* elfcode.h (elf_checksum_contents): Free contents.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
909
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *skip,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
924 {
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
968 hi = h;
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
980
981 newdyn = (abfd->flags & DYNAMIC) != 0;
982
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
990 if (newdyn)
991 {
992 if (bfd_is_und_section (sec))
993 {
994 if (bind != STB_WEAK)
995 {
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
998 }
999 }
1000 else
1001 {
1002 h->dynamic_def = 1;
1003 hi->dynamic_def = 1;
1004 }
1005 }
1006
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1010
1011 if (h->root.type == bfd_link_hash_new)
1012 {
1013 h->non_elf = 0;
1014 return TRUE;
1015 }
1016
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 existing symbol. */
1019
1020 switch (h->root.type)
1021 {
1022 default:
1023 oldbfd = NULL;
1024 oldsec = NULL;
1025 break;
1026
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1030 oldsec = NULL;
1031 break;
1032
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1037 break;
1038
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1042 break;
1043 }
1044
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1049 if (pold_weak)
1050 *pold_weak = oldweak;
1051
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1058 if (abfd == oldbfd
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1062 return TRUE;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 struct elf_link_hash_entry *vh = *sym_hash;
1202
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 {
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1214 h->ref_dynamic = 0;
1215 }
1216 else
1217 h->ref_dynamic = 1;
1218
1219 h->def_dynamic = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1221 h->size = 0;
1222 h->type = 0;
1223
1224 h = vh;
1225 }
1226 else
1227 h = *sym_hash;
1228 }
1229
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 {
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1241 }
1242 else
1243 {
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1246 }
1247
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 {
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1254 h->ref_dynamic = 0;
1255 }
1256 else
1257 h->ref_dynamic = 1;
1258 h->def_dynamic = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1260 h->size = 0;
1261 h->type = 0;
1262 return TRUE;
1263 }
1264
1265 if (bind == STB_GNU_UNIQUE)
1266 h->unique_global = 1;
1267
1268 /* If a new weak symbol definition comes from a regular file and the
1269 old symbol comes from a dynamic library, we treat the new one as
1270 strong. Similarly, an old weak symbol definition from a regular
1271 file is treated as strong when the new symbol comes from a dynamic
1272 library. Further, an old weak symbol from a dynamic library is
1273 treated as strong if the new symbol is from a dynamic library.
1274 This reflects the way glibc's ld.so works.
1275
1276 Do this before setting *type_change_ok or *size_change_ok so that
1277 we warn properly when dynamic library symbols are overridden. */
1278
1279 if (newdef && !newdyn && olddyn)
1280 newweak = FALSE;
1281 if (olddef && newdyn)
1282 oldweak = FALSE;
1283
1284 /* Allow changes between different types of function symbol. */
1285 if (newfunc && oldfunc)
1286 *type_change_ok = TRUE;
1287
1288 /* It's OK to change the type if either the existing symbol or the
1289 new symbol is weak. A type change is also OK if the old symbol
1290 is undefined and the new symbol is defined. */
1291
1292 if (oldweak
1293 || newweak
1294 || (newdef
1295 && h->root.type == bfd_link_hash_undefined))
1296 *type_change_ok = TRUE;
1297
1298 /* It's OK to change the size if either the existing symbol or the
1299 new symbol is weak, or if the old symbol is undefined. */
1300
1301 if (*type_change_ok
1302 || h->root.type == bfd_link_hash_undefined)
1303 *size_change_ok = TRUE;
1304
1305 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1306 symbol, respectively, appears to be a common symbol in a dynamic
1307 object. If a symbol appears in an uninitialized section, and is
1308 not weak, and is not a function, then it may be a common symbol
1309 which was resolved when the dynamic object was created. We want
1310 to treat such symbols specially, because they raise special
1311 considerations when setting the symbol size: if the symbol
1312 appears as a common symbol in a regular object, and the size in
1313 the regular object is larger, we must make sure that we use the
1314 larger size. This problematic case can always be avoided in C,
1315 but it must be handled correctly when using Fortran shared
1316 libraries.
1317
1318 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1319 likewise for OLDDYNCOMMON and OLDDEF.
1320
1321 Note that this test is just a heuristic, and that it is quite
1322 possible to have an uninitialized symbol in a shared object which
1323 is really a definition, rather than a common symbol. This could
1324 lead to some minor confusion when the symbol really is a common
1325 symbol in some regular object. However, I think it will be
1326 harmless. */
1327
1328 if (newdyn
1329 && newdef
1330 && !newweak
1331 && (sec->flags & SEC_ALLOC) != 0
1332 && (sec->flags & SEC_LOAD) == 0
1333 && sym->st_size > 0
1334 && !newfunc)
1335 newdyncommon = TRUE;
1336 else
1337 newdyncommon = FALSE;
1338
1339 if (olddyn
1340 && olddef
1341 && h->root.type == bfd_link_hash_defined
1342 && h->def_dynamic
1343 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1344 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1345 && h->size > 0
1346 && !oldfunc)
1347 olddyncommon = TRUE;
1348 else
1349 olddyncommon = FALSE;
1350
1351 /* We now know everything about the old and new symbols. We ask the
1352 backend to check if we can merge them. */
1353 if (bed->merge_symbol
1354 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1355 pold_alignment, skip, override,
1356 type_change_ok, size_change_ok,
1357 &newdyn, &newdef, &newdyncommon, &newweak,
1358 abfd, &sec,
1359 &olddyn, &olddef, &olddyncommon, &oldweak,
1360 oldbfd, &oldsec))
1361 return FALSE;
1362
1363 /* If both the old and the new symbols look like common symbols in a
1364 dynamic object, set the size of the symbol to the larger of the
1365 two. */
1366
1367 if (olddyncommon
1368 && newdyncommon
1369 && sym->st_size != h->size)
1370 {
1371 /* Since we think we have two common symbols, issue a multiple
1372 common warning if desired. Note that we only warn if the
1373 size is different. If the size is the same, we simply let
1374 the old symbol override the new one as normally happens with
1375 symbols defined in dynamic objects. */
1376
1377 if (! ((*info->callbacks->multiple_common)
1378 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1379 return FALSE;
1380
1381 if (sym->st_size > h->size)
1382 h->size = sym->st_size;
1383
1384 *size_change_ok = TRUE;
1385 }
1386
1387 /* If we are looking at a dynamic object, and we have found a
1388 definition, we need to see if the symbol was already defined by
1389 some other object. If so, we want to use the existing
1390 definition, and we do not want to report a multiple symbol
1391 definition error; we do this by clobbering *PSEC to be
1392 bfd_und_section_ptr.
1393
1394 We treat a common symbol as a definition if the symbol in the
1395 shared library is a function, since common symbols always
1396 represent variables; this can cause confusion in principle, but
1397 any such confusion would seem to indicate an erroneous program or
1398 shared library. We also permit a common symbol in a regular
1399 object to override a weak symbol in a shared object. */
1400
1401 if (newdyn
1402 && newdef
1403 && (olddef
1404 || (h->root.type == bfd_link_hash_common
1405 && (newweak || newfunc))))
1406 {
1407 *override = TRUE;
1408 newdef = FALSE;
1409 newdyncommon = FALSE;
1410
1411 *psec = sec = bfd_und_section_ptr;
1412 *size_change_ok = TRUE;
1413
1414 /* If we get here when the old symbol is a common symbol, then
1415 we are explicitly letting it override a weak symbol or
1416 function in a dynamic object, and we don't want to warn about
1417 a type change. If the old symbol is a defined symbol, a type
1418 change warning may still be appropriate. */
1419
1420 if (h->root.type == bfd_link_hash_common)
1421 *type_change_ok = TRUE;
1422 }
1423
1424 /* Handle the special case of an old common symbol merging with a
1425 new symbol which looks like a common symbol in a shared object.
1426 We change *PSEC and *PVALUE to make the new symbol look like a
1427 common symbol, and let _bfd_generic_link_add_one_symbol do the
1428 right thing. */
1429
1430 if (newdyncommon
1431 && h->root.type == bfd_link_hash_common)
1432 {
1433 *override = TRUE;
1434 newdef = FALSE;
1435 newdyncommon = FALSE;
1436 *pvalue = sym->st_size;
1437 *psec = sec = bed->common_section (oldsec);
1438 *size_change_ok = TRUE;
1439 }
1440
1441 /* Skip weak definitions of symbols that are already defined. */
1442 if (newdef && olddef && newweak)
1443 {
1444 /* Don't skip new non-IR weak syms. */
1445 if (!(oldbfd != NULL
1446 && (oldbfd->flags & BFD_PLUGIN) != 0
1447 && (abfd->flags & BFD_PLUGIN) == 0))
1448 *skip = TRUE;
1449
1450 /* Merge st_other. If the symbol already has a dynamic index,
1451 but visibility says it should not be visible, turn it into a
1452 local symbol. */
1453 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1454 if (h->dynindx != -1)
1455 switch (ELF_ST_VISIBILITY (h->other))
1456 {
1457 case STV_INTERNAL:
1458 case STV_HIDDEN:
1459 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1460 break;
1461 }
1462 }
1463
1464 /* If the old symbol is from a dynamic object, and the new symbol is
1465 a definition which is not from a dynamic object, then the new
1466 symbol overrides the old symbol. Symbols from regular files
1467 always take precedence over symbols from dynamic objects, even if
1468 they are defined after the dynamic object in the link.
1469
1470 As above, we again permit a common symbol in a regular object to
1471 override a definition in a shared object if the shared object
1472 symbol is a function or is weak. */
1473
1474 flip = NULL;
1475 if (!newdyn
1476 && (newdef
1477 || (bfd_is_com_section (sec)
1478 && (oldweak || oldfunc)))
1479 && olddyn
1480 && olddef
1481 && h->def_dynamic)
1482 {
1483 /* Change the hash table entry to undefined, and let
1484 _bfd_generic_link_add_one_symbol do the right thing with the
1485 new definition. */
1486
1487 h->root.type = bfd_link_hash_undefined;
1488 h->root.u.undef.abfd = h->root.u.def.section->owner;
1489 *size_change_ok = TRUE;
1490
1491 olddef = FALSE;
1492 olddyncommon = FALSE;
1493
1494 /* We again permit a type change when a common symbol may be
1495 overriding a function. */
1496
1497 if (bfd_is_com_section (sec))
1498 {
1499 if (oldfunc)
1500 {
1501 /* If a common symbol overrides a function, make sure
1502 that it isn't defined dynamically nor has type
1503 function. */
1504 h->def_dynamic = 0;
1505 h->type = STT_NOTYPE;
1506 }
1507 *type_change_ok = TRUE;
1508 }
1509
1510 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1511 flip = *sym_hash;
1512 else
1513 /* This union may have been set to be non-NULL when this symbol
1514 was seen in a dynamic object. We must force the union to be
1515 NULL, so that it is correct for a regular symbol. */
1516 h->verinfo.vertree = NULL;
1517 }
1518
1519 /* Handle the special case of a new common symbol merging with an
1520 old symbol that looks like it might be a common symbol defined in
1521 a shared object. Note that we have already handled the case in
1522 which a new common symbol should simply override the definition
1523 in the shared library. */
1524
1525 if (! newdyn
1526 && bfd_is_com_section (sec)
1527 && olddyncommon)
1528 {
1529 /* It would be best if we could set the hash table entry to a
1530 common symbol, but we don't know what to use for the section
1531 or the alignment. */
1532 if (! ((*info->callbacks->multiple_common)
1533 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1534 return FALSE;
1535
1536 /* If the presumed common symbol in the dynamic object is
1537 larger, pretend that the new symbol has its size. */
1538
1539 if (h->size > *pvalue)
1540 *pvalue = h->size;
1541
1542 /* We need to remember the alignment required by the symbol
1543 in the dynamic object. */
1544 BFD_ASSERT (pold_alignment);
1545 *pold_alignment = h->root.u.def.section->alignment_power;
1546
1547 olddef = FALSE;
1548 olddyncommon = FALSE;
1549
1550 h->root.type = bfd_link_hash_undefined;
1551 h->root.u.undef.abfd = h->root.u.def.section->owner;
1552
1553 *size_change_ok = TRUE;
1554 *type_change_ok = TRUE;
1555
1556 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1557 flip = *sym_hash;
1558 else
1559 h->verinfo.vertree = NULL;
1560 }
1561
1562 if (flip != NULL)
1563 {
1564 /* Handle the case where we had a versioned symbol in a dynamic
1565 library and now find a definition in a normal object. In this
1566 case, we make the versioned symbol point to the normal one. */
1567 flip->root.type = h->root.type;
1568 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1569 h->root.type = bfd_link_hash_indirect;
1570 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1571 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1572 if (h->def_dynamic)
1573 {
1574 h->def_dynamic = 0;
1575 flip->ref_dynamic = 1;
1576 }
1577 }
1578
1579 return TRUE;
1580 }
1581
1582 /* This function is called to create an indirect symbol from the
1583 default for the symbol with the default version if needed. The
1584 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1585 set DYNSYM if the new indirect symbol is dynamic. */
1586
1587 static bfd_boolean
1588 _bfd_elf_add_default_symbol (bfd *abfd,
1589 struct bfd_link_info *info,
1590 struct elf_link_hash_entry *h,
1591 const char *name,
1592 Elf_Internal_Sym *sym,
1593 asection **psec,
1594 bfd_vma *value,
1595 bfd_boolean *dynsym,
1596 bfd_boolean override)
1597 {
1598 bfd_boolean type_change_ok;
1599 bfd_boolean size_change_ok;
1600 bfd_boolean skip;
1601 char *shortname;
1602 struct elf_link_hash_entry *hi;
1603 struct bfd_link_hash_entry *bh;
1604 const struct elf_backend_data *bed;
1605 bfd_boolean collect;
1606 bfd_boolean dynamic;
1607 char *p;
1608 size_t len, shortlen;
1609 asection *sec;
1610
1611 /* If this symbol has a version, and it is the default version, we
1612 create an indirect symbol from the default name to the fully
1613 decorated name. This will cause external references which do not
1614 specify a version to be bound to this version of the symbol. */
1615 p = strchr (name, ELF_VER_CHR);
1616 if (p == NULL || p[1] != ELF_VER_CHR)
1617 return TRUE;
1618
1619 if (override)
1620 {
1621 /* We are overridden by an old definition. We need to check if we
1622 need to create the indirect symbol from the default name. */
1623 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1624 FALSE, FALSE);
1625 BFD_ASSERT (hi != NULL);
1626 if (hi == h)
1627 return TRUE;
1628 while (hi->root.type == bfd_link_hash_indirect
1629 || hi->root.type == bfd_link_hash_warning)
1630 {
1631 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1632 if (hi == h)
1633 return TRUE;
1634 }
1635 }
1636
1637 bed = get_elf_backend_data (abfd);
1638 collect = bed->collect;
1639 dynamic = (abfd->flags & DYNAMIC) != 0;
1640
1641 shortlen = p - name;
1642 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1643 if (shortname == NULL)
1644 return FALSE;
1645 memcpy (shortname, name, shortlen);
1646 shortname[shortlen] = '\0';
1647
1648 /* We are going to create a new symbol. Merge it with any existing
1649 symbol with this name. For the purposes of the merge, act as
1650 though we were defining the symbol we just defined, although we
1651 actually going to define an indirect symbol. */
1652 type_change_ok = FALSE;
1653 size_change_ok = FALSE;
1654 sec = *psec;
1655 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1656 NULL, NULL, &hi, &skip, &override,
1657 &type_change_ok, &size_change_ok))
1658 return FALSE;
1659
1660 if (skip)
1661 goto nondefault;
1662
1663 if (! override)
1664 {
1665 bh = &hi->root;
1666 if (! (_bfd_generic_link_add_one_symbol
1667 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1668 0, name, FALSE, collect, &bh)))
1669 return FALSE;
1670 hi = (struct elf_link_hash_entry *) bh;
1671 }
1672 else
1673 {
1674 /* In this case the symbol named SHORTNAME is overriding the
1675 indirect symbol we want to add. We were planning on making
1676 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1677 is the name without a version. NAME is the fully versioned
1678 name, and it is the default version.
1679
1680 Overriding means that we already saw a definition for the
1681 symbol SHORTNAME in a regular object, and it is overriding
1682 the symbol defined in the dynamic object.
1683
1684 When this happens, we actually want to change NAME, the
1685 symbol we just added, to refer to SHORTNAME. This will cause
1686 references to NAME in the shared object to become references
1687 to SHORTNAME in the regular object. This is what we expect
1688 when we override a function in a shared object: that the
1689 references in the shared object will be mapped to the
1690 definition in the regular object. */
1691
1692 while (hi->root.type == bfd_link_hash_indirect
1693 || hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1695
1696 h->root.type = bfd_link_hash_indirect;
1697 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1698 if (h->def_dynamic)
1699 {
1700 h->def_dynamic = 0;
1701 hi->ref_dynamic = 1;
1702 if (hi->ref_regular
1703 || hi->def_regular)
1704 {
1705 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1706 return FALSE;
1707 }
1708 }
1709
1710 /* Now set HI to H, so that the following code will set the
1711 other fields correctly. */
1712 hi = h;
1713 }
1714
1715 /* Check if HI is a warning symbol. */
1716 if (hi->root.type == bfd_link_hash_warning)
1717 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1718
1719 /* If there is a duplicate definition somewhere, then HI may not
1720 point to an indirect symbol. We will have reported an error to
1721 the user in that case. */
1722
1723 if (hi->root.type == bfd_link_hash_indirect)
1724 {
1725 struct elf_link_hash_entry *ht;
1726
1727 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1728 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1729
1730 /* See if the new flags lead us to realize that the symbol must
1731 be dynamic. */
1732 if (! *dynsym)
1733 {
1734 if (! dynamic)
1735 {
1736 if (! info->executable
1737 || hi->def_dynamic
1738 || hi->ref_dynamic)
1739 *dynsym = TRUE;
1740 }
1741 else
1742 {
1743 if (hi->ref_regular)
1744 *dynsym = TRUE;
1745 }
1746 }
1747 }
1748
1749 /* We also need to define an indirection from the nondefault version
1750 of the symbol. */
1751
1752 nondefault:
1753 len = strlen (name);
1754 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1755 if (shortname == NULL)
1756 return FALSE;
1757 memcpy (shortname, name, shortlen);
1758 memcpy (shortname + shortlen, p + 1, len - shortlen);
1759
1760 /* Once again, merge with any existing symbol. */
1761 type_change_ok = FALSE;
1762 size_change_ok = FALSE;
1763 sec = *psec;
1764 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1765 NULL, NULL, &hi, &skip, &override,
1766 &type_change_ok, &size_change_ok))
1767 return FALSE;
1768
1769 if (skip)
1770 return TRUE;
1771
1772 if (override)
1773 {
1774 /* Here SHORTNAME is a versioned name, so we don't expect to see
1775 the type of override we do in the case above unless it is
1776 overridden by a versioned definition. */
1777 if (hi->root.type != bfd_link_hash_defined
1778 && hi->root.type != bfd_link_hash_defweak)
1779 (*_bfd_error_handler)
1780 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1781 abfd, shortname);
1782 }
1783 else
1784 {
1785 bh = &hi->root;
1786 if (! (_bfd_generic_link_add_one_symbol
1787 (info, abfd, shortname, BSF_INDIRECT,
1788 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1789 return FALSE;
1790 hi = (struct elf_link_hash_entry *) bh;
1791
1792 /* If there is a duplicate definition somewhere, then HI may not
1793 point to an indirect symbol. We will have reported an error
1794 to the user in that case. */
1795
1796 if (hi->root.type == bfd_link_hash_indirect)
1797 {
1798 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1799
1800 /* See if the new flags lead us to realize that the symbol
1801 must be dynamic. */
1802 if (! *dynsym)
1803 {
1804 if (! dynamic)
1805 {
1806 if (! info->executable
1807 || hi->ref_dynamic)
1808 *dynsym = TRUE;
1809 }
1810 else
1811 {
1812 if (hi->ref_regular)
1813 *dynsym = TRUE;
1814 }
1815 }
1816 }
1817 }
1818
1819 return TRUE;
1820 }
1821 \f
1822 /* This routine is used to export all defined symbols into the dynamic
1823 symbol table. It is called via elf_link_hash_traverse. */
1824
1825 static bfd_boolean
1826 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1827 {
1828 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1829
1830 /* Ignore indirect symbols. These are added by the versioning code. */
1831 if (h->root.type == bfd_link_hash_indirect)
1832 return TRUE;
1833
1834 /* Ignore this if we won't export it. */
1835 if (!eif->info->export_dynamic && !h->dynamic)
1836 return TRUE;
1837
1838 if (h->dynindx == -1
1839 && (h->def_regular || h->ref_regular)
1840 && ! bfd_hide_sym_by_version (eif->info->version_info,
1841 h->root.root.string))
1842 {
1843 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1844 {
1845 eif->failed = TRUE;
1846 return FALSE;
1847 }
1848 }
1849
1850 return TRUE;
1851 }
1852 \f
1853 /* Look through the symbols which are defined in other shared
1854 libraries and referenced here. Update the list of version
1855 dependencies. This will be put into the .gnu.version_r section.
1856 This function is called via elf_link_hash_traverse. */
1857
1858 static bfd_boolean
1859 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1860 void *data)
1861 {
1862 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1863 Elf_Internal_Verneed *t;
1864 Elf_Internal_Vernaux *a;
1865 bfd_size_type amt;
1866
1867 /* We only care about symbols defined in shared objects with version
1868 information. */
1869 if (!h->def_dynamic
1870 || h->def_regular
1871 || h->dynindx == -1
1872 || h->verinfo.verdef == NULL)
1873 return TRUE;
1874
1875 /* See if we already know about this version. */
1876 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1877 t != NULL;
1878 t = t->vn_nextref)
1879 {
1880 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1881 continue;
1882
1883 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1884 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1885 return TRUE;
1886
1887 break;
1888 }
1889
1890 /* This is a new version. Add it to tree we are building. */
1891
1892 if (t == NULL)
1893 {
1894 amt = sizeof *t;
1895 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1896 if (t == NULL)
1897 {
1898 rinfo->failed = TRUE;
1899 return FALSE;
1900 }
1901
1902 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1903 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1904 elf_tdata (rinfo->info->output_bfd)->verref = t;
1905 }
1906
1907 amt = sizeof *a;
1908 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1909 if (a == NULL)
1910 {
1911 rinfo->failed = TRUE;
1912 return FALSE;
1913 }
1914
1915 /* Note that we are copying a string pointer here, and testing it
1916 above. If bfd_elf_string_from_elf_section is ever changed to
1917 discard the string data when low in memory, this will have to be
1918 fixed. */
1919 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1920
1921 a->vna_flags = h->verinfo.verdef->vd_flags;
1922 a->vna_nextptr = t->vn_auxptr;
1923
1924 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1925 ++rinfo->vers;
1926
1927 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1928
1929 t->vn_auxptr = a;
1930
1931 return TRUE;
1932 }
1933
1934 /* Figure out appropriate versions for all the symbols. We may not
1935 have the version number script until we have read all of the input
1936 files, so until that point we don't know which symbols should be
1937 local. This function is called via elf_link_hash_traverse. */
1938
1939 static bfd_boolean
1940 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1941 {
1942 struct elf_info_failed *sinfo;
1943 struct bfd_link_info *info;
1944 const struct elf_backend_data *bed;
1945 struct elf_info_failed eif;
1946 char *p;
1947 bfd_size_type amt;
1948
1949 sinfo = (struct elf_info_failed *) data;
1950 info = sinfo->info;
1951
1952 /* Fix the symbol flags. */
1953 eif.failed = FALSE;
1954 eif.info = info;
1955 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1956 {
1957 if (eif.failed)
1958 sinfo->failed = TRUE;
1959 return FALSE;
1960 }
1961
1962 /* We only need version numbers for symbols defined in regular
1963 objects. */
1964 if (!h->def_regular)
1965 return TRUE;
1966
1967 bed = get_elf_backend_data (info->output_bfd);
1968 p = strchr (h->root.root.string, ELF_VER_CHR);
1969 if (p != NULL && h->verinfo.vertree == NULL)
1970 {
1971 struct bfd_elf_version_tree *t;
1972 bfd_boolean hidden;
1973
1974 hidden = TRUE;
1975
1976 /* There are two consecutive ELF_VER_CHR characters if this is
1977 not a hidden symbol. */
1978 ++p;
1979 if (*p == ELF_VER_CHR)
1980 {
1981 hidden = FALSE;
1982 ++p;
1983 }
1984
1985 /* If there is no version string, we can just return out. */
1986 if (*p == '\0')
1987 {
1988 if (hidden)
1989 h->hidden = 1;
1990 return TRUE;
1991 }
1992
1993 /* Look for the version. If we find it, it is no longer weak. */
1994 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1995 {
1996 if (strcmp (t->name, p) == 0)
1997 {
1998 size_t len;
1999 char *alc;
2000 struct bfd_elf_version_expr *d;
2001
2002 len = p - h->root.root.string;
2003 alc = (char *) bfd_malloc (len);
2004 if (alc == NULL)
2005 {
2006 sinfo->failed = TRUE;
2007 return FALSE;
2008 }
2009 memcpy (alc, h->root.root.string, len - 1);
2010 alc[len - 1] = '\0';
2011 if (alc[len - 2] == ELF_VER_CHR)
2012 alc[len - 2] = '\0';
2013
2014 h->verinfo.vertree = t;
2015 t->used = TRUE;
2016 d = NULL;
2017
2018 if (t->globals.list != NULL)
2019 d = (*t->match) (&t->globals, NULL, alc);
2020
2021 /* See if there is anything to force this symbol to
2022 local scope. */
2023 if (d == NULL && t->locals.list != NULL)
2024 {
2025 d = (*t->match) (&t->locals, NULL, alc);
2026 if (d != NULL
2027 && h->dynindx != -1
2028 && ! info->export_dynamic)
2029 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 }
2031
2032 free (alc);
2033 break;
2034 }
2035 }
2036
2037 /* If we are building an application, we need to create a
2038 version node for this version. */
2039 if (t == NULL && info->executable)
2040 {
2041 struct bfd_elf_version_tree **pp;
2042 int version_index;
2043
2044 /* If we aren't going to export this symbol, we don't need
2045 to worry about it. */
2046 if (h->dynindx == -1)
2047 return TRUE;
2048
2049 amt = sizeof *t;
2050 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2051 if (t == NULL)
2052 {
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 t->name = p;
2058 t->name_indx = (unsigned int) -1;
2059 t->used = TRUE;
2060
2061 version_index = 1;
2062 /* Don't count anonymous version tag. */
2063 if (sinfo->info->version_info != NULL
2064 && sinfo->info->version_info->vernum == 0)
2065 version_index = 0;
2066 for (pp = &sinfo->info->version_info;
2067 *pp != NULL;
2068 pp = &(*pp)->next)
2069 ++version_index;
2070 t->vernum = version_index;
2071
2072 *pp = t;
2073
2074 h->verinfo.vertree = t;
2075 }
2076 else if (t == NULL)
2077 {
2078 /* We could not find the version for a symbol when
2079 generating a shared archive. Return an error. */
2080 (*_bfd_error_handler)
2081 (_("%B: version node not found for symbol %s"),
2082 info->output_bfd, h->root.root.string);
2083 bfd_set_error (bfd_error_bad_value);
2084 sinfo->failed = TRUE;
2085 return FALSE;
2086 }
2087
2088 if (hidden)
2089 h->hidden = 1;
2090 }
2091
2092 /* If we don't have a version for this symbol, see if we can find
2093 something. */
2094 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2095 {
2096 bfd_boolean hide;
2097
2098 h->verinfo.vertree
2099 = bfd_find_version_for_sym (sinfo->info->version_info,
2100 h->root.root.string, &hide);
2101 if (h->verinfo.vertree != NULL && hide)
2102 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2103 }
2104
2105 return TRUE;
2106 }
2107 \f
2108 /* Read and swap the relocs from the section indicated by SHDR. This
2109 may be either a REL or a RELA section. The relocations are
2110 translated into RELA relocations and stored in INTERNAL_RELOCS,
2111 which should have already been allocated to contain enough space.
2112 The EXTERNAL_RELOCS are a buffer where the external form of the
2113 relocations should be stored.
2114
2115 Returns FALSE if something goes wrong. */
2116
2117 static bfd_boolean
2118 elf_link_read_relocs_from_section (bfd *abfd,
2119 asection *sec,
2120 Elf_Internal_Shdr *shdr,
2121 void *external_relocs,
2122 Elf_Internal_Rela *internal_relocs)
2123 {
2124 const struct elf_backend_data *bed;
2125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2126 const bfd_byte *erela;
2127 const bfd_byte *erelaend;
2128 Elf_Internal_Rela *irela;
2129 Elf_Internal_Shdr *symtab_hdr;
2130 size_t nsyms;
2131
2132 /* Position ourselves at the start of the section. */
2133 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2134 return FALSE;
2135
2136 /* Read the relocations. */
2137 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2138 return FALSE;
2139
2140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2141 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2142
2143 bed = get_elf_backend_data (abfd);
2144
2145 /* Convert the external relocations to the internal format. */
2146 if (shdr->sh_entsize == bed->s->sizeof_rel)
2147 swap_in = bed->s->swap_reloc_in;
2148 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2149 swap_in = bed->s->swap_reloca_in;
2150 else
2151 {
2152 bfd_set_error (bfd_error_wrong_format);
2153 return FALSE;
2154 }
2155
2156 erela = (const bfd_byte *) external_relocs;
2157 erelaend = erela + shdr->sh_size;
2158 irela = internal_relocs;
2159 while (erela < erelaend)
2160 {
2161 bfd_vma r_symndx;
2162
2163 (*swap_in) (abfd, erela, irela);
2164 r_symndx = ELF32_R_SYM (irela->r_info);
2165 if (bed->s->arch_size == 64)
2166 r_symndx >>= 24;
2167 if (nsyms > 0)
2168 {
2169 if ((size_t) r_symndx >= nsyms)
2170 {
2171 (*_bfd_error_handler)
2172 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2173 " for offset 0x%lx in section `%A'"),
2174 abfd, sec,
2175 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176 bfd_set_error (bfd_error_bad_value);
2177 return FALSE;
2178 }
2179 }
2180 else if (r_symndx != STN_UNDEF)
2181 {
2182 (*_bfd_error_handler)
2183 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2184 " when the object file has no symbol table"),
2185 abfd, sec,
2186 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2187 bfd_set_error (bfd_error_bad_value);
2188 return FALSE;
2189 }
2190 irela += bed->s->int_rels_per_ext_rel;
2191 erela += shdr->sh_entsize;
2192 }
2193
2194 return TRUE;
2195 }
2196
2197 /* Read and swap the relocs for a section O. They may have been
2198 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2199 not NULL, they are used as buffers to read into. They are known to
2200 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2201 the return value is allocated using either malloc or bfd_alloc,
2202 according to the KEEP_MEMORY argument. If O has two relocation
2203 sections (both REL and RELA relocations), then the REL_HDR
2204 relocations will appear first in INTERNAL_RELOCS, followed by the
2205 RELA_HDR relocations. */
2206
2207 Elf_Internal_Rela *
2208 _bfd_elf_link_read_relocs (bfd *abfd,
2209 asection *o,
2210 void *external_relocs,
2211 Elf_Internal_Rela *internal_relocs,
2212 bfd_boolean keep_memory)
2213 {
2214 void *alloc1 = NULL;
2215 Elf_Internal_Rela *alloc2 = NULL;
2216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2217 struct bfd_elf_section_data *esdo = elf_section_data (o);
2218 Elf_Internal_Rela *internal_rela_relocs;
2219
2220 if (esdo->relocs != NULL)
2221 return esdo->relocs;
2222
2223 if (o->reloc_count == 0)
2224 return NULL;
2225
2226 if (internal_relocs == NULL)
2227 {
2228 bfd_size_type size;
2229
2230 size = o->reloc_count;
2231 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2232 if (keep_memory)
2233 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2234 else
2235 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2236 if (internal_relocs == NULL)
2237 goto error_return;
2238 }
2239
2240 if (external_relocs == NULL)
2241 {
2242 bfd_size_type size = 0;
2243
2244 if (esdo->rel.hdr)
2245 size += esdo->rel.hdr->sh_size;
2246 if (esdo->rela.hdr)
2247 size += esdo->rela.hdr->sh_size;
2248
2249 alloc1 = bfd_malloc (size);
2250 if (alloc1 == NULL)
2251 goto error_return;
2252 external_relocs = alloc1;
2253 }
2254
2255 internal_rela_relocs = internal_relocs;
2256 if (esdo->rel.hdr)
2257 {
2258 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2259 external_relocs,
2260 internal_relocs))
2261 goto error_return;
2262 external_relocs = (((bfd_byte *) external_relocs)
2263 + esdo->rel.hdr->sh_size);
2264 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2265 * bed->s->int_rels_per_ext_rel);
2266 }
2267
2268 if (esdo->rela.hdr
2269 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2270 external_relocs,
2271 internal_rela_relocs)))
2272 goto error_return;
2273
2274 /* Cache the results for next time, if we can. */
2275 if (keep_memory)
2276 esdo->relocs = internal_relocs;
2277
2278 if (alloc1 != NULL)
2279 free (alloc1);
2280
2281 /* Don't free alloc2, since if it was allocated we are passing it
2282 back (under the name of internal_relocs). */
2283
2284 return internal_relocs;
2285
2286 error_return:
2287 if (alloc1 != NULL)
2288 free (alloc1);
2289 if (alloc2 != NULL)
2290 {
2291 if (keep_memory)
2292 bfd_release (abfd, alloc2);
2293 else
2294 free (alloc2);
2295 }
2296 return NULL;
2297 }
2298
2299 /* Compute the size of, and allocate space for, REL_HDR which is the
2300 section header for a section containing relocations for O. */
2301
2302 static bfd_boolean
2303 _bfd_elf_link_size_reloc_section (bfd *abfd,
2304 struct bfd_elf_section_reloc_data *reldata)
2305 {
2306 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2307
2308 /* That allows us to calculate the size of the section. */
2309 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2310
2311 /* The contents field must last into write_object_contents, so we
2312 allocate it with bfd_alloc rather than malloc. Also since we
2313 cannot be sure that the contents will actually be filled in,
2314 we zero the allocated space. */
2315 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2316 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2317 return FALSE;
2318
2319 if (reldata->hashes == NULL && reldata->count)
2320 {
2321 struct elf_link_hash_entry **p;
2322
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2327
2328 reldata->hashes = p;
2329 }
2330
2331 return TRUE;
2332 }
2333
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2345 {
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 struct bfd_elf_section_reloc_data *output_reldata;
2350 asection *output_section;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353 struct bfd_elf_section_data *esdo;
2354
2355 output_section = input_section->output_section;
2356
2357 bed = get_elf_backend_data (output_bfd);
2358 esdo = elf_section_data (output_section);
2359 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rel;
2362 swap_out = bed->s->swap_reloc_out;
2363 }
2364 else if (esdo->rela.hdr
2365 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2366 {
2367 output_reldata = &esdo->rela;
2368 swap_out = bed->s->swap_reloca_out;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 erel = output_reldata->hdr->contents;
2380 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2381 irela = internal_relocs;
2382 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2383 * bed->s->int_rels_per_ext_rel);
2384 while (irela < irelaend)
2385 {
2386 (*swap_out) (output_bfd, irela, erel);
2387 irela += bed->s->int_rels_per_ext_rel;
2388 erel += input_rel_hdr->sh_entsize;
2389 }
2390
2391 /* Bump the counter, so that we know where to add the next set of
2392 relocations. */
2393 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2394
2395 return TRUE;
2396 }
2397 \f
2398 /* Make weak undefined symbols in PIE dynamic. */
2399
2400 bfd_boolean
2401 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2402 struct elf_link_hash_entry *h)
2403 {
2404 if (info->pie
2405 && h->dynindx == -1
2406 && h->root.type == bfd_link_hash_undefweak)
2407 return bfd_elf_link_record_dynamic_symbol (info, h);
2408
2409 return TRUE;
2410 }
2411
2412 /* Fix up the flags for a symbol. This handles various cases which
2413 can only be fixed after all the input files are seen. This is
2414 currently called by both adjust_dynamic_symbol and
2415 assign_sym_version, which is unnecessary but perhaps more robust in
2416 the face of future changes. */
2417
2418 static bfd_boolean
2419 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2420 struct elf_info_failed *eif)
2421 {
2422 const struct elf_backend_data *bed;
2423
2424 /* If this symbol was mentioned in a non-ELF file, try to set
2425 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2426 permit a non-ELF file to correctly refer to a symbol defined in
2427 an ELF dynamic object. */
2428 if (h->non_elf)
2429 {
2430 while (h->root.type == bfd_link_hash_indirect)
2431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2432
2433 if (h->root.type != bfd_link_hash_defined
2434 && h->root.type != bfd_link_hash_defweak)
2435 {
2436 h->ref_regular = 1;
2437 h->ref_regular_nonweak = 1;
2438 }
2439 else
2440 {
2441 if (h->root.u.def.section->owner != NULL
2442 && (bfd_get_flavour (h->root.u.def.section->owner)
2443 == bfd_target_elf_flavour))
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
2448 else
2449 h->def_regular = 1;
2450 }
2451
2452 if (h->dynindx == -1
2453 && (h->def_dynamic
2454 || h->ref_dynamic))
2455 {
2456 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2457 {
2458 eif->failed = TRUE;
2459 return FALSE;
2460 }
2461 }
2462 }
2463 else
2464 {
2465 /* Unfortunately, NON_ELF is only correct if the symbol
2466 was first seen in a non-ELF file. Fortunately, if the symbol
2467 was first seen in an ELF file, we're probably OK unless the
2468 symbol was defined in a non-ELF file. Catch that case here.
2469 FIXME: We're still in trouble if the symbol was first seen in
2470 a dynamic object, and then later in a non-ELF regular object. */
2471 if ((h->root.type == bfd_link_hash_defined
2472 || h->root.type == bfd_link_hash_defweak)
2473 && !h->def_regular
2474 && (h->root.u.def.section->owner != NULL
2475 ? (bfd_get_flavour (h->root.u.def.section->owner)
2476 != bfd_target_elf_flavour)
2477 : (bfd_is_abs_section (h->root.u.def.section)
2478 && !h->def_dynamic)))
2479 h->def_regular = 1;
2480 }
2481
2482 /* Backend specific symbol fixup. */
2483 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2484 if (bed->elf_backend_fixup_symbol
2485 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2486 return FALSE;
2487
2488 /* If this is a final link, and the symbol was defined as a common
2489 symbol in a regular object file, and there was no definition in
2490 any dynamic object, then the linker will have allocated space for
2491 the symbol in a common section but the DEF_REGULAR
2492 flag will not have been set. */
2493 if (h->root.type == bfd_link_hash_defined
2494 && !h->def_regular
2495 && h->ref_regular
2496 && !h->def_dynamic
2497 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2498 h->def_regular = 1;
2499
2500 /* If -Bsymbolic was used (which means to bind references to global
2501 symbols to the definition within the shared object), and this
2502 symbol was defined in a regular object, then it actually doesn't
2503 need a PLT entry. Likewise, if the symbol has non-default
2504 visibility. If the symbol has hidden or internal visibility, we
2505 will force it local. */
2506 if (h->needs_plt
2507 && eif->info->shared
2508 && is_elf_hash_table (eif->info->hash)
2509 && (SYMBOLIC_BIND (eif->info, h)
2510 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2511 && h->def_regular)
2512 {
2513 bfd_boolean force_local;
2514
2515 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2516 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2517 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2518 }
2519
2520 /* If a weak undefined symbol has non-default visibility, we also
2521 hide it from the dynamic linker. */
2522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2523 && h->root.type == bfd_link_hash_undefweak)
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2525
2526 /* If this is a weak defined symbol in a dynamic object, and we know
2527 the real definition in the dynamic object, copy interesting flags
2528 over to the real definition. */
2529 if (h->u.weakdef != NULL)
2530 {
2531 /* If the real definition is defined by a regular object file,
2532 don't do anything special. See the longer description in
2533 _bfd_elf_adjust_dynamic_symbol, below. */
2534 if (h->u.weakdef->def_regular)
2535 h->u.weakdef = NULL;
2536 else
2537 {
2538 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2539
2540 while (h->root.type == bfd_link_hash_indirect)
2541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2542
2543 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2544 || h->root.type == bfd_link_hash_defweak);
2545 BFD_ASSERT (weakdef->def_dynamic);
2546 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2547 || weakdef->root.type == bfd_link_hash_defweak);
2548 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2549 }
2550 }
2551
2552 return TRUE;
2553 }
2554
2555 /* Make the backend pick a good value for a dynamic symbol. This is
2556 called via elf_link_hash_traverse, and also calls itself
2557 recursively. */
2558
2559 static bfd_boolean
2560 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2561 {
2562 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2563 bfd *dynobj;
2564 const struct elf_backend_data *bed;
2565
2566 if (! is_elf_hash_table (eif->info->hash))
2567 return FALSE;
2568
2569 /* Ignore indirect symbols. These are added by the versioning code. */
2570 if (h->root.type == bfd_link_hash_indirect)
2571 return TRUE;
2572
2573 /* Fix the symbol flags. */
2574 if (! _bfd_elf_fix_symbol_flags (h, eif))
2575 return FALSE;
2576
2577 /* If this symbol does not require a PLT entry, and it is not
2578 defined by a dynamic object, or is not referenced by a regular
2579 object, ignore it. We do have to handle a weak defined symbol,
2580 even if no regular object refers to it, if we decided to add it
2581 to the dynamic symbol table. FIXME: Do we normally need to worry
2582 about symbols which are defined by one dynamic object and
2583 referenced by another one? */
2584 if (!h->needs_plt
2585 && h->type != STT_GNU_IFUNC
2586 && (h->def_regular
2587 || !h->def_dynamic
2588 || (!h->ref_regular
2589 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2590 {
2591 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2592 return TRUE;
2593 }
2594
2595 /* If we've already adjusted this symbol, don't do it again. This
2596 can happen via a recursive call. */
2597 if (h->dynamic_adjusted)
2598 return TRUE;
2599
2600 /* Don't look at this symbol again. Note that we must set this
2601 after checking the above conditions, because we may look at a
2602 symbol once, decide not to do anything, and then get called
2603 recursively later after REF_REGULAR is set below. */
2604 h->dynamic_adjusted = 1;
2605
2606 /* If this is a weak definition, and we know a real definition, and
2607 the real symbol is not itself defined by a regular object file,
2608 then get a good value for the real definition. We handle the
2609 real symbol first, for the convenience of the backend routine.
2610
2611 Note that there is a confusing case here. If the real definition
2612 is defined by a regular object file, we don't get the real symbol
2613 from the dynamic object, but we do get the weak symbol. If the
2614 processor backend uses a COPY reloc, then if some routine in the
2615 dynamic object changes the real symbol, we will not see that
2616 change in the corresponding weak symbol. This is the way other
2617 ELF linkers work as well, and seems to be a result of the shared
2618 library model.
2619
2620 I will clarify this issue. Most SVR4 shared libraries define the
2621 variable _timezone and define timezone as a weak synonym. The
2622 tzset call changes _timezone. If you write
2623 extern int timezone;
2624 int _timezone = 5;
2625 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2626 you might expect that, since timezone is a synonym for _timezone,
2627 the same number will print both times. However, if the processor
2628 backend uses a COPY reloc, then actually timezone will be copied
2629 into your process image, and, since you define _timezone
2630 yourself, _timezone will not. Thus timezone and _timezone will
2631 wind up at different memory locations. The tzset call will set
2632 _timezone, leaving timezone unchanged. */
2633
2634 if (h->u.weakdef != NULL)
2635 {
2636 /* If we get to this point, there is an implicit reference to
2637 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2638 h->u.weakdef->ref_regular = 1;
2639
2640 /* Ensure that the backend adjust_dynamic_symbol function sees
2641 H->U.WEAKDEF before H by recursively calling ourselves. */
2642 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2643 return FALSE;
2644 }
2645
2646 /* If a symbol has no type and no size and does not require a PLT
2647 entry, then we are probably about to do the wrong thing here: we
2648 are probably going to create a COPY reloc for an empty object.
2649 This case can arise when a shared object is built with assembly
2650 code, and the assembly code fails to set the symbol type. */
2651 if (h->size == 0
2652 && h->type == STT_NOTYPE
2653 && !h->needs_plt)
2654 (*_bfd_error_handler)
2655 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2656 h->root.root.string);
2657
2658 dynobj = elf_hash_table (eif->info)->dynobj;
2659 bed = get_elf_backend_data (dynobj);
2660
2661 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2662 {
2663 eif->failed = TRUE;
2664 return FALSE;
2665 }
2666
2667 return TRUE;
2668 }
2669
2670 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2671 DYNBSS. */
2672
2673 bfd_boolean
2674 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2675 asection *dynbss)
2676 {
2677 unsigned int power_of_two;
2678 bfd_vma mask;
2679 asection *sec = h->root.u.def.section;
2680
2681 /* The section aligment of definition is the maximum alignment
2682 requirement of symbols defined in the section. Since we don't
2683 know the symbol alignment requirement, we start with the
2684 maximum alignment and check low bits of the symbol address
2685 for the minimum alignment. */
2686 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2687 mask = ((bfd_vma) 1 << power_of_two) - 1;
2688 while ((h->root.u.def.value & mask) != 0)
2689 {
2690 mask >>= 1;
2691 --power_of_two;
2692 }
2693
2694 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2695 dynbss))
2696 {
2697 /* Adjust the section alignment if needed. */
2698 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2699 power_of_two))
2700 return FALSE;
2701 }
2702
2703 /* We make sure that the symbol will be aligned properly. */
2704 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2705
2706 /* Define the symbol as being at this point in DYNBSS. */
2707 h->root.u.def.section = dynbss;
2708 h->root.u.def.value = dynbss->size;
2709
2710 /* Increment the size of DYNBSS to make room for the symbol. */
2711 dynbss->size += h->size;
2712
2713 return TRUE;
2714 }
2715
2716 /* Adjust all external symbols pointing into SEC_MERGE sections
2717 to reflect the object merging within the sections. */
2718
2719 static bfd_boolean
2720 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2721 {
2722 asection *sec;
2723
2724 if ((h->root.type == bfd_link_hash_defined
2725 || h->root.type == bfd_link_hash_defweak)
2726 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2727 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2728 {
2729 bfd *output_bfd = (bfd *) data;
2730
2731 h->root.u.def.value =
2732 _bfd_merged_section_offset (output_bfd,
2733 &h->root.u.def.section,
2734 elf_section_data (sec)->sec_info,
2735 h->root.u.def.value);
2736 }
2737
2738 return TRUE;
2739 }
2740
2741 /* Returns false if the symbol referred to by H should be considered
2742 to resolve local to the current module, and true if it should be
2743 considered to bind dynamically. */
2744
2745 bfd_boolean
2746 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2747 struct bfd_link_info *info,
2748 bfd_boolean not_local_protected)
2749 {
2750 bfd_boolean binding_stays_local_p;
2751 const struct elf_backend_data *bed;
2752 struct elf_link_hash_table *hash_table;
2753
2754 if (h == NULL)
2755 return FALSE;
2756
2757 while (h->root.type == bfd_link_hash_indirect
2758 || h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2760
2761 /* If it was forced local, then clearly it's not dynamic. */
2762 if (h->dynindx == -1)
2763 return FALSE;
2764 if (h->forced_local)
2765 return FALSE;
2766
2767 /* Identify the cases where name binding rules say that a
2768 visible symbol resolves locally. */
2769 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2770
2771 switch (ELF_ST_VISIBILITY (h->other))
2772 {
2773 case STV_INTERNAL:
2774 case STV_HIDDEN:
2775 return FALSE;
2776
2777 case STV_PROTECTED:
2778 hash_table = elf_hash_table (info);
2779 if (!is_elf_hash_table (hash_table))
2780 return FALSE;
2781
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783
2784 /* Proper resolution for function pointer equality may require
2785 that these symbols perhaps be resolved dynamically, even though
2786 we should be resolving them to the current module. */
2787 if (!not_local_protected || !bed->is_function_type (h->type))
2788 binding_stays_local_p = TRUE;
2789 break;
2790
2791 default:
2792 break;
2793 }
2794
2795 /* If it isn't defined locally, then clearly it's dynamic. */
2796 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2797 return TRUE;
2798
2799 /* Otherwise, the symbol is dynamic if binding rules don't tell
2800 us that it remains local. */
2801 return !binding_stays_local_p;
2802 }
2803
2804 /* Return true if the symbol referred to by H should be considered
2805 to resolve local to the current module, and false otherwise. Differs
2806 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2807 undefined symbols. The two functions are virtually identical except
2808 for the place where forced_local and dynindx == -1 are tested. If
2809 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2810 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2811 the symbol is local only for defined symbols.
2812 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2813 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2814 treatment of undefined weak symbols. For those that do not make
2815 undefined weak symbols dynamic, both functions may return false. */
2816
2817 bfd_boolean
2818 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2819 struct bfd_link_info *info,
2820 bfd_boolean local_protected)
2821 {
2822 const struct elf_backend_data *bed;
2823 struct elf_link_hash_table *hash_table;
2824
2825 /* If it's a local sym, of course we resolve locally. */
2826 if (h == NULL)
2827 return TRUE;
2828
2829 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2831 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2832 return TRUE;
2833
2834 /* Common symbols that become definitions don't get the DEF_REGULAR
2835 flag set, so test it first, and don't bail out. */
2836 if (ELF_COMMON_DEF_P (h))
2837 /* Do nothing. */;
2838 /* If we don't have a definition in a regular file, then we can't
2839 resolve locally. The sym is either undefined or dynamic. */
2840 else if (!h->def_regular)
2841 return FALSE;
2842
2843 /* Forced local symbols resolve locally. */
2844 if (h->forced_local)
2845 return TRUE;
2846
2847 /* As do non-dynamic symbols. */
2848 if (h->dynindx == -1)
2849 return TRUE;
2850
2851 /* At this point, we know the symbol is defined and dynamic. In an
2852 executable it must resolve locally, likewise when building symbolic
2853 shared libraries. */
2854 if (info->executable || SYMBOLIC_BIND (info, h))
2855 return TRUE;
2856
2857 /* Now deal with defined dynamic symbols in shared libraries. Ones
2858 with default visibility might not resolve locally. */
2859 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2860 return FALSE;
2861
2862 hash_table = elf_hash_table (info);
2863 if (!is_elf_hash_table (hash_table))
2864 return TRUE;
2865
2866 bed = get_elf_backend_data (hash_table->dynobj);
2867
2868 /* STV_PROTECTED non-function symbols are local. */
2869 if (!bed->is_function_type (h->type))
2870 return TRUE;
2871
2872 /* Function pointer equality tests may require that STV_PROTECTED
2873 symbols be treated as dynamic symbols. If the address of a
2874 function not defined in an executable is set to that function's
2875 plt entry in the executable, then the address of the function in
2876 a shared library must also be the plt entry in the executable. */
2877 return local_protected;
2878 }
2879
2880 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2881 aligned. Returns the first TLS output section. */
2882
2883 struct bfd_section *
2884 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2885 {
2886 struct bfd_section *sec, *tls;
2887 unsigned int align = 0;
2888
2889 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2890 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2891 break;
2892 tls = sec;
2893
2894 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2895 if (sec->alignment_power > align)
2896 align = sec->alignment_power;
2897
2898 elf_hash_table (info)->tls_sec = tls;
2899
2900 /* Ensure the alignment of the first section is the largest alignment,
2901 so that the tls segment starts aligned. */
2902 if (tls != NULL)
2903 tls->alignment_power = align;
2904
2905 return tls;
2906 }
2907
2908 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2909 static bfd_boolean
2910 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2911 Elf_Internal_Sym *sym)
2912 {
2913 const struct elf_backend_data *bed;
2914
2915 /* Local symbols do not count, but target specific ones might. */
2916 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2917 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2918 return FALSE;
2919
2920 bed = get_elf_backend_data (abfd);
2921 /* Function symbols do not count. */
2922 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2923 return FALSE;
2924
2925 /* If the section is undefined, then so is the symbol. */
2926 if (sym->st_shndx == SHN_UNDEF)
2927 return FALSE;
2928
2929 /* If the symbol is defined in the common section, then
2930 it is a common definition and so does not count. */
2931 if (bed->common_definition (sym))
2932 return FALSE;
2933
2934 /* If the symbol is in a target specific section then we
2935 must rely upon the backend to tell us what it is. */
2936 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2937 /* FIXME - this function is not coded yet:
2938
2939 return _bfd_is_global_symbol_definition (abfd, sym);
2940
2941 Instead for now assume that the definition is not global,
2942 Even if this is wrong, at least the linker will behave
2943 in the same way that it used to do. */
2944 return FALSE;
2945
2946 return TRUE;
2947 }
2948
2949 /* Search the symbol table of the archive element of the archive ABFD
2950 whose archive map contains a mention of SYMDEF, and determine if
2951 the symbol is defined in this element. */
2952 static bfd_boolean
2953 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2954 {
2955 Elf_Internal_Shdr * hdr;
2956 bfd_size_type symcount;
2957 bfd_size_type extsymcount;
2958 bfd_size_type extsymoff;
2959 Elf_Internal_Sym *isymbuf;
2960 Elf_Internal_Sym *isym;
2961 Elf_Internal_Sym *isymend;
2962 bfd_boolean result;
2963
2964 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2965 if (abfd == NULL)
2966 return FALSE;
2967
2968 if (! bfd_check_format (abfd, bfd_object))
2969 return FALSE;
2970
2971 /* If we have already included the element containing this symbol in the
2972 link then we do not need to include it again. Just claim that any symbol
2973 it contains is not a definition, so that our caller will not decide to
2974 (re)include this element. */
2975 if (abfd->archive_pass)
2976 return FALSE;
2977
2978 /* Select the appropriate symbol table. */
2979 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2980 hdr = &elf_tdata (abfd)->symtab_hdr;
2981 else
2982 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2983
2984 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2985
2986 /* The sh_info field of the symtab header tells us where the
2987 external symbols start. We don't care about the local symbols. */
2988 if (elf_bad_symtab (abfd))
2989 {
2990 extsymcount = symcount;
2991 extsymoff = 0;
2992 }
2993 else
2994 {
2995 extsymcount = symcount - hdr->sh_info;
2996 extsymoff = hdr->sh_info;
2997 }
2998
2999 if (extsymcount == 0)
3000 return FALSE;
3001
3002 /* Read in the symbol table. */
3003 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3004 NULL, NULL, NULL);
3005 if (isymbuf == NULL)
3006 return FALSE;
3007
3008 /* Scan the symbol table looking for SYMDEF. */
3009 result = FALSE;
3010 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3011 {
3012 const char *name;
3013
3014 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3015 isym->st_name);
3016 if (name == NULL)
3017 break;
3018
3019 if (strcmp (name, symdef->name) == 0)
3020 {
3021 result = is_global_data_symbol_definition (abfd, isym);
3022 break;
3023 }
3024 }
3025
3026 free (isymbuf);
3027
3028 return result;
3029 }
3030 \f
3031 /* Add an entry to the .dynamic table. */
3032
3033 bfd_boolean
3034 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3035 bfd_vma tag,
3036 bfd_vma val)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 const struct elf_backend_data *bed;
3040 asection *s;
3041 bfd_size_type newsize;
3042 bfd_byte *newcontents;
3043 Elf_Internal_Dyn dyn;
3044
3045 hash_table = elf_hash_table (info);
3046 if (! is_elf_hash_table (hash_table))
3047 return FALSE;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3051 BFD_ASSERT (s != NULL);
3052
3053 newsize = s->size + bed->s->sizeof_dyn;
3054 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3055 if (newcontents == NULL)
3056 return FALSE;
3057
3058 dyn.d_tag = tag;
3059 dyn.d_un.d_val = val;
3060 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3061
3062 s->size = newsize;
3063 s->contents = newcontents;
3064
3065 return TRUE;
3066 }
3067
3068 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3069 otherwise just check whether one already exists. Returns -1 on error,
3070 1 if a DT_NEEDED tag already exists, and 0 on success. */
3071
3072 static int
3073 elf_add_dt_needed_tag (bfd *abfd,
3074 struct bfd_link_info *info,
3075 const char *soname,
3076 bfd_boolean do_it)
3077 {
3078 struct elf_link_hash_table *hash_table;
3079 bfd_size_type strindex;
3080
3081 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3082 return -1;
3083
3084 hash_table = elf_hash_table (info);
3085 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3086 if (strindex == (bfd_size_type) -1)
3087 return -1;
3088
3089 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3090 {
3091 asection *sdyn;
3092 const struct elf_backend_data *bed;
3093 bfd_byte *extdyn;
3094
3095 bed = get_elf_backend_data (hash_table->dynobj);
3096 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3097 if (sdyn != NULL)
3098 for (extdyn = sdyn->contents;
3099 extdyn < sdyn->contents + sdyn->size;
3100 extdyn += bed->s->sizeof_dyn)
3101 {
3102 Elf_Internal_Dyn dyn;
3103
3104 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3105 if (dyn.d_tag == DT_NEEDED
3106 && dyn.d_un.d_val == strindex)
3107 {
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109 return 1;
3110 }
3111 }
3112 }
3113
3114 if (do_it)
3115 {
3116 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3117 return -1;
3118
3119 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3120 return -1;
3121 }
3122 else
3123 /* We were just checking for existence of the tag. */
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125
3126 return 0;
3127 }
3128
3129 static bfd_boolean
3130 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3131 {
3132 for (; needed != NULL; needed = needed->next)
3133 if (strcmp (soname, needed->name) == 0)
3134 return TRUE;
3135
3136 return FALSE;
3137 }
3138
3139 /* Sort symbol by value, section, and size. */
3140 static int
3141 elf_sort_symbol (const void *arg1, const void *arg2)
3142 {
3143 const struct elf_link_hash_entry *h1;
3144 const struct elf_link_hash_entry *h2;
3145 bfd_signed_vma vdiff;
3146
3147 h1 = *(const struct elf_link_hash_entry **) arg1;
3148 h2 = *(const struct elf_link_hash_entry **) arg2;
3149 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3150 if (vdiff != 0)
3151 return vdiff > 0 ? 1 : -1;
3152 else
3153 {
3154 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3155 if (sdiff != 0)
3156 return sdiff > 0 ? 1 : -1;
3157 }
3158 vdiff = h1->size - h2->size;
3159 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3160 }
3161
3162 /* This function is used to adjust offsets into .dynstr for
3163 dynamic symbols. This is called via elf_link_hash_traverse. */
3164
3165 static bfd_boolean
3166 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3167 {
3168 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3169
3170 if (h->dynindx != -1)
3171 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3172 return TRUE;
3173 }
3174
3175 /* Assign string offsets in .dynstr, update all structures referencing
3176 them. */
3177
3178 static bfd_boolean
3179 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3180 {
3181 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3182 struct elf_link_local_dynamic_entry *entry;
3183 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3184 bfd *dynobj = hash_table->dynobj;
3185 asection *sdyn;
3186 bfd_size_type size;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 _bfd_elf_strtab_finalize (dynstr);
3191 size = _bfd_elf_strtab_size (dynstr);
3192
3193 bed = get_elf_backend_data (dynobj);
3194 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3195 BFD_ASSERT (sdyn != NULL);
3196
3197 /* Update all .dynamic entries referencing .dynstr strings. */
3198 for (extdyn = sdyn->contents;
3199 extdyn < sdyn->contents + sdyn->size;
3200 extdyn += bed->s->sizeof_dyn)
3201 {
3202 Elf_Internal_Dyn dyn;
3203
3204 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3205 switch (dyn.d_tag)
3206 {
3207 case DT_STRSZ:
3208 dyn.d_un.d_val = size;
3209 break;
3210 case DT_NEEDED:
3211 case DT_SONAME:
3212 case DT_RPATH:
3213 case DT_RUNPATH:
3214 case DT_FILTER:
3215 case DT_AUXILIARY:
3216 case DT_AUDIT:
3217 case DT_DEPAUDIT:
3218 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3219 break;
3220 default:
3221 continue;
3222 }
3223 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3224 }
3225
3226 /* Now update local dynamic symbols. */
3227 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3228 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3229 entry->isym.st_name);
3230
3231 /* And the rest of dynamic symbols. */
3232 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3233
3234 /* Adjust version definitions. */
3235 if (elf_tdata (output_bfd)->cverdefs)
3236 {
3237 asection *s;
3238 bfd_byte *p;
3239 bfd_size_type i;
3240 Elf_Internal_Verdef def;
3241 Elf_Internal_Verdaux defaux;
3242
3243 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3244 p = s->contents;
3245 do
3246 {
3247 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3248 &def);
3249 p += sizeof (Elf_External_Verdef);
3250 if (def.vd_aux != sizeof (Elf_External_Verdef))
3251 continue;
3252 for (i = 0; i < def.vd_cnt; ++i)
3253 {
3254 _bfd_elf_swap_verdaux_in (output_bfd,
3255 (Elf_External_Verdaux *) p, &defaux);
3256 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3257 defaux.vda_name);
3258 _bfd_elf_swap_verdaux_out (output_bfd,
3259 &defaux, (Elf_External_Verdaux *) p);
3260 p += sizeof (Elf_External_Verdaux);
3261 }
3262 }
3263 while (def.vd_next);
3264 }
3265
3266 /* Adjust version references. */
3267 if (elf_tdata (output_bfd)->verref)
3268 {
3269 asection *s;
3270 bfd_byte *p;
3271 bfd_size_type i;
3272 Elf_Internal_Verneed need;
3273 Elf_Internal_Vernaux needaux;
3274
3275 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3276 p = s->contents;
3277 do
3278 {
3279 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3280 &need);
3281 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3282 _bfd_elf_swap_verneed_out (output_bfd, &need,
3283 (Elf_External_Verneed *) p);
3284 p += sizeof (Elf_External_Verneed);
3285 for (i = 0; i < need.vn_cnt; ++i)
3286 {
3287 _bfd_elf_swap_vernaux_in (output_bfd,
3288 (Elf_External_Vernaux *) p, &needaux);
3289 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3290 needaux.vna_name);
3291 _bfd_elf_swap_vernaux_out (output_bfd,
3292 &needaux,
3293 (Elf_External_Vernaux *) p);
3294 p += sizeof (Elf_External_Vernaux);
3295 }
3296 }
3297 while (need.vn_next);
3298 }
3299
3300 return TRUE;
3301 }
3302 \f
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 The default is to only match when the INPUT and OUTPUT are exactly
3305 the same target. */
3306
3307 bfd_boolean
3308 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3310 {
3311 return input == output;
3312 }
3313
3314 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3315 This version is used when different targets for the same architecture
3316 are virtually identical. */
3317
3318 bfd_boolean
3319 _bfd_elf_relocs_compatible (const bfd_target *input,
3320 const bfd_target *output)
3321 {
3322 const struct elf_backend_data *obed, *ibed;
3323
3324 if (input == output)
3325 return TRUE;
3326
3327 ibed = xvec_get_elf_backend_data (input);
3328 obed = xvec_get_elf_backend_data (output);
3329
3330 if (ibed->arch != obed->arch)
3331 return FALSE;
3332
3333 /* If both backends are using this function, deem them compatible. */
3334 return ibed->relocs_compatible == obed->relocs_compatible;
3335 }
3336
3337 /* Add symbols from an ELF object file to the linker hash table. */
3338
3339 static bfd_boolean
3340 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3341 {
3342 Elf_Internal_Ehdr *ehdr;
3343 Elf_Internal_Shdr *hdr;
3344 bfd_size_type symcount;
3345 bfd_size_type extsymcount;
3346 bfd_size_type extsymoff;
3347 struct elf_link_hash_entry **sym_hash;
3348 bfd_boolean dynamic;
3349 Elf_External_Versym *extversym = NULL;
3350 Elf_External_Versym *ever;
3351 struct elf_link_hash_entry *weaks;
3352 struct elf_link_hash_entry **nondeflt_vers = NULL;
3353 bfd_size_type nondeflt_vers_cnt = 0;
3354 Elf_Internal_Sym *isymbuf = NULL;
3355 Elf_Internal_Sym *isym;
3356 Elf_Internal_Sym *isymend;
3357 const struct elf_backend_data *bed;
3358 bfd_boolean add_needed;
3359 struct elf_link_hash_table *htab;
3360 bfd_size_type amt;
3361 void *alloc_mark = NULL;
3362 struct bfd_hash_entry **old_table = NULL;
3363 unsigned int old_size = 0;
3364 unsigned int old_count = 0;
3365 void *old_tab = NULL;
3366 void *old_hash;
3367 void *old_ent;
3368 struct bfd_link_hash_entry *old_undefs = NULL;
3369 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3370 long old_dynsymcount = 0;
3371 bfd_size_type old_dynstr_size = 0;
3372 size_t tabsize = 0;
3373 size_t hashsize = 0;
3374
3375 htab = elf_hash_table (info);
3376 bed = get_elf_backend_data (abfd);
3377
3378 if ((abfd->flags & DYNAMIC) == 0)
3379 dynamic = FALSE;
3380 else
3381 {
3382 dynamic = TRUE;
3383
3384 /* You can't use -r against a dynamic object. Also, there's no
3385 hope of using a dynamic object which does not exactly match
3386 the format of the output file. */
3387 if (info->relocatable
3388 || !is_elf_hash_table (htab)
3389 || info->output_bfd->xvec != abfd->xvec)
3390 {
3391 if (info->relocatable)
3392 bfd_set_error (bfd_error_invalid_operation);
3393 else
3394 bfd_set_error (bfd_error_wrong_format);
3395 goto error_return;
3396 }
3397 }
3398
3399 ehdr = elf_elfheader (abfd);
3400 if (info->warn_alternate_em
3401 && bed->elf_machine_code != ehdr->e_machine
3402 && ((bed->elf_machine_alt1 != 0
3403 && ehdr->e_machine == bed->elf_machine_alt1)
3404 || (bed->elf_machine_alt2 != 0
3405 && ehdr->e_machine == bed->elf_machine_alt2)))
3406 info->callbacks->einfo
3407 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3408 ehdr->e_machine, abfd, bed->elf_machine_code);
3409
3410 /* As a GNU extension, any input sections which are named
3411 .gnu.warning.SYMBOL are treated as warning symbols for the given
3412 symbol. This differs from .gnu.warning sections, which generate
3413 warnings when they are included in an output file. */
3414 /* PR 12761: Also generate this warning when building shared libraries. */
3415 if (info->executable || info->shared)
3416 {
3417 asection *s;
3418
3419 for (s = abfd->sections; s != NULL; s = s->next)
3420 {
3421 const char *name;
3422
3423 name = bfd_get_section_name (abfd, s);
3424 if (CONST_STRNEQ (name, ".gnu.warning."))
3425 {
3426 char *msg;
3427 bfd_size_type sz;
3428
3429 name += sizeof ".gnu.warning." - 1;
3430
3431 /* If this is a shared object, then look up the symbol
3432 in the hash table. If it is there, and it is already
3433 been defined, then we will not be using the entry
3434 from this shared object, so we don't need to warn.
3435 FIXME: If we see the definition in a regular object
3436 later on, we will warn, but we shouldn't. The only
3437 fix is to keep track of what warnings we are supposed
3438 to emit, and then handle them all at the end of the
3439 link. */
3440 if (dynamic)
3441 {
3442 struct elf_link_hash_entry *h;
3443
3444 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3445
3446 /* FIXME: What about bfd_link_hash_common? */
3447 if (h != NULL
3448 && (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak))
3450 {
3451 /* We don't want to issue this warning. Clobber
3452 the section size so that the warning does not
3453 get copied into the output file. */
3454 s->size = 0;
3455 continue;
3456 }
3457 }
3458
3459 sz = s->size;
3460 msg = (char *) bfd_alloc (abfd, sz + 1);
3461 if (msg == NULL)
3462 goto error_return;
3463
3464 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3465 goto error_return;
3466
3467 msg[sz] = '\0';
3468
3469 if (! (_bfd_generic_link_add_one_symbol
3470 (info, abfd, name, BSF_WARNING, s, 0, msg,
3471 FALSE, bed->collect, NULL)))
3472 goto error_return;
3473
3474 if (! info->relocatable)
3475 {
3476 /* Clobber the section size so that the warning does
3477 not get copied into the output file. */
3478 s->size = 0;
3479
3480 /* Also set SEC_EXCLUDE, so that symbols defined in
3481 the warning section don't get copied to the output. */
3482 s->flags |= SEC_EXCLUDE;
3483 }
3484 }
3485 }
3486 }
3487
3488 add_needed = TRUE;
3489 if (! dynamic)
3490 {
3491 /* If we are creating a shared library, create all the dynamic
3492 sections immediately. We need to attach them to something,
3493 so we attach them to this BFD, provided it is the right
3494 format. FIXME: If there are no input BFD's of the same
3495 format as the output, we can't make a shared library. */
3496 if (info->shared
3497 && is_elf_hash_table (htab)
3498 && info->output_bfd->xvec == abfd->xvec
3499 && !htab->dynamic_sections_created)
3500 {
3501 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3502 goto error_return;
3503 }
3504 }
3505 else if (!is_elf_hash_table (htab))
3506 goto error_return;
3507 else
3508 {
3509 asection *s;
3510 const char *soname = NULL;
3511 char *audit = NULL;
3512 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3513 int ret;
3514
3515 /* ld --just-symbols and dynamic objects don't mix very well.
3516 ld shouldn't allow it. */
3517 if ((s = abfd->sections) != NULL
3518 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 abort ();
3520
3521 /* If this dynamic lib was specified on the command line with
3522 --as-needed in effect, then we don't want to add a DT_NEEDED
3523 tag unless the lib is actually used. Similary for libs brought
3524 in by another lib's DT_NEEDED. When --no-add-needed is used
3525 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3526 any dynamic library in DT_NEEDED tags in the dynamic lib at
3527 all. */
3528 add_needed = (elf_dyn_lib_class (abfd)
3529 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3530 | DYN_NO_NEEDED)) == 0;
3531
3532 s = bfd_get_section_by_name (abfd, ".dynamic");
3533 if (s != NULL)
3534 {
3535 bfd_byte *dynbuf;
3536 bfd_byte *extdyn;
3537 unsigned int elfsec;
3538 unsigned long shlink;
3539
3540 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3541 {
3542 error_free_dyn:
3543 free (dynbuf);
3544 goto error_return;
3545 }
3546
3547 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3548 if (elfsec == SHN_BAD)
3549 goto error_free_dyn;
3550 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3551
3552 for (extdyn = dynbuf;
3553 extdyn < dynbuf + s->size;
3554 extdyn += bed->s->sizeof_dyn)
3555 {
3556 Elf_Internal_Dyn dyn;
3557
3558 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3559 if (dyn.d_tag == DT_SONAME)
3560 {
3561 unsigned int tagv = dyn.d_un.d_val;
3562 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3563 if (soname == NULL)
3564 goto error_free_dyn;
3565 }
3566 if (dyn.d_tag == DT_NEEDED)
3567 {
3568 struct bfd_link_needed_list *n, **pn;
3569 char *fnm, *anm;
3570 unsigned int tagv = dyn.d_un.d_val;
3571
3572 amt = sizeof (struct bfd_link_needed_list);
3573 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3574 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (n == NULL || fnm == NULL)
3576 goto error_free_dyn;
3577 amt = strlen (fnm) + 1;
3578 anm = (char *) bfd_alloc (abfd, amt);
3579 if (anm == NULL)
3580 goto error_free_dyn;
3581 memcpy (anm, fnm, amt);
3582 n->name = anm;
3583 n->by = abfd;
3584 n->next = NULL;
3585 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3586 ;
3587 *pn = n;
3588 }
3589 if (dyn.d_tag == DT_RUNPATH)
3590 {
3591 struct bfd_link_needed_list *n, **pn;
3592 char *fnm, *anm;
3593 unsigned int tagv = dyn.d_un.d_val;
3594
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3602 if (anm == NULL)
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3605 n->name = anm;
3606 n->by = abfd;
3607 n->next = NULL;
3608 for (pn = & runpath;
3609 *pn != NULL;
3610 pn = &(*pn)->next)
3611 ;
3612 *pn = n;
3613 }
3614 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3615 if (!runpath && dyn.d_tag == DT_RPATH)
3616 {
3617 struct bfd_link_needed_list *n, **pn;
3618 char *fnm, *anm;
3619 unsigned int tagv = dyn.d_un.d_val;
3620
3621 amt = sizeof (struct bfd_link_needed_list);
3622 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3623 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3624 if (n == NULL || fnm == NULL)
3625 goto error_free_dyn;
3626 amt = strlen (fnm) + 1;
3627 anm = (char *) bfd_alloc (abfd, amt);
3628 if (anm == NULL)
3629 goto error_free_dyn;
3630 memcpy (anm, fnm, amt);
3631 n->name = anm;
3632 n->by = abfd;
3633 n->next = NULL;
3634 for (pn = & rpath;
3635 *pn != NULL;
3636 pn = &(*pn)->next)
3637 ;
3638 *pn = n;
3639 }
3640 if (dyn.d_tag == DT_AUDIT)
3641 {
3642 unsigned int tagv = dyn.d_un.d_val;
3643 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3644 }
3645 }
3646
3647 free (dynbuf);
3648 }
3649
3650 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3651 frees all more recently bfd_alloc'd blocks as well. */
3652 if (runpath)
3653 rpath = runpath;
3654
3655 if (rpath)
3656 {
3657 struct bfd_link_needed_list **pn;
3658 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3659 ;
3660 *pn = rpath;
3661 }
3662
3663 /* We do not want to include any of the sections in a dynamic
3664 object in the output file. We hack by simply clobbering the
3665 list of sections in the BFD. This could be handled more
3666 cleanly by, say, a new section flag; the existing
3667 SEC_NEVER_LOAD flag is not the one we want, because that one
3668 still implies that the section takes up space in the output
3669 file. */
3670 bfd_section_list_clear (abfd);
3671
3672 /* Find the name to use in a DT_NEEDED entry that refers to this
3673 object. If the object has a DT_SONAME entry, we use it.
3674 Otherwise, if the generic linker stuck something in
3675 elf_dt_name, we use that. Otherwise, we just use the file
3676 name. */
3677 if (soname == NULL || *soname == '\0')
3678 {
3679 soname = elf_dt_name (abfd);
3680 if (soname == NULL || *soname == '\0')
3681 soname = bfd_get_filename (abfd);
3682 }
3683
3684 /* Save the SONAME because sometimes the linker emulation code
3685 will need to know it. */
3686 elf_dt_name (abfd) = soname;
3687
3688 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3689 if (ret < 0)
3690 goto error_return;
3691
3692 /* If we have already included this dynamic object in the
3693 link, just ignore it. There is no reason to include a
3694 particular dynamic object more than once. */
3695 if (ret > 0)
3696 return TRUE;
3697
3698 /* Save the DT_AUDIT entry for the linker emulation code. */
3699 elf_dt_audit (abfd) = audit;
3700 }
3701
3702 /* If this is a dynamic object, we always link against the .dynsym
3703 symbol table, not the .symtab symbol table. The dynamic linker
3704 will only see the .dynsym symbol table, so there is no reason to
3705 look at .symtab for a dynamic object. */
3706
3707 if (! dynamic || elf_dynsymtab (abfd) == 0)
3708 hdr = &elf_tdata (abfd)->symtab_hdr;
3709 else
3710 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3711
3712 symcount = hdr->sh_size / bed->s->sizeof_sym;
3713
3714 /* The sh_info field of the symtab header tells us where the
3715 external symbols start. We don't care about the local symbols at
3716 this point. */
3717 if (elf_bad_symtab (abfd))
3718 {
3719 extsymcount = symcount;
3720 extsymoff = 0;
3721 }
3722 else
3723 {
3724 extsymcount = symcount - hdr->sh_info;
3725 extsymoff = hdr->sh_info;
3726 }
3727
3728 sym_hash = NULL;
3729 if (extsymcount != 0)
3730 {
3731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3732 NULL, NULL, NULL);
3733 if (isymbuf == NULL)
3734 goto error_return;
3735
3736 /* We store a pointer to the hash table entry for each external
3737 symbol. */
3738 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3739 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3740 if (sym_hash == NULL)
3741 goto error_free_sym;
3742 elf_sym_hashes (abfd) = sym_hash;
3743 }
3744
3745 if (dynamic)
3746 {
3747 /* Read in any version definitions. */
3748 if (!_bfd_elf_slurp_version_tables (abfd,
3749 info->default_imported_symver))
3750 goto error_free_sym;
3751
3752 /* Read in the symbol versions, but don't bother to convert them
3753 to internal format. */
3754 if (elf_dynversym (abfd) != 0)
3755 {
3756 Elf_Internal_Shdr *versymhdr;
3757
3758 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3759 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3760 if (extversym == NULL)
3761 goto error_free_sym;
3762 amt = versymhdr->sh_size;
3763 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3764 || bfd_bread (extversym, amt, abfd) != amt)
3765 goto error_free_vers;
3766 }
3767 }
3768
3769 /* If we are loading an as-needed shared lib, save the symbol table
3770 state before we start adding symbols. If the lib turns out
3771 to be unneeded, restore the state. */
3772 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3773 {
3774 unsigned int i;
3775 size_t entsize;
3776
3777 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3778 {
3779 struct bfd_hash_entry *p;
3780 struct elf_link_hash_entry *h;
3781
3782 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3783 {
3784 h = (struct elf_link_hash_entry *) p;
3785 entsize += htab->root.table.entsize;
3786 if (h->root.type == bfd_link_hash_warning)
3787 entsize += htab->root.table.entsize;
3788 }
3789 }
3790
3791 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3792 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3793 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3794 if (old_tab == NULL)
3795 goto error_free_vers;
3796
3797 /* Remember the current objalloc pointer, so that all mem for
3798 symbols added can later be reclaimed. */
3799 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3800 if (alloc_mark == NULL)
3801 goto error_free_vers;
3802
3803 /* Make a special call to the linker "notice" function to
3804 tell it that we are about to handle an as-needed lib. */
3805 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3806 notice_as_needed, 0, NULL))
3807 goto error_free_vers;
3808
3809 /* Clone the symbol table and sym hashes. Remember some
3810 pointers into the symbol table, and dynamic symbol count. */
3811 old_hash = (char *) old_tab + tabsize;
3812 old_ent = (char *) old_hash + hashsize;
3813 memcpy (old_tab, htab->root.table.table, tabsize);
3814 memcpy (old_hash, sym_hash, hashsize);
3815 old_undefs = htab->root.undefs;
3816 old_undefs_tail = htab->root.undefs_tail;
3817 old_table = htab->root.table.table;
3818 old_size = htab->root.table.size;
3819 old_count = htab->root.table.count;
3820 old_dynsymcount = htab->dynsymcount;
3821 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3822
3823 for (i = 0; i < htab->root.table.size; i++)
3824 {
3825 struct bfd_hash_entry *p;
3826 struct elf_link_hash_entry *h;
3827
3828 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3829 {
3830 memcpy (old_ent, p, htab->root.table.entsize);
3831 old_ent = (char *) old_ent + htab->root.table.entsize;
3832 h = (struct elf_link_hash_entry *) p;
3833 if (h->root.type == bfd_link_hash_warning)
3834 {
3835 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3836 old_ent = (char *) old_ent + htab->root.table.entsize;
3837 }
3838 }
3839 }
3840 }
3841
3842 weaks = NULL;
3843 ever = extversym != NULL ? extversym + extsymoff : NULL;
3844 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3845 isym < isymend;
3846 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3847 {
3848 int bind;
3849 bfd_vma value;
3850 asection *sec, *new_sec;
3851 flagword flags;
3852 const char *name;
3853 struct elf_link_hash_entry *h;
3854 struct elf_link_hash_entry *hi;
3855 bfd_boolean definition;
3856 bfd_boolean size_change_ok;
3857 bfd_boolean type_change_ok;
3858 bfd_boolean new_weakdef;
3859 bfd_boolean new_weak;
3860 bfd_boolean old_weak;
3861 bfd_boolean override;
3862 bfd_boolean common;
3863 unsigned int old_alignment;
3864 bfd *old_bfd;
3865 bfd * undef_bfd = NULL;
3866
3867 override = FALSE;
3868
3869 flags = BSF_NO_FLAGS;
3870 sec = NULL;
3871 value = isym->st_value;
3872 *sym_hash = NULL;
3873 common = bed->common_definition (isym);
3874
3875 bind = ELF_ST_BIND (isym->st_info);
3876 switch (bind)
3877 {
3878 case STB_LOCAL:
3879 /* This should be impossible, since ELF requires that all
3880 global symbols follow all local symbols, and that sh_info
3881 point to the first global symbol. Unfortunately, Irix 5
3882 screws this up. */
3883 continue;
3884
3885 case STB_GLOBAL:
3886 if (isym->st_shndx != SHN_UNDEF && !common)
3887 flags = BSF_GLOBAL;
3888 break;
3889
3890 case STB_WEAK:
3891 flags = BSF_WEAK;
3892 break;
3893
3894 case STB_GNU_UNIQUE:
3895 flags = BSF_GNU_UNIQUE;
3896 break;
3897
3898 default:
3899 /* Leave it up to the processor backend. */
3900 break;
3901 }
3902
3903 if (isym->st_shndx == SHN_UNDEF)
3904 sec = bfd_und_section_ptr;
3905 else if (isym->st_shndx == SHN_ABS)
3906 sec = bfd_abs_section_ptr;
3907 else if (isym->st_shndx == SHN_COMMON)
3908 {
3909 sec = bfd_com_section_ptr;
3910 /* What ELF calls the size we call the value. What ELF
3911 calls the value we call the alignment. */
3912 value = isym->st_size;
3913 }
3914 else
3915 {
3916 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3917 if (sec == NULL)
3918 sec = bfd_abs_section_ptr;
3919 else if (discarded_section (sec))
3920 {
3921 /* Symbols from discarded section are undefined. We keep
3922 its visibility. */
3923 sec = bfd_und_section_ptr;
3924 isym->st_shndx = SHN_UNDEF;
3925 }
3926 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3927 value -= sec->vma;
3928 }
3929
3930 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3931 isym->st_name);
3932 if (name == NULL)
3933 goto error_free_vers;
3934
3935 if (isym->st_shndx == SHN_COMMON
3936 && (abfd->flags & BFD_PLUGIN) != 0)
3937 {
3938 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3939
3940 if (xc == NULL)
3941 {
3942 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3943 | SEC_EXCLUDE);
3944 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3945 if (xc == NULL)
3946 goto error_free_vers;
3947 }
3948 sec = xc;
3949 }
3950 else if (isym->st_shndx == SHN_COMMON
3951 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && !info->relocatable)
3953 {
3954 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3955
3956 if (tcomm == NULL)
3957 {
3958 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED);
3960 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
3966 else if (bed->elf_add_symbol_hook)
3967 {
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_weak = FALSE;
3994 old_alignment = 0;
3995 old_bfd = NULL;
3996 new_sec = sec;
3997
3998 if (is_elf_hash_table (htab))
3999 {
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4002 bfd_boolean skip;
4003
4004 /* If this is a definition of a symbol which was previously
4005 referenced in a non-weak manner then make a note of the bfd
4006 that contained the reference. This is used if we need to
4007 refer to the source of the reference later on. */
4008 if (! bfd_is_und_section (sec))
4009 {
4010 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4011
4012 if (h != NULL
4013 && h->root.type == bfd_link_hash_undefined
4014 && h->root.u.undef.abfd)
4015 undef_bfd = h->root.u.undef.abfd;
4016 }
4017
4018 if (ever == NULL)
4019 {
4020 if (info->default_imported_symver)
4021 /* Use the default symbol version created earlier. */
4022 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4023 else
4024 iver.vs_vers = 0;
4025 }
4026 else
4027 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4028
4029 vernum = iver.vs_vers & VERSYM_VERSION;
4030
4031 /* If this is a hidden symbol, or if it is not version
4032 1, we append the version name to the symbol name.
4033 However, we do not modify a non-hidden absolute symbol
4034 if it is not a function, because it might be the version
4035 symbol itself. FIXME: What if it isn't? */
4036 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4037 || (vernum > 1
4038 && (!bfd_is_abs_section (sec)
4039 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4040 {
4041 const char *verstr;
4042 size_t namelen, verlen, newlen;
4043 char *newname, *p;
4044
4045 if (isym->st_shndx != SHN_UNDEF)
4046 {
4047 if (vernum > elf_tdata (abfd)->cverdefs)
4048 verstr = NULL;
4049 else if (vernum > 1)
4050 verstr =
4051 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4052 else
4053 verstr = "";
4054
4055 if (verstr == NULL)
4056 {
4057 (*_bfd_error_handler)
4058 (_("%B: %s: invalid version %u (max %d)"),
4059 abfd, name, vernum,
4060 elf_tdata (abfd)->cverdefs);
4061 bfd_set_error (bfd_error_bad_value);
4062 goto error_free_vers;
4063 }
4064 }
4065 else
4066 {
4067 /* We cannot simply test for the number of
4068 entries in the VERNEED section since the
4069 numbers for the needed versions do not start
4070 at 0. */
4071 Elf_Internal_Verneed *t;
4072
4073 verstr = NULL;
4074 for (t = elf_tdata (abfd)->verref;
4075 t != NULL;
4076 t = t->vn_nextref)
4077 {
4078 Elf_Internal_Vernaux *a;
4079
4080 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4081 {
4082 if (a->vna_other == vernum)
4083 {
4084 verstr = a->vna_nodename;
4085 break;
4086 }
4087 }
4088 if (a != NULL)
4089 break;
4090 }
4091 if (verstr == NULL)
4092 {
4093 (*_bfd_error_handler)
4094 (_("%B: %s: invalid needed version %d"),
4095 abfd, name, vernum);
4096 bfd_set_error (bfd_error_bad_value);
4097 goto error_free_vers;
4098 }
4099 }
4100
4101 namelen = strlen (name);
4102 verlen = strlen (verstr);
4103 newlen = namelen + verlen + 2;
4104 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4105 && isym->st_shndx != SHN_UNDEF)
4106 ++newlen;
4107
4108 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4109 if (newname == NULL)
4110 goto error_free_vers;
4111 memcpy (newname, name, namelen);
4112 p = newname + namelen;
4113 *p++ = ELF_VER_CHR;
4114 /* If this is a defined non-hidden version symbol,
4115 we add another @ to the name. This indicates the
4116 default version of the symbol. */
4117 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4118 && isym->st_shndx != SHN_UNDEF)
4119 *p++ = ELF_VER_CHR;
4120 memcpy (p, verstr, verlen + 1);
4121
4122 name = newname;
4123 }
4124
4125 /* If necessary, make a second attempt to locate the bfd
4126 containing an unresolved, non-weak reference to the
4127 current symbol. */
4128 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4129 {
4130 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4131
4132 if (h != NULL
4133 && h->root.type == bfd_link_hash_undefined
4134 && h->root.u.undef.abfd)
4135 undef_bfd = h->root.u.undef.abfd;
4136 }
4137
4138 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4139 &value, &old_weak, &old_alignment,
4140 sym_hash, &skip, &override,
4141 &type_change_ok, &size_change_ok))
4142 goto error_free_vers;
4143
4144 if (skip)
4145 continue;
4146
4147 if (override)
4148 definition = FALSE;
4149
4150 h = *sym_hash;
4151 while (h->root.type == bfd_link_hash_indirect
4152 || h->root.type == bfd_link_hash_warning)
4153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154
4155 /* Remember the old alignment if this is a common symbol, so
4156 that we don't reduce the alignment later on. We can't
4157 check later, because _bfd_generic_link_add_one_symbol
4158 will set a default for the alignment which we want to
4159 override. We also remember the old bfd where the existing
4160 definition comes from. */
4161 switch (h->root.type)
4162 {
4163 default:
4164 break;
4165
4166 case bfd_link_hash_defined:
4167 case bfd_link_hash_defweak:
4168 old_bfd = h->root.u.def.section->owner;
4169 break;
4170
4171 case bfd_link_hash_common:
4172 old_bfd = h->root.u.c.p->section->owner;
4173 old_alignment = h->root.u.c.p->alignment_power;
4174 break;
4175 }
4176
4177 if (elf_tdata (abfd)->verdef != NULL
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 /* We need to make sure that indirect symbol dynamic flags are
4190 updated. */
4191 hi = h;
4192 while (h->root.type == bfd_link_hash_indirect
4193 || h->root.type == bfd_link_hash_warning)
4194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195
4196 *sym_hash = h;
4197 if (is_elf_hash_table (htab))
4198 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4199
4200 new_weak = (flags & BSF_WEAK) != 0;
4201 new_weakdef = FALSE;
4202 if (dynamic
4203 && definition
4204 && new_weak
4205 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4206 && is_elf_hash_table (htab)
4207 && h->u.weakdef == NULL)
4208 {
4209 /* Keep a list of all weak defined non function symbols from
4210 a dynamic object, using the weakdef field. Later in this
4211 function we will set the weakdef field to the correct
4212 value. We only put non-function symbols from dynamic
4213 objects on this list, because that happens to be the only
4214 time we need to know the normal symbol corresponding to a
4215 weak symbol, and the information is time consuming to
4216 figure out. If the weakdef field is not already NULL,
4217 then this symbol was already defined by some previous
4218 dynamic object, and we will be using that previous
4219 definition anyhow. */
4220
4221 h->u.weakdef = weaks;
4222 weaks = h;
4223 new_weakdef = TRUE;
4224 }
4225
4226 /* Set the alignment of a common symbol. */
4227 if ((common || bfd_is_com_section (sec))
4228 && h->root.type == bfd_link_hash_common)
4229 {
4230 unsigned int align;
4231
4232 if (common)
4233 align = bfd_log2 (isym->st_value);
4234 else
4235 {
4236 /* The new symbol is a common symbol in a shared object.
4237 We need to get the alignment from the section. */
4238 align = new_sec->alignment_power;
4239 }
4240 if (align > old_alignment)
4241 h->root.u.c.p->alignment_power = align;
4242 else
4243 h->root.u.c.p->alignment_power = old_alignment;
4244 }
4245
4246 if (is_elf_hash_table (htab))
4247 {
4248 bfd_boolean dynsym;
4249
4250 /* Check the alignment when a common symbol is involved. This
4251 can change when a common symbol is overridden by a normal
4252 definition or a common symbol is ignored due to the old
4253 normal definition. We need to make sure the maximum
4254 alignment is maintained. */
4255 if ((old_alignment || common)
4256 && h->root.type != bfd_link_hash_common)
4257 {
4258 unsigned int common_align;
4259 unsigned int normal_align;
4260 unsigned int symbol_align;
4261 bfd *normal_bfd;
4262 bfd *common_bfd;
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B"
4294 " is greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4308 && (definition || h->size == 0))
4309 {
4310 if (h->size != 0
4311 && h->size != isym->st_size
4312 && ! size_change_ok)
4313 (*_bfd_error_handler)
4314 (_("Warning: size of symbol `%s' changed"
4315 " from %lu in %B to %lu in %B"),
4316 old_bfd, abfd,
4317 name, (unsigned long) h->size,
4318 (unsigned long) isym->st_size);
4319
4320 h->size = isym->st_size;
4321 }
4322
4323 /* If this is a common symbol, then we always want H->SIZE
4324 to be the size of the common symbol. The code just above
4325 won't fix the size if a common symbol becomes larger. We
4326 don't warn about a size change here, because that is
4327 covered by --warn-common. Allow changed between different
4328 function types. */
4329 if (h->root.type == bfd_link_hash_common)
4330 h->size = h->root.u.c.size;
4331
4332 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4333 && ((definition && !new_weak)
4334 || (old_weak && h->root.type == bfd_link_hash_common)
4335 || h->type == STT_NOTYPE))
4336 {
4337 unsigned int type = ELF_ST_TYPE (isym->st_info);
4338
4339 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4340 symbol. */
4341 if (type == STT_GNU_IFUNC
4342 && (abfd->flags & DYNAMIC) != 0)
4343 type = STT_FUNC;
4344
4345 if (h->type != type)
4346 {
4347 if (h->type != STT_NOTYPE && ! type_change_ok)
4348 (*_bfd_error_handler)
4349 (_("Warning: type of symbol `%s' changed"
4350 " from %d to %d in %B"),
4351 abfd, name, h->type, type);
4352
4353 h->type = type;
4354 }
4355 }
4356
4357 /* Merge st_other field. */
4358 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4359
4360 /* Set a flag in the hash table entry indicating the type of
4361 reference or definition we just found. Keep a count of
4362 the number of dynamic symbols we find. A dynamic symbol
4363 is one which is referenced or defined by both a regular
4364 object and a shared object. */
4365 dynsym = FALSE;
4366 if (! dynamic)
4367 {
4368 if (! definition)
4369 {
4370 h->ref_regular = 1;
4371 if (bind != STB_WEAK)
4372 h->ref_regular_nonweak = 1;
4373 }
4374 else
4375 {
4376 h->def_regular = 1;
4377 if (h->def_dynamic)
4378 {
4379 h->def_dynamic = 0;
4380 h->ref_dynamic = 1;
4381 }
4382 }
4383
4384 /* If the indirect symbol has been forced local, don't
4385 make the real symbol dynamic. */
4386 if ((h == hi || !hi->forced_local)
4387 && (! info->executable
4388 || h->def_dynamic
4389 || h->ref_dynamic))
4390 dynsym = TRUE;
4391 }
4392 else
4393 {
4394 if (! definition)
4395 {
4396 h->ref_dynamic = 1;
4397 hi->ref_dynamic = 1;
4398 }
4399 else
4400 {
4401 h->def_dynamic = 1;
4402 hi->def_dynamic = 1;
4403 }
4404
4405 /* If the indirect symbol has been forced local, don't
4406 make the real symbol dynamic. */
4407 if ((h == hi || !hi->forced_local)
4408 && (h->def_regular
4409 || h->ref_regular
4410 || (h->u.weakdef != NULL
4411 && ! new_weakdef
4412 && h->u.weakdef->dynindx != -1)))
4413 dynsym = TRUE;
4414 }
4415
4416 /* We don't want to make debug symbol dynamic. */
4417 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4418 dynsym = FALSE;
4419
4420 /* Nor should we make plugin symbols dynamic. */
4421 if ((abfd->flags & BFD_PLUGIN) != 0)
4422 dynsym = FALSE;
4423
4424 if (definition)
4425 h->target_internal = isym->st_target_internal;
4426
4427 /* Check to see if we need to add an indirect symbol for
4428 the default name. */
4429 if (definition || h->root.type == bfd_link_hash_common)
4430 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4431 &sec, &value, &dynsym,
4432 override))
4433 goto error_free_vers;
4434
4435 if (definition && !dynamic)
4436 {
4437 char *p = strchr (name, ELF_VER_CHR);
4438 if (p != NULL && p[1] != ELF_VER_CHR)
4439 {
4440 /* Queue non-default versions so that .symver x, x@FOO
4441 aliases can be checked. */
4442 if (!nondeflt_vers)
4443 {
4444 amt = ((isymend - isym + 1)
4445 * sizeof (struct elf_link_hash_entry *));
4446 nondeflt_vers =
4447 (struct elf_link_hash_entry **) bfd_malloc (amt);
4448 if (!nondeflt_vers)
4449 goto error_free_vers;
4450 }
4451 nondeflt_vers[nondeflt_vers_cnt++] = h;
4452 }
4453 }
4454
4455 if (dynsym && h->dynindx == -1)
4456 {
4457 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4458 goto error_free_vers;
4459 if (h->u.weakdef != NULL
4460 && ! new_weakdef
4461 && h->u.weakdef->dynindx == -1)
4462 {
4463 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4464 goto error_free_vers;
4465 }
4466 }
4467 else if (dynsym && h->dynindx != -1)
4468 /* If the symbol already has a dynamic index, but
4469 visibility says it should not be visible, turn it into
4470 a local symbol. */
4471 switch (ELF_ST_VISIBILITY (h->other))
4472 {
4473 case STV_INTERNAL:
4474 case STV_HIDDEN:
4475 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4476 dynsym = FALSE;
4477 break;
4478 }
4479
4480 if (!add_needed
4481 && definition
4482 && ((dynsym
4483 && h->ref_regular)
4484 || (h->ref_dynamic
4485 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4486 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4487 {
4488 int ret;
4489 const char *soname = elf_dt_name (abfd);
4490
4491 /* A symbol from a library loaded via DT_NEEDED of some
4492 other library is referenced by a regular object.
4493 Add a DT_NEEDED entry for it. Issue an error if
4494 --no-add-needed is used and the reference was not
4495 a weak one. */
4496 if (undef_bfd != NULL
4497 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4498 {
4499 (*_bfd_error_handler)
4500 (_("%B: undefined reference to symbol '%s'"),
4501 undef_bfd, name);
4502 (*_bfd_error_handler)
4503 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4504 abfd, name);
4505 bfd_set_error (bfd_error_invalid_operation);
4506 goto error_free_vers;
4507 }
4508
4509 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4510 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4511
4512 add_needed = TRUE;
4513 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4514 if (ret < 0)
4515 goto error_free_vers;
4516
4517 BFD_ASSERT (ret == 0);
4518 }
4519 }
4520 }
4521
4522 if (extversym != NULL)
4523 {
4524 free (extversym);
4525 extversym = NULL;
4526 }
4527
4528 if (isymbuf != NULL)
4529 {
4530 free (isymbuf);
4531 isymbuf = NULL;
4532 }
4533
4534 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4535 {
4536 unsigned int i;
4537
4538 /* Restore the symbol table. */
4539 if (bed->as_needed_cleanup)
4540 (*bed->as_needed_cleanup) (abfd, info);
4541 old_hash = (char *) old_tab + tabsize;
4542 old_ent = (char *) old_hash + hashsize;
4543 sym_hash = elf_sym_hashes (abfd);
4544 htab->root.table.table = old_table;
4545 htab->root.table.size = old_size;
4546 htab->root.table.count = old_count;
4547 memcpy (htab->root.table.table, old_tab, tabsize);
4548 memcpy (sym_hash, old_hash, hashsize);
4549 htab->root.undefs = old_undefs;
4550 htab->root.undefs_tail = old_undefs_tail;
4551 _bfd_elf_strtab_clear_refs (htab->dynstr, old_dynstr_size);
4552 for (i = 0; i < htab->root.table.size; i++)
4553 {
4554 struct bfd_hash_entry *p;
4555 struct elf_link_hash_entry *h;
4556 bfd_size_type size;
4557 unsigned int alignment_power;
4558
4559 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4560 {
4561 h = (struct elf_link_hash_entry *) p;
4562 if (h->root.type == bfd_link_hash_warning)
4563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4564 if (h->dynindx >= old_dynsymcount
4565 && h->dynstr_index < old_dynstr_size)
4566 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4567
4568 /* Preserve the maximum alignment and size for common
4569 symbols even if this dynamic lib isn't on DT_NEEDED
4570 since it can still be loaded at run time by another
4571 dynamic lib. */
4572 if (h->root.type == bfd_link_hash_common)
4573 {
4574 size = h->root.u.c.size;
4575 alignment_power = h->root.u.c.p->alignment_power;
4576 }
4577 else
4578 {
4579 size = 0;
4580 alignment_power = 0;
4581 }
4582 memcpy (p, old_ent, htab->root.table.entsize);
4583 old_ent = (char *) old_ent + htab->root.table.entsize;
4584 h = (struct elf_link_hash_entry *) p;
4585 if (h->root.type == bfd_link_hash_warning)
4586 {
4587 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4588 old_ent = (char *) old_ent + htab->root.table.entsize;
4589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4590 }
4591 if (h->root.type == bfd_link_hash_common)
4592 {
4593 if (size > h->root.u.c.size)
4594 h->root.u.c.size = size;
4595 if (alignment_power > h->root.u.c.p->alignment_power)
4596 h->root.u.c.p->alignment_power = alignment_power;
4597 }
4598 }
4599 }
4600
4601 /* Make a special call to the linker "notice" function to
4602 tell it that symbols added for crefs may need to be removed. */
4603 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4604 notice_not_needed, 0, NULL))
4605 goto error_free_vers;
4606
4607 free (old_tab);
4608 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4609 alloc_mark);
4610 if (nondeflt_vers != NULL)
4611 free (nondeflt_vers);
4612 return TRUE;
4613 }
4614
4615 if (old_tab != NULL)
4616 {
4617 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4618 notice_needed, 0, NULL))
4619 goto error_free_vers;
4620 free (old_tab);
4621 old_tab = NULL;
4622 }
4623
4624 /* Now that all the symbols from this input file are created, handle
4625 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4626 if (nondeflt_vers != NULL)
4627 {
4628 bfd_size_type cnt, symidx;
4629
4630 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4631 {
4632 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4633 char *shortname, *p;
4634
4635 p = strchr (h->root.root.string, ELF_VER_CHR);
4636 if (p == NULL
4637 || (h->root.type != bfd_link_hash_defined
4638 && h->root.type != bfd_link_hash_defweak))
4639 continue;
4640
4641 amt = p - h->root.root.string;
4642 shortname = (char *) bfd_malloc (amt + 1);
4643 if (!shortname)
4644 goto error_free_vers;
4645 memcpy (shortname, h->root.root.string, amt);
4646 shortname[amt] = '\0';
4647
4648 hi = (struct elf_link_hash_entry *)
4649 bfd_link_hash_lookup (&htab->root, shortname,
4650 FALSE, FALSE, FALSE);
4651 if (hi != NULL
4652 && hi->root.type == h->root.type
4653 && hi->root.u.def.value == h->root.u.def.value
4654 && hi->root.u.def.section == h->root.u.def.section)
4655 {
4656 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4657 hi->root.type = bfd_link_hash_indirect;
4658 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4659 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4660 sym_hash = elf_sym_hashes (abfd);
4661 if (sym_hash)
4662 for (symidx = 0; symidx < extsymcount; ++symidx)
4663 if (sym_hash[symidx] == hi)
4664 {
4665 sym_hash[symidx] = h;
4666 break;
4667 }
4668 }
4669 free (shortname);
4670 }
4671 free (nondeflt_vers);
4672 nondeflt_vers = NULL;
4673 }
4674
4675 /* Now set the weakdefs field correctly for all the weak defined
4676 symbols we found. The only way to do this is to search all the
4677 symbols. Since we only need the information for non functions in
4678 dynamic objects, that's the only time we actually put anything on
4679 the list WEAKS. We need this information so that if a regular
4680 object refers to a symbol defined weakly in a dynamic object, the
4681 real symbol in the dynamic object is also put in the dynamic
4682 symbols; we also must arrange for both symbols to point to the
4683 same memory location. We could handle the general case of symbol
4684 aliasing, but a general symbol alias can only be generated in
4685 assembler code, handling it correctly would be very time
4686 consuming, and other ELF linkers don't handle general aliasing
4687 either. */
4688 if (weaks != NULL)
4689 {
4690 struct elf_link_hash_entry **hpp;
4691 struct elf_link_hash_entry **hppend;
4692 struct elf_link_hash_entry **sorted_sym_hash;
4693 struct elf_link_hash_entry *h;
4694 size_t sym_count;
4695
4696 /* Since we have to search the whole symbol list for each weak
4697 defined symbol, search time for N weak defined symbols will be
4698 O(N^2). Binary search will cut it down to O(NlogN). */
4699 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4700 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4701 if (sorted_sym_hash == NULL)
4702 goto error_return;
4703 sym_hash = sorted_sym_hash;
4704 hpp = elf_sym_hashes (abfd);
4705 hppend = hpp + extsymcount;
4706 sym_count = 0;
4707 for (; hpp < hppend; hpp++)
4708 {
4709 h = *hpp;
4710 if (h != NULL
4711 && h->root.type == bfd_link_hash_defined
4712 && !bed->is_function_type (h->type))
4713 {
4714 *sym_hash = h;
4715 sym_hash++;
4716 sym_count++;
4717 }
4718 }
4719
4720 qsort (sorted_sym_hash, sym_count,
4721 sizeof (struct elf_link_hash_entry *),
4722 elf_sort_symbol);
4723
4724 while (weaks != NULL)
4725 {
4726 struct elf_link_hash_entry *hlook;
4727 asection *slook;
4728 bfd_vma vlook;
4729 size_t i, j, idx;
4730
4731 hlook = weaks;
4732 weaks = hlook->u.weakdef;
4733 hlook->u.weakdef = NULL;
4734
4735 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4736 || hlook->root.type == bfd_link_hash_defweak
4737 || hlook->root.type == bfd_link_hash_common
4738 || hlook->root.type == bfd_link_hash_indirect);
4739 slook = hlook->root.u.def.section;
4740 vlook = hlook->root.u.def.value;
4741
4742 i = 0;
4743 j = sym_count;
4744 while (i != j)
4745 {
4746 bfd_signed_vma vdiff;
4747 idx = (i + j) / 2;
4748 h = sorted_sym_hash[idx];
4749 vdiff = vlook - h->root.u.def.value;
4750 if (vdiff < 0)
4751 j = idx;
4752 else if (vdiff > 0)
4753 i = idx + 1;
4754 else
4755 {
4756 long sdiff = slook->id - h->root.u.def.section->id;
4757 if (sdiff < 0)
4758 j = idx;
4759 else if (sdiff > 0)
4760 i = idx + 1;
4761 else
4762 break;
4763 }
4764 }
4765
4766 /* We didn't find a value/section match. */
4767 if (i == j)
4768 continue;
4769
4770 /* With multiple aliases, or when the weak symbol is already
4771 strongly defined, we have multiple matching symbols and
4772 the binary search above may land on any of them. Step
4773 one past the matching symbol(s). */
4774 while (++idx != j)
4775 {
4776 h = sorted_sym_hash[idx];
4777 if (h->root.u.def.section != slook
4778 || h->root.u.def.value != vlook)
4779 break;
4780 }
4781
4782 /* Now look back over the aliases. Since we sorted by size
4783 as well as value and section, we'll choose the one with
4784 the largest size. */
4785 while (idx-- != i)
4786 {
4787 h = sorted_sym_hash[idx];
4788
4789 /* Stop if value or section doesn't match. */
4790 if (h->root.u.def.section != slook
4791 || h->root.u.def.value != vlook)
4792 break;
4793 else if (h != hlook)
4794 {
4795 hlook->u.weakdef = h;
4796
4797 /* If the weak definition is in the list of dynamic
4798 symbols, make sure the real definition is put
4799 there as well. */
4800 if (hlook->dynindx != -1 && h->dynindx == -1)
4801 {
4802 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4803 {
4804 err_free_sym_hash:
4805 free (sorted_sym_hash);
4806 goto error_return;
4807 }
4808 }
4809
4810 /* If the real definition is in the list of dynamic
4811 symbols, make sure the weak definition is put
4812 there as well. If we don't do this, then the
4813 dynamic loader might not merge the entries for the
4814 real definition and the weak definition. */
4815 if (h->dynindx != -1 && hlook->dynindx == -1)
4816 {
4817 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4818 goto err_free_sym_hash;
4819 }
4820 break;
4821 }
4822 }
4823 }
4824
4825 free (sorted_sym_hash);
4826 }
4827
4828 if (bed->check_directives
4829 && !(*bed->check_directives) (abfd, info))
4830 return FALSE;
4831
4832 /* If this object is the same format as the output object, and it is
4833 not a shared library, then let the backend look through the
4834 relocs.
4835
4836 This is required to build global offset table entries and to
4837 arrange for dynamic relocs. It is not required for the
4838 particular common case of linking non PIC code, even when linking
4839 against shared libraries, but unfortunately there is no way of
4840 knowing whether an object file has been compiled PIC or not.
4841 Looking through the relocs is not particularly time consuming.
4842 The problem is that we must either (1) keep the relocs in memory,
4843 which causes the linker to require additional runtime memory or
4844 (2) read the relocs twice from the input file, which wastes time.
4845 This would be a good case for using mmap.
4846
4847 I have no idea how to handle linking PIC code into a file of a
4848 different format. It probably can't be done. */
4849 if (! dynamic
4850 && is_elf_hash_table (htab)
4851 && bed->check_relocs != NULL
4852 && elf_object_id (abfd) == elf_hash_table_id (htab)
4853 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4854 {
4855 asection *o;
4856
4857 for (o = abfd->sections; o != NULL; o = o->next)
4858 {
4859 Elf_Internal_Rela *internal_relocs;
4860 bfd_boolean ok;
4861
4862 if ((o->flags & SEC_RELOC) == 0
4863 || o->reloc_count == 0
4864 || ((info->strip == strip_all || info->strip == strip_debugger)
4865 && (o->flags & SEC_DEBUGGING) != 0)
4866 || bfd_is_abs_section (o->output_section))
4867 continue;
4868
4869 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4870 info->keep_memory);
4871 if (internal_relocs == NULL)
4872 goto error_return;
4873
4874 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4875
4876 if (elf_section_data (o)->relocs != internal_relocs)
4877 free (internal_relocs);
4878
4879 if (! ok)
4880 goto error_return;
4881 }
4882 }
4883
4884 /* If this is a non-traditional link, try to optimize the handling
4885 of the .stab/.stabstr sections. */
4886 if (! dynamic
4887 && ! info->traditional_format
4888 && is_elf_hash_table (htab)
4889 && (info->strip != strip_all && info->strip != strip_debugger))
4890 {
4891 asection *stabstr;
4892
4893 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4894 if (stabstr != NULL)
4895 {
4896 bfd_size_type string_offset = 0;
4897 asection *stab;
4898
4899 for (stab = abfd->sections; stab; stab = stab->next)
4900 if (CONST_STRNEQ (stab->name, ".stab")
4901 && (!stab->name[5] ||
4902 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4903 && (stab->flags & SEC_MERGE) == 0
4904 && !bfd_is_abs_section (stab->output_section))
4905 {
4906 struct bfd_elf_section_data *secdata;
4907
4908 secdata = elf_section_data (stab);
4909 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4910 stabstr, &secdata->sec_info,
4911 &string_offset))
4912 goto error_return;
4913 if (secdata->sec_info)
4914 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4915 }
4916 }
4917 }
4918
4919 if (is_elf_hash_table (htab) && add_needed)
4920 {
4921 /* Add this bfd to the loaded list. */
4922 struct elf_link_loaded_list *n;
4923
4924 n = (struct elf_link_loaded_list *)
4925 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4926 if (n == NULL)
4927 goto error_return;
4928 n->abfd = abfd;
4929 n->next = htab->loaded;
4930 htab->loaded = n;
4931 }
4932
4933 return TRUE;
4934
4935 error_free_vers:
4936 if (old_tab != NULL)
4937 free (old_tab);
4938 if (nondeflt_vers != NULL)
4939 free (nondeflt_vers);
4940 if (extversym != NULL)
4941 free (extversym);
4942 error_free_sym:
4943 if (isymbuf != NULL)
4944 free (isymbuf);
4945 error_return:
4946 return FALSE;
4947 }
4948
4949 /* Return the linker hash table entry of a symbol that might be
4950 satisfied by an archive symbol. Return -1 on error. */
4951
4952 struct elf_link_hash_entry *
4953 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4954 struct bfd_link_info *info,
4955 const char *name)
4956 {
4957 struct elf_link_hash_entry *h;
4958 char *p, *copy;
4959 size_t len, first;
4960
4961 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4962 if (h != NULL)
4963 return h;
4964
4965 /* If this is a default version (the name contains @@), look up the
4966 symbol again with only one `@' as well as without the version.
4967 The effect is that references to the symbol with and without the
4968 version will be matched by the default symbol in the archive. */
4969
4970 p = strchr (name, ELF_VER_CHR);
4971 if (p == NULL || p[1] != ELF_VER_CHR)
4972 return h;
4973
4974 /* First check with only one `@'. */
4975 len = strlen (name);
4976 copy = (char *) bfd_alloc (abfd, len);
4977 if (copy == NULL)
4978 return (struct elf_link_hash_entry *) 0 - 1;
4979
4980 first = p - name + 1;
4981 memcpy (copy, name, first);
4982 memcpy (copy + first, name + first + 1, len - first);
4983
4984 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4985 if (h == NULL)
4986 {
4987 /* We also need to check references to the symbol without the
4988 version. */
4989 copy[first - 1] = '\0';
4990 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4991 FALSE, FALSE, TRUE);
4992 }
4993
4994 bfd_release (abfd, copy);
4995 return h;
4996 }
4997
4998 /* Add symbols from an ELF archive file to the linker hash table. We
4999 don't use _bfd_generic_link_add_archive_symbols because of a
5000 problem which arises on UnixWare. The UnixWare libc.so is an
5001 archive which includes an entry libc.so.1 which defines a bunch of
5002 symbols. The libc.so archive also includes a number of other
5003 object files, which also define symbols, some of which are the same
5004 as those defined in libc.so.1. Correct linking requires that we
5005 consider each object file in turn, and include it if it defines any
5006 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5007 this; it looks through the list of undefined symbols, and includes
5008 any object file which defines them. When this algorithm is used on
5009 UnixWare, it winds up pulling in libc.so.1 early and defining a
5010 bunch of symbols. This means that some of the other objects in the
5011 archive are not included in the link, which is incorrect since they
5012 precede libc.so.1 in the archive.
5013
5014 Fortunately, ELF archive handling is simpler than that done by
5015 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5016 oddities. In ELF, if we find a symbol in the archive map, and the
5017 symbol is currently undefined, we know that we must pull in that
5018 object file.
5019
5020 Unfortunately, we do have to make multiple passes over the symbol
5021 table until nothing further is resolved. */
5022
5023 static bfd_boolean
5024 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5025 {
5026 symindex c;
5027 bfd_boolean *defined = NULL;
5028 bfd_boolean *included = NULL;
5029 carsym *symdefs;
5030 bfd_boolean loop;
5031 bfd_size_type amt;
5032 const struct elf_backend_data *bed;
5033 struct elf_link_hash_entry * (*archive_symbol_lookup)
5034 (bfd *, struct bfd_link_info *, const char *);
5035
5036 if (! bfd_has_map (abfd))
5037 {
5038 /* An empty archive is a special case. */
5039 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5040 return TRUE;
5041 bfd_set_error (bfd_error_no_armap);
5042 return FALSE;
5043 }
5044
5045 /* Keep track of all symbols we know to be already defined, and all
5046 files we know to be already included. This is to speed up the
5047 second and subsequent passes. */
5048 c = bfd_ardata (abfd)->symdef_count;
5049 if (c == 0)
5050 return TRUE;
5051 amt = c;
5052 amt *= sizeof (bfd_boolean);
5053 defined = (bfd_boolean *) bfd_zmalloc (amt);
5054 included = (bfd_boolean *) bfd_zmalloc (amt);
5055 if (defined == NULL || included == NULL)
5056 goto error_return;
5057
5058 symdefs = bfd_ardata (abfd)->symdefs;
5059 bed = get_elf_backend_data (abfd);
5060 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5061
5062 do
5063 {
5064 file_ptr last;
5065 symindex i;
5066 carsym *symdef;
5067 carsym *symdefend;
5068
5069 loop = FALSE;
5070 last = -1;
5071
5072 symdef = symdefs;
5073 symdefend = symdef + c;
5074 for (i = 0; symdef < symdefend; symdef++, i++)
5075 {
5076 struct elf_link_hash_entry *h;
5077 bfd *element;
5078 struct bfd_link_hash_entry *undefs_tail;
5079 symindex mark;
5080
5081 if (defined[i] || included[i])
5082 continue;
5083 if (symdef->file_offset == last)
5084 {
5085 included[i] = TRUE;
5086 continue;
5087 }
5088
5089 h = archive_symbol_lookup (abfd, info, symdef->name);
5090 if (h == (struct elf_link_hash_entry *) 0 - 1)
5091 goto error_return;
5092
5093 if (h == NULL)
5094 continue;
5095
5096 if (h->root.type == bfd_link_hash_common)
5097 {
5098 /* We currently have a common symbol. The archive map contains
5099 a reference to this symbol, so we may want to include it. We
5100 only want to include it however, if this archive element
5101 contains a definition of the symbol, not just another common
5102 declaration of it.
5103
5104 Unfortunately some archivers (including GNU ar) will put
5105 declarations of common symbols into their archive maps, as
5106 well as real definitions, so we cannot just go by the archive
5107 map alone. Instead we must read in the element's symbol
5108 table and check that to see what kind of symbol definition
5109 this is. */
5110 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5111 continue;
5112 }
5113 else if (h->root.type != bfd_link_hash_undefined)
5114 {
5115 if (h->root.type != bfd_link_hash_undefweak)
5116 defined[i] = TRUE;
5117 continue;
5118 }
5119
5120 /* We need to include this archive member. */
5121 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5122 if (element == NULL)
5123 goto error_return;
5124
5125 if (! bfd_check_format (element, bfd_object))
5126 goto error_return;
5127
5128 /* Doublecheck that we have not included this object
5129 already--it should be impossible, but there may be
5130 something wrong with the archive. */
5131 if (element->archive_pass != 0)
5132 {
5133 bfd_set_error (bfd_error_bad_value);
5134 goto error_return;
5135 }
5136 element->archive_pass = 1;
5137
5138 undefs_tail = info->hash->undefs_tail;
5139
5140 if (!(*info->callbacks
5141 ->add_archive_element) (info, element, symdef->name, &element))
5142 goto error_return;
5143 if (!bfd_link_add_symbols (element, info))
5144 goto error_return;
5145
5146 /* If there are any new undefined symbols, we need to make
5147 another pass through the archive in order to see whether
5148 they can be defined. FIXME: This isn't perfect, because
5149 common symbols wind up on undefs_tail and because an
5150 undefined symbol which is defined later on in this pass
5151 does not require another pass. This isn't a bug, but it
5152 does make the code less efficient than it could be. */
5153 if (undefs_tail != info->hash->undefs_tail)
5154 loop = TRUE;
5155
5156 /* Look backward to mark all symbols from this object file
5157 which we have already seen in this pass. */
5158 mark = i;
5159 do
5160 {
5161 included[mark] = TRUE;
5162 if (mark == 0)
5163 break;
5164 --mark;
5165 }
5166 while (symdefs[mark].file_offset == symdef->file_offset);
5167
5168 /* We mark subsequent symbols from this object file as we go
5169 on through the loop. */
5170 last = symdef->file_offset;
5171 }
5172 }
5173 while (loop);
5174
5175 free (defined);
5176 free (included);
5177
5178 return TRUE;
5179
5180 error_return:
5181 if (defined != NULL)
5182 free (defined);
5183 if (included != NULL)
5184 free (included);
5185 return FALSE;
5186 }
5187
5188 /* Given an ELF BFD, add symbols to the global hash table as
5189 appropriate. */
5190
5191 bfd_boolean
5192 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5193 {
5194 switch (bfd_get_format (abfd))
5195 {
5196 case bfd_object:
5197 return elf_link_add_object_symbols (abfd, info);
5198 case bfd_archive:
5199 return elf_link_add_archive_symbols (abfd, info);
5200 default:
5201 bfd_set_error (bfd_error_wrong_format);
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 struct hash_codes_info
5207 {
5208 unsigned long *hashcodes;
5209 bfd_boolean error;
5210 };
5211
5212 /* This function will be called though elf_link_hash_traverse to store
5213 all hash value of the exported symbols in an array. */
5214
5215 static bfd_boolean
5216 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5217 {
5218 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5219 const char *name;
5220 char *p;
5221 unsigned long ha;
5222 char *alc = NULL;
5223
5224 /* Ignore indirect symbols. These are added by the versioning code. */
5225 if (h->dynindx == -1)
5226 return TRUE;
5227
5228 name = h->root.root.string;
5229 p = strchr (name, ELF_VER_CHR);
5230 if (p != NULL)
5231 {
5232 alc = (char *) bfd_malloc (p - name + 1);
5233 if (alc == NULL)
5234 {
5235 inf->error = TRUE;
5236 return FALSE;
5237 }
5238 memcpy (alc, name, p - name);
5239 alc[p - name] = '\0';
5240 name = alc;
5241 }
5242
5243 /* Compute the hash value. */
5244 ha = bfd_elf_hash (name);
5245
5246 /* Store the found hash value in the array given as the argument. */
5247 *(inf->hashcodes)++ = ha;
5248
5249 /* And store it in the struct so that we can put it in the hash table
5250 later. */
5251 h->u.elf_hash_value = ha;
5252
5253 if (alc != NULL)
5254 free (alc);
5255
5256 return TRUE;
5257 }
5258
5259 struct collect_gnu_hash_codes
5260 {
5261 bfd *output_bfd;
5262 const struct elf_backend_data *bed;
5263 unsigned long int nsyms;
5264 unsigned long int maskbits;
5265 unsigned long int *hashcodes;
5266 unsigned long int *hashval;
5267 unsigned long int *indx;
5268 unsigned long int *counts;
5269 bfd_vma *bitmask;
5270 bfd_byte *contents;
5271 long int min_dynindx;
5272 unsigned long int bucketcount;
5273 unsigned long int symindx;
5274 long int local_indx;
5275 long int shift1, shift2;
5276 unsigned long int mask;
5277 bfd_boolean error;
5278 };
5279
5280 /* This function will be called though elf_link_hash_traverse to store
5281 all hash value of the exported symbols in an array. */
5282
5283 static bfd_boolean
5284 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 const char *name;
5288 char *p;
5289 unsigned long ha;
5290 char *alc = NULL;
5291
5292 /* Ignore indirect symbols. These are added by the versioning code. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5295
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5298 return TRUE;
5299
5300 name = h->root.root.string;
5301 p = strchr (name, ELF_VER_CHR);
5302 if (p != NULL)
5303 {
5304 alc = (char *) bfd_malloc (p - name + 1);
5305 if (alc == NULL)
5306 {
5307 s->error = TRUE;
5308 return FALSE;
5309 }
5310 memcpy (alc, name, p - name);
5311 alc[p - name] = '\0';
5312 name = alc;
5313 }
5314
5315 /* Compute the hash value. */
5316 ha = bfd_elf_gnu_hash (name);
5317
5318 /* Store the found hash value in the array for compute_bucket_count,
5319 and also for .dynsym reordering purposes. */
5320 s->hashcodes[s->nsyms] = ha;
5321 s->hashval[h->dynindx] = ha;
5322 ++s->nsyms;
5323 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5324 s->min_dynindx = h->dynindx;
5325
5326 if (alc != NULL)
5327 free (alc);
5328
5329 return TRUE;
5330 }
5331
5332 /* This function will be called though elf_link_hash_traverse to do
5333 final dynaminc symbol renumbering. */
5334
5335 static bfd_boolean
5336 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5337 {
5338 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5339 unsigned long int bucket;
5340 unsigned long int val;
5341
5342 /* Ignore indirect symbols. */
5343 if (h->dynindx == -1)
5344 return TRUE;
5345
5346 /* Ignore also local symbols and undefined symbols. */
5347 if (! (*s->bed->elf_hash_symbol) (h))
5348 {
5349 if (h->dynindx >= s->min_dynindx)
5350 h->dynindx = s->local_indx++;
5351 return TRUE;
5352 }
5353
5354 bucket = s->hashval[h->dynindx] % s->bucketcount;
5355 val = (s->hashval[h->dynindx] >> s->shift1)
5356 & ((s->maskbits >> s->shift1) - 1);
5357 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5358 s->bitmask[val]
5359 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5360 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5361 if (s->counts[bucket] == 1)
5362 /* Last element terminates the chain. */
5363 val |= 1;
5364 bfd_put_32 (s->output_bfd, val,
5365 s->contents + (s->indx[bucket] - s->symindx) * 4);
5366 --s->counts[bucket];
5367 h->dynindx = s->indx[bucket]++;
5368 return TRUE;
5369 }
5370
5371 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5372
5373 bfd_boolean
5374 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5375 {
5376 return !(h->forced_local
5377 || h->root.type == bfd_link_hash_undefined
5378 || h->root.type == bfd_link_hash_undefweak
5379 || ((h->root.type == bfd_link_hash_defined
5380 || h->root.type == bfd_link_hash_defweak)
5381 && h->root.u.def.section->output_section == NULL));
5382 }
5383
5384 /* Array used to determine the number of hash table buckets to use
5385 based on the number of symbols there are. If there are fewer than
5386 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5387 fewer than 37 we use 17 buckets, and so forth. We never use more
5388 than 32771 buckets. */
5389
5390 static const size_t elf_buckets[] =
5391 {
5392 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5393 16411, 32771, 0
5394 };
5395
5396 /* Compute bucket count for hashing table. We do not use a static set
5397 of possible tables sizes anymore. Instead we determine for all
5398 possible reasonable sizes of the table the outcome (i.e., the
5399 number of collisions etc) and choose the best solution. The
5400 weighting functions are not too simple to allow the table to grow
5401 without bounds. Instead one of the weighting factors is the size.
5402 Therefore the result is always a good payoff between few collisions
5403 (= short chain lengths) and table size. */
5404 static size_t
5405 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5406 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5407 unsigned long int nsyms,
5408 int gnu_hash)
5409 {
5410 size_t best_size = 0;
5411 unsigned long int i;
5412
5413 /* We have a problem here. The following code to optimize the table
5414 size requires an integer type with more the 32 bits. If
5415 BFD_HOST_U_64_BIT is set we know about such a type. */
5416 #ifdef BFD_HOST_U_64_BIT
5417 if (info->optimize)
5418 {
5419 size_t minsize;
5420 size_t maxsize;
5421 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5422 bfd *dynobj = elf_hash_table (info)->dynobj;
5423 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5424 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5425 unsigned long int *counts;
5426 bfd_size_type amt;
5427 unsigned int no_improvement_count = 0;
5428
5429 /* Possible optimization parameters: if we have NSYMS symbols we say
5430 that the hashing table must at least have NSYMS/4 and at most
5431 2*NSYMS buckets. */
5432 minsize = nsyms / 4;
5433 if (minsize == 0)
5434 minsize = 1;
5435 best_size = maxsize = nsyms * 2;
5436 if (gnu_hash)
5437 {
5438 if (minsize < 2)
5439 minsize = 2;
5440 if ((best_size & 31) == 0)
5441 ++best_size;
5442 }
5443
5444 /* Create array where we count the collisions in. We must use bfd_malloc
5445 since the size could be large. */
5446 amt = maxsize;
5447 amt *= sizeof (unsigned long int);
5448 counts = (unsigned long int *) bfd_malloc (amt);
5449 if (counts == NULL)
5450 return 0;
5451
5452 /* Compute the "optimal" size for the hash table. The criteria is a
5453 minimal chain length. The minor criteria is (of course) the size
5454 of the table. */
5455 for (i = minsize; i < maxsize; ++i)
5456 {
5457 /* Walk through the array of hashcodes and count the collisions. */
5458 BFD_HOST_U_64_BIT max;
5459 unsigned long int j;
5460 unsigned long int fact;
5461
5462 if (gnu_hash && (i & 31) == 0)
5463 continue;
5464
5465 memset (counts, '\0', i * sizeof (unsigned long int));
5466
5467 /* Determine how often each hash bucket is used. */
5468 for (j = 0; j < nsyms; ++j)
5469 ++counts[hashcodes[j] % i];
5470
5471 /* For the weight function we need some information about the
5472 pagesize on the target. This is information need not be 100%
5473 accurate. Since this information is not available (so far) we
5474 define it here to a reasonable default value. If it is crucial
5475 to have a better value some day simply define this value. */
5476 # ifndef BFD_TARGET_PAGESIZE
5477 # define BFD_TARGET_PAGESIZE (4096)
5478 # endif
5479
5480 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5481 and the chains. */
5482 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5483
5484 # if 1
5485 /* Variant 1: optimize for short chains. We add the squares
5486 of all the chain lengths (which favors many small chain
5487 over a few long chains). */
5488 for (j = 0; j < i; ++j)
5489 max += counts[j] * counts[j];
5490
5491 /* This adds penalties for the overall size of the table. */
5492 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5493 max *= fact * fact;
5494 # else
5495 /* Variant 2: Optimize a lot more for small table. Here we
5496 also add squares of the size but we also add penalties for
5497 empty slots (the +1 term). */
5498 for (j = 0; j < i; ++j)
5499 max += (1 + counts[j]) * (1 + counts[j]);
5500
5501 /* The overall size of the table is considered, but not as
5502 strong as in variant 1, where it is squared. */
5503 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5504 max *= fact;
5505 # endif
5506
5507 /* Compare with current best results. */
5508 if (max < best_chlen)
5509 {
5510 best_chlen = max;
5511 best_size = i;
5512 no_improvement_count = 0;
5513 }
5514 /* PR 11843: Avoid futile long searches for the best bucket size
5515 when there are a large number of symbols. */
5516 else if (++no_improvement_count == 100)
5517 break;
5518 }
5519
5520 free (counts);
5521 }
5522 else
5523 #endif /* defined (BFD_HOST_U_64_BIT) */
5524 {
5525 /* This is the fallback solution if no 64bit type is available or if we
5526 are not supposed to spend much time on optimizations. We select the
5527 bucket count using a fixed set of numbers. */
5528 for (i = 0; elf_buckets[i] != 0; i++)
5529 {
5530 best_size = elf_buckets[i];
5531 if (nsyms < elf_buckets[i + 1])
5532 break;
5533 }
5534 if (gnu_hash && best_size < 2)
5535 best_size = 2;
5536 }
5537
5538 return best_size;
5539 }
5540
5541 /* Size any SHT_GROUP section for ld -r. */
5542
5543 bfd_boolean
5544 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5545 {
5546 bfd *ibfd;
5547
5548 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5549 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5550 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5551 return FALSE;
5552 return TRUE;
5553 }
5554
5555 /* Set a default stack segment size. The value in INFO wins. If it
5556 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5557 undefined it is initialized. */
5558
5559 bfd_boolean
5560 bfd_elf_stack_segment_size (bfd *output_bfd,
5561 struct bfd_link_info *info,
5562 const char *legacy_symbol,
5563 bfd_vma default_size)
5564 {
5565 struct elf_link_hash_entry *h = NULL;
5566
5567 /* Look for legacy symbol. */
5568 if (legacy_symbol)
5569 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5570 FALSE, FALSE, FALSE);
5571 if (h && (h->root.type == bfd_link_hash_defined
5572 || h->root.type == bfd_link_hash_defweak)
5573 && h->def_regular
5574 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5575 {
5576 /* The symbol has no type if specified on the command line. */
5577 h->type = STT_OBJECT;
5578 if (info->stacksize)
5579 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5580 output_bfd, legacy_symbol);
5581 else if (h->root.u.def.section != bfd_abs_section_ptr)
5582 (*_bfd_error_handler) (_("%B: %s not absolute"),
5583 output_bfd, legacy_symbol);
5584 else
5585 info->stacksize = h->root.u.def.value;
5586 }
5587
5588 if (!info->stacksize)
5589 /* If the user didn't set a size, or explicitly inhibit the
5590 size, set it now. */
5591 info->stacksize = default_size;
5592
5593 /* Provide the legacy symbol, if it is referenced. */
5594 if (h && (h->root.type == bfd_link_hash_undefined
5595 || h->root.type == bfd_link_hash_undefweak))
5596 {
5597 struct bfd_link_hash_entry *bh = NULL;
5598
5599 if (!(_bfd_generic_link_add_one_symbol
5600 (info, output_bfd, legacy_symbol,
5601 BSF_GLOBAL, bfd_abs_section_ptr,
5602 info->stacksize >= 0 ? info->stacksize : 0,
5603 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5604 return FALSE;
5605
5606 h = (struct elf_link_hash_entry *) bh;
5607 h->def_regular = 1;
5608 h->type = STT_OBJECT;
5609 }
5610
5611 return TRUE;
5612 }
5613
5614 /* Set up the sizes and contents of the ELF dynamic sections. This is
5615 called by the ELF linker emulation before_allocation routine. We
5616 must set the sizes of the sections before the linker sets the
5617 addresses of the various sections. */
5618
5619 bfd_boolean
5620 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5621 const char *soname,
5622 const char *rpath,
5623 const char *filter_shlib,
5624 const char *audit,
5625 const char *depaudit,
5626 const char * const *auxiliary_filters,
5627 struct bfd_link_info *info,
5628 asection **sinterpptr)
5629 {
5630 bfd_size_type soname_indx;
5631 bfd *dynobj;
5632 const struct elf_backend_data *bed;
5633 struct elf_info_failed asvinfo;
5634
5635 *sinterpptr = NULL;
5636
5637 soname_indx = (bfd_size_type) -1;
5638
5639 if (!is_elf_hash_table (info->hash))
5640 return TRUE;
5641
5642 bed = get_elf_backend_data (output_bfd);
5643
5644 /* Any syms created from now on start with -1 in
5645 got.refcount/offset and plt.refcount/offset. */
5646 elf_hash_table (info)->init_got_refcount
5647 = elf_hash_table (info)->init_got_offset;
5648 elf_hash_table (info)->init_plt_refcount
5649 = elf_hash_table (info)->init_plt_offset;
5650
5651 if (info->relocatable
5652 && !_bfd_elf_size_group_sections (info))
5653 return FALSE;
5654
5655 /* The backend may have to create some sections regardless of whether
5656 we're dynamic or not. */
5657 if (bed->elf_backend_always_size_sections
5658 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5659 return FALSE;
5660
5661 /* Determine any GNU_STACK segment requirements, after the backend
5662 has had a chance to set a default segment size. */
5663 if (info->execstack)
5664 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5665 else if (info->noexecstack)
5666 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5667 else
5668 {
5669 bfd *inputobj;
5670 asection *notesec = NULL;
5671 int exec = 0;
5672
5673 for (inputobj = info->input_bfds;
5674 inputobj;
5675 inputobj = inputobj->link_next)
5676 {
5677 asection *s;
5678
5679 if (inputobj->flags
5680 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5681 continue;
5682 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5683 if (s)
5684 {
5685 if (s->flags & SEC_CODE)
5686 exec = PF_X;
5687 notesec = s;
5688 }
5689 else if (bed->default_execstack)
5690 exec = PF_X;
5691 }
5692 if (notesec || info->stacksize > 0)
5693 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5694 if (notesec && exec && info->relocatable
5695 && notesec->output_section != bfd_abs_section_ptr)
5696 notesec->output_section->flags |= SEC_CODE;
5697 }
5698
5699 dynobj = elf_hash_table (info)->dynobj;
5700
5701 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5702 {
5703 struct elf_info_failed eif;
5704 struct elf_link_hash_entry *h;
5705 asection *dynstr;
5706 struct bfd_elf_version_tree *t;
5707 struct bfd_elf_version_expr *d;
5708 asection *s;
5709 bfd_boolean all_defined;
5710
5711 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5712 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5713
5714 if (soname != NULL)
5715 {
5716 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5717 soname, TRUE);
5718 if (soname_indx == (bfd_size_type) -1
5719 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5720 return FALSE;
5721 }
5722
5723 if (info->symbolic)
5724 {
5725 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5726 return FALSE;
5727 info->flags |= DF_SYMBOLIC;
5728 }
5729
5730 if (rpath != NULL)
5731 {
5732 bfd_size_type indx;
5733 bfd_vma tag;
5734
5735 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5736 TRUE);
5737 if (indx == (bfd_size_type) -1)
5738 return FALSE;
5739
5740 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5741 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5742 return FALSE;
5743 }
5744
5745 if (filter_shlib != NULL)
5746 {
5747 bfd_size_type indx;
5748
5749 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5750 filter_shlib, TRUE);
5751 if (indx == (bfd_size_type) -1
5752 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5753 return FALSE;
5754 }
5755
5756 if (auxiliary_filters != NULL)
5757 {
5758 const char * const *p;
5759
5760 for (p = auxiliary_filters; *p != NULL; p++)
5761 {
5762 bfd_size_type indx;
5763
5764 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5765 *p, TRUE);
5766 if (indx == (bfd_size_type) -1
5767 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5768 return FALSE;
5769 }
5770 }
5771
5772 if (audit != NULL)
5773 {
5774 bfd_size_type indx;
5775
5776 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5777 TRUE);
5778 if (indx == (bfd_size_type) -1
5779 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5780 return FALSE;
5781 }
5782
5783 if (depaudit != NULL)
5784 {
5785 bfd_size_type indx;
5786
5787 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5788 TRUE);
5789 if (indx == (bfd_size_type) -1
5790 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5791 return FALSE;
5792 }
5793
5794 eif.info = info;
5795 eif.failed = FALSE;
5796
5797 /* If we are supposed to export all symbols into the dynamic symbol
5798 table (this is not the normal case), then do so. */
5799 if (info->export_dynamic
5800 || (info->executable && info->dynamic))
5801 {
5802 elf_link_hash_traverse (elf_hash_table (info),
5803 _bfd_elf_export_symbol,
5804 &eif);
5805 if (eif.failed)
5806 return FALSE;
5807 }
5808
5809 /* Make all global versions with definition. */
5810 for (t = info->version_info; t != NULL; t = t->next)
5811 for (d = t->globals.list; d != NULL; d = d->next)
5812 if (!d->symver && d->literal)
5813 {
5814 const char *verstr, *name;
5815 size_t namelen, verlen, newlen;
5816 char *newname, *p, leading_char;
5817 struct elf_link_hash_entry *newh;
5818
5819 leading_char = bfd_get_symbol_leading_char (output_bfd);
5820 name = d->pattern;
5821 namelen = strlen (name) + (leading_char != '\0');
5822 verstr = t->name;
5823 verlen = strlen (verstr);
5824 newlen = namelen + verlen + 3;
5825
5826 newname = (char *) bfd_malloc (newlen);
5827 if (newname == NULL)
5828 return FALSE;
5829 newname[0] = leading_char;
5830 memcpy (newname + (leading_char != '\0'), name, namelen);
5831
5832 /* Check the hidden versioned definition. */
5833 p = newname + namelen;
5834 *p++ = ELF_VER_CHR;
5835 memcpy (p, verstr, verlen + 1);
5836 newh = elf_link_hash_lookup (elf_hash_table (info),
5837 newname, FALSE, FALSE,
5838 FALSE);
5839 if (newh == NULL
5840 || (newh->root.type != bfd_link_hash_defined
5841 && newh->root.type != bfd_link_hash_defweak))
5842 {
5843 /* Check the default versioned definition. */
5844 *p++ = ELF_VER_CHR;
5845 memcpy (p, verstr, verlen + 1);
5846 newh = elf_link_hash_lookup (elf_hash_table (info),
5847 newname, FALSE, FALSE,
5848 FALSE);
5849 }
5850 free (newname);
5851
5852 /* Mark this version if there is a definition and it is
5853 not defined in a shared object. */
5854 if (newh != NULL
5855 && !newh->def_dynamic
5856 && (newh->root.type == bfd_link_hash_defined
5857 || newh->root.type == bfd_link_hash_defweak))
5858 d->symver = 1;
5859 }
5860
5861 /* Attach all the symbols to their version information. */
5862 asvinfo.info = info;
5863 asvinfo.failed = FALSE;
5864
5865 elf_link_hash_traverse (elf_hash_table (info),
5866 _bfd_elf_link_assign_sym_version,
5867 &asvinfo);
5868 if (asvinfo.failed)
5869 return FALSE;
5870
5871 if (!info->allow_undefined_version)
5872 {
5873 /* Check if all global versions have a definition. */
5874 all_defined = TRUE;
5875 for (t = info->version_info; t != NULL; t = t->next)
5876 for (d = t->globals.list; d != NULL; d = d->next)
5877 if (d->literal && !d->symver && !d->script)
5878 {
5879 (*_bfd_error_handler)
5880 (_("%s: undefined version: %s"),
5881 d->pattern, t->name);
5882 all_defined = FALSE;
5883 }
5884
5885 if (!all_defined)
5886 {
5887 bfd_set_error (bfd_error_bad_value);
5888 return FALSE;
5889 }
5890 }
5891
5892 /* Find all symbols which were defined in a dynamic object and make
5893 the backend pick a reasonable value for them. */
5894 elf_link_hash_traverse (elf_hash_table (info),
5895 _bfd_elf_adjust_dynamic_symbol,
5896 &eif);
5897 if (eif.failed)
5898 return FALSE;
5899
5900 /* Add some entries to the .dynamic section. We fill in some of the
5901 values later, in bfd_elf_final_link, but we must add the entries
5902 now so that we know the final size of the .dynamic section. */
5903
5904 /* If there are initialization and/or finalization functions to
5905 call then add the corresponding DT_INIT/DT_FINI entries. */
5906 h = (info->init_function
5907 ? elf_link_hash_lookup (elf_hash_table (info),
5908 info->init_function, FALSE,
5909 FALSE, FALSE)
5910 : NULL);
5911 if (h != NULL
5912 && (h->ref_regular
5913 || h->def_regular))
5914 {
5915 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5916 return FALSE;
5917 }
5918 h = (info->fini_function
5919 ? elf_link_hash_lookup (elf_hash_table (info),
5920 info->fini_function, FALSE,
5921 FALSE, FALSE)
5922 : NULL);
5923 if (h != NULL
5924 && (h->ref_regular
5925 || h->def_regular))
5926 {
5927 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5928 return FALSE;
5929 }
5930
5931 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5932 if (s != NULL && s->linker_has_input)
5933 {
5934 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5935 if (! info->executable)
5936 {
5937 bfd *sub;
5938 asection *o;
5939
5940 for (sub = info->input_bfds; sub != NULL;
5941 sub = sub->link_next)
5942 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5943 for (o = sub->sections; o != NULL; o = o->next)
5944 if (elf_section_data (o)->this_hdr.sh_type
5945 == SHT_PREINIT_ARRAY)
5946 {
5947 (*_bfd_error_handler)
5948 (_("%B: .preinit_array section is not allowed in DSO"),
5949 sub);
5950 break;
5951 }
5952
5953 bfd_set_error (bfd_error_nonrepresentable_section);
5954 return FALSE;
5955 }
5956
5957 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5958 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5959 return FALSE;
5960 }
5961 s = bfd_get_section_by_name (output_bfd, ".init_array");
5962 if (s != NULL && s->linker_has_input)
5963 {
5964 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5965 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5966 return FALSE;
5967 }
5968 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5969 if (s != NULL && s->linker_has_input)
5970 {
5971 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5972 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5973 return FALSE;
5974 }
5975
5976 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5977 /* If .dynstr is excluded from the link, we don't want any of
5978 these tags. Strictly, we should be checking each section
5979 individually; This quick check covers for the case where
5980 someone does a /DISCARD/ : { *(*) }. */
5981 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5982 {
5983 bfd_size_type strsize;
5984
5985 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5986 if ((info->emit_hash
5987 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5988 || (info->emit_gnu_hash
5989 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5990 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5991 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5992 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5993 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5994 bed->s->sizeof_sym))
5995 return FALSE;
5996 }
5997 }
5998
5999 /* The backend must work out the sizes of all the other dynamic
6000 sections. */
6001 if (dynobj != NULL
6002 && bed->elf_backend_size_dynamic_sections != NULL
6003 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6004 return FALSE;
6005
6006 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6007 return FALSE;
6008
6009 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6010 {
6011 unsigned long section_sym_count;
6012 struct bfd_elf_version_tree *verdefs;
6013 asection *s;
6014
6015 /* Set up the version definition section. */
6016 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6017 BFD_ASSERT (s != NULL);
6018
6019 /* We may have created additional version definitions if we are
6020 just linking a regular application. */
6021 verdefs = info->version_info;
6022
6023 /* Skip anonymous version tag. */
6024 if (verdefs != NULL && verdefs->vernum == 0)
6025 verdefs = verdefs->next;
6026
6027 if (verdefs == NULL && !info->create_default_symver)
6028 s->flags |= SEC_EXCLUDE;
6029 else
6030 {
6031 unsigned int cdefs;
6032 bfd_size_type size;
6033 struct bfd_elf_version_tree *t;
6034 bfd_byte *p;
6035 Elf_Internal_Verdef def;
6036 Elf_Internal_Verdaux defaux;
6037 struct bfd_link_hash_entry *bh;
6038 struct elf_link_hash_entry *h;
6039 const char *name;
6040
6041 cdefs = 0;
6042 size = 0;
6043
6044 /* Make space for the base version. */
6045 size += sizeof (Elf_External_Verdef);
6046 size += sizeof (Elf_External_Verdaux);
6047 ++cdefs;
6048
6049 /* Make space for the default version. */
6050 if (info->create_default_symver)
6051 {
6052 size += sizeof (Elf_External_Verdef);
6053 ++cdefs;
6054 }
6055
6056 for (t = verdefs; t != NULL; t = t->next)
6057 {
6058 struct bfd_elf_version_deps *n;
6059
6060 /* Don't emit base version twice. */
6061 if (t->vernum == 0)
6062 continue;
6063
6064 size += sizeof (Elf_External_Verdef);
6065 size += sizeof (Elf_External_Verdaux);
6066 ++cdefs;
6067
6068 for (n = t->deps; n != NULL; n = n->next)
6069 size += sizeof (Elf_External_Verdaux);
6070 }
6071
6072 s->size = size;
6073 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6074 if (s->contents == NULL && s->size != 0)
6075 return FALSE;
6076
6077 /* Fill in the version definition section. */
6078
6079 p = s->contents;
6080
6081 def.vd_version = VER_DEF_CURRENT;
6082 def.vd_flags = VER_FLG_BASE;
6083 def.vd_ndx = 1;
6084 def.vd_cnt = 1;
6085 if (info->create_default_symver)
6086 {
6087 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6088 def.vd_next = sizeof (Elf_External_Verdef);
6089 }
6090 else
6091 {
6092 def.vd_aux = sizeof (Elf_External_Verdef);
6093 def.vd_next = (sizeof (Elf_External_Verdef)
6094 + sizeof (Elf_External_Verdaux));
6095 }
6096
6097 if (soname_indx != (bfd_size_type) -1)
6098 {
6099 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6100 soname_indx);
6101 def.vd_hash = bfd_elf_hash (soname);
6102 defaux.vda_name = soname_indx;
6103 name = soname;
6104 }
6105 else
6106 {
6107 bfd_size_type indx;
6108
6109 name = lbasename (output_bfd->filename);
6110 def.vd_hash = bfd_elf_hash (name);
6111 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6112 name, FALSE);
6113 if (indx == (bfd_size_type) -1)
6114 return FALSE;
6115 defaux.vda_name = indx;
6116 }
6117 defaux.vda_next = 0;
6118
6119 _bfd_elf_swap_verdef_out (output_bfd, &def,
6120 (Elf_External_Verdef *) p);
6121 p += sizeof (Elf_External_Verdef);
6122 if (info->create_default_symver)
6123 {
6124 /* Add a symbol representing this version. */
6125 bh = NULL;
6126 if (! (_bfd_generic_link_add_one_symbol
6127 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6128 0, NULL, FALSE,
6129 get_elf_backend_data (dynobj)->collect, &bh)))
6130 return FALSE;
6131 h = (struct elf_link_hash_entry *) bh;
6132 h->non_elf = 0;
6133 h->def_regular = 1;
6134 h->type = STT_OBJECT;
6135 h->verinfo.vertree = NULL;
6136
6137 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6138 return FALSE;
6139
6140 /* Create a duplicate of the base version with the same
6141 aux block, but different flags. */
6142 def.vd_flags = 0;
6143 def.vd_ndx = 2;
6144 def.vd_aux = sizeof (Elf_External_Verdef);
6145 if (verdefs)
6146 def.vd_next = (sizeof (Elf_External_Verdef)
6147 + sizeof (Elf_External_Verdaux));
6148 else
6149 def.vd_next = 0;
6150 _bfd_elf_swap_verdef_out (output_bfd, &def,
6151 (Elf_External_Verdef *) p);
6152 p += sizeof (Elf_External_Verdef);
6153 }
6154 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6155 (Elf_External_Verdaux *) p);
6156 p += sizeof (Elf_External_Verdaux);
6157
6158 for (t = verdefs; t != NULL; t = t->next)
6159 {
6160 unsigned int cdeps;
6161 struct bfd_elf_version_deps *n;
6162
6163 /* Don't emit the base version twice. */
6164 if (t->vernum == 0)
6165 continue;
6166
6167 cdeps = 0;
6168 for (n = t->deps; n != NULL; n = n->next)
6169 ++cdeps;
6170
6171 /* Add a symbol representing this version. */
6172 bh = NULL;
6173 if (! (_bfd_generic_link_add_one_symbol
6174 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6175 0, NULL, FALSE,
6176 get_elf_backend_data (dynobj)->collect, &bh)))
6177 return FALSE;
6178 h = (struct elf_link_hash_entry *) bh;
6179 h->non_elf = 0;
6180 h->def_regular = 1;
6181 h->type = STT_OBJECT;
6182 h->verinfo.vertree = t;
6183
6184 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6185 return FALSE;
6186
6187 def.vd_version = VER_DEF_CURRENT;
6188 def.vd_flags = 0;
6189 if (t->globals.list == NULL
6190 && t->locals.list == NULL
6191 && ! t->used)
6192 def.vd_flags |= VER_FLG_WEAK;
6193 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6194 def.vd_cnt = cdeps + 1;
6195 def.vd_hash = bfd_elf_hash (t->name);
6196 def.vd_aux = sizeof (Elf_External_Verdef);
6197 def.vd_next = 0;
6198
6199 /* If a basever node is next, it *must* be the last node in
6200 the chain, otherwise Verdef construction breaks. */
6201 if (t->next != NULL && t->next->vernum == 0)
6202 BFD_ASSERT (t->next->next == NULL);
6203
6204 if (t->next != NULL && t->next->vernum != 0)
6205 def.vd_next = (sizeof (Elf_External_Verdef)
6206 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6207
6208 _bfd_elf_swap_verdef_out (output_bfd, &def,
6209 (Elf_External_Verdef *) p);
6210 p += sizeof (Elf_External_Verdef);
6211
6212 defaux.vda_name = h->dynstr_index;
6213 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6214 h->dynstr_index);
6215 defaux.vda_next = 0;
6216 if (t->deps != NULL)
6217 defaux.vda_next = sizeof (Elf_External_Verdaux);
6218 t->name_indx = defaux.vda_name;
6219
6220 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6221 (Elf_External_Verdaux *) p);
6222 p += sizeof (Elf_External_Verdaux);
6223
6224 for (n = t->deps; n != NULL; n = n->next)
6225 {
6226 if (n->version_needed == NULL)
6227 {
6228 /* This can happen if there was an error in the
6229 version script. */
6230 defaux.vda_name = 0;
6231 }
6232 else
6233 {
6234 defaux.vda_name = n->version_needed->name_indx;
6235 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6236 defaux.vda_name);
6237 }
6238 if (n->next == NULL)
6239 defaux.vda_next = 0;
6240 else
6241 defaux.vda_next = sizeof (Elf_External_Verdaux);
6242
6243 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6244 (Elf_External_Verdaux *) p);
6245 p += sizeof (Elf_External_Verdaux);
6246 }
6247 }
6248
6249 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6250 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6251 return FALSE;
6252
6253 elf_tdata (output_bfd)->cverdefs = cdefs;
6254 }
6255
6256 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6257 {
6258 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6259 return FALSE;
6260 }
6261 else if (info->flags & DF_BIND_NOW)
6262 {
6263 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6264 return FALSE;
6265 }
6266
6267 if (info->flags_1)
6268 {
6269 if (info->executable)
6270 info->flags_1 &= ~ (DF_1_INITFIRST
6271 | DF_1_NODELETE
6272 | DF_1_NOOPEN);
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6274 return FALSE;
6275 }
6276
6277 /* Work out the size of the version reference section. */
6278
6279 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6280 BFD_ASSERT (s != NULL);
6281 {
6282 struct elf_find_verdep_info sinfo;
6283
6284 sinfo.info = info;
6285 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6286 if (sinfo.vers == 0)
6287 sinfo.vers = 1;
6288 sinfo.failed = FALSE;
6289
6290 elf_link_hash_traverse (elf_hash_table (info),
6291 _bfd_elf_link_find_version_dependencies,
6292 &sinfo);
6293 if (sinfo.failed)
6294 return FALSE;
6295
6296 if (elf_tdata (output_bfd)->verref == NULL)
6297 s->flags |= SEC_EXCLUDE;
6298 else
6299 {
6300 Elf_Internal_Verneed *t;
6301 unsigned int size;
6302 unsigned int crefs;
6303 bfd_byte *p;
6304
6305 /* Build the version dependency section. */
6306 size = 0;
6307 crefs = 0;
6308 for (t = elf_tdata (output_bfd)->verref;
6309 t != NULL;
6310 t = t->vn_nextref)
6311 {
6312 Elf_Internal_Vernaux *a;
6313
6314 size += sizeof (Elf_External_Verneed);
6315 ++crefs;
6316 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6317 size += sizeof (Elf_External_Vernaux);
6318 }
6319
6320 s->size = size;
6321 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6322 if (s->contents == NULL)
6323 return FALSE;
6324
6325 p = s->contents;
6326 for (t = elf_tdata (output_bfd)->verref;
6327 t != NULL;
6328 t = t->vn_nextref)
6329 {
6330 unsigned int caux;
6331 Elf_Internal_Vernaux *a;
6332 bfd_size_type indx;
6333
6334 caux = 0;
6335 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6336 ++caux;
6337
6338 t->vn_version = VER_NEED_CURRENT;
6339 t->vn_cnt = caux;
6340 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6341 elf_dt_name (t->vn_bfd) != NULL
6342 ? elf_dt_name (t->vn_bfd)
6343 : lbasename (t->vn_bfd->filename),
6344 FALSE);
6345 if (indx == (bfd_size_type) -1)
6346 return FALSE;
6347 t->vn_file = indx;
6348 t->vn_aux = sizeof (Elf_External_Verneed);
6349 if (t->vn_nextref == NULL)
6350 t->vn_next = 0;
6351 else
6352 t->vn_next = (sizeof (Elf_External_Verneed)
6353 + caux * sizeof (Elf_External_Vernaux));
6354
6355 _bfd_elf_swap_verneed_out (output_bfd, t,
6356 (Elf_External_Verneed *) p);
6357 p += sizeof (Elf_External_Verneed);
6358
6359 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6360 {
6361 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6362 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6363 a->vna_nodename, FALSE);
6364 if (indx == (bfd_size_type) -1)
6365 return FALSE;
6366 a->vna_name = indx;
6367 if (a->vna_nextptr == NULL)
6368 a->vna_next = 0;
6369 else
6370 a->vna_next = sizeof (Elf_External_Vernaux);
6371
6372 _bfd_elf_swap_vernaux_out (output_bfd, a,
6373 (Elf_External_Vernaux *) p);
6374 p += sizeof (Elf_External_Vernaux);
6375 }
6376 }
6377
6378 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6379 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6380 return FALSE;
6381
6382 elf_tdata (output_bfd)->cverrefs = crefs;
6383 }
6384 }
6385
6386 if ((elf_tdata (output_bfd)->cverrefs == 0
6387 && elf_tdata (output_bfd)->cverdefs == 0)
6388 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6389 &section_sym_count) == 0)
6390 {
6391 s = bfd_get_linker_section (dynobj, ".gnu.version");
6392 s->flags |= SEC_EXCLUDE;
6393 }
6394 }
6395 return TRUE;
6396 }
6397
6398 /* Find the first non-excluded output section. We'll use its
6399 section symbol for some emitted relocs. */
6400 void
6401 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6402 {
6403 asection *s;
6404
6405 for (s = output_bfd->sections; s != NULL; s = s->next)
6406 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6407 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6408 {
6409 elf_hash_table (info)->text_index_section = s;
6410 break;
6411 }
6412 }
6413
6414 /* Find two non-excluded output sections, one for code, one for data.
6415 We'll use their section symbols for some emitted relocs. */
6416 void
6417 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6418 {
6419 asection *s;
6420
6421 /* Data first, since setting text_index_section changes
6422 _bfd_elf_link_omit_section_dynsym. */
6423 for (s = output_bfd->sections; s != NULL; s = s->next)
6424 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6425 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6426 {
6427 elf_hash_table (info)->data_index_section = s;
6428 break;
6429 }
6430
6431 for (s = output_bfd->sections; s != NULL; s = s->next)
6432 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6433 == (SEC_ALLOC | SEC_READONLY))
6434 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6435 {
6436 elf_hash_table (info)->text_index_section = s;
6437 break;
6438 }
6439
6440 if (elf_hash_table (info)->text_index_section == NULL)
6441 elf_hash_table (info)->text_index_section
6442 = elf_hash_table (info)->data_index_section;
6443 }
6444
6445 bfd_boolean
6446 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6447 {
6448 const struct elf_backend_data *bed;
6449
6450 if (!is_elf_hash_table (info->hash))
6451 return TRUE;
6452
6453 bed = get_elf_backend_data (output_bfd);
6454 (*bed->elf_backend_init_index_section) (output_bfd, info);
6455
6456 if (elf_hash_table (info)->dynamic_sections_created)
6457 {
6458 bfd *dynobj;
6459 asection *s;
6460 bfd_size_type dynsymcount;
6461 unsigned long section_sym_count;
6462 unsigned int dtagcount;
6463
6464 dynobj = elf_hash_table (info)->dynobj;
6465
6466 /* Assign dynsym indicies. In a shared library we generate a
6467 section symbol for each output section, which come first.
6468 Next come all of the back-end allocated local dynamic syms,
6469 followed by the rest of the global symbols. */
6470
6471 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6472 &section_sym_count);
6473
6474 /* Work out the size of the symbol version section. */
6475 s = bfd_get_linker_section (dynobj, ".gnu.version");
6476 BFD_ASSERT (s != NULL);
6477 if (dynsymcount != 0
6478 && (s->flags & SEC_EXCLUDE) == 0)
6479 {
6480 s->size = dynsymcount * sizeof (Elf_External_Versym);
6481 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6482 if (s->contents == NULL)
6483 return FALSE;
6484
6485 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6486 return FALSE;
6487 }
6488
6489 /* Set the size of the .dynsym and .hash sections. We counted
6490 the number of dynamic symbols in elf_link_add_object_symbols.
6491 We will build the contents of .dynsym and .hash when we build
6492 the final symbol table, because until then we do not know the
6493 correct value to give the symbols. We built the .dynstr
6494 section as we went along in elf_link_add_object_symbols. */
6495 s = bfd_get_linker_section (dynobj, ".dynsym");
6496 BFD_ASSERT (s != NULL);
6497 s->size = dynsymcount * bed->s->sizeof_sym;
6498
6499 if (dynsymcount != 0)
6500 {
6501 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6502 if (s->contents == NULL)
6503 return FALSE;
6504
6505 /* The first entry in .dynsym is a dummy symbol.
6506 Clear all the section syms, in case we don't output them all. */
6507 ++section_sym_count;
6508 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6509 }
6510
6511 elf_hash_table (info)->bucketcount = 0;
6512
6513 /* Compute the size of the hashing table. As a side effect this
6514 computes the hash values for all the names we export. */
6515 if (info->emit_hash)
6516 {
6517 unsigned long int *hashcodes;
6518 struct hash_codes_info hashinf;
6519 bfd_size_type amt;
6520 unsigned long int nsyms;
6521 size_t bucketcount;
6522 size_t hash_entry_size;
6523
6524 /* Compute the hash values for all exported symbols. At the same
6525 time store the values in an array so that we could use them for
6526 optimizations. */
6527 amt = dynsymcount * sizeof (unsigned long int);
6528 hashcodes = (unsigned long int *) bfd_malloc (amt);
6529 if (hashcodes == NULL)
6530 return FALSE;
6531 hashinf.hashcodes = hashcodes;
6532 hashinf.error = FALSE;
6533
6534 /* Put all hash values in HASHCODES. */
6535 elf_link_hash_traverse (elf_hash_table (info),
6536 elf_collect_hash_codes, &hashinf);
6537 if (hashinf.error)
6538 {
6539 free (hashcodes);
6540 return FALSE;
6541 }
6542
6543 nsyms = hashinf.hashcodes - hashcodes;
6544 bucketcount
6545 = compute_bucket_count (info, hashcodes, nsyms, 0);
6546 free (hashcodes);
6547
6548 if (bucketcount == 0)
6549 return FALSE;
6550
6551 elf_hash_table (info)->bucketcount = bucketcount;
6552
6553 s = bfd_get_linker_section (dynobj, ".hash");
6554 BFD_ASSERT (s != NULL);
6555 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6556 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6557 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6558 if (s->contents == NULL)
6559 return FALSE;
6560
6561 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6562 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6563 s->contents + hash_entry_size);
6564 }
6565
6566 if (info->emit_gnu_hash)
6567 {
6568 size_t i, cnt;
6569 unsigned char *contents;
6570 struct collect_gnu_hash_codes cinfo;
6571 bfd_size_type amt;
6572 size_t bucketcount;
6573
6574 memset (&cinfo, 0, sizeof (cinfo));
6575
6576 /* Compute the hash values for all exported symbols. At the same
6577 time store the values in an array so that we could use them for
6578 optimizations. */
6579 amt = dynsymcount * 2 * sizeof (unsigned long int);
6580 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6581 if (cinfo.hashcodes == NULL)
6582 return FALSE;
6583
6584 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6585 cinfo.min_dynindx = -1;
6586 cinfo.output_bfd = output_bfd;
6587 cinfo.bed = bed;
6588
6589 /* Put all hash values in HASHCODES. */
6590 elf_link_hash_traverse (elf_hash_table (info),
6591 elf_collect_gnu_hash_codes, &cinfo);
6592 if (cinfo.error)
6593 {
6594 free (cinfo.hashcodes);
6595 return FALSE;
6596 }
6597
6598 bucketcount
6599 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6600
6601 if (bucketcount == 0)
6602 {
6603 free (cinfo.hashcodes);
6604 return FALSE;
6605 }
6606
6607 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6608 BFD_ASSERT (s != NULL);
6609
6610 if (cinfo.nsyms == 0)
6611 {
6612 /* Empty .gnu.hash section is special. */
6613 BFD_ASSERT (cinfo.min_dynindx == -1);
6614 free (cinfo.hashcodes);
6615 s->size = 5 * 4 + bed->s->arch_size / 8;
6616 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6617 if (contents == NULL)
6618 return FALSE;
6619 s->contents = contents;
6620 /* 1 empty bucket. */
6621 bfd_put_32 (output_bfd, 1, contents);
6622 /* SYMIDX above the special symbol 0. */
6623 bfd_put_32 (output_bfd, 1, contents + 4);
6624 /* Just one word for bitmask. */
6625 bfd_put_32 (output_bfd, 1, contents + 8);
6626 /* Only hash fn bloom filter. */
6627 bfd_put_32 (output_bfd, 0, contents + 12);
6628 /* No hashes are valid - empty bitmask. */
6629 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6630 /* No hashes in the only bucket. */
6631 bfd_put_32 (output_bfd, 0,
6632 contents + 16 + bed->s->arch_size / 8);
6633 }
6634 else
6635 {
6636 unsigned long int maskwords, maskbitslog2, x;
6637 BFD_ASSERT (cinfo.min_dynindx != -1);
6638
6639 x = cinfo.nsyms;
6640 maskbitslog2 = 1;
6641 while ((x >>= 1) != 0)
6642 ++maskbitslog2;
6643 if (maskbitslog2 < 3)
6644 maskbitslog2 = 5;
6645 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6646 maskbitslog2 = maskbitslog2 + 3;
6647 else
6648 maskbitslog2 = maskbitslog2 + 2;
6649 if (bed->s->arch_size == 64)
6650 {
6651 if (maskbitslog2 == 5)
6652 maskbitslog2 = 6;
6653 cinfo.shift1 = 6;
6654 }
6655 else
6656 cinfo.shift1 = 5;
6657 cinfo.mask = (1 << cinfo.shift1) - 1;
6658 cinfo.shift2 = maskbitslog2;
6659 cinfo.maskbits = 1 << maskbitslog2;
6660 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6661 amt = bucketcount * sizeof (unsigned long int) * 2;
6662 amt += maskwords * sizeof (bfd_vma);
6663 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6664 if (cinfo.bitmask == NULL)
6665 {
6666 free (cinfo.hashcodes);
6667 return FALSE;
6668 }
6669
6670 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6671 cinfo.indx = cinfo.counts + bucketcount;
6672 cinfo.symindx = dynsymcount - cinfo.nsyms;
6673 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6674
6675 /* Determine how often each hash bucket is used. */
6676 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6677 for (i = 0; i < cinfo.nsyms; ++i)
6678 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6679
6680 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6681 if (cinfo.counts[i] != 0)
6682 {
6683 cinfo.indx[i] = cnt;
6684 cnt += cinfo.counts[i];
6685 }
6686 BFD_ASSERT (cnt == dynsymcount);
6687 cinfo.bucketcount = bucketcount;
6688 cinfo.local_indx = cinfo.min_dynindx;
6689
6690 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6691 s->size += cinfo.maskbits / 8;
6692 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6693 if (contents == NULL)
6694 {
6695 free (cinfo.bitmask);
6696 free (cinfo.hashcodes);
6697 return FALSE;
6698 }
6699
6700 s->contents = contents;
6701 bfd_put_32 (output_bfd, bucketcount, contents);
6702 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6703 bfd_put_32 (output_bfd, maskwords, contents + 8);
6704 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6705 contents += 16 + cinfo.maskbits / 8;
6706
6707 for (i = 0; i < bucketcount; ++i)
6708 {
6709 if (cinfo.counts[i] == 0)
6710 bfd_put_32 (output_bfd, 0, contents);
6711 else
6712 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6713 contents += 4;
6714 }
6715
6716 cinfo.contents = contents;
6717
6718 /* Renumber dynamic symbols, populate .gnu.hash section. */
6719 elf_link_hash_traverse (elf_hash_table (info),
6720 elf_renumber_gnu_hash_syms, &cinfo);
6721
6722 contents = s->contents + 16;
6723 for (i = 0; i < maskwords; ++i)
6724 {
6725 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6726 contents);
6727 contents += bed->s->arch_size / 8;
6728 }
6729
6730 free (cinfo.bitmask);
6731 free (cinfo.hashcodes);
6732 }
6733 }
6734
6735 s = bfd_get_linker_section (dynobj, ".dynstr");
6736 BFD_ASSERT (s != NULL);
6737
6738 elf_finalize_dynstr (output_bfd, info);
6739
6740 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6741
6742 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6743 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6744 return FALSE;
6745 }
6746
6747 return TRUE;
6748 }
6749 \f
6750 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6751
6752 static void
6753 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6754 asection *sec)
6755 {
6756 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6757 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6758 }
6759
6760 /* Finish SHF_MERGE section merging. */
6761
6762 bfd_boolean
6763 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6764 {
6765 bfd *ibfd;
6766 asection *sec;
6767
6768 if (!is_elf_hash_table (info->hash))
6769 return FALSE;
6770
6771 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6772 if ((ibfd->flags & DYNAMIC) == 0)
6773 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6774 if ((sec->flags & SEC_MERGE) != 0
6775 && !bfd_is_abs_section (sec->output_section))
6776 {
6777 struct bfd_elf_section_data *secdata;
6778
6779 secdata = elf_section_data (sec);
6780 if (! _bfd_add_merge_section (abfd,
6781 &elf_hash_table (info)->merge_info,
6782 sec, &secdata->sec_info))
6783 return FALSE;
6784 else if (secdata->sec_info)
6785 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6786 }
6787
6788 if (elf_hash_table (info)->merge_info != NULL)
6789 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6790 merge_sections_remove_hook);
6791 return TRUE;
6792 }
6793
6794 /* Create an entry in an ELF linker hash table. */
6795
6796 struct bfd_hash_entry *
6797 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6798 struct bfd_hash_table *table,
6799 const char *string)
6800 {
6801 /* Allocate the structure if it has not already been allocated by a
6802 subclass. */
6803 if (entry == NULL)
6804 {
6805 entry = (struct bfd_hash_entry *)
6806 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6807 if (entry == NULL)
6808 return entry;
6809 }
6810
6811 /* Call the allocation method of the superclass. */
6812 entry = _bfd_link_hash_newfunc (entry, table, string);
6813 if (entry != NULL)
6814 {
6815 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6816 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6817
6818 /* Set local fields. */
6819 ret->indx = -1;
6820 ret->dynindx = -1;
6821 ret->got = htab->init_got_refcount;
6822 ret->plt = htab->init_plt_refcount;
6823 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6824 - offsetof (struct elf_link_hash_entry, size)));
6825 /* Assume that we have been called by a non-ELF symbol reader.
6826 This flag is then reset by the code which reads an ELF input
6827 file. This ensures that a symbol created by a non-ELF symbol
6828 reader will have the flag set correctly. */
6829 ret->non_elf = 1;
6830 }
6831
6832 return entry;
6833 }
6834
6835 /* Copy data from an indirect symbol to its direct symbol, hiding the
6836 old indirect symbol. Also used for copying flags to a weakdef. */
6837
6838 void
6839 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6840 struct elf_link_hash_entry *dir,
6841 struct elf_link_hash_entry *ind)
6842 {
6843 struct elf_link_hash_table *htab;
6844
6845 /* Copy down any references that we may have already seen to the
6846 symbol which just became indirect. */
6847
6848 dir->ref_dynamic |= ind->ref_dynamic;
6849 dir->ref_regular |= ind->ref_regular;
6850 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6851 dir->non_got_ref |= ind->non_got_ref;
6852 dir->needs_plt |= ind->needs_plt;
6853 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6854
6855 if (ind->root.type != bfd_link_hash_indirect)
6856 return;
6857
6858 /* Copy over the global and procedure linkage table refcount entries.
6859 These may have been already set up by a check_relocs routine. */
6860 htab = elf_hash_table (info);
6861 if (ind->got.refcount > htab->init_got_refcount.refcount)
6862 {
6863 if (dir->got.refcount < 0)
6864 dir->got.refcount = 0;
6865 dir->got.refcount += ind->got.refcount;
6866 ind->got.refcount = htab->init_got_refcount.refcount;
6867 }
6868
6869 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6870 {
6871 if (dir->plt.refcount < 0)
6872 dir->plt.refcount = 0;
6873 dir->plt.refcount += ind->plt.refcount;
6874 ind->plt.refcount = htab->init_plt_refcount.refcount;
6875 }
6876
6877 if (ind->dynindx != -1)
6878 {
6879 if (dir->dynindx != -1)
6880 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6881 dir->dynindx = ind->dynindx;
6882 dir->dynstr_index = ind->dynstr_index;
6883 ind->dynindx = -1;
6884 ind->dynstr_index = 0;
6885 }
6886 }
6887
6888 void
6889 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6890 struct elf_link_hash_entry *h,
6891 bfd_boolean force_local)
6892 {
6893 /* STT_GNU_IFUNC symbol must go through PLT. */
6894 if (h->type != STT_GNU_IFUNC)
6895 {
6896 h->plt = elf_hash_table (info)->init_plt_offset;
6897 h->needs_plt = 0;
6898 }
6899 if (force_local)
6900 {
6901 h->forced_local = 1;
6902 if (h->dynindx != -1)
6903 {
6904 h->dynindx = -1;
6905 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6906 h->dynstr_index);
6907 }
6908 }
6909 }
6910
6911 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6912 caller. */
6913
6914 bfd_boolean
6915 _bfd_elf_link_hash_table_init
6916 (struct elf_link_hash_table *table,
6917 bfd *abfd,
6918 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6919 struct bfd_hash_table *,
6920 const char *),
6921 unsigned int entsize,
6922 enum elf_target_id target_id)
6923 {
6924 bfd_boolean ret;
6925 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6926
6927 table->init_got_refcount.refcount = can_refcount - 1;
6928 table->init_plt_refcount.refcount = can_refcount - 1;
6929 table->init_got_offset.offset = -(bfd_vma) 1;
6930 table->init_plt_offset.offset = -(bfd_vma) 1;
6931 /* The first dynamic symbol is a dummy. */
6932 table->dynsymcount = 1;
6933
6934 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6935
6936 table->root.type = bfd_link_elf_hash_table;
6937 table->hash_table_id = target_id;
6938
6939 return ret;
6940 }
6941
6942 /* Create an ELF linker hash table. */
6943
6944 struct bfd_link_hash_table *
6945 _bfd_elf_link_hash_table_create (bfd *abfd)
6946 {
6947 struct elf_link_hash_table *ret;
6948 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6949
6950 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6951 if (ret == NULL)
6952 return NULL;
6953
6954 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6955 sizeof (struct elf_link_hash_entry),
6956 GENERIC_ELF_DATA))
6957 {
6958 free (ret);
6959 return NULL;
6960 }
6961
6962 return &ret->root;
6963 }
6964
6965 /* Destroy an ELF linker hash table. */
6966
6967 void
6968 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6969 {
6970 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6971 if (htab->dynstr != NULL)
6972 _bfd_elf_strtab_free (htab->dynstr);
6973 _bfd_merge_sections_free (htab->merge_info);
6974 _bfd_generic_link_hash_table_free (hash);
6975 }
6976
6977 /* This is a hook for the ELF emulation code in the generic linker to
6978 tell the backend linker what file name to use for the DT_NEEDED
6979 entry for a dynamic object. */
6980
6981 void
6982 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6983 {
6984 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6985 && bfd_get_format (abfd) == bfd_object)
6986 elf_dt_name (abfd) = name;
6987 }
6988
6989 int
6990 bfd_elf_get_dyn_lib_class (bfd *abfd)
6991 {
6992 int lib_class;
6993 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6994 && bfd_get_format (abfd) == bfd_object)
6995 lib_class = elf_dyn_lib_class (abfd);
6996 else
6997 lib_class = 0;
6998 return lib_class;
6999 }
7000
7001 void
7002 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7003 {
7004 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7005 && bfd_get_format (abfd) == bfd_object)
7006 elf_dyn_lib_class (abfd) = lib_class;
7007 }
7008
7009 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7010 the linker ELF emulation code. */
7011
7012 struct bfd_link_needed_list *
7013 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7014 struct bfd_link_info *info)
7015 {
7016 if (! is_elf_hash_table (info->hash))
7017 return NULL;
7018 return elf_hash_table (info)->needed;
7019 }
7020
7021 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7022 hook for the linker ELF emulation code. */
7023
7024 struct bfd_link_needed_list *
7025 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7026 struct bfd_link_info *info)
7027 {
7028 if (! is_elf_hash_table (info->hash))
7029 return NULL;
7030 return elf_hash_table (info)->runpath;
7031 }
7032
7033 /* Get the name actually used for a dynamic object for a link. This
7034 is the SONAME entry if there is one. Otherwise, it is the string
7035 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7036
7037 const char *
7038 bfd_elf_get_dt_soname (bfd *abfd)
7039 {
7040 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7041 && bfd_get_format (abfd) == bfd_object)
7042 return elf_dt_name (abfd);
7043 return NULL;
7044 }
7045
7046 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7047 the ELF linker emulation code. */
7048
7049 bfd_boolean
7050 bfd_elf_get_bfd_needed_list (bfd *abfd,
7051 struct bfd_link_needed_list **pneeded)
7052 {
7053 asection *s;
7054 bfd_byte *dynbuf = NULL;
7055 unsigned int elfsec;
7056 unsigned long shlink;
7057 bfd_byte *extdyn, *extdynend;
7058 size_t extdynsize;
7059 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7060
7061 *pneeded = NULL;
7062
7063 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7064 || bfd_get_format (abfd) != bfd_object)
7065 return TRUE;
7066
7067 s = bfd_get_section_by_name (abfd, ".dynamic");
7068 if (s == NULL || s->size == 0)
7069 return TRUE;
7070
7071 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7072 goto error_return;
7073
7074 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7075 if (elfsec == SHN_BAD)
7076 goto error_return;
7077
7078 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7079
7080 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7081 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7082
7083 extdyn = dynbuf;
7084 extdynend = extdyn + s->size;
7085 for (; extdyn < extdynend; extdyn += extdynsize)
7086 {
7087 Elf_Internal_Dyn dyn;
7088
7089 (*swap_dyn_in) (abfd, extdyn, &dyn);
7090
7091 if (dyn.d_tag == DT_NULL)
7092 break;
7093
7094 if (dyn.d_tag == DT_NEEDED)
7095 {
7096 const char *string;
7097 struct bfd_link_needed_list *l;
7098 unsigned int tagv = dyn.d_un.d_val;
7099 bfd_size_type amt;
7100
7101 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7102 if (string == NULL)
7103 goto error_return;
7104
7105 amt = sizeof *l;
7106 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7107 if (l == NULL)
7108 goto error_return;
7109
7110 l->by = abfd;
7111 l->name = string;
7112 l->next = *pneeded;
7113 *pneeded = l;
7114 }
7115 }
7116
7117 free (dynbuf);
7118
7119 return TRUE;
7120
7121 error_return:
7122 if (dynbuf != NULL)
7123 free (dynbuf);
7124 return FALSE;
7125 }
7126
7127 struct elf_symbuf_symbol
7128 {
7129 unsigned long st_name; /* Symbol name, index in string tbl */
7130 unsigned char st_info; /* Type and binding attributes */
7131 unsigned char st_other; /* Visibilty, and target specific */
7132 };
7133
7134 struct elf_symbuf_head
7135 {
7136 struct elf_symbuf_symbol *ssym;
7137 bfd_size_type count;
7138 unsigned int st_shndx;
7139 };
7140
7141 struct elf_symbol
7142 {
7143 union
7144 {
7145 Elf_Internal_Sym *isym;
7146 struct elf_symbuf_symbol *ssym;
7147 } u;
7148 const char *name;
7149 };
7150
7151 /* Sort references to symbols by ascending section number. */
7152
7153 static int
7154 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7155 {
7156 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7157 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7158
7159 return s1->st_shndx - s2->st_shndx;
7160 }
7161
7162 static int
7163 elf_sym_name_compare (const void *arg1, const void *arg2)
7164 {
7165 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7166 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7167 return strcmp (s1->name, s2->name);
7168 }
7169
7170 static struct elf_symbuf_head *
7171 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7172 {
7173 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7174 struct elf_symbuf_symbol *ssym;
7175 struct elf_symbuf_head *ssymbuf, *ssymhead;
7176 bfd_size_type i, shndx_count, total_size;
7177
7178 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7179 if (indbuf == NULL)
7180 return NULL;
7181
7182 for (ind = indbuf, i = 0; i < symcount; i++)
7183 if (isymbuf[i].st_shndx != SHN_UNDEF)
7184 *ind++ = &isymbuf[i];
7185 indbufend = ind;
7186
7187 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7188 elf_sort_elf_symbol);
7189
7190 shndx_count = 0;
7191 if (indbufend > indbuf)
7192 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7193 if (ind[0]->st_shndx != ind[1]->st_shndx)
7194 shndx_count++;
7195
7196 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7197 + (indbufend - indbuf) * sizeof (*ssym));
7198 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7199 if (ssymbuf == NULL)
7200 {
7201 free (indbuf);
7202 return NULL;
7203 }
7204
7205 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7206 ssymbuf->ssym = NULL;
7207 ssymbuf->count = shndx_count;
7208 ssymbuf->st_shndx = 0;
7209 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7210 {
7211 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7212 {
7213 ssymhead++;
7214 ssymhead->ssym = ssym;
7215 ssymhead->count = 0;
7216 ssymhead->st_shndx = (*ind)->st_shndx;
7217 }
7218 ssym->st_name = (*ind)->st_name;
7219 ssym->st_info = (*ind)->st_info;
7220 ssym->st_other = (*ind)->st_other;
7221 ssymhead->count++;
7222 }
7223 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7224 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7225 == total_size));
7226
7227 free (indbuf);
7228 return ssymbuf;
7229 }
7230
7231 /* Check if 2 sections define the same set of local and global
7232 symbols. */
7233
7234 static bfd_boolean
7235 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7236 struct bfd_link_info *info)
7237 {
7238 bfd *bfd1, *bfd2;
7239 const struct elf_backend_data *bed1, *bed2;
7240 Elf_Internal_Shdr *hdr1, *hdr2;
7241 bfd_size_type symcount1, symcount2;
7242 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7243 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7244 Elf_Internal_Sym *isym, *isymend;
7245 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7246 bfd_size_type count1, count2, i;
7247 unsigned int shndx1, shndx2;
7248 bfd_boolean result;
7249
7250 bfd1 = sec1->owner;
7251 bfd2 = sec2->owner;
7252
7253 /* Both sections have to be in ELF. */
7254 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7255 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7256 return FALSE;
7257
7258 if (elf_section_type (sec1) != elf_section_type (sec2))
7259 return FALSE;
7260
7261 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7262 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7263 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7264 return FALSE;
7265
7266 bed1 = get_elf_backend_data (bfd1);
7267 bed2 = get_elf_backend_data (bfd2);
7268 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7269 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7270 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7271 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7272
7273 if (symcount1 == 0 || symcount2 == 0)
7274 return FALSE;
7275
7276 result = FALSE;
7277 isymbuf1 = NULL;
7278 isymbuf2 = NULL;
7279 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7280 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7281
7282 if (ssymbuf1 == NULL)
7283 {
7284 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7285 NULL, NULL, NULL);
7286 if (isymbuf1 == NULL)
7287 goto done;
7288
7289 if (!info->reduce_memory_overheads)
7290 elf_tdata (bfd1)->symbuf = ssymbuf1
7291 = elf_create_symbuf (symcount1, isymbuf1);
7292 }
7293
7294 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7295 {
7296 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7297 NULL, NULL, NULL);
7298 if (isymbuf2 == NULL)
7299 goto done;
7300
7301 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7302 elf_tdata (bfd2)->symbuf = ssymbuf2
7303 = elf_create_symbuf (symcount2, isymbuf2);
7304 }
7305
7306 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7307 {
7308 /* Optimized faster version. */
7309 bfd_size_type lo, hi, mid;
7310 struct elf_symbol *symp;
7311 struct elf_symbuf_symbol *ssym, *ssymend;
7312
7313 lo = 0;
7314 hi = ssymbuf1->count;
7315 ssymbuf1++;
7316 count1 = 0;
7317 while (lo < hi)
7318 {
7319 mid = (lo + hi) / 2;
7320 if (shndx1 < ssymbuf1[mid].st_shndx)
7321 hi = mid;
7322 else if (shndx1 > ssymbuf1[mid].st_shndx)
7323 lo = mid + 1;
7324 else
7325 {
7326 count1 = ssymbuf1[mid].count;
7327 ssymbuf1 += mid;
7328 break;
7329 }
7330 }
7331
7332 lo = 0;
7333 hi = ssymbuf2->count;
7334 ssymbuf2++;
7335 count2 = 0;
7336 while (lo < hi)
7337 {
7338 mid = (lo + hi) / 2;
7339 if (shndx2 < ssymbuf2[mid].st_shndx)
7340 hi = mid;
7341 else if (shndx2 > ssymbuf2[mid].st_shndx)
7342 lo = mid + 1;
7343 else
7344 {
7345 count2 = ssymbuf2[mid].count;
7346 ssymbuf2 += mid;
7347 break;
7348 }
7349 }
7350
7351 if (count1 == 0 || count2 == 0 || count1 != count2)
7352 goto done;
7353
7354 symtable1 = (struct elf_symbol *)
7355 bfd_malloc (count1 * sizeof (struct elf_symbol));
7356 symtable2 = (struct elf_symbol *)
7357 bfd_malloc (count2 * sizeof (struct elf_symbol));
7358 if (symtable1 == NULL || symtable2 == NULL)
7359 goto done;
7360
7361 symp = symtable1;
7362 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7363 ssym < ssymend; ssym++, symp++)
7364 {
7365 symp->u.ssym = ssym;
7366 symp->name = bfd_elf_string_from_elf_section (bfd1,
7367 hdr1->sh_link,
7368 ssym->st_name);
7369 }
7370
7371 symp = symtable2;
7372 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7373 ssym < ssymend; ssym++, symp++)
7374 {
7375 symp->u.ssym = ssym;
7376 symp->name = bfd_elf_string_from_elf_section (bfd2,
7377 hdr2->sh_link,
7378 ssym->st_name);
7379 }
7380
7381 /* Sort symbol by name. */
7382 qsort (symtable1, count1, sizeof (struct elf_symbol),
7383 elf_sym_name_compare);
7384 qsort (symtable2, count1, sizeof (struct elf_symbol),
7385 elf_sym_name_compare);
7386
7387 for (i = 0; i < count1; i++)
7388 /* Two symbols must have the same binding, type and name. */
7389 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7390 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7391 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7392 goto done;
7393
7394 result = TRUE;
7395 goto done;
7396 }
7397
7398 symtable1 = (struct elf_symbol *)
7399 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7400 symtable2 = (struct elf_symbol *)
7401 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7402 if (symtable1 == NULL || symtable2 == NULL)
7403 goto done;
7404
7405 /* Count definitions in the section. */
7406 count1 = 0;
7407 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7408 if (isym->st_shndx == shndx1)
7409 symtable1[count1++].u.isym = isym;
7410
7411 count2 = 0;
7412 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7413 if (isym->st_shndx == shndx2)
7414 symtable2[count2++].u.isym = isym;
7415
7416 if (count1 == 0 || count2 == 0 || count1 != count2)
7417 goto done;
7418
7419 for (i = 0; i < count1; i++)
7420 symtable1[i].name
7421 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7422 symtable1[i].u.isym->st_name);
7423
7424 for (i = 0; i < count2; i++)
7425 symtable2[i].name
7426 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7427 symtable2[i].u.isym->st_name);
7428
7429 /* Sort symbol by name. */
7430 qsort (symtable1, count1, sizeof (struct elf_symbol),
7431 elf_sym_name_compare);
7432 qsort (symtable2, count1, sizeof (struct elf_symbol),
7433 elf_sym_name_compare);
7434
7435 for (i = 0; i < count1; i++)
7436 /* Two symbols must have the same binding, type and name. */
7437 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7438 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7439 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7440 goto done;
7441
7442 result = TRUE;
7443
7444 done:
7445 if (symtable1)
7446 free (symtable1);
7447 if (symtable2)
7448 free (symtable2);
7449 if (isymbuf1)
7450 free (isymbuf1);
7451 if (isymbuf2)
7452 free (isymbuf2);
7453
7454 return result;
7455 }
7456
7457 /* Return TRUE if 2 section types are compatible. */
7458
7459 bfd_boolean
7460 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7461 bfd *bbfd, const asection *bsec)
7462 {
7463 if (asec == NULL
7464 || bsec == NULL
7465 || abfd->xvec->flavour != bfd_target_elf_flavour
7466 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7467 return TRUE;
7468
7469 return elf_section_type (asec) == elf_section_type (bsec);
7470 }
7471 \f
7472 /* Final phase of ELF linker. */
7473
7474 /* A structure we use to avoid passing large numbers of arguments. */
7475
7476 struct elf_final_link_info
7477 {
7478 /* General link information. */
7479 struct bfd_link_info *info;
7480 /* Output BFD. */
7481 bfd *output_bfd;
7482 /* Symbol string table. */
7483 struct bfd_strtab_hash *symstrtab;
7484 /* .dynsym section. */
7485 asection *dynsym_sec;
7486 /* .hash section. */
7487 asection *hash_sec;
7488 /* symbol version section (.gnu.version). */
7489 asection *symver_sec;
7490 /* Buffer large enough to hold contents of any section. */
7491 bfd_byte *contents;
7492 /* Buffer large enough to hold external relocs of any section. */
7493 void *external_relocs;
7494 /* Buffer large enough to hold internal relocs of any section. */
7495 Elf_Internal_Rela *internal_relocs;
7496 /* Buffer large enough to hold external local symbols of any input
7497 BFD. */
7498 bfd_byte *external_syms;
7499 /* And a buffer for symbol section indices. */
7500 Elf_External_Sym_Shndx *locsym_shndx;
7501 /* Buffer large enough to hold internal local symbols of any input
7502 BFD. */
7503 Elf_Internal_Sym *internal_syms;
7504 /* Array large enough to hold a symbol index for each local symbol
7505 of any input BFD. */
7506 long *indices;
7507 /* Array large enough to hold a section pointer for each local
7508 symbol of any input BFD. */
7509 asection **sections;
7510 /* Buffer to hold swapped out symbols. */
7511 bfd_byte *symbuf;
7512 /* And one for symbol section indices. */
7513 Elf_External_Sym_Shndx *symshndxbuf;
7514 /* Number of swapped out symbols in buffer. */
7515 size_t symbuf_count;
7516 /* Number of symbols which fit in symbuf. */
7517 size_t symbuf_size;
7518 /* And same for symshndxbuf. */
7519 size_t shndxbuf_size;
7520 /* Number of STT_FILE syms seen. */
7521 size_t filesym_count;
7522 };
7523
7524 /* This struct is used to pass information to elf_link_output_extsym. */
7525
7526 struct elf_outext_info
7527 {
7528 bfd_boolean failed;
7529 bfd_boolean localsyms;
7530 bfd_boolean need_second_pass;
7531 bfd_boolean second_pass;
7532 struct elf_final_link_info *flinfo;
7533 };
7534
7535
7536 /* Support for evaluating a complex relocation.
7537
7538 Complex relocations are generalized, self-describing relocations. The
7539 implementation of them consists of two parts: complex symbols, and the
7540 relocations themselves.
7541
7542 The relocations are use a reserved elf-wide relocation type code (R_RELC
7543 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7544 information (start bit, end bit, word width, etc) into the addend. This
7545 information is extracted from CGEN-generated operand tables within gas.
7546
7547 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7548 internal) representing prefix-notation expressions, including but not
7549 limited to those sorts of expressions normally encoded as addends in the
7550 addend field. The symbol mangling format is:
7551
7552 <node> := <literal>
7553 | <unary-operator> ':' <node>
7554 | <binary-operator> ':' <node> ':' <node>
7555 ;
7556
7557 <literal> := 's' <digits=N> ':' <N character symbol name>
7558 | 'S' <digits=N> ':' <N character section name>
7559 | '#' <hexdigits>
7560 ;
7561
7562 <binary-operator> := as in C
7563 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7564
7565 static void
7566 set_symbol_value (bfd *bfd_with_globals,
7567 Elf_Internal_Sym *isymbuf,
7568 size_t locsymcount,
7569 size_t symidx,
7570 bfd_vma val)
7571 {
7572 struct elf_link_hash_entry **sym_hashes;
7573 struct elf_link_hash_entry *h;
7574 size_t extsymoff = locsymcount;
7575
7576 if (symidx < locsymcount)
7577 {
7578 Elf_Internal_Sym *sym;
7579
7580 sym = isymbuf + symidx;
7581 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7582 {
7583 /* It is a local symbol: move it to the
7584 "absolute" section and give it a value. */
7585 sym->st_shndx = SHN_ABS;
7586 sym->st_value = val;
7587 return;
7588 }
7589 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7590 extsymoff = 0;
7591 }
7592
7593 /* It is a global symbol: set its link type
7594 to "defined" and give it a value. */
7595
7596 sym_hashes = elf_sym_hashes (bfd_with_globals);
7597 h = sym_hashes [symidx - extsymoff];
7598 while (h->root.type == bfd_link_hash_indirect
7599 || h->root.type == bfd_link_hash_warning)
7600 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7601 h->root.type = bfd_link_hash_defined;
7602 h->root.u.def.value = val;
7603 h->root.u.def.section = bfd_abs_section_ptr;
7604 }
7605
7606 static bfd_boolean
7607 resolve_symbol (const char *name,
7608 bfd *input_bfd,
7609 struct elf_final_link_info *flinfo,
7610 bfd_vma *result,
7611 Elf_Internal_Sym *isymbuf,
7612 size_t locsymcount)
7613 {
7614 Elf_Internal_Sym *sym;
7615 struct bfd_link_hash_entry *global_entry;
7616 const char *candidate = NULL;
7617 Elf_Internal_Shdr *symtab_hdr;
7618 size_t i;
7619
7620 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7621
7622 for (i = 0; i < locsymcount; ++ i)
7623 {
7624 sym = isymbuf + i;
7625
7626 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7627 continue;
7628
7629 candidate = bfd_elf_string_from_elf_section (input_bfd,
7630 symtab_hdr->sh_link,
7631 sym->st_name);
7632 #ifdef DEBUG
7633 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7634 name, candidate, (unsigned long) sym->st_value);
7635 #endif
7636 if (candidate && strcmp (candidate, name) == 0)
7637 {
7638 asection *sec = flinfo->sections [i];
7639
7640 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7641 *result += sec->output_offset + sec->output_section->vma;
7642 #ifdef DEBUG
7643 printf ("Found symbol with value %8.8lx\n",
7644 (unsigned long) *result);
7645 #endif
7646 return TRUE;
7647 }
7648 }
7649
7650 /* Hmm, haven't found it yet. perhaps it is a global. */
7651 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7652 FALSE, FALSE, TRUE);
7653 if (!global_entry)
7654 return FALSE;
7655
7656 if (global_entry->type == bfd_link_hash_defined
7657 || global_entry->type == bfd_link_hash_defweak)
7658 {
7659 *result = (global_entry->u.def.value
7660 + global_entry->u.def.section->output_section->vma
7661 + global_entry->u.def.section->output_offset);
7662 #ifdef DEBUG
7663 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7664 global_entry->root.string, (unsigned long) *result);
7665 #endif
7666 return TRUE;
7667 }
7668
7669 return FALSE;
7670 }
7671
7672 static bfd_boolean
7673 resolve_section (const char *name,
7674 asection *sections,
7675 bfd_vma *result)
7676 {
7677 asection *curr;
7678 unsigned int len;
7679
7680 for (curr = sections; curr; curr = curr->next)
7681 if (strcmp (curr->name, name) == 0)
7682 {
7683 *result = curr->vma;
7684 return TRUE;
7685 }
7686
7687 /* Hmm. still haven't found it. try pseudo-section names. */
7688 for (curr = sections; curr; curr = curr->next)
7689 {
7690 len = strlen (curr->name);
7691 if (len > strlen (name))
7692 continue;
7693
7694 if (strncmp (curr->name, name, len) == 0)
7695 {
7696 if (strncmp (".end", name + len, 4) == 0)
7697 {
7698 *result = curr->vma + curr->size;
7699 return TRUE;
7700 }
7701
7702 /* Insert more pseudo-section names here, if you like. */
7703 }
7704 }
7705
7706 return FALSE;
7707 }
7708
7709 static void
7710 undefined_reference (const char *reftype, const char *name)
7711 {
7712 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7713 reftype, name);
7714 }
7715
7716 static bfd_boolean
7717 eval_symbol (bfd_vma *result,
7718 const char **symp,
7719 bfd *input_bfd,
7720 struct elf_final_link_info *flinfo,
7721 bfd_vma dot,
7722 Elf_Internal_Sym *isymbuf,
7723 size_t locsymcount,
7724 int signed_p)
7725 {
7726 size_t len;
7727 size_t symlen;
7728 bfd_vma a;
7729 bfd_vma b;
7730 char symbuf[4096];
7731 const char *sym = *symp;
7732 const char *symend;
7733 bfd_boolean symbol_is_section = FALSE;
7734
7735 len = strlen (sym);
7736 symend = sym + len;
7737
7738 if (len < 1 || len > sizeof (symbuf))
7739 {
7740 bfd_set_error (bfd_error_invalid_operation);
7741 return FALSE;
7742 }
7743
7744 switch (* sym)
7745 {
7746 case '.':
7747 *result = dot;
7748 *symp = sym + 1;
7749 return TRUE;
7750
7751 case '#':
7752 ++sym;
7753 *result = strtoul (sym, (char **) symp, 16);
7754 return TRUE;
7755
7756 case 'S':
7757 symbol_is_section = TRUE;
7758 case 's':
7759 ++sym;
7760 symlen = strtol (sym, (char **) symp, 10);
7761 sym = *symp + 1; /* Skip the trailing ':'. */
7762
7763 if (symend < sym || symlen + 1 > sizeof (symbuf))
7764 {
7765 bfd_set_error (bfd_error_invalid_operation);
7766 return FALSE;
7767 }
7768
7769 memcpy (symbuf, sym, symlen);
7770 symbuf[symlen] = '\0';
7771 *symp = sym + symlen;
7772
7773 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7774 the symbol as a section, or vice-versa. so we're pretty liberal in our
7775 interpretation here; section means "try section first", not "must be a
7776 section", and likewise with symbol. */
7777
7778 if (symbol_is_section)
7779 {
7780 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7781 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7782 isymbuf, locsymcount))
7783 {
7784 undefined_reference ("section", symbuf);
7785 return FALSE;
7786 }
7787 }
7788 else
7789 {
7790 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7791 isymbuf, locsymcount)
7792 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7793 result))
7794 {
7795 undefined_reference ("symbol", symbuf);
7796 return FALSE;
7797 }
7798 }
7799
7800 return TRUE;
7801
7802 /* All that remains are operators. */
7803
7804 #define UNARY_OP(op) \
7805 if (strncmp (sym, #op, strlen (#op)) == 0) \
7806 { \
7807 sym += strlen (#op); \
7808 if (*sym == ':') \
7809 ++sym; \
7810 *symp = sym; \
7811 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7812 isymbuf, locsymcount, signed_p)) \
7813 return FALSE; \
7814 if (signed_p) \
7815 *result = op ((bfd_signed_vma) a); \
7816 else \
7817 *result = op a; \
7818 return TRUE; \
7819 }
7820
7821 #define BINARY_OP(op) \
7822 if (strncmp (sym, #op, strlen (#op)) == 0) \
7823 { \
7824 sym += strlen (#op); \
7825 if (*sym == ':') \
7826 ++sym; \
7827 *symp = sym; \
7828 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7829 isymbuf, locsymcount, signed_p)) \
7830 return FALSE; \
7831 ++*symp; \
7832 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7833 isymbuf, locsymcount, signed_p)) \
7834 return FALSE; \
7835 if (signed_p) \
7836 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7837 else \
7838 *result = a op b; \
7839 return TRUE; \
7840 }
7841
7842 default:
7843 UNARY_OP (0-);
7844 BINARY_OP (<<);
7845 BINARY_OP (>>);
7846 BINARY_OP (==);
7847 BINARY_OP (!=);
7848 BINARY_OP (<=);
7849 BINARY_OP (>=);
7850 BINARY_OP (&&);
7851 BINARY_OP (||);
7852 UNARY_OP (~);
7853 UNARY_OP (!);
7854 BINARY_OP (*);
7855 BINARY_OP (/);
7856 BINARY_OP (%);
7857 BINARY_OP (^);
7858 BINARY_OP (|);
7859 BINARY_OP (&);
7860 BINARY_OP (+);
7861 BINARY_OP (-);
7862 BINARY_OP (<);
7863 BINARY_OP (>);
7864 #undef UNARY_OP
7865 #undef BINARY_OP
7866 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7867 bfd_set_error (bfd_error_invalid_operation);
7868 return FALSE;
7869 }
7870 }
7871
7872 static void
7873 put_value (bfd_vma size,
7874 unsigned long chunksz,
7875 bfd *input_bfd,
7876 bfd_vma x,
7877 bfd_byte *location)
7878 {
7879 location += (size - chunksz);
7880
7881 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7882 {
7883 switch (chunksz)
7884 {
7885 default:
7886 case 0:
7887 abort ();
7888 case 1:
7889 bfd_put_8 (input_bfd, x, location);
7890 break;
7891 case 2:
7892 bfd_put_16 (input_bfd, x, location);
7893 break;
7894 case 4:
7895 bfd_put_32 (input_bfd, x, location);
7896 break;
7897 case 8:
7898 #ifdef BFD64
7899 bfd_put_64 (input_bfd, x, location);
7900 #else
7901 abort ();
7902 #endif
7903 break;
7904 }
7905 }
7906 }
7907
7908 static bfd_vma
7909 get_value (bfd_vma size,
7910 unsigned long chunksz,
7911 bfd *input_bfd,
7912 bfd_byte *location)
7913 {
7914 int shift;
7915 bfd_vma x = 0;
7916
7917 /* Sanity checks. */
7918 BFD_ASSERT (chunksz <= sizeof (x)
7919 && size >= chunksz
7920 && chunksz != 0
7921 && (size % chunksz) == 0
7922 && input_bfd != NULL
7923 && location != NULL);
7924
7925 if (chunksz == sizeof (x))
7926 {
7927 BFD_ASSERT (size == chunksz);
7928
7929 /* Make sure that we do not perform an undefined shift operation.
7930 We know that size == chunksz so there will only be one iteration
7931 of the loop below. */
7932 shift = 0;
7933 }
7934 else
7935 shift = 8 * chunksz;
7936
7937 for (; size; size -= chunksz, location += chunksz)
7938 {
7939 switch (chunksz)
7940 {
7941 case 1:
7942 x = (x << shift) | bfd_get_8 (input_bfd, location);
7943 break;
7944 case 2:
7945 x = (x << shift) | bfd_get_16 (input_bfd, location);
7946 break;
7947 case 4:
7948 x = (x << shift) | bfd_get_32 (input_bfd, location);
7949 break;
7950 #ifdef BFD64
7951 case 8:
7952 x = (x << shift) | bfd_get_64 (input_bfd, location);
7953 break;
7954 #endif
7955 default:
7956 abort ();
7957 }
7958 }
7959 return x;
7960 }
7961
7962 static void
7963 decode_complex_addend (unsigned long *start, /* in bits */
7964 unsigned long *oplen, /* in bits */
7965 unsigned long *len, /* in bits */
7966 unsigned long *wordsz, /* in bytes */
7967 unsigned long *chunksz, /* in bytes */
7968 unsigned long *lsb0_p,
7969 unsigned long *signed_p,
7970 unsigned long *trunc_p,
7971 unsigned long encoded)
7972 {
7973 * start = encoded & 0x3F;
7974 * len = (encoded >> 6) & 0x3F;
7975 * oplen = (encoded >> 12) & 0x3F;
7976 * wordsz = (encoded >> 18) & 0xF;
7977 * chunksz = (encoded >> 22) & 0xF;
7978 * lsb0_p = (encoded >> 27) & 1;
7979 * signed_p = (encoded >> 28) & 1;
7980 * trunc_p = (encoded >> 29) & 1;
7981 }
7982
7983 bfd_reloc_status_type
7984 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7985 asection *input_section ATTRIBUTE_UNUSED,
7986 bfd_byte *contents,
7987 Elf_Internal_Rela *rel,
7988 bfd_vma relocation)
7989 {
7990 bfd_vma shift, x, mask;
7991 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7992 bfd_reloc_status_type r;
7993
7994 /* Perform this reloc, since it is complex.
7995 (this is not to say that it necessarily refers to a complex
7996 symbol; merely that it is a self-describing CGEN based reloc.
7997 i.e. the addend has the complete reloc information (bit start, end,
7998 word size, etc) encoded within it.). */
7999
8000 decode_complex_addend (&start, &oplen, &len, &wordsz,
8001 &chunksz, &lsb0_p, &signed_p,
8002 &trunc_p, rel->r_addend);
8003
8004 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8005
8006 if (lsb0_p)
8007 shift = (start + 1) - len;
8008 else
8009 shift = (8 * wordsz) - (start + len);
8010
8011 /* FIXME: octets_per_byte. */
8012 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8013
8014 #ifdef DEBUG
8015 printf ("Doing complex reloc: "
8016 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8017 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8018 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8019 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8020 oplen, (unsigned long) x, (unsigned long) mask,
8021 (unsigned long) relocation);
8022 #endif
8023
8024 r = bfd_reloc_ok;
8025 if (! trunc_p)
8026 /* Now do an overflow check. */
8027 r = bfd_check_overflow ((signed_p
8028 ? complain_overflow_signed
8029 : complain_overflow_unsigned),
8030 len, 0, (8 * wordsz),
8031 relocation);
8032
8033 /* Do the deed. */
8034 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8035
8036 #ifdef DEBUG
8037 printf (" relocation: %8.8lx\n"
8038 " shifted mask: %8.8lx\n"
8039 " shifted/masked reloc: %8.8lx\n"
8040 " result: %8.8lx\n",
8041 (unsigned long) relocation, (unsigned long) (mask << shift),
8042 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8043 #endif
8044 /* FIXME: octets_per_byte. */
8045 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8046 return r;
8047 }
8048
8049 /* When performing a relocatable link, the input relocations are
8050 preserved. But, if they reference global symbols, the indices
8051 referenced must be updated. Update all the relocations found in
8052 RELDATA. */
8053
8054 static void
8055 elf_link_adjust_relocs (bfd *abfd,
8056 struct bfd_elf_section_reloc_data *reldata)
8057 {
8058 unsigned int i;
8059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8060 bfd_byte *erela;
8061 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8062 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8063 bfd_vma r_type_mask;
8064 int r_sym_shift;
8065 unsigned int count = reldata->count;
8066 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8067
8068 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8069 {
8070 swap_in = bed->s->swap_reloc_in;
8071 swap_out = bed->s->swap_reloc_out;
8072 }
8073 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8074 {
8075 swap_in = bed->s->swap_reloca_in;
8076 swap_out = bed->s->swap_reloca_out;
8077 }
8078 else
8079 abort ();
8080
8081 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8082 abort ();
8083
8084 if (bed->s->arch_size == 32)
8085 {
8086 r_type_mask = 0xff;
8087 r_sym_shift = 8;
8088 }
8089 else
8090 {
8091 r_type_mask = 0xffffffff;
8092 r_sym_shift = 32;
8093 }
8094
8095 erela = reldata->hdr->contents;
8096 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8097 {
8098 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8099 unsigned int j;
8100
8101 if (*rel_hash == NULL)
8102 continue;
8103
8104 BFD_ASSERT ((*rel_hash)->indx >= 0);
8105
8106 (*swap_in) (abfd, erela, irela);
8107 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8108 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8109 | (irela[j].r_info & r_type_mask));
8110 (*swap_out) (abfd, irela, erela);
8111 }
8112 }
8113
8114 struct elf_link_sort_rela
8115 {
8116 union {
8117 bfd_vma offset;
8118 bfd_vma sym_mask;
8119 } u;
8120 enum elf_reloc_type_class type;
8121 /* We use this as an array of size int_rels_per_ext_rel. */
8122 Elf_Internal_Rela rela[1];
8123 };
8124
8125 static int
8126 elf_link_sort_cmp1 (const void *A, const void *B)
8127 {
8128 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8129 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8130 int relativea, relativeb;
8131
8132 relativea = a->type == reloc_class_relative;
8133 relativeb = b->type == reloc_class_relative;
8134
8135 if (relativea < relativeb)
8136 return 1;
8137 if (relativea > relativeb)
8138 return -1;
8139 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8140 return -1;
8141 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8142 return 1;
8143 if (a->rela->r_offset < b->rela->r_offset)
8144 return -1;
8145 if (a->rela->r_offset > b->rela->r_offset)
8146 return 1;
8147 return 0;
8148 }
8149
8150 static int
8151 elf_link_sort_cmp2 (const void *A, const void *B)
8152 {
8153 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8154 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8155 int copya, copyb;
8156
8157 if (a->u.offset < b->u.offset)
8158 return -1;
8159 if (a->u.offset > b->u.offset)
8160 return 1;
8161 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8162 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8163 if (copya < copyb)
8164 return -1;
8165 if (copya > copyb)
8166 return 1;
8167 if (a->rela->r_offset < b->rela->r_offset)
8168 return -1;
8169 if (a->rela->r_offset > b->rela->r_offset)
8170 return 1;
8171 return 0;
8172 }
8173
8174 static size_t
8175 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8176 {
8177 asection *dynamic_relocs;
8178 asection *rela_dyn;
8179 asection *rel_dyn;
8180 bfd_size_type count, size;
8181 size_t i, ret, sort_elt, ext_size;
8182 bfd_byte *sort, *s_non_relative, *p;
8183 struct elf_link_sort_rela *sq;
8184 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8185 int i2e = bed->s->int_rels_per_ext_rel;
8186 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8187 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8188 struct bfd_link_order *lo;
8189 bfd_vma r_sym_mask;
8190 bfd_boolean use_rela;
8191
8192 /* Find a dynamic reloc section. */
8193 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8194 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8195 if (rela_dyn != NULL && rela_dyn->size > 0
8196 && rel_dyn != NULL && rel_dyn->size > 0)
8197 {
8198 bfd_boolean use_rela_initialised = FALSE;
8199
8200 /* This is just here to stop gcc from complaining.
8201 It's initialization checking code is not perfect. */
8202 use_rela = TRUE;
8203
8204 /* Both sections are present. Examine the sizes
8205 of the indirect sections to help us choose. */
8206 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8207 if (lo->type == bfd_indirect_link_order)
8208 {
8209 asection *o = lo->u.indirect.section;
8210
8211 if ((o->size % bed->s->sizeof_rela) == 0)
8212 {
8213 if ((o->size % bed->s->sizeof_rel) == 0)
8214 /* Section size is divisible by both rel and rela sizes.
8215 It is of no help to us. */
8216 ;
8217 else
8218 {
8219 /* Section size is only divisible by rela. */
8220 if (use_rela_initialised && (use_rela == FALSE))
8221 {
8222 _bfd_error_handler
8223 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8224 bfd_set_error (bfd_error_invalid_operation);
8225 return 0;
8226 }
8227 else
8228 {
8229 use_rela = TRUE;
8230 use_rela_initialised = TRUE;
8231 }
8232 }
8233 }
8234 else if ((o->size % bed->s->sizeof_rel) == 0)
8235 {
8236 /* Section size is only divisible by rel. */
8237 if (use_rela_initialised && (use_rela == TRUE))
8238 {
8239 _bfd_error_handler
8240 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8241 bfd_set_error (bfd_error_invalid_operation);
8242 return 0;
8243 }
8244 else
8245 {
8246 use_rela = FALSE;
8247 use_rela_initialised = TRUE;
8248 }
8249 }
8250 else
8251 {
8252 /* The section size is not divisible by either - something is wrong. */
8253 _bfd_error_handler
8254 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8255 bfd_set_error (bfd_error_invalid_operation);
8256 return 0;
8257 }
8258 }
8259
8260 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8261 if (lo->type == bfd_indirect_link_order)
8262 {
8263 asection *o = lo->u.indirect.section;
8264
8265 if ((o->size % bed->s->sizeof_rela) == 0)
8266 {
8267 if ((o->size % bed->s->sizeof_rel) == 0)
8268 /* Section size is divisible by both rel and rela sizes.
8269 It is of no help to us. */
8270 ;
8271 else
8272 {
8273 /* Section size is only divisible by rela. */
8274 if (use_rela_initialised && (use_rela == FALSE))
8275 {
8276 _bfd_error_handler
8277 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8278 bfd_set_error (bfd_error_invalid_operation);
8279 return 0;
8280 }
8281 else
8282 {
8283 use_rela = TRUE;
8284 use_rela_initialised = TRUE;
8285 }
8286 }
8287 }
8288 else if ((o->size % bed->s->sizeof_rel) == 0)
8289 {
8290 /* Section size is only divisible by rel. */
8291 if (use_rela_initialised && (use_rela == TRUE))
8292 {
8293 _bfd_error_handler
8294 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8295 bfd_set_error (bfd_error_invalid_operation);
8296 return 0;
8297 }
8298 else
8299 {
8300 use_rela = FALSE;
8301 use_rela_initialised = TRUE;
8302 }
8303 }
8304 else
8305 {
8306 /* The section size is not divisible by either - something is wrong. */
8307 _bfd_error_handler
8308 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8309 bfd_set_error (bfd_error_invalid_operation);
8310 return 0;
8311 }
8312 }
8313
8314 if (! use_rela_initialised)
8315 /* Make a guess. */
8316 use_rela = TRUE;
8317 }
8318 else if (rela_dyn != NULL && rela_dyn->size > 0)
8319 use_rela = TRUE;
8320 else if (rel_dyn != NULL && rel_dyn->size > 0)
8321 use_rela = FALSE;
8322 else
8323 return 0;
8324
8325 if (use_rela)
8326 {
8327 dynamic_relocs = rela_dyn;
8328 ext_size = bed->s->sizeof_rela;
8329 swap_in = bed->s->swap_reloca_in;
8330 swap_out = bed->s->swap_reloca_out;
8331 }
8332 else
8333 {
8334 dynamic_relocs = rel_dyn;
8335 ext_size = bed->s->sizeof_rel;
8336 swap_in = bed->s->swap_reloc_in;
8337 swap_out = bed->s->swap_reloc_out;
8338 }
8339
8340 size = 0;
8341 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8342 if (lo->type == bfd_indirect_link_order)
8343 size += lo->u.indirect.section->size;
8344
8345 if (size != dynamic_relocs->size)
8346 return 0;
8347
8348 sort_elt = (sizeof (struct elf_link_sort_rela)
8349 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8350
8351 count = dynamic_relocs->size / ext_size;
8352 if (count == 0)
8353 return 0;
8354 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8355
8356 if (sort == NULL)
8357 {
8358 (*info->callbacks->warning)
8359 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8360 return 0;
8361 }
8362
8363 if (bed->s->arch_size == 32)
8364 r_sym_mask = ~(bfd_vma) 0xff;
8365 else
8366 r_sym_mask = ~(bfd_vma) 0xffffffff;
8367
8368 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8369 if (lo->type == bfd_indirect_link_order)
8370 {
8371 bfd_byte *erel, *erelend;
8372 asection *o = lo->u.indirect.section;
8373
8374 if (o->contents == NULL && o->size != 0)
8375 {
8376 /* This is a reloc section that is being handled as a normal
8377 section. See bfd_section_from_shdr. We can't combine
8378 relocs in this case. */
8379 free (sort);
8380 return 0;
8381 }
8382 erel = o->contents;
8383 erelend = o->contents + o->size;
8384 /* FIXME: octets_per_byte. */
8385 p = sort + o->output_offset / ext_size * sort_elt;
8386
8387 while (erel < erelend)
8388 {
8389 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8390
8391 (*swap_in) (abfd, erel, s->rela);
8392 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8393 s->u.sym_mask = r_sym_mask;
8394 p += sort_elt;
8395 erel += ext_size;
8396 }
8397 }
8398
8399 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8400
8401 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8402 {
8403 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8404 if (s->type != reloc_class_relative)
8405 break;
8406 }
8407 ret = i;
8408 s_non_relative = p;
8409
8410 sq = (struct elf_link_sort_rela *) s_non_relative;
8411 for (; i < count; i++, p += sort_elt)
8412 {
8413 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8414 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8415 sq = sp;
8416 sp->u.offset = sq->rela->r_offset;
8417 }
8418
8419 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8420
8421 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8422 if (lo->type == bfd_indirect_link_order)
8423 {
8424 bfd_byte *erel, *erelend;
8425 asection *o = lo->u.indirect.section;
8426
8427 erel = o->contents;
8428 erelend = o->contents + o->size;
8429 /* FIXME: octets_per_byte. */
8430 p = sort + o->output_offset / ext_size * sort_elt;
8431 while (erel < erelend)
8432 {
8433 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8434 (*swap_out) (abfd, s->rela, erel);
8435 p += sort_elt;
8436 erel += ext_size;
8437 }
8438 }
8439
8440 free (sort);
8441 *psec = dynamic_relocs;
8442 return ret;
8443 }
8444
8445 /* Flush the output symbols to the file. */
8446
8447 static bfd_boolean
8448 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8449 const struct elf_backend_data *bed)
8450 {
8451 if (flinfo->symbuf_count > 0)
8452 {
8453 Elf_Internal_Shdr *hdr;
8454 file_ptr pos;
8455 bfd_size_type amt;
8456
8457 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8458 pos = hdr->sh_offset + hdr->sh_size;
8459 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8460 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8461 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8462 return FALSE;
8463
8464 hdr->sh_size += amt;
8465 flinfo->symbuf_count = 0;
8466 }
8467
8468 return TRUE;
8469 }
8470
8471 /* Add a symbol to the output symbol table. */
8472
8473 static int
8474 elf_link_output_sym (struct elf_final_link_info *flinfo,
8475 const char *name,
8476 Elf_Internal_Sym *elfsym,
8477 asection *input_sec,
8478 struct elf_link_hash_entry *h)
8479 {
8480 bfd_byte *dest;
8481 Elf_External_Sym_Shndx *destshndx;
8482 int (*output_symbol_hook)
8483 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8484 struct elf_link_hash_entry *);
8485 const struct elf_backend_data *bed;
8486
8487 bed = get_elf_backend_data (flinfo->output_bfd);
8488 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8489 if (output_symbol_hook != NULL)
8490 {
8491 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8492 if (ret != 1)
8493 return ret;
8494 }
8495
8496 if (name == NULL || *name == '\0')
8497 elfsym->st_name = 0;
8498 else if (input_sec->flags & SEC_EXCLUDE)
8499 elfsym->st_name = 0;
8500 else
8501 {
8502 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8503 name, TRUE, FALSE);
8504 if (elfsym->st_name == (unsigned long) -1)
8505 return 0;
8506 }
8507
8508 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8509 {
8510 if (! elf_link_flush_output_syms (flinfo, bed))
8511 return 0;
8512 }
8513
8514 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8515 destshndx = flinfo->symshndxbuf;
8516 if (destshndx != NULL)
8517 {
8518 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8519 {
8520 bfd_size_type amt;
8521
8522 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8523 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8524 amt * 2);
8525 if (destshndx == NULL)
8526 return 0;
8527 flinfo->symshndxbuf = destshndx;
8528 memset ((char *) destshndx + amt, 0, amt);
8529 flinfo->shndxbuf_size *= 2;
8530 }
8531 destshndx += bfd_get_symcount (flinfo->output_bfd);
8532 }
8533
8534 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8535 flinfo->symbuf_count += 1;
8536 bfd_get_symcount (flinfo->output_bfd) += 1;
8537
8538 return 1;
8539 }
8540
8541 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8542
8543 static bfd_boolean
8544 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8545 {
8546 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8547 && sym->st_shndx < SHN_LORESERVE)
8548 {
8549 /* The gABI doesn't support dynamic symbols in output sections
8550 beyond 64k. */
8551 (*_bfd_error_handler)
8552 (_("%B: Too many sections: %d (>= %d)"),
8553 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8554 bfd_set_error (bfd_error_nonrepresentable_section);
8555 return FALSE;
8556 }
8557 return TRUE;
8558 }
8559
8560 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8561 allowing an unsatisfied unversioned symbol in the DSO to match a
8562 versioned symbol that would normally require an explicit version.
8563 We also handle the case that a DSO references a hidden symbol
8564 which may be satisfied by a versioned symbol in another DSO. */
8565
8566 static bfd_boolean
8567 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8568 const struct elf_backend_data *bed,
8569 struct elf_link_hash_entry *h)
8570 {
8571 bfd *abfd;
8572 struct elf_link_loaded_list *loaded;
8573
8574 if (!is_elf_hash_table (info->hash))
8575 return FALSE;
8576
8577 /* Check indirect symbol. */
8578 while (h->root.type == bfd_link_hash_indirect)
8579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8580
8581 switch (h->root.type)
8582 {
8583 default:
8584 abfd = NULL;
8585 break;
8586
8587 case bfd_link_hash_undefined:
8588 case bfd_link_hash_undefweak:
8589 abfd = h->root.u.undef.abfd;
8590 if ((abfd->flags & DYNAMIC) == 0
8591 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8592 return FALSE;
8593 break;
8594
8595 case bfd_link_hash_defined:
8596 case bfd_link_hash_defweak:
8597 abfd = h->root.u.def.section->owner;
8598 break;
8599
8600 case bfd_link_hash_common:
8601 abfd = h->root.u.c.p->section->owner;
8602 break;
8603 }
8604 BFD_ASSERT (abfd != NULL);
8605
8606 for (loaded = elf_hash_table (info)->loaded;
8607 loaded != NULL;
8608 loaded = loaded->next)
8609 {
8610 bfd *input;
8611 Elf_Internal_Shdr *hdr;
8612 bfd_size_type symcount;
8613 bfd_size_type extsymcount;
8614 bfd_size_type extsymoff;
8615 Elf_Internal_Shdr *versymhdr;
8616 Elf_Internal_Sym *isym;
8617 Elf_Internal_Sym *isymend;
8618 Elf_Internal_Sym *isymbuf;
8619 Elf_External_Versym *ever;
8620 Elf_External_Versym *extversym;
8621
8622 input = loaded->abfd;
8623
8624 /* We check each DSO for a possible hidden versioned definition. */
8625 if (input == abfd
8626 || (input->flags & DYNAMIC) == 0
8627 || elf_dynversym (input) == 0)
8628 continue;
8629
8630 hdr = &elf_tdata (input)->dynsymtab_hdr;
8631
8632 symcount = hdr->sh_size / bed->s->sizeof_sym;
8633 if (elf_bad_symtab (input))
8634 {
8635 extsymcount = symcount;
8636 extsymoff = 0;
8637 }
8638 else
8639 {
8640 extsymcount = symcount - hdr->sh_info;
8641 extsymoff = hdr->sh_info;
8642 }
8643
8644 if (extsymcount == 0)
8645 continue;
8646
8647 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8648 NULL, NULL, NULL);
8649 if (isymbuf == NULL)
8650 return FALSE;
8651
8652 /* Read in any version definitions. */
8653 versymhdr = &elf_tdata (input)->dynversym_hdr;
8654 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8655 if (extversym == NULL)
8656 goto error_ret;
8657
8658 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8659 || (bfd_bread (extversym, versymhdr->sh_size, input)
8660 != versymhdr->sh_size))
8661 {
8662 free (extversym);
8663 error_ret:
8664 free (isymbuf);
8665 return FALSE;
8666 }
8667
8668 ever = extversym + extsymoff;
8669 isymend = isymbuf + extsymcount;
8670 for (isym = isymbuf; isym < isymend; isym++, ever++)
8671 {
8672 const char *name;
8673 Elf_Internal_Versym iver;
8674 unsigned short version_index;
8675
8676 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8677 || isym->st_shndx == SHN_UNDEF)
8678 continue;
8679
8680 name = bfd_elf_string_from_elf_section (input,
8681 hdr->sh_link,
8682 isym->st_name);
8683 if (strcmp (name, h->root.root.string) != 0)
8684 continue;
8685
8686 _bfd_elf_swap_versym_in (input, ever, &iver);
8687
8688 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8689 && !(h->def_regular
8690 && h->forced_local))
8691 {
8692 /* If we have a non-hidden versioned sym, then it should
8693 have provided a definition for the undefined sym unless
8694 it is defined in a non-shared object and forced local.
8695 */
8696 abort ();
8697 }
8698
8699 version_index = iver.vs_vers & VERSYM_VERSION;
8700 if (version_index == 1 || version_index == 2)
8701 {
8702 /* This is the base or first version. We can use it. */
8703 free (extversym);
8704 free (isymbuf);
8705 return TRUE;
8706 }
8707 }
8708
8709 free (extversym);
8710 free (isymbuf);
8711 }
8712
8713 return FALSE;
8714 }
8715
8716 /* Add an external symbol to the symbol table. This is called from
8717 the hash table traversal routine. When generating a shared object,
8718 we go through the symbol table twice. The first time we output
8719 anything that might have been forced to local scope in a version
8720 script. The second time we output the symbols that are still
8721 global symbols. */
8722
8723 static bfd_boolean
8724 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8725 {
8726 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8727 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8728 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8729 bfd_boolean strip;
8730 Elf_Internal_Sym sym;
8731 asection *input_sec;
8732 const struct elf_backend_data *bed;
8733 long indx;
8734 int ret;
8735
8736 if (h->root.type == bfd_link_hash_warning)
8737 {
8738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8739 if (h->root.type == bfd_link_hash_new)
8740 return TRUE;
8741 }
8742
8743 /* Decide whether to output this symbol in this pass. */
8744 if (eoinfo->localsyms)
8745 {
8746 if (!h->forced_local)
8747 return TRUE;
8748 if (eoinfo->second_pass
8749 && !((h->root.type == bfd_link_hash_defined
8750 || h->root.type == bfd_link_hash_defweak)
8751 && h->root.u.def.section->output_section != NULL))
8752 return TRUE;
8753 }
8754 else
8755 {
8756 if (h->forced_local)
8757 return TRUE;
8758 }
8759
8760 bed = get_elf_backend_data (flinfo->output_bfd);
8761
8762 if (h->root.type == bfd_link_hash_undefined)
8763 {
8764 /* If we have an undefined symbol reference here then it must have
8765 come from a shared library that is being linked in. (Undefined
8766 references in regular files have already been handled unless
8767 they are in unreferenced sections which are removed by garbage
8768 collection). */
8769 bfd_boolean ignore_undef = FALSE;
8770
8771 /* Some symbols may be special in that the fact that they're
8772 undefined can be safely ignored - let backend determine that. */
8773 if (bed->elf_backend_ignore_undef_symbol)
8774 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8775
8776 /* If we are reporting errors for this situation then do so now. */
8777 if (!ignore_undef
8778 && h->ref_dynamic
8779 && (!h->ref_regular || flinfo->info->gc_sections)
8780 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8781 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8782 {
8783 if (!(flinfo->info->callbacks->undefined_symbol
8784 (flinfo->info, h->root.root.string,
8785 h->ref_regular ? NULL : h->root.u.undef.abfd,
8786 NULL, 0,
8787 (flinfo->info->unresolved_syms_in_shared_libs
8788 == RM_GENERATE_ERROR))))
8789 {
8790 bfd_set_error (bfd_error_bad_value);
8791 eoinfo->failed = TRUE;
8792 return FALSE;
8793 }
8794 }
8795 }
8796
8797 /* We should also warn if a forced local symbol is referenced from
8798 shared libraries. */
8799 if (!flinfo->info->relocatable
8800 && flinfo->info->executable
8801 && h->forced_local
8802 && h->ref_dynamic
8803 && h->def_regular
8804 && !h->dynamic_def
8805 && h->ref_dynamic_nonweak
8806 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8807 {
8808 bfd *def_bfd;
8809 const char *msg;
8810 struct elf_link_hash_entry *hi = h;
8811
8812 /* Check indirect symbol. */
8813 while (hi->root.type == bfd_link_hash_indirect)
8814 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8815
8816 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8817 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8818 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8819 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8820 else
8821 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8822 def_bfd = flinfo->output_bfd;
8823 if (hi->root.u.def.section != bfd_abs_section_ptr)
8824 def_bfd = hi->root.u.def.section->owner;
8825 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8826 h->root.root.string);
8827 bfd_set_error (bfd_error_bad_value);
8828 eoinfo->failed = TRUE;
8829 return FALSE;
8830 }
8831
8832 /* We don't want to output symbols that have never been mentioned by
8833 a regular file, or that we have been told to strip. However, if
8834 h->indx is set to -2, the symbol is used by a reloc and we must
8835 output it. */
8836 if (h->indx == -2)
8837 strip = FALSE;
8838 else if ((h->def_dynamic
8839 || h->ref_dynamic
8840 || h->root.type == bfd_link_hash_new)
8841 && !h->def_regular
8842 && !h->ref_regular)
8843 strip = TRUE;
8844 else if (flinfo->info->strip == strip_all)
8845 strip = TRUE;
8846 else if (flinfo->info->strip == strip_some
8847 && bfd_hash_lookup (flinfo->info->keep_hash,
8848 h->root.root.string, FALSE, FALSE) == NULL)
8849 strip = TRUE;
8850 else if ((h->root.type == bfd_link_hash_defined
8851 || h->root.type == bfd_link_hash_defweak)
8852 && ((flinfo->info->strip_discarded
8853 && discarded_section (h->root.u.def.section))
8854 || (h->root.u.def.section->owner != NULL
8855 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8856 strip = TRUE;
8857 else if ((h->root.type == bfd_link_hash_undefined
8858 || h->root.type == bfd_link_hash_undefweak)
8859 && h->root.u.undef.abfd != NULL
8860 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8861 strip = TRUE;
8862 else
8863 strip = FALSE;
8864
8865 /* If we're stripping it, and it's not a dynamic symbol, there's
8866 nothing else to do unless it is a forced local symbol or a
8867 STT_GNU_IFUNC symbol. */
8868 if (strip
8869 && h->dynindx == -1
8870 && h->type != STT_GNU_IFUNC
8871 && !h->forced_local)
8872 return TRUE;
8873
8874 sym.st_value = 0;
8875 sym.st_size = h->size;
8876 sym.st_other = h->other;
8877 if (h->forced_local)
8878 {
8879 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8880 /* Turn off visibility on local symbol. */
8881 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8882 }
8883 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8884 else if (h->unique_global && h->def_regular)
8885 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8886 else if (h->root.type == bfd_link_hash_undefweak
8887 || h->root.type == bfd_link_hash_defweak)
8888 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8889 else
8890 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8891 sym.st_target_internal = h->target_internal;
8892
8893 switch (h->root.type)
8894 {
8895 default:
8896 case bfd_link_hash_new:
8897 case bfd_link_hash_warning:
8898 abort ();
8899 return FALSE;
8900
8901 case bfd_link_hash_undefined:
8902 case bfd_link_hash_undefweak:
8903 input_sec = bfd_und_section_ptr;
8904 sym.st_shndx = SHN_UNDEF;
8905 break;
8906
8907 case bfd_link_hash_defined:
8908 case bfd_link_hash_defweak:
8909 {
8910 input_sec = h->root.u.def.section;
8911 if (input_sec->output_section != NULL)
8912 {
8913 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8914 {
8915 bfd_boolean second_pass_sym
8916 = (input_sec->owner == flinfo->output_bfd
8917 || input_sec->owner == NULL
8918 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8919 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8920
8921 eoinfo->need_second_pass |= second_pass_sym;
8922 if (eoinfo->second_pass != second_pass_sym)
8923 return TRUE;
8924 }
8925
8926 sym.st_shndx =
8927 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8928 input_sec->output_section);
8929 if (sym.st_shndx == SHN_BAD)
8930 {
8931 (*_bfd_error_handler)
8932 (_("%B: could not find output section %A for input section %A"),
8933 flinfo->output_bfd, input_sec->output_section, input_sec);
8934 bfd_set_error (bfd_error_nonrepresentable_section);
8935 eoinfo->failed = TRUE;
8936 return FALSE;
8937 }
8938
8939 /* ELF symbols in relocatable files are section relative,
8940 but in nonrelocatable files they are virtual
8941 addresses. */
8942 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8943 if (!flinfo->info->relocatable)
8944 {
8945 sym.st_value += input_sec->output_section->vma;
8946 if (h->type == STT_TLS)
8947 {
8948 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8949 if (tls_sec != NULL)
8950 sym.st_value -= tls_sec->vma;
8951 else
8952 {
8953 /* The TLS section may have been garbage collected. */
8954 BFD_ASSERT (flinfo->info->gc_sections
8955 && !input_sec->gc_mark);
8956 }
8957 }
8958 }
8959 }
8960 else
8961 {
8962 BFD_ASSERT (input_sec->owner == NULL
8963 || (input_sec->owner->flags & DYNAMIC) != 0);
8964 sym.st_shndx = SHN_UNDEF;
8965 input_sec = bfd_und_section_ptr;
8966 }
8967 }
8968 break;
8969
8970 case bfd_link_hash_common:
8971 input_sec = h->root.u.c.p->section;
8972 sym.st_shndx = bed->common_section_index (input_sec);
8973 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8974 break;
8975
8976 case bfd_link_hash_indirect:
8977 /* These symbols are created by symbol versioning. They point
8978 to the decorated version of the name. For example, if the
8979 symbol foo@@GNU_1.2 is the default, which should be used when
8980 foo is used with no version, then we add an indirect symbol
8981 foo which points to foo@@GNU_1.2. We ignore these symbols,
8982 since the indirected symbol is already in the hash table. */
8983 return TRUE;
8984 }
8985
8986 /* Give the processor backend a chance to tweak the symbol value,
8987 and also to finish up anything that needs to be done for this
8988 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8989 forced local syms when non-shared is due to a historical quirk.
8990 STT_GNU_IFUNC symbol must go through PLT. */
8991 if ((h->type == STT_GNU_IFUNC
8992 && h->def_regular
8993 && !flinfo->info->relocatable)
8994 || ((h->dynindx != -1
8995 || h->forced_local)
8996 && ((flinfo->info->shared
8997 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8998 || h->root.type != bfd_link_hash_undefweak))
8999 || !h->forced_local)
9000 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9001 {
9002 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9003 (flinfo->output_bfd, flinfo->info, h, &sym)))
9004 {
9005 eoinfo->failed = TRUE;
9006 return FALSE;
9007 }
9008 }
9009
9010 /* If we are marking the symbol as undefined, and there are no
9011 non-weak references to this symbol from a regular object, then
9012 mark the symbol as weak undefined; if there are non-weak
9013 references, mark the symbol as strong. We can't do this earlier,
9014 because it might not be marked as undefined until the
9015 finish_dynamic_symbol routine gets through with it. */
9016 if (sym.st_shndx == SHN_UNDEF
9017 && h->ref_regular
9018 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9019 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9020 {
9021 int bindtype;
9022 unsigned int type = ELF_ST_TYPE (sym.st_info);
9023
9024 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9025 if (type == STT_GNU_IFUNC)
9026 type = STT_FUNC;
9027
9028 if (h->ref_regular_nonweak)
9029 bindtype = STB_GLOBAL;
9030 else
9031 bindtype = STB_WEAK;
9032 sym.st_info = ELF_ST_INFO (bindtype, type);
9033 }
9034
9035 /* If this is a symbol defined in a dynamic library, don't use the
9036 symbol size from the dynamic library. Relinking an executable
9037 against a new library may introduce gratuitous changes in the
9038 executable's symbols if we keep the size. */
9039 if (sym.st_shndx == SHN_UNDEF
9040 && !h->def_regular
9041 && h->def_dynamic)
9042 sym.st_size = 0;
9043
9044 /* If a non-weak symbol with non-default visibility is not defined
9045 locally, it is a fatal error. */
9046 if (!flinfo->info->relocatable
9047 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9048 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9049 && h->root.type == bfd_link_hash_undefined
9050 && !h->def_regular)
9051 {
9052 const char *msg;
9053
9054 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9055 msg = _("%B: protected symbol `%s' isn't defined");
9056 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9057 msg = _("%B: internal symbol `%s' isn't defined");
9058 else
9059 msg = _("%B: hidden symbol `%s' isn't defined");
9060 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9061 bfd_set_error (bfd_error_bad_value);
9062 eoinfo->failed = TRUE;
9063 return FALSE;
9064 }
9065
9066 /* If this symbol should be put in the .dynsym section, then put it
9067 there now. We already know the symbol index. We also fill in
9068 the entry in the .hash section. */
9069 if (flinfo->dynsym_sec != NULL
9070 && h->dynindx != -1
9071 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9072 {
9073 bfd_byte *esym;
9074
9075 /* Since there is no version information in the dynamic string,
9076 if there is no version info in symbol version section, we will
9077 have a run-time problem. */
9078 if (h->verinfo.verdef == NULL)
9079 {
9080 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9081
9082 if (p && p [1] != '\0')
9083 {
9084 (*_bfd_error_handler)
9085 (_("%B: No symbol version section for versioned symbol `%s'"),
9086 flinfo->output_bfd, h->root.root.string);
9087 eoinfo->failed = TRUE;
9088 return FALSE;
9089 }
9090 }
9091
9092 sym.st_name = h->dynstr_index;
9093 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9094 if (!check_dynsym (flinfo->output_bfd, &sym))
9095 {
9096 eoinfo->failed = TRUE;
9097 return FALSE;
9098 }
9099 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9100
9101 if (flinfo->hash_sec != NULL)
9102 {
9103 size_t hash_entry_size;
9104 bfd_byte *bucketpos;
9105 bfd_vma chain;
9106 size_t bucketcount;
9107 size_t bucket;
9108
9109 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9110 bucket = h->u.elf_hash_value % bucketcount;
9111
9112 hash_entry_size
9113 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9114 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9115 + (bucket + 2) * hash_entry_size);
9116 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9117 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9118 bucketpos);
9119 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9120 ((bfd_byte *) flinfo->hash_sec->contents
9121 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9122 }
9123
9124 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9125 {
9126 Elf_Internal_Versym iversym;
9127 Elf_External_Versym *eversym;
9128
9129 if (!h->def_regular)
9130 {
9131 if (h->verinfo.verdef == NULL)
9132 iversym.vs_vers = 0;
9133 else
9134 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9135 }
9136 else
9137 {
9138 if (h->verinfo.vertree == NULL)
9139 iversym.vs_vers = 1;
9140 else
9141 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9142 if (flinfo->info->create_default_symver)
9143 iversym.vs_vers++;
9144 }
9145
9146 if (h->hidden)
9147 iversym.vs_vers |= VERSYM_HIDDEN;
9148
9149 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9150 eversym += h->dynindx;
9151 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9152 }
9153 }
9154
9155 /* If we're stripping it, then it was just a dynamic symbol, and
9156 there's nothing else to do. */
9157 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9158 return TRUE;
9159
9160 indx = bfd_get_symcount (flinfo->output_bfd);
9161 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9162 if (ret == 0)
9163 {
9164 eoinfo->failed = TRUE;
9165 return FALSE;
9166 }
9167 else if (ret == 1)
9168 h->indx = indx;
9169 else if (h->indx == -2)
9170 abort();
9171
9172 return TRUE;
9173 }
9174
9175 /* Return TRUE if special handling is done for relocs in SEC against
9176 symbols defined in discarded sections. */
9177
9178 static bfd_boolean
9179 elf_section_ignore_discarded_relocs (asection *sec)
9180 {
9181 const struct elf_backend_data *bed;
9182
9183 switch (sec->sec_info_type)
9184 {
9185 case SEC_INFO_TYPE_STABS:
9186 case SEC_INFO_TYPE_EH_FRAME:
9187 return TRUE;
9188 default:
9189 break;
9190 }
9191
9192 bed = get_elf_backend_data (sec->owner);
9193 if (bed->elf_backend_ignore_discarded_relocs != NULL
9194 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9195 return TRUE;
9196
9197 return FALSE;
9198 }
9199
9200 /* Return a mask saying how ld should treat relocations in SEC against
9201 symbols defined in discarded sections. If this function returns
9202 COMPLAIN set, ld will issue a warning message. If this function
9203 returns PRETEND set, and the discarded section was link-once and the
9204 same size as the kept link-once section, ld will pretend that the
9205 symbol was actually defined in the kept section. Otherwise ld will
9206 zero the reloc (at least that is the intent, but some cooperation by
9207 the target dependent code is needed, particularly for REL targets). */
9208
9209 unsigned int
9210 _bfd_elf_default_action_discarded (asection *sec)
9211 {
9212 if (sec->flags & SEC_DEBUGGING)
9213 return PRETEND;
9214
9215 if (strcmp (".eh_frame", sec->name) == 0)
9216 return 0;
9217
9218 if (strcmp (".gcc_except_table", sec->name) == 0)
9219 return 0;
9220
9221 return COMPLAIN | PRETEND;
9222 }
9223
9224 /* Find a match between a section and a member of a section group. */
9225
9226 static asection *
9227 match_group_member (asection *sec, asection *group,
9228 struct bfd_link_info *info)
9229 {
9230 asection *first = elf_next_in_group (group);
9231 asection *s = first;
9232
9233 while (s != NULL)
9234 {
9235 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9236 return s;
9237
9238 s = elf_next_in_group (s);
9239 if (s == first)
9240 break;
9241 }
9242
9243 return NULL;
9244 }
9245
9246 /* Check if the kept section of a discarded section SEC can be used
9247 to replace it. Return the replacement if it is OK. Otherwise return
9248 NULL. */
9249
9250 asection *
9251 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9252 {
9253 asection *kept;
9254
9255 kept = sec->kept_section;
9256 if (kept != NULL)
9257 {
9258 if ((kept->flags & SEC_GROUP) != 0)
9259 kept = match_group_member (sec, kept, info);
9260 if (kept != NULL
9261 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9262 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9263 kept = NULL;
9264 sec->kept_section = kept;
9265 }
9266 return kept;
9267 }
9268
9269 /* Link an input file into the linker output file. This function
9270 handles all the sections and relocations of the input file at once.
9271 This is so that we only have to read the local symbols once, and
9272 don't have to keep them in memory. */
9273
9274 static bfd_boolean
9275 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9276 {
9277 int (*relocate_section)
9278 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9279 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9280 bfd *output_bfd;
9281 Elf_Internal_Shdr *symtab_hdr;
9282 size_t locsymcount;
9283 size_t extsymoff;
9284 Elf_Internal_Sym *isymbuf;
9285 Elf_Internal_Sym *isym;
9286 Elf_Internal_Sym *isymend;
9287 long *pindex;
9288 asection **ppsection;
9289 asection *o;
9290 const struct elf_backend_data *bed;
9291 struct elf_link_hash_entry **sym_hashes;
9292 bfd_size_type address_size;
9293 bfd_vma r_type_mask;
9294 int r_sym_shift;
9295 bfd_boolean have_file_sym = FALSE;
9296
9297 output_bfd = flinfo->output_bfd;
9298 bed = get_elf_backend_data (output_bfd);
9299 relocate_section = bed->elf_backend_relocate_section;
9300
9301 /* If this is a dynamic object, we don't want to do anything here:
9302 we don't want the local symbols, and we don't want the section
9303 contents. */
9304 if ((input_bfd->flags & DYNAMIC) != 0)
9305 return TRUE;
9306
9307 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9308 if (elf_bad_symtab (input_bfd))
9309 {
9310 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9311 extsymoff = 0;
9312 }
9313 else
9314 {
9315 locsymcount = symtab_hdr->sh_info;
9316 extsymoff = symtab_hdr->sh_info;
9317 }
9318
9319 /* Read the local symbols. */
9320 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9321 if (isymbuf == NULL && locsymcount != 0)
9322 {
9323 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9324 flinfo->internal_syms,
9325 flinfo->external_syms,
9326 flinfo->locsym_shndx);
9327 if (isymbuf == NULL)
9328 return FALSE;
9329 }
9330
9331 /* Find local symbol sections and adjust values of symbols in
9332 SEC_MERGE sections. Write out those local symbols we know are
9333 going into the output file. */
9334 isymend = isymbuf + locsymcount;
9335 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9336 isym < isymend;
9337 isym++, pindex++, ppsection++)
9338 {
9339 asection *isec;
9340 const char *name;
9341 Elf_Internal_Sym osym;
9342 long indx;
9343 int ret;
9344
9345 *pindex = -1;
9346
9347 if (elf_bad_symtab (input_bfd))
9348 {
9349 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9350 {
9351 *ppsection = NULL;
9352 continue;
9353 }
9354 }
9355
9356 if (isym->st_shndx == SHN_UNDEF)
9357 isec = bfd_und_section_ptr;
9358 else if (isym->st_shndx == SHN_ABS)
9359 isec = bfd_abs_section_ptr;
9360 else if (isym->st_shndx == SHN_COMMON)
9361 isec = bfd_com_section_ptr;
9362 else
9363 {
9364 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9365 if (isec == NULL)
9366 {
9367 /* Don't attempt to output symbols with st_shnx in the
9368 reserved range other than SHN_ABS and SHN_COMMON. */
9369 *ppsection = NULL;
9370 continue;
9371 }
9372 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9373 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9374 isym->st_value =
9375 _bfd_merged_section_offset (output_bfd, &isec,
9376 elf_section_data (isec)->sec_info,
9377 isym->st_value);
9378 }
9379
9380 *ppsection = isec;
9381
9382 /* Don't output the first, undefined, symbol. */
9383 if (ppsection == flinfo->sections)
9384 continue;
9385
9386 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9387 {
9388 /* We never output section symbols. Instead, we use the
9389 section symbol of the corresponding section in the output
9390 file. */
9391 continue;
9392 }
9393
9394 /* If we are stripping all symbols, we don't want to output this
9395 one. */
9396 if (flinfo->info->strip == strip_all)
9397 continue;
9398
9399 /* If we are discarding all local symbols, we don't want to
9400 output this one. If we are generating a relocatable output
9401 file, then some of the local symbols may be required by
9402 relocs; we output them below as we discover that they are
9403 needed. */
9404 if (flinfo->info->discard == discard_all)
9405 continue;
9406
9407 /* If this symbol is defined in a section which we are
9408 discarding, we don't need to keep it. */
9409 if (isym->st_shndx != SHN_UNDEF
9410 && isym->st_shndx < SHN_LORESERVE
9411 && bfd_section_removed_from_list (output_bfd,
9412 isec->output_section))
9413 continue;
9414
9415 /* Get the name of the symbol. */
9416 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9417 isym->st_name);
9418 if (name == NULL)
9419 return FALSE;
9420
9421 /* See if we are discarding symbols with this name. */
9422 if ((flinfo->info->strip == strip_some
9423 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9424 == NULL))
9425 || (((flinfo->info->discard == discard_sec_merge
9426 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9427 || flinfo->info->discard == discard_l)
9428 && bfd_is_local_label_name (input_bfd, name)))
9429 continue;
9430
9431 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9432 {
9433 have_file_sym = TRUE;
9434 flinfo->filesym_count += 1;
9435 }
9436 if (!have_file_sym)
9437 {
9438 /* In the absence of debug info, bfd_find_nearest_line uses
9439 FILE symbols to determine the source file for local
9440 function symbols. Provide a FILE symbol here if input
9441 files lack such, so that their symbols won't be
9442 associated with a previous input file. It's not the
9443 source file, but the best we can do. */
9444 have_file_sym = TRUE;
9445 flinfo->filesym_count += 1;
9446 memset (&osym, 0, sizeof (osym));
9447 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9448 osym.st_shndx = SHN_ABS;
9449 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9450 bfd_abs_section_ptr, NULL))
9451 return FALSE;
9452 }
9453
9454 osym = *isym;
9455
9456 /* Adjust the section index for the output file. */
9457 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9458 isec->output_section);
9459 if (osym.st_shndx == SHN_BAD)
9460 return FALSE;
9461
9462 /* ELF symbols in relocatable files are section relative, but
9463 in executable files they are virtual addresses. Note that
9464 this code assumes that all ELF sections have an associated
9465 BFD section with a reasonable value for output_offset; below
9466 we assume that they also have a reasonable value for
9467 output_section. Any special sections must be set up to meet
9468 these requirements. */
9469 osym.st_value += isec->output_offset;
9470 if (!flinfo->info->relocatable)
9471 {
9472 osym.st_value += isec->output_section->vma;
9473 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9474 {
9475 /* STT_TLS symbols are relative to PT_TLS segment base. */
9476 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9477 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9478 }
9479 }
9480
9481 indx = bfd_get_symcount (output_bfd);
9482 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9483 if (ret == 0)
9484 return FALSE;
9485 else if (ret == 1)
9486 *pindex = indx;
9487 }
9488
9489 if (bed->s->arch_size == 32)
9490 {
9491 r_type_mask = 0xff;
9492 r_sym_shift = 8;
9493 address_size = 4;
9494 }
9495 else
9496 {
9497 r_type_mask = 0xffffffff;
9498 r_sym_shift = 32;
9499 address_size = 8;
9500 }
9501
9502 /* Relocate the contents of each section. */
9503 sym_hashes = elf_sym_hashes (input_bfd);
9504 for (o = input_bfd->sections; o != NULL; o = o->next)
9505 {
9506 bfd_byte *contents;
9507
9508 if (! o->linker_mark)
9509 {
9510 /* This section was omitted from the link. */
9511 continue;
9512 }
9513
9514 if (flinfo->info->relocatable
9515 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9516 {
9517 /* Deal with the group signature symbol. */
9518 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9519 unsigned long symndx = sec_data->this_hdr.sh_info;
9520 asection *osec = o->output_section;
9521
9522 if (symndx >= locsymcount
9523 || (elf_bad_symtab (input_bfd)
9524 && flinfo->sections[symndx] == NULL))
9525 {
9526 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9527 while (h->root.type == bfd_link_hash_indirect
9528 || h->root.type == bfd_link_hash_warning)
9529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9530 /* Arrange for symbol to be output. */
9531 h->indx = -2;
9532 elf_section_data (osec)->this_hdr.sh_info = -2;
9533 }
9534 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9535 {
9536 /* We'll use the output section target_index. */
9537 asection *sec = flinfo->sections[symndx]->output_section;
9538 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9539 }
9540 else
9541 {
9542 if (flinfo->indices[symndx] == -1)
9543 {
9544 /* Otherwise output the local symbol now. */
9545 Elf_Internal_Sym sym = isymbuf[symndx];
9546 asection *sec = flinfo->sections[symndx]->output_section;
9547 const char *name;
9548 long indx;
9549 int ret;
9550
9551 name = bfd_elf_string_from_elf_section (input_bfd,
9552 symtab_hdr->sh_link,
9553 sym.st_name);
9554 if (name == NULL)
9555 return FALSE;
9556
9557 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9558 sec);
9559 if (sym.st_shndx == SHN_BAD)
9560 return FALSE;
9561
9562 sym.st_value += o->output_offset;
9563
9564 indx = bfd_get_symcount (output_bfd);
9565 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9566 if (ret == 0)
9567 return FALSE;
9568 else if (ret == 1)
9569 flinfo->indices[symndx] = indx;
9570 else
9571 abort ();
9572 }
9573 elf_section_data (osec)->this_hdr.sh_info
9574 = flinfo->indices[symndx];
9575 }
9576 }
9577
9578 if ((o->flags & SEC_HAS_CONTENTS) == 0
9579 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9580 continue;
9581
9582 if ((o->flags & SEC_LINKER_CREATED) != 0)
9583 {
9584 /* Section was created by _bfd_elf_link_create_dynamic_sections
9585 or somesuch. */
9586 continue;
9587 }
9588
9589 /* Get the contents of the section. They have been cached by a
9590 relaxation routine. Note that o is a section in an input
9591 file, so the contents field will not have been set by any of
9592 the routines which work on output files. */
9593 if (elf_section_data (o)->this_hdr.contents != NULL)
9594 contents = elf_section_data (o)->this_hdr.contents;
9595 else
9596 {
9597 contents = flinfo->contents;
9598 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9599 return FALSE;
9600 }
9601
9602 if ((o->flags & SEC_RELOC) != 0)
9603 {
9604 Elf_Internal_Rela *internal_relocs;
9605 Elf_Internal_Rela *rel, *relend;
9606 int action_discarded;
9607 int ret;
9608
9609 /* Get the swapped relocs. */
9610 internal_relocs
9611 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9612 flinfo->internal_relocs, FALSE);
9613 if (internal_relocs == NULL
9614 && o->reloc_count > 0)
9615 return FALSE;
9616
9617 /* We need to reverse-copy input .ctors/.dtors sections if
9618 they are placed in .init_array/.finit_array for output. */
9619 if (o->size > address_size
9620 && ((strncmp (o->name, ".ctors", 6) == 0
9621 && strcmp (o->output_section->name,
9622 ".init_array") == 0)
9623 || (strncmp (o->name, ".dtors", 6) == 0
9624 && strcmp (o->output_section->name,
9625 ".fini_array") == 0))
9626 && (o->name[6] == 0 || o->name[6] == '.'))
9627 {
9628 if (o->size != o->reloc_count * address_size)
9629 {
9630 (*_bfd_error_handler)
9631 (_("error: %B: size of section %A is not "
9632 "multiple of address size"),
9633 input_bfd, o);
9634 bfd_set_error (bfd_error_on_input);
9635 return FALSE;
9636 }
9637 o->flags |= SEC_ELF_REVERSE_COPY;
9638 }
9639
9640 action_discarded = -1;
9641 if (!elf_section_ignore_discarded_relocs (o))
9642 action_discarded = (*bed->action_discarded) (o);
9643
9644 /* Run through the relocs evaluating complex reloc symbols and
9645 looking for relocs against symbols from discarded sections
9646 or section symbols from removed link-once sections.
9647 Complain about relocs against discarded sections. Zero
9648 relocs against removed link-once sections. */
9649
9650 rel = internal_relocs;
9651 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9652 for ( ; rel < relend; rel++)
9653 {
9654 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9655 unsigned int s_type;
9656 asection **ps, *sec;
9657 struct elf_link_hash_entry *h = NULL;
9658 const char *sym_name;
9659
9660 if (r_symndx == STN_UNDEF)
9661 continue;
9662
9663 if (r_symndx >= locsymcount
9664 || (elf_bad_symtab (input_bfd)
9665 && flinfo->sections[r_symndx] == NULL))
9666 {
9667 h = sym_hashes[r_symndx - extsymoff];
9668
9669 /* Badly formatted input files can contain relocs that
9670 reference non-existant symbols. Check here so that
9671 we do not seg fault. */
9672 if (h == NULL)
9673 {
9674 char buffer [32];
9675
9676 sprintf_vma (buffer, rel->r_info);
9677 (*_bfd_error_handler)
9678 (_("error: %B contains a reloc (0x%s) for section %A "
9679 "that references a non-existent global symbol"),
9680 input_bfd, o, buffer);
9681 bfd_set_error (bfd_error_bad_value);
9682 return FALSE;
9683 }
9684
9685 while (h->root.type == bfd_link_hash_indirect
9686 || h->root.type == bfd_link_hash_warning)
9687 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9688
9689 s_type = h->type;
9690
9691 ps = NULL;
9692 if (h->root.type == bfd_link_hash_defined
9693 || h->root.type == bfd_link_hash_defweak)
9694 ps = &h->root.u.def.section;
9695
9696 sym_name = h->root.root.string;
9697 }
9698 else
9699 {
9700 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9701
9702 s_type = ELF_ST_TYPE (sym->st_info);
9703 ps = &flinfo->sections[r_symndx];
9704 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9705 sym, *ps);
9706 }
9707
9708 if ((s_type == STT_RELC || s_type == STT_SRELC)
9709 && !flinfo->info->relocatable)
9710 {
9711 bfd_vma val;
9712 bfd_vma dot = (rel->r_offset
9713 + o->output_offset + o->output_section->vma);
9714 #ifdef DEBUG
9715 printf ("Encountered a complex symbol!");
9716 printf (" (input_bfd %s, section %s, reloc %ld\n",
9717 input_bfd->filename, o->name,
9718 (long) (rel - internal_relocs));
9719 printf (" symbol: idx %8.8lx, name %s\n",
9720 r_symndx, sym_name);
9721 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9722 (unsigned long) rel->r_info,
9723 (unsigned long) rel->r_offset);
9724 #endif
9725 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9726 isymbuf, locsymcount, s_type == STT_SRELC))
9727 return FALSE;
9728
9729 /* Symbol evaluated OK. Update to absolute value. */
9730 set_symbol_value (input_bfd, isymbuf, locsymcount,
9731 r_symndx, val);
9732 continue;
9733 }
9734
9735 if (action_discarded != -1 && ps != NULL)
9736 {
9737 /* Complain if the definition comes from a
9738 discarded section. */
9739 if ((sec = *ps) != NULL && discarded_section (sec))
9740 {
9741 BFD_ASSERT (r_symndx != STN_UNDEF);
9742 if (action_discarded & COMPLAIN)
9743 (*flinfo->info->callbacks->einfo)
9744 (_("%X`%s' referenced in section `%A' of %B: "
9745 "defined in discarded section `%A' of %B\n"),
9746 sym_name, o, input_bfd, sec, sec->owner);
9747
9748 /* Try to do the best we can to support buggy old
9749 versions of gcc. Pretend that the symbol is
9750 really defined in the kept linkonce section.
9751 FIXME: This is quite broken. Modifying the
9752 symbol here means we will be changing all later
9753 uses of the symbol, not just in this section. */
9754 if (action_discarded & PRETEND)
9755 {
9756 asection *kept;
9757
9758 kept = _bfd_elf_check_kept_section (sec,
9759 flinfo->info);
9760 if (kept != NULL)
9761 {
9762 *ps = kept;
9763 continue;
9764 }
9765 }
9766 }
9767 }
9768 }
9769
9770 /* Relocate the section by invoking a back end routine.
9771
9772 The back end routine is responsible for adjusting the
9773 section contents as necessary, and (if using Rela relocs
9774 and generating a relocatable output file) adjusting the
9775 reloc addend as necessary.
9776
9777 The back end routine does not have to worry about setting
9778 the reloc address or the reloc symbol index.
9779
9780 The back end routine is given a pointer to the swapped in
9781 internal symbols, and can access the hash table entries
9782 for the external symbols via elf_sym_hashes (input_bfd).
9783
9784 When generating relocatable output, the back end routine
9785 must handle STB_LOCAL/STT_SECTION symbols specially. The
9786 output symbol is going to be a section symbol
9787 corresponding to the output section, which will require
9788 the addend to be adjusted. */
9789
9790 ret = (*relocate_section) (output_bfd, flinfo->info,
9791 input_bfd, o, contents,
9792 internal_relocs,
9793 isymbuf,
9794 flinfo->sections);
9795 if (!ret)
9796 return FALSE;
9797
9798 if (ret == 2
9799 || flinfo->info->relocatable
9800 || flinfo->info->emitrelocations)
9801 {
9802 Elf_Internal_Rela *irela;
9803 Elf_Internal_Rela *irelaend, *irelamid;
9804 bfd_vma last_offset;
9805 struct elf_link_hash_entry **rel_hash;
9806 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9807 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9808 unsigned int next_erel;
9809 bfd_boolean rela_normal;
9810 struct bfd_elf_section_data *esdi, *esdo;
9811
9812 esdi = elf_section_data (o);
9813 esdo = elf_section_data (o->output_section);
9814 rela_normal = FALSE;
9815
9816 /* Adjust the reloc addresses and symbol indices. */
9817
9818 irela = internal_relocs;
9819 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9820 rel_hash = esdo->rel.hashes + esdo->rel.count;
9821 /* We start processing the REL relocs, if any. When we reach
9822 IRELAMID in the loop, we switch to the RELA relocs. */
9823 irelamid = irela;
9824 if (esdi->rel.hdr != NULL)
9825 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9826 * bed->s->int_rels_per_ext_rel);
9827 rel_hash_list = rel_hash;
9828 rela_hash_list = NULL;
9829 last_offset = o->output_offset;
9830 if (!flinfo->info->relocatable)
9831 last_offset += o->output_section->vma;
9832 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9833 {
9834 unsigned long r_symndx;
9835 asection *sec;
9836 Elf_Internal_Sym sym;
9837
9838 if (next_erel == bed->s->int_rels_per_ext_rel)
9839 {
9840 rel_hash++;
9841 next_erel = 0;
9842 }
9843
9844 if (irela == irelamid)
9845 {
9846 rel_hash = esdo->rela.hashes + esdo->rela.count;
9847 rela_hash_list = rel_hash;
9848 rela_normal = bed->rela_normal;
9849 }
9850
9851 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9852 flinfo->info, o,
9853 irela->r_offset);
9854 if (irela->r_offset >= (bfd_vma) -2)
9855 {
9856 /* This is a reloc for a deleted entry or somesuch.
9857 Turn it into an R_*_NONE reloc, at the same
9858 offset as the last reloc. elf_eh_frame.c and
9859 bfd_elf_discard_info rely on reloc offsets
9860 being ordered. */
9861 irela->r_offset = last_offset;
9862 irela->r_info = 0;
9863 irela->r_addend = 0;
9864 continue;
9865 }
9866
9867 irela->r_offset += o->output_offset;
9868
9869 /* Relocs in an executable have to be virtual addresses. */
9870 if (!flinfo->info->relocatable)
9871 irela->r_offset += o->output_section->vma;
9872
9873 last_offset = irela->r_offset;
9874
9875 r_symndx = irela->r_info >> r_sym_shift;
9876 if (r_symndx == STN_UNDEF)
9877 continue;
9878
9879 if (r_symndx >= locsymcount
9880 || (elf_bad_symtab (input_bfd)
9881 && flinfo->sections[r_symndx] == NULL))
9882 {
9883 struct elf_link_hash_entry *rh;
9884 unsigned long indx;
9885
9886 /* This is a reloc against a global symbol. We
9887 have not yet output all the local symbols, so
9888 we do not know the symbol index of any global
9889 symbol. We set the rel_hash entry for this
9890 reloc to point to the global hash table entry
9891 for this symbol. The symbol index is then
9892 set at the end of bfd_elf_final_link. */
9893 indx = r_symndx - extsymoff;
9894 rh = elf_sym_hashes (input_bfd)[indx];
9895 while (rh->root.type == bfd_link_hash_indirect
9896 || rh->root.type == bfd_link_hash_warning)
9897 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9898
9899 /* Setting the index to -2 tells
9900 elf_link_output_extsym that this symbol is
9901 used by a reloc. */
9902 BFD_ASSERT (rh->indx < 0);
9903 rh->indx = -2;
9904
9905 *rel_hash = rh;
9906
9907 continue;
9908 }
9909
9910 /* This is a reloc against a local symbol. */
9911
9912 *rel_hash = NULL;
9913 sym = isymbuf[r_symndx];
9914 sec = flinfo->sections[r_symndx];
9915 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9916 {
9917 /* I suppose the backend ought to fill in the
9918 section of any STT_SECTION symbol against a
9919 processor specific section. */
9920 r_symndx = STN_UNDEF;
9921 if (bfd_is_abs_section (sec))
9922 ;
9923 else if (sec == NULL || sec->owner == NULL)
9924 {
9925 bfd_set_error (bfd_error_bad_value);
9926 return FALSE;
9927 }
9928 else
9929 {
9930 asection *osec = sec->output_section;
9931
9932 /* If we have discarded a section, the output
9933 section will be the absolute section. In
9934 case of discarded SEC_MERGE sections, use
9935 the kept section. relocate_section should
9936 have already handled discarded linkonce
9937 sections. */
9938 if (bfd_is_abs_section (osec)
9939 && sec->kept_section != NULL
9940 && sec->kept_section->output_section != NULL)
9941 {
9942 osec = sec->kept_section->output_section;
9943 irela->r_addend -= osec->vma;
9944 }
9945
9946 if (!bfd_is_abs_section (osec))
9947 {
9948 r_symndx = osec->target_index;
9949 if (r_symndx == STN_UNDEF)
9950 {
9951 irela->r_addend += osec->vma;
9952 osec = _bfd_nearby_section (output_bfd, osec,
9953 osec->vma);
9954 irela->r_addend -= osec->vma;
9955 r_symndx = osec->target_index;
9956 }
9957 }
9958 }
9959
9960 /* Adjust the addend according to where the
9961 section winds up in the output section. */
9962 if (rela_normal)
9963 irela->r_addend += sec->output_offset;
9964 }
9965 else
9966 {
9967 if (flinfo->indices[r_symndx] == -1)
9968 {
9969 unsigned long shlink;
9970 const char *name;
9971 asection *osec;
9972 long indx;
9973
9974 if (flinfo->info->strip == strip_all)
9975 {
9976 /* You can't do ld -r -s. */
9977 bfd_set_error (bfd_error_invalid_operation);
9978 return FALSE;
9979 }
9980
9981 /* This symbol was skipped earlier, but
9982 since it is needed by a reloc, we
9983 must output it now. */
9984 shlink = symtab_hdr->sh_link;
9985 name = (bfd_elf_string_from_elf_section
9986 (input_bfd, shlink, sym.st_name));
9987 if (name == NULL)
9988 return FALSE;
9989
9990 osec = sec->output_section;
9991 sym.st_shndx =
9992 _bfd_elf_section_from_bfd_section (output_bfd,
9993 osec);
9994 if (sym.st_shndx == SHN_BAD)
9995 return FALSE;
9996
9997 sym.st_value += sec->output_offset;
9998 if (!flinfo->info->relocatable)
9999 {
10000 sym.st_value += osec->vma;
10001 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10002 {
10003 /* STT_TLS symbols are relative to PT_TLS
10004 segment base. */
10005 BFD_ASSERT (elf_hash_table (flinfo->info)
10006 ->tls_sec != NULL);
10007 sym.st_value -= (elf_hash_table (flinfo->info)
10008 ->tls_sec->vma);
10009 }
10010 }
10011
10012 indx = bfd_get_symcount (output_bfd);
10013 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10014 NULL);
10015 if (ret == 0)
10016 return FALSE;
10017 else if (ret == 1)
10018 flinfo->indices[r_symndx] = indx;
10019 else
10020 abort ();
10021 }
10022
10023 r_symndx = flinfo->indices[r_symndx];
10024 }
10025
10026 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10027 | (irela->r_info & r_type_mask));
10028 }
10029
10030 /* Swap out the relocs. */
10031 input_rel_hdr = esdi->rel.hdr;
10032 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10033 {
10034 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10035 input_rel_hdr,
10036 internal_relocs,
10037 rel_hash_list))
10038 return FALSE;
10039 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10040 * bed->s->int_rels_per_ext_rel);
10041 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10042 }
10043
10044 input_rela_hdr = esdi->rela.hdr;
10045 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10046 {
10047 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10048 input_rela_hdr,
10049 internal_relocs,
10050 rela_hash_list))
10051 return FALSE;
10052 }
10053 }
10054 }
10055
10056 /* Write out the modified section contents. */
10057 if (bed->elf_backend_write_section
10058 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10059 contents))
10060 {
10061 /* Section written out. */
10062 }
10063 else switch (o->sec_info_type)
10064 {
10065 case SEC_INFO_TYPE_STABS:
10066 if (! (_bfd_write_section_stabs
10067 (output_bfd,
10068 &elf_hash_table (flinfo->info)->stab_info,
10069 o, &elf_section_data (o)->sec_info, contents)))
10070 return FALSE;
10071 break;
10072 case SEC_INFO_TYPE_MERGE:
10073 if (! _bfd_write_merged_section (output_bfd, o,
10074 elf_section_data (o)->sec_info))
10075 return FALSE;
10076 break;
10077 case SEC_INFO_TYPE_EH_FRAME:
10078 {
10079 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10080 o, contents))
10081 return FALSE;
10082 }
10083 break;
10084 default:
10085 {
10086 /* FIXME: octets_per_byte. */
10087 if (! (o->flags & SEC_EXCLUDE))
10088 {
10089 file_ptr offset = (file_ptr) o->output_offset;
10090 bfd_size_type todo = o->size;
10091 if ((o->flags & SEC_ELF_REVERSE_COPY))
10092 {
10093 /* Reverse-copy input section to output. */
10094 do
10095 {
10096 todo -= address_size;
10097 if (! bfd_set_section_contents (output_bfd,
10098 o->output_section,
10099 contents + todo,
10100 offset,
10101 address_size))
10102 return FALSE;
10103 if (todo == 0)
10104 break;
10105 offset += address_size;
10106 }
10107 while (1);
10108 }
10109 else if (! bfd_set_section_contents (output_bfd,
10110 o->output_section,
10111 contents,
10112 offset, todo))
10113 return FALSE;
10114 }
10115 }
10116 break;
10117 }
10118 }
10119
10120 return TRUE;
10121 }
10122
10123 /* Generate a reloc when linking an ELF file. This is a reloc
10124 requested by the linker, and does not come from any input file. This
10125 is used to build constructor and destructor tables when linking
10126 with -Ur. */
10127
10128 static bfd_boolean
10129 elf_reloc_link_order (bfd *output_bfd,
10130 struct bfd_link_info *info,
10131 asection *output_section,
10132 struct bfd_link_order *link_order)
10133 {
10134 reloc_howto_type *howto;
10135 long indx;
10136 bfd_vma offset;
10137 bfd_vma addend;
10138 struct bfd_elf_section_reloc_data *reldata;
10139 struct elf_link_hash_entry **rel_hash_ptr;
10140 Elf_Internal_Shdr *rel_hdr;
10141 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10142 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10143 bfd_byte *erel;
10144 unsigned int i;
10145 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10146
10147 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10148 if (howto == NULL)
10149 {
10150 bfd_set_error (bfd_error_bad_value);
10151 return FALSE;
10152 }
10153
10154 addend = link_order->u.reloc.p->addend;
10155
10156 if (esdo->rel.hdr)
10157 reldata = &esdo->rel;
10158 else if (esdo->rela.hdr)
10159 reldata = &esdo->rela;
10160 else
10161 {
10162 reldata = NULL;
10163 BFD_ASSERT (0);
10164 }
10165
10166 /* Figure out the symbol index. */
10167 rel_hash_ptr = reldata->hashes + reldata->count;
10168 if (link_order->type == bfd_section_reloc_link_order)
10169 {
10170 indx = link_order->u.reloc.p->u.section->target_index;
10171 BFD_ASSERT (indx != 0);
10172 *rel_hash_ptr = NULL;
10173 }
10174 else
10175 {
10176 struct elf_link_hash_entry *h;
10177
10178 /* Treat a reloc against a defined symbol as though it were
10179 actually against the section. */
10180 h = ((struct elf_link_hash_entry *)
10181 bfd_wrapped_link_hash_lookup (output_bfd, info,
10182 link_order->u.reloc.p->u.name,
10183 FALSE, FALSE, TRUE));
10184 if (h != NULL
10185 && (h->root.type == bfd_link_hash_defined
10186 || h->root.type == bfd_link_hash_defweak))
10187 {
10188 asection *section;
10189
10190 section = h->root.u.def.section;
10191 indx = section->output_section->target_index;
10192 *rel_hash_ptr = NULL;
10193 /* It seems that we ought to add the symbol value to the
10194 addend here, but in practice it has already been added
10195 because it was passed to constructor_callback. */
10196 addend += section->output_section->vma + section->output_offset;
10197 }
10198 else if (h != NULL)
10199 {
10200 /* Setting the index to -2 tells elf_link_output_extsym that
10201 this symbol is used by a reloc. */
10202 h->indx = -2;
10203 *rel_hash_ptr = h;
10204 indx = 0;
10205 }
10206 else
10207 {
10208 if (! ((*info->callbacks->unattached_reloc)
10209 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10210 return FALSE;
10211 indx = 0;
10212 }
10213 }
10214
10215 /* If this is an inplace reloc, we must write the addend into the
10216 object file. */
10217 if (howto->partial_inplace && addend != 0)
10218 {
10219 bfd_size_type size;
10220 bfd_reloc_status_type rstat;
10221 bfd_byte *buf;
10222 bfd_boolean ok;
10223 const char *sym_name;
10224
10225 size = (bfd_size_type) bfd_get_reloc_size (howto);
10226 buf = (bfd_byte *) bfd_zmalloc (size);
10227 if (buf == NULL)
10228 return FALSE;
10229 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10230 switch (rstat)
10231 {
10232 case bfd_reloc_ok:
10233 break;
10234
10235 default:
10236 case bfd_reloc_outofrange:
10237 abort ();
10238
10239 case bfd_reloc_overflow:
10240 if (link_order->type == bfd_section_reloc_link_order)
10241 sym_name = bfd_section_name (output_bfd,
10242 link_order->u.reloc.p->u.section);
10243 else
10244 sym_name = link_order->u.reloc.p->u.name;
10245 if (! ((*info->callbacks->reloc_overflow)
10246 (info, NULL, sym_name, howto->name, addend, NULL,
10247 NULL, (bfd_vma) 0)))
10248 {
10249 free (buf);
10250 return FALSE;
10251 }
10252 break;
10253 }
10254 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10255 link_order->offset, size);
10256 free (buf);
10257 if (! ok)
10258 return FALSE;
10259 }
10260
10261 /* The address of a reloc is relative to the section in a
10262 relocatable file, and is a virtual address in an executable
10263 file. */
10264 offset = link_order->offset;
10265 if (! info->relocatable)
10266 offset += output_section->vma;
10267
10268 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10269 {
10270 irel[i].r_offset = offset;
10271 irel[i].r_info = 0;
10272 irel[i].r_addend = 0;
10273 }
10274 if (bed->s->arch_size == 32)
10275 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10276 else
10277 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10278
10279 rel_hdr = reldata->hdr;
10280 erel = rel_hdr->contents;
10281 if (rel_hdr->sh_type == SHT_REL)
10282 {
10283 erel += reldata->count * bed->s->sizeof_rel;
10284 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10285 }
10286 else
10287 {
10288 irel[0].r_addend = addend;
10289 erel += reldata->count * bed->s->sizeof_rela;
10290 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10291 }
10292
10293 ++reldata->count;
10294
10295 return TRUE;
10296 }
10297
10298
10299 /* Get the output vma of the section pointed to by the sh_link field. */
10300
10301 static bfd_vma
10302 elf_get_linked_section_vma (struct bfd_link_order *p)
10303 {
10304 Elf_Internal_Shdr **elf_shdrp;
10305 asection *s;
10306 int elfsec;
10307
10308 s = p->u.indirect.section;
10309 elf_shdrp = elf_elfsections (s->owner);
10310 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10311 elfsec = elf_shdrp[elfsec]->sh_link;
10312 /* PR 290:
10313 The Intel C compiler generates SHT_IA_64_UNWIND with
10314 SHF_LINK_ORDER. But it doesn't set the sh_link or
10315 sh_info fields. Hence we could get the situation
10316 where elfsec is 0. */
10317 if (elfsec == 0)
10318 {
10319 const struct elf_backend_data *bed
10320 = get_elf_backend_data (s->owner);
10321 if (bed->link_order_error_handler)
10322 bed->link_order_error_handler
10323 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10324 return 0;
10325 }
10326 else
10327 {
10328 s = elf_shdrp[elfsec]->bfd_section;
10329 return s->output_section->vma + s->output_offset;
10330 }
10331 }
10332
10333
10334 /* Compare two sections based on the locations of the sections they are
10335 linked to. Used by elf_fixup_link_order. */
10336
10337 static int
10338 compare_link_order (const void * a, const void * b)
10339 {
10340 bfd_vma apos;
10341 bfd_vma bpos;
10342
10343 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10344 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10345 if (apos < bpos)
10346 return -1;
10347 return apos > bpos;
10348 }
10349
10350
10351 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10352 order as their linked sections. Returns false if this could not be done
10353 because an output section includes both ordered and unordered
10354 sections. Ideally we'd do this in the linker proper. */
10355
10356 static bfd_boolean
10357 elf_fixup_link_order (bfd *abfd, asection *o)
10358 {
10359 int seen_linkorder;
10360 int seen_other;
10361 int n;
10362 struct bfd_link_order *p;
10363 bfd *sub;
10364 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10365 unsigned elfsec;
10366 struct bfd_link_order **sections;
10367 asection *s, *other_sec, *linkorder_sec;
10368 bfd_vma offset;
10369
10370 other_sec = NULL;
10371 linkorder_sec = NULL;
10372 seen_other = 0;
10373 seen_linkorder = 0;
10374 for (p = o->map_head.link_order; p != NULL; p = p->next)
10375 {
10376 if (p->type == bfd_indirect_link_order)
10377 {
10378 s = p->u.indirect.section;
10379 sub = s->owner;
10380 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10381 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10382 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10383 && elfsec < elf_numsections (sub)
10384 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10385 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10386 {
10387 seen_linkorder++;
10388 linkorder_sec = s;
10389 }
10390 else
10391 {
10392 seen_other++;
10393 other_sec = s;
10394 }
10395 }
10396 else
10397 seen_other++;
10398
10399 if (seen_other && seen_linkorder)
10400 {
10401 if (other_sec && linkorder_sec)
10402 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10403 o, linkorder_sec,
10404 linkorder_sec->owner, other_sec,
10405 other_sec->owner);
10406 else
10407 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10408 o);
10409 bfd_set_error (bfd_error_bad_value);
10410 return FALSE;
10411 }
10412 }
10413
10414 if (!seen_linkorder)
10415 return TRUE;
10416
10417 sections = (struct bfd_link_order **)
10418 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10419 if (sections == NULL)
10420 return FALSE;
10421 seen_linkorder = 0;
10422
10423 for (p = o->map_head.link_order; p != NULL; p = p->next)
10424 {
10425 sections[seen_linkorder++] = p;
10426 }
10427 /* Sort the input sections in the order of their linked section. */
10428 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10429 compare_link_order);
10430
10431 /* Change the offsets of the sections. */
10432 offset = 0;
10433 for (n = 0; n < seen_linkorder; n++)
10434 {
10435 s = sections[n]->u.indirect.section;
10436 offset &= ~(bfd_vma) 0 << s->alignment_power;
10437 s->output_offset = offset;
10438 sections[n]->offset = offset;
10439 /* FIXME: octets_per_byte. */
10440 offset += sections[n]->size;
10441 }
10442
10443 free (sections);
10444 return TRUE;
10445 }
10446
10447 static void
10448 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10449 {
10450 asection *o;
10451
10452 if (flinfo->symstrtab != NULL)
10453 _bfd_stringtab_free (flinfo->symstrtab);
10454 if (flinfo->contents != NULL)
10455 free (flinfo->contents);
10456 if (flinfo->external_relocs != NULL)
10457 free (flinfo->external_relocs);
10458 if (flinfo->internal_relocs != NULL)
10459 free (flinfo->internal_relocs);
10460 if (flinfo->external_syms != NULL)
10461 free (flinfo->external_syms);
10462 if (flinfo->locsym_shndx != NULL)
10463 free (flinfo->locsym_shndx);
10464 if (flinfo->internal_syms != NULL)
10465 free (flinfo->internal_syms);
10466 if (flinfo->indices != NULL)
10467 free (flinfo->indices);
10468 if (flinfo->sections != NULL)
10469 free (flinfo->sections);
10470 if (flinfo->symbuf != NULL)
10471 free (flinfo->symbuf);
10472 if (flinfo->symshndxbuf != NULL)
10473 free (flinfo->symshndxbuf);
10474 for (o = obfd->sections; o != NULL; o = o->next)
10475 {
10476 struct bfd_elf_section_data *esdo = elf_section_data (o);
10477 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10478 free (esdo->rel.hashes);
10479 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10480 free (esdo->rela.hashes);
10481 }
10482 }
10483
10484 /* Do the final step of an ELF link. */
10485
10486 bfd_boolean
10487 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10488 {
10489 bfd_boolean dynamic;
10490 bfd_boolean emit_relocs;
10491 bfd *dynobj;
10492 struct elf_final_link_info flinfo;
10493 asection *o;
10494 struct bfd_link_order *p;
10495 bfd *sub;
10496 bfd_size_type max_contents_size;
10497 bfd_size_type max_external_reloc_size;
10498 bfd_size_type max_internal_reloc_count;
10499 bfd_size_type max_sym_count;
10500 bfd_size_type max_sym_shndx_count;
10501 file_ptr off;
10502 Elf_Internal_Sym elfsym;
10503 unsigned int i;
10504 Elf_Internal_Shdr *symtab_hdr;
10505 Elf_Internal_Shdr *symtab_shndx_hdr;
10506 Elf_Internal_Shdr *symstrtab_hdr;
10507 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10508 struct elf_outext_info eoinfo;
10509 bfd_boolean merged;
10510 size_t relativecount = 0;
10511 asection *reldyn = 0;
10512 bfd_size_type amt;
10513 asection *attr_section = NULL;
10514 bfd_vma attr_size = 0;
10515 const char *std_attrs_section;
10516
10517 if (! is_elf_hash_table (info->hash))
10518 return FALSE;
10519
10520 if (info->shared)
10521 abfd->flags |= DYNAMIC;
10522
10523 dynamic = elf_hash_table (info)->dynamic_sections_created;
10524 dynobj = elf_hash_table (info)->dynobj;
10525
10526 emit_relocs = (info->relocatable
10527 || info->emitrelocations);
10528
10529 flinfo.info = info;
10530 flinfo.output_bfd = abfd;
10531 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10532 if (flinfo.symstrtab == NULL)
10533 return FALSE;
10534
10535 if (! dynamic)
10536 {
10537 flinfo.dynsym_sec = NULL;
10538 flinfo.hash_sec = NULL;
10539 flinfo.symver_sec = NULL;
10540 }
10541 else
10542 {
10543 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10544 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10545 /* Note that dynsym_sec can be NULL (on VMS). */
10546 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10547 /* Note that it is OK if symver_sec is NULL. */
10548 }
10549
10550 flinfo.contents = NULL;
10551 flinfo.external_relocs = NULL;
10552 flinfo.internal_relocs = NULL;
10553 flinfo.external_syms = NULL;
10554 flinfo.locsym_shndx = NULL;
10555 flinfo.internal_syms = NULL;
10556 flinfo.indices = NULL;
10557 flinfo.sections = NULL;
10558 flinfo.symbuf = NULL;
10559 flinfo.symshndxbuf = NULL;
10560 flinfo.symbuf_count = 0;
10561 flinfo.shndxbuf_size = 0;
10562 flinfo.filesym_count = 0;
10563
10564 /* The object attributes have been merged. Remove the input
10565 sections from the link, and set the contents of the output
10566 secton. */
10567 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10568 for (o = abfd->sections; o != NULL; o = o->next)
10569 {
10570 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10571 || strcmp (o->name, ".gnu.attributes") == 0)
10572 {
10573 for (p = o->map_head.link_order; p != NULL; p = p->next)
10574 {
10575 asection *input_section;
10576
10577 if (p->type != bfd_indirect_link_order)
10578 continue;
10579 input_section = p->u.indirect.section;
10580 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10581 elf_link_input_bfd ignores this section. */
10582 input_section->flags &= ~SEC_HAS_CONTENTS;
10583 }
10584
10585 attr_size = bfd_elf_obj_attr_size (abfd);
10586 if (attr_size)
10587 {
10588 bfd_set_section_size (abfd, o, attr_size);
10589 attr_section = o;
10590 /* Skip this section later on. */
10591 o->map_head.link_order = NULL;
10592 }
10593 else
10594 o->flags |= SEC_EXCLUDE;
10595 }
10596 }
10597
10598 /* Count up the number of relocations we will output for each output
10599 section, so that we know the sizes of the reloc sections. We
10600 also figure out some maximum sizes. */
10601 max_contents_size = 0;
10602 max_external_reloc_size = 0;
10603 max_internal_reloc_count = 0;
10604 max_sym_count = 0;
10605 max_sym_shndx_count = 0;
10606 merged = FALSE;
10607 for (o = abfd->sections; o != NULL; o = o->next)
10608 {
10609 struct bfd_elf_section_data *esdo = elf_section_data (o);
10610 o->reloc_count = 0;
10611
10612 for (p = o->map_head.link_order; p != NULL; p = p->next)
10613 {
10614 unsigned int reloc_count = 0;
10615 struct bfd_elf_section_data *esdi = NULL;
10616
10617 if (p->type == bfd_section_reloc_link_order
10618 || p->type == bfd_symbol_reloc_link_order)
10619 reloc_count = 1;
10620 else if (p->type == bfd_indirect_link_order)
10621 {
10622 asection *sec;
10623
10624 sec = p->u.indirect.section;
10625 esdi = elf_section_data (sec);
10626
10627 /* Mark all sections which are to be included in the
10628 link. This will normally be every section. We need
10629 to do this so that we can identify any sections which
10630 the linker has decided to not include. */
10631 sec->linker_mark = TRUE;
10632
10633 if (sec->flags & SEC_MERGE)
10634 merged = TRUE;
10635
10636 if (esdo->this_hdr.sh_type == SHT_REL
10637 || esdo->this_hdr.sh_type == SHT_RELA)
10638 /* Some backends use reloc_count in relocation sections
10639 to count particular types of relocs. Of course,
10640 reloc sections themselves can't have relocations. */
10641 reloc_count = 0;
10642 else if (info->relocatable || info->emitrelocations)
10643 reloc_count = sec->reloc_count;
10644 else if (bed->elf_backend_count_relocs)
10645 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10646
10647 if (sec->rawsize > max_contents_size)
10648 max_contents_size = sec->rawsize;
10649 if (sec->size > max_contents_size)
10650 max_contents_size = sec->size;
10651
10652 /* We are interested in just local symbols, not all
10653 symbols. */
10654 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10655 && (sec->owner->flags & DYNAMIC) == 0)
10656 {
10657 size_t sym_count;
10658
10659 if (elf_bad_symtab (sec->owner))
10660 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10661 / bed->s->sizeof_sym);
10662 else
10663 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10664
10665 if (sym_count > max_sym_count)
10666 max_sym_count = sym_count;
10667
10668 if (sym_count > max_sym_shndx_count
10669 && elf_symtab_shndx (sec->owner) != 0)
10670 max_sym_shndx_count = sym_count;
10671
10672 if ((sec->flags & SEC_RELOC) != 0)
10673 {
10674 size_t ext_size = 0;
10675
10676 if (esdi->rel.hdr != NULL)
10677 ext_size = esdi->rel.hdr->sh_size;
10678 if (esdi->rela.hdr != NULL)
10679 ext_size += esdi->rela.hdr->sh_size;
10680
10681 if (ext_size > max_external_reloc_size)
10682 max_external_reloc_size = ext_size;
10683 if (sec->reloc_count > max_internal_reloc_count)
10684 max_internal_reloc_count = sec->reloc_count;
10685 }
10686 }
10687 }
10688
10689 if (reloc_count == 0)
10690 continue;
10691
10692 o->reloc_count += reloc_count;
10693
10694 if (p->type == bfd_indirect_link_order
10695 && (info->relocatable || info->emitrelocations))
10696 {
10697 if (esdi->rel.hdr)
10698 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10699 if (esdi->rela.hdr)
10700 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10701 }
10702 else
10703 {
10704 if (o->use_rela_p)
10705 esdo->rela.count += reloc_count;
10706 else
10707 esdo->rel.count += reloc_count;
10708 }
10709 }
10710
10711 if (o->reloc_count > 0)
10712 o->flags |= SEC_RELOC;
10713 else
10714 {
10715 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10716 set it (this is probably a bug) and if it is set
10717 assign_section_numbers will create a reloc section. */
10718 o->flags &=~ SEC_RELOC;
10719 }
10720
10721 /* If the SEC_ALLOC flag is not set, force the section VMA to
10722 zero. This is done in elf_fake_sections as well, but forcing
10723 the VMA to 0 here will ensure that relocs against these
10724 sections are handled correctly. */
10725 if ((o->flags & SEC_ALLOC) == 0
10726 && ! o->user_set_vma)
10727 o->vma = 0;
10728 }
10729
10730 if (! info->relocatable && merged)
10731 elf_link_hash_traverse (elf_hash_table (info),
10732 _bfd_elf_link_sec_merge_syms, abfd);
10733
10734 /* Figure out the file positions for everything but the symbol table
10735 and the relocs. We set symcount to force assign_section_numbers
10736 to create a symbol table. */
10737 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10738 BFD_ASSERT (! abfd->output_has_begun);
10739 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10740 goto error_return;
10741
10742 /* Set sizes, and assign file positions for reloc sections. */
10743 for (o = abfd->sections; o != NULL; o = o->next)
10744 {
10745 struct bfd_elf_section_data *esdo = elf_section_data (o);
10746 if ((o->flags & SEC_RELOC) != 0)
10747 {
10748 if (esdo->rel.hdr
10749 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10750 goto error_return;
10751
10752 if (esdo->rela.hdr
10753 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10754 goto error_return;
10755 }
10756
10757 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10758 to count upwards while actually outputting the relocations. */
10759 esdo->rel.count = 0;
10760 esdo->rela.count = 0;
10761 }
10762
10763 _bfd_elf_assign_file_positions_for_relocs (abfd);
10764
10765 /* We have now assigned file positions for all the sections except
10766 .symtab and .strtab. We start the .symtab section at the current
10767 file position, and write directly to it. We build the .strtab
10768 section in memory. */
10769 bfd_get_symcount (abfd) = 0;
10770 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10771 /* sh_name is set in prep_headers. */
10772 symtab_hdr->sh_type = SHT_SYMTAB;
10773 /* sh_flags, sh_addr and sh_size all start off zero. */
10774 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10775 /* sh_link is set in assign_section_numbers. */
10776 /* sh_info is set below. */
10777 /* sh_offset is set just below. */
10778 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10779
10780 off = elf_tdata (abfd)->next_file_pos;
10781 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10782
10783 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10784 incorrect. We do not yet know the size of the .symtab section.
10785 We correct next_file_pos below, after we do know the size. */
10786
10787 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10788 continuously seeking to the right position in the file. */
10789 if (! info->keep_memory || max_sym_count < 20)
10790 flinfo.symbuf_size = 20;
10791 else
10792 flinfo.symbuf_size = max_sym_count;
10793 amt = flinfo.symbuf_size;
10794 amt *= bed->s->sizeof_sym;
10795 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10796 if (flinfo.symbuf == NULL)
10797 goto error_return;
10798 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10799 {
10800 /* Wild guess at number of output symbols. realloc'd as needed. */
10801 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10802 flinfo.shndxbuf_size = amt;
10803 amt *= sizeof (Elf_External_Sym_Shndx);
10804 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10805 if (flinfo.symshndxbuf == NULL)
10806 goto error_return;
10807 }
10808
10809 /* Start writing out the symbol table. The first symbol is always a
10810 dummy symbol. */
10811 if (info->strip != strip_all
10812 || emit_relocs)
10813 {
10814 elfsym.st_value = 0;
10815 elfsym.st_size = 0;
10816 elfsym.st_info = 0;
10817 elfsym.st_other = 0;
10818 elfsym.st_shndx = SHN_UNDEF;
10819 elfsym.st_target_internal = 0;
10820 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10821 NULL) != 1)
10822 goto error_return;
10823 }
10824
10825 /* Output a symbol for each section. We output these even if we are
10826 discarding local symbols, since they are used for relocs. These
10827 symbols have no names. We store the index of each one in the
10828 index field of the section, so that we can find it again when
10829 outputting relocs. */
10830 if (info->strip != strip_all
10831 || emit_relocs)
10832 {
10833 elfsym.st_size = 0;
10834 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10835 elfsym.st_other = 0;
10836 elfsym.st_value = 0;
10837 elfsym.st_target_internal = 0;
10838 for (i = 1; i < elf_numsections (abfd); i++)
10839 {
10840 o = bfd_section_from_elf_index (abfd, i);
10841 if (o != NULL)
10842 {
10843 o->target_index = bfd_get_symcount (abfd);
10844 elfsym.st_shndx = i;
10845 if (!info->relocatable)
10846 elfsym.st_value = o->vma;
10847 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10848 goto error_return;
10849 }
10850 }
10851 }
10852
10853 /* Allocate some memory to hold information read in from the input
10854 files. */
10855 if (max_contents_size != 0)
10856 {
10857 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10858 if (flinfo.contents == NULL)
10859 goto error_return;
10860 }
10861
10862 if (max_external_reloc_size != 0)
10863 {
10864 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10865 if (flinfo.external_relocs == NULL)
10866 goto error_return;
10867 }
10868
10869 if (max_internal_reloc_count != 0)
10870 {
10871 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10872 amt *= sizeof (Elf_Internal_Rela);
10873 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10874 if (flinfo.internal_relocs == NULL)
10875 goto error_return;
10876 }
10877
10878 if (max_sym_count != 0)
10879 {
10880 amt = max_sym_count * bed->s->sizeof_sym;
10881 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10882 if (flinfo.external_syms == NULL)
10883 goto error_return;
10884
10885 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10886 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10887 if (flinfo.internal_syms == NULL)
10888 goto error_return;
10889
10890 amt = max_sym_count * sizeof (long);
10891 flinfo.indices = (long int *) bfd_malloc (amt);
10892 if (flinfo.indices == NULL)
10893 goto error_return;
10894
10895 amt = max_sym_count * sizeof (asection *);
10896 flinfo.sections = (asection **) bfd_malloc (amt);
10897 if (flinfo.sections == NULL)
10898 goto error_return;
10899 }
10900
10901 if (max_sym_shndx_count != 0)
10902 {
10903 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10904 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10905 if (flinfo.locsym_shndx == NULL)
10906 goto error_return;
10907 }
10908
10909 if (elf_hash_table (info)->tls_sec)
10910 {
10911 bfd_vma base, end = 0;
10912 asection *sec;
10913
10914 for (sec = elf_hash_table (info)->tls_sec;
10915 sec && (sec->flags & SEC_THREAD_LOCAL);
10916 sec = sec->next)
10917 {
10918 bfd_size_type size = sec->size;
10919
10920 if (size == 0
10921 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10922 {
10923 struct bfd_link_order *ord = sec->map_tail.link_order;
10924
10925 if (ord != NULL)
10926 size = ord->offset + ord->size;
10927 }
10928 end = sec->vma + size;
10929 }
10930 base = elf_hash_table (info)->tls_sec->vma;
10931 /* Only align end of TLS section if static TLS doesn't have special
10932 alignment requirements. */
10933 if (bed->static_tls_alignment == 1)
10934 end = align_power (end,
10935 elf_hash_table (info)->tls_sec->alignment_power);
10936 elf_hash_table (info)->tls_size = end - base;
10937 }
10938
10939 /* Reorder SHF_LINK_ORDER sections. */
10940 for (o = abfd->sections; o != NULL; o = o->next)
10941 {
10942 if (!elf_fixup_link_order (abfd, o))
10943 return FALSE;
10944 }
10945
10946 /* Since ELF permits relocations to be against local symbols, we
10947 must have the local symbols available when we do the relocations.
10948 Since we would rather only read the local symbols once, and we
10949 would rather not keep them in memory, we handle all the
10950 relocations for a single input file at the same time.
10951
10952 Unfortunately, there is no way to know the total number of local
10953 symbols until we have seen all of them, and the local symbol
10954 indices precede the global symbol indices. This means that when
10955 we are generating relocatable output, and we see a reloc against
10956 a global symbol, we can not know the symbol index until we have
10957 finished examining all the local symbols to see which ones we are
10958 going to output. To deal with this, we keep the relocations in
10959 memory, and don't output them until the end of the link. This is
10960 an unfortunate waste of memory, but I don't see a good way around
10961 it. Fortunately, it only happens when performing a relocatable
10962 link, which is not the common case. FIXME: If keep_memory is set
10963 we could write the relocs out and then read them again; I don't
10964 know how bad the memory loss will be. */
10965
10966 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10967 sub->output_has_begun = FALSE;
10968 for (o = abfd->sections; o != NULL; o = o->next)
10969 {
10970 for (p = o->map_head.link_order; p != NULL; p = p->next)
10971 {
10972 if (p->type == bfd_indirect_link_order
10973 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10974 == bfd_target_elf_flavour)
10975 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10976 {
10977 if (! sub->output_has_begun)
10978 {
10979 if (! elf_link_input_bfd (&flinfo, sub))
10980 goto error_return;
10981 sub->output_has_begun = TRUE;
10982 }
10983 }
10984 else if (p->type == bfd_section_reloc_link_order
10985 || p->type == bfd_symbol_reloc_link_order)
10986 {
10987 if (! elf_reloc_link_order (abfd, info, o, p))
10988 goto error_return;
10989 }
10990 else
10991 {
10992 if (! _bfd_default_link_order (abfd, info, o, p))
10993 {
10994 if (p->type == bfd_indirect_link_order
10995 && (bfd_get_flavour (sub)
10996 == bfd_target_elf_flavour)
10997 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10998 != bed->s->elfclass))
10999 {
11000 const char *iclass, *oclass;
11001
11002 if (bed->s->elfclass == ELFCLASS64)
11003 {
11004 iclass = "ELFCLASS32";
11005 oclass = "ELFCLASS64";
11006 }
11007 else
11008 {
11009 iclass = "ELFCLASS64";
11010 oclass = "ELFCLASS32";
11011 }
11012
11013 bfd_set_error (bfd_error_wrong_format);
11014 (*_bfd_error_handler)
11015 (_("%B: file class %s incompatible with %s"),
11016 sub, iclass, oclass);
11017 }
11018
11019 goto error_return;
11020 }
11021 }
11022 }
11023 }
11024
11025 /* Free symbol buffer if needed. */
11026 if (!info->reduce_memory_overheads)
11027 {
11028 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11029 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11030 && elf_tdata (sub)->symbuf)
11031 {
11032 free (elf_tdata (sub)->symbuf);
11033 elf_tdata (sub)->symbuf = NULL;
11034 }
11035 }
11036
11037 /* Output a FILE symbol so that following locals are not associated
11038 with the wrong input file. */
11039 memset (&elfsym, 0, sizeof (elfsym));
11040 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11041 elfsym.st_shndx = SHN_ABS;
11042
11043 if (flinfo.filesym_count > 1
11044 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11045 bfd_und_section_ptr, NULL))
11046 return FALSE;
11047
11048 /* Output any global symbols that got converted to local in a
11049 version script or due to symbol visibility. We do this in a
11050 separate step since ELF requires all local symbols to appear
11051 prior to any global symbols. FIXME: We should only do this if
11052 some global symbols were, in fact, converted to become local.
11053 FIXME: Will this work correctly with the Irix 5 linker? */
11054 eoinfo.failed = FALSE;
11055 eoinfo.flinfo = &flinfo;
11056 eoinfo.localsyms = TRUE;
11057 eoinfo.need_second_pass = FALSE;
11058 eoinfo.second_pass = FALSE;
11059 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11060 if (eoinfo.failed)
11061 return FALSE;
11062
11063 if (flinfo.filesym_count == 1
11064 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11065 bfd_und_section_ptr, NULL))
11066 return FALSE;
11067
11068 if (eoinfo.need_second_pass)
11069 {
11070 eoinfo.second_pass = TRUE;
11071 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11072 if (eoinfo.failed)
11073 return FALSE;
11074 }
11075
11076 /* If backend needs to output some local symbols not present in the hash
11077 table, do it now. */
11078 if (bed->elf_backend_output_arch_local_syms)
11079 {
11080 typedef int (*out_sym_func)
11081 (void *, const char *, Elf_Internal_Sym *, asection *,
11082 struct elf_link_hash_entry *);
11083
11084 if (! ((*bed->elf_backend_output_arch_local_syms)
11085 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11086 return FALSE;
11087 }
11088
11089 /* That wrote out all the local symbols. Finish up the symbol table
11090 with the global symbols. Even if we want to strip everything we
11091 can, we still need to deal with those global symbols that got
11092 converted to local in a version script. */
11093
11094 /* The sh_info field records the index of the first non local symbol. */
11095 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11096
11097 if (dynamic
11098 && flinfo.dynsym_sec != NULL
11099 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11100 {
11101 Elf_Internal_Sym sym;
11102 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11103 long last_local = 0;
11104
11105 /* Write out the section symbols for the output sections. */
11106 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11107 {
11108 asection *s;
11109
11110 sym.st_size = 0;
11111 sym.st_name = 0;
11112 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11113 sym.st_other = 0;
11114 sym.st_target_internal = 0;
11115
11116 for (s = abfd->sections; s != NULL; s = s->next)
11117 {
11118 int indx;
11119 bfd_byte *dest;
11120 long dynindx;
11121
11122 dynindx = elf_section_data (s)->dynindx;
11123 if (dynindx <= 0)
11124 continue;
11125 indx = elf_section_data (s)->this_idx;
11126 BFD_ASSERT (indx > 0);
11127 sym.st_shndx = indx;
11128 if (! check_dynsym (abfd, &sym))
11129 return FALSE;
11130 sym.st_value = s->vma;
11131 dest = dynsym + dynindx * bed->s->sizeof_sym;
11132 if (last_local < dynindx)
11133 last_local = dynindx;
11134 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11135 }
11136 }
11137
11138 /* Write out the local dynsyms. */
11139 if (elf_hash_table (info)->dynlocal)
11140 {
11141 struct elf_link_local_dynamic_entry *e;
11142 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11143 {
11144 asection *s;
11145 bfd_byte *dest;
11146
11147 /* Copy the internal symbol and turn off visibility.
11148 Note that we saved a word of storage and overwrote
11149 the original st_name with the dynstr_index. */
11150 sym = e->isym;
11151 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11152
11153 s = bfd_section_from_elf_index (e->input_bfd,
11154 e->isym.st_shndx);
11155 if (s != NULL)
11156 {
11157 sym.st_shndx =
11158 elf_section_data (s->output_section)->this_idx;
11159 if (! check_dynsym (abfd, &sym))
11160 return FALSE;
11161 sym.st_value = (s->output_section->vma
11162 + s->output_offset
11163 + e->isym.st_value);
11164 }
11165
11166 if (last_local < e->dynindx)
11167 last_local = e->dynindx;
11168
11169 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11170 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11171 }
11172 }
11173
11174 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11175 last_local + 1;
11176 }
11177
11178 /* We get the global symbols from the hash table. */
11179 eoinfo.failed = FALSE;
11180 eoinfo.localsyms = FALSE;
11181 eoinfo.flinfo = &flinfo;
11182 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11183 if (eoinfo.failed)
11184 return FALSE;
11185
11186 /* If backend needs to output some symbols not present in the hash
11187 table, do it now. */
11188 if (bed->elf_backend_output_arch_syms)
11189 {
11190 typedef int (*out_sym_func)
11191 (void *, const char *, Elf_Internal_Sym *, asection *,
11192 struct elf_link_hash_entry *);
11193
11194 if (! ((*bed->elf_backend_output_arch_syms)
11195 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11196 return FALSE;
11197 }
11198
11199 /* Flush all symbols to the file. */
11200 if (! elf_link_flush_output_syms (&flinfo, bed))
11201 return FALSE;
11202
11203 /* Now we know the size of the symtab section. */
11204 off += symtab_hdr->sh_size;
11205
11206 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11207 if (symtab_shndx_hdr->sh_name != 0)
11208 {
11209 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11210 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11211 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11212 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11213 symtab_shndx_hdr->sh_size = amt;
11214
11215 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11216 off, TRUE);
11217
11218 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11219 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11220 return FALSE;
11221 }
11222
11223
11224 /* Finish up and write out the symbol string table (.strtab)
11225 section. */
11226 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11227 /* sh_name was set in prep_headers. */
11228 symstrtab_hdr->sh_type = SHT_STRTAB;
11229 symstrtab_hdr->sh_flags = 0;
11230 symstrtab_hdr->sh_addr = 0;
11231 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11232 symstrtab_hdr->sh_entsize = 0;
11233 symstrtab_hdr->sh_link = 0;
11234 symstrtab_hdr->sh_info = 0;
11235 /* sh_offset is set just below. */
11236 symstrtab_hdr->sh_addralign = 1;
11237
11238 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11239 elf_tdata (abfd)->next_file_pos = off;
11240
11241 if (bfd_get_symcount (abfd) > 0)
11242 {
11243 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11244 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11245 return FALSE;
11246 }
11247
11248 /* Adjust the relocs to have the correct symbol indices. */
11249 for (o = abfd->sections; o != NULL; o = o->next)
11250 {
11251 struct bfd_elf_section_data *esdo = elf_section_data (o);
11252 if ((o->flags & SEC_RELOC) == 0)
11253 continue;
11254
11255 if (esdo->rel.hdr != NULL)
11256 elf_link_adjust_relocs (abfd, &esdo->rel);
11257 if (esdo->rela.hdr != NULL)
11258 elf_link_adjust_relocs (abfd, &esdo->rela);
11259
11260 /* Set the reloc_count field to 0 to prevent write_relocs from
11261 trying to swap the relocs out itself. */
11262 o->reloc_count = 0;
11263 }
11264
11265 if (dynamic && info->combreloc && dynobj != NULL)
11266 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11267
11268 /* If we are linking against a dynamic object, or generating a
11269 shared library, finish up the dynamic linking information. */
11270 if (dynamic)
11271 {
11272 bfd_byte *dyncon, *dynconend;
11273
11274 /* Fix up .dynamic entries. */
11275 o = bfd_get_linker_section (dynobj, ".dynamic");
11276 BFD_ASSERT (o != NULL);
11277
11278 dyncon = o->contents;
11279 dynconend = o->contents + o->size;
11280 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11281 {
11282 Elf_Internal_Dyn dyn;
11283 const char *name;
11284 unsigned int type;
11285
11286 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11287
11288 switch (dyn.d_tag)
11289 {
11290 default:
11291 continue;
11292 case DT_NULL:
11293 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11294 {
11295 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11296 {
11297 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11298 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11299 default: continue;
11300 }
11301 dyn.d_un.d_val = relativecount;
11302 relativecount = 0;
11303 break;
11304 }
11305 continue;
11306
11307 case DT_INIT:
11308 name = info->init_function;
11309 goto get_sym;
11310 case DT_FINI:
11311 name = info->fini_function;
11312 get_sym:
11313 {
11314 struct elf_link_hash_entry *h;
11315
11316 h = elf_link_hash_lookup (elf_hash_table (info), name,
11317 FALSE, FALSE, TRUE);
11318 if (h != NULL
11319 && (h->root.type == bfd_link_hash_defined
11320 || h->root.type == bfd_link_hash_defweak))
11321 {
11322 dyn.d_un.d_ptr = h->root.u.def.value;
11323 o = h->root.u.def.section;
11324 if (o->output_section != NULL)
11325 dyn.d_un.d_ptr += (o->output_section->vma
11326 + o->output_offset);
11327 else
11328 {
11329 /* The symbol is imported from another shared
11330 library and does not apply to this one. */
11331 dyn.d_un.d_ptr = 0;
11332 }
11333 break;
11334 }
11335 }
11336 continue;
11337
11338 case DT_PREINIT_ARRAYSZ:
11339 name = ".preinit_array";
11340 goto get_size;
11341 case DT_INIT_ARRAYSZ:
11342 name = ".init_array";
11343 goto get_size;
11344 case DT_FINI_ARRAYSZ:
11345 name = ".fini_array";
11346 get_size:
11347 o = bfd_get_section_by_name (abfd, name);
11348 if (o == NULL)
11349 {
11350 (*_bfd_error_handler)
11351 (_("%B: could not find output section %s"), abfd, name);
11352 goto error_return;
11353 }
11354 if (o->size == 0)
11355 (*_bfd_error_handler)
11356 (_("warning: %s section has zero size"), name);
11357 dyn.d_un.d_val = o->size;
11358 break;
11359
11360 case DT_PREINIT_ARRAY:
11361 name = ".preinit_array";
11362 goto get_vma;
11363 case DT_INIT_ARRAY:
11364 name = ".init_array";
11365 goto get_vma;
11366 case DT_FINI_ARRAY:
11367 name = ".fini_array";
11368 goto get_vma;
11369
11370 case DT_HASH:
11371 name = ".hash";
11372 goto get_vma;
11373 case DT_GNU_HASH:
11374 name = ".gnu.hash";
11375 goto get_vma;
11376 case DT_STRTAB:
11377 name = ".dynstr";
11378 goto get_vma;
11379 case DT_SYMTAB:
11380 name = ".dynsym";
11381 goto get_vma;
11382 case DT_VERDEF:
11383 name = ".gnu.version_d";
11384 goto get_vma;
11385 case DT_VERNEED:
11386 name = ".gnu.version_r";
11387 goto get_vma;
11388 case DT_VERSYM:
11389 name = ".gnu.version";
11390 get_vma:
11391 o = bfd_get_section_by_name (abfd, name);
11392 if (o == NULL)
11393 {
11394 (*_bfd_error_handler)
11395 (_("%B: could not find output section %s"), abfd, name);
11396 goto error_return;
11397 }
11398 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11399 {
11400 (*_bfd_error_handler)
11401 (_("warning: section '%s' is being made into a note"), name);
11402 bfd_set_error (bfd_error_nonrepresentable_section);
11403 goto error_return;
11404 }
11405 dyn.d_un.d_ptr = o->vma;
11406 break;
11407
11408 case DT_REL:
11409 case DT_RELA:
11410 case DT_RELSZ:
11411 case DT_RELASZ:
11412 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11413 type = SHT_REL;
11414 else
11415 type = SHT_RELA;
11416 dyn.d_un.d_val = 0;
11417 dyn.d_un.d_ptr = 0;
11418 for (i = 1; i < elf_numsections (abfd); i++)
11419 {
11420 Elf_Internal_Shdr *hdr;
11421
11422 hdr = elf_elfsections (abfd)[i];
11423 if (hdr->sh_type == type
11424 && (hdr->sh_flags & SHF_ALLOC) != 0)
11425 {
11426 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11427 dyn.d_un.d_val += hdr->sh_size;
11428 else
11429 {
11430 if (dyn.d_un.d_ptr == 0
11431 || hdr->sh_addr < dyn.d_un.d_ptr)
11432 dyn.d_un.d_ptr = hdr->sh_addr;
11433 }
11434 }
11435 }
11436 break;
11437 }
11438 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11439 }
11440 }
11441
11442 /* If we have created any dynamic sections, then output them. */
11443 if (dynobj != NULL)
11444 {
11445 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11446 goto error_return;
11447
11448 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11449 if (((info->warn_shared_textrel && info->shared)
11450 || info->error_textrel)
11451 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11452 {
11453 bfd_byte *dyncon, *dynconend;
11454
11455 dyncon = o->contents;
11456 dynconend = o->contents + o->size;
11457 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11458 {
11459 Elf_Internal_Dyn dyn;
11460
11461 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11462
11463 if (dyn.d_tag == DT_TEXTREL)
11464 {
11465 if (info->error_textrel)
11466 info->callbacks->einfo
11467 (_("%P%X: read-only segment has dynamic relocations.\n"));
11468 else
11469 info->callbacks->einfo
11470 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11471 break;
11472 }
11473 }
11474 }
11475
11476 for (o = dynobj->sections; o != NULL; o = o->next)
11477 {
11478 if ((o->flags & SEC_HAS_CONTENTS) == 0
11479 || o->size == 0
11480 || o->output_section == bfd_abs_section_ptr)
11481 continue;
11482 if ((o->flags & SEC_LINKER_CREATED) == 0)
11483 {
11484 /* At this point, we are only interested in sections
11485 created by _bfd_elf_link_create_dynamic_sections. */
11486 continue;
11487 }
11488 if (elf_hash_table (info)->stab_info.stabstr == o)
11489 continue;
11490 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11491 continue;
11492 if (strcmp (o->name, ".dynstr") != 0)
11493 {
11494 /* FIXME: octets_per_byte. */
11495 if (! bfd_set_section_contents (abfd, o->output_section,
11496 o->contents,
11497 (file_ptr) o->output_offset,
11498 o->size))
11499 goto error_return;
11500 }
11501 else
11502 {
11503 /* The contents of the .dynstr section are actually in a
11504 stringtab. */
11505 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11506 if (bfd_seek (abfd, off, SEEK_SET) != 0
11507 || ! _bfd_elf_strtab_emit (abfd,
11508 elf_hash_table (info)->dynstr))
11509 goto error_return;
11510 }
11511 }
11512 }
11513
11514 if (info->relocatable)
11515 {
11516 bfd_boolean failed = FALSE;
11517
11518 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11519 if (failed)
11520 goto error_return;
11521 }
11522
11523 /* If we have optimized stabs strings, output them. */
11524 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11525 {
11526 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11527 goto error_return;
11528 }
11529
11530 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11531 goto error_return;
11532
11533 elf_final_link_free (abfd, &flinfo);
11534
11535 elf_tdata (abfd)->linker = TRUE;
11536
11537 if (attr_section)
11538 {
11539 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11540 if (contents == NULL)
11541 return FALSE; /* Bail out and fail. */
11542 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11543 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11544 free (contents);
11545 }
11546
11547 return TRUE;
11548
11549 error_return:
11550 elf_final_link_free (abfd, &flinfo);
11551 return FALSE;
11552 }
11553 \f
11554 /* Initialize COOKIE for input bfd ABFD. */
11555
11556 static bfd_boolean
11557 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11558 struct bfd_link_info *info, bfd *abfd)
11559 {
11560 Elf_Internal_Shdr *symtab_hdr;
11561 const struct elf_backend_data *bed;
11562
11563 bed = get_elf_backend_data (abfd);
11564 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11565
11566 cookie->abfd = abfd;
11567 cookie->sym_hashes = elf_sym_hashes (abfd);
11568 cookie->bad_symtab = elf_bad_symtab (abfd);
11569 if (cookie->bad_symtab)
11570 {
11571 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11572 cookie->extsymoff = 0;
11573 }
11574 else
11575 {
11576 cookie->locsymcount = symtab_hdr->sh_info;
11577 cookie->extsymoff = symtab_hdr->sh_info;
11578 }
11579
11580 if (bed->s->arch_size == 32)
11581 cookie->r_sym_shift = 8;
11582 else
11583 cookie->r_sym_shift = 32;
11584
11585 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11586 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11587 {
11588 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11589 cookie->locsymcount, 0,
11590 NULL, NULL, NULL);
11591 if (cookie->locsyms == NULL)
11592 {
11593 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11594 return FALSE;
11595 }
11596 if (info->keep_memory)
11597 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11598 }
11599 return TRUE;
11600 }
11601
11602 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11603
11604 static void
11605 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11606 {
11607 Elf_Internal_Shdr *symtab_hdr;
11608
11609 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11610 if (cookie->locsyms != NULL
11611 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11612 free (cookie->locsyms);
11613 }
11614
11615 /* Initialize the relocation information in COOKIE for input section SEC
11616 of input bfd ABFD. */
11617
11618 static bfd_boolean
11619 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11620 struct bfd_link_info *info, bfd *abfd,
11621 asection *sec)
11622 {
11623 const struct elf_backend_data *bed;
11624
11625 if (sec->reloc_count == 0)
11626 {
11627 cookie->rels = NULL;
11628 cookie->relend = NULL;
11629 }
11630 else
11631 {
11632 bed = get_elf_backend_data (abfd);
11633
11634 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11635 info->keep_memory);
11636 if (cookie->rels == NULL)
11637 return FALSE;
11638 cookie->rel = cookie->rels;
11639 cookie->relend = (cookie->rels
11640 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11641 }
11642 cookie->rel = cookie->rels;
11643 return TRUE;
11644 }
11645
11646 /* Free the memory allocated by init_reloc_cookie_rels,
11647 if appropriate. */
11648
11649 static void
11650 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11651 asection *sec)
11652 {
11653 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11654 free (cookie->rels);
11655 }
11656
11657 /* Initialize the whole of COOKIE for input section SEC. */
11658
11659 static bfd_boolean
11660 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11661 struct bfd_link_info *info,
11662 asection *sec)
11663 {
11664 if (!init_reloc_cookie (cookie, info, sec->owner))
11665 goto error1;
11666 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11667 goto error2;
11668 return TRUE;
11669
11670 error2:
11671 fini_reloc_cookie (cookie, sec->owner);
11672 error1:
11673 return FALSE;
11674 }
11675
11676 /* Free the memory allocated by init_reloc_cookie_for_section,
11677 if appropriate. */
11678
11679 static void
11680 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11681 asection *sec)
11682 {
11683 fini_reloc_cookie_rels (cookie, sec);
11684 fini_reloc_cookie (cookie, sec->owner);
11685 }
11686 \f
11687 /* Garbage collect unused sections. */
11688
11689 /* Default gc_mark_hook. */
11690
11691 asection *
11692 _bfd_elf_gc_mark_hook (asection *sec,
11693 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11694 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11695 struct elf_link_hash_entry *h,
11696 Elf_Internal_Sym *sym)
11697 {
11698 const char *sec_name;
11699
11700 if (h != NULL)
11701 {
11702 switch (h->root.type)
11703 {
11704 case bfd_link_hash_defined:
11705 case bfd_link_hash_defweak:
11706 return h->root.u.def.section;
11707
11708 case bfd_link_hash_common:
11709 return h->root.u.c.p->section;
11710
11711 case bfd_link_hash_undefined:
11712 case bfd_link_hash_undefweak:
11713 /* To work around a glibc bug, keep all XXX input sections
11714 when there is an as yet undefined reference to __start_XXX
11715 or __stop_XXX symbols. The linker will later define such
11716 symbols for orphan input sections that have a name
11717 representable as a C identifier. */
11718 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11719 sec_name = h->root.root.string + 8;
11720 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11721 sec_name = h->root.root.string + 7;
11722 else
11723 sec_name = NULL;
11724
11725 if (sec_name && *sec_name != '\0')
11726 {
11727 bfd *i;
11728
11729 for (i = info->input_bfds; i; i = i->link_next)
11730 {
11731 sec = bfd_get_section_by_name (i, sec_name);
11732 if (sec)
11733 sec->flags |= SEC_KEEP;
11734 }
11735 }
11736 break;
11737
11738 default:
11739 break;
11740 }
11741 }
11742 else
11743 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11744
11745 return NULL;
11746 }
11747
11748 /* COOKIE->rel describes a relocation against section SEC, which is
11749 a section we've decided to keep. Return the section that contains
11750 the relocation symbol, or NULL if no section contains it. */
11751
11752 asection *
11753 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11754 elf_gc_mark_hook_fn gc_mark_hook,
11755 struct elf_reloc_cookie *cookie)
11756 {
11757 unsigned long r_symndx;
11758 struct elf_link_hash_entry *h;
11759
11760 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11761 if (r_symndx == STN_UNDEF)
11762 return NULL;
11763
11764 if (r_symndx >= cookie->locsymcount
11765 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11766 {
11767 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11768 while (h->root.type == bfd_link_hash_indirect
11769 || h->root.type == bfd_link_hash_warning)
11770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11771 h->mark = 1;
11772 /* If this symbol is weak and there is a non-weak definition, we
11773 keep the non-weak definition because many backends put
11774 dynamic reloc info on the non-weak definition for code
11775 handling copy relocs. */
11776 if (h->u.weakdef != NULL)
11777 h->u.weakdef->mark = 1;
11778 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11779 }
11780
11781 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11782 &cookie->locsyms[r_symndx]);
11783 }
11784
11785 /* COOKIE->rel describes a relocation against section SEC, which is
11786 a section we've decided to keep. Mark the section that contains
11787 the relocation symbol. */
11788
11789 bfd_boolean
11790 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11791 asection *sec,
11792 elf_gc_mark_hook_fn gc_mark_hook,
11793 struct elf_reloc_cookie *cookie)
11794 {
11795 asection *rsec;
11796
11797 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11798 if (rsec && !rsec->gc_mark)
11799 {
11800 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11801 || (rsec->owner->flags & DYNAMIC) != 0)
11802 rsec->gc_mark = 1;
11803 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11804 return FALSE;
11805 }
11806 return TRUE;
11807 }
11808
11809 /* The mark phase of garbage collection. For a given section, mark
11810 it and any sections in this section's group, and all the sections
11811 which define symbols to which it refers. */
11812
11813 bfd_boolean
11814 _bfd_elf_gc_mark (struct bfd_link_info *info,
11815 asection *sec,
11816 elf_gc_mark_hook_fn gc_mark_hook)
11817 {
11818 bfd_boolean ret;
11819 asection *group_sec, *eh_frame;
11820
11821 sec->gc_mark = 1;
11822
11823 /* Mark all the sections in the group. */
11824 group_sec = elf_section_data (sec)->next_in_group;
11825 if (group_sec && !group_sec->gc_mark)
11826 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11827 return FALSE;
11828
11829 /* Look through the section relocs. */
11830 ret = TRUE;
11831 eh_frame = elf_eh_frame_section (sec->owner);
11832 if ((sec->flags & SEC_RELOC) != 0
11833 && sec->reloc_count > 0
11834 && sec != eh_frame)
11835 {
11836 struct elf_reloc_cookie cookie;
11837
11838 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11839 ret = FALSE;
11840 else
11841 {
11842 for (; cookie.rel < cookie.relend; cookie.rel++)
11843 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11844 {
11845 ret = FALSE;
11846 break;
11847 }
11848 fini_reloc_cookie_for_section (&cookie, sec);
11849 }
11850 }
11851
11852 if (ret && eh_frame && elf_fde_list (sec))
11853 {
11854 struct elf_reloc_cookie cookie;
11855
11856 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11857 ret = FALSE;
11858 else
11859 {
11860 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11861 gc_mark_hook, &cookie))
11862 ret = FALSE;
11863 fini_reloc_cookie_for_section (&cookie, eh_frame);
11864 }
11865 }
11866
11867 return ret;
11868 }
11869
11870 /* Keep debug and special sections. */
11871
11872 bfd_boolean
11873 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11874 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11875 {
11876 bfd *ibfd;
11877
11878 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11879 {
11880 asection *isec;
11881 bfd_boolean some_kept;
11882
11883 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11884 continue;
11885
11886 /* Ensure all linker created sections are kept, and see whether
11887 any other section is already marked. */
11888 some_kept = FALSE;
11889 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11890 {
11891 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11892 isec->gc_mark = 1;
11893 else if (isec->gc_mark)
11894 some_kept = TRUE;
11895 }
11896
11897 /* If no section in this file will be kept, then we can
11898 toss out debug sections. */
11899 if (!some_kept)
11900 continue;
11901
11902 /* Keep debug and special sections like .comment when they are
11903 not part of a group, or when we have single-member groups. */
11904 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11905 if ((elf_next_in_group (isec) == NULL
11906 || elf_next_in_group (isec) == isec)
11907 && ((isec->flags & SEC_DEBUGGING) != 0
11908 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11909 isec->gc_mark = 1;
11910 }
11911 return TRUE;
11912 }
11913
11914 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11915
11916 struct elf_gc_sweep_symbol_info
11917 {
11918 struct bfd_link_info *info;
11919 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11920 bfd_boolean);
11921 };
11922
11923 static bfd_boolean
11924 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11925 {
11926 if (!h->mark
11927 && (((h->root.type == bfd_link_hash_defined
11928 || h->root.type == bfd_link_hash_defweak)
11929 && !(h->def_regular
11930 && h->root.u.def.section->gc_mark))
11931 || h->root.type == bfd_link_hash_undefined
11932 || h->root.type == bfd_link_hash_undefweak))
11933 {
11934 struct elf_gc_sweep_symbol_info *inf;
11935
11936 inf = (struct elf_gc_sweep_symbol_info *) data;
11937 (*inf->hide_symbol) (inf->info, h, TRUE);
11938 h->def_regular = 0;
11939 h->ref_regular = 0;
11940 h->ref_regular_nonweak = 0;
11941 }
11942
11943 return TRUE;
11944 }
11945
11946 /* The sweep phase of garbage collection. Remove all garbage sections. */
11947
11948 typedef bfd_boolean (*gc_sweep_hook_fn)
11949 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11950
11951 static bfd_boolean
11952 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11953 {
11954 bfd *sub;
11955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11956 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11957 unsigned long section_sym_count;
11958 struct elf_gc_sweep_symbol_info sweep_info;
11959
11960 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11961 {
11962 asection *o;
11963
11964 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11965 continue;
11966
11967 for (o = sub->sections; o != NULL; o = o->next)
11968 {
11969 /* When any section in a section group is kept, we keep all
11970 sections in the section group. If the first member of
11971 the section group is excluded, we will also exclude the
11972 group section. */
11973 if (o->flags & SEC_GROUP)
11974 {
11975 asection *first = elf_next_in_group (o);
11976 o->gc_mark = first->gc_mark;
11977 }
11978
11979 if (o->gc_mark)
11980 continue;
11981
11982 /* Skip sweeping sections already excluded. */
11983 if (o->flags & SEC_EXCLUDE)
11984 continue;
11985
11986 /* Since this is early in the link process, it is simple
11987 to remove a section from the output. */
11988 o->flags |= SEC_EXCLUDE;
11989
11990 if (info->print_gc_sections && o->size != 0)
11991 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11992
11993 /* But we also have to update some of the relocation
11994 info we collected before. */
11995 if (gc_sweep_hook
11996 && (o->flags & SEC_RELOC) != 0
11997 && o->reloc_count > 0
11998 && !bfd_is_abs_section (o->output_section))
11999 {
12000 Elf_Internal_Rela *internal_relocs;
12001 bfd_boolean r;
12002
12003 internal_relocs
12004 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12005 info->keep_memory);
12006 if (internal_relocs == NULL)
12007 return FALSE;
12008
12009 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12010
12011 if (elf_section_data (o)->relocs != internal_relocs)
12012 free (internal_relocs);
12013
12014 if (!r)
12015 return FALSE;
12016 }
12017 }
12018 }
12019
12020 /* Remove the symbols that were in the swept sections from the dynamic
12021 symbol table. GCFIXME: Anyone know how to get them out of the
12022 static symbol table as well? */
12023 sweep_info.info = info;
12024 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12025 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12026 &sweep_info);
12027
12028 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12029 return TRUE;
12030 }
12031
12032 /* Propagate collected vtable information. This is called through
12033 elf_link_hash_traverse. */
12034
12035 static bfd_boolean
12036 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12037 {
12038 /* Those that are not vtables. */
12039 if (h->vtable == NULL || h->vtable->parent == NULL)
12040 return TRUE;
12041
12042 /* Those vtables that do not have parents, we cannot merge. */
12043 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12044 return TRUE;
12045
12046 /* If we've already been done, exit. */
12047 if (h->vtable->used && h->vtable->used[-1])
12048 return TRUE;
12049
12050 /* Make sure the parent's table is up to date. */
12051 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12052
12053 if (h->vtable->used == NULL)
12054 {
12055 /* None of this table's entries were referenced. Re-use the
12056 parent's table. */
12057 h->vtable->used = h->vtable->parent->vtable->used;
12058 h->vtable->size = h->vtable->parent->vtable->size;
12059 }
12060 else
12061 {
12062 size_t n;
12063 bfd_boolean *cu, *pu;
12064
12065 /* Or the parent's entries into ours. */
12066 cu = h->vtable->used;
12067 cu[-1] = TRUE;
12068 pu = h->vtable->parent->vtable->used;
12069 if (pu != NULL)
12070 {
12071 const struct elf_backend_data *bed;
12072 unsigned int log_file_align;
12073
12074 bed = get_elf_backend_data (h->root.u.def.section->owner);
12075 log_file_align = bed->s->log_file_align;
12076 n = h->vtable->parent->vtable->size >> log_file_align;
12077 while (n--)
12078 {
12079 if (*pu)
12080 *cu = TRUE;
12081 pu++;
12082 cu++;
12083 }
12084 }
12085 }
12086
12087 return TRUE;
12088 }
12089
12090 static bfd_boolean
12091 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12092 {
12093 asection *sec;
12094 bfd_vma hstart, hend;
12095 Elf_Internal_Rela *relstart, *relend, *rel;
12096 const struct elf_backend_data *bed;
12097 unsigned int log_file_align;
12098
12099 /* Take care of both those symbols that do not describe vtables as
12100 well as those that are not loaded. */
12101 if (h->vtable == NULL || h->vtable->parent == NULL)
12102 return TRUE;
12103
12104 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12105 || h->root.type == bfd_link_hash_defweak);
12106
12107 sec = h->root.u.def.section;
12108 hstart = h->root.u.def.value;
12109 hend = hstart + h->size;
12110
12111 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12112 if (!relstart)
12113 return *(bfd_boolean *) okp = FALSE;
12114 bed = get_elf_backend_data (sec->owner);
12115 log_file_align = bed->s->log_file_align;
12116
12117 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12118
12119 for (rel = relstart; rel < relend; ++rel)
12120 if (rel->r_offset >= hstart && rel->r_offset < hend)
12121 {
12122 /* If the entry is in use, do nothing. */
12123 if (h->vtable->used
12124 && (rel->r_offset - hstart) < h->vtable->size)
12125 {
12126 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12127 if (h->vtable->used[entry])
12128 continue;
12129 }
12130 /* Otherwise, kill it. */
12131 rel->r_offset = rel->r_info = rel->r_addend = 0;
12132 }
12133
12134 return TRUE;
12135 }
12136
12137 /* Mark sections containing dynamically referenced symbols. When
12138 building shared libraries, we must assume that any visible symbol is
12139 referenced. */
12140
12141 bfd_boolean
12142 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12143 {
12144 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12145
12146 if ((h->root.type == bfd_link_hash_defined
12147 || h->root.type == bfd_link_hash_defweak)
12148 && (h->ref_dynamic
12149 || ((!info->executable || info->export_dynamic)
12150 && h->def_regular
12151 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12152 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12153 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12154 || !bfd_hide_sym_by_version (info->version_info,
12155 h->root.root.string)))))
12156 h->root.u.def.section->flags |= SEC_KEEP;
12157
12158 return TRUE;
12159 }
12160
12161 /* Keep all sections containing symbols undefined on the command-line,
12162 and the section containing the entry symbol. */
12163
12164 void
12165 _bfd_elf_gc_keep (struct bfd_link_info *info)
12166 {
12167 struct bfd_sym_chain *sym;
12168
12169 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12170 {
12171 struct elf_link_hash_entry *h;
12172
12173 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12174 FALSE, FALSE, FALSE);
12175
12176 if (h != NULL
12177 && (h->root.type == bfd_link_hash_defined
12178 || h->root.type == bfd_link_hash_defweak)
12179 && !bfd_is_abs_section (h->root.u.def.section))
12180 h->root.u.def.section->flags |= SEC_KEEP;
12181 }
12182 }
12183
12184 /* Do mark and sweep of unused sections. */
12185
12186 bfd_boolean
12187 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12188 {
12189 bfd_boolean ok = TRUE;
12190 bfd *sub;
12191 elf_gc_mark_hook_fn gc_mark_hook;
12192 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12193
12194 if (!bed->can_gc_sections
12195 || !is_elf_hash_table (info->hash))
12196 {
12197 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12198 return TRUE;
12199 }
12200
12201 bed->gc_keep (info);
12202
12203 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12204 at the .eh_frame section if we can mark the FDEs individually. */
12205 _bfd_elf_begin_eh_frame_parsing (info);
12206 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12207 {
12208 asection *sec;
12209 struct elf_reloc_cookie cookie;
12210
12211 sec = bfd_get_section_by_name (sub, ".eh_frame");
12212 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12213 {
12214 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12215 if (elf_section_data (sec)->sec_info
12216 && (sec->flags & SEC_LINKER_CREATED) == 0)
12217 elf_eh_frame_section (sub) = sec;
12218 fini_reloc_cookie_for_section (&cookie, sec);
12219 sec = bfd_get_next_section_by_name (sec);
12220 }
12221 }
12222 _bfd_elf_end_eh_frame_parsing (info);
12223
12224 /* Apply transitive closure to the vtable entry usage info. */
12225 elf_link_hash_traverse (elf_hash_table (info),
12226 elf_gc_propagate_vtable_entries_used,
12227 &ok);
12228 if (!ok)
12229 return FALSE;
12230
12231 /* Kill the vtable relocations that were not used. */
12232 elf_link_hash_traverse (elf_hash_table (info),
12233 elf_gc_smash_unused_vtentry_relocs,
12234 &ok);
12235 if (!ok)
12236 return FALSE;
12237
12238 /* Mark dynamically referenced symbols. */
12239 if (elf_hash_table (info)->dynamic_sections_created)
12240 elf_link_hash_traverse (elf_hash_table (info),
12241 bed->gc_mark_dynamic_ref,
12242 info);
12243
12244 /* Grovel through relocs to find out who stays ... */
12245 gc_mark_hook = bed->gc_mark_hook;
12246 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12247 {
12248 asection *o;
12249
12250 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12251 continue;
12252
12253 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12254 Also treat note sections as a root, if the section is not part
12255 of a group. */
12256 for (o = sub->sections; o != NULL; o = o->next)
12257 if (!o->gc_mark
12258 && (o->flags & SEC_EXCLUDE) == 0
12259 && ((o->flags & SEC_KEEP) != 0
12260 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12261 && elf_next_in_group (o) == NULL )))
12262 {
12263 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12264 return FALSE;
12265 }
12266 }
12267
12268 /* Allow the backend to mark additional target specific sections. */
12269 bed->gc_mark_extra_sections (info, gc_mark_hook);
12270
12271 /* ... and mark SEC_EXCLUDE for those that go. */
12272 return elf_gc_sweep (abfd, info);
12273 }
12274 \f
12275 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12276
12277 bfd_boolean
12278 bfd_elf_gc_record_vtinherit (bfd *abfd,
12279 asection *sec,
12280 struct elf_link_hash_entry *h,
12281 bfd_vma offset)
12282 {
12283 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12284 struct elf_link_hash_entry **search, *child;
12285 bfd_size_type extsymcount;
12286 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12287
12288 /* The sh_info field of the symtab header tells us where the
12289 external symbols start. We don't care about the local symbols at
12290 this point. */
12291 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12292 if (!elf_bad_symtab (abfd))
12293 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12294
12295 sym_hashes = elf_sym_hashes (abfd);
12296 sym_hashes_end = sym_hashes + extsymcount;
12297
12298 /* Hunt down the child symbol, which is in this section at the same
12299 offset as the relocation. */
12300 for (search = sym_hashes; search != sym_hashes_end; ++search)
12301 {
12302 if ((child = *search) != NULL
12303 && (child->root.type == bfd_link_hash_defined
12304 || child->root.type == bfd_link_hash_defweak)
12305 && child->root.u.def.section == sec
12306 && child->root.u.def.value == offset)
12307 goto win;
12308 }
12309
12310 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12311 abfd, sec, (unsigned long) offset);
12312 bfd_set_error (bfd_error_invalid_operation);
12313 return FALSE;
12314
12315 win:
12316 if (!child->vtable)
12317 {
12318 child->vtable = (struct elf_link_virtual_table_entry *)
12319 bfd_zalloc (abfd, sizeof (*child->vtable));
12320 if (!child->vtable)
12321 return FALSE;
12322 }
12323 if (!h)
12324 {
12325 /* This *should* only be the absolute section. It could potentially
12326 be that someone has defined a non-global vtable though, which
12327 would be bad. It isn't worth paging in the local symbols to be
12328 sure though; that case should simply be handled by the assembler. */
12329
12330 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12331 }
12332 else
12333 child->vtable->parent = h;
12334
12335 return TRUE;
12336 }
12337
12338 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12339
12340 bfd_boolean
12341 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12342 asection *sec ATTRIBUTE_UNUSED,
12343 struct elf_link_hash_entry *h,
12344 bfd_vma addend)
12345 {
12346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12347 unsigned int log_file_align = bed->s->log_file_align;
12348
12349 if (!h->vtable)
12350 {
12351 h->vtable = (struct elf_link_virtual_table_entry *)
12352 bfd_zalloc (abfd, sizeof (*h->vtable));
12353 if (!h->vtable)
12354 return FALSE;
12355 }
12356
12357 if (addend >= h->vtable->size)
12358 {
12359 size_t size, bytes, file_align;
12360 bfd_boolean *ptr = h->vtable->used;
12361
12362 /* While the symbol is undefined, we have to be prepared to handle
12363 a zero size. */
12364 file_align = 1 << log_file_align;
12365 if (h->root.type == bfd_link_hash_undefined)
12366 size = addend + file_align;
12367 else
12368 {
12369 size = h->size;
12370 if (addend >= size)
12371 {
12372 /* Oops! We've got a reference past the defined end of
12373 the table. This is probably a bug -- shall we warn? */
12374 size = addend + file_align;
12375 }
12376 }
12377 size = (size + file_align - 1) & -file_align;
12378
12379 /* Allocate one extra entry for use as a "done" flag for the
12380 consolidation pass. */
12381 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12382
12383 if (ptr)
12384 {
12385 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12386
12387 if (ptr != NULL)
12388 {
12389 size_t oldbytes;
12390
12391 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12392 * sizeof (bfd_boolean));
12393 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12394 }
12395 }
12396 else
12397 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12398
12399 if (ptr == NULL)
12400 return FALSE;
12401
12402 /* And arrange for that done flag to be at index -1. */
12403 h->vtable->used = ptr + 1;
12404 h->vtable->size = size;
12405 }
12406
12407 h->vtable->used[addend >> log_file_align] = TRUE;
12408
12409 return TRUE;
12410 }
12411
12412 /* Map an ELF section header flag to its corresponding string. */
12413 typedef struct
12414 {
12415 char *flag_name;
12416 flagword flag_value;
12417 } elf_flags_to_name_table;
12418
12419 static elf_flags_to_name_table elf_flags_to_names [] =
12420 {
12421 { "SHF_WRITE", SHF_WRITE },
12422 { "SHF_ALLOC", SHF_ALLOC },
12423 { "SHF_EXECINSTR", SHF_EXECINSTR },
12424 { "SHF_MERGE", SHF_MERGE },
12425 { "SHF_STRINGS", SHF_STRINGS },
12426 { "SHF_INFO_LINK", SHF_INFO_LINK},
12427 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12428 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12429 { "SHF_GROUP", SHF_GROUP },
12430 { "SHF_TLS", SHF_TLS },
12431 { "SHF_MASKOS", SHF_MASKOS },
12432 { "SHF_EXCLUDE", SHF_EXCLUDE },
12433 };
12434
12435 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12436 bfd_boolean
12437 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12438 struct flag_info *flaginfo,
12439 asection *section)
12440 {
12441 const bfd_vma sh_flags = elf_section_flags (section);
12442
12443 if (!flaginfo->flags_initialized)
12444 {
12445 bfd *obfd = info->output_bfd;
12446 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12447 struct flag_info_list *tf = flaginfo->flag_list;
12448 int with_hex = 0;
12449 int without_hex = 0;
12450
12451 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12452 {
12453 unsigned i;
12454 flagword (*lookup) (char *);
12455
12456 lookup = bed->elf_backend_lookup_section_flags_hook;
12457 if (lookup != NULL)
12458 {
12459 flagword hexval = (*lookup) ((char *) tf->name);
12460
12461 if (hexval != 0)
12462 {
12463 if (tf->with == with_flags)
12464 with_hex |= hexval;
12465 else if (tf->with == without_flags)
12466 without_hex |= hexval;
12467 tf->valid = TRUE;
12468 continue;
12469 }
12470 }
12471 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12472 {
12473 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12474 {
12475 if (tf->with == with_flags)
12476 with_hex |= elf_flags_to_names[i].flag_value;
12477 else if (tf->with == without_flags)
12478 without_hex |= elf_flags_to_names[i].flag_value;
12479 tf->valid = TRUE;
12480 break;
12481 }
12482 }
12483 if (!tf->valid)
12484 {
12485 info->callbacks->einfo
12486 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12487 return FALSE;
12488 }
12489 }
12490 flaginfo->flags_initialized = TRUE;
12491 flaginfo->only_with_flags |= with_hex;
12492 flaginfo->not_with_flags |= without_hex;
12493 }
12494
12495 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12496 return FALSE;
12497
12498 if ((flaginfo->not_with_flags & sh_flags) != 0)
12499 return FALSE;
12500
12501 return TRUE;
12502 }
12503
12504 struct alloc_got_off_arg {
12505 bfd_vma gotoff;
12506 struct bfd_link_info *info;
12507 };
12508
12509 /* We need a special top-level link routine to convert got reference counts
12510 to real got offsets. */
12511
12512 static bfd_boolean
12513 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12514 {
12515 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12516 bfd *obfd = gofarg->info->output_bfd;
12517 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12518
12519 if (h->got.refcount > 0)
12520 {
12521 h->got.offset = gofarg->gotoff;
12522 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12523 }
12524 else
12525 h->got.offset = (bfd_vma) -1;
12526
12527 return TRUE;
12528 }
12529
12530 /* And an accompanying bit to work out final got entry offsets once
12531 we're done. Should be called from final_link. */
12532
12533 bfd_boolean
12534 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12535 struct bfd_link_info *info)
12536 {
12537 bfd *i;
12538 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12539 bfd_vma gotoff;
12540 struct alloc_got_off_arg gofarg;
12541
12542 BFD_ASSERT (abfd == info->output_bfd);
12543
12544 if (! is_elf_hash_table (info->hash))
12545 return FALSE;
12546
12547 /* The GOT offset is relative to the .got section, but the GOT header is
12548 put into the .got.plt section, if the backend uses it. */
12549 if (bed->want_got_plt)
12550 gotoff = 0;
12551 else
12552 gotoff = bed->got_header_size;
12553
12554 /* Do the local .got entries first. */
12555 for (i = info->input_bfds; i; i = i->link_next)
12556 {
12557 bfd_signed_vma *local_got;
12558 bfd_size_type j, locsymcount;
12559 Elf_Internal_Shdr *symtab_hdr;
12560
12561 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12562 continue;
12563
12564 local_got = elf_local_got_refcounts (i);
12565 if (!local_got)
12566 continue;
12567
12568 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12569 if (elf_bad_symtab (i))
12570 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12571 else
12572 locsymcount = symtab_hdr->sh_info;
12573
12574 for (j = 0; j < locsymcount; ++j)
12575 {
12576 if (local_got[j] > 0)
12577 {
12578 local_got[j] = gotoff;
12579 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12580 }
12581 else
12582 local_got[j] = (bfd_vma) -1;
12583 }
12584 }
12585
12586 /* Then the global .got entries. .plt refcounts are handled by
12587 adjust_dynamic_symbol */
12588 gofarg.gotoff = gotoff;
12589 gofarg.info = info;
12590 elf_link_hash_traverse (elf_hash_table (info),
12591 elf_gc_allocate_got_offsets,
12592 &gofarg);
12593 return TRUE;
12594 }
12595
12596 /* Many folk need no more in the way of final link than this, once
12597 got entry reference counting is enabled. */
12598
12599 bfd_boolean
12600 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12601 {
12602 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12603 return FALSE;
12604
12605 /* Invoke the regular ELF backend linker to do all the work. */
12606 return bfd_elf_final_link (abfd, info);
12607 }
12608
12609 bfd_boolean
12610 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12611 {
12612 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12613
12614 if (rcookie->bad_symtab)
12615 rcookie->rel = rcookie->rels;
12616
12617 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12618 {
12619 unsigned long r_symndx;
12620
12621 if (! rcookie->bad_symtab)
12622 if (rcookie->rel->r_offset > offset)
12623 return FALSE;
12624 if (rcookie->rel->r_offset != offset)
12625 continue;
12626
12627 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12628 if (r_symndx == STN_UNDEF)
12629 return TRUE;
12630
12631 if (r_symndx >= rcookie->locsymcount
12632 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12633 {
12634 struct elf_link_hash_entry *h;
12635
12636 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12637
12638 while (h->root.type == bfd_link_hash_indirect
12639 || h->root.type == bfd_link_hash_warning)
12640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12641
12642 if ((h->root.type == bfd_link_hash_defined
12643 || h->root.type == bfd_link_hash_defweak)
12644 && discarded_section (h->root.u.def.section))
12645 return TRUE;
12646 else
12647 return FALSE;
12648 }
12649 else
12650 {
12651 /* It's not a relocation against a global symbol,
12652 but it could be a relocation against a local
12653 symbol for a discarded section. */
12654 asection *isec;
12655 Elf_Internal_Sym *isym;
12656
12657 /* Need to: get the symbol; get the section. */
12658 isym = &rcookie->locsyms[r_symndx];
12659 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12660 if (isec != NULL && discarded_section (isec))
12661 return TRUE;
12662 }
12663 return FALSE;
12664 }
12665 return FALSE;
12666 }
12667
12668 /* Discard unneeded references to discarded sections.
12669 Returns TRUE if any section's size was changed. */
12670 /* This function assumes that the relocations are in sorted order,
12671 which is true for all known assemblers. */
12672
12673 bfd_boolean
12674 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12675 {
12676 struct elf_reloc_cookie cookie;
12677 asection *stab, *eh;
12678 const struct elf_backend_data *bed;
12679 bfd *abfd;
12680 bfd_boolean ret = FALSE;
12681
12682 if (info->traditional_format
12683 || !is_elf_hash_table (info->hash))
12684 return FALSE;
12685
12686 _bfd_elf_begin_eh_frame_parsing (info);
12687 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12688 {
12689 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12690 continue;
12691
12692 bed = get_elf_backend_data (abfd);
12693
12694 eh = NULL;
12695 if (!info->relocatable)
12696 {
12697 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12698 while (eh != NULL
12699 && (eh->size == 0
12700 || bfd_is_abs_section (eh->output_section)))
12701 eh = bfd_get_next_section_by_name (eh);
12702 }
12703
12704 stab = bfd_get_section_by_name (abfd, ".stab");
12705 if (stab != NULL
12706 && (stab->size == 0
12707 || bfd_is_abs_section (stab->output_section)
12708 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12709 stab = NULL;
12710
12711 if (stab == NULL
12712 && eh == NULL
12713 && bed->elf_backend_discard_info == NULL)
12714 continue;
12715
12716 if (!init_reloc_cookie (&cookie, info, abfd))
12717 return FALSE;
12718
12719 if (stab != NULL
12720 && stab->reloc_count > 0
12721 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12722 {
12723 if (_bfd_discard_section_stabs (abfd, stab,
12724 elf_section_data (stab)->sec_info,
12725 bfd_elf_reloc_symbol_deleted_p,
12726 &cookie))
12727 ret = TRUE;
12728 fini_reloc_cookie_rels (&cookie, stab);
12729 }
12730
12731 while (eh != NULL
12732 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12733 {
12734 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12735 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12736 bfd_elf_reloc_symbol_deleted_p,
12737 &cookie))
12738 ret = TRUE;
12739 fini_reloc_cookie_rels (&cookie, eh);
12740 eh = bfd_get_next_section_by_name (eh);
12741 }
12742
12743 if (bed->elf_backend_discard_info != NULL
12744 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12745 ret = TRUE;
12746
12747 fini_reloc_cookie (&cookie, abfd);
12748 }
12749 _bfd_elf_end_eh_frame_parsing (info);
12750
12751 if (info->eh_frame_hdr
12752 && !info->relocatable
12753 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12754 ret = TRUE;
12755
12756 return ret;
12757 }
12758
12759 bfd_boolean
12760 _bfd_elf_section_already_linked (bfd *abfd,
12761 asection *sec,
12762 struct bfd_link_info *info)
12763 {
12764 flagword flags;
12765 const char *name, *key;
12766 struct bfd_section_already_linked *l;
12767 struct bfd_section_already_linked_hash_entry *already_linked_list;
12768
12769 if (sec->output_section == bfd_abs_section_ptr)
12770 return FALSE;
12771
12772 flags = sec->flags;
12773
12774 /* Return if it isn't a linkonce section. A comdat group section
12775 also has SEC_LINK_ONCE set. */
12776 if ((flags & SEC_LINK_ONCE) == 0)
12777 return FALSE;
12778
12779 /* Don't put group member sections on our list of already linked
12780 sections. They are handled as a group via their group section. */
12781 if (elf_sec_group (sec) != NULL)
12782 return FALSE;
12783
12784 /* For a SHT_GROUP section, use the group signature as the key. */
12785 name = sec->name;
12786 if ((flags & SEC_GROUP) != 0
12787 && elf_next_in_group (sec) != NULL
12788 && elf_group_name (elf_next_in_group (sec)) != NULL)
12789 key = elf_group_name (elf_next_in_group (sec));
12790 else
12791 {
12792 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12793 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12794 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12795 key++;
12796 else
12797 /* Must be a user linkonce section that doesn't follow gcc's
12798 naming convention. In this case we won't be matching
12799 single member groups. */
12800 key = name;
12801 }
12802
12803 already_linked_list = bfd_section_already_linked_table_lookup (key);
12804
12805 for (l = already_linked_list->entry; l != NULL; l = l->next)
12806 {
12807 /* We may have 2 different types of sections on the list: group
12808 sections with a signature of <key> (<key> is some string),
12809 and linkonce sections named .gnu.linkonce.<type>.<key>.
12810 Match like sections. LTO plugin sections are an exception.
12811 They are always named .gnu.linkonce.t.<key> and match either
12812 type of section. */
12813 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12814 && ((flags & SEC_GROUP) != 0
12815 || strcmp (name, l->sec->name) == 0))
12816 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12817 {
12818 /* The section has already been linked. See if we should
12819 issue a warning. */
12820 if (!_bfd_handle_already_linked (sec, l, info))
12821 return FALSE;
12822
12823 if (flags & SEC_GROUP)
12824 {
12825 asection *first = elf_next_in_group (sec);
12826 asection *s = first;
12827
12828 while (s != NULL)
12829 {
12830 s->output_section = bfd_abs_section_ptr;
12831 /* Record which group discards it. */
12832 s->kept_section = l->sec;
12833 s = elf_next_in_group (s);
12834 /* These lists are circular. */
12835 if (s == first)
12836 break;
12837 }
12838 }
12839
12840 return TRUE;
12841 }
12842 }
12843
12844 /* A single member comdat group section may be discarded by a
12845 linkonce section and vice versa. */
12846 if ((flags & SEC_GROUP) != 0)
12847 {
12848 asection *first = elf_next_in_group (sec);
12849
12850 if (first != NULL && elf_next_in_group (first) == first)
12851 /* Check this single member group against linkonce sections. */
12852 for (l = already_linked_list->entry; l != NULL; l = l->next)
12853 if ((l->sec->flags & SEC_GROUP) == 0
12854 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12855 {
12856 first->output_section = bfd_abs_section_ptr;
12857 first->kept_section = l->sec;
12858 sec->output_section = bfd_abs_section_ptr;
12859 break;
12860 }
12861 }
12862 else
12863 /* Check this linkonce section against single member groups. */
12864 for (l = already_linked_list->entry; l != NULL; l = l->next)
12865 if (l->sec->flags & SEC_GROUP)
12866 {
12867 asection *first = elf_next_in_group (l->sec);
12868
12869 if (first != NULL
12870 && elf_next_in_group (first) == first
12871 && bfd_elf_match_symbols_in_sections (first, sec, info))
12872 {
12873 sec->output_section = bfd_abs_section_ptr;
12874 sec->kept_section = first;
12875 break;
12876 }
12877 }
12878
12879 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12880 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12881 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12882 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12883 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12884 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12885 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12886 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12887 The reverse order cannot happen as there is never a bfd with only the
12888 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12889 matter as here were are looking only for cross-bfd sections. */
12890
12891 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12892 for (l = already_linked_list->entry; l != NULL; l = l->next)
12893 if ((l->sec->flags & SEC_GROUP) == 0
12894 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12895 {
12896 if (abfd != l->sec->owner)
12897 sec->output_section = bfd_abs_section_ptr;
12898 break;
12899 }
12900
12901 /* This is the first section with this name. Record it. */
12902 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12903 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12904 return sec->output_section == bfd_abs_section_ptr;
12905 }
12906
12907 bfd_boolean
12908 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12909 {
12910 return sym->st_shndx == SHN_COMMON;
12911 }
12912
12913 unsigned int
12914 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12915 {
12916 return SHN_COMMON;
12917 }
12918
12919 asection *
12920 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12921 {
12922 return bfd_com_section_ptr;
12923 }
12924
12925 bfd_vma
12926 _bfd_elf_default_got_elt_size (bfd *abfd,
12927 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12928 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12929 bfd *ibfd ATTRIBUTE_UNUSED,
12930 unsigned long symndx ATTRIBUTE_UNUSED)
12931 {
12932 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12933 return bed->s->arch_size / 8;
12934 }
12935
12936 /* Routines to support the creation of dynamic relocs. */
12937
12938 /* Returns the name of the dynamic reloc section associated with SEC. */
12939
12940 static const char *
12941 get_dynamic_reloc_section_name (bfd * abfd,
12942 asection * sec,
12943 bfd_boolean is_rela)
12944 {
12945 char *name;
12946 const char *old_name = bfd_get_section_name (NULL, sec);
12947 const char *prefix = is_rela ? ".rela" : ".rel";
12948
12949 if (old_name == NULL)
12950 return NULL;
12951
12952 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12953 sprintf (name, "%s%s", prefix, old_name);
12954
12955 return name;
12956 }
12957
12958 /* Returns the dynamic reloc section associated with SEC.
12959 If necessary compute the name of the dynamic reloc section based
12960 on SEC's name (looked up in ABFD's string table) and the setting
12961 of IS_RELA. */
12962
12963 asection *
12964 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12965 asection * sec,
12966 bfd_boolean is_rela)
12967 {
12968 asection * reloc_sec = elf_section_data (sec)->sreloc;
12969
12970 if (reloc_sec == NULL)
12971 {
12972 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12973
12974 if (name != NULL)
12975 {
12976 reloc_sec = bfd_get_linker_section (abfd, name);
12977
12978 if (reloc_sec != NULL)
12979 elf_section_data (sec)->sreloc = reloc_sec;
12980 }
12981 }
12982
12983 return reloc_sec;
12984 }
12985
12986 /* Returns the dynamic reloc section associated with SEC. If the
12987 section does not exist it is created and attached to the DYNOBJ
12988 bfd and stored in the SRELOC field of SEC's elf_section_data
12989 structure.
12990
12991 ALIGNMENT is the alignment for the newly created section and
12992 IS_RELA defines whether the name should be .rela.<SEC's name>
12993 or .rel.<SEC's name>. The section name is looked up in the
12994 string table associated with ABFD. */
12995
12996 asection *
12997 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12998 bfd * dynobj,
12999 unsigned int alignment,
13000 bfd * abfd,
13001 bfd_boolean is_rela)
13002 {
13003 asection * reloc_sec = elf_section_data (sec)->sreloc;
13004
13005 if (reloc_sec == NULL)
13006 {
13007 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13008
13009 if (name == NULL)
13010 return NULL;
13011
13012 reloc_sec = bfd_get_linker_section (dynobj, name);
13013
13014 if (reloc_sec == NULL)
13015 {
13016 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13017 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13018 if ((sec->flags & SEC_ALLOC) != 0)
13019 flags |= SEC_ALLOC | SEC_LOAD;
13020
13021 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13022 if (reloc_sec != NULL)
13023 {
13024 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13025 reloc_sec = NULL;
13026 }
13027 }
13028
13029 elf_section_data (sec)->sreloc = reloc_sec;
13030 }
13031
13032 return reloc_sec;
13033 }
13034
13035 /* Copy the ELF symbol type associated with a linker hash entry. */
13036 void
13037 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13038 struct bfd_link_hash_entry * hdest,
13039 struct bfd_link_hash_entry * hsrc)
13040 {
13041 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13042 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13043
13044 ehdest->type = ehsrc->type;
13045 ehdest->target_internal = ehsrc->target_internal;
13046 }
13047
13048 /* Append a RELA relocation REL to section S in BFD. */
13049
13050 void
13051 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13052 {
13053 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13054 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13055 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13056 bed->s->swap_reloca_out (abfd, rel, loc);
13057 }
13058
13059 /* Append a REL relocation REL to section S in BFD. */
13060
13061 void
13062 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13063 {
13064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13065 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13066 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13067 bed->s->swap_reloc_out (abfd, rel, loc);
13068 }
This page took 0.292612 seconds and 5 git commands to generate.