PR ld/13909
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
263 flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
292
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
294
295 return TRUE;
296 }
297
298 /* Create dynamic sections when linking against a dynamic object. */
299
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 {
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
308
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
312
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
323
324 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
329
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
333 {
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
339 }
340
341 s = bfd_make_section_anyway_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
349
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
352
353 if (bed->want_dynbss)
354 {
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_anyway_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 }
1242 /* FIXME: Should we check type and size for protected symbol? */
1243 h->size = 0;
1244 h->type = 0;
1245 return TRUE;
1246 }
1247
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1362 return FALSE;
1363
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1366
1367 *size_change_ok = TRUE;
1368 }
1369
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1376
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1383
1384 if (newdyn
1385 && newdef
1386 && (olddef
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1389 {
1390 *override = TRUE;
1391 newdef = FALSE;
1392 newdyncommon = FALSE;
1393
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1396
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1402
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1405 }
1406
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1411 right thing. */
1412
1413 if (newdyncommon
1414 && h->root.type == bfd_link_hash_common)
1415 {
1416 *override = TRUE;
1417 newdef = FALSE;
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1422 }
1423
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1426 {
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 /* If the real definition is defined by a regular object file,
2514 don't do anything special. See the longer description in
2515 _bfd_elf_adjust_dynamic_symbol, below. */
2516 if (h->u.weakdef->def_regular)
2517 h->u.weakdef = NULL;
2518 else
2519 {
2520 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2521
2522 while (h->root.type == bfd_link_hash_indirect)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524
2525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2526 || h->root.type == bfd_link_hash_defweak);
2527 BFD_ASSERT (weakdef->def_dynamic);
2528 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2529 || weakdef->root.type == bfd_link_hash_defweak);
2530 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2531 }
2532 }
2533
2534 return TRUE;
2535 }
2536
2537 /* Make the backend pick a good value for a dynamic symbol. This is
2538 called via elf_link_hash_traverse, and also calls itself
2539 recursively. */
2540
2541 static bfd_boolean
2542 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2543 {
2544 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2545 bfd *dynobj;
2546 const struct elf_backend_data *bed;
2547
2548 if (! is_elf_hash_table (eif->info->hash))
2549 return FALSE;
2550
2551 /* Ignore indirect symbols. These are added by the versioning code. */
2552 if (h->root.type == bfd_link_hash_indirect)
2553 return TRUE;
2554
2555 /* Fix the symbol flags. */
2556 if (! _bfd_elf_fix_symbol_flags (h, eif))
2557 return FALSE;
2558
2559 /* If this symbol does not require a PLT entry, and it is not
2560 defined by a dynamic object, or is not referenced by a regular
2561 object, ignore it. We do have to handle a weak defined symbol,
2562 even if no regular object refers to it, if we decided to add it
2563 to the dynamic symbol table. FIXME: Do we normally need to worry
2564 about symbols which are defined by one dynamic object and
2565 referenced by another one? */
2566 if (!h->needs_plt
2567 && h->type != STT_GNU_IFUNC
2568 && (h->def_regular
2569 || !h->def_dynamic
2570 || (!h->ref_regular
2571 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2572 {
2573 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2574 return TRUE;
2575 }
2576
2577 /* If we've already adjusted this symbol, don't do it again. This
2578 can happen via a recursive call. */
2579 if (h->dynamic_adjusted)
2580 return TRUE;
2581
2582 /* Don't look at this symbol again. Note that we must set this
2583 after checking the above conditions, because we may look at a
2584 symbol once, decide not to do anything, and then get called
2585 recursively later after REF_REGULAR is set below. */
2586 h->dynamic_adjusted = 1;
2587
2588 /* If this is a weak definition, and we know a real definition, and
2589 the real symbol is not itself defined by a regular object file,
2590 then get a good value for the real definition. We handle the
2591 real symbol first, for the convenience of the backend routine.
2592
2593 Note that there is a confusing case here. If the real definition
2594 is defined by a regular object file, we don't get the real symbol
2595 from the dynamic object, but we do get the weak symbol. If the
2596 processor backend uses a COPY reloc, then if some routine in the
2597 dynamic object changes the real symbol, we will not see that
2598 change in the corresponding weak symbol. This is the way other
2599 ELF linkers work as well, and seems to be a result of the shared
2600 library model.
2601
2602 I will clarify this issue. Most SVR4 shared libraries define the
2603 variable _timezone and define timezone as a weak synonym. The
2604 tzset call changes _timezone. If you write
2605 extern int timezone;
2606 int _timezone = 5;
2607 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2608 you might expect that, since timezone is a synonym for _timezone,
2609 the same number will print both times. However, if the processor
2610 backend uses a COPY reloc, then actually timezone will be copied
2611 into your process image, and, since you define _timezone
2612 yourself, _timezone will not. Thus timezone and _timezone will
2613 wind up at different memory locations. The tzset call will set
2614 _timezone, leaving timezone unchanged. */
2615
2616 if (h->u.weakdef != NULL)
2617 {
2618 /* If we get to this point, there is an implicit reference to
2619 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2620 h->u.weakdef->ref_regular = 1;
2621
2622 /* Ensure that the backend adjust_dynamic_symbol function sees
2623 H->U.WEAKDEF before H by recursively calling ourselves. */
2624 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2625 return FALSE;
2626 }
2627
2628 /* If a symbol has no type and no size and does not require a PLT
2629 entry, then we are probably about to do the wrong thing here: we
2630 are probably going to create a COPY reloc for an empty object.
2631 This case can arise when a shared object is built with assembly
2632 code, and the assembly code fails to set the symbol type. */
2633 if (h->size == 0
2634 && h->type == STT_NOTYPE
2635 && !h->needs_plt)
2636 (*_bfd_error_handler)
2637 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2638 h->root.root.string);
2639
2640 dynobj = elf_hash_table (eif->info)->dynobj;
2641 bed = get_elf_backend_data (dynobj);
2642
2643 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2644 {
2645 eif->failed = TRUE;
2646 return FALSE;
2647 }
2648
2649 return TRUE;
2650 }
2651
2652 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2653 DYNBSS. */
2654
2655 bfd_boolean
2656 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2657 asection *dynbss)
2658 {
2659 unsigned int power_of_two;
2660 bfd_vma mask;
2661 asection *sec = h->root.u.def.section;
2662
2663 /* The section aligment of definition is the maximum alignment
2664 requirement of symbols defined in the section. Since we don't
2665 know the symbol alignment requirement, we start with the
2666 maximum alignment and check low bits of the symbol address
2667 for the minimum alignment. */
2668 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2669 mask = ((bfd_vma) 1 << power_of_two) - 1;
2670 while ((h->root.u.def.value & mask) != 0)
2671 {
2672 mask >>= 1;
2673 --power_of_two;
2674 }
2675
2676 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2677 dynbss))
2678 {
2679 /* Adjust the section alignment if needed. */
2680 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2681 power_of_two))
2682 return FALSE;
2683 }
2684
2685 /* We make sure that the symbol will be aligned properly. */
2686 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2687
2688 /* Define the symbol as being at this point in DYNBSS. */
2689 h->root.u.def.section = dynbss;
2690 h->root.u.def.value = dynbss->size;
2691
2692 /* Increment the size of DYNBSS to make room for the symbol. */
2693 dynbss->size += h->size;
2694
2695 return TRUE;
2696 }
2697
2698 /* Adjust all external symbols pointing into SEC_MERGE sections
2699 to reflect the object merging within the sections. */
2700
2701 static bfd_boolean
2702 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2703 {
2704 asection *sec;
2705
2706 if ((h->root.type == bfd_link_hash_defined
2707 || h->root.type == bfd_link_hash_defweak)
2708 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2709 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2710 {
2711 bfd *output_bfd = (bfd *) data;
2712
2713 h->root.u.def.value =
2714 _bfd_merged_section_offset (output_bfd,
2715 &h->root.u.def.section,
2716 elf_section_data (sec)->sec_info,
2717 h->root.u.def.value);
2718 }
2719
2720 return TRUE;
2721 }
2722
2723 /* Returns false if the symbol referred to by H should be considered
2724 to resolve local to the current module, and true if it should be
2725 considered to bind dynamically. */
2726
2727 bfd_boolean
2728 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2729 struct bfd_link_info *info,
2730 bfd_boolean not_local_protected)
2731 {
2732 bfd_boolean binding_stays_local_p;
2733 const struct elf_backend_data *bed;
2734 struct elf_link_hash_table *hash_table;
2735
2736 if (h == NULL)
2737 return FALSE;
2738
2739 while (h->root.type == bfd_link_hash_indirect
2740 || h->root.type == bfd_link_hash_warning)
2741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2742
2743 /* If it was forced local, then clearly it's not dynamic. */
2744 if (h->dynindx == -1)
2745 return FALSE;
2746 if (h->forced_local)
2747 return FALSE;
2748
2749 /* Identify the cases where name binding rules say that a
2750 visible symbol resolves locally. */
2751 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2752
2753 switch (ELF_ST_VISIBILITY (h->other))
2754 {
2755 case STV_INTERNAL:
2756 case STV_HIDDEN:
2757 return FALSE;
2758
2759 case STV_PROTECTED:
2760 hash_table = elf_hash_table (info);
2761 if (!is_elf_hash_table (hash_table))
2762 return FALSE;
2763
2764 bed = get_elf_backend_data (hash_table->dynobj);
2765
2766 /* Proper resolution for function pointer equality may require
2767 that these symbols perhaps be resolved dynamically, even though
2768 we should be resolving them to the current module. */
2769 if (!not_local_protected || !bed->is_function_type (h->type))
2770 binding_stays_local_p = TRUE;
2771 break;
2772
2773 default:
2774 break;
2775 }
2776
2777 /* If it isn't defined locally, then clearly it's dynamic. */
2778 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2779 return TRUE;
2780
2781 /* Otherwise, the symbol is dynamic if binding rules don't tell
2782 us that it remains local. */
2783 return !binding_stays_local_p;
2784 }
2785
2786 /* Return true if the symbol referred to by H should be considered
2787 to resolve local to the current module, and false otherwise. Differs
2788 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2789 undefined symbols. The two functions are virtually identical except
2790 for the place where forced_local and dynindx == -1 are tested. If
2791 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2792 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2793 the symbol is local only for defined symbols.
2794 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2795 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2796 treatment of undefined weak symbols. For those that do not make
2797 undefined weak symbols dynamic, both functions may return false. */
2798
2799 bfd_boolean
2800 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2801 struct bfd_link_info *info,
2802 bfd_boolean local_protected)
2803 {
2804 const struct elf_backend_data *bed;
2805 struct elf_link_hash_table *hash_table;
2806
2807 /* If it's a local sym, of course we resolve locally. */
2808 if (h == NULL)
2809 return TRUE;
2810
2811 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2812 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2813 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2814 return TRUE;
2815
2816 /* Common symbols that become definitions don't get the DEF_REGULAR
2817 flag set, so test it first, and don't bail out. */
2818 if (ELF_COMMON_DEF_P (h))
2819 /* Do nothing. */;
2820 /* If we don't have a definition in a regular file, then we can't
2821 resolve locally. The sym is either undefined or dynamic. */
2822 else if (!h->def_regular)
2823 return FALSE;
2824
2825 /* Forced local symbols resolve locally. */
2826 if (h->forced_local)
2827 return TRUE;
2828
2829 /* As do non-dynamic symbols. */
2830 if (h->dynindx == -1)
2831 return TRUE;
2832
2833 /* At this point, we know the symbol is defined and dynamic. In an
2834 executable it must resolve locally, likewise when building symbolic
2835 shared libraries. */
2836 if (info->executable || SYMBOLIC_BIND (info, h))
2837 return TRUE;
2838
2839 /* Now deal with defined dynamic symbols in shared libraries. Ones
2840 with default visibility might not resolve locally. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2842 return FALSE;
2843
2844 hash_table = elf_hash_table (info);
2845 if (!is_elf_hash_table (hash_table))
2846 return TRUE;
2847
2848 bed = get_elf_backend_data (hash_table->dynobj);
2849
2850 /* STV_PROTECTED non-function symbols are local. */
2851 if (!bed->is_function_type (h->type))
2852 return TRUE;
2853
2854 /* Function pointer equality tests may require that STV_PROTECTED
2855 symbols be treated as dynamic symbols. If the address of a
2856 function not defined in an executable is set to that function's
2857 plt entry in the executable, then the address of the function in
2858 a shared library must also be the plt entry in the executable. */
2859 return local_protected;
2860 }
2861
2862 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2863 aligned. Returns the first TLS output section. */
2864
2865 struct bfd_section *
2866 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2867 {
2868 struct bfd_section *sec, *tls;
2869 unsigned int align = 0;
2870
2871 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2872 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2873 break;
2874 tls = sec;
2875
2876 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2877 if (sec->alignment_power > align)
2878 align = sec->alignment_power;
2879
2880 elf_hash_table (info)->tls_sec = tls;
2881
2882 /* Ensure the alignment of the first section is the largest alignment,
2883 so that the tls segment starts aligned. */
2884 if (tls != NULL)
2885 tls->alignment_power = align;
2886
2887 return tls;
2888 }
2889
2890 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2891 static bfd_boolean
2892 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2893 Elf_Internal_Sym *sym)
2894 {
2895 const struct elf_backend_data *bed;
2896
2897 /* Local symbols do not count, but target specific ones might. */
2898 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2899 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2900 return FALSE;
2901
2902 bed = get_elf_backend_data (abfd);
2903 /* Function symbols do not count. */
2904 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2905 return FALSE;
2906
2907 /* If the section is undefined, then so is the symbol. */
2908 if (sym->st_shndx == SHN_UNDEF)
2909 return FALSE;
2910
2911 /* If the symbol is defined in the common section, then
2912 it is a common definition and so does not count. */
2913 if (bed->common_definition (sym))
2914 return FALSE;
2915
2916 /* If the symbol is in a target specific section then we
2917 must rely upon the backend to tell us what it is. */
2918 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2919 /* FIXME - this function is not coded yet:
2920
2921 return _bfd_is_global_symbol_definition (abfd, sym);
2922
2923 Instead for now assume that the definition is not global,
2924 Even if this is wrong, at least the linker will behave
2925 in the same way that it used to do. */
2926 return FALSE;
2927
2928 return TRUE;
2929 }
2930
2931 /* Search the symbol table of the archive element of the archive ABFD
2932 whose archive map contains a mention of SYMDEF, and determine if
2933 the symbol is defined in this element. */
2934 static bfd_boolean
2935 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2936 {
2937 Elf_Internal_Shdr * hdr;
2938 bfd_size_type symcount;
2939 bfd_size_type extsymcount;
2940 bfd_size_type extsymoff;
2941 Elf_Internal_Sym *isymbuf;
2942 Elf_Internal_Sym *isym;
2943 Elf_Internal_Sym *isymend;
2944 bfd_boolean result;
2945
2946 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2947 if (abfd == NULL)
2948 return FALSE;
2949
2950 if (! bfd_check_format (abfd, bfd_object))
2951 return FALSE;
2952
2953 /* If we have already included the element containing this symbol in the
2954 link then we do not need to include it again. Just claim that any symbol
2955 it contains is not a definition, so that our caller will not decide to
2956 (re)include this element. */
2957 if (abfd->archive_pass)
2958 return FALSE;
2959
2960 /* Select the appropriate symbol table. */
2961 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2962 hdr = &elf_tdata (abfd)->symtab_hdr;
2963 else
2964 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2965
2966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2967
2968 /* The sh_info field of the symtab header tells us where the
2969 external symbols start. We don't care about the local symbols. */
2970 if (elf_bad_symtab (abfd))
2971 {
2972 extsymcount = symcount;
2973 extsymoff = 0;
2974 }
2975 else
2976 {
2977 extsymcount = symcount - hdr->sh_info;
2978 extsymoff = hdr->sh_info;
2979 }
2980
2981 if (extsymcount == 0)
2982 return FALSE;
2983
2984 /* Read in the symbol table. */
2985 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2986 NULL, NULL, NULL);
2987 if (isymbuf == NULL)
2988 return FALSE;
2989
2990 /* Scan the symbol table looking for SYMDEF. */
2991 result = FALSE;
2992 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2993 {
2994 const char *name;
2995
2996 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2997 isym->st_name);
2998 if (name == NULL)
2999 break;
3000
3001 if (strcmp (name, symdef->name) == 0)
3002 {
3003 result = is_global_data_symbol_definition (abfd, isym);
3004 break;
3005 }
3006 }
3007
3008 free (isymbuf);
3009
3010 return result;
3011 }
3012 \f
3013 /* Add an entry to the .dynamic table. */
3014
3015 bfd_boolean
3016 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3017 bfd_vma tag,
3018 bfd_vma val)
3019 {
3020 struct elf_link_hash_table *hash_table;
3021 const struct elf_backend_data *bed;
3022 asection *s;
3023 bfd_size_type newsize;
3024 bfd_byte *newcontents;
3025 Elf_Internal_Dyn dyn;
3026
3027 hash_table = elf_hash_table (info);
3028 if (! is_elf_hash_table (hash_table))
3029 return FALSE;
3030
3031 bed = get_elf_backend_data (hash_table->dynobj);
3032 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3033 BFD_ASSERT (s != NULL);
3034
3035 newsize = s->size + bed->s->sizeof_dyn;
3036 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3037 if (newcontents == NULL)
3038 return FALSE;
3039
3040 dyn.d_tag = tag;
3041 dyn.d_un.d_val = val;
3042 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3043
3044 s->size = newsize;
3045 s->contents = newcontents;
3046
3047 return TRUE;
3048 }
3049
3050 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3051 otherwise just check whether one already exists. Returns -1 on error,
3052 1 if a DT_NEEDED tag already exists, and 0 on success. */
3053
3054 static int
3055 elf_add_dt_needed_tag (bfd *abfd,
3056 struct bfd_link_info *info,
3057 const char *soname,
3058 bfd_boolean do_it)
3059 {
3060 struct elf_link_hash_table *hash_table;
3061 bfd_size_type oldsize;
3062 bfd_size_type strindex;
3063
3064 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3065 return -1;
3066
3067 hash_table = elf_hash_table (info);
3068 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3069 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3070 if (strindex == (bfd_size_type) -1)
3071 return -1;
3072
3073 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3074 {
3075 asection *sdyn;
3076 const struct elf_backend_data *bed;
3077 bfd_byte *extdyn;
3078
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3081 if (sdyn != NULL)
3082 for (extdyn = sdyn->contents;
3083 extdyn < sdyn->contents + sdyn->size;
3084 extdyn += bed->s->sizeof_dyn)
3085 {
3086 Elf_Internal_Dyn dyn;
3087
3088 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3089 if (dyn.d_tag == DT_NEEDED
3090 && dyn.d_un.d_val == strindex)
3091 {
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3093 return 1;
3094 }
3095 }
3096 }
3097
3098 if (do_it)
3099 {
3100 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3101 return -1;
3102
3103 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3104 return -1;
3105 }
3106 else
3107 /* We were just checking for existence of the tag. */
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109
3110 return 0;
3111 }
3112
3113 static bfd_boolean
3114 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3115 {
3116 for (; needed != NULL; needed = needed->next)
3117 if (strcmp (soname, needed->name) == 0)
3118 return TRUE;
3119
3120 return FALSE;
3121 }
3122
3123 /* Sort symbol by value and section. */
3124 static int
3125 elf_sort_symbol (const void *arg1, const void *arg2)
3126 {
3127 const struct elf_link_hash_entry *h1;
3128 const struct elf_link_hash_entry *h2;
3129 bfd_signed_vma vdiff;
3130
3131 h1 = *(const struct elf_link_hash_entry **) arg1;
3132 h2 = *(const struct elf_link_hash_entry **) arg2;
3133 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3134 if (vdiff != 0)
3135 return vdiff > 0 ? 1 : -1;
3136 else
3137 {
3138 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3139 if (sdiff != 0)
3140 return sdiff > 0 ? 1 : -1;
3141 }
3142 return 0;
3143 }
3144
3145 /* This function is used to adjust offsets into .dynstr for
3146 dynamic symbols. This is called via elf_link_hash_traverse. */
3147
3148 static bfd_boolean
3149 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3150 {
3151 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3152
3153 if (h->dynindx != -1)
3154 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3155 return TRUE;
3156 }
3157
3158 /* Assign string offsets in .dynstr, update all structures referencing
3159 them. */
3160
3161 static bfd_boolean
3162 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3163 {
3164 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3165 struct elf_link_local_dynamic_entry *entry;
3166 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3167 bfd *dynobj = hash_table->dynobj;
3168 asection *sdyn;
3169 bfd_size_type size;
3170 const struct elf_backend_data *bed;
3171 bfd_byte *extdyn;
3172
3173 _bfd_elf_strtab_finalize (dynstr);
3174 size = _bfd_elf_strtab_size (dynstr);
3175
3176 bed = get_elf_backend_data (dynobj);
3177 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3178 BFD_ASSERT (sdyn != NULL);
3179
3180 /* Update all .dynamic entries referencing .dynstr strings. */
3181 for (extdyn = sdyn->contents;
3182 extdyn < sdyn->contents + sdyn->size;
3183 extdyn += bed->s->sizeof_dyn)
3184 {
3185 Elf_Internal_Dyn dyn;
3186
3187 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3188 switch (dyn.d_tag)
3189 {
3190 case DT_STRSZ:
3191 dyn.d_un.d_val = size;
3192 break;
3193 case DT_NEEDED:
3194 case DT_SONAME:
3195 case DT_RPATH:
3196 case DT_RUNPATH:
3197 case DT_FILTER:
3198 case DT_AUXILIARY:
3199 case DT_AUDIT:
3200 case DT_DEPAUDIT:
3201 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3202 break;
3203 default:
3204 continue;
3205 }
3206 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3207 }
3208
3209 /* Now update local dynamic symbols. */
3210 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3211 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3212 entry->isym.st_name);
3213
3214 /* And the rest of dynamic symbols. */
3215 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3216
3217 /* Adjust version definitions. */
3218 if (elf_tdata (output_bfd)->cverdefs)
3219 {
3220 asection *s;
3221 bfd_byte *p;
3222 bfd_size_type i;
3223 Elf_Internal_Verdef def;
3224 Elf_Internal_Verdaux defaux;
3225
3226 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3227 p = s->contents;
3228 do
3229 {
3230 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3231 &def);
3232 p += sizeof (Elf_External_Verdef);
3233 if (def.vd_aux != sizeof (Elf_External_Verdef))
3234 continue;
3235 for (i = 0; i < def.vd_cnt; ++i)
3236 {
3237 _bfd_elf_swap_verdaux_in (output_bfd,
3238 (Elf_External_Verdaux *) p, &defaux);
3239 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3240 defaux.vda_name);
3241 _bfd_elf_swap_verdaux_out (output_bfd,
3242 &defaux, (Elf_External_Verdaux *) p);
3243 p += sizeof (Elf_External_Verdaux);
3244 }
3245 }
3246 while (def.vd_next);
3247 }
3248
3249 /* Adjust version references. */
3250 if (elf_tdata (output_bfd)->verref)
3251 {
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verneed need;
3256 Elf_Internal_Vernaux needaux;
3257
3258 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3259 p = s->contents;
3260 do
3261 {
3262 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3263 &need);
3264 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3265 _bfd_elf_swap_verneed_out (output_bfd, &need,
3266 (Elf_External_Verneed *) p);
3267 p += sizeof (Elf_External_Verneed);
3268 for (i = 0; i < need.vn_cnt; ++i)
3269 {
3270 _bfd_elf_swap_vernaux_in (output_bfd,
3271 (Elf_External_Vernaux *) p, &needaux);
3272 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3273 needaux.vna_name);
3274 _bfd_elf_swap_vernaux_out (output_bfd,
3275 &needaux,
3276 (Elf_External_Vernaux *) p);
3277 p += sizeof (Elf_External_Vernaux);
3278 }
3279 }
3280 while (need.vn_next);
3281 }
3282
3283 return TRUE;
3284 }
3285 \f
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 The default is to only match when the INPUT and OUTPUT are exactly
3288 the same target. */
3289
3290 bfd_boolean
3291 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3293 {
3294 return input == output;
3295 }
3296
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 This version is used when different targets for the same architecture
3299 are virtually identical. */
3300
3301 bfd_boolean
3302 _bfd_elf_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3304 {
3305 const struct elf_backend_data *obed, *ibed;
3306
3307 if (input == output)
3308 return TRUE;
3309
3310 ibed = xvec_get_elf_backend_data (input);
3311 obed = xvec_get_elf_backend_data (output);
3312
3313 if (ibed->arch != obed->arch)
3314 return FALSE;
3315
3316 /* If both backends are using this function, deem them compatible. */
3317 return ibed->relocs_compatible == obed->relocs_compatible;
3318 }
3319
3320 /* Add symbols from an ELF object file to the linker hash table. */
3321
3322 static bfd_boolean
3323 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3324 {
3325 Elf_Internal_Ehdr *ehdr;
3326 Elf_Internal_Shdr *hdr;
3327 bfd_size_type symcount;
3328 bfd_size_type extsymcount;
3329 bfd_size_type extsymoff;
3330 struct elf_link_hash_entry **sym_hash;
3331 bfd_boolean dynamic;
3332 Elf_External_Versym *extversym = NULL;
3333 Elf_External_Versym *ever;
3334 struct elf_link_hash_entry *weaks;
3335 struct elf_link_hash_entry **nondeflt_vers = NULL;
3336 bfd_size_type nondeflt_vers_cnt = 0;
3337 Elf_Internal_Sym *isymbuf = NULL;
3338 Elf_Internal_Sym *isym;
3339 Elf_Internal_Sym *isymend;
3340 const struct elf_backend_data *bed;
3341 bfd_boolean add_needed;
3342 struct elf_link_hash_table *htab;
3343 bfd_size_type amt;
3344 void *alloc_mark = NULL;
3345 struct bfd_hash_entry **old_table = NULL;
3346 unsigned int old_size = 0;
3347 unsigned int old_count = 0;
3348 void *old_tab = NULL;
3349 void *old_hash;
3350 void *old_ent;
3351 struct bfd_link_hash_entry *old_undefs = NULL;
3352 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3353 long old_dynsymcount = 0;
3354 size_t tabsize = 0;
3355 size_t hashsize = 0;
3356
3357 htab = elf_hash_table (info);
3358 bed = get_elf_backend_data (abfd);
3359
3360 if ((abfd->flags & DYNAMIC) == 0)
3361 dynamic = FALSE;
3362 else
3363 {
3364 dynamic = TRUE;
3365
3366 /* You can't use -r against a dynamic object. Also, there's no
3367 hope of using a dynamic object which does not exactly match
3368 the format of the output file. */
3369 if (info->relocatable
3370 || !is_elf_hash_table (htab)
3371 || info->output_bfd->xvec != abfd->xvec)
3372 {
3373 if (info->relocatable)
3374 bfd_set_error (bfd_error_invalid_operation);
3375 else
3376 bfd_set_error (bfd_error_wrong_format);
3377 goto error_return;
3378 }
3379 }
3380
3381 ehdr = elf_elfheader (abfd);
3382 if (info->warn_alternate_em
3383 && bed->elf_machine_code != ehdr->e_machine
3384 && ((bed->elf_machine_alt1 != 0
3385 && ehdr->e_machine == bed->elf_machine_alt1)
3386 || (bed->elf_machine_alt2 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt2)))
3388 info->callbacks->einfo
3389 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3390 ehdr->e_machine, abfd, bed->elf_machine_code);
3391
3392 /* As a GNU extension, any input sections which are named
3393 .gnu.warning.SYMBOL are treated as warning symbols for the given
3394 symbol. This differs from .gnu.warning sections, which generate
3395 warnings when they are included in an output file. */
3396 /* PR 12761: Also generate this warning when building shared libraries. */
3397 if (info->executable || info->shared)
3398 {
3399 asection *s;
3400
3401 for (s = abfd->sections; s != NULL; s = s->next)
3402 {
3403 const char *name;
3404
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3407 {
3408 char *msg;
3409 bfd_size_type sz;
3410
3411 name += sizeof ".gnu.warning." - 1;
3412
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3423 {
3424 struct elf_link_hash_entry *h;
3425
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3427
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3432 {
3433 /* We don't want to issue this warning. Clobber
3434 the section size so that the warning does not
3435 get copied into the output file. */
3436 s->size = 0;
3437 continue;
3438 }
3439 }
3440
3441 sz = s->size;
3442 msg = (char *) bfd_alloc (abfd, sz + 1);
3443 if (msg == NULL)
3444 goto error_return;
3445
3446 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3447 goto error_return;
3448
3449 msg[sz] = '\0';
3450
3451 if (! (_bfd_generic_link_add_one_symbol
3452 (info, abfd, name, BSF_WARNING, s, 0, msg,
3453 FALSE, bed->collect, NULL)))
3454 goto error_return;
3455
3456 if (! info->relocatable)
3457 {
3458 /* Clobber the section size so that the warning does
3459 not get copied into the output file. */
3460 s->size = 0;
3461
3462 /* Also set SEC_EXCLUDE, so that symbols defined in
3463 the warning section don't get copied to the output. */
3464 s->flags |= SEC_EXCLUDE;
3465 }
3466 }
3467 }
3468 }
3469
3470 add_needed = TRUE;
3471 if (! dynamic)
3472 {
3473 /* If we are creating a shared library, create all the dynamic
3474 sections immediately. We need to attach them to something,
3475 so we attach them to this BFD, provided it is the right
3476 format. FIXME: If there are no input BFD's of the same
3477 format as the output, we can't make a shared library. */
3478 if (info->shared
3479 && is_elf_hash_table (htab)
3480 && info->output_bfd->xvec == abfd->xvec
3481 && !htab->dynamic_sections_created)
3482 {
3483 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3484 goto error_return;
3485 }
3486 }
3487 else if (!is_elf_hash_table (htab))
3488 goto error_return;
3489 else
3490 {
3491 asection *s;
3492 const char *soname = NULL;
3493 char *audit = NULL;
3494 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3495 int ret;
3496
3497 /* ld --just-symbols and dynamic objects don't mix very well.
3498 ld shouldn't allow it. */
3499 if ((s = abfd->sections) != NULL
3500 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3501 abort ();
3502
3503 /* If this dynamic lib was specified on the command line with
3504 --as-needed in effect, then we don't want to add a DT_NEEDED
3505 tag unless the lib is actually used. Similary for libs brought
3506 in by another lib's DT_NEEDED. When --no-add-needed is used
3507 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3508 any dynamic library in DT_NEEDED tags in the dynamic lib at
3509 all. */
3510 add_needed = (elf_dyn_lib_class (abfd)
3511 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3512 | DYN_NO_NEEDED)) == 0;
3513
3514 s = bfd_get_section_by_name (abfd, ".dynamic");
3515 if (s != NULL)
3516 {
3517 bfd_byte *dynbuf;
3518 bfd_byte *extdyn;
3519 unsigned int elfsec;
3520 unsigned long shlink;
3521
3522 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3523 {
3524 error_free_dyn:
3525 free (dynbuf);
3526 goto error_return;
3527 }
3528
3529 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3530 if (elfsec == SHN_BAD)
3531 goto error_free_dyn;
3532 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3533
3534 for (extdyn = dynbuf;
3535 extdyn < dynbuf + s->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3541 if (dyn.d_tag == DT_SONAME)
3542 {
3543 unsigned int tagv = dyn.d_un.d_val;
3544 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3545 if (soname == NULL)
3546 goto error_free_dyn;
3547 }
3548 if (dyn.d_tag == DT_NEEDED)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = (char *) bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 goto error_free_dyn;
3563 memcpy (anm, fnm, amt);
3564 n->name = anm;
3565 n->by = abfd;
3566 n->next = NULL;
3567 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3568 ;
3569 *pn = n;
3570 }
3571 if (dyn.d_tag == DT_RUNPATH)
3572 {
3573 struct bfd_link_needed_list *n, **pn;
3574 char *fnm, *anm;
3575 unsigned int tagv = dyn.d_un.d_val;
3576
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3584 if (anm == NULL)
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3587 n->name = anm;
3588 n->by = abfd;
3589 n->next = NULL;
3590 for (pn = & runpath;
3591 *pn != NULL;
3592 pn = &(*pn)->next)
3593 ;
3594 *pn = n;
3595 }
3596 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3597 if (!runpath && dyn.d_tag == DT_RPATH)
3598 {
3599 struct bfd_link_needed_list *n, **pn;
3600 char *fnm, *anm;
3601 unsigned int tagv = dyn.d_un.d_val;
3602
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3610 if (anm == NULL)
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3613 n->name = anm;
3614 n->by = abfd;
3615 n->next = NULL;
3616 for (pn = & rpath;
3617 *pn != NULL;
3618 pn = &(*pn)->next)
3619 ;
3620 *pn = n;
3621 }
3622 if (dyn.d_tag == DT_AUDIT)
3623 {
3624 unsigned int tagv = dyn.d_un.d_val;
3625 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3626 }
3627 }
3628
3629 free (dynbuf);
3630 }
3631
3632 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3633 frees all more recently bfd_alloc'd blocks as well. */
3634 if (runpath)
3635 rpath = runpath;
3636
3637 if (rpath)
3638 {
3639 struct bfd_link_needed_list **pn;
3640 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3641 ;
3642 *pn = rpath;
3643 }
3644
3645 /* We do not want to include any of the sections in a dynamic
3646 object in the output file. We hack by simply clobbering the
3647 list of sections in the BFD. This could be handled more
3648 cleanly by, say, a new section flag; the existing
3649 SEC_NEVER_LOAD flag is not the one we want, because that one
3650 still implies that the section takes up space in the output
3651 file. */
3652 bfd_section_list_clear (abfd);
3653
3654 /* Find the name to use in a DT_NEEDED entry that refers to this
3655 object. If the object has a DT_SONAME entry, we use it.
3656 Otherwise, if the generic linker stuck something in
3657 elf_dt_name, we use that. Otherwise, we just use the file
3658 name. */
3659 if (soname == NULL || *soname == '\0')
3660 {
3661 soname = elf_dt_name (abfd);
3662 if (soname == NULL || *soname == '\0')
3663 soname = bfd_get_filename (abfd);
3664 }
3665
3666 /* Save the SONAME because sometimes the linker emulation code
3667 will need to know it. */
3668 elf_dt_name (abfd) = soname;
3669
3670 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3671 if (ret < 0)
3672 goto error_return;
3673
3674 /* If we have already included this dynamic object in the
3675 link, just ignore it. There is no reason to include a
3676 particular dynamic object more than once. */
3677 if (ret > 0)
3678 return TRUE;
3679
3680 /* Save the DT_AUDIT entry for the linker emulation code. */
3681 elf_dt_audit (abfd) = audit;
3682 }
3683
3684 /* If this is a dynamic object, we always link against the .dynsym
3685 symbol table, not the .symtab symbol table. The dynamic linker
3686 will only see the .dynsym symbol table, so there is no reason to
3687 look at .symtab for a dynamic object. */
3688
3689 if (! dynamic || elf_dynsymtab (abfd) == 0)
3690 hdr = &elf_tdata (abfd)->symtab_hdr;
3691 else
3692 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3693
3694 symcount = hdr->sh_size / bed->s->sizeof_sym;
3695
3696 /* The sh_info field of the symtab header tells us where the
3697 external symbols start. We don't care about the local symbols at
3698 this point. */
3699 if (elf_bad_symtab (abfd))
3700 {
3701 extsymcount = symcount;
3702 extsymoff = 0;
3703 }
3704 else
3705 {
3706 extsymcount = symcount - hdr->sh_info;
3707 extsymoff = hdr->sh_info;
3708 }
3709
3710 sym_hash = NULL;
3711 if (extsymcount != 0)
3712 {
3713 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3714 NULL, NULL, NULL);
3715 if (isymbuf == NULL)
3716 goto error_return;
3717
3718 /* We store a pointer to the hash table entry for each external
3719 symbol. */
3720 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3721 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3722 if (sym_hash == NULL)
3723 goto error_free_sym;
3724 elf_sym_hashes (abfd) = sym_hash;
3725 }
3726
3727 if (dynamic)
3728 {
3729 /* Read in any version definitions. */
3730 if (!_bfd_elf_slurp_version_tables (abfd,
3731 info->default_imported_symver))
3732 goto error_free_sym;
3733
3734 /* Read in the symbol versions, but don't bother to convert them
3735 to internal format. */
3736 if (elf_dynversym (abfd) != 0)
3737 {
3738 Elf_Internal_Shdr *versymhdr;
3739
3740 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3741 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3742 if (extversym == NULL)
3743 goto error_free_sym;
3744 amt = versymhdr->sh_size;
3745 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3746 || bfd_bread (extversym, amt, abfd) != amt)
3747 goto error_free_vers;
3748 }
3749 }
3750
3751 /* If we are loading an as-needed shared lib, save the symbol table
3752 state before we start adding symbols. If the lib turns out
3753 to be unneeded, restore the state. */
3754 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3755 {
3756 unsigned int i;
3757 size_t entsize;
3758
3759 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3760 {
3761 struct bfd_hash_entry *p;
3762 struct elf_link_hash_entry *h;
3763
3764 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3765 {
3766 h = (struct elf_link_hash_entry *) p;
3767 entsize += htab->root.table.entsize;
3768 if (h->root.type == bfd_link_hash_warning)
3769 entsize += htab->root.table.entsize;
3770 }
3771 }
3772
3773 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3774 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3775 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3776 if (old_tab == NULL)
3777 goto error_free_vers;
3778
3779 /* Remember the current objalloc pointer, so that all mem for
3780 symbols added can later be reclaimed. */
3781 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3782 if (alloc_mark == NULL)
3783 goto error_free_vers;
3784
3785 /* Make a special call to the linker "notice" function to
3786 tell it that we are about to handle an as-needed lib. */
3787 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3788 notice_as_needed, 0, NULL))
3789 goto error_free_vers;
3790
3791 /* Clone the symbol table and sym hashes. Remember some
3792 pointers into the symbol table, and dynamic symbol count. */
3793 old_hash = (char *) old_tab + tabsize;
3794 old_ent = (char *) old_hash + hashsize;
3795 memcpy (old_tab, htab->root.table.table, tabsize);
3796 memcpy (old_hash, sym_hash, hashsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3803
3804 for (i = 0; i < htab->root.table.size; i++)
3805 {
3806 struct bfd_hash_entry *p;
3807 struct elf_link_hash_entry *h;
3808
3809 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3810 {
3811 memcpy (old_ent, p, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 h = (struct elf_link_hash_entry *) p;
3814 if (h->root.type == bfd_link_hash_warning)
3815 {
3816 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3817 old_ent = (char *) old_ent + htab->root.table.entsize;
3818 }
3819 }
3820 }
3821 }
3822
3823 weaks = NULL;
3824 ever = extversym != NULL ? extversym + extsymoff : NULL;
3825 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3826 isym < isymend;
3827 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3828 {
3829 int bind;
3830 bfd_vma value;
3831 asection *sec, *new_sec;
3832 flagword flags;
3833 const char *name;
3834 struct elf_link_hash_entry *h;
3835 bfd_boolean definition;
3836 bfd_boolean size_change_ok;
3837 bfd_boolean type_change_ok;
3838 bfd_boolean new_weakdef;
3839 bfd_boolean override;
3840 bfd_boolean common;
3841 unsigned int old_alignment;
3842 bfd *old_bfd;
3843 bfd * undef_bfd = NULL;
3844
3845 override = FALSE;
3846
3847 flags = BSF_NO_FLAGS;
3848 sec = NULL;
3849 value = isym->st_value;
3850 *sym_hash = NULL;
3851 common = bed->common_definition (isym);
3852
3853 bind = ELF_ST_BIND (isym->st_info);
3854 switch (bind)
3855 {
3856 case STB_LOCAL:
3857 /* This should be impossible, since ELF requires that all
3858 global symbols follow all local symbols, and that sh_info
3859 point to the first global symbol. Unfortunately, Irix 5
3860 screws this up. */
3861 continue;
3862
3863 case STB_GLOBAL:
3864 if (isym->st_shndx != SHN_UNDEF && !common)
3865 flags = BSF_GLOBAL;
3866 break;
3867
3868 case STB_WEAK:
3869 flags = BSF_WEAK;
3870 break;
3871
3872 case STB_GNU_UNIQUE:
3873 flags = BSF_GNU_UNIQUE;
3874 break;
3875
3876 default:
3877 /* Leave it up to the processor backend. */
3878 break;
3879 }
3880
3881 if (isym->st_shndx == SHN_UNDEF)
3882 sec = bfd_und_section_ptr;
3883 else if (isym->st_shndx == SHN_ABS)
3884 sec = bfd_abs_section_ptr;
3885 else if (isym->st_shndx == SHN_COMMON)
3886 {
3887 sec = bfd_com_section_ptr;
3888 /* What ELF calls the size we call the value. What ELF
3889 calls the value we call the alignment. */
3890 value = isym->st_size;
3891 }
3892 else
3893 {
3894 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3895 if (sec == NULL)
3896 sec = bfd_abs_section_ptr;
3897 else if (discarded_section (sec))
3898 {
3899 /* Symbols from discarded section are undefined. We keep
3900 its visibility. */
3901 sec = bfd_und_section_ptr;
3902 isym->st_shndx = SHN_UNDEF;
3903 }
3904 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3905 value -= sec->vma;
3906 }
3907
3908 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3909 isym->st_name);
3910 if (name == NULL)
3911 goto error_free_vers;
3912
3913 if (isym->st_shndx == SHN_COMMON
3914 && (abfd->flags & BFD_PLUGIN) != 0)
3915 {
3916 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3917
3918 if (xc == NULL)
3919 {
3920 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3921 | SEC_EXCLUDE);
3922 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3923 if (xc == NULL)
3924 goto error_free_vers;
3925 }
3926 sec = xc;
3927 }
3928 else if (isym->st_shndx == SHN_COMMON
3929 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3930 && !info->relocatable)
3931 {
3932 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3933
3934 if (tcomm == NULL)
3935 {
3936 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED);
3938 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 /* If this is a definition of a symbol which was previously
3982 referenced in a non-weak manner then make a note of the bfd
3983 that contained the reference. This is used if we need to
3984 refer to the source of the reference later on. */
3985 if (! bfd_is_und_section (sec))
3986 {
3987 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3988
3989 if (h != NULL
3990 && h->root.type == bfd_link_hash_undefined
3991 && h->root.u.undef.abfd)
3992 undef_bfd = h->root.u.undef.abfd;
3993 }
3994
3995 if (ever == NULL)
3996 {
3997 if (info->default_imported_symver)
3998 /* Use the default symbol version created earlier. */
3999 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4000 else
4001 iver.vs_vers = 0;
4002 }
4003 else
4004 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4005
4006 vernum = iver.vs_vers & VERSYM_VERSION;
4007
4008 /* If this is a hidden symbol, or if it is not version
4009 1, we append the version name to the symbol name.
4010 However, we do not modify a non-hidden absolute symbol
4011 if it is not a function, because it might be the version
4012 symbol itself. FIXME: What if it isn't? */
4013 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4014 || (vernum > 1
4015 && (!bfd_is_abs_section (sec)
4016 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4017 {
4018 const char *verstr;
4019 size_t namelen, verlen, newlen;
4020 char *newname, *p;
4021
4022 if (isym->st_shndx != SHN_UNDEF)
4023 {
4024 if (vernum > elf_tdata (abfd)->cverdefs)
4025 verstr = NULL;
4026 else if (vernum > 1)
4027 verstr =
4028 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4029 else
4030 verstr = "";
4031
4032 if (verstr == NULL)
4033 {
4034 (*_bfd_error_handler)
4035 (_("%B: %s: invalid version %u (max %d)"),
4036 abfd, name, vernum,
4037 elf_tdata (abfd)->cverdefs);
4038 bfd_set_error (bfd_error_bad_value);
4039 goto error_free_vers;
4040 }
4041 }
4042 else
4043 {
4044 /* We cannot simply test for the number of
4045 entries in the VERNEED section since the
4046 numbers for the needed versions do not start
4047 at 0. */
4048 Elf_Internal_Verneed *t;
4049
4050 verstr = NULL;
4051 for (t = elf_tdata (abfd)->verref;
4052 t != NULL;
4053 t = t->vn_nextref)
4054 {
4055 Elf_Internal_Vernaux *a;
4056
4057 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4058 {
4059 if (a->vna_other == vernum)
4060 {
4061 verstr = a->vna_nodename;
4062 break;
4063 }
4064 }
4065 if (a != NULL)
4066 break;
4067 }
4068 if (verstr == NULL)
4069 {
4070 (*_bfd_error_handler)
4071 (_("%B: %s: invalid needed version %d"),
4072 abfd, name, vernum);
4073 bfd_set_error (bfd_error_bad_value);
4074 goto error_free_vers;
4075 }
4076 }
4077
4078 namelen = strlen (name);
4079 verlen = strlen (verstr);
4080 newlen = namelen + verlen + 2;
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 ++newlen;
4084
4085 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4086 if (newname == NULL)
4087 goto error_free_vers;
4088 memcpy (newname, name, namelen);
4089 p = newname + namelen;
4090 *p++ = ELF_VER_CHR;
4091 /* If this is a defined non-hidden version symbol,
4092 we add another @ to the name. This indicates the
4093 default version of the symbol. */
4094 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4095 && isym->st_shndx != SHN_UNDEF)
4096 *p++ = ELF_VER_CHR;
4097 memcpy (p, verstr, verlen + 1);
4098
4099 name = newname;
4100 }
4101
4102 /* If necessary, make a second attempt to locate the bfd
4103 containing an unresolved, non-weak reference to the
4104 current symbol. */
4105 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4106 {
4107 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4108
4109 if (h != NULL
4110 && h->root.type == bfd_link_hash_undefined
4111 && h->root.u.undef.abfd)
4112 undef_bfd = h->root.u.undef.abfd;
4113 }
4114
4115 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4116 &value, &old_alignment,
4117 sym_hash, &skip, &override,
4118 &type_change_ok, &size_change_ok))
4119 goto error_free_vers;
4120
4121 if (skip)
4122 continue;
4123
4124 if (override)
4125 definition = FALSE;
4126
4127 h = *sym_hash;
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4131
4132 /* Remember the old alignment if this is a common symbol, so
4133 that we don't reduce the alignment later on. We can't
4134 check later, because _bfd_generic_link_add_one_symbol
4135 will set a default for the alignment which we want to
4136 override. We also remember the old bfd where the existing
4137 definition comes from. */
4138 switch (h->root.type)
4139 {
4140 default:
4141 break;
4142
4143 case bfd_link_hash_defined:
4144 case bfd_link_hash_defweak:
4145 old_bfd = h->root.u.def.section->owner;
4146 break;
4147
4148 case bfd_link_hash_common:
4149 old_bfd = h->root.u.c.p->section->owner;
4150 old_alignment = h->root.u.c.p->alignment_power;
4151 break;
4152 }
4153
4154 if (elf_tdata (abfd)->verdef != NULL
4155 && ! override
4156 && vernum > 1
4157 && definition)
4158 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4159 }
4160
4161 if (! (_bfd_generic_link_add_one_symbol
4162 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4163 (struct bfd_link_hash_entry **) sym_hash)))
4164 goto error_free_vers;
4165
4166 h = *sym_hash;
4167 while (h->root.type == bfd_link_hash_indirect
4168 || h->root.type == bfd_link_hash_warning)
4169 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4170
4171 *sym_hash = h;
4172 if (is_elf_hash_table (htab))
4173 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4174
4175 new_weakdef = FALSE;
4176 if (dynamic
4177 && definition
4178 && (flags & BSF_WEAK) != 0
4179 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4180 && is_elf_hash_table (htab)
4181 && h->u.weakdef == NULL)
4182 {
4183 /* Keep a list of all weak defined non function symbols from
4184 a dynamic object, using the weakdef field. Later in this
4185 function we will set the weakdef field to the correct
4186 value. We only put non-function symbols from dynamic
4187 objects on this list, because that happens to be the only
4188 time we need to know the normal symbol corresponding to a
4189 weak symbol, and the information is time consuming to
4190 figure out. If the weakdef field is not already NULL,
4191 then this symbol was already defined by some previous
4192 dynamic object, and we will be using that previous
4193 definition anyhow. */
4194
4195 h->u.weakdef = weaks;
4196 weaks = h;
4197 new_weakdef = TRUE;
4198 }
4199
4200 /* Set the alignment of a common symbol. */
4201 if ((common || bfd_is_com_section (sec))
4202 && h->root.type == bfd_link_hash_common)
4203 {
4204 unsigned int align;
4205
4206 if (common)
4207 align = bfd_log2 (isym->st_value);
4208 else
4209 {
4210 /* The new symbol is a common symbol in a shared object.
4211 We need to get the alignment from the section. */
4212 align = new_sec->alignment_power;
4213 }
4214 if (align > old_alignment)
4215 h->root.u.c.p->alignment_power = align;
4216 else
4217 h->root.u.c.p->alignment_power = old_alignment;
4218 }
4219
4220 if (is_elf_hash_table (htab))
4221 {
4222 bfd_boolean dynsym;
4223
4224 /* Check the alignment when a common symbol is involved. This
4225 can change when a common symbol is overridden by a normal
4226 definition or a common symbol is ignored due to the old
4227 normal definition. We need to make sure the maximum
4228 alignment is maintained. */
4229 if ((old_alignment || common)
4230 && h->root.type != bfd_link_hash_common)
4231 {
4232 unsigned int common_align;
4233 unsigned int normal_align;
4234 unsigned int symbol_align;
4235 bfd *normal_bfd;
4236 bfd *common_bfd;
4237
4238 symbol_align = ffs (h->root.u.def.value) - 1;
4239 if (h->root.u.def.section->owner != NULL
4240 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4241 {
4242 normal_align = h->root.u.def.section->alignment_power;
4243 if (normal_align > symbol_align)
4244 normal_align = symbol_align;
4245 }
4246 else
4247 normal_align = symbol_align;
4248
4249 if (old_alignment)
4250 {
4251 common_align = old_alignment;
4252 common_bfd = old_bfd;
4253 normal_bfd = abfd;
4254 }
4255 else
4256 {
4257 common_align = bfd_log2 (isym->st_value);
4258 common_bfd = abfd;
4259 normal_bfd = old_bfd;
4260 }
4261
4262 if (normal_align < common_align)
4263 {
4264 /* PR binutils/2735 */
4265 if (normal_bfd == NULL)
4266 (*_bfd_error_handler)
4267 (_("Warning: alignment %u of common symbol `%s' in %B"
4268 " is greater than the alignment (%u) of its section %A"),
4269 common_bfd, h->root.u.def.section,
4270 1 << common_align, name, 1 << normal_align);
4271 else
4272 (*_bfd_error_handler)
4273 (_("Warning: alignment %u of symbol `%s' in %B"
4274 " is smaller than %u in %B"),
4275 normal_bfd, common_bfd,
4276 1 << normal_align, name, 1 << common_align);
4277 }
4278 }
4279
4280 /* Remember the symbol size if it isn't undefined. */
4281 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4282 && (definition || h->size == 0))
4283 {
4284 if (h->size != 0
4285 && h->size != isym->st_size
4286 && ! size_change_ok)
4287 (*_bfd_error_handler)
4288 (_("Warning: size of symbol `%s' changed"
4289 " from %lu in %B to %lu in %B"),
4290 old_bfd, abfd,
4291 name, (unsigned long) h->size,
4292 (unsigned long) isym->st_size);
4293
4294 h->size = isym->st_size;
4295 }
4296
4297 /* If this is a common symbol, then we always want H->SIZE
4298 to be the size of the common symbol. The code just above
4299 won't fix the size if a common symbol becomes larger. We
4300 don't warn about a size change here, because that is
4301 covered by --warn-common. Allow changed between different
4302 function types. */
4303 if (h->root.type == bfd_link_hash_common)
4304 h->size = h->root.u.c.size;
4305
4306 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4307 && (definition || h->type == STT_NOTYPE))
4308 {
4309 unsigned int type = ELF_ST_TYPE (isym->st_info);
4310
4311 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4312 symbol. */
4313 if (type == STT_GNU_IFUNC
4314 && (abfd->flags & DYNAMIC) != 0)
4315 type = STT_FUNC;
4316
4317 if (h->type != type)
4318 {
4319 if (h->type != STT_NOTYPE && ! type_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: type of symbol `%s' changed"
4322 " from %d to %d in %B"),
4323 abfd, name, h->type, type);
4324
4325 h->type = type;
4326 }
4327 }
4328
4329 /* Merge st_other field. */
4330 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4331
4332 /* Set a flag in the hash table entry indicating the type of
4333 reference or definition we just found. Keep a count of
4334 the number of dynamic symbols we find. A dynamic symbol
4335 is one which is referenced or defined by both a regular
4336 object and a shared object. */
4337 dynsym = FALSE;
4338 if (! dynamic)
4339 {
4340 if (! definition)
4341 {
4342 h->ref_regular = 1;
4343 if (bind != STB_WEAK)
4344 h->ref_regular_nonweak = 1;
4345 }
4346 else
4347 {
4348 h->def_regular = 1;
4349 if (h->def_dynamic)
4350 {
4351 h->def_dynamic = 0;
4352 h->ref_dynamic = 1;
4353 }
4354 }
4355 if (! info->executable
4356 || h->def_dynamic
4357 || h->ref_dynamic)
4358 dynsym = TRUE;
4359 }
4360 else
4361 {
4362 if (! definition)
4363 h->ref_dynamic = 1;
4364 else
4365 {
4366 h->def_dynamic = 1;
4367 h->dynamic_def = 1;
4368 }
4369 if (h->def_regular
4370 || h->ref_regular
4371 || (h->u.weakdef != NULL
4372 && ! new_weakdef
4373 && h->u.weakdef->dynindx != -1))
4374 dynsym = TRUE;
4375 }
4376
4377 /* We don't want to make debug symbol dynamic. */
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4379 dynsym = FALSE;
4380
4381 /* Nor should we make plugin symbols dynamic. */
4382 if ((abfd->flags & BFD_PLUGIN) != 0)
4383 dynsym = FALSE;
4384
4385 if (definition)
4386 h->target_internal = isym->st_target_internal;
4387
4388 /* Check to see if we need to add an indirect symbol for
4389 the default name. */
4390 if (definition || h->root.type == bfd_link_hash_common)
4391 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4392 &sec, &value, &dynsym,
4393 override))
4394 goto error_free_vers;
4395
4396 if (definition && !dynamic)
4397 {
4398 char *p = strchr (name, ELF_VER_CHR);
4399 if (p != NULL && p[1] != ELF_VER_CHR)
4400 {
4401 /* Queue non-default versions so that .symver x, x@FOO
4402 aliases can be checked. */
4403 if (!nondeflt_vers)
4404 {
4405 amt = ((isymend - isym + 1)
4406 * sizeof (struct elf_link_hash_entry *));
4407 nondeflt_vers =
4408 (struct elf_link_hash_entry **) bfd_malloc (amt);
4409 if (!nondeflt_vers)
4410 goto error_free_vers;
4411 }
4412 nondeflt_vers[nondeflt_vers_cnt++] = h;
4413 }
4414 }
4415
4416 if (dynsym && h->dynindx == -1)
4417 {
4418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4419 goto error_free_vers;
4420 if (h->u.weakdef != NULL
4421 && ! new_weakdef
4422 && h->u.weakdef->dynindx == -1)
4423 {
4424 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4425 goto error_free_vers;
4426 }
4427 }
4428 else if (dynsym && h->dynindx != -1)
4429 /* If the symbol already has a dynamic index, but
4430 visibility says it should not be visible, turn it into
4431 a local symbol. */
4432 switch (ELF_ST_VISIBILITY (h->other))
4433 {
4434 case STV_INTERNAL:
4435 case STV_HIDDEN:
4436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4437 dynsym = FALSE;
4438 break;
4439 }
4440
4441 if (!add_needed
4442 && definition
4443 && ((dynsym
4444 && h->ref_regular)
4445 || (h->ref_dynamic
4446 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4447 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4448 {
4449 int ret;
4450 const char *soname = elf_dt_name (abfd);
4451
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4456 a weak one. */
4457 if (undef_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4459 {
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4462 undef_bfd, name);
4463 (*_bfd_error_handler)
4464 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4465 abfd, name);
4466 bfd_set_error (bfd_error_invalid_operation);
4467 goto error_free_vers;
4468 }
4469
4470 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4471 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4472
4473 add_needed = TRUE;
4474 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4475 if (ret < 0)
4476 goto error_free_vers;
4477
4478 BFD_ASSERT (ret == 0);
4479 }
4480 }
4481 }
4482
4483 if (extversym != NULL)
4484 {
4485 free (extversym);
4486 extversym = NULL;
4487 }
4488
4489 if (isymbuf != NULL)
4490 {
4491 free (isymbuf);
4492 isymbuf = NULL;
4493 }
4494
4495 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4496 {
4497 unsigned int i;
4498
4499 /* Restore the symbol table. */
4500 if (bed->as_needed_cleanup)
4501 (*bed->as_needed_cleanup) (abfd, info);
4502 old_hash = (char *) old_tab + tabsize;
4503 old_ent = (char *) old_hash + hashsize;
4504 sym_hash = elf_sym_hashes (abfd);
4505 htab->root.table.table = old_table;
4506 htab->root.table.size = old_size;
4507 htab->root.table.count = old_count;
4508 memcpy (htab->root.table.table, old_tab, tabsize);
4509 memcpy (sym_hash, old_hash, hashsize);
4510 htab->root.undefs = old_undefs;
4511 htab->root.undefs_tail = old_undefs_tail;
4512 for (i = 0; i < htab->root.table.size; i++)
4513 {
4514 struct bfd_hash_entry *p;
4515 struct elf_link_hash_entry *h;
4516 bfd_size_type size;
4517 unsigned int alignment_power;
4518
4519 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4520 {
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->dynindx >= old_dynsymcount)
4525 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4526
4527 /* Preserve the maximum alignment and size for common
4528 symbols even if this dynamic lib isn't on DT_NEEDED
4529 since it can still be loaded at the run-time by another
4530 dynamic lib. */
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 size = h->root.u.c.size;
4534 alignment_power = h->root.u.c.p->alignment_power;
4535 }
4536 else
4537 {
4538 size = 0;
4539 alignment_power = 0;
4540 }
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4545 {
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4548 }
4549 else if (h->root.type == bfd_link_hash_common)
4550 {
4551 if (size > h->root.u.c.size)
4552 h->root.u.c.size = size;
4553 if (alignment_power > h->root.u.c.p->alignment_power)
4554 h->root.u.c.p->alignment_power = alignment_power;
4555 }
4556 }
4557 }
4558
4559 /* Make a special call to the linker "notice" function to
4560 tell it that symbols added for crefs may need to be removed. */
4561 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4562 notice_not_needed, 0, NULL))
4563 goto error_free_vers;
4564
4565 free (old_tab);
4566 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4567 alloc_mark);
4568 if (nondeflt_vers != NULL)
4569 free (nondeflt_vers);
4570 return TRUE;
4571 }
4572
4573 if (old_tab != NULL)
4574 {
4575 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4576 notice_needed, 0, NULL))
4577 goto error_free_vers;
4578 free (old_tab);
4579 old_tab = NULL;
4580 }
4581
4582 /* Now that all the symbols from this input file are created, handle
4583 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4584 if (nondeflt_vers != NULL)
4585 {
4586 bfd_size_type cnt, symidx;
4587
4588 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4589 {
4590 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4591 char *shortname, *p;
4592
4593 p = strchr (h->root.root.string, ELF_VER_CHR);
4594 if (p == NULL
4595 || (h->root.type != bfd_link_hash_defined
4596 && h->root.type != bfd_link_hash_defweak))
4597 continue;
4598
4599 amt = p - h->root.root.string;
4600 shortname = (char *) bfd_malloc (amt + 1);
4601 if (!shortname)
4602 goto error_free_vers;
4603 memcpy (shortname, h->root.root.string, amt);
4604 shortname[amt] = '\0';
4605
4606 hi = (struct elf_link_hash_entry *)
4607 bfd_link_hash_lookup (&htab->root, shortname,
4608 FALSE, FALSE, FALSE);
4609 if (hi != NULL
4610 && hi->root.type == h->root.type
4611 && hi->root.u.def.value == h->root.u.def.value
4612 && hi->root.u.def.section == h->root.u.def.section)
4613 {
4614 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4615 hi->root.type = bfd_link_hash_indirect;
4616 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4617 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4618 sym_hash = elf_sym_hashes (abfd);
4619 if (sym_hash)
4620 for (symidx = 0; symidx < extsymcount; ++symidx)
4621 if (sym_hash[symidx] == hi)
4622 {
4623 sym_hash[symidx] = h;
4624 break;
4625 }
4626 }
4627 free (shortname);
4628 }
4629 free (nondeflt_vers);
4630 nondeflt_vers = NULL;
4631 }
4632
4633 /* Now set the weakdefs field correctly for all the weak defined
4634 symbols we found. The only way to do this is to search all the
4635 symbols. Since we only need the information for non functions in
4636 dynamic objects, that's the only time we actually put anything on
4637 the list WEAKS. We need this information so that if a regular
4638 object refers to a symbol defined weakly in a dynamic object, the
4639 real symbol in the dynamic object is also put in the dynamic
4640 symbols; we also must arrange for both symbols to point to the
4641 same memory location. We could handle the general case of symbol
4642 aliasing, but a general symbol alias can only be generated in
4643 assembler code, handling it correctly would be very time
4644 consuming, and other ELF linkers don't handle general aliasing
4645 either. */
4646 if (weaks != NULL)
4647 {
4648 struct elf_link_hash_entry **hpp;
4649 struct elf_link_hash_entry **hppend;
4650 struct elf_link_hash_entry **sorted_sym_hash;
4651 struct elf_link_hash_entry *h;
4652 size_t sym_count;
4653
4654 /* Since we have to search the whole symbol list for each weak
4655 defined symbol, search time for N weak defined symbols will be
4656 O(N^2). Binary search will cut it down to O(NlogN). */
4657 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4658 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4659 if (sorted_sym_hash == NULL)
4660 goto error_return;
4661 sym_hash = sorted_sym_hash;
4662 hpp = elf_sym_hashes (abfd);
4663 hppend = hpp + extsymcount;
4664 sym_count = 0;
4665 for (; hpp < hppend; hpp++)
4666 {
4667 h = *hpp;
4668 if (h != NULL
4669 && h->root.type == bfd_link_hash_defined
4670 && !bed->is_function_type (h->type))
4671 {
4672 *sym_hash = h;
4673 sym_hash++;
4674 sym_count++;
4675 }
4676 }
4677
4678 qsort (sorted_sym_hash, sym_count,
4679 sizeof (struct elf_link_hash_entry *),
4680 elf_sort_symbol);
4681
4682 while (weaks != NULL)
4683 {
4684 struct elf_link_hash_entry *hlook;
4685 asection *slook;
4686 bfd_vma vlook;
4687 long ilook;
4688 size_t i, j, idx;
4689
4690 hlook = weaks;
4691 weaks = hlook->u.weakdef;
4692 hlook->u.weakdef = NULL;
4693
4694 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4695 || hlook->root.type == bfd_link_hash_defweak
4696 || hlook->root.type == bfd_link_hash_common
4697 || hlook->root.type == bfd_link_hash_indirect);
4698 slook = hlook->root.u.def.section;
4699 vlook = hlook->root.u.def.value;
4700
4701 ilook = -1;
4702 i = 0;
4703 j = sym_count;
4704 while (i < j)
4705 {
4706 bfd_signed_vma vdiff;
4707 idx = (i + j) / 2;
4708 h = sorted_sym_hash [idx];
4709 vdiff = vlook - h->root.u.def.value;
4710 if (vdiff < 0)
4711 j = idx;
4712 else if (vdiff > 0)
4713 i = idx + 1;
4714 else
4715 {
4716 long sdiff = slook->id - h->root.u.def.section->id;
4717 if (sdiff < 0)
4718 j = idx;
4719 else if (sdiff > 0)
4720 i = idx + 1;
4721 else
4722 {
4723 ilook = idx;
4724 break;
4725 }
4726 }
4727 }
4728
4729 /* We didn't find a value/section match. */
4730 if (ilook == -1)
4731 continue;
4732
4733 for (i = ilook; i < sym_count; i++)
4734 {
4735 h = sorted_sym_hash [i];
4736
4737 /* Stop if value or section doesn't match. */
4738 if (h->root.u.def.value != vlook
4739 || h->root.u.def.section != slook)
4740 break;
4741 else if (h != hlook)
4742 {
4743 hlook->u.weakdef = h;
4744
4745 /* If the weak definition is in the list of dynamic
4746 symbols, make sure the real definition is put
4747 there as well. */
4748 if (hlook->dynindx != -1 && h->dynindx == -1)
4749 {
4750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4751 {
4752 err_free_sym_hash:
4753 free (sorted_sym_hash);
4754 goto error_return;
4755 }
4756 }
4757
4758 /* If the real definition is in the list of dynamic
4759 symbols, make sure the weak definition is put
4760 there as well. If we don't do this, then the
4761 dynamic loader might not merge the entries for the
4762 real definition and the weak definition. */
4763 if (h->dynindx != -1 && hlook->dynindx == -1)
4764 {
4765 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4766 goto err_free_sym_hash;
4767 }
4768 break;
4769 }
4770 }
4771 }
4772
4773 free (sorted_sym_hash);
4774 }
4775
4776 if (bed->check_directives
4777 && !(*bed->check_directives) (abfd, info))
4778 return FALSE;
4779
4780 /* If this object is the same format as the output object, and it is
4781 not a shared library, then let the backend look through the
4782 relocs.
4783
4784 This is required to build global offset table entries and to
4785 arrange for dynamic relocs. It is not required for the
4786 particular common case of linking non PIC code, even when linking
4787 against shared libraries, but unfortunately there is no way of
4788 knowing whether an object file has been compiled PIC or not.
4789 Looking through the relocs is not particularly time consuming.
4790 The problem is that we must either (1) keep the relocs in memory,
4791 which causes the linker to require additional runtime memory or
4792 (2) read the relocs twice from the input file, which wastes time.
4793 This would be a good case for using mmap.
4794
4795 I have no idea how to handle linking PIC code into a file of a
4796 different format. It probably can't be done. */
4797 if (! dynamic
4798 && is_elf_hash_table (htab)
4799 && bed->check_relocs != NULL
4800 && elf_object_id (abfd) == elf_hash_table_id (htab)
4801 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4802 {
4803 asection *o;
4804
4805 for (o = abfd->sections; o != NULL; o = o->next)
4806 {
4807 Elf_Internal_Rela *internal_relocs;
4808 bfd_boolean ok;
4809
4810 if ((o->flags & SEC_RELOC) == 0
4811 || o->reloc_count == 0
4812 || ((info->strip == strip_all || info->strip == strip_debugger)
4813 && (o->flags & SEC_DEBUGGING) != 0)
4814 || bfd_is_abs_section (o->output_section))
4815 continue;
4816
4817 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4818 info->keep_memory);
4819 if (internal_relocs == NULL)
4820 goto error_return;
4821
4822 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4823
4824 if (elf_section_data (o)->relocs != internal_relocs)
4825 free (internal_relocs);
4826
4827 if (! ok)
4828 goto error_return;
4829 }
4830 }
4831
4832 /* If this is a non-traditional link, try to optimize the handling
4833 of the .stab/.stabstr sections. */
4834 if (! dynamic
4835 && ! info->traditional_format
4836 && is_elf_hash_table (htab)
4837 && (info->strip != strip_all && info->strip != strip_debugger))
4838 {
4839 asection *stabstr;
4840
4841 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4842 if (stabstr != NULL)
4843 {
4844 bfd_size_type string_offset = 0;
4845 asection *stab;
4846
4847 for (stab = abfd->sections; stab; stab = stab->next)
4848 if (CONST_STRNEQ (stab->name, ".stab")
4849 && (!stab->name[5] ||
4850 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4851 && (stab->flags & SEC_MERGE) == 0
4852 && !bfd_is_abs_section (stab->output_section))
4853 {
4854 struct bfd_elf_section_data *secdata;
4855
4856 secdata = elf_section_data (stab);
4857 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4858 stabstr, &secdata->sec_info,
4859 &string_offset))
4860 goto error_return;
4861 if (secdata->sec_info)
4862 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4863 }
4864 }
4865 }
4866
4867 if (is_elf_hash_table (htab) && add_needed)
4868 {
4869 /* Add this bfd to the loaded list. */
4870 struct elf_link_loaded_list *n;
4871
4872 n = (struct elf_link_loaded_list *)
4873 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4874 if (n == NULL)
4875 goto error_return;
4876 n->abfd = abfd;
4877 n->next = htab->loaded;
4878 htab->loaded = n;
4879 }
4880
4881 return TRUE;
4882
4883 error_free_vers:
4884 if (old_tab != NULL)
4885 free (old_tab);
4886 if (nondeflt_vers != NULL)
4887 free (nondeflt_vers);
4888 if (extversym != NULL)
4889 free (extversym);
4890 error_free_sym:
4891 if (isymbuf != NULL)
4892 free (isymbuf);
4893 error_return:
4894 return FALSE;
4895 }
4896
4897 /* Return the linker hash table entry of a symbol that might be
4898 satisfied by an archive symbol. Return -1 on error. */
4899
4900 struct elf_link_hash_entry *
4901 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4902 struct bfd_link_info *info,
4903 const char *name)
4904 {
4905 struct elf_link_hash_entry *h;
4906 char *p, *copy;
4907 size_t len, first;
4908
4909 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4910 if (h != NULL)
4911 return h;
4912
4913 /* If this is a default version (the name contains @@), look up the
4914 symbol again with only one `@' as well as without the version.
4915 The effect is that references to the symbol with and without the
4916 version will be matched by the default symbol in the archive. */
4917
4918 p = strchr (name, ELF_VER_CHR);
4919 if (p == NULL || p[1] != ELF_VER_CHR)
4920 return h;
4921
4922 /* First check with only one `@'. */
4923 len = strlen (name);
4924 copy = (char *) bfd_alloc (abfd, len);
4925 if (copy == NULL)
4926 return (struct elf_link_hash_entry *) 0 - 1;
4927
4928 first = p - name + 1;
4929 memcpy (copy, name, first);
4930 memcpy (copy + first, name + first + 1, len - first);
4931
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4933 if (h == NULL)
4934 {
4935 /* We also need to check references to the symbol without the
4936 version. */
4937 copy[first - 1] = '\0';
4938 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4939 FALSE, FALSE, TRUE);
4940 }
4941
4942 bfd_release (abfd, copy);
4943 return h;
4944 }
4945
4946 /* Add symbols from an ELF archive file to the linker hash table. We
4947 don't use _bfd_generic_link_add_archive_symbols because of a
4948 problem which arises on UnixWare. The UnixWare libc.so is an
4949 archive which includes an entry libc.so.1 which defines a bunch of
4950 symbols. The libc.so archive also includes a number of other
4951 object files, which also define symbols, some of which are the same
4952 as those defined in libc.so.1. Correct linking requires that we
4953 consider each object file in turn, and include it if it defines any
4954 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4955 this; it looks through the list of undefined symbols, and includes
4956 any object file which defines them. When this algorithm is used on
4957 UnixWare, it winds up pulling in libc.so.1 early and defining a
4958 bunch of symbols. This means that some of the other objects in the
4959 archive are not included in the link, which is incorrect since they
4960 precede libc.so.1 in the archive.
4961
4962 Fortunately, ELF archive handling is simpler than that done by
4963 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4964 oddities. In ELF, if we find a symbol in the archive map, and the
4965 symbol is currently undefined, we know that we must pull in that
4966 object file.
4967
4968 Unfortunately, we do have to make multiple passes over the symbol
4969 table until nothing further is resolved. */
4970
4971 static bfd_boolean
4972 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4973 {
4974 symindex c;
4975 bfd_boolean *defined = NULL;
4976 bfd_boolean *included = NULL;
4977 carsym *symdefs;
4978 bfd_boolean loop;
4979 bfd_size_type amt;
4980 const struct elf_backend_data *bed;
4981 struct elf_link_hash_entry * (*archive_symbol_lookup)
4982 (bfd *, struct bfd_link_info *, const char *);
4983
4984 if (! bfd_has_map (abfd))
4985 {
4986 /* An empty archive is a special case. */
4987 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4988 return TRUE;
4989 bfd_set_error (bfd_error_no_armap);
4990 return FALSE;
4991 }
4992
4993 /* Keep track of all symbols we know to be already defined, and all
4994 files we know to be already included. This is to speed up the
4995 second and subsequent passes. */
4996 c = bfd_ardata (abfd)->symdef_count;
4997 if (c == 0)
4998 return TRUE;
4999 amt = c;
5000 amt *= sizeof (bfd_boolean);
5001 defined = (bfd_boolean *) bfd_zmalloc (amt);
5002 included = (bfd_boolean *) bfd_zmalloc (amt);
5003 if (defined == NULL || included == NULL)
5004 goto error_return;
5005
5006 symdefs = bfd_ardata (abfd)->symdefs;
5007 bed = get_elf_backend_data (abfd);
5008 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5009
5010 do
5011 {
5012 file_ptr last;
5013 symindex i;
5014 carsym *symdef;
5015 carsym *symdefend;
5016
5017 loop = FALSE;
5018 last = -1;
5019
5020 symdef = symdefs;
5021 symdefend = symdef + c;
5022 for (i = 0; symdef < symdefend; symdef++, i++)
5023 {
5024 struct elf_link_hash_entry *h;
5025 bfd *element;
5026 struct bfd_link_hash_entry *undefs_tail;
5027 symindex mark;
5028
5029 if (defined[i] || included[i])
5030 continue;
5031 if (symdef->file_offset == last)
5032 {
5033 included[i] = TRUE;
5034 continue;
5035 }
5036
5037 h = archive_symbol_lookup (abfd, info, symdef->name);
5038 if (h == (struct elf_link_hash_entry *) 0 - 1)
5039 goto error_return;
5040
5041 if (h == NULL)
5042 continue;
5043
5044 if (h->root.type == bfd_link_hash_common)
5045 {
5046 /* We currently have a common symbol. The archive map contains
5047 a reference to this symbol, so we may want to include it. We
5048 only want to include it however, if this archive element
5049 contains a definition of the symbol, not just another common
5050 declaration of it.
5051
5052 Unfortunately some archivers (including GNU ar) will put
5053 declarations of common symbols into their archive maps, as
5054 well as real definitions, so we cannot just go by the archive
5055 map alone. Instead we must read in the element's symbol
5056 table and check that to see what kind of symbol definition
5057 this is. */
5058 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5059 continue;
5060 }
5061 else if (h->root.type != bfd_link_hash_undefined)
5062 {
5063 if (h->root.type != bfd_link_hash_undefweak)
5064 defined[i] = TRUE;
5065 continue;
5066 }
5067
5068 /* We need to include this archive member. */
5069 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5070 if (element == NULL)
5071 goto error_return;
5072
5073 if (! bfd_check_format (element, bfd_object))
5074 goto error_return;
5075
5076 /* Doublecheck that we have not included this object
5077 already--it should be impossible, but there may be
5078 something wrong with the archive. */
5079 if (element->archive_pass != 0)
5080 {
5081 bfd_set_error (bfd_error_bad_value);
5082 goto error_return;
5083 }
5084 element->archive_pass = 1;
5085
5086 undefs_tail = info->hash->undefs_tail;
5087
5088 if (!(*info->callbacks
5089 ->add_archive_element) (info, element, symdef->name, &element))
5090 goto error_return;
5091 if (!bfd_link_add_symbols (element, info))
5092 goto error_return;
5093
5094 /* If there are any new undefined symbols, we need to make
5095 another pass through the archive in order to see whether
5096 they can be defined. FIXME: This isn't perfect, because
5097 common symbols wind up on undefs_tail and because an
5098 undefined symbol which is defined later on in this pass
5099 does not require another pass. This isn't a bug, but it
5100 does make the code less efficient than it could be. */
5101 if (undefs_tail != info->hash->undefs_tail)
5102 loop = TRUE;
5103
5104 /* Look backward to mark all symbols from this object file
5105 which we have already seen in this pass. */
5106 mark = i;
5107 do
5108 {
5109 included[mark] = TRUE;
5110 if (mark == 0)
5111 break;
5112 --mark;
5113 }
5114 while (symdefs[mark].file_offset == symdef->file_offset);
5115
5116 /* We mark subsequent symbols from this object file as we go
5117 on through the loop. */
5118 last = symdef->file_offset;
5119 }
5120 }
5121 while (loop);
5122
5123 free (defined);
5124 free (included);
5125
5126 return TRUE;
5127
5128 error_return:
5129 if (defined != NULL)
5130 free (defined);
5131 if (included != NULL)
5132 free (included);
5133 return FALSE;
5134 }
5135
5136 /* Given an ELF BFD, add symbols to the global hash table as
5137 appropriate. */
5138
5139 bfd_boolean
5140 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5141 {
5142 switch (bfd_get_format (abfd))
5143 {
5144 case bfd_object:
5145 return elf_link_add_object_symbols (abfd, info);
5146 case bfd_archive:
5147 return elf_link_add_archive_symbols (abfd, info);
5148 default:
5149 bfd_set_error (bfd_error_wrong_format);
5150 return FALSE;
5151 }
5152 }
5153 \f
5154 struct hash_codes_info
5155 {
5156 unsigned long *hashcodes;
5157 bfd_boolean error;
5158 };
5159
5160 /* This function will be called though elf_link_hash_traverse to store
5161 all hash value of the exported symbols in an array. */
5162
5163 static bfd_boolean
5164 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5165 {
5166 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5167 const char *name;
5168 char *p;
5169 unsigned long ha;
5170 char *alc = NULL;
5171
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h->dynindx == -1)
5174 return TRUE;
5175
5176 name = h->root.root.string;
5177 p = strchr (name, ELF_VER_CHR);
5178 if (p != NULL)
5179 {
5180 alc = (char *) bfd_malloc (p - name + 1);
5181 if (alc == NULL)
5182 {
5183 inf->error = TRUE;
5184 return FALSE;
5185 }
5186 memcpy (alc, name, p - name);
5187 alc[p - name] = '\0';
5188 name = alc;
5189 }
5190
5191 /* Compute the hash value. */
5192 ha = bfd_elf_hash (name);
5193
5194 /* Store the found hash value in the array given as the argument. */
5195 *(inf->hashcodes)++ = ha;
5196
5197 /* And store it in the struct so that we can put it in the hash table
5198 later. */
5199 h->u.elf_hash_value = ha;
5200
5201 if (alc != NULL)
5202 free (alc);
5203
5204 return TRUE;
5205 }
5206
5207 struct collect_gnu_hash_codes
5208 {
5209 bfd *output_bfd;
5210 const struct elf_backend_data *bed;
5211 unsigned long int nsyms;
5212 unsigned long int maskbits;
5213 unsigned long int *hashcodes;
5214 unsigned long int *hashval;
5215 unsigned long int *indx;
5216 unsigned long int *counts;
5217 bfd_vma *bitmask;
5218 bfd_byte *contents;
5219 long int min_dynindx;
5220 unsigned long int bucketcount;
5221 unsigned long int symindx;
5222 long int local_indx;
5223 long int shift1, shift2;
5224 unsigned long int mask;
5225 bfd_boolean error;
5226 };
5227
5228 /* This function will be called though elf_link_hash_traverse to store
5229 all hash value of the exported symbols in an array. */
5230
5231 static bfd_boolean
5232 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5233 {
5234 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5235 const char *name;
5236 char *p;
5237 unsigned long ha;
5238 char *alc = NULL;
5239
5240 /* Ignore indirect symbols. These are added by the versioning code. */
5241 if (h->dynindx == -1)
5242 return TRUE;
5243
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5246 return TRUE;
5247
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5250 if (p != NULL)
5251 {
5252 alc = (char *) bfd_malloc (p - name + 1);
5253 if (alc == NULL)
5254 {
5255 s->error = TRUE;
5256 return FALSE;
5257 }
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5260 name = alc;
5261 }
5262
5263 /* Compute the hash value. */
5264 ha = bfd_elf_gnu_hash (name);
5265
5266 /* Store the found hash value in the array for compute_bucket_count,
5267 and also for .dynsym reordering purposes. */
5268 s->hashcodes[s->nsyms] = ha;
5269 s->hashval[h->dynindx] = ha;
5270 ++s->nsyms;
5271 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5272 s->min_dynindx = h->dynindx;
5273
5274 if (alc != NULL)
5275 free (alc);
5276
5277 return TRUE;
5278 }
5279
5280 /* This function will be called though elf_link_hash_traverse to do
5281 final dynaminc symbol renumbering. */
5282
5283 static bfd_boolean
5284 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 unsigned long int bucket;
5288 unsigned long int val;
5289
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5292 return TRUE;
5293
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5296 {
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5299 return TRUE;
5300 }
5301
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5306 s->bitmask[val]
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5311 val |= 1;
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5316 return TRUE;
5317 }
5318
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5320
5321 bfd_boolean
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5323 {
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5330 }
5331
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5337
5338 static const size_t elf_buckets[] =
5339 {
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 16411, 32771, 0
5342 };
5343
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5352 static size_t
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5356 int gnu_hash)
5357 {
5358 size_t best_size = 0;
5359 unsigned long int i;
5360
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5365 if (info->optimize)
5366 {
5367 size_t minsize;
5368 size_t maxsize;
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5374 bfd_size_type amt;
5375 unsigned int no_improvement_count = 0;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 no_improvement_count = 0;
5461 }
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5465 break;
5466 }
5467
5468 free (counts);
5469 }
5470 else
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5472 {
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5477 {
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5480 break;
5481 }
5482 if (gnu_hash && best_size < 2)
5483 best_size = 2;
5484 }
5485
5486 return best_size;
5487 }
5488
5489 /* Size any SHT_GROUP section for ld -r. */
5490
5491 bfd_boolean
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5493 {
5494 bfd *ibfd;
5495
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 return FALSE;
5500 return TRUE;
5501 }
5502
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5507
5508 bfd_boolean
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5510 const char *soname,
5511 const char *rpath,
5512 const char *filter_shlib,
5513 const char *audit,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr)
5518 {
5519 bfd_size_type soname_indx;
5520 bfd *dynobj;
5521 const struct elf_backend_data *bed;
5522 struct elf_info_failed asvinfo;
5523
5524 *sinterpptr = NULL;
5525
5526 soname_indx = (bfd_size_type) -1;
5527
5528 if (!is_elf_hash_table (info->hash))
5529 return TRUE;
5530
5531 bed = get_elf_backend_data (output_bfd);
5532 if (info->execstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5534 else if (info->noexecstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5536 else
5537 {
5538 bfd *inputobj;
5539 asection *notesec = NULL;
5540 int exec = 0;
5541
5542 for (inputobj = info->input_bfds;
5543 inputobj;
5544 inputobj = inputobj->link_next)
5545 {
5546 asection *s;
5547
5548 if (inputobj->flags
5549 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5550 continue;
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5552 if (s)
5553 {
5554 if (s->flags & SEC_CODE)
5555 exec = PF_X;
5556 notesec = s;
5557 }
5558 else if (bed->default_execstack)
5559 exec = PF_X;
5560 }
5561 if (notesec)
5562 {
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5567 }
5568 }
5569
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5576
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5579 return FALSE;
5580
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5585 return FALSE;
5586
5587 dynobj = elf_hash_table (info)->dynobj;
5588
5589 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5590 {
5591 struct elf_info_failed eif;
5592 struct elf_link_hash_entry *h;
5593 asection *dynstr;
5594 struct bfd_elf_version_tree *t;
5595 struct bfd_elf_version_expr *d;
5596 asection *s;
5597 bfd_boolean all_defined;
5598
5599 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5600 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5601
5602 if (soname != NULL)
5603 {
5604 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5605 soname, TRUE);
5606 if (soname_indx == (bfd_size_type) -1
5607 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5608 return FALSE;
5609 }
5610
5611 if (info->symbolic)
5612 {
5613 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5614 return FALSE;
5615 info->flags |= DF_SYMBOLIC;
5616 }
5617
5618 if (rpath != NULL)
5619 {
5620 bfd_size_type indx;
5621
5622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5623 TRUE);
5624 if (indx == (bfd_size_type) -1
5625 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5626 return FALSE;
5627
5628 if (info->new_dtags)
5629 {
5630 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5631 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5632 return FALSE;
5633 }
5634 }
5635
5636 if (filter_shlib != NULL)
5637 {
5638 bfd_size_type indx;
5639
5640 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5641 filter_shlib, TRUE);
5642 if (indx == (bfd_size_type) -1
5643 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5644 return FALSE;
5645 }
5646
5647 if (auxiliary_filters != NULL)
5648 {
5649 const char * const *p;
5650
5651 for (p = auxiliary_filters; *p != NULL; p++)
5652 {
5653 bfd_size_type indx;
5654
5655 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5656 *p, TRUE);
5657 if (indx == (bfd_size_type) -1
5658 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5659 return FALSE;
5660 }
5661 }
5662
5663 if (audit != NULL)
5664 {
5665 bfd_size_type indx;
5666
5667 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5668 TRUE);
5669 if (indx == (bfd_size_type) -1
5670 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5671 return FALSE;
5672 }
5673
5674 if (depaudit != NULL)
5675 {
5676 bfd_size_type indx;
5677
5678 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5679 TRUE);
5680 if (indx == (bfd_size_type) -1
5681 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5682 return FALSE;
5683 }
5684
5685 eif.info = info;
5686 eif.failed = FALSE;
5687
5688 /* If we are supposed to export all symbols into the dynamic symbol
5689 table (this is not the normal case), then do so. */
5690 if (info->export_dynamic
5691 || (info->executable && info->dynamic))
5692 {
5693 elf_link_hash_traverse (elf_hash_table (info),
5694 _bfd_elf_export_symbol,
5695 &eif);
5696 if (eif.failed)
5697 return FALSE;
5698 }
5699
5700 /* Make all global versions with definition. */
5701 for (t = info->version_info; t != NULL; t = t->next)
5702 for (d = t->globals.list; d != NULL; d = d->next)
5703 if (!d->symver && d->literal)
5704 {
5705 const char *verstr, *name;
5706 size_t namelen, verlen, newlen;
5707 char *newname, *p, leading_char;
5708 struct elf_link_hash_entry *newh;
5709
5710 leading_char = bfd_get_symbol_leading_char (output_bfd);
5711 name = d->pattern;
5712 namelen = strlen (name) + (leading_char != '\0');
5713 verstr = t->name;
5714 verlen = strlen (verstr);
5715 newlen = namelen + verlen + 3;
5716
5717 newname = (char *) bfd_malloc (newlen);
5718 if (newname == NULL)
5719 return FALSE;
5720 newname[0] = leading_char;
5721 memcpy (newname + (leading_char != '\0'), name, namelen);
5722
5723 /* Check the hidden versioned definition. */
5724 p = newname + namelen;
5725 *p++ = ELF_VER_CHR;
5726 memcpy (p, verstr, verlen + 1);
5727 newh = elf_link_hash_lookup (elf_hash_table (info),
5728 newname, FALSE, FALSE,
5729 FALSE);
5730 if (newh == NULL
5731 || (newh->root.type != bfd_link_hash_defined
5732 && newh->root.type != bfd_link_hash_defweak))
5733 {
5734 /* Check the default versioned definition. */
5735 *p++ = ELF_VER_CHR;
5736 memcpy (p, verstr, verlen + 1);
5737 newh = elf_link_hash_lookup (elf_hash_table (info),
5738 newname, FALSE, FALSE,
5739 FALSE);
5740 }
5741 free (newname);
5742
5743 /* Mark this version if there is a definition and it is
5744 not defined in a shared object. */
5745 if (newh != NULL
5746 && !newh->def_dynamic
5747 && (newh->root.type == bfd_link_hash_defined
5748 || newh->root.type == bfd_link_hash_defweak))
5749 d->symver = 1;
5750 }
5751
5752 /* Attach all the symbols to their version information. */
5753 asvinfo.info = info;
5754 asvinfo.failed = FALSE;
5755
5756 elf_link_hash_traverse (elf_hash_table (info),
5757 _bfd_elf_link_assign_sym_version,
5758 &asvinfo);
5759 if (asvinfo.failed)
5760 return FALSE;
5761
5762 if (!info->allow_undefined_version)
5763 {
5764 /* Check if all global versions have a definition. */
5765 all_defined = TRUE;
5766 for (t = info->version_info; t != NULL; t = t->next)
5767 for (d = t->globals.list; d != NULL; d = d->next)
5768 if (d->literal && !d->symver && !d->script)
5769 {
5770 (*_bfd_error_handler)
5771 (_("%s: undefined version: %s"),
5772 d->pattern, t->name);
5773 all_defined = FALSE;
5774 }
5775
5776 if (!all_defined)
5777 {
5778 bfd_set_error (bfd_error_bad_value);
5779 return FALSE;
5780 }
5781 }
5782
5783 /* Find all symbols which were defined in a dynamic object and make
5784 the backend pick a reasonable value for them. */
5785 elf_link_hash_traverse (elf_hash_table (info),
5786 _bfd_elf_adjust_dynamic_symbol,
5787 &eif);
5788 if (eif.failed)
5789 return FALSE;
5790
5791 /* Add some entries to the .dynamic section. We fill in some of the
5792 values later, in bfd_elf_final_link, but we must add the entries
5793 now so that we know the final size of the .dynamic section. */
5794
5795 /* If there are initialization and/or finalization functions to
5796 call then add the corresponding DT_INIT/DT_FINI entries. */
5797 h = (info->init_function
5798 ? elf_link_hash_lookup (elf_hash_table (info),
5799 info->init_function, FALSE,
5800 FALSE, FALSE)
5801 : NULL);
5802 if (h != NULL
5803 && (h->ref_regular
5804 || h->def_regular))
5805 {
5806 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5807 return FALSE;
5808 }
5809 h = (info->fini_function
5810 ? elf_link_hash_lookup (elf_hash_table (info),
5811 info->fini_function, FALSE,
5812 FALSE, FALSE)
5813 : NULL);
5814 if (h != NULL
5815 && (h->ref_regular
5816 || h->def_regular))
5817 {
5818 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5819 return FALSE;
5820 }
5821
5822 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5823 if (s != NULL && s->linker_has_input)
5824 {
5825 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5826 if (! info->executable)
5827 {
5828 bfd *sub;
5829 asection *o;
5830
5831 for (sub = info->input_bfds; sub != NULL;
5832 sub = sub->link_next)
5833 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5834 for (o = sub->sections; o != NULL; o = o->next)
5835 if (elf_section_data (o)->this_hdr.sh_type
5836 == SHT_PREINIT_ARRAY)
5837 {
5838 (*_bfd_error_handler)
5839 (_("%B: .preinit_array section is not allowed in DSO"),
5840 sub);
5841 break;
5842 }
5843
5844 bfd_set_error (bfd_error_nonrepresentable_section);
5845 return FALSE;
5846 }
5847
5848 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5849 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5850 return FALSE;
5851 }
5852 s = bfd_get_section_by_name (output_bfd, ".init_array");
5853 if (s != NULL && s->linker_has_input)
5854 {
5855 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5856 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5857 return FALSE;
5858 }
5859 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5860 if (s != NULL && s->linker_has_input)
5861 {
5862 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5863 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5864 return FALSE;
5865 }
5866
5867 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5868 /* If .dynstr is excluded from the link, we don't want any of
5869 these tags. Strictly, we should be checking each section
5870 individually; This quick check covers for the case where
5871 someone does a /DISCARD/ : { *(*) }. */
5872 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5873 {
5874 bfd_size_type strsize;
5875
5876 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5877 if ((info->emit_hash
5878 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5879 || (info->emit_gnu_hash
5880 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5881 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5882 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5883 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5884 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5885 bed->s->sizeof_sym))
5886 return FALSE;
5887 }
5888 }
5889
5890 /* The backend must work out the sizes of all the other dynamic
5891 sections. */
5892 if (dynobj != NULL
5893 && bed->elf_backend_size_dynamic_sections != NULL
5894 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5895 return FALSE;
5896
5897 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5898 return FALSE;
5899
5900 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5901 {
5902 unsigned long section_sym_count;
5903 struct bfd_elf_version_tree *verdefs;
5904 asection *s;
5905
5906 /* Set up the version definition section. */
5907 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5908 BFD_ASSERT (s != NULL);
5909
5910 /* We may have created additional version definitions if we are
5911 just linking a regular application. */
5912 verdefs = info->version_info;
5913
5914 /* Skip anonymous version tag. */
5915 if (verdefs != NULL && verdefs->vernum == 0)
5916 verdefs = verdefs->next;
5917
5918 if (verdefs == NULL && !info->create_default_symver)
5919 s->flags |= SEC_EXCLUDE;
5920 else
5921 {
5922 unsigned int cdefs;
5923 bfd_size_type size;
5924 struct bfd_elf_version_tree *t;
5925 bfd_byte *p;
5926 Elf_Internal_Verdef def;
5927 Elf_Internal_Verdaux defaux;
5928 struct bfd_link_hash_entry *bh;
5929 struct elf_link_hash_entry *h;
5930 const char *name;
5931
5932 cdefs = 0;
5933 size = 0;
5934
5935 /* Make space for the base version. */
5936 size += sizeof (Elf_External_Verdef);
5937 size += sizeof (Elf_External_Verdaux);
5938 ++cdefs;
5939
5940 /* Make space for the default version. */
5941 if (info->create_default_symver)
5942 {
5943 size += sizeof (Elf_External_Verdef);
5944 ++cdefs;
5945 }
5946
5947 for (t = verdefs; t != NULL; t = t->next)
5948 {
5949 struct bfd_elf_version_deps *n;
5950
5951 /* Don't emit base version twice. */
5952 if (t->vernum == 0)
5953 continue;
5954
5955 size += sizeof (Elf_External_Verdef);
5956 size += sizeof (Elf_External_Verdaux);
5957 ++cdefs;
5958
5959 for (n = t->deps; n != NULL; n = n->next)
5960 size += sizeof (Elf_External_Verdaux);
5961 }
5962
5963 s->size = size;
5964 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5965 if (s->contents == NULL && s->size != 0)
5966 return FALSE;
5967
5968 /* Fill in the version definition section. */
5969
5970 p = s->contents;
5971
5972 def.vd_version = VER_DEF_CURRENT;
5973 def.vd_flags = VER_FLG_BASE;
5974 def.vd_ndx = 1;
5975 def.vd_cnt = 1;
5976 if (info->create_default_symver)
5977 {
5978 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5979 def.vd_next = sizeof (Elf_External_Verdef);
5980 }
5981 else
5982 {
5983 def.vd_aux = sizeof (Elf_External_Verdef);
5984 def.vd_next = (sizeof (Elf_External_Verdef)
5985 + sizeof (Elf_External_Verdaux));
5986 }
5987
5988 if (soname_indx != (bfd_size_type) -1)
5989 {
5990 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5991 soname_indx);
5992 def.vd_hash = bfd_elf_hash (soname);
5993 defaux.vda_name = soname_indx;
5994 name = soname;
5995 }
5996 else
5997 {
5998 bfd_size_type indx;
5999
6000 name = lbasename (output_bfd->filename);
6001 def.vd_hash = bfd_elf_hash (name);
6002 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6003 name, FALSE);
6004 if (indx == (bfd_size_type) -1)
6005 return FALSE;
6006 defaux.vda_name = indx;
6007 }
6008 defaux.vda_next = 0;
6009
6010 _bfd_elf_swap_verdef_out (output_bfd, &def,
6011 (Elf_External_Verdef *) p);
6012 p += sizeof (Elf_External_Verdef);
6013 if (info->create_default_symver)
6014 {
6015 /* Add a symbol representing this version. */
6016 bh = NULL;
6017 if (! (_bfd_generic_link_add_one_symbol
6018 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6019 0, NULL, FALSE,
6020 get_elf_backend_data (dynobj)->collect, &bh)))
6021 return FALSE;
6022 h = (struct elf_link_hash_entry *) bh;
6023 h->non_elf = 0;
6024 h->def_regular = 1;
6025 h->type = STT_OBJECT;
6026 h->verinfo.vertree = NULL;
6027
6028 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6029 return FALSE;
6030
6031 /* Create a duplicate of the base version with the same
6032 aux block, but different flags. */
6033 def.vd_flags = 0;
6034 def.vd_ndx = 2;
6035 def.vd_aux = sizeof (Elf_External_Verdef);
6036 if (verdefs)
6037 def.vd_next = (sizeof (Elf_External_Verdef)
6038 + sizeof (Elf_External_Verdaux));
6039 else
6040 def.vd_next = 0;
6041 _bfd_elf_swap_verdef_out (output_bfd, &def,
6042 (Elf_External_Verdef *) p);
6043 p += sizeof (Elf_External_Verdef);
6044 }
6045 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6046 (Elf_External_Verdaux *) p);
6047 p += sizeof (Elf_External_Verdaux);
6048
6049 for (t = verdefs; t != NULL; t = t->next)
6050 {
6051 unsigned int cdeps;
6052 struct bfd_elf_version_deps *n;
6053
6054 /* Don't emit the base version twice. */
6055 if (t->vernum == 0)
6056 continue;
6057
6058 cdeps = 0;
6059 for (n = t->deps; n != NULL; n = n->next)
6060 ++cdeps;
6061
6062 /* Add a symbol representing this version. */
6063 bh = NULL;
6064 if (! (_bfd_generic_link_add_one_symbol
6065 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6066 0, NULL, FALSE,
6067 get_elf_backend_data (dynobj)->collect, &bh)))
6068 return FALSE;
6069 h = (struct elf_link_hash_entry *) bh;
6070 h->non_elf = 0;
6071 h->def_regular = 1;
6072 h->type = STT_OBJECT;
6073 h->verinfo.vertree = t;
6074
6075 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6076 return FALSE;
6077
6078 def.vd_version = VER_DEF_CURRENT;
6079 def.vd_flags = 0;
6080 if (t->globals.list == NULL
6081 && t->locals.list == NULL
6082 && ! t->used)
6083 def.vd_flags |= VER_FLG_WEAK;
6084 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6085 def.vd_cnt = cdeps + 1;
6086 def.vd_hash = bfd_elf_hash (t->name);
6087 def.vd_aux = sizeof (Elf_External_Verdef);
6088 def.vd_next = 0;
6089
6090 /* If a basever node is next, it *must* be the last node in
6091 the chain, otherwise Verdef construction breaks. */
6092 if (t->next != NULL && t->next->vernum == 0)
6093 BFD_ASSERT (t->next->next == NULL);
6094
6095 if (t->next != NULL && t->next->vernum != 0)
6096 def.vd_next = (sizeof (Elf_External_Verdef)
6097 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6098
6099 _bfd_elf_swap_verdef_out (output_bfd, &def,
6100 (Elf_External_Verdef *) p);
6101 p += sizeof (Elf_External_Verdef);
6102
6103 defaux.vda_name = h->dynstr_index;
6104 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6105 h->dynstr_index);
6106 defaux.vda_next = 0;
6107 if (t->deps != NULL)
6108 defaux.vda_next = sizeof (Elf_External_Verdaux);
6109 t->name_indx = defaux.vda_name;
6110
6111 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6112 (Elf_External_Verdaux *) p);
6113 p += sizeof (Elf_External_Verdaux);
6114
6115 for (n = t->deps; n != NULL; n = n->next)
6116 {
6117 if (n->version_needed == NULL)
6118 {
6119 /* This can happen if there was an error in the
6120 version script. */
6121 defaux.vda_name = 0;
6122 }
6123 else
6124 {
6125 defaux.vda_name = n->version_needed->name_indx;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6127 defaux.vda_name);
6128 }
6129 if (n->next == NULL)
6130 defaux.vda_next = 0;
6131 else
6132 defaux.vda_next = sizeof (Elf_External_Verdaux);
6133
6134 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6135 (Elf_External_Verdaux *) p);
6136 p += sizeof (Elf_External_Verdaux);
6137 }
6138 }
6139
6140 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6141 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6142 return FALSE;
6143
6144 elf_tdata (output_bfd)->cverdefs = cdefs;
6145 }
6146
6147 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6148 {
6149 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6150 return FALSE;
6151 }
6152 else if (info->flags & DF_BIND_NOW)
6153 {
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6155 return FALSE;
6156 }
6157
6158 if (info->flags_1)
6159 {
6160 if (info->executable)
6161 info->flags_1 &= ~ (DF_1_INITFIRST
6162 | DF_1_NODELETE
6163 | DF_1_NOOPEN);
6164 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6165 return FALSE;
6166 }
6167
6168 /* Work out the size of the version reference section. */
6169
6170 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6171 BFD_ASSERT (s != NULL);
6172 {
6173 struct elf_find_verdep_info sinfo;
6174
6175 sinfo.info = info;
6176 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6177 if (sinfo.vers == 0)
6178 sinfo.vers = 1;
6179 sinfo.failed = FALSE;
6180
6181 elf_link_hash_traverse (elf_hash_table (info),
6182 _bfd_elf_link_find_version_dependencies,
6183 &sinfo);
6184 if (sinfo.failed)
6185 return FALSE;
6186
6187 if (elf_tdata (output_bfd)->verref == NULL)
6188 s->flags |= SEC_EXCLUDE;
6189 else
6190 {
6191 Elf_Internal_Verneed *t;
6192 unsigned int size;
6193 unsigned int crefs;
6194 bfd_byte *p;
6195
6196 /* Build the version dependency section. */
6197 size = 0;
6198 crefs = 0;
6199 for (t = elf_tdata (output_bfd)->verref;
6200 t != NULL;
6201 t = t->vn_nextref)
6202 {
6203 Elf_Internal_Vernaux *a;
6204
6205 size += sizeof (Elf_External_Verneed);
6206 ++crefs;
6207 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6208 size += sizeof (Elf_External_Vernaux);
6209 }
6210
6211 s->size = size;
6212 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6213 if (s->contents == NULL)
6214 return FALSE;
6215
6216 p = s->contents;
6217 for (t = elf_tdata (output_bfd)->verref;
6218 t != NULL;
6219 t = t->vn_nextref)
6220 {
6221 unsigned int caux;
6222 Elf_Internal_Vernaux *a;
6223 bfd_size_type indx;
6224
6225 caux = 0;
6226 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6227 ++caux;
6228
6229 t->vn_version = VER_NEED_CURRENT;
6230 t->vn_cnt = caux;
6231 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6232 elf_dt_name (t->vn_bfd) != NULL
6233 ? elf_dt_name (t->vn_bfd)
6234 : lbasename (t->vn_bfd->filename),
6235 FALSE);
6236 if (indx == (bfd_size_type) -1)
6237 return FALSE;
6238 t->vn_file = indx;
6239 t->vn_aux = sizeof (Elf_External_Verneed);
6240 if (t->vn_nextref == NULL)
6241 t->vn_next = 0;
6242 else
6243 t->vn_next = (sizeof (Elf_External_Verneed)
6244 + caux * sizeof (Elf_External_Vernaux));
6245
6246 _bfd_elf_swap_verneed_out (output_bfd, t,
6247 (Elf_External_Verneed *) p);
6248 p += sizeof (Elf_External_Verneed);
6249
6250 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6251 {
6252 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 a->vna_nodename, FALSE);
6255 if (indx == (bfd_size_type) -1)
6256 return FALSE;
6257 a->vna_name = indx;
6258 if (a->vna_nextptr == NULL)
6259 a->vna_next = 0;
6260 else
6261 a->vna_next = sizeof (Elf_External_Vernaux);
6262
6263 _bfd_elf_swap_vernaux_out (output_bfd, a,
6264 (Elf_External_Vernaux *) p);
6265 p += sizeof (Elf_External_Vernaux);
6266 }
6267 }
6268
6269 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6270 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6271 return FALSE;
6272
6273 elf_tdata (output_bfd)->cverrefs = crefs;
6274 }
6275 }
6276
6277 if ((elf_tdata (output_bfd)->cverrefs == 0
6278 && elf_tdata (output_bfd)->cverdefs == 0)
6279 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6280 &section_sym_count) == 0)
6281 {
6282 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6283 s->flags |= SEC_EXCLUDE;
6284 }
6285 }
6286 return TRUE;
6287 }
6288
6289 /* Find the first non-excluded output section. We'll use its
6290 section symbol for some emitted relocs. */
6291 void
6292 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6293 {
6294 asection *s;
6295
6296 for (s = output_bfd->sections; s != NULL; s = s->next)
6297 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6298 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6299 {
6300 elf_hash_table (info)->text_index_section = s;
6301 break;
6302 }
6303 }
6304
6305 /* Find two non-excluded output sections, one for code, one for data.
6306 We'll use their section symbols for some emitted relocs. */
6307 void
6308 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6309 {
6310 asection *s;
6311
6312 /* Data first, since setting text_index_section changes
6313 _bfd_elf_link_omit_section_dynsym. */
6314 for (s = output_bfd->sections; s != NULL; s = s->next)
6315 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6316 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6317 {
6318 elf_hash_table (info)->data_index_section = s;
6319 break;
6320 }
6321
6322 for (s = output_bfd->sections; s != NULL; s = s->next)
6323 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6324 == (SEC_ALLOC | SEC_READONLY))
6325 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6326 {
6327 elf_hash_table (info)->text_index_section = s;
6328 break;
6329 }
6330
6331 if (elf_hash_table (info)->text_index_section == NULL)
6332 elf_hash_table (info)->text_index_section
6333 = elf_hash_table (info)->data_index_section;
6334 }
6335
6336 bfd_boolean
6337 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6338 {
6339 const struct elf_backend_data *bed;
6340
6341 if (!is_elf_hash_table (info->hash))
6342 return TRUE;
6343
6344 bed = get_elf_backend_data (output_bfd);
6345 (*bed->elf_backend_init_index_section) (output_bfd, info);
6346
6347 if (elf_hash_table (info)->dynamic_sections_created)
6348 {
6349 bfd *dynobj;
6350 asection *s;
6351 bfd_size_type dynsymcount;
6352 unsigned long section_sym_count;
6353 unsigned int dtagcount;
6354
6355 dynobj = elf_hash_table (info)->dynobj;
6356
6357 /* Assign dynsym indicies. In a shared library we generate a
6358 section symbol for each output section, which come first.
6359 Next come all of the back-end allocated local dynamic syms,
6360 followed by the rest of the global symbols. */
6361
6362 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6363 &section_sym_count);
6364
6365 /* Work out the size of the symbol version section. */
6366 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6367 BFD_ASSERT (s != NULL);
6368 if (dynsymcount != 0
6369 && (s->flags & SEC_EXCLUDE) == 0)
6370 {
6371 s->size = dynsymcount * sizeof (Elf_External_Versym);
6372 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6373 if (s->contents == NULL)
6374 return FALSE;
6375
6376 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6377 return FALSE;
6378 }
6379
6380 /* Set the size of the .dynsym and .hash sections. We counted
6381 the number of dynamic symbols in elf_link_add_object_symbols.
6382 We will build the contents of .dynsym and .hash when we build
6383 the final symbol table, because until then we do not know the
6384 correct value to give the symbols. We built the .dynstr
6385 section as we went along in elf_link_add_object_symbols. */
6386 s = bfd_get_section_by_name (dynobj, ".dynsym");
6387 BFD_ASSERT (s != NULL);
6388 s->size = dynsymcount * bed->s->sizeof_sym;
6389
6390 if (dynsymcount != 0)
6391 {
6392 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6393 if (s->contents == NULL)
6394 return FALSE;
6395
6396 /* The first entry in .dynsym is a dummy symbol.
6397 Clear all the section syms, in case we don't output them all. */
6398 ++section_sym_count;
6399 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6400 }
6401
6402 elf_hash_table (info)->bucketcount = 0;
6403
6404 /* Compute the size of the hashing table. As a side effect this
6405 computes the hash values for all the names we export. */
6406 if (info->emit_hash)
6407 {
6408 unsigned long int *hashcodes;
6409 struct hash_codes_info hashinf;
6410 bfd_size_type amt;
6411 unsigned long int nsyms;
6412 size_t bucketcount;
6413 size_t hash_entry_size;
6414
6415 /* Compute the hash values for all exported symbols. At the same
6416 time store the values in an array so that we could use them for
6417 optimizations. */
6418 amt = dynsymcount * sizeof (unsigned long int);
6419 hashcodes = (unsigned long int *) bfd_malloc (amt);
6420 if (hashcodes == NULL)
6421 return FALSE;
6422 hashinf.hashcodes = hashcodes;
6423 hashinf.error = FALSE;
6424
6425 /* Put all hash values in HASHCODES. */
6426 elf_link_hash_traverse (elf_hash_table (info),
6427 elf_collect_hash_codes, &hashinf);
6428 if (hashinf.error)
6429 {
6430 free (hashcodes);
6431 return FALSE;
6432 }
6433
6434 nsyms = hashinf.hashcodes - hashcodes;
6435 bucketcount
6436 = compute_bucket_count (info, hashcodes, nsyms, 0);
6437 free (hashcodes);
6438
6439 if (bucketcount == 0)
6440 return FALSE;
6441
6442 elf_hash_table (info)->bucketcount = bucketcount;
6443
6444 s = bfd_get_section_by_name (dynobj, ".hash");
6445 BFD_ASSERT (s != NULL);
6446 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6447 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6448 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6449 if (s->contents == NULL)
6450 return FALSE;
6451
6452 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6453 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6454 s->contents + hash_entry_size);
6455 }
6456
6457 if (info->emit_gnu_hash)
6458 {
6459 size_t i, cnt;
6460 unsigned char *contents;
6461 struct collect_gnu_hash_codes cinfo;
6462 bfd_size_type amt;
6463 size_t bucketcount;
6464
6465 memset (&cinfo, 0, sizeof (cinfo));
6466
6467 /* Compute the hash values for all exported symbols. At the same
6468 time store the values in an array so that we could use them for
6469 optimizations. */
6470 amt = dynsymcount * 2 * sizeof (unsigned long int);
6471 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6472 if (cinfo.hashcodes == NULL)
6473 return FALSE;
6474
6475 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6476 cinfo.min_dynindx = -1;
6477 cinfo.output_bfd = output_bfd;
6478 cinfo.bed = bed;
6479
6480 /* Put all hash values in HASHCODES. */
6481 elf_link_hash_traverse (elf_hash_table (info),
6482 elf_collect_gnu_hash_codes, &cinfo);
6483 if (cinfo.error)
6484 {
6485 free (cinfo.hashcodes);
6486 return FALSE;
6487 }
6488
6489 bucketcount
6490 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6491
6492 if (bucketcount == 0)
6493 {
6494 free (cinfo.hashcodes);
6495 return FALSE;
6496 }
6497
6498 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6499 BFD_ASSERT (s != NULL);
6500
6501 if (cinfo.nsyms == 0)
6502 {
6503 /* Empty .gnu.hash section is special. */
6504 BFD_ASSERT (cinfo.min_dynindx == -1);
6505 free (cinfo.hashcodes);
6506 s->size = 5 * 4 + bed->s->arch_size / 8;
6507 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6508 if (contents == NULL)
6509 return FALSE;
6510 s->contents = contents;
6511 /* 1 empty bucket. */
6512 bfd_put_32 (output_bfd, 1, contents);
6513 /* SYMIDX above the special symbol 0. */
6514 bfd_put_32 (output_bfd, 1, contents + 4);
6515 /* Just one word for bitmask. */
6516 bfd_put_32 (output_bfd, 1, contents + 8);
6517 /* Only hash fn bloom filter. */
6518 bfd_put_32 (output_bfd, 0, contents + 12);
6519 /* No hashes are valid - empty bitmask. */
6520 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6521 /* No hashes in the only bucket. */
6522 bfd_put_32 (output_bfd, 0,
6523 contents + 16 + bed->s->arch_size / 8);
6524 }
6525 else
6526 {
6527 unsigned long int maskwords, maskbitslog2, x;
6528 BFD_ASSERT (cinfo.min_dynindx != -1);
6529
6530 x = cinfo.nsyms;
6531 maskbitslog2 = 1;
6532 while ((x >>= 1) != 0)
6533 ++maskbitslog2;
6534 if (maskbitslog2 < 3)
6535 maskbitslog2 = 5;
6536 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6537 maskbitslog2 = maskbitslog2 + 3;
6538 else
6539 maskbitslog2 = maskbitslog2 + 2;
6540 if (bed->s->arch_size == 64)
6541 {
6542 if (maskbitslog2 == 5)
6543 maskbitslog2 = 6;
6544 cinfo.shift1 = 6;
6545 }
6546 else
6547 cinfo.shift1 = 5;
6548 cinfo.mask = (1 << cinfo.shift1) - 1;
6549 cinfo.shift2 = maskbitslog2;
6550 cinfo.maskbits = 1 << maskbitslog2;
6551 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6552 amt = bucketcount * sizeof (unsigned long int) * 2;
6553 amt += maskwords * sizeof (bfd_vma);
6554 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6555 if (cinfo.bitmask == NULL)
6556 {
6557 free (cinfo.hashcodes);
6558 return FALSE;
6559 }
6560
6561 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6562 cinfo.indx = cinfo.counts + bucketcount;
6563 cinfo.symindx = dynsymcount - cinfo.nsyms;
6564 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6565
6566 /* Determine how often each hash bucket is used. */
6567 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6568 for (i = 0; i < cinfo.nsyms; ++i)
6569 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6570
6571 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6572 if (cinfo.counts[i] != 0)
6573 {
6574 cinfo.indx[i] = cnt;
6575 cnt += cinfo.counts[i];
6576 }
6577 BFD_ASSERT (cnt == dynsymcount);
6578 cinfo.bucketcount = bucketcount;
6579 cinfo.local_indx = cinfo.min_dynindx;
6580
6581 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6582 s->size += cinfo.maskbits / 8;
6583 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6584 if (contents == NULL)
6585 {
6586 free (cinfo.bitmask);
6587 free (cinfo.hashcodes);
6588 return FALSE;
6589 }
6590
6591 s->contents = contents;
6592 bfd_put_32 (output_bfd, bucketcount, contents);
6593 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6594 bfd_put_32 (output_bfd, maskwords, contents + 8);
6595 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6596 contents += 16 + cinfo.maskbits / 8;
6597
6598 for (i = 0; i < bucketcount; ++i)
6599 {
6600 if (cinfo.counts[i] == 0)
6601 bfd_put_32 (output_bfd, 0, contents);
6602 else
6603 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6604 contents += 4;
6605 }
6606
6607 cinfo.contents = contents;
6608
6609 /* Renumber dynamic symbols, populate .gnu.hash section. */
6610 elf_link_hash_traverse (elf_hash_table (info),
6611 elf_renumber_gnu_hash_syms, &cinfo);
6612
6613 contents = s->contents + 16;
6614 for (i = 0; i < maskwords; ++i)
6615 {
6616 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6617 contents);
6618 contents += bed->s->arch_size / 8;
6619 }
6620
6621 free (cinfo.bitmask);
6622 free (cinfo.hashcodes);
6623 }
6624 }
6625
6626 s = bfd_get_section_by_name (dynobj, ".dynstr");
6627 BFD_ASSERT (s != NULL);
6628
6629 elf_finalize_dynstr (output_bfd, info);
6630
6631 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6632
6633 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6634 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6635 return FALSE;
6636 }
6637
6638 return TRUE;
6639 }
6640 \f
6641 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6642
6643 static void
6644 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6645 asection *sec)
6646 {
6647 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6648 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6649 }
6650
6651 /* Finish SHF_MERGE section merging. */
6652
6653 bfd_boolean
6654 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6655 {
6656 bfd *ibfd;
6657 asection *sec;
6658
6659 if (!is_elf_hash_table (info->hash))
6660 return FALSE;
6661
6662 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6663 if ((ibfd->flags & DYNAMIC) == 0)
6664 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6665 if ((sec->flags & SEC_MERGE) != 0
6666 && !bfd_is_abs_section (sec->output_section))
6667 {
6668 struct bfd_elf_section_data *secdata;
6669
6670 secdata = elf_section_data (sec);
6671 if (! _bfd_add_merge_section (abfd,
6672 &elf_hash_table (info)->merge_info,
6673 sec, &secdata->sec_info))
6674 return FALSE;
6675 else if (secdata->sec_info)
6676 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6677 }
6678
6679 if (elf_hash_table (info)->merge_info != NULL)
6680 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6681 merge_sections_remove_hook);
6682 return TRUE;
6683 }
6684
6685 /* Create an entry in an ELF linker hash table. */
6686
6687 struct bfd_hash_entry *
6688 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6689 struct bfd_hash_table *table,
6690 const char *string)
6691 {
6692 /* Allocate the structure if it has not already been allocated by a
6693 subclass. */
6694 if (entry == NULL)
6695 {
6696 entry = (struct bfd_hash_entry *)
6697 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6698 if (entry == NULL)
6699 return entry;
6700 }
6701
6702 /* Call the allocation method of the superclass. */
6703 entry = _bfd_link_hash_newfunc (entry, table, string);
6704 if (entry != NULL)
6705 {
6706 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6707 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6708
6709 /* Set local fields. */
6710 ret->indx = -1;
6711 ret->dynindx = -1;
6712 ret->got = htab->init_got_refcount;
6713 ret->plt = htab->init_plt_refcount;
6714 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6715 - offsetof (struct elf_link_hash_entry, size)));
6716 /* Assume that we have been called by a non-ELF symbol reader.
6717 This flag is then reset by the code which reads an ELF input
6718 file. This ensures that a symbol created by a non-ELF symbol
6719 reader will have the flag set correctly. */
6720 ret->non_elf = 1;
6721 }
6722
6723 return entry;
6724 }
6725
6726 /* Copy data from an indirect symbol to its direct symbol, hiding the
6727 old indirect symbol. Also used for copying flags to a weakdef. */
6728
6729 void
6730 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6731 struct elf_link_hash_entry *dir,
6732 struct elf_link_hash_entry *ind)
6733 {
6734 struct elf_link_hash_table *htab;
6735
6736 /* Copy down any references that we may have already seen to the
6737 symbol which just became indirect. */
6738
6739 dir->ref_dynamic |= ind->ref_dynamic;
6740 dir->ref_regular |= ind->ref_regular;
6741 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6742 dir->non_got_ref |= ind->non_got_ref;
6743 dir->needs_plt |= ind->needs_plt;
6744 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6745
6746 if (ind->root.type != bfd_link_hash_indirect)
6747 return;
6748
6749 /* Copy over the global and procedure linkage table refcount entries.
6750 These may have been already set up by a check_relocs routine. */
6751 htab = elf_hash_table (info);
6752 if (ind->got.refcount > htab->init_got_refcount.refcount)
6753 {
6754 if (dir->got.refcount < 0)
6755 dir->got.refcount = 0;
6756 dir->got.refcount += ind->got.refcount;
6757 ind->got.refcount = htab->init_got_refcount.refcount;
6758 }
6759
6760 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6761 {
6762 if (dir->plt.refcount < 0)
6763 dir->plt.refcount = 0;
6764 dir->plt.refcount += ind->plt.refcount;
6765 ind->plt.refcount = htab->init_plt_refcount.refcount;
6766 }
6767
6768 if (ind->dynindx != -1)
6769 {
6770 if (dir->dynindx != -1)
6771 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6772 dir->dynindx = ind->dynindx;
6773 dir->dynstr_index = ind->dynstr_index;
6774 ind->dynindx = -1;
6775 ind->dynstr_index = 0;
6776 }
6777 }
6778
6779 void
6780 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6781 struct elf_link_hash_entry *h,
6782 bfd_boolean force_local)
6783 {
6784 /* STT_GNU_IFUNC symbol must go through PLT. */
6785 if (h->type != STT_GNU_IFUNC)
6786 {
6787 h->plt = elf_hash_table (info)->init_plt_offset;
6788 h->needs_plt = 0;
6789 }
6790 if (force_local)
6791 {
6792 h->forced_local = 1;
6793 if (h->dynindx != -1)
6794 {
6795 h->dynindx = -1;
6796 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6797 h->dynstr_index);
6798 }
6799 }
6800 }
6801
6802 /* Initialize an ELF linker hash table. */
6803
6804 bfd_boolean
6805 _bfd_elf_link_hash_table_init
6806 (struct elf_link_hash_table *table,
6807 bfd *abfd,
6808 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6809 struct bfd_hash_table *,
6810 const char *),
6811 unsigned int entsize,
6812 enum elf_target_id target_id)
6813 {
6814 bfd_boolean ret;
6815 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6816
6817 memset (table, 0, sizeof * table);
6818 table->init_got_refcount.refcount = can_refcount - 1;
6819 table->init_plt_refcount.refcount = can_refcount - 1;
6820 table->init_got_offset.offset = -(bfd_vma) 1;
6821 table->init_plt_offset.offset = -(bfd_vma) 1;
6822 /* The first dynamic symbol is a dummy. */
6823 table->dynsymcount = 1;
6824
6825 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6826
6827 table->root.type = bfd_link_elf_hash_table;
6828 table->hash_table_id = target_id;
6829
6830 return ret;
6831 }
6832
6833 /* Create an ELF linker hash table. */
6834
6835 struct bfd_link_hash_table *
6836 _bfd_elf_link_hash_table_create (bfd *abfd)
6837 {
6838 struct elf_link_hash_table *ret;
6839 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6840
6841 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6842 if (ret == NULL)
6843 return NULL;
6844
6845 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6846 sizeof (struct elf_link_hash_entry),
6847 GENERIC_ELF_DATA))
6848 {
6849 free (ret);
6850 return NULL;
6851 }
6852
6853 return &ret->root;
6854 }
6855
6856 /* This is a hook for the ELF emulation code in the generic linker to
6857 tell the backend linker what file name to use for the DT_NEEDED
6858 entry for a dynamic object. */
6859
6860 void
6861 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6862 {
6863 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6864 && bfd_get_format (abfd) == bfd_object)
6865 elf_dt_name (abfd) = name;
6866 }
6867
6868 int
6869 bfd_elf_get_dyn_lib_class (bfd *abfd)
6870 {
6871 int lib_class;
6872 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6873 && bfd_get_format (abfd) == bfd_object)
6874 lib_class = elf_dyn_lib_class (abfd);
6875 else
6876 lib_class = 0;
6877 return lib_class;
6878 }
6879
6880 void
6881 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6882 {
6883 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6884 && bfd_get_format (abfd) == bfd_object)
6885 elf_dyn_lib_class (abfd) = lib_class;
6886 }
6887
6888 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6889 the linker ELF emulation code. */
6890
6891 struct bfd_link_needed_list *
6892 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6893 struct bfd_link_info *info)
6894 {
6895 if (! is_elf_hash_table (info->hash))
6896 return NULL;
6897 return elf_hash_table (info)->needed;
6898 }
6899
6900 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6901 hook for the linker ELF emulation code. */
6902
6903 struct bfd_link_needed_list *
6904 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6905 struct bfd_link_info *info)
6906 {
6907 if (! is_elf_hash_table (info->hash))
6908 return NULL;
6909 return elf_hash_table (info)->runpath;
6910 }
6911
6912 /* Get the name actually used for a dynamic object for a link. This
6913 is the SONAME entry if there is one. Otherwise, it is the string
6914 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6915
6916 const char *
6917 bfd_elf_get_dt_soname (bfd *abfd)
6918 {
6919 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6920 && bfd_get_format (abfd) == bfd_object)
6921 return elf_dt_name (abfd);
6922 return NULL;
6923 }
6924
6925 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6926 the ELF linker emulation code. */
6927
6928 bfd_boolean
6929 bfd_elf_get_bfd_needed_list (bfd *abfd,
6930 struct bfd_link_needed_list **pneeded)
6931 {
6932 asection *s;
6933 bfd_byte *dynbuf = NULL;
6934 unsigned int elfsec;
6935 unsigned long shlink;
6936 bfd_byte *extdyn, *extdynend;
6937 size_t extdynsize;
6938 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6939
6940 *pneeded = NULL;
6941
6942 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6943 || bfd_get_format (abfd) != bfd_object)
6944 return TRUE;
6945
6946 s = bfd_get_section_by_name (abfd, ".dynamic");
6947 if (s == NULL || s->size == 0)
6948 return TRUE;
6949
6950 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6951 goto error_return;
6952
6953 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6954 if (elfsec == SHN_BAD)
6955 goto error_return;
6956
6957 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6958
6959 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6960 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6961
6962 extdyn = dynbuf;
6963 extdynend = extdyn + s->size;
6964 for (; extdyn < extdynend; extdyn += extdynsize)
6965 {
6966 Elf_Internal_Dyn dyn;
6967
6968 (*swap_dyn_in) (abfd, extdyn, &dyn);
6969
6970 if (dyn.d_tag == DT_NULL)
6971 break;
6972
6973 if (dyn.d_tag == DT_NEEDED)
6974 {
6975 const char *string;
6976 struct bfd_link_needed_list *l;
6977 unsigned int tagv = dyn.d_un.d_val;
6978 bfd_size_type amt;
6979
6980 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6981 if (string == NULL)
6982 goto error_return;
6983
6984 amt = sizeof *l;
6985 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6986 if (l == NULL)
6987 goto error_return;
6988
6989 l->by = abfd;
6990 l->name = string;
6991 l->next = *pneeded;
6992 *pneeded = l;
6993 }
6994 }
6995
6996 free (dynbuf);
6997
6998 return TRUE;
6999
7000 error_return:
7001 if (dynbuf != NULL)
7002 free (dynbuf);
7003 return FALSE;
7004 }
7005
7006 struct elf_symbuf_symbol
7007 {
7008 unsigned long st_name; /* Symbol name, index in string tbl */
7009 unsigned char st_info; /* Type and binding attributes */
7010 unsigned char st_other; /* Visibilty, and target specific */
7011 };
7012
7013 struct elf_symbuf_head
7014 {
7015 struct elf_symbuf_symbol *ssym;
7016 bfd_size_type count;
7017 unsigned int st_shndx;
7018 };
7019
7020 struct elf_symbol
7021 {
7022 union
7023 {
7024 Elf_Internal_Sym *isym;
7025 struct elf_symbuf_symbol *ssym;
7026 } u;
7027 const char *name;
7028 };
7029
7030 /* Sort references to symbols by ascending section number. */
7031
7032 static int
7033 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7034 {
7035 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7036 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7037
7038 return s1->st_shndx - s2->st_shndx;
7039 }
7040
7041 static int
7042 elf_sym_name_compare (const void *arg1, const void *arg2)
7043 {
7044 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7045 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7046 return strcmp (s1->name, s2->name);
7047 }
7048
7049 static struct elf_symbuf_head *
7050 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7051 {
7052 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7053 struct elf_symbuf_symbol *ssym;
7054 struct elf_symbuf_head *ssymbuf, *ssymhead;
7055 bfd_size_type i, shndx_count, total_size;
7056
7057 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7058 if (indbuf == NULL)
7059 return NULL;
7060
7061 for (ind = indbuf, i = 0; i < symcount; i++)
7062 if (isymbuf[i].st_shndx != SHN_UNDEF)
7063 *ind++ = &isymbuf[i];
7064 indbufend = ind;
7065
7066 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7067 elf_sort_elf_symbol);
7068
7069 shndx_count = 0;
7070 if (indbufend > indbuf)
7071 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7072 if (ind[0]->st_shndx != ind[1]->st_shndx)
7073 shndx_count++;
7074
7075 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7076 + (indbufend - indbuf) * sizeof (*ssym));
7077 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7078 if (ssymbuf == NULL)
7079 {
7080 free (indbuf);
7081 return NULL;
7082 }
7083
7084 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7085 ssymbuf->ssym = NULL;
7086 ssymbuf->count = shndx_count;
7087 ssymbuf->st_shndx = 0;
7088 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7089 {
7090 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7091 {
7092 ssymhead++;
7093 ssymhead->ssym = ssym;
7094 ssymhead->count = 0;
7095 ssymhead->st_shndx = (*ind)->st_shndx;
7096 }
7097 ssym->st_name = (*ind)->st_name;
7098 ssym->st_info = (*ind)->st_info;
7099 ssym->st_other = (*ind)->st_other;
7100 ssymhead->count++;
7101 }
7102 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7103 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7104 == total_size));
7105
7106 free (indbuf);
7107 return ssymbuf;
7108 }
7109
7110 /* Check if 2 sections define the same set of local and global
7111 symbols. */
7112
7113 static bfd_boolean
7114 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7115 struct bfd_link_info *info)
7116 {
7117 bfd *bfd1, *bfd2;
7118 const struct elf_backend_data *bed1, *bed2;
7119 Elf_Internal_Shdr *hdr1, *hdr2;
7120 bfd_size_type symcount1, symcount2;
7121 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7122 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7123 Elf_Internal_Sym *isym, *isymend;
7124 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7125 bfd_size_type count1, count2, i;
7126 unsigned int shndx1, shndx2;
7127 bfd_boolean result;
7128
7129 bfd1 = sec1->owner;
7130 bfd2 = sec2->owner;
7131
7132 /* Both sections have to be in ELF. */
7133 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7134 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7135 return FALSE;
7136
7137 if (elf_section_type (sec1) != elf_section_type (sec2))
7138 return FALSE;
7139
7140 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7141 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7142 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7143 return FALSE;
7144
7145 bed1 = get_elf_backend_data (bfd1);
7146 bed2 = get_elf_backend_data (bfd2);
7147 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7148 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7149 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7150 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7151
7152 if (symcount1 == 0 || symcount2 == 0)
7153 return FALSE;
7154
7155 result = FALSE;
7156 isymbuf1 = NULL;
7157 isymbuf2 = NULL;
7158 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7159 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7160
7161 if (ssymbuf1 == NULL)
7162 {
7163 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7164 NULL, NULL, NULL);
7165 if (isymbuf1 == NULL)
7166 goto done;
7167
7168 if (!info->reduce_memory_overheads)
7169 elf_tdata (bfd1)->symbuf = ssymbuf1
7170 = elf_create_symbuf (symcount1, isymbuf1);
7171 }
7172
7173 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7174 {
7175 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7176 NULL, NULL, NULL);
7177 if (isymbuf2 == NULL)
7178 goto done;
7179
7180 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7181 elf_tdata (bfd2)->symbuf = ssymbuf2
7182 = elf_create_symbuf (symcount2, isymbuf2);
7183 }
7184
7185 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7186 {
7187 /* Optimized faster version. */
7188 bfd_size_type lo, hi, mid;
7189 struct elf_symbol *symp;
7190 struct elf_symbuf_symbol *ssym, *ssymend;
7191
7192 lo = 0;
7193 hi = ssymbuf1->count;
7194 ssymbuf1++;
7195 count1 = 0;
7196 while (lo < hi)
7197 {
7198 mid = (lo + hi) / 2;
7199 if (shndx1 < ssymbuf1[mid].st_shndx)
7200 hi = mid;
7201 else if (shndx1 > ssymbuf1[mid].st_shndx)
7202 lo = mid + 1;
7203 else
7204 {
7205 count1 = ssymbuf1[mid].count;
7206 ssymbuf1 += mid;
7207 break;
7208 }
7209 }
7210
7211 lo = 0;
7212 hi = ssymbuf2->count;
7213 ssymbuf2++;
7214 count2 = 0;
7215 while (lo < hi)
7216 {
7217 mid = (lo + hi) / 2;
7218 if (shndx2 < ssymbuf2[mid].st_shndx)
7219 hi = mid;
7220 else if (shndx2 > ssymbuf2[mid].st_shndx)
7221 lo = mid + 1;
7222 else
7223 {
7224 count2 = ssymbuf2[mid].count;
7225 ssymbuf2 += mid;
7226 break;
7227 }
7228 }
7229
7230 if (count1 == 0 || count2 == 0 || count1 != count2)
7231 goto done;
7232
7233 symtable1 = (struct elf_symbol *)
7234 bfd_malloc (count1 * sizeof (struct elf_symbol));
7235 symtable2 = (struct elf_symbol *)
7236 bfd_malloc (count2 * sizeof (struct elf_symbol));
7237 if (symtable1 == NULL || symtable2 == NULL)
7238 goto done;
7239
7240 symp = symtable1;
7241 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7242 ssym < ssymend; ssym++, symp++)
7243 {
7244 symp->u.ssym = ssym;
7245 symp->name = bfd_elf_string_from_elf_section (bfd1,
7246 hdr1->sh_link,
7247 ssym->st_name);
7248 }
7249
7250 symp = symtable2;
7251 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7252 ssym < ssymend; ssym++, symp++)
7253 {
7254 symp->u.ssym = ssym;
7255 symp->name = bfd_elf_string_from_elf_section (bfd2,
7256 hdr2->sh_link,
7257 ssym->st_name);
7258 }
7259
7260 /* Sort symbol by name. */
7261 qsort (symtable1, count1, sizeof (struct elf_symbol),
7262 elf_sym_name_compare);
7263 qsort (symtable2, count1, sizeof (struct elf_symbol),
7264 elf_sym_name_compare);
7265
7266 for (i = 0; i < count1; i++)
7267 /* Two symbols must have the same binding, type and name. */
7268 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7269 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7270 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7271 goto done;
7272
7273 result = TRUE;
7274 goto done;
7275 }
7276
7277 symtable1 = (struct elf_symbol *)
7278 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7279 symtable2 = (struct elf_symbol *)
7280 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7281 if (symtable1 == NULL || symtable2 == NULL)
7282 goto done;
7283
7284 /* Count definitions in the section. */
7285 count1 = 0;
7286 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7287 if (isym->st_shndx == shndx1)
7288 symtable1[count1++].u.isym = isym;
7289
7290 count2 = 0;
7291 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7292 if (isym->st_shndx == shndx2)
7293 symtable2[count2++].u.isym = isym;
7294
7295 if (count1 == 0 || count2 == 0 || count1 != count2)
7296 goto done;
7297
7298 for (i = 0; i < count1; i++)
7299 symtable1[i].name
7300 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7301 symtable1[i].u.isym->st_name);
7302
7303 for (i = 0; i < count2; i++)
7304 symtable2[i].name
7305 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7306 symtable2[i].u.isym->st_name);
7307
7308 /* Sort symbol by name. */
7309 qsort (symtable1, count1, sizeof (struct elf_symbol),
7310 elf_sym_name_compare);
7311 qsort (symtable2, count1, sizeof (struct elf_symbol),
7312 elf_sym_name_compare);
7313
7314 for (i = 0; i < count1; i++)
7315 /* Two symbols must have the same binding, type and name. */
7316 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7317 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7318 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7319 goto done;
7320
7321 result = TRUE;
7322
7323 done:
7324 if (symtable1)
7325 free (symtable1);
7326 if (symtable2)
7327 free (symtable2);
7328 if (isymbuf1)
7329 free (isymbuf1);
7330 if (isymbuf2)
7331 free (isymbuf2);
7332
7333 return result;
7334 }
7335
7336 /* Return TRUE if 2 section types are compatible. */
7337
7338 bfd_boolean
7339 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7340 bfd *bbfd, const asection *bsec)
7341 {
7342 if (asec == NULL
7343 || bsec == NULL
7344 || abfd->xvec->flavour != bfd_target_elf_flavour
7345 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7346 return TRUE;
7347
7348 return elf_section_type (asec) == elf_section_type (bsec);
7349 }
7350 \f
7351 /* Final phase of ELF linker. */
7352
7353 /* A structure we use to avoid passing large numbers of arguments. */
7354
7355 struct elf_final_link_info
7356 {
7357 /* General link information. */
7358 struct bfd_link_info *info;
7359 /* Output BFD. */
7360 bfd *output_bfd;
7361 /* Symbol string table. */
7362 struct bfd_strtab_hash *symstrtab;
7363 /* .dynsym section. */
7364 asection *dynsym_sec;
7365 /* .hash section. */
7366 asection *hash_sec;
7367 /* symbol version section (.gnu.version). */
7368 asection *symver_sec;
7369 /* Buffer large enough to hold contents of any section. */
7370 bfd_byte *contents;
7371 /* Buffer large enough to hold external relocs of any section. */
7372 void *external_relocs;
7373 /* Buffer large enough to hold internal relocs of any section. */
7374 Elf_Internal_Rela *internal_relocs;
7375 /* Buffer large enough to hold external local symbols of any input
7376 BFD. */
7377 bfd_byte *external_syms;
7378 /* And a buffer for symbol section indices. */
7379 Elf_External_Sym_Shndx *locsym_shndx;
7380 /* Buffer large enough to hold internal local symbols of any input
7381 BFD. */
7382 Elf_Internal_Sym *internal_syms;
7383 /* Array large enough to hold a symbol index for each local symbol
7384 of any input BFD. */
7385 long *indices;
7386 /* Array large enough to hold a section pointer for each local
7387 symbol of any input BFD. */
7388 asection **sections;
7389 /* Buffer to hold swapped out symbols. */
7390 bfd_byte *symbuf;
7391 /* And one for symbol section indices. */
7392 Elf_External_Sym_Shndx *symshndxbuf;
7393 /* Number of swapped out symbols in buffer. */
7394 size_t symbuf_count;
7395 /* Number of symbols which fit in symbuf. */
7396 size_t symbuf_size;
7397 /* And same for symshndxbuf. */
7398 size_t shndxbuf_size;
7399 };
7400
7401 /* This struct is used to pass information to elf_link_output_extsym. */
7402
7403 struct elf_outext_info
7404 {
7405 bfd_boolean failed;
7406 bfd_boolean localsyms;
7407 struct elf_final_link_info *flinfo;
7408 };
7409
7410
7411 /* Support for evaluating a complex relocation.
7412
7413 Complex relocations are generalized, self-describing relocations. The
7414 implementation of them consists of two parts: complex symbols, and the
7415 relocations themselves.
7416
7417 The relocations are use a reserved elf-wide relocation type code (R_RELC
7418 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7419 information (start bit, end bit, word width, etc) into the addend. This
7420 information is extracted from CGEN-generated operand tables within gas.
7421
7422 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7423 internal) representing prefix-notation expressions, including but not
7424 limited to those sorts of expressions normally encoded as addends in the
7425 addend field. The symbol mangling format is:
7426
7427 <node> := <literal>
7428 | <unary-operator> ':' <node>
7429 | <binary-operator> ':' <node> ':' <node>
7430 ;
7431
7432 <literal> := 's' <digits=N> ':' <N character symbol name>
7433 | 'S' <digits=N> ':' <N character section name>
7434 | '#' <hexdigits>
7435 ;
7436
7437 <binary-operator> := as in C
7438 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7439
7440 static void
7441 set_symbol_value (bfd *bfd_with_globals,
7442 Elf_Internal_Sym *isymbuf,
7443 size_t locsymcount,
7444 size_t symidx,
7445 bfd_vma val)
7446 {
7447 struct elf_link_hash_entry **sym_hashes;
7448 struct elf_link_hash_entry *h;
7449 size_t extsymoff = locsymcount;
7450
7451 if (symidx < locsymcount)
7452 {
7453 Elf_Internal_Sym *sym;
7454
7455 sym = isymbuf + symidx;
7456 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7457 {
7458 /* It is a local symbol: move it to the
7459 "absolute" section and give it a value. */
7460 sym->st_shndx = SHN_ABS;
7461 sym->st_value = val;
7462 return;
7463 }
7464 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7465 extsymoff = 0;
7466 }
7467
7468 /* It is a global symbol: set its link type
7469 to "defined" and give it a value. */
7470
7471 sym_hashes = elf_sym_hashes (bfd_with_globals);
7472 h = sym_hashes [symidx - extsymoff];
7473 while (h->root.type == bfd_link_hash_indirect
7474 || h->root.type == bfd_link_hash_warning)
7475 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7476 h->root.type = bfd_link_hash_defined;
7477 h->root.u.def.value = val;
7478 h->root.u.def.section = bfd_abs_section_ptr;
7479 }
7480
7481 static bfd_boolean
7482 resolve_symbol (const char *name,
7483 bfd *input_bfd,
7484 struct elf_final_link_info *flinfo,
7485 bfd_vma *result,
7486 Elf_Internal_Sym *isymbuf,
7487 size_t locsymcount)
7488 {
7489 Elf_Internal_Sym *sym;
7490 struct bfd_link_hash_entry *global_entry;
7491 const char *candidate = NULL;
7492 Elf_Internal_Shdr *symtab_hdr;
7493 size_t i;
7494
7495 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7496
7497 for (i = 0; i < locsymcount; ++ i)
7498 {
7499 sym = isymbuf + i;
7500
7501 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7502 continue;
7503
7504 candidate = bfd_elf_string_from_elf_section (input_bfd,
7505 symtab_hdr->sh_link,
7506 sym->st_name);
7507 #ifdef DEBUG
7508 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7509 name, candidate, (unsigned long) sym->st_value);
7510 #endif
7511 if (candidate && strcmp (candidate, name) == 0)
7512 {
7513 asection *sec = flinfo->sections [i];
7514
7515 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7516 *result += sec->output_offset + sec->output_section->vma;
7517 #ifdef DEBUG
7518 printf ("Found symbol with value %8.8lx\n",
7519 (unsigned long) *result);
7520 #endif
7521 return TRUE;
7522 }
7523 }
7524
7525 /* Hmm, haven't found it yet. perhaps it is a global. */
7526 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7527 FALSE, FALSE, TRUE);
7528 if (!global_entry)
7529 return FALSE;
7530
7531 if (global_entry->type == bfd_link_hash_defined
7532 || global_entry->type == bfd_link_hash_defweak)
7533 {
7534 *result = (global_entry->u.def.value
7535 + global_entry->u.def.section->output_section->vma
7536 + global_entry->u.def.section->output_offset);
7537 #ifdef DEBUG
7538 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7539 global_entry->root.string, (unsigned long) *result);
7540 #endif
7541 return TRUE;
7542 }
7543
7544 return FALSE;
7545 }
7546
7547 static bfd_boolean
7548 resolve_section (const char *name,
7549 asection *sections,
7550 bfd_vma *result)
7551 {
7552 asection *curr;
7553 unsigned int len;
7554
7555 for (curr = sections; curr; curr = curr->next)
7556 if (strcmp (curr->name, name) == 0)
7557 {
7558 *result = curr->vma;
7559 return TRUE;
7560 }
7561
7562 /* Hmm. still haven't found it. try pseudo-section names. */
7563 for (curr = sections; curr; curr = curr->next)
7564 {
7565 len = strlen (curr->name);
7566 if (len > strlen (name))
7567 continue;
7568
7569 if (strncmp (curr->name, name, len) == 0)
7570 {
7571 if (strncmp (".end", name + len, 4) == 0)
7572 {
7573 *result = curr->vma + curr->size;
7574 return TRUE;
7575 }
7576
7577 /* Insert more pseudo-section names here, if you like. */
7578 }
7579 }
7580
7581 return FALSE;
7582 }
7583
7584 static void
7585 undefined_reference (const char *reftype, const char *name)
7586 {
7587 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7588 reftype, name);
7589 }
7590
7591 static bfd_boolean
7592 eval_symbol (bfd_vma *result,
7593 const char **symp,
7594 bfd *input_bfd,
7595 struct elf_final_link_info *flinfo,
7596 bfd_vma dot,
7597 Elf_Internal_Sym *isymbuf,
7598 size_t locsymcount,
7599 int signed_p)
7600 {
7601 size_t len;
7602 size_t symlen;
7603 bfd_vma a;
7604 bfd_vma b;
7605 char symbuf[4096];
7606 const char *sym = *symp;
7607 const char *symend;
7608 bfd_boolean symbol_is_section = FALSE;
7609
7610 len = strlen (sym);
7611 symend = sym + len;
7612
7613 if (len < 1 || len > sizeof (symbuf))
7614 {
7615 bfd_set_error (bfd_error_invalid_operation);
7616 return FALSE;
7617 }
7618
7619 switch (* sym)
7620 {
7621 case '.':
7622 *result = dot;
7623 *symp = sym + 1;
7624 return TRUE;
7625
7626 case '#':
7627 ++sym;
7628 *result = strtoul (sym, (char **) symp, 16);
7629 return TRUE;
7630
7631 case 'S':
7632 symbol_is_section = TRUE;
7633 case 's':
7634 ++sym;
7635 symlen = strtol (sym, (char **) symp, 10);
7636 sym = *symp + 1; /* Skip the trailing ':'. */
7637
7638 if (symend < sym || symlen + 1 > sizeof (symbuf))
7639 {
7640 bfd_set_error (bfd_error_invalid_operation);
7641 return FALSE;
7642 }
7643
7644 memcpy (symbuf, sym, symlen);
7645 symbuf[symlen] = '\0';
7646 *symp = sym + symlen;
7647
7648 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7649 the symbol as a section, or vice-versa. so we're pretty liberal in our
7650 interpretation here; section means "try section first", not "must be a
7651 section", and likewise with symbol. */
7652
7653 if (symbol_is_section)
7654 {
7655 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7656 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7657 isymbuf, locsymcount))
7658 {
7659 undefined_reference ("section", symbuf);
7660 return FALSE;
7661 }
7662 }
7663 else
7664 {
7665 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7666 isymbuf, locsymcount)
7667 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7668 result))
7669 {
7670 undefined_reference ("symbol", symbuf);
7671 return FALSE;
7672 }
7673 }
7674
7675 return TRUE;
7676
7677 /* All that remains are operators. */
7678
7679 #define UNARY_OP(op) \
7680 if (strncmp (sym, #op, strlen (#op)) == 0) \
7681 { \
7682 sym += strlen (#op); \
7683 if (*sym == ':') \
7684 ++sym; \
7685 *symp = sym; \
7686 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7687 isymbuf, locsymcount, signed_p)) \
7688 return FALSE; \
7689 if (signed_p) \
7690 *result = op ((bfd_signed_vma) a); \
7691 else \
7692 *result = op a; \
7693 return TRUE; \
7694 }
7695
7696 #define BINARY_OP(op) \
7697 if (strncmp (sym, #op, strlen (#op)) == 0) \
7698 { \
7699 sym += strlen (#op); \
7700 if (*sym == ':') \
7701 ++sym; \
7702 *symp = sym; \
7703 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7704 isymbuf, locsymcount, signed_p)) \
7705 return FALSE; \
7706 ++*symp; \
7707 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7708 isymbuf, locsymcount, signed_p)) \
7709 return FALSE; \
7710 if (signed_p) \
7711 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7712 else \
7713 *result = a op b; \
7714 return TRUE; \
7715 }
7716
7717 default:
7718 UNARY_OP (0-);
7719 BINARY_OP (<<);
7720 BINARY_OP (>>);
7721 BINARY_OP (==);
7722 BINARY_OP (!=);
7723 BINARY_OP (<=);
7724 BINARY_OP (>=);
7725 BINARY_OP (&&);
7726 BINARY_OP (||);
7727 UNARY_OP (~);
7728 UNARY_OP (!);
7729 BINARY_OP (*);
7730 BINARY_OP (/);
7731 BINARY_OP (%);
7732 BINARY_OP (^);
7733 BINARY_OP (|);
7734 BINARY_OP (&);
7735 BINARY_OP (+);
7736 BINARY_OP (-);
7737 BINARY_OP (<);
7738 BINARY_OP (>);
7739 #undef UNARY_OP
7740 #undef BINARY_OP
7741 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7742 bfd_set_error (bfd_error_invalid_operation);
7743 return FALSE;
7744 }
7745 }
7746
7747 static void
7748 put_value (bfd_vma size,
7749 unsigned long chunksz,
7750 bfd *input_bfd,
7751 bfd_vma x,
7752 bfd_byte *location)
7753 {
7754 location += (size - chunksz);
7755
7756 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7757 {
7758 switch (chunksz)
7759 {
7760 default:
7761 case 0:
7762 abort ();
7763 case 1:
7764 bfd_put_8 (input_bfd, x, location);
7765 break;
7766 case 2:
7767 bfd_put_16 (input_bfd, x, location);
7768 break;
7769 case 4:
7770 bfd_put_32 (input_bfd, x, location);
7771 break;
7772 case 8:
7773 #ifdef BFD64
7774 bfd_put_64 (input_bfd, x, location);
7775 #else
7776 abort ();
7777 #endif
7778 break;
7779 }
7780 }
7781 }
7782
7783 static bfd_vma
7784 get_value (bfd_vma size,
7785 unsigned long chunksz,
7786 bfd *input_bfd,
7787 bfd_byte *location)
7788 {
7789 bfd_vma x = 0;
7790
7791 for (; size; size -= chunksz, location += chunksz)
7792 {
7793 switch (chunksz)
7794 {
7795 default:
7796 case 0:
7797 abort ();
7798 case 1:
7799 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7800 break;
7801 case 2:
7802 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7803 break;
7804 case 4:
7805 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7806 break;
7807 case 8:
7808 #ifdef BFD64
7809 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7810 #else
7811 abort ();
7812 #endif
7813 break;
7814 }
7815 }
7816 return x;
7817 }
7818
7819 static void
7820 decode_complex_addend (unsigned long *start, /* in bits */
7821 unsigned long *oplen, /* in bits */
7822 unsigned long *len, /* in bits */
7823 unsigned long *wordsz, /* in bytes */
7824 unsigned long *chunksz, /* in bytes */
7825 unsigned long *lsb0_p,
7826 unsigned long *signed_p,
7827 unsigned long *trunc_p,
7828 unsigned long encoded)
7829 {
7830 * start = encoded & 0x3F;
7831 * len = (encoded >> 6) & 0x3F;
7832 * oplen = (encoded >> 12) & 0x3F;
7833 * wordsz = (encoded >> 18) & 0xF;
7834 * chunksz = (encoded >> 22) & 0xF;
7835 * lsb0_p = (encoded >> 27) & 1;
7836 * signed_p = (encoded >> 28) & 1;
7837 * trunc_p = (encoded >> 29) & 1;
7838 }
7839
7840 bfd_reloc_status_type
7841 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7842 asection *input_section ATTRIBUTE_UNUSED,
7843 bfd_byte *contents,
7844 Elf_Internal_Rela *rel,
7845 bfd_vma relocation)
7846 {
7847 bfd_vma shift, x, mask;
7848 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7849 bfd_reloc_status_type r;
7850
7851 /* Perform this reloc, since it is complex.
7852 (this is not to say that it necessarily refers to a complex
7853 symbol; merely that it is a self-describing CGEN based reloc.
7854 i.e. the addend has the complete reloc information (bit start, end,
7855 word size, etc) encoded within it.). */
7856
7857 decode_complex_addend (&start, &oplen, &len, &wordsz,
7858 &chunksz, &lsb0_p, &signed_p,
7859 &trunc_p, rel->r_addend);
7860
7861 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7862
7863 if (lsb0_p)
7864 shift = (start + 1) - len;
7865 else
7866 shift = (8 * wordsz) - (start + len);
7867
7868 /* FIXME: octets_per_byte. */
7869 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7870
7871 #ifdef DEBUG
7872 printf ("Doing complex reloc: "
7873 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7874 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7875 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7876 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7877 oplen, (unsigned long) x, (unsigned long) mask,
7878 (unsigned long) relocation);
7879 #endif
7880
7881 r = bfd_reloc_ok;
7882 if (! trunc_p)
7883 /* Now do an overflow check. */
7884 r = bfd_check_overflow ((signed_p
7885 ? complain_overflow_signed
7886 : complain_overflow_unsigned),
7887 len, 0, (8 * wordsz),
7888 relocation);
7889
7890 /* Do the deed. */
7891 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7892
7893 #ifdef DEBUG
7894 printf (" relocation: %8.8lx\n"
7895 " shifted mask: %8.8lx\n"
7896 " shifted/masked reloc: %8.8lx\n"
7897 " result: %8.8lx\n",
7898 (unsigned long) relocation, (unsigned long) (mask << shift),
7899 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7900 #endif
7901 /* FIXME: octets_per_byte. */
7902 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7903 return r;
7904 }
7905
7906 /* When performing a relocatable link, the input relocations are
7907 preserved. But, if they reference global symbols, the indices
7908 referenced must be updated. Update all the relocations found in
7909 RELDATA. */
7910
7911 static void
7912 elf_link_adjust_relocs (bfd *abfd,
7913 struct bfd_elf_section_reloc_data *reldata)
7914 {
7915 unsigned int i;
7916 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7917 bfd_byte *erela;
7918 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7919 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7920 bfd_vma r_type_mask;
7921 int r_sym_shift;
7922 unsigned int count = reldata->count;
7923 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7924
7925 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7926 {
7927 swap_in = bed->s->swap_reloc_in;
7928 swap_out = bed->s->swap_reloc_out;
7929 }
7930 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7931 {
7932 swap_in = bed->s->swap_reloca_in;
7933 swap_out = bed->s->swap_reloca_out;
7934 }
7935 else
7936 abort ();
7937
7938 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7939 abort ();
7940
7941 if (bed->s->arch_size == 32)
7942 {
7943 r_type_mask = 0xff;
7944 r_sym_shift = 8;
7945 }
7946 else
7947 {
7948 r_type_mask = 0xffffffff;
7949 r_sym_shift = 32;
7950 }
7951
7952 erela = reldata->hdr->contents;
7953 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7954 {
7955 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7956 unsigned int j;
7957
7958 if (*rel_hash == NULL)
7959 continue;
7960
7961 BFD_ASSERT ((*rel_hash)->indx >= 0);
7962
7963 (*swap_in) (abfd, erela, irela);
7964 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7965 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7966 | (irela[j].r_info & r_type_mask));
7967 (*swap_out) (abfd, irela, erela);
7968 }
7969 }
7970
7971 struct elf_link_sort_rela
7972 {
7973 union {
7974 bfd_vma offset;
7975 bfd_vma sym_mask;
7976 } u;
7977 enum elf_reloc_type_class type;
7978 /* We use this as an array of size int_rels_per_ext_rel. */
7979 Elf_Internal_Rela rela[1];
7980 };
7981
7982 static int
7983 elf_link_sort_cmp1 (const void *A, const void *B)
7984 {
7985 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7986 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7987 int relativea, relativeb;
7988
7989 relativea = a->type == reloc_class_relative;
7990 relativeb = b->type == reloc_class_relative;
7991
7992 if (relativea < relativeb)
7993 return 1;
7994 if (relativea > relativeb)
7995 return -1;
7996 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7997 return -1;
7998 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7999 return 1;
8000 if (a->rela->r_offset < b->rela->r_offset)
8001 return -1;
8002 if (a->rela->r_offset > b->rela->r_offset)
8003 return 1;
8004 return 0;
8005 }
8006
8007 static int
8008 elf_link_sort_cmp2 (const void *A, const void *B)
8009 {
8010 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8011 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8012 int copya, copyb;
8013
8014 if (a->u.offset < b->u.offset)
8015 return -1;
8016 if (a->u.offset > b->u.offset)
8017 return 1;
8018 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8019 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8020 if (copya < copyb)
8021 return -1;
8022 if (copya > copyb)
8023 return 1;
8024 if (a->rela->r_offset < b->rela->r_offset)
8025 return -1;
8026 if (a->rela->r_offset > b->rela->r_offset)
8027 return 1;
8028 return 0;
8029 }
8030
8031 static size_t
8032 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8033 {
8034 asection *dynamic_relocs;
8035 asection *rela_dyn;
8036 asection *rel_dyn;
8037 bfd_size_type count, size;
8038 size_t i, ret, sort_elt, ext_size;
8039 bfd_byte *sort, *s_non_relative, *p;
8040 struct elf_link_sort_rela *sq;
8041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8042 int i2e = bed->s->int_rels_per_ext_rel;
8043 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8044 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8045 struct bfd_link_order *lo;
8046 bfd_vma r_sym_mask;
8047 bfd_boolean use_rela;
8048
8049 /* Find a dynamic reloc section. */
8050 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8051 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8052 if (rela_dyn != NULL && rela_dyn->size > 0
8053 && rel_dyn != NULL && rel_dyn->size > 0)
8054 {
8055 bfd_boolean use_rela_initialised = FALSE;
8056
8057 /* This is just here to stop gcc from complaining.
8058 It's initialization checking code is not perfect. */
8059 use_rela = TRUE;
8060
8061 /* Both sections are present. Examine the sizes
8062 of the indirect sections to help us choose. */
8063 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8064 if (lo->type == bfd_indirect_link_order)
8065 {
8066 asection *o = lo->u.indirect.section;
8067
8068 if ((o->size % bed->s->sizeof_rela) == 0)
8069 {
8070 if ((o->size % bed->s->sizeof_rel) == 0)
8071 /* Section size is divisible by both rel and rela sizes.
8072 It is of no help to us. */
8073 ;
8074 else
8075 {
8076 /* Section size is only divisible by rela. */
8077 if (use_rela_initialised && (use_rela == FALSE))
8078 {
8079 _bfd_error_handler
8080 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8081 bfd_set_error (bfd_error_invalid_operation);
8082 return 0;
8083 }
8084 else
8085 {
8086 use_rela = TRUE;
8087 use_rela_initialised = TRUE;
8088 }
8089 }
8090 }
8091 else if ((o->size % bed->s->sizeof_rel) == 0)
8092 {
8093 /* Section size is only divisible by rel. */
8094 if (use_rela_initialised && (use_rela == TRUE))
8095 {
8096 _bfd_error_handler
8097 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8098 bfd_set_error (bfd_error_invalid_operation);
8099 return 0;
8100 }
8101 else
8102 {
8103 use_rela = FALSE;
8104 use_rela_initialised = TRUE;
8105 }
8106 }
8107 else
8108 {
8109 /* The section size is not divisible by either - something is wrong. */
8110 _bfd_error_handler
8111 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8112 bfd_set_error (bfd_error_invalid_operation);
8113 return 0;
8114 }
8115 }
8116
8117 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8118 if (lo->type == bfd_indirect_link_order)
8119 {
8120 asection *o = lo->u.indirect.section;
8121
8122 if ((o->size % bed->s->sizeof_rela) == 0)
8123 {
8124 if ((o->size % bed->s->sizeof_rel) == 0)
8125 /* Section size is divisible by both rel and rela sizes.
8126 It is of no help to us. */
8127 ;
8128 else
8129 {
8130 /* Section size is only divisible by rela. */
8131 if (use_rela_initialised && (use_rela == FALSE))
8132 {
8133 _bfd_error_handler
8134 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8135 bfd_set_error (bfd_error_invalid_operation);
8136 return 0;
8137 }
8138 else
8139 {
8140 use_rela = TRUE;
8141 use_rela_initialised = TRUE;
8142 }
8143 }
8144 }
8145 else if ((o->size % bed->s->sizeof_rel) == 0)
8146 {
8147 /* Section size is only divisible by rel. */
8148 if (use_rela_initialised && (use_rela == TRUE))
8149 {
8150 _bfd_error_handler
8151 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8152 bfd_set_error (bfd_error_invalid_operation);
8153 return 0;
8154 }
8155 else
8156 {
8157 use_rela = FALSE;
8158 use_rela_initialised = TRUE;
8159 }
8160 }
8161 else
8162 {
8163 /* The section size is not divisible by either - something is wrong. */
8164 _bfd_error_handler
8165 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return 0;
8168 }
8169 }
8170
8171 if (! use_rela_initialised)
8172 /* Make a guess. */
8173 use_rela = TRUE;
8174 }
8175 else if (rela_dyn != NULL && rela_dyn->size > 0)
8176 use_rela = TRUE;
8177 else if (rel_dyn != NULL && rel_dyn->size > 0)
8178 use_rela = FALSE;
8179 else
8180 return 0;
8181
8182 if (use_rela)
8183 {
8184 dynamic_relocs = rela_dyn;
8185 ext_size = bed->s->sizeof_rela;
8186 swap_in = bed->s->swap_reloca_in;
8187 swap_out = bed->s->swap_reloca_out;
8188 }
8189 else
8190 {
8191 dynamic_relocs = rel_dyn;
8192 ext_size = bed->s->sizeof_rel;
8193 swap_in = bed->s->swap_reloc_in;
8194 swap_out = bed->s->swap_reloc_out;
8195 }
8196
8197 size = 0;
8198 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8199 if (lo->type == bfd_indirect_link_order)
8200 size += lo->u.indirect.section->size;
8201
8202 if (size != dynamic_relocs->size)
8203 return 0;
8204
8205 sort_elt = (sizeof (struct elf_link_sort_rela)
8206 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8207
8208 count = dynamic_relocs->size / ext_size;
8209 if (count == 0)
8210 return 0;
8211 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8212
8213 if (sort == NULL)
8214 {
8215 (*info->callbacks->warning)
8216 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8217 return 0;
8218 }
8219
8220 if (bed->s->arch_size == 32)
8221 r_sym_mask = ~(bfd_vma) 0xff;
8222 else
8223 r_sym_mask = ~(bfd_vma) 0xffffffff;
8224
8225 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8226 if (lo->type == bfd_indirect_link_order)
8227 {
8228 bfd_byte *erel, *erelend;
8229 asection *o = lo->u.indirect.section;
8230
8231 if (o->contents == NULL && o->size != 0)
8232 {
8233 /* This is a reloc section that is being handled as a normal
8234 section. See bfd_section_from_shdr. We can't combine
8235 relocs in this case. */
8236 free (sort);
8237 return 0;
8238 }
8239 erel = o->contents;
8240 erelend = o->contents + o->size;
8241 /* FIXME: octets_per_byte. */
8242 p = sort + o->output_offset / ext_size * sort_elt;
8243
8244 while (erel < erelend)
8245 {
8246 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8247
8248 (*swap_in) (abfd, erel, s->rela);
8249 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8250 s->u.sym_mask = r_sym_mask;
8251 p += sort_elt;
8252 erel += ext_size;
8253 }
8254 }
8255
8256 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8257
8258 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8259 {
8260 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8261 if (s->type != reloc_class_relative)
8262 break;
8263 }
8264 ret = i;
8265 s_non_relative = p;
8266
8267 sq = (struct elf_link_sort_rela *) s_non_relative;
8268 for (; i < count; i++, p += sort_elt)
8269 {
8270 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8271 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8272 sq = sp;
8273 sp->u.offset = sq->rela->r_offset;
8274 }
8275
8276 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8277
8278 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8279 if (lo->type == bfd_indirect_link_order)
8280 {
8281 bfd_byte *erel, *erelend;
8282 asection *o = lo->u.indirect.section;
8283
8284 erel = o->contents;
8285 erelend = o->contents + o->size;
8286 /* FIXME: octets_per_byte. */
8287 p = sort + o->output_offset / ext_size * sort_elt;
8288 while (erel < erelend)
8289 {
8290 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8291 (*swap_out) (abfd, s->rela, erel);
8292 p += sort_elt;
8293 erel += ext_size;
8294 }
8295 }
8296
8297 free (sort);
8298 *psec = dynamic_relocs;
8299 return ret;
8300 }
8301
8302 /* Flush the output symbols to the file. */
8303
8304 static bfd_boolean
8305 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8306 const struct elf_backend_data *bed)
8307 {
8308 if (flinfo->symbuf_count > 0)
8309 {
8310 Elf_Internal_Shdr *hdr;
8311 file_ptr pos;
8312 bfd_size_type amt;
8313
8314 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8315 pos = hdr->sh_offset + hdr->sh_size;
8316 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8317 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8318 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8319 return FALSE;
8320
8321 hdr->sh_size += amt;
8322 flinfo->symbuf_count = 0;
8323 }
8324
8325 return TRUE;
8326 }
8327
8328 /* Add a symbol to the output symbol table. */
8329
8330 static int
8331 elf_link_output_sym (struct elf_final_link_info *flinfo,
8332 const char *name,
8333 Elf_Internal_Sym *elfsym,
8334 asection *input_sec,
8335 struct elf_link_hash_entry *h)
8336 {
8337 bfd_byte *dest;
8338 Elf_External_Sym_Shndx *destshndx;
8339 int (*output_symbol_hook)
8340 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8341 struct elf_link_hash_entry *);
8342 const struct elf_backend_data *bed;
8343
8344 bed = get_elf_backend_data (flinfo->output_bfd);
8345 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8346 if (output_symbol_hook != NULL)
8347 {
8348 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8349 if (ret != 1)
8350 return ret;
8351 }
8352
8353 if (name == NULL || *name == '\0')
8354 elfsym->st_name = 0;
8355 else if (input_sec->flags & SEC_EXCLUDE)
8356 elfsym->st_name = 0;
8357 else
8358 {
8359 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8360 name, TRUE, FALSE);
8361 if (elfsym->st_name == (unsigned long) -1)
8362 return 0;
8363 }
8364
8365 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8366 {
8367 if (! elf_link_flush_output_syms (flinfo, bed))
8368 return 0;
8369 }
8370
8371 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8372 destshndx = flinfo->symshndxbuf;
8373 if (destshndx != NULL)
8374 {
8375 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8376 {
8377 bfd_size_type amt;
8378
8379 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8380 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8381 amt * 2);
8382 if (destshndx == NULL)
8383 return 0;
8384 flinfo->symshndxbuf = destshndx;
8385 memset ((char *) destshndx + amt, 0, amt);
8386 flinfo->shndxbuf_size *= 2;
8387 }
8388 destshndx += bfd_get_symcount (flinfo->output_bfd);
8389 }
8390
8391 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8392 flinfo->symbuf_count += 1;
8393 bfd_get_symcount (flinfo->output_bfd) += 1;
8394
8395 return 1;
8396 }
8397
8398 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8399
8400 static bfd_boolean
8401 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8402 {
8403 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8404 && sym->st_shndx < SHN_LORESERVE)
8405 {
8406 /* The gABI doesn't support dynamic symbols in output sections
8407 beyond 64k. */
8408 (*_bfd_error_handler)
8409 (_("%B: Too many sections: %d (>= %d)"),
8410 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8411 bfd_set_error (bfd_error_nonrepresentable_section);
8412 return FALSE;
8413 }
8414 return TRUE;
8415 }
8416
8417 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8418 allowing an unsatisfied unversioned symbol in the DSO to match a
8419 versioned symbol that would normally require an explicit version.
8420 We also handle the case that a DSO references a hidden symbol
8421 which may be satisfied by a versioned symbol in another DSO. */
8422
8423 static bfd_boolean
8424 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8425 const struct elf_backend_data *bed,
8426 struct elf_link_hash_entry *h)
8427 {
8428 bfd *abfd;
8429 struct elf_link_loaded_list *loaded;
8430
8431 if (!is_elf_hash_table (info->hash))
8432 return FALSE;
8433
8434 switch (h->root.type)
8435 {
8436 default:
8437 abfd = NULL;
8438 break;
8439
8440 case bfd_link_hash_undefined:
8441 case bfd_link_hash_undefweak:
8442 abfd = h->root.u.undef.abfd;
8443 if ((abfd->flags & DYNAMIC) == 0
8444 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8445 return FALSE;
8446 break;
8447
8448 case bfd_link_hash_defined:
8449 case bfd_link_hash_defweak:
8450 abfd = h->root.u.def.section->owner;
8451 break;
8452
8453 case bfd_link_hash_common:
8454 abfd = h->root.u.c.p->section->owner;
8455 break;
8456 }
8457 BFD_ASSERT (abfd != NULL);
8458
8459 for (loaded = elf_hash_table (info)->loaded;
8460 loaded != NULL;
8461 loaded = loaded->next)
8462 {
8463 bfd *input;
8464 Elf_Internal_Shdr *hdr;
8465 bfd_size_type symcount;
8466 bfd_size_type extsymcount;
8467 bfd_size_type extsymoff;
8468 Elf_Internal_Shdr *versymhdr;
8469 Elf_Internal_Sym *isym;
8470 Elf_Internal_Sym *isymend;
8471 Elf_Internal_Sym *isymbuf;
8472 Elf_External_Versym *ever;
8473 Elf_External_Versym *extversym;
8474
8475 input = loaded->abfd;
8476
8477 /* We check each DSO for a possible hidden versioned definition. */
8478 if (input == abfd
8479 || (input->flags & DYNAMIC) == 0
8480 || elf_dynversym (input) == 0)
8481 continue;
8482
8483 hdr = &elf_tdata (input)->dynsymtab_hdr;
8484
8485 symcount = hdr->sh_size / bed->s->sizeof_sym;
8486 if (elf_bad_symtab (input))
8487 {
8488 extsymcount = symcount;
8489 extsymoff = 0;
8490 }
8491 else
8492 {
8493 extsymcount = symcount - hdr->sh_info;
8494 extsymoff = hdr->sh_info;
8495 }
8496
8497 if (extsymcount == 0)
8498 continue;
8499
8500 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8501 NULL, NULL, NULL);
8502 if (isymbuf == NULL)
8503 return FALSE;
8504
8505 /* Read in any version definitions. */
8506 versymhdr = &elf_tdata (input)->dynversym_hdr;
8507 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8508 if (extversym == NULL)
8509 goto error_ret;
8510
8511 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8512 || (bfd_bread (extversym, versymhdr->sh_size, input)
8513 != versymhdr->sh_size))
8514 {
8515 free (extversym);
8516 error_ret:
8517 free (isymbuf);
8518 return FALSE;
8519 }
8520
8521 ever = extversym + extsymoff;
8522 isymend = isymbuf + extsymcount;
8523 for (isym = isymbuf; isym < isymend; isym++, ever++)
8524 {
8525 const char *name;
8526 Elf_Internal_Versym iver;
8527 unsigned short version_index;
8528
8529 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8530 || isym->st_shndx == SHN_UNDEF)
8531 continue;
8532
8533 name = bfd_elf_string_from_elf_section (input,
8534 hdr->sh_link,
8535 isym->st_name);
8536 if (strcmp (name, h->root.root.string) != 0)
8537 continue;
8538
8539 _bfd_elf_swap_versym_in (input, ever, &iver);
8540
8541 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8542 && !(h->def_regular
8543 && h->forced_local))
8544 {
8545 /* If we have a non-hidden versioned sym, then it should
8546 have provided a definition for the undefined sym unless
8547 it is defined in a non-shared object and forced local.
8548 */
8549 abort ();
8550 }
8551
8552 version_index = iver.vs_vers & VERSYM_VERSION;
8553 if (version_index == 1 || version_index == 2)
8554 {
8555 /* This is the base or first version. We can use it. */
8556 free (extversym);
8557 free (isymbuf);
8558 return TRUE;
8559 }
8560 }
8561
8562 free (extversym);
8563 free (isymbuf);
8564 }
8565
8566 return FALSE;
8567 }
8568
8569 /* Add an external symbol to the symbol table. This is called from
8570 the hash table traversal routine. When generating a shared object,
8571 we go through the symbol table twice. The first time we output
8572 anything that might have been forced to local scope in a version
8573 script. The second time we output the symbols that are still
8574 global symbols. */
8575
8576 static bfd_boolean
8577 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8578 {
8579 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8580 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8581 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8582 bfd_boolean strip;
8583 Elf_Internal_Sym sym;
8584 asection *input_sec;
8585 const struct elf_backend_data *bed;
8586 long indx;
8587 int ret;
8588
8589 if (h->root.type == bfd_link_hash_warning)
8590 {
8591 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8592 if (h->root.type == bfd_link_hash_new)
8593 return TRUE;
8594 }
8595
8596 /* Decide whether to output this symbol in this pass. */
8597 if (eoinfo->localsyms)
8598 {
8599 if (!h->forced_local)
8600 return TRUE;
8601 }
8602 else
8603 {
8604 if (h->forced_local)
8605 return TRUE;
8606 }
8607
8608 bed = get_elf_backend_data (flinfo->output_bfd);
8609
8610 if (h->root.type == bfd_link_hash_undefined)
8611 {
8612 /* If we have an undefined symbol reference here then it must have
8613 come from a shared library that is being linked in. (Undefined
8614 references in regular files have already been handled unless
8615 they are in unreferenced sections which are removed by garbage
8616 collection). */
8617 bfd_boolean ignore_undef = FALSE;
8618
8619 /* Some symbols may be special in that the fact that they're
8620 undefined can be safely ignored - let backend determine that. */
8621 if (bed->elf_backend_ignore_undef_symbol)
8622 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8623
8624 /* If we are reporting errors for this situation then do so now. */
8625 if (!ignore_undef
8626 && h->ref_dynamic
8627 && (!h->ref_regular || flinfo->info->gc_sections)
8628 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8629 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8630 {
8631 if (!(flinfo->info->callbacks->undefined_symbol
8632 (flinfo->info, h->root.root.string,
8633 h->ref_regular ? NULL : h->root.u.undef.abfd,
8634 NULL, 0,
8635 (flinfo->info->unresolved_syms_in_shared_libs
8636 == RM_GENERATE_ERROR))))
8637 {
8638 bfd_set_error (bfd_error_bad_value);
8639 eoinfo->failed = TRUE;
8640 return FALSE;
8641 }
8642 }
8643 }
8644
8645 /* We should also warn if a forced local symbol is referenced from
8646 shared libraries. */
8647 if (!flinfo->info->relocatable
8648 && flinfo->info->executable
8649 && h->forced_local
8650 && h->ref_dynamic
8651 && h->def_regular
8652 && !h->dynamic_def
8653 && !h->dynamic_weak
8654 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8655 {
8656 bfd *def_bfd;
8657 const char *msg;
8658
8659 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8660 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8661 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8662 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8663 else
8664 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8665 def_bfd = flinfo->output_bfd;
8666 if (h->root.u.def.section != bfd_abs_section_ptr)
8667 def_bfd = h->root.u.def.section->owner;
8668 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8669 h->root.root.string);
8670 bfd_set_error (bfd_error_bad_value);
8671 eoinfo->failed = TRUE;
8672 return FALSE;
8673 }
8674
8675 /* We don't want to output symbols that have never been mentioned by
8676 a regular file, or that we have been told to strip. However, if
8677 h->indx is set to -2, the symbol is used by a reloc and we must
8678 output it. */
8679 if (h->indx == -2)
8680 strip = FALSE;
8681 else if ((h->def_dynamic
8682 || h->ref_dynamic
8683 || h->root.type == bfd_link_hash_new)
8684 && !h->def_regular
8685 && !h->ref_regular)
8686 strip = TRUE;
8687 else if (flinfo->info->strip == strip_all)
8688 strip = TRUE;
8689 else if (flinfo->info->strip == strip_some
8690 && bfd_hash_lookup (flinfo->info->keep_hash,
8691 h->root.root.string, FALSE, FALSE) == NULL)
8692 strip = TRUE;
8693 else if ((h->root.type == bfd_link_hash_defined
8694 || h->root.type == bfd_link_hash_defweak)
8695 && ((flinfo->info->strip_discarded
8696 && discarded_section (h->root.u.def.section))
8697 || (h->root.u.def.section->owner != NULL
8698 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8699 strip = TRUE;
8700 else if ((h->root.type == bfd_link_hash_undefined
8701 || h->root.type == bfd_link_hash_undefweak)
8702 && h->root.u.undef.abfd != NULL
8703 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8704 strip = TRUE;
8705 else
8706 strip = FALSE;
8707
8708 /* If we're stripping it, and it's not a dynamic symbol, there's
8709 nothing else to do unless it is a forced local symbol or a
8710 STT_GNU_IFUNC symbol. */
8711 if (strip
8712 && h->dynindx == -1
8713 && h->type != STT_GNU_IFUNC
8714 && !h->forced_local)
8715 return TRUE;
8716
8717 sym.st_value = 0;
8718 sym.st_size = h->size;
8719 sym.st_other = h->other;
8720 if (h->forced_local)
8721 {
8722 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8723 /* Turn off visibility on local symbol. */
8724 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8725 }
8726 else if (h->unique_global)
8727 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8728 else if (h->root.type == bfd_link_hash_undefweak
8729 || h->root.type == bfd_link_hash_defweak)
8730 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8731 else
8732 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8733 sym.st_target_internal = h->target_internal;
8734
8735 switch (h->root.type)
8736 {
8737 default:
8738 case bfd_link_hash_new:
8739 case bfd_link_hash_warning:
8740 abort ();
8741 return FALSE;
8742
8743 case bfd_link_hash_undefined:
8744 case bfd_link_hash_undefweak:
8745 input_sec = bfd_und_section_ptr;
8746 sym.st_shndx = SHN_UNDEF;
8747 break;
8748
8749 case bfd_link_hash_defined:
8750 case bfd_link_hash_defweak:
8751 {
8752 input_sec = h->root.u.def.section;
8753 if (input_sec->output_section != NULL)
8754 {
8755 sym.st_shndx =
8756 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8757 input_sec->output_section);
8758 if (sym.st_shndx == SHN_BAD)
8759 {
8760 (*_bfd_error_handler)
8761 (_("%B: could not find output section %A for input section %A"),
8762 flinfo->output_bfd, input_sec->output_section, input_sec);
8763 bfd_set_error (bfd_error_nonrepresentable_section);
8764 eoinfo->failed = TRUE;
8765 return FALSE;
8766 }
8767
8768 /* ELF symbols in relocatable files are section relative,
8769 but in nonrelocatable files they are virtual
8770 addresses. */
8771 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8772 if (!flinfo->info->relocatable)
8773 {
8774 sym.st_value += input_sec->output_section->vma;
8775 if (h->type == STT_TLS)
8776 {
8777 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8778 if (tls_sec != NULL)
8779 sym.st_value -= tls_sec->vma;
8780 else
8781 {
8782 /* The TLS section may have been garbage collected. */
8783 BFD_ASSERT (flinfo->info->gc_sections
8784 && !input_sec->gc_mark);
8785 }
8786 }
8787 }
8788 }
8789 else
8790 {
8791 BFD_ASSERT (input_sec->owner == NULL
8792 || (input_sec->owner->flags & DYNAMIC) != 0);
8793 sym.st_shndx = SHN_UNDEF;
8794 input_sec = bfd_und_section_ptr;
8795 }
8796 }
8797 break;
8798
8799 case bfd_link_hash_common:
8800 input_sec = h->root.u.c.p->section;
8801 sym.st_shndx = bed->common_section_index (input_sec);
8802 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8803 break;
8804
8805 case bfd_link_hash_indirect:
8806 /* These symbols are created by symbol versioning. They point
8807 to the decorated version of the name. For example, if the
8808 symbol foo@@GNU_1.2 is the default, which should be used when
8809 foo is used with no version, then we add an indirect symbol
8810 foo which points to foo@@GNU_1.2. We ignore these symbols,
8811 since the indirected symbol is already in the hash table. */
8812 return TRUE;
8813 }
8814
8815 /* Give the processor backend a chance to tweak the symbol value,
8816 and also to finish up anything that needs to be done for this
8817 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8818 forced local syms when non-shared is due to a historical quirk.
8819 STT_GNU_IFUNC symbol must go through PLT. */
8820 if ((h->type == STT_GNU_IFUNC
8821 && h->def_regular
8822 && !flinfo->info->relocatable)
8823 || ((h->dynindx != -1
8824 || h->forced_local)
8825 && ((flinfo->info->shared
8826 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8827 || h->root.type != bfd_link_hash_undefweak))
8828 || !h->forced_local)
8829 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8830 {
8831 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8832 (flinfo->output_bfd, flinfo->info, h, &sym)))
8833 {
8834 eoinfo->failed = TRUE;
8835 return FALSE;
8836 }
8837 }
8838
8839 /* If we are marking the symbol as undefined, and there are no
8840 non-weak references to this symbol from a regular object, then
8841 mark the symbol as weak undefined; if there are non-weak
8842 references, mark the symbol as strong. We can't do this earlier,
8843 because it might not be marked as undefined until the
8844 finish_dynamic_symbol routine gets through with it. */
8845 if (sym.st_shndx == SHN_UNDEF
8846 && h->ref_regular
8847 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8848 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8849 {
8850 int bindtype;
8851 unsigned int type = ELF_ST_TYPE (sym.st_info);
8852
8853 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8854 if (type == STT_GNU_IFUNC)
8855 type = STT_FUNC;
8856
8857 if (h->ref_regular_nonweak)
8858 bindtype = STB_GLOBAL;
8859 else
8860 bindtype = STB_WEAK;
8861 sym.st_info = ELF_ST_INFO (bindtype, type);
8862 }
8863
8864 /* If this is a symbol defined in a dynamic library, don't use the
8865 symbol size from the dynamic library. Relinking an executable
8866 against a new library may introduce gratuitous changes in the
8867 executable's symbols if we keep the size. */
8868 if (sym.st_shndx == SHN_UNDEF
8869 && !h->def_regular
8870 && h->def_dynamic)
8871 sym.st_size = 0;
8872
8873 /* If a non-weak symbol with non-default visibility is not defined
8874 locally, it is a fatal error. */
8875 if (!flinfo->info->relocatable
8876 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8877 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8878 && h->root.type == bfd_link_hash_undefined
8879 && !h->def_regular)
8880 {
8881 const char *msg;
8882
8883 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8884 msg = _("%B: protected symbol `%s' isn't defined");
8885 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8886 msg = _("%B: internal symbol `%s' isn't defined");
8887 else
8888 msg = _("%B: hidden symbol `%s' isn't defined");
8889 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8890 bfd_set_error (bfd_error_bad_value);
8891 eoinfo->failed = TRUE;
8892 return FALSE;
8893 }
8894
8895 /* If this symbol should be put in the .dynsym section, then put it
8896 there now. We already know the symbol index. We also fill in
8897 the entry in the .hash section. */
8898 if (flinfo->dynsym_sec != NULL
8899 && h->dynindx != -1
8900 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8901 {
8902 bfd_byte *esym;
8903
8904 sym.st_name = h->dynstr_index;
8905 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8906 if (!check_dynsym (flinfo->output_bfd, &sym))
8907 {
8908 eoinfo->failed = TRUE;
8909 return FALSE;
8910 }
8911 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
8912
8913 if (flinfo->hash_sec != NULL)
8914 {
8915 size_t hash_entry_size;
8916 bfd_byte *bucketpos;
8917 bfd_vma chain;
8918 size_t bucketcount;
8919 size_t bucket;
8920
8921 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
8922 bucket = h->u.elf_hash_value % bucketcount;
8923
8924 hash_entry_size
8925 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
8926 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
8927 + (bucket + 2) * hash_entry_size);
8928 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
8929 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
8930 bucketpos);
8931 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
8932 ((bfd_byte *) flinfo->hash_sec->contents
8933 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8934 }
8935
8936 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
8937 {
8938 Elf_Internal_Versym iversym;
8939 Elf_External_Versym *eversym;
8940
8941 if (!h->def_regular)
8942 {
8943 if (h->verinfo.verdef == NULL)
8944 iversym.vs_vers = 0;
8945 else
8946 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8947 }
8948 else
8949 {
8950 if (h->verinfo.vertree == NULL)
8951 iversym.vs_vers = 1;
8952 else
8953 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8954 if (flinfo->info->create_default_symver)
8955 iversym.vs_vers++;
8956 }
8957
8958 if (h->hidden)
8959 iversym.vs_vers |= VERSYM_HIDDEN;
8960
8961 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
8962 eversym += h->dynindx;
8963 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
8964 }
8965 }
8966
8967 /* If we're stripping it, then it was just a dynamic symbol, and
8968 there's nothing else to do. */
8969 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8970 return TRUE;
8971
8972 indx = bfd_get_symcount (flinfo->output_bfd);
8973 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
8974 if (ret == 0)
8975 {
8976 eoinfo->failed = TRUE;
8977 return FALSE;
8978 }
8979 else if (ret == 1)
8980 h->indx = indx;
8981 else if (h->indx == -2)
8982 abort();
8983
8984 return TRUE;
8985 }
8986
8987 /* Return TRUE if special handling is done for relocs in SEC against
8988 symbols defined in discarded sections. */
8989
8990 static bfd_boolean
8991 elf_section_ignore_discarded_relocs (asection *sec)
8992 {
8993 const struct elf_backend_data *bed;
8994
8995 switch (sec->sec_info_type)
8996 {
8997 case SEC_INFO_TYPE_STABS:
8998 case SEC_INFO_TYPE_EH_FRAME:
8999 return TRUE;
9000 default:
9001 break;
9002 }
9003
9004 bed = get_elf_backend_data (sec->owner);
9005 if (bed->elf_backend_ignore_discarded_relocs != NULL
9006 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9007 return TRUE;
9008
9009 return FALSE;
9010 }
9011
9012 /* Return a mask saying how ld should treat relocations in SEC against
9013 symbols defined in discarded sections. If this function returns
9014 COMPLAIN set, ld will issue a warning message. If this function
9015 returns PRETEND set, and the discarded section was link-once and the
9016 same size as the kept link-once section, ld will pretend that the
9017 symbol was actually defined in the kept section. Otherwise ld will
9018 zero the reloc (at least that is the intent, but some cooperation by
9019 the target dependent code is needed, particularly for REL targets). */
9020
9021 unsigned int
9022 _bfd_elf_default_action_discarded (asection *sec)
9023 {
9024 if (sec->flags & SEC_DEBUGGING)
9025 return PRETEND;
9026
9027 if (strcmp (".eh_frame", sec->name) == 0)
9028 return 0;
9029
9030 if (strcmp (".gcc_except_table", sec->name) == 0)
9031 return 0;
9032
9033 return COMPLAIN | PRETEND;
9034 }
9035
9036 /* Find a match between a section and a member of a section group. */
9037
9038 static asection *
9039 match_group_member (asection *sec, asection *group,
9040 struct bfd_link_info *info)
9041 {
9042 asection *first = elf_next_in_group (group);
9043 asection *s = first;
9044
9045 while (s != NULL)
9046 {
9047 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9048 return s;
9049
9050 s = elf_next_in_group (s);
9051 if (s == first)
9052 break;
9053 }
9054
9055 return NULL;
9056 }
9057
9058 /* Check if the kept section of a discarded section SEC can be used
9059 to replace it. Return the replacement if it is OK. Otherwise return
9060 NULL. */
9061
9062 asection *
9063 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9064 {
9065 asection *kept;
9066
9067 kept = sec->kept_section;
9068 if (kept != NULL)
9069 {
9070 if ((kept->flags & SEC_GROUP) != 0)
9071 kept = match_group_member (sec, kept, info);
9072 if (kept != NULL
9073 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9074 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9075 kept = NULL;
9076 sec->kept_section = kept;
9077 }
9078 return kept;
9079 }
9080
9081 /* Link an input file into the linker output file. This function
9082 handles all the sections and relocations of the input file at once.
9083 This is so that we only have to read the local symbols once, and
9084 don't have to keep them in memory. */
9085
9086 static bfd_boolean
9087 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9088 {
9089 int (*relocate_section)
9090 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9091 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9092 bfd *output_bfd;
9093 Elf_Internal_Shdr *symtab_hdr;
9094 size_t locsymcount;
9095 size_t extsymoff;
9096 Elf_Internal_Sym *isymbuf;
9097 Elf_Internal_Sym *isym;
9098 Elf_Internal_Sym *isymend;
9099 long *pindex;
9100 asection **ppsection;
9101 asection *o;
9102 const struct elf_backend_data *bed;
9103 struct elf_link_hash_entry **sym_hashes;
9104 bfd_size_type address_size;
9105 bfd_vma r_type_mask;
9106 int r_sym_shift;
9107
9108 output_bfd = flinfo->output_bfd;
9109 bed = get_elf_backend_data (output_bfd);
9110 relocate_section = bed->elf_backend_relocate_section;
9111
9112 /* If this is a dynamic object, we don't want to do anything here:
9113 we don't want the local symbols, and we don't want the section
9114 contents. */
9115 if ((input_bfd->flags & DYNAMIC) != 0)
9116 return TRUE;
9117
9118 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9119 if (elf_bad_symtab (input_bfd))
9120 {
9121 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9122 extsymoff = 0;
9123 }
9124 else
9125 {
9126 locsymcount = symtab_hdr->sh_info;
9127 extsymoff = symtab_hdr->sh_info;
9128 }
9129
9130 /* Read the local symbols. */
9131 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9132 if (isymbuf == NULL && locsymcount != 0)
9133 {
9134 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9135 flinfo->internal_syms,
9136 flinfo->external_syms,
9137 flinfo->locsym_shndx);
9138 if (isymbuf == NULL)
9139 return FALSE;
9140 }
9141
9142 /* Find local symbol sections and adjust values of symbols in
9143 SEC_MERGE sections. Write out those local symbols we know are
9144 going into the output file. */
9145 isymend = isymbuf + locsymcount;
9146 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9147 isym < isymend;
9148 isym++, pindex++, ppsection++)
9149 {
9150 asection *isec;
9151 const char *name;
9152 Elf_Internal_Sym osym;
9153 long indx;
9154 int ret;
9155
9156 *pindex = -1;
9157
9158 if (elf_bad_symtab (input_bfd))
9159 {
9160 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9161 {
9162 *ppsection = NULL;
9163 continue;
9164 }
9165 }
9166
9167 if (isym->st_shndx == SHN_UNDEF)
9168 isec = bfd_und_section_ptr;
9169 else if (isym->st_shndx == SHN_ABS)
9170 isec = bfd_abs_section_ptr;
9171 else if (isym->st_shndx == SHN_COMMON)
9172 isec = bfd_com_section_ptr;
9173 else
9174 {
9175 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9176 if (isec == NULL)
9177 {
9178 /* Don't attempt to output symbols with st_shnx in the
9179 reserved range other than SHN_ABS and SHN_COMMON. */
9180 *ppsection = NULL;
9181 continue;
9182 }
9183 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9184 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9185 isym->st_value =
9186 _bfd_merged_section_offset (output_bfd, &isec,
9187 elf_section_data (isec)->sec_info,
9188 isym->st_value);
9189 }
9190
9191 *ppsection = isec;
9192
9193 /* Don't output the first, undefined, symbol. */
9194 if (ppsection == flinfo->sections)
9195 continue;
9196
9197 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9198 {
9199 /* We never output section symbols. Instead, we use the
9200 section symbol of the corresponding section in the output
9201 file. */
9202 continue;
9203 }
9204
9205 /* If we are stripping all symbols, we don't want to output this
9206 one. */
9207 if (flinfo->info->strip == strip_all)
9208 continue;
9209
9210 /* If we are discarding all local symbols, we don't want to
9211 output this one. If we are generating a relocatable output
9212 file, then some of the local symbols may be required by
9213 relocs; we output them below as we discover that they are
9214 needed. */
9215 if (flinfo->info->discard == discard_all)
9216 continue;
9217
9218 /* If this symbol is defined in a section which we are
9219 discarding, we don't need to keep it. */
9220 if (isym->st_shndx != SHN_UNDEF
9221 && isym->st_shndx < SHN_LORESERVE
9222 && bfd_section_removed_from_list (output_bfd,
9223 isec->output_section))
9224 continue;
9225
9226 /* Get the name of the symbol. */
9227 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9228 isym->st_name);
9229 if (name == NULL)
9230 return FALSE;
9231
9232 /* See if we are discarding symbols with this name. */
9233 if ((flinfo->info->strip == strip_some
9234 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9235 == NULL))
9236 || (((flinfo->info->discard == discard_sec_merge
9237 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9238 || flinfo->info->discard == discard_l)
9239 && bfd_is_local_label_name (input_bfd, name)))
9240 continue;
9241
9242 osym = *isym;
9243
9244 /* Adjust the section index for the output file. */
9245 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9246 isec->output_section);
9247 if (osym.st_shndx == SHN_BAD)
9248 return FALSE;
9249
9250 /* ELF symbols in relocatable files are section relative, but
9251 in executable files they are virtual addresses. Note that
9252 this code assumes that all ELF sections have an associated
9253 BFD section with a reasonable value for output_offset; below
9254 we assume that they also have a reasonable value for
9255 output_section. Any special sections must be set up to meet
9256 these requirements. */
9257 osym.st_value += isec->output_offset;
9258 if (!flinfo->info->relocatable)
9259 {
9260 osym.st_value += isec->output_section->vma;
9261 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9262 {
9263 /* STT_TLS symbols are relative to PT_TLS segment base. */
9264 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9265 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9266 }
9267 }
9268
9269 indx = bfd_get_symcount (output_bfd);
9270 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9271 if (ret == 0)
9272 return FALSE;
9273 else if (ret == 1)
9274 *pindex = indx;
9275 }
9276
9277 if (bed->s->arch_size == 32)
9278 {
9279 r_type_mask = 0xff;
9280 r_sym_shift = 8;
9281 address_size = 4;
9282 }
9283 else
9284 {
9285 r_type_mask = 0xffffffff;
9286 r_sym_shift = 32;
9287 address_size = 8;
9288 }
9289
9290 /* Relocate the contents of each section. */
9291 sym_hashes = elf_sym_hashes (input_bfd);
9292 for (o = input_bfd->sections; o != NULL; o = o->next)
9293 {
9294 bfd_byte *contents;
9295
9296 if (! o->linker_mark)
9297 {
9298 /* This section was omitted from the link. */
9299 continue;
9300 }
9301
9302 if (flinfo->info->relocatable
9303 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9304 {
9305 /* Deal with the group signature symbol. */
9306 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9307 unsigned long symndx = sec_data->this_hdr.sh_info;
9308 asection *osec = o->output_section;
9309
9310 if (symndx >= locsymcount
9311 || (elf_bad_symtab (input_bfd)
9312 && flinfo->sections[symndx] == NULL))
9313 {
9314 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9315 while (h->root.type == bfd_link_hash_indirect
9316 || h->root.type == bfd_link_hash_warning)
9317 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9318 /* Arrange for symbol to be output. */
9319 h->indx = -2;
9320 elf_section_data (osec)->this_hdr.sh_info = -2;
9321 }
9322 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9323 {
9324 /* We'll use the output section target_index. */
9325 asection *sec = flinfo->sections[symndx]->output_section;
9326 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9327 }
9328 else
9329 {
9330 if (flinfo->indices[symndx] == -1)
9331 {
9332 /* Otherwise output the local symbol now. */
9333 Elf_Internal_Sym sym = isymbuf[symndx];
9334 asection *sec = flinfo->sections[symndx]->output_section;
9335 const char *name;
9336 long indx;
9337 int ret;
9338
9339 name = bfd_elf_string_from_elf_section (input_bfd,
9340 symtab_hdr->sh_link,
9341 sym.st_name);
9342 if (name == NULL)
9343 return FALSE;
9344
9345 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9346 sec);
9347 if (sym.st_shndx == SHN_BAD)
9348 return FALSE;
9349
9350 sym.st_value += o->output_offset;
9351
9352 indx = bfd_get_symcount (output_bfd);
9353 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9354 if (ret == 0)
9355 return FALSE;
9356 else if (ret == 1)
9357 flinfo->indices[symndx] = indx;
9358 else
9359 abort ();
9360 }
9361 elf_section_data (osec)->this_hdr.sh_info
9362 = flinfo->indices[symndx];
9363 }
9364 }
9365
9366 if ((o->flags & SEC_HAS_CONTENTS) == 0
9367 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9368 continue;
9369
9370 if ((o->flags & SEC_LINKER_CREATED) != 0)
9371 {
9372 /* Section was created by _bfd_elf_link_create_dynamic_sections
9373 or somesuch. */
9374 continue;
9375 }
9376
9377 /* Get the contents of the section. They have been cached by a
9378 relaxation routine. Note that o is a section in an input
9379 file, so the contents field will not have been set by any of
9380 the routines which work on output files. */
9381 if (elf_section_data (o)->this_hdr.contents != NULL)
9382 contents = elf_section_data (o)->this_hdr.contents;
9383 else
9384 {
9385 contents = flinfo->contents;
9386 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9387 return FALSE;
9388 }
9389
9390 if ((o->flags & SEC_RELOC) != 0)
9391 {
9392 Elf_Internal_Rela *internal_relocs;
9393 Elf_Internal_Rela *rel, *relend;
9394 int action_discarded;
9395 int ret;
9396
9397 /* Get the swapped relocs. */
9398 internal_relocs
9399 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9400 flinfo->internal_relocs, FALSE);
9401 if (internal_relocs == NULL
9402 && o->reloc_count > 0)
9403 return FALSE;
9404
9405 /* We need to reverse-copy input .ctors/.dtors sections if
9406 they are placed in .init_array/.finit_array for output. */
9407 if (o->size > address_size
9408 && ((strncmp (o->name, ".ctors", 6) == 0
9409 && strcmp (o->output_section->name,
9410 ".init_array") == 0)
9411 || (strncmp (o->name, ".dtors", 6) == 0
9412 && strcmp (o->output_section->name,
9413 ".fini_array") == 0))
9414 && (o->name[6] == 0 || o->name[6] == '.'))
9415 {
9416 if (o->size != o->reloc_count * address_size)
9417 {
9418 (*_bfd_error_handler)
9419 (_("error: %B: size of section %A is not "
9420 "multiple of address size"),
9421 input_bfd, o);
9422 bfd_set_error (bfd_error_on_input);
9423 return FALSE;
9424 }
9425 o->flags |= SEC_ELF_REVERSE_COPY;
9426 }
9427
9428 action_discarded = -1;
9429 if (!elf_section_ignore_discarded_relocs (o))
9430 action_discarded = (*bed->action_discarded) (o);
9431
9432 /* Run through the relocs evaluating complex reloc symbols and
9433 looking for relocs against symbols from discarded sections
9434 or section symbols from removed link-once sections.
9435 Complain about relocs against discarded sections. Zero
9436 relocs against removed link-once sections. */
9437
9438 rel = internal_relocs;
9439 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9440 for ( ; rel < relend; rel++)
9441 {
9442 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9443 unsigned int s_type;
9444 asection **ps, *sec;
9445 struct elf_link_hash_entry *h = NULL;
9446 const char *sym_name;
9447
9448 if (r_symndx == STN_UNDEF)
9449 continue;
9450
9451 if (r_symndx >= locsymcount
9452 || (elf_bad_symtab (input_bfd)
9453 && flinfo->sections[r_symndx] == NULL))
9454 {
9455 h = sym_hashes[r_symndx - extsymoff];
9456
9457 /* Badly formatted input files can contain relocs that
9458 reference non-existant symbols. Check here so that
9459 we do not seg fault. */
9460 if (h == NULL)
9461 {
9462 char buffer [32];
9463
9464 sprintf_vma (buffer, rel->r_info);
9465 (*_bfd_error_handler)
9466 (_("error: %B contains a reloc (0x%s) for section %A "
9467 "that references a non-existent global symbol"),
9468 input_bfd, o, buffer);
9469 bfd_set_error (bfd_error_bad_value);
9470 return FALSE;
9471 }
9472
9473 while (h->root.type == bfd_link_hash_indirect
9474 || h->root.type == bfd_link_hash_warning)
9475 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9476
9477 s_type = h->type;
9478
9479 ps = NULL;
9480 if (h->root.type == bfd_link_hash_defined
9481 || h->root.type == bfd_link_hash_defweak)
9482 ps = &h->root.u.def.section;
9483
9484 sym_name = h->root.root.string;
9485 }
9486 else
9487 {
9488 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9489
9490 s_type = ELF_ST_TYPE (sym->st_info);
9491 ps = &flinfo->sections[r_symndx];
9492 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9493 sym, *ps);
9494 }
9495
9496 if ((s_type == STT_RELC || s_type == STT_SRELC)
9497 && !flinfo->info->relocatable)
9498 {
9499 bfd_vma val;
9500 bfd_vma dot = (rel->r_offset
9501 + o->output_offset + o->output_section->vma);
9502 #ifdef DEBUG
9503 printf ("Encountered a complex symbol!");
9504 printf (" (input_bfd %s, section %s, reloc %ld\n",
9505 input_bfd->filename, o->name,
9506 (long) (rel - internal_relocs));
9507 printf (" symbol: idx %8.8lx, name %s\n",
9508 r_symndx, sym_name);
9509 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9510 (unsigned long) rel->r_info,
9511 (unsigned long) rel->r_offset);
9512 #endif
9513 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9514 isymbuf, locsymcount, s_type == STT_SRELC))
9515 return FALSE;
9516
9517 /* Symbol evaluated OK. Update to absolute value. */
9518 set_symbol_value (input_bfd, isymbuf, locsymcount,
9519 r_symndx, val);
9520 continue;
9521 }
9522
9523 if (action_discarded != -1 && ps != NULL)
9524 {
9525 /* Complain if the definition comes from a
9526 discarded section. */
9527 if ((sec = *ps) != NULL && discarded_section (sec))
9528 {
9529 BFD_ASSERT (r_symndx != STN_UNDEF);
9530 if (action_discarded & COMPLAIN)
9531 (*flinfo->info->callbacks->einfo)
9532 (_("%X`%s' referenced in section `%A' of %B: "
9533 "defined in discarded section `%A' of %B\n"),
9534 sym_name, o, input_bfd, sec, sec->owner);
9535
9536 /* Try to do the best we can to support buggy old
9537 versions of gcc. Pretend that the symbol is
9538 really defined in the kept linkonce section.
9539 FIXME: This is quite broken. Modifying the
9540 symbol here means we will be changing all later
9541 uses of the symbol, not just in this section. */
9542 if (action_discarded & PRETEND)
9543 {
9544 asection *kept;
9545
9546 kept = _bfd_elf_check_kept_section (sec,
9547 flinfo->info);
9548 if (kept != NULL)
9549 {
9550 *ps = kept;
9551 continue;
9552 }
9553 }
9554 }
9555 }
9556 }
9557
9558 /* Relocate the section by invoking a back end routine.
9559
9560 The back end routine is responsible for adjusting the
9561 section contents as necessary, and (if using Rela relocs
9562 and generating a relocatable output file) adjusting the
9563 reloc addend as necessary.
9564
9565 The back end routine does not have to worry about setting
9566 the reloc address or the reloc symbol index.
9567
9568 The back end routine is given a pointer to the swapped in
9569 internal symbols, and can access the hash table entries
9570 for the external symbols via elf_sym_hashes (input_bfd).
9571
9572 When generating relocatable output, the back end routine
9573 must handle STB_LOCAL/STT_SECTION symbols specially. The
9574 output symbol is going to be a section symbol
9575 corresponding to the output section, which will require
9576 the addend to be adjusted. */
9577
9578 ret = (*relocate_section) (output_bfd, flinfo->info,
9579 input_bfd, o, contents,
9580 internal_relocs,
9581 isymbuf,
9582 flinfo->sections);
9583 if (!ret)
9584 return FALSE;
9585
9586 if (ret == 2
9587 || flinfo->info->relocatable
9588 || flinfo->info->emitrelocations)
9589 {
9590 Elf_Internal_Rela *irela;
9591 Elf_Internal_Rela *irelaend, *irelamid;
9592 bfd_vma last_offset;
9593 struct elf_link_hash_entry **rel_hash;
9594 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9595 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9596 unsigned int next_erel;
9597 bfd_boolean rela_normal;
9598 struct bfd_elf_section_data *esdi, *esdo;
9599
9600 esdi = elf_section_data (o);
9601 esdo = elf_section_data (o->output_section);
9602 rela_normal = FALSE;
9603
9604 /* Adjust the reloc addresses and symbol indices. */
9605
9606 irela = internal_relocs;
9607 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9608 rel_hash = esdo->rel.hashes + esdo->rel.count;
9609 /* We start processing the REL relocs, if any. When we reach
9610 IRELAMID in the loop, we switch to the RELA relocs. */
9611 irelamid = irela;
9612 if (esdi->rel.hdr != NULL)
9613 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9614 * bed->s->int_rels_per_ext_rel);
9615 rel_hash_list = rel_hash;
9616 rela_hash_list = NULL;
9617 last_offset = o->output_offset;
9618 if (!flinfo->info->relocatable)
9619 last_offset += o->output_section->vma;
9620 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9621 {
9622 unsigned long r_symndx;
9623 asection *sec;
9624 Elf_Internal_Sym sym;
9625
9626 if (next_erel == bed->s->int_rels_per_ext_rel)
9627 {
9628 rel_hash++;
9629 next_erel = 0;
9630 }
9631
9632 if (irela == irelamid)
9633 {
9634 rel_hash = esdo->rela.hashes + esdo->rela.count;
9635 rela_hash_list = rel_hash;
9636 rela_normal = bed->rela_normal;
9637 }
9638
9639 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9640 flinfo->info, o,
9641 irela->r_offset);
9642 if (irela->r_offset >= (bfd_vma) -2)
9643 {
9644 /* This is a reloc for a deleted entry or somesuch.
9645 Turn it into an R_*_NONE reloc, at the same
9646 offset as the last reloc. elf_eh_frame.c and
9647 bfd_elf_discard_info rely on reloc offsets
9648 being ordered. */
9649 irela->r_offset = last_offset;
9650 irela->r_info = 0;
9651 irela->r_addend = 0;
9652 continue;
9653 }
9654
9655 irela->r_offset += o->output_offset;
9656
9657 /* Relocs in an executable have to be virtual addresses. */
9658 if (!flinfo->info->relocatable)
9659 irela->r_offset += o->output_section->vma;
9660
9661 last_offset = irela->r_offset;
9662
9663 r_symndx = irela->r_info >> r_sym_shift;
9664 if (r_symndx == STN_UNDEF)
9665 continue;
9666
9667 if (r_symndx >= locsymcount
9668 || (elf_bad_symtab (input_bfd)
9669 && flinfo->sections[r_symndx] == NULL))
9670 {
9671 struct elf_link_hash_entry *rh;
9672 unsigned long indx;
9673
9674 /* This is a reloc against a global symbol. We
9675 have not yet output all the local symbols, so
9676 we do not know the symbol index of any global
9677 symbol. We set the rel_hash entry for this
9678 reloc to point to the global hash table entry
9679 for this symbol. The symbol index is then
9680 set at the end of bfd_elf_final_link. */
9681 indx = r_symndx - extsymoff;
9682 rh = elf_sym_hashes (input_bfd)[indx];
9683 while (rh->root.type == bfd_link_hash_indirect
9684 || rh->root.type == bfd_link_hash_warning)
9685 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9686
9687 /* Setting the index to -2 tells
9688 elf_link_output_extsym that this symbol is
9689 used by a reloc. */
9690 BFD_ASSERT (rh->indx < 0);
9691 rh->indx = -2;
9692
9693 *rel_hash = rh;
9694
9695 continue;
9696 }
9697
9698 /* This is a reloc against a local symbol. */
9699
9700 *rel_hash = NULL;
9701 sym = isymbuf[r_symndx];
9702 sec = flinfo->sections[r_symndx];
9703 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9704 {
9705 /* I suppose the backend ought to fill in the
9706 section of any STT_SECTION symbol against a
9707 processor specific section. */
9708 r_symndx = STN_UNDEF;
9709 if (bfd_is_abs_section (sec))
9710 ;
9711 else if (sec == NULL || sec->owner == NULL)
9712 {
9713 bfd_set_error (bfd_error_bad_value);
9714 return FALSE;
9715 }
9716 else
9717 {
9718 asection *osec = sec->output_section;
9719
9720 /* If we have discarded a section, the output
9721 section will be the absolute section. In
9722 case of discarded SEC_MERGE sections, use
9723 the kept section. relocate_section should
9724 have already handled discarded linkonce
9725 sections. */
9726 if (bfd_is_abs_section (osec)
9727 && sec->kept_section != NULL
9728 && sec->kept_section->output_section != NULL)
9729 {
9730 osec = sec->kept_section->output_section;
9731 irela->r_addend -= osec->vma;
9732 }
9733
9734 if (!bfd_is_abs_section (osec))
9735 {
9736 r_symndx = osec->target_index;
9737 if (r_symndx == STN_UNDEF)
9738 {
9739 irela->r_addend += osec->vma;
9740 osec = _bfd_nearby_section (output_bfd, osec,
9741 osec->vma);
9742 irela->r_addend -= osec->vma;
9743 r_symndx = osec->target_index;
9744 }
9745 }
9746 }
9747
9748 /* Adjust the addend according to where the
9749 section winds up in the output section. */
9750 if (rela_normal)
9751 irela->r_addend += sec->output_offset;
9752 }
9753 else
9754 {
9755 if (flinfo->indices[r_symndx] == -1)
9756 {
9757 unsigned long shlink;
9758 const char *name;
9759 asection *osec;
9760 long indx;
9761
9762 if (flinfo->info->strip == strip_all)
9763 {
9764 /* You can't do ld -r -s. */
9765 bfd_set_error (bfd_error_invalid_operation);
9766 return FALSE;
9767 }
9768
9769 /* This symbol was skipped earlier, but
9770 since it is needed by a reloc, we
9771 must output it now. */
9772 shlink = symtab_hdr->sh_link;
9773 name = (bfd_elf_string_from_elf_section
9774 (input_bfd, shlink, sym.st_name));
9775 if (name == NULL)
9776 return FALSE;
9777
9778 osec = sec->output_section;
9779 sym.st_shndx =
9780 _bfd_elf_section_from_bfd_section (output_bfd,
9781 osec);
9782 if (sym.st_shndx == SHN_BAD)
9783 return FALSE;
9784
9785 sym.st_value += sec->output_offset;
9786 if (!flinfo->info->relocatable)
9787 {
9788 sym.st_value += osec->vma;
9789 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9790 {
9791 /* STT_TLS symbols are relative to PT_TLS
9792 segment base. */
9793 BFD_ASSERT (elf_hash_table (flinfo->info)
9794 ->tls_sec != NULL);
9795 sym.st_value -= (elf_hash_table (flinfo->info)
9796 ->tls_sec->vma);
9797 }
9798 }
9799
9800 indx = bfd_get_symcount (output_bfd);
9801 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9802 NULL);
9803 if (ret == 0)
9804 return FALSE;
9805 else if (ret == 1)
9806 flinfo->indices[r_symndx] = indx;
9807 else
9808 abort ();
9809 }
9810
9811 r_symndx = flinfo->indices[r_symndx];
9812 }
9813
9814 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9815 | (irela->r_info & r_type_mask));
9816 }
9817
9818 /* Swap out the relocs. */
9819 input_rel_hdr = esdi->rel.hdr;
9820 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9821 {
9822 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9823 input_rel_hdr,
9824 internal_relocs,
9825 rel_hash_list))
9826 return FALSE;
9827 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9828 * bed->s->int_rels_per_ext_rel);
9829 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9830 }
9831
9832 input_rela_hdr = esdi->rela.hdr;
9833 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9834 {
9835 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9836 input_rela_hdr,
9837 internal_relocs,
9838 rela_hash_list))
9839 return FALSE;
9840 }
9841 }
9842 }
9843
9844 /* Write out the modified section contents. */
9845 if (bed->elf_backend_write_section
9846 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9847 contents))
9848 {
9849 /* Section written out. */
9850 }
9851 else switch (o->sec_info_type)
9852 {
9853 case SEC_INFO_TYPE_STABS:
9854 if (! (_bfd_write_section_stabs
9855 (output_bfd,
9856 &elf_hash_table (flinfo->info)->stab_info,
9857 o, &elf_section_data (o)->sec_info, contents)))
9858 return FALSE;
9859 break;
9860 case SEC_INFO_TYPE_MERGE:
9861 if (! _bfd_write_merged_section (output_bfd, o,
9862 elf_section_data (o)->sec_info))
9863 return FALSE;
9864 break;
9865 case SEC_INFO_TYPE_EH_FRAME:
9866 {
9867 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
9868 o, contents))
9869 return FALSE;
9870 }
9871 break;
9872 default:
9873 {
9874 /* FIXME: octets_per_byte. */
9875 if (! (o->flags & SEC_EXCLUDE))
9876 {
9877 file_ptr offset = (file_ptr) o->output_offset;
9878 bfd_size_type todo = o->size;
9879 if ((o->flags & SEC_ELF_REVERSE_COPY))
9880 {
9881 /* Reverse-copy input section to output. */
9882 do
9883 {
9884 todo -= address_size;
9885 if (! bfd_set_section_contents (output_bfd,
9886 o->output_section,
9887 contents + todo,
9888 offset,
9889 address_size))
9890 return FALSE;
9891 if (todo == 0)
9892 break;
9893 offset += address_size;
9894 }
9895 while (1);
9896 }
9897 else if (! bfd_set_section_contents (output_bfd,
9898 o->output_section,
9899 contents,
9900 offset, todo))
9901 return FALSE;
9902 }
9903 }
9904 break;
9905 }
9906 }
9907
9908 return TRUE;
9909 }
9910
9911 /* Generate a reloc when linking an ELF file. This is a reloc
9912 requested by the linker, and does not come from any input file. This
9913 is used to build constructor and destructor tables when linking
9914 with -Ur. */
9915
9916 static bfd_boolean
9917 elf_reloc_link_order (bfd *output_bfd,
9918 struct bfd_link_info *info,
9919 asection *output_section,
9920 struct bfd_link_order *link_order)
9921 {
9922 reloc_howto_type *howto;
9923 long indx;
9924 bfd_vma offset;
9925 bfd_vma addend;
9926 struct bfd_elf_section_reloc_data *reldata;
9927 struct elf_link_hash_entry **rel_hash_ptr;
9928 Elf_Internal_Shdr *rel_hdr;
9929 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9930 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9931 bfd_byte *erel;
9932 unsigned int i;
9933 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9934
9935 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9936 if (howto == NULL)
9937 {
9938 bfd_set_error (bfd_error_bad_value);
9939 return FALSE;
9940 }
9941
9942 addend = link_order->u.reloc.p->addend;
9943
9944 if (esdo->rel.hdr)
9945 reldata = &esdo->rel;
9946 else if (esdo->rela.hdr)
9947 reldata = &esdo->rela;
9948 else
9949 {
9950 reldata = NULL;
9951 BFD_ASSERT (0);
9952 }
9953
9954 /* Figure out the symbol index. */
9955 rel_hash_ptr = reldata->hashes + reldata->count;
9956 if (link_order->type == bfd_section_reloc_link_order)
9957 {
9958 indx = link_order->u.reloc.p->u.section->target_index;
9959 BFD_ASSERT (indx != 0);
9960 *rel_hash_ptr = NULL;
9961 }
9962 else
9963 {
9964 struct elf_link_hash_entry *h;
9965
9966 /* Treat a reloc against a defined symbol as though it were
9967 actually against the section. */
9968 h = ((struct elf_link_hash_entry *)
9969 bfd_wrapped_link_hash_lookup (output_bfd, info,
9970 link_order->u.reloc.p->u.name,
9971 FALSE, FALSE, TRUE));
9972 if (h != NULL
9973 && (h->root.type == bfd_link_hash_defined
9974 || h->root.type == bfd_link_hash_defweak))
9975 {
9976 asection *section;
9977
9978 section = h->root.u.def.section;
9979 indx = section->output_section->target_index;
9980 *rel_hash_ptr = NULL;
9981 /* It seems that we ought to add the symbol value to the
9982 addend here, but in practice it has already been added
9983 because it was passed to constructor_callback. */
9984 addend += section->output_section->vma + section->output_offset;
9985 }
9986 else if (h != NULL)
9987 {
9988 /* Setting the index to -2 tells elf_link_output_extsym that
9989 this symbol is used by a reloc. */
9990 h->indx = -2;
9991 *rel_hash_ptr = h;
9992 indx = 0;
9993 }
9994 else
9995 {
9996 if (! ((*info->callbacks->unattached_reloc)
9997 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9998 return FALSE;
9999 indx = 0;
10000 }
10001 }
10002
10003 /* If this is an inplace reloc, we must write the addend into the
10004 object file. */
10005 if (howto->partial_inplace && addend != 0)
10006 {
10007 bfd_size_type size;
10008 bfd_reloc_status_type rstat;
10009 bfd_byte *buf;
10010 bfd_boolean ok;
10011 const char *sym_name;
10012
10013 size = (bfd_size_type) bfd_get_reloc_size (howto);
10014 buf = (bfd_byte *) bfd_zmalloc (size);
10015 if (buf == NULL)
10016 return FALSE;
10017 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10018 switch (rstat)
10019 {
10020 case bfd_reloc_ok:
10021 break;
10022
10023 default:
10024 case bfd_reloc_outofrange:
10025 abort ();
10026
10027 case bfd_reloc_overflow:
10028 if (link_order->type == bfd_section_reloc_link_order)
10029 sym_name = bfd_section_name (output_bfd,
10030 link_order->u.reloc.p->u.section);
10031 else
10032 sym_name = link_order->u.reloc.p->u.name;
10033 if (! ((*info->callbacks->reloc_overflow)
10034 (info, NULL, sym_name, howto->name, addend, NULL,
10035 NULL, (bfd_vma) 0)))
10036 {
10037 free (buf);
10038 return FALSE;
10039 }
10040 break;
10041 }
10042 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10043 link_order->offset, size);
10044 free (buf);
10045 if (! ok)
10046 return FALSE;
10047 }
10048
10049 /* The address of a reloc is relative to the section in a
10050 relocatable file, and is a virtual address in an executable
10051 file. */
10052 offset = link_order->offset;
10053 if (! info->relocatable)
10054 offset += output_section->vma;
10055
10056 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10057 {
10058 irel[i].r_offset = offset;
10059 irel[i].r_info = 0;
10060 irel[i].r_addend = 0;
10061 }
10062 if (bed->s->arch_size == 32)
10063 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10064 else
10065 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10066
10067 rel_hdr = reldata->hdr;
10068 erel = rel_hdr->contents;
10069 if (rel_hdr->sh_type == SHT_REL)
10070 {
10071 erel += reldata->count * bed->s->sizeof_rel;
10072 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10073 }
10074 else
10075 {
10076 irel[0].r_addend = addend;
10077 erel += reldata->count * bed->s->sizeof_rela;
10078 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10079 }
10080
10081 ++reldata->count;
10082
10083 return TRUE;
10084 }
10085
10086
10087 /* Get the output vma of the section pointed to by the sh_link field. */
10088
10089 static bfd_vma
10090 elf_get_linked_section_vma (struct bfd_link_order *p)
10091 {
10092 Elf_Internal_Shdr **elf_shdrp;
10093 asection *s;
10094 int elfsec;
10095
10096 s = p->u.indirect.section;
10097 elf_shdrp = elf_elfsections (s->owner);
10098 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10099 elfsec = elf_shdrp[elfsec]->sh_link;
10100 /* PR 290:
10101 The Intel C compiler generates SHT_IA_64_UNWIND with
10102 SHF_LINK_ORDER. But it doesn't set the sh_link or
10103 sh_info fields. Hence we could get the situation
10104 where elfsec is 0. */
10105 if (elfsec == 0)
10106 {
10107 const struct elf_backend_data *bed
10108 = get_elf_backend_data (s->owner);
10109 if (bed->link_order_error_handler)
10110 bed->link_order_error_handler
10111 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10112 return 0;
10113 }
10114 else
10115 {
10116 s = elf_shdrp[elfsec]->bfd_section;
10117 return s->output_section->vma + s->output_offset;
10118 }
10119 }
10120
10121
10122 /* Compare two sections based on the locations of the sections they are
10123 linked to. Used by elf_fixup_link_order. */
10124
10125 static int
10126 compare_link_order (const void * a, const void * b)
10127 {
10128 bfd_vma apos;
10129 bfd_vma bpos;
10130
10131 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10132 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10133 if (apos < bpos)
10134 return -1;
10135 return apos > bpos;
10136 }
10137
10138
10139 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10140 order as their linked sections. Returns false if this could not be done
10141 because an output section includes both ordered and unordered
10142 sections. Ideally we'd do this in the linker proper. */
10143
10144 static bfd_boolean
10145 elf_fixup_link_order (bfd *abfd, asection *o)
10146 {
10147 int seen_linkorder;
10148 int seen_other;
10149 int n;
10150 struct bfd_link_order *p;
10151 bfd *sub;
10152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10153 unsigned elfsec;
10154 struct bfd_link_order **sections;
10155 asection *s, *other_sec, *linkorder_sec;
10156 bfd_vma offset;
10157
10158 other_sec = NULL;
10159 linkorder_sec = NULL;
10160 seen_other = 0;
10161 seen_linkorder = 0;
10162 for (p = o->map_head.link_order; p != NULL; p = p->next)
10163 {
10164 if (p->type == bfd_indirect_link_order)
10165 {
10166 s = p->u.indirect.section;
10167 sub = s->owner;
10168 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10169 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10170 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10171 && elfsec < elf_numsections (sub)
10172 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10173 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10174 {
10175 seen_linkorder++;
10176 linkorder_sec = s;
10177 }
10178 else
10179 {
10180 seen_other++;
10181 other_sec = s;
10182 }
10183 }
10184 else
10185 seen_other++;
10186
10187 if (seen_other && seen_linkorder)
10188 {
10189 if (other_sec && linkorder_sec)
10190 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10191 o, linkorder_sec,
10192 linkorder_sec->owner, other_sec,
10193 other_sec->owner);
10194 else
10195 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10196 o);
10197 bfd_set_error (bfd_error_bad_value);
10198 return FALSE;
10199 }
10200 }
10201
10202 if (!seen_linkorder)
10203 return TRUE;
10204
10205 sections = (struct bfd_link_order **)
10206 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10207 if (sections == NULL)
10208 return FALSE;
10209 seen_linkorder = 0;
10210
10211 for (p = o->map_head.link_order; p != NULL; p = p->next)
10212 {
10213 sections[seen_linkorder++] = p;
10214 }
10215 /* Sort the input sections in the order of their linked section. */
10216 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10217 compare_link_order);
10218
10219 /* Change the offsets of the sections. */
10220 offset = 0;
10221 for (n = 0; n < seen_linkorder; n++)
10222 {
10223 s = sections[n]->u.indirect.section;
10224 offset &= ~(bfd_vma) 0 << s->alignment_power;
10225 s->output_offset = offset;
10226 sections[n]->offset = offset;
10227 /* FIXME: octets_per_byte. */
10228 offset += sections[n]->size;
10229 }
10230
10231 free (sections);
10232 return TRUE;
10233 }
10234
10235
10236 /* Do the final step of an ELF link. */
10237
10238 bfd_boolean
10239 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10240 {
10241 bfd_boolean dynamic;
10242 bfd_boolean emit_relocs;
10243 bfd *dynobj;
10244 struct elf_final_link_info flinfo;
10245 asection *o;
10246 struct bfd_link_order *p;
10247 bfd *sub;
10248 bfd_size_type max_contents_size;
10249 bfd_size_type max_external_reloc_size;
10250 bfd_size_type max_internal_reloc_count;
10251 bfd_size_type max_sym_count;
10252 bfd_size_type max_sym_shndx_count;
10253 file_ptr off;
10254 Elf_Internal_Sym elfsym;
10255 unsigned int i;
10256 Elf_Internal_Shdr *symtab_hdr;
10257 Elf_Internal_Shdr *symtab_shndx_hdr;
10258 Elf_Internal_Shdr *symstrtab_hdr;
10259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10260 struct elf_outext_info eoinfo;
10261 bfd_boolean merged;
10262 size_t relativecount = 0;
10263 asection *reldyn = 0;
10264 bfd_size_type amt;
10265 asection *attr_section = NULL;
10266 bfd_vma attr_size = 0;
10267 const char *std_attrs_section;
10268
10269 if (! is_elf_hash_table (info->hash))
10270 return FALSE;
10271
10272 if (info->shared)
10273 abfd->flags |= DYNAMIC;
10274
10275 dynamic = elf_hash_table (info)->dynamic_sections_created;
10276 dynobj = elf_hash_table (info)->dynobj;
10277
10278 emit_relocs = (info->relocatable
10279 || info->emitrelocations);
10280
10281 flinfo.info = info;
10282 flinfo.output_bfd = abfd;
10283 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10284 if (flinfo.symstrtab == NULL)
10285 return FALSE;
10286
10287 if (! dynamic)
10288 {
10289 flinfo.dynsym_sec = NULL;
10290 flinfo.hash_sec = NULL;
10291 flinfo.symver_sec = NULL;
10292 }
10293 else
10294 {
10295 flinfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10296 flinfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10297 /* Note that dynsym_sec can be NULL (on VMS). */
10298 flinfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10299 /* Note that it is OK if symver_sec is NULL. */
10300 }
10301
10302 flinfo.contents = NULL;
10303 flinfo.external_relocs = NULL;
10304 flinfo.internal_relocs = NULL;
10305 flinfo.external_syms = NULL;
10306 flinfo.locsym_shndx = NULL;
10307 flinfo.internal_syms = NULL;
10308 flinfo.indices = NULL;
10309 flinfo.sections = NULL;
10310 flinfo.symbuf = NULL;
10311 flinfo.symshndxbuf = NULL;
10312 flinfo.symbuf_count = 0;
10313 flinfo.shndxbuf_size = 0;
10314
10315 /* The object attributes have been merged. Remove the input
10316 sections from the link, and set the contents of the output
10317 secton. */
10318 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10319 for (o = abfd->sections; o != NULL; o = o->next)
10320 {
10321 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10322 || strcmp (o->name, ".gnu.attributes") == 0)
10323 {
10324 for (p = o->map_head.link_order; p != NULL; p = p->next)
10325 {
10326 asection *input_section;
10327
10328 if (p->type != bfd_indirect_link_order)
10329 continue;
10330 input_section = p->u.indirect.section;
10331 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10332 elf_link_input_bfd ignores this section. */
10333 input_section->flags &= ~SEC_HAS_CONTENTS;
10334 }
10335
10336 attr_size = bfd_elf_obj_attr_size (abfd);
10337 if (attr_size)
10338 {
10339 bfd_set_section_size (abfd, o, attr_size);
10340 attr_section = o;
10341 /* Skip this section later on. */
10342 o->map_head.link_order = NULL;
10343 }
10344 else
10345 o->flags |= SEC_EXCLUDE;
10346 }
10347 }
10348
10349 /* Count up the number of relocations we will output for each output
10350 section, so that we know the sizes of the reloc sections. We
10351 also figure out some maximum sizes. */
10352 max_contents_size = 0;
10353 max_external_reloc_size = 0;
10354 max_internal_reloc_count = 0;
10355 max_sym_count = 0;
10356 max_sym_shndx_count = 0;
10357 merged = FALSE;
10358 for (o = abfd->sections; o != NULL; o = o->next)
10359 {
10360 struct bfd_elf_section_data *esdo = elf_section_data (o);
10361 o->reloc_count = 0;
10362
10363 for (p = o->map_head.link_order; p != NULL; p = p->next)
10364 {
10365 unsigned int reloc_count = 0;
10366 struct bfd_elf_section_data *esdi = NULL;
10367
10368 if (p->type == bfd_section_reloc_link_order
10369 || p->type == bfd_symbol_reloc_link_order)
10370 reloc_count = 1;
10371 else if (p->type == bfd_indirect_link_order)
10372 {
10373 asection *sec;
10374
10375 sec = p->u.indirect.section;
10376 esdi = elf_section_data (sec);
10377
10378 /* Mark all sections which are to be included in the
10379 link. This will normally be every section. We need
10380 to do this so that we can identify any sections which
10381 the linker has decided to not include. */
10382 sec->linker_mark = TRUE;
10383
10384 if (sec->flags & SEC_MERGE)
10385 merged = TRUE;
10386
10387 if (esdo->this_hdr.sh_type == SHT_REL
10388 || esdo->this_hdr.sh_type == SHT_RELA)
10389 /* Some backends use reloc_count in relocation sections
10390 to count particular types of relocs. Of course,
10391 reloc sections themselves can't have relocations. */
10392 reloc_count = 0;
10393 else if (info->relocatable || info->emitrelocations)
10394 reloc_count = sec->reloc_count;
10395 else if (bed->elf_backend_count_relocs)
10396 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10397
10398 if (sec->rawsize > max_contents_size)
10399 max_contents_size = sec->rawsize;
10400 if (sec->size > max_contents_size)
10401 max_contents_size = sec->size;
10402
10403 /* We are interested in just local symbols, not all
10404 symbols. */
10405 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10406 && (sec->owner->flags & DYNAMIC) == 0)
10407 {
10408 size_t sym_count;
10409
10410 if (elf_bad_symtab (sec->owner))
10411 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10412 / bed->s->sizeof_sym);
10413 else
10414 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10415
10416 if (sym_count > max_sym_count)
10417 max_sym_count = sym_count;
10418
10419 if (sym_count > max_sym_shndx_count
10420 && elf_symtab_shndx (sec->owner) != 0)
10421 max_sym_shndx_count = sym_count;
10422
10423 if ((sec->flags & SEC_RELOC) != 0)
10424 {
10425 size_t ext_size = 0;
10426
10427 if (esdi->rel.hdr != NULL)
10428 ext_size = esdi->rel.hdr->sh_size;
10429 if (esdi->rela.hdr != NULL)
10430 ext_size += esdi->rela.hdr->sh_size;
10431
10432 if (ext_size > max_external_reloc_size)
10433 max_external_reloc_size = ext_size;
10434 if (sec->reloc_count > max_internal_reloc_count)
10435 max_internal_reloc_count = sec->reloc_count;
10436 }
10437 }
10438 }
10439
10440 if (reloc_count == 0)
10441 continue;
10442
10443 o->reloc_count += reloc_count;
10444
10445 if (p->type == bfd_indirect_link_order
10446 && (info->relocatable || info->emitrelocations))
10447 {
10448 if (esdi->rel.hdr)
10449 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10450 if (esdi->rela.hdr)
10451 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10452 }
10453 else
10454 {
10455 if (o->use_rela_p)
10456 esdo->rela.count += reloc_count;
10457 else
10458 esdo->rel.count += reloc_count;
10459 }
10460 }
10461
10462 if (o->reloc_count > 0)
10463 o->flags |= SEC_RELOC;
10464 else
10465 {
10466 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10467 set it (this is probably a bug) and if it is set
10468 assign_section_numbers will create a reloc section. */
10469 o->flags &=~ SEC_RELOC;
10470 }
10471
10472 /* If the SEC_ALLOC flag is not set, force the section VMA to
10473 zero. This is done in elf_fake_sections as well, but forcing
10474 the VMA to 0 here will ensure that relocs against these
10475 sections are handled correctly. */
10476 if ((o->flags & SEC_ALLOC) == 0
10477 && ! o->user_set_vma)
10478 o->vma = 0;
10479 }
10480
10481 if (! info->relocatable && merged)
10482 elf_link_hash_traverse (elf_hash_table (info),
10483 _bfd_elf_link_sec_merge_syms, abfd);
10484
10485 /* Figure out the file positions for everything but the symbol table
10486 and the relocs. We set symcount to force assign_section_numbers
10487 to create a symbol table. */
10488 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10489 BFD_ASSERT (! abfd->output_has_begun);
10490 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10491 goto error_return;
10492
10493 /* Set sizes, and assign file positions for reloc sections. */
10494 for (o = abfd->sections; o != NULL; o = o->next)
10495 {
10496 struct bfd_elf_section_data *esdo = elf_section_data (o);
10497 if ((o->flags & SEC_RELOC) != 0)
10498 {
10499 if (esdo->rel.hdr
10500 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10501 goto error_return;
10502
10503 if (esdo->rela.hdr
10504 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10505 goto error_return;
10506 }
10507
10508 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10509 to count upwards while actually outputting the relocations. */
10510 esdo->rel.count = 0;
10511 esdo->rela.count = 0;
10512 }
10513
10514 _bfd_elf_assign_file_positions_for_relocs (abfd);
10515
10516 /* We have now assigned file positions for all the sections except
10517 .symtab and .strtab. We start the .symtab section at the current
10518 file position, and write directly to it. We build the .strtab
10519 section in memory. */
10520 bfd_get_symcount (abfd) = 0;
10521 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10522 /* sh_name is set in prep_headers. */
10523 symtab_hdr->sh_type = SHT_SYMTAB;
10524 /* sh_flags, sh_addr and sh_size all start off zero. */
10525 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10526 /* sh_link is set in assign_section_numbers. */
10527 /* sh_info is set below. */
10528 /* sh_offset is set just below. */
10529 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10530
10531 off = elf_tdata (abfd)->next_file_pos;
10532 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10533
10534 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10535 incorrect. We do not yet know the size of the .symtab section.
10536 We correct next_file_pos below, after we do know the size. */
10537
10538 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10539 continuously seeking to the right position in the file. */
10540 if (! info->keep_memory || max_sym_count < 20)
10541 flinfo.symbuf_size = 20;
10542 else
10543 flinfo.symbuf_size = max_sym_count;
10544 amt = flinfo.symbuf_size;
10545 amt *= bed->s->sizeof_sym;
10546 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10547 if (flinfo.symbuf == NULL)
10548 goto error_return;
10549 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10550 {
10551 /* Wild guess at number of output symbols. realloc'd as needed. */
10552 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10553 flinfo.shndxbuf_size = amt;
10554 amt *= sizeof (Elf_External_Sym_Shndx);
10555 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10556 if (flinfo.symshndxbuf == NULL)
10557 goto error_return;
10558 }
10559
10560 /* Start writing out the symbol table. The first symbol is always a
10561 dummy symbol. */
10562 if (info->strip != strip_all
10563 || emit_relocs)
10564 {
10565 elfsym.st_value = 0;
10566 elfsym.st_size = 0;
10567 elfsym.st_info = 0;
10568 elfsym.st_other = 0;
10569 elfsym.st_shndx = SHN_UNDEF;
10570 elfsym.st_target_internal = 0;
10571 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10572 NULL) != 1)
10573 goto error_return;
10574 }
10575
10576 /* Output a symbol for each section. We output these even if we are
10577 discarding local symbols, since they are used for relocs. These
10578 symbols have no names. We store the index of each one in the
10579 index field of the section, so that we can find it again when
10580 outputting relocs. */
10581 if (info->strip != strip_all
10582 || emit_relocs)
10583 {
10584 elfsym.st_size = 0;
10585 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10586 elfsym.st_other = 0;
10587 elfsym.st_value = 0;
10588 elfsym.st_target_internal = 0;
10589 for (i = 1; i < elf_numsections (abfd); i++)
10590 {
10591 o = bfd_section_from_elf_index (abfd, i);
10592 if (o != NULL)
10593 {
10594 o->target_index = bfd_get_symcount (abfd);
10595 elfsym.st_shndx = i;
10596 if (!info->relocatable)
10597 elfsym.st_value = o->vma;
10598 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10599 goto error_return;
10600 }
10601 }
10602 }
10603
10604 /* Allocate some memory to hold information read in from the input
10605 files. */
10606 if (max_contents_size != 0)
10607 {
10608 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10609 if (flinfo.contents == NULL)
10610 goto error_return;
10611 }
10612
10613 if (max_external_reloc_size != 0)
10614 {
10615 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10616 if (flinfo.external_relocs == NULL)
10617 goto error_return;
10618 }
10619
10620 if (max_internal_reloc_count != 0)
10621 {
10622 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10623 amt *= sizeof (Elf_Internal_Rela);
10624 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10625 if (flinfo.internal_relocs == NULL)
10626 goto error_return;
10627 }
10628
10629 if (max_sym_count != 0)
10630 {
10631 amt = max_sym_count * bed->s->sizeof_sym;
10632 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10633 if (flinfo.external_syms == NULL)
10634 goto error_return;
10635
10636 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10637 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10638 if (flinfo.internal_syms == NULL)
10639 goto error_return;
10640
10641 amt = max_sym_count * sizeof (long);
10642 flinfo.indices = (long int *) bfd_malloc (amt);
10643 if (flinfo.indices == NULL)
10644 goto error_return;
10645
10646 amt = max_sym_count * sizeof (asection *);
10647 flinfo.sections = (asection **) bfd_malloc (amt);
10648 if (flinfo.sections == NULL)
10649 goto error_return;
10650 }
10651
10652 if (max_sym_shndx_count != 0)
10653 {
10654 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10655 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10656 if (flinfo.locsym_shndx == NULL)
10657 goto error_return;
10658 }
10659
10660 if (elf_hash_table (info)->tls_sec)
10661 {
10662 bfd_vma base, end = 0;
10663 asection *sec;
10664
10665 for (sec = elf_hash_table (info)->tls_sec;
10666 sec && (sec->flags & SEC_THREAD_LOCAL);
10667 sec = sec->next)
10668 {
10669 bfd_size_type size = sec->size;
10670
10671 if (size == 0
10672 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10673 {
10674 struct bfd_link_order *ord = sec->map_tail.link_order;
10675
10676 if (ord != NULL)
10677 size = ord->offset + ord->size;
10678 }
10679 end = sec->vma + size;
10680 }
10681 base = elf_hash_table (info)->tls_sec->vma;
10682 /* Only align end of TLS section if static TLS doesn't have special
10683 alignment requirements. */
10684 if (bed->static_tls_alignment == 1)
10685 end = align_power (end,
10686 elf_hash_table (info)->tls_sec->alignment_power);
10687 elf_hash_table (info)->tls_size = end - base;
10688 }
10689
10690 /* Reorder SHF_LINK_ORDER sections. */
10691 for (o = abfd->sections; o != NULL; o = o->next)
10692 {
10693 if (!elf_fixup_link_order (abfd, o))
10694 return FALSE;
10695 }
10696
10697 /* Since ELF permits relocations to be against local symbols, we
10698 must have the local symbols available when we do the relocations.
10699 Since we would rather only read the local symbols once, and we
10700 would rather not keep them in memory, we handle all the
10701 relocations for a single input file at the same time.
10702
10703 Unfortunately, there is no way to know the total number of local
10704 symbols until we have seen all of them, and the local symbol
10705 indices precede the global symbol indices. This means that when
10706 we are generating relocatable output, and we see a reloc against
10707 a global symbol, we can not know the symbol index until we have
10708 finished examining all the local symbols to see which ones we are
10709 going to output. To deal with this, we keep the relocations in
10710 memory, and don't output them until the end of the link. This is
10711 an unfortunate waste of memory, but I don't see a good way around
10712 it. Fortunately, it only happens when performing a relocatable
10713 link, which is not the common case. FIXME: If keep_memory is set
10714 we could write the relocs out and then read them again; I don't
10715 know how bad the memory loss will be. */
10716
10717 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10718 sub->output_has_begun = FALSE;
10719 for (o = abfd->sections; o != NULL; o = o->next)
10720 {
10721 for (p = o->map_head.link_order; p != NULL; p = p->next)
10722 {
10723 if (p->type == bfd_indirect_link_order
10724 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10725 == bfd_target_elf_flavour)
10726 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10727 {
10728 if (! sub->output_has_begun)
10729 {
10730 if (! elf_link_input_bfd (&flinfo, sub))
10731 goto error_return;
10732 sub->output_has_begun = TRUE;
10733 }
10734 }
10735 else if (p->type == bfd_section_reloc_link_order
10736 || p->type == bfd_symbol_reloc_link_order)
10737 {
10738 if (! elf_reloc_link_order (abfd, info, o, p))
10739 goto error_return;
10740 }
10741 else
10742 {
10743 if (! _bfd_default_link_order (abfd, info, o, p))
10744 {
10745 if (p->type == bfd_indirect_link_order
10746 && (bfd_get_flavour (sub)
10747 == bfd_target_elf_flavour)
10748 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10749 != bed->s->elfclass))
10750 {
10751 const char *iclass, *oclass;
10752
10753 if (bed->s->elfclass == ELFCLASS64)
10754 {
10755 iclass = "ELFCLASS32";
10756 oclass = "ELFCLASS64";
10757 }
10758 else
10759 {
10760 iclass = "ELFCLASS64";
10761 oclass = "ELFCLASS32";
10762 }
10763
10764 bfd_set_error (bfd_error_wrong_format);
10765 (*_bfd_error_handler)
10766 (_("%B: file class %s incompatible with %s"),
10767 sub, iclass, oclass);
10768 }
10769
10770 goto error_return;
10771 }
10772 }
10773 }
10774 }
10775
10776 /* Free symbol buffer if needed. */
10777 if (!info->reduce_memory_overheads)
10778 {
10779 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10780 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10781 && elf_tdata (sub)->symbuf)
10782 {
10783 free (elf_tdata (sub)->symbuf);
10784 elf_tdata (sub)->symbuf = NULL;
10785 }
10786 }
10787
10788 /* Output any global symbols that got converted to local in a
10789 version script or due to symbol visibility. We do this in a
10790 separate step since ELF requires all local symbols to appear
10791 prior to any global symbols. FIXME: We should only do this if
10792 some global symbols were, in fact, converted to become local.
10793 FIXME: Will this work correctly with the Irix 5 linker? */
10794 eoinfo.failed = FALSE;
10795 eoinfo.flinfo = &flinfo;
10796 eoinfo.localsyms = TRUE;
10797 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10798 if (eoinfo.failed)
10799 return FALSE;
10800
10801 /* If backend needs to output some local symbols not present in the hash
10802 table, do it now. */
10803 if (bed->elf_backend_output_arch_local_syms)
10804 {
10805 typedef int (*out_sym_func)
10806 (void *, const char *, Elf_Internal_Sym *, asection *,
10807 struct elf_link_hash_entry *);
10808
10809 if (! ((*bed->elf_backend_output_arch_local_syms)
10810 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10811 return FALSE;
10812 }
10813
10814 /* That wrote out all the local symbols. Finish up the symbol table
10815 with the global symbols. Even if we want to strip everything we
10816 can, we still need to deal with those global symbols that got
10817 converted to local in a version script. */
10818
10819 /* The sh_info field records the index of the first non local symbol. */
10820 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10821
10822 if (dynamic
10823 && flinfo.dynsym_sec != NULL
10824 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10825 {
10826 Elf_Internal_Sym sym;
10827 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
10828 long last_local = 0;
10829
10830 /* Write out the section symbols for the output sections. */
10831 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10832 {
10833 asection *s;
10834
10835 sym.st_size = 0;
10836 sym.st_name = 0;
10837 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10838 sym.st_other = 0;
10839 sym.st_target_internal = 0;
10840
10841 for (s = abfd->sections; s != NULL; s = s->next)
10842 {
10843 int indx;
10844 bfd_byte *dest;
10845 long dynindx;
10846
10847 dynindx = elf_section_data (s)->dynindx;
10848 if (dynindx <= 0)
10849 continue;
10850 indx = elf_section_data (s)->this_idx;
10851 BFD_ASSERT (indx > 0);
10852 sym.st_shndx = indx;
10853 if (! check_dynsym (abfd, &sym))
10854 return FALSE;
10855 sym.st_value = s->vma;
10856 dest = dynsym + dynindx * bed->s->sizeof_sym;
10857 if (last_local < dynindx)
10858 last_local = dynindx;
10859 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10860 }
10861 }
10862
10863 /* Write out the local dynsyms. */
10864 if (elf_hash_table (info)->dynlocal)
10865 {
10866 struct elf_link_local_dynamic_entry *e;
10867 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10868 {
10869 asection *s;
10870 bfd_byte *dest;
10871
10872 /* Copy the internal symbol and turn off visibility.
10873 Note that we saved a word of storage and overwrote
10874 the original st_name with the dynstr_index. */
10875 sym = e->isym;
10876 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10877
10878 s = bfd_section_from_elf_index (e->input_bfd,
10879 e->isym.st_shndx);
10880 if (s != NULL)
10881 {
10882 sym.st_shndx =
10883 elf_section_data (s->output_section)->this_idx;
10884 if (! check_dynsym (abfd, &sym))
10885 return FALSE;
10886 sym.st_value = (s->output_section->vma
10887 + s->output_offset
10888 + e->isym.st_value);
10889 }
10890
10891 if (last_local < e->dynindx)
10892 last_local = e->dynindx;
10893
10894 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10895 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10896 }
10897 }
10898
10899 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
10900 last_local + 1;
10901 }
10902
10903 /* We get the global symbols from the hash table. */
10904 eoinfo.failed = FALSE;
10905 eoinfo.localsyms = FALSE;
10906 eoinfo.flinfo = &flinfo;
10907 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10908 if (eoinfo.failed)
10909 return FALSE;
10910
10911 /* If backend needs to output some symbols not present in the hash
10912 table, do it now. */
10913 if (bed->elf_backend_output_arch_syms)
10914 {
10915 typedef int (*out_sym_func)
10916 (void *, const char *, Elf_Internal_Sym *, asection *,
10917 struct elf_link_hash_entry *);
10918
10919 if (! ((*bed->elf_backend_output_arch_syms)
10920 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10921 return FALSE;
10922 }
10923
10924 /* Flush all symbols to the file. */
10925 if (! elf_link_flush_output_syms (&flinfo, bed))
10926 return FALSE;
10927
10928 /* Now we know the size of the symtab section. */
10929 off += symtab_hdr->sh_size;
10930
10931 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10932 if (symtab_shndx_hdr->sh_name != 0)
10933 {
10934 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10935 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10936 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10937 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10938 symtab_shndx_hdr->sh_size = amt;
10939
10940 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10941 off, TRUE);
10942
10943 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10944 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
10945 return FALSE;
10946 }
10947
10948
10949 /* Finish up and write out the symbol string table (.strtab)
10950 section. */
10951 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10952 /* sh_name was set in prep_headers. */
10953 symstrtab_hdr->sh_type = SHT_STRTAB;
10954 symstrtab_hdr->sh_flags = 0;
10955 symstrtab_hdr->sh_addr = 0;
10956 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
10957 symstrtab_hdr->sh_entsize = 0;
10958 symstrtab_hdr->sh_link = 0;
10959 symstrtab_hdr->sh_info = 0;
10960 /* sh_offset is set just below. */
10961 symstrtab_hdr->sh_addralign = 1;
10962
10963 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10964 elf_tdata (abfd)->next_file_pos = off;
10965
10966 if (bfd_get_symcount (abfd) > 0)
10967 {
10968 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10969 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
10970 return FALSE;
10971 }
10972
10973 /* Adjust the relocs to have the correct symbol indices. */
10974 for (o = abfd->sections; o != NULL; o = o->next)
10975 {
10976 struct bfd_elf_section_data *esdo = elf_section_data (o);
10977 if ((o->flags & SEC_RELOC) == 0)
10978 continue;
10979
10980 if (esdo->rel.hdr != NULL)
10981 elf_link_adjust_relocs (abfd, &esdo->rel);
10982 if (esdo->rela.hdr != NULL)
10983 elf_link_adjust_relocs (abfd, &esdo->rela);
10984
10985 /* Set the reloc_count field to 0 to prevent write_relocs from
10986 trying to swap the relocs out itself. */
10987 o->reloc_count = 0;
10988 }
10989
10990 if (dynamic && info->combreloc && dynobj != NULL)
10991 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10992
10993 /* If we are linking against a dynamic object, or generating a
10994 shared library, finish up the dynamic linking information. */
10995 if (dynamic)
10996 {
10997 bfd_byte *dyncon, *dynconend;
10998
10999 /* Fix up .dynamic entries. */
11000 o = bfd_get_section_by_name (dynobj, ".dynamic");
11001 BFD_ASSERT (o != NULL);
11002
11003 dyncon = o->contents;
11004 dynconend = o->contents + o->size;
11005 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11006 {
11007 Elf_Internal_Dyn dyn;
11008 const char *name;
11009 unsigned int type;
11010
11011 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11012
11013 switch (dyn.d_tag)
11014 {
11015 default:
11016 continue;
11017 case DT_NULL:
11018 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11019 {
11020 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11021 {
11022 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11023 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11024 default: continue;
11025 }
11026 dyn.d_un.d_val = relativecount;
11027 relativecount = 0;
11028 break;
11029 }
11030 continue;
11031
11032 case DT_INIT:
11033 name = info->init_function;
11034 goto get_sym;
11035 case DT_FINI:
11036 name = info->fini_function;
11037 get_sym:
11038 {
11039 struct elf_link_hash_entry *h;
11040
11041 h = elf_link_hash_lookup (elf_hash_table (info), name,
11042 FALSE, FALSE, TRUE);
11043 if (h != NULL
11044 && (h->root.type == bfd_link_hash_defined
11045 || h->root.type == bfd_link_hash_defweak))
11046 {
11047 dyn.d_un.d_ptr = h->root.u.def.value;
11048 o = h->root.u.def.section;
11049 if (o->output_section != NULL)
11050 dyn.d_un.d_ptr += (o->output_section->vma
11051 + o->output_offset);
11052 else
11053 {
11054 /* The symbol is imported from another shared
11055 library and does not apply to this one. */
11056 dyn.d_un.d_ptr = 0;
11057 }
11058 break;
11059 }
11060 }
11061 continue;
11062
11063 case DT_PREINIT_ARRAYSZ:
11064 name = ".preinit_array";
11065 goto get_size;
11066 case DT_INIT_ARRAYSZ:
11067 name = ".init_array";
11068 goto get_size;
11069 case DT_FINI_ARRAYSZ:
11070 name = ".fini_array";
11071 get_size:
11072 o = bfd_get_section_by_name (abfd, name);
11073 if (o == NULL)
11074 {
11075 (*_bfd_error_handler)
11076 (_("%B: could not find output section %s"), abfd, name);
11077 goto error_return;
11078 }
11079 if (o->size == 0)
11080 (*_bfd_error_handler)
11081 (_("warning: %s section has zero size"), name);
11082 dyn.d_un.d_val = o->size;
11083 break;
11084
11085 case DT_PREINIT_ARRAY:
11086 name = ".preinit_array";
11087 goto get_vma;
11088 case DT_INIT_ARRAY:
11089 name = ".init_array";
11090 goto get_vma;
11091 case DT_FINI_ARRAY:
11092 name = ".fini_array";
11093 goto get_vma;
11094
11095 case DT_HASH:
11096 name = ".hash";
11097 goto get_vma;
11098 case DT_GNU_HASH:
11099 name = ".gnu.hash";
11100 goto get_vma;
11101 case DT_STRTAB:
11102 name = ".dynstr";
11103 goto get_vma;
11104 case DT_SYMTAB:
11105 name = ".dynsym";
11106 goto get_vma;
11107 case DT_VERDEF:
11108 name = ".gnu.version_d";
11109 goto get_vma;
11110 case DT_VERNEED:
11111 name = ".gnu.version_r";
11112 goto get_vma;
11113 case DT_VERSYM:
11114 name = ".gnu.version";
11115 get_vma:
11116 o = bfd_get_section_by_name (abfd, name);
11117 if (o == NULL)
11118 {
11119 (*_bfd_error_handler)
11120 (_("%B: could not find output section %s"), abfd, name);
11121 goto error_return;
11122 }
11123 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11124 {
11125 (*_bfd_error_handler)
11126 (_("warning: section '%s' is being made into a note"), name);
11127 bfd_set_error (bfd_error_nonrepresentable_section);
11128 goto error_return;
11129 }
11130 dyn.d_un.d_ptr = o->vma;
11131 break;
11132
11133 case DT_REL:
11134 case DT_RELA:
11135 case DT_RELSZ:
11136 case DT_RELASZ:
11137 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11138 type = SHT_REL;
11139 else
11140 type = SHT_RELA;
11141 dyn.d_un.d_val = 0;
11142 dyn.d_un.d_ptr = 0;
11143 for (i = 1; i < elf_numsections (abfd); i++)
11144 {
11145 Elf_Internal_Shdr *hdr;
11146
11147 hdr = elf_elfsections (abfd)[i];
11148 if (hdr->sh_type == type
11149 && (hdr->sh_flags & SHF_ALLOC) != 0)
11150 {
11151 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11152 dyn.d_un.d_val += hdr->sh_size;
11153 else
11154 {
11155 if (dyn.d_un.d_ptr == 0
11156 || hdr->sh_addr < dyn.d_un.d_ptr)
11157 dyn.d_un.d_ptr = hdr->sh_addr;
11158 }
11159 }
11160 }
11161 break;
11162 }
11163 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11164 }
11165 }
11166
11167 /* If we have created any dynamic sections, then output them. */
11168 if (dynobj != NULL)
11169 {
11170 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11171 goto error_return;
11172
11173 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11174 if (((info->warn_shared_textrel && info->shared)
11175 || info->error_textrel)
11176 && (o = bfd_get_section_by_name (dynobj, ".dynamic")) != NULL)
11177 {
11178 bfd_byte *dyncon, *dynconend;
11179
11180 dyncon = o->contents;
11181 dynconend = o->contents + o->size;
11182 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11183 {
11184 Elf_Internal_Dyn dyn;
11185
11186 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11187
11188 if (dyn.d_tag == DT_TEXTREL)
11189 {
11190 if (info->error_textrel)
11191 info->callbacks->einfo
11192 (_("%P%X: read-only segment has dynamic relocations.\n"));
11193 else
11194 info->callbacks->einfo
11195 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11196 break;
11197 }
11198 }
11199 }
11200
11201 for (o = dynobj->sections; o != NULL; o = o->next)
11202 {
11203 if ((o->flags & SEC_HAS_CONTENTS) == 0
11204 || o->size == 0
11205 || o->output_section == bfd_abs_section_ptr)
11206 continue;
11207 if ((o->flags & SEC_LINKER_CREATED) == 0)
11208 {
11209 /* At this point, we are only interested in sections
11210 created by _bfd_elf_link_create_dynamic_sections. */
11211 continue;
11212 }
11213 if (elf_hash_table (info)->stab_info.stabstr == o)
11214 continue;
11215 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11216 continue;
11217 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11218 != SHT_STRTAB)
11219 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11220 {
11221 /* FIXME: octets_per_byte. */
11222 if (! bfd_set_section_contents (abfd, o->output_section,
11223 o->contents,
11224 (file_ptr) o->output_offset,
11225 o->size))
11226 goto error_return;
11227 }
11228 else
11229 {
11230 /* The contents of the .dynstr section are actually in a
11231 stringtab. */
11232 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11233 if (bfd_seek (abfd, off, SEEK_SET) != 0
11234 || ! _bfd_elf_strtab_emit (abfd,
11235 elf_hash_table (info)->dynstr))
11236 goto error_return;
11237 }
11238 }
11239 }
11240
11241 if (info->relocatable)
11242 {
11243 bfd_boolean failed = FALSE;
11244
11245 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11246 if (failed)
11247 goto error_return;
11248 }
11249
11250 /* If we have optimized stabs strings, output them. */
11251 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11252 {
11253 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11254 goto error_return;
11255 }
11256
11257 if (info->eh_frame_hdr)
11258 {
11259 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11260 goto error_return;
11261 }
11262
11263 if (flinfo.symstrtab != NULL)
11264 _bfd_stringtab_free (flinfo.symstrtab);
11265 if (flinfo.contents != NULL)
11266 free (flinfo.contents);
11267 if (flinfo.external_relocs != NULL)
11268 free (flinfo.external_relocs);
11269 if (flinfo.internal_relocs != NULL)
11270 free (flinfo.internal_relocs);
11271 if (flinfo.external_syms != NULL)
11272 free (flinfo.external_syms);
11273 if (flinfo.locsym_shndx != NULL)
11274 free (flinfo.locsym_shndx);
11275 if (flinfo.internal_syms != NULL)
11276 free (flinfo.internal_syms);
11277 if (flinfo.indices != NULL)
11278 free (flinfo.indices);
11279 if (flinfo.sections != NULL)
11280 free (flinfo.sections);
11281 if (flinfo.symbuf != NULL)
11282 free (flinfo.symbuf);
11283 if (flinfo.symshndxbuf != NULL)
11284 free (flinfo.symshndxbuf);
11285 for (o = abfd->sections; o != NULL; o = o->next)
11286 {
11287 struct bfd_elf_section_data *esdo = elf_section_data (o);
11288 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11289 free (esdo->rel.hashes);
11290 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11291 free (esdo->rela.hashes);
11292 }
11293
11294 elf_tdata (abfd)->linker = TRUE;
11295
11296 if (attr_section)
11297 {
11298 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11299 if (contents == NULL)
11300 return FALSE; /* Bail out and fail. */
11301 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11302 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11303 free (contents);
11304 }
11305
11306 return TRUE;
11307
11308 error_return:
11309 if (flinfo.symstrtab != NULL)
11310 _bfd_stringtab_free (flinfo.symstrtab);
11311 if (flinfo.contents != NULL)
11312 free (flinfo.contents);
11313 if (flinfo.external_relocs != NULL)
11314 free (flinfo.external_relocs);
11315 if (flinfo.internal_relocs != NULL)
11316 free (flinfo.internal_relocs);
11317 if (flinfo.external_syms != NULL)
11318 free (flinfo.external_syms);
11319 if (flinfo.locsym_shndx != NULL)
11320 free (flinfo.locsym_shndx);
11321 if (flinfo.internal_syms != NULL)
11322 free (flinfo.internal_syms);
11323 if (flinfo.indices != NULL)
11324 free (flinfo.indices);
11325 if (flinfo.sections != NULL)
11326 free (flinfo.sections);
11327 if (flinfo.symbuf != NULL)
11328 free (flinfo.symbuf);
11329 if (flinfo.symshndxbuf != NULL)
11330 free (flinfo.symshndxbuf);
11331 for (o = abfd->sections; o != NULL; o = o->next)
11332 {
11333 struct bfd_elf_section_data *esdo = elf_section_data (o);
11334 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11335 free (esdo->rel.hashes);
11336 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11337 free (esdo->rela.hashes);
11338 }
11339
11340 return FALSE;
11341 }
11342 \f
11343 /* Initialize COOKIE for input bfd ABFD. */
11344
11345 static bfd_boolean
11346 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11347 struct bfd_link_info *info, bfd *abfd)
11348 {
11349 Elf_Internal_Shdr *symtab_hdr;
11350 const struct elf_backend_data *bed;
11351
11352 bed = get_elf_backend_data (abfd);
11353 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11354
11355 cookie->abfd = abfd;
11356 cookie->sym_hashes = elf_sym_hashes (abfd);
11357 cookie->bad_symtab = elf_bad_symtab (abfd);
11358 if (cookie->bad_symtab)
11359 {
11360 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11361 cookie->extsymoff = 0;
11362 }
11363 else
11364 {
11365 cookie->locsymcount = symtab_hdr->sh_info;
11366 cookie->extsymoff = symtab_hdr->sh_info;
11367 }
11368
11369 if (bed->s->arch_size == 32)
11370 cookie->r_sym_shift = 8;
11371 else
11372 cookie->r_sym_shift = 32;
11373
11374 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11375 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11376 {
11377 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11378 cookie->locsymcount, 0,
11379 NULL, NULL, NULL);
11380 if (cookie->locsyms == NULL)
11381 {
11382 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11383 return FALSE;
11384 }
11385 if (info->keep_memory)
11386 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11387 }
11388 return TRUE;
11389 }
11390
11391 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11392
11393 static void
11394 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11395 {
11396 Elf_Internal_Shdr *symtab_hdr;
11397
11398 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11399 if (cookie->locsyms != NULL
11400 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11401 free (cookie->locsyms);
11402 }
11403
11404 /* Initialize the relocation information in COOKIE for input section SEC
11405 of input bfd ABFD. */
11406
11407 static bfd_boolean
11408 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11409 struct bfd_link_info *info, bfd *abfd,
11410 asection *sec)
11411 {
11412 const struct elf_backend_data *bed;
11413
11414 if (sec->reloc_count == 0)
11415 {
11416 cookie->rels = NULL;
11417 cookie->relend = NULL;
11418 }
11419 else
11420 {
11421 bed = get_elf_backend_data (abfd);
11422
11423 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11424 info->keep_memory);
11425 if (cookie->rels == NULL)
11426 return FALSE;
11427 cookie->rel = cookie->rels;
11428 cookie->relend = (cookie->rels
11429 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11430 }
11431 cookie->rel = cookie->rels;
11432 return TRUE;
11433 }
11434
11435 /* Free the memory allocated by init_reloc_cookie_rels,
11436 if appropriate. */
11437
11438 static void
11439 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11440 asection *sec)
11441 {
11442 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11443 free (cookie->rels);
11444 }
11445
11446 /* Initialize the whole of COOKIE for input section SEC. */
11447
11448 static bfd_boolean
11449 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11450 struct bfd_link_info *info,
11451 asection *sec)
11452 {
11453 if (!init_reloc_cookie (cookie, info, sec->owner))
11454 goto error1;
11455 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11456 goto error2;
11457 return TRUE;
11458
11459 error2:
11460 fini_reloc_cookie (cookie, sec->owner);
11461 error1:
11462 return FALSE;
11463 }
11464
11465 /* Free the memory allocated by init_reloc_cookie_for_section,
11466 if appropriate. */
11467
11468 static void
11469 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11470 asection *sec)
11471 {
11472 fini_reloc_cookie_rels (cookie, sec);
11473 fini_reloc_cookie (cookie, sec->owner);
11474 }
11475 \f
11476 /* Garbage collect unused sections. */
11477
11478 /* Default gc_mark_hook. */
11479
11480 asection *
11481 _bfd_elf_gc_mark_hook (asection *sec,
11482 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11483 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11484 struct elf_link_hash_entry *h,
11485 Elf_Internal_Sym *sym)
11486 {
11487 const char *sec_name;
11488
11489 if (h != NULL)
11490 {
11491 switch (h->root.type)
11492 {
11493 case bfd_link_hash_defined:
11494 case bfd_link_hash_defweak:
11495 return h->root.u.def.section;
11496
11497 case bfd_link_hash_common:
11498 return h->root.u.c.p->section;
11499
11500 case bfd_link_hash_undefined:
11501 case bfd_link_hash_undefweak:
11502 /* To work around a glibc bug, keep all XXX input sections
11503 when there is an as yet undefined reference to __start_XXX
11504 or __stop_XXX symbols. The linker will later define such
11505 symbols for orphan input sections that have a name
11506 representable as a C identifier. */
11507 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11508 sec_name = h->root.root.string + 8;
11509 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11510 sec_name = h->root.root.string + 7;
11511 else
11512 sec_name = NULL;
11513
11514 if (sec_name && *sec_name != '\0')
11515 {
11516 bfd *i;
11517
11518 for (i = info->input_bfds; i; i = i->link_next)
11519 {
11520 sec = bfd_get_section_by_name (i, sec_name);
11521 if (sec)
11522 sec->flags |= SEC_KEEP;
11523 }
11524 }
11525 break;
11526
11527 default:
11528 break;
11529 }
11530 }
11531 else
11532 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11533
11534 return NULL;
11535 }
11536
11537 /* COOKIE->rel describes a relocation against section SEC, which is
11538 a section we've decided to keep. Return the section that contains
11539 the relocation symbol, or NULL if no section contains it. */
11540
11541 asection *
11542 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11543 elf_gc_mark_hook_fn gc_mark_hook,
11544 struct elf_reloc_cookie *cookie)
11545 {
11546 unsigned long r_symndx;
11547 struct elf_link_hash_entry *h;
11548
11549 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11550 if (r_symndx == STN_UNDEF)
11551 return NULL;
11552
11553 if (r_symndx >= cookie->locsymcount
11554 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11555 {
11556 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11557 while (h->root.type == bfd_link_hash_indirect
11558 || h->root.type == bfd_link_hash_warning)
11559 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11560 h->mark = 1;
11561 /* If this symbol is weak and there is a non-weak definition, we
11562 keep the non-weak definition because many backends put
11563 dynamic reloc info on the non-weak definition for code
11564 handling copy relocs. */
11565 if (h->u.weakdef != NULL)
11566 h->u.weakdef->mark = 1;
11567 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11568 }
11569
11570 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11571 &cookie->locsyms[r_symndx]);
11572 }
11573
11574 /* COOKIE->rel describes a relocation against section SEC, which is
11575 a section we've decided to keep. Mark the section that contains
11576 the relocation symbol. */
11577
11578 bfd_boolean
11579 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11580 asection *sec,
11581 elf_gc_mark_hook_fn gc_mark_hook,
11582 struct elf_reloc_cookie *cookie)
11583 {
11584 asection *rsec;
11585
11586 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11587 if (rsec && !rsec->gc_mark)
11588 {
11589 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11590 || (rsec->owner->flags & DYNAMIC) != 0)
11591 rsec->gc_mark = 1;
11592 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11593 return FALSE;
11594 }
11595 return TRUE;
11596 }
11597
11598 /* The mark phase of garbage collection. For a given section, mark
11599 it and any sections in this section's group, and all the sections
11600 which define symbols to which it refers. */
11601
11602 bfd_boolean
11603 _bfd_elf_gc_mark (struct bfd_link_info *info,
11604 asection *sec,
11605 elf_gc_mark_hook_fn gc_mark_hook)
11606 {
11607 bfd_boolean ret;
11608 asection *group_sec, *eh_frame;
11609
11610 sec->gc_mark = 1;
11611
11612 /* Mark all the sections in the group. */
11613 group_sec = elf_section_data (sec)->next_in_group;
11614 if (group_sec && !group_sec->gc_mark)
11615 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11616 return FALSE;
11617
11618 /* Look through the section relocs. */
11619 ret = TRUE;
11620 eh_frame = elf_eh_frame_section (sec->owner);
11621 if ((sec->flags & SEC_RELOC) != 0
11622 && sec->reloc_count > 0
11623 && sec != eh_frame)
11624 {
11625 struct elf_reloc_cookie cookie;
11626
11627 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11628 ret = FALSE;
11629 else
11630 {
11631 for (; cookie.rel < cookie.relend; cookie.rel++)
11632 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11633 {
11634 ret = FALSE;
11635 break;
11636 }
11637 fini_reloc_cookie_for_section (&cookie, sec);
11638 }
11639 }
11640
11641 if (ret && eh_frame && elf_fde_list (sec))
11642 {
11643 struct elf_reloc_cookie cookie;
11644
11645 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11646 ret = FALSE;
11647 else
11648 {
11649 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11650 gc_mark_hook, &cookie))
11651 ret = FALSE;
11652 fini_reloc_cookie_for_section (&cookie, eh_frame);
11653 }
11654 }
11655
11656 return ret;
11657 }
11658
11659 /* Keep debug and special sections. */
11660
11661 bfd_boolean
11662 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11663 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11664 {
11665 bfd *ibfd;
11666
11667 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11668 {
11669 asection *isec;
11670 bfd_boolean some_kept;
11671
11672 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11673 continue;
11674
11675 /* Ensure all linker created sections are kept, and see whether
11676 any other section is already marked. */
11677 some_kept = FALSE;
11678 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11679 {
11680 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11681 isec->gc_mark = 1;
11682 else if (isec->gc_mark)
11683 some_kept = TRUE;
11684 }
11685
11686 /* If no section in this file will be kept, then we can
11687 toss out debug sections. */
11688 if (!some_kept)
11689 continue;
11690
11691 /* Keep debug and special sections like .comment when they are
11692 not part of a group, or when we have single-member groups. */
11693 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11694 if ((elf_next_in_group (isec) == NULL
11695 || elf_next_in_group (isec) == isec)
11696 && ((isec->flags & SEC_DEBUGGING) != 0
11697 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11698 isec->gc_mark = 1;
11699 }
11700 return TRUE;
11701 }
11702
11703 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11704
11705 struct elf_gc_sweep_symbol_info
11706 {
11707 struct bfd_link_info *info;
11708 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11709 bfd_boolean);
11710 };
11711
11712 static bfd_boolean
11713 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11714 {
11715 if (!h->mark
11716 && (((h->root.type == bfd_link_hash_defined
11717 || h->root.type == bfd_link_hash_defweak)
11718 && !(h->def_regular
11719 && h->root.u.def.section->gc_mark))
11720 || h->root.type == bfd_link_hash_undefined
11721 || h->root.type == bfd_link_hash_undefweak))
11722 {
11723 struct elf_gc_sweep_symbol_info *inf;
11724
11725 inf = (struct elf_gc_sweep_symbol_info *) data;
11726 (*inf->hide_symbol) (inf->info, h, TRUE);
11727 h->def_regular = 0;
11728 h->ref_regular = 0;
11729 h->ref_regular_nonweak = 0;
11730 }
11731
11732 return TRUE;
11733 }
11734
11735 /* The sweep phase of garbage collection. Remove all garbage sections. */
11736
11737 typedef bfd_boolean (*gc_sweep_hook_fn)
11738 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11739
11740 static bfd_boolean
11741 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11742 {
11743 bfd *sub;
11744 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11745 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11746 unsigned long section_sym_count;
11747 struct elf_gc_sweep_symbol_info sweep_info;
11748
11749 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11750 {
11751 asection *o;
11752
11753 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11754 continue;
11755
11756 for (o = sub->sections; o != NULL; o = o->next)
11757 {
11758 /* When any section in a section group is kept, we keep all
11759 sections in the section group. If the first member of
11760 the section group is excluded, we will also exclude the
11761 group section. */
11762 if (o->flags & SEC_GROUP)
11763 {
11764 asection *first = elf_next_in_group (o);
11765 o->gc_mark = first->gc_mark;
11766 }
11767
11768 if (o->gc_mark)
11769 continue;
11770
11771 /* Skip sweeping sections already excluded. */
11772 if (o->flags & SEC_EXCLUDE)
11773 continue;
11774
11775 /* Since this is early in the link process, it is simple
11776 to remove a section from the output. */
11777 o->flags |= SEC_EXCLUDE;
11778
11779 if (info->print_gc_sections && o->size != 0)
11780 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11781
11782 /* But we also have to update some of the relocation
11783 info we collected before. */
11784 if (gc_sweep_hook
11785 && (o->flags & SEC_RELOC) != 0
11786 && o->reloc_count > 0
11787 && !bfd_is_abs_section (o->output_section))
11788 {
11789 Elf_Internal_Rela *internal_relocs;
11790 bfd_boolean r;
11791
11792 internal_relocs
11793 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11794 info->keep_memory);
11795 if (internal_relocs == NULL)
11796 return FALSE;
11797
11798 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11799
11800 if (elf_section_data (o)->relocs != internal_relocs)
11801 free (internal_relocs);
11802
11803 if (!r)
11804 return FALSE;
11805 }
11806 }
11807 }
11808
11809 /* Remove the symbols that were in the swept sections from the dynamic
11810 symbol table. GCFIXME: Anyone know how to get them out of the
11811 static symbol table as well? */
11812 sweep_info.info = info;
11813 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11814 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11815 &sweep_info);
11816
11817 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11818 return TRUE;
11819 }
11820
11821 /* Propagate collected vtable information. This is called through
11822 elf_link_hash_traverse. */
11823
11824 static bfd_boolean
11825 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11826 {
11827 /* Those that are not vtables. */
11828 if (h->vtable == NULL || h->vtable->parent == NULL)
11829 return TRUE;
11830
11831 /* Those vtables that do not have parents, we cannot merge. */
11832 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11833 return TRUE;
11834
11835 /* If we've already been done, exit. */
11836 if (h->vtable->used && h->vtable->used[-1])
11837 return TRUE;
11838
11839 /* Make sure the parent's table is up to date. */
11840 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11841
11842 if (h->vtable->used == NULL)
11843 {
11844 /* None of this table's entries were referenced. Re-use the
11845 parent's table. */
11846 h->vtable->used = h->vtable->parent->vtable->used;
11847 h->vtable->size = h->vtable->parent->vtable->size;
11848 }
11849 else
11850 {
11851 size_t n;
11852 bfd_boolean *cu, *pu;
11853
11854 /* Or the parent's entries into ours. */
11855 cu = h->vtable->used;
11856 cu[-1] = TRUE;
11857 pu = h->vtable->parent->vtable->used;
11858 if (pu != NULL)
11859 {
11860 const struct elf_backend_data *bed;
11861 unsigned int log_file_align;
11862
11863 bed = get_elf_backend_data (h->root.u.def.section->owner);
11864 log_file_align = bed->s->log_file_align;
11865 n = h->vtable->parent->vtable->size >> log_file_align;
11866 while (n--)
11867 {
11868 if (*pu)
11869 *cu = TRUE;
11870 pu++;
11871 cu++;
11872 }
11873 }
11874 }
11875
11876 return TRUE;
11877 }
11878
11879 static bfd_boolean
11880 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11881 {
11882 asection *sec;
11883 bfd_vma hstart, hend;
11884 Elf_Internal_Rela *relstart, *relend, *rel;
11885 const struct elf_backend_data *bed;
11886 unsigned int log_file_align;
11887
11888 /* Take care of both those symbols that do not describe vtables as
11889 well as those that are not loaded. */
11890 if (h->vtable == NULL || h->vtable->parent == NULL)
11891 return TRUE;
11892
11893 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11894 || h->root.type == bfd_link_hash_defweak);
11895
11896 sec = h->root.u.def.section;
11897 hstart = h->root.u.def.value;
11898 hend = hstart + h->size;
11899
11900 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11901 if (!relstart)
11902 return *(bfd_boolean *) okp = FALSE;
11903 bed = get_elf_backend_data (sec->owner);
11904 log_file_align = bed->s->log_file_align;
11905
11906 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11907
11908 for (rel = relstart; rel < relend; ++rel)
11909 if (rel->r_offset >= hstart && rel->r_offset < hend)
11910 {
11911 /* If the entry is in use, do nothing. */
11912 if (h->vtable->used
11913 && (rel->r_offset - hstart) < h->vtable->size)
11914 {
11915 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11916 if (h->vtable->used[entry])
11917 continue;
11918 }
11919 /* Otherwise, kill it. */
11920 rel->r_offset = rel->r_info = rel->r_addend = 0;
11921 }
11922
11923 return TRUE;
11924 }
11925
11926 /* Mark sections containing dynamically referenced symbols. When
11927 building shared libraries, we must assume that any visible symbol is
11928 referenced. */
11929
11930 bfd_boolean
11931 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11932 {
11933 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11934
11935 if ((h->root.type == bfd_link_hash_defined
11936 || h->root.type == bfd_link_hash_defweak)
11937 && (h->ref_dynamic
11938 || ((!info->executable || info->export_dynamic)
11939 && h->def_regular
11940 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11941 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11942 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11943 || !bfd_hide_sym_by_version (info->version_info,
11944 h->root.root.string)))))
11945 h->root.u.def.section->flags |= SEC_KEEP;
11946
11947 return TRUE;
11948 }
11949
11950 /* Keep all sections containing symbols undefined on the command-line,
11951 and the section containing the entry symbol. */
11952
11953 void
11954 _bfd_elf_gc_keep (struct bfd_link_info *info)
11955 {
11956 struct bfd_sym_chain *sym;
11957
11958 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11959 {
11960 struct elf_link_hash_entry *h;
11961
11962 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11963 FALSE, FALSE, FALSE);
11964
11965 if (h != NULL
11966 && (h->root.type == bfd_link_hash_defined
11967 || h->root.type == bfd_link_hash_defweak)
11968 && !bfd_is_abs_section (h->root.u.def.section))
11969 h->root.u.def.section->flags |= SEC_KEEP;
11970 }
11971 }
11972
11973 /* Do mark and sweep of unused sections. */
11974
11975 bfd_boolean
11976 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11977 {
11978 bfd_boolean ok = TRUE;
11979 bfd *sub;
11980 elf_gc_mark_hook_fn gc_mark_hook;
11981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11982
11983 if (!bed->can_gc_sections
11984 || !is_elf_hash_table (info->hash))
11985 {
11986 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11987 return TRUE;
11988 }
11989
11990 bed->gc_keep (info);
11991
11992 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11993 at the .eh_frame section if we can mark the FDEs individually. */
11994 _bfd_elf_begin_eh_frame_parsing (info);
11995 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11996 {
11997 asection *sec;
11998 struct elf_reloc_cookie cookie;
11999
12000 sec = bfd_get_section_by_name (sub, ".eh_frame");
12001 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12002 {
12003 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12004 if (elf_section_data (sec)->sec_info
12005 && (sec->flags & SEC_LINKER_CREATED) == 0)
12006 elf_eh_frame_section (sub) = sec;
12007 fini_reloc_cookie_for_section (&cookie, sec);
12008 sec = bfd_get_next_section_by_name (sec);
12009 }
12010 }
12011 _bfd_elf_end_eh_frame_parsing (info);
12012
12013 /* Apply transitive closure to the vtable entry usage info. */
12014 elf_link_hash_traverse (elf_hash_table (info),
12015 elf_gc_propagate_vtable_entries_used,
12016 &ok);
12017 if (!ok)
12018 return FALSE;
12019
12020 /* Kill the vtable relocations that were not used. */
12021 elf_link_hash_traverse (elf_hash_table (info),
12022 elf_gc_smash_unused_vtentry_relocs,
12023 &ok);
12024 if (!ok)
12025 return FALSE;
12026
12027 /* Mark dynamically referenced symbols. */
12028 if (elf_hash_table (info)->dynamic_sections_created)
12029 elf_link_hash_traverse (elf_hash_table (info),
12030 bed->gc_mark_dynamic_ref,
12031 info);
12032
12033 /* Grovel through relocs to find out who stays ... */
12034 gc_mark_hook = bed->gc_mark_hook;
12035 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12036 {
12037 asection *o;
12038
12039 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12040 continue;
12041
12042 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12043 Also treat note sections as a root, if the section is not part
12044 of a group. */
12045 for (o = sub->sections; o != NULL; o = o->next)
12046 if (!o->gc_mark
12047 && (o->flags & SEC_EXCLUDE) == 0
12048 && ((o->flags & SEC_KEEP) != 0
12049 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12050 && elf_next_in_group (o) == NULL )))
12051 {
12052 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12053 return FALSE;
12054 }
12055 }
12056
12057 /* Allow the backend to mark additional target specific sections. */
12058 bed->gc_mark_extra_sections (info, gc_mark_hook);
12059
12060 /* ... and mark SEC_EXCLUDE for those that go. */
12061 return elf_gc_sweep (abfd, info);
12062 }
12063 \f
12064 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12065
12066 bfd_boolean
12067 bfd_elf_gc_record_vtinherit (bfd *abfd,
12068 asection *sec,
12069 struct elf_link_hash_entry *h,
12070 bfd_vma offset)
12071 {
12072 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12073 struct elf_link_hash_entry **search, *child;
12074 bfd_size_type extsymcount;
12075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12076
12077 /* The sh_info field of the symtab header tells us where the
12078 external symbols start. We don't care about the local symbols at
12079 this point. */
12080 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12081 if (!elf_bad_symtab (abfd))
12082 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12083
12084 sym_hashes = elf_sym_hashes (abfd);
12085 sym_hashes_end = sym_hashes + extsymcount;
12086
12087 /* Hunt down the child symbol, which is in this section at the same
12088 offset as the relocation. */
12089 for (search = sym_hashes; search != sym_hashes_end; ++search)
12090 {
12091 if ((child = *search) != NULL
12092 && (child->root.type == bfd_link_hash_defined
12093 || child->root.type == bfd_link_hash_defweak)
12094 && child->root.u.def.section == sec
12095 && child->root.u.def.value == offset)
12096 goto win;
12097 }
12098
12099 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12100 abfd, sec, (unsigned long) offset);
12101 bfd_set_error (bfd_error_invalid_operation);
12102 return FALSE;
12103
12104 win:
12105 if (!child->vtable)
12106 {
12107 child->vtable = (struct elf_link_virtual_table_entry *)
12108 bfd_zalloc (abfd, sizeof (*child->vtable));
12109 if (!child->vtable)
12110 return FALSE;
12111 }
12112 if (!h)
12113 {
12114 /* This *should* only be the absolute section. It could potentially
12115 be that someone has defined a non-global vtable though, which
12116 would be bad. It isn't worth paging in the local symbols to be
12117 sure though; that case should simply be handled by the assembler. */
12118
12119 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12120 }
12121 else
12122 child->vtable->parent = h;
12123
12124 return TRUE;
12125 }
12126
12127 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12128
12129 bfd_boolean
12130 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12131 asection *sec ATTRIBUTE_UNUSED,
12132 struct elf_link_hash_entry *h,
12133 bfd_vma addend)
12134 {
12135 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12136 unsigned int log_file_align = bed->s->log_file_align;
12137
12138 if (!h->vtable)
12139 {
12140 h->vtable = (struct elf_link_virtual_table_entry *)
12141 bfd_zalloc (abfd, sizeof (*h->vtable));
12142 if (!h->vtable)
12143 return FALSE;
12144 }
12145
12146 if (addend >= h->vtable->size)
12147 {
12148 size_t size, bytes, file_align;
12149 bfd_boolean *ptr = h->vtable->used;
12150
12151 /* While the symbol is undefined, we have to be prepared to handle
12152 a zero size. */
12153 file_align = 1 << log_file_align;
12154 if (h->root.type == bfd_link_hash_undefined)
12155 size = addend + file_align;
12156 else
12157 {
12158 size = h->size;
12159 if (addend >= size)
12160 {
12161 /* Oops! We've got a reference past the defined end of
12162 the table. This is probably a bug -- shall we warn? */
12163 size = addend + file_align;
12164 }
12165 }
12166 size = (size + file_align - 1) & -file_align;
12167
12168 /* Allocate one extra entry for use as a "done" flag for the
12169 consolidation pass. */
12170 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12171
12172 if (ptr)
12173 {
12174 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12175
12176 if (ptr != NULL)
12177 {
12178 size_t oldbytes;
12179
12180 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12181 * sizeof (bfd_boolean));
12182 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12183 }
12184 }
12185 else
12186 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12187
12188 if (ptr == NULL)
12189 return FALSE;
12190
12191 /* And arrange for that done flag to be at index -1. */
12192 h->vtable->used = ptr + 1;
12193 h->vtable->size = size;
12194 }
12195
12196 h->vtable->used[addend >> log_file_align] = TRUE;
12197
12198 return TRUE;
12199 }
12200
12201 /* Map an ELF section header flag to its corresponding string. */
12202 typedef struct
12203 {
12204 char *flag_name;
12205 flagword flag_value;
12206 } elf_flags_to_name_table;
12207
12208 static elf_flags_to_name_table elf_flags_to_names [] =
12209 {
12210 { "SHF_WRITE", SHF_WRITE },
12211 { "SHF_ALLOC", SHF_ALLOC },
12212 { "SHF_EXECINSTR", SHF_EXECINSTR },
12213 { "SHF_MERGE", SHF_MERGE },
12214 { "SHF_STRINGS", SHF_STRINGS },
12215 { "SHF_INFO_LINK", SHF_INFO_LINK},
12216 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12217 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12218 { "SHF_GROUP", SHF_GROUP },
12219 { "SHF_TLS", SHF_TLS },
12220 { "SHF_MASKOS", SHF_MASKOS },
12221 { "SHF_EXCLUDE", SHF_EXCLUDE },
12222 };
12223
12224 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12225 bfd_boolean
12226 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12227 struct flag_info *flaginfo,
12228 asection *section)
12229 {
12230 const bfd_vma sh_flags = elf_section_flags (section);
12231
12232 if (!flaginfo->flags_initialized)
12233 {
12234 bfd *obfd = info->output_bfd;
12235 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12236 struct flag_info_list *tf = flaginfo->flag_list;
12237 int with_hex = 0;
12238 int without_hex = 0;
12239
12240 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12241 {
12242 unsigned i;
12243 flagword (*lookup) (char *);
12244
12245 lookup = bed->elf_backend_lookup_section_flags_hook;
12246 if (lookup != NULL)
12247 {
12248 flagword hexval = (*lookup) ((char *) tf->name);
12249
12250 if (hexval != 0)
12251 {
12252 if (tf->with == with_flags)
12253 with_hex |= hexval;
12254 else if (tf->with == without_flags)
12255 without_hex |= hexval;
12256 tf->valid = TRUE;
12257 continue;
12258 }
12259 }
12260 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12261 {
12262 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12263 {
12264 if (tf->with == with_flags)
12265 with_hex |= elf_flags_to_names[i].flag_value;
12266 else if (tf->with == without_flags)
12267 without_hex |= elf_flags_to_names[i].flag_value;
12268 tf->valid = TRUE;
12269 break;
12270 }
12271 }
12272 if (!tf->valid)
12273 {
12274 info->callbacks->einfo
12275 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12276 return FALSE;
12277 }
12278 }
12279 flaginfo->flags_initialized = TRUE;
12280 flaginfo->only_with_flags |= with_hex;
12281 flaginfo->not_with_flags |= without_hex;
12282 }
12283
12284 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12285 return FALSE;
12286
12287 if ((flaginfo->not_with_flags & sh_flags) != 0)
12288 return FALSE;
12289
12290 return TRUE;
12291 }
12292
12293 struct alloc_got_off_arg {
12294 bfd_vma gotoff;
12295 struct bfd_link_info *info;
12296 };
12297
12298 /* We need a special top-level link routine to convert got reference counts
12299 to real got offsets. */
12300
12301 static bfd_boolean
12302 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12303 {
12304 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12305 bfd *obfd = gofarg->info->output_bfd;
12306 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12307
12308 if (h->got.refcount > 0)
12309 {
12310 h->got.offset = gofarg->gotoff;
12311 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12312 }
12313 else
12314 h->got.offset = (bfd_vma) -1;
12315
12316 return TRUE;
12317 }
12318
12319 /* And an accompanying bit to work out final got entry offsets once
12320 we're done. Should be called from final_link. */
12321
12322 bfd_boolean
12323 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12324 struct bfd_link_info *info)
12325 {
12326 bfd *i;
12327 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12328 bfd_vma gotoff;
12329 struct alloc_got_off_arg gofarg;
12330
12331 BFD_ASSERT (abfd == info->output_bfd);
12332
12333 if (! is_elf_hash_table (info->hash))
12334 return FALSE;
12335
12336 /* The GOT offset is relative to the .got section, but the GOT header is
12337 put into the .got.plt section, if the backend uses it. */
12338 if (bed->want_got_plt)
12339 gotoff = 0;
12340 else
12341 gotoff = bed->got_header_size;
12342
12343 /* Do the local .got entries first. */
12344 for (i = info->input_bfds; i; i = i->link_next)
12345 {
12346 bfd_signed_vma *local_got;
12347 bfd_size_type j, locsymcount;
12348 Elf_Internal_Shdr *symtab_hdr;
12349
12350 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12351 continue;
12352
12353 local_got = elf_local_got_refcounts (i);
12354 if (!local_got)
12355 continue;
12356
12357 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12358 if (elf_bad_symtab (i))
12359 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12360 else
12361 locsymcount = symtab_hdr->sh_info;
12362
12363 for (j = 0; j < locsymcount; ++j)
12364 {
12365 if (local_got[j] > 0)
12366 {
12367 local_got[j] = gotoff;
12368 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12369 }
12370 else
12371 local_got[j] = (bfd_vma) -1;
12372 }
12373 }
12374
12375 /* Then the global .got entries. .plt refcounts are handled by
12376 adjust_dynamic_symbol */
12377 gofarg.gotoff = gotoff;
12378 gofarg.info = info;
12379 elf_link_hash_traverse (elf_hash_table (info),
12380 elf_gc_allocate_got_offsets,
12381 &gofarg);
12382 return TRUE;
12383 }
12384
12385 /* Many folk need no more in the way of final link than this, once
12386 got entry reference counting is enabled. */
12387
12388 bfd_boolean
12389 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12390 {
12391 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12392 return FALSE;
12393
12394 /* Invoke the regular ELF backend linker to do all the work. */
12395 return bfd_elf_final_link (abfd, info);
12396 }
12397
12398 bfd_boolean
12399 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12400 {
12401 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12402
12403 if (rcookie->bad_symtab)
12404 rcookie->rel = rcookie->rels;
12405
12406 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12407 {
12408 unsigned long r_symndx;
12409
12410 if (! rcookie->bad_symtab)
12411 if (rcookie->rel->r_offset > offset)
12412 return FALSE;
12413 if (rcookie->rel->r_offset != offset)
12414 continue;
12415
12416 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12417 if (r_symndx == STN_UNDEF)
12418 return TRUE;
12419
12420 if (r_symndx >= rcookie->locsymcount
12421 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12422 {
12423 struct elf_link_hash_entry *h;
12424
12425 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12426
12427 while (h->root.type == bfd_link_hash_indirect
12428 || h->root.type == bfd_link_hash_warning)
12429 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12430
12431 if ((h->root.type == bfd_link_hash_defined
12432 || h->root.type == bfd_link_hash_defweak)
12433 && discarded_section (h->root.u.def.section))
12434 return TRUE;
12435 else
12436 return FALSE;
12437 }
12438 else
12439 {
12440 /* It's not a relocation against a global symbol,
12441 but it could be a relocation against a local
12442 symbol for a discarded section. */
12443 asection *isec;
12444 Elf_Internal_Sym *isym;
12445
12446 /* Need to: get the symbol; get the section. */
12447 isym = &rcookie->locsyms[r_symndx];
12448 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12449 if (isec != NULL && discarded_section (isec))
12450 return TRUE;
12451 }
12452 return FALSE;
12453 }
12454 return FALSE;
12455 }
12456
12457 /* Discard unneeded references to discarded sections.
12458 Returns TRUE if any section's size was changed. */
12459 /* This function assumes that the relocations are in sorted order,
12460 which is true for all known assemblers. */
12461
12462 bfd_boolean
12463 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12464 {
12465 struct elf_reloc_cookie cookie;
12466 asection *stab, *eh;
12467 const struct elf_backend_data *bed;
12468 bfd *abfd;
12469 bfd_boolean ret = FALSE;
12470
12471 if (info->traditional_format
12472 || !is_elf_hash_table (info->hash))
12473 return FALSE;
12474
12475 _bfd_elf_begin_eh_frame_parsing (info);
12476 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12477 {
12478 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12479 continue;
12480
12481 bed = get_elf_backend_data (abfd);
12482
12483 eh = NULL;
12484 if (!info->relocatable)
12485 {
12486 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12487 while (eh != NULL
12488 && (eh->size == 0
12489 || bfd_is_abs_section (eh->output_section)))
12490 eh = bfd_get_next_section_by_name (eh);
12491 }
12492
12493 stab = bfd_get_section_by_name (abfd, ".stab");
12494 if (stab != NULL
12495 && (stab->size == 0
12496 || bfd_is_abs_section (stab->output_section)
12497 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12498 stab = NULL;
12499
12500 if (stab == NULL
12501 && eh == NULL
12502 && bed->elf_backend_discard_info == NULL)
12503 continue;
12504
12505 if (!init_reloc_cookie (&cookie, info, abfd))
12506 return FALSE;
12507
12508 if (stab != NULL
12509 && stab->reloc_count > 0
12510 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12511 {
12512 if (_bfd_discard_section_stabs (abfd, stab,
12513 elf_section_data (stab)->sec_info,
12514 bfd_elf_reloc_symbol_deleted_p,
12515 &cookie))
12516 ret = TRUE;
12517 fini_reloc_cookie_rels (&cookie, stab);
12518 }
12519
12520 while (eh != NULL
12521 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12522 {
12523 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12524 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12525 bfd_elf_reloc_symbol_deleted_p,
12526 &cookie))
12527 ret = TRUE;
12528 fini_reloc_cookie_rels (&cookie, eh);
12529 eh = bfd_get_next_section_by_name (eh);
12530 }
12531
12532 if (bed->elf_backend_discard_info != NULL
12533 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12534 ret = TRUE;
12535
12536 fini_reloc_cookie (&cookie, abfd);
12537 }
12538 _bfd_elf_end_eh_frame_parsing (info);
12539
12540 if (info->eh_frame_hdr
12541 && !info->relocatable
12542 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12543 ret = TRUE;
12544
12545 return ret;
12546 }
12547
12548 bfd_boolean
12549 _bfd_elf_section_already_linked (bfd *abfd,
12550 asection *sec,
12551 struct bfd_link_info *info)
12552 {
12553 flagword flags;
12554 const char *name, *key;
12555 struct bfd_section_already_linked *l;
12556 struct bfd_section_already_linked_hash_entry *already_linked_list;
12557
12558 if (sec->output_section == bfd_abs_section_ptr)
12559 return FALSE;
12560
12561 flags = sec->flags;
12562
12563 /* Return if it isn't a linkonce section. A comdat group section
12564 also has SEC_LINK_ONCE set. */
12565 if ((flags & SEC_LINK_ONCE) == 0)
12566 return FALSE;
12567
12568 /* Don't put group member sections on our list of already linked
12569 sections. They are handled as a group via their group section. */
12570 if (elf_sec_group (sec) != NULL)
12571 return FALSE;
12572
12573 /* For a SHT_GROUP section, use the group signature as the key. */
12574 name = sec->name;
12575 if ((flags & SEC_GROUP) != 0
12576 && elf_next_in_group (sec) != NULL
12577 && elf_group_name (elf_next_in_group (sec)) != NULL)
12578 key = elf_group_name (elf_next_in_group (sec));
12579 else
12580 {
12581 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12582 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12583 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12584 key++;
12585 else
12586 /* Must be a user linkonce section that doesn't follow gcc's
12587 naming convention. In this case we won't be matching
12588 single member groups. */
12589 key = name;
12590 }
12591
12592 already_linked_list = bfd_section_already_linked_table_lookup (key);
12593
12594 for (l = already_linked_list->entry; l != NULL; l = l->next)
12595 {
12596 /* We may have 2 different types of sections on the list: group
12597 sections with a signature of <key> (<key> is some string),
12598 and linkonce sections named .gnu.linkonce.<type>.<key>.
12599 Match like sections. LTO plugin sections are an exception.
12600 They are always named .gnu.linkonce.t.<key> and match either
12601 type of section. */
12602 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12603 && ((flags & SEC_GROUP) != 0
12604 || strcmp (name, l->sec->name) == 0))
12605 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12606 {
12607 /* The section has already been linked. See if we should
12608 issue a warning. */
12609 if (!_bfd_handle_already_linked (sec, l, info))
12610 return FALSE;
12611
12612 if (flags & SEC_GROUP)
12613 {
12614 asection *first = elf_next_in_group (sec);
12615 asection *s = first;
12616
12617 while (s != NULL)
12618 {
12619 s->output_section = bfd_abs_section_ptr;
12620 /* Record which group discards it. */
12621 s->kept_section = l->sec;
12622 s = elf_next_in_group (s);
12623 /* These lists are circular. */
12624 if (s == first)
12625 break;
12626 }
12627 }
12628
12629 return TRUE;
12630 }
12631 }
12632
12633 /* A single member comdat group section may be discarded by a
12634 linkonce section and vice versa. */
12635 if ((flags & SEC_GROUP) != 0)
12636 {
12637 asection *first = elf_next_in_group (sec);
12638
12639 if (first != NULL && elf_next_in_group (first) == first)
12640 /* Check this single member group against linkonce sections. */
12641 for (l = already_linked_list->entry; l != NULL; l = l->next)
12642 if ((l->sec->flags & SEC_GROUP) == 0
12643 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12644 {
12645 first->output_section = bfd_abs_section_ptr;
12646 first->kept_section = l->sec;
12647 sec->output_section = bfd_abs_section_ptr;
12648 break;
12649 }
12650 }
12651 else
12652 /* Check this linkonce section against single member groups. */
12653 for (l = already_linked_list->entry; l != NULL; l = l->next)
12654 if (l->sec->flags & SEC_GROUP)
12655 {
12656 asection *first = elf_next_in_group (l->sec);
12657
12658 if (first != NULL
12659 && elf_next_in_group (first) == first
12660 && bfd_elf_match_symbols_in_sections (first, sec, info))
12661 {
12662 sec->output_section = bfd_abs_section_ptr;
12663 sec->kept_section = first;
12664 break;
12665 }
12666 }
12667
12668 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12669 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12670 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12671 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12672 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12673 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12674 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12675 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12676 The reverse order cannot happen as there is never a bfd with only the
12677 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12678 matter as here were are looking only for cross-bfd sections. */
12679
12680 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12681 for (l = already_linked_list->entry; l != NULL; l = l->next)
12682 if ((l->sec->flags & SEC_GROUP) == 0
12683 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12684 {
12685 if (abfd != l->sec->owner)
12686 sec->output_section = bfd_abs_section_ptr;
12687 break;
12688 }
12689
12690 /* This is the first section with this name. Record it. */
12691 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12692 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12693 return sec->output_section == bfd_abs_section_ptr;
12694 }
12695
12696 bfd_boolean
12697 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12698 {
12699 return sym->st_shndx == SHN_COMMON;
12700 }
12701
12702 unsigned int
12703 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12704 {
12705 return SHN_COMMON;
12706 }
12707
12708 asection *
12709 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12710 {
12711 return bfd_com_section_ptr;
12712 }
12713
12714 bfd_vma
12715 _bfd_elf_default_got_elt_size (bfd *abfd,
12716 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12717 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12718 bfd *ibfd ATTRIBUTE_UNUSED,
12719 unsigned long symndx ATTRIBUTE_UNUSED)
12720 {
12721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12722 return bed->s->arch_size / 8;
12723 }
12724
12725 /* Routines to support the creation of dynamic relocs. */
12726
12727 /* Returns the name of the dynamic reloc section associated with SEC. */
12728
12729 static const char *
12730 get_dynamic_reloc_section_name (bfd * abfd,
12731 asection * sec,
12732 bfd_boolean is_rela)
12733 {
12734 char *name;
12735 const char *old_name = bfd_get_section_name (NULL, sec);
12736 const char *prefix = is_rela ? ".rela" : ".rel";
12737
12738 if (old_name == NULL)
12739 return NULL;
12740
12741 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12742 sprintf (name, "%s%s", prefix, old_name);
12743
12744 return name;
12745 }
12746
12747 /* Returns the dynamic reloc section associated with SEC.
12748 If necessary compute the name of the dynamic reloc section based
12749 on SEC's name (looked up in ABFD's string table) and the setting
12750 of IS_RELA. */
12751
12752 asection *
12753 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12754 asection * sec,
12755 bfd_boolean is_rela)
12756 {
12757 asection * reloc_sec = elf_section_data (sec)->sreloc;
12758
12759 if (reloc_sec == NULL)
12760 {
12761 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12762
12763 if (name != NULL)
12764 {
12765 reloc_sec = bfd_get_section_by_name (abfd, name);
12766
12767 if (reloc_sec != NULL)
12768 elf_section_data (sec)->sreloc = reloc_sec;
12769 }
12770 }
12771
12772 return reloc_sec;
12773 }
12774
12775 /* Returns the dynamic reloc section associated with SEC. If the
12776 section does not exist it is created and attached to the DYNOBJ
12777 bfd and stored in the SRELOC field of SEC's elf_section_data
12778 structure.
12779
12780 ALIGNMENT is the alignment for the newly created section and
12781 IS_RELA defines whether the name should be .rela.<SEC's name>
12782 or .rel.<SEC's name>. The section name is looked up in the
12783 string table associated with ABFD. */
12784
12785 asection *
12786 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12787 bfd * dynobj,
12788 unsigned int alignment,
12789 bfd * abfd,
12790 bfd_boolean is_rela)
12791 {
12792 asection * reloc_sec = elf_section_data (sec)->sreloc;
12793
12794 if (reloc_sec == NULL)
12795 {
12796 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12797
12798 if (name == NULL)
12799 return NULL;
12800
12801 reloc_sec = bfd_get_section_by_name (dynobj, name);
12802
12803 if (reloc_sec == NULL)
12804 {
12805 flagword flags;
12806
12807 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12808 if ((sec->flags & SEC_ALLOC) != 0)
12809 flags |= SEC_ALLOC | SEC_LOAD;
12810
12811 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12812 if (reloc_sec != NULL)
12813 {
12814 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12815 reloc_sec = NULL;
12816 }
12817 }
12818
12819 elf_section_data (sec)->sreloc = reloc_sec;
12820 }
12821
12822 return reloc_sec;
12823 }
12824
12825 /* Copy the ELF symbol type associated with a linker hash entry. */
12826 void
12827 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12828 struct bfd_link_hash_entry * hdest,
12829 struct bfd_link_hash_entry * hsrc)
12830 {
12831 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12832 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12833
12834 ehdest->type = ehsrc->type;
12835 ehdest->target_internal = ehsrc->target_internal;
12836 }
12837
12838 /* Append a RELA relocation REL to section S in BFD. */
12839
12840 void
12841 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12842 {
12843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12844 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12845 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12846 bed->s->swap_reloca_out (abfd, rel, loc);
12847 }
12848
12849 /* Append a REL relocation REL to section S in BFD. */
12850
12851 void
12852 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12853 {
12854 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12855 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12856 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12857 bed->s->swap_reloca_out (abfd, rel, loc);
12858 }
This page took 0.287865 seconds and 5 git commands to generate.