symtable1, count1, sizeof (struct elf_symbol),
7403 elf_sym_name_compare);
7404 qsort (symtable2, count1, sizeof (struct elf_symbol),
7405 elf_sym_name_compare);
7406
7407 for (i = 0; i < count1; i++)
7408 /* Two symbols must have the same binding, type and name. */
7409 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7410 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7411 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7412 goto done;
7413
7414 result = TRUE;
7415 goto done;
7416 }
7417
7418 symtable1 = (struct elf_symbol *)
7419 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7420 symtable2 = (struct elf_symbol *)
7421 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7422 if (symtable1 == NULL || symtable2 == NULL)
7423 goto done;
7424
7425 /* Count definitions in the section. */
7426 count1 = 0;
7427 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7428 if (isym->st_shndx == shndx1)
7429 symtable1[count1++].u.isym = isym;
7430
7431 count2 = 0;
7432 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7433 if (isym->st_shndx == shndx2)
7434 symtable2[count2++].u.isym = isym;
7435
7436 if (count1 == 0 || count2 == 0 || count1 != count2)
7437 goto done;
7438
7439 for (i = 0; i < count1; i++)
7440 symtable1[i].name
7441 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7442 symtable1[i].u.isym->st_name);
7443
7444 for (i = 0; i < count2; i++)
7445 symtable2[i].name
7446 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7447 symtable2[i].u.isym->st_name);
7448
7449 /* Sort symbol by name. */
7450 qsort (symtable1, count1, sizeof (struct elf_symbol),
7451 elf_sym_name_compare);
7452 qsort (symtable2, count1, sizeof (struct elf_symbol),
7453 elf_sym_name_compare);
7454
7455 for (i = 0; i < count1; i++)
7456 /* Two symbols must have the same binding, type and name. */
7457 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7458 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7459 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7460 goto done;
7461
7462 result = TRUE;
7463
7464 done:
7465 if (symtable1)
7466 free (symtable1);
7467 if (symtable2)
7468 free (symtable2);
7469 if (isymbuf1)
7470 free (isymbuf1);
7471 if (isymbuf2)
7472 free (isymbuf2);
7473
7474 return result;
7475 }
7476
7477 /* Return TRUE if 2 section types are compatible. */
7478
7479 bfd_boolean
7480 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7481 bfd *bbfd, const asection *bsec)
7482 {
7483 if (asec == NULL
7484 || bsec == NULL
7485 || abfd->xvec->flavour != bfd_target_elf_flavour
7486 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7487 return TRUE;
7488
7489 return elf_section_type (asec) == elf_section_type (bsec);
7490 }
7491 \f
7492 /* Final phase of ELF linker. */
7493
7494 /* A structure we use to avoid passing large numbers of arguments. */
7495
7496 struct elf_final_link_info
7497 {
7498 /* General link information. */
7499 struct bfd_link_info *info;
7500 /* Output BFD. */
7501 bfd *output_bfd;
7502 /* Symbol string table. */
7503 struct elf_strtab_hash *symstrtab;
7504 /* .dynsym section. */
7505 asection *dynsym_sec;
7506 /* .hash section. */
7507 asection *hash_sec;
7508 /* symbol version section (.gnu.version). */
7509 asection *symver_sec;
7510 /* Buffer large enough to hold contents of any section. */
7511 bfd_byte *contents;
7512 /* Buffer large enough to hold external relocs of any section. */
7513 void *external_relocs;
7514 /* Buffer large enough to hold internal relocs of any section. */
7515 Elf_Internal_Rela *internal_relocs;
7516 /* Buffer large enough to hold external local symbols of any input
7517 BFD. */
7518 bfd_byte *external_syms;
7519 /* And a buffer for symbol section indices. */
7520 Elf_External_Sym_Shndx *locsym_shndx;
7521 /* Buffer large enough to hold internal local symbols of any input
7522 BFD. */
7523 Elf_Internal_Sym *internal_syms;
7524 /* Array large enough to hold a symbol index for each local symbol
7525 of any input BFD. */
7526 long *indices;
7527 /* Array large enough to hold a section pointer for each local
7528 symbol of any input BFD. */
7529 asection **sections;
7530 /* Buffer for SHT_SYMTAB_SHNDX section. */
7531 Elf_External_Sym_Shndx *symshndxbuf;
7532 /* Number of STT_FILE syms seen. */
7533 size_t filesym_count;
7534 };
7535
7536 /* This struct is used to pass information to elf_link_output_extsym. */
7537
7538 struct elf_outext_info
7539 {
7540 bfd_boolean failed;
7541 bfd_boolean localsyms;
7542 bfd_boolean file_sym_done;
7543 struct elf_final_link_info *flinfo;
7544 };
7545
7546
7547 /* Support for evaluating a complex relocation.
7548
7549 Complex relocations are generalized, self-describing relocations. The
7550 implementation of them consists of two parts: complex symbols, and the
7551 relocations themselves.
7552
7553 The relocations are use a reserved elf-wide relocation type code (R_RELC
7554 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7555 information (start bit, end bit, word width, etc) into the addend. This
7556 information is extracted from CGEN-generated operand tables within gas.
7557
7558 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7559 internal) representing prefix-notation expressions, including but not
7560 limited to those sorts of expressions normally encoded as addends in the
7561 addend field. The symbol mangling format is:
7562
7563 <node> := <literal>
7564 | <unary-operator> ':' <node>
7565 | <binary-operator> ':' <node> ':' <node>
7566 ;
7567
7568 <literal> := 's' <digits=N> ':' <N character symbol name>
7569 | 'S' <digits=N> ':' <N character section name>
7570 | '#' <hexdigits>
7571 ;
7572
7573 <binary-operator> := as in C
7574 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7575
7576 static void
7577 set_symbol_value (bfd *bfd_with_globals,
7578 Elf_Internal_Sym *isymbuf,
7579 size_t locsymcount,
7580 size_t symidx,
7581 bfd_vma val)
7582 {
7583 struct elf_link_hash_entry **sym_hashes;
7584 struct elf_link_hash_entry *h;
7585 size_t extsymoff = locsymcount;
7586
7587 if (symidx < locsymcount)
7588 {
7589 Elf_Internal_Sym *sym;
7590
7591 sym = isymbuf + symidx;
7592 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7593 {
7594 /* It is a local symbol: move it to the
7595 "absolute" section and give it a value. */
7596 sym->st_shndx = SHN_ABS;
7597 sym->st_value = val;
7598 return;
7599 }
7600 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7601 extsymoff = 0;
7602 }
7603
7604 /* It is a global symbol: set its link type
7605 to "defined" and give it a value. */
7606
7607 sym_hashes = elf_sym_hashes (bfd_with_globals);
7608 h = sym_hashes [symidx - extsymoff];
7609 while (h->root.type == bfd_link_hash_indirect
7610 || h->root.type == bfd_link_hash_warning)
7611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7612 h->root.type = bfd_link_hash_defined;
7613 h->root.u.def.value = val;
7614 h->root.u.def.section = bfd_abs_section_ptr;
7615 }
7616
7617 static bfd_boolean
7618 resolve_symbol (const char *name,
7619 bfd *input_bfd,
7620 struct elf_final_link_info *flinfo,
7621 bfd_vma *result,
7622 Elf_Internal_Sym *isymbuf,
7623 size_t locsymcount)
7624 {
7625 Elf_Internal_Sym *sym;
7626 struct bfd_link_hash_entry *global_entry;
7627 const char *candidate = NULL;
7628 Elf_Internal_Shdr *symtab_hdr;
7629 size_t i;
7630
7631 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7632
7633 for (i = 0; i < locsymcount; ++ i)
7634 {
7635 sym = isymbuf + i;
7636
7637 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7638 continue;
7639
7640 candidate = bfd_elf_string_from_elf_section (input_bfd,
7641 symtab_hdr->sh_link,
7642 sym->st_name);
7643 #ifdef DEBUG
7644 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7645 name, candidate, (unsigned long) sym->st_value);
7646 #endif
7647 if (candidate && strcmp (candidate, name) == 0)
7648 {
7649 asection *sec = flinfo->sections [i];
7650
7651 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7652 *result += sec->output_offset + sec->output_section->vma;
7653 #ifdef DEBUG
7654 printf ("Found symbol with value %8.8lx\n",
7655 (unsigned long) *result);
7656 #endif
7657 return TRUE;
7658 }
7659 }
7660
7661 /* Hmm, haven't found it yet. perhaps it is a global. */
7662 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7663 FALSE, FALSE, TRUE);
7664 if (!global_entry)
7665 return FALSE;
7666
7667 if (global_entry->type == bfd_link_hash_defined
7668 || global_entry->type == bfd_link_hash_defweak)
7669 {
7670 *result = (global_entry->u.def.value
7671 + global_entry->u.def.section->output_section->vma
7672 + global_entry->u.def.section->output_offset);
7673 #ifdef DEBUG
7674 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7675 global_entry->root.string, (unsigned long) *result);
7676 #endif
7677 return TRUE;
7678 }
7679
7680 return FALSE;
7681 }
7682
7683 static bfd_boolean
7684 resolve_section (const char *name,
7685 asection *sections,
7686 bfd_vma *result)
7687 {
7688 asection *curr;
7689 unsigned int len;
7690
7691 for (curr = sections; curr; curr = curr->next)
7692 if (strcmp (curr->name, name) == 0)
7693 {
7694 *result = curr->vma;
7695 return TRUE;
7696 }
7697
7698 /* Hmm. still haven't found it. try pseudo-section names. */
7699 for (curr = sections; curr; curr = curr->next)
7700 {
7701 len = strlen (curr->name);
7702 if (len > strlen (name))
7703 continue;
7704
7705 if (strncmp (curr->name, name, len) == 0)
7706 {
7707 if (strncmp (".end", name + len, 4) == 0)
7708 {
7709 *result = curr->vma + curr->size;
7710 return TRUE;
7711 }
7712
7713 /* Insert more pseudo-section names here, if you like. */
7714 }
7715 }
7716
7717 return FALSE;
7718 }
7719
7720 static void
7721 undefined_reference (const char *reftype, const char *name)
7722 {
7723 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7724 reftype, name);
7725 }
7726
7727 static bfd_boolean
7728 eval_symbol (bfd_vma *result,
7729 const char **symp,
7730 bfd *input_bfd,
7731 struct elf_final_link_info *flinfo,
7732 bfd_vma dot,
7733 Elf_Internal_Sym *isymbuf,
7734 size_t locsymcount,
7735 int signed_p)
7736 {
7737 size_t len;
7738 size_t symlen;
7739 bfd_vma a;
7740 bfd_vma b;
7741 char symbuf[4096];
7742 const char *sym = *symp;
7743 const char *symend;
7744 bfd_boolean symbol_is_section = FALSE;
7745
7746 len = strlen (sym);
7747 symend = sym + len;
7748
7749 if (len < 1 || len > sizeof (symbuf))
7750 {
7751 bfd_set_error (bfd_error_invalid_operation);
7752 return FALSE;
7753 }
7754
7755 switch (* sym)
7756 {
7757 case '.':
7758 *result = dot;
7759 *symp = sym + 1;
7760 return TRUE;
7761
7762 case '#':
7763 ++sym;
7764 *result = strtoul (sym, (char **) symp, 16);
7765 return TRUE;
7766
7767 case 'S':
7768 symbol_is_section = TRUE;
7769 case 's':
7770 ++sym;
7771 symlen = strtol (sym, (char **) symp, 10);
7772 sym = *symp + 1; /* Skip the trailing ':'. */
7773
7774 if (symend < sym || symlen + 1 > sizeof (symbuf))
7775 {
7776 bfd_set_error (bfd_error_invalid_operation);
7777 return FALSE;
7778 }
7779
7780 memcpy (symbuf, sym, symlen);
7781 symbuf[symlen] = '\0';
7782 *symp = sym + symlen;
7783
7784 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7785 the symbol as a section, or vice-versa. so we're pretty liberal in our
7786 interpretation here; section means "try section first", not "must be a
7787 section", and likewise with symbol. */
7788
7789 if (symbol_is_section)
7790 {
7791 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7792 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7793 isymbuf, locsymcount))
7794 {
7795 undefined_reference ("section", symbuf);
7796 return FALSE;
7797 }
7798 }
7799 else
7800 {
7801 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7802 isymbuf, locsymcount)
7803 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7804 result))
7805 {
7806 undefined_reference ("symbol", symbuf);
7807 return FALSE;
7808 }
7809 }
7810
7811 return TRUE;
7812
7813 /* All that remains are operators. */
7814
7815 #define UNARY_OP(op) \
7816 if (strncmp (sym, #op, strlen (#op)) == 0) \
7817 { \
7818 sym += strlen (#op); \
7819 if (*sym == ':') \
7820 ++sym; \
7821 *symp = sym; \
7822 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7823 isymbuf, locsymcount, signed_p)) \
7824 return FALSE; \
7825 if (signed_p) \
7826 *result = op ((bfd_signed_vma) a); \
7827 else \
7828 *result = op a; \
7829 return TRUE; \
7830 }
7831
7832 #define BINARY_OP(op) \
7833 if (strncmp (sym, #op, strlen (#op)) == 0) \
7834 { \
7835 sym += strlen (#op); \
7836 if (*sym == ':') \
7837 ++sym; \
7838 *symp = sym; \
7839 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7840 isymbuf, locsymcount, signed_p)) \
7841 return FALSE; \
7842 ++*symp; \
7843 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7844 isymbuf, locsymcount, signed_p)) \
7845 return FALSE; \
7846 if (signed_p) \
7847 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7848 else \
7849 *result = a op b; \
7850 return TRUE; \
7851 }
7852
7853 default:
7854 UNARY_OP (0-);
7855 BINARY_OP (<<);
7856 BINARY_OP (>>);
7857 BINARY_OP (==);
7858 BINARY_OP (!=);
7859 BINARY_OP (<=);
7860 BINARY_OP (>=);
7861 BINARY_OP (&&);
7862 BINARY_OP (||);
7863 UNARY_OP (~);
7864 UNARY_OP (!);
7865 BINARY_OP (*);
7866 BINARY_OP (/);
7867 BINARY_OP (%);
7868 BINARY_OP (^);
7869 BINARY_OP (|);
7870 BINARY_OP (&);
7871 BINARY_OP (+);
7872 BINARY_OP (-);
7873 BINARY_OP (<);
7874 BINARY_OP (>);
7875 #undef UNARY_OP
7876 #undef BINARY_OP
7877 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7878 bfd_set_error (bfd_error_invalid_operation);
7879 return FALSE;
7880 }
7881 }
7882
7883 static void
7884 put_value (bfd_vma size,
7885 unsigned long chunksz,
7886 bfd *input_bfd,
7887 bfd_vma x,
7888 bfd_byte *location)
7889 {
7890 location += (size - chunksz);
7891
7892 for (; size; size -= chunksz, location -= chunksz)
7893 {
7894 switch (chunksz)
7895 {
7896 case 1:
7897 bfd_put_8 (input_bfd, x, location);
7898 x >>= 8;
7899 break;
7900 case 2:
7901 bfd_put_16 (input_bfd, x, location);
7902 x >>= 16;
7903 break;
7904 case 4:
7905 bfd_put_32 (input_bfd, x, location);
7906 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7907 x >>= 16;
7908 x >>= 16;
7909 break;
7910 #ifdef BFD64
7911 case 8:
7912 bfd_put_64 (input_bfd, x, location);
7913 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7914 x >>= 32;
7915 x >>= 32;
7916 break;
7917 #endif
7918 default:
7919 abort ();
7920 break;
7921 }
7922 }
7923 }
7924
7925 static bfd_vma
7926 get_value (bfd_vma size,
7927 unsigned long chunksz,
7928 bfd *input_bfd,
7929 bfd_byte *location)
7930 {
7931 int shift;
7932 bfd_vma x = 0;
7933
7934 /* Sanity checks. */
7935 BFD_ASSERT (chunksz <= sizeof (x)
7936 && size >= chunksz
7937 && chunksz != 0
7938 && (size % chunksz) == 0
7939 && input_bfd != NULL
7940 && location != NULL);
7941
7942 if (chunksz == sizeof (x))
7943 {
7944 BFD_ASSERT (size == chunksz);
7945
7946 /* Make sure that we do not perform an undefined shift operation.
7947 We know that size == chunksz so there will only be one iteration
7948 of the loop below. */
7949 shift = 0;
7950 }
7951 else
7952 shift = 8 * chunksz;
7953
7954 for (; size; size -= chunksz, location += chunksz)
7955 {
7956 switch (chunksz)
7957 {
7958 case 1:
7959 x = (x << shift) | bfd_get_8 (input_bfd, location);
7960 break;
7961 case 2:
7962 x = (x << shift) | bfd_get_16 (input_bfd, location);
7963 break;
7964 case 4:
7965 x = (x << shift) | bfd_get_32 (input_bfd, location);
7966 break;
7967 #ifdef BFD64
7968 case 8:
7969 x = (x << shift) | bfd_get_64 (input_bfd, location);
7970 break;
7971 #endif
7972 default:
7973 abort ();
7974 }
7975 }
7976 return x;
7977 }
7978
7979 static void
7980 decode_complex_addend (unsigned long *start, /* in bits */
7981 unsigned long *oplen, /* in bits */
7982 unsigned long *len, /* in bits */
7983 unsigned long *wordsz, /* in bytes */
7984 unsigned long *chunksz, /* in bytes */
7985 unsigned long *lsb0_p,
7986 unsigned long *signed_p,
7987 unsigned long *trunc_p,
7988 unsigned long encoded)
7989 {
7990 * start = encoded & 0x3F;
7991 * len = (encoded >> 6) & 0x3F;
7992 * oplen = (encoded >> 12) & 0x3F;
7993 * wordsz = (encoded >> 18) & 0xF;
7994 * chunksz = (encoded >> 22) & 0xF;
7995 * lsb0_p = (encoded >> 27) & 1;
7996 * signed_p = (encoded >> 28) & 1;
7997 * trunc_p = (encoded >> 29) & 1;
7998 }
7999
8000 bfd_reloc_status_type
8001 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8002 asection *input_section ATTRIBUTE_UNUSED,
8003 bfd_byte *contents,
8004 Elf_Internal_Rela *rel,
8005 bfd_vma relocation)
8006 {
8007 bfd_vma shift, x, mask;
8008 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8009 bfd_reloc_status_type r;
8010
8011 /* Perform this reloc, since it is complex.
8012 (this is not to say that it necessarily refers to a complex
8013 symbol; merely that it is a self-describing CGEN based reloc.
8014 i.e. the addend has the complete reloc information (bit start, end,
8015 word size, etc) encoded within it.). */
8016
8017 decode_complex_addend (&start, &oplen, &len, &wordsz,
8018 &chunksz, &lsb0_p, &signed_p,
8019 &trunc_p, rel->r_addend);
8020
8021 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8022
8023 if (lsb0_p)
8024 shift = (start + 1) - len;
8025 else
8026 shift = (8 * wordsz) - (start + len);
8027
8028 /* FIXME: octets_per_byte. */
8029 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8030
8031 #ifdef DEBUG
8032 printf ("Doing complex reloc: "
8033 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8034 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8035 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8036 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8037 oplen, (unsigned long) x, (unsigned long) mask,
8038 (unsigned long) relocation);
8039 #endif
8040
8041 r = bfd_reloc_ok;
8042 if (! trunc_p)
8043 /* Now do an overflow check. */
8044 r = bfd_check_overflow ((signed_p
8045 ? complain_overflow_signed
8046 : complain_overflow_unsigned),
8047 len, 0, (8 * wordsz),
8048 relocation);
8049
8050 /* Do the deed. */
8051 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8052
8053 #ifdef DEBUG
8054 printf (" relocation: %8.8lx\n"
8055 " shifted mask: %8.8lx\n"
8056 " shifted/masked reloc: %8.8lx\n"
8057 " result: %8.8lx\n",
8058 (unsigned long) relocation, (unsigned long) (mask << shift),
8059 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8060 #endif
8061 /* FIXME: octets_per_byte. */
8062 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8063 return r;
8064 }
8065
8066 /* qsort comparison functions sorting external relocs by r_offset. */
8067
8068 static int
8069 cmp_ext32l_r_offset (const void *p, const void *q)
8070 {
8071 union aligned32
8072 {
8073 uint32_t v;
8074 unsigned char c[4];
8075 };
8076 const union aligned32 *a
8077 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8078 const union aligned32 *b
8079 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8080
8081 uint32_t aval = ( (uint32_t) a->c[0]
8082 | (uint32_t) a->c[1] << 8
8083 | (uint32_t) a->c[2] << 16
8084 | (uint32_t) a->c[3] << 24);
8085 uint32_t bval = ( (uint32_t) b->c[0]
8086 | (uint32_t) b->c[1] << 8
8087 | (uint32_t) b->c[2] << 16
8088 | (uint32_t) b->c[3] << 24);
8089 if (aval < bval)
8090 return -1;
8091 else if (aval > bval)
8092 return 1;
8093 return 0;
8094 }
8095
8096 static int
8097 cmp_ext32b_r_offset (const void *p, const void *q)
8098 {
8099 union aligned32
8100 {
8101 uint32_t v;
8102 unsigned char c[4];
8103 };
8104 const union aligned32 *a
8105 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8106 const union aligned32 *b
8107 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8108
8109 uint32_t aval = ( (uint32_t) a->c[0] << 24
8110 | (uint32_t) a->c[1] << 16
8111 | (uint32_t) a->c[2] << 8
8112 | (uint32_t) a->c[3]);
8113 uint32_t bval = ( (uint32_t) b->c[0] << 24
8114 | (uint32_t) b->c[1] << 16
8115 | (uint32_t) b->c[2] << 8
8116 | (uint32_t) b->c[3]);
8117 if (aval < bval)
8118 return -1;
8119 else if (aval > bval)
8120 return 1;
8121 return 0;
8122 }
8123
8124 #ifdef BFD_HOST_64_BIT
8125 static int
8126 cmp_ext64l_r_offset (const void *p, const void *q)
8127 {
8128 union aligned64
8129 {
8130 uint64_t v;
8131 unsigned char c[8];
8132 };
8133 const union aligned64 *a
8134 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8135 const union aligned64 *b
8136 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8137
8138 uint64_t aval = ( (uint64_t) a->c[0]
8139 | (uint64_t) a->c[1] << 8
8140 | (uint64_t) a->c[2] << 16
8141 | (uint64_t) a->c[3] << 24
8142 | (uint64_t) a->c[4] << 32
8143 | (uint64_t) a->c[5] << 40
8144 | (uint64_t) a->c[6] << 48
8145 | (uint64_t) a->c[7] << 56);
8146 uint64_t bval = ( (uint64_t) b->c[0]
8147 | (uint64_t) b->c[1] << 8
8148 | (uint64_t) b->c[2] << 16
8149 | (uint64_t) b->c[3] << 24
8150 | (uint64_t) b->c[4] << 32
8151 | (uint64_t) b->c[5] << 40
8152 | (uint64_t) b->c[6] << 48
8153 | (uint64_t) b->c[7] << 56);
8154 if (aval < bval)
8155 return -1;
8156 else if (aval > bval)
8157 return 1;
8158 return 0;
8159 }
8160
8161 static int
8162 cmp_ext64b_r_offset (const void *p, const void *q)
8163 {
8164 union aligned64
8165 {
8166 uint64_t v;
8167 unsigned char c[8];
8168 };
8169 const union aligned64 *a
8170 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8171 const union aligned64 *b
8172 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8173
8174 uint64_t aval = ( (uint64_t) a->c[0] << 56
8175 | (uint64_t) a->c[1] << 48
8176 | (uint64_t) a->c[2] << 40
8177 | (uint64_t) a->c[3] << 32
8178 | (uint64_t) a->c[4] << 24
8179 | (uint64_t) a->c[5] << 16
8180 | (uint64_t) a->c[6] << 8
8181 | (uint64_t) a->c[7]);
8182 uint64_t bval = ( (uint64_t) b->c[0] << 56
8183 | (uint64_t) b->c[1] << 48
8184 | (uint64_t) b->c[2] << 40
8185 | (uint64_t) b->c[3] << 32
8186 | (uint64_t) b->c[4] << 24
8187 | (uint64_t) b->c[5] << 16
8188 | (uint64_t) b->c[6] << 8
8189 | (uint64_t) b->c[7]);
8190 if (aval < bval)
8191 return -1;
8192 else if (aval > bval)
8193 return 1;
8194 return 0;
8195 }
8196 #endif
8197
8198 /* When performing a relocatable link, the input relocations are
8199 preserved. But, if they reference global symbols, the indices
8200 referenced must be updated. Update all the relocations found in
8201 RELDATA. */
8202
8203 static void
8204 elf_link_adjust_relocs (bfd *abfd,
8205 struct bfd_elf_section_reloc_data *reldata,
8206 bfd_boolean sort)
8207 {
8208 unsigned int i;
8209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8210 bfd_byte *erela;
8211 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8212 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8213 bfd_vma r_type_mask;
8214 int r_sym_shift;
8215 unsigned int count = reldata->count;
8216 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8217
8218 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8219 {
8220 swap_in = bed->s->swap_reloc_in;
8221 swap_out = bed->s->swap_reloc_out;
8222 }
8223 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8224 {
8225 swap_in = bed->s->swap_reloca_in;
8226 swap_out = bed->s->swap_reloca_out;
8227 }
8228 else
8229 abort ();
8230
8231 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8232 abort ();
8233
8234 if (bed->s->arch_size == 32)
8235 {
8236 r_type_mask = 0xff;
8237 r_sym_shift = 8;
8238 }
8239 else
8240 {
8241 r_type_mask = 0xffffffff;
8242 r_sym_shift = 32;
8243 }
8244
8245 erela = reldata->hdr->contents;
8246 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8247 {
8248 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8249 unsigned int j;
8250
8251 if (*rel_hash == NULL)
8252 continue;
8253
8254 BFD_ASSERT ((*rel_hash)->indx >= 0);
8255
8256 (*swap_in) (abfd, erela, irela);
8257 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8258 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8259 | (irela[j].r_info & r_type_mask));
8260 (*swap_out) (abfd, irela, erela);
8261 }
8262
8263 if (sort)
8264 {
8265 int (*compare) (const void *, const void *);
8266
8267 if (bed->s->arch_size == 32)
8268 {
8269 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8270 compare = cmp_ext32l_r_offset;
8271 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8272 compare = cmp_ext32b_r_offset;
8273 else
8274 abort ();
8275 }
8276 else
8277 {
8278 #ifdef BFD_HOST_64_BIT
8279 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8280 compare = cmp_ext64l_r_offset;
8281 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8282 compare = cmp_ext64b_r_offset;
8283 else
8284 #endif
8285 abort ();
8286 }
8287 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8288 free (reldata->hashes);
8289 reldata->hashes = NULL;
8290 }
8291 }
8292
8293 struct elf_link_sort_rela
8294 {
8295 union {
8296 bfd_vma offset;
8297 bfd_vma sym_mask;
8298 } u;
8299 enum elf_reloc_type_class type;
8300 /* We use this as an array of size int_rels_per_ext_rel. */
8301 Elf_Internal_Rela rela[1];
8302 };
8303
8304 static int
8305 elf_link_sort_cmp1 (const void *A, const void *B)
8306 {
8307 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8308 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8309 int relativea, relativeb;
8310
8311 relativea = a->type == reloc_class_relative;
8312 relativeb = b->type == reloc_class_relative;
8313
8314 if (relativea < relativeb)
8315 return 1;
8316 if (relativea > relativeb)
8317 return -1;
8318 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8319 return -1;
8320 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8321 return 1;
8322 if (a->rela->r_offset < b->rela->r_offset)
8323 return -1;
8324 if (a->rela->r_offset > b->rela->r_offset)
8325 return 1;
8326 return 0;
8327 }
8328
8329 static int
8330 elf_link_sort_cmp2 (const void *A, const void *B)
8331 {
8332 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8333 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8334
8335 if (a->type < b->type)
8336 return -1;
8337 if (a->type > b->type)
8338 return 1;
8339 if (a->u.offset < b->u.offset)
8340 return -1;
8341 if (a->u.offset > b->u.offset)
8342 return 1;
8343 if (a->rela->r_offset < b->rela->r_offset)
8344 return -1;
8345 if (a->rela->r_offset > b->rela->r_offset)
8346 return 1;
8347 return 0;
8348 }
8349
8350 static size_t
8351 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8352 {
8353 asection *dynamic_relocs;
8354 asection *rela_dyn;
8355 asection *rel_dyn;
8356 bfd_size_type count, size;
8357 size_t i, ret, sort_elt, ext_size;
8358 bfd_byte *sort, *s_non_relative, *p;
8359 struct elf_link_sort_rela *sq;
8360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8361 int i2e = bed->s->int_rels_per_ext_rel;
8362 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8363 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8364 struct bfd_link_order *lo;
8365 bfd_vma r_sym_mask;
8366 bfd_boolean use_rela;
8367
8368 /* Find a dynamic reloc section. */
8369 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8370 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8371 if (rela_dyn != NULL && rela_dyn->size > 0
8372 && rel_dyn != NULL && rel_dyn->size > 0)
8373 {
8374 bfd_boolean use_rela_initialised = FALSE;
8375
8376 /* This is just here to stop gcc from complaining.
8377 It's initialization checking code is not perfect. */
8378 use_rela = TRUE;
8379
8380 /* Both sections are present. Examine the sizes
8381 of the indirect sections to help us choose. */
8382 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8383 if (lo->type == bfd_indirect_link_order)
8384 {
8385 asection *o = lo->u.indirect.section;
8386
8387 if ((o->size % bed->s->sizeof_rela) == 0)
8388 {
8389 if ((o->size % bed->s->sizeof_rel) == 0)
8390 /* Section size is divisible by both rel and rela sizes.
8391 It is of no help to us. */
8392 ;
8393 else
8394 {
8395 /* Section size is only divisible by rela. */
8396 if (use_rela_initialised && (use_rela == FALSE))
8397 {
8398 _bfd_error_handler
8399 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8400 bfd_set_error (bfd_error_invalid_operation);
8401 return 0;
8402 }
8403 else
8404 {
8405 use_rela = TRUE;
8406 use_rela_initialised = TRUE;
8407 }
8408 }
8409 }
8410 else if ((o->size % bed->s->sizeof_rel) == 0)
8411 {
8412 /* Section size is only divisible by rel. */
8413 if (use_rela_initialised && (use_rela == TRUE))
8414 {
8415 _bfd_error_handler
8416 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8417 bfd_set_error (bfd_error_invalid_operation);
8418 return 0;
8419 }
8420 else
8421 {
8422 use_rela = FALSE;
8423 use_rela_initialised = TRUE;
8424 }
8425 }
8426 else
8427 {
8428 /* The section size is not divisible by either - something is wrong. */
8429 _bfd_error_handler
8430 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8431 bfd_set_error (bfd_error_invalid_operation);
8432 return 0;
8433 }
8434 }
8435
8436 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8437 if (lo->type == bfd_indirect_link_order)
8438 {
8439 asection *o = lo->u.indirect.section;
8440
8441 if ((o->size % bed->s->sizeof_rela) == 0)
8442 {
8443 if ((o->size % bed->s->sizeof_rel) == 0)
8444 /* Section size is divisible by both rel and rela sizes.
8445 It is of no help to us. */
8446 ;
8447 else
8448 {
8449 /* Section size is only divisible by rela. */
8450 if (use_rela_initialised && (use_rela == FALSE))
8451 {
8452 _bfd_error_handler
8453 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8454 bfd_set_error (bfd_error_invalid_operation);
8455 return 0;
8456 }
8457 else
8458 {
8459 use_rela = TRUE;
8460 use_rela_initialised = TRUE;
8461 }
8462 }
8463 }
8464 else if ((o->size % bed->s->sizeof_rel) == 0)
8465 {
8466 /* Section size is only divisible by rel. */
8467 if (use_rela_initialised && (use_rela == TRUE))
8468 {
8469 _bfd_error_handler
8470 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8471 bfd_set_error (bfd_error_invalid_operation);
8472 return 0;
8473 }
8474 else
8475 {
8476 use_rela = FALSE;
8477 use_rela_initialised = TRUE;
8478 }
8479 }
8480 else
8481 {
8482 /* The section size is not divisible by either - something is wrong. */
8483 _bfd_error_handler
8484 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8485 bfd_set_error (bfd_error_invalid_operation);
8486 return 0;
8487 }
8488 }
8489
8490 if (! use_rela_initialised)
8491 /* Make a guess. */
8492 use_rela = TRUE;
8493 }
8494 else if (rela_dyn != NULL && rela_dyn->size > 0)
8495 use_rela = TRUE;
8496 else if (rel_dyn != NULL && rel_dyn->size > 0)
8497 use_rela = FALSE;
8498 else
8499 return 0;
8500
8501 if (use_rela)
8502 {
8503 dynamic_relocs = rela_dyn;
8504 ext_size = bed->s->sizeof_rela;
8505 swap_in = bed->s->swap_reloca_in;
8506 swap_out = bed->s->swap_reloca_out;
8507 }
8508 else
8509 {
8510 dynamic_relocs = rel_dyn;
8511 ext_size = bed->s->sizeof_rel;
8512 swap_in = bed->s->swap_reloc_in;
8513 swap_out = bed->s->swap_reloc_out;
8514 }
8515
8516 size = 0;
8517 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8518 if (lo->type == bfd_indirect_link_order)
8519 size += lo->u.indirect.section->size;
8520
8521 if (size != dynamic_relocs->size)
8522 return 0;
8523
8524 sort_elt = (sizeof (struct elf_link_sort_rela)
8525 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8526
8527 count = dynamic_relocs->size / ext_size;
8528 if (count == 0)
8529 return 0;
8530 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8531
8532 if (sort == NULL)
8533 {
8534 (*info->callbacks->warning)
8535 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8536 return 0;
8537 }
8538
8539 if (bed->s->arch_size == 32)
8540 r_sym_mask = ~(bfd_vma) 0xff;
8541 else
8542 r_sym_mask = ~(bfd_vma) 0xffffffff;
8543
8544 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8545 if (lo->type == bfd_indirect_link_order)
8546 {
8547 bfd_byte *erel, *erelend;
8548 asection *o = lo->u.indirect.section;
8549
8550 if (o->contents == NULL && o->size != 0)
8551 {
8552 /* This is a reloc section that is being handled as a normal
8553 section. See bfd_section_from_shdr. We can't combine
8554 relocs in this case. */
8555 free (sort);
8556 return 0;
8557 }
8558 erel = o->contents;
8559 erelend = o->contents + o->size;
8560 /* FIXME: octets_per_byte. */
8561 p = sort + o->output_offset / ext_size * sort_elt;
8562
8563 while (erel < erelend)
8564 {
8565 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8566
8567 (*swap_in) (abfd, erel, s->rela);
8568 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8569 s->u.sym_mask = r_sym_mask;
8570 p += sort_elt;
8571 erel += ext_size;
8572 }
8573 }
8574
8575 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8576
8577 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8578 {
8579 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8580 if (s->type != reloc_class_relative)
8581 break;
8582 }
8583 ret = i;
8584 s_non_relative = p;
8585
8586 sq = (struct elf_link_sort_rela *) s_non_relative;
8587 for (; i < count; i++, p += sort_elt)
8588 {
8589 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8590 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8591 sq = sp;
8592 sp->u.offset = sq->rela->r_offset;
8593 }
8594
8595 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8596
8597 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8598 if (lo->type == bfd_indirect_link_order)
8599 {
8600 bfd_byte *erel, *erelend;
8601 asection *o = lo->u.indirect.section;
8602
8603 erel = o->contents;
8604 erelend = o->contents + o->size;
8605 /* FIXME: octets_per_byte. */
8606 p = sort + o->output_offset / ext_size * sort_elt;
8607 while (erel < erelend)
8608 {
8609 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8610 (*swap_out) (abfd, s->rela, erel);
8611 p += sort_elt;
8612 erel += ext_size;
8613 }
8614 }
8615
8616 free (sort);
8617 *psec = dynamic_relocs;
8618 return ret;
8619 }
8620
8621 /* Add a symbol to the output symbol string table. */
8622
8623 static int
8624 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8625 const char *name,
8626 Elf_Internal_Sym *elfsym,
8627 asection *input_sec,
8628 struct elf_link_hash_entry *h)
8629 {
8630 int (*output_symbol_hook)
8631 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8632 struct elf_link_hash_entry *);
8633 struct elf_link_hash_table *hash_table;
8634 const struct elf_backend_data *bed;
8635 bfd_size_type strtabsize;
8636
8637 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8638
8639 bed = get_elf_backend_data (flinfo->output_bfd);
8640 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8641 if (output_symbol_hook != NULL)
8642 {
8643 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8644 if (ret != 1)
8645 return ret;
8646 }
8647
8648 if (name == NULL
8649 || *name == '\0'
8650 || (input_sec->flags & SEC_EXCLUDE))
8651 elfsym->st_name = (unsigned long) -1;
8652 else
8653 {
8654 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8655 to get the final offset for st_name. */
8656 elfsym->st_name
8657 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8658 name, FALSE);
8659 if (elfsym->st_name == (unsigned long) -1)
8660 return 0;
8661 }
8662
8663 hash_table = elf_hash_table (flinfo->info);
8664 strtabsize = hash_table->strtabsize;
8665 if (strtabsize <= hash_table->strtabcount)
8666 {
8667 strtabsize += strtabsize;
8668 hash_table->strtabsize = strtabsize;
8669 strtabsize *= sizeof (*hash_table->strtab);
8670 hash_table->strtab
8671 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8672 strtabsize);
8673 if (hash_table->strtab == NULL)
8674 return 0;
8675 }
8676 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8677 hash_table->strtab[hash_table->strtabcount].dest_index
8678 = hash_table->strtabcount;
8679 hash_table->strtab[hash_table->strtabcount].destshndx_index
8680 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8681
8682 bfd_get_symcount (flinfo->output_bfd) += 1;
8683 hash_table->strtabcount += 1;
8684
8685 return 1;
8686 }
8687
8688 /* Swap symbols out to the symbol table and flush the output symbols to
8689 the file. */
8690
8691 static bfd_boolean
8692 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8693 {
8694 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8695 bfd_size_type amt, i;
8696 const struct elf_backend_data *bed;
8697 bfd_byte *symbuf;
8698 Elf_Internal_Shdr *hdr;
8699 file_ptr pos;
8700 bfd_boolean ret;
8701
8702 if (!hash_table->strtabcount)
8703 return TRUE;
8704
8705 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8706
8707 bed = get_elf_backend_data (flinfo->output_bfd);
8708
8709 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8710 symbuf = (bfd_byte *) bfd_malloc (amt);
8711 if (symbuf == NULL)
8712 return FALSE;
8713
8714 if (flinfo->symshndxbuf)
8715 {
8716 amt = (sizeof (Elf_External_Sym_Shndx)
8717 * (bfd_get_symcount (flinfo->output_bfd)));
8718 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8719 if (flinfo->symshndxbuf == NULL)
8720 {
8721 free (symbuf);
8722 return FALSE;
8723 }
8724 }
8725
8726 for (i = 0; i < hash_table->strtabcount; i++)
8727 {
8728 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8729 if (elfsym->sym.st_name == (unsigned long) -1)
8730 elfsym->sym.st_name = 0;
8731 else
8732 elfsym->sym.st_name
8733 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8734 elfsym->sym.st_name);
8735 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8736 ((bfd_byte *) symbuf
8737 + (elfsym->dest_index
8738 * bed->s->sizeof_sym)),
8739 (flinfo->symshndxbuf
8740 + elfsym->destshndx_index));
8741 }
8742
8743 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8744 pos = hdr->sh_offset + hdr->sh_size;
8745 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8746 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8747 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8748 {
8749 hdr->sh_size += amt;
8750 ret = TRUE;
8751 }
8752 else
8753 ret = FALSE;
8754
8755 free (symbuf);
8756
8757 free (hash_table->strtab);
8758 hash_table->strtab = NULL;
8759
8760 return ret;
8761 }
8762
8763 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8764
8765 static bfd_boolean
8766 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8767 {
8768 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8769 && sym->st_shndx < SHN_LORESERVE)
8770 {
8771 /* The gABI doesn't support dynamic symbols in output sections
8772 beyond 64k. */
8773 (*_bfd_error_handler)
8774 (_("%B: Too many sections: %d (>= %d)"),
8775 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8776 bfd_set_error (bfd_error_nonrepresentable_section);
8777 return FALSE;
8778 }
8779 return TRUE;
8780 }
8781
8782 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8783 allowing an unsatisfied unversioned symbol in the DSO to match a
8784 versioned symbol that would normally require an explicit version.
8785 We also handle the case that a DSO references a hidden symbol
8786 which may be satisfied by a versioned symbol in another DSO. */
8787
8788 static bfd_boolean
8789 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8790 const struct elf_backend_data *bed,
8791 struct elf_link_hash_entry *h)
8792 {
8793 bfd *abfd;
8794 struct elf_link_loaded_list *loaded;
8795
8796 if (!is_elf_hash_table (info->hash))
8797 return FALSE;
8798
8799 /* Check indirect symbol. */
8800 while (h->root.type == bfd_link_hash_indirect)
8801 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8802
8803 switch (h->root.type)
8804 {
8805 default:
8806 abfd = NULL;
8807 break;
8808
8809 case bfd_link_hash_undefined:
8810 case bfd_link_hash_undefweak:
8811 abfd = h->root.u.undef.abfd;
8812 if ((abfd->flags & DYNAMIC) == 0
8813 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8814 return FALSE;
8815 break;
8816
8817 case bfd_link_hash_defined:
8818 case bfd_link_hash_defweak:
8819 abfd = h->root.u.def.section->owner;
8820 break;
8821
8822 case bfd_link_hash_common:
8823 abfd = h->root.u.c.p->section->owner;
8824 break;
8825 }
8826 BFD_ASSERT (abfd != NULL);
8827
8828 for (loaded = elf_hash_table (info)->loaded;
8829 loaded != NULL;
8830 loaded = loaded->next)
8831 {
8832 bfd *input;
8833 Elf_Internal_Shdr *hdr;
8834 bfd_size_type symcount;
8835 bfd_size_type extsymcount;
8836 bfd_size_type extsymoff;
8837 Elf_Internal_Shdr *versymhdr;
8838 Elf_Internal_Sym *isym;
8839 Elf_Internal_Sym *isymend;
8840 Elf_Internal_Sym *isymbuf;
8841 Elf_External_Versym *ever;
8842 Elf_External_Versym *extversym;
8843
8844 input = loaded->abfd;
8845
8846 /* We check each DSO for a possible hidden versioned definition. */
8847 if (input == abfd
8848 || (input->flags & DYNAMIC) == 0
8849 || elf_dynversym (input) == 0)
8850 continue;
8851
8852 hdr = &elf_tdata (input)->dynsymtab_hdr;
8853
8854 symcount = hdr->sh_size / bed->s->sizeof_sym;
8855 if (elf_bad_symtab (input))
8856 {
8857 extsymcount = symcount;
8858 extsymoff = 0;
8859 }
8860 else
8861 {
8862 extsymcount = symcount - hdr->sh_info;
8863 extsymoff = hdr->sh_info;
8864 }
8865
8866 if (extsymcount == 0)
8867 continue;
8868
8869 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8870 NULL, NULL, NULL);
8871 if (isymbuf == NULL)
8872 return FALSE;
8873
8874 /* Read in any version definitions. */
8875 versymhdr = &elf_tdata (input)->dynversym_hdr;
8876 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8877 if (extversym == NULL)
8878 goto error_ret;
8879
8880 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8881 || (bfd_bread (extversym, versymhdr->sh_size, input)
8882 != versymhdr->sh_size))
8883 {
8884 free (extversym);
8885 error_ret:
8886 free (isymbuf);
8887 return FALSE;
8888 }
8889
8890 ever = extversym + extsymoff;
8891 isymend = isymbuf + extsymcount;
8892 for (isym = isymbuf; isym < isymend; isym++, ever++)
8893 {
8894 const char *name;
8895 Elf_Internal_Versym iver;
8896 unsigned short version_index;
8897
8898 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8899 || isym->st_shndx == SHN_UNDEF)
8900 continue;
8901
8902 name = bfd_elf_string_from_elf_section (input,
8903 hdr->sh_link,
8904 isym->st_name);
8905 if (strcmp (name, h->root.root.string) != 0)
8906 continue;
8907
8908 _bfd_elf_swap_versym_in (input, ever, &iver);
8909
8910 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8911 && !(h->def_regular
8912 && h->forced_local))
8913 {
8914 /* If we have a non-hidden versioned sym, then it should
8915 have provided a definition for the undefined sym unless
8916 it is defined in a non-shared object and forced local.
8917 */
8918 abort ();
8919 }
8920
8921 version_index = iver.vs_vers & VERSYM_VERSION;
8922 if (version_index == 1 || version_index == 2)
8923 {
8924 /* This is the base or first version. We can use it. */
8925 free (extversym);
8926 free (isymbuf);
8927 return TRUE;
8928 }
8929 }
8930
8931 free (extversym);
8932 free (isymbuf);
8933 }
8934
8935 return FALSE;
8936 }
8937
8938 /* Add an external symbol to the symbol table. This is called from
8939 the hash table traversal routine. When generating a shared object,
8940 we go through the symbol table twice. The first time we output
8941 anything that might have been forced to local scope in a version
8942 script. The second time we output the symbols that are still
8943 global symbols. */
8944
8945 static bfd_boolean
8946 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8947 {
8948 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8949 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8950 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8951 bfd_boolean strip;
8952 Elf_Internal_Sym sym;
8953 asection *input_sec;
8954 const struct elf_backend_data *bed;
8955 long indx;
8956 int ret;
8957 /* A symbol is bound locally if it is forced local or it is locally
8958 defined, hidden versioned, not referenced by shared library and
8959 not exported when linking executable. */
8960 bfd_boolean local_bind = (h->forced_local
8961 || (flinfo->info->executable
8962 && !flinfo->info->export_dynamic
8963 && !h->dynamic
8964 && !h->ref_dynamic
8965 && h->def_regular
8966 && h->hidden));
8967
8968 if (h->root.type == bfd_link_hash_warning)
8969 {
8970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8971 if (h->root.type == bfd_link_hash_new)
8972 return TRUE;
8973 }
8974
8975 /* Decide whether to output this symbol in this pass. */
8976 if (eoinfo->localsyms)
8977 {
8978 if (!local_bind)
8979 return TRUE;
8980 }
8981 else
8982 {
8983 if (local_bind)
8984 return TRUE;
8985 }
8986
8987 bed = get_elf_backend_data (flinfo->output_bfd);
8988
8989 if (h->root.type == bfd_link_hash_undefined)
8990 {
8991 /* If we have an undefined symbol reference here then it must have
8992 come from a shared library that is being linked in. (Undefined
8993 references in regular files have already been handled unless
8994 they are in unreferenced sections which are removed by garbage
8995 collection). */
8996 bfd_boolean ignore_undef = FALSE;
8997
8998 /* Some symbols may be special in that the fact that they're
8999 undefined can be safely ignored - let backend determine that. */
9000 if (bed->elf_backend_ignore_undef_symbol)
9001 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9002
9003 /* If we are reporting errors for this situation then do so now. */
9004 if (!ignore_undef
9005 && h->ref_dynamic
9006 && (!h->ref_regular || flinfo->info->gc_sections)
9007 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9008 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9009 {
9010 if (!(flinfo->info->callbacks->undefined_symbol
9011 (flinfo->info, h->root.root.string,
9012 h->ref_regular ? NULL : h->root.u.undef.abfd,
9013 NULL, 0,
9014 (flinfo->info->unresolved_syms_in_shared_libs
9015 == RM_GENERATE_ERROR))))
9016 {
9017 bfd_set_error (bfd_error_bad_value);
9018 eoinfo->failed = TRUE;
9019 return FALSE;
9020 }
9021 }
9022 }
9023
9024 /* We should also warn if a forced local symbol is referenced from
9025 shared libraries. */
9026 if (flinfo->info->executable
9027 && h->forced_local
9028 && h->ref_dynamic
9029 && h->def_regular
9030 && !h->dynamic_def
9031 && h->ref_dynamic_nonweak
9032 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9033 {
9034 bfd *def_bfd;
9035 const char *msg;
9036 struct elf_link_hash_entry *hi = h;
9037
9038 /* Check indirect symbol. */
9039 while (hi->root.type == bfd_link_hash_indirect)
9040 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9041
9042 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9043 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9044 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9045 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9046 else
9047 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9048 def_bfd = flinfo->output_bfd;
9049 if (hi->root.u.def.section != bfd_abs_section_ptr)
9050 def_bfd = hi->root.u.def.section->owner;
9051 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9052 h->root.root.string);
9053 bfd_set_error (bfd_error_bad_value);
9054 eoinfo->failed = TRUE;
9055 return FALSE;
9056 }
9057
9058 /* We don't want to output symbols that have never been mentioned by
9059 a regular file, or that we have been told to strip. However, if
9060 h->indx is set to -2, the symbol is used by a reloc and we must
9061 output it. */
9062 strip = FALSE;
9063 if (h->indx == -2)
9064 ;
9065 else if ((h->def_dynamic
9066 || h->ref_dynamic
9067 || h->root.type == bfd_link_hash_new)
9068 && !h->def_regular
9069 && !h->ref_regular)
9070 strip = TRUE;
9071 else if (flinfo->info->strip == strip_all)
9072 strip = TRUE;
9073 else if (flinfo->info->strip == strip_some
9074 && bfd_hash_lookup (flinfo->info->keep_hash,
9075 h->root.root.string, FALSE, FALSE) == NULL)
9076 strip = TRUE;
9077 else if ((h->root.type == bfd_link_hash_defined
9078 || h->root.type == bfd_link_hash_defweak)
9079 && ((flinfo->info->strip_discarded
9080 && discarded_section (h->root.u.def.section))
9081 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9082 && h->root.u.def.section->owner != NULL
9083 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9084 strip = TRUE;
9085 else if ((h->root.type == bfd_link_hash_undefined
9086 || h->root.type == bfd_link_hash_undefweak)
9087 && h->root.u.undef.abfd != NULL
9088 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9089 strip = TRUE;
9090
9091 /* If we're stripping it, and it's not a dynamic symbol, there's
9092 nothing else to do. However, if it is a forced local symbol or
9093 an ifunc symbol we need to give the backend finish_dynamic_symbol
9094 function a chance to make it dynamic. */
9095 if (strip
9096 && h->dynindx == -1
9097 && h->type != STT_GNU_IFUNC
9098 && !h->forced_local)
9099 return TRUE;
9100
9101 sym.st_value = 0;
9102 sym.st_size = h->size;
9103 sym.st_other = h->other;
9104 if (local_bind)
9105 {
9106 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9107 /* Turn off visibility on local symbol. */
9108 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9109 }
9110 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9111 else if (h->unique_global && h->def_regular)
9112 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9113 else if (h->root.type == bfd_link_hash_undefweak
9114 || h->root.type == bfd_link_hash_defweak)
9115 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9116 else
9117 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9118 sym.st_target_internal = h->target_internal;
9119
9120 switch (h->root.type)
9121 {
9122 default:
9123 case bfd_link_hash_new:
9124 case bfd_link_hash_warning:
9125 abort ();
9126 return FALSE;
9127
9128 case bfd_link_hash_undefined:
9129 case bfd_link_hash_undefweak:
9130 input_sec = bfd_und_section_ptr;
9131 sym.st_shndx = SHN_UNDEF;
9132 break;
9133
9134 case bfd_link_hash_defined:
9135 case bfd_link_hash_defweak:
9136 {
9137 input_sec = h->root.u.def.section;
9138 if (input_sec->output_section != NULL)
9139 {
9140 sym.st_shndx =
9141 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9142 input_sec->output_section);
9143 if (sym.st_shndx == SHN_BAD)
9144 {
9145 (*_bfd_error_handler)
9146 (_("%B: could not find output section %A for input section %A"),
9147 flinfo->output_bfd, input_sec->output_section, input_sec);
9148 bfd_set_error (bfd_error_nonrepresentable_section);
9149 eoinfo->failed = TRUE;
9150 return FALSE;
9151 }
9152
9153 /* ELF symbols in relocatable files are section relative,
9154 but in nonrelocatable files they are virtual
9155 addresses. */
9156 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9157 if (!flinfo->info->relocatable)
9158 {
9159 sym.st_value += input_sec->output_section->vma;
9160 if (h->type == STT_TLS)
9161 {
9162 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9163 if (tls_sec != NULL)
9164 sym.st_value -= tls_sec->vma;
9165 }
9166 }
9167 }
9168 else
9169 {
9170 BFD_ASSERT (input_sec->owner == NULL
9171 || (input_sec->owner->flags & DYNAMIC) != 0);
9172 sym.st_shndx = SHN_UNDEF;
9173 input_sec = bfd_und_section_ptr;
9174 }
9175 }
9176 break;
9177
9178 case bfd_link_hash_common:
9179 input_sec = h->root.u.c.p->section;
9180 sym.st_shndx = bed->common_section_index (input_sec);
9181 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9182 break;
9183
9184 case bfd_link_hash_indirect:
9185 /* These symbols are created by symbol versioning. They point
9186 to the decorated version of the name. For example, if the
9187 symbol foo@@GNU_1.2 is the default, which should be used when
9188 foo is used with no version, then we add an indirect symbol
9189 foo which points to foo@@GNU_1.2. We ignore these symbols,
9190 since the indirected symbol is already in the hash table. */
9191 return TRUE;
9192 }
9193
9194 /* Give the processor backend a chance to tweak the symbol value,
9195 and also to finish up anything that needs to be done for this
9196 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9197 forced local syms when non-shared is due to a historical quirk.
9198 STT_GNU_IFUNC symbol must go through PLT. */
9199 if ((h->type == STT_GNU_IFUNC
9200 && h->def_regular
9201 && !flinfo->info->relocatable)
9202 || ((h->dynindx != -1
9203 || h->forced_local)
9204 && ((flinfo->info->shared
9205 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9206 || h->root.type != bfd_link_hash_undefweak))
9207 || !h->forced_local)
9208 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9209 {
9210 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9211 (flinfo->output_bfd, flinfo->info, h, &sym)))
9212 {
9213 eoinfo->failed = TRUE;
9214 return FALSE;
9215 }
9216 }
9217
9218 /* If we are marking the symbol as undefined, and there are no
9219 non-weak references to this symbol from a regular object, then
9220 mark the symbol as weak undefined; if there are non-weak
9221 references, mark the symbol as strong. We can't do this earlier,
9222 because it might not be marked as undefined until the
9223 finish_dynamic_symbol routine gets through with it. */
9224 if (sym.st_shndx == SHN_UNDEF
9225 && h->ref_regular
9226 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9227 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9228 {
9229 int bindtype;
9230 unsigned int type = ELF_ST_TYPE (sym.st_info);
9231
9232 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9233 if (type == STT_GNU_IFUNC)
9234 type = STT_FUNC;
9235
9236 if (h->ref_regular_nonweak)
9237 bindtype = STB_GLOBAL;
9238 else
9239 bindtype = STB_WEAK;
9240 sym.st_info = ELF_ST_INFO (bindtype, type);
9241 }
9242
9243 /* If this is a symbol defined in a dynamic library, don't use the
9244 symbol size from the dynamic library. Relinking an executable
9245 against a new library may introduce gratuitous changes in the
9246 executable's symbols if we keep the size. */
9247 if (sym.st_shndx == SHN_UNDEF
9248 && !h->def_regular
9249 && h->def_dynamic)
9250 sym.st_size = 0;
9251
9252 /* If a non-weak symbol with non-default visibility is not defined
9253 locally, it is a fatal error. */
9254 if (!flinfo->info->relocatable
9255 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9256 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9257 && h->root.type == bfd_link_hash_undefined
9258 && !h->def_regular)
9259 {
9260 const char *msg;
9261
9262 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9263 msg = _("%B: protected symbol `%s' isn't defined");
9264 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9265 msg = _("%B: internal symbol `%s' isn't defined");
9266 else
9267 msg = _("%B: hidden symbol `%s' isn't defined");
9268 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9269 bfd_set_error (bfd_error_bad_value);
9270 eoinfo->failed = TRUE;
9271 return FALSE;
9272 }
9273
9274 /* If this symbol should be put in the .dynsym section, then put it
9275 there now. We already know the symbol index. We also fill in
9276 the entry in the .hash section. */
9277 if (flinfo->dynsym_sec != NULL
9278 && h->dynindx != -1
9279 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9280 {
9281 bfd_byte *esym;
9282
9283 /* Since there is no version information in the dynamic string,
9284 if there is no version info in symbol version section, we will
9285 have a run-time problem if not linking executable, referenced
9286 by shared library, not locally defined, or not bound locally.
9287 */
9288 if (h->verinfo.verdef == NULL
9289 && !local_bind
9290 && (!flinfo->info->executable
9291 || h->ref_dynamic
9292 || !h->def_regular))
9293 {
9294 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9295
9296 if (p && p [1] != '\0')
9297 {
9298 (*_bfd_error_handler)
9299 (_("%B: No symbol version section for versioned symbol `%s'"),
9300 flinfo->output_bfd, h->root.root.string);
9301 eoinfo->failed = TRUE;
9302 return FALSE;
9303 }
9304 }
9305
9306 sym.st_name = h->dynstr_index;
9307 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9308 if (!check_dynsym (flinfo->output_bfd, &sym))
9309 {
9310 eoinfo->failed = TRUE;
9311 return FALSE;
9312 }
9313 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9314
9315 if (flinfo->hash_sec != NULL)
9316 {
9317 size_t hash_entry_size;
9318 bfd_byte *bucketpos;
9319 bfd_vma chain;
9320 size_t bucketcount;
9321 size_t bucket;
9322
9323 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9324 bucket = h->u.elf_hash_value % bucketcount;
9325
9326 hash_entry_size
9327 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9328 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9329 + (bucket + 2) * hash_entry_size);
9330 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9331 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9332 bucketpos);
9333 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9334 ((bfd_byte *) flinfo->hash_sec->contents
9335 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9336 }
9337
9338 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9339 {
9340 Elf_Internal_Versym iversym;
9341 Elf_External_Versym *eversym;
9342
9343 if (!h->def_regular)
9344 {
9345 if (h->verinfo.verdef == NULL
9346 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9347 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9348 iversym.vs_vers = 0;
9349 else
9350 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9351 }
9352 else
9353 {
9354 if (h->verinfo.vertree == NULL)
9355 iversym.vs_vers = 1;
9356 else
9357 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9358 if (flinfo->info->create_default_symver)
9359 iversym.vs_vers++;
9360 }
9361
9362 /* Turn on VERSYM_HIDDEN only if the hidden vesioned symbol is
9363 defined locally. */
9364 if (h->hidden && h->def_regular)
9365 iversym.vs_vers |= VERSYM_HIDDEN;
9366
9367 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9368 eversym += h->dynindx;
9369 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9370 }
9371 }
9372
9373 /* If the symbol is undefined, and we didn't output it to .dynsym,
9374 strip it from .symtab too. Obviously we can't do this for
9375 relocatable output or when needed for --emit-relocs. */
9376 else if (input_sec == bfd_und_section_ptr
9377 && h->indx != -2
9378 && !flinfo->info->relocatable)
9379 return TRUE;
9380 /* Also strip others that we couldn't earlier due to dynamic symbol
9381 processing. */
9382 if (strip)
9383 return TRUE;
9384 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9385 return TRUE;
9386
9387 /* Output a FILE symbol so that following locals are not associated
9388 with the wrong input file. We need one for forced local symbols
9389 if we've seen more than one FILE symbol or when we have exactly
9390 one FILE symbol but global symbols are present in a file other
9391 than the one with the FILE symbol. We also need one if linker
9392 defined symbols are present. In practice these conditions are
9393 always met, so just emit the FILE symbol unconditionally. */
9394 if (eoinfo->localsyms
9395 && !eoinfo->file_sym_done
9396 && eoinfo->flinfo->filesym_count != 0)
9397 {
9398 Elf_Internal_Sym fsym;
9399
9400 memset (&fsym, 0, sizeof (fsym));
9401 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9402 fsym.st_shndx = SHN_ABS;
9403 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9404 bfd_und_section_ptr, NULL))
9405 return FALSE;
9406
9407 eoinfo->file_sym_done = TRUE;
9408 }
9409
9410 indx = bfd_get_symcount (flinfo->output_bfd);
9411 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9412 input_sec, h);
9413 if (ret == 0)
9414 {
9415 eoinfo->failed = TRUE;
9416 return FALSE;
9417 }
9418 else if (ret == 1)
9419 h->indx = indx;
9420 else if (h->indx == -2)
9421 abort();
9422
9423 return TRUE;
9424 }
9425
9426 /* Return TRUE if special handling is done for relocs in SEC against
9427 symbols defined in discarded sections. */
9428
9429 static bfd_boolean
9430 elf_section_ignore_discarded_relocs (asection *sec)
9431 {
9432 const struct elf_backend_data *bed;
9433
9434 switch (sec->sec_info_type)
9435 {
9436 case SEC_INFO_TYPE_STABS:
9437 case SEC_INFO_TYPE_EH_FRAME:
9438 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9439 return TRUE;
9440 default:
9441 break;
9442 }
9443
9444 bed = get_elf_backend_data (sec->owner);
9445 if (bed->elf_backend_ignore_discarded_relocs != NULL
9446 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9447 return TRUE;
9448
9449 return FALSE;
9450 }
9451
9452 /* Return a mask saying how ld should treat relocations in SEC against
9453 symbols defined in discarded sections. If this function returns
9454 COMPLAIN set, ld will issue a warning message. If this function
9455 returns PRETEND set, and the discarded section was link-once and the
9456 same size as the kept link-once section, ld will pretend that the
9457 symbol was actually defined in the kept section. Otherwise ld will
9458 zero the reloc (at least that is the intent, but some cooperation by
9459 the target dependent code is needed, particularly for REL targets). */
9460
9461 unsigned int
9462 _bfd_elf_default_action_discarded (asection *sec)
9463 {
9464 if (sec->flags & SEC_DEBUGGING)
9465 return PRETEND;
9466
9467 if (strcmp (".eh_frame", sec->name) == 0)
9468 return 0;
9469
9470 if (strcmp (".gcc_except_table", sec->name) == 0)
9471 return 0;
9472
9473 return COMPLAIN | PRETEND;
9474 }
9475
9476 /* Find a match between a section and a member of a section group. */
9477
9478 static asection *
9479 match_group_member (asection *sec, asection *group,
9480 struct bfd_link_info *info)
9481 {
9482 asection *first = elf_next_in_group (group);
9483 asection *s = first;
9484
9485 while (s != NULL)
9486 {
9487 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9488 return s;
9489
9490 s = elf_next_in_group (s);
9491 if (s == first)
9492 break;
9493 }
9494
9495 return NULL;
9496 }
9497
9498 /* Check if the kept section of a discarded section SEC can be used
9499 to replace it. Return the replacement if it is OK. Otherwise return
9500 NULL. */
9501
9502 asection *
9503 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9504 {
9505 asection *kept;
9506
9507 kept = sec->kept_section;
9508 if (kept != NULL)
9509 {
9510 if ((kept->flags & SEC_GROUP) != 0)
9511 kept = match_group_member (sec, kept, info);
9512 if (kept != NULL
9513 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9514 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9515 kept = NULL;
9516 sec->kept_section = kept;
9517 }
9518 return kept;
9519 }
9520
9521 /* Link an input file into the linker output file. This function
9522 handles all the sections and relocations of the input file at once.
9523 This is so that we only have to read the local symbols once, and
9524 don't have to keep them in memory. */
9525
9526 static bfd_boolean
9527 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9528 {
9529 int (*relocate_section)
9530 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9531 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9532 bfd *output_bfd;
9533 Elf_Internal_Shdr *symtab_hdr;
9534 size_t locsymcount;
9535 size_t extsymoff;
9536 Elf_Internal_Sym *isymbuf;
9537 Elf_Internal_Sym *isym;
9538 Elf_Internal_Sym *isymend;
9539 long *pindex;
9540 asection **ppsection;
9541 asection *o;
9542 const struct elf_backend_data *bed;
9543 struct elf_link_hash_entry **sym_hashes;
9544 bfd_size_type address_size;
9545 bfd_vma r_type_mask;
9546 int r_sym_shift;
9547 bfd_boolean have_file_sym = FALSE;
9548
9549 output_bfd = flinfo->output_bfd;
9550 bed = get_elf_backend_data (output_bfd);
9551 relocate_section = bed->elf_backend_relocate_section;
9552
9553 /* If this is a dynamic object, we don't want to do anything here:
9554 we don't want the local symbols, and we don't want the section
9555 contents. */
9556 if ((input_bfd->flags & DYNAMIC) != 0)
9557 return TRUE;
9558
9559 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9560 if (elf_bad_symtab (input_bfd))
9561 {
9562 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9563 extsymoff = 0;
9564 }
9565 else
9566 {
9567 locsymcount = symtab_hdr->sh_info;
9568 extsymoff = symtab_hdr->sh_info;
9569 }
9570
9571 /* Read the local symbols. */
9572 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9573 if (isymbuf == NULL && locsymcount != 0)
9574 {
9575 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9576 flinfo->internal_syms,
9577 flinfo->external_syms,
9578 flinfo->locsym_shndx);
9579 if (isymbuf == NULL)
9580 return FALSE;
9581 }
9582
9583 /* Find local symbol sections and adjust values of symbols in
9584 SEC_MERGE sections. Write out those local symbols we know are
9585 going into the output file. */
9586 isymend = isymbuf + locsymcount;
9587 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9588 isym < isymend;
9589 isym++, pindex++, ppsection++)
9590 {
9591 asection *isec;
9592 const char *name;
9593 Elf_Internal_Sym osym;
9594 long indx;
9595 int ret;
9596
9597 *pindex = -1;
9598
9599 if (elf_bad_symtab (input_bfd))
9600 {
9601 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9602 {
9603 *ppsection = NULL;
9604 continue;
9605 }
9606 }
9607
9608 if (isym->st_shndx == SHN_UNDEF)
9609 isec = bfd_und_section_ptr;
9610 else if (isym->st_shndx == SHN_ABS)
9611 isec = bfd_abs_section_ptr;
9612 else if (isym->st_shndx == SHN_COMMON)
9613 isec = bfd_com_section_ptr;
9614 else
9615 {
9616 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9617 if (isec == NULL)
9618 {
9619 /* Don't attempt to output symbols with st_shnx in the
9620 reserved range other than SHN_ABS and SHN_COMMON. */
9621 *ppsection = NULL;
9622 continue;
9623 }
9624 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9625 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9626 isym->st_value =
9627 _bfd_merged_section_offset (output_bfd, &isec,
9628 elf_section_data (isec)->sec_info,
9629 isym->st_value);
9630 }
9631
9632 *ppsection = isec;
9633
9634 /* Don't output the first, undefined, symbol. In fact, don't
9635 output any undefined local symbol. */
9636 if (isec == bfd_und_section_ptr)
9637 continue;
9638
9639 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9640 {
9641 /* We never output section symbols. Instead, we use the
9642 section symbol of the corresponding section in the output
9643 file. */
9644 continue;
9645 }
9646
9647 /* If we are stripping all symbols, we don't want to output this
9648 one. */
9649 if (flinfo->info->strip == strip_all)
9650 continue;
9651
9652 /* If we are discarding all local symbols, we don't want to
9653 output this one. If we are generating a relocatable output
9654 file, then some of the local symbols may be required by
9655 relocs; we output them below as we discover that they are
9656 needed. */
9657 if (flinfo->info->discard == discard_all)
9658 continue;
9659
9660 /* If this symbol is defined in a section which we are
9661 discarding, we don't need to keep it. */
9662 if (isym->st_shndx != SHN_UNDEF
9663 && isym->st_shndx < SHN_LORESERVE
9664 && bfd_section_removed_from_list (output_bfd,
9665 isec->output_section))
9666 continue;
9667
9668 /* Get the name of the symbol. */
9669 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9670 isym->st_name);
9671 if (name == NULL)
9672 return FALSE;
9673
9674 /* See if we are discarding symbols with this name. */
9675 if ((flinfo->info->strip == strip_some
9676 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9677 == NULL))
9678 || (((flinfo->info->discard == discard_sec_merge
9679 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9680 || flinfo->info->discard == discard_l)
9681 && bfd_is_local_label_name (input_bfd, name)))
9682 continue;
9683
9684 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9685 {
9686 if (input_bfd->lto_output)
9687 /* -flto puts a temp file name here. This means builds
9688 are not reproducible. Discard the symbol. */
9689 continue;
9690 have_file_sym = TRUE;
9691 flinfo->filesym_count += 1;
9692 }
9693 if (!have_file_sym)
9694 {
9695 /* In the absence of debug info, bfd_find_nearest_line uses
9696 FILE symbols to determine the source file for local
9697 function symbols. Provide a FILE symbol here if input
9698 files lack such, so that their symbols won't be
9699 associated with a previous input file. It's not the
9700 source file, but the best we can do. */
9701 have_file_sym = TRUE;
9702 flinfo->filesym_count += 1;
9703 memset (&osym, 0, sizeof (osym));
9704 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9705 osym.st_shndx = SHN_ABS;
9706 if (!elf_link_output_symstrtab (flinfo,
9707 (input_bfd->lto_output ? NULL
9708 : input_bfd->filename),
9709 &osym, bfd_abs_section_ptr,
9710 NULL))
9711 return FALSE;
9712 }
9713
9714 osym = *isym;
9715
9716 /* Adjust the section index for the output file. */
9717 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9718 isec->output_section);
9719 if (osym.st_shndx == SHN_BAD)
9720 return FALSE;
9721
9722 /* ELF symbols in relocatable files are section relative, but
9723 in executable files they are virtual addresses. Note that
9724 this code assumes that all ELF sections have an associated
9725 BFD section with a reasonable value for output_offset; below
9726 we assume that they also have a reasonable value for
9727 output_section. Any special sections must be set up to meet
9728 these requirements. */
9729 osym.st_value += isec->output_offset;
9730 if (!flinfo->info->relocatable)
9731 {
9732 osym.st_value += isec->output_section->vma;
9733 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9734 {
9735 /* STT_TLS symbols are relative to PT_TLS segment base. */
9736 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9737 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9738 }
9739 }
9740
9741 indx = bfd_get_symcount (output_bfd);
9742 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9743 if (ret == 0)
9744 return FALSE;
9745 else if (ret == 1)
9746 *pindex = indx;
9747 }
9748
9749 if (bed->s->arch_size == 32)
9750 {
9751 r_type_mask = 0xff;
9752 r_sym_shift = 8;
9753 address_size = 4;
9754 }
9755 else
9756 {
9757 r_type_mask = 0xffffffff;
9758 r_sym_shift = 32;
9759 address_size = 8;
9760 }
9761
9762 /* Relocate the contents of each section. */
9763 sym_hashes = elf_sym_hashes (input_bfd);
9764 for (o = input_bfd->sections; o != NULL; o = o->next)
9765 {
9766 bfd_byte *contents;
9767
9768 if (! o->linker_mark)
9769 {
9770 /* This section was omitted from the link. */
9771 continue;
9772 }
9773
9774 if (flinfo->info->relocatable
9775 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9776 {
9777 /* Deal with the group signature symbol. */
9778 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9779 unsigned long symndx = sec_data->this_hdr.sh_info;
9780 asection *osec = o->output_section;
9781
9782 if (symndx >= locsymcount
9783 || (elf_bad_symtab (input_bfd)
9784 && flinfo->sections[symndx] == NULL))
9785 {
9786 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9787 while (h->root.type == bfd_link_hash_indirect
9788 || h->root.type == bfd_link_hash_warning)
9789 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9790 /* Arrange for symbol to be output. */
9791 h->indx = -2;
9792 elf_section_data (osec)->this_hdr.sh_info = -2;
9793 }
9794 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9795 {
9796 /* We'll use the output section target_index. */
9797 asection *sec = flinfo->sections[symndx]->output_section;
9798 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9799 }
9800 else
9801 {
9802 if (flinfo->indices[symndx] == -1)
9803 {
9804 /* Otherwise output the local symbol now. */
9805 Elf_Internal_Sym sym = isymbuf[symndx];
9806 asection *sec = flinfo->sections[symndx]->output_section;
9807 const char *name;
9808 long indx;
9809 int ret;
9810
9811 name = bfd_elf_string_from_elf_section (input_bfd,
9812 symtab_hdr->sh_link,
9813 sym.st_name);
9814 if (name == NULL)
9815 return FALSE;
9816
9817 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9818 sec);
9819 if (sym.st_shndx == SHN_BAD)
9820 return FALSE;
9821
9822 sym.st_value += o->output_offset;
9823
9824 indx = bfd_get_symcount (output_bfd);
9825 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9826 NULL);
9827 if (ret == 0)
9828 return FALSE;
9829 else if (ret == 1)
9830 flinfo->indices[symndx] = indx;
9831 else
9832 abort ();
9833 }
9834 elf_section_data (osec)->this_hdr.sh_info
9835 = flinfo->indices[symndx];
9836 }
9837 }
9838
9839 if ((o->flags & SEC_HAS_CONTENTS) == 0
9840 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9841 continue;
9842
9843 if ((o->flags & SEC_LINKER_CREATED) != 0)
9844 {
9845 /* Section was created by _bfd_elf_link_create_dynamic_sections
9846 or somesuch. */
9847 continue;
9848 }
9849
9850 /* Get the contents of the section. They have been cached by a
9851 relaxation routine. Note that o is a section in an input
9852 file, so the contents field will not have been set by any of
9853 the routines which work on output files. */
9854 if (elf_section_data (o)->this_hdr.contents != NULL)
9855 {
9856 contents = elf_section_data (o)->this_hdr.contents;
9857 if (bed->caches_rawsize
9858 && o->rawsize != 0
9859 && o->rawsize < o->size)
9860 {
9861 memcpy (flinfo->contents, contents, o->rawsize);
9862 contents = flinfo->contents;
9863 }
9864 }
9865 else
9866 {
9867 contents = flinfo->contents;
9868 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9869 return FALSE;
9870 }
9871
9872 if ((o->flags & SEC_RELOC) != 0)
9873 {
9874 Elf_Internal_Rela *internal_relocs;
9875 Elf_Internal_Rela *rel, *relend;
9876 int action_discarded;
9877 int ret;
9878
9879 /* Get the swapped relocs. */
9880 internal_relocs
9881 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9882 flinfo->internal_relocs, FALSE);
9883 if (internal_relocs == NULL
9884 && o->reloc_count > 0)
9885 return FALSE;
9886
9887 /* We need to reverse-copy input .ctors/.dtors sections if
9888 they are placed in .init_array/.finit_array for output. */
9889 if (o->size > address_size
9890 && ((strncmp (o->name, ".ctors", 6) == 0
9891 && strcmp (o->output_section->name,
9892 ".init_array") == 0)
9893 || (strncmp (o->name, ".dtors", 6) == 0
9894 && strcmp (o->output_section->name,
9895 ".fini_array") == 0))
9896 && (o->name[6] == 0 || o->name[6] == '.'))
9897 {
9898 if (o->size != o->reloc_count * address_size)
9899 {
9900 (*_bfd_error_handler)
9901 (_("error: %B: size of section %A is not "
9902 "multiple of address size"),
9903 input_bfd, o);
9904 bfd_set_error (bfd_error_on_input);
9905 return FALSE;
9906 }
9907 o->flags |= SEC_ELF_REVERSE_COPY;
9908 }
9909
9910 action_discarded = -1;
9911 if (!elf_section_ignore_discarded_relocs (o))
9912 action_discarded = (*bed->action_discarded) (o);
9913
9914 /* Run through the relocs evaluating complex reloc symbols and
9915 looking for relocs against symbols from discarded sections
9916 or section symbols from removed link-once sections.
9917 Complain about relocs against discarded sections. Zero
9918 relocs against removed link-once sections. */
9919
9920 rel = internal_relocs;
9921 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9922 for ( ; rel < relend; rel++)
9923 {
9924 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9925 unsigned int s_type;
9926 asection **ps, *sec;
9927 struct elf_link_hash_entry *h = NULL;
9928 const char *sym_name;
9929
9930 if (r_symndx == STN_UNDEF)
9931 continue;
9932
9933 if (r_symndx >= locsymcount
9934 || (elf_bad_symtab (input_bfd)
9935 && flinfo->sections[r_symndx] == NULL))
9936 {
9937 h = sym_hashes[r_symndx - extsymoff];
9938
9939 /* Badly formatted input files can contain relocs that
9940 reference non-existant symbols. Check here so that
9941 we do not seg fault. */
9942 if (h == NULL)
9943 {
9944 char buffer [32];
9945
9946 sprintf_vma (buffer, rel->r_info);
9947 (*_bfd_error_handler)
9948 (_("error: %B contains a reloc (0x%s) for section %A "
9949 "that references a non-existent global symbol"),
9950 input_bfd, o, buffer);
9951 bfd_set_error (bfd_error_bad_value);
9952 return FALSE;
9953 }
9954
9955 while (h->root.type == bfd_link_hash_indirect
9956 || h->root.type == bfd_link_hash_warning)
9957 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9958
9959 s_type = h->type;
9960
9961 /* If a plugin symbol is referenced from a non-IR file,
9962 mark the symbol as undefined. Note that the
9963 linker may attach linker created dynamic sections
9964 to the plugin bfd. Symbols defined in linker
9965 created sections are not plugin symbols. */
9966 if (h->root.non_ir_ref
9967 && (h->root.type == bfd_link_hash_defined
9968 || h->root.type == bfd_link_hash_defweak)
9969 && (h->root.u.def.section->flags
9970 & SEC_LINKER_CREATED) == 0
9971 && h->root.u.def.section->owner != NULL
9972 && (h->root.u.def.section->owner->flags
9973 & BFD_PLUGIN) != 0)
9974 {
9975 h->root.type = bfd_link_hash_undefined;
9976 h->root.u.undef.abfd = h->root.u.def.section->owner;
9977 }
9978
9979 ps = NULL;
9980 if (h->root.type == bfd_link_hash_defined
9981 || h->root.type == bfd_link_hash_defweak)
9982 ps = &h->root.u.def.section;
9983
9984 sym_name = h->root.root.string;
9985 }
9986 else
9987 {
9988 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9989
9990 s_type = ELF_ST_TYPE (sym->st_info);
9991 ps = &flinfo->sections[r_symndx];
9992 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9993 sym, *ps);
9994 }
9995
9996 if ((s_type == STT_RELC || s_type == STT_SRELC)
9997 && !flinfo->info->relocatable)
9998 {
9999 bfd_vma val;
10000 bfd_vma dot = (rel->r_offset
10001 + o->output_offset + o->output_section->vma);
10002 #ifdef DEBUG
10003 printf ("Encountered a complex symbol!");
10004 printf (" (input_bfd %s, section %s, reloc %ld\n",
10005 input_bfd->filename, o->name,
10006 (long) (rel - internal_relocs));
10007 printf (" symbol: idx %8.8lx, name %s\n",
10008 r_symndx, sym_name);
10009 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10010 (unsigned long) rel->r_info,
10011 (unsigned long) rel->r_offset);
10012 #endif
10013 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10014 isymbuf, locsymcount, s_type == STT_SRELC))
10015 return FALSE;
10016
10017 /* Symbol evaluated OK. Update to absolute value. */
10018 set_symbol_value (input_bfd, isymbuf, locsymcount,
10019 r_symndx, val);
10020 continue;
10021 }
10022
10023 if (action_discarded != -1 && ps != NULL)
10024 {
10025 /* Complain if the definition comes from a
10026 discarded section. */
10027 if ((sec = *ps) != NULL && discarded_section (sec))
10028 {
10029 BFD_ASSERT (r_symndx != STN_UNDEF);
10030 if (action_discarded & COMPLAIN)
10031 (*flinfo->info->callbacks->einfo)
10032 (_("%X`%s' referenced in section `%A' of %B: "
10033 "defined in discarded section `%A' of %B\n"),
10034 sym_name, o, input_bfd, sec, sec->owner);
10035
10036 /* Try to do the best we can to support buggy old
10037 versions of gcc. Pretend that the symbol is
10038 really defined in the kept linkonce section.
10039 FIXME: This is quite broken. Modifying the
10040 symbol here means we will be changing all later
10041 uses of the symbol, not just in this section. */
10042 if (action_discarded & PRETEND)
10043 {
10044 asection *kept;
10045
10046 kept = _bfd_elf_check_kept_section (sec,
10047 flinfo->info);
10048 if (kept != NULL)
10049 {
10050 *ps = kept;
10051 continue;
10052 }
10053 }
10054 }
10055 }
10056 }
10057
10058 /* Relocate the section by invoking a back end routine.
10059
10060 The back end routine is responsible for adjusting the
10061 section contents as necessary, and (if using Rela relocs
10062 and generating a relocatable output file) adjusting the
10063 reloc addend as necessary.
10064
10065 The back end routine does not have to worry about setting
10066 the reloc address or the reloc symbol index.
10067
10068 The back end routine is given a pointer to the swapped in
10069 internal symbols, and can access the hash table entries
10070 for the external symbols via elf_sym_hashes (input_bfd).
10071
10072 When generating relocatable output, the back end routine
10073 must handle STB_LOCAL/STT_SECTION symbols specially. The
10074 output symbol is going to be a section symbol
10075 corresponding to the output section, which will require
10076 the addend to be adjusted. */
10077
10078 ret = (*relocate_section) (output_bfd, flinfo->info,
10079 input_bfd, o, contents,
10080 internal_relocs,
10081 isymbuf,
10082 flinfo->sections);
10083 if (!ret)
10084 return FALSE;
10085
10086 if (ret == 2
10087 || flinfo->info->relocatable
10088 || flinfo->info->emitrelocations)
10089 {
10090 Elf_Internal_Rela *irela;
10091 Elf_Internal_Rela *irelaend, *irelamid;
10092 bfd_vma last_offset;
10093 struct elf_link_hash_entry **rel_hash;
10094 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10095 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10096 unsigned int next_erel;
10097 bfd_boolean rela_normal;
10098 struct bfd_elf_section_data *esdi, *esdo;
10099
10100 esdi = elf_section_data (o);
10101 esdo = elf_section_data (o->output_section);
10102 rela_normal = FALSE;
10103
10104 /* Adjust the reloc addresses and symbol indices. */
10105
10106 irela = internal_relocs;
10107 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10108 rel_hash = esdo->rel.hashes + esdo->rel.count;
10109 /* We start processing the REL relocs, if any. When we reach
10110 IRELAMID in the loop, we switch to the RELA relocs. */
10111 irelamid = irela;
10112 if (esdi->rel.hdr != NULL)
10113 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10114 * bed->s->int_rels_per_ext_rel);
10115 rel_hash_list = rel_hash;
10116 rela_hash_list = NULL;
10117 last_offset = o->output_offset;
10118 if (!flinfo->info->relocatable)
10119 last_offset += o->output_section->vma;
10120 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10121 {
10122 unsigned long r_symndx;
10123 asection *sec;
10124 Elf_Internal_Sym sym;
10125
10126 if (next_erel == bed->s->int_rels_per_ext_rel)
10127 {
10128 rel_hash++;
10129 next_erel = 0;
10130 }
10131
10132 if (irela == irelamid)
10133 {
10134 rel_hash = esdo->rela.hashes + esdo->rela.count;
10135 rela_hash_list = rel_hash;
10136 rela_normal = bed->rela_normal;
10137 }
10138
10139 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10140 flinfo->info, o,
10141 irela->r_offset);
10142 if (irela->r_offset >= (bfd_vma) -2)
10143 {
10144 /* This is a reloc for a deleted entry or somesuch.
10145 Turn it into an R_*_NONE reloc, at the same
10146 offset as the last reloc. elf_eh_frame.c and
10147 bfd_elf_discard_info rely on reloc offsets
10148 being ordered. */
10149 irela->r_offset = last_offset;
10150 irela->r_info = 0;
10151 irela->r_addend = 0;
10152 continue;
10153 }
10154
10155 irela->r_offset += o->output_offset;
10156
10157 /* Relocs in an executable have to be virtual addresses. */
10158 if (!flinfo->info->relocatable)
10159 irela->r_offset += o->output_section->vma;
10160
10161 last_offset = irela->r_offset;
10162
10163 r_symndx = irela->r_info >> r_sym_shift;
10164 if (r_symndx == STN_UNDEF)
10165 continue;
10166
10167 if (r_symndx >= locsymcount
10168 || (elf_bad_symtab (input_bfd)
10169 && flinfo->sections[r_symndx] == NULL))
10170 {
10171 struct elf_link_hash_entry *rh;
10172 unsigned long indx;
10173
10174 /* This is a reloc against a global symbol. We
10175 have not yet output all the local symbols, so
10176 we do not know the symbol index of any global
10177 symbol. We set the rel_hash entry for this
10178 reloc to point to the global hash table entry
10179 for this symbol. The symbol index is then
10180 set at the end of bfd_elf_final_link. */
10181 indx = r_symndx - extsymoff;
10182 rh = elf_sym_hashes (input_bfd)[indx];
10183 while (rh->root.type == bfd_link_hash_indirect
10184 || rh->root.type == bfd_link_hash_warning)
10185 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10186
10187 /* Setting the index to -2 tells
10188 elf_link_output_extsym that this symbol is
10189 used by a reloc. */
10190 BFD_ASSERT (rh->indx < 0);
10191 rh->indx = -2;
10192
10193 *rel_hash = rh;
10194
10195 continue;
10196 }
10197
10198 /* This is a reloc against a local symbol. */
10199
10200 *rel_hash = NULL;
10201 sym = isymbuf[r_symndx];
10202 sec = flinfo->sections[r_symndx];
10203 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10204 {
10205 /* I suppose the backend ought to fill in the
10206 section of any STT_SECTION symbol against a
10207 processor specific section. */
10208 r_symndx = STN_UNDEF;
10209 if (bfd_is_abs_section (sec))
10210 ;
10211 else if (sec == NULL || sec->owner == NULL)
10212 {
10213 bfd_set_error (bfd_error_bad_value);
10214 return FALSE;
10215 }
10216 else
10217 {
10218 asection *osec = sec->output_section;
10219
10220 /* If we have discarded a section, the output
10221 section will be the absolute section. In
10222 case of discarded SEC_MERGE sections, use
10223 the kept section. relocate_section should
10224 have already handled discarded linkonce
10225 sections. */
10226 if (bfd_is_abs_section (osec)
10227 && sec->kept_section != NULL
10228 && sec->kept_section->output_section != NULL)
10229 {
10230 osec = sec->kept_section->output_section;
10231 irela->r_addend -= osec->vma;
10232 }
10233
10234 if (!bfd_is_abs_section (osec))
10235 {
10236 r_symndx = osec->target_index;
10237 if (r_symndx == STN_UNDEF)
10238 {
10239 irela->r_addend += osec->vma;
10240 osec = _bfd_nearby_section (output_bfd, osec,
10241 osec->vma);
10242 irela->r_addend -= osec->vma;
10243 r_symndx = osec->target_index;
10244 }
10245 }
10246 }
10247
10248 /* Adjust the addend according to where the
10249 section winds up in the output section. */
10250 if (rela_normal)
10251 irela->r_addend += sec->output_offset;
10252 }
10253 else
10254 {
10255 if (flinfo->indices[r_symndx] == -1)
10256 {
10257 unsigned long shlink;
10258 const char *name;
10259 asection *osec;
10260 long indx;
10261
10262 if (flinfo->info->strip == strip_all)
10263 {
10264 /* You can't do ld -r -s. */
10265 bfd_set_error (bfd_error_invalid_operation);
10266 return FALSE;
10267 }
10268
10269 /* This symbol was skipped earlier, but
10270 since it is needed by a reloc, we
10271 must output it now. */
10272 shlink = symtab_hdr->sh_link;
10273 name = (bfd_elf_string_from_elf_section
10274 (input_bfd, shlink, sym.st_name));
10275 if (name == NULL)
10276 return FALSE;
10277
10278 osec = sec->output_section;
10279 sym.st_shndx =
10280 _bfd_elf_section_from_bfd_section (output_bfd,
10281 osec);
10282 if (sym.st_shndx == SHN_BAD)
10283 return FALSE;
10284
10285 sym.st_value += sec->output_offset;
10286 if (!flinfo->info->relocatable)
10287 {
10288 sym.st_value += osec->vma;
10289 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10290 {
10291 /* STT_TLS symbols are relative to PT_TLS
10292 segment base. */
10293 BFD_ASSERT (elf_hash_table (flinfo->info)
10294 ->tls_sec != NULL);
10295 sym.st_value -= (elf_hash_table (flinfo->info)
10296 ->tls_sec->vma);
10297 }
10298 }
10299
10300 indx = bfd_get_symcount (output_bfd);
10301 ret = elf_link_output_symstrtab (flinfo, name,
10302 &sym, sec,
10303 NULL);
10304 if (ret == 0)
10305 return FALSE;
10306 else if (ret == 1)
10307 flinfo->indices[r_symndx] = indx;
10308 else
10309 abort ();
10310 }
10311
10312 r_symndx = flinfo->indices[r_symndx];
10313 }
10314
10315 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10316 | (irela->r_info & r_type_mask));
10317 }
10318
10319 /* Swap out the relocs. */
10320 input_rel_hdr = esdi->rel.hdr;
10321 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10322 {
10323 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10324 input_rel_hdr,
10325 internal_relocs,
10326 rel_hash_list))
10327 return FALSE;
10328 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10329 * bed->s->int_rels_per_ext_rel);
10330 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10331 }
10332
10333 input_rela_hdr = esdi->rela.hdr;
10334 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10335 {
10336 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10337 input_rela_hdr,
10338 internal_relocs,
10339 rela_hash_list))
10340 return FALSE;
10341 }
10342 }
10343 }
10344
10345 /* Write out the modified section contents. */
10346 if (bed->elf_backend_write_section
10347 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10348 contents))
10349 {
10350 /* Section written out. */
10351 }
10352 else switch (o->sec_info_type)
10353 {
10354 case SEC_INFO_TYPE_STABS:
10355 if (! (_bfd_write_section_stabs
10356 (output_bfd,
10357 &elf_hash_table (flinfo->info)->stab_info,
10358 o, &elf_section_data (o)->sec_info, contents)))
10359 return FALSE;
10360 break;
10361 case SEC_INFO_TYPE_MERGE:
10362 if (! _bfd_write_merged_section (output_bfd, o,
10363 elf_section_data (o)->sec_info))
10364 return FALSE;
10365 break;
10366 case SEC_INFO_TYPE_EH_FRAME:
10367 {
10368 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10369 o, contents))
10370 return FALSE;
10371 }
10372 break;
10373 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10374 {
10375 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10376 flinfo->info,
10377 o, contents))
10378 return FALSE;
10379 }
10380 break;
10381 default:
10382 {
10383 /* FIXME: octets_per_byte. */
10384 if (! (o->flags & SEC_EXCLUDE))
10385 {
10386 file_ptr offset = (file_ptr) o->output_offset;
10387 bfd_size_type todo = o->size;
10388 if ((o->flags & SEC_ELF_REVERSE_COPY))
10389 {
10390 /* Reverse-copy input section to output. */
10391 do
10392 {
10393 todo -= address_size;
10394 if (! bfd_set_section_contents (output_bfd,
10395 o->output_section,
10396 contents + todo,
10397 offset,
10398 address_size))
10399 return FALSE;
10400 if (todo == 0)
10401 break;
10402 offset += address_size;
10403 }
10404 while (1);
10405 }
10406 else if (! bfd_set_section_contents (output_bfd,
10407 o->output_section,
10408 contents,
10409 offset, todo))
10410 return FALSE;
10411 }
10412 }
10413 break;
10414 }
10415 }
10416
10417 return TRUE;
10418 }
10419
10420 /* Generate a reloc when linking an ELF file. This is a reloc
10421 requested by the linker, and does not come from any input file. This
10422 is used to build constructor and destructor tables when linking
10423 with -Ur. */
10424
10425 static bfd_boolean
10426 elf_reloc_link_order (bfd *output_bfd,
10427 struct bfd_link_info *info,
10428 asection *output_section,
10429 struct bfd_link_order *link_order)
10430 {
10431 reloc_howto_type *howto;
10432 long indx;
10433 bfd_vma offset;
10434 bfd_vma addend;
10435 struct bfd_elf_section_reloc_data *reldata;
10436 struct elf_link_hash_entry **rel_hash_ptr;
10437 Elf_Internal_Shdr *rel_hdr;
10438 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10439 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10440 bfd_byte *erel;
10441 unsigned int i;
10442 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10443
10444 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10445 if (howto == NULL)
10446 {
10447 bfd_set_error (bfd_error_bad_value);
10448 return FALSE;
10449 }
10450
10451 addend = link_order->u.reloc.p->addend;
10452
10453 if (esdo->rel.hdr)
10454 reldata = &esdo->rel;
10455 else if (esdo->rela.hdr)
10456 reldata = &esdo->rela;
10457 else
10458 {
10459 reldata = NULL;
10460 BFD_ASSERT (0);
10461 }
10462
10463 /* Figure out the symbol index. */
10464 rel_hash_ptr = reldata->hashes + reldata->count;
10465 if (link_order->type == bfd_section_reloc_link_order)
10466 {
10467 indx = link_order->u.reloc.p->u.section->target_index;
10468 BFD_ASSERT (indx != 0);
10469 *rel_hash_ptr = NULL;
10470 }
10471 else
10472 {
10473 struct elf_link_hash_entry *h;
10474
10475 /* Treat a reloc against a defined symbol as though it were
10476 actually against the section. */
10477 h = ((struct elf_link_hash_entry *)
10478 bfd_wrapped_link_hash_lookup (output_bfd, info,
10479 link_order->u.reloc.p->u.name,
10480 FALSE, FALSE, TRUE));
10481 if (h != NULL
10482 && (h->root.type == bfd_link_hash_defined
10483 || h->root.type == bfd_link_hash_defweak))
10484 {
10485 asection *section;
10486
10487 section = h->root.u.def.section;
10488 indx = section->output_section->target_index;
10489 *rel_hash_ptr = NULL;
10490 /* It seems that we ought to add the symbol value to the
10491 addend here, but in practice it has already been added
10492 because it was passed to constructor_callback. */
10493 addend += section->output_section->vma + section->output_offset;
10494 }
10495 else if (h != NULL)
10496 {
10497 /* Setting the index to -2 tells elf_link_output_extsym that
10498 this symbol is used by a reloc. */
10499 h->indx = -2;
10500 *rel_hash_ptr = h;
10501 indx = 0;
10502 }
10503 else
10504 {
10505 if (! ((*info->callbacks->unattached_reloc)
10506 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10507 return FALSE;
10508 indx = 0;
10509 }
10510 }
10511
10512 /* If this is an inplace reloc, we must write the addend into the
10513 object file. */
10514 if (howto->partial_inplace && addend != 0)
10515 {
10516 bfd_size_type size;
10517 bfd_reloc_status_type rstat;
10518 bfd_byte *buf;
10519 bfd_boolean ok;
10520 const char *sym_name;
10521
10522 size = (bfd_size_type) bfd_get_reloc_size (howto);
10523 buf = (bfd_byte *) bfd_zmalloc (size);
10524 if (buf == NULL && size != 0)
10525 return FALSE;
10526 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10527 switch (rstat)
10528 {
10529 case bfd_reloc_ok:
10530 break;
10531
10532 default:
10533 case bfd_reloc_outofrange:
10534 abort ();
10535
10536 case bfd_reloc_overflow:
10537 if (link_order->type == bfd_section_reloc_link_order)
10538 sym_name = bfd_section_name (output_bfd,
10539 link_order->u.reloc.p->u.section);
10540 else
10541 sym_name = link_order->u.reloc.p->u.name;
10542 if (! ((*info->callbacks->reloc_overflow)
10543 (info, NULL, sym_name, howto->name, addend, NULL,
10544 NULL, (bfd_vma) 0)))
10545 {
10546 free (buf);
10547 return FALSE;
10548 }
10549 break;
10550 }
10551 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10552 link_order->offset, size);
10553 free (buf);
10554 if (! ok)
10555 return FALSE;
10556 }
10557
10558 /* The address of a reloc is relative to the section in a
10559 relocatable file, and is a virtual address in an executable
10560 file. */
10561 offset = link_order->offset;
10562 if (! info->relocatable)
10563 offset += output_section->vma;
10564
10565 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10566 {
10567 irel[i].r_offset = offset;
10568 irel[i].r_info = 0;
10569 irel[i].r_addend = 0;
10570 }
10571 if (bed->s->arch_size == 32)
10572 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10573 else
10574 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10575
10576 rel_hdr = reldata->hdr;
10577 erel = rel_hdr->contents;
10578 if (rel_hdr->sh_type == SHT_REL)
10579 {
10580 erel += reldata->count * bed->s->sizeof_rel;
10581 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10582 }
10583 else
10584 {
10585 irel[0].r_addend = addend;
10586 erel += reldata->count * bed->s->sizeof_rela;
10587 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10588 }
10589
10590 ++reldata->count;
10591
10592 return TRUE;
10593 }
10594
10595
10596 /* Get the output vma of the section pointed to by the sh_link field. */
10597
10598 static bfd_vma
10599 elf_get_linked_section_vma (struct bfd_link_order *p)
10600 {
10601 Elf_Internal_Shdr **elf_shdrp;
10602 asection *s;
10603 int elfsec;
10604
10605 s = p->u.indirect.section;
10606 elf_shdrp = elf_elfsections (s->owner);
10607 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10608 elfsec = elf_shdrp[elfsec]->sh_link;
10609 /* PR 290:
10610 The Intel C compiler generates SHT_IA_64_UNWIND with
10611 SHF_LINK_ORDER. But it doesn't set the sh_link or
10612 sh_info fields. Hence we could get the situation
10613 where elfsec is 0. */
10614 if (elfsec == 0)
10615 {
10616 const struct elf_backend_data *bed
10617 = get_elf_backend_data (s->owner);
10618 if (bed->link_order_error_handler)
10619 bed->link_order_error_handler
10620 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10621 return 0;
10622 }
10623 else
10624 {
10625 s = elf_shdrp[elfsec]->bfd_section;
10626 return s->output_section->vma + s->output_offset;
10627 }
10628 }
10629
10630
10631 /* Compare two sections based on the locations of the sections they are
10632 linked to. Used by elf_fixup_link_order. */
10633
10634 static int
10635 compare_link_order (const void * a, const void * b)
10636 {
10637 bfd_vma apos;
10638 bfd_vma bpos;
10639
10640 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10641 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10642 if (apos < bpos)
10643 return -1;
10644 return apos > bpos;
10645 }
10646
10647
10648 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10649 order as their linked sections. Returns false if this could not be done
10650 because an output section includes both ordered and unordered
10651 sections. Ideally we'd do this in the linker proper. */
10652
10653 static bfd_boolean
10654 elf_fixup_link_order (bfd *abfd, asection *o)
10655 {
10656 int seen_linkorder;
10657 int seen_other;
10658 int n;
10659 struct bfd_link_order *p;
10660 bfd *sub;
10661 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10662 unsigned elfsec;
10663 struct bfd_link_order **sections;
10664 asection *s, *other_sec, *linkorder_sec;
10665 bfd_vma offset;
10666
10667 other_sec = NULL;
10668 linkorder_sec = NULL;
10669 seen_other = 0;
10670 seen_linkorder = 0;
10671 for (p = o->map_head.link_order; p != NULL; p = p->next)
10672 {
10673 if (p->type == bfd_indirect_link_order)
10674 {
10675 s = p->u.indirect.section;
10676 sub = s->owner;
10677 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10678 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10679 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10680 && elfsec < elf_numsections (sub)
10681 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10682 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10683 {
10684 seen_linkorder++;
10685 linkorder_sec = s;
10686 }
10687 else
10688 {
10689 seen_other++;
10690 other_sec = s;
10691 }
10692 }
10693 else
10694 seen_other++;
10695
10696 if (seen_other && seen_linkorder)
10697 {
10698 if (other_sec && linkorder_sec)
10699 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10700 o, linkorder_sec,
10701 linkorder_sec->owner, other_sec,
10702 other_sec->owner);
10703 else
10704 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10705 o);
10706 bfd_set_error (bfd_error_bad_value);
10707 return FALSE;
10708 }
10709 }
10710
10711 if (!seen_linkorder)
10712 return TRUE;
10713
10714 sections = (struct bfd_link_order **)
10715 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10716 if (sections == NULL)
10717 return FALSE;
10718 seen_linkorder = 0;
10719
10720 for (p = o->map_head.link_order; p != NULL; p = p->next)
10721 {
10722 sections[seen_linkorder++] = p;
10723 }
10724 /* Sort the input sections in the order of their linked section. */
10725 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10726 compare_link_order);
10727
10728 /* Change the offsets of the sections. */
10729 offset = 0;
10730 for (n = 0; n < seen_linkorder; n++)
10731 {
10732 s = sections[n]->u.indirect.section;
10733 offset &= ~(bfd_vma) 0 << s->alignment_power;
10734 s->output_offset = offset;
10735 sections[n]->offset = offset;
10736 /* FIXME: octets_per_byte. */
10737 offset += sections[n]->size;
10738 }
10739
10740 free (sections);
10741 return TRUE;
10742 }
10743
10744 static void
10745 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10746 {
10747 asection *o;
10748
10749 if (flinfo->symstrtab != NULL)
10750 _bfd_elf_strtab_free (flinfo->symstrtab);
10751 if (flinfo->contents != NULL)
10752 free (flinfo->contents);
10753 if (flinfo->external_relocs != NULL)
10754 free (flinfo->external_relocs);
10755 if (flinfo->internal_relocs != NULL)
10756 free (flinfo->internal_relocs);
10757 if (flinfo->external_syms != NULL)
10758 free (flinfo->external_syms);
10759 if (flinfo->locsym_shndx != NULL)
10760 free (flinfo->locsym_shndx);
10761 if (flinfo->internal_syms != NULL)
10762 free (flinfo->internal_syms);
10763 if (flinfo->indices != NULL)
10764 free (flinfo->indices);
10765 if (flinfo->sections != NULL)
10766 free (flinfo->sections);
10767 if (flinfo->symshndxbuf != NULL)
10768 free (flinfo->symshndxbuf);
10769 for (o = obfd->sections; o != NULL; o = o->next)
10770 {
10771 struct bfd_elf_section_data *esdo = elf_section_data (o);
10772 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10773 free (esdo->rel.hashes);
10774 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10775 free (esdo->rela.hashes);
10776 }
10777 }
10778
10779 /* Do the final step of an ELF link. */
10780
10781 bfd_boolean
10782 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10783 {
10784 bfd_boolean dynamic;
10785 bfd_boolean emit_relocs;
10786 bfd *dynobj;
10787 struct elf_final_link_info flinfo;
10788 asection *o;
10789 struct bfd_link_order *p;
10790 bfd *sub;
10791 bfd_size_type max_contents_size;
10792 bfd_size_type max_external_reloc_size;
10793 bfd_size_type max_internal_reloc_count;
10794 bfd_size_type max_sym_count;
10795 bfd_size_type max_sym_shndx_count;
10796 Elf_Internal_Sym elfsym;
10797 unsigned int i;
10798 Elf_Internal_Shdr *symtab_hdr;
10799 Elf_Internal_Shdr *symtab_shndx_hdr;
10800 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10801 struct elf_outext_info eoinfo;
10802 bfd_boolean merged;
10803 size_t relativecount = 0;
10804 asection *reldyn = 0;
10805 bfd_size_type amt;
10806 asection *attr_section = NULL;
10807 bfd_vma attr_size = 0;
10808 const char *std_attrs_section;
10809
10810 if (! is_elf_hash_table (info->hash))
10811 return FALSE;
10812
10813 if (info->shared)
10814 abfd->flags |= DYNAMIC;
10815
10816 dynamic = elf_hash_table (info)->dynamic_sections_created;
10817 dynobj = elf_hash_table (info)->dynobj;
10818
10819 emit_relocs = (info->relocatable
10820 || info->emitrelocations);
10821
10822 flinfo.info = info;
10823 flinfo.output_bfd = abfd;
10824 flinfo.symstrtab = _bfd_elf_strtab_init ();
10825 if (flinfo.symstrtab == NULL)
10826 return FALSE;
10827
10828 if (! dynamic)
10829 {
10830 flinfo.dynsym_sec = NULL;
10831 flinfo.hash_sec = NULL;
10832 flinfo.symver_sec = NULL;
10833 }
10834 else
10835 {
10836 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10837 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10838 /* Note that dynsym_sec can be NULL (on VMS). */
10839 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10840 /* Note that it is OK if symver_sec is NULL. */
10841 }
10842
10843 flinfo.contents = NULL;
10844 flinfo.external_relocs = NULL;
10845 flinfo.internal_relocs = NULL;
10846 flinfo.external_syms = NULL;
10847 flinfo.locsym_shndx = NULL;
10848 flinfo.internal_syms = NULL;
10849 flinfo.indices = NULL;
10850 flinfo.sections = NULL;
10851 flinfo.symshndxbuf = NULL;
10852 flinfo.filesym_count = 0;
10853
10854 /* The object attributes have been merged. Remove the input
10855 sections from the link, and set the contents of the output
10856 secton. */
10857 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10858 for (o = abfd->sections; o != NULL; o = o->next)
10859 {
10860 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10861 || strcmp (o->name, ".gnu.attributes") == 0)
10862 {
10863 for (p = o->map_head.link_order; p != NULL; p = p->next)
10864 {
10865 asection *input_section;
10866
10867 if (p->type != bfd_indirect_link_order)
10868 continue;
10869 input_section = p->u.indirect.section;
10870 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10871 elf_link_input_bfd ignores this section. */
10872 input_section->flags &= ~SEC_HAS_CONTENTS;
10873 }
10874
10875 attr_size = bfd_elf_obj_attr_size (abfd);
10876 if (attr_size)
10877 {
10878 bfd_set_section_size (abfd, o, attr_size);
10879 attr_section = o;
10880 /* Skip this section later on. */
10881 o->map_head.link_order = NULL;
10882 }
10883 else
10884 o->flags |= SEC_EXCLUDE;
10885 }
10886 }
10887
10888 /* Count up the number of relocations we will output for each output
10889 section, so that we know the sizes of the reloc sections. We
10890 also figure out some maximum sizes. */
10891 max_contents_size = 0;
10892 max_external_reloc_size = 0;
10893 max_internal_reloc_count = 0;
10894 max_sym_count = 0;
10895 max_sym_shndx_count = 0;
10896 merged = FALSE;
10897 for (o = abfd->sections; o != NULL; o = o->next)
10898 {
10899 struct bfd_elf_section_data *esdo = elf_section_data (o);
10900 o->reloc_count = 0;
10901
10902 for (p = o->map_head.link_order; p != NULL; p = p->next)
10903 {
10904 unsigned int reloc_count = 0;
10905 struct bfd_elf_section_data *esdi = NULL;
10906
10907 if (p->type == bfd_section_reloc_link_order
10908 || p->type == bfd_symbol_reloc_link_order)
10909 reloc_count = 1;
10910 else if (p->type == bfd_indirect_link_order)
10911 {
10912 asection *sec;
10913
10914 sec = p->u.indirect.section;
10915 esdi = elf_section_data (sec);
10916
10917 /* Mark all sections which are to be included in the
10918 link. This will normally be every section. We need
10919 to do this so that we can identify any sections which
10920 the linker has decided to not include. */
10921 sec->linker_mark = TRUE;
10922
10923 if (sec->flags & SEC_MERGE)
10924 merged = TRUE;
10925
10926 if (esdo->this_hdr.sh_type == SHT_REL
10927 || esdo->this_hdr.sh_type == SHT_RELA)
10928 /* Some backends use reloc_count in relocation sections
10929 to count particular types of relocs. Of course,
10930 reloc sections themselves can't have relocations. */
10931 reloc_count = 0;
10932 else if (info->relocatable || info->emitrelocations)
10933 reloc_count = sec->reloc_count;
10934 else if (bed->elf_backend_count_relocs)
10935 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10936
10937 if (sec->rawsize > max_contents_size)
10938 max_contents_size = sec->rawsize;
10939 if (sec->size > max_contents_size)
10940 max_contents_size = sec->size;
10941
10942 /* We are interested in just local symbols, not all
10943 symbols. */
10944 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10945 && (sec->owner->flags & DYNAMIC) == 0)
10946 {
10947 size_t sym_count;
10948
10949 if (elf_bad_symtab (sec->owner))
10950 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10951 / bed->s->sizeof_sym);
10952 else
10953 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10954
10955 if (sym_count > max_sym_count)
10956 max_sym_count = sym_count;
10957
10958 if (sym_count > max_sym_shndx_count
10959 && elf_symtab_shndx (sec->owner) != 0)
10960 max_sym_shndx_count = sym_count;
10961
10962 if ((sec->flags & SEC_RELOC) != 0)
10963 {
10964 size_t ext_size = 0;
10965
10966 if (esdi->rel.hdr != NULL)
10967 ext_size = esdi->rel.hdr->sh_size;
10968 if (esdi->rela.hdr != NULL)
10969 ext_size += esdi->rela.hdr->sh_size;
10970
10971 if (ext_size > max_external_reloc_size)
10972 max_external_reloc_size = ext_size;
10973 if (sec->reloc_count > max_internal_reloc_count)
10974 max_internal_reloc_count = sec->reloc_count;
10975 }
10976 }
10977 }
10978
10979 if (reloc_count == 0)
10980 continue;
10981
10982 o->reloc_count += reloc_count;
10983
10984 if (p->type == bfd_indirect_link_order
10985 && (info->relocatable || info->emitrelocations))
10986 {
10987 if (esdi->rel.hdr)
10988 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10989 if (esdi->rela.hdr)
10990 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10991 }
10992 else
10993 {
10994 if (o->use_rela_p)
10995 esdo->rela.count += reloc_count;
10996 else
10997 esdo->rel.count += reloc_count;
10998 }
10999 }
11000
11001 if (o->reloc_count > 0)
11002 o->flags |= SEC_RELOC;
11003 else
11004 {
11005 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11006 set it (this is probably a bug) and if it is set
11007 assign_section_numbers will create a reloc section. */
11008 o->flags &=~ SEC_RELOC;
11009 }
11010
11011 /* If the SEC_ALLOC flag is not set, force the section VMA to
11012 zero. This is done in elf_fake_sections as well, but forcing
11013 the VMA to 0 here will ensure that relocs against these
11014 sections are handled correctly. */
11015 if ((o->flags & SEC_ALLOC) == 0
11016 && ! o->user_set_vma)
11017 o->vma = 0;
11018 }
11019
11020 if (! info->relocatable && merged)
11021 elf_link_hash_traverse (elf_hash_table (info),
11022 _bfd_elf_link_sec_merge_syms, abfd);
11023
11024 /* Figure out the file positions for everything but the symbol table
11025 and the relocs. We set symcount to force assign_section_numbers
11026 to create a symbol table. */
11027 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11028 BFD_ASSERT (! abfd->output_has_begun);
11029 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11030 goto error_return;
11031
11032 /* Set sizes, and assign file positions for reloc sections. */
11033 for (o = abfd->sections; o != NULL; o = o->next)
11034 {
11035 struct bfd_elf_section_data *esdo = elf_section_data (o);
11036 if ((o->flags & SEC_RELOC) != 0)
11037 {
11038 if (esdo->rel.hdr
11039 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11040 goto error_return;
11041
11042 if (esdo->rela.hdr
11043 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11044 goto error_return;
11045 }
11046
11047 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11048 to count upwards while actually outputting the relocations. */
11049 esdo->rel.count = 0;
11050 esdo->rela.count = 0;
11051
11052 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11053 {
11054 /* Cache the section contents so that they can be compressed
11055 later. Use bfd_malloc since it will be freed by
11056 bfd_compress_section_contents. */
11057 unsigned char *contents = esdo->this_hdr.contents;
11058 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11059 abort ();
11060 contents
11061 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11062 if (contents == NULL)
11063 goto error_return;
11064 esdo->this_hdr.contents = contents;
11065 }
11066 }
11067
11068 /* We have now assigned file positions for all the sections except
11069 .symtab, .strtab, and non-loaded reloc sections. We start the
11070 .symtab section at the current file position, and write directly
11071 to it. We build the .strtab section in memory. */
11072 bfd_get_symcount (abfd) = 0;
11073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11074 /* sh_name is set in prep_headers. */
11075 symtab_hdr->sh_type = SHT_SYMTAB;
11076 /* sh_flags, sh_addr and sh_size all start off zero. */
11077 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11078 /* sh_link is set in assign_section_numbers. */
11079 /* sh_info is set below. */
11080 /* sh_offset is set just below. */
11081 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11082
11083 if (max_sym_count < 20)
11084 max_sym_count = 20;
11085 elf_hash_table (info)->strtabsize = max_sym_count;
11086 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11087 elf_hash_table (info)->strtab
11088 = (struct elf_sym_strtab *) bfd_malloc (amt);
11089 if (elf_hash_table (info)->strtab == NULL)
11090 goto error_return;
11091 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11092 flinfo.symshndxbuf
11093 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11094 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11095
11096 if (info->strip != strip_all || emit_relocs)
11097 {
11098 file_ptr off = elf_next_file_pos (abfd);
11099
11100 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11101
11102 /* Note that at this point elf_next_file_pos (abfd) is
11103 incorrect. We do not yet know the size of the .symtab section.
11104 We correct next_file_pos below, after we do know the size. */
11105
11106 /* Start writing out the symbol table. The first symbol is always a
11107 dummy symbol. */
11108 elfsym.st_value = 0;
11109 elfsym.st_size = 0;
11110 elfsym.st_info = 0;
11111 elfsym.st_other = 0;
11112 elfsym.st_shndx = SHN_UNDEF;
11113 elfsym.st_target_internal = 0;
11114 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11115 bfd_und_section_ptr, NULL) != 1)
11116 goto error_return;
11117
11118 /* Output a symbol for each section. We output these even if we are
11119 discarding local symbols, since they are used for relocs. These
11120 symbols have no names. We store the index of each one in the
11121 index field of the section, so that we can find it again when
11122 outputting relocs. */
11123
11124 elfsym.st_size = 0;
11125 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11126 elfsym.st_other = 0;
11127 elfsym.st_value = 0;
11128 elfsym.st_target_internal = 0;
11129 for (i = 1; i < elf_numsections (abfd); i++)
11130 {
11131 o = bfd_section_from_elf_index (abfd, i);
11132 if (o != NULL)
11133 {
11134 o->target_index = bfd_get_symcount (abfd);
11135 elfsym.st_shndx = i;
11136 if (!info->relocatable)
11137 elfsym.st_value = o->vma;
11138 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11139 NULL) != 1)
11140 goto error_return;
11141 }
11142 }
11143 }
11144
11145 /* Allocate some memory to hold information read in from the input
11146 files. */
11147 if (max_contents_size != 0)
11148 {
11149 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11150 if (flinfo.contents == NULL)
11151 goto error_return;
11152 }
11153
11154 if (max_external_reloc_size != 0)
11155 {
11156 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11157 if (flinfo.external_relocs == NULL)
11158 goto error_return;
11159 }
11160
11161 if (max_internal_reloc_count != 0)
11162 {
11163 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11164 amt *= sizeof (Elf_Internal_Rela);
11165 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11166 if (flinfo.internal_relocs == NULL)
11167 goto error_return;
11168 }
11169
11170 if (max_sym_count != 0)
11171 {
11172 amt = max_sym_count * bed->s->sizeof_sym;
11173 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11174 if (flinfo.external_syms == NULL)
11175 goto error_return;
11176
11177 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11178 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11179 if (flinfo.internal_syms == NULL)
11180 goto error_return;
11181
11182 amt = max_sym_count * sizeof (long);
11183 flinfo.indices = (long int *) bfd_malloc (amt);
11184 if (flinfo.indices == NULL)
11185 goto error_return;
11186
11187 amt = max_sym_count * sizeof (asection *);
11188 flinfo.sections = (asection **) bfd_malloc (amt);
11189 if (flinfo.sections == NULL)
11190 goto error_return;
11191 }
11192
11193 if (max_sym_shndx_count != 0)
11194 {
11195 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11196 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11197 if (flinfo.locsym_shndx == NULL)
11198 goto error_return;
11199 }
11200
11201 if (elf_hash_table (info)->tls_sec)
11202 {
11203 bfd_vma base, end = 0;
11204 asection *sec;
11205
11206 for (sec = elf_hash_table (info)->tls_sec;
11207 sec && (sec->flags & SEC_THREAD_LOCAL);
11208 sec = sec->next)
11209 {
11210 bfd_size_type size = sec->size;
11211
11212 if (size == 0
11213 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11214 {
11215 struct bfd_link_order *ord = sec->map_tail.link_order;
11216
11217 if (ord != NULL)
11218 size = ord->offset + ord->size;
11219 }
11220 end = sec->vma + size;
11221 }
11222 base = elf_hash_table (info)->tls_sec->vma;
11223 /* Only align end of TLS section if static TLS doesn't have special
11224 alignment requirements. */
11225 if (bed->static_tls_alignment == 1)
11226 end = align_power (end,
11227 elf_hash_table (info)->tls_sec->alignment_power);
11228 elf_hash_table (info)->tls_size = end - base;
11229 }
11230
11231 /* Reorder SHF_LINK_ORDER sections. */
11232 for (o = abfd->sections; o != NULL; o = o->next)
11233 {
11234 if (!elf_fixup_link_order (abfd, o))
11235 return FALSE;
11236 }
11237
11238 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11239 return FALSE;
11240
11241 /* Since ELF permits relocations to be against local symbols, we
11242 must have the local symbols available when we do the relocations.
11243 Since we would rather only read the local symbols once, and we
11244 would rather not keep them in memory, we handle all the
11245 relocations for a single input file at the same time.
11246
11247 Unfortunately, there is no way to know the total number of local
11248 symbols until we have seen all of them, and the local symbol
11249 indices precede the global symbol indices. This means that when
11250 we are generating relocatable output, and we see a reloc against
11251 a global symbol, we can not know the symbol index until we have
11252 finished examining all the local symbols to see which ones we are
11253 going to output. To deal with this, we keep the relocations in
11254 memory, and don't output them until the end of the link. This is
11255 an unfortunate waste of memory, but I don't see a good way around
11256 it. Fortunately, it only happens when performing a relocatable
11257 link, which is not the common case. FIXME: If keep_memory is set
11258 we could write the relocs out and then read them again; I don't
11259 know how bad the memory loss will be. */
11260
11261 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11262 sub->output_has_begun = FALSE;
11263 for (o = abfd->sections; o != NULL; o = o->next)
11264 {
11265 for (p = o->map_head.link_order; p != NULL; p = p->next)
11266 {
11267 if (p->type == bfd_indirect_link_order
11268 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11269 == bfd_target_elf_flavour)
11270 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11271 {
11272 if (! sub->output_has_begun)
11273 {
11274 if (! elf_link_input_bfd (&flinfo, sub))
11275 goto error_return;
11276 sub->output_has_begun = TRUE;
11277 }
11278 }
11279 else if (p->type == bfd_section_reloc_link_order
11280 || p->type == bfd_symbol_reloc_link_order)
11281 {
11282 if (! elf_reloc_link_order (abfd, info, o, p))
11283 goto error_return;
11284 }
11285 else
11286 {
11287 if (! _bfd_default_link_order (abfd, info, o, p))
11288 {
11289 if (p->type == bfd_indirect_link_order
11290 && (bfd_get_flavour (sub)
11291 == bfd_target_elf_flavour)
11292 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11293 != bed->s->elfclass))
11294 {
11295 const char *iclass, *oclass;
11296
11297 if (bed->s->elfclass == ELFCLASS64)
11298 {
11299 iclass = "ELFCLASS32";
11300 oclass = "ELFCLASS64";
11301 }
11302 else
11303 {
11304 iclass = "ELFCLASS64";
11305 oclass = "ELFCLASS32";
11306 }
11307
11308 bfd_set_error (bfd_error_wrong_format);
11309 (*_bfd_error_handler)
11310 (_("%B: file class %s incompatible with %s"),
11311 sub, iclass, oclass);
11312 }
11313
11314 goto error_return;
11315 }
11316 }
11317 }
11318 }
11319
11320 /* Free symbol buffer if needed. */
11321 if (!info->reduce_memory_overheads)
11322 {
11323 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11324 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11325 && elf_tdata (sub)->symbuf)
11326 {
11327 free (elf_tdata (sub)->symbuf);
11328 elf_tdata (sub)->symbuf = NULL;
11329 }
11330 }
11331
11332 /* Output any global symbols that got converted to local in a
11333 version script or due to symbol visibility. We do this in a
11334 separate step since ELF requires all local symbols to appear
11335 prior to any global symbols. FIXME: We should only do this if
11336 some global symbols were, in fact, converted to become local.
11337 FIXME: Will this work correctly with the Irix 5 linker? */
11338 eoinfo.failed = FALSE;
11339 eoinfo.flinfo = &flinfo;
11340 eoinfo.localsyms = TRUE;
11341 eoinfo.file_sym_done = FALSE;
11342 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11343 if (eoinfo.failed)
11344 return FALSE;
11345
11346 /* If backend needs to output some local symbols not present in the hash
11347 table, do it now. */
11348 if (bed->elf_backend_output_arch_local_syms
11349 && (info->strip != strip_all || emit_relocs))
11350 {
11351 typedef int (*out_sym_func)
11352 (void *, const char *, Elf_Internal_Sym *, asection *,
11353 struct elf_link_hash_entry *);
11354
11355 if (! ((*bed->elf_backend_output_arch_local_syms)
11356 (abfd, info, &flinfo,
11357 (out_sym_func) elf_link_output_symstrtab)))
11358 return FALSE;
11359 }
11360
11361 /* That wrote out all the local symbols. Finish up the symbol table
11362 with the global symbols. Even if we want to strip everything we
11363 can, we still need to deal with those global symbols that got
11364 converted to local in a version script. */
11365
11366 /* The sh_info field records the index of the first non local symbol. */
11367 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11368
11369 if (dynamic
11370 && flinfo.dynsym_sec != NULL
11371 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11372 {
11373 Elf_Internal_Sym sym;
11374 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11375 long last_local = 0;
11376
11377 /* Write out the section symbols for the output sections. */
11378 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11379 {
11380 asection *s;
11381
11382 sym.st_size = 0;
11383 sym.st_name = 0;
11384 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11385 sym.st_other = 0;
11386 sym.st_target_internal = 0;
11387
11388 for (s = abfd->sections; s != NULL; s = s->next)
11389 {
11390 int indx;
11391 bfd_byte *dest;
11392 long dynindx;
11393
11394 dynindx = elf_section_data (s)->dynindx;
11395 if (dynindx <= 0)
11396 continue;
11397 indx = elf_section_data (s)->this_idx;
11398 BFD_ASSERT (indx > 0);
11399 sym.st_shndx = indx;
11400 if (! check_dynsym (abfd, &sym))
11401 return FALSE;
11402 sym.st_value = s->vma;
11403 dest = dynsym + dynindx * bed->s->sizeof_sym;
11404 if (last_local < dynindx)
11405 last_local = dynindx;
11406 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11407 }
11408 }
11409
11410 /* Write out the local dynsyms. */
11411 if (elf_hash_table (info)->dynlocal)
11412 {
11413 struct elf_link_local_dynamic_entry *e;
11414 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11415 {
11416 asection *s;
11417 bfd_byte *dest;
11418
11419 /* Copy the internal symbol and turn off visibility.
11420 Note that we saved a word of storage and overwrote
11421 the original st_name with the dynstr_index. */
11422 sym = e->isym;
11423 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11424
11425 s = bfd_section_from_elf_index (e->input_bfd,
11426 e->isym.st_shndx);
11427 if (s != NULL)
11428 {
11429 sym.st_shndx =
11430 elf_section_data (s->output_section)->this_idx;
11431 if (! check_dynsym (abfd, &sym))
11432 return FALSE;
11433 sym.st_value = (s->output_section->vma
11434 + s->output_offset
11435 + e->isym.st_value);
11436 }
11437
11438 if (last_local < e->dynindx)
11439 last_local = e->dynindx;
11440
11441 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11442 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11443 }
11444 }
11445
11446 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11447 last_local + 1;
11448 }
11449
11450 /* We get the global symbols from the hash table. */
11451 eoinfo.failed = FALSE;
11452 eoinfo.localsyms = FALSE;
11453 eoinfo.flinfo = &flinfo;
11454 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11455 if (eoinfo.failed)
11456 return FALSE;
11457
11458 /* If backend needs to output some symbols not present in the hash
11459 table, do it now. */
11460 if (bed->elf_backend_output_arch_syms
11461 && (info->strip != strip_all || emit_relocs))
11462 {
11463 typedef int (*out_sym_func)
11464 (void *, const char *, Elf_Internal_Sym *, asection *,
11465 struct elf_link_hash_entry *);
11466
11467 if (! ((*bed->elf_backend_output_arch_syms)
11468 (abfd, info, &flinfo,
11469 (out_sym_func) elf_link_output_symstrtab)))
11470 return FALSE;
11471 }
11472
11473 /* Finalize the .strtab section. */
11474 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11475
11476 /* Swap out the .strtab section. */
11477 if (!elf_link_swap_symbols_out (&flinfo))
11478 return FALSE;
11479
11480 /* Now we know the size of the symtab section. */
11481 if (bfd_get_symcount (abfd) > 0)
11482 {
11483 /* Finish up and write out the symbol string table (.strtab)
11484 section. */
11485 Elf_Internal_Shdr *symstrtab_hdr;
11486 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11487
11488 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11489 if (symtab_shndx_hdr->sh_name != 0)
11490 {
11491 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11492 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11493 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11494 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11495 symtab_shndx_hdr->sh_size = amt;
11496
11497 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11498 off, TRUE);
11499
11500 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11501 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11502 return FALSE;
11503 }
11504
11505 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11506 /* sh_name was set in prep_headers. */
11507 symstrtab_hdr->sh_type = SHT_STRTAB;
11508 symstrtab_hdr->sh_flags = 0;
11509 symstrtab_hdr->sh_addr = 0;
11510 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11511 symstrtab_hdr->sh_entsize = 0;
11512 symstrtab_hdr->sh_link = 0;
11513 symstrtab_hdr->sh_info = 0;
11514 /* sh_offset is set just below. */
11515 symstrtab_hdr->sh_addralign = 1;
11516
11517 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11518 off, TRUE);
11519 elf_next_file_pos (abfd) = off;
11520
11521 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11522 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11523 return FALSE;
11524 }
11525
11526 /* Adjust the relocs to have the correct symbol indices. */
11527 for (o = abfd->sections; o != NULL; o = o->next)
11528 {
11529 struct bfd_elf_section_data *esdo = elf_section_data (o);
11530 bfd_boolean sort;
11531 if ((o->flags & SEC_RELOC) == 0)
11532 continue;
11533
11534 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11535 if (esdo->rel.hdr != NULL)
11536 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11537 if (esdo->rela.hdr != NULL)
11538 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11539
11540 /* Set the reloc_count field to 0 to prevent write_relocs from
11541 trying to swap the relocs out itself. */
11542 o->reloc_count = 0;
11543 }
11544
11545 if (dynamic && info->combreloc && dynobj != NULL)
11546 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11547
11548 /* If we are linking against a dynamic object, or generating a
11549 shared library, finish up the dynamic linking information. */
11550 if (dynamic)
11551 {
11552 bfd_byte *dyncon, *dynconend;
11553
11554 /* Fix up .dynamic entries. */
11555 o = bfd_get_linker_section (dynobj, ".dynamic");
11556 BFD_ASSERT (o != NULL);
11557
11558 dyncon = o->contents;
11559 dynconend = o->contents + o->size;
11560 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11561 {
11562 Elf_Internal_Dyn dyn;
11563 const char *name;
11564 unsigned int type;
11565
11566 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11567
11568 switch (dyn.d_tag)
11569 {
11570 default:
11571 continue;
11572 case DT_NULL:
11573 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11574 {
11575 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11576 {
11577 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11578 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11579 default: continue;
11580 }
11581 dyn.d_un.d_val = relativecount;
11582 relativecount = 0;
11583 break;
11584 }
11585 continue;
11586
11587 case DT_INIT:
11588 name = info->init_function;
11589 goto get_sym;
11590 case DT_FINI:
11591 name = info->fini_function;
11592 get_sym:
11593 {
11594 struct elf_link_hash_entry *h;
11595
11596 h = elf_link_hash_lookup (elf_hash_table (info), name,
11597 FALSE, FALSE, TRUE);
11598 if (h != NULL
11599 && (h->root.type == bfd_link_hash_defined
11600 || h->root.type == bfd_link_hash_defweak))
11601 {
11602 dyn.d_un.d_ptr = h->root.u.def.value;
11603 o = h->root.u.def.section;
11604 if (o->output_section != NULL)
11605 dyn.d_un.d_ptr += (o->output_section->vma
11606 + o->output_offset);
11607 else
11608 {
11609 /* The symbol is imported from another shared
11610 library and does not apply to this one. */
11611 dyn.d_un.d_ptr = 0;
11612 }
11613 break;
11614 }
11615 }
11616 continue;
11617
11618 case DT_PREINIT_ARRAYSZ:
11619 name = ".preinit_array";
11620 goto get_size;
11621 case DT_INIT_ARRAYSZ:
11622 name = ".init_array";
11623 goto get_size;
11624 case DT_FINI_ARRAYSZ:
11625 name = ".fini_array";
11626 get_size:
11627 o = bfd_get_section_by_name (abfd, name);
11628 if (o == NULL)
11629 {
11630 (*_bfd_error_handler)
11631 (_("%B: could not find output section %s"), abfd, name);
11632 goto error_return;
11633 }
11634 if (o->size == 0)
11635 (*_bfd_error_handler)
11636 (_("warning: %s section has zero size"), name);
11637 dyn.d_un.d_val = o->size;
11638 break;
11639
11640 case DT_PREINIT_ARRAY:
11641 name = ".preinit_array";
11642 goto get_vma;
11643 case DT_INIT_ARRAY:
11644 name = ".init_array";
11645 goto get_vma;
11646 case DT_FINI_ARRAY:
11647 name = ".fini_array";
11648 goto get_vma;
11649
11650 case DT_HASH:
11651 name = ".hash";
11652 goto get_vma;
11653 case DT_GNU_HASH:
11654 name = ".gnu.hash";
11655 goto get_vma;
11656 case DT_STRTAB:
11657 name = ".dynstr";
11658 goto get_vma;
11659 case DT_SYMTAB:
11660 name = ".dynsym";
11661 goto get_vma;
11662 case DT_VERDEF:
11663 name = ".gnu.version_d";
11664 goto get_vma;
11665 case DT_VERNEED:
11666 name = ".gnu.version_r";
11667 goto get_vma;
11668 case DT_VERSYM:
11669 name = ".gnu.version";
11670 get_vma:
11671 o = bfd_get_section_by_name (abfd, name);
11672 if (o == NULL)
11673 {
11674 (*_bfd_error_handler)
11675 (_("%B: could not find output section %s"), abfd, name);
11676 goto error_return;
11677 }
11678 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11679 {
11680 (*_bfd_error_handler)
11681 (_("warning: section '%s' is being made into a note"), name);
11682 bfd_set_error (bfd_error_nonrepresentable_section);
11683 goto error_return;
11684 }
11685 dyn.d_un.d_ptr = o->vma;
11686 break;
11687
11688 case DT_REL:
11689 case DT_RELA:
11690 case DT_RELSZ:
11691 case DT_RELASZ:
11692 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11693 type = SHT_REL;
11694 else
11695 type = SHT_RELA;
11696 dyn.d_un.d_val = 0;
11697 dyn.d_un.d_ptr = 0;
11698 for (i = 1; i < elf_numsections (abfd); i++)
11699 {
11700 Elf_Internal_Shdr *hdr;
11701
11702 hdr = elf_elfsections (abfd)[i];
11703 if (hdr->sh_type == type
11704 && (hdr->sh_flags & SHF_ALLOC) != 0)
11705 {
11706 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11707 dyn.d_un.d_val += hdr->sh_size;
11708 else
11709 {
11710 if (dyn.d_un.d_ptr == 0
11711 || hdr->sh_addr < dyn.d_un.d_ptr)
11712 dyn.d_un.d_ptr = hdr->sh_addr;
11713 }
11714 }
11715 }
11716 break;
11717 }
11718 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11719 }
11720 }
11721
11722 /* If we have created any dynamic sections, then output them. */
11723 if (dynobj != NULL)
11724 {
11725 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11726 goto error_return;
11727
11728 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11729 if (((info->warn_shared_textrel && info->shared)
11730 || info->error_textrel)
11731 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11732 {
11733 bfd_byte *dyncon, *dynconend;
11734
11735 dyncon = o->contents;
11736 dynconend = o->contents + o->size;
11737 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11738 {
11739 Elf_Internal_Dyn dyn;
11740
11741 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11742
11743 if (dyn.d_tag == DT_TEXTREL)
11744 {
11745 if (info->error_textrel)
11746 info->callbacks->einfo
11747 (_("%P%X: read-only segment has dynamic relocations.\n"));
11748 else
11749 info->callbacks->einfo
11750 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11751 break;
11752 }
11753 }
11754 }
11755
11756 for (o = dynobj->sections; o != NULL; o = o->next)
11757 {
11758 if ((o->flags & SEC_HAS_CONTENTS) == 0
11759 || o->size == 0
11760 || o->output_section == bfd_abs_section_ptr)
11761 continue;
11762 if ((o->flags & SEC_LINKER_CREATED) == 0)
11763 {
11764 /* At this point, we are only interested in sections
11765 created by _bfd_elf_link_create_dynamic_sections. */
11766 continue;
11767 }
11768 if (elf_hash_table (info)->stab_info.stabstr == o)
11769 continue;
11770 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11771 continue;
11772 if (strcmp (o->name, ".dynstr") != 0)
11773 {
11774 /* FIXME: octets_per_byte. */
11775 if (! bfd_set_section_contents (abfd, o->output_section,
11776 o->contents,
11777 (file_ptr) o->output_offset,
11778 o->size))
11779 goto error_return;
11780 }
11781 else
11782 {
11783 /* The contents of the .dynstr section are actually in a
11784 stringtab. */
11785 file_ptr off;
11786
11787 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11788 if (bfd_seek (abfd, off, SEEK_SET) != 0
11789 || ! _bfd_elf_strtab_emit (abfd,
11790 elf_hash_table (info)->dynstr))
11791 goto error_return;
11792 }
11793 }
11794 }
11795
11796 if (info->relocatable)
11797 {
11798 bfd_boolean failed = FALSE;
11799
11800 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11801 if (failed)
11802 goto error_return;
11803 }
11804
11805 /* If we have optimized stabs strings, output them. */
11806 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11807 {
11808 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11809 goto error_return;
11810 }
11811
11812 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11813 goto error_return;
11814
11815 elf_final_link_free (abfd, &flinfo);
11816
11817 elf_linker (abfd) = TRUE;
11818
11819 if (attr_section)
11820 {
11821 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11822 if (contents == NULL)
11823 return FALSE; /* Bail out and fail. */
11824 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11825 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11826 free (contents);
11827 }
11828
11829 return TRUE;
11830
11831 error_return:
11832 elf_final_link_free (abfd, &flinfo);
11833 return FALSE;
11834 }
11835 \f
11836 /* Initialize COOKIE for input bfd ABFD. */
11837
11838 static bfd_boolean
11839 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11840 struct bfd_link_info *info, bfd *abfd)
11841 {
11842 Elf_Internal_Shdr *symtab_hdr;
11843 const struct elf_backend_data *bed;
11844
11845 bed = get_elf_backend_data (abfd);
11846 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11847
11848 cookie->abfd = abfd;
11849 cookie->sym_hashes = elf_sym_hashes (abfd);
11850 cookie->bad_symtab = elf_bad_symtab (abfd);
11851 if (cookie->bad_symtab)
11852 {
11853 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11854 cookie->extsymoff = 0;
11855 }
11856 else
11857 {
11858 cookie->locsymcount = symtab_hdr->sh_info;
11859 cookie->extsymoff = symtab_hdr->sh_info;
11860 }
11861
11862 if (bed->s->arch_size == 32)
11863 cookie->r_sym_shift = 8;
11864 else
11865 cookie->r_sym_shift = 32;
11866
11867 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11868 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11869 {
11870 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11871 cookie->locsymcount, 0,
11872 NULL, NULL, NULL);
11873 if (cookie->locsyms == NULL)
11874 {
11875 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11876 return FALSE;
11877 }
11878 if (info->keep_memory)
11879 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11880 }
11881 return TRUE;
11882 }
11883
11884 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11885
11886 static void
11887 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11888 {
11889 Elf_Internal_Shdr *symtab_hdr;
11890
11891 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11892 if (cookie->locsyms != NULL
11893 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11894 free (cookie->locsyms);
11895 }
11896
11897 /* Initialize the relocation information in COOKIE for input section SEC
11898 of input bfd ABFD. */
11899
11900 static bfd_boolean
11901 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11902 struct bfd_link_info *info, bfd *abfd,
11903 asection *sec)
11904 {
11905 const struct elf_backend_data *bed;
11906
11907 if (sec->reloc_count == 0)
11908 {
11909 cookie->rels = NULL;
11910 cookie->relend = NULL;
11911 }
11912 else
11913 {
11914 bed = get_elf_backend_data (abfd);
11915
11916 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11917 info->keep_memory);
11918 if (cookie->rels == NULL)
11919 return FALSE;
11920 cookie->rel = cookie->rels;
11921 cookie->relend = (cookie->rels
11922 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11923 }
11924 cookie->rel = cookie->rels;
11925 return TRUE;
11926 }
11927
11928 /* Free the memory allocated by init_reloc_cookie_rels,
11929 if appropriate. */
11930
11931 static void
11932 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11933 asection *sec)
11934 {
11935 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11936 free (cookie->rels);
11937 }
11938
11939 /* Initialize the whole of COOKIE for input section SEC. */
11940
11941 static bfd_boolean
11942 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11943 struct bfd_link_info *info,
11944 asection *sec)
11945 {
11946 if (!init_reloc_cookie (cookie, info, sec->owner))
11947 goto error1;
11948 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11949 goto error2;
11950 return TRUE;
11951
11952 error2:
11953 fini_reloc_cookie (cookie, sec->owner);
11954 error1:
11955 return FALSE;
11956 }
11957
11958 /* Free the memory allocated by init_reloc_cookie_for_section,
11959 if appropriate. */
11960
11961 static void
11962 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11963 asection *sec)
11964 {
11965 fini_reloc_cookie_rels (cookie, sec);
11966 fini_reloc_cookie (cookie, sec->owner);
11967 }
11968 \f
11969 /* Garbage collect unused sections. */
11970
11971 /* Default gc_mark_hook. */
11972
11973 asection *
11974 _bfd_elf_gc_mark_hook (asection *sec,
11975 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11976 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11977 struct elf_link_hash_entry *h,
11978 Elf_Internal_Sym *sym)
11979 {
11980 const char *sec_name;
11981
11982 if (h != NULL)
11983 {
11984 switch (h->root.type)
11985 {
11986 case bfd_link_hash_defined:
11987 case bfd_link_hash_defweak:
11988 return h->root.u.def.section;
11989
11990 case bfd_link_hash_common:
11991 return h->root.u.c.p->section;
11992
11993 case bfd_link_hash_undefined:
11994 case bfd_link_hash_undefweak:
11995 /* To work around a glibc bug, keep all XXX input sections
11996 when there is an as yet undefined reference to __start_XXX
11997 or __stop_XXX symbols. The linker will later define such
11998 symbols for orphan input sections that have a name
11999 representable as a C identifier. */
12000 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12001 sec_name = h->root.root.string + 8;
12002 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12003 sec_name = h->root.root.string + 7;
12004 else
12005 sec_name = NULL;
12006
12007 if (sec_name && *sec_name != '\0')
12008 {
12009 bfd *i;
12010
12011 for (i = info->input_bfds; i; i = i->link.next)
12012 {
12013 sec = bfd_get_section_by_name (i, sec_name);
12014 if (sec)
12015 sec->flags |= SEC_KEEP;
12016 }
12017 }
12018 break;
12019
12020 default:
12021 break;
12022 }
12023 }
12024 else
12025 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12026
12027 return NULL;
12028 }
12029
12030 /* COOKIE->rel describes a relocation against section SEC, which is
12031 a section we've decided to keep. Return the section that contains
12032 the relocation symbol, or NULL if no section contains it. */
12033
12034 asection *
12035 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12036 elf_gc_mark_hook_fn gc_mark_hook,
12037 struct elf_reloc_cookie *cookie)
12038 {
12039 unsigned long r_symndx;
12040 struct elf_link_hash_entry *h;
12041
12042 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12043 if (r_symndx == STN_UNDEF)
12044 return NULL;
12045
12046 if (r_symndx >= cookie->locsymcount
12047 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12048 {
12049 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12050 if (h == NULL)
12051 {
12052 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12053 sec->owner);
12054 return NULL;
12055 }
12056 while (h->root.type == bfd_link_hash_indirect
12057 || h->root.type == bfd_link_hash_warning)
12058 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12059 h->mark = 1;
12060 /* If this symbol is weak and there is a non-weak definition, we
12061 keep the non-weak definition because many backends put
12062 dynamic reloc info on the non-weak definition for code
12063 handling copy relocs. */
12064 if (h->u.weakdef != NULL)
12065 h->u.weakdef->mark = 1;
12066 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12067 }
12068
12069 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12070 &cookie->locsyms[r_symndx]);
12071 }
12072
12073 /* COOKIE->rel describes a relocation against section SEC, which is
12074 a section we've decided to keep. Mark the section that contains
12075 the relocation symbol. */
12076
12077 bfd_boolean
12078 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12079 asection *sec,
12080 elf_gc_mark_hook_fn gc_mark_hook,
12081 struct elf_reloc_cookie *cookie)
12082 {
12083 asection *rsec;
12084
12085 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
12086 if (rsec && !rsec->gc_mark)
12087 {
12088 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12089 || (rsec->owner->flags & DYNAMIC) != 0)
12090 rsec->gc_mark = 1;
12091 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12092 return FALSE;
12093 }
12094 return TRUE;
12095 }
12096
12097 /* The mark phase of garbage collection. For a given section, mark
12098 it and any sections in this section's group, and all the sections
12099 which define symbols to which it refers. */
12100
12101 bfd_boolean
12102 _bfd_elf_gc_mark (struct bfd_link_info *info,
12103 asection *sec,
12104 elf_gc_mark_hook_fn gc_mark_hook)
12105 {
12106 bfd_boolean ret;
12107 asection *group_sec, *eh_frame;
12108
12109 sec->gc_mark = 1;
12110
12111 /* Mark all the sections in the group. */
12112 group_sec = elf_section_data (sec)->next_in_group;
12113 if (group_sec && !group_sec->gc_mark)
12114 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12115 return FALSE;
12116
12117 /* Look through the section relocs. */
12118 ret = TRUE;
12119 eh_frame = elf_eh_frame_section (sec->owner);
12120 if ((sec->flags & SEC_RELOC) != 0
12121 && sec->reloc_count > 0
12122 && sec != eh_frame)
12123 {
12124 struct elf_reloc_cookie cookie;
12125
12126 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12127 ret = FALSE;
12128 else
12129 {
12130 for (; cookie.rel < cookie.relend; cookie.rel++)
12131 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12132 {
12133 ret = FALSE;
12134 break;
12135 }
12136 fini_reloc_cookie_for_section (&cookie, sec);
12137 }
12138 }
12139
12140 if (ret && eh_frame && elf_fde_list (sec))
12141 {
12142 struct elf_reloc_cookie cookie;
12143
12144 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12145 ret = FALSE;
12146 else
12147 {
12148 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12149 gc_mark_hook, &cookie))
12150 ret = FALSE;
12151 fini_reloc_cookie_for_section (&cookie, eh_frame);
12152 }
12153 }
12154
12155 eh_frame = elf_section_eh_frame_entry (sec);
12156 if (ret && eh_frame && !eh_frame->gc_mark)
12157 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12158 ret = FALSE;
12159
12160 return ret;
12161 }
12162
12163 /* Scan and mark sections in a special or debug section group. */
12164
12165 static void
12166 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12167 {
12168 /* Point to first section of section group. */
12169 asection *ssec;
12170 /* Used to iterate the section group. */
12171 asection *msec;
12172
12173 bfd_boolean is_special_grp = TRUE;
12174 bfd_boolean is_debug_grp = TRUE;
12175
12176 /* First scan to see if group contains any section other than debug
12177 and special section. */
12178 ssec = msec = elf_next_in_group (grp);
12179 do
12180 {
12181 if ((msec->flags & SEC_DEBUGGING) == 0)
12182 is_debug_grp = FALSE;
12183
12184 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12185 is_special_grp = FALSE;
12186
12187 msec = elf_next_in_group (msec);
12188 }
12189 while (msec != ssec);
12190
12191 /* If this is a pure debug section group or pure special section group,
12192 keep all sections in this group. */
12193 if (is_debug_grp || is_special_grp)
12194 {
12195 do
12196 {
12197 msec->gc_mark = 1;
12198 msec = elf_next_in_group (msec);
12199 }
12200 while (msec != ssec);
12201 }
12202 }
12203
12204 /* Keep debug and special sections. */
12205
12206 bfd_boolean
12207 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12208 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12209 {
12210 bfd *ibfd;
12211
12212 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12213 {
12214 asection *isec;
12215 bfd_boolean some_kept;
12216 bfd_boolean debug_frag_seen;
12217
12218 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12219 continue;
12220
12221 /* Ensure all linker created sections are kept,
12222 see if any other section is already marked,
12223 and note if we have any fragmented debug sections. */
12224 debug_frag_seen = some_kept = FALSE;
12225 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12226 {
12227 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12228 isec->gc_mark = 1;
12229 else if (isec->gc_mark)
12230 some_kept = TRUE;
12231
12232 if (debug_frag_seen == FALSE
12233 && (isec->flags & SEC_DEBUGGING)
12234 && CONST_STRNEQ (isec->name, ".debug_line."))
12235 debug_frag_seen = TRUE;
12236 }
12237
12238 /* If no section in this file will be kept, then we can
12239 toss out the debug and special sections. */
12240 if (!some_kept)
12241 continue;
12242
12243 /* Keep debug and special sections like .comment when they are
12244 not part of a group. Also keep section groups that contain
12245 just debug sections or special sections. */
12246 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12247 {
12248 if ((isec->flags & SEC_GROUP) != 0)
12249 _bfd_elf_gc_mark_debug_special_section_group (isec);
12250 else if (((isec->flags & SEC_DEBUGGING) != 0
12251 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12252 && elf_next_in_group (isec) == NULL)
12253 isec->gc_mark = 1;
12254 }
12255
12256 if (! debug_frag_seen)
12257 continue;
12258
12259 /* Look for CODE sections which are going to be discarded,
12260 and find and discard any fragmented debug sections which
12261 are associated with that code section. */
12262 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12263 if ((isec->flags & SEC_CODE) != 0
12264 && isec->gc_mark == 0)
12265 {
12266 unsigned int ilen;
12267 asection *dsec;
12268
12269 ilen = strlen (isec->name);
12270
12271 /* Association is determined by the name of the debug section
12272 containing the name of the code section as a suffix. For
12273 example .debug_line.text.foo is a debug section associated
12274 with .text.foo. */
12275 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12276 {
12277 unsigned int dlen;
12278
12279 if (dsec->gc_mark == 0
12280 || (dsec->flags & SEC_DEBUGGING) == 0)
12281 continue;
12282
12283 dlen = strlen (dsec->name);
12284
12285 if (dlen > ilen
12286 && strncmp (dsec->name + (dlen - ilen),
12287 isec->name, ilen) == 0)
12288 {
12289 dsec->gc_mark = 0;
12290 }
12291 }
12292 }
12293 }
12294 return TRUE;
12295 }
12296
12297 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12298
12299 struct elf_gc_sweep_symbol_info
12300 {
12301 struct bfd_link_info *info;
12302 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12303 bfd_boolean);
12304 };
12305
12306 static bfd_boolean
12307 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12308 {
12309 if (!h->mark
12310 && (((h->root.type == bfd_link_hash_defined
12311 || h->root.type == bfd_link_hash_defweak)
12312 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12313 && h->root.u.def.section->gc_mark))
12314 || h->root.type == bfd_link_hash_undefined
12315 || h->root.type == bfd_link_hash_undefweak))
12316 {
12317 struct elf_gc_sweep_symbol_info *inf;
12318
12319 inf = (struct elf_gc_sweep_symbol_info *) data;
12320 (*inf->hide_symbol) (inf->info, h, TRUE);
12321 h->def_regular = 0;
12322 h->ref_regular = 0;
12323 h->ref_regular_nonweak = 0;
12324 }
12325
12326 return TRUE;
12327 }
12328
12329 /* The sweep phase of garbage collection. Remove all garbage sections. */
12330
12331 typedef bfd_boolean (*gc_sweep_hook_fn)
12332 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12333
12334 static bfd_boolean
12335 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12336 {
12337 bfd *sub;
12338 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12339 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12340 unsigned long section_sym_count;
12341 struct elf_gc_sweep_symbol_info sweep_info;
12342
12343 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12344 {
12345 asection *o;
12346
12347 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12348 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12349 continue;
12350
12351 for (o = sub->sections; o != NULL; o = o->next)
12352 {
12353 /* When any section in a section group is kept, we keep all
12354 sections in the section group. If the first member of
12355 the section group is excluded, we will also exclude the
12356 group section. */
12357 if (o->flags & SEC_GROUP)
12358 {
12359 asection *first = elf_next_in_group (o);
12360 o->gc_mark = first->gc_mark;
12361 }
12362
12363 if (o->gc_mark)
12364 continue;
12365
12366 /* Skip sweeping sections already excluded. */
12367 if (o->flags & SEC_EXCLUDE)
12368 continue;
12369
12370 /* Since this is early in the link process, it is simple
12371 to remove a section from the output. */
12372 o->flags |= SEC_EXCLUDE;
12373
12374 if (info->print_gc_sections && o->size != 0)
12375 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12376
12377 /* But we also have to update some of the relocation
12378 info we collected before. */
12379 if (gc_sweep_hook
12380 && (o->flags & SEC_RELOC) != 0
12381 && o->reloc_count != 0
12382 && !((info->strip == strip_all || info->strip == strip_debugger)
12383 && (o->flags & SEC_DEBUGGING) != 0)
12384 && !bfd_is_abs_section (o->output_section))
12385 {
12386 Elf_Internal_Rela *internal_relocs;
12387 bfd_boolean r;
12388
12389 internal_relocs
12390 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12391 info->keep_memory);
12392 if (internal_relocs == NULL)
12393 return FALSE;
12394
12395 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12396
12397 if (elf_section_data (o)->relocs != internal_relocs)
12398 free (internal_relocs);
12399
12400 if (!r)
12401 return FALSE;
12402 }
12403 }
12404 }
12405
12406 /* Remove the symbols that were in the swept sections from the dynamic
12407 symbol table. GCFIXME: Anyone know how to get them out of the
12408 static symbol table as well? */
12409 sweep_info.info = info;
12410 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12411 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12412 &sweep_info);
12413
12414 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12415 return TRUE;
12416 }
12417
12418 /* Propagate collected vtable information. This is called through
12419 elf_link_hash_traverse. */
12420
12421 static bfd_boolean
12422 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12423 {
12424 /* Those that are not vtables. */
12425 if (h->vtable == NULL || h->vtable->parent == NULL)
12426 return TRUE;
12427
12428 /* Those vtables that do not have parents, we cannot merge. */
12429 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12430 return TRUE;
12431
12432 /* If we've already been done, exit. */
12433 if (h->vtable->used && h->vtable->used[-1])
12434 return TRUE;
12435
12436 /* Make sure the parent's table is up to date. */
12437 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12438
12439 if (h->vtable->used == NULL)
12440 {
12441 /* None of this table's entries were referenced. Re-use the
12442 parent's table. */
12443 h->vtable->used = h->vtable->parent->vtable->used;
12444 h->vtable->size = h->vtable->parent->vtable->size;
12445 }
12446 else
12447 {
12448 size_t n;
12449 bfd_boolean *cu, *pu;
12450
12451 /* Or the parent's entries into ours. */
12452 cu = h->vtable->used;
12453 cu[-1] = TRUE;
12454 pu = h->vtable->parent->vtable->used;
12455 if (pu != NULL)
12456 {
12457 const struct elf_backend_data *bed;
12458 unsigned int log_file_align;
12459
12460 bed = get_elf_backend_data (h->root.u.def.section->owner);
12461 log_file_align = bed->s->log_file_align;
12462 n = h->vtable->parent->vtable->size >> log_file_align;
12463 while (n--)
12464 {
12465 if (*pu)
12466 *cu = TRUE;
12467 pu++;
12468 cu++;
12469 }
12470 }
12471 }
12472
12473 return TRUE;
12474 }
12475
12476 static bfd_boolean
12477 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12478 {
12479 asection *sec;
12480 bfd_vma hstart, hend;
12481 Elf_Internal_Rela *relstart, *relend, *rel;
12482 const struct elf_backend_data *bed;
12483 unsigned int log_file_align;
12484
12485 /* Take care of both those symbols that do not describe vtables as
12486 well as those that are not loaded. */
12487 if (h->vtable == NULL || h->vtable->parent == NULL)
12488 return TRUE;
12489
12490 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12491 || h->root.type == bfd_link_hash_defweak);
12492
12493 sec = h->root.u.def.section;
12494 hstart = h->root.u.def.value;
12495 hend = hstart + h->size;
12496
12497 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12498 if (!relstart)
12499 return *(bfd_boolean *) okp = FALSE;
12500 bed = get_elf_backend_data (sec->owner);
12501 log_file_align = bed->s->log_file_align;
12502
12503 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12504
12505 for (rel = relstart; rel < relend; ++rel)
12506 if (rel->r_offset >= hstart && rel->r_offset < hend)
12507 {
12508 /* If the entry is in use, do nothing. */
12509 if (h->vtable->used
12510 && (rel->r_offset - hstart) < h->vtable->size)
12511 {
12512 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12513 if (h->vtable->used[entry])
12514 continue;
12515 }
12516 /* Otherwise, kill it. */
12517 rel->r_offset = rel->r_info = rel->r_addend = 0;
12518 }
12519
12520 return TRUE;
12521 }
12522
12523 /* Mark sections containing dynamically referenced symbols. When
12524 building shared libraries, we must assume that any visible symbol is
12525 referenced. */
12526
12527 bfd_boolean
12528 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12529 {
12530 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12531 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12532
12533 if ((h->root.type == bfd_link_hash_defined
12534 || h->root.type == bfd_link_hash_defweak)
12535 && (h->ref_dynamic
12536 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12537 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12538 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12539 && (!info->executable
12540 || info->export_dynamic
12541 || (h->dynamic
12542 && d != NULL
12543 && (*d->match) (&d->head, NULL, h->root.root.string)))
12544 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12545 || !bfd_hide_sym_by_version (info->version_info,
12546 h->root.root.string)))))
12547 h->root.u.def.section->flags |= SEC_KEEP;
12548
12549 return TRUE;
12550 }
12551
12552 /* Keep all sections containing symbols undefined on the command-line,
12553 and the section containing the entry symbol. */
12554
12555 void
12556 _bfd_elf_gc_keep (struct bfd_link_info *info)
12557 {
12558 struct bfd_sym_chain *sym;
12559
12560 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12561 {
12562 struct elf_link_hash_entry *h;
12563
12564 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12565 FALSE, FALSE, FALSE);
12566
12567 if (h != NULL
12568 && (h->root.type == bfd_link_hash_defined
12569 || h->root.type == bfd_link_hash_defweak)
12570 && !bfd_is_abs_section (h->root.u.def.section))
12571 h->root.u.def.section->flags |= SEC_KEEP;
12572 }
12573 }
12574
12575 bfd_boolean
12576 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12577 struct bfd_link_info *info)
12578 {
12579 bfd *ibfd = info->input_bfds;
12580
12581 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12582 {
12583 asection *sec;
12584 struct elf_reloc_cookie cookie;
12585
12586 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12587 continue;
12588
12589 if (!init_reloc_cookie (&cookie, info, ibfd))
12590 return FALSE;
12591
12592 for (sec = ibfd->sections; sec; sec = sec->next)
12593 {
12594 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12595 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12596 {
12597 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12598 fini_reloc_cookie_rels (&cookie, sec);
12599 }
12600 }
12601 }
12602 return TRUE;
12603 }
12604
12605 /* Do mark and sweep of unused sections. */
12606
12607 bfd_boolean
12608 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12609 {
12610 bfd_boolean ok = TRUE;
12611 bfd *sub;
12612 elf_gc_mark_hook_fn gc_mark_hook;
12613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12614 struct elf_link_hash_table *htab;
12615
12616 if (!bed->can_gc_sections
12617 || !is_elf_hash_table (info->hash))
12618 {
12619 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12620 return TRUE;
12621 }
12622
12623 bed->gc_keep (info);
12624 htab = elf_hash_table (info);
12625
12626 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12627 at the .eh_frame section if we can mark the FDEs individually. */
12628 for (sub = info->input_bfds;
12629 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12630 sub = sub->link.next)
12631 {
12632 asection *sec;
12633 struct elf_reloc_cookie cookie;
12634
12635 sec = bfd_get_section_by_name (sub, ".eh_frame");
12636 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12637 {
12638 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12639 if (elf_section_data (sec)->sec_info
12640 && (sec->flags & SEC_LINKER_CREATED) == 0)
12641 elf_eh_frame_section (sub) = sec;
12642 fini_reloc_cookie_for_section (&cookie, sec);
12643 sec = bfd_get_next_section_by_name (sec);
12644 }
12645 }
12646
12647 /* Apply transitive closure to the vtable entry usage info. */
12648 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12649 if (!ok)
12650 return FALSE;
12651
12652 /* Kill the vtable relocations that were not used. */
12653 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12654 if (!ok)
12655 return FALSE;
12656
12657 /* Mark dynamically referenced symbols. */
12658 if (htab->dynamic_sections_created)
12659 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12660
12661 /* Grovel through relocs to find out who stays ... */
12662 gc_mark_hook = bed->gc_mark_hook;
12663 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12664 {
12665 asection *o;
12666
12667 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12668 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12669 continue;
12670
12671 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12672 Also treat note sections as a root, if the section is not part
12673 of a group. */
12674 for (o = sub->sections; o != NULL; o = o->next)
12675 if (!o->gc_mark
12676 && (o->flags & SEC_EXCLUDE) == 0
12677 && ((o->flags & SEC_KEEP) != 0
12678 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12679 && elf_next_in_group (o) == NULL )))
12680 {
12681 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12682 return FALSE;
12683 }
12684 }
12685
12686 /* Allow the backend to mark additional target specific sections. */
12687 bed->gc_mark_extra_sections (info, gc_mark_hook);
12688
12689 /* ... and mark SEC_EXCLUDE for those that go. */
12690 return elf_gc_sweep (abfd, info);
12691 }
12692 \f
12693 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12694
12695 bfd_boolean
12696 bfd_elf_gc_record_vtinherit (bfd *abfd,
12697 asection *sec,
12698 struct elf_link_hash_entry *h,
12699 bfd_vma offset)
12700 {
12701 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12702 struct elf_link_hash_entry **search, *child;
12703 bfd_size_type extsymcount;
12704 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12705
12706 /* The sh_info field of the symtab header tells us where the
12707 external symbols start. We don't care about the local symbols at
12708 this point. */
12709 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12710 if (!elf_bad_symtab (abfd))
12711 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12712
12713 sym_hashes = elf_sym_hashes (abfd);
12714 sym_hashes_end = sym_hashes + extsymcount;
12715
12716 /* Hunt down the child symbol, which is in this section at the same
12717 offset as the relocation. */
12718 for (search = sym_hashes; search != sym_hashes_end; ++search)
12719 {
12720 if ((child = *search) != NULL
12721 && (child->root.type == bfd_link_hash_defined
12722 || child->root.type == bfd_link_hash_defweak)
12723 && child->root.u.def.section == sec
12724 && child->root.u.def.value == offset)
12725 goto win;
12726 }
12727
12728 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12729 abfd, sec, (unsigned long) offset);
12730 bfd_set_error (bfd_error_invalid_operation);
12731 return FALSE;
12732
12733 win:
12734 if (!child->vtable)
12735 {
12736 child->vtable = ((struct elf_link_virtual_table_entry *)
12737 bfd_zalloc (abfd, sizeof (*child->vtable)));
12738 if (!child->vtable)
12739 return FALSE;
12740 }
12741 if (!h)
12742 {
12743 /* This *should* only be the absolute section. It could potentially
12744 be that someone has defined a non-global vtable though, which
12745 would be bad. It isn't worth paging in the local symbols to be
12746 sure though; that case should simply be handled by the assembler. */
12747
12748 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12749 }
12750 else
12751 child->vtable->parent = h;
12752
12753 return TRUE;
12754 }
12755
12756 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12757
12758 bfd_boolean
12759 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12760 asection *sec ATTRIBUTE_UNUSED,
12761 struct elf_link_hash_entry *h,
12762 bfd_vma addend)
12763 {
12764 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12765 unsigned int log_file_align = bed->s->log_file_align;
12766
12767 if (!h->vtable)
12768 {
12769 h->vtable = ((struct elf_link_virtual_table_entry *)
12770 bfd_zalloc (abfd, sizeof (*h->vtable)));
12771 if (!h->vtable)
12772 return FALSE;
12773 }
12774
12775 if (addend >= h->vtable->size)
12776 {
12777 size_t size, bytes, file_align;
12778 bfd_boolean *ptr = h->vtable->used;
12779
12780 /* While the symbol is undefined, we have to be prepared to handle
12781 a zero size. */
12782 file_align = 1 << log_file_align;
12783 if (h->root.type == bfd_link_hash_undefined)
12784 size = addend + file_align;
12785 else
12786 {
12787 size = h->size;
12788 if (addend >= size)
12789 {
12790 /* Oops! We've got a reference past the defined end of
12791 the table. This is probably a bug -- shall we warn? */
12792 size = addend + file_align;
12793 }
12794 }
12795 size = (size + file_align - 1) & -file_align;
12796
12797 /* Allocate one extra entry for use as a "done" flag for the
12798 consolidation pass. */
12799 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12800
12801 if (ptr)
12802 {
12803 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12804
12805 if (ptr != NULL)
12806 {
12807 size_t oldbytes;
12808
12809 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12810 * sizeof (bfd_boolean));
12811 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12812 }
12813 }
12814 else
12815 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12816
12817 if (ptr == NULL)
12818 return FALSE;
12819
12820 /* And arrange for that done flag to be at index -1. */
12821 h->vtable->used = ptr + 1;
12822 h->vtable->size = size;
12823 }
12824
12825 h->vtable->used[addend >> log_file_align] = TRUE;
12826
12827 return TRUE;
12828 }
12829
12830 /* Map an ELF section header flag to its corresponding string. */
12831 typedef struct
12832 {
12833 char *flag_name;
12834 flagword flag_value;
12835 } elf_flags_to_name_table;
12836
12837 static elf_flags_to_name_table elf_flags_to_names [] =
12838 {
12839 { "SHF_WRITE", SHF_WRITE },
12840 { "SHF_ALLOC", SHF_ALLOC },
12841 { "SHF_EXECINSTR", SHF_EXECINSTR },
12842 { "SHF_MERGE", SHF_MERGE },
12843 { "SHF_STRINGS", SHF_STRINGS },
12844 { "SHF_INFO_LINK", SHF_INFO_LINK},
12845 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12846 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12847 { "SHF_GROUP", SHF_GROUP },
12848 { "SHF_TLS", SHF_TLS },
12849 { "SHF_MASKOS", SHF_MASKOS },
12850 { "SHF_EXCLUDE", SHF_EXCLUDE },
12851 };
12852
12853 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12854 bfd_boolean
12855 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12856 struct flag_info *flaginfo,
12857 asection *section)
12858 {
12859 const bfd_vma sh_flags = elf_section_flags (section);
12860
12861 if (!flaginfo->flags_initialized)
12862 {
12863 bfd *obfd = info->output_bfd;
12864 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12865 struct flag_info_list *tf = flaginfo->flag_list;
12866 int with_hex = 0;
12867 int without_hex = 0;
12868
12869 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12870 {
12871 unsigned i;
12872 flagword (*lookup) (char *);
12873
12874 lookup = bed->elf_backend_lookup_section_flags_hook;
12875 if (lookup != NULL)
12876 {
12877 flagword hexval = (*lookup) ((char *) tf->name);
12878
12879 if (hexval != 0)
12880 {
12881 if (tf->with == with_flags)
12882 with_hex |= hexval;
12883 else if (tf->with == without_flags)
12884 without_hex |= hexval;
12885 tf->valid = TRUE;
12886 continue;
12887 }
12888 }
12889 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12890 {
12891 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12892 {
12893 if (tf->with == with_flags)
12894 with_hex |= elf_flags_to_names[i].flag_value;
12895 else if (tf->with == without_flags)
12896 without_hex |= elf_flags_to_names[i].flag_value;
12897 tf->valid = TRUE;
12898 break;
12899 }
12900 }
12901 if (!tf->valid)
12902 {
12903 info->callbacks->einfo
12904 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12905 return FALSE;
12906 }
12907 }
12908 flaginfo->flags_initialized = TRUE;
12909 flaginfo->only_with_flags |= with_hex;
12910 flaginfo->not_with_flags |= without_hex;
12911 }
12912
12913 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12914 return FALSE;
12915
12916 if ((flaginfo->not_with_flags & sh_flags) != 0)
12917 return FALSE;
12918
12919 return TRUE;
12920 }
12921
12922 struct alloc_got_off_arg {
12923 bfd_vma gotoff;
12924 struct bfd_link_info *info;
12925 };
12926
12927 /* We need a special top-level link routine to convert got reference counts
12928 to real got offsets. */
12929
12930 static bfd_boolean
12931 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12932 {
12933 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12934 bfd *obfd = gofarg->info->output_bfd;
12935 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12936
12937 if (h->got.refcount > 0)
12938 {
12939 h->got.offset = gofarg->gotoff;
12940 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12941 }
12942 else
12943 h->got.offset = (bfd_vma) -1;
12944
12945 return TRUE;
12946 }
12947
12948 /* And an accompanying bit to work out final got entry offsets once
12949 we're done. Should be called from final_link. */
12950
12951 bfd_boolean
12952 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12953 struct bfd_link_info *info)
12954 {
12955 bfd *i;
12956 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12957 bfd_vma gotoff;
12958 struct alloc_got_off_arg gofarg;
12959
12960 BFD_ASSERT (abfd == info->output_bfd);
12961
12962 if (! is_elf_hash_table (info->hash))
12963 return FALSE;
12964
12965 /* The GOT offset is relative to the .got section, but the GOT header is
12966 put into the .got.plt section, if the backend uses it. */
12967 if (bed->want_got_plt)
12968 gotoff = 0;
12969 else
12970 gotoff = bed->got_header_size;
12971
12972 /* Do the local .got entries first. */
12973 for (i = info->input_bfds; i; i = i->link.next)
12974 {
12975 bfd_signed_vma *local_got;
12976 bfd_size_type j, locsymcount;
12977 Elf_Internal_Shdr *symtab_hdr;
12978
12979 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12980 continue;
12981
12982 local_got = elf_local_got_refcounts (i);
12983 if (!local_got)
12984 continue;
12985
12986 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12987 if (elf_bad_symtab (i))
12988 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12989 else
12990 locsymcount = symtab_hdr->sh_info;
12991
12992 for (j = 0; j < locsymcount; ++j)
12993 {
12994 if (local_got[j] > 0)
12995 {
12996 local_got[j] = gotoff;
12997 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12998 }
12999 else
13000 local_got[j] = (bfd_vma) -1;
13001 }
13002 }
13003
13004 /* Then the global .got entries. .plt refcounts are handled by
13005 adjust_dynamic_symbol */
13006 gofarg.gotoff = gotoff;
13007 gofarg.info = info;
13008 elf_link_hash_traverse (elf_hash_table (info),
13009 elf_gc_allocate_got_offsets,
13010 &gofarg);
13011 return TRUE;
13012 }
13013
13014 /* Many folk need no more in the way of final link than this, once
13015 got entry reference counting is enabled. */
13016
13017 bfd_boolean
13018 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13019 {
13020 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13021 return FALSE;
13022
13023 /* Invoke the regular ELF backend linker to do all the work. */
13024 return bfd_elf_final_link (abfd, info);
13025 }
13026
13027 bfd_boolean
13028 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13029 {
13030 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13031
13032 if (rcookie->bad_symtab)
13033 rcookie->rel = rcookie->rels;
13034
13035 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13036 {
13037 unsigned long r_symndx;
13038
13039 if (! rcookie->bad_symtab)
13040 if (rcookie->rel->r_offset > offset)
13041 return FALSE;
13042 if (rcookie->rel->r_offset != offset)
13043 continue;
13044
13045 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13046 if (r_symndx == STN_UNDEF)
13047 return TRUE;
13048
13049 if (r_symndx >= rcookie->locsymcount
13050 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13051 {
13052 struct elf_link_hash_entry *h;
13053
13054 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13055
13056 while (h->root.type == bfd_link_hash_indirect
13057 || h->root.type == bfd_link_hash_warning)
13058 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13059
13060 if ((h->root.type == bfd_link_hash_defined
13061 || h->root.type == bfd_link_hash_defweak)
13062 && (h->root.u.def.section->owner != rcookie->abfd
13063 || h->root.u.def.section->kept_section != NULL
13064 || discarded_section (h->root.u.def.section)))
13065 return TRUE;
13066 }
13067 else
13068 {
13069 /* It's not a relocation against a global symbol,
13070 but it could be a relocation against a local
13071 symbol for a discarded section. */
13072 asection *isec;
13073 Elf_Internal_Sym *isym;
13074
13075 /* Need to: get the symbol; get the section. */
13076 isym = &rcookie->locsyms[r_symndx];
13077 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13078 if (isec != NULL
13079 && (isec->kept_section != NULL
13080 || discarded_section (isec)))
13081 return TRUE;
13082 }
13083 return FALSE;
13084 }
13085 return FALSE;
13086 }
13087
13088 /* Discard unneeded references to discarded sections.
13089 Returns -1 on error, 1 if any section's size was changed, 0 if
13090 nothing changed. This function assumes that the relocations are in
13091 sorted order, which is true for all known assemblers. */
13092
13093 int
13094 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13095 {
13096 struct elf_reloc_cookie cookie;
13097 asection *o;
13098 bfd *abfd;
13099 int changed = 0;
13100
13101 if (info->traditional_format
13102 || !is_elf_hash_table (info->hash))
13103 return 0;
13104
13105 o = bfd_get_section_by_name (output_bfd, ".stab");
13106 if (o != NULL)
13107 {
13108 asection *i;
13109
13110 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13111 {
13112 if (i->size == 0
13113 || i->reloc_count == 0
13114 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13115 continue;
13116
13117 abfd = i->owner;
13118 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13119 continue;
13120
13121 if (!init_reloc_cookie_for_section (&cookie, info, i))
13122 return -1;
13123
13124 if (_bfd_discard_section_stabs (abfd, i,
13125 elf_section_data (i)->sec_info,
13126 bfd_elf_reloc_symbol_deleted_p,
13127 &cookie))
13128 changed = 1;
13129
13130 fini_reloc_cookie_for_section (&cookie, i);
13131 }
13132 }
13133
13134 o = NULL;
13135 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13136 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13137 if (o != NULL)
13138 {
13139 asection *i;
13140
13141 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13142 {
13143 if (i->size == 0)
13144 continue;
13145
13146 abfd = i->owner;
13147 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13148 continue;
13149
13150 if (!init_reloc_cookie_for_section (&cookie, info, i))
13151 return -1;
13152
13153 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13154 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13155 bfd_elf_reloc_symbol_deleted_p,
13156 &cookie))
13157 changed = 1;
13158
13159 fini_reloc_cookie_for_section (&cookie, i);
13160 }
13161 }
13162
13163 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13164 {
13165 const struct elf_backend_data *bed;
13166
13167 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13168 continue;
13169
13170 bed = get_elf_backend_data (abfd);
13171
13172 if (bed->elf_backend_discard_info != NULL)
13173 {
13174 if (!init_reloc_cookie (&cookie, info, abfd))
13175 return -1;
13176
13177 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13178 changed = 1;
13179
13180 fini_reloc_cookie (&cookie, abfd);
13181 }
13182 }
13183
13184 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13185 _bfd_elf_end_eh_frame_parsing (info);
13186
13187 if (info->eh_frame_hdr_type
13188 && !info->relocatable
13189 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13190 changed = 1;
13191
13192 return changed;
13193 }
13194
13195 bfd_boolean
13196 _bfd_elf_section_already_linked (bfd *abfd,
13197 asection *sec,
13198 struct bfd_link_info *info)
13199 {
13200 flagword flags;
13201 const char *name, *key;
13202 struct bfd_section_already_linked *l;
13203 struct bfd_section_already_linked_hash_entry *already_linked_list;
13204
13205 if (sec->output_section == bfd_abs_section_ptr)
13206 return FALSE;
13207
13208 flags = sec->flags;
13209
13210 /* Return if it isn't a linkonce section. A comdat group section
13211 also has SEC_LINK_ONCE set. */
13212 if ((flags & SEC_LINK_ONCE) == 0)
13213 return FALSE;
13214
13215 /* Don't put group member sections on our list of already linked
13216 sections. They are handled as a group via their group section. */
13217 if (elf_sec_group (sec) != NULL)
13218 return FALSE;
13219
13220 /* For a SHT_GROUP section, use the group signature as the key. */
13221 name = sec->name;
13222 if ((flags & SEC_GROUP) != 0
13223 && elf_next_in_group (sec) != NULL
13224 && elf_group_name (elf_next_in_group (sec)) != NULL)
13225 key = elf_group_name (elf_next_in_group (sec));
13226 else
13227 {
13228 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13229 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13230 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13231 key++;
13232 else
13233 /* Must be a user linkonce section that doesn't follow gcc's
13234 naming convention. In this case we won't be matching
13235 single member groups. */
13236 key = name;
13237 }
13238
13239 already_linked_list = bfd_section_already_linked_table_lookup (key);
13240
13241 for (l = already_linked_list->entry; l != NULL; l = l->next)
13242 {
13243 /* We may have 2 different types of sections on the list: group
13244 sections with a signature of <key> (<key> is some string),
13245 and linkonce sections named .gnu.linkonce.<type>.<key>.
13246 Match like sections. LTO plugin sections are an exception.
13247 They are always named .gnu.linkonce.t.<key> and match either
13248 type of section. */
13249 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13250 && ((flags & SEC_GROUP) != 0
13251 || strcmp (name, l->sec->name) == 0))
13252 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13253 {
13254 /* The section has already been linked. See if we should
13255 issue a warning. */
13256 if (!_bfd_handle_already_linked (sec, l, info))
13257 return FALSE;
13258
13259 if (flags & SEC_GROUP)
13260 {
13261 asection *first = elf_next_in_group (sec);
13262 asection *s = first;
13263
13264 while (s != NULL)
13265 {
13266 s->output_section = bfd_abs_section_ptr;
13267 /* Record which group discards it. */
13268 s->kept_section = l->sec;
13269 s = elf_next_in_group (s);
13270 /* These lists are circular. */
13271 if (s == first)
13272 break;
13273 }
13274 }
13275
13276 return TRUE;
13277 }
13278 }
13279
13280 /* A single member comdat group section may be discarded by a
13281 linkonce section and vice versa. */
13282 if ((flags & SEC_GROUP) != 0)
13283 {
13284 asection *first = elf_next_in_group (sec);
13285
13286 if (first != NULL && elf_next_in_group (first) == first)
13287 /* Check this single member group against linkonce sections. */
13288 for (l = already_linked_list->entry; l != NULL; l = l->next)
13289 if ((l->sec->flags & SEC_GROUP) == 0
13290 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13291 {
13292 first->output_section = bfd_abs_section_ptr;
13293 first->kept_section = l->sec;
13294 sec->output_section = bfd_abs_section_ptr;
13295 break;
13296 }
13297 }
13298 else
13299 /* Check this linkonce section against single member groups. */
13300 for (l = already_linked_list->entry; l != NULL; l = l->next)
13301 if (l->sec->flags & SEC_GROUP)
13302 {
13303 asection *first = elf_next_in_group (l->sec);
13304
13305 if (first != NULL
13306 && elf_next_in_group (first) == first
13307 && bfd_elf_match_symbols_in_sections (first, sec, info))
13308 {
13309 sec->output_section = bfd_abs_section_ptr;
13310 sec->kept_section = first;
13311 break;
13312 }
13313 }
13314
13315 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13316 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13317 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13318 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13319 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13320 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13321 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13322 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13323 The reverse order cannot happen as there is never a bfd with only the
13324 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13325 matter as here were are looking only for cross-bfd sections. */
13326
13327 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13328 for (l = already_linked_list->entry; l != NULL; l = l->next)
13329 if ((l->sec->flags & SEC_GROUP) == 0
13330 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13331 {
13332 if (abfd != l->sec->owner)
13333 sec->output_section = bfd_abs_section_ptr;
13334 break;
13335 }
13336
13337 /* This is the first section with this name. Record it. */
13338 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13339 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13340 return sec->output_section == bfd_abs_section_ptr;
13341 }
13342
13343 bfd_boolean
13344 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13345 {
13346 return sym->st_shndx == SHN_COMMON;
13347 }
13348
13349 unsigned int
13350 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13351 {
13352 return SHN_COMMON;
13353 }
13354
13355 asection *
13356 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13357 {
13358 return bfd_com_section_ptr;
13359 }
13360
13361 bfd_vma
13362 _bfd_elf_default_got_elt_size (bfd *abfd,
13363 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13364 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13365 bfd *ibfd ATTRIBUTE_UNUSED,
13366 unsigned long symndx ATTRIBUTE_UNUSED)
13367 {
13368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13369 return bed->s->arch_size / 8;
13370 }
13371
13372 /* Routines to support the creation of dynamic relocs. */
13373
13374 /* Returns the name of the dynamic reloc section associated with SEC. */
13375
13376 static const char *
13377 get_dynamic_reloc_section_name (bfd * abfd,
13378 asection * sec,
13379 bfd_boolean is_rela)
13380 {
13381 char *name;
13382 const char *old_name = bfd_get_section_name (NULL, sec);
13383 const char *prefix = is_rela ? ".rela" : ".rel";
13384
13385 if (old_name == NULL)
13386 return NULL;
13387
13388 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13389 sprintf (name, "%s%s", prefix, old_name);
13390
13391 return name;
13392 }
13393
13394 /* Returns the dynamic reloc section associated with SEC.
13395 If necessary compute the name of the dynamic reloc section based
13396 on SEC's name (looked up in ABFD's string table) and the setting
13397 of IS_RELA. */
13398
13399 asection *
13400 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13401 asection * sec,
13402 bfd_boolean is_rela)
13403 {
13404 asection * reloc_sec = elf_section_data (sec)->sreloc;
13405
13406 if (reloc_sec == NULL)
13407 {
13408 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13409
13410 if (name != NULL)
13411 {
13412 reloc_sec = bfd_get_linker_section (abfd, name);
13413
13414 if (reloc_sec != NULL)
13415 elf_section_data (sec)->sreloc = reloc_sec;
13416 }
13417 }
13418
13419 return reloc_sec;
13420 }
13421
13422 /* Returns the dynamic reloc section associated with SEC. If the
13423 section does not exist it is created and attached to the DYNOBJ
13424 bfd and stored in the SRELOC field of SEC's elf_section_data
13425 structure.
13426
13427 ALIGNMENT is the alignment for the newly created section and
13428 IS_RELA defines whether the name should be .rela.<SEC's name>
13429 or .rel.<SEC's name>. The section name is looked up in the
13430 string table associated with ABFD. */
13431
13432 asection *
13433 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13434 bfd *dynobj,
13435 unsigned int alignment,
13436 bfd *abfd,
13437 bfd_boolean is_rela)
13438 {
13439 asection * reloc_sec = elf_section_data (sec)->sreloc;
13440
13441 if (reloc_sec == NULL)
13442 {
13443 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13444
13445 if (name == NULL)
13446 return NULL;
13447
13448 reloc_sec = bfd_get_linker_section (dynobj, name);
13449
13450 if (reloc_sec == NULL)
13451 {
13452 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13453 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13454 if ((sec->flags & SEC_ALLOC) != 0)
13455 flags |= SEC_ALLOC | SEC_LOAD;
13456
13457 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13458 if (reloc_sec != NULL)
13459 {
13460 /* _bfd_elf_get_sec_type_attr chooses a section type by
13461 name. Override as it may be wrong, eg. for a user
13462 section named "auto" we'll get ".relauto" which is
13463 seen to be a .rela section. */
13464 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13465 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13466 reloc_sec = NULL;
13467 }
13468 }
13469
13470 elf_section_data (sec)->sreloc = reloc_sec;
13471 }
13472
13473 return reloc_sec;
13474 }
13475
13476 /* Copy the ELF symbol type and other attributes for a linker script
13477 assignment from HSRC to HDEST. Generally this should be treated as
13478 if we found a strong non-dynamic definition for HDEST (except that
13479 ld ignores multiple definition errors). */
13480 void
13481 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13482 struct bfd_link_hash_entry *hdest,
13483 struct bfd_link_hash_entry *hsrc)
13484 {
13485 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13486 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13487 Elf_Internal_Sym isym;
13488
13489 ehdest->type = ehsrc->type;
13490 ehdest->target_internal = ehsrc->target_internal;
13491
13492 isym.st_other = ehsrc->other;
13493 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13494 }
13495
13496 /* Append a RELA relocation REL to section S in BFD. */
13497
13498 void
13499 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13500 {
13501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13502 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13503 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13504 bed->s->swap_reloca_out (abfd, rel, loc);
13505 }
13506
13507 /* Append a REL relocation REL to section S in BFD. */
13508
13509 void
13510 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13511 {
13512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13513 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13514 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13515 bed->s->swap_reloc_out (abfd, rel, loc);
13516 }
This page took 0.310274 seconds and 5 git commands to generate.