* elflink.c (bfd_elf_size_dynamic_sections): Ignore GNU-stack note
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && entry->isym.st_shndx < SHN_LORESERVE)
622 {
623 asection *s;
624
625 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
626 if (s == NULL || bfd_is_abs_section (s->output_section))
627 {
628 /* We can still bfd_release here as nothing has done another
629 bfd_alloc. We can't do this later in this function. */
630 bfd_release (input_bfd, entry);
631 return 2;
632 }
633 }
634
635 name = (bfd_elf_string_from_elf_section
636 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
637 entry->isym.st_name));
638
639 dynstr = elf_hash_table (info)->dynstr;
640 if (dynstr == NULL)
641 {
642 /* Create a strtab to hold the dynamic symbol names. */
643 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
644 if (dynstr == NULL)
645 return 0;
646 }
647
648 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
649 if (dynstr_index == (unsigned long) -1)
650 return 0;
651 entry->isym.st_name = dynstr_index;
652
653 eht = elf_hash_table (info);
654
655 entry->next = eht->dynlocal;
656 eht->dynlocal = entry;
657 entry->input_bfd = input_bfd;
658 entry->input_indx = input_indx;
659 eht->dynsymcount++;
660
661 /* Whatever binding the symbol had before, it's now local. */
662 entry->isym.st_info
663 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
664
665 /* The dynindx will be set at the end of size_dynamic_sections. */
666
667 return 1;
668 }
669
670 /* Return the dynindex of a local dynamic symbol. */
671
672 long
673 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
674 bfd *input_bfd,
675 long input_indx)
676 {
677 struct elf_link_local_dynamic_entry *e;
678
679 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
680 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
681 return e->dynindx;
682 return -1;
683 }
684
685 /* This function is used to renumber the dynamic symbols, if some of
686 them are removed because they are marked as local. This is called
687 via elf_link_hash_traverse. */
688
689 static bfd_boolean
690 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
691 void *data)
692 {
693 size_t *count = data;
694
695 if (h->root.type == bfd_link_hash_warning)
696 h = (struct elf_link_hash_entry *) h->root.u.i.link;
697
698 if (h->forced_local)
699 return TRUE;
700
701 if (h->dynindx != -1)
702 h->dynindx = ++(*count);
703
704 return TRUE;
705 }
706
707
708 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
709 STB_LOCAL binding. */
710
711 static bfd_boolean
712 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
713 void *data)
714 {
715 size_t *count = data;
716
717 if (h->root.type == bfd_link_hash_warning)
718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
719
720 if (!h->forced_local)
721 return TRUE;
722
723 if (h->dynindx != -1)
724 h->dynindx = ++(*count);
725
726 return TRUE;
727 }
728
729 /* Return true if the dynamic symbol for a given section should be
730 omitted when creating a shared library. */
731 bfd_boolean
732 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
733 struct bfd_link_info *info,
734 asection *p)
735 {
736 struct elf_link_hash_table *htab;
737
738 switch (elf_section_data (p)->this_hdr.sh_type)
739 {
740 case SHT_PROGBITS:
741 case SHT_NOBITS:
742 /* If sh_type is yet undecided, assume it could be
743 SHT_PROGBITS/SHT_NOBITS. */
744 case SHT_NULL:
745 htab = elf_hash_table (info);
746 if (p == htab->tls_sec)
747 return FALSE;
748
749 if (htab->text_index_section != NULL)
750 return p != htab->text_index_section && p != htab->data_index_section;
751
752 if (strcmp (p->name, ".got") == 0
753 || strcmp (p->name, ".got.plt") == 0
754 || strcmp (p->name, ".plt") == 0)
755 {
756 asection *ip;
757
758 if (htab->dynobj != NULL
759 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
760 && (ip->flags & SEC_LINKER_CREATED)
761 && ip->output_section == p)
762 return TRUE;
763 }
764 return FALSE;
765
766 /* There shouldn't be section relative relocations
767 against any other section. */
768 default:
769 return TRUE;
770 }
771 }
772
773 /* Assign dynsym indices. In a shared library we generate a section
774 symbol for each output section, which come first. Next come symbols
775 which have been forced to local binding. Then all of the back-end
776 allocated local dynamic syms, followed by the rest of the global
777 symbols. */
778
779 static unsigned long
780 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
781 struct bfd_link_info *info,
782 unsigned long *section_sym_count)
783 {
784 unsigned long dynsymcount = 0;
785
786 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
787 {
788 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
789 asection *p;
790 for (p = output_bfd->sections; p ; p = p->next)
791 if ((p->flags & SEC_EXCLUDE) == 0
792 && (p->flags & SEC_ALLOC) != 0
793 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
794 elf_section_data (p)->dynindx = ++dynsymcount;
795 else
796 elf_section_data (p)->dynindx = 0;
797 }
798 *section_sym_count = dynsymcount;
799
800 elf_link_hash_traverse (elf_hash_table (info),
801 elf_link_renumber_local_hash_table_dynsyms,
802 &dynsymcount);
803
804 if (elf_hash_table (info)->dynlocal)
805 {
806 struct elf_link_local_dynamic_entry *p;
807 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
808 p->dynindx = ++dynsymcount;
809 }
810
811 elf_link_hash_traverse (elf_hash_table (info),
812 elf_link_renumber_hash_table_dynsyms,
813 &dynsymcount);
814
815 /* There is an unused NULL entry at the head of the table which
816 we must account for in our count. Unless there weren't any
817 symbols, which means we'll have no table at all. */
818 if (dynsymcount != 0)
819 ++dynsymcount;
820
821 elf_hash_table (info)->dynsymcount = dynsymcount;
822 return dynsymcount;
823 }
824
825 /* This function is called when we want to define a new symbol. It
826 handles the various cases which arise when we find a definition in
827 a dynamic object, or when there is already a definition in a
828 dynamic object. The new symbol is described by NAME, SYM, PSEC,
829 and PVALUE. We set SYM_HASH to the hash table entry. We set
830 OVERRIDE if the old symbol is overriding a new definition. We set
831 TYPE_CHANGE_OK if it is OK for the type to change. We set
832 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
833 change, we mean that we shouldn't warn if the type or size does
834 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
835 object is overridden by a regular object. */
836
837 bfd_boolean
838 _bfd_elf_merge_symbol (bfd *abfd,
839 struct bfd_link_info *info,
840 const char *name,
841 Elf_Internal_Sym *sym,
842 asection **psec,
843 bfd_vma *pvalue,
844 unsigned int *pold_alignment,
845 struct elf_link_hash_entry **sym_hash,
846 bfd_boolean *skip,
847 bfd_boolean *override,
848 bfd_boolean *type_change_ok,
849 bfd_boolean *size_change_ok)
850 {
851 asection *sec, *oldsec;
852 struct elf_link_hash_entry *h;
853 struct elf_link_hash_entry *flip;
854 int bind;
855 bfd *oldbfd;
856 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
857 bfd_boolean newweak, oldweak;
858 const struct elf_backend_data *bed;
859
860 *skip = FALSE;
861 *override = FALSE;
862
863 sec = *psec;
864 bind = ELF_ST_BIND (sym->st_info);
865
866 /* Silently discard TLS symbols from --just-syms. There's no way to
867 combine a static TLS block with a new TLS block for this executable. */
868 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
869 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
870 {
871 *skip = TRUE;
872 return TRUE;
873 }
874
875 if (! bfd_is_und_section (sec))
876 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
877 else
878 h = ((struct elf_link_hash_entry *)
879 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
880 if (h == NULL)
881 return FALSE;
882 *sym_hash = h;
883
884 /* This code is for coping with dynamic objects, and is only useful
885 if we are doing an ELF link. */
886 if (info->output_bfd->xvec != abfd->xvec)
887 return TRUE;
888
889 /* For merging, we only care about real symbols. */
890
891 while (h->root.type == bfd_link_hash_indirect
892 || h->root.type == bfd_link_hash_warning)
893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
894
895 /* We have to check it for every instance since the first few may be
896 refereences and not all compilers emit symbol type for undefined
897 symbols. */
898 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
899
900 /* If we just created the symbol, mark it as being an ELF symbol.
901 Other than that, there is nothing to do--there is no merge issue
902 with a newly defined symbol--so we just return. */
903
904 if (h->root.type == bfd_link_hash_new)
905 {
906 h->non_elf = 0;
907 return TRUE;
908 }
909
910 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
911 existing symbol. */
912
913 switch (h->root.type)
914 {
915 default:
916 oldbfd = NULL;
917 oldsec = NULL;
918 break;
919
920 case bfd_link_hash_undefined:
921 case bfd_link_hash_undefweak:
922 oldbfd = h->root.u.undef.abfd;
923 oldsec = NULL;
924 break;
925
926 case bfd_link_hash_defined:
927 case bfd_link_hash_defweak:
928 oldbfd = h->root.u.def.section->owner;
929 oldsec = h->root.u.def.section;
930 break;
931
932 case bfd_link_hash_common:
933 oldbfd = h->root.u.c.p->section->owner;
934 oldsec = h->root.u.c.p->section;
935 break;
936 }
937
938 /* In cases involving weak versioned symbols, we may wind up trying
939 to merge a symbol with itself. Catch that here, to avoid the
940 confusion that results if we try to override a symbol with
941 itself. The additional tests catch cases like
942 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
943 dynamic object, which we do want to handle here. */
944 if (abfd == oldbfd
945 && ((abfd->flags & DYNAMIC) == 0
946 || !h->def_regular))
947 return TRUE;
948
949 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
950 respectively, is from a dynamic object. */
951
952 newdyn = (abfd->flags & DYNAMIC) != 0;
953
954 olddyn = FALSE;
955 if (oldbfd != NULL)
956 olddyn = (oldbfd->flags & DYNAMIC) != 0;
957 else if (oldsec != NULL)
958 {
959 /* This handles the special SHN_MIPS_{TEXT,DATA} section
960 indices used by MIPS ELF. */
961 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
962 }
963
964 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
965 respectively, appear to be a definition rather than reference. */
966
967 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
968
969 olddef = (h->root.type != bfd_link_hash_undefined
970 && h->root.type != bfd_link_hash_undefweak
971 && h->root.type != bfd_link_hash_common);
972
973 bed = get_elf_backend_data (abfd);
974 /* When we try to create a default indirect symbol from the dynamic
975 definition with the default version, we skip it if its type and
976 the type of existing regular definition mismatch. We only do it
977 if the existing regular definition won't be dynamic. */
978 if (pold_alignment == NULL
979 && !info->shared
980 && !info->export_dynamic
981 && !h->ref_dynamic
982 && newdyn
983 && newdef
984 && !olddyn
985 && (olddef || h->root.type == bfd_link_hash_common)
986 && ELF_ST_TYPE (sym->st_info) != h->type
987 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
988 && h->type != STT_NOTYPE
989 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
990 && bed->is_function_type (h->type)))
991 {
992 *skip = TRUE;
993 return TRUE;
994 }
995
996 /* Check TLS symbol. We don't check undefined symbol introduced by
997 "ld -u". */
998 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
999 && ELF_ST_TYPE (sym->st_info) != h->type
1000 && oldbfd != NULL)
1001 {
1002 bfd *ntbfd, *tbfd;
1003 bfd_boolean ntdef, tdef;
1004 asection *ntsec, *tsec;
1005
1006 if (h->type == STT_TLS)
1007 {
1008 ntbfd = abfd;
1009 ntsec = sec;
1010 ntdef = newdef;
1011 tbfd = oldbfd;
1012 tsec = oldsec;
1013 tdef = olddef;
1014 }
1015 else
1016 {
1017 ntbfd = oldbfd;
1018 ntsec = oldsec;
1019 ntdef = olddef;
1020 tbfd = abfd;
1021 tsec = sec;
1022 tdef = newdef;
1023 }
1024
1025 if (tdef && ntdef)
1026 (*_bfd_error_handler)
1027 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1028 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1029 else if (!tdef && !ntdef)
1030 (*_bfd_error_handler)
1031 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1032 tbfd, ntbfd, h->root.root.string);
1033 else if (tdef)
1034 (*_bfd_error_handler)
1035 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1036 tbfd, tsec, ntbfd, h->root.root.string);
1037 else
1038 (*_bfd_error_handler)
1039 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1040 tbfd, ntbfd, ntsec, h->root.root.string);
1041
1042 bfd_set_error (bfd_error_bad_value);
1043 return FALSE;
1044 }
1045
1046 /* We need to remember if a symbol has a definition in a dynamic
1047 object or is weak in all dynamic objects. Internal and hidden
1048 visibility will make it unavailable to dynamic objects. */
1049 if (newdyn && !h->dynamic_def)
1050 {
1051 if (!bfd_is_und_section (sec))
1052 h->dynamic_def = 1;
1053 else
1054 {
1055 /* Check if this symbol is weak in all dynamic objects. If it
1056 is the first time we see it in a dynamic object, we mark
1057 if it is weak. Otherwise, we clear it. */
1058 if (!h->ref_dynamic)
1059 {
1060 if (bind == STB_WEAK)
1061 h->dynamic_weak = 1;
1062 }
1063 else if (bind != STB_WEAK)
1064 h->dynamic_weak = 0;
1065 }
1066 }
1067
1068 /* If the old symbol has non-default visibility, we ignore the new
1069 definition from a dynamic object. */
1070 if (newdyn
1071 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1072 && !bfd_is_und_section (sec))
1073 {
1074 *skip = TRUE;
1075 /* Make sure this symbol is dynamic. */
1076 h->ref_dynamic = 1;
1077 /* A protected symbol has external availability. Make sure it is
1078 recorded as dynamic.
1079
1080 FIXME: Should we check type and size for protected symbol? */
1081 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1082 return bfd_elf_link_record_dynamic_symbol (info, h);
1083 else
1084 return TRUE;
1085 }
1086 else if (!newdyn
1087 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1088 && h->def_dynamic)
1089 {
1090 /* If the new symbol with non-default visibility comes from a
1091 relocatable file and the old definition comes from a dynamic
1092 object, we remove the old definition. */
1093 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1094 {
1095 /* Handle the case where the old dynamic definition is
1096 default versioned. We need to copy the symbol info from
1097 the symbol with default version to the normal one if it
1098 was referenced before. */
1099 if (h->ref_regular)
1100 {
1101 const struct elf_backend_data *bed
1102 = get_elf_backend_data (abfd);
1103 struct elf_link_hash_entry *vh = *sym_hash;
1104 vh->root.type = h->root.type;
1105 h->root.type = bfd_link_hash_indirect;
1106 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1107 /* Protected symbols will override the dynamic definition
1108 with default version. */
1109 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1110 {
1111 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1112 vh->dynamic_def = 1;
1113 vh->ref_dynamic = 1;
1114 }
1115 else
1116 {
1117 h->root.type = vh->root.type;
1118 vh->ref_dynamic = 0;
1119 /* We have to hide it here since it was made dynamic
1120 global with extra bits when the symbol info was
1121 copied from the old dynamic definition. */
1122 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1123 }
1124 h = vh;
1125 }
1126 else
1127 h = *sym_hash;
1128 }
1129
1130 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1131 && bfd_is_und_section (sec))
1132 {
1133 /* If the new symbol is undefined and the old symbol was
1134 also undefined before, we need to make sure
1135 _bfd_generic_link_add_one_symbol doesn't mess
1136 up the linker hash table undefs list. Since the old
1137 definition came from a dynamic object, it is still on the
1138 undefs list. */
1139 h->root.type = bfd_link_hash_undefined;
1140 h->root.u.undef.abfd = abfd;
1141 }
1142 else
1143 {
1144 h->root.type = bfd_link_hash_new;
1145 h->root.u.undef.abfd = NULL;
1146 }
1147
1148 if (h->def_dynamic)
1149 {
1150 h->def_dynamic = 0;
1151 h->ref_dynamic = 1;
1152 h->dynamic_def = 1;
1153 }
1154 /* FIXME: Should we check type and size for protected symbol? */
1155 h->size = 0;
1156 h->type = 0;
1157 return TRUE;
1158 }
1159
1160 /* Differentiate strong and weak symbols. */
1161 newweak = bind == STB_WEAK;
1162 oldweak = (h->root.type == bfd_link_hash_defweak
1163 || h->root.type == bfd_link_hash_undefweak);
1164
1165 /* If a new weak symbol definition comes from a regular file and the
1166 old symbol comes from a dynamic library, we treat the new one as
1167 strong. Similarly, an old weak symbol definition from a regular
1168 file is treated as strong when the new symbol comes from a dynamic
1169 library. Further, an old weak symbol from a dynamic library is
1170 treated as strong if the new symbol is from a dynamic library.
1171 This reflects the way glibc's ld.so works.
1172
1173 Do this before setting *type_change_ok or *size_change_ok so that
1174 we warn properly when dynamic library symbols are overridden. */
1175
1176 if (newdef && !newdyn && olddyn)
1177 newweak = FALSE;
1178 if (olddef && newdyn)
1179 oldweak = FALSE;
1180
1181 /* Allow changes between different types of funciton symbol. */
1182 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1183 && bed->is_function_type (h->type))
1184 *type_change_ok = TRUE;
1185
1186 /* It's OK to change the type if either the existing symbol or the
1187 new symbol is weak. A type change is also OK if the old symbol
1188 is undefined and the new symbol is defined. */
1189
1190 if (oldweak
1191 || newweak
1192 || (newdef
1193 && h->root.type == bfd_link_hash_undefined))
1194 *type_change_ok = TRUE;
1195
1196 /* It's OK to change the size if either the existing symbol or the
1197 new symbol is weak, or if the old symbol is undefined. */
1198
1199 if (*type_change_ok
1200 || h->root.type == bfd_link_hash_undefined)
1201 *size_change_ok = TRUE;
1202
1203 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1204 symbol, respectively, appears to be a common symbol in a dynamic
1205 object. If a symbol appears in an uninitialized section, and is
1206 not weak, and is not a function, then it may be a common symbol
1207 which was resolved when the dynamic object was created. We want
1208 to treat such symbols specially, because they raise special
1209 considerations when setting the symbol size: if the symbol
1210 appears as a common symbol in a regular object, and the size in
1211 the regular object is larger, we must make sure that we use the
1212 larger size. This problematic case can always be avoided in C,
1213 but it must be handled correctly when using Fortran shared
1214 libraries.
1215
1216 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1217 likewise for OLDDYNCOMMON and OLDDEF.
1218
1219 Note that this test is just a heuristic, and that it is quite
1220 possible to have an uninitialized symbol in a shared object which
1221 is really a definition, rather than a common symbol. This could
1222 lead to some minor confusion when the symbol really is a common
1223 symbol in some regular object. However, I think it will be
1224 harmless. */
1225
1226 if (newdyn
1227 && newdef
1228 && !newweak
1229 && (sec->flags & SEC_ALLOC) != 0
1230 && (sec->flags & SEC_LOAD) == 0
1231 && sym->st_size > 0
1232 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1233 newdyncommon = TRUE;
1234 else
1235 newdyncommon = FALSE;
1236
1237 if (olddyn
1238 && olddef
1239 && h->root.type == bfd_link_hash_defined
1240 && h->def_dynamic
1241 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1242 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1243 && h->size > 0
1244 && !bed->is_function_type (h->type))
1245 olddyncommon = TRUE;
1246 else
1247 olddyncommon = FALSE;
1248
1249 /* We now know everything about the old and new symbols. We ask the
1250 backend to check if we can merge them. */
1251 if (bed->merge_symbol
1252 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1253 pold_alignment, skip, override,
1254 type_change_ok, size_change_ok,
1255 &newdyn, &newdef, &newdyncommon, &newweak,
1256 abfd, &sec,
1257 &olddyn, &olddef, &olddyncommon, &oldweak,
1258 oldbfd, &oldsec))
1259 return FALSE;
1260
1261 /* If both the old and the new symbols look like common symbols in a
1262 dynamic object, set the size of the symbol to the larger of the
1263 two. */
1264
1265 if (olddyncommon
1266 && newdyncommon
1267 && sym->st_size != h->size)
1268 {
1269 /* Since we think we have two common symbols, issue a multiple
1270 common warning if desired. Note that we only warn if the
1271 size is different. If the size is the same, we simply let
1272 the old symbol override the new one as normally happens with
1273 symbols defined in dynamic objects. */
1274
1275 if (! ((*info->callbacks->multiple_common)
1276 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1277 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1278 return FALSE;
1279
1280 if (sym->st_size > h->size)
1281 h->size = sym->st_size;
1282
1283 *size_change_ok = TRUE;
1284 }
1285
1286 /* If we are looking at a dynamic object, and we have found a
1287 definition, we need to see if the symbol was already defined by
1288 some other object. If so, we want to use the existing
1289 definition, and we do not want to report a multiple symbol
1290 definition error; we do this by clobbering *PSEC to be
1291 bfd_und_section_ptr.
1292
1293 We treat a common symbol as a definition if the symbol in the
1294 shared library is a function, since common symbols always
1295 represent variables; this can cause confusion in principle, but
1296 any such confusion would seem to indicate an erroneous program or
1297 shared library. We also permit a common symbol in a regular
1298 object to override a weak symbol in a shared object. */
1299
1300 if (newdyn
1301 && newdef
1302 && (olddef
1303 || (h->root.type == bfd_link_hash_common
1304 && (newweak
1305 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1306 {
1307 *override = TRUE;
1308 newdef = FALSE;
1309 newdyncommon = FALSE;
1310
1311 *psec = sec = bfd_und_section_ptr;
1312 *size_change_ok = TRUE;
1313
1314 /* If we get here when the old symbol is a common symbol, then
1315 we are explicitly letting it override a weak symbol or
1316 function in a dynamic object, and we don't want to warn about
1317 a type change. If the old symbol is a defined symbol, a type
1318 change warning may still be appropriate. */
1319
1320 if (h->root.type == bfd_link_hash_common)
1321 *type_change_ok = TRUE;
1322 }
1323
1324 /* Handle the special case of an old common symbol merging with a
1325 new symbol which looks like a common symbol in a shared object.
1326 We change *PSEC and *PVALUE to make the new symbol look like a
1327 common symbol, and let _bfd_generic_link_add_one_symbol do the
1328 right thing. */
1329
1330 if (newdyncommon
1331 && h->root.type == bfd_link_hash_common)
1332 {
1333 *override = TRUE;
1334 newdef = FALSE;
1335 newdyncommon = FALSE;
1336 *pvalue = sym->st_size;
1337 *psec = sec = bed->common_section (oldsec);
1338 *size_change_ok = TRUE;
1339 }
1340
1341 /* Skip weak definitions of symbols that are already defined. */
1342 if (newdef && olddef && newweak)
1343 *skip = TRUE;
1344
1345 /* If the old symbol is from a dynamic object, and the new symbol is
1346 a definition which is not from a dynamic object, then the new
1347 symbol overrides the old symbol. Symbols from regular files
1348 always take precedence over symbols from dynamic objects, even if
1349 they are defined after the dynamic object in the link.
1350
1351 As above, we again permit a common symbol in a regular object to
1352 override a definition in a shared object if the shared object
1353 symbol is a function or is weak. */
1354
1355 flip = NULL;
1356 if (!newdyn
1357 && (newdef
1358 || (bfd_is_com_section (sec)
1359 && (oldweak
1360 || bed->is_function_type (h->type))))
1361 && olddyn
1362 && olddef
1363 && h->def_dynamic)
1364 {
1365 /* Change the hash table entry to undefined, and let
1366 _bfd_generic_link_add_one_symbol do the right thing with the
1367 new definition. */
1368
1369 h->root.type = bfd_link_hash_undefined;
1370 h->root.u.undef.abfd = h->root.u.def.section->owner;
1371 *size_change_ok = TRUE;
1372
1373 olddef = FALSE;
1374 olddyncommon = FALSE;
1375
1376 /* We again permit a type change when a common symbol may be
1377 overriding a function. */
1378
1379 if (bfd_is_com_section (sec))
1380 *type_change_ok = TRUE;
1381
1382 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1383 flip = *sym_hash;
1384 else
1385 /* This union may have been set to be non-NULL when this symbol
1386 was seen in a dynamic object. We must force the union to be
1387 NULL, so that it is correct for a regular symbol. */
1388 h->verinfo.vertree = NULL;
1389 }
1390
1391 /* Handle the special case of a new common symbol merging with an
1392 old symbol that looks like it might be a common symbol defined in
1393 a shared object. Note that we have already handled the case in
1394 which a new common symbol should simply override the definition
1395 in the shared library. */
1396
1397 if (! newdyn
1398 && bfd_is_com_section (sec)
1399 && olddyncommon)
1400 {
1401 /* It would be best if we could set the hash table entry to a
1402 common symbol, but we don't know what to use for the section
1403 or the alignment. */
1404 if (! ((*info->callbacks->multiple_common)
1405 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1406 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1407 return FALSE;
1408
1409 /* If the presumed common symbol in the dynamic object is
1410 larger, pretend that the new symbol has its size. */
1411
1412 if (h->size > *pvalue)
1413 *pvalue = h->size;
1414
1415 /* We need to remember the alignment required by the symbol
1416 in the dynamic object. */
1417 BFD_ASSERT (pold_alignment);
1418 *pold_alignment = h->root.u.def.section->alignment_power;
1419
1420 olddef = FALSE;
1421 olddyncommon = FALSE;
1422
1423 h->root.type = bfd_link_hash_undefined;
1424 h->root.u.undef.abfd = h->root.u.def.section->owner;
1425
1426 *size_change_ok = TRUE;
1427 *type_change_ok = TRUE;
1428
1429 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1430 flip = *sym_hash;
1431 else
1432 h->verinfo.vertree = NULL;
1433 }
1434
1435 if (flip != NULL)
1436 {
1437 /* Handle the case where we had a versioned symbol in a dynamic
1438 library and now find a definition in a normal object. In this
1439 case, we make the versioned symbol point to the normal one. */
1440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1441 flip->root.type = h->root.type;
1442 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1443 h->root.type = bfd_link_hash_indirect;
1444 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1445 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1446 if (h->def_dynamic)
1447 {
1448 h->def_dynamic = 0;
1449 flip->ref_dynamic = 1;
1450 }
1451 }
1452
1453 return TRUE;
1454 }
1455
1456 /* This function is called to create an indirect symbol from the
1457 default for the symbol with the default version if needed. The
1458 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1459 set DYNSYM if the new indirect symbol is dynamic. */
1460
1461 bfd_boolean
1462 _bfd_elf_add_default_symbol (bfd *abfd,
1463 struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 const char *name,
1466 Elf_Internal_Sym *sym,
1467 asection **psec,
1468 bfd_vma *value,
1469 bfd_boolean *dynsym,
1470 bfd_boolean override)
1471 {
1472 bfd_boolean type_change_ok;
1473 bfd_boolean size_change_ok;
1474 bfd_boolean skip;
1475 char *shortname;
1476 struct elf_link_hash_entry *hi;
1477 struct bfd_link_hash_entry *bh;
1478 const struct elf_backend_data *bed;
1479 bfd_boolean collect;
1480 bfd_boolean dynamic;
1481 char *p;
1482 size_t len, shortlen;
1483 asection *sec;
1484
1485 /* If this symbol has a version, and it is the default version, we
1486 create an indirect symbol from the default name to the fully
1487 decorated name. This will cause external references which do not
1488 specify a version to be bound to this version of the symbol. */
1489 p = strchr (name, ELF_VER_CHR);
1490 if (p == NULL || p[1] != ELF_VER_CHR)
1491 return TRUE;
1492
1493 if (override)
1494 {
1495 /* We are overridden by an old definition. We need to check if we
1496 need to create the indirect symbol from the default name. */
1497 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1498 FALSE, FALSE);
1499 BFD_ASSERT (hi != NULL);
1500 if (hi == h)
1501 return TRUE;
1502 while (hi->root.type == bfd_link_hash_indirect
1503 || hi->root.type == bfd_link_hash_warning)
1504 {
1505 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1506 if (hi == h)
1507 return TRUE;
1508 }
1509 }
1510
1511 bed = get_elf_backend_data (abfd);
1512 collect = bed->collect;
1513 dynamic = (abfd->flags & DYNAMIC) != 0;
1514
1515 shortlen = p - name;
1516 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1517 if (shortname == NULL)
1518 return FALSE;
1519 memcpy (shortname, name, shortlen);
1520 shortname[shortlen] = '\0';
1521
1522 /* We are going to create a new symbol. Merge it with any existing
1523 symbol with this name. For the purposes of the merge, act as
1524 though we were defining the symbol we just defined, although we
1525 actually going to define an indirect symbol. */
1526 type_change_ok = FALSE;
1527 size_change_ok = FALSE;
1528 sec = *psec;
1529 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1530 NULL, &hi, &skip, &override,
1531 &type_change_ok, &size_change_ok))
1532 return FALSE;
1533
1534 if (skip)
1535 goto nondefault;
1536
1537 if (! override)
1538 {
1539 bh = &hi->root;
1540 if (! (_bfd_generic_link_add_one_symbol
1541 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1542 0, name, FALSE, collect, &bh)))
1543 return FALSE;
1544 hi = (struct elf_link_hash_entry *) bh;
1545 }
1546 else
1547 {
1548 /* In this case the symbol named SHORTNAME is overriding the
1549 indirect symbol we want to add. We were planning on making
1550 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1551 is the name without a version. NAME is the fully versioned
1552 name, and it is the default version.
1553
1554 Overriding means that we already saw a definition for the
1555 symbol SHORTNAME in a regular object, and it is overriding
1556 the symbol defined in the dynamic object.
1557
1558 When this happens, we actually want to change NAME, the
1559 symbol we just added, to refer to SHORTNAME. This will cause
1560 references to NAME in the shared object to become references
1561 to SHORTNAME in the regular object. This is what we expect
1562 when we override a function in a shared object: that the
1563 references in the shared object will be mapped to the
1564 definition in the regular object. */
1565
1566 while (hi->root.type == bfd_link_hash_indirect
1567 || hi->root.type == bfd_link_hash_warning)
1568 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1569
1570 h->root.type = bfd_link_hash_indirect;
1571 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1572 if (h->def_dynamic)
1573 {
1574 h->def_dynamic = 0;
1575 hi->ref_dynamic = 1;
1576 if (hi->ref_regular
1577 || hi->def_regular)
1578 {
1579 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1580 return FALSE;
1581 }
1582 }
1583
1584 /* Now set HI to H, so that the following code will set the
1585 other fields correctly. */
1586 hi = h;
1587 }
1588
1589 /* Check if HI is a warning symbol. */
1590 if (hi->root.type == bfd_link_hash_warning)
1591 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1592
1593 /* If there is a duplicate definition somewhere, then HI may not
1594 point to an indirect symbol. We will have reported an error to
1595 the user in that case. */
1596
1597 if (hi->root.type == bfd_link_hash_indirect)
1598 {
1599 struct elf_link_hash_entry *ht;
1600
1601 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1602 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1603
1604 /* See if the new flags lead us to realize that the symbol must
1605 be dynamic. */
1606 if (! *dynsym)
1607 {
1608 if (! dynamic)
1609 {
1610 if (info->shared
1611 || hi->ref_dynamic)
1612 *dynsym = TRUE;
1613 }
1614 else
1615 {
1616 if (hi->ref_regular)
1617 *dynsym = TRUE;
1618 }
1619 }
1620 }
1621
1622 /* We also need to define an indirection from the nondefault version
1623 of the symbol. */
1624
1625 nondefault:
1626 len = strlen (name);
1627 shortname = bfd_hash_allocate (&info->hash->table, len);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 memcpy (shortname + shortlen, p + 1, len - shortlen);
1632
1633 /* Once again, merge with any existing symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 return TRUE;
1644
1645 if (override)
1646 {
1647 /* Here SHORTNAME is a versioned name, so we don't expect to see
1648 the type of override we do in the case above unless it is
1649 overridden by a versioned definition. */
1650 if (hi->root.type != bfd_link_hash_defined
1651 && hi->root.type != bfd_link_hash_defweak)
1652 (*_bfd_error_handler)
1653 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1654 abfd, shortname);
1655 }
1656 else
1657 {
1658 bh = &hi->root;
1659 if (! (_bfd_generic_link_add_one_symbol
1660 (info, abfd, shortname, BSF_INDIRECT,
1661 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1662 return FALSE;
1663 hi = (struct elf_link_hash_entry *) bh;
1664
1665 /* If there is a duplicate definition somewhere, then HI may not
1666 point to an indirect symbol. We will have reported an error
1667 to the user in that case. */
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 {
1671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1672
1673 /* See if the new flags lead us to realize that the symbol
1674 must be dynamic. */
1675 if (! *dynsym)
1676 {
1677 if (! dynamic)
1678 {
1679 if (info->shared
1680 || hi->ref_dynamic)
1681 *dynsym = TRUE;
1682 }
1683 else
1684 {
1685 if (hi->ref_regular)
1686 *dynsym = TRUE;
1687 }
1688 }
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694 \f
1695 /* This routine is used to export all defined symbols into the dynamic
1696 symbol table. It is called via elf_link_hash_traverse. */
1697
1698 bfd_boolean
1699 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1700 {
1701 struct elf_info_failed *eif = data;
1702
1703 /* Ignore this if we won't export it. */
1704 if (!eif->info->export_dynamic && !h->dynamic)
1705 return TRUE;
1706
1707 /* Ignore indirect symbols. These are added by the versioning code. */
1708 if (h->root.type == bfd_link_hash_indirect)
1709 return TRUE;
1710
1711 if (h->root.type == bfd_link_hash_warning)
1712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1713
1714 if (h->dynindx == -1
1715 && (h->def_regular
1716 || h->ref_regular))
1717 {
1718 struct bfd_elf_version_tree *t;
1719 struct bfd_elf_version_expr *d;
1720
1721 for (t = eif->verdefs; t != NULL; t = t->next)
1722 {
1723 if (t->globals.list != NULL)
1724 {
1725 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1726 if (d != NULL)
1727 goto doit;
1728 }
1729
1730 if (t->locals.list != NULL)
1731 {
1732 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1733 if (d != NULL)
1734 return TRUE;
1735 }
1736 }
1737
1738 if (!eif->verdefs)
1739 {
1740 doit:
1741 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1742 {
1743 eif->failed = TRUE;
1744 return FALSE;
1745 }
1746 }
1747 }
1748
1749 return TRUE;
1750 }
1751 \f
1752 /* Look through the symbols which are defined in other shared
1753 libraries and referenced here. Update the list of version
1754 dependencies. This will be put into the .gnu.version_r section.
1755 This function is called via elf_link_hash_traverse. */
1756
1757 bfd_boolean
1758 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1759 void *data)
1760 {
1761 struct elf_find_verdep_info *rinfo = data;
1762 Elf_Internal_Verneed *t;
1763 Elf_Internal_Vernaux *a;
1764 bfd_size_type amt;
1765
1766 if (h->root.type == bfd_link_hash_warning)
1767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1768
1769 /* We only care about symbols defined in shared objects with version
1770 information. */
1771 if (!h->def_dynamic
1772 || h->def_regular
1773 || h->dynindx == -1
1774 || h->verinfo.verdef == NULL)
1775 return TRUE;
1776
1777 /* See if we already know about this version. */
1778 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1779 {
1780 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1781 continue;
1782
1783 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1784 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1785 return TRUE;
1786
1787 break;
1788 }
1789
1790 /* This is a new version. Add it to tree we are building. */
1791
1792 if (t == NULL)
1793 {
1794 amt = sizeof *t;
1795 t = bfd_zalloc (rinfo->output_bfd, amt);
1796 if (t == NULL)
1797 {
1798 rinfo->failed = TRUE;
1799 return FALSE;
1800 }
1801
1802 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1803 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1804 elf_tdata (rinfo->output_bfd)->verref = t;
1805 }
1806
1807 amt = sizeof *a;
1808 a = bfd_zalloc (rinfo->output_bfd, amt);
1809 if (a == NULL)
1810 {
1811 rinfo->failed = TRUE;
1812 return FALSE;
1813 }
1814
1815 /* Note that we are copying a string pointer here, and testing it
1816 above. If bfd_elf_string_from_elf_section is ever changed to
1817 discard the string data when low in memory, this will have to be
1818 fixed. */
1819 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1820
1821 a->vna_flags = h->verinfo.verdef->vd_flags;
1822 a->vna_nextptr = t->vn_auxptr;
1823
1824 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1825 ++rinfo->vers;
1826
1827 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1828
1829 t->vn_auxptr = a;
1830
1831 return TRUE;
1832 }
1833
1834 /* Figure out appropriate versions for all the symbols. We may not
1835 have the version number script until we have read all of the input
1836 files, so until that point we don't know which symbols should be
1837 local. This function is called via elf_link_hash_traverse. */
1838
1839 bfd_boolean
1840 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1841 {
1842 struct elf_assign_sym_version_info *sinfo;
1843 struct bfd_link_info *info;
1844 const struct elf_backend_data *bed;
1845 struct elf_info_failed eif;
1846 char *p;
1847 bfd_size_type amt;
1848
1849 sinfo = data;
1850 info = sinfo->info;
1851
1852 if (h->root.type == bfd_link_hash_warning)
1853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1854
1855 /* Fix the symbol flags. */
1856 eif.failed = FALSE;
1857 eif.info = info;
1858 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1859 {
1860 if (eif.failed)
1861 sinfo->failed = TRUE;
1862 return FALSE;
1863 }
1864
1865 /* We only need version numbers for symbols defined in regular
1866 objects. */
1867 if (!h->def_regular)
1868 return TRUE;
1869
1870 bed = get_elf_backend_data (sinfo->output_bfd);
1871 p = strchr (h->root.root.string, ELF_VER_CHR);
1872 if (p != NULL && h->verinfo.vertree == NULL)
1873 {
1874 struct bfd_elf_version_tree *t;
1875 bfd_boolean hidden;
1876
1877 hidden = TRUE;
1878
1879 /* There are two consecutive ELF_VER_CHR characters if this is
1880 not a hidden symbol. */
1881 ++p;
1882 if (*p == ELF_VER_CHR)
1883 {
1884 hidden = FALSE;
1885 ++p;
1886 }
1887
1888 /* If there is no version string, we can just return out. */
1889 if (*p == '\0')
1890 {
1891 if (hidden)
1892 h->hidden = 1;
1893 return TRUE;
1894 }
1895
1896 /* Look for the version. If we find it, it is no longer weak. */
1897 for (t = sinfo->verdefs; t != NULL; t = t->next)
1898 {
1899 if (strcmp (t->name, p) == 0)
1900 {
1901 size_t len;
1902 char *alc;
1903 struct bfd_elf_version_expr *d;
1904
1905 len = p - h->root.root.string;
1906 alc = bfd_malloc (len);
1907 if (alc == NULL)
1908 {
1909 sinfo->failed = TRUE;
1910 return FALSE;
1911 }
1912 memcpy (alc, h->root.root.string, len - 1);
1913 alc[len - 1] = '\0';
1914 if (alc[len - 2] == ELF_VER_CHR)
1915 alc[len - 2] = '\0';
1916
1917 h->verinfo.vertree = t;
1918 t->used = TRUE;
1919 d = NULL;
1920
1921 if (t->globals.list != NULL)
1922 d = (*t->match) (&t->globals, NULL, alc);
1923
1924 /* See if there is anything to force this symbol to
1925 local scope. */
1926 if (d == NULL && t->locals.list != NULL)
1927 {
1928 d = (*t->match) (&t->locals, NULL, alc);
1929 if (d != NULL
1930 && h->dynindx != -1
1931 && ! info->export_dynamic)
1932 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1933 }
1934
1935 free (alc);
1936 break;
1937 }
1938 }
1939
1940 /* If we are building an application, we need to create a
1941 version node for this version. */
1942 if (t == NULL && info->executable)
1943 {
1944 struct bfd_elf_version_tree **pp;
1945 int version_index;
1946
1947 /* If we aren't going to export this symbol, we don't need
1948 to worry about it. */
1949 if (h->dynindx == -1)
1950 return TRUE;
1951
1952 amt = sizeof *t;
1953 t = bfd_zalloc (sinfo->output_bfd, amt);
1954 if (t == NULL)
1955 {
1956 sinfo->failed = TRUE;
1957 return FALSE;
1958 }
1959
1960 t->name = p;
1961 t->name_indx = (unsigned int) -1;
1962 t->used = TRUE;
1963
1964 version_index = 1;
1965 /* Don't count anonymous version tag. */
1966 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1967 version_index = 0;
1968 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1969 ++version_index;
1970 t->vernum = version_index;
1971
1972 *pp = t;
1973
1974 h->verinfo.vertree = t;
1975 }
1976 else if (t == NULL)
1977 {
1978 /* We could not find the version for a symbol when
1979 generating a shared archive. Return an error. */
1980 (*_bfd_error_handler)
1981 (_("%B: version node not found for symbol %s"),
1982 sinfo->output_bfd, h->root.root.string);
1983 bfd_set_error (bfd_error_bad_value);
1984 sinfo->failed = TRUE;
1985 return FALSE;
1986 }
1987
1988 if (hidden)
1989 h->hidden = 1;
1990 }
1991
1992 /* If we don't have a version for this symbol, see if we can find
1993 something. */
1994 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1995 {
1996 struct bfd_elf_version_tree *t;
1997 struct bfd_elf_version_tree *local_ver;
1998 struct bfd_elf_version_expr *d;
1999
2000 /* See if can find what version this symbol is in. If the
2001 symbol is supposed to be local, then don't actually register
2002 it. */
2003 local_ver = NULL;
2004 for (t = sinfo->verdefs; t != NULL; t = t->next)
2005 {
2006 if (t->globals.list != NULL)
2007 {
2008 bfd_boolean matched;
2009
2010 matched = FALSE;
2011 d = NULL;
2012 while ((d = (*t->match) (&t->globals, d,
2013 h->root.root.string)) != NULL)
2014 if (d->symver)
2015 matched = TRUE;
2016 else
2017 {
2018 /* There is a version without definition. Make
2019 the symbol the default definition for this
2020 version. */
2021 h->verinfo.vertree = t;
2022 local_ver = NULL;
2023 d->script = 1;
2024 break;
2025 }
2026 if (d != NULL)
2027 break;
2028 else if (matched)
2029 /* There is no undefined version for this symbol. Hide the
2030 default one. */
2031 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2032 }
2033
2034 if (t->locals.list != NULL)
2035 {
2036 d = NULL;
2037 while ((d = (*t->match) (&t->locals, d,
2038 h->root.root.string)) != NULL)
2039 {
2040 local_ver = t;
2041 /* If the match is "*", keep looking for a more
2042 explicit, perhaps even global, match.
2043 XXX: Shouldn't this be !d->wildcard instead? */
2044 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2045 break;
2046 }
2047
2048 if (d != NULL)
2049 break;
2050 }
2051 }
2052
2053 if (local_ver != NULL)
2054 {
2055 h->verinfo.vertree = local_ver;
2056 if (h->dynindx != -1
2057 && ! info->export_dynamic)
2058 {
2059 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2060 }
2061 }
2062 }
2063
2064 return TRUE;
2065 }
2066 \f
2067 /* Read and swap the relocs from the section indicated by SHDR. This
2068 may be either a REL or a RELA section. The relocations are
2069 translated into RELA relocations and stored in INTERNAL_RELOCS,
2070 which should have already been allocated to contain enough space.
2071 The EXTERNAL_RELOCS are a buffer where the external form of the
2072 relocations should be stored.
2073
2074 Returns FALSE if something goes wrong. */
2075
2076 static bfd_boolean
2077 elf_link_read_relocs_from_section (bfd *abfd,
2078 asection *sec,
2079 Elf_Internal_Shdr *shdr,
2080 void *external_relocs,
2081 Elf_Internal_Rela *internal_relocs)
2082 {
2083 const struct elf_backend_data *bed;
2084 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2085 const bfd_byte *erela;
2086 const bfd_byte *erelaend;
2087 Elf_Internal_Rela *irela;
2088 Elf_Internal_Shdr *symtab_hdr;
2089 size_t nsyms;
2090
2091 /* Position ourselves at the start of the section. */
2092 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2093 return FALSE;
2094
2095 /* Read the relocations. */
2096 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2097 return FALSE;
2098
2099 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2100 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2101
2102 bed = get_elf_backend_data (abfd);
2103
2104 /* Convert the external relocations to the internal format. */
2105 if (shdr->sh_entsize == bed->s->sizeof_rel)
2106 swap_in = bed->s->swap_reloc_in;
2107 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2108 swap_in = bed->s->swap_reloca_in;
2109 else
2110 {
2111 bfd_set_error (bfd_error_wrong_format);
2112 return FALSE;
2113 }
2114
2115 erela = external_relocs;
2116 erelaend = erela + shdr->sh_size;
2117 irela = internal_relocs;
2118 while (erela < erelaend)
2119 {
2120 bfd_vma r_symndx;
2121
2122 (*swap_in) (abfd, erela, irela);
2123 r_symndx = ELF32_R_SYM (irela->r_info);
2124 if (bed->s->arch_size == 64)
2125 r_symndx >>= 24;
2126 if ((size_t) r_symndx >= nsyms)
2127 {
2128 (*_bfd_error_handler)
2129 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2130 " for offset 0x%lx in section `%A'"),
2131 abfd, sec,
2132 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2133 bfd_set_error (bfd_error_bad_value);
2134 return FALSE;
2135 }
2136 irela += bed->s->int_rels_per_ext_rel;
2137 erela += shdr->sh_entsize;
2138 }
2139
2140 return TRUE;
2141 }
2142
2143 /* Read and swap the relocs for a section O. They may have been
2144 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2145 not NULL, they are used as buffers to read into. They are known to
2146 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2147 the return value is allocated using either malloc or bfd_alloc,
2148 according to the KEEP_MEMORY argument. If O has two relocation
2149 sections (both REL and RELA relocations), then the REL_HDR
2150 relocations will appear first in INTERNAL_RELOCS, followed by the
2151 REL_HDR2 relocations. */
2152
2153 Elf_Internal_Rela *
2154 _bfd_elf_link_read_relocs (bfd *abfd,
2155 asection *o,
2156 void *external_relocs,
2157 Elf_Internal_Rela *internal_relocs,
2158 bfd_boolean keep_memory)
2159 {
2160 Elf_Internal_Shdr *rel_hdr;
2161 void *alloc1 = NULL;
2162 Elf_Internal_Rela *alloc2 = NULL;
2163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2164
2165 if (elf_section_data (o)->relocs != NULL)
2166 return elf_section_data (o)->relocs;
2167
2168 if (o->reloc_count == 0)
2169 return NULL;
2170
2171 rel_hdr = &elf_section_data (o)->rel_hdr;
2172
2173 if (internal_relocs == NULL)
2174 {
2175 bfd_size_type size;
2176
2177 size = o->reloc_count;
2178 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2179 if (keep_memory)
2180 internal_relocs = bfd_alloc (abfd, size);
2181 else
2182 internal_relocs = alloc2 = bfd_malloc (size);
2183 if (internal_relocs == NULL)
2184 goto error_return;
2185 }
2186
2187 if (external_relocs == NULL)
2188 {
2189 bfd_size_type size = rel_hdr->sh_size;
2190
2191 if (elf_section_data (o)->rel_hdr2)
2192 size += elf_section_data (o)->rel_hdr2->sh_size;
2193 alloc1 = bfd_malloc (size);
2194 if (alloc1 == NULL)
2195 goto error_return;
2196 external_relocs = alloc1;
2197 }
2198
2199 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2200 external_relocs,
2201 internal_relocs))
2202 goto error_return;
2203 if (elf_section_data (o)->rel_hdr2
2204 && (!elf_link_read_relocs_from_section
2205 (abfd, o,
2206 elf_section_data (o)->rel_hdr2,
2207 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2208 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2209 * bed->s->int_rels_per_ext_rel))))
2210 goto error_return;
2211
2212 /* Cache the results for next time, if we can. */
2213 if (keep_memory)
2214 elf_section_data (o)->relocs = internal_relocs;
2215
2216 if (alloc1 != NULL)
2217 free (alloc1);
2218
2219 /* Don't free alloc2, since if it was allocated we are passing it
2220 back (under the name of internal_relocs). */
2221
2222 return internal_relocs;
2223
2224 error_return:
2225 if (alloc1 != NULL)
2226 free (alloc1);
2227 if (alloc2 != NULL)
2228 free (alloc2);
2229 return NULL;
2230 }
2231
2232 /* Compute the size of, and allocate space for, REL_HDR which is the
2233 section header for a section containing relocations for O. */
2234
2235 bfd_boolean
2236 _bfd_elf_link_size_reloc_section (bfd *abfd,
2237 Elf_Internal_Shdr *rel_hdr,
2238 asection *o)
2239 {
2240 bfd_size_type reloc_count;
2241 bfd_size_type num_rel_hashes;
2242
2243 /* Figure out how many relocations there will be. */
2244 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2245 reloc_count = elf_section_data (o)->rel_count;
2246 else
2247 reloc_count = elf_section_data (o)->rel_count2;
2248
2249 num_rel_hashes = o->reloc_count;
2250 if (num_rel_hashes < reloc_count)
2251 num_rel_hashes = reloc_count;
2252
2253 /* That allows us to calculate the size of the section. */
2254 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2255
2256 /* The contents field must last into write_object_contents, so we
2257 allocate it with bfd_alloc rather than malloc. Also since we
2258 cannot be sure that the contents will actually be filled in,
2259 we zero the allocated space. */
2260 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2261 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2262 return FALSE;
2263
2264 /* We only allocate one set of hash entries, so we only do it the
2265 first time we are called. */
2266 if (elf_section_data (o)->rel_hashes == NULL
2267 && num_rel_hashes)
2268 {
2269 struct elf_link_hash_entry **p;
2270
2271 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2272 if (p == NULL)
2273 return FALSE;
2274
2275 elf_section_data (o)->rel_hashes = p;
2276 }
2277
2278 return TRUE;
2279 }
2280
2281 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2282 originated from the section given by INPUT_REL_HDR) to the
2283 OUTPUT_BFD. */
2284
2285 bfd_boolean
2286 _bfd_elf_link_output_relocs (bfd *output_bfd,
2287 asection *input_section,
2288 Elf_Internal_Shdr *input_rel_hdr,
2289 Elf_Internal_Rela *internal_relocs,
2290 struct elf_link_hash_entry **rel_hash
2291 ATTRIBUTE_UNUSED)
2292 {
2293 Elf_Internal_Rela *irela;
2294 Elf_Internal_Rela *irelaend;
2295 bfd_byte *erel;
2296 Elf_Internal_Shdr *output_rel_hdr;
2297 asection *output_section;
2298 unsigned int *rel_countp = NULL;
2299 const struct elf_backend_data *bed;
2300 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2301
2302 output_section = input_section->output_section;
2303 output_rel_hdr = NULL;
2304
2305 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2306 == input_rel_hdr->sh_entsize)
2307 {
2308 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2309 rel_countp = &elf_section_data (output_section)->rel_count;
2310 }
2311 else if (elf_section_data (output_section)->rel_hdr2
2312 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2313 == input_rel_hdr->sh_entsize))
2314 {
2315 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2316 rel_countp = &elf_section_data (output_section)->rel_count2;
2317 }
2318 else
2319 {
2320 (*_bfd_error_handler)
2321 (_("%B: relocation size mismatch in %B section %A"),
2322 output_bfd, input_section->owner, input_section);
2323 bfd_set_error (bfd_error_wrong_format);
2324 return FALSE;
2325 }
2326
2327 bed = get_elf_backend_data (output_bfd);
2328 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2329 swap_out = bed->s->swap_reloc_out;
2330 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2331 swap_out = bed->s->swap_reloca_out;
2332 else
2333 abort ();
2334
2335 erel = output_rel_hdr->contents;
2336 erel += *rel_countp * input_rel_hdr->sh_entsize;
2337 irela = internal_relocs;
2338 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2339 * bed->s->int_rels_per_ext_rel);
2340 while (irela < irelaend)
2341 {
2342 (*swap_out) (output_bfd, irela, erel);
2343 irela += bed->s->int_rels_per_ext_rel;
2344 erel += input_rel_hdr->sh_entsize;
2345 }
2346
2347 /* Bump the counter, so that we know where to add the next set of
2348 relocations. */
2349 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2350
2351 return TRUE;
2352 }
2353 \f
2354 /* Make weak undefined symbols in PIE dynamic. */
2355
2356 bfd_boolean
2357 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2358 struct elf_link_hash_entry *h)
2359 {
2360 if (info->pie
2361 && h->dynindx == -1
2362 && h->root.type == bfd_link_hash_undefweak)
2363 return bfd_elf_link_record_dynamic_symbol (info, h);
2364
2365 return TRUE;
2366 }
2367
2368 /* Fix up the flags for a symbol. This handles various cases which
2369 can only be fixed after all the input files are seen. This is
2370 currently called by both adjust_dynamic_symbol and
2371 assign_sym_version, which is unnecessary but perhaps more robust in
2372 the face of future changes. */
2373
2374 bfd_boolean
2375 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2376 struct elf_info_failed *eif)
2377 {
2378 const struct elf_backend_data *bed;
2379
2380 /* If this symbol was mentioned in a non-ELF file, try to set
2381 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2382 permit a non-ELF file to correctly refer to a symbol defined in
2383 an ELF dynamic object. */
2384 if (h->non_elf)
2385 {
2386 while (h->root.type == bfd_link_hash_indirect)
2387 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2388
2389 if (h->root.type != bfd_link_hash_defined
2390 && h->root.type != bfd_link_hash_defweak)
2391 {
2392 h->ref_regular = 1;
2393 h->ref_regular_nonweak = 1;
2394 }
2395 else
2396 {
2397 if (h->root.u.def.section->owner != NULL
2398 && (bfd_get_flavour (h->root.u.def.section->owner)
2399 == bfd_target_elf_flavour))
2400 {
2401 h->ref_regular = 1;
2402 h->ref_regular_nonweak = 1;
2403 }
2404 else
2405 h->def_regular = 1;
2406 }
2407
2408 if (h->dynindx == -1
2409 && (h->def_dynamic
2410 || h->ref_dynamic))
2411 {
2412 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2413 {
2414 eif->failed = TRUE;
2415 return FALSE;
2416 }
2417 }
2418 }
2419 else
2420 {
2421 /* Unfortunately, NON_ELF is only correct if the symbol
2422 was first seen in a non-ELF file. Fortunately, if the symbol
2423 was first seen in an ELF file, we're probably OK unless the
2424 symbol was defined in a non-ELF file. Catch that case here.
2425 FIXME: We're still in trouble if the symbol was first seen in
2426 a dynamic object, and then later in a non-ELF regular object. */
2427 if ((h->root.type == bfd_link_hash_defined
2428 || h->root.type == bfd_link_hash_defweak)
2429 && !h->def_regular
2430 && (h->root.u.def.section->owner != NULL
2431 ? (bfd_get_flavour (h->root.u.def.section->owner)
2432 != bfd_target_elf_flavour)
2433 : (bfd_is_abs_section (h->root.u.def.section)
2434 && !h->def_dynamic)))
2435 h->def_regular = 1;
2436 }
2437
2438 /* Backend specific symbol fixup. */
2439 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2440 if (bed->elf_backend_fixup_symbol
2441 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2442 return FALSE;
2443
2444 /* If this is a final link, and the symbol was defined as a common
2445 symbol in a regular object file, and there was no definition in
2446 any dynamic object, then the linker will have allocated space for
2447 the symbol in a common section but the DEF_REGULAR
2448 flag will not have been set. */
2449 if (h->root.type == bfd_link_hash_defined
2450 && !h->def_regular
2451 && h->ref_regular
2452 && !h->def_dynamic
2453 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2454 h->def_regular = 1;
2455
2456 /* If -Bsymbolic was used (which means to bind references to global
2457 symbols to the definition within the shared object), and this
2458 symbol was defined in a regular object, then it actually doesn't
2459 need a PLT entry. Likewise, if the symbol has non-default
2460 visibility. If the symbol has hidden or internal visibility, we
2461 will force it local. */
2462 if (h->needs_plt
2463 && eif->info->shared
2464 && is_elf_hash_table (eif->info->hash)
2465 && (SYMBOLIC_BIND (eif->info, h)
2466 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2467 && h->def_regular)
2468 {
2469 bfd_boolean force_local;
2470
2471 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2472 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2473 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2474 }
2475
2476 /* If a weak undefined symbol has non-default visibility, we also
2477 hide it from the dynamic linker. */
2478 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2479 && h->root.type == bfd_link_hash_undefweak)
2480 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2481
2482 /* If this is a weak defined symbol in a dynamic object, and we know
2483 the real definition in the dynamic object, copy interesting flags
2484 over to the real definition. */
2485 if (h->u.weakdef != NULL)
2486 {
2487 struct elf_link_hash_entry *weakdef;
2488
2489 weakdef = h->u.weakdef;
2490 if (h->root.type == bfd_link_hash_indirect)
2491 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2492
2493 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2494 || h->root.type == bfd_link_hash_defweak);
2495 BFD_ASSERT (weakdef->def_dynamic);
2496
2497 /* If the real definition is defined by a regular object file,
2498 don't do anything special. See the longer description in
2499 _bfd_elf_adjust_dynamic_symbol, below. */
2500 if (weakdef->def_regular)
2501 h->u.weakdef = NULL;
2502 else
2503 {
2504 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2505 || weakdef->root.type == bfd_link_hash_defweak);
2506 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2507 }
2508 }
2509
2510 return TRUE;
2511 }
2512
2513 /* Make the backend pick a good value for a dynamic symbol. This is
2514 called via elf_link_hash_traverse, and also calls itself
2515 recursively. */
2516
2517 bfd_boolean
2518 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2519 {
2520 struct elf_info_failed *eif = data;
2521 bfd *dynobj;
2522 const struct elf_backend_data *bed;
2523
2524 if (! is_elf_hash_table (eif->info->hash))
2525 return FALSE;
2526
2527 if (h->root.type == bfd_link_hash_warning)
2528 {
2529 h->got = elf_hash_table (eif->info)->init_got_offset;
2530 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2531
2532 /* When warning symbols are created, they **replace** the "real"
2533 entry in the hash table, thus we never get to see the real
2534 symbol in a hash traversal. So look at it now. */
2535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2536 }
2537
2538 /* Ignore indirect symbols. These are added by the versioning code. */
2539 if (h->root.type == bfd_link_hash_indirect)
2540 return TRUE;
2541
2542 /* Fix the symbol flags. */
2543 if (! _bfd_elf_fix_symbol_flags (h, eif))
2544 return FALSE;
2545
2546 /* If this symbol does not require a PLT entry, and it is not
2547 defined by a dynamic object, or is not referenced by a regular
2548 object, ignore it. We do have to handle a weak defined symbol,
2549 even if no regular object refers to it, if we decided to add it
2550 to the dynamic symbol table. FIXME: Do we normally need to worry
2551 about symbols which are defined by one dynamic object and
2552 referenced by another one? */
2553 if (!h->needs_plt
2554 && (h->def_regular
2555 || !h->def_dynamic
2556 || (!h->ref_regular
2557 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2558 {
2559 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2560 return TRUE;
2561 }
2562
2563 /* If we've already adjusted this symbol, don't do it again. This
2564 can happen via a recursive call. */
2565 if (h->dynamic_adjusted)
2566 return TRUE;
2567
2568 /* Don't look at this symbol again. Note that we must set this
2569 after checking the above conditions, because we may look at a
2570 symbol once, decide not to do anything, and then get called
2571 recursively later after REF_REGULAR is set below. */
2572 h->dynamic_adjusted = 1;
2573
2574 /* If this is a weak definition, and we know a real definition, and
2575 the real symbol is not itself defined by a regular object file,
2576 then get a good value for the real definition. We handle the
2577 real symbol first, for the convenience of the backend routine.
2578
2579 Note that there is a confusing case here. If the real definition
2580 is defined by a regular object file, we don't get the real symbol
2581 from the dynamic object, but we do get the weak symbol. If the
2582 processor backend uses a COPY reloc, then if some routine in the
2583 dynamic object changes the real symbol, we will not see that
2584 change in the corresponding weak symbol. This is the way other
2585 ELF linkers work as well, and seems to be a result of the shared
2586 library model.
2587
2588 I will clarify this issue. Most SVR4 shared libraries define the
2589 variable _timezone and define timezone as a weak synonym. The
2590 tzset call changes _timezone. If you write
2591 extern int timezone;
2592 int _timezone = 5;
2593 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2594 you might expect that, since timezone is a synonym for _timezone,
2595 the same number will print both times. However, if the processor
2596 backend uses a COPY reloc, then actually timezone will be copied
2597 into your process image, and, since you define _timezone
2598 yourself, _timezone will not. Thus timezone and _timezone will
2599 wind up at different memory locations. The tzset call will set
2600 _timezone, leaving timezone unchanged. */
2601
2602 if (h->u.weakdef != NULL)
2603 {
2604 /* If we get to this point, we know there is an implicit
2605 reference by a regular object file via the weak symbol H.
2606 FIXME: Is this really true? What if the traversal finds
2607 H->U.WEAKDEF before it finds H? */
2608 h->u.weakdef->ref_regular = 1;
2609
2610 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2611 return FALSE;
2612 }
2613
2614 /* If a symbol has no type and no size and does not require a PLT
2615 entry, then we are probably about to do the wrong thing here: we
2616 are probably going to create a COPY reloc for an empty object.
2617 This case can arise when a shared object is built with assembly
2618 code, and the assembly code fails to set the symbol type. */
2619 if (h->size == 0
2620 && h->type == STT_NOTYPE
2621 && !h->needs_plt)
2622 (*_bfd_error_handler)
2623 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2624 h->root.root.string);
2625
2626 dynobj = elf_hash_table (eif->info)->dynobj;
2627 bed = get_elf_backend_data (dynobj);
2628 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2629 {
2630 eif->failed = TRUE;
2631 return FALSE;
2632 }
2633
2634 return TRUE;
2635 }
2636
2637 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2638 DYNBSS. */
2639
2640 bfd_boolean
2641 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2642 asection *dynbss)
2643 {
2644 unsigned int power_of_two;
2645 bfd_vma mask;
2646 asection *sec = h->root.u.def.section;
2647
2648 /* The section aligment of definition is the maximum alignment
2649 requirement of symbols defined in the section. Since we don't
2650 know the symbol alignment requirement, we start with the
2651 maximum alignment and check low bits of the symbol address
2652 for the minimum alignment. */
2653 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2654 mask = ((bfd_vma) 1 << power_of_two) - 1;
2655 while ((h->root.u.def.value & mask) != 0)
2656 {
2657 mask >>= 1;
2658 --power_of_two;
2659 }
2660
2661 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2662 dynbss))
2663 {
2664 /* Adjust the section alignment if needed. */
2665 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2666 power_of_two))
2667 return FALSE;
2668 }
2669
2670 /* We make sure that the symbol will be aligned properly. */
2671 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2672
2673 /* Define the symbol as being at this point in DYNBSS. */
2674 h->root.u.def.section = dynbss;
2675 h->root.u.def.value = dynbss->size;
2676
2677 /* Increment the size of DYNBSS to make room for the symbol. */
2678 dynbss->size += h->size;
2679
2680 return TRUE;
2681 }
2682
2683 /* Adjust all external symbols pointing into SEC_MERGE sections
2684 to reflect the object merging within the sections. */
2685
2686 bfd_boolean
2687 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2688 {
2689 asection *sec;
2690
2691 if (h->root.type == bfd_link_hash_warning)
2692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2693
2694 if ((h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2697 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2698 {
2699 bfd *output_bfd = data;
2700
2701 h->root.u.def.value =
2702 _bfd_merged_section_offset (output_bfd,
2703 &h->root.u.def.section,
2704 elf_section_data (sec)->sec_info,
2705 h->root.u.def.value);
2706 }
2707
2708 return TRUE;
2709 }
2710
2711 /* Returns false if the symbol referred to by H should be considered
2712 to resolve local to the current module, and true if it should be
2713 considered to bind dynamically. */
2714
2715 bfd_boolean
2716 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2717 struct bfd_link_info *info,
2718 bfd_boolean ignore_protected)
2719 {
2720 bfd_boolean binding_stays_local_p;
2721 const struct elf_backend_data *bed;
2722 struct elf_link_hash_table *hash_table;
2723
2724 if (h == NULL)
2725 return FALSE;
2726
2727 while (h->root.type == bfd_link_hash_indirect
2728 || h->root.type == bfd_link_hash_warning)
2729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2730
2731 /* If it was forced local, then clearly it's not dynamic. */
2732 if (h->dynindx == -1)
2733 return FALSE;
2734 if (h->forced_local)
2735 return FALSE;
2736
2737 /* Identify the cases where name binding rules say that a
2738 visible symbol resolves locally. */
2739 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2740
2741 switch (ELF_ST_VISIBILITY (h->other))
2742 {
2743 case STV_INTERNAL:
2744 case STV_HIDDEN:
2745 return FALSE;
2746
2747 case STV_PROTECTED:
2748 hash_table = elf_hash_table (info);
2749 if (!is_elf_hash_table (hash_table))
2750 return FALSE;
2751
2752 bed = get_elf_backend_data (hash_table->dynobj);
2753
2754 /* Proper resolution for function pointer equality may require
2755 that these symbols perhaps be resolved dynamically, even though
2756 we should be resolving them to the current module. */
2757 if (!ignore_protected || !bed->is_function_type (h->type))
2758 binding_stays_local_p = TRUE;
2759 break;
2760
2761 default:
2762 break;
2763 }
2764
2765 /* If it isn't defined locally, then clearly it's dynamic. */
2766 if (!h->def_regular)
2767 return TRUE;
2768
2769 /* Otherwise, the symbol is dynamic if binding rules don't tell
2770 us that it remains local. */
2771 return !binding_stays_local_p;
2772 }
2773
2774 /* Return true if the symbol referred to by H should be considered
2775 to resolve local to the current module, and false otherwise. Differs
2776 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2777 undefined symbols and weak symbols. */
2778
2779 bfd_boolean
2780 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2781 struct bfd_link_info *info,
2782 bfd_boolean local_protected)
2783 {
2784 const struct elf_backend_data *bed;
2785 struct elf_link_hash_table *hash_table;
2786
2787 /* If it's a local sym, of course we resolve locally. */
2788 if (h == NULL)
2789 return TRUE;
2790
2791 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2792 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2793 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2794 return TRUE;
2795
2796 /* Common symbols that become definitions don't get the DEF_REGULAR
2797 flag set, so test it first, and don't bail out. */
2798 if (ELF_COMMON_DEF_P (h))
2799 /* Do nothing. */;
2800 /* If we don't have a definition in a regular file, then we can't
2801 resolve locally. The sym is either undefined or dynamic. */
2802 else if (!h->def_regular)
2803 return FALSE;
2804
2805 /* Forced local symbols resolve locally. */
2806 if (h->forced_local)
2807 return TRUE;
2808
2809 /* As do non-dynamic symbols. */
2810 if (h->dynindx == -1)
2811 return TRUE;
2812
2813 /* At this point, we know the symbol is defined and dynamic. In an
2814 executable it must resolve locally, likewise when building symbolic
2815 shared libraries. */
2816 if (info->executable || SYMBOLIC_BIND (info, h))
2817 return TRUE;
2818
2819 /* Now deal with defined dynamic symbols in shared libraries. Ones
2820 with default visibility might not resolve locally. */
2821 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2822 return FALSE;
2823
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2833
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2838 }
2839
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2842
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2845 {
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2848
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2853
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2857
2858 elf_hash_table (info)->tls_sec = tls;
2859
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2864
2865 return tls;
2866 }
2867
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2872 {
2873 const struct elf_backend_data *bed;
2874
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2879
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2884
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2888
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2893
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2898
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2900
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2914 {
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2923
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2927
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2930
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2937
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2943
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2945
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2949 {
2950 extsymcount = symcount;
2951 extsymoff = 0;
2952 }
2953 else
2954 {
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2957 }
2958
2959 if (extsymcount == 0)
2960 return FALSE;
2961
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2967
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2971 {
2972 const char *name;
2973
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2978
2979 if (strcmp (name, symdef->name) == 0)
2980 {
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2983 }
2984 }
2985
2986 free (isymbuf);
2987
2988 return result;
2989 }
2990 \f
2991 /* Add an entry to the .dynamic table. */
2992
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2997 {
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3004
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3008
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3012
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3017
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3021
3022 s->size = newsize;
3023 s->contents = newcontents;
3024
3025 return TRUE;
3026 }
3027
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3031
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3050
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3052 {
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3063 {
3064 Elf_Internal_Dyn dyn;
3065
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3069 {
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3072 }
3073 }
3074 }
3075
3076 if (do_it)
3077 {
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3080
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3083 }
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087
3088 return 0;
3089 }
3090
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3094 {
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3098
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3105 {
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3109 }
3110 return 0;
3111 }
3112
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3115
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3118 {
3119 struct elf_strtab_hash *dynstr = data;
3120
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3123
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3127 }
3128
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3131
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3134 {
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3143
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3146
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3150
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
3157
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3160 {
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3174 }
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3176 }
3177
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3182
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3185
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3188 {
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3194
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3197 do
3198 {
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3205 {
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3213 }
3214 }
3215 while (def.vd_next);
3216 }
3217
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3226
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3238 {
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3247 }
3248 }
3249 while (need.vn_next);
3250 }
3251
3252 return TRUE;
3253 }
3254 \f
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3257 the same target. */
3258
3259 bfd_boolean
3260 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3261 const bfd_target *output)
3262 {
3263 return input == output;
3264 }
3265
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3269
3270 bfd_boolean
3271 _bfd_elf_relocs_compatible (const bfd_target *input,
3272 const bfd_target *output)
3273 {
3274 const struct elf_backend_data *obed, *ibed;
3275
3276 if (input == output)
3277 return TRUE;
3278
3279 ibed = xvec_get_elf_backend_data (input);
3280 obed = xvec_get_elf_backend_data (output);
3281
3282 if (ibed->arch != obed->arch)
3283 return FALSE;
3284
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed->relocs_compatible == obed->relocs_compatible;
3287 }
3288
3289 /* Add symbols from an ELF object file to the linker hash table. */
3290
3291 static bfd_boolean
3292 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3293 {
3294 Elf_Internal_Shdr *hdr;
3295 bfd_size_type symcount;
3296 bfd_size_type extsymcount;
3297 bfd_size_type extsymoff;
3298 struct elf_link_hash_entry **sym_hash;
3299 bfd_boolean dynamic;
3300 Elf_External_Versym *extversym = NULL;
3301 Elf_External_Versym *ever;
3302 struct elf_link_hash_entry *weaks;
3303 struct elf_link_hash_entry **nondeflt_vers = NULL;
3304 bfd_size_type nondeflt_vers_cnt = 0;
3305 Elf_Internal_Sym *isymbuf = NULL;
3306 Elf_Internal_Sym *isym;
3307 Elf_Internal_Sym *isymend;
3308 const struct elf_backend_data *bed;
3309 bfd_boolean add_needed;
3310 struct elf_link_hash_table *htab;
3311 bfd_size_type amt;
3312 void *alloc_mark = NULL;
3313 struct bfd_hash_entry **old_table = NULL;
3314 unsigned int old_size = 0;
3315 unsigned int old_count = 0;
3316 void *old_tab = NULL;
3317 void *old_hash;
3318 void *old_ent;
3319 struct bfd_link_hash_entry *old_undefs = NULL;
3320 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3321 long old_dynsymcount = 0;
3322 size_t tabsize = 0;
3323 size_t hashsize = 0;
3324
3325 htab = elf_hash_table (info);
3326 bed = get_elf_backend_data (abfd);
3327
3328 if ((abfd->flags & DYNAMIC) == 0)
3329 dynamic = FALSE;
3330 else
3331 {
3332 dynamic = TRUE;
3333
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info->relocatable
3338 || !is_elf_hash_table (htab)
3339 || info->output_bfd->xvec != abfd->xvec)
3340 {
3341 if (info->relocatable)
3342 bfd_set_error (bfd_error_invalid_operation);
3343 else
3344 bfd_set_error (bfd_error_wrong_format);
3345 goto error_return;
3346 }
3347 }
3348
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info->executable)
3354 {
3355 asection *s;
3356
3357 for (s = abfd->sections; s != NULL; s = s->next)
3358 {
3359 const char *name;
3360
3361 name = bfd_get_section_name (abfd, s);
3362 if (CONST_STRNEQ (name, ".gnu.warning."))
3363 {
3364 char *msg;
3365 bfd_size_type sz;
3366
3367 name += sizeof ".gnu.warning." - 1;
3368
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3377 link. */
3378 if (dynamic)
3379 {
3380 struct elf_link_hash_entry *h;
3381
3382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3383
3384 /* FIXME: What about bfd_link_hash_common? */
3385 if (h != NULL
3386 && (h->root.type == bfd_link_hash_defined
3387 || h->root.type == bfd_link_hash_defweak))
3388 {
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3392 s->size = 0;
3393 continue;
3394 }
3395 }
3396
3397 sz = s->size;
3398 msg = bfd_alloc (abfd, sz + 1);
3399 if (msg == NULL)
3400 goto error_return;
3401
3402 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3403 goto error_return;
3404
3405 msg[sz] = '\0';
3406
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info, abfd, name, BSF_WARNING, s, 0, msg,
3409 FALSE, bed->collect, NULL)))
3410 goto error_return;
3411
3412 if (! info->relocatable)
3413 {
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3416 s->size = 0;
3417
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s->flags |= SEC_EXCLUDE;
3421 }
3422 }
3423 }
3424 }
3425
3426 add_needed = TRUE;
3427 if (! dynamic)
3428 {
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3434 if (info->shared
3435 && is_elf_hash_table (htab)
3436 && info->output_bfd->xvec == abfd->xvec
3437 && !htab->dynamic_sections_created)
3438 {
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3440 goto error_return;
3441 }
3442 }
3443 else if (!is_elf_hash_table (htab))
3444 goto error_return;
3445 else
3446 {
3447 asection *s;
3448 const char *soname = NULL;
3449 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3450 int ret;
3451
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s = abfd->sections) != NULL
3455 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3456 abort ();
3457
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3464 all. */
3465 add_needed = (elf_dyn_lib_class (abfd)
3466 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3467 | DYN_NO_NEEDED)) == 0;
3468
3469 s = bfd_get_section_by_name (abfd, ".dynamic");
3470 if (s != NULL)
3471 {
3472 bfd_byte *dynbuf;
3473 bfd_byte *extdyn;
3474 unsigned int elfsec;
3475 unsigned long shlink;
3476
3477 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3478 goto error_free_dyn;
3479
3480 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3481 if (elfsec == SHN_BAD)
3482 goto error_free_dyn;
3483 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3484
3485 for (extdyn = dynbuf;
3486 extdyn < dynbuf + s->size;
3487 extdyn += bed->s->sizeof_dyn)
3488 {
3489 Elf_Internal_Dyn dyn;
3490
3491 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3492 if (dyn.d_tag == DT_SONAME)
3493 {
3494 unsigned int tagv = dyn.d_un.d_val;
3495 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3496 if (soname == NULL)
3497 goto error_free_dyn;
3498 }
3499 if (dyn.d_tag == DT_NEEDED)
3500 {
3501 struct bfd_link_needed_list *n, **pn;
3502 char *fnm, *anm;
3503 unsigned int tagv = dyn.d_un.d_val;
3504
3505 amt = sizeof (struct bfd_link_needed_list);
3506 n = bfd_alloc (abfd, amt);
3507 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3508 if (n == NULL || fnm == NULL)
3509 goto error_free_dyn;
3510 amt = strlen (fnm) + 1;
3511 anm = bfd_alloc (abfd, amt);
3512 if (anm == NULL)
3513 goto error_free_dyn;
3514 memcpy (anm, fnm, amt);
3515 n->name = anm;
3516 n->by = abfd;
3517 n->next = NULL;
3518 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3519 ;
3520 *pn = n;
3521 }
3522 if (dyn.d_tag == DT_RUNPATH)
3523 {
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3527
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = & runpath;
3542 *pn != NULL;
3543 pn = &(*pn)->next)
3544 ;
3545 *pn = n;
3546 }
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath && dyn.d_tag == DT_RPATH)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 {
3563 error_free_dyn:
3564 free (dynbuf);
3565 goto error_return;
3566 }
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & rpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 }
3578
3579 free (dynbuf);
3580 }
3581
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3584 if (runpath)
3585 rpath = runpath;
3586
3587 if (rpath)
3588 {
3589 struct bfd_link_needed_list **pn;
3590 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3591 ;
3592 *pn = rpath;
3593 }
3594
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3601 file. */
3602 bfd_section_list_clear (abfd);
3603
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3608 name. */
3609 if (soname == NULL || *soname == '\0')
3610 {
3611 soname = elf_dt_name (abfd);
3612 if (soname == NULL || *soname == '\0')
3613 soname = bfd_get_filename (abfd);
3614 }
3615
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd) = soname;
3619
3620 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3621 if (ret < 0)
3622 goto error_return;
3623
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3627 if (ret > 0)
3628 return TRUE;
3629 }
3630
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3635
3636 if (! dynamic || elf_dynsymtab (abfd) == 0)
3637 hdr = &elf_tdata (abfd)->symtab_hdr;
3638 else
3639 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3640
3641 symcount = hdr->sh_size / bed->s->sizeof_sym;
3642
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3645 this point. */
3646 if (elf_bad_symtab (abfd))
3647 {
3648 extsymcount = symcount;
3649 extsymoff = 0;
3650 }
3651 else
3652 {
3653 extsymcount = symcount - hdr->sh_info;
3654 extsymoff = hdr->sh_info;
3655 }
3656
3657 sym_hash = NULL;
3658 if (extsymcount != 0)
3659 {
3660 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3661 NULL, NULL, NULL);
3662 if (isymbuf == NULL)
3663 goto error_return;
3664
3665 /* We store a pointer to the hash table entry for each external
3666 symbol. */
3667 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3668 sym_hash = bfd_alloc (abfd, amt);
3669 if (sym_hash == NULL)
3670 goto error_free_sym;
3671 elf_sym_hashes (abfd) = sym_hash;
3672 }
3673
3674 if (dynamic)
3675 {
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd,
3678 info->default_imported_symver))
3679 goto error_free_sym;
3680
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd) != 0)
3684 {
3685 Elf_Internal_Shdr *versymhdr;
3686
3687 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3688 extversym = bfd_malloc (versymhdr->sh_size);
3689 if (extversym == NULL)
3690 goto error_free_sym;
3691 amt = versymhdr->sh_size;
3692 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3693 || bfd_bread (extversym, amt, abfd) != amt)
3694 goto error_free_vers;
3695 }
3696 }
3697
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3702 {
3703 unsigned int i;
3704 size_t entsize;
3705
3706 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3707 {
3708 struct bfd_hash_entry *p;
3709 struct elf_link_hash_entry *h;
3710
3711 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3712 {
3713 h = (struct elf_link_hash_entry *) p;
3714 entsize += htab->root.table.entsize;
3715 if (h->root.type == bfd_link_hash_warning)
3716 entsize += htab->root.table.entsize;
3717 }
3718 }
3719
3720 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3721 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3723 if (old_tab == NULL)
3724 goto error_free_vers;
3725
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3729 if (alloc_mark == NULL)
3730 goto error_free_vers;
3731
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3735 notice_as_needed))
3736 goto error_free_vers;
3737
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash = (char *) old_tab + tabsize;
3741 old_ent = (char *) old_hash + hashsize;
3742 memcpy (old_tab, htab->root.table.table, tabsize);
3743 memcpy (old_hash, sym_hash, hashsize);
3744 old_undefs = htab->root.undefs;
3745 old_undefs_tail = htab->root.undefs_tail;
3746 old_table = htab->root.table.table;
3747 old_size = htab->root.table.size;
3748 old_count = htab->root.table.count;
3749 old_dynsymcount = htab->dynsymcount;
3750
3751 for (i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 memcpy (old_ent, p, htab->root.table.entsize);
3759 old_ent = (char *) old_ent + htab->root.table.entsize;
3760 h = (struct elf_link_hash_entry *) p;
3761 if (h->root.type == bfd_link_hash_warning)
3762 {
3763 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3764 old_ent = (char *) old_ent + htab->root.table.entsize;
3765 }
3766 }
3767 }
3768 }
3769
3770 weaks = NULL;
3771 ever = extversym != NULL ? extversym + extsymoff : NULL;
3772 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3773 isym < isymend;
3774 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3775 {
3776 int bind;
3777 bfd_vma value;
3778 asection *sec, *new_sec;
3779 flagword flags;
3780 const char *name;
3781 struct elf_link_hash_entry *h;
3782 bfd_boolean definition;
3783 bfd_boolean size_change_ok;
3784 bfd_boolean type_change_ok;
3785 bfd_boolean new_weakdef;
3786 bfd_boolean override;
3787 bfd_boolean common;
3788 unsigned int old_alignment;
3789 bfd *old_bfd;
3790
3791 override = FALSE;
3792
3793 flags = BSF_NO_FLAGS;
3794 sec = NULL;
3795 value = isym->st_value;
3796 *sym_hash = NULL;
3797 common = bed->common_definition (isym);
3798
3799 bind = ELF_ST_BIND (isym->st_info);
3800 if (bind == STB_LOCAL)
3801 {
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3805 screws this up. */
3806 continue;
3807 }
3808 else if (bind == STB_GLOBAL)
3809 {
3810 if (isym->st_shndx != SHN_UNDEF && !common)
3811 flags = BSF_GLOBAL;
3812 }
3813 else if (bind == STB_WEAK)
3814 flags = BSF_WEAK;
3815 else
3816 {
3817 /* Leave it up to the processor backend. */
3818 }
3819
3820 if (isym->st_shndx == SHN_UNDEF)
3821 sec = bfd_und_section_ptr;
3822 else if (isym->st_shndx == SHN_ABS)
3823 sec = bfd_abs_section_ptr;
3824 else if (isym->st_shndx == SHN_COMMON)
3825 {
3826 sec = bfd_com_section_ptr;
3827 /* What ELF calls the size we call the value. What ELF
3828 calls the value we call the alignment. */
3829 value = isym->st_size;
3830 }
3831 else
3832 {
3833 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3834 if (sec == NULL)
3835 sec = bfd_abs_section_ptr;
3836 else if (sec->kept_section)
3837 {
3838 /* Symbols from discarded section are undefined. We keep
3839 its visibility. */
3840 sec = bfd_und_section_ptr;
3841 isym->st_shndx = SHN_UNDEF;
3842 }
3843 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3844 value -= sec->vma;
3845 }
3846
3847 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3848 isym->st_name);
3849 if (name == NULL)
3850 goto error_free_vers;
3851
3852 if (isym->st_shndx == SHN_COMMON
3853 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3854 && !info->relocatable)
3855 {
3856 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3857
3858 if (tcomm == NULL)
3859 {
3860 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3861 (SEC_ALLOC
3862 | SEC_IS_COMMON
3863 | SEC_LINKER_CREATED
3864 | SEC_THREAD_LOCAL));
3865 if (tcomm == NULL)
3866 goto error_free_vers;
3867 }
3868 sec = tcomm;
3869 }
3870 else if (bed->elf_add_symbol_hook)
3871 {
3872 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3873 &sec, &value))
3874 goto error_free_vers;
3875
3876 /* The hook function sets the name to NULL if this symbol
3877 should be skipped for some reason. */
3878 if (name == NULL)
3879 continue;
3880 }
3881
3882 /* Sanity check that all possibilities were handled. */
3883 if (sec == NULL)
3884 {
3885 bfd_set_error (bfd_error_bad_value);
3886 goto error_free_vers;
3887 }
3888
3889 if (bfd_is_und_section (sec)
3890 || bfd_is_com_section (sec))
3891 definition = FALSE;
3892 else
3893 definition = TRUE;
3894
3895 size_change_ok = FALSE;
3896 type_change_ok = bed->type_change_ok;
3897 old_alignment = 0;
3898 old_bfd = NULL;
3899 new_sec = sec;
3900
3901 if (is_elf_hash_table (htab))
3902 {
3903 Elf_Internal_Versym iver;
3904 unsigned int vernum = 0;
3905 bfd_boolean skip;
3906
3907 if (ever == NULL)
3908 {
3909 if (info->default_imported_symver)
3910 /* Use the default symbol version created earlier. */
3911 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3912 else
3913 iver.vs_vers = 0;
3914 }
3915 else
3916 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3917
3918 vernum = iver.vs_vers & VERSYM_VERSION;
3919
3920 /* If this is a hidden symbol, or if it is not version
3921 1, we append the version name to the symbol name.
3922 However, we do not modify a non-hidden absolute symbol
3923 if it is not a function, because it might be the version
3924 symbol itself. FIXME: What if it isn't? */
3925 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3926 || (vernum > 1
3927 && (!bfd_is_abs_section (sec)
3928 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3929 {
3930 const char *verstr;
3931 size_t namelen, verlen, newlen;
3932 char *newname, *p;
3933
3934 if (isym->st_shndx != SHN_UNDEF)
3935 {
3936 if (vernum > elf_tdata (abfd)->cverdefs)
3937 verstr = NULL;
3938 else if (vernum > 1)
3939 verstr =
3940 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3941 else
3942 verstr = "";
3943
3944 if (verstr == NULL)
3945 {
3946 (*_bfd_error_handler)
3947 (_("%B: %s: invalid version %u (max %d)"),
3948 abfd, name, vernum,
3949 elf_tdata (abfd)->cverdefs);
3950 bfd_set_error (bfd_error_bad_value);
3951 goto error_free_vers;
3952 }
3953 }
3954 else
3955 {
3956 /* We cannot simply test for the number of
3957 entries in the VERNEED section since the
3958 numbers for the needed versions do not start
3959 at 0. */
3960 Elf_Internal_Verneed *t;
3961
3962 verstr = NULL;
3963 for (t = elf_tdata (abfd)->verref;
3964 t != NULL;
3965 t = t->vn_nextref)
3966 {
3967 Elf_Internal_Vernaux *a;
3968
3969 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3970 {
3971 if (a->vna_other == vernum)
3972 {
3973 verstr = a->vna_nodename;
3974 break;
3975 }
3976 }
3977 if (a != NULL)
3978 break;
3979 }
3980 if (verstr == NULL)
3981 {
3982 (*_bfd_error_handler)
3983 (_("%B: %s: invalid needed version %d"),
3984 abfd, name, vernum);
3985 bfd_set_error (bfd_error_bad_value);
3986 goto error_free_vers;
3987 }
3988 }
3989
3990 namelen = strlen (name);
3991 verlen = strlen (verstr);
3992 newlen = namelen + verlen + 2;
3993 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3994 && isym->st_shndx != SHN_UNDEF)
3995 ++newlen;
3996
3997 newname = bfd_hash_allocate (&htab->root.table, newlen);
3998 if (newname == NULL)
3999 goto error_free_vers;
4000 memcpy (newname, name, namelen);
4001 p = newname + namelen;
4002 *p++ = ELF_VER_CHR;
4003 /* If this is a defined non-hidden version symbol,
4004 we add another @ to the name. This indicates the
4005 default version of the symbol. */
4006 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4007 && isym->st_shndx != SHN_UNDEF)
4008 *p++ = ELF_VER_CHR;
4009 memcpy (p, verstr, verlen + 1);
4010
4011 name = newname;
4012 }
4013
4014 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4015 &value, &old_alignment,
4016 sym_hash, &skip, &override,
4017 &type_change_ok, &size_change_ok))
4018 goto error_free_vers;
4019
4020 if (skip)
4021 continue;
4022
4023 if (override)
4024 definition = FALSE;
4025
4026 h = *sym_hash;
4027 while (h->root.type == bfd_link_hash_indirect
4028 || h->root.type == bfd_link_hash_warning)
4029 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4030
4031 /* Remember the old alignment if this is a common symbol, so
4032 that we don't reduce the alignment later on. We can't
4033 check later, because _bfd_generic_link_add_one_symbol
4034 will set a default for the alignment which we want to
4035 override. We also remember the old bfd where the existing
4036 definition comes from. */
4037 switch (h->root.type)
4038 {
4039 default:
4040 break;
4041
4042 case bfd_link_hash_defined:
4043 case bfd_link_hash_defweak:
4044 old_bfd = h->root.u.def.section->owner;
4045 break;
4046
4047 case bfd_link_hash_common:
4048 old_bfd = h->root.u.c.p->section->owner;
4049 old_alignment = h->root.u.c.p->alignment_power;
4050 break;
4051 }
4052
4053 if (elf_tdata (abfd)->verdef != NULL
4054 && ! override
4055 && vernum > 1
4056 && definition)
4057 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4058 }
4059
4060 if (! (_bfd_generic_link_add_one_symbol
4061 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4062 (struct bfd_link_hash_entry **) sym_hash)))
4063 goto error_free_vers;
4064
4065 h = *sym_hash;
4066 while (h->root.type == bfd_link_hash_indirect
4067 || h->root.type == bfd_link_hash_warning)
4068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4069 *sym_hash = h;
4070
4071 new_weakdef = FALSE;
4072 if (dynamic
4073 && definition
4074 && (flags & BSF_WEAK) != 0
4075 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4076 && is_elf_hash_table (htab)
4077 && h->u.weakdef == NULL)
4078 {
4079 /* Keep a list of all weak defined non function symbols from
4080 a dynamic object, using the weakdef field. Later in this
4081 function we will set the weakdef field to the correct
4082 value. We only put non-function symbols from dynamic
4083 objects on this list, because that happens to be the only
4084 time we need to know the normal symbol corresponding to a
4085 weak symbol, and the information is time consuming to
4086 figure out. If the weakdef field is not already NULL,
4087 then this symbol was already defined by some previous
4088 dynamic object, and we will be using that previous
4089 definition anyhow. */
4090
4091 h->u.weakdef = weaks;
4092 weaks = h;
4093 new_weakdef = TRUE;
4094 }
4095
4096 /* Set the alignment of a common symbol. */
4097 if ((common || bfd_is_com_section (sec))
4098 && h->root.type == bfd_link_hash_common)
4099 {
4100 unsigned int align;
4101
4102 if (common)
4103 align = bfd_log2 (isym->st_value);
4104 else
4105 {
4106 /* The new symbol is a common symbol in a shared object.
4107 We need to get the alignment from the section. */
4108 align = new_sec->alignment_power;
4109 }
4110 if (align > old_alignment
4111 /* Permit an alignment power of zero if an alignment of one
4112 is specified and no other alignments have been specified. */
4113 || (isym->st_value == 1 && old_alignment == 0))
4114 h->root.u.c.p->alignment_power = align;
4115 else
4116 h->root.u.c.p->alignment_power = old_alignment;
4117 }
4118
4119 if (is_elf_hash_table (htab))
4120 {
4121 bfd_boolean dynsym;
4122
4123 /* Check the alignment when a common symbol is involved. This
4124 can change when a common symbol is overridden by a normal
4125 definition or a common symbol is ignored due to the old
4126 normal definition. We need to make sure the maximum
4127 alignment is maintained. */
4128 if ((old_alignment || common)
4129 && h->root.type != bfd_link_hash_common)
4130 {
4131 unsigned int common_align;
4132 unsigned int normal_align;
4133 unsigned int symbol_align;
4134 bfd *normal_bfd;
4135 bfd *common_bfd;
4136
4137 symbol_align = ffs (h->root.u.def.value) - 1;
4138 if (h->root.u.def.section->owner != NULL
4139 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4140 {
4141 normal_align = h->root.u.def.section->alignment_power;
4142 if (normal_align > symbol_align)
4143 normal_align = symbol_align;
4144 }
4145 else
4146 normal_align = symbol_align;
4147
4148 if (old_alignment)
4149 {
4150 common_align = old_alignment;
4151 common_bfd = old_bfd;
4152 normal_bfd = abfd;
4153 }
4154 else
4155 {
4156 common_align = bfd_log2 (isym->st_value);
4157 common_bfd = abfd;
4158 normal_bfd = old_bfd;
4159 }
4160
4161 if (normal_align < common_align)
4162 {
4163 /* PR binutils/2735 */
4164 if (normal_bfd == NULL)
4165 (*_bfd_error_handler)
4166 (_("Warning: alignment %u of common symbol `%s' in %B"
4167 " is greater than the alignment (%u) of its section %A"),
4168 common_bfd, h->root.u.def.section,
4169 1 << common_align, name, 1 << normal_align);
4170 else
4171 (*_bfd_error_handler)
4172 (_("Warning: alignment %u of symbol `%s' in %B"
4173 " is smaller than %u in %B"),
4174 normal_bfd, common_bfd,
4175 1 << normal_align, name, 1 << common_align);
4176 }
4177 }
4178
4179 /* Remember the symbol size if it isn't undefined. */
4180 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4181 && (definition || h->size == 0))
4182 {
4183 if (h->size != 0
4184 && h->size != isym->st_size
4185 && ! size_change_ok)
4186 (*_bfd_error_handler)
4187 (_("Warning: size of symbol `%s' changed"
4188 " from %lu in %B to %lu in %B"),
4189 old_bfd, abfd,
4190 name, (unsigned long) h->size,
4191 (unsigned long) isym->st_size);
4192
4193 h->size = isym->st_size;
4194 }
4195
4196 /* If this is a common symbol, then we always want H->SIZE
4197 to be the size of the common symbol. The code just above
4198 won't fix the size if a common symbol becomes larger. We
4199 don't warn about a size change here, because that is
4200 covered by --warn-common. Allow changed between different
4201 function types. */
4202 if (h->root.type == bfd_link_hash_common)
4203 h->size = h->root.u.c.size;
4204
4205 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4206 && (definition || h->type == STT_NOTYPE))
4207 {
4208 if (h->type != STT_NOTYPE
4209 && h->type != ELF_ST_TYPE (isym->st_info)
4210 && ! type_change_ok)
4211 (*_bfd_error_handler)
4212 (_("Warning: type of symbol `%s' changed"
4213 " from %d to %d in %B"),
4214 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4215
4216 h->type = ELF_ST_TYPE (isym->st_info);
4217 }
4218
4219 /* If st_other has a processor-specific meaning, specific
4220 code might be needed here. We never merge the visibility
4221 attribute with the one from a dynamic object. */
4222 if (bed->elf_backend_merge_symbol_attribute)
4223 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4224 dynamic);
4225
4226 /* If this symbol has default visibility and the user has requested
4227 we not re-export it, then mark it as hidden. */
4228 if (definition && !dynamic
4229 && (abfd->no_export
4230 || (abfd->my_archive && abfd->my_archive->no_export))
4231 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4232 isym->st_other = (STV_HIDDEN
4233 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4234
4235 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4236 {
4237 unsigned char hvis, symvis, other, nvis;
4238
4239 /* Only merge the visibility. Leave the remainder of the
4240 st_other field to elf_backend_merge_symbol_attribute. */
4241 other = h->other & ~ELF_ST_VISIBILITY (-1);
4242
4243 /* Combine visibilities, using the most constraining one. */
4244 hvis = ELF_ST_VISIBILITY (h->other);
4245 symvis = ELF_ST_VISIBILITY (isym->st_other);
4246 if (! hvis)
4247 nvis = symvis;
4248 else if (! symvis)
4249 nvis = hvis;
4250 else
4251 nvis = hvis < symvis ? hvis : symvis;
4252
4253 h->other = other | nvis;
4254 }
4255
4256 /* Set a flag in the hash table entry indicating the type of
4257 reference or definition we just found. Keep a count of
4258 the number of dynamic symbols we find. A dynamic symbol
4259 is one which is referenced or defined by both a regular
4260 object and a shared object. */
4261 dynsym = FALSE;
4262 if (! dynamic)
4263 {
4264 if (! definition)
4265 {
4266 h->ref_regular = 1;
4267 if (bind != STB_WEAK)
4268 h->ref_regular_nonweak = 1;
4269 }
4270 else
4271 h->def_regular = 1;
4272 if (! info->executable
4273 || h->def_dynamic
4274 || h->ref_dynamic)
4275 dynsym = TRUE;
4276 }
4277 else
4278 {
4279 if (! definition)
4280 h->ref_dynamic = 1;
4281 else
4282 h->def_dynamic = 1;
4283 if (h->def_regular
4284 || h->ref_regular
4285 || (h->u.weakdef != NULL
4286 && ! new_weakdef
4287 && h->u.weakdef->dynindx != -1))
4288 dynsym = TRUE;
4289 }
4290
4291 if (definition && (sec->flags & SEC_DEBUGGING))
4292 {
4293 /* We don't want to make debug symbol dynamic. */
4294 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4295 dynsym = FALSE;
4296 }
4297
4298 /* Check to see if we need to add an indirect symbol for
4299 the default name. */
4300 if (definition || h->root.type == bfd_link_hash_common)
4301 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4302 &sec, &value, &dynsym,
4303 override))
4304 goto error_free_vers;
4305
4306 if (definition && !dynamic)
4307 {
4308 char *p = strchr (name, ELF_VER_CHR);
4309 if (p != NULL && p[1] != ELF_VER_CHR)
4310 {
4311 /* Queue non-default versions so that .symver x, x@FOO
4312 aliases can be checked. */
4313 if (!nondeflt_vers)
4314 {
4315 amt = ((isymend - isym + 1)
4316 * sizeof (struct elf_link_hash_entry *));
4317 nondeflt_vers = bfd_malloc (amt);
4318 if (!nondeflt_vers)
4319 goto error_free_vers;
4320 }
4321 nondeflt_vers[nondeflt_vers_cnt++] = h;
4322 }
4323 }
4324
4325 if (dynsym && h->dynindx == -1)
4326 {
4327 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4328 goto error_free_vers;
4329 if (h->u.weakdef != NULL
4330 && ! new_weakdef
4331 && h->u.weakdef->dynindx == -1)
4332 {
4333 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4334 goto error_free_vers;
4335 }
4336 }
4337 else if (dynsym && h->dynindx != -1)
4338 /* If the symbol already has a dynamic index, but
4339 visibility says it should not be visible, turn it into
4340 a local symbol. */
4341 switch (ELF_ST_VISIBILITY (h->other))
4342 {
4343 case STV_INTERNAL:
4344 case STV_HIDDEN:
4345 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4346 dynsym = FALSE;
4347 break;
4348 }
4349
4350 if (!add_needed
4351 && definition
4352 && dynsym
4353 && h->ref_regular)
4354 {
4355 int ret;
4356 const char *soname = elf_dt_name (abfd);
4357
4358 /* A symbol from a library loaded via DT_NEEDED of some
4359 other library is referenced by a regular object.
4360 Add a DT_NEEDED entry for it. Issue an error if
4361 --no-add-needed is used. */
4362 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4363 {
4364 (*_bfd_error_handler)
4365 (_("%s: invalid DSO for symbol `%s' definition"),
4366 abfd, name);
4367 bfd_set_error (bfd_error_bad_value);
4368 goto error_free_vers;
4369 }
4370
4371 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4372
4373 add_needed = TRUE;
4374 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4375 if (ret < 0)
4376 goto error_free_vers;
4377
4378 BFD_ASSERT (ret == 0);
4379 }
4380 }
4381 }
4382
4383 if (extversym != NULL)
4384 {
4385 free (extversym);
4386 extversym = NULL;
4387 }
4388
4389 if (isymbuf != NULL)
4390 {
4391 free (isymbuf);
4392 isymbuf = NULL;
4393 }
4394
4395 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4396 {
4397 unsigned int i;
4398
4399 /* Restore the symbol table. */
4400 if (bed->as_needed_cleanup)
4401 (*bed->as_needed_cleanup) (abfd, info);
4402 old_hash = (char *) old_tab + tabsize;
4403 old_ent = (char *) old_hash + hashsize;
4404 sym_hash = elf_sym_hashes (abfd);
4405 htab->root.table.table = old_table;
4406 htab->root.table.size = old_size;
4407 htab->root.table.count = old_count;
4408 memcpy (htab->root.table.table, old_tab, tabsize);
4409 memcpy (sym_hash, old_hash, hashsize);
4410 htab->root.undefs = old_undefs;
4411 htab->root.undefs_tail = old_undefs_tail;
4412 for (i = 0; i < htab->root.table.size; i++)
4413 {
4414 struct bfd_hash_entry *p;
4415 struct elf_link_hash_entry *h;
4416
4417 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4418 {
4419 h = (struct elf_link_hash_entry *) p;
4420 if (h->root.type == bfd_link_hash_warning)
4421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4422 if (h->dynindx >= old_dynsymcount)
4423 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4424
4425 memcpy (p, old_ent, htab->root.table.entsize);
4426 old_ent = (char *) old_ent + htab->root.table.entsize;
4427 h = (struct elf_link_hash_entry *) p;
4428 if (h->root.type == bfd_link_hash_warning)
4429 {
4430 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4431 old_ent = (char *) old_ent + htab->root.table.entsize;
4432 }
4433 }
4434 }
4435
4436 /* Make a special call to the linker "notice" function to
4437 tell it that symbols added for crefs may need to be removed. */
4438 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4439 notice_not_needed))
4440 goto error_free_vers;
4441
4442 free (old_tab);
4443 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4444 alloc_mark);
4445 if (nondeflt_vers != NULL)
4446 free (nondeflt_vers);
4447 return TRUE;
4448 }
4449
4450 if (old_tab != NULL)
4451 {
4452 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4453 notice_needed))
4454 goto error_free_vers;
4455 free (old_tab);
4456 old_tab = NULL;
4457 }
4458
4459 /* Now that all the symbols from this input file are created, handle
4460 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4461 if (nondeflt_vers != NULL)
4462 {
4463 bfd_size_type cnt, symidx;
4464
4465 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4466 {
4467 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4468 char *shortname, *p;
4469
4470 p = strchr (h->root.root.string, ELF_VER_CHR);
4471 if (p == NULL
4472 || (h->root.type != bfd_link_hash_defined
4473 && h->root.type != bfd_link_hash_defweak))
4474 continue;
4475
4476 amt = p - h->root.root.string;
4477 shortname = bfd_malloc (amt + 1);
4478 if (!shortname)
4479 goto error_free_vers;
4480 memcpy (shortname, h->root.root.string, amt);
4481 shortname[amt] = '\0';
4482
4483 hi = (struct elf_link_hash_entry *)
4484 bfd_link_hash_lookup (&htab->root, shortname,
4485 FALSE, FALSE, FALSE);
4486 if (hi != NULL
4487 && hi->root.type == h->root.type
4488 && hi->root.u.def.value == h->root.u.def.value
4489 && hi->root.u.def.section == h->root.u.def.section)
4490 {
4491 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4492 hi->root.type = bfd_link_hash_indirect;
4493 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4494 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4495 sym_hash = elf_sym_hashes (abfd);
4496 if (sym_hash)
4497 for (symidx = 0; symidx < extsymcount; ++symidx)
4498 if (sym_hash[symidx] == hi)
4499 {
4500 sym_hash[symidx] = h;
4501 break;
4502 }
4503 }
4504 free (shortname);
4505 }
4506 free (nondeflt_vers);
4507 nondeflt_vers = NULL;
4508 }
4509
4510 /* Now set the weakdefs field correctly for all the weak defined
4511 symbols we found. The only way to do this is to search all the
4512 symbols. Since we only need the information for non functions in
4513 dynamic objects, that's the only time we actually put anything on
4514 the list WEAKS. We need this information so that if a regular
4515 object refers to a symbol defined weakly in a dynamic object, the
4516 real symbol in the dynamic object is also put in the dynamic
4517 symbols; we also must arrange for both symbols to point to the
4518 same memory location. We could handle the general case of symbol
4519 aliasing, but a general symbol alias can only be generated in
4520 assembler code, handling it correctly would be very time
4521 consuming, and other ELF linkers don't handle general aliasing
4522 either. */
4523 if (weaks != NULL)
4524 {
4525 struct elf_link_hash_entry **hpp;
4526 struct elf_link_hash_entry **hppend;
4527 struct elf_link_hash_entry **sorted_sym_hash;
4528 struct elf_link_hash_entry *h;
4529 size_t sym_count;
4530
4531 /* Since we have to search the whole symbol list for each weak
4532 defined symbol, search time for N weak defined symbols will be
4533 O(N^2). Binary search will cut it down to O(NlogN). */
4534 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4535 sorted_sym_hash = bfd_malloc (amt);
4536 if (sorted_sym_hash == NULL)
4537 goto error_return;
4538 sym_hash = sorted_sym_hash;
4539 hpp = elf_sym_hashes (abfd);
4540 hppend = hpp + extsymcount;
4541 sym_count = 0;
4542 for (; hpp < hppend; hpp++)
4543 {
4544 h = *hpp;
4545 if (h != NULL
4546 && h->root.type == bfd_link_hash_defined
4547 && !bed->is_function_type (h->type))
4548 {
4549 *sym_hash = h;
4550 sym_hash++;
4551 sym_count++;
4552 }
4553 }
4554
4555 qsort (sorted_sym_hash, sym_count,
4556 sizeof (struct elf_link_hash_entry *),
4557 elf_sort_symbol);
4558
4559 while (weaks != NULL)
4560 {
4561 struct elf_link_hash_entry *hlook;
4562 asection *slook;
4563 bfd_vma vlook;
4564 long ilook;
4565 size_t i, j, idx;
4566
4567 hlook = weaks;
4568 weaks = hlook->u.weakdef;
4569 hlook->u.weakdef = NULL;
4570
4571 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4572 || hlook->root.type == bfd_link_hash_defweak
4573 || hlook->root.type == bfd_link_hash_common
4574 || hlook->root.type == bfd_link_hash_indirect);
4575 slook = hlook->root.u.def.section;
4576 vlook = hlook->root.u.def.value;
4577
4578 ilook = -1;
4579 i = 0;
4580 j = sym_count;
4581 while (i < j)
4582 {
4583 bfd_signed_vma vdiff;
4584 idx = (i + j) / 2;
4585 h = sorted_sym_hash [idx];
4586 vdiff = vlook - h->root.u.def.value;
4587 if (vdiff < 0)
4588 j = idx;
4589 else if (vdiff > 0)
4590 i = idx + 1;
4591 else
4592 {
4593 long sdiff = slook->id - h->root.u.def.section->id;
4594 if (sdiff < 0)
4595 j = idx;
4596 else if (sdiff > 0)
4597 i = idx + 1;
4598 else
4599 {
4600 ilook = idx;
4601 break;
4602 }
4603 }
4604 }
4605
4606 /* We didn't find a value/section match. */
4607 if (ilook == -1)
4608 continue;
4609
4610 for (i = ilook; i < sym_count; i++)
4611 {
4612 h = sorted_sym_hash [i];
4613
4614 /* Stop if value or section doesn't match. */
4615 if (h->root.u.def.value != vlook
4616 || h->root.u.def.section != slook)
4617 break;
4618 else if (h != hlook)
4619 {
4620 hlook->u.weakdef = h;
4621
4622 /* If the weak definition is in the list of dynamic
4623 symbols, make sure the real definition is put
4624 there as well. */
4625 if (hlook->dynindx != -1 && h->dynindx == -1)
4626 {
4627 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4628 goto error_return;
4629 }
4630
4631 /* If the real definition is in the list of dynamic
4632 symbols, make sure the weak definition is put
4633 there as well. If we don't do this, then the
4634 dynamic loader might not merge the entries for the
4635 real definition and the weak definition. */
4636 if (h->dynindx != -1 && hlook->dynindx == -1)
4637 {
4638 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4639 goto error_return;
4640 }
4641 break;
4642 }
4643 }
4644 }
4645
4646 free (sorted_sym_hash);
4647 }
4648
4649 if (bed->check_directives)
4650 (*bed->check_directives) (abfd, info);
4651
4652 /* If this object is the same format as the output object, and it is
4653 not a shared library, then let the backend look through the
4654 relocs.
4655
4656 This is required to build global offset table entries and to
4657 arrange for dynamic relocs. It is not required for the
4658 particular common case of linking non PIC code, even when linking
4659 against shared libraries, but unfortunately there is no way of
4660 knowing whether an object file has been compiled PIC or not.
4661 Looking through the relocs is not particularly time consuming.
4662 The problem is that we must either (1) keep the relocs in memory,
4663 which causes the linker to require additional runtime memory or
4664 (2) read the relocs twice from the input file, which wastes time.
4665 This would be a good case for using mmap.
4666
4667 I have no idea how to handle linking PIC code into a file of a
4668 different format. It probably can't be done. */
4669 if (! dynamic
4670 && is_elf_hash_table (htab)
4671 && bed->check_relocs != NULL
4672 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4673 {
4674 asection *o;
4675
4676 for (o = abfd->sections; o != NULL; o = o->next)
4677 {
4678 Elf_Internal_Rela *internal_relocs;
4679 bfd_boolean ok;
4680
4681 if ((o->flags & SEC_RELOC) == 0
4682 || o->reloc_count == 0
4683 || ((info->strip == strip_all || info->strip == strip_debugger)
4684 && (o->flags & SEC_DEBUGGING) != 0)
4685 || bfd_is_abs_section (o->output_section))
4686 continue;
4687
4688 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4689 info->keep_memory);
4690 if (internal_relocs == NULL)
4691 goto error_return;
4692
4693 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4694
4695 if (elf_section_data (o)->relocs != internal_relocs)
4696 free (internal_relocs);
4697
4698 if (! ok)
4699 goto error_return;
4700 }
4701 }
4702
4703 /* If this is a non-traditional link, try to optimize the handling
4704 of the .stab/.stabstr sections. */
4705 if (! dynamic
4706 && ! info->traditional_format
4707 && is_elf_hash_table (htab)
4708 && (info->strip != strip_all && info->strip != strip_debugger))
4709 {
4710 asection *stabstr;
4711
4712 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4713 if (stabstr != NULL)
4714 {
4715 bfd_size_type string_offset = 0;
4716 asection *stab;
4717
4718 for (stab = abfd->sections; stab; stab = stab->next)
4719 if (CONST_STRNEQ (stab->name, ".stab")
4720 && (!stab->name[5] ||
4721 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4722 && (stab->flags & SEC_MERGE) == 0
4723 && !bfd_is_abs_section (stab->output_section))
4724 {
4725 struct bfd_elf_section_data *secdata;
4726
4727 secdata = elf_section_data (stab);
4728 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4729 stabstr, &secdata->sec_info,
4730 &string_offset))
4731 goto error_return;
4732 if (secdata->sec_info)
4733 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4734 }
4735 }
4736 }
4737
4738 if (is_elf_hash_table (htab) && add_needed)
4739 {
4740 /* Add this bfd to the loaded list. */
4741 struct elf_link_loaded_list *n;
4742
4743 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4744 if (n == NULL)
4745 goto error_return;
4746 n->abfd = abfd;
4747 n->next = htab->loaded;
4748 htab->loaded = n;
4749 }
4750
4751 return TRUE;
4752
4753 error_free_vers:
4754 if (old_tab != NULL)
4755 free (old_tab);
4756 if (nondeflt_vers != NULL)
4757 free (nondeflt_vers);
4758 if (extversym != NULL)
4759 free (extversym);
4760 error_free_sym:
4761 if (isymbuf != NULL)
4762 free (isymbuf);
4763 error_return:
4764 return FALSE;
4765 }
4766
4767 /* Return the linker hash table entry of a symbol that might be
4768 satisfied by an archive symbol. Return -1 on error. */
4769
4770 struct elf_link_hash_entry *
4771 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4772 struct bfd_link_info *info,
4773 const char *name)
4774 {
4775 struct elf_link_hash_entry *h;
4776 char *p, *copy;
4777 size_t len, first;
4778
4779 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4780 if (h != NULL)
4781 return h;
4782
4783 /* If this is a default version (the name contains @@), look up the
4784 symbol again with only one `@' as well as without the version.
4785 The effect is that references to the symbol with and without the
4786 version will be matched by the default symbol in the archive. */
4787
4788 p = strchr (name, ELF_VER_CHR);
4789 if (p == NULL || p[1] != ELF_VER_CHR)
4790 return h;
4791
4792 /* First check with only one `@'. */
4793 len = strlen (name);
4794 copy = bfd_alloc (abfd, len);
4795 if (copy == NULL)
4796 return (struct elf_link_hash_entry *) 0 - 1;
4797
4798 first = p - name + 1;
4799 memcpy (copy, name, first);
4800 memcpy (copy + first, name + first + 1, len - first);
4801
4802 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4803 if (h == NULL)
4804 {
4805 /* We also need to check references to the symbol without the
4806 version. */
4807 copy[first - 1] = '\0';
4808 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4809 FALSE, FALSE, FALSE);
4810 }
4811
4812 bfd_release (abfd, copy);
4813 return h;
4814 }
4815
4816 /* Add symbols from an ELF archive file to the linker hash table. We
4817 don't use _bfd_generic_link_add_archive_symbols because of a
4818 problem which arises on UnixWare. The UnixWare libc.so is an
4819 archive which includes an entry libc.so.1 which defines a bunch of
4820 symbols. The libc.so archive also includes a number of other
4821 object files, which also define symbols, some of which are the same
4822 as those defined in libc.so.1. Correct linking requires that we
4823 consider each object file in turn, and include it if it defines any
4824 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4825 this; it looks through the list of undefined symbols, and includes
4826 any object file which defines them. When this algorithm is used on
4827 UnixWare, it winds up pulling in libc.so.1 early and defining a
4828 bunch of symbols. This means that some of the other objects in the
4829 archive are not included in the link, which is incorrect since they
4830 precede libc.so.1 in the archive.
4831
4832 Fortunately, ELF archive handling is simpler than that done by
4833 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4834 oddities. In ELF, if we find a symbol in the archive map, and the
4835 symbol is currently undefined, we know that we must pull in that
4836 object file.
4837
4838 Unfortunately, we do have to make multiple passes over the symbol
4839 table until nothing further is resolved. */
4840
4841 static bfd_boolean
4842 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4843 {
4844 symindex c;
4845 bfd_boolean *defined = NULL;
4846 bfd_boolean *included = NULL;
4847 carsym *symdefs;
4848 bfd_boolean loop;
4849 bfd_size_type amt;
4850 const struct elf_backend_data *bed;
4851 struct elf_link_hash_entry * (*archive_symbol_lookup)
4852 (bfd *, struct bfd_link_info *, const char *);
4853
4854 if (! bfd_has_map (abfd))
4855 {
4856 /* An empty archive is a special case. */
4857 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4858 return TRUE;
4859 bfd_set_error (bfd_error_no_armap);
4860 return FALSE;
4861 }
4862
4863 /* Keep track of all symbols we know to be already defined, and all
4864 files we know to be already included. This is to speed up the
4865 second and subsequent passes. */
4866 c = bfd_ardata (abfd)->symdef_count;
4867 if (c == 0)
4868 return TRUE;
4869 amt = c;
4870 amt *= sizeof (bfd_boolean);
4871 defined = bfd_zmalloc (amt);
4872 included = bfd_zmalloc (amt);
4873 if (defined == NULL || included == NULL)
4874 goto error_return;
4875
4876 symdefs = bfd_ardata (abfd)->symdefs;
4877 bed = get_elf_backend_data (abfd);
4878 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4879
4880 do
4881 {
4882 file_ptr last;
4883 symindex i;
4884 carsym *symdef;
4885 carsym *symdefend;
4886
4887 loop = FALSE;
4888 last = -1;
4889
4890 symdef = symdefs;
4891 symdefend = symdef + c;
4892 for (i = 0; symdef < symdefend; symdef++, i++)
4893 {
4894 struct elf_link_hash_entry *h;
4895 bfd *element;
4896 struct bfd_link_hash_entry *undefs_tail;
4897 symindex mark;
4898
4899 if (defined[i] || included[i])
4900 continue;
4901 if (symdef->file_offset == last)
4902 {
4903 included[i] = TRUE;
4904 continue;
4905 }
4906
4907 h = archive_symbol_lookup (abfd, info, symdef->name);
4908 if (h == (struct elf_link_hash_entry *) 0 - 1)
4909 goto error_return;
4910
4911 if (h == NULL)
4912 continue;
4913
4914 if (h->root.type == bfd_link_hash_common)
4915 {
4916 /* We currently have a common symbol. The archive map contains
4917 a reference to this symbol, so we may want to include it. We
4918 only want to include it however, if this archive element
4919 contains a definition of the symbol, not just another common
4920 declaration of it.
4921
4922 Unfortunately some archivers (including GNU ar) will put
4923 declarations of common symbols into their archive maps, as
4924 well as real definitions, so we cannot just go by the archive
4925 map alone. Instead we must read in the element's symbol
4926 table and check that to see what kind of symbol definition
4927 this is. */
4928 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4929 continue;
4930 }
4931 else if (h->root.type != bfd_link_hash_undefined)
4932 {
4933 if (h->root.type != bfd_link_hash_undefweak)
4934 defined[i] = TRUE;
4935 continue;
4936 }
4937
4938 /* We need to include this archive member. */
4939 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4940 if (element == NULL)
4941 goto error_return;
4942
4943 if (! bfd_check_format (element, bfd_object))
4944 goto error_return;
4945
4946 /* Doublecheck that we have not included this object
4947 already--it should be impossible, but there may be
4948 something wrong with the archive. */
4949 if (element->archive_pass != 0)
4950 {
4951 bfd_set_error (bfd_error_bad_value);
4952 goto error_return;
4953 }
4954 element->archive_pass = 1;
4955
4956 undefs_tail = info->hash->undefs_tail;
4957
4958 if (! (*info->callbacks->add_archive_element) (info, element,
4959 symdef->name))
4960 goto error_return;
4961 if (! bfd_link_add_symbols (element, info))
4962 goto error_return;
4963
4964 /* If there are any new undefined symbols, we need to make
4965 another pass through the archive in order to see whether
4966 they can be defined. FIXME: This isn't perfect, because
4967 common symbols wind up on undefs_tail and because an
4968 undefined symbol which is defined later on in this pass
4969 does not require another pass. This isn't a bug, but it
4970 does make the code less efficient than it could be. */
4971 if (undefs_tail != info->hash->undefs_tail)
4972 loop = TRUE;
4973
4974 /* Look backward to mark all symbols from this object file
4975 which we have already seen in this pass. */
4976 mark = i;
4977 do
4978 {
4979 included[mark] = TRUE;
4980 if (mark == 0)
4981 break;
4982 --mark;
4983 }
4984 while (symdefs[mark].file_offset == symdef->file_offset);
4985
4986 /* We mark subsequent symbols from this object file as we go
4987 on through the loop. */
4988 last = symdef->file_offset;
4989 }
4990 }
4991 while (loop);
4992
4993 free (defined);
4994 free (included);
4995
4996 return TRUE;
4997
4998 error_return:
4999 if (defined != NULL)
5000 free (defined);
5001 if (included != NULL)
5002 free (included);
5003 return FALSE;
5004 }
5005
5006 /* Given an ELF BFD, add symbols to the global hash table as
5007 appropriate. */
5008
5009 bfd_boolean
5010 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5011 {
5012 switch (bfd_get_format (abfd))
5013 {
5014 case bfd_object:
5015 return elf_link_add_object_symbols (abfd, info);
5016 case bfd_archive:
5017 return elf_link_add_archive_symbols (abfd, info);
5018 default:
5019 bfd_set_error (bfd_error_wrong_format);
5020 return FALSE;
5021 }
5022 }
5023 \f
5024 struct hash_codes_info
5025 {
5026 unsigned long *hashcodes;
5027 bfd_boolean error;
5028 };
5029
5030 /* This function will be called though elf_link_hash_traverse to store
5031 all hash value of the exported symbols in an array. */
5032
5033 static bfd_boolean
5034 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5035 {
5036 struct hash_codes_info *inf = data;
5037 const char *name;
5038 char *p;
5039 unsigned long ha;
5040 char *alc = NULL;
5041
5042 if (h->root.type == bfd_link_hash_warning)
5043 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5044
5045 /* Ignore indirect symbols. These are added by the versioning code. */
5046 if (h->dynindx == -1)
5047 return TRUE;
5048
5049 name = h->root.root.string;
5050 p = strchr (name, ELF_VER_CHR);
5051 if (p != NULL)
5052 {
5053 alc = bfd_malloc (p - name + 1);
5054 if (alc == NULL)
5055 {
5056 inf->error = TRUE;
5057 return FALSE;
5058 }
5059 memcpy (alc, name, p - name);
5060 alc[p - name] = '\0';
5061 name = alc;
5062 }
5063
5064 /* Compute the hash value. */
5065 ha = bfd_elf_hash (name);
5066
5067 /* Store the found hash value in the array given as the argument. */
5068 *(inf->hashcodes)++ = ha;
5069
5070 /* And store it in the struct so that we can put it in the hash table
5071 later. */
5072 h->u.elf_hash_value = ha;
5073
5074 if (alc != NULL)
5075 free (alc);
5076
5077 return TRUE;
5078 }
5079
5080 struct collect_gnu_hash_codes
5081 {
5082 bfd *output_bfd;
5083 const struct elf_backend_data *bed;
5084 unsigned long int nsyms;
5085 unsigned long int maskbits;
5086 unsigned long int *hashcodes;
5087 unsigned long int *hashval;
5088 unsigned long int *indx;
5089 unsigned long int *counts;
5090 bfd_vma *bitmask;
5091 bfd_byte *contents;
5092 long int min_dynindx;
5093 unsigned long int bucketcount;
5094 unsigned long int symindx;
5095 long int local_indx;
5096 long int shift1, shift2;
5097 unsigned long int mask;
5098 bfd_boolean error;
5099 };
5100
5101 /* This function will be called though elf_link_hash_traverse to store
5102 all hash value of the exported symbols in an array. */
5103
5104 static bfd_boolean
5105 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5106 {
5107 struct collect_gnu_hash_codes *s = data;
5108 const char *name;
5109 char *p;
5110 unsigned long ha;
5111 char *alc = NULL;
5112
5113 if (h->root.type == bfd_link_hash_warning)
5114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5115
5116 /* Ignore indirect symbols. These are added by the versioning code. */
5117 if (h->dynindx == -1)
5118 return TRUE;
5119
5120 /* Ignore also local symbols and undefined symbols. */
5121 if (! (*s->bed->elf_hash_symbol) (h))
5122 return TRUE;
5123
5124 name = h->root.root.string;
5125 p = strchr (name, ELF_VER_CHR);
5126 if (p != NULL)
5127 {
5128 alc = bfd_malloc (p - name + 1);
5129 if (alc == NULL)
5130 {
5131 s->error = TRUE;
5132 return FALSE;
5133 }
5134 memcpy (alc, name, p - name);
5135 alc[p - name] = '\0';
5136 name = alc;
5137 }
5138
5139 /* Compute the hash value. */
5140 ha = bfd_elf_gnu_hash (name);
5141
5142 /* Store the found hash value in the array for compute_bucket_count,
5143 and also for .dynsym reordering purposes. */
5144 s->hashcodes[s->nsyms] = ha;
5145 s->hashval[h->dynindx] = ha;
5146 ++s->nsyms;
5147 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5148 s->min_dynindx = h->dynindx;
5149
5150 if (alc != NULL)
5151 free (alc);
5152
5153 return TRUE;
5154 }
5155
5156 /* This function will be called though elf_link_hash_traverse to do
5157 final dynaminc symbol renumbering. */
5158
5159 static bfd_boolean
5160 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5161 {
5162 struct collect_gnu_hash_codes *s = data;
5163 unsigned long int bucket;
5164 unsigned long int val;
5165
5166 if (h->root.type == bfd_link_hash_warning)
5167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5168
5169 /* Ignore indirect symbols. */
5170 if (h->dynindx == -1)
5171 return TRUE;
5172
5173 /* Ignore also local symbols and undefined symbols. */
5174 if (! (*s->bed->elf_hash_symbol) (h))
5175 {
5176 if (h->dynindx >= s->min_dynindx)
5177 h->dynindx = s->local_indx++;
5178 return TRUE;
5179 }
5180
5181 bucket = s->hashval[h->dynindx] % s->bucketcount;
5182 val = (s->hashval[h->dynindx] >> s->shift1)
5183 & ((s->maskbits >> s->shift1) - 1);
5184 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5185 s->bitmask[val]
5186 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5187 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5188 if (s->counts[bucket] == 1)
5189 /* Last element terminates the chain. */
5190 val |= 1;
5191 bfd_put_32 (s->output_bfd, val,
5192 s->contents + (s->indx[bucket] - s->symindx) * 4);
5193 --s->counts[bucket];
5194 h->dynindx = s->indx[bucket]++;
5195 return TRUE;
5196 }
5197
5198 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5199
5200 bfd_boolean
5201 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5202 {
5203 return !(h->forced_local
5204 || h->root.type == bfd_link_hash_undefined
5205 || h->root.type == bfd_link_hash_undefweak
5206 || ((h->root.type == bfd_link_hash_defined
5207 || h->root.type == bfd_link_hash_defweak)
5208 && h->root.u.def.section->output_section == NULL));
5209 }
5210
5211 /* Array used to determine the number of hash table buckets to use
5212 based on the number of symbols there are. If there are fewer than
5213 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5214 fewer than 37 we use 17 buckets, and so forth. We never use more
5215 than 32771 buckets. */
5216
5217 static const size_t elf_buckets[] =
5218 {
5219 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5220 16411, 32771, 0
5221 };
5222
5223 /* Compute bucket count for hashing table. We do not use a static set
5224 of possible tables sizes anymore. Instead we determine for all
5225 possible reasonable sizes of the table the outcome (i.e., the
5226 number of collisions etc) and choose the best solution. The
5227 weighting functions are not too simple to allow the table to grow
5228 without bounds. Instead one of the weighting factors is the size.
5229 Therefore the result is always a good payoff between few collisions
5230 (= short chain lengths) and table size. */
5231 static size_t
5232 compute_bucket_count (struct bfd_link_info *info,
5233 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5234 unsigned long int nsyms,
5235 int gnu_hash)
5236 {
5237 size_t best_size = 0;
5238 unsigned long int i;
5239
5240 /* We have a problem here. The following code to optimize the table
5241 size requires an integer type with more the 32 bits. If
5242 BFD_HOST_U_64_BIT is set we know about such a type. */
5243 #ifdef BFD_HOST_U_64_BIT
5244 if (info->optimize)
5245 {
5246 size_t minsize;
5247 size_t maxsize;
5248 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5249 bfd *dynobj = elf_hash_table (info)->dynobj;
5250 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5251 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5252 unsigned long int *counts;
5253 bfd_size_type amt;
5254
5255 /* Possible optimization parameters: if we have NSYMS symbols we say
5256 that the hashing table must at least have NSYMS/4 and at most
5257 2*NSYMS buckets. */
5258 minsize = nsyms / 4;
5259 if (minsize == 0)
5260 minsize = 1;
5261 best_size = maxsize = nsyms * 2;
5262 if (gnu_hash)
5263 {
5264 if (minsize < 2)
5265 minsize = 2;
5266 if ((best_size & 31) == 0)
5267 ++best_size;
5268 }
5269
5270 /* Create array where we count the collisions in. We must use bfd_malloc
5271 since the size could be large. */
5272 amt = maxsize;
5273 amt *= sizeof (unsigned long int);
5274 counts = bfd_malloc (amt);
5275 if (counts == NULL)
5276 return 0;
5277
5278 /* Compute the "optimal" size for the hash table. The criteria is a
5279 minimal chain length. The minor criteria is (of course) the size
5280 of the table. */
5281 for (i = minsize; i < maxsize; ++i)
5282 {
5283 /* Walk through the array of hashcodes and count the collisions. */
5284 BFD_HOST_U_64_BIT max;
5285 unsigned long int j;
5286 unsigned long int fact;
5287
5288 if (gnu_hash && (i & 31) == 0)
5289 continue;
5290
5291 memset (counts, '\0', i * sizeof (unsigned long int));
5292
5293 /* Determine how often each hash bucket is used. */
5294 for (j = 0; j < nsyms; ++j)
5295 ++counts[hashcodes[j] % i];
5296
5297 /* For the weight function we need some information about the
5298 pagesize on the target. This is information need not be 100%
5299 accurate. Since this information is not available (so far) we
5300 define it here to a reasonable default value. If it is crucial
5301 to have a better value some day simply define this value. */
5302 # ifndef BFD_TARGET_PAGESIZE
5303 # define BFD_TARGET_PAGESIZE (4096)
5304 # endif
5305
5306 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5307 and the chains. */
5308 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5309
5310 # if 1
5311 /* Variant 1: optimize for short chains. We add the squares
5312 of all the chain lengths (which favors many small chain
5313 over a few long chains). */
5314 for (j = 0; j < i; ++j)
5315 max += counts[j] * counts[j];
5316
5317 /* This adds penalties for the overall size of the table. */
5318 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5319 max *= fact * fact;
5320 # else
5321 /* Variant 2: Optimize a lot more for small table. Here we
5322 also add squares of the size but we also add penalties for
5323 empty slots (the +1 term). */
5324 for (j = 0; j < i; ++j)
5325 max += (1 + counts[j]) * (1 + counts[j]);
5326
5327 /* The overall size of the table is considered, but not as
5328 strong as in variant 1, where it is squared. */
5329 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5330 max *= fact;
5331 # endif
5332
5333 /* Compare with current best results. */
5334 if (max < best_chlen)
5335 {
5336 best_chlen = max;
5337 best_size = i;
5338 }
5339 }
5340
5341 free (counts);
5342 }
5343 else
5344 #endif /* defined (BFD_HOST_U_64_BIT) */
5345 {
5346 /* This is the fallback solution if no 64bit type is available or if we
5347 are not supposed to spend much time on optimizations. We select the
5348 bucket count using a fixed set of numbers. */
5349 for (i = 0; elf_buckets[i] != 0; i++)
5350 {
5351 best_size = elf_buckets[i];
5352 if (nsyms < elf_buckets[i + 1])
5353 break;
5354 }
5355 if (gnu_hash && best_size < 2)
5356 best_size = 2;
5357 }
5358
5359 return best_size;
5360 }
5361
5362 /* Set up the sizes and contents of the ELF dynamic sections. This is
5363 called by the ELF linker emulation before_allocation routine. We
5364 must set the sizes of the sections before the linker sets the
5365 addresses of the various sections. */
5366
5367 bfd_boolean
5368 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5369 const char *soname,
5370 const char *rpath,
5371 const char *filter_shlib,
5372 const char * const *auxiliary_filters,
5373 struct bfd_link_info *info,
5374 asection **sinterpptr,
5375 struct bfd_elf_version_tree *verdefs)
5376 {
5377 bfd_size_type soname_indx;
5378 bfd *dynobj;
5379 const struct elf_backend_data *bed;
5380 struct elf_assign_sym_version_info asvinfo;
5381
5382 *sinterpptr = NULL;
5383
5384 soname_indx = (bfd_size_type) -1;
5385
5386 if (!is_elf_hash_table (info->hash))
5387 return TRUE;
5388
5389 bed = get_elf_backend_data (output_bfd);
5390 if (info->execstack)
5391 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5392 else if (info->noexecstack)
5393 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5394 else
5395 {
5396 bfd *inputobj;
5397 asection *notesec = NULL;
5398 int exec = 0;
5399
5400 for (inputobj = info->input_bfds;
5401 inputobj;
5402 inputobj = inputobj->link_next)
5403 {
5404 asection *s;
5405
5406 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5407 continue;
5408 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5409 if (s)
5410 {
5411 if (s->flags & SEC_CODE)
5412 exec = PF_X;
5413 notesec = s;
5414 }
5415 else if (bed->default_execstack)
5416 exec = PF_X;
5417 }
5418 if (notesec)
5419 {
5420 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5421 if (exec && info->relocatable
5422 && notesec->output_section != bfd_abs_section_ptr)
5423 notesec->output_section->flags |= SEC_CODE;
5424 }
5425 }
5426
5427 /* Any syms created from now on start with -1 in
5428 got.refcount/offset and plt.refcount/offset. */
5429 elf_hash_table (info)->init_got_refcount
5430 = elf_hash_table (info)->init_got_offset;
5431 elf_hash_table (info)->init_plt_refcount
5432 = elf_hash_table (info)->init_plt_offset;
5433
5434 /* The backend may have to create some sections regardless of whether
5435 we're dynamic or not. */
5436 if (bed->elf_backend_always_size_sections
5437 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5438 return FALSE;
5439
5440 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5441 return FALSE;
5442
5443 dynobj = elf_hash_table (info)->dynobj;
5444
5445 /* If there were no dynamic objects in the link, there is nothing to
5446 do here. */
5447 if (dynobj == NULL)
5448 return TRUE;
5449
5450 if (elf_hash_table (info)->dynamic_sections_created)
5451 {
5452 struct elf_info_failed eif;
5453 struct elf_link_hash_entry *h;
5454 asection *dynstr;
5455 struct bfd_elf_version_tree *t;
5456 struct bfd_elf_version_expr *d;
5457 asection *s;
5458 bfd_boolean all_defined;
5459
5460 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5461 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5462
5463 if (soname != NULL)
5464 {
5465 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5466 soname, TRUE);
5467 if (soname_indx == (bfd_size_type) -1
5468 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5469 return FALSE;
5470 }
5471
5472 if (info->symbolic)
5473 {
5474 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5475 return FALSE;
5476 info->flags |= DF_SYMBOLIC;
5477 }
5478
5479 if (rpath != NULL)
5480 {
5481 bfd_size_type indx;
5482
5483 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5484 TRUE);
5485 if (indx == (bfd_size_type) -1
5486 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5487 return FALSE;
5488
5489 if (info->new_dtags)
5490 {
5491 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5492 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5493 return FALSE;
5494 }
5495 }
5496
5497 if (filter_shlib != NULL)
5498 {
5499 bfd_size_type indx;
5500
5501 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5502 filter_shlib, TRUE);
5503 if (indx == (bfd_size_type) -1
5504 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5505 return FALSE;
5506 }
5507
5508 if (auxiliary_filters != NULL)
5509 {
5510 const char * const *p;
5511
5512 for (p = auxiliary_filters; *p != NULL; p++)
5513 {
5514 bfd_size_type indx;
5515
5516 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5517 *p, TRUE);
5518 if (indx == (bfd_size_type) -1
5519 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5520 return FALSE;
5521 }
5522 }
5523
5524 eif.info = info;
5525 eif.verdefs = verdefs;
5526 eif.failed = FALSE;
5527
5528 /* If we are supposed to export all symbols into the dynamic symbol
5529 table (this is not the normal case), then do so. */
5530 if (info->export_dynamic
5531 || (info->executable && info->dynamic))
5532 {
5533 elf_link_hash_traverse (elf_hash_table (info),
5534 _bfd_elf_export_symbol,
5535 &eif);
5536 if (eif.failed)
5537 return FALSE;
5538 }
5539
5540 /* Make all global versions with definition. */
5541 for (t = verdefs; t != NULL; t = t->next)
5542 for (d = t->globals.list; d != NULL; d = d->next)
5543 if (!d->symver && d->symbol)
5544 {
5545 const char *verstr, *name;
5546 size_t namelen, verlen, newlen;
5547 char *newname, *p;
5548 struct elf_link_hash_entry *newh;
5549
5550 name = d->symbol;
5551 namelen = strlen (name);
5552 verstr = t->name;
5553 verlen = strlen (verstr);
5554 newlen = namelen + verlen + 3;
5555
5556 newname = bfd_malloc (newlen);
5557 if (newname == NULL)
5558 return FALSE;
5559 memcpy (newname, name, namelen);
5560
5561 /* Check the hidden versioned definition. */
5562 p = newname + namelen;
5563 *p++ = ELF_VER_CHR;
5564 memcpy (p, verstr, verlen + 1);
5565 newh = elf_link_hash_lookup (elf_hash_table (info),
5566 newname, FALSE, FALSE,
5567 FALSE);
5568 if (newh == NULL
5569 || (newh->root.type != bfd_link_hash_defined
5570 && newh->root.type != bfd_link_hash_defweak))
5571 {
5572 /* Check the default versioned definition. */
5573 *p++ = ELF_VER_CHR;
5574 memcpy (p, verstr, verlen + 1);
5575 newh = elf_link_hash_lookup (elf_hash_table (info),
5576 newname, FALSE, FALSE,
5577 FALSE);
5578 }
5579 free (newname);
5580
5581 /* Mark this version if there is a definition and it is
5582 not defined in a shared object. */
5583 if (newh != NULL
5584 && !newh->def_dynamic
5585 && (newh->root.type == bfd_link_hash_defined
5586 || newh->root.type == bfd_link_hash_defweak))
5587 d->symver = 1;
5588 }
5589
5590 /* Attach all the symbols to their version information. */
5591 asvinfo.output_bfd = output_bfd;
5592 asvinfo.info = info;
5593 asvinfo.verdefs = verdefs;
5594 asvinfo.failed = FALSE;
5595
5596 elf_link_hash_traverse (elf_hash_table (info),
5597 _bfd_elf_link_assign_sym_version,
5598 &asvinfo);
5599 if (asvinfo.failed)
5600 return FALSE;
5601
5602 if (!info->allow_undefined_version)
5603 {
5604 /* Check if all global versions have a definition. */
5605 all_defined = TRUE;
5606 for (t = verdefs; t != NULL; t = t->next)
5607 for (d = t->globals.list; d != NULL; d = d->next)
5608 if (!d->symver && !d->script)
5609 {
5610 (*_bfd_error_handler)
5611 (_("%s: undefined version: %s"),
5612 d->pattern, t->name);
5613 all_defined = FALSE;
5614 }
5615
5616 if (!all_defined)
5617 {
5618 bfd_set_error (bfd_error_bad_value);
5619 return FALSE;
5620 }
5621 }
5622
5623 /* Find all symbols which were defined in a dynamic object and make
5624 the backend pick a reasonable value for them. */
5625 elf_link_hash_traverse (elf_hash_table (info),
5626 _bfd_elf_adjust_dynamic_symbol,
5627 &eif);
5628 if (eif.failed)
5629 return FALSE;
5630
5631 /* Add some entries to the .dynamic section. We fill in some of the
5632 values later, in bfd_elf_final_link, but we must add the entries
5633 now so that we know the final size of the .dynamic section. */
5634
5635 /* If there are initialization and/or finalization functions to
5636 call then add the corresponding DT_INIT/DT_FINI entries. */
5637 h = (info->init_function
5638 ? elf_link_hash_lookup (elf_hash_table (info),
5639 info->init_function, FALSE,
5640 FALSE, FALSE)
5641 : NULL);
5642 if (h != NULL
5643 && (h->ref_regular
5644 || h->def_regular))
5645 {
5646 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5647 return FALSE;
5648 }
5649 h = (info->fini_function
5650 ? elf_link_hash_lookup (elf_hash_table (info),
5651 info->fini_function, FALSE,
5652 FALSE, FALSE)
5653 : NULL);
5654 if (h != NULL
5655 && (h->ref_regular
5656 || h->def_regular))
5657 {
5658 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5659 return FALSE;
5660 }
5661
5662 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5663 if (s != NULL && s->linker_has_input)
5664 {
5665 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5666 if (! info->executable)
5667 {
5668 bfd *sub;
5669 asection *o;
5670
5671 for (sub = info->input_bfds; sub != NULL;
5672 sub = sub->link_next)
5673 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5674 for (o = sub->sections; o != NULL; o = o->next)
5675 if (elf_section_data (o)->this_hdr.sh_type
5676 == SHT_PREINIT_ARRAY)
5677 {
5678 (*_bfd_error_handler)
5679 (_("%B: .preinit_array section is not allowed in DSO"),
5680 sub);
5681 break;
5682 }
5683
5684 bfd_set_error (bfd_error_nonrepresentable_section);
5685 return FALSE;
5686 }
5687
5688 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5689 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5690 return FALSE;
5691 }
5692 s = bfd_get_section_by_name (output_bfd, ".init_array");
5693 if (s != NULL && s->linker_has_input)
5694 {
5695 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5696 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5697 return FALSE;
5698 }
5699 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5700 if (s != NULL && s->linker_has_input)
5701 {
5702 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5703 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5704 return FALSE;
5705 }
5706
5707 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5708 /* If .dynstr is excluded from the link, we don't want any of
5709 these tags. Strictly, we should be checking each section
5710 individually; This quick check covers for the case where
5711 someone does a /DISCARD/ : { *(*) }. */
5712 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5713 {
5714 bfd_size_type strsize;
5715
5716 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5717 if ((info->emit_hash
5718 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5719 || (info->emit_gnu_hash
5720 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5721 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5722 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5723 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5724 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5725 bed->s->sizeof_sym))
5726 return FALSE;
5727 }
5728 }
5729
5730 /* The backend must work out the sizes of all the other dynamic
5731 sections. */
5732 if (bed->elf_backend_size_dynamic_sections
5733 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5734 return FALSE;
5735
5736 if (elf_hash_table (info)->dynamic_sections_created)
5737 {
5738 unsigned long section_sym_count;
5739 asection *s;
5740
5741 /* Set up the version definition section. */
5742 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5743 BFD_ASSERT (s != NULL);
5744
5745 /* We may have created additional version definitions if we are
5746 just linking a regular application. */
5747 verdefs = asvinfo.verdefs;
5748
5749 /* Skip anonymous version tag. */
5750 if (verdefs != NULL && verdefs->vernum == 0)
5751 verdefs = verdefs->next;
5752
5753 if (verdefs == NULL && !info->create_default_symver)
5754 s->flags |= SEC_EXCLUDE;
5755 else
5756 {
5757 unsigned int cdefs;
5758 bfd_size_type size;
5759 struct bfd_elf_version_tree *t;
5760 bfd_byte *p;
5761 Elf_Internal_Verdef def;
5762 Elf_Internal_Verdaux defaux;
5763 struct bfd_link_hash_entry *bh;
5764 struct elf_link_hash_entry *h;
5765 const char *name;
5766
5767 cdefs = 0;
5768 size = 0;
5769
5770 /* Make space for the base version. */
5771 size += sizeof (Elf_External_Verdef);
5772 size += sizeof (Elf_External_Verdaux);
5773 ++cdefs;
5774
5775 /* Make space for the default version. */
5776 if (info->create_default_symver)
5777 {
5778 size += sizeof (Elf_External_Verdef);
5779 ++cdefs;
5780 }
5781
5782 for (t = verdefs; t != NULL; t = t->next)
5783 {
5784 struct bfd_elf_version_deps *n;
5785
5786 size += sizeof (Elf_External_Verdef);
5787 size += sizeof (Elf_External_Verdaux);
5788 ++cdefs;
5789
5790 for (n = t->deps; n != NULL; n = n->next)
5791 size += sizeof (Elf_External_Verdaux);
5792 }
5793
5794 s->size = size;
5795 s->contents = bfd_alloc (output_bfd, s->size);
5796 if (s->contents == NULL && s->size != 0)
5797 return FALSE;
5798
5799 /* Fill in the version definition section. */
5800
5801 p = s->contents;
5802
5803 def.vd_version = VER_DEF_CURRENT;
5804 def.vd_flags = VER_FLG_BASE;
5805 def.vd_ndx = 1;
5806 def.vd_cnt = 1;
5807 if (info->create_default_symver)
5808 {
5809 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5810 def.vd_next = sizeof (Elf_External_Verdef);
5811 }
5812 else
5813 {
5814 def.vd_aux = sizeof (Elf_External_Verdef);
5815 def.vd_next = (sizeof (Elf_External_Verdef)
5816 + sizeof (Elf_External_Verdaux));
5817 }
5818
5819 if (soname_indx != (bfd_size_type) -1)
5820 {
5821 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5822 soname_indx);
5823 def.vd_hash = bfd_elf_hash (soname);
5824 defaux.vda_name = soname_indx;
5825 name = soname;
5826 }
5827 else
5828 {
5829 bfd_size_type indx;
5830
5831 name = lbasename (output_bfd->filename);
5832 def.vd_hash = bfd_elf_hash (name);
5833 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5834 name, FALSE);
5835 if (indx == (bfd_size_type) -1)
5836 return FALSE;
5837 defaux.vda_name = indx;
5838 }
5839 defaux.vda_next = 0;
5840
5841 _bfd_elf_swap_verdef_out (output_bfd, &def,
5842 (Elf_External_Verdef *) p);
5843 p += sizeof (Elf_External_Verdef);
5844 if (info->create_default_symver)
5845 {
5846 /* Add a symbol representing this version. */
5847 bh = NULL;
5848 if (! (_bfd_generic_link_add_one_symbol
5849 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5850 0, NULL, FALSE,
5851 get_elf_backend_data (dynobj)->collect, &bh)))
5852 return FALSE;
5853 h = (struct elf_link_hash_entry *) bh;
5854 h->non_elf = 0;
5855 h->def_regular = 1;
5856 h->type = STT_OBJECT;
5857 h->verinfo.vertree = NULL;
5858
5859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5860 return FALSE;
5861
5862 /* Create a duplicate of the base version with the same
5863 aux block, but different flags. */
5864 def.vd_flags = 0;
5865 def.vd_ndx = 2;
5866 def.vd_aux = sizeof (Elf_External_Verdef);
5867 if (verdefs)
5868 def.vd_next = (sizeof (Elf_External_Verdef)
5869 + sizeof (Elf_External_Verdaux));
5870 else
5871 def.vd_next = 0;
5872 _bfd_elf_swap_verdef_out (output_bfd, &def,
5873 (Elf_External_Verdef *) p);
5874 p += sizeof (Elf_External_Verdef);
5875 }
5876 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5877 (Elf_External_Verdaux *) p);
5878 p += sizeof (Elf_External_Verdaux);
5879
5880 for (t = verdefs; t != NULL; t = t->next)
5881 {
5882 unsigned int cdeps;
5883 struct bfd_elf_version_deps *n;
5884
5885 cdeps = 0;
5886 for (n = t->deps; n != NULL; n = n->next)
5887 ++cdeps;
5888
5889 /* Add a symbol representing this version. */
5890 bh = NULL;
5891 if (! (_bfd_generic_link_add_one_symbol
5892 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5893 0, NULL, FALSE,
5894 get_elf_backend_data (dynobj)->collect, &bh)))
5895 return FALSE;
5896 h = (struct elf_link_hash_entry *) bh;
5897 h->non_elf = 0;
5898 h->def_regular = 1;
5899 h->type = STT_OBJECT;
5900 h->verinfo.vertree = t;
5901
5902 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5903 return FALSE;
5904
5905 def.vd_version = VER_DEF_CURRENT;
5906 def.vd_flags = 0;
5907 if (t->globals.list == NULL
5908 && t->locals.list == NULL
5909 && ! t->used)
5910 def.vd_flags |= VER_FLG_WEAK;
5911 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5912 def.vd_cnt = cdeps + 1;
5913 def.vd_hash = bfd_elf_hash (t->name);
5914 def.vd_aux = sizeof (Elf_External_Verdef);
5915 def.vd_next = 0;
5916 if (t->next != NULL)
5917 def.vd_next = (sizeof (Elf_External_Verdef)
5918 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5919
5920 _bfd_elf_swap_verdef_out (output_bfd, &def,
5921 (Elf_External_Verdef *) p);
5922 p += sizeof (Elf_External_Verdef);
5923
5924 defaux.vda_name = h->dynstr_index;
5925 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5926 h->dynstr_index);
5927 defaux.vda_next = 0;
5928 if (t->deps != NULL)
5929 defaux.vda_next = sizeof (Elf_External_Verdaux);
5930 t->name_indx = defaux.vda_name;
5931
5932 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5933 (Elf_External_Verdaux *) p);
5934 p += sizeof (Elf_External_Verdaux);
5935
5936 for (n = t->deps; n != NULL; n = n->next)
5937 {
5938 if (n->version_needed == NULL)
5939 {
5940 /* This can happen if there was an error in the
5941 version script. */
5942 defaux.vda_name = 0;
5943 }
5944 else
5945 {
5946 defaux.vda_name = n->version_needed->name_indx;
5947 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5948 defaux.vda_name);
5949 }
5950 if (n->next == NULL)
5951 defaux.vda_next = 0;
5952 else
5953 defaux.vda_next = sizeof (Elf_External_Verdaux);
5954
5955 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5956 (Elf_External_Verdaux *) p);
5957 p += sizeof (Elf_External_Verdaux);
5958 }
5959 }
5960
5961 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5962 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5963 return FALSE;
5964
5965 elf_tdata (output_bfd)->cverdefs = cdefs;
5966 }
5967
5968 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5969 {
5970 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5971 return FALSE;
5972 }
5973 else if (info->flags & DF_BIND_NOW)
5974 {
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5976 return FALSE;
5977 }
5978
5979 if (info->flags_1)
5980 {
5981 if (info->executable)
5982 info->flags_1 &= ~ (DF_1_INITFIRST
5983 | DF_1_NODELETE
5984 | DF_1_NOOPEN);
5985 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5986 return FALSE;
5987 }
5988
5989 /* Work out the size of the version reference section. */
5990
5991 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5992 BFD_ASSERT (s != NULL);
5993 {
5994 struct elf_find_verdep_info sinfo;
5995
5996 sinfo.output_bfd = output_bfd;
5997 sinfo.info = info;
5998 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5999 if (sinfo.vers == 0)
6000 sinfo.vers = 1;
6001 sinfo.failed = FALSE;
6002
6003 elf_link_hash_traverse (elf_hash_table (info),
6004 _bfd_elf_link_find_version_dependencies,
6005 &sinfo);
6006 if (sinfo.failed)
6007 return FALSE;
6008
6009 if (elf_tdata (output_bfd)->verref == NULL)
6010 s->flags |= SEC_EXCLUDE;
6011 else
6012 {
6013 Elf_Internal_Verneed *t;
6014 unsigned int size;
6015 unsigned int crefs;
6016 bfd_byte *p;
6017
6018 /* Build the version definition section. */
6019 size = 0;
6020 crefs = 0;
6021 for (t = elf_tdata (output_bfd)->verref;
6022 t != NULL;
6023 t = t->vn_nextref)
6024 {
6025 Elf_Internal_Vernaux *a;
6026
6027 size += sizeof (Elf_External_Verneed);
6028 ++crefs;
6029 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6030 size += sizeof (Elf_External_Vernaux);
6031 }
6032
6033 s->size = size;
6034 s->contents = bfd_alloc (output_bfd, s->size);
6035 if (s->contents == NULL)
6036 return FALSE;
6037
6038 p = s->contents;
6039 for (t = elf_tdata (output_bfd)->verref;
6040 t != NULL;
6041 t = t->vn_nextref)
6042 {
6043 unsigned int caux;
6044 Elf_Internal_Vernaux *a;
6045 bfd_size_type indx;
6046
6047 caux = 0;
6048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6049 ++caux;
6050
6051 t->vn_version = VER_NEED_CURRENT;
6052 t->vn_cnt = caux;
6053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6054 elf_dt_name (t->vn_bfd) != NULL
6055 ? elf_dt_name (t->vn_bfd)
6056 : lbasename (t->vn_bfd->filename),
6057 FALSE);
6058 if (indx == (bfd_size_type) -1)
6059 return FALSE;
6060 t->vn_file = indx;
6061 t->vn_aux = sizeof (Elf_External_Verneed);
6062 if (t->vn_nextref == NULL)
6063 t->vn_next = 0;
6064 else
6065 t->vn_next = (sizeof (Elf_External_Verneed)
6066 + caux * sizeof (Elf_External_Vernaux));
6067
6068 _bfd_elf_swap_verneed_out (output_bfd, t,
6069 (Elf_External_Verneed *) p);
6070 p += sizeof (Elf_External_Verneed);
6071
6072 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6073 {
6074 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6075 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6076 a->vna_nodename, FALSE);
6077 if (indx == (bfd_size_type) -1)
6078 return FALSE;
6079 a->vna_name = indx;
6080 if (a->vna_nextptr == NULL)
6081 a->vna_next = 0;
6082 else
6083 a->vna_next = sizeof (Elf_External_Vernaux);
6084
6085 _bfd_elf_swap_vernaux_out (output_bfd, a,
6086 (Elf_External_Vernaux *) p);
6087 p += sizeof (Elf_External_Vernaux);
6088 }
6089 }
6090
6091 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6092 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6093 return FALSE;
6094
6095 elf_tdata (output_bfd)->cverrefs = crefs;
6096 }
6097 }
6098
6099 if ((elf_tdata (output_bfd)->cverrefs == 0
6100 && elf_tdata (output_bfd)->cverdefs == 0)
6101 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6102 &section_sym_count) == 0)
6103 {
6104 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6105 s->flags |= SEC_EXCLUDE;
6106 }
6107 }
6108 return TRUE;
6109 }
6110
6111 /* Find the first non-excluded output section. We'll use its
6112 section symbol for some emitted relocs. */
6113 void
6114 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6115 {
6116 asection *s;
6117
6118 for (s = output_bfd->sections; s != NULL; s = s->next)
6119 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6120 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6121 {
6122 elf_hash_table (info)->text_index_section = s;
6123 break;
6124 }
6125 }
6126
6127 /* Find two non-excluded output sections, one for code, one for data.
6128 We'll use their section symbols for some emitted relocs. */
6129 void
6130 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6131 {
6132 asection *s;
6133
6134 for (s = output_bfd->sections; s != NULL; s = s->next)
6135 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6136 == (SEC_ALLOC | SEC_READONLY))
6137 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6138 {
6139 elf_hash_table (info)->text_index_section = s;
6140 break;
6141 }
6142
6143 for (s = output_bfd->sections; s != NULL; s = s->next)
6144 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6145 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6146 {
6147 elf_hash_table (info)->data_index_section = s;
6148 break;
6149 }
6150
6151 if (elf_hash_table (info)->text_index_section == NULL)
6152 elf_hash_table (info)->text_index_section
6153 = elf_hash_table (info)->data_index_section;
6154 }
6155
6156 bfd_boolean
6157 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6158 {
6159 const struct elf_backend_data *bed;
6160
6161 if (!is_elf_hash_table (info->hash))
6162 return TRUE;
6163
6164 bed = get_elf_backend_data (output_bfd);
6165 (*bed->elf_backend_init_index_section) (output_bfd, info);
6166
6167 if (elf_hash_table (info)->dynamic_sections_created)
6168 {
6169 bfd *dynobj;
6170 asection *s;
6171 bfd_size_type dynsymcount;
6172 unsigned long section_sym_count;
6173 unsigned int dtagcount;
6174
6175 dynobj = elf_hash_table (info)->dynobj;
6176
6177 /* Assign dynsym indicies. In a shared library we generate a
6178 section symbol for each output section, which come first.
6179 Next come all of the back-end allocated local dynamic syms,
6180 followed by the rest of the global symbols. */
6181
6182 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6183 &section_sym_count);
6184
6185 /* Work out the size of the symbol version section. */
6186 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6187 BFD_ASSERT (s != NULL);
6188 if (dynsymcount != 0
6189 && (s->flags & SEC_EXCLUDE) == 0)
6190 {
6191 s->size = dynsymcount * sizeof (Elf_External_Versym);
6192 s->contents = bfd_zalloc (output_bfd, s->size);
6193 if (s->contents == NULL)
6194 return FALSE;
6195
6196 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6197 return FALSE;
6198 }
6199
6200 /* Set the size of the .dynsym and .hash sections. We counted
6201 the number of dynamic symbols in elf_link_add_object_symbols.
6202 We will build the contents of .dynsym and .hash when we build
6203 the final symbol table, because until then we do not know the
6204 correct value to give the symbols. We built the .dynstr
6205 section as we went along in elf_link_add_object_symbols. */
6206 s = bfd_get_section_by_name (dynobj, ".dynsym");
6207 BFD_ASSERT (s != NULL);
6208 s->size = dynsymcount * bed->s->sizeof_sym;
6209
6210 if (dynsymcount != 0)
6211 {
6212 s->contents = bfd_alloc (output_bfd, s->size);
6213 if (s->contents == NULL)
6214 return FALSE;
6215
6216 /* The first entry in .dynsym is a dummy symbol.
6217 Clear all the section syms, in case we don't output them all. */
6218 ++section_sym_count;
6219 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6220 }
6221
6222 elf_hash_table (info)->bucketcount = 0;
6223
6224 /* Compute the size of the hashing table. As a side effect this
6225 computes the hash values for all the names we export. */
6226 if (info->emit_hash)
6227 {
6228 unsigned long int *hashcodes;
6229 struct hash_codes_info hashinf;
6230 bfd_size_type amt;
6231 unsigned long int nsyms;
6232 size_t bucketcount;
6233 size_t hash_entry_size;
6234
6235 /* Compute the hash values for all exported symbols. At the same
6236 time store the values in an array so that we could use them for
6237 optimizations. */
6238 amt = dynsymcount * sizeof (unsigned long int);
6239 hashcodes = bfd_malloc (amt);
6240 if (hashcodes == NULL)
6241 return FALSE;
6242 hashinf.hashcodes = hashcodes;
6243 hashinf.error = FALSE;
6244
6245 /* Put all hash values in HASHCODES. */
6246 elf_link_hash_traverse (elf_hash_table (info),
6247 elf_collect_hash_codes, &hashinf);
6248 if (hashinf.error)
6249 return FALSE;
6250
6251 nsyms = hashinf.hashcodes - hashcodes;
6252 bucketcount
6253 = compute_bucket_count (info, hashcodes, nsyms, 0);
6254 free (hashcodes);
6255
6256 if (bucketcount == 0)
6257 return FALSE;
6258
6259 elf_hash_table (info)->bucketcount = bucketcount;
6260
6261 s = bfd_get_section_by_name (dynobj, ".hash");
6262 BFD_ASSERT (s != NULL);
6263 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6264 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6265 s->contents = bfd_zalloc (output_bfd, s->size);
6266 if (s->contents == NULL)
6267 return FALSE;
6268
6269 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6270 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6271 s->contents + hash_entry_size);
6272 }
6273
6274 if (info->emit_gnu_hash)
6275 {
6276 size_t i, cnt;
6277 unsigned char *contents;
6278 struct collect_gnu_hash_codes cinfo;
6279 bfd_size_type amt;
6280 size_t bucketcount;
6281
6282 memset (&cinfo, 0, sizeof (cinfo));
6283
6284 /* Compute the hash values for all exported symbols. At the same
6285 time store the values in an array so that we could use them for
6286 optimizations. */
6287 amt = dynsymcount * 2 * sizeof (unsigned long int);
6288 cinfo.hashcodes = bfd_malloc (amt);
6289 if (cinfo.hashcodes == NULL)
6290 return FALSE;
6291
6292 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6293 cinfo.min_dynindx = -1;
6294 cinfo.output_bfd = output_bfd;
6295 cinfo.bed = bed;
6296
6297 /* Put all hash values in HASHCODES. */
6298 elf_link_hash_traverse (elf_hash_table (info),
6299 elf_collect_gnu_hash_codes, &cinfo);
6300 if (cinfo.error)
6301 return FALSE;
6302
6303 bucketcount
6304 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6305
6306 if (bucketcount == 0)
6307 {
6308 free (cinfo.hashcodes);
6309 return FALSE;
6310 }
6311
6312 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6313 BFD_ASSERT (s != NULL);
6314
6315 if (cinfo.nsyms == 0)
6316 {
6317 /* Empty .gnu.hash section is special. */
6318 BFD_ASSERT (cinfo.min_dynindx == -1);
6319 free (cinfo.hashcodes);
6320 s->size = 5 * 4 + bed->s->arch_size / 8;
6321 contents = bfd_zalloc (output_bfd, s->size);
6322 if (contents == NULL)
6323 return FALSE;
6324 s->contents = contents;
6325 /* 1 empty bucket. */
6326 bfd_put_32 (output_bfd, 1, contents);
6327 /* SYMIDX above the special symbol 0. */
6328 bfd_put_32 (output_bfd, 1, contents + 4);
6329 /* Just one word for bitmask. */
6330 bfd_put_32 (output_bfd, 1, contents + 8);
6331 /* Only hash fn bloom filter. */
6332 bfd_put_32 (output_bfd, 0, contents + 12);
6333 /* No hashes are valid - empty bitmask. */
6334 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6335 /* No hashes in the only bucket. */
6336 bfd_put_32 (output_bfd, 0,
6337 contents + 16 + bed->s->arch_size / 8);
6338 }
6339 else
6340 {
6341 unsigned long int maskwords, maskbitslog2;
6342 BFD_ASSERT (cinfo.min_dynindx != -1);
6343
6344 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6345 if (maskbitslog2 < 3)
6346 maskbitslog2 = 5;
6347 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6348 maskbitslog2 = maskbitslog2 + 3;
6349 else
6350 maskbitslog2 = maskbitslog2 + 2;
6351 if (bed->s->arch_size == 64)
6352 {
6353 if (maskbitslog2 == 5)
6354 maskbitslog2 = 6;
6355 cinfo.shift1 = 6;
6356 }
6357 else
6358 cinfo.shift1 = 5;
6359 cinfo.mask = (1 << cinfo.shift1) - 1;
6360 cinfo.shift2 = maskbitslog2;
6361 cinfo.maskbits = 1 << maskbitslog2;
6362 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6363 amt = bucketcount * sizeof (unsigned long int) * 2;
6364 amt += maskwords * sizeof (bfd_vma);
6365 cinfo.bitmask = bfd_malloc (amt);
6366 if (cinfo.bitmask == NULL)
6367 {
6368 free (cinfo.hashcodes);
6369 return FALSE;
6370 }
6371
6372 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6373 cinfo.indx = cinfo.counts + bucketcount;
6374 cinfo.symindx = dynsymcount - cinfo.nsyms;
6375 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6376
6377 /* Determine how often each hash bucket is used. */
6378 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6379 for (i = 0; i < cinfo.nsyms; ++i)
6380 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6381
6382 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6383 if (cinfo.counts[i] != 0)
6384 {
6385 cinfo.indx[i] = cnt;
6386 cnt += cinfo.counts[i];
6387 }
6388 BFD_ASSERT (cnt == dynsymcount);
6389 cinfo.bucketcount = bucketcount;
6390 cinfo.local_indx = cinfo.min_dynindx;
6391
6392 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6393 s->size += cinfo.maskbits / 8;
6394 contents = bfd_zalloc (output_bfd, s->size);
6395 if (contents == NULL)
6396 {
6397 free (cinfo.bitmask);
6398 free (cinfo.hashcodes);
6399 return FALSE;
6400 }
6401
6402 s->contents = contents;
6403 bfd_put_32 (output_bfd, bucketcount, contents);
6404 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6405 bfd_put_32 (output_bfd, maskwords, contents + 8);
6406 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6407 contents += 16 + cinfo.maskbits / 8;
6408
6409 for (i = 0; i < bucketcount; ++i)
6410 {
6411 if (cinfo.counts[i] == 0)
6412 bfd_put_32 (output_bfd, 0, contents);
6413 else
6414 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6415 contents += 4;
6416 }
6417
6418 cinfo.contents = contents;
6419
6420 /* Renumber dynamic symbols, populate .gnu.hash section. */
6421 elf_link_hash_traverse (elf_hash_table (info),
6422 elf_renumber_gnu_hash_syms, &cinfo);
6423
6424 contents = s->contents + 16;
6425 for (i = 0; i < maskwords; ++i)
6426 {
6427 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6428 contents);
6429 contents += bed->s->arch_size / 8;
6430 }
6431
6432 free (cinfo.bitmask);
6433 free (cinfo.hashcodes);
6434 }
6435 }
6436
6437 s = bfd_get_section_by_name (dynobj, ".dynstr");
6438 BFD_ASSERT (s != NULL);
6439
6440 elf_finalize_dynstr (output_bfd, info);
6441
6442 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6443
6444 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6445 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6446 return FALSE;
6447 }
6448
6449 return TRUE;
6450 }
6451 \f
6452 /* Indicate that we are only retrieving symbol values from this
6453 section. */
6454
6455 void
6456 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6457 {
6458 if (is_elf_hash_table (info->hash))
6459 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6460 _bfd_generic_link_just_syms (sec, info);
6461 }
6462
6463 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6464
6465 static void
6466 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6467 asection *sec)
6468 {
6469 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6470 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6471 }
6472
6473 /* Finish SHF_MERGE section merging. */
6474
6475 bfd_boolean
6476 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6477 {
6478 bfd *ibfd;
6479 asection *sec;
6480
6481 if (!is_elf_hash_table (info->hash))
6482 return FALSE;
6483
6484 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6485 if ((ibfd->flags & DYNAMIC) == 0)
6486 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6487 if ((sec->flags & SEC_MERGE) != 0
6488 && !bfd_is_abs_section (sec->output_section))
6489 {
6490 struct bfd_elf_section_data *secdata;
6491
6492 secdata = elf_section_data (sec);
6493 if (! _bfd_add_merge_section (abfd,
6494 &elf_hash_table (info)->merge_info,
6495 sec, &secdata->sec_info))
6496 return FALSE;
6497 else if (secdata->sec_info)
6498 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6499 }
6500
6501 if (elf_hash_table (info)->merge_info != NULL)
6502 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6503 merge_sections_remove_hook);
6504 return TRUE;
6505 }
6506
6507 /* Create an entry in an ELF linker hash table. */
6508
6509 struct bfd_hash_entry *
6510 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6511 struct bfd_hash_table *table,
6512 const char *string)
6513 {
6514 /* Allocate the structure if it has not already been allocated by a
6515 subclass. */
6516 if (entry == NULL)
6517 {
6518 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6519 if (entry == NULL)
6520 return entry;
6521 }
6522
6523 /* Call the allocation method of the superclass. */
6524 entry = _bfd_link_hash_newfunc (entry, table, string);
6525 if (entry != NULL)
6526 {
6527 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6528 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6529
6530 /* Set local fields. */
6531 ret->indx = -1;
6532 ret->dynindx = -1;
6533 ret->got = htab->init_got_refcount;
6534 ret->plt = htab->init_plt_refcount;
6535 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6536 - offsetof (struct elf_link_hash_entry, size)));
6537 /* Assume that we have been called by a non-ELF symbol reader.
6538 This flag is then reset by the code which reads an ELF input
6539 file. This ensures that a symbol created by a non-ELF symbol
6540 reader will have the flag set correctly. */
6541 ret->non_elf = 1;
6542 }
6543
6544 return entry;
6545 }
6546
6547 /* Copy data from an indirect symbol to its direct symbol, hiding the
6548 old indirect symbol. Also used for copying flags to a weakdef. */
6549
6550 void
6551 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6552 struct elf_link_hash_entry *dir,
6553 struct elf_link_hash_entry *ind)
6554 {
6555 struct elf_link_hash_table *htab;
6556
6557 /* Copy down any references that we may have already seen to the
6558 symbol which just became indirect. */
6559
6560 dir->ref_dynamic |= ind->ref_dynamic;
6561 dir->ref_regular |= ind->ref_regular;
6562 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6563 dir->non_got_ref |= ind->non_got_ref;
6564 dir->needs_plt |= ind->needs_plt;
6565 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6566
6567 if (ind->root.type != bfd_link_hash_indirect)
6568 return;
6569
6570 /* Copy over the global and procedure linkage table refcount entries.
6571 These may have been already set up by a check_relocs routine. */
6572 htab = elf_hash_table (info);
6573 if (ind->got.refcount > htab->init_got_refcount.refcount)
6574 {
6575 if (dir->got.refcount < 0)
6576 dir->got.refcount = 0;
6577 dir->got.refcount += ind->got.refcount;
6578 ind->got.refcount = htab->init_got_refcount.refcount;
6579 }
6580
6581 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6582 {
6583 if (dir->plt.refcount < 0)
6584 dir->plt.refcount = 0;
6585 dir->plt.refcount += ind->plt.refcount;
6586 ind->plt.refcount = htab->init_plt_refcount.refcount;
6587 }
6588
6589 if (ind->dynindx != -1)
6590 {
6591 if (dir->dynindx != -1)
6592 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6593 dir->dynindx = ind->dynindx;
6594 dir->dynstr_index = ind->dynstr_index;
6595 ind->dynindx = -1;
6596 ind->dynstr_index = 0;
6597 }
6598 }
6599
6600 void
6601 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6602 struct elf_link_hash_entry *h,
6603 bfd_boolean force_local)
6604 {
6605 h->plt = elf_hash_table (info)->init_plt_offset;
6606 h->needs_plt = 0;
6607 if (force_local)
6608 {
6609 h->forced_local = 1;
6610 if (h->dynindx != -1)
6611 {
6612 h->dynindx = -1;
6613 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6614 h->dynstr_index);
6615 }
6616 }
6617 }
6618
6619 /* Initialize an ELF linker hash table. */
6620
6621 bfd_boolean
6622 _bfd_elf_link_hash_table_init
6623 (struct elf_link_hash_table *table,
6624 bfd *abfd,
6625 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6626 struct bfd_hash_table *,
6627 const char *),
6628 unsigned int entsize)
6629 {
6630 bfd_boolean ret;
6631 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6632
6633 memset (table, 0, sizeof * table);
6634 table->init_got_refcount.refcount = can_refcount - 1;
6635 table->init_plt_refcount.refcount = can_refcount - 1;
6636 table->init_got_offset.offset = -(bfd_vma) 1;
6637 table->init_plt_offset.offset = -(bfd_vma) 1;
6638 /* The first dynamic symbol is a dummy. */
6639 table->dynsymcount = 1;
6640
6641 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6642 table->root.type = bfd_link_elf_hash_table;
6643
6644 return ret;
6645 }
6646
6647 /* Create an ELF linker hash table. */
6648
6649 struct bfd_link_hash_table *
6650 _bfd_elf_link_hash_table_create (bfd *abfd)
6651 {
6652 struct elf_link_hash_table *ret;
6653 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6654
6655 ret = bfd_malloc (amt);
6656 if (ret == NULL)
6657 return NULL;
6658
6659 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6660 sizeof (struct elf_link_hash_entry)))
6661 {
6662 free (ret);
6663 return NULL;
6664 }
6665
6666 return &ret->root;
6667 }
6668
6669 /* This is a hook for the ELF emulation code in the generic linker to
6670 tell the backend linker what file name to use for the DT_NEEDED
6671 entry for a dynamic object. */
6672
6673 void
6674 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6675 {
6676 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6677 && bfd_get_format (abfd) == bfd_object)
6678 elf_dt_name (abfd) = name;
6679 }
6680
6681 int
6682 bfd_elf_get_dyn_lib_class (bfd *abfd)
6683 {
6684 int lib_class;
6685 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6686 && bfd_get_format (abfd) == bfd_object)
6687 lib_class = elf_dyn_lib_class (abfd);
6688 else
6689 lib_class = 0;
6690 return lib_class;
6691 }
6692
6693 void
6694 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6695 {
6696 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6697 && bfd_get_format (abfd) == bfd_object)
6698 elf_dyn_lib_class (abfd) = lib_class;
6699 }
6700
6701 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6702 the linker ELF emulation code. */
6703
6704 struct bfd_link_needed_list *
6705 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6706 struct bfd_link_info *info)
6707 {
6708 if (! is_elf_hash_table (info->hash))
6709 return NULL;
6710 return elf_hash_table (info)->needed;
6711 }
6712
6713 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6714 hook for the linker ELF emulation code. */
6715
6716 struct bfd_link_needed_list *
6717 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6718 struct bfd_link_info *info)
6719 {
6720 if (! is_elf_hash_table (info->hash))
6721 return NULL;
6722 return elf_hash_table (info)->runpath;
6723 }
6724
6725 /* Get the name actually used for a dynamic object for a link. This
6726 is the SONAME entry if there is one. Otherwise, it is the string
6727 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6728
6729 const char *
6730 bfd_elf_get_dt_soname (bfd *abfd)
6731 {
6732 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6733 && bfd_get_format (abfd) == bfd_object)
6734 return elf_dt_name (abfd);
6735 return NULL;
6736 }
6737
6738 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6739 the ELF linker emulation code. */
6740
6741 bfd_boolean
6742 bfd_elf_get_bfd_needed_list (bfd *abfd,
6743 struct bfd_link_needed_list **pneeded)
6744 {
6745 asection *s;
6746 bfd_byte *dynbuf = NULL;
6747 unsigned int elfsec;
6748 unsigned long shlink;
6749 bfd_byte *extdyn, *extdynend;
6750 size_t extdynsize;
6751 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6752
6753 *pneeded = NULL;
6754
6755 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6756 || bfd_get_format (abfd) != bfd_object)
6757 return TRUE;
6758
6759 s = bfd_get_section_by_name (abfd, ".dynamic");
6760 if (s == NULL || s->size == 0)
6761 return TRUE;
6762
6763 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6764 goto error_return;
6765
6766 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6767 if (elfsec == SHN_BAD)
6768 goto error_return;
6769
6770 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6771
6772 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6773 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6774
6775 extdyn = dynbuf;
6776 extdynend = extdyn + s->size;
6777 for (; extdyn < extdynend; extdyn += extdynsize)
6778 {
6779 Elf_Internal_Dyn dyn;
6780
6781 (*swap_dyn_in) (abfd, extdyn, &dyn);
6782
6783 if (dyn.d_tag == DT_NULL)
6784 break;
6785
6786 if (dyn.d_tag == DT_NEEDED)
6787 {
6788 const char *string;
6789 struct bfd_link_needed_list *l;
6790 unsigned int tagv = dyn.d_un.d_val;
6791 bfd_size_type amt;
6792
6793 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6794 if (string == NULL)
6795 goto error_return;
6796
6797 amt = sizeof *l;
6798 l = bfd_alloc (abfd, amt);
6799 if (l == NULL)
6800 goto error_return;
6801
6802 l->by = abfd;
6803 l->name = string;
6804 l->next = *pneeded;
6805 *pneeded = l;
6806 }
6807 }
6808
6809 free (dynbuf);
6810
6811 return TRUE;
6812
6813 error_return:
6814 if (dynbuf != NULL)
6815 free (dynbuf);
6816 return FALSE;
6817 }
6818
6819 struct elf_symbuf_symbol
6820 {
6821 unsigned long st_name; /* Symbol name, index in string tbl */
6822 unsigned char st_info; /* Type and binding attributes */
6823 unsigned char st_other; /* Visibilty, and target specific */
6824 };
6825
6826 struct elf_symbuf_head
6827 {
6828 struct elf_symbuf_symbol *ssym;
6829 bfd_size_type count;
6830 unsigned int st_shndx;
6831 };
6832
6833 struct elf_symbol
6834 {
6835 union
6836 {
6837 Elf_Internal_Sym *isym;
6838 struct elf_symbuf_symbol *ssym;
6839 } u;
6840 const char *name;
6841 };
6842
6843 /* Sort references to symbols by ascending section number. */
6844
6845 static int
6846 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6847 {
6848 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6849 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6850
6851 return s1->st_shndx - s2->st_shndx;
6852 }
6853
6854 static int
6855 elf_sym_name_compare (const void *arg1, const void *arg2)
6856 {
6857 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6858 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6859 return strcmp (s1->name, s2->name);
6860 }
6861
6862 static struct elf_symbuf_head *
6863 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6864 {
6865 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6866 struct elf_symbuf_symbol *ssym;
6867 struct elf_symbuf_head *ssymbuf, *ssymhead;
6868 bfd_size_type i, shndx_count, total_size;
6869
6870 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6871 if (indbuf == NULL)
6872 return NULL;
6873
6874 for (ind = indbuf, i = 0; i < symcount; i++)
6875 if (isymbuf[i].st_shndx != SHN_UNDEF)
6876 *ind++ = &isymbuf[i];
6877 indbufend = ind;
6878
6879 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6880 elf_sort_elf_symbol);
6881
6882 shndx_count = 0;
6883 if (indbufend > indbuf)
6884 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6885 if (ind[0]->st_shndx != ind[1]->st_shndx)
6886 shndx_count++;
6887
6888 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6889 + (indbufend - indbuf) * sizeof (*ssym));
6890 ssymbuf = bfd_malloc (total_size);
6891 if (ssymbuf == NULL)
6892 {
6893 free (indbuf);
6894 return NULL;
6895 }
6896
6897 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6898 ssymbuf->ssym = NULL;
6899 ssymbuf->count = shndx_count;
6900 ssymbuf->st_shndx = 0;
6901 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6902 {
6903 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6904 {
6905 ssymhead++;
6906 ssymhead->ssym = ssym;
6907 ssymhead->count = 0;
6908 ssymhead->st_shndx = (*ind)->st_shndx;
6909 }
6910 ssym->st_name = (*ind)->st_name;
6911 ssym->st_info = (*ind)->st_info;
6912 ssym->st_other = (*ind)->st_other;
6913 ssymhead->count++;
6914 }
6915 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6916 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6917 == total_size));
6918
6919 free (indbuf);
6920 return ssymbuf;
6921 }
6922
6923 /* Check if 2 sections define the same set of local and global
6924 symbols. */
6925
6926 static bfd_boolean
6927 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6928 struct bfd_link_info *info)
6929 {
6930 bfd *bfd1, *bfd2;
6931 const struct elf_backend_data *bed1, *bed2;
6932 Elf_Internal_Shdr *hdr1, *hdr2;
6933 bfd_size_type symcount1, symcount2;
6934 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6935 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6936 Elf_Internal_Sym *isym, *isymend;
6937 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6938 bfd_size_type count1, count2, i;
6939 unsigned int shndx1, shndx2;
6940 bfd_boolean result;
6941
6942 bfd1 = sec1->owner;
6943 bfd2 = sec2->owner;
6944
6945 /* Both sections have to be in ELF. */
6946 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6947 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6948 return FALSE;
6949
6950 if (elf_section_type (sec1) != elf_section_type (sec2))
6951 return FALSE;
6952
6953 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6954 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6955 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
6956 return FALSE;
6957
6958 bed1 = get_elf_backend_data (bfd1);
6959 bed2 = get_elf_backend_data (bfd2);
6960 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6961 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6962 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6963 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6964
6965 if (symcount1 == 0 || symcount2 == 0)
6966 return FALSE;
6967
6968 result = FALSE;
6969 isymbuf1 = NULL;
6970 isymbuf2 = NULL;
6971 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6972 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6973
6974 if (ssymbuf1 == NULL)
6975 {
6976 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6977 NULL, NULL, NULL);
6978 if (isymbuf1 == NULL)
6979 goto done;
6980
6981 if (!info->reduce_memory_overheads)
6982 elf_tdata (bfd1)->symbuf = ssymbuf1
6983 = elf_create_symbuf (symcount1, isymbuf1);
6984 }
6985
6986 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6987 {
6988 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6989 NULL, NULL, NULL);
6990 if (isymbuf2 == NULL)
6991 goto done;
6992
6993 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6994 elf_tdata (bfd2)->symbuf = ssymbuf2
6995 = elf_create_symbuf (symcount2, isymbuf2);
6996 }
6997
6998 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
6999 {
7000 /* Optimized faster version. */
7001 bfd_size_type lo, hi, mid;
7002 struct elf_symbol *symp;
7003 struct elf_symbuf_symbol *ssym, *ssymend;
7004
7005 lo = 0;
7006 hi = ssymbuf1->count;
7007 ssymbuf1++;
7008 count1 = 0;
7009 while (lo < hi)
7010 {
7011 mid = (lo + hi) / 2;
7012 if (shndx1 < ssymbuf1[mid].st_shndx)
7013 hi = mid;
7014 else if (shndx1 > ssymbuf1[mid].st_shndx)
7015 lo = mid + 1;
7016 else
7017 {
7018 count1 = ssymbuf1[mid].count;
7019 ssymbuf1 += mid;
7020 break;
7021 }
7022 }
7023
7024 lo = 0;
7025 hi = ssymbuf2->count;
7026 ssymbuf2++;
7027 count2 = 0;
7028 while (lo < hi)
7029 {
7030 mid = (lo + hi) / 2;
7031 if (shndx2 < ssymbuf2[mid].st_shndx)
7032 hi = mid;
7033 else if (shndx2 > ssymbuf2[mid].st_shndx)
7034 lo = mid + 1;
7035 else
7036 {
7037 count2 = ssymbuf2[mid].count;
7038 ssymbuf2 += mid;
7039 break;
7040 }
7041 }
7042
7043 if (count1 == 0 || count2 == 0 || count1 != count2)
7044 goto done;
7045
7046 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7047 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7048 if (symtable1 == NULL || symtable2 == NULL)
7049 goto done;
7050
7051 symp = symtable1;
7052 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7053 ssym < ssymend; ssym++, symp++)
7054 {
7055 symp->u.ssym = ssym;
7056 symp->name = bfd_elf_string_from_elf_section (bfd1,
7057 hdr1->sh_link,
7058 ssym->st_name);
7059 }
7060
7061 symp = symtable2;
7062 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7063 ssym < ssymend; ssym++, symp++)
7064 {
7065 symp->u.ssym = ssym;
7066 symp->name = bfd_elf_string_from_elf_section (bfd2,
7067 hdr2->sh_link,
7068 ssym->st_name);
7069 }
7070
7071 /* Sort symbol by name. */
7072 qsort (symtable1, count1, sizeof (struct elf_symbol),
7073 elf_sym_name_compare);
7074 qsort (symtable2, count1, sizeof (struct elf_symbol),
7075 elf_sym_name_compare);
7076
7077 for (i = 0; i < count1; i++)
7078 /* Two symbols must have the same binding, type and name. */
7079 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7080 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7081 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7082 goto done;
7083
7084 result = TRUE;
7085 goto done;
7086 }
7087
7088 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7089 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7090 if (symtable1 == NULL || symtable2 == NULL)
7091 goto done;
7092
7093 /* Count definitions in the section. */
7094 count1 = 0;
7095 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7096 if (isym->st_shndx == shndx1)
7097 symtable1[count1++].u.isym = isym;
7098
7099 count2 = 0;
7100 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7101 if (isym->st_shndx == shndx2)
7102 symtable2[count2++].u.isym = isym;
7103
7104 if (count1 == 0 || count2 == 0 || count1 != count2)
7105 goto done;
7106
7107 for (i = 0; i < count1; i++)
7108 symtable1[i].name
7109 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7110 symtable1[i].u.isym->st_name);
7111
7112 for (i = 0; i < count2; i++)
7113 symtable2[i].name
7114 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7115 symtable2[i].u.isym->st_name);
7116
7117 /* Sort symbol by name. */
7118 qsort (symtable1, count1, sizeof (struct elf_symbol),
7119 elf_sym_name_compare);
7120 qsort (symtable2, count1, sizeof (struct elf_symbol),
7121 elf_sym_name_compare);
7122
7123 for (i = 0; i < count1; i++)
7124 /* Two symbols must have the same binding, type and name. */
7125 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7126 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7127 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7128 goto done;
7129
7130 result = TRUE;
7131
7132 done:
7133 if (symtable1)
7134 free (symtable1);
7135 if (symtable2)
7136 free (symtable2);
7137 if (isymbuf1)
7138 free (isymbuf1);
7139 if (isymbuf2)
7140 free (isymbuf2);
7141
7142 return result;
7143 }
7144
7145 /* Return TRUE if 2 section types are compatible. */
7146
7147 bfd_boolean
7148 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7149 bfd *bbfd, const asection *bsec)
7150 {
7151 if (asec == NULL
7152 || bsec == NULL
7153 || abfd->xvec->flavour != bfd_target_elf_flavour
7154 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7155 return TRUE;
7156
7157 return elf_section_type (asec) == elf_section_type (bsec);
7158 }
7159 \f
7160 /* Final phase of ELF linker. */
7161
7162 /* A structure we use to avoid passing large numbers of arguments. */
7163
7164 struct elf_final_link_info
7165 {
7166 /* General link information. */
7167 struct bfd_link_info *info;
7168 /* Output BFD. */
7169 bfd *output_bfd;
7170 /* Symbol string table. */
7171 struct bfd_strtab_hash *symstrtab;
7172 /* .dynsym section. */
7173 asection *dynsym_sec;
7174 /* .hash section. */
7175 asection *hash_sec;
7176 /* symbol version section (.gnu.version). */
7177 asection *symver_sec;
7178 /* Buffer large enough to hold contents of any section. */
7179 bfd_byte *contents;
7180 /* Buffer large enough to hold external relocs of any section. */
7181 void *external_relocs;
7182 /* Buffer large enough to hold internal relocs of any section. */
7183 Elf_Internal_Rela *internal_relocs;
7184 /* Buffer large enough to hold external local symbols of any input
7185 BFD. */
7186 bfd_byte *external_syms;
7187 /* And a buffer for symbol section indices. */
7188 Elf_External_Sym_Shndx *locsym_shndx;
7189 /* Buffer large enough to hold internal local symbols of any input
7190 BFD. */
7191 Elf_Internal_Sym *internal_syms;
7192 /* Array large enough to hold a symbol index for each local symbol
7193 of any input BFD. */
7194 long *indices;
7195 /* Array large enough to hold a section pointer for each local
7196 symbol of any input BFD. */
7197 asection **sections;
7198 /* Buffer to hold swapped out symbols. */
7199 bfd_byte *symbuf;
7200 /* And one for symbol section indices. */
7201 Elf_External_Sym_Shndx *symshndxbuf;
7202 /* Number of swapped out symbols in buffer. */
7203 size_t symbuf_count;
7204 /* Number of symbols which fit in symbuf. */
7205 size_t symbuf_size;
7206 /* And same for symshndxbuf. */
7207 size_t shndxbuf_size;
7208 };
7209
7210 /* This struct is used to pass information to elf_link_output_extsym. */
7211
7212 struct elf_outext_info
7213 {
7214 bfd_boolean failed;
7215 bfd_boolean localsyms;
7216 struct elf_final_link_info *finfo;
7217 };
7218
7219
7220 /* Support for evaluating a complex relocation.
7221
7222 Complex relocations are generalized, self-describing relocations. The
7223 implementation of them consists of two parts: complex symbols, and the
7224 relocations themselves.
7225
7226 The relocations are use a reserved elf-wide relocation type code (R_RELC
7227 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7228 information (start bit, end bit, word width, etc) into the addend. This
7229 information is extracted from CGEN-generated operand tables within gas.
7230
7231 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7232 internal) representing prefix-notation expressions, including but not
7233 limited to those sorts of expressions normally encoded as addends in the
7234 addend field. The symbol mangling format is:
7235
7236 <node> := <literal>
7237 | <unary-operator> ':' <node>
7238 | <binary-operator> ':' <node> ':' <node>
7239 ;
7240
7241 <literal> := 's' <digits=N> ':' <N character symbol name>
7242 | 'S' <digits=N> ':' <N character section name>
7243 | '#' <hexdigits>
7244 ;
7245
7246 <binary-operator> := as in C
7247 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7248
7249 static void
7250 set_symbol_value (bfd *bfd_with_globals,
7251 Elf_Internal_Sym *isymbuf,
7252 size_t locsymcount,
7253 size_t symidx,
7254 bfd_vma val)
7255 {
7256 struct elf_link_hash_entry **sym_hashes;
7257 struct elf_link_hash_entry *h;
7258 size_t extsymoff = locsymcount;
7259
7260 if (symidx < locsymcount)
7261 {
7262 Elf_Internal_Sym *sym;
7263
7264 sym = isymbuf + symidx;
7265 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7266 {
7267 /* It is a local symbol: move it to the
7268 "absolute" section and give it a value. */
7269 sym->st_shndx = SHN_ABS;
7270 sym->st_value = val;
7271 return;
7272 }
7273 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7274 extsymoff = 0;
7275 }
7276
7277 /* It is a global symbol: set its link type
7278 to "defined" and give it a value. */
7279
7280 sym_hashes = elf_sym_hashes (bfd_with_globals);
7281 h = sym_hashes [symidx - extsymoff];
7282 while (h->root.type == bfd_link_hash_indirect
7283 || h->root.type == bfd_link_hash_warning)
7284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7285 h->root.type = bfd_link_hash_defined;
7286 h->root.u.def.value = val;
7287 h->root.u.def.section = bfd_abs_section_ptr;
7288 }
7289
7290 static bfd_boolean
7291 resolve_symbol (const char *name,
7292 bfd *input_bfd,
7293 struct elf_final_link_info *finfo,
7294 bfd_vma *result,
7295 Elf_Internal_Sym *isymbuf,
7296 size_t locsymcount)
7297 {
7298 Elf_Internal_Sym *sym;
7299 struct bfd_link_hash_entry *global_entry;
7300 const char *candidate = NULL;
7301 Elf_Internal_Shdr *symtab_hdr;
7302 size_t i;
7303
7304 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7305
7306 for (i = 0; i < locsymcount; ++ i)
7307 {
7308 sym = isymbuf + i;
7309
7310 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7311 continue;
7312
7313 candidate = bfd_elf_string_from_elf_section (input_bfd,
7314 symtab_hdr->sh_link,
7315 sym->st_name);
7316 #ifdef DEBUG
7317 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7318 name, candidate, (unsigned long) sym->st_value);
7319 #endif
7320 if (candidate && strcmp (candidate, name) == 0)
7321 {
7322 asection *sec = finfo->sections [i];
7323
7324 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7325 *result += sec->output_offset + sec->output_section->vma;
7326 #ifdef DEBUG
7327 printf ("Found symbol with value %8.8lx\n",
7328 (unsigned long) *result);
7329 #endif
7330 return TRUE;
7331 }
7332 }
7333
7334 /* Hmm, haven't found it yet. perhaps it is a global. */
7335 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7336 FALSE, FALSE, TRUE);
7337 if (!global_entry)
7338 return FALSE;
7339
7340 if (global_entry->type == bfd_link_hash_defined
7341 || global_entry->type == bfd_link_hash_defweak)
7342 {
7343 *result = (global_entry->u.def.value
7344 + global_entry->u.def.section->output_section->vma
7345 + global_entry->u.def.section->output_offset);
7346 #ifdef DEBUG
7347 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7348 global_entry->root.string, (unsigned long) *result);
7349 #endif
7350 return TRUE;
7351 }
7352
7353 return FALSE;
7354 }
7355
7356 static bfd_boolean
7357 resolve_section (const char *name,
7358 asection *sections,
7359 bfd_vma *result)
7360 {
7361 asection *curr;
7362 unsigned int len;
7363
7364 for (curr = sections; curr; curr = curr->next)
7365 if (strcmp (curr->name, name) == 0)
7366 {
7367 *result = curr->vma;
7368 return TRUE;
7369 }
7370
7371 /* Hmm. still haven't found it. try pseudo-section names. */
7372 for (curr = sections; curr; curr = curr->next)
7373 {
7374 len = strlen (curr->name);
7375 if (len > strlen (name))
7376 continue;
7377
7378 if (strncmp (curr->name, name, len) == 0)
7379 {
7380 if (strncmp (".end", name + len, 4) == 0)
7381 {
7382 *result = curr->vma + curr->size;
7383 return TRUE;
7384 }
7385
7386 /* Insert more pseudo-section names here, if you like. */
7387 }
7388 }
7389
7390 return FALSE;
7391 }
7392
7393 static void
7394 undefined_reference (const char *reftype, const char *name)
7395 {
7396 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7397 reftype, name);
7398 }
7399
7400 static bfd_boolean
7401 eval_symbol (bfd_vma *result,
7402 const char **symp,
7403 bfd *input_bfd,
7404 struct elf_final_link_info *finfo,
7405 bfd_vma dot,
7406 Elf_Internal_Sym *isymbuf,
7407 size_t locsymcount,
7408 int signed_p)
7409 {
7410 size_t len;
7411 size_t symlen;
7412 bfd_vma a;
7413 bfd_vma b;
7414 char symbuf[4096];
7415 const char *sym = *symp;
7416 const char *symend;
7417 bfd_boolean symbol_is_section = FALSE;
7418
7419 len = strlen (sym);
7420 symend = sym + len;
7421
7422 if (len < 1 || len > sizeof (symbuf))
7423 {
7424 bfd_set_error (bfd_error_invalid_operation);
7425 return FALSE;
7426 }
7427
7428 switch (* sym)
7429 {
7430 case '.':
7431 *result = dot;
7432 *symp = sym + 1;
7433 return TRUE;
7434
7435 case '#':
7436 ++sym;
7437 *result = strtoul (sym, (char **) symp, 16);
7438 return TRUE;
7439
7440 case 'S':
7441 symbol_is_section = TRUE;
7442 case 's':
7443 ++sym;
7444 symlen = strtol (sym, (char **) symp, 10);
7445 sym = *symp + 1; /* Skip the trailing ':'. */
7446
7447 if (symend < sym || symlen + 1 > sizeof (symbuf))
7448 {
7449 bfd_set_error (bfd_error_invalid_operation);
7450 return FALSE;
7451 }
7452
7453 memcpy (symbuf, sym, symlen);
7454 symbuf[symlen] = '\0';
7455 *symp = sym + symlen;
7456
7457 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7458 the symbol as a section, or vice-versa. so we're pretty liberal in our
7459 interpretation here; section means "try section first", not "must be a
7460 section", and likewise with symbol. */
7461
7462 if (symbol_is_section)
7463 {
7464 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7465 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7466 isymbuf, locsymcount))
7467 {
7468 undefined_reference ("section", symbuf);
7469 return FALSE;
7470 }
7471 }
7472 else
7473 {
7474 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7475 isymbuf, locsymcount)
7476 && !resolve_section (symbuf, finfo->output_bfd->sections,
7477 result))
7478 {
7479 undefined_reference ("symbol", symbuf);
7480 return FALSE;
7481 }
7482 }
7483
7484 return TRUE;
7485
7486 /* All that remains are operators. */
7487
7488 #define UNARY_OP(op) \
7489 if (strncmp (sym, #op, strlen (#op)) == 0) \
7490 { \
7491 sym += strlen (#op); \
7492 if (*sym == ':') \
7493 ++sym; \
7494 *symp = sym; \
7495 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7496 isymbuf, locsymcount, signed_p)) \
7497 return FALSE; \
7498 if (signed_p) \
7499 *result = op ((bfd_signed_vma) a); \
7500 else \
7501 *result = op a; \
7502 return TRUE; \
7503 }
7504
7505 #define BINARY_OP(op) \
7506 if (strncmp (sym, #op, strlen (#op)) == 0) \
7507 { \
7508 sym += strlen (#op); \
7509 if (*sym == ':') \
7510 ++sym; \
7511 *symp = sym; \
7512 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7513 isymbuf, locsymcount, signed_p)) \
7514 return FALSE; \
7515 ++*symp; \
7516 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7517 isymbuf, locsymcount, signed_p)) \
7518 return FALSE; \
7519 if (signed_p) \
7520 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7521 else \
7522 *result = a op b; \
7523 return TRUE; \
7524 }
7525
7526 default:
7527 UNARY_OP (0-);
7528 BINARY_OP (<<);
7529 BINARY_OP (>>);
7530 BINARY_OP (==);
7531 BINARY_OP (!=);
7532 BINARY_OP (<=);
7533 BINARY_OP (>=);
7534 BINARY_OP (&&);
7535 BINARY_OP (||);
7536 UNARY_OP (~);
7537 UNARY_OP (!);
7538 BINARY_OP (*);
7539 BINARY_OP (/);
7540 BINARY_OP (%);
7541 BINARY_OP (^);
7542 BINARY_OP (|);
7543 BINARY_OP (&);
7544 BINARY_OP (+);
7545 BINARY_OP (-);
7546 BINARY_OP (<);
7547 BINARY_OP (>);
7548 #undef UNARY_OP
7549 #undef BINARY_OP
7550 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7551 bfd_set_error (bfd_error_invalid_operation);
7552 return FALSE;
7553 }
7554 }
7555
7556 static void
7557 put_value (bfd_vma size,
7558 unsigned long chunksz,
7559 bfd *input_bfd,
7560 bfd_vma x,
7561 bfd_byte *location)
7562 {
7563 location += (size - chunksz);
7564
7565 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7566 {
7567 switch (chunksz)
7568 {
7569 default:
7570 case 0:
7571 abort ();
7572 case 1:
7573 bfd_put_8 (input_bfd, x, location);
7574 break;
7575 case 2:
7576 bfd_put_16 (input_bfd, x, location);
7577 break;
7578 case 4:
7579 bfd_put_32 (input_bfd, x, location);
7580 break;
7581 case 8:
7582 #ifdef BFD64
7583 bfd_put_64 (input_bfd, x, location);
7584 #else
7585 abort ();
7586 #endif
7587 break;
7588 }
7589 }
7590 }
7591
7592 static bfd_vma
7593 get_value (bfd_vma size,
7594 unsigned long chunksz,
7595 bfd *input_bfd,
7596 bfd_byte *location)
7597 {
7598 bfd_vma x = 0;
7599
7600 for (; size; size -= chunksz, location += chunksz)
7601 {
7602 switch (chunksz)
7603 {
7604 default:
7605 case 0:
7606 abort ();
7607 case 1:
7608 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7609 break;
7610 case 2:
7611 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7612 break;
7613 case 4:
7614 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7615 break;
7616 case 8:
7617 #ifdef BFD64
7618 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7619 #else
7620 abort ();
7621 #endif
7622 break;
7623 }
7624 }
7625 return x;
7626 }
7627
7628 static void
7629 decode_complex_addend (unsigned long *start, /* in bits */
7630 unsigned long *oplen, /* in bits */
7631 unsigned long *len, /* in bits */
7632 unsigned long *wordsz, /* in bytes */
7633 unsigned long *chunksz, /* in bytes */
7634 unsigned long *lsb0_p,
7635 unsigned long *signed_p,
7636 unsigned long *trunc_p,
7637 unsigned long encoded)
7638 {
7639 * start = encoded & 0x3F;
7640 * len = (encoded >> 6) & 0x3F;
7641 * oplen = (encoded >> 12) & 0x3F;
7642 * wordsz = (encoded >> 18) & 0xF;
7643 * chunksz = (encoded >> 22) & 0xF;
7644 * lsb0_p = (encoded >> 27) & 1;
7645 * signed_p = (encoded >> 28) & 1;
7646 * trunc_p = (encoded >> 29) & 1;
7647 }
7648
7649 bfd_reloc_status_type
7650 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7651 asection *input_section ATTRIBUTE_UNUSED,
7652 bfd_byte *contents,
7653 Elf_Internal_Rela *rel,
7654 bfd_vma relocation)
7655 {
7656 bfd_vma shift, x, mask;
7657 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7658 bfd_reloc_status_type r;
7659
7660 /* Perform this reloc, since it is complex.
7661 (this is not to say that it necessarily refers to a complex
7662 symbol; merely that it is a self-describing CGEN based reloc.
7663 i.e. the addend has the complete reloc information (bit start, end,
7664 word size, etc) encoded within it.). */
7665
7666 decode_complex_addend (&start, &oplen, &len, &wordsz,
7667 &chunksz, &lsb0_p, &signed_p,
7668 &trunc_p, rel->r_addend);
7669
7670 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7671
7672 if (lsb0_p)
7673 shift = (start + 1) - len;
7674 else
7675 shift = (8 * wordsz) - (start + len);
7676
7677 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7678
7679 #ifdef DEBUG
7680 printf ("Doing complex reloc: "
7681 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7682 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7683 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7684 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7685 oplen, x, mask, relocation);
7686 #endif
7687
7688 r = bfd_reloc_ok;
7689 if (! trunc_p)
7690 /* Now do an overflow check. */
7691 r = bfd_check_overflow ((signed_p
7692 ? complain_overflow_signed
7693 : complain_overflow_unsigned),
7694 len, 0, (8 * wordsz),
7695 relocation);
7696
7697 /* Do the deed. */
7698 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7699
7700 #ifdef DEBUG
7701 printf (" relocation: %8.8lx\n"
7702 " shifted mask: %8.8lx\n"
7703 " shifted/masked reloc: %8.8lx\n"
7704 " result: %8.8lx\n",
7705 relocation, (mask << shift),
7706 ((relocation & mask) << shift), x);
7707 #endif
7708 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7709 return r;
7710 }
7711
7712 /* When performing a relocatable link, the input relocations are
7713 preserved. But, if they reference global symbols, the indices
7714 referenced must be updated. Update all the relocations in
7715 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7716
7717 static void
7718 elf_link_adjust_relocs (bfd *abfd,
7719 Elf_Internal_Shdr *rel_hdr,
7720 unsigned int count,
7721 struct elf_link_hash_entry **rel_hash)
7722 {
7723 unsigned int i;
7724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7725 bfd_byte *erela;
7726 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7727 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7728 bfd_vma r_type_mask;
7729 int r_sym_shift;
7730
7731 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7732 {
7733 swap_in = bed->s->swap_reloc_in;
7734 swap_out = bed->s->swap_reloc_out;
7735 }
7736 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7737 {
7738 swap_in = bed->s->swap_reloca_in;
7739 swap_out = bed->s->swap_reloca_out;
7740 }
7741 else
7742 abort ();
7743
7744 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7745 abort ();
7746
7747 if (bed->s->arch_size == 32)
7748 {
7749 r_type_mask = 0xff;
7750 r_sym_shift = 8;
7751 }
7752 else
7753 {
7754 r_type_mask = 0xffffffff;
7755 r_sym_shift = 32;
7756 }
7757
7758 erela = rel_hdr->contents;
7759 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7760 {
7761 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7762 unsigned int j;
7763
7764 if (*rel_hash == NULL)
7765 continue;
7766
7767 BFD_ASSERT ((*rel_hash)->indx >= 0);
7768
7769 (*swap_in) (abfd, erela, irela);
7770 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7771 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7772 | (irela[j].r_info & r_type_mask));
7773 (*swap_out) (abfd, irela, erela);
7774 }
7775 }
7776
7777 struct elf_link_sort_rela
7778 {
7779 union {
7780 bfd_vma offset;
7781 bfd_vma sym_mask;
7782 } u;
7783 enum elf_reloc_type_class type;
7784 /* We use this as an array of size int_rels_per_ext_rel. */
7785 Elf_Internal_Rela rela[1];
7786 };
7787
7788 static int
7789 elf_link_sort_cmp1 (const void *A, const void *B)
7790 {
7791 const struct elf_link_sort_rela *a = A;
7792 const struct elf_link_sort_rela *b = B;
7793 int relativea, relativeb;
7794
7795 relativea = a->type == reloc_class_relative;
7796 relativeb = b->type == reloc_class_relative;
7797
7798 if (relativea < relativeb)
7799 return 1;
7800 if (relativea > relativeb)
7801 return -1;
7802 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7803 return -1;
7804 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7805 return 1;
7806 if (a->rela->r_offset < b->rela->r_offset)
7807 return -1;
7808 if (a->rela->r_offset > b->rela->r_offset)
7809 return 1;
7810 return 0;
7811 }
7812
7813 static int
7814 elf_link_sort_cmp2 (const void *A, const void *B)
7815 {
7816 const struct elf_link_sort_rela *a = A;
7817 const struct elf_link_sort_rela *b = B;
7818 int copya, copyb;
7819
7820 if (a->u.offset < b->u.offset)
7821 return -1;
7822 if (a->u.offset > b->u.offset)
7823 return 1;
7824 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7825 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7826 if (copya < copyb)
7827 return -1;
7828 if (copya > copyb)
7829 return 1;
7830 if (a->rela->r_offset < b->rela->r_offset)
7831 return -1;
7832 if (a->rela->r_offset > b->rela->r_offset)
7833 return 1;
7834 return 0;
7835 }
7836
7837 static size_t
7838 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7839 {
7840 asection *dynamic_relocs;
7841 asection *rela_dyn;
7842 asection *rel_dyn;
7843 bfd_size_type count, size;
7844 size_t i, ret, sort_elt, ext_size;
7845 bfd_byte *sort, *s_non_relative, *p;
7846 struct elf_link_sort_rela *sq;
7847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7848 int i2e = bed->s->int_rels_per_ext_rel;
7849 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7850 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7851 struct bfd_link_order *lo;
7852 bfd_vma r_sym_mask;
7853 bfd_boolean use_rela;
7854
7855 /* Find a dynamic reloc section. */
7856 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7857 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7858 if (rela_dyn != NULL && rela_dyn->size > 0
7859 && rel_dyn != NULL && rel_dyn->size > 0)
7860 {
7861 bfd_boolean use_rela_initialised = FALSE;
7862
7863 /* This is just here to stop gcc from complaining.
7864 It's initialization checking code is not perfect. */
7865 use_rela = TRUE;
7866
7867 /* Both sections are present. Examine the sizes
7868 of the indirect sections to help us choose. */
7869 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7870 if (lo->type == bfd_indirect_link_order)
7871 {
7872 asection *o = lo->u.indirect.section;
7873
7874 if ((o->size % bed->s->sizeof_rela) == 0)
7875 {
7876 if ((o->size % bed->s->sizeof_rel) == 0)
7877 /* Section size is divisible by both rel and rela sizes.
7878 It is of no help to us. */
7879 ;
7880 else
7881 {
7882 /* Section size is only divisible by rela. */
7883 if (use_rela_initialised && (use_rela == FALSE))
7884 {
7885 _bfd_error_handler
7886 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7887 bfd_set_error (bfd_error_invalid_operation);
7888 return 0;
7889 }
7890 else
7891 {
7892 use_rela = TRUE;
7893 use_rela_initialised = TRUE;
7894 }
7895 }
7896 }
7897 else if ((o->size % bed->s->sizeof_rel) == 0)
7898 {
7899 /* Section size is only divisible by rel. */
7900 if (use_rela_initialised && (use_rela == TRUE))
7901 {
7902 _bfd_error_handler
7903 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7904 bfd_set_error (bfd_error_invalid_operation);
7905 return 0;
7906 }
7907 else
7908 {
7909 use_rela = FALSE;
7910 use_rela_initialised = TRUE;
7911 }
7912 }
7913 else
7914 {
7915 /* The section size is not divisible by either - something is wrong. */
7916 _bfd_error_handler
7917 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7918 bfd_set_error (bfd_error_invalid_operation);
7919 return 0;
7920 }
7921 }
7922
7923 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7924 if (lo->type == bfd_indirect_link_order)
7925 {
7926 asection *o = lo->u.indirect.section;
7927
7928 if ((o->size % bed->s->sizeof_rela) == 0)
7929 {
7930 if ((o->size % bed->s->sizeof_rel) == 0)
7931 /* Section size is divisible by both rel and rela sizes.
7932 It is of no help to us. */
7933 ;
7934 else
7935 {
7936 /* Section size is only divisible by rela. */
7937 if (use_rela_initialised && (use_rela == FALSE))
7938 {
7939 _bfd_error_handler
7940 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7941 bfd_set_error (bfd_error_invalid_operation);
7942 return 0;
7943 }
7944 else
7945 {
7946 use_rela = TRUE;
7947 use_rela_initialised = TRUE;
7948 }
7949 }
7950 }
7951 else if ((o->size % bed->s->sizeof_rel) == 0)
7952 {
7953 /* Section size is only divisible by rel. */
7954 if (use_rela_initialised && (use_rela == TRUE))
7955 {
7956 _bfd_error_handler
7957 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7958 bfd_set_error (bfd_error_invalid_operation);
7959 return 0;
7960 }
7961 else
7962 {
7963 use_rela = FALSE;
7964 use_rela_initialised = TRUE;
7965 }
7966 }
7967 else
7968 {
7969 /* The section size is not divisible by either - something is wrong. */
7970 _bfd_error_handler
7971 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7972 bfd_set_error (bfd_error_invalid_operation);
7973 return 0;
7974 }
7975 }
7976
7977 if (! use_rela_initialised)
7978 /* Make a guess. */
7979 use_rela = TRUE;
7980 }
7981 else if (rela_dyn != NULL && rela_dyn->size > 0)
7982 use_rela = TRUE;
7983 else if (rel_dyn != NULL && rel_dyn->size > 0)
7984 use_rela = FALSE;
7985 else
7986 return 0;
7987
7988 if (use_rela)
7989 {
7990 dynamic_relocs = rela_dyn;
7991 ext_size = bed->s->sizeof_rela;
7992 swap_in = bed->s->swap_reloca_in;
7993 swap_out = bed->s->swap_reloca_out;
7994 }
7995 else
7996 {
7997 dynamic_relocs = rel_dyn;
7998 ext_size = bed->s->sizeof_rel;
7999 swap_in = bed->s->swap_reloc_in;
8000 swap_out = bed->s->swap_reloc_out;
8001 }
8002
8003 size = 0;
8004 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8005 if (lo->type == bfd_indirect_link_order)
8006 size += lo->u.indirect.section->size;
8007
8008 if (size != dynamic_relocs->size)
8009 return 0;
8010
8011 sort_elt = (sizeof (struct elf_link_sort_rela)
8012 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8013
8014 count = dynamic_relocs->size / ext_size;
8015 sort = bfd_zmalloc (sort_elt * count);
8016
8017 if (sort == NULL)
8018 {
8019 (*info->callbacks->warning)
8020 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8021 return 0;
8022 }
8023
8024 if (bed->s->arch_size == 32)
8025 r_sym_mask = ~(bfd_vma) 0xff;
8026 else
8027 r_sym_mask = ~(bfd_vma) 0xffffffff;
8028
8029 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8030 if (lo->type == bfd_indirect_link_order)
8031 {
8032 bfd_byte *erel, *erelend;
8033 asection *o = lo->u.indirect.section;
8034
8035 if (o->contents == NULL && o->size != 0)
8036 {
8037 /* This is a reloc section that is being handled as a normal
8038 section. See bfd_section_from_shdr. We can't combine
8039 relocs in this case. */
8040 free (sort);
8041 return 0;
8042 }
8043 erel = o->contents;
8044 erelend = o->contents + o->size;
8045 p = sort + o->output_offset / ext_size * sort_elt;
8046
8047 while (erel < erelend)
8048 {
8049 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8050
8051 (*swap_in) (abfd, erel, s->rela);
8052 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8053 s->u.sym_mask = r_sym_mask;
8054 p += sort_elt;
8055 erel += ext_size;
8056 }
8057 }
8058
8059 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8060
8061 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8062 {
8063 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8064 if (s->type != reloc_class_relative)
8065 break;
8066 }
8067 ret = i;
8068 s_non_relative = p;
8069
8070 sq = (struct elf_link_sort_rela *) s_non_relative;
8071 for (; i < count; i++, p += sort_elt)
8072 {
8073 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8074 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8075 sq = sp;
8076 sp->u.offset = sq->rela->r_offset;
8077 }
8078
8079 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8080
8081 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8082 if (lo->type == bfd_indirect_link_order)
8083 {
8084 bfd_byte *erel, *erelend;
8085 asection *o = lo->u.indirect.section;
8086
8087 erel = o->contents;
8088 erelend = o->contents + o->size;
8089 p = sort + o->output_offset / ext_size * sort_elt;
8090 while (erel < erelend)
8091 {
8092 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8093 (*swap_out) (abfd, s->rela, erel);
8094 p += sort_elt;
8095 erel += ext_size;
8096 }
8097 }
8098
8099 free (sort);
8100 *psec = dynamic_relocs;
8101 return ret;
8102 }
8103
8104 /* Flush the output symbols to the file. */
8105
8106 static bfd_boolean
8107 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8108 const struct elf_backend_data *bed)
8109 {
8110 if (finfo->symbuf_count > 0)
8111 {
8112 Elf_Internal_Shdr *hdr;
8113 file_ptr pos;
8114 bfd_size_type amt;
8115
8116 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8117 pos = hdr->sh_offset + hdr->sh_size;
8118 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8119 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8120 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8121 return FALSE;
8122
8123 hdr->sh_size += amt;
8124 finfo->symbuf_count = 0;
8125 }
8126
8127 return TRUE;
8128 }
8129
8130 /* Add a symbol to the output symbol table. */
8131
8132 static bfd_boolean
8133 elf_link_output_sym (struct elf_final_link_info *finfo,
8134 const char *name,
8135 Elf_Internal_Sym *elfsym,
8136 asection *input_sec,
8137 struct elf_link_hash_entry *h)
8138 {
8139 bfd_byte *dest;
8140 Elf_External_Sym_Shndx *destshndx;
8141 bfd_boolean (*output_symbol_hook)
8142 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8143 struct elf_link_hash_entry *);
8144 const struct elf_backend_data *bed;
8145
8146 bed = get_elf_backend_data (finfo->output_bfd);
8147 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8148 if (output_symbol_hook != NULL)
8149 {
8150 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8151 return FALSE;
8152 }
8153
8154 if (name == NULL || *name == '\0')
8155 elfsym->st_name = 0;
8156 else if (input_sec->flags & SEC_EXCLUDE)
8157 elfsym->st_name = 0;
8158 else
8159 {
8160 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8161 name, TRUE, FALSE);
8162 if (elfsym->st_name == (unsigned long) -1)
8163 return FALSE;
8164 }
8165
8166 if (finfo->symbuf_count >= finfo->symbuf_size)
8167 {
8168 if (! elf_link_flush_output_syms (finfo, bed))
8169 return FALSE;
8170 }
8171
8172 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8173 destshndx = finfo->symshndxbuf;
8174 if (destshndx != NULL)
8175 {
8176 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8177 {
8178 bfd_size_type amt;
8179
8180 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8181 destshndx = bfd_realloc (destshndx, amt * 2);
8182 if (destshndx == NULL)
8183 return FALSE;
8184 finfo->symshndxbuf = destshndx;
8185 memset ((char *) destshndx + amt, 0, amt);
8186 finfo->shndxbuf_size *= 2;
8187 }
8188 destshndx += bfd_get_symcount (finfo->output_bfd);
8189 }
8190
8191 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8192 finfo->symbuf_count += 1;
8193 bfd_get_symcount (finfo->output_bfd) += 1;
8194
8195 return TRUE;
8196 }
8197
8198 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8199
8200 static bfd_boolean
8201 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8202 {
8203 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8204 && sym->st_shndx < SHN_LORESERVE)
8205 {
8206 /* The gABI doesn't support dynamic symbols in output sections
8207 beyond 64k. */
8208 (*_bfd_error_handler)
8209 (_("%B: Too many sections: %d (>= %d)"),
8210 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8211 bfd_set_error (bfd_error_nonrepresentable_section);
8212 return FALSE;
8213 }
8214 return TRUE;
8215 }
8216
8217 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8218 allowing an unsatisfied unversioned symbol in the DSO to match a
8219 versioned symbol that would normally require an explicit version.
8220 We also handle the case that a DSO references a hidden symbol
8221 which may be satisfied by a versioned symbol in another DSO. */
8222
8223 static bfd_boolean
8224 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8225 const struct elf_backend_data *bed,
8226 struct elf_link_hash_entry *h)
8227 {
8228 bfd *abfd;
8229 struct elf_link_loaded_list *loaded;
8230
8231 if (!is_elf_hash_table (info->hash))
8232 return FALSE;
8233
8234 switch (h->root.type)
8235 {
8236 default:
8237 abfd = NULL;
8238 break;
8239
8240 case bfd_link_hash_undefined:
8241 case bfd_link_hash_undefweak:
8242 abfd = h->root.u.undef.abfd;
8243 if ((abfd->flags & DYNAMIC) == 0
8244 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8245 return FALSE;
8246 break;
8247
8248 case bfd_link_hash_defined:
8249 case bfd_link_hash_defweak:
8250 abfd = h->root.u.def.section->owner;
8251 break;
8252
8253 case bfd_link_hash_common:
8254 abfd = h->root.u.c.p->section->owner;
8255 break;
8256 }
8257 BFD_ASSERT (abfd != NULL);
8258
8259 for (loaded = elf_hash_table (info)->loaded;
8260 loaded != NULL;
8261 loaded = loaded->next)
8262 {
8263 bfd *input;
8264 Elf_Internal_Shdr *hdr;
8265 bfd_size_type symcount;
8266 bfd_size_type extsymcount;
8267 bfd_size_type extsymoff;
8268 Elf_Internal_Shdr *versymhdr;
8269 Elf_Internal_Sym *isym;
8270 Elf_Internal_Sym *isymend;
8271 Elf_Internal_Sym *isymbuf;
8272 Elf_External_Versym *ever;
8273 Elf_External_Versym *extversym;
8274
8275 input = loaded->abfd;
8276
8277 /* We check each DSO for a possible hidden versioned definition. */
8278 if (input == abfd
8279 || (input->flags & DYNAMIC) == 0
8280 || elf_dynversym (input) == 0)
8281 continue;
8282
8283 hdr = &elf_tdata (input)->dynsymtab_hdr;
8284
8285 symcount = hdr->sh_size / bed->s->sizeof_sym;
8286 if (elf_bad_symtab (input))
8287 {
8288 extsymcount = symcount;
8289 extsymoff = 0;
8290 }
8291 else
8292 {
8293 extsymcount = symcount - hdr->sh_info;
8294 extsymoff = hdr->sh_info;
8295 }
8296
8297 if (extsymcount == 0)
8298 continue;
8299
8300 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8301 NULL, NULL, NULL);
8302 if (isymbuf == NULL)
8303 return FALSE;
8304
8305 /* Read in any version definitions. */
8306 versymhdr = &elf_tdata (input)->dynversym_hdr;
8307 extversym = bfd_malloc (versymhdr->sh_size);
8308 if (extversym == NULL)
8309 goto error_ret;
8310
8311 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8312 || (bfd_bread (extversym, versymhdr->sh_size, input)
8313 != versymhdr->sh_size))
8314 {
8315 free (extversym);
8316 error_ret:
8317 free (isymbuf);
8318 return FALSE;
8319 }
8320
8321 ever = extversym + extsymoff;
8322 isymend = isymbuf + extsymcount;
8323 for (isym = isymbuf; isym < isymend; isym++, ever++)
8324 {
8325 const char *name;
8326 Elf_Internal_Versym iver;
8327 unsigned short version_index;
8328
8329 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8330 || isym->st_shndx == SHN_UNDEF)
8331 continue;
8332
8333 name = bfd_elf_string_from_elf_section (input,
8334 hdr->sh_link,
8335 isym->st_name);
8336 if (strcmp (name, h->root.root.string) != 0)
8337 continue;
8338
8339 _bfd_elf_swap_versym_in (input, ever, &iver);
8340
8341 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8342 {
8343 /* If we have a non-hidden versioned sym, then it should
8344 have provided a definition for the undefined sym. */
8345 abort ();
8346 }
8347
8348 version_index = iver.vs_vers & VERSYM_VERSION;
8349 if (version_index == 1 || version_index == 2)
8350 {
8351 /* This is the base or first version. We can use it. */
8352 free (extversym);
8353 free (isymbuf);
8354 return TRUE;
8355 }
8356 }
8357
8358 free (extversym);
8359 free (isymbuf);
8360 }
8361
8362 return FALSE;
8363 }
8364
8365 /* Add an external symbol to the symbol table. This is called from
8366 the hash table traversal routine. When generating a shared object,
8367 we go through the symbol table twice. The first time we output
8368 anything that might have been forced to local scope in a version
8369 script. The second time we output the symbols that are still
8370 global symbols. */
8371
8372 static bfd_boolean
8373 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8374 {
8375 struct elf_outext_info *eoinfo = data;
8376 struct elf_final_link_info *finfo = eoinfo->finfo;
8377 bfd_boolean strip;
8378 Elf_Internal_Sym sym;
8379 asection *input_sec;
8380 const struct elf_backend_data *bed;
8381
8382 if (h->root.type == bfd_link_hash_warning)
8383 {
8384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8385 if (h->root.type == bfd_link_hash_new)
8386 return TRUE;
8387 }
8388
8389 /* Decide whether to output this symbol in this pass. */
8390 if (eoinfo->localsyms)
8391 {
8392 if (!h->forced_local)
8393 return TRUE;
8394 }
8395 else
8396 {
8397 if (h->forced_local)
8398 return TRUE;
8399 }
8400
8401 bed = get_elf_backend_data (finfo->output_bfd);
8402
8403 if (h->root.type == bfd_link_hash_undefined)
8404 {
8405 /* If we have an undefined symbol reference here then it must have
8406 come from a shared library that is being linked in. (Undefined
8407 references in regular files have already been handled). */
8408 bfd_boolean ignore_undef = FALSE;
8409
8410 /* Some symbols may be special in that the fact that they're
8411 undefined can be safely ignored - let backend determine that. */
8412 if (bed->elf_backend_ignore_undef_symbol)
8413 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8414
8415 /* If we are reporting errors for this situation then do so now. */
8416 if (ignore_undef == FALSE
8417 && h->ref_dynamic
8418 && ! h->ref_regular
8419 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8420 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8421 {
8422 if (! (finfo->info->callbacks->undefined_symbol
8423 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8424 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8425 {
8426 eoinfo->failed = TRUE;
8427 return FALSE;
8428 }
8429 }
8430 }
8431
8432 /* We should also warn if a forced local symbol is referenced from
8433 shared libraries. */
8434 if (! finfo->info->relocatable
8435 && (! finfo->info->shared)
8436 && h->forced_local
8437 && h->ref_dynamic
8438 && !h->dynamic_def
8439 && !h->dynamic_weak
8440 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8441 {
8442 (*_bfd_error_handler)
8443 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8444 finfo->output_bfd,
8445 h->root.u.def.section == bfd_abs_section_ptr
8446 ? finfo->output_bfd : h->root.u.def.section->owner,
8447 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8448 ? "internal"
8449 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8450 ? "hidden" : "local",
8451 h->root.root.string);
8452 eoinfo->failed = TRUE;
8453 return FALSE;
8454 }
8455
8456 /* We don't want to output symbols that have never been mentioned by
8457 a regular file, or that we have been told to strip. However, if
8458 h->indx is set to -2, the symbol is used by a reloc and we must
8459 output it. */
8460 if (h->indx == -2)
8461 strip = FALSE;
8462 else if ((h->def_dynamic
8463 || h->ref_dynamic
8464 || h->root.type == bfd_link_hash_new)
8465 && !h->def_regular
8466 && !h->ref_regular)
8467 strip = TRUE;
8468 else if (finfo->info->strip == strip_all)
8469 strip = TRUE;
8470 else if (finfo->info->strip == strip_some
8471 && bfd_hash_lookup (finfo->info->keep_hash,
8472 h->root.root.string, FALSE, FALSE) == NULL)
8473 strip = TRUE;
8474 else if (finfo->info->strip_discarded
8475 && (h->root.type == bfd_link_hash_defined
8476 || h->root.type == bfd_link_hash_defweak)
8477 && elf_discarded_section (h->root.u.def.section))
8478 strip = TRUE;
8479 else
8480 strip = FALSE;
8481
8482 /* If we're stripping it, and it's not a dynamic symbol, there's
8483 nothing else to do unless it is a forced local symbol. */
8484 if (strip
8485 && h->dynindx == -1
8486 && !h->forced_local)
8487 return TRUE;
8488
8489 sym.st_value = 0;
8490 sym.st_size = h->size;
8491 sym.st_other = h->other;
8492 if (h->forced_local)
8493 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8494 else if (h->root.type == bfd_link_hash_undefweak
8495 || h->root.type == bfd_link_hash_defweak)
8496 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8497 else
8498 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8499
8500 switch (h->root.type)
8501 {
8502 default:
8503 case bfd_link_hash_new:
8504 case bfd_link_hash_warning:
8505 abort ();
8506 return FALSE;
8507
8508 case bfd_link_hash_undefined:
8509 case bfd_link_hash_undefweak:
8510 input_sec = bfd_und_section_ptr;
8511 sym.st_shndx = SHN_UNDEF;
8512 break;
8513
8514 case bfd_link_hash_defined:
8515 case bfd_link_hash_defweak:
8516 {
8517 input_sec = h->root.u.def.section;
8518 if (input_sec->output_section != NULL)
8519 {
8520 sym.st_shndx =
8521 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8522 input_sec->output_section);
8523 if (sym.st_shndx == SHN_BAD)
8524 {
8525 (*_bfd_error_handler)
8526 (_("%B: could not find output section %A for input section %A"),
8527 finfo->output_bfd, input_sec->output_section, input_sec);
8528 eoinfo->failed = TRUE;
8529 return FALSE;
8530 }
8531
8532 /* ELF symbols in relocatable files are section relative,
8533 but in nonrelocatable files they are virtual
8534 addresses. */
8535 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8536 if (! finfo->info->relocatable)
8537 {
8538 sym.st_value += input_sec->output_section->vma;
8539 if (h->type == STT_TLS)
8540 {
8541 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8542 if (tls_sec != NULL)
8543 sym.st_value -= tls_sec->vma;
8544 else
8545 {
8546 /* The TLS section may have been garbage collected. */
8547 BFD_ASSERT (finfo->info->gc_sections
8548 && !input_sec->gc_mark);
8549 }
8550 }
8551 }
8552 }
8553 else
8554 {
8555 BFD_ASSERT (input_sec->owner == NULL
8556 || (input_sec->owner->flags & DYNAMIC) != 0);
8557 sym.st_shndx = SHN_UNDEF;
8558 input_sec = bfd_und_section_ptr;
8559 }
8560 }
8561 break;
8562
8563 case bfd_link_hash_common:
8564 input_sec = h->root.u.c.p->section;
8565 sym.st_shndx = bed->common_section_index (input_sec);
8566 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8567 break;
8568
8569 case bfd_link_hash_indirect:
8570 /* These symbols are created by symbol versioning. They point
8571 to the decorated version of the name. For example, if the
8572 symbol foo@@GNU_1.2 is the default, which should be used when
8573 foo is used with no version, then we add an indirect symbol
8574 foo which points to foo@@GNU_1.2. We ignore these symbols,
8575 since the indirected symbol is already in the hash table. */
8576 return TRUE;
8577 }
8578
8579 /* Give the processor backend a chance to tweak the symbol value,
8580 and also to finish up anything that needs to be done for this
8581 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8582 forced local syms when non-shared is due to a historical quirk. */
8583 if ((h->dynindx != -1
8584 || h->forced_local)
8585 && ((finfo->info->shared
8586 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8587 || h->root.type != bfd_link_hash_undefweak))
8588 || !h->forced_local)
8589 && elf_hash_table (finfo->info)->dynamic_sections_created)
8590 {
8591 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8592 (finfo->output_bfd, finfo->info, h, &sym)))
8593 {
8594 eoinfo->failed = TRUE;
8595 return FALSE;
8596 }
8597 }
8598
8599 /* If we are marking the symbol as undefined, and there are no
8600 non-weak references to this symbol from a regular object, then
8601 mark the symbol as weak undefined; if there are non-weak
8602 references, mark the symbol as strong. We can't do this earlier,
8603 because it might not be marked as undefined until the
8604 finish_dynamic_symbol routine gets through with it. */
8605 if (sym.st_shndx == SHN_UNDEF
8606 && h->ref_regular
8607 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8608 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8609 {
8610 int bindtype;
8611
8612 if (h->ref_regular_nonweak)
8613 bindtype = STB_GLOBAL;
8614 else
8615 bindtype = STB_WEAK;
8616 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8617 }
8618
8619 /* If a non-weak symbol with non-default visibility is not defined
8620 locally, it is a fatal error. */
8621 if (! finfo->info->relocatable
8622 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8623 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8624 && h->root.type == bfd_link_hash_undefined
8625 && !h->def_regular)
8626 {
8627 (*_bfd_error_handler)
8628 (_("%B: %s symbol `%s' isn't defined"),
8629 finfo->output_bfd,
8630 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8631 ? "protected"
8632 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8633 ? "internal" : "hidden",
8634 h->root.root.string);
8635 eoinfo->failed = TRUE;
8636 return FALSE;
8637 }
8638
8639 /* If this symbol should be put in the .dynsym section, then put it
8640 there now. We already know the symbol index. We also fill in
8641 the entry in the .hash section. */
8642 if (h->dynindx != -1
8643 && elf_hash_table (finfo->info)->dynamic_sections_created)
8644 {
8645 bfd_byte *esym;
8646
8647 sym.st_name = h->dynstr_index;
8648 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8649 if (! check_dynsym (finfo->output_bfd, &sym))
8650 {
8651 eoinfo->failed = TRUE;
8652 return FALSE;
8653 }
8654 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8655
8656 if (finfo->hash_sec != NULL)
8657 {
8658 size_t hash_entry_size;
8659 bfd_byte *bucketpos;
8660 bfd_vma chain;
8661 size_t bucketcount;
8662 size_t bucket;
8663
8664 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8665 bucket = h->u.elf_hash_value % bucketcount;
8666
8667 hash_entry_size
8668 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8669 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8670 + (bucket + 2) * hash_entry_size);
8671 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8672 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8673 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8674 ((bfd_byte *) finfo->hash_sec->contents
8675 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8676 }
8677
8678 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8679 {
8680 Elf_Internal_Versym iversym;
8681 Elf_External_Versym *eversym;
8682
8683 if (!h->def_regular)
8684 {
8685 if (h->verinfo.verdef == NULL)
8686 iversym.vs_vers = 0;
8687 else
8688 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8689 }
8690 else
8691 {
8692 if (h->verinfo.vertree == NULL)
8693 iversym.vs_vers = 1;
8694 else
8695 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8696 if (finfo->info->create_default_symver)
8697 iversym.vs_vers++;
8698 }
8699
8700 if (h->hidden)
8701 iversym.vs_vers |= VERSYM_HIDDEN;
8702
8703 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8704 eversym += h->dynindx;
8705 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8706 }
8707 }
8708
8709 /* If we're stripping it, then it was just a dynamic symbol, and
8710 there's nothing else to do. */
8711 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8712 return TRUE;
8713
8714 h->indx = bfd_get_symcount (finfo->output_bfd);
8715
8716 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8717 {
8718 eoinfo->failed = TRUE;
8719 return FALSE;
8720 }
8721
8722 return TRUE;
8723 }
8724
8725 /* Return TRUE if special handling is done for relocs in SEC against
8726 symbols defined in discarded sections. */
8727
8728 static bfd_boolean
8729 elf_section_ignore_discarded_relocs (asection *sec)
8730 {
8731 const struct elf_backend_data *bed;
8732
8733 switch (sec->sec_info_type)
8734 {
8735 case ELF_INFO_TYPE_STABS:
8736 case ELF_INFO_TYPE_EH_FRAME:
8737 return TRUE;
8738 default:
8739 break;
8740 }
8741
8742 bed = get_elf_backend_data (sec->owner);
8743 if (bed->elf_backend_ignore_discarded_relocs != NULL
8744 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8745 return TRUE;
8746
8747 return FALSE;
8748 }
8749
8750 /* Return a mask saying how ld should treat relocations in SEC against
8751 symbols defined in discarded sections. If this function returns
8752 COMPLAIN set, ld will issue a warning message. If this function
8753 returns PRETEND set, and the discarded section was link-once and the
8754 same size as the kept link-once section, ld will pretend that the
8755 symbol was actually defined in the kept section. Otherwise ld will
8756 zero the reloc (at least that is the intent, but some cooperation by
8757 the target dependent code is needed, particularly for REL targets). */
8758
8759 unsigned int
8760 _bfd_elf_default_action_discarded (asection *sec)
8761 {
8762 if (sec->flags & SEC_DEBUGGING)
8763 return PRETEND;
8764
8765 if (strcmp (".eh_frame", sec->name) == 0)
8766 return 0;
8767
8768 if (strcmp (".gcc_except_table", sec->name) == 0)
8769 return 0;
8770
8771 return COMPLAIN | PRETEND;
8772 }
8773
8774 /* Find a match between a section and a member of a section group. */
8775
8776 static asection *
8777 match_group_member (asection *sec, asection *group,
8778 struct bfd_link_info *info)
8779 {
8780 asection *first = elf_next_in_group (group);
8781 asection *s = first;
8782
8783 while (s != NULL)
8784 {
8785 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8786 return s;
8787
8788 s = elf_next_in_group (s);
8789 if (s == first)
8790 break;
8791 }
8792
8793 return NULL;
8794 }
8795
8796 /* Check if the kept section of a discarded section SEC can be used
8797 to replace it. Return the replacement if it is OK. Otherwise return
8798 NULL. */
8799
8800 asection *
8801 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8802 {
8803 asection *kept;
8804
8805 kept = sec->kept_section;
8806 if (kept != NULL)
8807 {
8808 if ((kept->flags & SEC_GROUP) != 0)
8809 kept = match_group_member (sec, kept, info);
8810 if (kept != NULL
8811 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8812 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8813 kept = NULL;
8814 sec->kept_section = kept;
8815 }
8816 return kept;
8817 }
8818
8819 /* Link an input file into the linker output file. This function
8820 handles all the sections and relocations of the input file at once.
8821 This is so that we only have to read the local symbols once, and
8822 don't have to keep them in memory. */
8823
8824 static bfd_boolean
8825 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8826 {
8827 int (*relocate_section)
8828 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8829 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8830 bfd *output_bfd;
8831 Elf_Internal_Shdr *symtab_hdr;
8832 size_t locsymcount;
8833 size_t extsymoff;
8834 Elf_Internal_Sym *isymbuf;
8835 Elf_Internal_Sym *isym;
8836 Elf_Internal_Sym *isymend;
8837 long *pindex;
8838 asection **ppsection;
8839 asection *o;
8840 const struct elf_backend_data *bed;
8841 struct elf_link_hash_entry **sym_hashes;
8842
8843 output_bfd = finfo->output_bfd;
8844 bed = get_elf_backend_data (output_bfd);
8845 relocate_section = bed->elf_backend_relocate_section;
8846
8847 /* If this is a dynamic object, we don't want to do anything here:
8848 we don't want the local symbols, and we don't want the section
8849 contents. */
8850 if ((input_bfd->flags & DYNAMIC) != 0)
8851 return TRUE;
8852
8853 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8854 if (elf_bad_symtab (input_bfd))
8855 {
8856 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8857 extsymoff = 0;
8858 }
8859 else
8860 {
8861 locsymcount = symtab_hdr->sh_info;
8862 extsymoff = symtab_hdr->sh_info;
8863 }
8864
8865 /* Read the local symbols. */
8866 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8867 if (isymbuf == NULL && locsymcount != 0)
8868 {
8869 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8870 finfo->internal_syms,
8871 finfo->external_syms,
8872 finfo->locsym_shndx);
8873 if (isymbuf == NULL)
8874 return FALSE;
8875 }
8876
8877 /* Find local symbol sections and adjust values of symbols in
8878 SEC_MERGE sections. Write out those local symbols we know are
8879 going into the output file. */
8880 isymend = isymbuf + locsymcount;
8881 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8882 isym < isymend;
8883 isym++, pindex++, ppsection++)
8884 {
8885 asection *isec;
8886 const char *name;
8887 Elf_Internal_Sym osym;
8888
8889 *pindex = -1;
8890
8891 if (elf_bad_symtab (input_bfd))
8892 {
8893 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8894 {
8895 *ppsection = NULL;
8896 continue;
8897 }
8898 }
8899
8900 if (isym->st_shndx == SHN_UNDEF)
8901 isec = bfd_und_section_ptr;
8902 else if (isym->st_shndx == SHN_ABS)
8903 isec = bfd_abs_section_ptr;
8904 else if (isym->st_shndx == SHN_COMMON)
8905 isec = bfd_com_section_ptr;
8906 else
8907 {
8908 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8909 if (isec == NULL)
8910 {
8911 /* Don't attempt to output symbols with st_shnx in the
8912 reserved range other than SHN_ABS and SHN_COMMON. */
8913 *ppsection = NULL;
8914 continue;
8915 }
8916 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
8917 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8918 isym->st_value =
8919 _bfd_merged_section_offset (output_bfd, &isec,
8920 elf_section_data (isec)->sec_info,
8921 isym->st_value);
8922 }
8923
8924 *ppsection = isec;
8925
8926 /* Don't output the first, undefined, symbol. */
8927 if (ppsection == finfo->sections)
8928 continue;
8929
8930 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8931 {
8932 /* We never output section symbols. Instead, we use the
8933 section symbol of the corresponding section in the output
8934 file. */
8935 continue;
8936 }
8937
8938 /* If we are stripping all symbols, we don't want to output this
8939 one. */
8940 if (finfo->info->strip == strip_all)
8941 continue;
8942
8943 /* If we are discarding all local symbols, we don't want to
8944 output this one. If we are generating a relocatable output
8945 file, then some of the local symbols may be required by
8946 relocs; we output them below as we discover that they are
8947 needed. */
8948 if (finfo->info->discard == discard_all)
8949 continue;
8950
8951 /* If this symbol is defined in a section which we are
8952 discarding, we don't need to keep it. */
8953 if (isym->st_shndx != SHN_UNDEF
8954 && isym->st_shndx < SHN_LORESERVE
8955 && bfd_section_removed_from_list (output_bfd,
8956 isec->output_section))
8957 continue;
8958
8959 /* Get the name of the symbol. */
8960 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8961 isym->st_name);
8962 if (name == NULL)
8963 return FALSE;
8964
8965 /* See if we are discarding symbols with this name. */
8966 if ((finfo->info->strip == strip_some
8967 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8968 == NULL))
8969 || (((finfo->info->discard == discard_sec_merge
8970 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8971 || finfo->info->discard == discard_l)
8972 && bfd_is_local_label_name (input_bfd, name)))
8973 continue;
8974
8975 /* If we get here, we are going to output this symbol. */
8976
8977 osym = *isym;
8978
8979 /* Adjust the section index for the output file. */
8980 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8981 isec->output_section);
8982 if (osym.st_shndx == SHN_BAD)
8983 return FALSE;
8984
8985 *pindex = bfd_get_symcount (output_bfd);
8986
8987 /* ELF symbols in relocatable files are section relative, but
8988 in executable files they are virtual addresses. Note that
8989 this code assumes that all ELF sections have an associated
8990 BFD section with a reasonable value for output_offset; below
8991 we assume that they also have a reasonable value for
8992 output_section. Any special sections must be set up to meet
8993 these requirements. */
8994 osym.st_value += isec->output_offset;
8995 if (! finfo->info->relocatable)
8996 {
8997 osym.st_value += isec->output_section->vma;
8998 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
8999 {
9000 /* STT_TLS symbols are relative to PT_TLS segment base. */
9001 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9002 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9003 }
9004 }
9005
9006 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9007 return FALSE;
9008 }
9009
9010 /* Relocate the contents of each section. */
9011 sym_hashes = elf_sym_hashes (input_bfd);
9012 for (o = input_bfd->sections; o != NULL; o = o->next)
9013 {
9014 bfd_byte *contents;
9015
9016 if (! o->linker_mark)
9017 {
9018 /* This section was omitted from the link. */
9019 continue;
9020 }
9021
9022 if ((o->flags & SEC_HAS_CONTENTS) == 0
9023 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9024 continue;
9025
9026 if ((o->flags & SEC_LINKER_CREATED) != 0)
9027 {
9028 /* Section was created by _bfd_elf_link_create_dynamic_sections
9029 or somesuch. */
9030 continue;
9031 }
9032
9033 /* Get the contents of the section. They have been cached by a
9034 relaxation routine. Note that o is a section in an input
9035 file, so the contents field will not have been set by any of
9036 the routines which work on output files. */
9037 if (elf_section_data (o)->this_hdr.contents != NULL)
9038 contents = elf_section_data (o)->this_hdr.contents;
9039 else
9040 {
9041 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9042
9043 contents = finfo->contents;
9044 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9045 return FALSE;
9046 }
9047
9048 if ((o->flags & SEC_RELOC) != 0)
9049 {
9050 Elf_Internal_Rela *internal_relocs;
9051 Elf_Internal_Rela *rel, *relend;
9052 bfd_vma r_type_mask;
9053 int r_sym_shift;
9054 int action_discarded;
9055 int ret;
9056
9057 /* Get the swapped relocs. */
9058 internal_relocs
9059 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9060 finfo->internal_relocs, FALSE);
9061 if (internal_relocs == NULL
9062 && o->reloc_count > 0)
9063 return FALSE;
9064
9065 if (bed->s->arch_size == 32)
9066 {
9067 r_type_mask = 0xff;
9068 r_sym_shift = 8;
9069 }
9070 else
9071 {
9072 r_type_mask = 0xffffffff;
9073 r_sym_shift = 32;
9074 }
9075
9076 action_discarded = -1;
9077 if (!elf_section_ignore_discarded_relocs (o))
9078 action_discarded = (*bed->action_discarded) (o);
9079
9080 /* Run through the relocs evaluating complex reloc symbols and
9081 looking for relocs against symbols from discarded sections
9082 or section symbols from removed link-once sections.
9083 Complain about relocs against discarded sections. Zero
9084 relocs against removed link-once sections. */
9085
9086 rel = internal_relocs;
9087 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9088 for ( ; rel < relend; rel++)
9089 {
9090 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9091 unsigned int s_type;
9092 asection **ps, *sec;
9093 struct elf_link_hash_entry *h = NULL;
9094 const char *sym_name;
9095
9096 if (r_symndx == STN_UNDEF)
9097 continue;
9098
9099 if (r_symndx >= locsymcount
9100 || (elf_bad_symtab (input_bfd)
9101 && finfo->sections[r_symndx] == NULL))
9102 {
9103 h = sym_hashes[r_symndx - extsymoff];
9104
9105 /* Badly formatted input files can contain relocs that
9106 reference non-existant symbols. Check here so that
9107 we do not seg fault. */
9108 if (h == NULL)
9109 {
9110 char buffer [32];
9111
9112 sprintf_vma (buffer, rel->r_info);
9113 (*_bfd_error_handler)
9114 (_("error: %B contains a reloc (0x%s) for section %A "
9115 "that references a non-existent global symbol"),
9116 input_bfd, o, buffer);
9117 bfd_set_error (bfd_error_bad_value);
9118 return FALSE;
9119 }
9120
9121 while (h->root.type == bfd_link_hash_indirect
9122 || h->root.type == bfd_link_hash_warning)
9123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9124
9125 s_type = h->type;
9126
9127 ps = NULL;
9128 if (h->root.type == bfd_link_hash_defined
9129 || h->root.type == bfd_link_hash_defweak)
9130 ps = &h->root.u.def.section;
9131
9132 sym_name = h->root.root.string;
9133 }
9134 else
9135 {
9136 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9137
9138 s_type = ELF_ST_TYPE (sym->st_info);
9139 ps = &finfo->sections[r_symndx];
9140 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9141 sym, *ps);
9142 }
9143
9144 if (s_type == STT_RELC || s_type == STT_SRELC)
9145 {
9146 bfd_vma val;
9147 bfd_vma dot = (rel->r_offset
9148 + o->output_offset + o->output_section->vma);
9149 #ifdef DEBUG
9150 printf ("Encountered a complex symbol!");
9151 printf (" (input_bfd %s, section %s, reloc %ld\n",
9152 input_bfd->filename, o->name, rel - internal_relocs);
9153 printf (" symbol: idx %8.8lx, name %s\n",
9154 r_symndx, sym_name);
9155 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9156 (unsigned long) rel->r_info,
9157 (unsigned long) rel->r_offset);
9158 #endif
9159 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9160 isymbuf, locsymcount, s_type == STT_SRELC))
9161 return FALSE;
9162
9163 /* Symbol evaluated OK. Update to absolute value. */
9164 set_symbol_value (input_bfd, isymbuf, locsymcount,
9165 r_symndx, val);
9166 continue;
9167 }
9168
9169 if (action_discarded != -1 && ps != NULL)
9170 {
9171 /* Complain if the definition comes from a
9172 discarded section. */
9173 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9174 {
9175 BFD_ASSERT (r_symndx != 0);
9176 if (action_discarded & COMPLAIN)
9177 (*finfo->info->callbacks->einfo)
9178 (_("%X`%s' referenced in section `%A' of %B: "
9179 "defined in discarded section `%A' of %B\n"),
9180 sym_name, o, input_bfd, sec, sec->owner);
9181
9182 /* Try to do the best we can to support buggy old
9183 versions of gcc. Pretend that the symbol is
9184 really defined in the kept linkonce section.
9185 FIXME: This is quite broken. Modifying the
9186 symbol here means we will be changing all later
9187 uses of the symbol, not just in this section. */
9188 if (action_discarded & PRETEND)
9189 {
9190 asection *kept;
9191
9192 kept = _bfd_elf_check_kept_section (sec,
9193 finfo->info);
9194 if (kept != NULL)
9195 {
9196 *ps = kept;
9197 continue;
9198 }
9199 }
9200 }
9201 }
9202 }
9203
9204 /* Relocate the section by invoking a back end routine.
9205
9206 The back end routine is responsible for adjusting the
9207 section contents as necessary, and (if using Rela relocs
9208 and generating a relocatable output file) adjusting the
9209 reloc addend as necessary.
9210
9211 The back end routine does not have to worry about setting
9212 the reloc address or the reloc symbol index.
9213
9214 The back end routine is given a pointer to the swapped in
9215 internal symbols, and can access the hash table entries
9216 for the external symbols via elf_sym_hashes (input_bfd).
9217
9218 When generating relocatable output, the back end routine
9219 must handle STB_LOCAL/STT_SECTION symbols specially. The
9220 output symbol is going to be a section symbol
9221 corresponding to the output section, which will require
9222 the addend to be adjusted. */
9223
9224 ret = (*relocate_section) (output_bfd, finfo->info,
9225 input_bfd, o, contents,
9226 internal_relocs,
9227 isymbuf,
9228 finfo->sections);
9229 if (!ret)
9230 return FALSE;
9231
9232 if (ret == 2
9233 || finfo->info->relocatable
9234 || finfo->info->emitrelocations)
9235 {
9236 Elf_Internal_Rela *irela;
9237 Elf_Internal_Rela *irelaend;
9238 bfd_vma last_offset;
9239 struct elf_link_hash_entry **rel_hash;
9240 struct elf_link_hash_entry **rel_hash_list;
9241 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9242 unsigned int next_erel;
9243 bfd_boolean rela_normal;
9244
9245 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9246 rela_normal = (bed->rela_normal
9247 && (input_rel_hdr->sh_entsize
9248 == bed->s->sizeof_rela));
9249
9250 /* Adjust the reloc addresses and symbol indices. */
9251
9252 irela = internal_relocs;
9253 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9254 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9255 + elf_section_data (o->output_section)->rel_count
9256 + elf_section_data (o->output_section)->rel_count2);
9257 rel_hash_list = rel_hash;
9258 last_offset = o->output_offset;
9259 if (!finfo->info->relocatable)
9260 last_offset += o->output_section->vma;
9261 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9262 {
9263 unsigned long r_symndx;
9264 asection *sec;
9265 Elf_Internal_Sym sym;
9266
9267 if (next_erel == bed->s->int_rels_per_ext_rel)
9268 {
9269 rel_hash++;
9270 next_erel = 0;
9271 }
9272
9273 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9274 finfo->info, o,
9275 irela->r_offset);
9276 if (irela->r_offset >= (bfd_vma) -2)
9277 {
9278 /* This is a reloc for a deleted entry or somesuch.
9279 Turn it into an R_*_NONE reloc, at the same
9280 offset as the last reloc. elf_eh_frame.c and
9281 bfd_elf_discard_info rely on reloc offsets
9282 being ordered. */
9283 irela->r_offset = last_offset;
9284 irela->r_info = 0;
9285 irela->r_addend = 0;
9286 continue;
9287 }
9288
9289 irela->r_offset += o->output_offset;
9290
9291 /* Relocs in an executable have to be virtual addresses. */
9292 if (!finfo->info->relocatable)
9293 irela->r_offset += o->output_section->vma;
9294
9295 last_offset = irela->r_offset;
9296
9297 r_symndx = irela->r_info >> r_sym_shift;
9298 if (r_symndx == STN_UNDEF)
9299 continue;
9300
9301 if (r_symndx >= locsymcount
9302 || (elf_bad_symtab (input_bfd)
9303 && finfo->sections[r_symndx] == NULL))
9304 {
9305 struct elf_link_hash_entry *rh;
9306 unsigned long indx;
9307
9308 /* This is a reloc against a global symbol. We
9309 have not yet output all the local symbols, so
9310 we do not know the symbol index of any global
9311 symbol. We set the rel_hash entry for this
9312 reloc to point to the global hash table entry
9313 for this symbol. The symbol index is then
9314 set at the end of bfd_elf_final_link. */
9315 indx = r_symndx - extsymoff;
9316 rh = elf_sym_hashes (input_bfd)[indx];
9317 while (rh->root.type == bfd_link_hash_indirect
9318 || rh->root.type == bfd_link_hash_warning)
9319 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9320
9321 /* Setting the index to -2 tells
9322 elf_link_output_extsym that this symbol is
9323 used by a reloc. */
9324 BFD_ASSERT (rh->indx < 0);
9325 rh->indx = -2;
9326
9327 *rel_hash = rh;
9328
9329 continue;
9330 }
9331
9332 /* This is a reloc against a local symbol. */
9333
9334 *rel_hash = NULL;
9335 sym = isymbuf[r_symndx];
9336 sec = finfo->sections[r_symndx];
9337 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9338 {
9339 /* I suppose the backend ought to fill in the
9340 section of any STT_SECTION symbol against a
9341 processor specific section. */
9342 r_symndx = 0;
9343 if (bfd_is_abs_section (sec))
9344 ;
9345 else if (sec == NULL || sec->owner == NULL)
9346 {
9347 bfd_set_error (bfd_error_bad_value);
9348 return FALSE;
9349 }
9350 else
9351 {
9352 asection *osec = sec->output_section;
9353
9354 /* If we have discarded a section, the output
9355 section will be the absolute section. In
9356 case of discarded SEC_MERGE sections, use
9357 the kept section. relocate_section should
9358 have already handled discarded linkonce
9359 sections. */
9360 if (bfd_is_abs_section (osec)
9361 && sec->kept_section != NULL
9362 && sec->kept_section->output_section != NULL)
9363 {
9364 osec = sec->kept_section->output_section;
9365 irela->r_addend -= osec->vma;
9366 }
9367
9368 if (!bfd_is_abs_section (osec))
9369 {
9370 r_symndx = osec->target_index;
9371 if (r_symndx == 0)
9372 {
9373 struct elf_link_hash_table *htab;
9374 asection *oi;
9375
9376 htab = elf_hash_table (finfo->info);
9377 oi = htab->text_index_section;
9378 if ((osec->flags & SEC_READONLY) == 0
9379 && htab->data_index_section != NULL)
9380 oi = htab->data_index_section;
9381
9382 if (oi != NULL)
9383 {
9384 irela->r_addend += osec->vma - oi->vma;
9385 r_symndx = oi->target_index;
9386 }
9387 }
9388
9389 BFD_ASSERT (r_symndx != 0);
9390 }
9391 }
9392
9393 /* Adjust the addend according to where the
9394 section winds up in the output section. */
9395 if (rela_normal)
9396 irela->r_addend += sec->output_offset;
9397 }
9398 else
9399 {
9400 if (finfo->indices[r_symndx] == -1)
9401 {
9402 unsigned long shlink;
9403 const char *name;
9404 asection *osec;
9405
9406 if (finfo->info->strip == strip_all)
9407 {
9408 /* You can't do ld -r -s. */
9409 bfd_set_error (bfd_error_invalid_operation);
9410 return FALSE;
9411 }
9412
9413 /* This symbol was skipped earlier, but
9414 since it is needed by a reloc, we
9415 must output it now. */
9416 shlink = symtab_hdr->sh_link;
9417 name = (bfd_elf_string_from_elf_section
9418 (input_bfd, shlink, sym.st_name));
9419 if (name == NULL)
9420 return FALSE;
9421
9422 osec = sec->output_section;
9423 sym.st_shndx =
9424 _bfd_elf_section_from_bfd_section (output_bfd,
9425 osec);
9426 if (sym.st_shndx == SHN_BAD)
9427 return FALSE;
9428
9429 sym.st_value += sec->output_offset;
9430 if (! finfo->info->relocatable)
9431 {
9432 sym.st_value += osec->vma;
9433 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9434 {
9435 /* STT_TLS symbols are relative to PT_TLS
9436 segment base. */
9437 BFD_ASSERT (elf_hash_table (finfo->info)
9438 ->tls_sec != NULL);
9439 sym.st_value -= (elf_hash_table (finfo->info)
9440 ->tls_sec->vma);
9441 }
9442 }
9443
9444 finfo->indices[r_symndx]
9445 = bfd_get_symcount (output_bfd);
9446
9447 if (! elf_link_output_sym (finfo, name, &sym, sec,
9448 NULL))
9449 return FALSE;
9450 }
9451
9452 r_symndx = finfo->indices[r_symndx];
9453 }
9454
9455 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9456 | (irela->r_info & r_type_mask));
9457 }
9458
9459 /* Swap out the relocs. */
9460 if (input_rel_hdr->sh_size != 0
9461 && !bed->elf_backend_emit_relocs (output_bfd, o,
9462 input_rel_hdr,
9463 internal_relocs,
9464 rel_hash_list))
9465 return FALSE;
9466
9467 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9468 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9469 {
9470 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9471 * bed->s->int_rels_per_ext_rel);
9472 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9473 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9474 input_rel_hdr2,
9475 internal_relocs,
9476 rel_hash_list))
9477 return FALSE;
9478 }
9479 }
9480 }
9481
9482 /* Write out the modified section contents. */
9483 if (bed->elf_backend_write_section
9484 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9485 contents))
9486 {
9487 /* Section written out. */
9488 }
9489 else switch (o->sec_info_type)
9490 {
9491 case ELF_INFO_TYPE_STABS:
9492 if (! (_bfd_write_section_stabs
9493 (output_bfd,
9494 &elf_hash_table (finfo->info)->stab_info,
9495 o, &elf_section_data (o)->sec_info, contents)))
9496 return FALSE;
9497 break;
9498 case ELF_INFO_TYPE_MERGE:
9499 if (! _bfd_write_merged_section (output_bfd, o,
9500 elf_section_data (o)->sec_info))
9501 return FALSE;
9502 break;
9503 case ELF_INFO_TYPE_EH_FRAME:
9504 {
9505 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9506 o, contents))
9507 return FALSE;
9508 }
9509 break;
9510 default:
9511 {
9512 if (! (o->flags & SEC_EXCLUDE)
9513 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9514 && ! bfd_set_section_contents (output_bfd, o->output_section,
9515 contents,
9516 (file_ptr) o->output_offset,
9517 o->size))
9518 return FALSE;
9519 }
9520 break;
9521 }
9522 }
9523
9524 return TRUE;
9525 }
9526
9527 /* Generate a reloc when linking an ELF file. This is a reloc
9528 requested by the linker, and does not come from any input file. This
9529 is used to build constructor and destructor tables when linking
9530 with -Ur. */
9531
9532 static bfd_boolean
9533 elf_reloc_link_order (bfd *output_bfd,
9534 struct bfd_link_info *info,
9535 asection *output_section,
9536 struct bfd_link_order *link_order)
9537 {
9538 reloc_howto_type *howto;
9539 long indx;
9540 bfd_vma offset;
9541 bfd_vma addend;
9542 struct elf_link_hash_entry **rel_hash_ptr;
9543 Elf_Internal_Shdr *rel_hdr;
9544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9545 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9546 bfd_byte *erel;
9547 unsigned int i;
9548
9549 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9550 if (howto == NULL)
9551 {
9552 bfd_set_error (bfd_error_bad_value);
9553 return FALSE;
9554 }
9555
9556 addend = link_order->u.reloc.p->addend;
9557
9558 /* Figure out the symbol index. */
9559 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9560 + elf_section_data (output_section)->rel_count
9561 + elf_section_data (output_section)->rel_count2);
9562 if (link_order->type == bfd_section_reloc_link_order)
9563 {
9564 indx = link_order->u.reloc.p->u.section->target_index;
9565 BFD_ASSERT (indx != 0);
9566 *rel_hash_ptr = NULL;
9567 }
9568 else
9569 {
9570 struct elf_link_hash_entry *h;
9571
9572 /* Treat a reloc against a defined symbol as though it were
9573 actually against the section. */
9574 h = ((struct elf_link_hash_entry *)
9575 bfd_wrapped_link_hash_lookup (output_bfd, info,
9576 link_order->u.reloc.p->u.name,
9577 FALSE, FALSE, TRUE));
9578 if (h != NULL
9579 && (h->root.type == bfd_link_hash_defined
9580 || h->root.type == bfd_link_hash_defweak))
9581 {
9582 asection *section;
9583
9584 section = h->root.u.def.section;
9585 indx = section->output_section->target_index;
9586 *rel_hash_ptr = NULL;
9587 /* It seems that we ought to add the symbol value to the
9588 addend here, but in practice it has already been added
9589 because it was passed to constructor_callback. */
9590 addend += section->output_section->vma + section->output_offset;
9591 }
9592 else if (h != NULL)
9593 {
9594 /* Setting the index to -2 tells elf_link_output_extsym that
9595 this symbol is used by a reloc. */
9596 h->indx = -2;
9597 *rel_hash_ptr = h;
9598 indx = 0;
9599 }
9600 else
9601 {
9602 if (! ((*info->callbacks->unattached_reloc)
9603 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9604 return FALSE;
9605 indx = 0;
9606 }
9607 }
9608
9609 /* If this is an inplace reloc, we must write the addend into the
9610 object file. */
9611 if (howto->partial_inplace && addend != 0)
9612 {
9613 bfd_size_type size;
9614 bfd_reloc_status_type rstat;
9615 bfd_byte *buf;
9616 bfd_boolean ok;
9617 const char *sym_name;
9618
9619 size = bfd_get_reloc_size (howto);
9620 buf = bfd_zmalloc (size);
9621 if (buf == NULL)
9622 return FALSE;
9623 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9624 switch (rstat)
9625 {
9626 case bfd_reloc_ok:
9627 break;
9628
9629 default:
9630 case bfd_reloc_outofrange:
9631 abort ();
9632
9633 case bfd_reloc_overflow:
9634 if (link_order->type == bfd_section_reloc_link_order)
9635 sym_name = bfd_section_name (output_bfd,
9636 link_order->u.reloc.p->u.section);
9637 else
9638 sym_name = link_order->u.reloc.p->u.name;
9639 if (! ((*info->callbacks->reloc_overflow)
9640 (info, NULL, sym_name, howto->name, addend, NULL,
9641 NULL, (bfd_vma) 0)))
9642 {
9643 free (buf);
9644 return FALSE;
9645 }
9646 break;
9647 }
9648 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9649 link_order->offset, size);
9650 free (buf);
9651 if (! ok)
9652 return FALSE;
9653 }
9654
9655 /* The address of a reloc is relative to the section in a
9656 relocatable file, and is a virtual address in an executable
9657 file. */
9658 offset = link_order->offset;
9659 if (! info->relocatable)
9660 offset += output_section->vma;
9661
9662 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9663 {
9664 irel[i].r_offset = offset;
9665 irel[i].r_info = 0;
9666 irel[i].r_addend = 0;
9667 }
9668 if (bed->s->arch_size == 32)
9669 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9670 else
9671 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9672
9673 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9674 erel = rel_hdr->contents;
9675 if (rel_hdr->sh_type == SHT_REL)
9676 {
9677 erel += (elf_section_data (output_section)->rel_count
9678 * bed->s->sizeof_rel);
9679 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9680 }
9681 else
9682 {
9683 irel[0].r_addend = addend;
9684 erel += (elf_section_data (output_section)->rel_count
9685 * bed->s->sizeof_rela);
9686 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9687 }
9688
9689 ++elf_section_data (output_section)->rel_count;
9690
9691 return TRUE;
9692 }
9693
9694
9695 /* Get the output vma of the section pointed to by the sh_link field. */
9696
9697 static bfd_vma
9698 elf_get_linked_section_vma (struct bfd_link_order *p)
9699 {
9700 Elf_Internal_Shdr **elf_shdrp;
9701 asection *s;
9702 int elfsec;
9703
9704 s = p->u.indirect.section;
9705 elf_shdrp = elf_elfsections (s->owner);
9706 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9707 elfsec = elf_shdrp[elfsec]->sh_link;
9708 /* PR 290:
9709 The Intel C compiler generates SHT_IA_64_UNWIND with
9710 SHF_LINK_ORDER. But it doesn't set the sh_link or
9711 sh_info fields. Hence we could get the situation
9712 where elfsec is 0. */
9713 if (elfsec == 0)
9714 {
9715 const struct elf_backend_data *bed
9716 = get_elf_backend_data (s->owner);
9717 if (bed->link_order_error_handler)
9718 bed->link_order_error_handler
9719 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9720 return 0;
9721 }
9722 else
9723 {
9724 s = elf_shdrp[elfsec]->bfd_section;
9725 return s->output_section->vma + s->output_offset;
9726 }
9727 }
9728
9729
9730 /* Compare two sections based on the locations of the sections they are
9731 linked to. Used by elf_fixup_link_order. */
9732
9733 static int
9734 compare_link_order (const void * a, const void * b)
9735 {
9736 bfd_vma apos;
9737 bfd_vma bpos;
9738
9739 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9740 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9741 if (apos < bpos)
9742 return -1;
9743 return apos > bpos;
9744 }
9745
9746
9747 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9748 order as their linked sections. Returns false if this could not be done
9749 because an output section includes both ordered and unordered
9750 sections. Ideally we'd do this in the linker proper. */
9751
9752 static bfd_boolean
9753 elf_fixup_link_order (bfd *abfd, asection *o)
9754 {
9755 int seen_linkorder;
9756 int seen_other;
9757 int n;
9758 struct bfd_link_order *p;
9759 bfd *sub;
9760 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9761 unsigned elfsec;
9762 struct bfd_link_order **sections;
9763 asection *s, *other_sec, *linkorder_sec;
9764 bfd_vma offset;
9765
9766 other_sec = NULL;
9767 linkorder_sec = NULL;
9768 seen_other = 0;
9769 seen_linkorder = 0;
9770 for (p = o->map_head.link_order; p != NULL; p = p->next)
9771 {
9772 if (p->type == bfd_indirect_link_order)
9773 {
9774 s = p->u.indirect.section;
9775 sub = s->owner;
9776 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9777 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9778 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9779 && elfsec < elf_numsections (sub)
9780 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9781 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9782 {
9783 seen_linkorder++;
9784 linkorder_sec = s;
9785 }
9786 else
9787 {
9788 seen_other++;
9789 other_sec = s;
9790 }
9791 }
9792 else
9793 seen_other++;
9794
9795 if (seen_other && seen_linkorder)
9796 {
9797 if (other_sec && linkorder_sec)
9798 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9799 o, linkorder_sec,
9800 linkorder_sec->owner, other_sec,
9801 other_sec->owner);
9802 else
9803 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9804 o);
9805 bfd_set_error (bfd_error_bad_value);
9806 return FALSE;
9807 }
9808 }
9809
9810 if (!seen_linkorder)
9811 return TRUE;
9812
9813 sections = (struct bfd_link_order **)
9814 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9815 if (sections == NULL)
9816 return FALSE;
9817 seen_linkorder = 0;
9818
9819 for (p = o->map_head.link_order; p != NULL; p = p->next)
9820 {
9821 sections[seen_linkorder++] = p;
9822 }
9823 /* Sort the input sections in the order of their linked section. */
9824 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9825 compare_link_order);
9826
9827 /* Change the offsets of the sections. */
9828 offset = 0;
9829 for (n = 0; n < seen_linkorder; n++)
9830 {
9831 s = sections[n]->u.indirect.section;
9832 offset &= ~(bfd_vma) 0 << s->alignment_power;
9833 s->output_offset = offset;
9834 sections[n]->offset = offset;
9835 offset += sections[n]->size;
9836 }
9837
9838 return TRUE;
9839 }
9840
9841
9842 /* Do the final step of an ELF link. */
9843
9844 bfd_boolean
9845 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9846 {
9847 bfd_boolean dynamic;
9848 bfd_boolean emit_relocs;
9849 bfd *dynobj;
9850 struct elf_final_link_info finfo;
9851 register asection *o;
9852 register struct bfd_link_order *p;
9853 register bfd *sub;
9854 bfd_size_type max_contents_size;
9855 bfd_size_type max_external_reloc_size;
9856 bfd_size_type max_internal_reloc_count;
9857 bfd_size_type max_sym_count;
9858 bfd_size_type max_sym_shndx_count;
9859 file_ptr off;
9860 Elf_Internal_Sym elfsym;
9861 unsigned int i;
9862 Elf_Internal_Shdr *symtab_hdr;
9863 Elf_Internal_Shdr *symtab_shndx_hdr;
9864 Elf_Internal_Shdr *symstrtab_hdr;
9865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9866 struct elf_outext_info eoinfo;
9867 bfd_boolean merged;
9868 size_t relativecount = 0;
9869 asection *reldyn = 0;
9870 bfd_size_type amt;
9871 asection *attr_section = NULL;
9872 bfd_vma attr_size = 0;
9873 const char *std_attrs_section;
9874
9875 if (! is_elf_hash_table (info->hash))
9876 return FALSE;
9877
9878 if (info->shared)
9879 abfd->flags |= DYNAMIC;
9880
9881 dynamic = elf_hash_table (info)->dynamic_sections_created;
9882 dynobj = elf_hash_table (info)->dynobj;
9883
9884 emit_relocs = (info->relocatable
9885 || info->emitrelocations);
9886
9887 finfo.info = info;
9888 finfo.output_bfd = abfd;
9889 finfo.symstrtab = _bfd_elf_stringtab_init ();
9890 if (finfo.symstrtab == NULL)
9891 return FALSE;
9892
9893 if (! dynamic)
9894 {
9895 finfo.dynsym_sec = NULL;
9896 finfo.hash_sec = NULL;
9897 finfo.symver_sec = NULL;
9898 }
9899 else
9900 {
9901 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9902 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9903 BFD_ASSERT (finfo.dynsym_sec != NULL);
9904 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9905 /* Note that it is OK if symver_sec is NULL. */
9906 }
9907
9908 finfo.contents = NULL;
9909 finfo.external_relocs = NULL;
9910 finfo.internal_relocs = NULL;
9911 finfo.external_syms = NULL;
9912 finfo.locsym_shndx = NULL;
9913 finfo.internal_syms = NULL;
9914 finfo.indices = NULL;
9915 finfo.sections = NULL;
9916 finfo.symbuf = NULL;
9917 finfo.symshndxbuf = NULL;
9918 finfo.symbuf_count = 0;
9919 finfo.shndxbuf_size = 0;
9920
9921 /* The object attributes have been merged. Remove the input
9922 sections from the link, and set the contents of the output
9923 secton. */
9924 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9925 for (o = abfd->sections; o != NULL; o = o->next)
9926 {
9927 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9928 || strcmp (o->name, ".gnu.attributes") == 0)
9929 {
9930 for (p = o->map_head.link_order; p != NULL; p = p->next)
9931 {
9932 asection *input_section;
9933
9934 if (p->type != bfd_indirect_link_order)
9935 continue;
9936 input_section = p->u.indirect.section;
9937 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9938 elf_link_input_bfd ignores this section. */
9939 input_section->flags &= ~SEC_HAS_CONTENTS;
9940 }
9941
9942 attr_size = bfd_elf_obj_attr_size (abfd);
9943 if (attr_size)
9944 {
9945 bfd_set_section_size (abfd, o, attr_size);
9946 attr_section = o;
9947 /* Skip this section later on. */
9948 o->map_head.link_order = NULL;
9949 }
9950 else
9951 o->flags |= SEC_EXCLUDE;
9952 }
9953 }
9954
9955 /* Count up the number of relocations we will output for each output
9956 section, so that we know the sizes of the reloc sections. We
9957 also figure out some maximum sizes. */
9958 max_contents_size = 0;
9959 max_external_reloc_size = 0;
9960 max_internal_reloc_count = 0;
9961 max_sym_count = 0;
9962 max_sym_shndx_count = 0;
9963 merged = FALSE;
9964 for (o = abfd->sections; o != NULL; o = o->next)
9965 {
9966 struct bfd_elf_section_data *esdo = elf_section_data (o);
9967 o->reloc_count = 0;
9968
9969 for (p = o->map_head.link_order; p != NULL; p = p->next)
9970 {
9971 unsigned int reloc_count = 0;
9972 struct bfd_elf_section_data *esdi = NULL;
9973 unsigned int *rel_count1;
9974
9975 if (p->type == bfd_section_reloc_link_order
9976 || p->type == bfd_symbol_reloc_link_order)
9977 reloc_count = 1;
9978 else if (p->type == bfd_indirect_link_order)
9979 {
9980 asection *sec;
9981
9982 sec = p->u.indirect.section;
9983 esdi = elf_section_data (sec);
9984
9985 /* Mark all sections which are to be included in the
9986 link. This will normally be every section. We need
9987 to do this so that we can identify any sections which
9988 the linker has decided to not include. */
9989 sec->linker_mark = TRUE;
9990
9991 if (sec->flags & SEC_MERGE)
9992 merged = TRUE;
9993
9994 if (info->relocatable || info->emitrelocations)
9995 reloc_count = sec->reloc_count;
9996 else if (bed->elf_backend_count_relocs)
9997 {
9998 Elf_Internal_Rela * relocs;
9999
10000 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10001 NULL, NULL,
10002 info->keep_memory);
10003
10004 if (relocs != NULL)
10005 {
10006 reloc_count
10007 = (*bed->elf_backend_count_relocs) (sec, relocs);
10008
10009 if (elf_section_data (sec)->relocs != relocs)
10010 free (relocs);
10011 }
10012 }
10013
10014 if (sec->rawsize > max_contents_size)
10015 max_contents_size = sec->rawsize;
10016 if (sec->size > max_contents_size)
10017 max_contents_size = sec->size;
10018
10019 /* We are interested in just local symbols, not all
10020 symbols. */
10021 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10022 && (sec->owner->flags & DYNAMIC) == 0)
10023 {
10024 size_t sym_count;
10025
10026 if (elf_bad_symtab (sec->owner))
10027 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10028 / bed->s->sizeof_sym);
10029 else
10030 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10031
10032 if (sym_count > max_sym_count)
10033 max_sym_count = sym_count;
10034
10035 if (sym_count > max_sym_shndx_count
10036 && elf_symtab_shndx (sec->owner) != 0)
10037 max_sym_shndx_count = sym_count;
10038
10039 if ((sec->flags & SEC_RELOC) != 0)
10040 {
10041 size_t ext_size;
10042
10043 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10044 if (ext_size > max_external_reloc_size)
10045 max_external_reloc_size = ext_size;
10046 if (sec->reloc_count > max_internal_reloc_count)
10047 max_internal_reloc_count = sec->reloc_count;
10048 }
10049 }
10050 }
10051
10052 if (reloc_count == 0)
10053 continue;
10054
10055 o->reloc_count += reloc_count;
10056
10057 /* MIPS may have a mix of REL and RELA relocs on sections.
10058 To support this curious ABI we keep reloc counts in
10059 elf_section_data too. We must be careful to add the
10060 relocations from the input section to the right output
10061 count. FIXME: Get rid of one count. We have
10062 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10063 rel_count1 = &esdo->rel_count;
10064 if (esdi != NULL)
10065 {
10066 bfd_boolean same_size;
10067 bfd_size_type entsize1;
10068
10069 entsize1 = esdi->rel_hdr.sh_entsize;
10070 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10071 || entsize1 == bed->s->sizeof_rela);
10072 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10073
10074 if (!same_size)
10075 rel_count1 = &esdo->rel_count2;
10076
10077 if (esdi->rel_hdr2 != NULL)
10078 {
10079 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10080 unsigned int alt_count;
10081 unsigned int *rel_count2;
10082
10083 BFD_ASSERT (entsize2 != entsize1
10084 && (entsize2 == bed->s->sizeof_rel
10085 || entsize2 == bed->s->sizeof_rela));
10086
10087 rel_count2 = &esdo->rel_count2;
10088 if (!same_size)
10089 rel_count2 = &esdo->rel_count;
10090
10091 /* The following is probably too simplistic if the
10092 backend counts output relocs unusually. */
10093 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10094 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10095 *rel_count2 += alt_count;
10096 reloc_count -= alt_count;
10097 }
10098 }
10099 *rel_count1 += reloc_count;
10100 }
10101
10102 if (o->reloc_count > 0)
10103 o->flags |= SEC_RELOC;
10104 else
10105 {
10106 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10107 set it (this is probably a bug) and if it is set
10108 assign_section_numbers will create a reloc section. */
10109 o->flags &=~ SEC_RELOC;
10110 }
10111
10112 /* If the SEC_ALLOC flag is not set, force the section VMA to
10113 zero. This is done in elf_fake_sections as well, but forcing
10114 the VMA to 0 here will ensure that relocs against these
10115 sections are handled correctly. */
10116 if ((o->flags & SEC_ALLOC) == 0
10117 && ! o->user_set_vma)
10118 o->vma = 0;
10119 }
10120
10121 if (! info->relocatable && merged)
10122 elf_link_hash_traverse (elf_hash_table (info),
10123 _bfd_elf_link_sec_merge_syms, abfd);
10124
10125 /* Figure out the file positions for everything but the symbol table
10126 and the relocs. We set symcount to force assign_section_numbers
10127 to create a symbol table. */
10128 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10129 BFD_ASSERT (! abfd->output_has_begun);
10130 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10131 goto error_return;
10132
10133 /* Set sizes, and assign file positions for reloc sections. */
10134 for (o = abfd->sections; o != NULL; o = o->next)
10135 {
10136 if ((o->flags & SEC_RELOC) != 0)
10137 {
10138 if (!(_bfd_elf_link_size_reloc_section
10139 (abfd, &elf_section_data (o)->rel_hdr, o)))
10140 goto error_return;
10141
10142 if (elf_section_data (o)->rel_hdr2
10143 && !(_bfd_elf_link_size_reloc_section
10144 (abfd, elf_section_data (o)->rel_hdr2, o)))
10145 goto error_return;
10146 }
10147
10148 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10149 to count upwards while actually outputting the relocations. */
10150 elf_section_data (o)->rel_count = 0;
10151 elf_section_data (o)->rel_count2 = 0;
10152 }
10153
10154 _bfd_elf_assign_file_positions_for_relocs (abfd);
10155
10156 /* We have now assigned file positions for all the sections except
10157 .symtab and .strtab. We start the .symtab section at the current
10158 file position, and write directly to it. We build the .strtab
10159 section in memory. */
10160 bfd_get_symcount (abfd) = 0;
10161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10162 /* sh_name is set in prep_headers. */
10163 symtab_hdr->sh_type = SHT_SYMTAB;
10164 /* sh_flags, sh_addr and sh_size all start off zero. */
10165 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10166 /* sh_link is set in assign_section_numbers. */
10167 /* sh_info is set below. */
10168 /* sh_offset is set just below. */
10169 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10170
10171 off = elf_tdata (abfd)->next_file_pos;
10172 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10173
10174 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10175 incorrect. We do not yet know the size of the .symtab section.
10176 We correct next_file_pos below, after we do know the size. */
10177
10178 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10179 continuously seeking to the right position in the file. */
10180 if (! info->keep_memory || max_sym_count < 20)
10181 finfo.symbuf_size = 20;
10182 else
10183 finfo.symbuf_size = max_sym_count;
10184 amt = finfo.symbuf_size;
10185 amt *= bed->s->sizeof_sym;
10186 finfo.symbuf = bfd_malloc (amt);
10187 if (finfo.symbuf == NULL)
10188 goto error_return;
10189 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10190 {
10191 /* Wild guess at number of output symbols. realloc'd as needed. */
10192 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10193 finfo.shndxbuf_size = amt;
10194 amt *= sizeof (Elf_External_Sym_Shndx);
10195 finfo.symshndxbuf = bfd_zmalloc (amt);
10196 if (finfo.symshndxbuf == NULL)
10197 goto error_return;
10198 }
10199
10200 /* Start writing out the symbol table. The first symbol is always a
10201 dummy symbol. */
10202 if (info->strip != strip_all
10203 || emit_relocs)
10204 {
10205 elfsym.st_value = 0;
10206 elfsym.st_size = 0;
10207 elfsym.st_info = 0;
10208 elfsym.st_other = 0;
10209 elfsym.st_shndx = SHN_UNDEF;
10210 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10211 NULL))
10212 goto error_return;
10213 }
10214
10215 /* Output a symbol for each section. We output these even if we are
10216 discarding local symbols, since they are used for relocs. These
10217 symbols have no names. We store the index of each one in the
10218 index field of the section, so that we can find it again when
10219 outputting relocs. */
10220 if (info->strip != strip_all
10221 || emit_relocs)
10222 {
10223 elfsym.st_size = 0;
10224 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10225 elfsym.st_other = 0;
10226 elfsym.st_value = 0;
10227 for (i = 1; i < elf_numsections (abfd); i++)
10228 {
10229 o = bfd_section_from_elf_index (abfd, i);
10230 if (o != NULL)
10231 {
10232 o->target_index = bfd_get_symcount (abfd);
10233 elfsym.st_shndx = i;
10234 if (!info->relocatable)
10235 elfsym.st_value = o->vma;
10236 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10237 goto error_return;
10238 }
10239 }
10240 }
10241
10242 /* Allocate some memory to hold information read in from the input
10243 files. */
10244 if (max_contents_size != 0)
10245 {
10246 finfo.contents = bfd_malloc (max_contents_size);
10247 if (finfo.contents == NULL)
10248 goto error_return;
10249 }
10250
10251 if (max_external_reloc_size != 0)
10252 {
10253 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10254 if (finfo.external_relocs == NULL)
10255 goto error_return;
10256 }
10257
10258 if (max_internal_reloc_count != 0)
10259 {
10260 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10261 amt *= sizeof (Elf_Internal_Rela);
10262 finfo.internal_relocs = bfd_malloc (amt);
10263 if (finfo.internal_relocs == NULL)
10264 goto error_return;
10265 }
10266
10267 if (max_sym_count != 0)
10268 {
10269 amt = max_sym_count * bed->s->sizeof_sym;
10270 finfo.external_syms = bfd_malloc (amt);
10271 if (finfo.external_syms == NULL)
10272 goto error_return;
10273
10274 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10275 finfo.internal_syms = bfd_malloc (amt);
10276 if (finfo.internal_syms == NULL)
10277 goto error_return;
10278
10279 amt = max_sym_count * sizeof (long);
10280 finfo.indices = bfd_malloc (amt);
10281 if (finfo.indices == NULL)
10282 goto error_return;
10283
10284 amt = max_sym_count * sizeof (asection *);
10285 finfo.sections = bfd_malloc (amt);
10286 if (finfo.sections == NULL)
10287 goto error_return;
10288 }
10289
10290 if (max_sym_shndx_count != 0)
10291 {
10292 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10293 finfo.locsym_shndx = bfd_malloc (amt);
10294 if (finfo.locsym_shndx == NULL)
10295 goto error_return;
10296 }
10297
10298 if (elf_hash_table (info)->tls_sec)
10299 {
10300 bfd_vma base, end = 0;
10301 asection *sec;
10302
10303 for (sec = elf_hash_table (info)->tls_sec;
10304 sec && (sec->flags & SEC_THREAD_LOCAL);
10305 sec = sec->next)
10306 {
10307 bfd_size_type size = sec->size;
10308
10309 if (size == 0
10310 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10311 {
10312 struct bfd_link_order *o = sec->map_tail.link_order;
10313 if (o != NULL)
10314 size = o->offset + o->size;
10315 }
10316 end = sec->vma + size;
10317 }
10318 base = elf_hash_table (info)->tls_sec->vma;
10319 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10320 elf_hash_table (info)->tls_size = end - base;
10321 }
10322
10323 /* Reorder SHF_LINK_ORDER sections. */
10324 for (o = abfd->sections; o != NULL; o = o->next)
10325 {
10326 if (!elf_fixup_link_order (abfd, o))
10327 return FALSE;
10328 }
10329
10330 /* Since ELF permits relocations to be against local symbols, we
10331 must have the local symbols available when we do the relocations.
10332 Since we would rather only read the local symbols once, and we
10333 would rather not keep them in memory, we handle all the
10334 relocations for a single input file at the same time.
10335
10336 Unfortunately, there is no way to know the total number of local
10337 symbols until we have seen all of them, and the local symbol
10338 indices precede the global symbol indices. This means that when
10339 we are generating relocatable output, and we see a reloc against
10340 a global symbol, we can not know the symbol index until we have
10341 finished examining all the local symbols to see which ones we are
10342 going to output. To deal with this, we keep the relocations in
10343 memory, and don't output them until the end of the link. This is
10344 an unfortunate waste of memory, but I don't see a good way around
10345 it. Fortunately, it only happens when performing a relocatable
10346 link, which is not the common case. FIXME: If keep_memory is set
10347 we could write the relocs out and then read them again; I don't
10348 know how bad the memory loss will be. */
10349
10350 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10351 sub->output_has_begun = FALSE;
10352 for (o = abfd->sections; o != NULL; o = o->next)
10353 {
10354 for (p = o->map_head.link_order; p != NULL; p = p->next)
10355 {
10356 if (p->type == bfd_indirect_link_order
10357 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10358 == bfd_target_elf_flavour)
10359 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10360 {
10361 if (! sub->output_has_begun)
10362 {
10363 if (! elf_link_input_bfd (&finfo, sub))
10364 goto error_return;
10365 sub->output_has_begun = TRUE;
10366 }
10367 }
10368 else if (p->type == bfd_section_reloc_link_order
10369 || p->type == bfd_symbol_reloc_link_order)
10370 {
10371 if (! elf_reloc_link_order (abfd, info, o, p))
10372 goto error_return;
10373 }
10374 else
10375 {
10376 if (! _bfd_default_link_order (abfd, info, o, p))
10377 goto error_return;
10378 }
10379 }
10380 }
10381
10382 /* Free symbol buffer if needed. */
10383 if (!info->reduce_memory_overheads)
10384 {
10385 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10386 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10387 && elf_tdata (sub)->symbuf)
10388 {
10389 free (elf_tdata (sub)->symbuf);
10390 elf_tdata (sub)->symbuf = NULL;
10391 }
10392 }
10393
10394 /* Output any global symbols that got converted to local in a
10395 version script or due to symbol visibility. We do this in a
10396 separate step since ELF requires all local symbols to appear
10397 prior to any global symbols. FIXME: We should only do this if
10398 some global symbols were, in fact, converted to become local.
10399 FIXME: Will this work correctly with the Irix 5 linker? */
10400 eoinfo.failed = FALSE;
10401 eoinfo.finfo = &finfo;
10402 eoinfo.localsyms = TRUE;
10403 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10404 &eoinfo);
10405 if (eoinfo.failed)
10406 return FALSE;
10407
10408 /* If backend needs to output some local symbols not present in the hash
10409 table, do it now. */
10410 if (bed->elf_backend_output_arch_local_syms)
10411 {
10412 typedef bfd_boolean (*out_sym_func)
10413 (void *, const char *, Elf_Internal_Sym *, asection *,
10414 struct elf_link_hash_entry *);
10415
10416 if (! ((*bed->elf_backend_output_arch_local_syms)
10417 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10418 return FALSE;
10419 }
10420
10421 /* That wrote out all the local symbols. Finish up the symbol table
10422 with the global symbols. Even if we want to strip everything we
10423 can, we still need to deal with those global symbols that got
10424 converted to local in a version script. */
10425
10426 /* The sh_info field records the index of the first non local symbol. */
10427 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10428
10429 if (dynamic
10430 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10431 {
10432 Elf_Internal_Sym sym;
10433 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10434 long last_local = 0;
10435
10436 /* Write out the section symbols for the output sections. */
10437 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10438 {
10439 asection *s;
10440
10441 sym.st_size = 0;
10442 sym.st_name = 0;
10443 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10444 sym.st_other = 0;
10445
10446 for (s = abfd->sections; s != NULL; s = s->next)
10447 {
10448 int indx;
10449 bfd_byte *dest;
10450 long dynindx;
10451
10452 dynindx = elf_section_data (s)->dynindx;
10453 if (dynindx <= 0)
10454 continue;
10455 indx = elf_section_data (s)->this_idx;
10456 BFD_ASSERT (indx > 0);
10457 sym.st_shndx = indx;
10458 if (! check_dynsym (abfd, &sym))
10459 return FALSE;
10460 sym.st_value = s->vma;
10461 dest = dynsym + dynindx * bed->s->sizeof_sym;
10462 if (last_local < dynindx)
10463 last_local = dynindx;
10464 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10465 }
10466 }
10467
10468 /* Write out the local dynsyms. */
10469 if (elf_hash_table (info)->dynlocal)
10470 {
10471 struct elf_link_local_dynamic_entry *e;
10472 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10473 {
10474 asection *s;
10475 bfd_byte *dest;
10476
10477 sym.st_size = e->isym.st_size;
10478 sym.st_other = e->isym.st_other;
10479
10480 /* Copy the internal symbol as is.
10481 Note that we saved a word of storage and overwrote
10482 the original st_name with the dynstr_index. */
10483 sym = e->isym;
10484
10485 s = bfd_section_from_elf_index (e->input_bfd,
10486 e->isym.st_shndx);
10487 if (s != NULL)
10488 {
10489 sym.st_shndx =
10490 elf_section_data (s->output_section)->this_idx;
10491 if (! check_dynsym (abfd, &sym))
10492 return FALSE;
10493 sym.st_value = (s->output_section->vma
10494 + s->output_offset
10495 + e->isym.st_value);
10496 }
10497
10498 if (last_local < e->dynindx)
10499 last_local = e->dynindx;
10500
10501 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10502 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10503 }
10504 }
10505
10506 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10507 last_local + 1;
10508 }
10509
10510 /* We get the global symbols from the hash table. */
10511 eoinfo.failed = FALSE;
10512 eoinfo.localsyms = FALSE;
10513 eoinfo.finfo = &finfo;
10514 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10515 &eoinfo);
10516 if (eoinfo.failed)
10517 return FALSE;
10518
10519 /* If backend needs to output some symbols not present in the hash
10520 table, do it now. */
10521 if (bed->elf_backend_output_arch_syms)
10522 {
10523 typedef bfd_boolean (*out_sym_func)
10524 (void *, const char *, Elf_Internal_Sym *, asection *,
10525 struct elf_link_hash_entry *);
10526
10527 if (! ((*bed->elf_backend_output_arch_syms)
10528 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10529 return FALSE;
10530 }
10531
10532 /* Flush all symbols to the file. */
10533 if (! elf_link_flush_output_syms (&finfo, bed))
10534 return FALSE;
10535
10536 /* Now we know the size of the symtab section. */
10537 off += symtab_hdr->sh_size;
10538
10539 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10540 if (symtab_shndx_hdr->sh_name != 0)
10541 {
10542 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10543 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10544 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10545 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10546 symtab_shndx_hdr->sh_size = amt;
10547
10548 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10549 off, TRUE);
10550
10551 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10552 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10553 return FALSE;
10554 }
10555
10556
10557 /* Finish up and write out the symbol string table (.strtab)
10558 section. */
10559 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10560 /* sh_name was set in prep_headers. */
10561 symstrtab_hdr->sh_type = SHT_STRTAB;
10562 symstrtab_hdr->sh_flags = 0;
10563 symstrtab_hdr->sh_addr = 0;
10564 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10565 symstrtab_hdr->sh_entsize = 0;
10566 symstrtab_hdr->sh_link = 0;
10567 symstrtab_hdr->sh_info = 0;
10568 /* sh_offset is set just below. */
10569 symstrtab_hdr->sh_addralign = 1;
10570
10571 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10572 elf_tdata (abfd)->next_file_pos = off;
10573
10574 if (bfd_get_symcount (abfd) > 0)
10575 {
10576 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10577 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10578 return FALSE;
10579 }
10580
10581 /* Adjust the relocs to have the correct symbol indices. */
10582 for (o = abfd->sections; o != NULL; o = o->next)
10583 {
10584 if ((o->flags & SEC_RELOC) == 0)
10585 continue;
10586
10587 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10588 elf_section_data (o)->rel_count,
10589 elf_section_data (o)->rel_hashes);
10590 if (elf_section_data (o)->rel_hdr2 != NULL)
10591 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10592 elf_section_data (o)->rel_count2,
10593 (elf_section_data (o)->rel_hashes
10594 + elf_section_data (o)->rel_count));
10595
10596 /* Set the reloc_count field to 0 to prevent write_relocs from
10597 trying to swap the relocs out itself. */
10598 o->reloc_count = 0;
10599 }
10600
10601 if (dynamic && info->combreloc && dynobj != NULL)
10602 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10603
10604 /* If we are linking against a dynamic object, or generating a
10605 shared library, finish up the dynamic linking information. */
10606 if (dynamic)
10607 {
10608 bfd_byte *dyncon, *dynconend;
10609
10610 /* Fix up .dynamic entries. */
10611 o = bfd_get_section_by_name (dynobj, ".dynamic");
10612 BFD_ASSERT (o != NULL);
10613
10614 dyncon = o->contents;
10615 dynconend = o->contents + o->size;
10616 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10617 {
10618 Elf_Internal_Dyn dyn;
10619 const char *name;
10620 unsigned int type;
10621
10622 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10623
10624 switch (dyn.d_tag)
10625 {
10626 default:
10627 continue;
10628 case DT_NULL:
10629 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10630 {
10631 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10632 {
10633 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10634 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10635 default: continue;
10636 }
10637 dyn.d_un.d_val = relativecount;
10638 relativecount = 0;
10639 break;
10640 }
10641 continue;
10642
10643 case DT_INIT:
10644 name = info->init_function;
10645 goto get_sym;
10646 case DT_FINI:
10647 name = info->fini_function;
10648 get_sym:
10649 {
10650 struct elf_link_hash_entry *h;
10651
10652 h = elf_link_hash_lookup (elf_hash_table (info), name,
10653 FALSE, FALSE, TRUE);
10654 if (h != NULL
10655 && (h->root.type == bfd_link_hash_defined
10656 || h->root.type == bfd_link_hash_defweak))
10657 {
10658 dyn.d_un.d_val = h->root.u.def.value;
10659 o = h->root.u.def.section;
10660 if (o->output_section != NULL)
10661 dyn.d_un.d_val += (o->output_section->vma
10662 + o->output_offset);
10663 else
10664 {
10665 /* The symbol is imported from another shared
10666 library and does not apply to this one. */
10667 dyn.d_un.d_val = 0;
10668 }
10669 break;
10670 }
10671 }
10672 continue;
10673
10674 case DT_PREINIT_ARRAYSZ:
10675 name = ".preinit_array";
10676 goto get_size;
10677 case DT_INIT_ARRAYSZ:
10678 name = ".init_array";
10679 goto get_size;
10680 case DT_FINI_ARRAYSZ:
10681 name = ".fini_array";
10682 get_size:
10683 o = bfd_get_section_by_name (abfd, name);
10684 if (o == NULL)
10685 {
10686 (*_bfd_error_handler)
10687 (_("%B: could not find output section %s"), abfd, name);
10688 goto error_return;
10689 }
10690 if (o->size == 0)
10691 (*_bfd_error_handler)
10692 (_("warning: %s section has zero size"), name);
10693 dyn.d_un.d_val = o->size;
10694 break;
10695
10696 case DT_PREINIT_ARRAY:
10697 name = ".preinit_array";
10698 goto get_vma;
10699 case DT_INIT_ARRAY:
10700 name = ".init_array";
10701 goto get_vma;
10702 case DT_FINI_ARRAY:
10703 name = ".fini_array";
10704 goto get_vma;
10705
10706 case DT_HASH:
10707 name = ".hash";
10708 goto get_vma;
10709 case DT_GNU_HASH:
10710 name = ".gnu.hash";
10711 goto get_vma;
10712 case DT_STRTAB:
10713 name = ".dynstr";
10714 goto get_vma;
10715 case DT_SYMTAB:
10716 name = ".dynsym";
10717 goto get_vma;
10718 case DT_VERDEF:
10719 name = ".gnu.version_d";
10720 goto get_vma;
10721 case DT_VERNEED:
10722 name = ".gnu.version_r";
10723 goto get_vma;
10724 case DT_VERSYM:
10725 name = ".gnu.version";
10726 get_vma:
10727 o = bfd_get_section_by_name (abfd, name);
10728 if (o == NULL)
10729 {
10730 (*_bfd_error_handler)
10731 (_("%B: could not find output section %s"), abfd, name);
10732 goto error_return;
10733 }
10734 dyn.d_un.d_ptr = o->vma;
10735 break;
10736
10737 case DT_REL:
10738 case DT_RELA:
10739 case DT_RELSZ:
10740 case DT_RELASZ:
10741 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10742 type = SHT_REL;
10743 else
10744 type = SHT_RELA;
10745 dyn.d_un.d_val = 0;
10746 for (i = 1; i < elf_numsections (abfd); i++)
10747 {
10748 Elf_Internal_Shdr *hdr;
10749
10750 hdr = elf_elfsections (abfd)[i];
10751 if (hdr->sh_type == type
10752 && (hdr->sh_flags & SHF_ALLOC) != 0)
10753 {
10754 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10755 dyn.d_un.d_val += hdr->sh_size;
10756 else
10757 {
10758 if (dyn.d_un.d_val == 0
10759 || hdr->sh_addr < dyn.d_un.d_val)
10760 dyn.d_un.d_val = hdr->sh_addr;
10761 }
10762 }
10763 }
10764 break;
10765 }
10766 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10767 }
10768 }
10769
10770 /* If we have created any dynamic sections, then output them. */
10771 if (dynobj != NULL)
10772 {
10773 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10774 goto error_return;
10775
10776 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10777 if (info->warn_shared_textrel && info->shared)
10778 {
10779 bfd_byte *dyncon, *dynconend;
10780
10781 /* Fix up .dynamic entries. */
10782 o = bfd_get_section_by_name (dynobj, ".dynamic");
10783 BFD_ASSERT (o != NULL);
10784
10785 dyncon = o->contents;
10786 dynconend = o->contents + o->size;
10787 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10788 {
10789 Elf_Internal_Dyn dyn;
10790
10791 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10792
10793 if (dyn.d_tag == DT_TEXTREL)
10794 {
10795 info->callbacks->einfo
10796 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10797 break;
10798 }
10799 }
10800 }
10801
10802 for (o = dynobj->sections; o != NULL; o = o->next)
10803 {
10804 if ((o->flags & SEC_HAS_CONTENTS) == 0
10805 || o->size == 0
10806 || o->output_section == bfd_abs_section_ptr)
10807 continue;
10808 if ((o->flags & SEC_LINKER_CREATED) == 0)
10809 {
10810 /* At this point, we are only interested in sections
10811 created by _bfd_elf_link_create_dynamic_sections. */
10812 continue;
10813 }
10814 if (elf_hash_table (info)->stab_info.stabstr == o)
10815 continue;
10816 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10817 continue;
10818 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10819 != SHT_STRTAB)
10820 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10821 {
10822 if (! bfd_set_section_contents (abfd, o->output_section,
10823 o->contents,
10824 (file_ptr) o->output_offset,
10825 o->size))
10826 goto error_return;
10827 }
10828 else
10829 {
10830 /* The contents of the .dynstr section are actually in a
10831 stringtab. */
10832 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10833 if (bfd_seek (abfd, off, SEEK_SET) != 0
10834 || ! _bfd_elf_strtab_emit (abfd,
10835 elf_hash_table (info)->dynstr))
10836 goto error_return;
10837 }
10838 }
10839 }
10840
10841 if (info->relocatable)
10842 {
10843 bfd_boolean failed = FALSE;
10844
10845 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10846 if (failed)
10847 goto error_return;
10848 }
10849
10850 /* If we have optimized stabs strings, output them. */
10851 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10852 {
10853 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10854 goto error_return;
10855 }
10856
10857 if (info->eh_frame_hdr)
10858 {
10859 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10860 goto error_return;
10861 }
10862
10863 if (finfo.symstrtab != NULL)
10864 _bfd_stringtab_free (finfo.symstrtab);
10865 if (finfo.contents != NULL)
10866 free (finfo.contents);
10867 if (finfo.external_relocs != NULL)
10868 free (finfo.external_relocs);
10869 if (finfo.internal_relocs != NULL)
10870 free (finfo.internal_relocs);
10871 if (finfo.external_syms != NULL)
10872 free (finfo.external_syms);
10873 if (finfo.locsym_shndx != NULL)
10874 free (finfo.locsym_shndx);
10875 if (finfo.internal_syms != NULL)
10876 free (finfo.internal_syms);
10877 if (finfo.indices != NULL)
10878 free (finfo.indices);
10879 if (finfo.sections != NULL)
10880 free (finfo.sections);
10881 if (finfo.symbuf != NULL)
10882 free (finfo.symbuf);
10883 if (finfo.symshndxbuf != NULL)
10884 free (finfo.symshndxbuf);
10885 for (o = abfd->sections; o != NULL; o = o->next)
10886 {
10887 if ((o->flags & SEC_RELOC) != 0
10888 && elf_section_data (o)->rel_hashes != NULL)
10889 free (elf_section_data (o)->rel_hashes);
10890 }
10891
10892 elf_tdata (abfd)->linker = TRUE;
10893
10894 if (attr_section)
10895 {
10896 bfd_byte *contents = bfd_malloc (attr_size);
10897 if (contents == NULL)
10898 return FALSE; /* Bail out and fail. */
10899 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10900 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10901 free (contents);
10902 }
10903
10904 return TRUE;
10905
10906 error_return:
10907 if (finfo.symstrtab != NULL)
10908 _bfd_stringtab_free (finfo.symstrtab);
10909 if (finfo.contents != NULL)
10910 free (finfo.contents);
10911 if (finfo.external_relocs != NULL)
10912 free (finfo.external_relocs);
10913 if (finfo.internal_relocs != NULL)
10914 free (finfo.internal_relocs);
10915 if (finfo.external_syms != NULL)
10916 free (finfo.external_syms);
10917 if (finfo.locsym_shndx != NULL)
10918 free (finfo.locsym_shndx);
10919 if (finfo.internal_syms != NULL)
10920 free (finfo.internal_syms);
10921 if (finfo.indices != NULL)
10922 free (finfo.indices);
10923 if (finfo.sections != NULL)
10924 free (finfo.sections);
10925 if (finfo.symbuf != NULL)
10926 free (finfo.symbuf);
10927 if (finfo.symshndxbuf != NULL)
10928 free (finfo.symshndxbuf);
10929 for (o = abfd->sections; o != NULL; o = o->next)
10930 {
10931 if ((o->flags & SEC_RELOC) != 0
10932 && elf_section_data (o)->rel_hashes != NULL)
10933 free (elf_section_data (o)->rel_hashes);
10934 }
10935
10936 return FALSE;
10937 }
10938 \f
10939 /* Initialize COOKIE for input bfd ABFD. */
10940
10941 static bfd_boolean
10942 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10943 struct bfd_link_info *info, bfd *abfd)
10944 {
10945 Elf_Internal_Shdr *symtab_hdr;
10946 const struct elf_backend_data *bed;
10947
10948 bed = get_elf_backend_data (abfd);
10949 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10950
10951 cookie->abfd = abfd;
10952 cookie->sym_hashes = elf_sym_hashes (abfd);
10953 cookie->bad_symtab = elf_bad_symtab (abfd);
10954 if (cookie->bad_symtab)
10955 {
10956 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10957 cookie->extsymoff = 0;
10958 }
10959 else
10960 {
10961 cookie->locsymcount = symtab_hdr->sh_info;
10962 cookie->extsymoff = symtab_hdr->sh_info;
10963 }
10964
10965 if (bed->s->arch_size == 32)
10966 cookie->r_sym_shift = 8;
10967 else
10968 cookie->r_sym_shift = 32;
10969
10970 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10971 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10972 {
10973 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10974 cookie->locsymcount, 0,
10975 NULL, NULL, NULL);
10976 if (cookie->locsyms == NULL)
10977 {
10978 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10979 return FALSE;
10980 }
10981 if (info->keep_memory)
10982 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10983 }
10984 return TRUE;
10985 }
10986
10987 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10988
10989 static void
10990 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
10991 {
10992 Elf_Internal_Shdr *symtab_hdr;
10993
10994 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10995 if (cookie->locsyms != NULL
10996 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
10997 free (cookie->locsyms);
10998 }
10999
11000 /* Initialize the relocation information in COOKIE for input section SEC
11001 of input bfd ABFD. */
11002
11003 static bfd_boolean
11004 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11005 struct bfd_link_info *info, bfd *abfd,
11006 asection *sec)
11007 {
11008 const struct elf_backend_data *bed;
11009
11010 if (sec->reloc_count == 0)
11011 {
11012 cookie->rels = NULL;
11013 cookie->relend = NULL;
11014 }
11015 else
11016 {
11017 bed = get_elf_backend_data (abfd);
11018
11019 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11020 info->keep_memory);
11021 if (cookie->rels == NULL)
11022 return FALSE;
11023 cookie->rel = cookie->rels;
11024 cookie->relend = (cookie->rels
11025 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11026 }
11027 cookie->rel = cookie->rels;
11028 return TRUE;
11029 }
11030
11031 /* Free the memory allocated by init_reloc_cookie_rels,
11032 if appropriate. */
11033
11034 static void
11035 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11036 asection *sec)
11037 {
11038 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11039 free (cookie->rels);
11040 }
11041
11042 /* Initialize the whole of COOKIE for input section SEC. */
11043
11044 static bfd_boolean
11045 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11046 struct bfd_link_info *info,
11047 asection *sec)
11048 {
11049 if (!init_reloc_cookie (cookie, info, sec->owner))
11050 goto error1;
11051 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11052 goto error2;
11053 return TRUE;
11054
11055 error2:
11056 fini_reloc_cookie (cookie, sec->owner);
11057 error1:
11058 return FALSE;
11059 }
11060
11061 /* Free the memory allocated by init_reloc_cookie_for_section,
11062 if appropriate. */
11063
11064 static void
11065 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11066 asection *sec)
11067 {
11068 fini_reloc_cookie_rels (cookie, sec);
11069 fini_reloc_cookie (cookie, sec->owner);
11070 }
11071 \f
11072 /* Garbage collect unused sections. */
11073
11074 /* Default gc_mark_hook. */
11075
11076 asection *
11077 _bfd_elf_gc_mark_hook (asection *sec,
11078 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11079 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11080 struct elf_link_hash_entry *h,
11081 Elf_Internal_Sym *sym)
11082 {
11083 if (h != NULL)
11084 {
11085 switch (h->root.type)
11086 {
11087 case bfd_link_hash_defined:
11088 case bfd_link_hash_defweak:
11089 return h->root.u.def.section;
11090
11091 case bfd_link_hash_common:
11092 return h->root.u.c.p->section;
11093
11094 default:
11095 break;
11096 }
11097 }
11098 else
11099 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11100
11101 return NULL;
11102 }
11103
11104 /* COOKIE->rel describes a relocation against section SEC, which is
11105 a section we've decided to keep. Return the section that contains
11106 the relocation symbol, or NULL if no section contains it. */
11107
11108 asection *
11109 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11110 elf_gc_mark_hook_fn gc_mark_hook,
11111 struct elf_reloc_cookie *cookie)
11112 {
11113 unsigned long r_symndx;
11114 struct elf_link_hash_entry *h;
11115
11116 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11117 if (r_symndx == 0)
11118 return NULL;
11119
11120 if (r_symndx >= cookie->locsymcount
11121 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11122 {
11123 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11124 while (h->root.type == bfd_link_hash_indirect
11125 || h->root.type == bfd_link_hash_warning)
11126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11127 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11128 }
11129
11130 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11131 &cookie->locsyms[r_symndx]);
11132 }
11133
11134 /* COOKIE->rel describes a relocation against section SEC, which is
11135 a section we've decided to keep. Mark the section that contains
11136 the relocation symbol. */
11137
11138 bfd_boolean
11139 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11140 asection *sec,
11141 elf_gc_mark_hook_fn gc_mark_hook,
11142 struct elf_reloc_cookie *cookie)
11143 {
11144 asection *rsec;
11145
11146 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11147 if (rsec && !rsec->gc_mark)
11148 {
11149 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11150 rsec->gc_mark = 1;
11151 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11152 return FALSE;
11153 }
11154 return TRUE;
11155 }
11156
11157 /* The mark phase of garbage collection. For a given section, mark
11158 it and any sections in this section's group, and all the sections
11159 which define symbols to which it refers. */
11160
11161 bfd_boolean
11162 _bfd_elf_gc_mark (struct bfd_link_info *info,
11163 asection *sec,
11164 elf_gc_mark_hook_fn gc_mark_hook)
11165 {
11166 bfd_boolean ret;
11167 asection *group_sec, *eh_frame;
11168
11169 sec->gc_mark = 1;
11170
11171 /* Mark all the sections in the group. */
11172 group_sec = elf_section_data (sec)->next_in_group;
11173 if (group_sec && !group_sec->gc_mark)
11174 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11175 return FALSE;
11176
11177 /* Look through the section relocs. */
11178 ret = TRUE;
11179 eh_frame = elf_eh_frame_section (sec->owner);
11180 if ((sec->flags & SEC_RELOC) != 0
11181 && sec->reloc_count > 0
11182 && sec != eh_frame)
11183 {
11184 struct elf_reloc_cookie cookie;
11185
11186 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11187 ret = FALSE;
11188 else
11189 {
11190 for (; cookie.rel < cookie.relend; cookie.rel++)
11191 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11192 {
11193 ret = FALSE;
11194 break;
11195 }
11196 fini_reloc_cookie_for_section (&cookie, sec);
11197 }
11198 }
11199
11200 if (ret && eh_frame && elf_fde_list (sec))
11201 {
11202 struct elf_reloc_cookie cookie;
11203
11204 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11205 ret = FALSE;
11206 else
11207 {
11208 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11209 gc_mark_hook, &cookie))
11210 ret = FALSE;
11211 fini_reloc_cookie_for_section (&cookie, eh_frame);
11212 }
11213 }
11214
11215 return ret;
11216 }
11217
11218 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11219
11220 struct elf_gc_sweep_symbol_info
11221 {
11222 struct bfd_link_info *info;
11223 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11224 bfd_boolean);
11225 };
11226
11227 static bfd_boolean
11228 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11229 {
11230 if (h->root.type == bfd_link_hash_warning)
11231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11232
11233 if ((h->root.type == bfd_link_hash_defined
11234 || h->root.type == bfd_link_hash_defweak)
11235 && !h->root.u.def.section->gc_mark
11236 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11237 {
11238 struct elf_gc_sweep_symbol_info *inf = data;
11239 (*inf->hide_symbol) (inf->info, h, TRUE);
11240 }
11241
11242 return TRUE;
11243 }
11244
11245 /* The sweep phase of garbage collection. Remove all garbage sections. */
11246
11247 typedef bfd_boolean (*gc_sweep_hook_fn)
11248 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11249
11250 static bfd_boolean
11251 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11252 {
11253 bfd *sub;
11254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11255 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11256 unsigned long section_sym_count;
11257 struct elf_gc_sweep_symbol_info sweep_info;
11258
11259 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11260 {
11261 asection *o;
11262
11263 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11264 continue;
11265
11266 for (o = sub->sections; o != NULL; o = o->next)
11267 {
11268 /* Keep debug and special sections. */
11269 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11270 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11271 o->gc_mark = 1;
11272
11273 if (o->gc_mark)
11274 continue;
11275
11276 /* Skip sweeping sections already excluded. */
11277 if (o->flags & SEC_EXCLUDE)
11278 continue;
11279
11280 /* Since this is early in the link process, it is simple
11281 to remove a section from the output. */
11282 o->flags |= SEC_EXCLUDE;
11283
11284 if (info->print_gc_sections && o->size != 0)
11285 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11286
11287 /* But we also have to update some of the relocation
11288 info we collected before. */
11289 if (gc_sweep_hook
11290 && (o->flags & SEC_RELOC) != 0
11291 && o->reloc_count > 0
11292 && !bfd_is_abs_section (o->output_section))
11293 {
11294 Elf_Internal_Rela *internal_relocs;
11295 bfd_boolean r;
11296
11297 internal_relocs
11298 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11299 info->keep_memory);
11300 if (internal_relocs == NULL)
11301 return FALSE;
11302
11303 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11304
11305 if (elf_section_data (o)->relocs != internal_relocs)
11306 free (internal_relocs);
11307
11308 if (!r)
11309 return FALSE;
11310 }
11311 }
11312 }
11313
11314 /* Remove the symbols that were in the swept sections from the dynamic
11315 symbol table. GCFIXME: Anyone know how to get them out of the
11316 static symbol table as well? */
11317 sweep_info.info = info;
11318 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11319 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11320 &sweep_info);
11321
11322 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11323 return TRUE;
11324 }
11325
11326 /* Propagate collected vtable information. This is called through
11327 elf_link_hash_traverse. */
11328
11329 static bfd_boolean
11330 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11331 {
11332 if (h->root.type == bfd_link_hash_warning)
11333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11334
11335 /* Those that are not vtables. */
11336 if (h->vtable == NULL || h->vtable->parent == NULL)
11337 return TRUE;
11338
11339 /* Those vtables that do not have parents, we cannot merge. */
11340 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11341 return TRUE;
11342
11343 /* If we've already been done, exit. */
11344 if (h->vtable->used && h->vtable->used[-1])
11345 return TRUE;
11346
11347 /* Make sure the parent's table is up to date. */
11348 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11349
11350 if (h->vtable->used == NULL)
11351 {
11352 /* None of this table's entries were referenced. Re-use the
11353 parent's table. */
11354 h->vtable->used = h->vtable->parent->vtable->used;
11355 h->vtable->size = h->vtable->parent->vtable->size;
11356 }
11357 else
11358 {
11359 size_t n;
11360 bfd_boolean *cu, *pu;
11361
11362 /* Or the parent's entries into ours. */
11363 cu = h->vtable->used;
11364 cu[-1] = TRUE;
11365 pu = h->vtable->parent->vtable->used;
11366 if (pu != NULL)
11367 {
11368 const struct elf_backend_data *bed;
11369 unsigned int log_file_align;
11370
11371 bed = get_elf_backend_data (h->root.u.def.section->owner);
11372 log_file_align = bed->s->log_file_align;
11373 n = h->vtable->parent->vtable->size >> log_file_align;
11374 while (n--)
11375 {
11376 if (*pu)
11377 *cu = TRUE;
11378 pu++;
11379 cu++;
11380 }
11381 }
11382 }
11383
11384 return TRUE;
11385 }
11386
11387 static bfd_boolean
11388 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11389 {
11390 asection *sec;
11391 bfd_vma hstart, hend;
11392 Elf_Internal_Rela *relstart, *relend, *rel;
11393 const struct elf_backend_data *bed;
11394 unsigned int log_file_align;
11395
11396 if (h->root.type == bfd_link_hash_warning)
11397 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11398
11399 /* Take care of both those symbols that do not describe vtables as
11400 well as those that are not loaded. */
11401 if (h->vtable == NULL || h->vtable->parent == NULL)
11402 return TRUE;
11403
11404 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11405 || h->root.type == bfd_link_hash_defweak);
11406
11407 sec = h->root.u.def.section;
11408 hstart = h->root.u.def.value;
11409 hend = hstart + h->size;
11410
11411 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11412 if (!relstart)
11413 return *(bfd_boolean *) okp = FALSE;
11414 bed = get_elf_backend_data (sec->owner);
11415 log_file_align = bed->s->log_file_align;
11416
11417 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11418
11419 for (rel = relstart; rel < relend; ++rel)
11420 if (rel->r_offset >= hstart && rel->r_offset < hend)
11421 {
11422 /* If the entry is in use, do nothing. */
11423 if (h->vtable->used
11424 && (rel->r_offset - hstart) < h->vtable->size)
11425 {
11426 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11427 if (h->vtable->used[entry])
11428 continue;
11429 }
11430 /* Otherwise, kill it. */
11431 rel->r_offset = rel->r_info = rel->r_addend = 0;
11432 }
11433
11434 return TRUE;
11435 }
11436
11437 /* Mark sections containing dynamically referenced symbols. When
11438 building shared libraries, we must assume that any visible symbol is
11439 referenced. */
11440
11441 bfd_boolean
11442 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11443 {
11444 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11445
11446 if (h->root.type == bfd_link_hash_warning)
11447 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11448
11449 if ((h->root.type == bfd_link_hash_defined
11450 || h->root.type == bfd_link_hash_defweak)
11451 && (h->ref_dynamic
11452 || (!info->executable
11453 && h->def_regular
11454 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11455 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11456 h->root.u.def.section->flags |= SEC_KEEP;
11457
11458 return TRUE;
11459 }
11460
11461 /* Keep all sections containing symbols undefined on the command-line,
11462 and the section containing the entry symbol. */
11463
11464 void
11465 _bfd_elf_gc_keep (struct bfd_link_info *info)
11466 {
11467 struct bfd_sym_chain *sym;
11468
11469 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11470 {
11471 struct elf_link_hash_entry *h;
11472
11473 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11474 FALSE, FALSE, FALSE);
11475
11476 if (h != NULL
11477 && (h->root.type == bfd_link_hash_defined
11478 || h->root.type == bfd_link_hash_defweak)
11479 && !bfd_is_abs_section (h->root.u.def.section))
11480 h->root.u.def.section->flags |= SEC_KEEP;
11481 }
11482 }
11483
11484 /* Do mark and sweep of unused sections. */
11485
11486 bfd_boolean
11487 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11488 {
11489 bfd_boolean ok = TRUE;
11490 bfd *sub;
11491 elf_gc_mark_hook_fn gc_mark_hook;
11492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11493
11494 if (!bed->can_gc_sections
11495 || !is_elf_hash_table (info->hash))
11496 {
11497 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11498 return TRUE;
11499 }
11500
11501 bed->gc_keep (info);
11502
11503 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11504 at the .eh_frame section if we can mark the FDEs individually. */
11505 _bfd_elf_begin_eh_frame_parsing (info);
11506 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11507 {
11508 asection *sec;
11509 struct elf_reloc_cookie cookie;
11510
11511 sec = bfd_get_section_by_name (sub, ".eh_frame");
11512 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11513 {
11514 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11515 if (elf_section_data (sec)->sec_info)
11516 elf_eh_frame_section (sub) = sec;
11517 fini_reloc_cookie_for_section (&cookie, sec);
11518 }
11519 }
11520 _bfd_elf_end_eh_frame_parsing (info);
11521
11522 /* Apply transitive closure to the vtable entry usage info. */
11523 elf_link_hash_traverse (elf_hash_table (info),
11524 elf_gc_propagate_vtable_entries_used,
11525 &ok);
11526 if (!ok)
11527 return FALSE;
11528
11529 /* Kill the vtable relocations that were not used. */
11530 elf_link_hash_traverse (elf_hash_table (info),
11531 elf_gc_smash_unused_vtentry_relocs,
11532 &ok);
11533 if (!ok)
11534 return FALSE;
11535
11536 /* Mark dynamically referenced symbols. */
11537 if (elf_hash_table (info)->dynamic_sections_created)
11538 elf_link_hash_traverse (elf_hash_table (info),
11539 bed->gc_mark_dynamic_ref,
11540 info);
11541
11542 /* Grovel through relocs to find out who stays ... */
11543 gc_mark_hook = bed->gc_mark_hook;
11544 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11545 {
11546 asection *o;
11547
11548 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11549 continue;
11550
11551 for (o = sub->sections; o != NULL; o = o->next)
11552 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11553 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11554 return FALSE;
11555 }
11556
11557 /* Allow the backend to mark additional target specific sections. */
11558 if (bed->gc_mark_extra_sections)
11559 bed->gc_mark_extra_sections (info, gc_mark_hook);
11560
11561 /* ... and mark SEC_EXCLUDE for those that go. */
11562 return elf_gc_sweep (abfd, info);
11563 }
11564 \f
11565 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11566
11567 bfd_boolean
11568 bfd_elf_gc_record_vtinherit (bfd *abfd,
11569 asection *sec,
11570 struct elf_link_hash_entry *h,
11571 bfd_vma offset)
11572 {
11573 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11574 struct elf_link_hash_entry **search, *child;
11575 bfd_size_type extsymcount;
11576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11577
11578 /* The sh_info field of the symtab header tells us where the
11579 external symbols start. We don't care about the local symbols at
11580 this point. */
11581 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11582 if (!elf_bad_symtab (abfd))
11583 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11584
11585 sym_hashes = elf_sym_hashes (abfd);
11586 sym_hashes_end = sym_hashes + extsymcount;
11587
11588 /* Hunt down the child symbol, which is in this section at the same
11589 offset as the relocation. */
11590 for (search = sym_hashes; search != sym_hashes_end; ++search)
11591 {
11592 if ((child = *search) != NULL
11593 && (child->root.type == bfd_link_hash_defined
11594 || child->root.type == bfd_link_hash_defweak)
11595 && child->root.u.def.section == sec
11596 && child->root.u.def.value == offset)
11597 goto win;
11598 }
11599
11600 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11601 abfd, sec, (unsigned long) offset);
11602 bfd_set_error (bfd_error_invalid_operation);
11603 return FALSE;
11604
11605 win:
11606 if (!child->vtable)
11607 {
11608 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11609 if (!child->vtable)
11610 return FALSE;
11611 }
11612 if (!h)
11613 {
11614 /* This *should* only be the absolute section. It could potentially
11615 be that someone has defined a non-global vtable though, which
11616 would be bad. It isn't worth paging in the local symbols to be
11617 sure though; that case should simply be handled by the assembler. */
11618
11619 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11620 }
11621 else
11622 child->vtable->parent = h;
11623
11624 return TRUE;
11625 }
11626
11627 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11628
11629 bfd_boolean
11630 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11631 asection *sec ATTRIBUTE_UNUSED,
11632 struct elf_link_hash_entry *h,
11633 bfd_vma addend)
11634 {
11635 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11636 unsigned int log_file_align = bed->s->log_file_align;
11637
11638 if (!h->vtable)
11639 {
11640 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11641 if (!h->vtable)
11642 return FALSE;
11643 }
11644
11645 if (addend >= h->vtable->size)
11646 {
11647 size_t size, bytes, file_align;
11648 bfd_boolean *ptr = h->vtable->used;
11649
11650 /* While the symbol is undefined, we have to be prepared to handle
11651 a zero size. */
11652 file_align = 1 << log_file_align;
11653 if (h->root.type == bfd_link_hash_undefined)
11654 size = addend + file_align;
11655 else
11656 {
11657 size = h->size;
11658 if (addend >= size)
11659 {
11660 /* Oops! We've got a reference past the defined end of
11661 the table. This is probably a bug -- shall we warn? */
11662 size = addend + file_align;
11663 }
11664 }
11665 size = (size + file_align - 1) & -file_align;
11666
11667 /* Allocate one extra entry for use as a "done" flag for the
11668 consolidation pass. */
11669 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11670
11671 if (ptr)
11672 {
11673 ptr = bfd_realloc (ptr - 1, bytes);
11674
11675 if (ptr != NULL)
11676 {
11677 size_t oldbytes;
11678
11679 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11680 * sizeof (bfd_boolean));
11681 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11682 }
11683 }
11684 else
11685 ptr = bfd_zmalloc (bytes);
11686
11687 if (ptr == NULL)
11688 return FALSE;
11689
11690 /* And arrange for that done flag to be at index -1. */
11691 h->vtable->used = ptr + 1;
11692 h->vtable->size = size;
11693 }
11694
11695 h->vtable->used[addend >> log_file_align] = TRUE;
11696
11697 return TRUE;
11698 }
11699
11700 struct alloc_got_off_arg {
11701 bfd_vma gotoff;
11702 unsigned int got_elt_size;
11703 };
11704
11705 /* We need a special top-level link routine to convert got reference counts
11706 to real got offsets. */
11707
11708 static bfd_boolean
11709 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11710 {
11711 struct alloc_got_off_arg *gofarg = arg;
11712
11713 if (h->root.type == bfd_link_hash_warning)
11714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11715
11716 if (h->got.refcount > 0)
11717 {
11718 h->got.offset = gofarg->gotoff;
11719 gofarg->gotoff += gofarg->got_elt_size;
11720 }
11721 else
11722 h->got.offset = (bfd_vma) -1;
11723
11724 return TRUE;
11725 }
11726
11727 /* And an accompanying bit to work out final got entry offsets once
11728 we're done. Should be called from final_link. */
11729
11730 bfd_boolean
11731 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11732 struct bfd_link_info *info)
11733 {
11734 bfd *i;
11735 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11736 bfd_vma gotoff;
11737 unsigned int got_elt_size = bed->s->arch_size / 8;
11738 struct alloc_got_off_arg gofarg;
11739
11740 if (! is_elf_hash_table (info->hash))
11741 return FALSE;
11742
11743 /* The GOT offset is relative to the .got section, but the GOT header is
11744 put into the .got.plt section, if the backend uses it. */
11745 if (bed->want_got_plt)
11746 gotoff = 0;
11747 else
11748 gotoff = bed->got_header_size;
11749
11750 /* Do the local .got entries first. */
11751 for (i = info->input_bfds; i; i = i->link_next)
11752 {
11753 bfd_signed_vma *local_got;
11754 bfd_size_type j, locsymcount;
11755 Elf_Internal_Shdr *symtab_hdr;
11756
11757 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11758 continue;
11759
11760 local_got = elf_local_got_refcounts (i);
11761 if (!local_got)
11762 continue;
11763
11764 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11765 if (elf_bad_symtab (i))
11766 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11767 else
11768 locsymcount = symtab_hdr->sh_info;
11769
11770 for (j = 0; j < locsymcount; ++j)
11771 {
11772 if (local_got[j] > 0)
11773 {
11774 local_got[j] = gotoff;
11775 gotoff += got_elt_size;
11776 }
11777 else
11778 local_got[j] = (bfd_vma) -1;
11779 }
11780 }
11781
11782 /* Then the global .got entries. .plt refcounts are handled by
11783 adjust_dynamic_symbol */
11784 gofarg.gotoff = gotoff;
11785 gofarg.got_elt_size = got_elt_size;
11786 elf_link_hash_traverse (elf_hash_table (info),
11787 elf_gc_allocate_got_offsets,
11788 &gofarg);
11789 return TRUE;
11790 }
11791
11792 /* Many folk need no more in the way of final link than this, once
11793 got entry reference counting is enabled. */
11794
11795 bfd_boolean
11796 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11797 {
11798 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11799 return FALSE;
11800
11801 /* Invoke the regular ELF backend linker to do all the work. */
11802 return bfd_elf_final_link (abfd, info);
11803 }
11804
11805 bfd_boolean
11806 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11807 {
11808 struct elf_reloc_cookie *rcookie = cookie;
11809
11810 if (rcookie->bad_symtab)
11811 rcookie->rel = rcookie->rels;
11812
11813 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11814 {
11815 unsigned long r_symndx;
11816
11817 if (! rcookie->bad_symtab)
11818 if (rcookie->rel->r_offset > offset)
11819 return FALSE;
11820 if (rcookie->rel->r_offset != offset)
11821 continue;
11822
11823 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11824 if (r_symndx == SHN_UNDEF)
11825 return TRUE;
11826
11827 if (r_symndx >= rcookie->locsymcount
11828 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11829 {
11830 struct elf_link_hash_entry *h;
11831
11832 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11833
11834 while (h->root.type == bfd_link_hash_indirect
11835 || h->root.type == bfd_link_hash_warning)
11836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11837
11838 if ((h->root.type == bfd_link_hash_defined
11839 || h->root.type == bfd_link_hash_defweak)
11840 && elf_discarded_section (h->root.u.def.section))
11841 return TRUE;
11842 else
11843 return FALSE;
11844 }
11845 else
11846 {
11847 /* It's not a relocation against a global symbol,
11848 but it could be a relocation against a local
11849 symbol for a discarded section. */
11850 asection *isec;
11851 Elf_Internal_Sym *isym;
11852
11853 /* Need to: get the symbol; get the section. */
11854 isym = &rcookie->locsyms[r_symndx];
11855 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11856 if (isec != NULL && elf_discarded_section (isec))
11857 return TRUE;
11858 }
11859 return FALSE;
11860 }
11861 return FALSE;
11862 }
11863
11864 /* Discard unneeded references to discarded sections.
11865 Returns TRUE if any section's size was changed. */
11866 /* This function assumes that the relocations are in sorted order,
11867 which is true for all known assemblers. */
11868
11869 bfd_boolean
11870 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11871 {
11872 struct elf_reloc_cookie cookie;
11873 asection *stab, *eh;
11874 const struct elf_backend_data *bed;
11875 bfd *abfd;
11876 bfd_boolean ret = FALSE;
11877
11878 if (info->traditional_format
11879 || !is_elf_hash_table (info->hash))
11880 return FALSE;
11881
11882 _bfd_elf_begin_eh_frame_parsing (info);
11883 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11884 {
11885 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11886 continue;
11887
11888 bed = get_elf_backend_data (abfd);
11889
11890 if ((abfd->flags & DYNAMIC) != 0)
11891 continue;
11892
11893 eh = NULL;
11894 if (!info->relocatable)
11895 {
11896 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11897 if (eh != NULL
11898 && (eh->size == 0
11899 || bfd_is_abs_section (eh->output_section)))
11900 eh = NULL;
11901 }
11902
11903 stab = bfd_get_section_by_name (abfd, ".stab");
11904 if (stab != NULL
11905 && (stab->size == 0
11906 || bfd_is_abs_section (stab->output_section)
11907 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11908 stab = NULL;
11909
11910 if (stab == NULL
11911 && eh == NULL
11912 && bed->elf_backend_discard_info == NULL)
11913 continue;
11914
11915 if (!init_reloc_cookie (&cookie, info, abfd))
11916 return FALSE;
11917
11918 if (stab != NULL
11919 && stab->reloc_count > 0
11920 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11921 {
11922 if (_bfd_discard_section_stabs (abfd, stab,
11923 elf_section_data (stab)->sec_info,
11924 bfd_elf_reloc_symbol_deleted_p,
11925 &cookie))
11926 ret = TRUE;
11927 fini_reloc_cookie_rels (&cookie, stab);
11928 }
11929
11930 if (eh != NULL
11931 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11932 {
11933 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11934 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11935 bfd_elf_reloc_symbol_deleted_p,
11936 &cookie))
11937 ret = TRUE;
11938 fini_reloc_cookie_rels (&cookie, eh);
11939 }
11940
11941 if (bed->elf_backend_discard_info != NULL
11942 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11943 ret = TRUE;
11944
11945 fini_reloc_cookie (&cookie, abfd);
11946 }
11947 _bfd_elf_end_eh_frame_parsing (info);
11948
11949 if (info->eh_frame_hdr
11950 && !info->relocatable
11951 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11952 ret = TRUE;
11953
11954 return ret;
11955 }
11956
11957 void
11958 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11959 struct bfd_link_info *info)
11960 {
11961 flagword flags;
11962 const char *name, *p;
11963 struct bfd_section_already_linked *l;
11964 struct bfd_section_already_linked_hash_entry *already_linked_list;
11965
11966 if (sec->output_section == bfd_abs_section_ptr)
11967 return;
11968
11969 flags = sec->flags;
11970
11971 /* Return if it isn't a linkonce section. A comdat group section
11972 also has SEC_LINK_ONCE set. */
11973 if ((flags & SEC_LINK_ONCE) == 0)
11974 return;
11975
11976 /* Don't put group member sections on our list of already linked
11977 sections. They are handled as a group via their group section. */
11978 if (elf_sec_group (sec) != NULL)
11979 return;
11980
11981 /* FIXME: When doing a relocatable link, we may have trouble
11982 copying relocations in other sections that refer to local symbols
11983 in the section being discarded. Those relocations will have to
11984 be converted somehow; as of this writing I'm not sure that any of
11985 the backends handle that correctly.
11986
11987 It is tempting to instead not discard link once sections when
11988 doing a relocatable link (technically, they should be discarded
11989 whenever we are building constructors). However, that fails,
11990 because the linker winds up combining all the link once sections
11991 into a single large link once section, which defeats the purpose
11992 of having link once sections in the first place.
11993
11994 Also, not merging link once sections in a relocatable link
11995 causes trouble for MIPS ELF, which relies on link once semantics
11996 to handle the .reginfo section correctly. */
11997
11998 name = bfd_get_section_name (abfd, sec);
11999
12000 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12001 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12002 p++;
12003 else
12004 p = name;
12005
12006 already_linked_list = bfd_section_already_linked_table_lookup (p);
12007
12008 for (l = already_linked_list->entry; l != NULL; l = l->next)
12009 {
12010 /* We may have 2 different types of sections on the list: group
12011 sections and linkonce sections. Match like sections. */
12012 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12013 && strcmp (name, l->sec->name) == 0
12014 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12015 {
12016 /* The section has already been linked. See if we should
12017 issue a warning. */
12018 switch (flags & SEC_LINK_DUPLICATES)
12019 {
12020 default:
12021 abort ();
12022
12023 case SEC_LINK_DUPLICATES_DISCARD:
12024 break;
12025
12026 case SEC_LINK_DUPLICATES_ONE_ONLY:
12027 (*_bfd_error_handler)
12028 (_("%B: ignoring duplicate section `%A'"),
12029 abfd, sec);
12030 break;
12031
12032 case SEC_LINK_DUPLICATES_SAME_SIZE:
12033 if (sec->size != l->sec->size)
12034 (*_bfd_error_handler)
12035 (_("%B: duplicate section `%A' has different size"),
12036 abfd, sec);
12037 break;
12038
12039 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12040 if (sec->size != l->sec->size)
12041 (*_bfd_error_handler)
12042 (_("%B: duplicate section `%A' has different size"),
12043 abfd, sec);
12044 else if (sec->size != 0)
12045 {
12046 bfd_byte *sec_contents, *l_sec_contents;
12047
12048 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12049 (*_bfd_error_handler)
12050 (_("%B: warning: could not read contents of section `%A'"),
12051 abfd, sec);
12052 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12053 &l_sec_contents))
12054 (*_bfd_error_handler)
12055 (_("%B: warning: could not read contents of section `%A'"),
12056 l->sec->owner, l->sec);
12057 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12058 (*_bfd_error_handler)
12059 (_("%B: warning: duplicate section `%A' has different contents"),
12060 abfd, sec);
12061
12062 if (sec_contents)
12063 free (sec_contents);
12064 if (l_sec_contents)
12065 free (l_sec_contents);
12066 }
12067 break;
12068 }
12069
12070 /* Set the output_section field so that lang_add_section
12071 does not create a lang_input_section structure for this
12072 section. Since there might be a symbol in the section
12073 being discarded, we must retain a pointer to the section
12074 which we are really going to use. */
12075 sec->output_section = bfd_abs_section_ptr;
12076 sec->kept_section = l->sec;
12077
12078 if (flags & SEC_GROUP)
12079 {
12080 asection *first = elf_next_in_group (sec);
12081 asection *s = first;
12082
12083 while (s != NULL)
12084 {
12085 s->output_section = bfd_abs_section_ptr;
12086 /* Record which group discards it. */
12087 s->kept_section = l->sec;
12088 s = elf_next_in_group (s);
12089 /* These lists are circular. */
12090 if (s == first)
12091 break;
12092 }
12093 }
12094
12095 return;
12096 }
12097 }
12098
12099 /* A single member comdat group section may be discarded by a
12100 linkonce section and vice versa. */
12101
12102 if ((flags & SEC_GROUP) != 0)
12103 {
12104 asection *first = elf_next_in_group (sec);
12105
12106 if (first != NULL && elf_next_in_group (first) == first)
12107 /* Check this single member group against linkonce sections. */
12108 for (l = already_linked_list->entry; l != NULL; l = l->next)
12109 if ((l->sec->flags & SEC_GROUP) == 0
12110 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12111 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12112 {
12113 first->output_section = bfd_abs_section_ptr;
12114 first->kept_section = l->sec;
12115 sec->output_section = bfd_abs_section_ptr;
12116 break;
12117 }
12118 }
12119 else
12120 /* Check this linkonce section against single member groups. */
12121 for (l = already_linked_list->entry; l != NULL; l = l->next)
12122 if (l->sec->flags & SEC_GROUP)
12123 {
12124 asection *first = elf_next_in_group (l->sec);
12125
12126 if (first != NULL
12127 && elf_next_in_group (first) == first
12128 && bfd_elf_match_symbols_in_sections (first, sec, info))
12129 {
12130 sec->output_section = bfd_abs_section_ptr;
12131 sec->kept_section = first;
12132 break;
12133 }
12134 }
12135
12136 /* This is the first section with this name. Record it. */
12137 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12138 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12139 }
12140
12141 bfd_boolean
12142 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12143 {
12144 return sym->st_shndx == SHN_COMMON;
12145 }
12146
12147 unsigned int
12148 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12149 {
12150 return SHN_COMMON;
12151 }
12152
12153 asection *
12154 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12155 {
12156 return bfd_com_section_ptr;
12157 }
This page took 0.351848 seconds and 5 git commands to generate.