bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->hash->creator != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810
1811 /* Note that we are copying a string pointer here, and testing it
1812 above. If bfd_elf_string_from_elf_section is ever changed to
1813 discard the string data when low in memory, this will have to be
1814 fixed. */
1815 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1816
1817 a->vna_flags = h->verinfo.verdef->vd_flags;
1818 a->vna_nextptr = t->vn_auxptr;
1819
1820 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1821 ++rinfo->vers;
1822
1823 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1824
1825 t->vn_auxptr = a;
1826
1827 return TRUE;
1828 }
1829
1830 /* Figure out appropriate versions for all the symbols. We may not
1831 have the version number script until we have read all of the input
1832 files, so until that point we don't know which symbols should be
1833 local. This function is called via elf_link_hash_traverse. */
1834
1835 bfd_boolean
1836 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1837 {
1838 struct elf_assign_sym_version_info *sinfo;
1839 struct bfd_link_info *info;
1840 const struct elf_backend_data *bed;
1841 struct elf_info_failed eif;
1842 char *p;
1843 bfd_size_type amt;
1844
1845 sinfo = data;
1846 info = sinfo->info;
1847
1848 if (h->root.type == bfd_link_hash_warning)
1849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1850
1851 /* Fix the symbol flags. */
1852 eif.failed = FALSE;
1853 eif.info = info;
1854 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1855 {
1856 if (eif.failed)
1857 sinfo->failed = TRUE;
1858 return FALSE;
1859 }
1860
1861 /* We only need version numbers for symbols defined in regular
1862 objects. */
1863 if (!h->def_regular)
1864 return TRUE;
1865
1866 bed = get_elf_backend_data (sinfo->output_bfd);
1867 p = strchr (h->root.root.string, ELF_VER_CHR);
1868 if (p != NULL && h->verinfo.vertree == NULL)
1869 {
1870 struct bfd_elf_version_tree *t;
1871 bfd_boolean hidden;
1872
1873 hidden = TRUE;
1874
1875 /* There are two consecutive ELF_VER_CHR characters if this is
1876 not a hidden symbol. */
1877 ++p;
1878 if (*p == ELF_VER_CHR)
1879 {
1880 hidden = FALSE;
1881 ++p;
1882 }
1883
1884 /* If there is no version string, we can just return out. */
1885 if (*p == '\0')
1886 {
1887 if (hidden)
1888 h->hidden = 1;
1889 return TRUE;
1890 }
1891
1892 /* Look for the version. If we find it, it is no longer weak. */
1893 for (t = sinfo->verdefs; t != NULL; t = t->next)
1894 {
1895 if (strcmp (t->name, p) == 0)
1896 {
1897 size_t len;
1898 char *alc;
1899 struct bfd_elf_version_expr *d;
1900
1901 len = p - h->root.root.string;
1902 alc = bfd_malloc (len);
1903 if (alc == NULL)
1904 return FALSE;
1905 memcpy (alc, h->root.root.string, len - 1);
1906 alc[len - 1] = '\0';
1907 if (alc[len - 2] == ELF_VER_CHR)
1908 alc[len - 2] = '\0';
1909
1910 h->verinfo.vertree = t;
1911 t->used = TRUE;
1912 d = NULL;
1913
1914 if (t->globals.list != NULL)
1915 d = (*t->match) (&t->globals, NULL, alc);
1916
1917 /* See if there is anything to force this symbol to
1918 local scope. */
1919 if (d == NULL && t->locals.list != NULL)
1920 {
1921 d = (*t->match) (&t->locals, NULL, alc);
1922 if (d != NULL
1923 && h->dynindx != -1
1924 && ! info->export_dynamic)
1925 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1926 }
1927
1928 free (alc);
1929 break;
1930 }
1931 }
1932
1933 /* If we are building an application, we need to create a
1934 version node for this version. */
1935 if (t == NULL && info->executable)
1936 {
1937 struct bfd_elf_version_tree **pp;
1938 int version_index;
1939
1940 /* If we aren't going to export this symbol, we don't need
1941 to worry about it. */
1942 if (h->dynindx == -1)
1943 return TRUE;
1944
1945 amt = sizeof *t;
1946 t = bfd_zalloc (sinfo->output_bfd, amt);
1947 if (t == NULL)
1948 {
1949 sinfo->failed = TRUE;
1950 return FALSE;
1951 }
1952
1953 t->name = p;
1954 t->name_indx = (unsigned int) -1;
1955 t->used = TRUE;
1956
1957 version_index = 1;
1958 /* Don't count anonymous version tag. */
1959 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1960 version_index = 0;
1961 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1962 ++version_index;
1963 t->vernum = version_index;
1964
1965 *pp = t;
1966
1967 h->verinfo.vertree = t;
1968 }
1969 else if (t == NULL)
1970 {
1971 /* We could not find the version for a symbol when
1972 generating a shared archive. Return an error. */
1973 (*_bfd_error_handler)
1974 (_("%B: version node not found for symbol %s"),
1975 sinfo->output_bfd, h->root.root.string);
1976 bfd_set_error (bfd_error_bad_value);
1977 sinfo->failed = TRUE;
1978 return FALSE;
1979 }
1980
1981 if (hidden)
1982 h->hidden = 1;
1983 }
1984
1985 /* If we don't have a version for this symbol, see if we can find
1986 something. */
1987 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1988 {
1989 struct bfd_elf_version_tree *t;
1990 struct bfd_elf_version_tree *local_ver;
1991 struct bfd_elf_version_expr *d;
1992
1993 /* See if can find what version this symbol is in. If the
1994 symbol is supposed to be local, then don't actually register
1995 it. */
1996 local_ver = NULL;
1997 for (t = sinfo->verdefs; t != NULL; t = t->next)
1998 {
1999 if (t->globals.list != NULL)
2000 {
2001 bfd_boolean matched;
2002
2003 matched = FALSE;
2004 d = NULL;
2005 while ((d = (*t->match) (&t->globals, d,
2006 h->root.root.string)) != NULL)
2007 if (d->symver)
2008 matched = TRUE;
2009 else
2010 {
2011 /* There is a version without definition. Make
2012 the symbol the default definition for this
2013 version. */
2014 h->verinfo.vertree = t;
2015 local_ver = NULL;
2016 d->script = 1;
2017 break;
2018 }
2019 if (d != NULL)
2020 break;
2021 else if (matched)
2022 /* There is no undefined version for this symbol. Hide the
2023 default one. */
2024 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2025 }
2026
2027 if (t->locals.list != NULL)
2028 {
2029 d = NULL;
2030 while ((d = (*t->match) (&t->locals, d,
2031 h->root.root.string)) != NULL)
2032 {
2033 local_ver = t;
2034 /* If the match is "*", keep looking for a more
2035 explicit, perhaps even global, match.
2036 XXX: Shouldn't this be !d->wildcard instead? */
2037 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2038 break;
2039 }
2040
2041 if (d != NULL)
2042 break;
2043 }
2044 }
2045
2046 if (local_ver != NULL)
2047 {
2048 h->verinfo.vertree = local_ver;
2049 if (h->dynindx != -1
2050 && ! info->export_dynamic)
2051 {
2052 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2053 }
2054 }
2055 }
2056
2057 return TRUE;
2058 }
2059 \f
2060 /* Read and swap the relocs from the section indicated by SHDR. This
2061 may be either a REL or a RELA section. The relocations are
2062 translated into RELA relocations and stored in INTERNAL_RELOCS,
2063 which should have already been allocated to contain enough space.
2064 The EXTERNAL_RELOCS are a buffer where the external form of the
2065 relocations should be stored.
2066
2067 Returns FALSE if something goes wrong. */
2068
2069 static bfd_boolean
2070 elf_link_read_relocs_from_section (bfd *abfd,
2071 asection *sec,
2072 Elf_Internal_Shdr *shdr,
2073 void *external_relocs,
2074 Elf_Internal_Rela *internal_relocs)
2075 {
2076 const struct elf_backend_data *bed;
2077 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2078 const bfd_byte *erela;
2079 const bfd_byte *erelaend;
2080 Elf_Internal_Rela *irela;
2081 Elf_Internal_Shdr *symtab_hdr;
2082 size_t nsyms;
2083
2084 /* Position ourselves at the start of the section. */
2085 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2086 return FALSE;
2087
2088 /* Read the relocations. */
2089 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2090 return FALSE;
2091
2092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2093 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2094
2095 bed = get_elf_backend_data (abfd);
2096
2097 /* Convert the external relocations to the internal format. */
2098 if (shdr->sh_entsize == bed->s->sizeof_rel)
2099 swap_in = bed->s->swap_reloc_in;
2100 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2101 swap_in = bed->s->swap_reloca_in;
2102 else
2103 {
2104 bfd_set_error (bfd_error_wrong_format);
2105 return FALSE;
2106 }
2107
2108 erela = external_relocs;
2109 erelaend = erela + shdr->sh_size;
2110 irela = internal_relocs;
2111 while (erela < erelaend)
2112 {
2113 bfd_vma r_symndx;
2114
2115 (*swap_in) (abfd, erela, irela);
2116 r_symndx = ELF32_R_SYM (irela->r_info);
2117 if (bed->s->arch_size == 64)
2118 r_symndx >>= 24;
2119 if ((size_t) r_symndx >= nsyms)
2120 {
2121 (*_bfd_error_handler)
2122 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2123 " for offset 0x%lx in section `%A'"),
2124 abfd, sec,
2125 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2126 bfd_set_error (bfd_error_bad_value);
2127 return FALSE;
2128 }
2129 irela += bed->s->int_rels_per_ext_rel;
2130 erela += shdr->sh_entsize;
2131 }
2132
2133 return TRUE;
2134 }
2135
2136 /* Read and swap the relocs for a section O. They may have been
2137 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2138 not NULL, they are used as buffers to read into. They are known to
2139 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2140 the return value is allocated using either malloc or bfd_alloc,
2141 according to the KEEP_MEMORY argument. If O has two relocation
2142 sections (both REL and RELA relocations), then the REL_HDR
2143 relocations will appear first in INTERNAL_RELOCS, followed by the
2144 REL_HDR2 relocations. */
2145
2146 Elf_Internal_Rela *
2147 _bfd_elf_link_read_relocs (bfd *abfd,
2148 asection *o,
2149 void *external_relocs,
2150 Elf_Internal_Rela *internal_relocs,
2151 bfd_boolean keep_memory)
2152 {
2153 Elf_Internal_Shdr *rel_hdr;
2154 void *alloc1 = NULL;
2155 Elf_Internal_Rela *alloc2 = NULL;
2156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2157
2158 if (elf_section_data (o)->relocs != NULL)
2159 return elf_section_data (o)->relocs;
2160
2161 if (o->reloc_count == 0)
2162 return NULL;
2163
2164 rel_hdr = &elf_section_data (o)->rel_hdr;
2165
2166 if (internal_relocs == NULL)
2167 {
2168 bfd_size_type size;
2169
2170 size = o->reloc_count;
2171 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2172 if (keep_memory)
2173 internal_relocs = bfd_alloc (abfd, size);
2174 else
2175 internal_relocs = alloc2 = bfd_malloc (size);
2176 if (internal_relocs == NULL)
2177 goto error_return;
2178 }
2179
2180 if (external_relocs == NULL)
2181 {
2182 bfd_size_type size = rel_hdr->sh_size;
2183
2184 if (elf_section_data (o)->rel_hdr2)
2185 size += elf_section_data (o)->rel_hdr2->sh_size;
2186 alloc1 = bfd_malloc (size);
2187 if (alloc1 == NULL)
2188 goto error_return;
2189 external_relocs = alloc1;
2190 }
2191
2192 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2193 external_relocs,
2194 internal_relocs))
2195 goto error_return;
2196 if (elf_section_data (o)->rel_hdr2
2197 && (!elf_link_read_relocs_from_section
2198 (abfd, o,
2199 elf_section_data (o)->rel_hdr2,
2200 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2201 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2202 * bed->s->int_rels_per_ext_rel))))
2203 goto error_return;
2204
2205 /* Cache the results for next time, if we can. */
2206 if (keep_memory)
2207 elf_section_data (o)->relocs = internal_relocs;
2208
2209 if (alloc1 != NULL)
2210 free (alloc1);
2211
2212 /* Don't free alloc2, since if it was allocated we are passing it
2213 back (under the name of internal_relocs). */
2214
2215 return internal_relocs;
2216
2217 error_return:
2218 if (alloc1 != NULL)
2219 free (alloc1);
2220 if (alloc2 != NULL)
2221 free (alloc2);
2222 return NULL;
2223 }
2224
2225 /* Compute the size of, and allocate space for, REL_HDR which is the
2226 section header for a section containing relocations for O. */
2227
2228 bfd_boolean
2229 _bfd_elf_link_size_reloc_section (bfd *abfd,
2230 Elf_Internal_Shdr *rel_hdr,
2231 asection *o)
2232 {
2233 bfd_size_type reloc_count;
2234 bfd_size_type num_rel_hashes;
2235
2236 /* Figure out how many relocations there will be. */
2237 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2238 reloc_count = elf_section_data (o)->rel_count;
2239 else
2240 reloc_count = elf_section_data (o)->rel_count2;
2241
2242 num_rel_hashes = o->reloc_count;
2243 if (num_rel_hashes < reloc_count)
2244 num_rel_hashes = reloc_count;
2245
2246 /* That allows us to calculate the size of the section. */
2247 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2248
2249 /* The contents field must last into write_object_contents, so we
2250 allocate it with bfd_alloc rather than malloc. Also since we
2251 cannot be sure that the contents will actually be filled in,
2252 we zero the allocated space. */
2253 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2254 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2255 return FALSE;
2256
2257 /* We only allocate one set of hash entries, so we only do it the
2258 first time we are called. */
2259 if (elf_section_data (o)->rel_hashes == NULL
2260 && num_rel_hashes)
2261 {
2262 struct elf_link_hash_entry **p;
2263
2264 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2265 if (p == NULL)
2266 return FALSE;
2267
2268 elf_section_data (o)->rel_hashes = p;
2269 }
2270
2271 return TRUE;
2272 }
2273
2274 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2275 originated from the section given by INPUT_REL_HDR) to the
2276 OUTPUT_BFD. */
2277
2278 bfd_boolean
2279 _bfd_elf_link_output_relocs (bfd *output_bfd,
2280 asection *input_section,
2281 Elf_Internal_Shdr *input_rel_hdr,
2282 Elf_Internal_Rela *internal_relocs,
2283 struct elf_link_hash_entry **rel_hash
2284 ATTRIBUTE_UNUSED)
2285 {
2286 Elf_Internal_Rela *irela;
2287 Elf_Internal_Rela *irelaend;
2288 bfd_byte *erel;
2289 Elf_Internal_Shdr *output_rel_hdr;
2290 asection *output_section;
2291 unsigned int *rel_countp = NULL;
2292 const struct elf_backend_data *bed;
2293 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2294
2295 output_section = input_section->output_section;
2296 output_rel_hdr = NULL;
2297
2298 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2299 == input_rel_hdr->sh_entsize)
2300 {
2301 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2302 rel_countp = &elf_section_data (output_section)->rel_count;
2303 }
2304 else if (elf_section_data (output_section)->rel_hdr2
2305 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2306 == input_rel_hdr->sh_entsize))
2307 {
2308 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2309 rel_countp = &elf_section_data (output_section)->rel_count2;
2310 }
2311 else
2312 {
2313 (*_bfd_error_handler)
2314 (_("%B: relocation size mismatch in %B section %A"),
2315 output_bfd, input_section->owner, input_section);
2316 bfd_set_error (bfd_error_wrong_object_format);
2317 return FALSE;
2318 }
2319
2320 bed = get_elf_backend_data (output_bfd);
2321 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2322 swap_out = bed->s->swap_reloc_out;
2323 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2324 swap_out = bed->s->swap_reloca_out;
2325 else
2326 abort ();
2327
2328 erel = output_rel_hdr->contents;
2329 erel += *rel_countp * input_rel_hdr->sh_entsize;
2330 irela = internal_relocs;
2331 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2332 * bed->s->int_rels_per_ext_rel);
2333 while (irela < irelaend)
2334 {
2335 (*swap_out) (output_bfd, irela, erel);
2336 irela += bed->s->int_rels_per_ext_rel;
2337 erel += input_rel_hdr->sh_entsize;
2338 }
2339
2340 /* Bump the counter, so that we know where to add the next set of
2341 relocations. */
2342 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2343
2344 return TRUE;
2345 }
2346 \f
2347 /* Make weak undefined symbols in PIE dynamic. */
2348
2349 bfd_boolean
2350 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2351 struct elf_link_hash_entry *h)
2352 {
2353 if (info->pie
2354 && h->dynindx == -1
2355 && h->root.type == bfd_link_hash_undefweak)
2356 return bfd_elf_link_record_dynamic_symbol (info, h);
2357
2358 return TRUE;
2359 }
2360
2361 /* Fix up the flags for a symbol. This handles various cases which
2362 can only be fixed after all the input files are seen. This is
2363 currently called by both adjust_dynamic_symbol and
2364 assign_sym_version, which is unnecessary but perhaps more robust in
2365 the face of future changes. */
2366
2367 bfd_boolean
2368 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2369 struct elf_info_failed *eif)
2370 {
2371 const struct elf_backend_data *bed;
2372
2373 /* If this symbol was mentioned in a non-ELF file, try to set
2374 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2375 permit a non-ELF file to correctly refer to a symbol defined in
2376 an ELF dynamic object. */
2377 if (h->non_elf)
2378 {
2379 while (h->root.type == bfd_link_hash_indirect)
2380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2381
2382 if (h->root.type != bfd_link_hash_defined
2383 && h->root.type != bfd_link_hash_defweak)
2384 {
2385 h->ref_regular = 1;
2386 h->ref_regular_nonweak = 1;
2387 }
2388 else
2389 {
2390 if (h->root.u.def.section->owner != NULL
2391 && (bfd_get_flavour (h->root.u.def.section->owner)
2392 == bfd_target_elf_flavour))
2393 {
2394 h->ref_regular = 1;
2395 h->ref_regular_nonweak = 1;
2396 }
2397 else
2398 h->def_regular = 1;
2399 }
2400
2401 if (h->dynindx == -1
2402 && (h->def_dynamic
2403 || h->ref_dynamic))
2404 {
2405 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2406 {
2407 eif->failed = TRUE;
2408 return FALSE;
2409 }
2410 }
2411 }
2412 else
2413 {
2414 /* Unfortunately, NON_ELF is only correct if the symbol
2415 was first seen in a non-ELF file. Fortunately, if the symbol
2416 was first seen in an ELF file, we're probably OK unless the
2417 symbol was defined in a non-ELF file. Catch that case here.
2418 FIXME: We're still in trouble if the symbol was first seen in
2419 a dynamic object, and then later in a non-ELF regular object. */
2420 if ((h->root.type == bfd_link_hash_defined
2421 || h->root.type == bfd_link_hash_defweak)
2422 && !h->def_regular
2423 && (h->root.u.def.section->owner != NULL
2424 ? (bfd_get_flavour (h->root.u.def.section->owner)
2425 != bfd_target_elf_flavour)
2426 : (bfd_is_abs_section (h->root.u.def.section)
2427 && !h->def_dynamic)))
2428 h->def_regular = 1;
2429 }
2430
2431 /* Backend specific symbol fixup. */
2432 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2433 if (bed->elf_backend_fixup_symbol
2434 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2435 return FALSE;
2436
2437 /* If this is a final link, and the symbol was defined as a common
2438 symbol in a regular object file, and there was no definition in
2439 any dynamic object, then the linker will have allocated space for
2440 the symbol in a common section but the DEF_REGULAR
2441 flag will not have been set. */
2442 if (h->root.type == bfd_link_hash_defined
2443 && !h->def_regular
2444 && h->ref_regular
2445 && !h->def_dynamic
2446 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2447 h->def_regular = 1;
2448
2449 /* If -Bsymbolic was used (which means to bind references to global
2450 symbols to the definition within the shared object), and this
2451 symbol was defined in a regular object, then it actually doesn't
2452 need a PLT entry. Likewise, if the symbol has non-default
2453 visibility. If the symbol has hidden or internal visibility, we
2454 will force it local. */
2455 if (h->needs_plt
2456 && eif->info->shared
2457 && is_elf_hash_table (eif->info->hash)
2458 && (SYMBOLIC_BIND (eif->info, h)
2459 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2460 && h->def_regular)
2461 {
2462 bfd_boolean force_local;
2463
2464 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2465 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2466 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2467 }
2468
2469 /* If a weak undefined symbol has non-default visibility, we also
2470 hide it from the dynamic linker. */
2471 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2472 && h->root.type == bfd_link_hash_undefweak)
2473 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2474
2475 /* If this is a weak defined symbol in a dynamic object, and we know
2476 the real definition in the dynamic object, copy interesting flags
2477 over to the real definition. */
2478 if (h->u.weakdef != NULL)
2479 {
2480 struct elf_link_hash_entry *weakdef;
2481
2482 weakdef = h->u.weakdef;
2483 if (h->root.type == bfd_link_hash_indirect)
2484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2485
2486 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak);
2488 BFD_ASSERT (weakdef->def_dynamic);
2489
2490 /* If the real definition is defined by a regular object file,
2491 don't do anything special. See the longer description in
2492 _bfd_elf_adjust_dynamic_symbol, below. */
2493 if (weakdef->def_regular)
2494 h->u.weakdef = NULL;
2495 else
2496 {
2497 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2498 || weakdef->root.type == bfd_link_hash_defweak);
2499 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2500 }
2501 }
2502
2503 return TRUE;
2504 }
2505
2506 /* Make the backend pick a good value for a dynamic symbol. This is
2507 called via elf_link_hash_traverse, and also calls itself
2508 recursively. */
2509
2510 bfd_boolean
2511 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2512 {
2513 struct elf_info_failed *eif = data;
2514 bfd *dynobj;
2515 const struct elf_backend_data *bed;
2516
2517 if (! is_elf_hash_table (eif->info->hash))
2518 return FALSE;
2519
2520 if (h->root.type == bfd_link_hash_warning)
2521 {
2522 h->got = elf_hash_table (eif->info)->init_got_offset;
2523 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2524
2525 /* When warning symbols are created, they **replace** the "real"
2526 entry in the hash table, thus we never get to see the real
2527 symbol in a hash traversal. So look at it now. */
2528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2529 }
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && (h->def_regular
2548 || !h->def_dynamic
2549 || (!h->ref_regular
2550 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2551 {
2552 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2553 return TRUE;
2554 }
2555
2556 /* If we've already adjusted this symbol, don't do it again. This
2557 can happen via a recursive call. */
2558 if (h->dynamic_adjusted)
2559 return TRUE;
2560
2561 /* Don't look at this symbol again. Note that we must set this
2562 after checking the above conditions, because we may look at a
2563 symbol once, decide not to do anything, and then get called
2564 recursively later after REF_REGULAR is set below. */
2565 h->dynamic_adjusted = 1;
2566
2567 /* If this is a weak definition, and we know a real definition, and
2568 the real symbol is not itself defined by a regular object file,
2569 then get a good value for the real definition. We handle the
2570 real symbol first, for the convenience of the backend routine.
2571
2572 Note that there is a confusing case here. If the real definition
2573 is defined by a regular object file, we don't get the real symbol
2574 from the dynamic object, but we do get the weak symbol. If the
2575 processor backend uses a COPY reloc, then if some routine in the
2576 dynamic object changes the real symbol, we will not see that
2577 change in the corresponding weak symbol. This is the way other
2578 ELF linkers work as well, and seems to be a result of the shared
2579 library model.
2580
2581 I will clarify this issue. Most SVR4 shared libraries define the
2582 variable _timezone and define timezone as a weak synonym. The
2583 tzset call changes _timezone. If you write
2584 extern int timezone;
2585 int _timezone = 5;
2586 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2587 you might expect that, since timezone is a synonym for _timezone,
2588 the same number will print both times. However, if the processor
2589 backend uses a COPY reloc, then actually timezone will be copied
2590 into your process image, and, since you define _timezone
2591 yourself, _timezone will not. Thus timezone and _timezone will
2592 wind up at different memory locations. The tzset call will set
2593 _timezone, leaving timezone unchanged. */
2594
2595 if (h->u.weakdef != NULL)
2596 {
2597 /* If we get to this point, we know there is an implicit
2598 reference by a regular object file via the weak symbol H.
2599 FIXME: Is this really true? What if the traversal finds
2600 H->U.WEAKDEF before it finds H? */
2601 h->u.weakdef->ref_regular = 1;
2602
2603 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2604 return FALSE;
2605 }
2606
2607 /* If a symbol has no type and no size and does not require a PLT
2608 entry, then we are probably about to do the wrong thing here: we
2609 are probably going to create a COPY reloc for an empty object.
2610 This case can arise when a shared object is built with assembly
2611 code, and the assembly code fails to set the symbol type. */
2612 if (h->size == 0
2613 && h->type == STT_NOTYPE
2614 && !h->needs_plt)
2615 (*_bfd_error_handler)
2616 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2617 h->root.root.string);
2618
2619 dynobj = elf_hash_table (eif->info)->dynobj;
2620 bed = get_elf_backend_data (dynobj);
2621 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2622 {
2623 eif->failed = TRUE;
2624 return FALSE;
2625 }
2626
2627 return TRUE;
2628 }
2629
2630 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2631 DYNBSS. */
2632
2633 bfd_boolean
2634 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2635 asection *dynbss)
2636 {
2637 unsigned int power_of_two;
2638 bfd_vma mask;
2639 asection *sec = h->root.u.def.section;
2640
2641 /* The section aligment of definition is the maximum alignment
2642 requirement of symbols defined in the section. Since we don't
2643 know the symbol alignment requirement, we start with the
2644 maximum alignment and check low bits of the symbol address
2645 for the minimum alignment. */
2646 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2647 mask = ((bfd_vma) 1 << power_of_two) - 1;
2648 while ((h->root.u.def.value & mask) != 0)
2649 {
2650 mask >>= 1;
2651 --power_of_two;
2652 }
2653
2654 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2655 dynbss))
2656 {
2657 /* Adjust the section alignment if needed. */
2658 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2659 power_of_two))
2660 return FALSE;
2661 }
2662
2663 /* We make sure that the symbol will be aligned properly. */
2664 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2665
2666 /* Define the symbol as being at this point in DYNBSS. */
2667 h->root.u.def.section = dynbss;
2668 h->root.u.def.value = dynbss->size;
2669
2670 /* Increment the size of DYNBSS to make room for the symbol. */
2671 dynbss->size += h->size;
2672
2673 return TRUE;
2674 }
2675
2676 /* Adjust all external symbols pointing into SEC_MERGE sections
2677 to reflect the object merging within the sections. */
2678
2679 bfd_boolean
2680 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2681 {
2682 asection *sec;
2683
2684 if (h->root.type == bfd_link_hash_warning)
2685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2686
2687 if ((h->root.type == bfd_link_hash_defined
2688 || h->root.type == bfd_link_hash_defweak)
2689 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2690 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2691 {
2692 bfd *output_bfd = data;
2693
2694 h->root.u.def.value =
2695 _bfd_merged_section_offset (output_bfd,
2696 &h->root.u.def.section,
2697 elf_section_data (sec)->sec_info,
2698 h->root.u.def.value);
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Returns false if the symbol referred to by H should be considered
2705 to resolve local to the current module, and true if it should be
2706 considered to bind dynamically. */
2707
2708 bfd_boolean
2709 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2710 struct bfd_link_info *info,
2711 bfd_boolean ignore_protected)
2712 {
2713 bfd_boolean binding_stays_local_p;
2714 const struct elf_backend_data *bed;
2715 struct elf_link_hash_table *hash_table;
2716
2717 if (h == NULL)
2718 return FALSE;
2719
2720 while (h->root.type == bfd_link_hash_indirect
2721 || h->root.type == bfd_link_hash_warning)
2722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2723
2724 /* If it was forced local, then clearly it's not dynamic. */
2725 if (h->dynindx == -1)
2726 return FALSE;
2727 if (h->forced_local)
2728 return FALSE;
2729
2730 /* Identify the cases where name binding rules say that a
2731 visible symbol resolves locally. */
2732 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2733
2734 switch (ELF_ST_VISIBILITY (h->other))
2735 {
2736 case STV_INTERNAL:
2737 case STV_HIDDEN:
2738 return FALSE;
2739
2740 case STV_PROTECTED:
2741 hash_table = elf_hash_table (info);
2742 if (!is_elf_hash_table (hash_table))
2743 return FALSE;
2744
2745 bed = get_elf_backend_data (hash_table->dynobj);
2746
2747 /* Proper resolution for function pointer equality may require
2748 that these symbols perhaps be resolved dynamically, even though
2749 we should be resolving them to the current module. */
2750 if (!ignore_protected || !bed->is_function_type (h->type))
2751 binding_stays_local_p = TRUE;
2752 break;
2753
2754 default:
2755 break;
2756 }
2757
2758 /* If it isn't defined locally, then clearly it's dynamic. */
2759 if (!h->def_regular)
2760 return TRUE;
2761
2762 /* Otherwise, the symbol is dynamic if binding rules don't tell
2763 us that it remains local. */
2764 return !binding_stays_local_p;
2765 }
2766
2767 /* Return true if the symbol referred to by H should be considered
2768 to resolve local to the current module, and false otherwise. Differs
2769 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2770 undefined symbols and weak symbols. */
2771
2772 bfd_boolean
2773 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2774 struct bfd_link_info *info,
2775 bfd_boolean local_protected)
2776 {
2777 const struct elf_backend_data *bed;
2778 struct elf_link_hash_table *hash_table;
2779
2780 /* If it's a local sym, of course we resolve locally. */
2781 if (h == NULL)
2782 return TRUE;
2783
2784 /* Common symbols that become definitions don't get the DEF_REGULAR
2785 flag set, so test it first, and don't bail out. */
2786 if (ELF_COMMON_DEF_P (h))
2787 /* Do nothing. */;
2788 /* If we don't have a definition in a regular file, then we can't
2789 resolve locally. The sym is either undefined or dynamic. */
2790 else if (!h->def_regular)
2791 return FALSE;
2792
2793 /* Forced local symbols resolve locally. */
2794 if (h->forced_local)
2795 return TRUE;
2796
2797 /* As do non-dynamic symbols. */
2798 if (h->dynindx == -1)
2799 return TRUE;
2800
2801 /* At this point, we know the symbol is defined and dynamic. In an
2802 executable it must resolve locally, likewise when building symbolic
2803 shared libraries. */
2804 if (info->executable || SYMBOLIC_BIND (info, h))
2805 return TRUE;
2806
2807 /* Now deal with defined dynamic symbols in shared libraries. Ones
2808 with default visibility might not resolve locally. */
2809 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2810 return FALSE;
2811
2812 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2813 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2814 return TRUE;
2815
2816 hash_table = elf_hash_table (info);
2817 if (!is_elf_hash_table (hash_table))
2818 return TRUE;
2819
2820 bed = get_elf_backend_data (hash_table->dynobj);
2821
2822 /* STV_PROTECTED non-function symbols are local. */
2823 if (!bed->is_function_type (h->type))
2824 return TRUE;
2825
2826 /* Function pointer equality tests may require that STV_PROTECTED
2827 symbols be treated as dynamic symbols, even when we know that the
2828 dynamic linker will resolve them locally. */
2829 return local_protected;
2830 }
2831
2832 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2833 aligned. Returns the first TLS output section. */
2834
2835 struct bfd_section *
2836 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2837 {
2838 struct bfd_section *sec, *tls;
2839 unsigned int align = 0;
2840
2841 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2842 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2843 break;
2844 tls = sec;
2845
2846 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2847 if (sec->alignment_power > align)
2848 align = sec->alignment_power;
2849
2850 elf_hash_table (info)->tls_sec = tls;
2851
2852 /* Ensure the alignment of the first section is the largest alignment,
2853 so that the tls segment starts aligned. */
2854 if (tls != NULL)
2855 tls->alignment_power = align;
2856
2857 return tls;
2858 }
2859
2860 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2861 static bfd_boolean
2862 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2863 Elf_Internal_Sym *sym)
2864 {
2865 const struct elf_backend_data *bed;
2866
2867 /* Local symbols do not count, but target specific ones might. */
2868 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2869 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2870 return FALSE;
2871
2872 bed = get_elf_backend_data (abfd);
2873 /* Function symbols do not count. */
2874 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2875 return FALSE;
2876
2877 /* If the section is undefined, then so is the symbol. */
2878 if (sym->st_shndx == SHN_UNDEF)
2879 return FALSE;
2880
2881 /* If the symbol is defined in the common section, then
2882 it is a common definition and so does not count. */
2883 if (bed->common_definition (sym))
2884 return FALSE;
2885
2886 /* If the symbol is in a target specific section then we
2887 must rely upon the backend to tell us what it is. */
2888 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2889 /* FIXME - this function is not coded yet:
2890
2891 return _bfd_is_global_symbol_definition (abfd, sym);
2892
2893 Instead for now assume that the definition is not global,
2894 Even if this is wrong, at least the linker will behave
2895 in the same way that it used to do. */
2896 return FALSE;
2897
2898 return TRUE;
2899 }
2900
2901 /* Search the symbol table of the archive element of the archive ABFD
2902 whose archive map contains a mention of SYMDEF, and determine if
2903 the symbol is defined in this element. */
2904 static bfd_boolean
2905 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2906 {
2907 Elf_Internal_Shdr * hdr;
2908 bfd_size_type symcount;
2909 bfd_size_type extsymcount;
2910 bfd_size_type extsymoff;
2911 Elf_Internal_Sym *isymbuf;
2912 Elf_Internal_Sym *isym;
2913 Elf_Internal_Sym *isymend;
2914 bfd_boolean result;
2915
2916 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2917 if (abfd == NULL)
2918 return FALSE;
2919
2920 if (! bfd_check_format (abfd, bfd_object))
2921 return FALSE;
2922
2923 /* If we have already included the element containing this symbol in the
2924 link then we do not need to include it again. Just claim that any symbol
2925 it contains is not a definition, so that our caller will not decide to
2926 (re)include this element. */
2927 if (abfd->archive_pass)
2928 return FALSE;
2929
2930 /* Select the appropriate symbol table. */
2931 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2932 hdr = &elf_tdata (abfd)->symtab_hdr;
2933 else
2934 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2935
2936 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2937
2938 /* The sh_info field of the symtab header tells us where the
2939 external symbols start. We don't care about the local symbols. */
2940 if (elf_bad_symtab (abfd))
2941 {
2942 extsymcount = symcount;
2943 extsymoff = 0;
2944 }
2945 else
2946 {
2947 extsymcount = symcount - hdr->sh_info;
2948 extsymoff = hdr->sh_info;
2949 }
2950
2951 if (extsymcount == 0)
2952 return FALSE;
2953
2954 /* Read in the symbol table. */
2955 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2956 NULL, NULL, NULL);
2957 if (isymbuf == NULL)
2958 return FALSE;
2959
2960 /* Scan the symbol table looking for SYMDEF. */
2961 result = FALSE;
2962 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2963 {
2964 const char *name;
2965
2966 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2967 isym->st_name);
2968 if (name == NULL)
2969 break;
2970
2971 if (strcmp (name, symdef->name) == 0)
2972 {
2973 result = is_global_data_symbol_definition (abfd, isym);
2974 break;
2975 }
2976 }
2977
2978 free (isymbuf);
2979
2980 return result;
2981 }
2982 \f
2983 /* Add an entry to the .dynamic table. */
2984
2985 bfd_boolean
2986 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2987 bfd_vma tag,
2988 bfd_vma val)
2989 {
2990 struct elf_link_hash_table *hash_table;
2991 const struct elf_backend_data *bed;
2992 asection *s;
2993 bfd_size_type newsize;
2994 bfd_byte *newcontents;
2995 Elf_Internal_Dyn dyn;
2996
2997 hash_table = elf_hash_table (info);
2998 if (! is_elf_hash_table (hash_table))
2999 return FALSE;
3000
3001 bed = get_elf_backend_data (hash_table->dynobj);
3002 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3003 BFD_ASSERT (s != NULL);
3004
3005 newsize = s->size + bed->s->sizeof_dyn;
3006 newcontents = bfd_realloc (s->contents, newsize);
3007 if (newcontents == NULL)
3008 return FALSE;
3009
3010 dyn.d_tag = tag;
3011 dyn.d_un.d_val = val;
3012 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3013
3014 s->size = newsize;
3015 s->contents = newcontents;
3016
3017 return TRUE;
3018 }
3019
3020 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3021 otherwise just check whether one already exists. Returns -1 on error,
3022 1 if a DT_NEEDED tag already exists, and 0 on success. */
3023
3024 static int
3025 elf_add_dt_needed_tag (bfd *abfd,
3026 struct bfd_link_info *info,
3027 const char *soname,
3028 bfd_boolean do_it)
3029 {
3030 struct elf_link_hash_table *hash_table;
3031 bfd_size_type oldsize;
3032 bfd_size_type strindex;
3033
3034 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3035 return -1;
3036
3037 hash_table = elf_hash_table (info);
3038 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3039 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3040 if (strindex == (bfd_size_type) -1)
3041 return -1;
3042
3043 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3044 {
3045 asection *sdyn;
3046 const struct elf_backend_data *bed;
3047 bfd_byte *extdyn;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3051 if (sdyn != NULL)
3052 for (extdyn = sdyn->contents;
3053 extdyn < sdyn->contents + sdyn->size;
3054 extdyn += bed->s->sizeof_dyn)
3055 {
3056 Elf_Internal_Dyn dyn;
3057
3058 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3059 if (dyn.d_tag == DT_NEEDED
3060 && dyn.d_un.d_val == strindex)
3061 {
3062 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3063 return 1;
3064 }
3065 }
3066 }
3067
3068 if (do_it)
3069 {
3070 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3071 return -1;
3072
3073 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3074 return -1;
3075 }
3076 else
3077 /* We were just checking for existence of the tag. */
3078 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3079
3080 return 0;
3081 }
3082
3083 /* Sort symbol by value and section. */
3084 static int
3085 elf_sort_symbol (const void *arg1, const void *arg2)
3086 {
3087 const struct elf_link_hash_entry *h1;
3088 const struct elf_link_hash_entry *h2;
3089 bfd_signed_vma vdiff;
3090
3091 h1 = *(const struct elf_link_hash_entry **) arg1;
3092 h2 = *(const struct elf_link_hash_entry **) arg2;
3093 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3094 if (vdiff != 0)
3095 return vdiff > 0 ? 1 : -1;
3096 else
3097 {
3098 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3099 if (sdiff != 0)
3100 return sdiff > 0 ? 1 : -1;
3101 }
3102 return 0;
3103 }
3104
3105 /* This function is used to adjust offsets into .dynstr for
3106 dynamic symbols. This is called via elf_link_hash_traverse. */
3107
3108 static bfd_boolean
3109 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3110 {
3111 struct elf_strtab_hash *dynstr = data;
3112
3113 if (h->root.type == bfd_link_hash_warning)
3114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3115
3116 if (h->dynindx != -1)
3117 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3118 return TRUE;
3119 }
3120
3121 /* Assign string offsets in .dynstr, update all structures referencing
3122 them. */
3123
3124 static bfd_boolean
3125 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3126 {
3127 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3128 struct elf_link_local_dynamic_entry *entry;
3129 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3130 bfd *dynobj = hash_table->dynobj;
3131 asection *sdyn;
3132 bfd_size_type size;
3133 const struct elf_backend_data *bed;
3134 bfd_byte *extdyn;
3135
3136 _bfd_elf_strtab_finalize (dynstr);
3137 size = _bfd_elf_strtab_size (dynstr);
3138
3139 bed = get_elf_backend_data (dynobj);
3140 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3141 BFD_ASSERT (sdyn != NULL);
3142
3143 /* Update all .dynamic entries referencing .dynstr strings. */
3144 for (extdyn = sdyn->contents;
3145 extdyn < sdyn->contents + sdyn->size;
3146 extdyn += bed->s->sizeof_dyn)
3147 {
3148 Elf_Internal_Dyn dyn;
3149
3150 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3151 switch (dyn.d_tag)
3152 {
3153 case DT_STRSZ:
3154 dyn.d_un.d_val = size;
3155 break;
3156 case DT_NEEDED:
3157 case DT_SONAME:
3158 case DT_RPATH:
3159 case DT_RUNPATH:
3160 case DT_FILTER:
3161 case DT_AUXILIARY:
3162 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3163 break;
3164 default:
3165 continue;
3166 }
3167 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3168 }
3169
3170 /* Now update local dynamic symbols. */
3171 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3172 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3173 entry->isym.st_name);
3174
3175 /* And the rest of dynamic symbols. */
3176 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3177
3178 /* Adjust version definitions. */
3179 if (elf_tdata (output_bfd)->cverdefs)
3180 {
3181 asection *s;
3182 bfd_byte *p;
3183 bfd_size_type i;
3184 Elf_Internal_Verdef def;
3185 Elf_Internal_Verdaux defaux;
3186
3187 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3188 p = s->contents;
3189 do
3190 {
3191 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3192 &def);
3193 p += sizeof (Elf_External_Verdef);
3194 if (def.vd_aux != sizeof (Elf_External_Verdef))
3195 continue;
3196 for (i = 0; i < def.vd_cnt; ++i)
3197 {
3198 _bfd_elf_swap_verdaux_in (output_bfd,
3199 (Elf_External_Verdaux *) p, &defaux);
3200 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3201 defaux.vda_name);
3202 _bfd_elf_swap_verdaux_out (output_bfd,
3203 &defaux, (Elf_External_Verdaux *) p);
3204 p += sizeof (Elf_External_Verdaux);
3205 }
3206 }
3207 while (def.vd_next);
3208 }
3209
3210 /* Adjust version references. */
3211 if (elf_tdata (output_bfd)->verref)
3212 {
3213 asection *s;
3214 bfd_byte *p;
3215 bfd_size_type i;
3216 Elf_Internal_Verneed need;
3217 Elf_Internal_Vernaux needaux;
3218
3219 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3220 p = s->contents;
3221 do
3222 {
3223 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3224 &need);
3225 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3226 _bfd_elf_swap_verneed_out (output_bfd, &need,
3227 (Elf_External_Verneed *) p);
3228 p += sizeof (Elf_External_Verneed);
3229 for (i = 0; i < need.vn_cnt; ++i)
3230 {
3231 _bfd_elf_swap_vernaux_in (output_bfd,
3232 (Elf_External_Vernaux *) p, &needaux);
3233 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3234 needaux.vna_name);
3235 _bfd_elf_swap_vernaux_out (output_bfd,
3236 &needaux,
3237 (Elf_External_Vernaux *) p);
3238 p += sizeof (Elf_External_Vernaux);
3239 }
3240 }
3241 while (need.vn_next);
3242 }
3243
3244 return TRUE;
3245 }
3246 \f
3247 /* Add symbols from an ELF object file to the linker hash table. */
3248
3249 static bfd_boolean
3250 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3251 {
3252 Elf_Internal_Shdr *hdr;
3253 bfd_size_type symcount;
3254 bfd_size_type extsymcount;
3255 bfd_size_type extsymoff;
3256 struct elf_link_hash_entry **sym_hash;
3257 bfd_boolean dynamic;
3258 Elf_External_Versym *extversym = NULL;
3259 Elf_External_Versym *ever;
3260 struct elf_link_hash_entry *weaks;
3261 struct elf_link_hash_entry **nondeflt_vers = NULL;
3262 bfd_size_type nondeflt_vers_cnt = 0;
3263 Elf_Internal_Sym *isymbuf = NULL;
3264 Elf_Internal_Sym *isym;
3265 Elf_Internal_Sym *isymend;
3266 const struct elf_backend_data *bed;
3267 bfd_boolean add_needed;
3268 struct elf_link_hash_table *htab;
3269 bfd_size_type amt;
3270 void *alloc_mark = NULL;
3271 struct bfd_hash_entry **old_table = NULL;
3272 unsigned int old_size = 0;
3273 unsigned int old_count = 0;
3274 void *old_tab = NULL;
3275 void *old_hash;
3276 void *old_ent;
3277 struct bfd_link_hash_entry *old_undefs = NULL;
3278 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3279 long old_dynsymcount = 0;
3280 size_t tabsize = 0;
3281 size_t hashsize = 0;
3282
3283 htab = elf_hash_table (info);
3284 bed = get_elf_backend_data (abfd);
3285
3286 if ((abfd->flags & DYNAMIC) == 0)
3287 dynamic = FALSE;
3288 else
3289 {
3290 dynamic = TRUE;
3291
3292 /* You can't use -r against a dynamic object. Also, there's no
3293 hope of using a dynamic object which does not exactly match
3294 the format of the output file. */
3295 if (info->relocatable
3296 || !is_elf_hash_table (htab)
3297 || htab->root.creator != abfd->xvec)
3298 {
3299 if (info->relocatable)
3300 bfd_set_error (bfd_error_invalid_operation);
3301 else
3302 bfd_set_error (bfd_error_wrong_format);
3303 goto error_return;
3304 }
3305 }
3306
3307 /* As a GNU extension, any input sections which are named
3308 .gnu.warning.SYMBOL are treated as warning symbols for the given
3309 symbol. This differs from .gnu.warning sections, which generate
3310 warnings when they are included in an output file. */
3311 if (info->executable)
3312 {
3313 asection *s;
3314
3315 for (s = abfd->sections; s != NULL; s = s->next)
3316 {
3317 const char *name;
3318
3319 name = bfd_get_section_name (abfd, s);
3320 if (CONST_STRNEQ (name, ".gnu.warning."))
3321 {
3322 char *msg;
3323 bfd_size_type sz;
3324
3325 name += sizeof ".gnu.warning." - 1;
3326
3327 /* If this is a shared object, then look up the symbol
3328 in the hash table. If it is there, and it is already
3329 been defined, then we will not be using the entry
3330 from this shared object, so we don't need to warn.
3331 FIXME: If we see the definition in a regular object
3332 later on, we will warn, but we shouldn't. The only
3333 fix is to keep track of what warnings we are supposed
3334 to emit, and then handle them all at the end of the
3335 link. */
3336 if (dynamic)
3337 {
3338 struct elf_link_hash_entry *h;
3339
3340 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3341
3342 /* FIXME: What about bfd_link_hash_common? */
3343 if (h != NULL
3344 && (h->root.type == bfd_link_hash_defined
3345 || h->root.type == bfd_link_hash_defweak))
3346 {
3347 /* We don't want to issue this warning. Clobber
3348 the section size so that the warning does not
3349 get copied into the output file. */
3350 s->size = 0;
3351 continue;
3352 }
3353 }
3354
3355 sz = s->size;
3356 msg = bfd_alloc (abfd, sz + 1);
3357 if (msg == NULL)
3358 goto error_return;
3359
3360 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3361 goto error_return;
3362
3363 msg[sz] = '\0';
3364
3365 if (! (_bfd_generic_link_add_one_symbol
3366 (info, abfd, name, BSF_WARNING, s, 0, msg,
3367 FALSE, bed->collect, NULL)))
3368 goto error_return;
3369
3370 if (! info->relocatable)
3371 {
3372 /* Clobber the section size so that the warning does
3373 not get copied into the output file. */
3374 s->size = 0;
3375
3376 /* Also set SEC_EXCLUDE, so that symbols defined in
3377 the warning section don't get copied to the output. */
3378 s->flags |= SEC_EXCLUDE;
3379 }
3380 }
3381 }
3382 }
3383
3384 add_needed = TRUE;
3385 if (! dynamic)
3386 {
3387 /* If we are creating a shared library, create all the dynamic
3388 sections immediately. We need to attach them to something,
3389 so we attach them to this BFD, provided it is the right
3390 format. FIXME: If there are no input BFD's of the same
3391 format as the output, we can't make a shared library. */
3392 if (info->shared
3393 && is_elf_hash_table (htab)
3394 && htab->root.creator == abfd->xvec
3395 && !htab->dynamic_sections_created)
3396 {
3397 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3398 goto error_return;
3399 }
3400 }
3401 else if (!is_elf_hash_table (htab))
3402 goto error_return;
3403 else
3404 {
3405 asection *s;
3406 const char *soname = NULL;
3407 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3408 int ret;
3409
3410 /* ld --just-symbols and dynamic objects don't mix very well.
3411 ld shouldn't allow it. */
3412 if ((s = abfd->sections) != NULL
3413 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3414 abort ();
3415
3416 /* If this dynamic lib was specified on the command line with
3417 --as-needed in effect, then we don't want to add a DT_NEEDED
3418 tag unless the lib is actually used. Similary for libs brought
3419 in by another lib's DT_NEEDED. When --no-add-needed is used
3420 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3421 any dynamic library in DT_NEEDED tags in the dynamic lib at
3422 all. */
3423 add_needed = (elf_dyn_lib_class (abfd)
3424 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3425 | DYN_NO_NEEDED)) == 0;
3426
3427 s = bfd_get_section_by_name (abfd, ".dynamic");
3428 if (s != NULL)
3429 {
3430 bfd_byte *dynbuf;
3431 bfd_byte *extdyn;
3432 int elfsec;
3433 unsigned long shlink;
3434
3435 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3436 goto error_free_dyn;
3437
3438 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3439 if (elfsec == -1)
3440 goto error_free_dyn;
3441 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3442
3443 for (extdyn = dynbuf;
3444 extdyn < dynbuf + s->size;
3445 extdyn += bed->s->sizeof_dyn)
3446 {
3447 Elf_Internal_Dyn dyn;
3448
3449 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3450 if (dyn.d_tag == DT_SONAME)
3451 {
3452 unsigned int tagv = dyn.d_un.d_val;
3453 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3454 if (soname == NULL)
3455 goto error_free_dyn;
3456 }
3457 if (dyn.d_tag == DT_NEEDED)
3458 {
3459 struct bfd_link_needed_list *n, **pn;
3460 char *fnm, *anm;
3461 unsigned int tagv = dyn.d_un.d_val;
3462
3463 amt = sizeof (struct bfd_link_needed_list);
3464 n = bfd_alloc (abfd, amt);
3465 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3466 if (n == NULL || fnm == NULL)
3467 goto error_free_dyn;
3468 amt = strlen (fnm) + 1;
3469 anm = bfd_alloc (abfd, amt);
3470 if (anm == NULL)
3471 goto error_free_dyn;
3472 memcpy (anm, fnm, amt);
3473 n->name = anm;
3474 n->by = abfd;
3475 n->next = NULL;
3476 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3477 ;
3478 *pn = n;
3479 }
3480 if (dyn.d_tag == DT_RUNPATH)
3481 {
3482 struct bfd_link_needed_list *n, **pn;
3483 char *fnm, *anm;
3484 unsigned int tagv = dyn.d_un.d_val;
3485
3486 amt = sizeof (struct bfd_link_needed_list);
3487 n = bfd_alloc (abfd, amt);
3488 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3489 if (n == NULL || fnm == NULL)
3490 goto error_free_dyn;
3491 amt = strlen (fnm) + 1;
3492 anm = bfd_alloc (abfd, amt);
3493 if (anm == NULL)
3494 goto error_free_dyn;
3495 memcpy (anm, fnm, amt);
3496 n->name = anm;
3497 n->by = abfd;
3498 n->next = NULL;
3499 for (pn = & runpath;
3500 *pn != NULL;
3501 pn = &(*pn)->next)
3502 ;
3503 *pn = n;
3504 }
3505 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3506 if (!runpath && dyn.d_tag == DT_RPATH)
3507 {
3508 struct bfd_link_needed_list *n, **pn;
3509 char *fnm, *anm;
3510 unsigned int tagv = dyn.d_un.d_val;
3511
3512 amt = sizeof (struct bfd_link_needed_list);
3513 n = bfd_alloc (abfd, amt);
3514 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3515 if (n == NULL || fnm == NULL)
3516 goto error_free_dyn;
3517 amt = strlen (fnm) + 1;
3518 anm = bfd_alloc (abfd, amt);
3519 if (anm == NULL)
3520 {
3521 error_free_dyn:
3522 free (dynbuf);
3523 goto error_return;
3524 }
3525 memcpy (anm, fnm, amt);
3526 n->name = anm;
3527 n->by = abfd;
3528 n->next = NULL;
3529 for (pn = & rpath;
3530 *pn != NULL;
3531 pn = &(*pn)->next)
3532 ;
3533 *pn = n;
3534 }
3535 }
3536
3537 free (dynbuf);
3538 }
3539
3540 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3541 frees all more recently bfd_alloc'd blocks as well. */
3542 if (runpath)
3543 rpath = runpath;
3544
3545 if (rpath)
3546 {
3547 struct bfd_link_needed_list **pn;
3548 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3549 ;
3550 *pn = rpath;
3551 }
3552
3553 /* We do not want to include any of the sections in a dynamic
3554 object in the output file. We hack by simply clobbering the
3555 list of sections in the BFD. This could be handled more
3556 cleanly by, say, a new section flag; the existing
3557 SEC_NEVER_LOAD flag is not the one we want, because that one
3558 still implies that the section takes up space in the output
3559 file. */
3560 bfd_section_list_clear (abfd);
3561
3562 /* Find the name to use in a DT_NEEDED entry that refers to this
3563 object. If the object has a DT_SONAME entry, we use it.
3564 Otherwise, if the generic linker stuck something in
3565 elf_dt_name, we use that. Otherwise, we just use the file
3566 name. */
3567 if (soname == NULL || *soname == '\0')
3568 {
3569 soname = elf_dt_name (abfd);
3570 if (soname == NULL || *soname == '\0')
3571 soname = bfd_get_filename (abfd);
3572 }
3573
3574 /* Save the SONAME because sometimes the linker emulation code
3575 will need to know it. */
3576 elf_dt_name (abfd) = soname;
3577
3578 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3579 if (ret < 0)
3580 goto error_return;
3581
3582 /* If we have already included this dynamic object in the
3583 link, just ignore it. There is no reason to include a
3584 particular dynamic object more than once. */
3585 if (ret > 0)
3586 return TRUE;
3587 }
3588
3589 /* If this is a dynamic object, we always link against the .dynsym
3590 symbol table, not the .symtab symbol table. The dynamic linker
3591 will only see the .dynsym symbol table, so there is no reason to
3592 look at .symtab for a dynamic object. */
3593
3594 if (! dynamic || elf_dynsymtab (abfd) == 0)
3595 hdr = &elf_tdata (abfd)->symtab_hdr;
3596 else
3597 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3598
3599 symcount = hdr->sh_size / bed->s->sizeof_sym;
3600
3601 /* The sh_info field of the symtab header tells us where the
3602 external symbols start. We don't care about the local symbols at
3603 this point. */
3604 if (elf_bad_symtab (abfd))
3605 {
3606 extsymcount = symcount;
3607 extsymoff = 0;
3608 }
3609 else
3610 {
3611 extsymcount = symcount - hdr->sh_info;
3612 extsymoff = hdr->sh_info;
3613 }
3614
3615 sym_hash = NULL;
3616 if (extsymcount != 0)
3617 {
3618 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3619 NULL, NULL, NULL);
3620 if (isymbuf == NULL)
3621 goto error_return;
3622
3623 /* We store a pointer to the hash table entry for each external
3624 symbol. */
3625 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3626 sym_hash = bfd_alloc (abfd, amt);
3627 if (sym_hash == NULL)
3628 goto error_free_sym;
3629 elf_sym_hashes (abfd) = sym_hash;
3630 }
3631
3632 if (dynamic)
3633 {
3634 /* Read in any version definitions. */
3635 if (!_bfd_elf_slurp_version_tables (abfd,
3636 info->default_imported_symver))
3637 goto error_free_sym;
3638
3639 /* Read in the symbol versions, but don't bother to convert them
3640 to internal format. */
3641 if (elf_dynversym (abfd) != 0)
3642 {
3643 Elf_Internal_Shdr *versymhdr;
3644
3645 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3646 extversym = bfd_malloc (versymhdr->sh_size);
3647 if (extversym == NULL)
3648 goto error_free_sym;
3649 amt = versymhdr->sh_size;
3650 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3651 || bfd_bread (extversym, amt, abfd) != amt)
3652 goto error_free_vers;
3653 }
3654 }
3655
3656 /* If we are loading an as-needed shared lib, save the symbol table
3657 state before we start adding symbols. If the lib turns out
3658 to be unneeded, restore the state. */
3659 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3660 {
3661 unsigned int i;
3662 size_t entsize;
3663
3664 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3665 {
3666 struct bfd_hash_entry *p;
3667 struct elf_link_hash_entry *h;
3668
3669 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3670 {
3671 h = (struct elf_link_hash_entry *) p;
3672 entsize += htab->root.table.entsize;
3673 if (h->root.type == bfd_link_hash_warning)
3674 entsize += htab->root.table.entsize;
3675 }
3676 }
3677
3678 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3679 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3680 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3681 if (old_tab == NULL)
3682 goto error_free_vers;
3683
3684 /* Remember the current objalloc pointer, so that all mem for
3685 symbols added can later be reclaimed. */
3686 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3687 if (alloc_mark == NULL)
3688 goto error_free_vers;
3689
3690 /* Make a special call to the linker "notice" function to
3691 tell it that we are about to handle an as-needed lib. */
3692 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3693 notice_as_needed))
3694 goto error_free_vers;
3695
3696 /* Clone the symbol table and sym hashes. Remember some
3697 pointers into the symbol table, and dynamic symbol count. */
3698 old_hash = (char *) old_tab + tabsize;
3699 old_ent = (char *) old_hash + hashsize;
3700 memcpy (old_tab, htab->root.table.table, tabsize);
3701 memcpy (old_hash, sym_hash, hashsize);
3702 old_undefs = htab->root.undefs;
3703 old_undefs_tail = htab->root.undefs_tail;
3704 old_table = htab->root.table.table;
3705 old_size = htab->root.table.size;
3706 old_count = htab->root.table.count;
3707 old_dynsymcount = htab->dynsymcount;
3708
3709 for (i = 0; i < htab->root.table.size; i++)
3710 {
3711 struct bfd_hash_entry *p;
3712 struct elf_link_hash_entry *h;
3713
3714 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3715 {
3716 memcpy (old_ent, p, htab->root.table.entsize);
3717 old_ent = (char *) old_ent + htab->root.table.entsize;
3718 h = (struct elf_link_hash_entry *) p;
3719 if (h->root.type == bfd_link_hash_warning)
3720 {
3721 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3722 old_ent = (char *) old_ent + htab->root.table.entsize;
3723 }
3724 }
3725 }
3726 }
3727
3728 weaks = NULL;
3729 ever = extversym != NULL ? extversym + extsymoff : NULL;
3730 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3731 isym < isymend;
3732 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3733 {
3734 int bind;
3735 bfd_vma value;
3736 asection *sec, *new_sec;
3737 flagword flags;
3738 const char *name;
3739 struct elf_link_hash_entry *h;
3740 bfd_boolean definition;
3741 bfd_boolean size_change_ok;
3742 bfd_boolean type_change_ok;
3743 bfd_boolean new_weakdef;
3744 bfd_boolean override;
3745 bfd_boolean common;
3746 unsigned int old_alignment;
3747 bfd *old_bfd;
3748
3749 override = FALSE;
3750
3751 flags = BSF_NO_FLAGS;
3752 sec = NULL;
3753 value = isym->st_value;
3754 *sym_hash = NULL;
3755 common = bed->common_definition (isym);
3756
3757 bind = ELF_ST_BIND (isym->st_info);
3758 if (bind == STB_LOCAL)
3759 {
3760 /* This should be impossible, since ELF requires that all
3761 global symbols follow all local symbols, and that sh_info
3762 point to the first global symbol. Unfortunately, Irix 5
3763 screws this up. */
3764 continue;
3765 }
3766 else if (bind == STB_GLOBAL)
3767 {
3768 if (isym->st_shndx != SHN_UNDEF && !common)
3769 flags = BSF_GLOBAL;
3770 }
3771 else if (bind == STB_WEAK)
3772 flags = BSF_WEAK;
3773 else
3774 {
3775 /* Leave it up to the processor backend. */
3776 }
3777
3778 if (isym->st_shndx == SHN_UNDEF)
3779 sec = bfd_und_section_ptr;
3780 else if (isym->st_shndx < SHN_LORESERVE
3781 || isym->st_shndx > SHN_HIRESERVE)
3782 {
3783 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3784 if (sec == NULL)
3785 sec = bfd_abs_section_ptr;
3786 else if (sec->kept_section)
3787 {
3788 /* Symbols from discarded section are undefined. We keep
3789 its visibility. */
3790 sec = bfd_und_section_ptr;
3791 isym->st_shndx = SHN_UNDEF;
3792 }
3793 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3794 value -= sec->vma;
3795 }
3796 else if (isym->st_shndx == SHN_ABS)
3797 sec = bfd_abs_section_ptr;
3798 else if (isym->st_shndx == SHN_COMMON)
3799 {
3800 sec = bfd_com_section_ptr;
3801 /* What ELF calls the size we call the value. What ELF
3802 calls the value we call the alignment. */
3803 value = isym->st_size;
3804 }
3805 else
3806 {
3807 /* Leave it up to the processor backend. */
3808 }
3809
3810 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3811 isym->st_name);
3812 if (name == NULL)
3813 goto error_free_vers;
3814
3815 if (isym->st_shndx == SHN_COMMON
3816 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3817 && !info->relocatable)
3818 {
3819 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3820
3821 if (tcomm == NULL)
3822 {
3823 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3824 (SEC_ALLOC
3825 | SEC_IS_COMMON
3826 | SEC_LINKER_CREATED
3827 | SEC_THREAD_LOCAL));
3828 if (tcomm == NULL)
3829 goto error_free_vers;
3830 }
3831 sec = tcomm;
3832 }
3833 else if (bed->elf_add_symbol_hook)
3834 {
3835 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3836 &sec, &value))
3837 goto error_free_vers;
3838
3839 /* The hook function sets the name to NULL if this symbol
3840 should be skipped for some reason. */
3841 if (name == NULL)
3842 continue;
3843 }
3844
3845 /* Sanity check that all possibilities were handled. */
3846 if (sec == NULL)
3847 {
3848 bfd_set_error (bfd_error_bad_value);
3849 goto error_free_vers;
3850 }
3851
3852 if (bfd_is_und_section (sec)
3853 || bfd_is_com_section (sec))
3854 definition = FALSE;
3855 else
3856 definition = TRUE;
3857
3858 size_change_ok = FALSE;
3859 type_change_ok = bed->type_change_ok;
3860 old_alignment = 0;
3861 old_bfd = NULL;
3862 new_sec = sec;
3863
3864 if (is_elf_hash_table (htab))
3865 {
3866 Elf_Internal_Versym iver;
3867 unsigned int vernum = 0;
3868 bfd_boolean skip;
3869
3870 if (ever == NULL)
3871 {
3872 if (info->default_imported_symver)
3873 /* Use the default symbol version created earlier. */
3874 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3875 else
3876 iver.vs_vers = 0;
3877 }
3878 else
3879 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3880
3881 vernum = iver.vs_vers & VERSYM_VERSION;
3882
3883 /* If this is a hidden symbol, or if it is not version
3884 1, we append the version name to the symbol name.
3885 However, we do not modify a non-hidden absolute symbol
3886 if it is not a function, because it might be the version
3887 symbol itself. FIXME: What if it isn't? */
3888 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3889 || (vernum > 1
3890 && (!bfd_is_abs_section (sec)
3891 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3892 {
3893 const char *verstr;
3894 size_t namelen, verlen, newlen;
3895 char *newname, *p;
3896
3897 if (isym->st_shndx != SHN_UNDEF)
3898 {
3899 if (vernum > elf_tdata (abfd)->cverdefs)
3900 verstr = NULL;
3901 else if (vernum > 1)
3902 verstr =
3903 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3904 else
3905 verstr = "";
3906
3907 if (verstr == NULL)
3908 {
3909 (*_bfd_error_handler)
3910 (_("%B: %s: invalid version %u (max %d)"),
3911 abfd, name, vernum,
3912 elf_tdata (abfd)->cverdefs);
3913 bfd_set_error (bfd_error_bad_value);
3914 goto error_free_vers;
3915 }
3916 }
3917 else
3918 {
3919 /* We cannot simply test for the number of
3920 entries in the VERNEED section since the
3921 numbers for the needed versions do not start
3922 at 0. */
3923 Elf_Internal_Verneed *t;
3924
3925 verstr = NULL;
3926 for (t = elf_tdata (abfd)->verref;
3927 t != NULL;
3928 t = t->vn_nextref)
3929 {
3930 Elf_Internal_Vernaux *a;
3931
3932 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3933 {
3934 if (a->vna_other == vernum)
3935 {
3936 verstr = a->vna_nodename;
3937 break;
3938 }
3939 }
3940 if (a != NULL)
3941 break;
3942 }
3943 if (verstr == NULL)
3944 {
3945 (*_bfd_error_handler)
3946 (_("%B: %s: invalid needed version %d"),
3947 abfd, name, vernum);
3948 bfd_set_error (bfd_error_bad_value);
3949 goto error_free_vers;
3950 }
3951 }
3952
3953 namelen = strlen (name);
3954 verlen = strlen (verstr);
3955 newlen = namelen + verlen + 2;
3956 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3957 && isym->st_shndx != SHN_UNDEF)
3958 ++newlen;
3959
3960 newname = bfd_hash_allocate (&htab->root.table, newlen);
3961 if (newname == NULL)
3962 goto error_free_vers;
3963 memcpy (newname, name, namelen);
3964 p = newname + namelen;
3965 *p++ = ELF_VER_CHR;
3966 /* If this is a defined non-hidden version symbol,
3967 we add another @ to the name. This indicates the
3968 default version of the symbol. */
3969 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3970 && isym->st_shndx != SHN_UNDEF)
3971 *p++ = ELF_VER_CHR;
3972 memcpy (p, verstr, verlen + 1);
3973
3974 name = newname;
3975 }
3976
3977 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3978 &value, &old_alignment,
3979 sym_hash, &skip, &override,
3980 &type_change_ok, &size_change_ok))
3981 goto error_free_vers;
3982
3983 if (skip)
3984 continue;
3985
3986 if (override)
3987 definition = FALSE;
3988
3989 h = *sym_hash;
3990 while (h->root.type == bfd_link_hash_indirect
3991 || h->root.type == bfd_link_hash_warning)
3992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3993
3994 /* Remember the old alignment if this is a common symbol, so
3995 that we don't reduce the alignment later on. We can't
3996 check later, because _bfd_generic_link_add_one_symbol
3997 will set a default for the alignment which we want to
3998 override. We also remember the old bfd where the existing
3999 definition comes from. */
4000 switch (h->root.type)
4001 {
4002 default:
4003 break;
4004
4005 case bfd_link_hash_defined:
4006 case bfd_link_hash_defweak:
4007 old_bfd = h->root.u.def.section->owner;
4008 break;
4009
4010 case bfd_link_hash_common:
4011 old_bfd = h->root.u.c.p->section->owner;
4012 old_alignment = h->root.u.c.p->alignment_power;
4013 break;
4014 }
4015
4016 if (elf_tdata (abfd)->verdef != NULL
4017 && ! override
4018 && vernum > 1
4019 && definition)
4020 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4021 }
4022
4023 if (! (_bfd_generic_link_add_one_symbol
4024 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4025 (struct bfd_link_hash_entry **) sym_hash)))
4026 goto error_free_vers;
4027
4028 h = *sym_hash;
4029 while (h->root.type == bfd_link_hash_indirect
4030 || h->root.type == bfd_link_hash_warning)
4031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4032 *sym_hash = h;
4033
4034 new_weakdef = FALSE;
4035 if (dynamic
4036 && definition
4037 && (flags & BSF_WEAK) != 0
4038 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4039 && is_elf_hash_table (htab)
4040 && h->u.weakdef == NULL)
4041 {
4042 /* Keep a list of all weak defined non function symbols from
4043 a dynamic object, using the weakdef field. Later in this
4044 function we will set the weakdef field to the correct
4045 value. We only put non-function symbols from dynamic
4046 objects on this list, because that happens to be the only
4047 time we need to know the normal symbol corresponding to a
4048 weak symbol, and the information is time consuming to
4049 figure out. If the weakdef field is not already NULL,
4050 then this symbol was already defined by some previous
4051 dynamic object, and we will be using that previous
4052 definition anyhow. */
4053
4054 h->u.weakdef = weaks;
4055 weaks = h;
4056 new_weakdef = TRUE;
4057 }
4058
4059 /* Set the alignment of a common symbol. */
4060 if ((common || bfd_is_com_section (sec))
4061 && h->root.type == bfd_link_hash_common)
4062 {
4063 unsigned int align;
4064
4065 if (common)
4066 align = bfd_log2 (isym->st_value);
4067 else
4068 {
4069 /* The new symbol is a common symbol in a shared object.
4070 We need to get the alignment from the section. */
4071 align = new_sec->alignment_power;
4072 }
4073 if (align > old_alignment
4074 /* Permit an alignment power of zero if an alignment of one
4075 is specified and no other alignments have been specified. */
4076 || (isym->st_value == 1 && old_alignment == 0))
4077 h->root.u.c.p->alignment_power = align;
4078 else
4079 h->root.u.c.p->alignment_power = old_alignment;
4080 }
4081
4082 if (is_elf_hash_table (htab))
4083 {
4084 bfd_boolean dynsym;
4085
4086 /* Check the alignment when a common symbol is involved. This
4087 can change when a common symbol is overridden by a normal
4088 definition or a common symbol is ignored due to the old
4089 normal definition. We need to make sure the maximum
4090 alignment is maintained. */
4091 if ((old_alignment || common)
4092 && h->root.type != bfd_link_hash_common)
4093 {
4094 unsigned int common_align;
4095 unsigned int normal_align;
4096 unsigned int symbol_align;
4097 bfd *normal_bfd;
4098 bfd *common_bfd;
4099
4100 symbol_align = ffs (h->root.u.def.value) - 1;
4101 if (h->root.u.def.section->owner != NULL
4102 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4103 {
4104 normal_align = h->root.u.def.section->alignment_power;
4105 if (normal_align > symbol_align)
4106 normal_align = symbol_align;
4107 }
4108 else
4109 normal_align = symbol_align;
4110
4111 if (old_alignment)
4112 {
4113 common_align = old_alignment;
4114 common_bfd = old_bfd;
4115 normal_bfd = abfd;
4116 }
4117 else
4118 {
4119 common_align = bfd_log2 (isym->st_value);
4120 common_bfd = abfd;
4121 normal_bfd = old_bfd;
4122 }
4123
4124 if (normal_align < common_align)
4125 {
4126 /* PR binutils/2735 */
4127 if (normal_bfd == NULL)
4128 (*_bfd_error_handler)
4129 (_("Warning: alignment %u of common symbol `%s' in %B"
4130 " is greater than the alignment (%u) of its section %A"),
4131 common_bfd, h->root.u.def.section,
4132 1 << common_align, name, 1 << normal_align);
4133 else
4134 (*_bfd_error_handler)
4135 (_("Warning: alignment %u of symbol `%s' in %B"
4136 " is smaller than %u in %B"),
4137 normal_bfd, common_bfd,
4138 1 << normal_align, name, 1 << common_align);
4139 }
4140 }
4141
4142 /* Remember the symbol size if it isn't undefined. */
4143 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4144 && (definition || h->size == 0))
4145 {
4146 if (h->size != 0
4147 && h->size != isym->st_size
4148 && ! size_change_ok)
4149 (*_bfd_error_handler)
4150 (_("Warning: size of symbol `%s' changed"
4151 " from %lu in %B to %lu in %B"),
4152 old_bfd, abfd,
4153 name, (unsigned long) h->size,
4154 (unsigned long) isym->st_size);
4155
4156 h->size = isym->st_size;
4157 }
4158
4159 /* If this is a common symbol, then we always want H->SIZE
4160 to be the size of the common symbol. The code just above
4161 won't fix the size if a common symbol becomes larger. We
4162 don't warn about a size change here, because that is
4163 covered by --warn-common. Allow changed between different
4164 function types. */
4165 if (h->root.type == bfd_link_hash_common)
4166 h->size = h->root.u.c.size;
4167
4168 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4169 && (definition || h->type == STT_NOTYPE))
4170 {
4171 if (h->type != STT_NOTYPE
4172 && h->type != ELF_ST_TYPE (isym->st_info)
4173 && ! type_change_ok)
4174 (*_bfd_error_handler)
4175 (_("Warning: type of symbol `%s' changed"
4176 " from %d to %d in %B"),
4177 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4178
4179 h->type = ELF_ST_TYPE (isym->st_info);
4180 }
4181
4182 /* If st_other has a processor-specific meaning, specific
4183 code might be needed here. We never merge the visibility
4184 attribute with the one from a dynamic object. */
4185 if (bed->elf_backend_merge_symbol_attribute)
4186 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4187 dynamic);
4188
4189 /* If this symbol has default visibility and the user has requested
4190 we not re-export it, then mark it as hidden. */
4191 if (definition && !dynamic
4192 && (abfd->no_export
4193 || (abfd->my_archive && abfd->my_archive->no_export))
4194 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4195 isym->st_other = (STV_HIDDEN
4196 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4197
4198 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4199 {
4200 unsigned char hvis, symvis, other, nvis;
4201
4202 /* Only merge the visibility. Leave the remainder of the
4203 st_other field to elf_backend_merge_symbol_attribute. */
4204 other = h->other & ~ELF_ST_VISIBILITY (-1);
4205
4206 /* Combine visibilities, using the most constraining one. */
4207 hvis = ELF_ST_VISIBILITY (h->other);
4208 symvis = ELF_ST_VISIBILITY (isym->st_other);
4209 if (! hvis)
4210 nvis = symvis;
4211 else if (! symvis)
4212 nvis = hvis;
4213 else
4214 nvis = hvis < symvis ? hvis : symvis;
4215
4216 h->other = other | nvis;
4217 }
4218
4219 /* Set a flag in the hash table entry indicating the type of
4220 reference or definition we just found. Keep a count of
4221 the number of dynamic symbols we find. A dynamic symbol
4222 is one which is referenced or defined by both a regular
4223 object and a shared object. */
4224 dynsym = FALSE;
4225 if (! dynamic)
4226 {
4227 if (! definition)
4228 {
4229 h->ref_regular = 1;
4230 if (bind != STB_WEAK)
4231 h->ref_regular_nonweak = 1;
4232 }
4233 else
4234 h->def_regular = 1;
4235 if (! info->executable
4236 || h->def_dynamic
4237 || h->ref_dynamic)
4238 dynsym = TRUE;
4239 }
4240 else
4241 {
4242 if (! definition)
4243 h->ref_dynamic = 1;
4244 else
4245 h->def_dynamic = 1;
4246 if (h->def_regular
4247 || h->ref_regular
4248 || (h->u.weakdef != NULL
4249 && ! new_weakdef
4250 && h->u.weakdef->dynindx != -1))
4251 dynsym = TRUE;
4252 }
4253
4254 if (definition && (sec->flags & SEC_DEBUGGING))
4255 {
4256 /* We don't want to make debug symbol dynamic. */
4257 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4258 dynsym = FALSE;
4259 }
4260
4261 /* Check to see if we need to add an indirect symbol for
4262 the default name. */
4263 if (definition || h->root.type == bfd_link_hash_common)
4264 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4265 &sec, &value, &dynsym,
4266 override))
4267 goto error_free_vers;
4268
4269 if (definition && !dynamic)
4270 {
4271 char *p = strchr (name, ELF_VER_CHR);
4272 if (p != NULL && p[1] != ELF_VER_CHR)
4273 {
4274 /* Queue non-default versions so that .symver x, x@FOO
4275 aliases can be checked. */
4276 if (!nondeflt_vers)
4277 {
4278 amt = ((isymend - isym + 1)
4279 * sizeof (struct elf_link_hash_entry *));
4280 nondeflt_vers = bfd_malloc (amt);
4281 }
4282 nondeflt_vers[nondeflt_vers_cnt++] = h;
4283 }
4284 }
4285
4286 if (dynsym && h->dynindx == -1)
4287 {
4288 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4289 goto error_free_vers;
4290 if (h->u.weakdef != NULL
4291 && ! new_weakdef
4292 && h->u.weakdef->dynindx == -1)
4293 {
4294 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4295 goto error_free_vers;
4296 }
4297 }
4298 else if (dynsym && h->dynindx != -1)
4299 /* If the symbol already has a dynamic index, but
4300 visibility says it should not be visible, turn it into
4301 a local symbol. */
4302 switch (ELF_ST_VISIBILITY (h->other))
4303 {
4304 case STV_INTERNAL:
4305 case STV_HIDDEN:
4306 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4307 dynsym = FALSE;
4308 break;
4309 }
4310
4311 if (!add_needed
4312 && definition
4313 && dynsym
4314 && h->ref_regular)
4315 {
4316 int ret;
4317 const char *soname = elf_dt_name (abfd);
4318
4319 /* A symbol from a library loaded via DT_NEEDED of some
4320 other library is referenced by a regular object.
4321 Add a DT_NEEDED entry for it. Issue an error if
4322 --no-add-needed is used. */
4323 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4324 {
4325 (*_bfd_error_handler)
4326 (_("%s: invalid DSO for symbol `%s' definition"),
4327 abfd, name);
4328 bfd_set_error (bfd_error_bad_value);
4329 goto error_free_vers;
4330 }
4331
4332 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4333
4334 add_needed = TRUE;
4335 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4336 if (ret < 0)
4337 goto error_free_vers;
4338
4339 BFD_ASSERT (ret == 0);
4340 }
4341 }
4342 }
4343
4344 if (extversym != NULL)
4345 {
4346 free (extversym);
4347 extversym = NULL;
4348 }
4349
4350 if (isymbuf != NULL)
4351 {
4352 free (isymbuf);
4353 isymbuf = NULL;
4354 }
4355
4356 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4357 {
4358 unsigned int i;
4359
4360 /* Restore the symbol table. */
4361 if (bed->as_needed_cleanup)
4362 (*bed->as_needed_cleanup) (abfd, info);
4363 old_hash = (char *) old_tab + tabsize;
4364 old_ent = (char *) old_hash + hashsize;
4365 sym_hash = elf_sym_hashes (abfd);
4366 htab->root.table.table = old_table;
4367 htab->root.table.size = old_size;
4368 htab->root.table.count = old_count;
4369 memcpy (htab->root.table.table, old_tab, tabsize);
4370 memcpy (sym_hash, old_hash, hashsize);
4371 htab->root.undefs = old_undefs;
4372 htab->root.undefs_tail = old_undefs_tail;
4373 for (i = 0; i < htab->root.table.size; i++)
4374 {
4375 struct bfd_hash_entry *p;
4376 struct elf_link_hash_entry *h;
4377
4378 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4379 {
4380 h = (struct elf_link_hash_entry *) p;
4381 if (h->root.type == bfd_link_hash_warning)
4382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4383 if (h->dynindx >= old_dynsymcount)
4384 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4385
4386 memcpy (p, old_ent, htab->root.table.entsize);
4387 old_ent = (char *) old_ent + htab->root.table.entsize;
4388 h = (struct elf_link_hash_entry *) p;
4389 if (h->root.type == bfd_link_hash_warning)
4390 {
4391 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4392 old_ent = (char *) old_ent + htab->root.table.entsize;
4393 }
4394 }
4395 }
4396
4397 /* Make a special call to the linker "notice" function to
4398 tell it that symbols added for crefs may need to be removed. */
4399 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4400 notice_not_needed))
4401 goto error_free_vers;
4402
4403 free (old_tab);
4404 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4405 alloc_mark);
4406 if (nondeflt_vers != NULL)
4407 free (nondeflt_vers);
4408 return TRUE;
4409 }
4410
4411 if (old_tab != NULL)
4412 {
4413 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4414 notice_needed))
4415 goto error_free_vers;
4416 free (old_tab);
4417 old_tab = NULL;
4418 }
4419
4420 /* Now that all the symbols from this input file are created, handle
4421 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4422 if (nondeflt_vers != NULL)
4423 {
4424 bfd_size_type cnt, symidx;
4425
4426 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4427 {
4428 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4429 char *shortname, *p;
4430
4431 p = strchr (h->root.root.string, ELF_VER_CHR);
4432 if (p == NULL
4433 || (h->root.type != bfd_link_hash_defined
4434 && h->root.type != bfd_link_hash_defweak))
4435 continue;
4436
4437 amt = p - h->root.root.string;
4438 shortname = bfd_malloc (amt + 1);
4439 memcpy (shortname, h->root.root.string, amt);
4440 shortname[amt] = '\0';
4441
4442 hi = (struct elf_link_hash_entry *)
4443 bfd_link_hash_lookup (&htab->root, shortname,
4444 FALSE, FALSE, FALSE);
4445 if (hi != NULL
4446 && hi->root.type == h->root.type
4447 && hi->root.u.def.value == h->root.u.def.value
4448 && hi->root.u.def.section == h->root.u.def.section)
4449 {
4450 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4451 hi->root.type = bfd_link_hash_indirect;
4452 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4453 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4454 sym_hash = elf_sym_hashes (abfd);
4455 if (sym_hash)
4456 for (symidx = 0; symidx < extsymcount; ++symidx)
4457 if (sym_hash[symidx] == hi)
4458 {
4459 sym_hash[symidx] = h;
4460 break;
4461 }
4462 }
4463 free (shortname);
4464 }
4465 free (nondeflt_vers);
4466 nondeflt_vers = NULL;
4467 }
4468
4469 /* Now set the weakdefs field correctly for all the weak defined
4470 symbols we found. The only way to do this is to search all the
4471 symbols. Since we only need the information for non functions in
4472 dynamic objects, that's the only time we actually put anything on
4473 the list WEAKS. We need this information so that if a regular
4474 object refers to a symbol defined weakly in a dynamic object, the
4475 real symbol in the dynamic object is also put in the dynamic
4476 symbols; we also must arrange for both symbols to point to the
4477 same memory location. We could handle the general case of symbol
4478 aliasing, but a general symbol alias can only be generated in
4479 assembler code, handling it correctly would be very time
4480 consuming, and other ELF linkers don't handle general aliasing
4481 either. */
4482 if (weaks != NULL)
4483 {
4484 struct elf_link_hash_entry **hpp;
4485 struct elf_link_hash_entry **hppend;
4486 struct elf_link_hash_entry **sorted_sym_hash;
4487 struct elf_link_hash_entry *h;
4488 size_t sym_count;
4489
4490 /* Since we have to search the whole symbol list for each weak
4491 defined symbol, search time for N weak defined symbols will be
4492 O(N^2). Binary search will cut it down to O(NlogN). */
4493 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4494 sorted_sym_hash = bfd_malloc (amt);
4495 if (sorted_sym_hash == NULL)
4496 goto error_return;
4497 sym_hash = sorted_sym_hash;
4498 hpp = elf_sym_hashes (abfd);
4499 hppend = hpp + extsymcount;
4500 sym_count = 0;
4501 for (; hpp < hppend; hpp++)
4502 {
4503 h = *hpp;
4504 if (h != NULL
4505 && h->root.type == bfd_link_hash_defined
4506 && !bed->is_function_type (h->type))
4507 {
4508 *sym_hash = h;
4509 sym_hash++;
4510 sym_count++;
4511 }
4512 }
4513
4514 qsort (sorted_sym_hash, sym_count,
4515 sizeof (struct elf_link_hash_entry *),
4516 elf_sort_symbol);
4517
4518 while (weaks != NULL)
4519 {
4520 struct elf_link_hash_entry *hlook;
4521 asection *slook;
4522 bfd_vma vlook;
4523 long ilook;
4524 size_t i, j, idx;
4525
4526 hlook = weaks;
4527 weaks = hlook->u.weakdef;
4528 hlook->u.weakdef = NULL;
4529
4530 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4531 || hlook->root.type == bfd_link_hash_defweak
4532 || hlook->root.type == bfd_link_hash_common
4533 || hlook->root.type == bfd_link_hash_indirect);
4534 slook = hlook->root.u.def.section;
4535 vlook = hlook->root.u.def.value;
4536
4537 ilook = -1;
4538 i = 0;
4539 j = sym_count;
4540 while (i < j)
4541 {
4542 bfd_signed_vma vdiff;
4543 idx = (i + j) / 2;
4544 h = sorted_sym_hash [idx];
4545 vdiff = vlook - h->root.u.def.value;
4546 if (vdiff < 0)
4547 j = idx;
4548 else if (vdiff > 0)
4549 i = idx + 1;
4550 else
4551 {
4552 long sdiff = slook->id - h->root.u.def.section->id;
4553 if (sdiff < 0)
4554 j = idx;
4555 else if (sdiff > 0)
4556 i = idx + 1;
4557 else
4558 {
4559 ilook = idx;
4560 break;
4561 }
4562 }
4563 }
4564
4565 /* We didn't find a value/section match. */
4566 if (ilook == -1)
4567 continue;
4568
4569 for (i = ilook; i < sym_count; i++)
4570 {
4571 h = sorted_sym_hash [i];
4572
4573 /* Stop if value or section doesn't match. */
4574 if (h->root.u.def.value != vlook
4575 || h->root.u.def.section != slook)
4576 break;
4577 else if (h != hlook)
4578 {
4579 hlook->u.weakdef = h;
4580
4581 /* If the weak definition is in the list of dynamic
4582 symbols, make sure the real definition is put
4583 there as well. */
4584 if (hlook->dynindx != -1 && h->dynindx == -1)
4585 {
4586 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4587 goto error_return;
4588 }
4589
4590 /* If the real definition is in the list of dynamic
4591 symbols, make sure the weak definition is put
4592 there as well. If we don't do this, then the
4593 dynamic loader might not merge the entries for the
4594 real definition and the weak definition. */
4595 if (h->dynindx != -1 && hlook->dynindx == -1)
4596 {
4597 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4598 goto error_return;
4599 }
4600 break;
4601 }
4602 }
4603 }
4604
4605 free (sorted_sym_hash);
4606 }
4607
4608 if (bed->check_directives)
4609 (*bed->check_directives) (abfd, info);
4610
4611 /* If this object is the same format as the output object, and it is
4612 not a shared library, then let the backend look through the
4613 relocs.
4614
4615 This is required to build global offset table entries and to
4616 arrange for dynamic relocs. It is not required for the
4617 particular common case of linking non PIC code, even when linking
4618 against shared libraries, but unfortunately there is no way of
4619 knowing whether an object file has been compiled PIC or not.
4620 Looking through the relocs is not particularly time consuming.
4621 The problem is that we must either (1) keep the relocs in memory,
4622 which causes the linker to require additional runtime memory or
4623 (2) read the relocs twice from the input file, which wastes time.
4624 This would be a good case for using mmap.
4625
4626 I have no idea how to handle linking PIC code into a file of a
4627 different format. It probably can't be done. */
4628 if (! dynamic
4629 && is_elf_hash_table (htab)
4630 && htab->root.creator == abfd->xvec
4631 && bed->check_relocs != NULL)
4632 {
4633 asection *o;
4634
4635 for (o = abfd->sections; o != NULL; o = o->next)
4636 {
4637 Elf_Internal_Rela *internal_relocs;
4638 bfd_boolean ok;
4639
4640 if ((o->flags & SEC_RELOC) == 0
4641 || o->reloc_count == 0
4642 || ((info->strip == strip_all || info->strip == strip_debugger)
4643 && (o->flags & SEC_DEBUGGING) != 0)
4644 || bfd_is_abs_section (o->output_section))
4645 continue;
4646
4647 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4648 info->keep_memory);
4649 if (internal_relocs == NULL)
4650 goto error_return;
4651
4652 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4653
4654 if (elf_section_data (o)->relocs != internal_relocs)
4655 free (internal_relocs);
4656
4657 if (! ok)
4658 goto error_return;
4659 }
4660 }
4661
4662 /* If this is a non-traditional link, try to optimize the handling
4663 of the .stab/.stabstr sections. */
4664 if (! dynamic
4665 && ! info->traditional_format
4666 && is_elf_hash_table (htab)
4667 && (info->strip != strip_all && info->strip != strip_debugger))
4668 {
4669 asection *stabstr;
4670
4671 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4672 if (stabstr != NULL)
4673 {
4674 bfd_size_type string_offset = 0;
4675 asection *stab;
4676
4677 for (stab = abfd->sections; stab; stab = stab->next)
4678 if (CONST_STRNEQ (stab->name, ".stab")
4679 && (!stab->name[5] ||
4680 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4681 && (stab->flags & SEC_MERGE) == 0
4682 && !bfd_is_abs_section (stab->output_section))
4683 {
4684 struct bfd_elf_section_data *secdata;
4685
4686 secdata = elf_section_data (stab);
4687 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4688 stabstr, &secdata->sec_info,
4689 &string_offset))
4690 goto error_return;
4691 if (secdata->sec_info)
4692 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4693 }
4694 }
4695 }
4696
4697 if (is_elf_hash_table (htab) && add_needed)
4698 {
4699 /* Add this bfd to the loaded list. */
4700 struct elf_link_loaded_list *n;
4701
4702 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4703 if (n == NULL)
4704 goto error_return;
4705 n->abfd = abfd;
4706 n->next = htab->loaded;
4707 htab->loaded = n;
4708 }
4709
4710 return TRUE;
4711
4712 error_free_vers:
4713 if (old_tab != NULL)
4714 free (old_tab);
4715 if (nondeflt_vers != NULL)
4716 free (nondeflt_vers);
4717 if (extversym != NULL)
4718 free (extversym);
4719 error_free_sym:
4720 if (isymbuf != NULL)
4721 free (isymbuf);
4722 error_return:
4723 return FALSE;
4724 }
4725
4726 /* Return the linker hash table entry of a symbol that might be
4727 satisfied by an archive symbol. Return -1 on error. */
4728
4729 struct elf_link_hash_entry *
4730 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4731 struct bfd_link_info *info,
4732 const char *name)
4733 {
4734 struct elf_link_hash_entry *h;
4735 char *p, *copy;
4736 size_t len, first;
4737
4738 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4739 if (h != NULL)
4740 return h;
4741
4742 /* If this is a default version (the name contains @@), look up the
4743 symbol again with only one `@' as well as without the version.
4744 The effect is that references to the symbol with and without the
4745 version will be matched by the default symbol in the archive. */
4746
4747 p = strchr (name, ELF_VER_CHR);
4748 if (p == NULL || p[1] != ELF_VER_CHR)
4749 return h;
4750
4751 /* First check with only one `@'. */
4752 len = strlen (name);
4753 copy = bfd_alloc (abfd, len);
4754 if (copy == NULL)
4755 return (struct elf_link_hash_entry *) 0 - 1;
4756
4757 first = p - name + 1;
4758 memcpy (copy, name, first);
4759 memcpy (copy + first, name + first + 1, len - first);
4760
4761 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4762 if (h == NULL)
4763 {
4764 /* We also need to check references to the symbol without the
4765 version. */
4766 copy[first - 1] = '\0';
4767 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4768 FALSE, FALSE, FALSE);
4769 }
4770
4771 bfd_release (abfd, copy);
4772 return h;
4773 }
4774
4775 /* Add symbols from an ELF archive file to the linker hash table. We
4776 don't use _bfd_generic_link_add_archive_symbols because of a
4777 problem which arises on UnixWare. The UnixWare libc.so is an
4778 archive which includes an entry libc.so.1 which defines a bunch of
4779 symbols. The libc.so archive also includes a number of other
4780 object files, which also define symbols, some of which are the same
4781 as those defined in libc.so.1. Correct linking requires that we
4782 consider each object file in turn, and include it if it defines any
4783 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4784 this; it looks through the list of undefined symbols, and includes
4785 any object file which defines them. When this algorithm is used on
4786 UnixWare, it winds up pulling in libc.so.1 early and defining a
4787 bunch of symbols. This means that some of the other objects in the
4788 archive are not included in the link, which is incorrect since they
4789 precede libc.so.1 in the archive.
4790
4791 Fortunately, ELF archive handling is simpler than that done by
4792 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4793 oddities. In ELF, if we find a symbol in the archive map, and the
4794 symbol is currently undefined, we know that we must pull in that
4795 object file.
4796
4797 Unfortunately, we do have to make multiple passes over the symbol
4798 table until nothing further is resolved. */
4799
4800 static bfd_boolean
4801 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4802 {
4803 symindex c;
4804 bfd_boolean *defined = NULL;
4805 bfd_boolean *included = NULL;
4806 carsym *symdefs;
4807 bfd_boolean loop;
4808 bfd_size_type amt;
4809 const struct elf_backend_data *bed;
4810 struct elf_link_hash_entry * (*archive_symbol_lookup)
4811 (bfd *, struct bfd_link_info *, const char *);
4812
4813 if (! bfd_has_map (abfd))
4814 {
4815 /* An empty archive is a special case. */
4816 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4817 return TRUE;
4818 bfd_set_error (bfd_error_no_armap);
4819 return FALSE;
4820 }
4821
4822 /* Keep track of all symbols we know to be already defined, and all
4823 files we know to be already included. This is to speed up the
4824 second and subsequent passes. */
4825 c = bfd_ardata (abfd)->symdef_count;
4826 if (c == 0)
4827 return TRUE;
4828 amt = c;
4829 amt *= sizeof (bfd_boolean);
4830 defined = bfd_zmalloc (amt);
4831 included = bfd_zmalloc (amt);
4832 if (defined == NULL || included == NULL)
4833 goto error_return;
4834
4835 symdefs = bfd_ardata (abfd)->symdefs;
4836 bed = get_elf_backend_data (abfd);
4837 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4838
4839 do
4840 {
4841 file_ptr last;
4842 symindex i;
4843 carsym *symdef;
4844 carsym *symdefend;
4845
4846 loop = FALSE;
4847 last = -1;
4848
4849 symdef = symdefs;
4850 symdefend = symdef + c;
4851 for (i = 0; symdef < symdefend; symdef++, i++)
4852 {
4853 struct elf_link_hash_entry *h;
4854 bfd *element;
4855 struct bfd_link_hash_entry *undefs_tail;
4856 symindex mark;
4857
4858 if (defined[i] || included[i])
4859 continue;
4860 if (symdef->file_offset == last)
4861 {
4862 included[i] = TRUE;
4863 continue;
4864 }
4865
4866 h = archive_symbol_lookup (abfd, info, symdef->name);
4867 if (h == (struct elf_link_hash_entry *) 0 - 1)
4868 goto error_return;
4869
4870 if (h == NULL)
4871 continue;
4872
4873 if (h->root.type == bfd_link_hash_common)
4874 {
4875 /* We currently have a common symbol. The archive map contains
4876 a reference to this symbol, so we may want to include it. We
4877 only want to include it however, if this archive element
4878 contains a definition of the symbol, not just another common
4879 declaration of it.
4880
4881 Unfortunately some archivers (including GNU ar) will put
4882 declarations of common symbols into their archive maps, as
4883 well as real definitions, so we cannot just go by the archive
4884 map alone. Instead we must read in the element's symbol
4885 table and check that to see what kind of symbol definition
4886 this is. */
4887 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4888 continue;
4889 }
4890 else if (h->root.type != bfd_link_hash_undefined)
4891 {
4892 if (h->root.type != bfd_link_hash_undefweak)
4893 defined[i] = TRUE;
4894 continue;
4895 }
4896
4897 /* We need to include this archive member. */
4898 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4899 if (element == NULL)
4900 goto error_return;
4901
4902 if (! bfd_check_format (element, bfd_object))
4903 goto error_return;
4904
4905 /* Doublecheck that we have not included this object
4906 already--it should be impossible, but there may be
4907 something wrong with the archive. */
4908 if (element->archive_pass != 0)
4909 {
4910 bfd_set_error (bfd_error_bad_value);
4911 goto error_return;
4912 }
4913 element->archive_pass = 1;
4914
4915 undefs_tail = info->hash->undefs_tail;
4916
4917 if (! (*info->callbacks->add_archive_element) (info, element,
4918 symdef->name))
4919 goto error_return;
4920 if (! bfd_link_add_symbols (element, info))
4921 goto error_return;
4922
4923 /* If there are any new undefined symbols, we need to make
4924 another pass through the archive in order to see whether
4925 they can be defined. FIXME: This isn't perfect, because
4926 common symbols wind up on undefs_tail and because an
4927 undefined symbol which is defined later on in this pass
4928 does not require another pass. This isn't a bug, but it
4929 does make the code less efficient than it could be. */
4930 if (undefs_tail != info->hash->undefs_tail)
4931 loop = TRUE;
4932
4933 /* Look backward to mark all symbols from this object file
4934 which we have already seen in this pass. */
4935 mark = i;
4936 do
4937 {
4938 included[mark] = TRUE;
4939 if (mark == 0)
4940 break;
4941 --mark;
4942 }
4943 while (symdefs[mark].file_offset == symdef->file_offset);
4944
4945 /* We mark subsequent symbols from this object file as we go
4946 on through the loop. */
4947 last = symdef->file_offset;
4948 }
4949 }
4950 while (loop);
4951
4952 free (defined);
4953 free (included);
4954
4955 return TRUE;
4956
4957 error_return:
4958 if (defined != NULL)
4959 free (defined);
4960 if (included != NULL)
4961 free (included);
4962 return FALSE;
4963 }
4964
4965 /* Given an ELF BFD, add symbols to the global hash table as
4966 appropriate. */
4967
4968 bfd_boolean
4969 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4970 {
4971 switch (bfd_get_format (abfd))
4972 {
4973 case bfd_object:
4974 return elf_link_add_object_symbols (abfd, info);
4975 case bfd_archive:
4976 return elf_link_add_archive_symbols (abfd, info);
4977 default:
4978 bfd_set_error (bfd_error_wrong_format);
4979 return FALSE;
4980 }
4981 }
4982 \f
4983 /* This function will be called though elf_link_hash_traverse to store
4984 all hash value of the exported symbols in an array. */
4985
4986 static bfd_boolean
4987 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4988 {
4989 unsigned long **valuep = data;
4990 const char *name;
4991 char *p;
4992 unsigned long ha;
4993 char *alc = NULL;
4994
4995 if (h->root.type == bfd_link_hash_warning)
4996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4997
4998 /* Ignore indirect symbols. These are added by the versioning code. */
4999 if (h->dynindx == -1)
5000 return TRUE;
5001
5002 name = h->root.root.string;
5003 p = strchr (name, ELF_VER_CHR);
5004 if (p != NULL)
5005 {
5006 alc = bfd_malloc (p - name + 1);
5007 memcpy (alc, name, p - name);
5008 alc[p - name] = '\0';
5009 name = alc;
5010 }
5011
5012 /* Compute the hash value. */
5013 ha = bfd_elf_hash (name);
5014
5015 /* Store the found hash value in the array given as the argument. */
5016 *(*valuep)++ = ha;
5017
5018 /* And store it in the struct so that we can put it in the hash table
5019 later. */
5020 h->u.elf_hash_value = ha;
5021
5022 if (alc != NULL)
5023 free (alc);
5024
5025 return TRUE;
5026 }
5027
5028 struct collect_gnu_hash_codes
5029 {
5030 bfd *output_bfd;
5031 const struct elf_backend_data *bed;
5032 unsigned long int nsyms;
5033 unsigned long int maskbits;
5034 unsigned long int *hashcodes;
5035 unsigned long int *hashval;
5036 unsigned long int *indx;
5037 unsigned long int *counts;
5038 bfd_vma *bitmask;
5039 bfd_byte *contents;
5040 long int min_dynindx;
5041 unsigned long int bucketcount;
5042 unsigned long int symindx;
5043 long int local_indx;
5044 long int shift1, shift2;
5045 unsigned long int mask;
5046 };
5047
5048 /* This function will be called though elf_link_hash_traverse to store
5049 all hash value of the exported symbols in an array. */
5050
5051 static bfd_boolean
5052 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5053 {
5054 struct collect_gnu_hash_codes *s = data;
5055 const char *name;
5056 char *p;
5057 unsigned long ha;
5058 char *alc = NULL;
5059
5060 if (h->root.type == bfd_link_hash_warning)
5061 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5062
5063 /* Ignore indirect symbols. These are added by the versioning code. */
5064 if (h->dynindx == -1)
5065 return TRUE;
5066
5067 /* Ignore also local symbols and undefined symbols. */
5068 if (! (*s->bed->elf_hash_symbol) (h))
5069 return TRUE;
5070
5071 name = h->root.root.string;
5072 p = strchr (name, ELF_VER_CHR);
5073 if (p != NULL)
5074 {
5075 alc = bfd_malloc (p - name + 1);
5076 memcpy (alc, name, p - name);
5077 alc[p - name] = '\0';
5078 name = alc;
5079 }
5080
5081 /* Compute the hash value. */
5082 ha = bfd_elf_gnu_hash (name);
5083
5084 /* Store the found hash value in the array for compute_bucket_count,
5085 and also for .dynsym reordering purposes. */
5086 s->hashcodes[s->nsyms] = ha;
5087 s->hashval[h->dynindx] = ha;
5088 ++s->nsyms;
5089 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5090 s->min_dynindx = h->dynindx;
5091
5092 if (alc != NULL)
5093 free (alc);
5094
5095 return TRUE;
5096 }
5097
5098 /* This function will be called though elf_link_hash_traverse to do
5099 final dynaminc symbol renumbering. */
5100
5101 static bfd_boolean
5102 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5103 {
5104 struct collect_gnu_hash_codes *s = data;
5105 unsigned long int bucket;
5106 unsigned long int val;
5107
5108 if (h->root.type == bfd_link_hash_warning)
5109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5110
5111 /* Ignore indirect symbols. */
5112 if (h->dynindx == -1)
5113 return TRUE;
5114
5115 /* Ignore also local symbols and undefined symbols. */
5116 if (! (*s->bed->elf_hash_symbol) (h))
5117 {
5118 if (h->dynindx >= s->min_dynindx)
5119 h->dynindx = s->local_indx++;
5120 return TRUE;
5121 }
5122
5123 bucket = s->hashval[h->dynindx] % s->bucketcount;
5124 val = (s->hashval[h->dynindx] >> s->shift1)
5125 & ((s->maskbits >> s->shift1) - 1);
5126 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5127 s->bitmask[val]
5128 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5129 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5130 if (s->counts[bucket] == 1)
5131 /* Last element terminates the chain. */
5132 val |= 1;
5133 bfd_put_32 (s->output_bfd, val,
5134 s->contents + (s->indx[bucket] - s->symindx) * 4);
5135 --s->counts[bucket];
5136 h->dynindx = s->indx[bucket]++;
5137 return TRUE;
5138 }
5139
5140 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5141
5142 bfd_boolean
5143 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5144 {
5145 return !(h->forced_local
5146 || h->root.type == bfd_link_hash_undefined
5147 || h->root.type == bfd_link_hash_undefweak
5148 || ((h->root.type == bfd_link_hash_defined
5149 || h->root.type == bfd_link_hash_defweak)
5150 && h->root.u.def.section->output_section == NULL));
5151 }
5152
5153 /* Array used to determine the number of hash table buckets to use
5154 based on the number of symbols there are. If there are fewer than
5155 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5156 fewer than 37 we use 17 buckets, and so forth. We never use more
5157 than 32771 buckets. */
5158
5159 static const size_t elf_buckets[] =
5160 {
5161 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5162 16411, 32771, 0
5163 };
5164
5165 /* Compute bucket count for hashing table. We do not use a static set
5166 of possible tables sizes anymore. Instead we determine for all
5167 possible reasonable sizes of the table the outcome (i.e., the
5168 number of collisions etc) and choose the best solution. The
5169 weighting functions are not too simple to allow the table to grow
5170 without bounds. Instead one of the weighting factors is the size.
5171 Therefore the result is always a good payoff between few collisions
5172 (= short chain lengths) and table size. */
5173 static size_t
5174 compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5175 unsigned long int nsyms, int gnu_hash)
5176 {
5177 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5178 size_t best_size = 0;
5179 unsigned long int i;
5180 bfd_size_type amt;
5181
5182 /* We have a problem here. The following code to optimize the table
5183 size requires an integer type with more the 32 bits. If
5184 BFD_HOST_U_64_BIT is set we know about such a type. */
5185 #ifdef BFD_HOST_U_64_BIT
5186 if (info->optimize)
5187 {
5188 size_t minsize;
5189 size_t maxsize;
5190 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5191 bfd *dynobj = elf_hash_table (info)->dynobj;
5192 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5193 unsigned long int *counts;
5194
5195 /* Possible optimization parameters: if we have NSYMS symbols we say
5196 that the hashing table must at least have NSYMS/4 and at most
5197 2*NSYMS buckets. */
5198 minsize = nsyms / 4;
5199 if (minsize == 0)
5200 minsize = 1;
5201 best_size = maxsize = nsyms * 2;
5202 if (gnu_hash)
5203 {
5204 if (minsize < 2)
5205 minsize = 2;
5206 if ((best_size & 31) == 0)
5207 ++best_size;
5208 }
5209
5210 /* Create array where we count the collisions in. We must use bfd_malloc
5211 since the size could be large. */
5212 amt = maxsize;
5213 amt *= sizeof (unsigned long int);
5214 counts = bfd_malloc (amt);
5215 if (counts == NULL)
5216 return 0;
5217
5218 /* Compute the "optimal" size for the hash table. The criteria is a
5219 minimal chain length. The minor criteria is (of course) the size
5220 of the table. */
5221 for (i = minsize; i < maxsize; ++i)
5222 {
5223 /* Walk through the array of hashcodes and count the collisions. */
5224 BFD_HOST_U_64_BIT max;
5225 unsigned long int j;
5226 unsigned long int fact;
5227
5228 if (gnu_hash && (i & 31) == 0)
5229 continue;
5230
5231 memset (counts, '\0', i * sizeof (unsigned long int));
5232
5233 /* Determine how often each hash bucket is used. */
5234 for (j = 0; j < nsyms; ++j)
5235 ++counts[hashcodes[j] % i];
5236
5237 /* For the weight function we need some information about the
5238 pagesize on the target. This is information need not be 100%
5239 accurate. Since this information is not available (so far) we
5240 define it here to a reasonable default value. If it is crucial
5241 to have a better value some day simply define this value. */
5242 # ifndef BFD_TARGET_PAGESIZE
5243 # define BFD_TARGET_PAGESIZE (4096)
5244 # endif
5245
5246 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5247 and the chains. */
5248 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5249
5250 # if 1
5251 /* Variant 1: optimize for short chains. We add the squares
5252 of all the chain lengths (which favors many small chain
5253 over a few long chains). */
5254 for (j = 0; j < i; ++j)
5255 max += counts[j] * counts[j];
5256
5257 /* This adds penalties for the overall size of the table. */
5258 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5259 max *= fact * fact;
5260 # else
5261 /* Variant 2: Optimize a lot more for small table. Here we
5262 also add squares of the size but we also add penalties for
5263 empty slots (the +1 term). */
5264 for (j = 0; j < i; ++j)
5265 max += (1 + counts[j]) * (1 + counts[j]);
5266
5267 /* The overall size of the table is considered, but not as
5268 strong as in variant 1, where it is squared. */
5269 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5270 max *= fact;
5271 # endif
5272
5273 /* Compare with current best results. */
5274 if (max < best_chlen)
5275 {
5276 best_chlen = max;
5277 best_size = i;
5278 }
5279 }
5280
5281 free (counts);
5282 }
5283 else
5284 #endif /* defined (BFD_HOST_U_64_BIT) */
5285 {
5286 /* This is the fallback solution if no 64bit type is available or if we
5287 are not supposed to spend much time on optimizations. We select the
5288 bucket count using a fixed set of numbers. */
5289 for (i = 0; elf_buckets[i] != 0; i++)
5290 {
5291 best_size = elf_buckets[i];
5292 if (nsyms < elf_buckets[i + 1])
5293 break;
5294 }
5295 if (gnu_hash && best_size < 2)
5296 best_size = 2;
5297 }
5298
5299 return best_size;
5300 }
5301
5302 /* Set up the sizes and contents of the ELF dynamic sections. This is
5303 called by the ELF linker emulation before_allocation routine. We
5304 must set the sizes of the sections before the linker sets the
5305 addresses of the various sections. */
5306
5307 bfd_boolean
5308 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5309 const char *soname,
5310 const char *rpath,
5311 const char *filter_shlib,
5312 const char * const *auxiliary_filters,
5313 struct bfd_link_info *info,
5314 asection **sinterpptr,
5315 struct bfd_elf_version_tree *verdefs)
5316 {
5317 bfd_size_type soname_indx;
5318 bfd *dynobj;
5319 const struct elf_backend_data *bed;
5320 struct elf_assign_sym_version_info asvinfo;
5321
5322 *sinterpptr = NULL;
5323
5324 soname_indx = (bfd_size_type) -1;
5325
5326 if (!is_elf_hash_table (info->hash))
5327 return TRUE;
5328
5329 bed = get_elf_backend_data (output_bfd);
5330 if (info->execstack)
5331 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5332 else if (info->noexecstack)
5333 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5334 else
5335 {
5336 bfd *inputobj;
5337 asection *notesec = NULL;
5338 int exec = 0;
5339
5340 for (inputobj = info->input_bfds;
5341 inputobj;
5342 inputobj = inputobj->link_next)
5343 {
5344 asection *s;
5345
5346 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5347 continue;
5348 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5349 if (s)
5350 {
5351 if (s->flags & SEC_CODE)
5352 exec = PF_X;
5353 notesec = s;
5354 }
5355 else if (bed->default_execstack)
5356 exec = PF_X;
5357 }
5358 if (notesec)
5359 {
5360 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5361 if (exec && info->relocatable
5362 && notesec->output_section != bfd_abs_section_ptr)
5363 notesec->output_section->flags |= SEC_CODE;
5364 }
5365 }
5366
5367 /* Any syms created from now on start with -1 in
5368 got.refcount/offset and plt.refcount/offset. */
5369 elf_hash_table (info)->init_got_refcount
5370 = elf_hash_table (info)->init_got_offset;
5371 elf_hash_table (info)->init_plt_refcount
5372 = elf_hash_table (info)->init_plt_offset;
5373
5374 /* The backend may have to create some sections regardless of whether
5375 we're dynamic or not. */
5376 if (bed->elf_backend_always_size_sections
5377 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5378 return FALSE;
5379
5380 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5381 return FALSE;
5382
5383 dynobj = elf_hash_table (info)->dynobj;
5384
5385 /* If there were no dynamic objects in the link, there is nothing to
5386 do here. */
5387 if (dynobj == NULL)
5388 return TRUE;
5389
5390 if (elf_hash_table (info)->dynamic_sections_created)
5391 {
5392 struct elf_info_failed eif;
5393 struct elf_link_hash_entry *h;
5394 asection *dynstr;
5395 struct bfd_elf_version_tree *t;
5396 struct bfd_elf_version_expr *d;
5397 asection *s;
5398 bfd_boolean all_defined;
5399
5400 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5401 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5402
5403 if (soname != NULL)
5404 {
5405 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5406 soname, TRUE);
5407 if (soname_indx == (bfd_size_type) -1
5408 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5409 return FALSE;
5410 }
5411
5412 if (info->symbolic)
5413 {
5414 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5415 return FALSE;
5416 info->flags |= DF_SYMBOLIC;
5417 }
5418
5419 if (rpath != NULL)
5420 {
5421 bfd_size_type indx;
5422
5423 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5424 TRUE);
5425 if (indx == (bfd_size_type) -1
5426 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5427 return FALSE;
5428
5429 if (info->new_dtags)
5430 {
5431 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5432 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5433 return FALSE;
5434 }
5435 }
5436
5437 if (filter_shlib != NULL)
5438 {
5439 bfd_size_type indx;
5440
5441 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5442 filter_shlib, TRUE);
5443 if (indx == (bfd_size_type) -1
5444 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5445 return FALSE;
5446 }
5447
5448 if (auxiliary_filters != NULL)
5449 {
5450 const char * const *p;
5451
5452 for (p = auxiliary_filters; *p != NULL; p++)
5453 {
5454 bfd_size_type indx;
5455
5456 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5457 *p, TRUE);
5458 if (indx == (bfd_size_type) -1
5459 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5460 return FALSE;
5461 }
5462 }
5463
5464 eif.info = info;
5465 eif.verdefs = verdefs;
5466 eif.failed = FALSE;
5467
5468 /* If we are supposed to export all symbols into the dynamic symbol
5469 table (this is not the normal case), then do so. */
5470 if (info->export_dynamic
5471 || (info->executable && info->dynamic))
5472 {
5473 elf_link_hash_traverse (elf_hash_table (info),
5474 _bfd_elf_export_symbol,
5475 &eif);
5476 if (eif.failed)
5477 return FALSE;
5478 }
5479
5480 /* Make all global versions with definition. */
5481 for (t = verdefs; t != NULL; t = t->next)
5482 for (d = t->globals.list; d != NULL; d = d->next)
5483 if (!d->symver && d->symbol)
5484 {
5485 const char *verstr, *name;
5486 size_t namelen, verlen, newlen;
5487 char *newname, *p;
5488 struct elf_link_hash_entry *newh;
5489
5490 name = d->symbol;
5491 namelen = strlen (name);
5492 verstr = t->name;
5493 verlen = strlen (verstr);
5494 newlen = namelen + verlen + 3;
5495
5496 newname = bfd_malloc (newlen);
5497 if (newname == NULL)
5498 return FALSE;
5499 memcpy (newname, name, namelen);
5500
5501 /* Check the hidden versioned definition. */
5502 p = newname + namelen;
5503 *p++ = ELF_VER_CHR;
5504 memcpy (p, verstr, verlen + 1);
5505 newh = elf_link_hash_lookup (elf_hash_table (info),
5506 newname, FALSE, FALSE,
5507 FALSE);
5508 if (newh == NULL
5509 || (newh->root.type != bfd_link_hash_defined
5510 && newh->root.type != bfd_link_hash_defweak))
5511 {
5512 /* Check the default versioned definition. */
5513 *p++ = ELF_VER_CHR;
5514 memcpy (p, verstr, verlen + 1);
5515 newh = elf_link_hash_lookup (elf_hash_table (info),
5516 newname, FALSE, FALSE,
5517 FALSE);
5518 }
5519 free (newname);
5520
5521 /* Mark this version if there is a definition and it is
5522 not defined in a shared object. */
5523 if (newh != NULL
5524 && !newh->def_dynamic
5525 && (newh->root.type == bfd_link_hash_defined
5526 || newh->root.type == bfd_link_hash_defweak))
5527 d->symver = 1;
5528 }
5529
5530 /* Attach all the symbols to their version information. */
5531 asvinfo.output_bfd = output_bfd;
5532 asvinfo.info = info;
5533 asvinfo.verdefs = verdefs;
5534 asvinfo.failed = FALSE;
5535
5536 elf_link_hash_traverse (elf_hash_table (info),
5537 _bfd_elf_link_assign_sym_version,
5538 &asvinfo);
5539 if (asvinfo.failed)
5540 return FALSE;
5541
5542 if (!info->allow_undefined_version)
5543 {
5544 /* Check if all global versions have a definition. */
5545 all_defined = TRUE;
5546 for (t = verdefs; t != NULL; t = t->next)
5547 for (d = t->globals.list; d != NULL; d = d->next)
5548 if (!d->symver && !d->script)
5549 {
5550 (*_bfd_error_handler)
5551 (_("%s: undefined version: %s"),
5552 d->pattern, t->name);
5553 all_defined = FALSE;
5554 }
5555
5556 if (!all_defined)
5557 {
5558 bfd_set_error (bfd_error_bad_value);
5559 return FALSE;
5560 }
5561 }
5562
5563 /* Find all symbols which were defined in a dynamic object and make
5564 the backend pick a reasonable value for them. */
5565 elf_link_hash_traverse (elf_hash_table (info),
5566 _bfd_elf_adjust_dynamic_symbol,
5567 &eif);
5568 if (eif.failed)
5569 return FALSE;
5570
5571 /* Add some entries to the .dynamic section. We fill in some of the
5572 values later, in bfd_elf_final_link, but we must add the entries
5573 now so that we know the final size of the .dynamic section. */
5574
5575 /* If there are initialization and/or finalization functions to
5576 call then add the corresponding DT_INIT/DT_FINI entries. */
5577 h = (info->init_function
5578 ? elf_link_hash_lookup (elf_hash_table (info),
5579 info->init_function, FALSE,
5580 FALSE, FALSE)
5581 : NULL);
5582 if (h != NULL
5583 && (h->ref_regular
5584 || h->def_regular))
5585 {
5586 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5587 return FALSE;
5588 }
5589 h = (info->fini_function
5590 ? elf_link_hash_lookup (elf_hash_table (info),
5591 info->fini_function, FALSE,
5592 FALSE, FALSE)
5593 : NULL);
5594 if (h != NULL
5595 && (h->ref_regular
5596 || h->def_regular))
5597 {
5598 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5599 return FALSE;
5600 }
5601
5602 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5603 if (s != NULL && s->linker_has_input)
5604 {
5605 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5606 if (! info->executable)
5607 {
5608 bfd *sub;
5609 asection *o;
5610
5611 for (sub = info->input_bfds; sub != NULL;
5612 sub = sub->link_next)
5613 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5614 for (o = sub->sections; o != NULL; o = o->next)
5615 if (elf_section_data (o)->this_hdr.sh_type
5616 == SHT_PREINIT_ARRAY)
5617 {
5618 (*_bfd_error_handler)
5619 (_("%B: .preinit_array section is not allowed in DSO"),
5620 sub);
5621 break;
5622 }
5623
5624 bfd_set_error (bfd_error_nonrepresentable_section);
5625 return FALSE;
5626 }
5627
5628 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5629 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5630 return FALSE;
5631 }
5632 s = bfd_get_section_by_name (output_bfd, ".init_array");
5633 if (s != NULL && s->linker_has_input)
5634 {
5635 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5636 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5637 return FALSE;
5638 }
5639 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5640 if (s != NULL && s->linker_has_input)
5641 {
5642 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5643 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5644 return FALSE;
5645 }
5646
5647 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5648 /* If .dynstr is excluded from the link, we don't want any of
5649 these tags. Strictly, we should be checking each section
5650 individually; This quick check covers for the case where
5651 someone does a /DISCARD/ : { *(*) }. */
5652 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5653 {
5654 bfd_size_type strsize;
5655
5656 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5657 if ((info->emit_hash
5658 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5659 || (info->emit_gnu_hash
5660 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5661 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5662 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5663 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5664 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5665 bed->s->sizeof_sym))
5666 return FALSE;
5667 }
5668 }
5669
5670 /* The backend must work out the sizes of all the other dynamic
5671 sections. */
5672 if (bed->elf_backend_size_dynamic_sections
5673 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5674 return FALSE;
5675
5676 if (elf_hash_table (info)->dynamic_sections_created)
5677 {
5678 unsigned long section_sym_count;
5679 asection *s;
5680
5681 /* Set up the version definition section. */
5682 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5683 BFD_ASSERT (s != NULL);
5684
5685 /* We may have created additional version definitions if we are
5686 just linking a regular application. */
5687 verdefs = asvinfo.verdefs;
5688
5689 /* Skip anonymous version tag. */
5690 if (verdefs != NULL && verdefs->vernum == 0)
5691 verdefs = verdefs->next;
5692
5693 if (verdefs == NULL && !info->create_default_symver)
5694 s->flags |= SEC_EXCLUDE;
5695 else
5696 {
5697 unsigned int cdefs;
5698 bfd_size_type size;
5699 struct bfd_elf_version_tree *t;
5700 bfd_byte *p;
5701 Elf_Internal_Verdef def;
5702 Elf_Internal_Verdaux defaux;
5703 struct bfd_link_hash_entry *bh;
5704 struct elf_link_hash_entry *h;
5705 const char *name;
5706
5707 cdefs = 0;
5708 size = 0;
5709
5710 /* Make space for the base version. */
5711 size += sizeof (Elf_External_Verdef);
5712 size += sizeof (Elf_External_Verdaux);
5713 ++cdefs;
5714
5715 /* Make space for the default version. */
5716 if (info->create_default_symver)
5717 {
5718 size += sizeof (Elf_External_Verdef);
5719 ++cdefs;
5720 }
5721
5722 for (t = verdefs; t != NULL; t = t->next)
5723 {
5724 struct bfd_elf_version_deps *n;
5725
5726 size += sizeof (Elf_External_Verdef);
5727 size += sizeof (Elf_External_Verdaux);
5728 ++cdefs;
5729
5730 for (n = t->deps; n != NULL; n = n->next)
5731 size += sizeof (Elf_External_Verdaux);
5732 }
5733
5734 s->size = size;
5735 s->contents = bfd_alloc (output_bfd, s->size);
5736 if (s->contents == NULL && s->size != 0)
5737 return FALSE;
5738
5739 /* Fill in the version definition section. */
5740
5741 p = s->contents;
5742
5743 def.vd_version = VER_DEF_CURRENT;
5744 def.vd_flags = VER_FLG_BASE;
5745 def.vd_ndx = 1;
5746 def.vd_cnt = 1;
5747 if (info->create_default_symver)
5748 {
5749 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5750 def.vd_next = sizeof (Elf_External_Verdef);
5751 }
5752 else
5753 {
5754 def.vd_aux = sizeof (Elf_External_Verdef);
5755 def.vd_next = (sizeof (Elf_External_Verdef)
5756 + sizeof (Elf_External_Verdaux));
5757 }
5758
5759 if (soname_indx != (bfd_size_type) -1)
5760 {
5761 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5762 soname_indx);
5763 def.vd_hash = bfd_elf_hash (soname);
5764 defaux.vda_name = soname_indx;
5765 name = soname;
5766 }
5767 else
5768 {
5769 bfd_size_type indx;
5770
5771 name = lbasename (output_bfd->filename);
5772 def.vd_hash = bfd_elf_hash (name);
5773 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5774 name, FALSE);
5775 if (indx == (bfd_size_type) -1)
5776 return FALSE;
5777 defaux.vda_name = indx;
5778 }
5779 defaux.vda_next = 0;
5780
5781 _bfd_elf_swap_verdef_out (output_bfd, &def,
5782 (Elf_External_Verdef *) p);
5783 p += sizeof (Elf_External_Verdef);
5784 if (info->create_default_symver)
5785 {
5786 /* Add a symbol representing this version. */
5787 bh = NULL;
5788 if (! (_bfd_generic_link_add_one_symbol
5789 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5790 0, NULL, FALSE,
5791 get_elf_backend_data (dynobj)->collect, &bh)))
5792 return FALSE;
5793 h = (struct elf_link_hash_entry *) bh;
5794 h->non_elf = 0;
5795 h->def_regular = 1;
5796 h->type = STT_OBJECT;
5797 h->verinfo.vertree = NULL;
5798
5799 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5800 return FALSE;
5801
5802 /* Create a duplicate of the base version with the same
5803 aux block, but different flags. */
5804 def.vd_flags = 0;
5805 def.vd_ndx = 2;
5806 def.vd_aux = sizeof (Elf_External_Verdef);
5807 if (verdefs)
5808 def.vd_next = (sizeof (Elf_External_Verdef)
5809 + sizeof (Elf_External_Verdaux));
5810 else
5811 def.vd_next = 0;
5812 _bfd_elf_swap_verdef_out (output_bfd, &def,
5813 (Elf_External_Verdef *) p);
5814 p += sizeof (Elf_External_Verdef);
5815 }
5816 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5817 (Elf_External_Verdaux *) p);
5818 p += sizeof (Elf_External_Verdaux);
5819
5820 for (t = verdefs; t != NULL; t = t->next)
5821 {
5822 unsigned int cdeps;
5823 struct bfd_elf_version_deps *n;
5824
5825 cdeps = 0;
5826 for (n = t->deps; n != NULL; n = n->next)
5827 ++cdeps;
5828
5829 /* Add a symbol representing this version. */
5830 bh = NULL;
5831 if (! (_bfd_generic_link_add_one_symbol
5832 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5833 0, NULL, FALSE,
5834 get_elf_backend_data (dynobj)->collect, &bh)))
5835 return FALSE;
5836 h = (struct elf_link_hash_entry *) bh;
5837 h->non_elf = 0;
5838 h->def_regular = 1;
5839 h->type = STT_OBJECT;
5840 h->verinfo.vertree = t;
5841
5842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5843 return FALSE;
5844
5845 def.vd_version = VER_DEF_CURRENT;
5846 def.vd_flags = 0;
5847 if (t->globals.list == NULL
5848 && t->locals.list == NULL
5849 && ! t->used)
5850 def.vd_flags |= VER_FLG_WEAK;
5851 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5852 def.vd_cnt = cdeps + 1;
5853 def.vd_hash = bfd_elf_hash (t->name);
5854 def.vd_aux = sizeof (Elf_External_Verdef);
5855 def.vd_next = 0;
5856 if (t->next != NULL)
5857 def.vd_next = (sizeof (Elf_External_Verdef)
5858 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5859
5860 _bfd_elf_swap_verdef_out (output_bfd, &def,
5861 (Elf_External_Verdef *) p);
5862 p += sizeof (Elf_External_Verdef);
5863
5864 defaux.vda_name = h->dynstr_index;
5865 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5866 h->dynstr_index);
5867 defaux.vda_next = 0;
5868 if (t->deps != NULL)
5869 defaux.vda_next = sizeof (Elf_External_Verdaux);
5870 t->name_indx = defaux.vda_name;
5871
5872 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5873 (Elf_External_Verdaux *) p);
5874 p += sizeof (Elf_External_Verdaux);
5875
5876 for (n = t->deps; n != NULL; n = n->next)
5877 {
5878 if (n->version_needed == NULL)
5879 {
5880 /* This can happen if there was an error in the
5881 version script. */
5882 defaux.vda_name = 0;
5883 }
5884 else
5885 {
5886 defaux.vda_name = n->version_needed->name_indx;
5887 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5888 defaux.vda_name);
5889 }
5890 if (n->next == NULL)
5891 defaux.vda_next = 0;
5892 else
5893 defaux.vda_next = sizeof (Elf_External_Verdaux);
5894
5895 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5896 (Elf_External_Verdaux *) p);
5897 p += sizeof (Elf_External_Verdaux);
5898 }
5899 }
5900
5901 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5902 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5903 return FALSE;
5904
5905 elf_tdata (output_bfd)->cverdefs = cdefs;
5906 }
5907
5908 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5909 {
5910 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5911 return FALSE;
5912 }
5913 else if (info->flags & DF_BIND_NOW)
5914 {
5915 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5916 return FALSE;
5917 }
5918
5919 if (info->flags_1)
5920 {
5921 if (info->executable)
5922 info->flags_1 &= ~ (DF_1_INITFIRST
5923 | DF_1_NODELETE
5924 | DF_1_NOOPEN);
5925 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5926 return FALSE;
5927 }
5928
5929 /* Work out the size of the version reference section. */
5930
5931 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5932 BFD_ASSERT (s != NULL);
5933 {
5934 struct elf_find_verdep_info sinfo;
5935
5936 sinfo.output_bfd = output_bfd;
5937 sinfo.info = info;
5938 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5939 if (sinfo.vers == 0)
5940 sinfo.vers = 1;
5941 sinfo.failed = FALSE;
5942
5943 elf_link_hash_traverse (elf_hash_table (info),
5944 _bfd_elf_link_find_version_dependencies,
5945 &sinfo);
5946
5947 if (elf_tdata (output_bfd)->verref == NULL)
5948 s->flags |= SEC_EXCLUDE;
5949 else
5950 {
5951 Elf_Internal_Verneed *t;
5952 unsigned int size;
5953 unsigned int crefs;
5954 bfd_byte *p;
5955
5956 /* Build the version definition section. */
5957 size = 0;
5958 crefs = 0;
5959 for (t = elf_tdata (output_bfd)->verref;
5960 t != NULL;
5961 t = t->vn_nextref)
5962 {
5963 Elf_Internal_Vernaux *a;
5964
5965 size += sizeof (Elf_External_Verneed);
5966 ++crefs;
5967 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5968 size += sizeof (Elf_External_Vernaux);
5969 }
5970
5971 s->size = size;
5972 s->contents = bfd_alloc (output_bfd, s->size);
5973 if (s->contents == NULL)
5974 return FALSE;
5975
5976 p = s->contents;
5977 for (t = elf_tdata (output_bfd)->verref;
5978 t != NULL;
5979 t = t->vn_nextref)
5980 {
5981 unsigned int caux;
5982 Elf_Internal_Vernaux *a;
5983 bfd_size_type indx;
5984
5985 caux = 0;
5986 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5987 ++caux;
5988
5989 t->vn_version = VER_NEED_CURRENT;
5990 t->vn_cnt = caux;
5991 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5992 elf_dt_name (t->vn_bfd) != NULL
5993 ? elf_dt_name (t->vn_bfd)
5994 : lbasename (t->vn_bfd->filename),
5995 FALSE);
5996 if (indx == (bfd_size_type) -1)
5997 return FALSE;
5998 t->vn_file = indx;
5999 t->vn_aux = sizeof (Elf_External_Verneed);
6000 if (t->vn_nextref == NULL)
6001 t->vn_next = 0;
6002 else
6003 t->vn_next = (sizeof (Elf_External_Verneed)
6004 + caux * sizeof (Elf_External_Vernaux));
6005
6006 _bfd_elf_swap_verneed_out (output_bfd, t,
6007 (Elf_External_Verneed *) p);
6008 p += sizeof (Elf_External_Verneed);
6009
6010 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6011 {
6012 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6013 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6014 a->vna_nodename, FALSE);
6015 if (indx == (bfd_size_type) -1)
6016 return FALSE;
6017 a->vna_name = indx;
6018 if (a->vna_nextptr == NULL)
6019 a->vna_next = 0;
6020 else
6021 a->vna_next = sizeof (Elf_External_Vernaux);
6022
6023 _bfd_elf_swap_vernaux_out (output_bfd, a,
6024 (Elf_External_Vernaux *) p);
6025 p += sizeof (Elf_External_Vernaux);
6026 }
6027 }
6028
6029 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6030 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6031 return FALSE;
6032
6033 elf_tdata (output_bfd)->cverrefs = crefs;
6034 }
6035 }
6036
6037 if ((elf_tdata (output_bfd)->cverrefs == 0
6038 && elf_tdata (output_bfd)->cverdefs == 0)
6039 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6040 &section_sym_count) == 0)
6041 {
6042 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6043 s->flags |= SEC_EXCLUDE;
6044 }
6045 }
6046 return TRUE;
6047 }
6048
6049 /* Find the first non-excluded output section. We'll use its
6050 section symbol for some emitted relocs. */
6051 void
6052 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6053 {
6054 asection *s;
6055
6056 for (s = output_bfd->sections; s != NULL; s = s->next)
6057 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6058 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6059 {
6060 elf_hash_table (info)->text_index_section = s;
6061 break;
6062 }
6063 }
6064
6065 /* Find two non-excluded output sections, one for code, one for data.
6066 We'll use their section symbols for some emitted relocs. */
6067 void
6068 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6069 {
6070 asection *s;
6071
6072 for (s = output_bfd->sections; s != NULL; s = s->next)
6073 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6074 == (SEC_ALLOC | SEC_READONLY))
6075 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6076 {
6077 elf_hash_table (info)->text_index_section = s;
6078 break;
6079 }
6080
6081 for (s = output_bfd->sections; s != NULL; s = s->next)
6082 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6083 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6084 {
6085 elf_hash_table (info)->data_index_section = s;
6086 break;
6087 }
6088
6089 if (elf_hash_table (info)->text_index_section == NULL)
6090 elf_hash_table (info)->text_index_section
6091 = elf_hash_table (info)->data_index_section;
6092 }
6093
6094 bfd_boolean
6095 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6096 {
6097 const struct elf_backend_data *bed;
6098
6099 if (!is_elf_hash_table (info->hash))
6100 return TRUE;
6101
6102 bed = get_elf_backend_data (output_bfd);
6103 (*bed->elf_backend_init_index_section) (output_bfd, info);
6104
6105 if (elf_hash_table (info)->dynamic_sections_created)
6106 {
6107 bfd *dynobj;
6108 asection *s;
6109 bfd_size_type dynsymcount;
6110 unsigned long section_sym_count;
6111 unsigned int dtagcount;
6112
6113 dynobj = elf_hash_table (info)->dynobj;
6114
6115 /* Assign dynsym indicies. In a shared library we generate a
6116 section symbol for each output section, which come first.
6117 Next come all of the back-end allocated local dynamic syms,
6118 followed by the rest of the global symbols. */
6119
6120 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6121 &section_sym_count);
6122
6123 /* Work out the size of the symbol version section. */
6124 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6125 BFD_ASSERT (s != NULL);
6126 if (dynsymcount != 0
6127 && (s->flags & SEC_EXCLUDE) == 0)
6128 {
6129 s->size = dynsymcount * sizeof (Elf_External_Versym);
6130 s->contents = bfd_zalloc (output_bfd, s->size);
6131 if (s->contents == NULL)
6132 return FALSE;
6133
6134 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6135 return FALSE;
6136 }
6137
6138 /* Set the size of the .dynsym and .hash sections. We counted
6139 the number of dynamic symbols in elf_link_add_object_symbols.
6140 We will build the contents of .dynsym and .hash when we build
6141 the final symbol table, because until then we do not know the
6142 correct value to give the symbols. We built the .dynstr
6143 section as we went along in elf_link_add_object_symbols. */
6144 s = bfd_get_section_by_name (dynobj, ".dynsym");
6145 BFD_ASSERT (s != NULL);
6146 s->size = dynsymcount * bed->s->sizeof_sym;
6147
6148 if (dynsymcount != 0)
6149 {
6150 s->contents = bfd_alloc (output_bfd, s->size);
6151 if (s->contents == NULL)
6152 return FALSE;
6153
6154 /* The first entry in .dynsym is a dummy symbol.
6155 Clear all the section syms, in case we don't output them all. */
6156 ++section_sym_count;
6157 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6158 }
6159
6160 elf_hash_table (info)->bucketcount = 0;
6161
6162 /* Compute the size of the hashing table. As a side effect this
6163 computes the hash values for all the names we export. */
6164 if (info->emit_hash)
6165 {
6166 unsigned long int *hashcodes;
6167 unsigned long int *hashcodesp;
6168 bfd_size_type amt;
6169 unsigned long int nsyms;
6170 size_t bucketcount;
6171 size_t hash_entry_size;
6172
6173 /* Compute the hash values for all exported symbols. At the same
6174 time store the values in an array so that we could use them for
6175 optimizations. */
6176 amt = dynsymcount * sizeof (unsigned long int);
6177 hashcodes = bfd_malloc (amt);
6178 if (hashcodes == NULL)
6179 return FALSE;
6180 hashcodesp = hashcodes;
6181
6182 /* Put all hash values in HASHCODES. */
6183 elf_link_hash_traverse (elf_hash_table (info),
6184 elf_collect_hash_codes, &hashcodesp);
6185
6186 nsyms = hashcodesp - hashcodes;
6187 bucketcount
6188 = compute_bucket_count (info, hashcodes, nsyms, 0);
6189 free (hashcodes);
6190
6191 if (bucketcount == 0)
6192 return FALSE;
6193
6194 elf_hash_table (info)->bucketcount = bucketcount;
6195
6196 s = bfd_get_section_by_name (dynobj, ".hash");
6197 BFD_ASSERT (s != NULL);
6198 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6199 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6200 s->contents = bfd_zalloc (output_bfd, s->size);
6201 if (s->contents == NULL)
6202 return FALSE;
6203
6204 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6205 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6206 s->contents + hash_entry_size);
6207 }
6208
6209 if (info->emit_gnu_hash)
6210 {
6211 size_t i, cnt;
6212 unsigned char *contents;
6213 struct collect_gnu_hash_codes cinfo;
6214 bfd_size_type amt;
6215 size_t bucketcount;
6216
6217 memset (&cinfo, 0, sizeof (cinfo));
6218
6219 /* Compute the hash values for all exported symbols. At the same
6220 time store the values in an array so that we could use them for
6221 optimizations. */
6222 amt = dynsymcount * 2 * sizeof (unsigned long int);
6223 cinfo.hashcodes = bfd_malloc (amt);
6224 if (cinfo.hashcodes == NULL)
6225 return FALSE;
6226
6227 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6228 cinfo.min_dynindx = -1;
6229 cinfo.output_bfd = output_bfd;
6230 cinfo.bed = bed;
6231
6232 /* Put all hash values in HASHCODES. */
6233 elf_link_hash_traverse (elf_hash_table (info),
6234 elf_collect_gnu_hash_codes, &cinfo);
6235
6236 bucketcount
6237 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6238
6239 if (bucketcount == 0)
6240 {
6241 free (cinfo.hashcodes);
6242 return FALSE;
6243 }
6244
6245 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6246 BFD_ASSERT (s != NULL);
6247
6248 if (cinfo.nsyms == 0)
6249 {
6250 /* Empty .gnu.hash section is special. */
6251 BFD_ASSERT (cinfo.min_dynindx == -1);
6252 free (cinfo.hashcodes);
6253 s->size = 5 * 4 + bed->s->arch_size / 8;
6254 contents = bfd_zalloc (output_bfd, s->size);
6255 if (contents == NULL)
6256 return FALSE;
6257 s->contents = contents;
6258 /* 1 empty bucket. */
6259 bfd_put_32 (output_bfd, 1, contents);
6260 /* SYMIDX above the special symbol 0. */
6261 bfd_put_32 (output_bfd, 1, contents + 4);
6262 /* Just one word for bitmask. */
6263 bfd_put_32 (output_bfd, 1, contents + 8);
6264 /* Only hash fn bloom filter. */
6265 bfd_put_32 (output_bfd, 0, contents + 12);
6266 /* No hashes are valid - empty bitmask. */
6267 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6268 /* No hashes in the only bucket. */
6269 bfd_put_32 (output_bfd, 0,
6270 contents + 16 + bed->s->arch_size / 8);
6271 }
6272 else
6273 {
6274 unsigned long int maskwords, maskbitslog2;
6275 BFD_ASSERT (cinfo.min_dynindx != -1);
6276
6277 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6278 if (maskbitslog2 < 3)
6279 maskbitslog2 = 5;
6280 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6281 maskbitslog2 = maskbitslog2 + 3;
6282 else
6283 maskbitslog2 = maskbitslog2 + 2;
6284 if (bed->s->arch_size == 64)
6285 {
6286 if (maskbitslog2 == 5)
6287 maskbitslog2 = 6;
6288 cinfo.shift1 = 6;
6289 }
6290 else
6291 cinfo.shift1 = 5;
6292 cinfo.mask = (1 << cinfo.shift1) - 1;
6293 cinfo.shift2 = maskbitslog2;
6294 cinfo.maskbits = 1 << maskbitslog2;
6295 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6296 amt = bucketcount * sizeof (unsigned long int) * 2;
6297 amt += maskwords * sizeof (bfd_vma);
6298 cinfo.bitmask = bfd_malloc (amt);
6299 if (cinfo.bitmask == NULL)
6300 {
6301 free (cinfo.hashcodes);
6302 return FALSE;
6303 }
6304
6305 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6306 cinfo.indx = cinfo.counts + bucketcount;
6307 cinfo.symindx = dynsymcount - cinfo.nsyms;
6308 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6309
6310 /* Determine how often each hash bucket is used. */
6311 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6312 for (i = 0; i < cinfo.nsyms; ++i)
6313 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6314
6315 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6316 if (cinfo.counts[i] != 0)
6317 {
6318 cinfo.indx[i] = cnt;
6319 cnt += cinfo.counts[i];
6320 }
6321 BFD_ASSERT (cnt == dynsymcount);
6322 cinfo.bucketcount = bucketcount;
6323 cinfo.local_indx = cinfo.min_dynindx;
6324
6325 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6326 s->size += cinfo.maskbits / 8;
6327 contents = bfd_zalloc (output_bfd, s->size);
6328 if (contents == NULL)
6329 {
6330 free (cinfo.bitmask);
6331 free (cinfo.hashcodes);
6332 return FALSE;
6333 }
6334
6335 s->contents = contents;
6336 bfd_put_32 (output_bfd, bucketcount, contents);
6337 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6338 bfd_put_32 (output_bfd, maskwords, contents + 8);
6339 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6340 contents += 16 + cinfo.maskbits / 8;
6341
6342 for (i = 0; i < bucketcount; ++i)
6343 {
6344 if (cinfo.counts[i] == 0)
6345 bfd_put_32 (output_bfd, 0, contents);
6346 else
6347 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6348 contents += 4;
6349 }
6350
6351 cinfo.contents = contents;
6352
6353 /* Renumber dynamic symbols, populate .gnu.hash section. */
6354 elf_link_hash_traverse (elf_hash_table (info),
6355 elf_renumber_gnu_hash_syms, &cinfo);
6356
6357 contents = s->contents + 16;
6358 for (i = 0; i < maskwords; ++i)
6359 {
6360 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6361 contents);
6362 contents += bed->s->arch_size / 8;
6363 }
6364
6365 free (cinfo.bitmask);
6366 free (cinfo.hashcodes);
6367 }
6368 }
6369
6370 s = bfd_get_section_by_name (dynobj, ".dynstr");
6371 BFD_ASSERT (s != NULL);
6372
6373 elf_finalize_dynstr (output_bfd, info);
6374
6375 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6376
6377 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6378 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6379 return FALSE;
6380 }
6381
6382 return TRUE;
6383 }
6384 \f
6385 /* Indicate that we are only retrieving symbol values from this
6386 section. */
6387
6388 void
6389 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6390 {
6391 if (is_elf_hash_table (info->hash))
6392 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6393 _bfd_generic_link_just_syms (sec, info);
6394 }
6395
6396 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6397
6398 static void
6399 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6400 asection *sec)
6401 {
6402 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6403 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6404 }
6405
6406 /* Finish SHF_MERGE section merging. */
6407
6408 bfd_boolean
6409 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6410 {
6411 bfd *ibfd;
6412 asection *sec;
6413
6414 if (!is_elf_hash_table (info->hash))
6415 return FALSE;
6416
6417 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6418 if ((ibfd->flags & DYNAMIC) == 0)
6419 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6420 if ((sec->flags & SEC_MERGE) != 0
6421 && !bfd_is_abs_section (sec->output_section))
6422 {
6423 struct bfd_elf_section_data *secdata;
6424
6425 secdata = elf_section_data (sec);
6426 if (! _bfd_add_merge_section (abfd,
6427 &elf_hash_table (info)->merge_info,
6428 sec, &secdata->sec_info))
6429 return FALSE;
6430 else if (secdata->sec_info)
6431 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6432 }
6433
6434 if (elf_hash_table (info)->merge_info != NULL)
6435 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6436 merge_sections_remove_hook);
6437 return TRUE;
6438 }
6439
6440 /* Create an entry in an ELF linker hash table. */
6441
6442 struct bfd_hash_entry *
6443 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6444 struct bfd_hash_table *table,
6445 const char *string)
6446 {
6447 /* Allocate the structure if it has not already been allocated by a
6448 subclass. */
6449 if (entry == NULL)
6450 {
6451 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6452 if (entry == NULL)
6453 return entry;
6454 }
6455
6456 /* Call the allocation method of the superclass. */
6457 entry = _bfd_link_hash_newfunc (entry, table, string);
6458 if (entry != NULL)
6459 {
6460 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6461 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6462
6463 /* Set local fields. */
6464 ret->indx = -1;
6465 ret->dynindx = -1;
6466 ret->got = htab->init_got_refcount;
6467 ret->plt = htab->init_plt_refcount;
6468 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6469 - offsetof (struct elf_link_hash_entry, size)));
6470 /* Assume that we have been called by a non-ELF symbol reader.
6471 This flag is then reset by the code which reads an ELF input
6472 file. This ensures that a symbol created by a non-ELF symbol
6473 reader will have the flag set correctly. */
6474 ret->non_elf = 1;
6475 }
6476
6477 return entry;
6478 }
6479
6480 /* Copy data from an indirect symbol to its direct symbol, hiding the
6481 old indirect symbol. Also used for copying flags to a weakdef. */
6482
6483 void
6484 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6485 struct elf_link_hash_entry *dir,
6486 struct elf_link_hash_entry *ind)
6487 {
6488 struct elf_link_hash_table *htab;
6489
6490 /* Copy down any references that we may have already seen to the
6491 symbol which just became indirect. */
6492
6493 dir->ref_dynamic |= ind->ref_dynamic;
6494 dir->ref_regular |= ind->ref_regular;
6495 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6496 dir->non_got_ref |= ind->non_got_ref;
6497 dir->needs_plt |= ind->needs_plt;
6498 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6499
6500 if (ind->root.type != bfd_link_hash_indirect)
6501 return;
6502
6503 /* Copy over the global and procedure linkage table refcount entries.
6504 These may have been already set up by a check_relocs routine. */
6505 htab = elf_hash_table (info);
6506 if (ind->got.refcount > htab->init_got_refcount.refcount)
6507 {
6508 if (dir->got.refcount < 0)
6509 dir->got.refcount = 0;
6510 dir->got.refcount += ind->got.refcount;
6511 ind->got.refcount = htab->init_got_refcount.refcount;
6512 }
6513
6514 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6515 {
6516 if (dir->plt.refcount < 0)
6517 dir->plt.refcount = 0;
6518 dir->plt.refcount += ind->plt.refcount;
6519 ind->plt.refcount = htab->init_plt_refcount.refcount;
6520 }
6521
6522 if (ind->dynindx != -1)
6523 {
6524 if (dir->dynindx != -1)
6525 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6526 dir->dynindx = ind->dynindx;
6527 dir->dynstr_index = ind->dynstr_index;
6528 ind->dynindx = -1;
6529 ind->dynstr_index = 0;
6530 }
6531 }
6532
6533 void
6534 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6535 struct elf_link_hash_entry *h,
6536 bfd_boolean force_local)
6537 {
6538 h->plt = elf_hash_table (info)->init_plt_offset;
6539 h->needs_plt = 0;
6540 if (force_local)
6541 {
6542 h->forced_local = 1;
6543 if (h->dynindx != -1)
6544 {
6545 h->dynindx = -1;
6546 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6547 h->dynstr_index);
6548 }
6549 }
6550 }
6551
6552 /* Initialize an ELF linker hash table. */
6553
6554 bfd_boolean
6555 _bfd_elf_link_hash_table_init
6556 (struct elf_link_hash_table *table,
6557 bfd *abfd,
6558 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6559 struct bfd_hash_table *,
6560 const char *),
6561 unsigned int entsize)
6562 {
6563 bfd_boolean ret;
6564 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6565
6566 memset (table, 0, sizeof * table);
6567 table->init_got_refcount.refcount = can_refcount - 1;
6568 table->init_plt_refcount.refcount = can_refcount - 1;
6569 table->init_got_offset.offset = -(bfd_vma) 1;
6570 table->init_plt_offset.offset = -(bfd_vma) 1;
6571 /* The first dynamic symbol is a dummy. */
6572 table->dynsymcount = 1;
6573
6574 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6575 table->root.type = bfd_link_elf_hash_table;
6576
6577 return ret;
6578 }
6579
6580 /* Create an ELF linker hash table. */
6581
6582 struct bfd_link_hash_table *
6583 _bfd_elf_link_hash_table_create (bfd *abfd)
6584 {
6585 struct elf_link_hash_table *ret;
6586 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6587
6588 ret = bfd_malloc (amt);
6589 if (ret == NULL)
6590 return NULL;
6591
6592 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6593 sizeof (struct elf_link_hash_entry)))
6594 {
6595 free (ret);
6596 return NULL;
6597 }
6598
6599 return &ret->root;
6600 }
6601
6602 /* This is a hook for the ELF emulation code in the generic linker to
6603 tell the backend linker what file name to use for the DT_NEEDED
6604 entry for a dynamic object. */
6605
6606 void
6607 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6608 {
6609 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6610 && bfd_get_format (abfd) == bfd_object)
6611 elf_dt_name (abfd) = name;
6612 }
6613
6614 int
6615 bfd_elf_get_dyn_lib_class (bfd *abfd)
6616 {
6617 int lib_class;
6618 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6619 && bfd_get_format (abfd) == bfd_object)
6620 lib_class = elf_dyn_lib_class (abfd);
6621 else
6622 lib_class = 0;
6623 return lib_class;
6624 }
6625
6626 void
6627 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6628 {
6629 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6630 && bfd_get_format (abfd) == bfd_object)
6631 elf_dyn_lib_class (abfd) = lib_class;
6632 }
6633
6634 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6635 the linker ELF emulation code. */
6636
6637 struct bfd_link_needed_list *
6638 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6639 struct bfd_link_info *info)
6640 {
6641 if (! is_elf_hash_table (info->hash))
6642 return NULL;
6643 return elf_hash_table (info)->needed;
6644 }
6645
6646 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6647 hook for the linker ELF emulation code. */
6648
6649 struct bfd_link_needed_list *
6650 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6651 struct bfd_link_info *info)
6652 {
6653 if (! is_elf_hash_table (info->hash))
6654 return NULL;
6655 return elf_hash_table (info)->runpath;
6656 }
6657
6658 /* Get the name actually used for a dynamic object for a link. This
6659 is the SONAME entry if there is one. Otherwise, it is the string
6660 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6661
6662 const char *
6663 bfd_elf_get_dt_soname (bfd *abfd)
6664 {
6665 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6666 && bfd_get_format (abfd) == bfd_object)
6667 return elf_dt_name (abfd);
6668 return NULL;
6669 }
6670
6671 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6672 the ELF linker emulation code. */
6673
6674 bfd_boolean
6675 bfd_elf_get_bfd_needed_list (bfd *abfd,
6676 struct bfd_link_needed_list **pneeded)
6677 {
6678 asection *s;
6679 bfd_byte *dynbuf = NULL;
6680 int elfsec;
6681 unsigned long shlink;
6682 bfd_byte *extdyn, *extdynend;
6683 size_t extdynsize;
6684 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6685
6686 *pneeded = NULL;
6687
6688 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6689 || bfd_get_format (abfd) != bfd_object)
6690 return TRUE;
6691
6692 s = bfd_get_section_by_name (abfd, ".dynamic");
6693 if (s == NULL || s->size == 0)
6694 return TRUE;
6695
6696 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6697 goto error_return;
6698
6699 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6700 if (elfsec == -1)
6701 goto error_return;
6702
6703 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6704
6705 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6706 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6707
6708 extdyn = dynbuf;
6709 extdynend = extdyn + s->size;
6710 for (; extdyn < extdynend; extdyn += extdynsize)
6711 {
6712 Elf_Internal_Dyn dyn;
6713
6714 (*swap_dyn_in) (abfd, extdyn, &dyn);
6715
6716 if (dyn.d_tag == DT_NULL)
6717 break;
6718
6719 if (dyn.d_tag == DT_NEEDED)
6720 {
6721 const char *string;
6722 struct bfd_link_needed_list *l;
6723 unsigned int tagv = dyn.d_un.d_val;
6724 bfd_size_type amt;
6725
6726 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6727 if (string == NULL)
6728 goto error_return;
6729
6730 amt = sizeof *l;
6731 l = bfd_alloc (abfd, amt);
6732 if (l == NULL)
6733 goto error_return;
6734
6735 l->by = abfd;
6736 l->name = string;
6737 l->next = *pneeded;
6738 *pneeded = l;
6739 }
6740 }
6741
6742 free (dynbuf);
6743
6744 return TRUE;
6745
6746 error_return:
6747 if (dynbuf != NULL)
6748 free (dynbuf);
6749 return FALSE;
6750 }
6751
6752 struct elf_symbuf_symbol
6753 {
6754 unsigned long st_name; /* Symbol name, index in string tbl */
6755 unsigned char st_info; /* Type and binding attributes */
6756 unsigned char st_other; /* Visibilty, and target specific */
6757 };
6758
6759 struct elf_symbuf_head
6760 {
6761 struct elf_symbuf_symbol *ssym;
6762 bfd_size_type count;
6763 unsigned int st_shndx;
6764 };
6765
6766 struct elf_symbol
6767 {
6768 union
6769 {
6770 Elf_Internal_Sym *isym;
6771 struct elf_symbuf_symbol *ssym;
6772 } u;
6773 const char *name;
6774 };
6775
6776 /* Sort references to symbols by ascending section number. */
6777
6778 static int
6779 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6780 {
6781 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6782 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6783
6784 return s1->st_shndx - s2->st_shndx;
6785 }
6786
6787 static int
6788 elf_sym_name_compare (const void *arg1, const void *arg2)
6789 {
6790 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6791 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6792 return strcmp (s1->name, s2->name);
6793 }
6794
6795 static struct elf_symbuf_head *
6796 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6797 {
6798 Elf_Internal_Sym **ind, **indbufend, **indbuf
6799 = bfd_malloc2 (symcount, sizeof (*indbuf));
6800 struct elf_symbuf_symbol *ssym;
6801 struct elf_symbuf_head *ssymbuf, *ssymhead;
6802 bfd_size_type i, shndx_count;
6803
6804 if (indbuf == NULL)
6805 return NULL;
6806
6807 for (ind = indbuf, i = 0; i < symcount; i++)
6808 if (isymbuf[i].st_shndx != SHN_UNDEF)
6809 *ind++ = &isymbuf[i];
6810 indbufend = ind;
6811
6812 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6813 elf_sort_elf_symbol);
6814
6815 shndx_count = 0;
6816 if (indbufend > indbuf)
6817 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6818 if (ind[0]->st_shndx != ind[1]->st_shndx)
6819 shndx_count++;
6820
6821 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6822 + (indbufend - indbuf) * sizeof (*ssymbuf));
6823 if (ssymbuf == NULL)
6824 {
6825 free (indbuf);
6826 return NULL;
6827 }
6828
6829 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6830 ssymbuf->ssym = NULL;
6831 ssymbuf->count = shndx_count;
6832 ssymbuf->st_shndx = 0;
6833 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6834 {
6835 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6836 {
6837 ssymhead++;
6838 ssymhead->ssym = ssym;
6839 ssymhead->count = 0;
6840 ssymhead->st_shndx = (*ind)->st_shndx;
6841 }
6842 ssym->st_name = (*ind)->st_name;
6843 ssym->st_info = (*ind)->st_info;
6844 ssym->st_other = (*ind)->st_other;
6845 ssymhead->count++;
6846 }
6847 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6848
6849 free (indbuf);
6850 return ssymbuf;
6851 }
6852
6853 /* Check if 2 sections define the same set of local and global
6854 symbols. */
6855
6856 bfd_boolean
6857 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6858 struct bfd_link_info *info)
6859 {
6860 bfd *bfd1, *bfd2;
6861 const struct elf_backend_data *bed1, *bed2;
6862 Elf_Internal_Shdr *hdr1, *hdr2;
6863 bfd_size_type symcount1, symcount2;
6864 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6865 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6866 Elf_Internal_Sym *isym, *isymend;
6867 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6868 bfd_size_type count1, count2, i;
6869 int shndx1, shndx2;
6870 bfd_boolean result;
6871
6872 bfd1 = sec1->owner;
6873 bfd2 = sec2->owner;
6874
6875 /* If both are .gnu.linkonce sections, they have to have the same
6876 section name. */
6877 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
6878 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
6879 return strcmp (sec1->name + sizeof ".gnu.linkonce",
6880 sec2->name + sizeof ".gnu.linkonce") == 0;
6881
6882 /* Both sections have to be in ELF. */
6883 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6884 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6885 return FALSE;
6886
6887 if (elf_section_type (sec1) != elf_section_type (sec2))
6888 return FALSE;
6889
6890 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
6891 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
6892 {
6893 /* If both are members of section groups, they have to have the
6894 same group name. */
6895 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
6896 return FALSE;
6897 }
6898
6899 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6900 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6901 if (shndx1 == -1 || shndx2 == -1)
6902 return FALSE;
6903
6904 bed1 = get_elf_backend_data (bfd1);
6905 bed2 = get_elf_backend_data (bfd2);
6906 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6907 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6908 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6909 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6910
6911 if (symcount1 == 0 || symcount2 == 0)
6912 return FALSE;
6913
6914 result = FALSE;
6915 isymbuf1 = NULL;
6916 isymbuf2 = NULL;
6917 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6918 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6919
6920 if (ssymbuf1 == NULL)
6921 {
6922 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6923 NULL, NULL, NULL);
6924 if (isymbuf1 == NULL)
6925 goto done;
6926
6927 if (!info->reduce_memory_overheads)
6928 elf_tdata (bfd1)->symbuf = ssymbuf1
6929 = elf_create_symbuf (symcount1, isymbuf1);
6930 }
6931
6932 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6933 {
6934 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6935 NULL, NULL, NULL);
6936 if (isymbuf2 == NULL)
6937 goto done;
6938
6939 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6940 elf_tdata (bfd2)->symbuf = ssymbuf2
6941 = elf_create_symbuf (symcount2, isymbuf2);
6942 }
6943
6944 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
6945 {
6946 /* Optimized faster version. */
6947 bfd_size_type lo, hi, mid;
6948 struct elf_symbol *symp;
6949 struct elf_symbuf_symbol *ssym, *ssymend;
6950
6951 lo = 0;
6952 hi = ssymbuf1->count;
6953 ssymbuf1++;
6954 count1 = 0;
6955 while (lo < hi)
6956 {
6957 mid = (lo + hi) / 2;
6958 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
6959 hi = mid;
6960 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
6961 lo = mid + 1;
6962 else
6963 {
6964 count1 = ssymbuf1[mid].count;
6965 ssymbuf1 += mid;
6966 break;
6967 }
6968 }
6969
6970 lo = 0;
6971 hi = ssymbuf2->count;
6972 ssymbuf2++;
6973 count2 = 0;
6974 while (lo < hi)
6975 {
6976 mid = (lo + hi) / 2;
6977 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
6978 hi = mid;
6979 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
6980 lo = mid + 1;
6981 else
6982 {
6983 count2 = ssymbuf2[mid].count;
6984 ssymbuf2 += mid;
6985 break;
6986 }
6987 }
6988
6989 if (count1 == 0 || count2 == 0 || count1 != count2)
6990 goto done;
6991
6992 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
6993 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
6994 if (symtable1 == NULL || symtable2 == NULL)
6995 goto done;
6996
6997 symp = symtable1;
6998 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
6999 ssym < ssymend; ssym++, symp++)
7000 {
7001 symp->u.ssym = ssym;
7002 symp->name = bfd_elf_string_from_elf_section (bfd1,
7003 hdr1->sh_link,
7004 ssym->st_name);
7005 }
7006
7007 symp = symtable2;
7008 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7009 ssym < ssymend; ssym++, symp++)
7010 {
7011 symp->u.ssym = ssym;
7012 symp->name = bfd_elf_string_from_elf_section (bfd2,
7013 hdr2->sh_link,
7014 ssym->st_name);
7015 }
7016
7017 /* Sort symbol by name. */
7018 qsort (symtable1, count1, sizeof (struct elf_symbol),
7019 elf_sym_name_compare);
7020 qsort (symtable2, count1, sizeof (struct elf_symbol),
7021 elf_sym_name_compare);
7022
7023 for (i = 0; i < count1; i++)
7024 /* Two symbols must have the same binding, type and name. */
7025 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7026 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7027 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7028 goto done;
7029
7030 result = TRUE;
7031 goto done;
7032 }
7033
7034 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7035 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7036 if (symtable1 == NULL || symtable2 == NULL)
7037 goto done;
7038
7039 /* Count definitions in the section. */
7040 count1 = 0;
7041 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7042 if (isym->st_shndx == (unsigned int) shndx1)
7043 symtable1[count1++].u.isym = isym;
7044
7045 count2 = 0;
7046 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7047 if (isym->st_shndx == (unsigned int) shndx2)
7048 symtable2[count2++].u.isym = isym;
7049
7050 if (count1 == 0 || count2 == 0 || count1 != count2)
7051 goto done;
7052
7053 for (i = 0; i < count1; i++)
7054 symtable1[i].name
7055 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7056 symtable1[i].u.isym->st_name);
7057
7058 for (i = 0; i < count2; i++)
7059 symtable2[i].name
7060 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7061 symtable2[i].u.isym->st_name);
7062
7063 /* Sort symbol by name. */
7064 qsort (symtable1, count1, sizeof (struct elf_symbol),
7065 elf_sym_name_compare);
7066 qsort (symtable2, count1, sizeof (struct elf_symbol),
7067 elf_sym_name_compare);
7068
7069 for (i = 0; i < count1; i++)
7070 /* Two symbols must have the same binding, type and name. */
7071 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7072 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7073 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7074 goto done;
7075
7076 result = TRUE;
7077
7078 done:
7079 if (symtable1)
7080 free (symtable1);
7081 if (symtable2)
7082 free (symtable2);
7083 if (isymbuf1)
7084 free (isymbuf1);
7085 if (isymbuf2)
7086 free (isymbuf2);
7087
7088 return result;
7089 }
7090
7091 /* Return TRUE if 2 section types are compatible. */
7092
7093 bfd_boolean
7094 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7095 bfd *bbfd, const asection *bsec)
7096 {
7097 if (asec == NULL
7098 || bsec == NULL
7099 || abfd->xvec->flavour != bfd_target_elf_flavour
7100 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7101 return TRUE;
7102
7103 return elf_section_type (asec) == elf_section_type (bsec);
7104 }
7105 \f
7106 /* Final phase of ELF linker. */
7107
7108 /* A structure we use to avoid passing large numbers of arguments. */
7109
7110 struct elf_final_link_info
7111 {
7112 /* General link information. */
7113 struct bfd_link_info *info;
7114 /* Output BFD. */
7115 bfd *output_bfd;
7116 /* Symbol string table. */
7117 struct bfd_strtab_hash *symstrtab;
7118 /* .dynsym section. */
7119 asection *dynsym_sec;
7120 /* .hash section. */
7121 asection *hash_sec;
7122 /* symbol version section (.gnu.version). */
7123 asection *symver_sec;
7124 /* Buffer large enough to hold contents of any section. */
7125 bfd_byte *contents;
7126 /* Buffer large enough to hold external relocs of any section. */
7127 void *external_relocs;
7128 /* Buffer large enough to hold internal relocs of any section. */
7129 Elf_Internal_Rela *internal_relocs;
7130 /* Buffer large enough to hold external local symbols of any input
7131 BFD. */
7132 bfd_byte *external_syms;
7133 /* And a buffer for symbol section indices. */
7134 Elf_External_Sym_Shndx *locsym_shndx;
7135 /* Buffer large enough to hold internal local symbols of any input
7136 BFD. */
7137 Elf_Internal_Sym *internal_syms;
7138 /* Array large enough to hold a symbol index for each local symbol
7139 of any input BFD. */
7140 long *indices;
7141 /* Array large enough to hold a section pointer for each local
7142 symbol of any input BFD. */
7143 asection **sections;
7144 /* Buffer to hold swapped out symbols. */
7145 bfd_byte *symbuf;
7146 /* And one for symbol section indices. */
7147 Elf_External_Sym_Shndx *symshndxbuf;
7148 /* Number of swapped out symbols in buffer. */
7149 size_t symbuf_count;
7150 /* Number of symbols which fit in symbuf. */
7151 size_t symbuf_size;
7152 /* And same for symshndxbuf. */
7153 size_t shndxbuf_size;
7154 };
7155
7156 /* This struct is used to pass information to elf_link_output_extsym. */
7157
7158 struct elf_outext_info
7159 {
7160 bfd_boolean failed;
7161 bfd_boolean localsyms;
7162 struct elf_final_link_info *finfo;
7163 };
7164
7165
7166 /* Support for evaluating a complex relocation.
7167
7168 Complex relocations are generalized, self-describing relocations. The
7169 implementation of them consists of two parts: complex symbols, and the
7170 relocations themselves.
7171
7172 The relocations are use a reserved elf-wide relocation type code (R_RELC
7173 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7174 information (start bit, end bit, word width, etc) into the addend. This
7175 information is extracted from CGEN-generated operand tables within gas.
7176
7177 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7178 internal) representing prefix-notation expressions, including but not
7179 limited to those sorts of expressions normally encoded as addends in the
7180 addend field. The symbol mangling format is:
7181
7182 <node> := <literal>
7183 | <unary-operator> ':' <node>
7184 | <binary-operator> ':' <node> ':' <node>
7185 ;
7186
7187 <literal> := 's' <digits=N> ':' <N character symbol name>
7188 | 'S' <digits=N> ':' <N character section name>
7189 | '#' <hexdigits>
7190 ;
7191
7192 <binary-operator> := as in C
7193 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7194
7195 static void
7196 set_symbol_value (bfd * bfd_with_globals,
7197 struct elf_final_link_info * finfo,
7198 int symidx,
7199 bfd_vma val)
7200 {
7201 bfd_boolean is_local;
7202 Elf_Internal_Sym * sym;
7203 struct elf_link_hash_entry ** sym_hashes;
7204 struct elf_link_hash_entry * h;
7205
7206 sym_hashes = elf_sym_hashes (bfd_with_globals);
7207 sym = finfo->internal_syms + symidx;
7208 is_local = ELF_ST_BIND(sym->st_info) == STB_LOCAL;
7209
7210 if (is_local)
7211 {
7212 /* It is a local symbol: move it to the
7213 "absolute" section and give it a value. */
7214 sym->st_shndx = SHN_ABS;
7215 sym->st_value = val;
7216 }
7217 else
7218 {
7219 /* It is a global symbol: set its link type
7220 to "defined" and give it a value. */
7221 h = sym_hashes [symidx];
7222 while (h->root.type == bfd_link_hash_indirect
7223 || h->root.type == bfd_link_hash_warning)
7224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7225 h->root.type = bfd_link_hash_defined;
7226 h->root.u.def.value = val;
7227 h->root.u.def.section = bfd_abs_section_ptr;
7228 }
7229 }
7230
7231 static bfd_boolean
7232 resolve_symbol (const char * name,
7233 bfd * input_bfd,
7234 struct elf_final_link_info * finfo,
7235 bfd_vma * result,
7236 size_t locsymcount)
7237 {
7238 Elf_Internal_Sym * sym;
7239 struct bfd_link_hash_entry * global_entry;
7240 const char * candidate = NULL;
7241 Elf_Internal_Shdr * symtab_hdr;
7242 asection * sec = NULL;
7243 size_t i;
7244
7245 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7246
7247 for (i = 0; i < locsymcount; ++ i)
7248 {
7249 sym = finfo->internal_syms + i;
7250 sec = finfo->sections [i];
7251
7252 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7253 continue;
7254
7255 candidate = bfd_elf_string_from_elf_section (input_bfd,
7256 symtab_hdr->sh_link,
7257 sym->st_name);
7258 #ifdef DEBUG
7259 printf ("Comparing string: '%s' vs. '%s' = 0x%x\n",
7260 name, candidate, (unsigned int)sym->st_value);
7261 #endif
7262 if (candidate && strcmp (candidate, name) == 0)
7263 {
7264 * result = sym->st_value;
7265
7266 if (sym->st_shndx > SHN_UNDEF &&
7267 sym->st_shndx < SHN_LORESERVE)
7268 {
7269 #ifdef DEBUG
7270 printf ("adjusting for sec '%s' @ 0x%x + 0x%x\n",
7271 sec->output_section->name,
7272 (unsigned int)sec->output_section->vma,
7273 (unsigned int)sec->output_offset);
7274 #endif
7275 * result += sec->output_offset + sec->output_section->vma;
7276 }
7277 #ifdef DEBUG
7278 printf ("Found symbol with effective value %8.8x\n", (unsigned int)* result);
7279 #endif
7280 return TRUE;
7281 }
7282 }
7283
7284 /* Hmm, haven't found it yet. perhaps it is a global. */
7285 global_entry = bfd_link_hash_lookup (finfo->info->hash, name, FALSE, FALSE, TRUE);
7286 if (!global_entry)
7287 return FALSE;
7288
7289 if (global_entry->type == bfd_link_hash_defined
7290 || global_entry->type == bfd_link_hash_defweak)
7291 {
7292 * result = global_entry->u.def.value
7293 + global_entry->u.def.section->output_section->vma
7294 + global_entry->u.def.section->output_offset;
7295 #ifdef DEBUG
7296 printf ("Found GLOBAL symbol '%s' with value %8.8x\n",
7297 global_entry->root.string, (unsigned int)*result);
7298 #endif
7299 return TRUE;
7300 }
7301
7302 if (global_entry->type == bfd_link_hash_common)
7303 {
7304 *result = global_entry->u.def.value +
7305 bfd_com_section_ptr->output_section->vma +
7306 bfd_com_section_ptr->output_offset;
7307 #ifdef DEBUG
7308 printf ("Found COMMON symbol '%s' with value %8.8x\n",
7309 global_entry->root.string, (unsigned int)*result);
7310 #endif
7311 return TRUE;
7312 }
7313
7314 return FALSE;
7315 }
7316
7317 static bfd_boolean
7318 resolve_section (const char * name,
7319 asection * sections,
7320 bfd_vma * result)
7321 {
7322 asection * curr;
7323 unsigned int len;
7324
7325 for (curr = sections; curr; curr = curr->next)
7326 if (strcmp (curr->name, name) == 0)
7327 {
7328 *result = curr->vma;
7329 return TRUE;
7330 }
7331
7332 /* Hmm. still haven't found it. try pseudo-section names. */
7333 for (curr = sections; curr; curr = curr->next)
7334 {
7335 len = strlen (curr->name);
7336 if (len > strlen (name))
7337 continue;
7338
7339 if (strncmp (curr->name, name, len) == 0)
7340 {
7341 if (strncmp (".end", name + len, 4) == 0)
7342 {
7343 *result = curr->vma + curr->size;
7344 return TRUE;
7345 }
7346
7347 /* Insert more pseudo-section names here, if you like. */
7348 }
7349 }
7350
7351 return FALSE;
7352 }
7353
7354 static void
7355 undefined_reference (const char * reftype,
7356 const char * name)
7357 {
7358 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), reftype, name);
7359 }
7360
7361 static bfd_boolean
7362 eval_symbol (bfd_vma * result,
7363 char * sym,
7364 char ** advanced,
7365 bfd * input_bfd,
7366 struct elf_final_link_info * finfo,
7367 bfd_vma addr,
7368 bfd_vma section_offset,
7369 size_t locsymcount,
7370 int signed_p)
7371 {
7372 int len;
7373 int symlen;
7374 bfd_vma a;
7375 bfd_vma b;
7376 const int bufsz = 4096;
7377 char symbuf [bufsz];
7378 const char * symend;
7379 bfd_boolean symbol_is_section = FALSE;
7380
7381 len = strlen (sym);
7382 symend = sym + len;
7383
7384 if (len < 1 || len > bufsz)
7385 {
7386 bfd_set_error (bfd_error_invalid_operation);
7387 return FALSE;
7388 }
7389
7390 switch (* sym)
7391 {
7392 case '.':
7393 * result = addr + section_offset;
7394 * advanced = sym + 1;
7395 return TRUE;
7396
7397 case '#':
7398 ++ sym;
7399 * result = strtoul (sym, advanced, 16);
7400 return TRUE;
7401
7402 case 'S':
7403 symbol_is_section = TRUE;
7404 case 's':
7405 ++ sym;
7406 symlen = strtol (sym, &sym, 10);
7407 ++ sym; /* Skip the trailing ':'. */
7408
7409 if ((symend < sym) || ((symlen + 1) > bufsz))
7410 {
7411 bfd_set_error (bfd_error_invalid_operation);
7412 return FALSE;
7413 }
7414
7415 memcpy (symbuf, sym, symlen);
7416 symbuf [symlen] = '\0';
7417 * advanced = sym + symlen;
7418
7419 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7420 the symbol as a section, or vice-versa. so we're pretty liberal in our
7421 interpretation here; section means "try section first", not "must be a
7422 section", and likewise with symbol. */
7423
7424 if (symbol_is_section)
7425 {
7426 if ((resolve_section (symbuf, finfo->output_bfd->sections, result) != TRUE)
7427 && (resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE))
7428 {
7429 undefined_reference ("section", symbuf);
7430 return FALSE;
7431 }
7432 }
7433 else
7434 {
7435 if ((resolve_symbol (symbuf, input_bfd, finfo, result, locsymcount) != TRUE)
7436 && (resolve_section (symbuf, finfo->output_bfd->sections,
7437 result) != TRUE))
7438 {
7439 undefined_reference ("symbol", symbuf);
7440 return FALSE;
7441 }
7442 }
7443
7444 return TRUE;
7445
7446 /* All that remains are operators. */
7447
7448 #define UNARY_OP(op) \
7449 if (strncmp (sym, #op, strlen (#op)) == 0) \
7450 { \
7451 sym += strlen (#op); \
7452 if (* sym == ':') \
7453 ++ sym; \
7454 if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
7455 section_offset, locsymcount, signed_p) \
7456 != TRUE) \
7457 return FALSE; \
7458 if (signed_p) \
7459 * result = op ((signed)a); \
7460 else \
7461 * result = op a; \
7462 * advanced = sym; \
7463 return TRUE; \
7464 }
7465
7466 #define BINARY_OP(op) \
7467 if (strncmp (sym, #op, strlen (#op)) == 0) \
7468 { \
7469 sym += strlen (#op); \
7470 if (* sym == ':') \
7471 ++ sym; \
7472 if (eval_symbol (& a, sym, & sym, input_bfd, finfo, addr, \
7473 section_offset, locsymcount, signed_p) \
7474 != TRUE) \
7475 return FALSE; \
7476 ++ sym; \
7477 if (eval_symbol (& b, sym, & sym, input_bfd, finfo, addr, \
7478 section_offset, locsymcount, signed_p) \
7479 != TRUE) \
7480 return FALSE; \
7481 if (signed_p) \
7482 * result = ((signed) a) op ((signed) b); \
7483 else \
7484 * result = a op b; \
7485 * advanced = sym; \
7486 return TRUE; \
7487 }
7488
7489 default:
7490 UNARY_OP (0-);
7491 BINARY_OP (<<);
7492 BINARY_OP (>>);
7493 BINARY_OP (==);
7494 BINARY_OP (!=);
7495 BINARY_OP (<=);
7496 BINARY_OP (>=);
7497 BINARY_OP (&&);
7498 BINARY_OP (||);
7499 UNARY_OP (~);
7500 UNARY_OP (!);
7501 BINARY_OP (*);
7502 BINARY_OP (/);
7503 BINARY_OP (%);
7504 BINARY_OP (^);
7505 BINARY_OP (|);
7506 BINARY_OP (&);
7507 BINARY_OP (+);
7508 BINARY_OP (-);
7509 BINARY_OP (<);
7510 BINARY_OP (>);
7511 #undef UNARY_OP
7512 #undef BINARY_OP
7513 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7514 bfd_set_error (bfd_error_invalid_operation);
7515 return FALSE;
7516 }
7517 }
7518
7519 /* Entry point to evaluator, called from elf_link_input_bfd. */
7520
7521 static bfd_boolean
7522 evaluate_complex_relocation_symbols (bfd * input_bfd,
7523 struct elf_final_link_info * finfo,
7524 size_t locsymcount)
7525 {
7526 const struct elf_backend_data * bed;
7527 Elf_Internal_Shdr * symtab_hdr;
7528 struct elf_link_hash_entry ** sym_hashes;
7529 asection * reloc_sec;
7530 bfd_boolean result = TRUE;
7531
7532 /* For each section, we're going to check and see if it has any
7533 complex relocations, and we're going to evaluate any of them
7534 we can. */
7535
7536 if (finfo->info->relocatable)
7537 return TRUE;
7538
7539 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7540 sym_hashes = elf_sym_hashes (input_bfd);
7541 bed = get_elf_backend_data (input_bfd);
7542
7543 for (reloc_sec = input_bfd->sections; reloc_sec; reloc_sec = reloc_sec->next)
7544 {
7545 Elf_Internal_Rela * internal_relocs;
7546 unsigned long i;
7547
7548 /* This section was omitted from the link. */
7549 if (! reloc_sec->linker_mark)
7550 continue;
7551
7552 /* Only process sections containing relocs. */
7553 if ((reloc_sec->flags & SEC_RELOC) == 0)
7554 continue;
7555
7556 if (reloc_sec->reloc_count == 0)
7557 continue;
7558
7559 /* Read in the relocs for this section. */
7560 internal_relocs
7561 = _bfd_elf_link_read_relocs (input_bfd, reloc_sec, NULL,
7562 (Elf_Internal_Rela *) NULL,
7563 FALSE);
7564 if (internal_relocs == NULL)
7565 continue;
7566
7567 for (i = reloc_sec->reloc_count; i--;)
7568 {
7569 Elf_Internal_Rela * rel;
7570 char * sym_name;
7571 bfd_vma index;
7572 Elf_Internal_Sym * sym;
7573 bfd_vma result;
7574 bfd_vma section_offset;
7575 bfd_vma addr;
7576 int signed_p = 0;
7577
7578 rel = internal_relocs + i;
7579 section_offset = reloc_sec->output_section->vma
7580 + reloc_sec->output_offset;
7581 addr = rel->r_offset;
7582
7583 index = ELF32_R_SYM (rel->r_info);
7584 if (bed->s->arch_size == 64)
7585 index >>= 24;
7586
7587 if (index == STN_UNDEF)
7588 continue;
7589
7590 if (index < locsymcount)
7591 {
7592 /* The symbol is local. */
7593 sym = finfo->internal_syms + index;
7594
7595 /* We're only processing STT_RELC or STT_SRELC type symbols. */
7596 if ((ELF_ST_TYPE (sym->st_info) != STT_RELC) &&
7597 (ELF_ST_TYPE (sym->st_info) != STT_SRELC))
7598 continue;
7599
7600 sym_name = bfd_elf_string_from_elf_section
7601 (input_bfd, symtab_hdr->sh_link, sym->st_name);
7602
7603 signed_p = (ELF_ST_TYPE (sym->st_info) == STT_SRELC);
7604 }
7605 else
7606 {
7607 /* The symbol is global. */
7608 struct elf_link_hash_entry * h;
7609
7610 if (elf_bad_symtab (input_bfd))
7611 continue;
7612
7613 h = sym_hashes [index - locsymcount];
7614 while ( h->root.type == bfd_link_hash_indirect
7615 || h->root.type == bfd_link_hash_warning)
7616 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7617
7618 if (h->type != STT_RELC && h->type != STT_SRELC)
7619 continue;
7620
7621 signed_p = (h->type == STT_SRELC);
7622 sym_name = (char *) h->root.root.string;
7623 }
7624 #ifdef DEBUG
7625 printf ("Encountered a complex symbol!");
7626 printf (" (input_bfd %s, section %s, reloc %ld\n",
7627 input_bfd->filename, reloc_sec->name, i);
7628 printf (" symbol: idx %8.8lx, name %s\n",
7629 index, sym_name);
7630 printf (" reloc : info %8.8lx, addr %8.8lx\n",
7631 rel->r_info, addr);
7632 printf (" Evaluating '%s' ...\n ", sym_name);
7633 #endif
7634 if (eval_symbol (& result, sym_name, & sym_name, input_bfd,
7635 finfo, addr, section_offset, locsymcount,
7636 signed_p))
7637 /* Symbol evaluated OK. Update to absolute value. */
7638 set_symbol_value (input_bfd, finfo, index, result);
7639
7640 else
7641 result = FALSE;
7642 }
7643
7644 if (internal_relocs != elf_section_data (reloc_sec)->relocs)
7645 free (internal_relocs);
7646 }
7647
7648 /* If nothing went wrong, then we adjusted
7649 everything we wanted to adjust. */
7650 return result;
7651 }
7652
7653 static void
7654 put_value (bfd_vma size,
7655 unsigned long chunksz,
7656 bfd * input_bfd,
7657 bfd_vma x,
7658 bfd_byte * location)
7659 {
7660 location += (size - chunksz);
7661
7662 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7663 {
7664 switch (chunksz)
7665 {
7666 default:
7667 case 0:
7668 abort ();
7669 case 1:
7670 bfd_put_8 (input_bfd, x, location);
7671 break;
7672 case 2:
7673 bfd_put_16 (input_bfd, x, location);
7674 break;
7675 case 4:
7676 bfd_put_32 (input_bfd, x, location);
7677 break;
7678 case 8:
7679 #ifdef BFD64
7680 bfd_put_64 (input_bfd, x, location);
7681 #else
7682 abort ();
7683 #endif
7684 break;
7685 }
7686 }
7687 }
7688
7689 static bfd_vma
7690 get_value (bfd_vma size,
7691 unsigned long chunksz,
7692 bfd * input_bfd,
7693 bfd_byte * location)
7694 {
7695 bfd_vma x = 0;
7696
7697 for (; size; size -= chunksz, location += chunksz)
7698 {
7699 switch (chunksz)
7700 {
7701 default:
7702 case 0:
7703 abort ();
7704 case 1:
7705 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7706 break;
7707 case 2:
7708 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7709 break;
7710 case 4:
7711 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7712 break;
7713 case 8:
7714 #ifdef BFD64
7715 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7716 #else
7717 abort ();
7718 #endif
7719 break;
7720 }
7721 }
7722 return x;
7723 }
7724
7725 static void
7726 decode_complex_addend
7727 (unsigned long * start, /* in bits */
7728 unsigned long * oplen, /* in bits */
7729 unsigned long * len, /* in bits */
7730 unsigned long * wordsz, /* in bytes */
7731 unsigned long * chunksz, /* in bytes */
7732 unsigned long * lsb0_p,
7733 unsigned long * signed_p,
7734 unsigned long * trunc_p,
7735 unsigned long encoded)
7736 {
7737 * start = encoded & 0x3F;
7738 * len = (encoded >> 6) & 0x3F;
7739 * oplen = (encoded >> 12) & 0x3F;
7740 * wordsz = (encoded >> 18) & 0xF;
7741 * chunksz = (encoded >> 22) & 0xF;
7742 * lsb0_p = (encoded >> 27) & 1;
7743 * signed_p = (encoded >> 28) & 1;
7744 * trunc_p = (encoded >> 29) & 1;
7745 }
7746
7747 void
7748 bfd_elf_perform_complex_relocation
7749 (bfd * output_bfd ATTRIBUTE_UNUSED,
7750 struct bfd_link_info * info,
7751 bfd * input_bfd,
7752 asection * input_section,
7753 bfd_byte * contents,
7754 Elf_Internal_Rela * rel,
7755 Elf_Internal_Sym * local_syms,
7756 asection ** local_sections)
7757 {
7758 const struct elf_backend_data * bed;
7759 Elf_Internal_Shdr * symtab_hdr;
7760 asection * sec;
7761 bfd_vma relocation = 0, shift, x;
7762 bfd_vma r_symndx;
7763 bfd_vma mask;
7764 unsigned long start, oplen, len, wordsz,
7765 chunksz, lsb0_p, signed_p, trunc_p;
7766
7767 /* Perform this reloc, since it is complex.
7768 (this is not to say that it necessarily refers to a complex
7769 symbol; merely that it is a self-describing CGEN based reloc.
7770 i.e. the addend has the complete reloc information (bit start, end,
7771 word size, etc) encoded within it.). */
7772 r_symndx = ELF32_R_SYM (rel->r_info);
7773 bed = get_elf_backend_data (input_bfd);
7774 if (bed->s->arch_size == 64)
7775 r_symndx >>= 24;
7776
7777 #ifdef DEBUG
7778 printf ("Performing complex relocation %ld...\n", r_symndx);
7779 #endif
7780
7781 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7782 if (r_symndx < symtab_hdr->sh_info)
7783 {
7784 /* The symbol is local. */
7785 Elf_Internal_Sym * sym;
7786
7787 sym = local_syms + r_symndx;
7788 sec = local_sections [r_symndx];
7789 relocation = sym->st_value;
7790 if (sym->st_shndx > SHN_UNDEF &&
7791 sym->st_shndx < SHN_LORESERVE)
7792 relocation += (sec->output_offset +
7793 sec->output_section->vma);
7794 }
7795 else
7796 {
7797 /* The symbol is global. */
7798 struct elf_link_hash_entry **sym_hashes;
7799 struct elf_link_hash_entry * h;
7800
7801 sym_hashes = elf_sym_hashes (input_bfd);
7802 h = sym_hashes [r_symndx];
7803
7804 while (h->root.type == bfd_link_hash_indirect
7805 || h->root.type == bfd_link_hash_warning)
7806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7807
7808 if (h->root.type == bfd_link_hash_defined
7809 || h->root.type == bfd_link_hash_defweak)
7810 {
7811 sec = h->root.u.def.section;
7812 relocation = h->root.u.def.value;
7813
7814 if (! bfd_is_abs_section (sec))
7815 relocation += (sec->output_section->vma
7816 + sec->output_offset);
7817 }
7818 if (h->root.type == bfd_link_hash_undefined
7819 && !((*info->callbacks->undefined_symbol)
7820 (info, h->root.root.string, input_bfd,
7821 input_section, rel->r_offset,
7822 info->unresolved_syms_in_objects == RM_GENERATE_ERROR
7823 || ELF_ST_VISIBILITY (h->other))))
7824 return;
7825 }
7826
7827 decode_complex_addend (& start, & oplen, & len, & wordsz,
7828 & chunksz, & lsb0_p, & signed_p,
7829 & trunc_p, rel->r_addend);
7830
7831 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7832
7833 if (lsb0_p)
7834 shift = (start + 1) - len;
7835 else
7836 shift = (8 * wordsz) - (start + len);
7837
7838 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7839
7840 #ifdef DEBUG
7841 printf ("Doing complex reloc: "
7842 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7843 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7844 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7845 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7846 oplen, x, mask, relocation);
7847 #endif
7848
7849 if (! trunc_p)
7850 {
7851 /* Now do an overflow check. */
7852 if (bfd_check_overflow ((signed_p ?
7853 complain_overflow_signed :
7854 complain_overflow_unsigned),
7855 len, 0, (8 * wordsz),
7856 relocation) == bfd_reloc_overflow)
7857 (*_bfd_error_handler)
7858 ("%s (%s + 0x%lx): relocation overflow: 0x%lx %sdoes not fit "
7859 "within 0x%lx",
7860 input_bfd->filename, input_section->name, rel->r_offset,
7861 relocation, (signed_p ? "(signed) " : ""), mask);
7862 }
7863
7864 /* Do the deed. */
7865 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7866
7867 #ifdef DEBUG
7868 printf (" relocation: %8.8lx\n"
7869 " shifted mask: %8.8lx\n"
7870 " shifted/masked reloc: %8.8lx\n"
7871 " result: %8.8lx\n",
7872 relocation, (mask << shift),
7873 ((relocation & mask) << shift), x);
7874 #endif
7875 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7876 }
7877
7878 /* When performing a relocatable link, the input relocations are
7879 preserved. But, if they reference global symbols, the indices
7880 referenced must be updated. Update all the relocations in
7881 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7882
7883 static void
7884 elf_link_adjust_relocs (bfd *abfd,
7885 Elf_Internal_Shdr *rel_hdr,
7886 unsigned int count,
7887 struct elf_link_hash_entry **rel_hash)
7888 {
7889 unsigned int i;
7890 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7891 bfd_byte *erela;
7892 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7893 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7894 bfd_vma r_type_mask;
7895 int r_sym_shift;
7896
7897 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7898 {
7899 swap_in = bed->s->swap_reloc_in;
7900 swap_out = bed->s->swap_reloc_out;
7901 }
7902 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7903 {
7904 swap_in = bed->s->swap_reloca_in;
7905 swap_out = bed->s->swap_reloca_out;
7906 }
7907 else
7908 abort ();
7909
7910 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7911 abort ();
7912
7913 if (bed->s->arch_size == 32)
7914 {
7915 r_type_mask = 0xff;
7916 r_sym_shift = 8;
7917 }
7918 else
7919 {
7920 r_type_mask = 0xffffffff;
7921 r_sym_shift = 32;
7922 }
7923
7924 erela = rel_hdr->contents;
7925 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7926 {
7927 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7928 unsigned int j;
7929
7930 if (*rel_hash == NULL)
7931 continue;
7932
7933 BFD_ASSERT ((*rel_hash)->indx >= 0);
7934
7935 (*swap_in) (abfd, erela, irela);
7936 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7937 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7938 | (irela[j].r_info & r_type_mask));
7939 (*swap_out) (abfd, irela, erela);
7940 }
7941 }
7942
7943 struct elf_link_sort_rela
7944 {
7945 union {
7946 bfd_vma offset;
7947 bfd_vma sym_mask;
7948 } u;
7949 enum elf_reloc_type_class type;
7950 /* We use this as an array of size int_rels_per_ext_rel. */
7951 Elf_Internal_Rela rela[1];
7952 };
7953
7954 static int
7955 elf_link_sort_cmp1 (const void *A, const void *B)
7956 {
7957 const struct elf_link_sort_rela *a = A;
7958 const struct elf_link_sort_rela *b = B;
7959 int relativea, relativeb;
7960
7961 relativea = a->type == reloc_class_relative;
7962 relativeb = b->type == reloc_class_relative;
7963
7964 if (relativea < relativeb)
7965 return 1;
7966 if (relativea > relativeb)
7967 return -1;
7968 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7969 return -1;
7970 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7971 return 1;
7972 if (a->rela->r_offset < b->rela->r_offset)
7973 return -1;
7974 if (a->rela->r_offset > b->rela->r_offset)
7975 return 1;
7976 return 0;
7977 }
7978
7979 static int
7980 elf_link_sort_cmp2 (const void *A, const void *B)
7981 {
7982 const struct elf_link_sort_rela *a = A;
7983 const struct elf_link_sort_rela *b = B;
7984 int copya, copyb;
7985
7986 if (a->u.offset < b->u.offset)
7987 return -1;
7988 if (a->u.offset > b->u.offset)
7989 return 1;
7990 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7991 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7992 if (copya < copyb)
7993 return -1;
7994 if (copya > copyb)
7995 return 1;
7996 if (a->rela->r_offset < b->rela->r_offset)
7997 return -1;
7998 if (a->rela->r_offset > b->rela->r_offset)
7999 return 1;
8000 return 0;
8001 }
8002
8003 static size_t
8004 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8005 {
8006 asection *dynamic_relocs;
8007 asection *rela_dyn;
8008 asection *rel_dyn;
8009 bfd_size_type count, size;
8010 size_t i, ret, sort_elt, ext_size;
8011 bfd_byte *sort, *s_non_relative, *p;
8012 struct elf_link_sort_rela *sq;
8013 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8014 int i2e = bed->s->int_rels_per_ext_rel;
8015 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8016 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8017 struct bfd_link_order *lo;
8018 bfd_vma r_sym_mask;
8019 bfd_boolean use_rela;
8020
8021 /* Find a dynamic reloc section. */
8022 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8023 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8024 if (rela_dyn != NULL && rela_dyn->size > 0
8025 && rel_dyn != NULL && rel_dyn->size > 0)
8026 {
8027 bfd_boolean use_rela_initialised = FALSE;
8028
8029 /* This is just here to stop gcc from complaining.
8030 It's initialization checking code is not perfect. */
8031 use_rela = TRUE;
8032
8033 /* Both sections are present. Examine the sizes
8034 of the indirect sections to help us choose. */
8035 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8036 if (lo->type == bfd_indirect_link_order)
8037 {
8038 asection *o = lo->u.indirect.section;
8039
8040 if ((o->size % bed->s->sizeof_rela) == 0)
8041 {
8042 if ((o->size % bed->s->sizeof_rel) == 0)
8043 /* Section size is divisible by both rel and rela sizes.
8044 It is of no help to us. */
8045 ;
8046 else
8047 {
8048 /* Section size is only divisible by rela. */
8049 if (use_rela_initialised && (use_rela == FALSE))
8050 {
8051 _bfd_error_handler
8052 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8053 bfd_set_error (bfd_error_invalid_operation);
8054 return 0;
8055 }
8056 else
8057 {
8058 use_rela = TRUE;
8059 use_rela_initialised = TRUE;
8060 }
8061 }
8062 }
8063 else if ((o->size % bed->s->sizeof_rel) == 0)
8064 {
8065 /* Section size is only divisible by rel. */
8066 if (use_rela_initialised && (use_rela == TRUE))
8067 {
8068 _bfd_error_handler
8069 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8070 bfd_set_error (bfd_error_invalid_operation);
8071 return 0;
8072 }
8073 else
8074 {
8075 use_rela = FALSE;
8076 use_rela_initialised = TRUE;
8077 }
8078 }
8079 else
8080 {
8081 /* The section size is not divisible by either - something is wrong. */
8082 _bfd_error_handler
8083 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8084 bfd_set_error (bfd_error_invalid_operation);
8085 return 0;
8086 }
8087 }
8088
8089 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8090 if (lo->type == bfd_indirect_link_order)
8091 {
8092 asection *o = lo->u.indirect.section;
8093
8094 if ((o->size % bed->s->sizeof_rela) == 0)
8095 {
8096 if ((o->size % bed->s->sizeof_rel) == 0)
8097 /* Section size is divisible by both rel and rela sizes.
8098 It is of no help to us. */
8099 ;
8100 else
8101 {
8102 /* Section size is only divisible by rela. */
8103 if (use_rela_initialised && (use_rela == FALSE))
8104 {
8105 _bfd_error_handler
8106 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8107 bfd_set_error (bfd_error_invalid_operation);
8108 return 0;
8109 }
8110 else
8111 {
8112 use_rela = TRUE;
8113 use_rela_initialised = TRUE;
8114 }
8115 }
8116 }
8117 else if ((o->size % bed->s->sizeof_rel) == 0)
8118 {
8119 /* Section size is only divisible by rel. */
8120 if (use_rela_initialised && (use_rela == TRUE))
8121 {
8122 _bfd_error_handler
8123 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8124 bfd_set_error (bfd_error_invalid_operation);
8125 return 0;
8126 }
8127 else
8128 {
8129 use_rela = FALSE;
8130 use_rela_initialised = TRUE;
8131 }
8132 }
8133 else
8134 {
8135 /* The section size is not divisible by either - something is wrong. */
8136 _bfd_error_handler
8137 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8138 bfd_set_error (bfd_error_invalid_operation);
8139 return 0;
8140 }
8141 }
8142
8143 if (! use_rela_initialised)
8144 /* Make a guess. */
8145 use_rela = TRUE;
8146 }
8147 else if (rela_dyn != NULL && rela_dyn->size > 0)
8148 use_rela = TRUE;
8149 else if (rel_dyn != NULL && rel_dyn->size > 0)
8150 use_rela = FALSE;
8151 else
8152 return 0;
8153
8154 if (use_rela)
8155 {
8156 dynamic_relocs = rela_dyn;
8157 ext_size = bed->s->sizeof_rela;
8158 swap_in = bed->s->swap_reloca_in;
8159 swap_out = bed->s->swap_reloca_out;
8160 }
8161 else
8162 {
8163 dynamic_relocs = rel_dyn;
8164 ext_size = bed->s->sizeof_rel;
8165 swap_in = bed->s->swap_reloc_in;
8166 swap_out = bed->s->swap_reloc_out;
8167 }
8168
8169 size = 0;
8170 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8171 if (lo->type == bfd_indirect_link_order)
8172 size += lo->u.indirect.section->size;
8173
8174 if (size != dynamic_relocs->size)
8175 return 0;
8176
8177 sort_elt = (sizeof (struct elf_link_sort_rela)
8178 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8179
8180 count = dynamic_relocs->size / ext_size;
8181 sort = bfd_zmalloc (sort_elt * count);
8182
8183 if (sort == NULL)
8184 {
8185 (*info->callbacks->warning)
8186 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8187 return 0;
8188 }
8189
8190 if (bed->s->arch_size == 32)
8191 r_sym_mask = ~(bfd_vma) 0xff;
8192 else
8193 r_sym_mask = ~(bfd_vma) 0xffffffff;
8194
8195 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8196 if (lo->type == bfd_indirect_link_order)
8197 {
8198 bfd_byte *erel, *erelend;
8199 asection *o = lo->u.indirect.section;
8200
8201 if (o->contents == NULL && o->size != 0)
8202 {
8203 /* This is a reloc section that is being handled as a normal
8204 section. See bfd_section_from_shdr. We can't combine
8205 relocs in this case. */
8206 free (sort);
8207 return 0;
8208 }
8209 erel = o->contents;
8210 erelend = o->contents + o->size;
8211 p = sort + o->output_offset / ext_size * sort_elt;
8212
8213 while (erel < erelend)
8214 {
8215 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8216
8217 (*swap_in) (abfd, erel, s->rela);
8218 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8219 s->u.sym_mask = r_sym_mask;
8220 p += sort_elt;
8221 erel += ext_size;
8222 }
8223 }
8224
8225 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8226
8227 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8228 {
8229 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8230 if (s->type != reloc_class_relative)
8231 break;
8232 }
8233 ret = i;
8234 s_non_relative = p;
8235
8236 sq = (struct elf_link_sort_rela *) s_non_relative;
8237 for (; i < count; i++, p += sort_elt)
8238 {
8239 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8240 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8241 sq = sp;
8242 sp->u.offset = sq->rela->r_offset;
8243 }
8244
8245 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8246
8247 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8248 if (lo->type == bfd_indirect_link_order)
8249 {
8250 bfd_byte *erel, *erelend;
8251 asection *o = lo->u.indirect.section;
8252
8253 erel = o->contents;
8254 erelend = o->contents + o->size;
8255 p = sort + o->output_offset / ext_size * sort_elt;
8256 while (erel < erelend)
8257 {
8258 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8259 (*swap_out) (abfd, s->rela, erel);
8260 p += sort_elt;
8261 erel += ext_size;
8262 }
8263 }
8264
8265 free (sort);
8266 *psec = dynamic_relocs;
8267 return ret;
8268 }
8269
8270 /* Flush the output symbols to the file. */
8271
8272 static bfd_boolean
8273 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8274 const struct elf_backend_data *bed)
8275 {
8276 if (finfo->symbuf_count > 0)
8277 {
8278 Elf_Internal_Shdr *hdr;
8279 file_ptr pos;
8280 bfd_size_type amt;
8281
8282 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8283 pos = hdr->sh_offset + hdr->sh_size;
8284 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8285 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8286 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8287 return FALSE;
8288
8289 hdr->sh_size += amt;
8290 finfo->symbuf_count = 0;
8291 }
8292
8293 return TRUE;
8294 }
8295
8296 /* Add a symbol to the output symbol table. */
8297
8298 static bfd_boolean
8299 elf_link_output_sym (struct elf_final_link_info *finfo,
8300 const char *name,
8301 Elf_Internal_Sym *elfsym,
8302 asection *input_sec,
8303 struct elf_link_hash_entry *h)
8304 {
8305 bfd_byte *dest;
8306 Elf_External_Sym_Shndx *destshndx;
8307 bfd_boolean (*output_symbol_hook)
8308 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8309 struct elf_link_hash_entry *);
8310 const struct elf_backend_data *bed;
8311
8312 bed = get_elf_backend_data (finfo->output_bfd);
8313 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8314 if (output_symbol_hook != NULL)
8315 {
8316 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8317 return FALSE;
8318 }
8319
8320 if (name == NULL || *name == '\0')
8321 elfsym->st_name = 0;
8322 else if (input_sec->flags & SEC_EXCLUDE)
8323 elfsym->st_name = 0;
8324 else
8325 {
8326 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8327 name, TRUE, FALSE);
8328 if (elfsym->st_name == (unsigned long) -1)
8329 return FALSE;
8330 }
8331
8332 if (finfo->symbuf_count >= finfo->symbuf_size)
8333 {
8334 if (! elf_link_flush_output_syms (finfo, bed))
8335 return FALSE;
8336 }
8337
8338 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8339 destshndx = finfo->symshndxbuf;
8340 if (destshndx != NULL)
8341 {
8342 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8343 {
8344 bfd_size_type amt;
8345
8346 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8347 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
8348 if (destshndx == NULL)
8349 return FALSE;
8350 memset ((char *) destshndx + amt, 0, amt);
8351 finfo->shndxbuf_size *= 2;
8352 }
8353 destshndx += bfd_get_symcount (finfo->output_bfd);
8354 }
8355
8356 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8357 finfo->symbuf_count += 1;
8358 bfd_get_symcount (finfo->output_bfd) += 1;
8359
8360 return TRUE;
8361 }
8362
8363 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8364
8365 static bfd_boolean
8366 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8367 {
8368 if (sym->st_shndx > SHN_HIRESERVE)
8369 {
8370 /* The gABI doesn't support dynamic symbols in output sections
8371 beyond 64k. */
8372 (*_bfd_error_handler)
8373 (_("%B: Too many sections: %d (>= %d)"),
8374 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8375 bfd_set_error (bfd_error_nonrepresentable_section);
8376 return FALSE;
8377 }
8378 return TRUE;
8379 }
8380
8381 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8382 allowing an unsatisfied unversioned symbol in the DSO to match a
8383 versioned symbol that would normally require an explicit version.
8384 We also handle the case that a DSO references a hidden symbol
8385 which may be satisfied by a versioned symbol in another DSO. */
8386
8387 static bfd_boolean
8388 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8389 const struct elf_backend_data *bed,
8390 struct elf_link_hash_entry *h)
8391 {
8392 bfd *abfd;
8393 struct elf_link_loaded_list *loaded;
8394
8395 if (!is_elf_hash_table (info->hash))
8396 return FALSE;
8397
8398 switch (h->root.type)
8399 {
8400 default:
8401 abfd = NULL;
8402 break;
8403
8404 case bfd_link_hash_undefined:
8405 case bfd_link_hash_undefweak:
8406 abfd = h->root.u.undef.abfd;
8407 if ((abfd->flags & DYNAMIC) == 0
8408 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8409 return FALSE;
8410 break;
8411
8412 case bfd_link_hash_defined:
8413 case bfd_link_hash_defweak:
8414 abfd = h->root.u.def.section->owner;
8415 break;
8416
8417 case bfd_link_hash_common:
8418 abfd = h->root.u.c.p->section->owner;
8419 break;
8420 }
8421 BFD_ASSERT (abfd != NULL);
8422
8423 for (loaded = elf_hash_table (info)->loaded;
8424 loaded != NULL;
8425 loaded = loaded->next)
8426 {
8427 bfd *input;
8428 Elf_Internal_Shdr *hdr;
8429 bfd_size_type symcount;
8430 bfd_size_type extsymcount;
8431 bfd_size_type extsymoff;
8432 Elf_Internal_Shdr *versymhdr;
8433 Elf_Internal_Sym *isym;
8434 Elf_Internal_Sym *isymend;
8435 Elf_Internal_Sym *isymbuf;
8436 Elf_External_Versym *ever;
8437 Elf_External_Versym *extversym;
8438
8439 input = loaded->abfd;
8440
8441 /* We check each DSO for a possible hidden versioned definition. */
8442 if (input == abfd
8443 || (input->flags & DYNAMIC) == 0
8444 || elf_dynversym (input) == 0)
8445 continue;
8446
8447 hdr = &elf_tdata (input)->dynsymtab_hdr;
8448
8449 symcount = hdr->sh_size / bed->s->sizeof_sym;
8450 if (elf_bad_symtab (input))
8451 {
8452 extsymcount = symcount;
8453 extsymoff = 0;
8454 }
8455 else
8456 {
8457 extsymcount = symcount - hdr->sh_info;
8458 extsymoff = hdr->sh_info;
8459 }
8460
8461 if (extsymcount == 0)
8462 continue;
8463
8464 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8465 NULL, NULL, NULL);
8466 if (isymbuf == NULL)
8467 return FALSE;
8468
8469 /* Read in any version definitions. */
8470 versymhdr = &elf_tdata (input)->dynversym_hdr;
8471 extversym = bfd_malloc (versymhdr->sh_size);
8472 if (extversym == NULL)
8473 goto error_ret;
8474
8475 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8476 || (bfd_bread (extversym, versymhdr->sh_size, input)
8477 != versymhdr->sh_size))
8478 {
8479 free (extversym);
8480 error_ret:
8481 free (isymbuf);
8482 return FALSE;
8483 }
8484
8485 ever = extversym + extsymoff;
8486 isymend = isymbuf + extsymcount;
8487 for (isym = isymbuf; isym < isymend; isym++, ever++)
8488 {
8489 const char *name;
8490 Elf_Internal_Versym iver;
8491 unsigned short version_index;
8492
8493 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8494 || isym->st_shndx == SHN_UNDEF)
8495 continue;
8496
8497 name = bfd_elf_string_from_elf_section (input,
8498 hdr->sh_link,
8499 isym->st_name);
8500 if (strcmp (name, h->root.root.string) != 0)
8501 continue;
8502
8503 _bfd_elf_swap_versym_in (input, ever, &iver);
8504
8505 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8506 {
8507 /* If we have a non-hidden versioned sym, then it should
8508 have provided a definition for the undefined sym. */
8509 abort ();
8510 }
8511
8512 version_index = iver.vs_vers & VERSYM_VERSION;
8513 if (version_index == 1 || version_index == 2)
8514 {
8515 /* This is the base or first version. We can use it. */
8516 free (extversym);
8517 free (isymbuf);
8518 return TRUE;
8519 }
8520 }
8521
8522 free (extversym);
8523 free (isymbuf);
8524 }
8525
8526 return FALSE;
8527 }
8528
8529 /* Add an external symbol to the symbol table. This is called from
8530 the hash table traversal routine. When generating a shared object,
8531 we go through the symbol table twice. The first time we output
8532 anything that might have been forced to local scope in a version
8533 script. The second time we output the symbols that are still
8534 global symbols. */
8535
8536 static bfd_boolean
8537 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8538 {
8539 struct elf_outext_info *eoinfo = data;
8540 struct elf_final_link_info *finfo = eoinfo->finfo;
8541 bfd_boolean strip;
8542 Elf_Internal_Sym sym;
8543 asection *input_sec;
8544 const struct elf_backend_data *bed;
8545
8546 if (h->root.type == bfd_link_hash_warning)
8547 {
8548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8549 if (h->root.type == bfd_link_hash_new)
8550 return TRUE;
8551 }
8552
8553 /* Decide whether to output this symbol in this pass. */
8554 if (eoinfo->localsyms)
8555 {
8556 if (!h->forced_local)
8557 return TRUE;
8558 }
8559 else
8560 {
8561 if (h->forced_local)
8562 return TRUE;
8563 }
8564
8565 bed = get_elf_backend_data (finfo->output_bfd);
8566
8567 if (h->root.type == bfd_link_hash_undefined)
8568 {
8569 /* If we have an undefined symbol reference here then it must have
8570 come from a shared library that is being linked in. (Undefined
8571 references in regular files have already been handled). */
8572 bfd_boolean ignore_undef = FALSE;
8573
8574 /* Some symbols may be special in that the fact that they're
8575 undefined can be safely ignored - let backend determine that. */
8576 if (bed->elf_backend_ignore_undef_symbol)
8577 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8578
8579 /* If we are reporting errors for this situation then do so now. */
8580 if (ignore_undef == FALSE
8581 && h->ref_dynamic
8582 && ! h->ref_regular
8583 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8584 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8585 {
8586 if (! (finfo->info->callbacks->undefined_symbol
8587 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8588 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8589 {
8590 eoinfo->failed = TRUE;
8591 return FALSE;
8592 }
8593 }
8594 }
8595
8596 /* We should also warn if a forced local symbol is referenced from
8597 shared libraries. */
8598 if (! finfo->info->relocatable
8599 && (! finfo->info->shared)
8600 && h->forced_local
8601 && h->ref_dynamic
8602 && !h->dynamic_def
8603 && !h->dynamic_weak
8604 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8605 {
8606 (*_bfd_error_handler)
8607 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8608 finfo->output_bfd,
8609 h->root.u.def.section == bfd_abs_section_ptr
8610 ? finfo->output_bfd : h->root.u.def.section->owner,
8611 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8612 ? "internal"
8613 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8614 ? "hidden" : "local",
8615 h->root.root.string);
8616 eoinfo->failed = TRUE;
8617 return FALSE;
8618 }
8619
8620 /* We don't want to output symbols that have never been mentioned by
8621 a regular file, or that we have been told to strip. However, if
8622 h->indx is set to -2, the symbol is used by a reloc and we must
8623 output it. */
8624 if (h->indx == -2)
8625 strip = FALSE;
8626 else if ((h->def_dynamic
8627 || h->ref_dynamic
8628 || h->root.type == bfd_link_hash_new)
8629 && !h->def_regular
8630 && !h->ref_regular)
8631 strip = TRUE;
8632 else if (finfo->info->strip == strip_all)
8633 strip = TRUE;
8634 else if (finfo->info->strip == strip_some
8635 && bfd_hash_lookup (finfo->info->keep_hash,
8636 h->root.root.string, FALSE, FALSE) == NULL)
8637 strip = TRUE;
8638 else if (finfo->info->strip_discarded
8639 && (h->root.type == bfd_link_hash_defined
8640 || h->root.type == bfd_link_hash_defweak)
8641 && elf_discarded_section (h->root.u.def.section))
8642 strip = TRUE;
8643 else
8644 strip = FALSE;
8645
8646 /* If we're stripping it, and it's not a dynamic symbol, there's
8647 nothing else to do unless it is a forced local symbol. */
8648 if (strip
8649 && h->dynindx == -1
8650 && !h->forced_local)
8651 return TRUE;
8652
8653 sym.st_value = 0;
8654 sym.st_size = h->size;
8655 sym.st_other = h->other;
8656 if (h->forced_local)
8657 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8658 else if (h->root.type == bfd_link_hash_undefweak
8659 || h->root.type == bfd_link_hash_defweak)
8660 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8661 else
8662 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8663
8664 switch (h->root.type)
8665 {
8666 default:
8667 case bfd_link_hash_new:
8668 case bfd_link_hash_warning:
8669 abort ();
8670 return FALSE;
8671
8672 case bfd_link_hash_undefined:
8673 case bfd_link_hash_undefweak:
8674 input_sec = bfd_und_section_ptr;
8675 sym.st_shndx = SHN_UNDEF;
8676 break;
8677
8678 case bfd_link_hash_defined:
8679 case bfd_link_hash_defweak:
8680 {
8681 input_sec = h->root.u.def.section;
8682 if (input_sec->output_section != NULL)
8683 {
8684 sym.st_shndx =
8685 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8686 input_sec->output_section);
8687 if (sym.st_shndx == SHN_BAD)
8688 {
8689 (*_bfd_error_handler)
8690 (_("%B: could not find output section %A for input section %A"),
8691 finfo->output_bfd, input_sec->output_section, input_sec);
8692 eoinfo->failed = TRUE;
8693 return FALSE;
8694 }
8695
8696 /* ELF symbols in relocatable files are section relative,
8697 but in nonrelocatable files they are virtual
8698 addresses. */
8699 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8700 if (! finfo->info->relocatable)
8701 {
8702 sym.st_value += input_sec->output_section->vma;
8703 if (h->type == STT_TLS)
8704 {
8705 /* STT_TLS symbols are relative to PT_TLS segment
8706 base. */
8707 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8708 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8709 }
8710 }
8711 }
8712 else
8713 {
8714 BFD_ASSERT (input_sec->owner == NULL
8715 || (input_sec->owner->flags & DYNAMIC) != 0);
8716 sym.st_shndx = SHN_UNDEF;
8717 input_sec = bfd_und_section_ptr;
8718 }
8719 }
8720 break;
8721
8722 case bfd_link_hash_common:
8723 input_sec = h->root.u.c.p->section;
8724 sym.st_shndx = bed->common_section_index (input_sec);
8725 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8726 break;
8727
8728 case bfd_link_hash_indirect:
8729 /* These symbols are created by symbol versioning. They point
8730 to the decorated version of the name. For example, if the
8731 symbol foo@@GNU_1.2 is the default, which should be used when
8732 foo is used with no version, then we add an indirect symbol
8733 foo which points to foo@@GNU_1.2. We ignore these symbols,
8734 since the indirected symbol is already in the hash table. */
8735 return TRUE;
8736 }
8737
8738 /* Give the processor backend a chance to tweak the symbol value,
8739 and also to finish up anything that needs to be done for this
8740 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8741 forced local syms when non-shared is due to a historical quirk. */
8742 if ((h->dynindx != -1
8743 || h->forced_local)
8744 && ((finfo->info->shared
8745 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8746 || h->root.type != bfd_link_hash_undefweak))
8747 || !h->forced_local)
8748 && elf_hash_table (finfo->info)->dynamic_sections_created)
8749 {
8750 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8751 (finfo->output_bfd, finfo->info, h, &sym)))
8752 {
8753 eoinfo->failed = TRUE;
8754 return FALSE;
8755 }
8756 }
8757
8758 /* If we are marking the symbol as undefined, and there are no
8759 non-weak references to this symbol from a regular object, then
8760 mark the symbol as weak undefined; if there are non-weak
8761 references, mark the symbol as strong. We can't do this earlier,
8762 because it might not be marked as undefined until the
8763 finish_dynamic_symbol routine gets through with it. */
8764 if (sym.st_shndx == SHN_UNDEF
8765 && h->ref_regular
8766 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8767 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8768 {
8769 int bindtype;
8770
8771 if (h->ref_regular_nonweak)
8772 bindtype = STB_GLOBAL;
8773 else
8774 bindtype = STB_WEAK;
8775 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8776 }
8777
8778 /* If a non-weak symbol with non-default visibility is not defined
8779 locally, it is a fatal error. */
8780 if (! finfo->info->relocatable
8781 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8782 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8783 && h->root.type == bfd_link_hash_undefined
8784 && !h->def_regular)
8785 {
8786 (*_bfd_error_handler)
8787 (_("%B: %s symbol `%s' isn't defined"),
8788 finfo->output_bfd,
8789 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8790 ? "protected"
8791 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8792 ? "internal" : "hidden",
8793 h->root.root.string);
8794 eoinfo->failed = TRUE;
8795 return FALSE;
8796 }
8797
8798 /* If this symbol should be put in the .dynsym section, then put it
8799 there now. We already know the symbol index. We also fill in
8800 the entry in the .hash section. */
8801 if (h->dynindx != -1
8802 && elf_hash_table (finfo->info)->dynamic_sections_created)
8803 {
8804 bfd_byte *esym;
8805
8806 sym.st_name = h->dynstr_index;
8807 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8808 if (! check_dynsym (finfo->output_bfd, &sym))
8809 {
8810 eoinfo->failed = TRUE;
8811 return FALSE;
8812 }
8813 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8814
8815 if (finfo->hash_sec != NULL)
8816 {
8817 size_t hash_entry_size;
8818 bfd_byte *bucketpos;
8819 bfd_vma chain;
8820 size_t bucketcount;
8821 size_t bucket;
8822
8823 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8824 bucket = h->u.elf_hash_value % bucketcount;
8825
8826 hash_entry_size
8827 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8828 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8829 + (bucket + 2) * hash_entry_size);
8830 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8831 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8832 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8833 ((bfd_byte *) finfo->hash_sec->contents
8834 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8835 }
8836
8837 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8838 {
8839 Elf_Internal_Versym iversym;
8840 Elf_External_Versym *eversym;
8841
8842 if (!h->def_regular)
8843 {
8844 if (h->verinfo.verdef == NULL)
8845 iversym.vs_vers = 0;
8846 else
8847 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8848 }
8849 else
8850 {
8851 if (h->verinfo.vertree == NULL)
8852 iversym.vs_vers = 1;
8853 else
8854 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8855 if (finfo->info->create_default_symver)
8856 iversym.vs_vers++;
8857 }
8858
8859 if (h->hidden)
8860 iversym.vs_vers |= VERSYM_HIDDEN;
8861
8862 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8863 eversym += h->dynindx;
8864 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8865 }
8866 }
8867
8868 /* If we're stripping it, then it was just a dynamic symbol, and
8869 there's nothing else to do. */
8870 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8871 return TRUE;
8872
8873 h->indx = bfd_get_symcount (finfo->output_bfd);
8874
8875 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8876 {
8877 eoinfo->failed = TRUE;
8878 return FALSE;
8879 }
8880
8881 return TRUE;
8882 }
8883
8884 /* Return TRUE if special handling is done for relocs in SEC against
8885 symbols defined in discarded sections. */
8886
8887 static bfd_boolean
8888 elf_section_ignore_discarded_relocs (asection *sec)
8889 {
8890 const struct elf_backend_data *bed;
8891
8892 switch (sec->sec_info_type)
8893 {
8894 case ELF_INFO_TYPE_STABS:
8895 case ELF_INFO_TYPE_EH_FRAME:
8896 return TRUE;
8897 default:
8898 break;
8899 }
8900
8901 bed = get_elf_backend_data (sec->owner);
8902 if (bed->elf_backend_ignore_discarded_relocs != NULL
8903 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8904 return TRUE;
8905
8906 return FALSE;
8907 }
8908
8909 /* Return a mask saying how ld should treat relocations in SEC against
8910 symbols defined in discarded sections. If this function returns
8911 COMPLAIN set, ld will issue a warning message. If this function
8912 returns PRETEND set, and the discarded section was link-once and the
8913 same size as the kept link-once section, ld will pretend that the
8914 symbol was actually defined in the kept section. Otherwise ld will
8915 zero the reloc (at least that is the intent, but some cooperation by
8916 the target dependent code is needed, particularly for REL targets). */
8917
8918 unsigned int
8919 _bfd_elf_default_action_discarded (asection *sec)
8920 {
8921 if (sec->flags & SEC_DEBUGGING)
8922 return PRETEND;
8923
8924 if (strcmp (".eh_frame", sec->name) == 0)
8925 return 0;
8926
8927 if (strcmp (".gcc_except_table", sec->name) == 0)
8928 return 0;
8929
8930 return COMPLAIN | PRETEND;
8931 }
8932
8933 /* Find a match between a section and a member of a section group. */
8934
8935 static asection *
8936 match_group_member (asection *sec, asection *group,
8937 struct bfd_link_info *info)
8938 {
8939 asection *first = elf_next_in_group (group);
8940 asection *s = first;
8941
8942 while (s != NULL)
8943 {
8944 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8945 return s;
8946
8947 s = elf_next_in_group (s);
8948 if (s == first)
8949 break;
8950 }
8951
8952 return NULL;
8953 }
8954
8955 /* Check if the kept section of a discarded section SEC can be used
8956 to replace it. Return the replacement if it is OK. Otherwise return
8957 NULL. */
8958
8959 asection *
8960 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8961 {
8962 asection *kept;
8963
8964 kept = sec->kept_section;
8965 if (kept != NULL)
8966 {
8967 if ((kept->flags & SEC_GROUP) != 0)
8968 kept = match_group_member (sec, kept, info);
8969 if (kept != NULL && sec->size != kept->size)
8970 kept = NULL;
8971 sec->kept_section = kept;
8972 }
8973 return kept;
8974 }
8975
8976 /* Link an input file into the linker output file. This function
8977 handles all the sections and relocations of the input file at once.
8978 This is so that we only have to read the local symbols once, and
8979 don't have to keep them in memory. */
8980
8981 static bfd_boolean
8982 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8983 {
8984 int (*relocate_section)
8985 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8986 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8987 bfd *output_bfd;
8988 Elf_Internal_Shdr *symtab_hdr;
8989 size_t locsymcount;
8990 size_t extsymoff;
8991 Elf_Internal_Sym *isymbuf;
8992 Elf_Internal_Sym *isym;
8993 Elf_Internal_Sym *isymend;
8994 long *pindex;
8995 asection **ppsection;
8996 asection *o;
8997 const struct elf_backend_data *bed;
8998 struct elf_link_hash_entry **sym_hashes;
8999
9000 output_bfd = finfo->output_bfd;
9001 bed = get_elf_backend_data (output_bfd);
9002 relocate_section = bed->elf_backend_relocate_section;
9003
9004 /* If this is a dynamic object, we don't want to do anything here:
9005 we don't want the local symbols, and we don't want the section
9006 contents. */
9007 if ((input_bfd->flags & DYNAMIC) != 0)
9008 return TRUE;
9009
9010 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9011 if (elf_bad_symtab (input_bfd))
9012 {
9013 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9014 extsymoff = 0;
9015 }
9016 else
9017 {
9018 locsymcount = symtab_hdr->sh_info;
9019 extsymoff = symtab_hdr->sh_info;
9020 }
9021
9022 /* Read the local symbols. */
9023 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9024 if (isymbuf == NULL && locsymcount != 0)
9025 {
9026 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9027 finfo->internal_syms,
9028 finfo->external_syms,
9029 finfo->locsym_shndx);
9030 if (isymbuf == NULL)
9031 return FALSE;
9032 }
9033 /* evaluate_complex_relocation_symbols looks for symbols in
9034 finfo->internal_syms. */
9035 else if (isymbuf != NULL && locsymcount != 0)
9036 {
9037 bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9038 finfo->internal_syms,
9039 finfo->external_syms,
9040 finfo->locsym_shndx);
9041 }
9042
9043 /* Find local symbol sections and adjust values of symbols in
9044 SEC_MERGE sections. Write out those local symbols we know are
9045 going into the output file. */
9046 isymend = isymbuf + locsymcount;
9047 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9048 isym < isymend;
9049 isym++, pindex++, ppsection++)
9050 {
9051 asection *isec;
9052 const char *name;
9053 Elf_Internal_Sym osym;
9054
9055 *pindex = -1;
9056
9057 if (elf_bad_symtab (input_bfd))
9058 {
9059 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9060 {
9061 *ppsection = NULL;
9062 continue;
9063 }
9064 }
9065
9066 if (isym->st_shndx == SHN_UNDEF)
9067 isec = bfd_und_section_ptr;
9068 else if (isym->st_shndx < SHN_LORESERVE
9069 || isym->st_shndx > SHN_HIRESERVE)
9070 {
9071 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9072 if (isec
9073 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
9074 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9075 isym->st_value =
9076 _bfd_merged_section_offset (output_bfd, &isec,
9077 elf_section_data (isec)->sec_info,
9078 isym->st_value);
9079 }
9080 else if (isym->st_shndx == SHN_ABS)
9081 isec = bfd_abs_section_ptr;
9082 else if (isym->st_shndx == SHN_COMMON)
9083 isec = bfd_com_section_ptr;
9084 else
9085 {
9086 /* Don't attempt to output symbols with st_shnx in the
9087 reserved range other than SHN_ABS and SHN_COMMON. */
9088 *ppsection = NULL;
9089 continue;
9090 }
9091
9092 *ppsection = isec;
9093
9094 /* Don't output the first, undefined, symbol. */
9095 if (ppsection == finfo->sections)
9096 continue;
9097
9098 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9099 {
9100 /* We never output section symbols. Instead, we use the
9101 section symbol of the corresponding section in the output
9102 file. */
9103 continue;
9104 }
9105
9106 /* If we are stripping all symbols, we don't want to output this
9107 one. */
9108 if (finfo->info->strip == strip_all)
9109 continue;
9110
9111 /* If we are discarding all local symbols, we don't want to
9112 output this one. If we are generating a relocatable output
9113 file, then some of the local symbols may be required by
9114 relocs; we output them below as we discover that they are
9115 needed. */
9116 if (finfo->info->discard == discard_all)
9117 continue;
9118
9119 /* If this symbol is defined in a section which we are
9120 discarding, we don't need to keep it. */
9121 if (isym->st_shndx != SHN_UNDEF
9122 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9123 && (isec == NULL
9124 || bfd_section_removed_from_list (output_bfd,
9125 isec->output_section)))
9126 continue;
9127
9128 /* Get the name of the symbol. */
9129 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9130 isym->st_name);
9131 if (name == NULL)
9132 return FALSE;
9133
9134 /* See if we are discarding symbols with this name. */
9135 if ((finfo->info->strip == strip_some
9136 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9137 == NULL))
9138 || (((finfo->info->discard == discard_sec_merge
9139 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9140 || finfo->info->discard == discard_l)
9141 && bfd_is_local_label_name (input_bfd, name)))
9142 continue;
9143
9144 /* If we get here, we are going to output this symbol. */
9145
9146 osym = *isym;
9147
9148 /* Adjust the section index for the output file. */
9149 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9150 isec->output_section);
9151 if (osym.st_shndx == SHN_BAD)
9152 return FALSE;
9153
9154 *pindex = bfd_get_symcount (output_bfd);
9155
9156 /* ELF symbols in relocatable files are section relative, but
9157 in executable files they are virtual addresses. Note that
9158 this code assumes that all ELF sections have an associated
9159 BFD section with a reasonable value for output_offset; below
9160 we assume that they also have a reasonable value for
9161 output_section. Any special sections must be set up to meet
9162 these requirements. */
9163 osym.st_value += isec->output_offset;
9164 if (! finfo->info->relocatable)
9165 {
9166 osym.st_value += isec->output_section->vma;
9167 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9168 {
9169 /* STT_TLS symbols are relative to PT_TLS segment base. */
9170 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9171 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9172 }
9173 }
9174
9175 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9176 return FALSE;
9177 }
9178
9179 if (! evaluate_complex_relocation_symbols (input_bfd, finfo, locsymcount))
9180 return FALSE;
9181
9182 /* Relocate the contents of each section. */
9183 sym_hashes = elf_sym_hashes (input_bfd);
9184 for (o = input_bfd->sections; o != NULL; o = o->next)
9185 {
9186 bfd_byte *contents;
9187
9188 if (! o->linker_mark)
9189 {
9190 /* This section was omitted from the link. */
9191 continue;
9192 }
9193
9194 if ((o->flags & SEC_HAS_CONTENTS) == 0
9195 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9196 continue;
9197
9198 if ((o->flags & SEC_LINKER_CREATED) != 0)
9199 {
9200 /* Section was created by _bfd_elf_link_create_dynamic_sections
9201 or somesuch. */
9202 continue;
9203 }
9204
9205 /* Get the contents of the section. They have been cached by a
9206 relaxation routine. Note that o is a section in an input
9207 file, so the contents field will not have been set by any of
9208 the routines which work on output files. */
9209 if (elf_section_data (o)->this_hdr.contents != NULL)
9210 contents = elf_section_data (o)->this_hdr.contents;
9211 else
9212 {
9213 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9214
9215 contents = finfo->contents;
9216 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9217 return FALSE;
9218 }
9219
9220 if ((o->flags & SEC_RELOC) != 0)
9221 {
9222 Elf_Internal_Rela *internal_relocs;
9223 bfd_vma r_type_mask;
9224 int r_sym_shift;
9225 int ret;
9226
9227 /* Get the swapped relocs. */
9228 internal_relocs
9229 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9230 finfo->internal_relocs, FALSE);
9231 if (internal_relocs == NULL
9232 && o->reloc_count > 0)
9233 return FALSE;
9234
9235 if (bed->s->arch_size == 32)
9236 {
9237 r_type_mask = 0xff;
9238 r_sym_shift = 8;
9239 }
9240 else
9241 {
9242 r_type_mask = 0xffffffff;
9243 r_sym_shift = 32;
9244 }
9245
9246 /* Run through the relocs looking for any against symbols
9247 from discarded sections and section symbols from
9248 removed link-once sections. Complain about relocs
9249 against discarded sections. Zero relocs against removed
9250 link-once sections. */
9251 if (!elf_section_ignore_discarded_relocs (o))
9252 {
9253 Elf_Internal_Rela *rel, *relend;
9254 unsigned int action = (*bed->action_discarded) (o);
9255
9256 rel = internal_relocs;
9257 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9258 for ( ; rel < relend; rel++)
9259 {
9260 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9261 asection **ps, *sec;
9262 struct elf_link_hash_entry *h = NULL;
9263 const char *sym_name;
9264
9265 if (r_symndx == STN_UNDEF)
9266 continue;
9267
9268 if (r_symndx >= locsymcount
9269 || (elf_bad_symtab (input_bfd)
9270 && finfo->sections[r_symndx] == NULL))
9271 {
9272 h = sym_hashes[r_symndx - extsymoff];
9273
9274 /* Badly formatted input files can contain relocs that
9275 reference non-existant symbols. Check here so that
9276 we do not seg fault. */
9277 if (h == NULL)
9278 {
9279 char buffer [32];
9280
9281 sprintf_vma (buffer, rel->r_info);
9282 (*_bfd_error_handler)
9283 (_("error: %B contains a reloc (0x%s) for section %A "
9284 "that references a non-existent global symbol"),
9285 input_bfd, o, buffer);
9286 bfd_set_error (bfd_error_bad_value);
9287 return FALSE;
9288 }
9289
9290 while (h->root.type == bfd_link_hash_indirect
9291 || h->root.type == bfd_link_hash_warning)
9292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9293
9294 if (h->root.type != bfd_link_hash_defined
9295 && h->root.type != bfd_link_hash_defweak)
9296 continue;
9297
9298 ps = &h->root.u.def.section;
9299 sym_name = h->root.root.string;
9300 }
9301 else
9302 {
9303 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9304 ps = &finfo->sections[r_symndx];
9305 sym_name = bfd_elf_sym_name (input_bfd,
9306 symtab_hdr,
9307 sym, *ps);
9308 }
9309
9310 /* Complain if the definition comes from a
9311 discarded section. */
9312 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9313 {
9314 BFD_ASSERT (r_symndx != 0);
9315 if (action & COMPLAIN)
9316 (*finfo->info->callbacks->einfo)
9317 (_("%X`%s' referenced in section `%A' of %B: "
9318 "defined in discarded section `%A' of %B\n"),
9319 sym_name, o, input_bfd, sec, sec->owner);
9320
9321 /* Try to do the best we can to support buggy old
9322 versions of gcc. Pretend that the symbol is
9323 really defined in the kept linkonce section.
9324 FIXME: This is quite broken. Modifying the
9325 symbol here means we will be changing all later
9326 uses of the symbol, not just in this section. */
9327 if (action & PRETEND)
9328 {
9329 asection *kept;
9330
9331 kept = _bfd_elf_check_kept_section (sec,
9332 finfo->info);
9333 if (kept != NULL)
9334 {
9335 *ps = kept;
9336 continue;
9337 }
9338 }
9339 }
9340 }
9341 }
9342
9343 /* Relocate the section by invoking a back end routine.
9344
9345 The back end routine is responsible for adjusting the
9346 section contents as necessary, and (if using Rela relocs
9347 and generating a relocatable output file) adjusting the
9348 reloc addend as necessary.
9349
9350 The back end routine does not have to worry about setting
9351 the reloc address or the reloc symbol index.
9352
9353 The back end routine is given a pointer to the swapped in
9354 internal symbols, and can access the hash table entries
9355 for the external symbols via elf_sym_hashes (input_bfd).
9356
9357 When generating relocatable output, the back end routine
9358 must handle STB_LOCAL/STT_SECTION symbols specially. The
9359 output symbol is going to be a section symbol
9360 corresponding to the output section, which will require
9361 the addend to be adjusted. */
9362
9363 ret = (*relocate_section) (output_bfd, finfo->info,
9364 input_bfd, o, contents,
9365 internal_relocs,
9366 isymbuf,
9367 finfo->sections);
9368 if (!ret)
9369 return FALSE;
9370
9371 if (ret == 2
9372 || finfo->info->relocatable
9373 || finfo->info->emitrelocations)
9374 {
9375 Elf_Internal_Rela *irela;
9376 Elf_Internal_Rela *irelaend;
9377 bfd_vma last_offset;
9378 struct elf_link_hash_entry **rel_hash;
9379 struct elf_link_hash_entry **rel_hash_list;
9380 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9381 unsigned int next_erel;
9382 bfd_boolean rela_normal;
9383
9384 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9385 rela_normal = (bed->rela_normal
9386 && (input_rel_hdr->sh_entsize
9387 == bed->s->sizeof_rela));
9388
9389 /* Adjust the reloc addresses and symbol indices. */
9390
9391 irela = internal_relocs;
9392 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9393 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9394 + elf_section_data (o->output_section)->rel_count
9395 + elf_section_data (o->output_section)->rel_count2);
9396 rel_hash_list = rel_hash;
9397 last_offset = o->output_offset;
9398 if (!finfo->info->relocatable)
9399 last_offset += o->output_section->vma;
9400 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9401 {
9402 unsigned long r_symndx;
9403 asection *sec;
9404 Elf_Internal_Sym sym;
9405
9406 if (next_erel == bed->s->int_rels_per_ext_rel)
9407 {
9408 rel_hash++;
9409 next_erel = 0;
9410 }
9411
9412 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9413 finfo->info, o,
9414 irela->r_offset);
9415 if (irela->r_offset >= (bfd_vma) -2)
9416 {
9417 /* This is a reloc for a deleted entry or somesuch.
9418 Turn it into an R_*_NONE reloc, at the same
9419 offset as the last reloc. elf_eh_frame.c and
9420 bfd_elf_discard_info rely on reloc offsets
9421 being ordered. */
9422 irela->r_offset = last_offset;
9423 irela->r_info = 0;
9424 irela->r_addend = 0;
9425 continue;
9426 }
9427
9428 irela->r_offset += o->output_offset;
9429
9430 /* Relocs in an executable have to be virtual addresses. */
9431 if (!finfo->info->relocatable)
9432 irela->r_offset += o->output_section->vma;
9433
9434 last_offset = irela->r_offset;
9435
9436 r_symndx = irela->r_info >> r_sym_shift;
9437 if (r_symndx == STN_UNDEF)
9438 continue;
9439
9440 if (r_symndx >= locsymcount
9441 || (elf_bad_symtab (input_bfd)
9442 && finfo->sections[r_symndx] == NULL))
9443 {
9444 struct elf_link_hash_entry *rh;
9445 unsigned long indx;
9446
9447 /* This is a reloc against a global symbol. We
9448 have not yet output all the local symbols, so
9449 we do not know the symbol index of any global
9450 symbol. We set the rel_hash entry for this
9451 reloc to point to the global hash table entry
9452 for this symbol. The symbol index is then
9453 set at the end of bfd_elf_final_link. */
9454 indx = r_symndx - extsymoff;
9455 rh = elf_sym_hashes (input_bfd)[indx];
9456 while (rh->root.type == bfd_link_hash_indirect
9457 || rh->root.type == bfd_link_hash_warning)
9458 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9459
9460 /* Setting the index to -2 tells
9461 elf_link_output_extsym that this symbol is
9462 used by a reloc. */
9463 BFD_ASSERT (rh->indx < 0);
9464 rh->indx = -2;
9465
9466 *rel_hash = rh;
9467
9468 continue;
9469 }
9470
9471 /* This is a reloc against a local symbol. */
9472
9473 *rel_hash = NULL;
9474 sym = isymbuf[r_symndx];
9475 sec = finfo->sections[r_symndx];
9476 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9477 {
9478 /* I suppose the backend ought to fill in the
9479 section of any STT_SECTION symbol against a
9480 processor specific section. */
9481 r_symndx = 0;
9482 if (bfd_is_abs_section (sec))
9483 ;
9484 else if (sec == NULL || sec->owner == NULL)
9485 {
9486 bfd_set_error (bfd_error_bad_value);
9487 return FALSE;
9488 }
9489 else
9490 {
9491 asection *osec = sec->output_section;
9492
9493 /* If we have discarded a section, the output
9494 section will be the absolute section. In
9495 case of discarded SEC_MERGE sections, use
9496 the kept section. relocate_section should
9497 have already handled discarded linkonce
9498 sections. */
9499 if (bfd_is_abs_section (osec)
9500 && sec->kept_section != NULL
9501 && sec->kept_section->output_section != NULL)
9502 {
9503 osec = sec->kept_section->output_section;
9504 irela->r_addend -= osec->vma;
9505 }
9506
9507 if (!bfd_is_abs_section (osec))
9508 {
9509 r_symndx = osec->target_index;
9510 if (r_symndx == 0)
9511 {
9512 struct elf_link_hash_table *htab;
9513 asection *oi;
9514
9515 htab = elf_hash_table (finfo->info);
9516 oi = htab->text_index_section;
9517 if ((osec->flags & SEC_READONLY) == 0
9518 && htab->data_index_section != NULL)
9519 oi = htab->data_index_section;
9520
9521 if (oi != NULL)
9522 {
9523 irela->r_addend += osec->vma - oi->vma;
9524 r_symndx = oi->target_index;
9525 }
9526 }
9527
9528 BFD_ASSERT (r_symndx != 0);
9529 }
9530 }
9531
9532 /* Adjust the addend according to where the
9533 section winds up in the output section. */
9534 if (rela_normal)
9535 irela->r_addend += sec->output_offset;
9536 }
9537 else
9538 {
9539 if (finfo->indices[r_symndx] == -1)
9540 {
9541 unsigned long shlink;
9542 const char *name;
9543 asection *osec;
9544
9545 if (finfo->info->strip == strip_all)
9546 {
9547 /* You can't do ld -r -s. */
9548 bfd_set_error (bfd_error_invalid_operation);
9549 return FALSE;
9550 }
9551
9552 /* This symbol was skipped earlier, but
9553 since it is needed by a reloc, we
9554 must output it now. */
9555 shlink = symtab_hdr->sh_link;
9556 name = (bfd_elf_string_from_elf_section
9557 (input_bfd, shlink, sym.st_name));
9558 if (name == NULL)
9559 return FALSE;
9560
9561 osec = sec->output_section;
9562 sym.st_shndx =
9563 _bfd_elf_section_from_bfd_section (output_bfd,
9564 osec);
9565 if (sym.st_shndx == SHN_BAD)
9566 return FALSE;
9567
9568 sym.st_value += sec->output_offset;
9569 if (! finfo->info->relocatable)
9570 {
9571 sym.st_value += osec->vma;
9572 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9573 {
9574 /* STT_TLS symbols are relative to PT_TLS
9575 segment base. */
9576 BFD_ASSERT (elf_hash_table (finfo->info)
9577 ->tls_sec != NULL);
9578 sym.st_value -= (elf_hash_table (finfo->info)
9579 ->tls_sec->vma);
9580 }
9581 }
9582
9583 finfo->indices[r_symndx]
9584 = bfd_get_symcount (output_bfd);
9585
9586 if (! elf_link_output_sym (finfo, name, &sym, sec,
9587 NULL))
9588 return FALSE;
9589 }
9590
9591 r_symndx = finfo->indices[r_symndx];
9592 }
9593
9594 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9595 | (irela->r_info & r_type_mask));
9596 }
9597
9598 /* Swap out the relocs. */
9599 if (input_rel_hdr->sh_size != 0
9600 && !bed->elf_backend_emit_relocs (output_bfd, o,
9601 input_rel_hdr,
9602 internal_relocs,
9603 rel_hash_list))
9604 return FALSE;
9605
9606 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9607 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9608 {
9609 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9610 * bed->s->int_rels_per_ext_rel);
9611 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9612 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9613 input_rel_hdr2,
9614 internal_relocs,
9615 rel_hash_list))
9616 return FALSE;
9617 }
9618 }
9619 }
9620
9621 /* Write out the modified section contents. */
9622 if (bed->elf_backend_write_section
9623 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9624 contents))
9625 {
9626 /* Section written out. */
9627 }
9628 else switch (o->sec_info_type)
9629 {
9630 case ELF_INFO_TYPE_STABS:
9631 if (! (_bfd_write_section_stabs
9632 (output_bfd,
9633 &elf_hash_table (finfo->info)->stab_info,
9634 o, &elf_section_data (o)->sec_info, contents)))
9635 return FALSE;
9636 break;
9637 case ELF_INFO_TYPE_MERGE:
9638 if (! _bfd_write_merged_section (output_bfd, o,
9639 elf_section_data (o)->sec_info))
9640 return FALSE;
9641 break;
9642 case ELF_INFO_TYPE_EH_FRAME:
9643 {
9644 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9645 o, contents))
9646 return FALSE;
9647 }
9648 break;
9649 default:
9650 {
9651 if (! (o->flags & SEC_EXCLUDE)
9652 && ! bfd_set_section_contents (output_bfd, o->output_section,
9653 contents,
9654 (file_ptr) o->output_offset,
9655 o->size))
9656 return FALSE;
9657 }
9658 break;
9659 }
9660 }
9661
9662 return TRUE;
9663 }
9664
9665 /* Generate a reloc when linking an ELF file. This is a reloc
9666 requested by the linker, and does not come from any input file. This
9667 is used to build constructor and destructor tables when linking
9668 with -Ur. */
9669
9670 static bfd_boolean
9671 elf_reloc_link_order (bfd *output_bfd,
9672 struct bfd_link_info *info,
9673 asection *output_section,
9674 struct bfd_link_order *link_order)
9675 {
9676 reloc_howto_type *howto;
9677 long indx;
9678 bfd_vma offset;
9679 bfd_vma addend;
9680 struct elf_link_hash_entry **rel_hash_ptr;
9681 Elf_Internal_Shdr *rel_hdr;
9682 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9683 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9684 bfd_byte *erel;
9685 unsigned int i;
9686
9687 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9688 if (howto == NULL)
9689 {
9690 bfd_set_error (bfd_error_bad_value);
9691 return FALSE;
9692 }
9693
9694 addend = link_order->u.reloc.p->addend;
9695
9696 /* Figure out the symbol index. */
9697 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9698 + elf_section_data (output_section)->rel_count
9699 + elf_section_data (output_section)->rel_count2);
9700 if (link_order->type == bfd_section_reloc_link_order)
9701 {
9702 indx = link_order->u.reloc.p->u.section->target_index;
9703 BFD_ASSERT (indx != 0);
9704 *rel_hash_ptr = NULL;
9705 }
9706 else
9707 {
9708 struct elf_link_hash_entry *h;
9709
9710 /* Treat a reloc against a defined symbol as though it were
9711 actually against the section. */
9712 h = ((struct elf_link_hash_entry *)
9713 bfd_wrapped_link_hash_lookup (output_bfd, info,
9714 link_order->u.reloc.p->u.name,
9715 FALSE, FALSE, TRUE));
9716 if (h != NULL
9717 && (h->root.type == bfd_link_hash_defined
9718 || h->root.type == bfd_link_hash_defweak))
9719 {
9720 asection *section;
9721
9722 section = h->root.u.def.section;
9723 indx = section->output_section->target_index;
9724 *rel_hash_ptr = NULL;
9725 /* It seems that we ought to add the symbol value to the
9726 addend here, but in practice it has already been added
9727 because it was passed to constructor_callback. */
9728 addend += section->output_section->vma + section->output_offset;
9729 }
9730 else if (h != NULL)
9731 {
9732 /* Setting the index to -2 tells elf_link_output_extsym that
9733 this symbol is used by a reloc. */
9734 h->indx = -2;
9735 *rel_hash_ptr = h;
9736 indx = 0;
9737 }
9738 else
9739 {
9740 if (! ((*info->callbacks->unattached_reloc)
9741 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9742 return FALSE;
9743 indx = 0;
9744 }
9745 }
9746
9747 /* If this is an inplace reloc, we must write the addend into the
9748 object file. */
9749 if (howto->partial_inplace && addend != 0)
9750 {
9751 bfd_size_type size;
9752 bfd_reloc_status_type rstat;
9753 bfd_byte *buf;
9754 bfd_boolean ok;
9755 const char *sym_name;
9756
9757 size = bfd_get_reloc_size (howto);
9758 buf = bfd_zmalloc (size);
9759 if (buf == NULL)
9760 return FALSE;
9761 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9762 switch (rstat)
9763 {
9764 case bfd_reloc_ok:
9765 break;
9766
9767 default:
9768 case bfd_reloc_outofrange:
9769 abort ();
9770
9771 case bfd_reloc_overflow:
9772 if (link_order->type == bfd_section_reloc_link_order)
9773 sym_name = bfd_section_name (output_bfd,
9774 link_order->u.reloc.p->u.section);
9775 else
9776 sym_name = link_order->u.reloc.p->u.name;
9777 if (! ((*info->callbacks->reloc_overflow)
9778 (info, NULL, sym_name, howto->name, addend, NULL,
9779 NULL, (bfd_vma) 0)))
9780 {
9781 free (buf);
9782 return FALSE;
9783 }
9784 break;
9785 }
9786 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9787 link_order->offset, size);
9788 free (buf);
9789 if (! ok)
9790 return FALSE;
9791 }
9792
9793 /* The address of a reloc is relative to the section in a
9794 relocatable file, and is a virtual address in an executable
9795 file. */
9796 offset = link_order->offset;
9797 if (! info->relocatable)
9798 offset += output_section->vma;
9799
9800 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9801 {
9802 irel[i].r_offset = offset;
9803 irel[i].r_info = 0;
9804 irel[i].r_addend = 0;
9805 }
9806 if (bed->s->arch_size == 32)
9807 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9808 else
9809 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9810
9811 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9812 erel = rel_hdr->contents;
9813 if (rel_hdr->sh_type == SHT_REL)
9814 {
9815 erel += (elf_section_data (output_section)->rel_count
9816 * bed->s->sizeof_rel);
9817 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9818 }
9819 else
9820 {
9821 irel[0].r_addend = addend;
9822 erel += (elf_section_data (output_section)->rel_count
9823 * bed->s->sizeof_rela);
9824 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9825 }
9826
9827 ++elf_section_data (output_section)->rel_count;
9828
9829 return TRUE;
9830 }
9831
9832
9833 /* Get the output vma of the section pointed to by the sh_link field. */
9834
9835 static bfd_vma
9836 elf_get_linked_section_vma (struct bfd_link_order *p)
9837 {
9838 Elf_Internal_Shdr **elf_shdrp;
9839 asection *s;
9840 int elfsec;
9841
9842 s = p->u.indirect.section;
9843 elf_shdrp = elf_elfsections (s->owner);
9844 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9845 elfsec = elf_shdrp[elfsec]->sh_link;
9846 /* PR 290:
9847 The Intel C compiler generates SHT_IA_64_UNWIND with
9848 SHF_LINK_ORDER. But it doesn't set the sh_link or
9849 sh_info fields. Hence we could get the situation
9850 where elfsec is 0. */
9851 if (elfsec == 0)
9852 {
9853 const struct elf_backend_data *bed
9854 = get_elf_backend_data (s->owner);
9855 if (bed->link_order_error_handler)
9856 bed->link_order_error_handler
9857 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9858 return 0;
9859 }
9860 else
9861 {
9862 s = elf_shdrp[elfsec]->bfd_section;
9863 return s->output_section->vma + s->output_offset;
9864 }
9865 }
9866
9867
9868 /* Compare two sections based on the locations of the sections they are
9869 linked to. Used by elf_fixup_link_order. */
9870
9871 static int
9872 compare_link_order (const void * a, const void * b)
9873 {
9874 bfd_vma apos;
9875 bfd_vma bpos;
9876
9877 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9878 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9879 if (apos < bpos)
9880 return -1;
9881 return apos > bpos;
9882 }
9883
9884
9885 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9886 order as their linked sections. Returns false if this could not be done
9887 because an output section includes both ordered and unordered
9888 sections. Ideally we'd do this in the linker proper. */
9889
9890 static bfd_boolean
9891 elf_fixup_link_order (bfd *abfd, asection *o)
9892 {
9893 int seen_linkorder;
9894 int seen_other;
9895 int n;
9896 struct bfd_link_order *p;
9897 bfd *sub;
9898 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9899 unsigned elfsec;
9900 struct bfd_link_order **sections;
9901 asection *s, *other_sec, *linkorder_sec;
9902 bfd_vma offset;
9903
9904 other_sec = NULL;
9905 linkorder_sec = NULL;
9906 seen_other = 0;
9907 seen_linkorder = 0;
9908 for (p = o->map_head.link_order; p != NULL; p = p->next)
9909 {
9910 if (p->type == bfd_indirect_link_order)
9911 {
9912 s = p->u.indirect.section;
9913 sub = s->owner;
9914 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9915 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9916 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9917 && elfsec < elf_numsections (sub)
9918 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9919 {
9920 seen_linkorder++;
9921 linkorder_sec = s;
9922 }
9923 else
9924 {
9925 seen_other++;
9926 other_sec = s;
9927 }
9928 }
9929 else
9930 seen_other++;
9931
9932 if (seen_other && seen_linkorder)
9933 {
9934 if (other_sec && linkorder_sec)
9935 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9936 o, linkorder_sec,
9937 linkorder_sec->owner, other_sec,
9938 other_sec->owner);
9939 else
9940 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9941 o);
9942 bfd_set_error (bfd_error_bad_value);
9943 return FALSE;
9944 }
9945 }
9946
9947 if (!seen_linkorder)
9948 return TRUE;
9949
9950 sections = (struct bfd_link_order **)
9951 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
9952 seen_linkorder = 0;
9953
9954 for (p = o->map_head.link_order; p != NULL; p = p->next)
9955 {
9956 sections[seen_linkorder++] = p;
9957 }
9958 /* Sort the input sections in the order of their linked section. */
9959 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9960 compare_link_order);
9961
9962 /* Change the offsets of the sections. */
9963 offset = 0;
9964 for (n = 0; n < seen_linkorder; n++)
9965 {
9966 s = sections[n]->u.indirect.section;
9967 offset &= ~(bfd_vma) 0 << s->alignment_power;
9968 s->output_offset = offset;
9969 sections[n]->offset = offset;
9970 offset += sections[n]->size;
9971 }
9972
9973 return TRUE;
9974 }
9975
9976
9977 /* Do the final step of an ELF link. */
9978
9979 bfd_boolean
9980 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9981 {
9982 bfd_boolean dynamic;
9983 bfd_boolean emit_relocs;
9984 bfd *dynobj;
9985 struct elf_final_link_info finfo;
9986 register asection *o;
9987 register struct bfd_link_order *p;
9988 register bfd *sub;
9989 bfd_size_type max_contents_size;
9990 bfd_size_type max_external_reloc_size;
9991 bfd_size_type max_internal_reloc_count;
9992 bfd_size_type max_sym_count;
9993 bfd_size_type max_sym_shndx_count;
9994 file_ptr off;
9995 Elf_Internal_Sym elfsym;
9996 unsigned int i;
9997 Elf_Internal_Shdr *symtab_hdr;
9998 Elf_Internal_Shdr *symtab_shndx_hdr;
9999 Elf_Internal_Shdr *symstrtab_hdr;
10000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10001 struct elf_outext_info eoinfo;
10002 bfd_boolean merged;
10003 size_t relativecount = 0;
10004 asection *reldyn = 0;
10005 bfd_size_type amt;
10006 asection *attr_section = NULL;
10007 bfd_vma attr_size = 0;
10008 const char *std_attrs_section;
10009
10010 if (! is_elf_hash_table (info->hash))
10011 return FALSE;
10012
10013 if (info->shared)
10014 abfd->flags |= DYNAMIC;
10015
10016 dynamic = elf_hash_table (info)->dynamic_sections_created;
10017 dynobj = elf_hash_table (info)->dynobj;
10018
10019 emit_relocs = (info->relocatable
10020 || info->emitrelocations);
10021
10022 finfo.info = info;
10023 finfo.output_bfd = abfd;
10024 finfo.symstrtab = _bfd_elf_stringtab_init ();
10025 if (finfo.symstrtab == NULL)
10026 return FALSE;
10027
10028 if (! dynamic)
10029 {
10030 finfo.dynsym_sec = NULL;
10031 finfo.hash_sec = NULL;
10032 finfo.symver_sec = NULL;
10033 }
10034 else
10035 {
10036 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10037 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10038 BFD_ASSERT (finfo.dynsym_sec != NULL);
10039 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10040 /* Note that it is OK if symver_sec is NULL. */
10041 }
10042
10043 finfo.contents = NULL;
10044 finfo.external_relocs = NULL;
10045 finfo.internal_relocs = NULL;
10046 finfo.external_syms = NULL;
10047 finfo.locsym_shndx = NULL;
10048 finfo.internal_syms = NULL;
10049 finfo.indices = NULL;
10050 finfo.sections = NULL;
10051 finfo.symbuf = NULL;
10052 finfo.symshndxbuf = NULL;
10053 finfo.symbuf_count = 0;
10054 finfo.shndxbuf_size = 0;
10055
10056 /* The object attributes have been merged. Remove the input
10057 sections from the link, and set the contents of the output
10058 secton. */
10059 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10060 for (o = abfd->sections; o != NULL; o = o->next)
10061 {
10062 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10063 || strcmp (o->name, ".gnu.attributes") == 0)
10064 {
10065 for (p = o->map_head.link_order; p != NULL; p = p->next)
10066 {
10067 asection *input_section;
10068
10069 if (p->type != bfd_indirect_link_order)
10070 continue;
10071 input_section = p->u.indirect.section;
10072 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10073 elf_link_input_bfd ignores this section. */
10074 input_section->flags &= ~SEC_HAS_CONTENTS;
10075 }
10076
10077 attr_size = bfd_elf_obj_attr_size (abfd);
10078 if (attr_size)
10079 {
10080 bfd_set_section_size (abfd, o, attr_size);
10081 attr_section = o;
10082 /* Skip this section later on. */
10083 o->map_head.link_order = NULL;
10084 }
10085 else
10086 o->flags |= SEC_EXCLUDE;
10087 }
10088 }
10089
10090 /* Count up the number of relocations we will output for each output
10091 section, so that we know the sizes of the reloc sections. We
10092 also figure out some maximum sizes. */
10093 max_contents_size = 0;
10094 max_external_reloc_size = 0;
10095 max_internal_reloc_count = 0;
10096 max_sym_count = 0;
10097 max_sym_shndx_count = 0;
10098 merged = FALSE;
10099 for (o = abfd->sections; o != NULL; o = o->next)
10100 {
10101 struct bfd_elf_section_data *esdo = elf_section_data (o);
10102 o->reloc_count = 0;
10103
10104 for (p = o->map_head.link_order; p != NULL; p = p->next)
10105 {
10106 unsigned int reloc_count = 0;
10107 struct bfd_elf_section_data *esdi = NULL;
10108 unsigned int *rel_count1;
10109
10110 if (p->type == bfd_section_reloc_link_order
10111 || p->type == bfd_symbol_reloc_link_order)
10112 reloc_count = 1;
10113 else if (p->type == bfd_indirect_link_order)
10114 {
10115 asection *sec;
10116
10117 sec = p->u.indirect.section;
10118 esdi = elf_section_data (sec);
10119
10120 /* Mark all sections which are to be included in the
10121 link. This will normally be every section. We need
10122 to do this so that we can identify any sections which
10123 the linker has decided to not include. */
10124 sec->linker_mark = TRUE;
10125
10126 if (sec->flags & SEC_MERGE)
10127 merged = TRUE;
10128
10129 if (info->relocatable || info->emitrelocations)
10130 reloc_count = sec->reloc_count;
10131 else if (bed->elf_backend_count_relocs)
10132 {
10133 Elf_Internal_Rela * relocs;
10134
10135 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10136 NULL, NULL,
10137 info->keep_memory);
10138
10139 if (relocs != NULL)
10140 {
10141 reloc_count
10142 = (*bed->elf_backend_count_relocs) (sec, relocs);
10143
10144 if (elf_section_data (sec)->relocs != relocs)
10145 free (relocs);
10146 }
10147 }
10148
10149 if (sec->rawsize > max_contents_size)
10150 max_contents_size = sec->rawsize;
10151 if (sec->size > max_contents_size)
10152 max_contents_size = sec->size;
10153
10154 /* We are interested in just local symbols, not all
10155 symbols. */
10156 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10157 && (sec->owner->flags & DYNAMIC) == 0)
10158 {
10159 size_t sym_count;
10160
10161 if (elf_bad_symtab (sec->owner))
10162 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10163 / bed->s->sizeof_sym);
10164 else
10165 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10166
10167 if (sym_count > max_sym_count)
10168 max_sym_count = sym_count;
10169
10170 if (sym_count > max_sym_shndx_count
10171 && elf_symtab_shndx (sec->owner) != 0)
10172 max_sym_shndx_count = sym_count;
10173
10174 if ((sec->flags & SEC_RELOC) != 0)
10175 {
10176 size_t ext_size;
10177
10178 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10179 if (ext_size > max_external_reloc_size)
10180 max_external_reloc_size = ext_size;
10181 if (sec->reloc_count > max_internal_reloc_count)
10182 max_internal_reloc_count = sec->reloc_count;
10183 }
10184 }
10185 }
10186
10187 if (reloc_count == 0)
10188 continue;
10189
10190 o->reloc_count += reloc_count;
10191
10192 /* MIPS may have a mix of REL and RELA relocs on sections.
10193 To support this curious ABI we keep reloc counts in
10194 elf_section_data too. We must be careful to add the
10195 relocations from the input section to the right output
10196 count. FIXME: Get rid of one count. We have
10197 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10198 rel_count1 = &esdo->rel_count;
10199 if (esdi != NULL)
10200 {
10201 bfd_boolean same_size;
10202 bfd_size_type entsize1;
10203
10204 entsize1 = esdi->rel_hdr.sh_entsize;
10205 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10206 || entsize1 == bed->s->sizeof_rela);
10207 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10208
10209 if (!same_size)
10210 rel_count1 = &esdo->rel_count2;
10211
10212 if (esdi->rel_hdr2 != NULL)
10213 {
10214 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10215 unsigned int alt_count;
10216 unsigned int *rel_count2;
10217
10218 BFD_ASSERT (entsize2 != entsize1
10219 && (entsize2 == bed->s->sizeof_rel
10220 || entsize2 == bed->s->sizeof_rela));
10221
10222 rel_count2 = &esdo->rel_count2;
10223 if (!same_size)
10224 rel_count2 = &esdo->rel_count;
10225
10226 /* The following is probably too simplistic if the
10227 backend counts output relocs unusually. */
10228 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10229 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10230 *rel_count2 += alt_count;
10231 reloc_count -= alt_count;
10232 }
10233 }
10234 *rel_count1 += reloc_count;
10235 }
10236
10237 if (o->reloc_count > 0)
10238 o->flags |= SEC_RELOC;
10239 else
10240 {
10241 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10242 set it (this is probably a bug) and if it is set
10243 assign_section_numbers will create a reloc section. */
10244 o->flags &=~ SEC_RELOC;
10245 }
10246
10247 /* If the SEC_ALLOC flag is not set, force the section VMA to
10248 zero. This is done in elf_fake_sections as well, but forcing
10249 the VMA to 0 here will ensure that relocs against these
10250 sections are handled correctly. */
10251 if ((o->flags & SEC_ALLOC) == 0
10252 && ! o->user_set_vma)
10253 o->vma = 0;
10254 }
10255
10256 if (! info->relocatable && merged)
10257 elf_link_hash_traverse (elf_hash_table (info),
10258 _bfd_elf_link_sec_merge_syms, abfd);
10259
10260 /* Figure out the file positions for everything but the symbol table
10261 and the relocs. We set symcount to force assign_section_numbers
10262 to create a symbol table. */
10263 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10264 BFD_ASSERT (! abfd->output_has_begun);
10265 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10266 goto error_return;
10267
10268 /* Set sizes, and assign file positions for reloc sections. */
10269 for (o = abfd->sections; o != NULL; o = o->next)
10270 {
10271 if ((o->flags & SEC_RELOC) != 0)
10272 {
10273 if (!(_bfd_elf_link_size_reloc_section
10274 (abfd, &elf_section_data (o)->rel_hdr, o)))
10275 goto error_return;
10276
10277 if (elf_section_data (o)->rel_hdr2
10278 && !(_bfd_elf_link_size_reloc_section
10279 (abfd, elf_section_data (o)->rel_hdr2, o)))
10280 goto error_return;
10281 }
10282
10283 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10284 to count upwards while actually outputting the relocations. */
10285 elf_section_data (o)->rel_count = 0;
10286 elf_section_data (o)->rel_count2 = 0;
10287 }
10288
10289 _bfd_elf_assign_file_positions_for_relocs (abfd);
10290
10291 /* We have now assigned file positions for all the sections except
10292 .symtab and .strtab. We start the .symtab section at the current
10293 file position, and write directly to it. We build the .strtab
10294 section in memory. */
10295 bfd_get_symcount (abfd) = 0;
10296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10297 /* sh_name is set in prep_headers. */
10298 symtab_hdr->sh_type = SHT_SYMTAB;
10299 /* sh_flags, sh_addr and sh_size all start off zero. */
10300 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10301 /* sh_link is set in assign_section_numbers. */
10302 /* sh_info is set below. */
10303 /* sh_offset is set just below. */
10304 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10305
10306 off = elf_tdata (abfd)->next_file_pos;
10307 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10308
10309 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10310 incorrect. We do not yet know the size of the .symtab section.
10311 We correct next_file_pos below, after we do know the size. */
10312
10313 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10314 continuously seeking to the right position in the file. */
10315 if (! info->keep_memory || max_sym_count < 20)
10316 finfo.symbuf_size = 20;
10317 else
10318 finfo.symbuf_size = max_sym_count;
10319 amt = finfo.symbuf_size;
10320 amt *= bed->s->sizeof_sym;
10321 finfo.symbuf = bfd_malloc (amt);
10322 if (finfo.symbuf == NULL)
10323 goto error_return;
10324 if (elf_numsections (abfd) > SHN_LORESERVE)
10325 {
10326 /* Wild guess at number of output symbols. realloc'd as needed. */
10327 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10328 finfo.shndxbuf_size = amt;
10329 amt *= sizeof (Elf_External_Sym_Shndx);
10330 finfo.symshndxbuf = bfd_zmalloc (amt);
10331 if (finfo.symshndxbuf == NULL)
10332 goto error_return;
10333 }
10334
10335 /* Start writing out the symbol table. The first symbol is always a
10336 dummy symbol. */
10337 if (info->strip != strip_all
10338 || emit_relocs)
10339 {
10340 elfsym.st_value = 0;
10341 elfsym.st_size = 0;
10342 elfsym.st_info = 0;
10343 elfsym.st_other = 0;
10344 elfsym.st_shndx = SHN_UNDEF;
10345 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10346 NULL))
10347 goto error_return;
10348 }
10349
10350 /* Output a symbol for each section. We output these even if we are
10351 discarding local symbols, since they are used for relocs. These
10352 symbols have no names. We store the index of each one in the
10353 index field of the section, so that we can find it again when
10354 outputting relocs. */
10355 if (info->strip != strip_all
10356 || emit_relocs)
10357 {
10358 elfsym.st_size = 0;
10359 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10360 elfsym.st_other = 0;
10361 elfsym.st_value = 0;
10362 for (i = 1; i < elf_numsections (abfd); i++)
10363 {
10364 o = bfd_section_from_elf_index (abfd, i);
10365 if (o != NULL)
10366 {
10367 o->target_index = bfd_get_symcount (abfd);
10368 elfsym.st_shndx = i;
10369 if (!info->relocatable)
10370 elfsym.st_value = o->vma;
10371 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10372 goto error_return;
10373 }
10374 if (i == SHN_LORESERVE - 1)
10375 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10376 }
10377 }
10378
10379 /* Allocate some memory to hold information read in from the input
10380 files. */
10381 if (max_contents_size != 0)
10382 {
10383 finfo.contents = bfd_malloc (max_contents_size);
10384 if (finfo.contents == NULL)
10385 goto error_return;
10386 }
10387
10388 if (max_external_reloc_size != 0)
10389 {
10390 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10391 if (finfo.external_relocs == NULL)
10392 goto error_return;
10393 }
10394
10395 if (max_internal_reloc_count != 0)
10396 {
10397 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10398 amt *= sizeof (Elf_Internal_Rela);
10399 finfo.internal_relocs = bfd_malloc (amt);
10400 if (finfo.internal_relocs == NULL)
10401 goto error_return;
10402 }
10403
10404 if (max_sym_count != 0)
10405 {
10406 amt = max_sym_count * bed->s->sizeof_sym;
10407 finfo.external_syms = bfd_malloc (amt);
10408 if (finfo.external_syms == NULL)
10409 goto error_return;
10410
10411 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10412 finfo.internal_syms = bfd_malloc (amt);
10413 if (finfo.internal_syms == NULL)
10414 goto error_return;
10415
10416 amt = max_sym_count * sizeof (long);
10417 finfo.indices = bfd_malloc (amt);
10418 if (finfo.indices == NULL)
10419 goto error_return;
10420
10421 amt = max_sym_count * sizeof (asection *);
10422 finfo.sections = bfd_malloc (amt);
10423 if (finfo.sections == NULL)
10424 goto error_return;
10425 }
10426
10427 if (max_sym_shndx_count != 0)
10428 {
10429 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10430 finfo.locsym_shndx = bfd_malloc (amt);
10431 if (finfo.locsym_shndx == NULL)
10432 goto error_return;
10433 }
10434
10435 if (elf_hash_table (info)->tls_sec)
10436 {
10437 bfd_vma base, end = 0;
10438 asection *sec;
10439
10440 for (sec = elf_hash_table (info)->tls_sec;
10441 sec && (sec->flags & SEC_THREAD_LOCAL);
10442 sec = sec->next)
10443 {
10444 bfd_size_type size = sec->size;
10445
10446 if (size == 0
10447 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10448 {
10449 struct bfd_link_order *o = sec->map_tail.link_order;
10450 if (o != NULL)
10451 size = o->offset + o->size;
10452 }
10453 end = sec->vma + size;
10454 }
10455 base = elf_hash_table (info)->tls_sec->vma;
10456 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10457 elf_hash_table (info)->tls_size = end - base;
10458 }
10459
10460 /* Reorder SHF_LINK_ORDER sections. */
10461 for (o = abfd->sections; o != NULL; o = o->next)
10462 {
10463 if (!elf_fixup_link_order (abfd, o))
10464 return FALSE;
10465 }
10466
10467 /* Since ELF permits relocations to be against local symbols, we
10468 must have the local symbols available when we do the relocations.
10469 Since we would rather only read the local symbols once, and we
10470 would rather not keep them in memory, we handle all the
10471 relocations for a single input file at the same time.
10472
10473 Unfortunately, there is no way to know the total number of local
10474 symbols until we have seen all of them, and the local symbol
10475 indices precede the global symbol indices. This means that when
10476 we are generating relocatable output, and we see a reloc against
10477 a global symbol, we can not know the symbol index until we have
10478 finished examining all the local symbols to see which ones we are
10479 going to output. To deal with this, we keep the relocations in
10480 memory, and don't output them until the end of the link. This is
10481 an unfortunate waste of memory, but I don't see a good way around
10482 it. Fortunately, it only happens when performing a relocatable
10483 link, which is not the common case. FIXME: If keep_memory is set
10484 we could write the relocs out and then read them again; I don't
10485 know how bad the memory loss will be. */
10486
10487 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10488 sub->output_has_begun = FALSE;
10489 for (o = abfd->sections; o != NULL; o = o->next)
10490 {
10491 for (p = o->map_head.link_order; p != NULL; p = p->next)
10492 {
10493 if (p->type == bfd_indirect_link_order
10494 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10495 == bfd_target_elf_flavour)
10496 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10497 {
10498 if (! sub->output_has_begun)
10499 {
10500 if (! elf_link_input_bfd (&finfo, sub))
10501 goto error_return;
10502 sub->output_has_begun = TRUE;
10503 }
10504 }
10505 else if (p->type == bfd_section_reloc_link_order
10506 || p->type == bfd_symbol_reloc_link_order)
10507 {
10508 if (! elf_reloc_link_order (abfd, info, o, p))
10509 goto error_return;
10510 }
10511 else
10512 {
10513 if (! _bfd_default_link_order (abfd, info, o, p))
10514 goto error_return;
10515 }
10516 }
10517 }
10518
10519 /* Free symbol buffer if needed. */
10520 if (!info->reduce_memory_overheads)
10521 {
10522 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10523 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10524 && elf_tdata (sub)->symbuf)
10525 {
10526 free (elf_tdata (sub)->symbuf);
10527 elf_tdata (sub)->symbuf = NULL;
10528 }
10529 }
10530
10531 /* Output any global symbols that got converted to local in a
10532 version script or due to symbol visibility. We do this in a
10533 separate step since ELF requires all local symbols to appear
10534 prior to any global symbols. FIXME: We should only do this if
10535 some global symbols were, in fact, converted to become local.
10536 FIXME: Will this work correctly with the Irix 5 linker? */
10537 eoinfo.failed = FALSE;
10538 eoinfo.finfo = &finfo;
10539 eoinfo.localsyms = TRUE;
10540 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10541 &eoinfo);
10542 if (eoinfo.failed)
10543 return FALSE;
10544
10545 /* If backend needs to output some local symbols not present in the hash
10546 table, do it now. */
10547 if (bed->elf_backend_output_arch_local_syms)
10548 {
10549 typedef bfd_boolean (*out_sym_func)
10550 (void *, const char *, Elf_Internal_Sym *, asection *,
10551 struct elf_link_hash_entry *);
10552
10553 if (! ((*bed->elf_backend_output_arch_local_syms)
10554 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10555 return FALSE;
10556 }
10557
10558 /* That wrote out all the local symbols. Finish up the symbol table
10559 with the global symbols. Even if we want to strip everything we
10560 can, we still need to deal with those global symbols that got
10561 converted to local in a version script. */
10562
10563 /* The sh_info field records the index of the first non local symbol. */
10564 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10565
10566 if (dynamic
10567 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10568 {
10569 Elf_Internal_Sym sym;
10570 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10571 long last_local = 0;
10572
10573 /* Write out the section symbols for the output sections. */
10574 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10575 {
10576 asection *s;
10577
10578 sym.st_size = 0;
10579 sym.st_name = 0;
10580 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10581 sym.st_other = 0;
10582
10583 for (s = abfd->sections; s != NULL; s = s->next)
10584 {
10585 int indx;
10586 bfd_byte *dest;
10587 long dynindx;
10588
10589 dynindx = elf_section_data (s)->dynindx;
10590 if (dynindx <= 0)
10591 continue;
10592 indx = elf_section_data (s)->this_idx;
10593 BFD_ASSERT (indx > 0);
10594 sym.st_shndx = indx;
10595 if (! check_dynsym (abfd, &sym))
10596 return FALSE;
10597 sym.st_value = s->vma;
10598 dest = dynsym + dynindx * bed->s->sizeof_sym;
10599 if (last_local < dynindx)
10600 last_local = dynindx;
10601 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10602 }
10603 }
10604
10605 /* Write out the local dynsyms. */
10606 if (elf_hash_table (info)->dynlocal)
10607 {
10608 struct elf_link_local_dynamic_entry *e;
10609 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10610 {
10611 asection *s;
10612 bfd_byte *dest;
10613
10614 sym.st_size = e->isym.st_size;
10615 sym.st_other = e->isym.st_other;
10616
10617 /* Copy the internal symbol as is.
10618 Note that we saved a word of storage and overwrote
10619 the original st_name with the dynstr_index. */
10620 sym = e->isym;
10621
10622 if (e->isym.st_shndx != SHN_UNDEF
10623 && (e->isym.st_shndx < SHN_LORESERVE
10624 || e->isym.st_shndx > SHN_HIRESERVE))
10625 {
10626 s = bfd_section_from_elf_index (e->input_bfd,
10627 e->isym.st_shndx);
10628
10629 sym.st_shndx =
10630 elf_section_data (s->output_section)->this_idx;
10631 if (! check_dynsym (abfd, &sym))
10632 return FALSE;
10633 sym.st_value = (s->output_section->vma
10634 + s->output_offset
10635 + e->isym.st_value);
10636 }
10637
10638 if (last_local < e->dynindx)
10639 last_local = e->dynindx;
10640
10641 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10642 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10643 }
10644 }
10645
10646 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10647 last_local + 1;
10648 }
10649
10650 /* We get the global symbols from the hash table. */
10651 eoinfo.failed = FALSE;
10652 eoinfo.localsyms = FALSE;
10653 eoinfo.finfo = &finfo;
10654 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10655 &eoinfo);
10656 if (eoinfo.failed)
10657 return FALSE;
10658
10659 /* If backend needs to output some symbols not present in the hash
10660 table, do it now. */
10661 if (bed->elf_backend_output_arch_syms)
10662 {
10663 typedef bfd_boolean (*out_sym_func)
10664 (void *, const char *, Elf_Internal_Sym *, asection *,
10665 struct elf_link_hash_entry *);
10666
10667 if (! ((*bed->elf_backend_output_arch_syms)
10668 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10669 return FALSE;
10670 }
10671
10672 /* Flush all symbols to the file. */
10673 if (! elf_link_flush_output_syms (&finfo, bed))
10674 return FALSE;
10675
10676 /* Now we know the size of the symtab section. */
10677 off += symtab_hdr->sh_size;
10678
10679 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10680 if (symtab_shndx_hdr->sh_name != 0)
10681 {
10682 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10683 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10684 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10685 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10686 symtab_shndx_hdr->sh_size = amt;
10687
10688 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10689 off, TRUE);
10690
10691 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10692 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10693 return FALSE;
10694 }
10695
10696
10697 /* Finish up and write out the symbol string table (.strtab)
10698 section. */
10699 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10700 /* sh_name was set in prep_headers. */
10701 symstrtab_hdr->sh_type = SHT_STRTAB;
10702 symstrtab_hdr->sh_flags = 0;
10703 symstrtab_hdr->sh_addr = 0;
10704 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10705 symstrtab_hdr->sh_entsize = 0;
10706 symstrtab_hdr->sh_link = 0;
10707 symstrtab_hdr->sh_info = 0;
10708 /* sh_offset is set just below. */
10709 symstrtab_hdr->sh_addralign = 1;
10710
10711 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10712 elf_tdata (abfd)->next_file_pos = off;
10713
10714 if (bfd_get_symcount (abfd) > 0)
10715 {
10716 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10717 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10718 return FALSE;
10719 }
10720
10721 /* Adjust the relocs to have the correct symbol indices. */
10722 for (o = abfd->sections; o != NULL; o = o->next)
10723 {
10724 if ((o->flags & SEC_RELOC) == 0)
10725 continue;
10726
10727 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10728 elf_section_data (o)->rel_count,
10729 elf_section_data (o)->rel_hashes);
10730 if (elf_section_data (o)->rel_hdr2 != NULL)
10731 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10732 elf_section_data (o)->rel_count2,
10733 (elf_section_data (o)->rel_hashes
10734 + elf_section_data (o)->rel_count));
10735
10736 /* Set the reloc_count field to 0 to prevent write_relocs from
10737 trying to swap the relocs out itself. */
10738 o->reloc_count = 0;
10739 }
10740
10741 if (dynamic && info->combreloc && dynobj != NULL)
10742 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10743
10744 /* If we are linking against a dynamic object, or generating a
10745 shared library, finish up the dynamic linking information. */
10746 if (dynamic)
10747 {
10748 bfd_byte *dyncon, *dynconend;
10749
10750 /* Fix up .dynamic entries. */
10751 o = bfd_get_section_by_name (dynobj, ".dynamic");
10752 BFD_ASSERT (o != NULL);
10753
10754 dyncon = o->contents;
10755 dynconend = o->contents + o->size;
10756 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10757 {
10758 Elf_Internal_Dyn dyn;
10759 const char *name;
10760 unsigned int type;
10761
10762 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10763
10764 switch (dyn.d_tag)
10765 {
10766 default:
10767 continue;
10768 case DT_NULL:
10769 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10770 {
10771 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10772 {
10773 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10774 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10775 default: continue;
10776 }
10777 dyn.d_un.d_val = relativecount;
10778 relativecount = 0;
10779 break;
10780 }
10781 continue;
10782
10783 case DT_INIT:
10784 name = info->init_function;
10785 goto get_sym;
10786 case DT_FINI:
10787 name = info->fini_function;
10788 get_sym:
10789 {
10790 struct elf_link_hash_entry *h;
10791
10792 h = elf_link_hash_lookup (elf_hash_table (info), name,
10793 FALSE, FALSE, TRUE);
10794 if (h != NULL
10795 && (h->root.type == bfd_link_hash_defined
10796 || h->root.type == bfd_link_hash_defweak))
10797 {
10798 dyn.d_un.d_val = h->root.u.def.value;
10799 o = h->root.u.def.section;
10800 if (o->output_section != NULL)
10801 dyn.d_un.d_val += (o->output_section->vma
10802 + o->output_offset);
10803 else
10804 {
10805 /* The symbol is imported from another shared
10806 library and does not apply to this one. */
10807 dyn.d_un.d_val = 0;
10808 }
10809 break;
10810 }
10811 }
10812 continue;
10813
10814 case DT_PREINIT_ARRAYSZ:
10815 name = ".preinit_array";
10816 goto get_size;
10817 case DT_INIT_ARRAYSZ:
10818 name = ".init_array";
10819 goto get_size;
10820 case DT_FINI_ARRAYSZ:
10821 name = ".fini_array";
10822 get_size:
10823 o = bfd_get_section_by_name (abfd, name);
10824 if (o == NULL)
10825 {
10826 (*_bfd_error_handler)
10827 (_("%B: could not find output section %s"), abfd, name);
10828 goto error_return;
10829 }
10830 if (o->size == 0)
10831 (*_bfd_error_handler)
10832 (_("warning: %s section has zero size"), name);
10833 dyn.d_un.d_val = o->size;
10834 break;
10835
10836 case DT_PREINIT_ARRAY:
10837 name = ".preinit_array";
10838 goto get_vma;
10839 case DT_INIT_ARRAY:
10840 name = ".init_array";
10841 goto get_vma;
10842 case DT_FINI_ARRAY:
10843 name = ".fini_array";
10844 goto get_vma;
10845
10846 case DT_HASH:
10847 name = ".hash";
10848 goto get_vma;
10849 case DT_GNU_HASH:
10850 name = ".gnu.hash";
10851 goto get_vma;
10852 case DT_STRTAB:
10853 name = ".dynstr";
10854 goto get_vma;
10855 case DT_SYMTAB:
10856 name = ".dynsym";
10857 goto get_vma;
10858 case DT_VERDEF:
10859 name = ".gnu.version_d";
10860 goto get_vma;
10861 case DT_VERNEED:
10862 name = ".gnu.version_r";
10863 goto get_vma;
10864 case DT_VERSYM:
10865 name = ".gnu.version";
10866 get_vma:
10867 o = bfd_get_section_by_name (abfd, name);
10868 if (o == NULL)
10869 {
10870 (*_bfd_error_handler)
10871 (_("%B: could not find output section %s"), abfd, name);
10872 goto error_return;
10873 }
10874 dyn.d_un.d_ptr = o->vma;
10875 break;
10876
10877 case DT_REL:
10878 case DT_RELA:
10879 case DT_RELSZ:
10880 case DT_RELASZ:
10881 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10882 type = SHT_REL;
10883 else
10884 type = SHT_RELA;
10885 dyn.d_un.d_val = 0;
10886 for (i = 1; i < elf_numsections (abfd); i++)
10887 {
10888 Elf_Internal_Shdr *hdr;
10889
10890 hdr = elf_elfsections (abfd)[i];
10891 if (hdr->sh_type == type
10892 && (hdr->sh_flags & SHF_ALLOC) != 0)
10893 {
10894 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10895 dyn.d_un.d_val += hdr->sh_size;
10896 else
10897 {
10898 if (dyn.d_un.d_val == 0
10899 || hdr->sh_addr < dyn.d_un.d_val)
10900 dyn.d_un.d_val = hdr->sh_addr;
10901 }
10902 }
10903 }
10904 break;
10905 }
10906 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10907 }
10908 }
10909
10910 /* If we have created any dynamic sections, then output them. */
10911 if (dynobj != NULL)
10912 {
10913 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10914 goto error_return;
10915
10916 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10917 if (info->warn_shared_textrel && info->shared)
10918 {
10919 bfd_byte *dyncon, *dynconend;
10920
10921 /* Fix up .dynamic entries. */
10922 o = bfd_get_section_by_name (dynobj, ".dynamic");
10923 BFD_ASSERT (o != NULL);
10924
10925 dyncon = o->contents;
10926 dynconend = o->contents + o->size;
10927 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10928 {
10929 Elf_Internal_Dyn dyn;
10930
10931 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10932
10933 if (dyn.d_tag == DT_TEXTREL)
10934 {
10935 info->callbacks->einfo
10936 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10937 break;
10938 }
10939 }
10940 }
10941
10942 for (o = dynobj->sections; o != NULL; o = o->next)
10943 {
10944 if ((o->flags & SEC_HAS_CONTENTS) == 0
10945 || o->size == 0
10946 || o->output_section == bfd_abs_section_ptr)
10947 continue;
10948 if ((o->flags & SEC_LINKER_CREATED) == 0)
10949 {
10950 /* At this point, we are only interested in sections
10951 created by _bfd_elf_link_create_dynamic_sections. */
10952 continue;
10953 }
10954 if (elf_hash_table (info)->stab_info.stabstr == o)
10955 continue;
10956 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10957 continue;
10958 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10959 != SHT_STRTAB)
10960 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10961 {
10962 if (! bfd_set_section_contents (abfd, o->output_section,
10963 o->contents,
10964 (file_ptr) o->output_offset,
10965 o->size))
10966 goto error_return;
10967 }
10968 else
10969 {
10970 /* The contents of the .dynstr section are actually in a
10971 stringtab. */
10972 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10973 if (bfd_seek (abfd, off, SEEK_SET) != 0
10974 || ! _bfd_elf_strtab_emit (abfd,
10975 elf_hash_table (info)->dynstr))
10976 goto error_return;
10977 }
10978 }
10979 }
10980
10981 if (info->relocatable)
10982 {
10983 bfd_boolean failed = FALSE;
10984
10985 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10986 if (failed)
10987 goto error_return;
10988 }
10989
10990 /* If we have optimized stabs strings, output them. */
10991 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10992 {
10993 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10994 goto error_return;
10995 }
10996
10997 if (info->eh_frame_hdr)
10998 {
10999 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11000 goto error_return;
11001 }
11002
11003 if (finfo.symstrtab != NULL)
11004 _bfd_stringtab_free (finfo.symstrtab);
11005 if (finfo.contents != NULL)
11006 free (finfo.contents);
11007 if (finfo.external_relocs != NULL)
11008 free (finfo.external_relocs);
11009 if (finfo.internal_relocs != NULL)
11010 free (finfo.internal_relocs);
11011 if (finfo.external_syms != NULL)
11012 free (finfo.external_syms);
11013 if (finfo.locsym_shndx != NULL)
11014 free (finfo.locsym_shndx);
11015 if (finfo.internal_syms != NULL)
11016 free (finfo.internal_syms);
11017 if (finfo.indices != NULL)
11018 free (finfo.indices);
11019 if (finfo.sections != NULL)
11020 free (finfo.sections);
11021 if (finfo.symbuf != NULL)
11022 free (finfo.symbuf);
11023 if (finfo.symshndxbuf != NULL)
11024 free (finfo.symshndxbuf);
11025 for (o = abfd->sections; o != NULL; o = o->next)
11026 {
11027 if ((o->flags & SEC_RELOC) != 0
11028 && elf_section_data (o)->rel_hashes != NULL)
11029 free (elf_section_data (o)->rel_hashes);
11030 }
11031
11032 elf_tdata (abfd)->linker = TRUE;
11033
11034 if (attr_section)
11035 {
11036 bfd_byte *contents = bfd_malloc (attr_size);
11037 if (contents == NULL)
11038 return FALSE; /* Bail out and fail. */
11039 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11040 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11041 free (contents);
11042 }
11043
11044 return TRUE;
11045
11046 error_return:
11047 if (finfo.symstrtab != NULL)
11048 _bfd_stringtab_free (finfo.symstrtab);
11049 if (finfo.contents != NULL)
11050 free (finfo.contents);
11051 if (finfo.external_relocs != NULL)
11052 free (finfo.external_relocs);
11053 if (finfo.internal_relocs != NULL)
11054 free (finfo.internal_relocs);
11055 if (finfo.external_syms != NULL)
11056 free (finfo.external_syms);
11057 if (finfo.locsym_shndx != NULL)
11058 free (finfo.locsym_shndx);
11059 if (finfo.internal_syms != NULL)
11060 free (finfo.internal_syms);
11061 if (finfo.indices != NULL)
11062 free (finfo.indices);
11063 if (finfo.sections != NULL)
11064 free (finfo.sections);
11065 if (finfo.symbuf != NULL)
11066 free (finfo.symbuf);
11067 if (finfo.symshndxbuf != NULL)
11068 free (finfo.symshndxbuf);
11069 for (o = abfd->sections; o != NULL; o = o->next)
11070 {
11071 if ((o->flags & SEC_RELOC) != 0
11072 && elf_section_data (o)->rel_hashes != NULL)
11073 free (elf_section_data (o)->rel_hashes);
11074 }
11075
11076 return FALSE;
11077 }
11078 \f
11079 /* Garbage collect unused sections. */
11080
11081 /* Default gc_mark_hook. */
11082
11083 asection *
11084 _bfd_elf_gc_mark_hook (asection *sec,
11085 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11086 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11087 struct elf_link_hash_entry *h,
11088 Elf_Internal_Sym *sym)
11089 {
11090 if (h != NULL)
11091 {
11092 switch (h->root.type)
11093 {
11094 case bfd_link_hash_defined:
11095 case bfd_link_hash_defweak:
11096 return h->root.u.def.section;
11097
11098 case bfd_link_hash_common:
11099 return h->root.u.c.p->section;
11100
11101 default:
11102 break;
11103 }
11104 }
11105 else
11106 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11107
11108 return NULL;
11109 }
11110
11111 /* The mark phase of garbage collection. For a given section, mark
11112 it and any sections in this section's group, and all the sections
11113 which define symbols to which it refers. */
11114
11115 bfd_boolean
11116 _bfd_elf_gc_mark (struct bfd_link_info *info,
11117 asection *sec,
11118 elf_gc_mark_hook_fn gc_mark_hook)
11119 {
11120 bfd_boolean ret;
11121 bfd_boolean is_eh;
11122 asection *group_sec;
11123
11124 sec->gc_mark = 1;
11125
11126 /* Mark all the sections in the group. */
11127 group_sec = elf_section_data (sec)->next_in_group;
11128 if (group_sec && !group_sec->gc_mark)
11129 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11130 return FALSE;
11131
11132 /* Look through the section relocs. */
11133 ret = TRUE;
11134 is_eh = strcmp (sec->name, ".eh_frame") == 0;
11135 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
11136 {
11137 Elf_Internal_Rela *relstart, *rel, *relend;
11138 Elf_Internal_Shdr *symtab_hdr;
11139 struct elf_link_hash_entry **sym_hashes;
11140 size_t nlocsyms;
11141 size_t extsymoff;
11142 bfd *input_bfd = sec->owner;
11143 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
11144 Elf_Internal_Sym *isym = NULL;
11145 int r_sym_shift;
11146
11147 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11148 sym_hashes = elf_sym_hashes (input_bfd);
11149
11150 /* Read the local symbols. */
11151 if (elf_bad_symtab (input_bfd))
11152 {
11153 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
11154 extsymoff = 0;
11155 }
11156 else
11157 extsymoff = nlocsyms = symtab_hdr->sh_info;
11158
11159 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11160 if (isym == NULL && nlocsyms != 0)
11161 {
11162 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
11163 NULL, NULL, NULL);
11164 if (isym == NULL)
11165 return FALSE;
11166 }
11167
11168 /* Read the relocations. */
11169 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
11170 info->keep_memory);
11171 if (relstart == NULL)
11172 {
11173 ret = FALSE;
11174 goto out1;
11175 }
11176 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11177
11178 if (bed->s->arch_size == 32)
11179 r_sym_shift = 8;
11180 else
11181 r_sym_shift = 32;
11182
11183 for (rel = relstart; rel < relend; rel++)
11184 {
11185 unsigned long r_symndx;
11186 asection *rsec;
11187 struct elf_link_hash_entry *h;
11188
11189 r_symndx = rel->r_info >> r_sym_shift;
11190 if (r_symndx == 0)
11191 continue;
11192
11193 if (r_symndx >= nlocsyms
11194 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
11195 {
11196 h = sym_hashes[r_symndx - extsymoff];
11197 while (h->root.type == bfd_link_hash_indirect
11198 || h->root.type == bfd_link_hash_warning)
11199 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11200 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
11201 }
11202 else
11203 {
11204 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
11205 }
11206
11207 if (rsec && !rsec->gc_mark)
11208 {
11209 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11210 rsec->gc_mark = 1;
11211 else if (is_eh)
11212 rsec->gc_mark_from_eh = 1;
11213 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11214 {
11215 ret = FALSE;
11216 goto out2;
11217 }
11218 }
11219 }
11220
11221 out2:
11222 if (elf_section_data (sec)->relocs != relstart)
11223 free (relstart);
11224 out1:
11225 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
11226 {
11227 if (! info->keep_memory)
11228 free (isym);
11229 else
11230 symtab_hdr->contents = (unsigned char *) isym;
11231 }
11232 }
11233
11234 return ret;
11235 }
11236
11237 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11238
11239 struct elf_gc_sweep_symbol_info
11240 {
11241 struct bfd_link_info *info;
11242 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11243 bfd_boolean);
11244 };
11245
11246 static bfd_boolean
11247 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11248 {
11249 if (h->root.type == bfd_link_hash_warning)
11250 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11251
11252 if ((h->root.type == bfd_link_hash_defined
11253 || h->root.type == bfd_link_hash_defweak)
11254 && !h->root.u.def.section->gc_mark
11255 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11256 {
11257 struct elf_gc_sweep_symbol_info *inf = data;
11258 (*inf->hide_symbol) (inf->info, h, TRUE);
11259 }
11260
11261 return TRUE;
11262 }
11263
11264 /* The sweep phase of garbage collection. Remove all garbage sections. */
11265
11266 typedef bfd_boolean (*gc_sweep_hook_fn)
11267 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11268
11269 static bfd_boolean
11270 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11271 {
11272 bfd *sub;
11273 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11274 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11275 unsigned long section_sym_count;
11276 struct elf_gc_sweep_symbol_info sweep_info;
11277
11278 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11279 {
11280 asection *o;
11281
11282 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11283 continue;
11284
11285 for (o = sub->sections; o != NULL; o = o->next)
11286 {
11287 /* Keep debug and special sections. */
11288 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11289 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11290 o->gc_mark = 1;
11291
11292 if (o->gc_mark)
11293 continue;
11294
11295 /* Skip sweeping sections already excluded. */
11296 if (o->flags & SEC_EXCLUDE)
11297 continue;
11298
11299 /* Since this is early in the link process, it is simple
11300 to remove a section from the output. */
11301 o->flags |= SEC_EXCLUDE;
11302
11303 if (info->print_gc_sections && o->size != 0)
11304 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11305
11306 /* But we also have to update some of the relocation
11307 info we collected before. */
11308 if (gc_sweep_hook
11309 && (o->flags & SEC_RELOC) != 0
11310 && o->reloc_count > 0
11311 && !bfd_is_abs_section (o->output_section))
11312 {
11313 Elf_Internal_Rela *internal_relocs;
11314 bfd_boolean r;
11315
11316 internal_relocs
11317 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11318 info->keep_memory);
11319 if (internal_relocs == NULL)
11320 return FALSE;
11321
11322 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11323
11324 if (elf_section_data (o)->relocs != internal_relocs)
11325 free (internal_relocs);
11326
11327 if (!r)
11328 return FALSE;
11329 }
11330 }
11331 }
11332
11333 /* Remove the symbols that were in the swept sections from the dynamic
11334 symbol table. GCFIXME: Anyone know how to get them out of the
11335 static symbol table as well? */
11336 sweep_info.info = info;
11337 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11338 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11339 &sweep_info);
11340
11341 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11342 return TRUE;
11343 }
11344
11345 /* Propagate collected vtable information. This is called through
11346 elf_link_hash_traverse. */
11347
11348 static bfd_boolean
11349 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11350 {
11351 if (h->root.type == bfd_link_hash_warning)
11352 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11353
11354 /* Those that are not vtables. */
11355 if (h->vtable == NULL || h->vtable->parent == NULL)
11356 return TRUE;
11357
11358 /* Those vtables that do not have parents, we cannot merge. */
11359 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11360 return TRUE;
11361
11362 /* If we've already been done, exit. */
11363 if (h->vtable->used && h->vtable->used[-1])
11364 return TRUE;
11365
11366 /* Make sure the parent's table is up to date. */
11367 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11368
11369 if (h->vtable->used == NULL)
11370 {
11371 /* None of this table's entries were referenced. Re-use the
11372 parent's table. */
11373 h->vtable->used = h->vtable->parent->vtable->used;
11374 h->vtable->size = h->vtable->parent->vtable->size;
11375 }
11376 else
11377 {
11378 size_t n;
11379 bfd_boolean *cu, *pu;
11380
11381 /* Or the parent's entries into ours. */
11382 cu = h->vtable->used;
11383 cu[-1] = TRUE;
11384 pu = h->vtable->parent->vtable->used;
11385 if (pu != NULL)
11386 {
11387 const struct elf_backend_data *bed;
11388 unsigned int log_file_align;
11389
11390 bed = get_elf_backend_data (h->root.u.def.section->owner);
11391 log_file_align = bed->s->log_file_align;
11392 n = h->vtable->parent->vtable->size >> log_file_align;
11393 while (n--)
11394 {
11395 if (*pu)
11396 *cu = TRUE;
11397 pu++;
11398 cu++;
11399 }
11400 }
11401 }
11402
11403 return TRUE;
11404 }
11405
11406 static bfd_boolean
11407 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11408 {
11409 asection *sec;
11410 bfd_vma hstart, hend;
11411 Elf_Internal_Rela *relstart, *relend, *rel;
11412 const struct elf_backend_data *bed;
11413 unsigned int log_file_align;
11414
11415 if (h->root.type == bfd_link_hash_warning)
11416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11417
11418 /* Take care of both those symbols that do not describe vtables as
11419 well as those that are not loaded. */
11420 if (h->vtable == NULL || h->vtable->parent == NULL)
11421 return TRUE;
11422
11423 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11424 || h->root.type == bfd_link_hash_defweak);
11425
11426 sec = h->root.u.def.section;
11427 hstart = h->root.u.def.value;
11428 hend = hstart + h->size;
11429
11430 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11431 if (!relstart)
11432 return *(bfd_boolean *) okp = FALSE;
11433 bed = get_elf_backend_data (sec->owner);
11434 log_file_align = bed->s->log_file_align;
11435
11436 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11437
11438 for (rel = relstart; rel < relend; ++rel)
11439 if (rel->r_offset >= hstart && rel->r_offset < hend)
11440 {
11441 /* If the entry is in use, do nothing. */
11442 if (h->vtable->used
11443 && (rel->r_offset - hstart) < h->vtable->size)
11444 {
11445 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11446 if (h->vtable->used[entry])
11447 continue;
11448 }
11449 /* Otherwise, kill it. */
11450 rel->r_offset = rel->r_info = rel->r_addend = 0;
11451 }
11452
11453 return TRUE;
11454 }
11455
11456 /* Mark sections containing dynamically referenced symbols. When
11457 building shared libraries, we must assume that any visible symbol is
11458 referenced. */
11459
11460 bfd_boolean
11461 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11462 {
11463 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11464
11465 if (h->root.type == bfd_link_hash_warning)
11466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11467
11468 if ((h->root.type == bfd_link_hash_defined
11469 || h->root.type == bfd_link_hash_defweak)
11470 && (h->ref_dynamic
11471 || (!info->executable
11472 && h->def_regular
11473 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11474 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11475 h->root.u.def.section->flags |= SEC_KEEP;
11476
11477 return TRUE;
11478 }
11479
11480 /* Do mark and sweep of unused sections. */
11481
11482 bfd_boolean
11483 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11484 {
11485 bfd_boolean ok = TRUE;
11486 bfd *sub;
11487 elf_gc_mark_hook_fn gc_mark_hook;
11488 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11489
11490 if (!bed->can_gc_sections
11491 || info->relocatable
11492 || info->emitrelocations
11493 || !is_elf_hash_table (info->hash))
11494 {
11495 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11496 return TRUE;
11497 }
11498
11499 /* Apply transitive closure to the vtable entry usage info. */
11500 elf_link_hash_traverse (elf_hash_table (info),
11501 elf_gc_propagate_vtable_entries_used,
11502 &ok);
11503 if (!ok)
11504 return FALSE;
11505
11506 /* Kill the vtable relocations that were not used. */
11507 elf_link_hash_traverse (elf_hash_table (info),
11508 elf_gc_smash_unused_vtentry_relocs,
11509 &ok);
11510 if (!ok)
11511 return FALSE;
11512
11513 /* Mark dynamically referenced symbols. */
11514 if (elf_hash_table (info)->dynamic_sections_created)
11515 elf_link_hash_traverse (elf_hash_table (info),
11516 bed->gc_mark_dynamic_ref,
11517 info);
11518
11519 /* Grovel through relocs to find out who stays ... */
11520 gc_mark_hook = bed->gc_mark_hook;
11521 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11522 {
11523 asection *o;
11524
11525 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11526 continue;
11527
11528 for (o = sub->sections; o != NULL; o = o->next)
11529 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11530 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11531 return FALSE;
11532 }
11533
11534 /* Allow the backend to mark additional target specific sections. */
11535 if (bed->gc_mark_extra_sections)
11536 bed->gc_mark_extra_sections(info, gc_mark_hook);
11537
11538 /* ... again for sections marked from eh_frame. */
11539 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11540 {
11541 asection *o;
11542
11543 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11544 continue;
11545
11546 /* Keep .gcc_except_table.* if the associated .text.* (or the
11547 associated .gnu.linkonce.t.* if .text.* doesn't exist) is
11548 marked. This isn't very nice, but the proper solution,
11549 splitting .eh_frame up and using comdat doesn't pan out
11550 easily due to needing special relocs to handle the
11551 difference of two symbols in separate sections.
11552 Don't keep code sections referenced by .eh_frame. */
11553 #define TEXT_PREFIX ".text."
11554 #define TEXT_PREFIX2 ".gnu.linkonce.t."
11555 #define GCC_EXCEPT_TABLE_PREFIX ".gcc_except_table."
11556 for (o = sub->sections; o != NULL; o = o->next)
11557 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
11558 {
11559 if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
11560 {
11561 char *fn_name;
11562 const char *sec_name;
11563 asection *fn_text;
11564 unsigned o_name_prefix_len , fn_name_prefix_len, tmp;
11565
11566 o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
11567 sec_name = o->name + o_name_prefix_len;
11568 fn_name_prefix_len = strlen (TEXT_PREFIX);
11569 tmp = strlen (TEXT_PREFIX2);
11570 if (tmp > fn_name_prefix_len)
11571 fn_name_prefix_len = tmp;
11572 fn_name
11573 = bfd_malloc (fn_name_prefix_len + strlen (sec_name) + 1);
11574 if (fn_name == NULL)
11575 return FALSE;
11576
11577 /* Try the first prefix. */
11578 sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
11579 fn_text = bfd_get_section_by_name (sub, fn_name);
11580
11581 /* Try the second prefix. */
11582 if (fn_text == NULL)
11583 {
11584 sprintf (fn_name, "%s%s", TEXT_PREFIX2, sec_name);
11585 fn_text = bfd_get_section_by_name (sub, fn_name);
11586 }
11587
11588 free (fn_name);
11589 if (fn_text == NULL || !fn_text->gc_mark)
11590 continue;
11591 }
11592
11593 /* If not using specially named exception table section,
11594 then keep whatever we are using. */
11595 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11596 return FALSE;
11597 }
11598 }
11599
11600 /* ... and mark SEC_EXCLUDE for those that go. */
11601 return elf_gc_sweep (abfd, info);
11602 }
11603 \f
11604 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11605
11606 bfd_boolean
11607 bfd_elf_gc_record_vtinherit (bfd *abfd,
11608 asection *sec,
11609 struct elf_link_hash_entry *h,
11610 bfd_vma offset)
11611 {
11612 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11613 struct elf_link_hash_entry **search, *child;
11614 bfd_size_type extsymcount;
11615 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11616
11617 /* The sh_info field of the symtab header tells us where the
11618 external symbols start. We don't care about the local symbols at
11619 this point. */
11620 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11621 if (!elf_bad_symtab (abfd))
11622 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11623
11624 sym_hashes = elf_sym_hashes (abfd);
11625 sym_hashes_end = sym_hashes + extsymcount;
11626
11627 /* Hunt down the child symbol, which is in this section at the same
11628 offset as the relocation. */
11629 for (search = sym_hashes; search != sym_hashes_end; ++search)
11630 {
11631 if ((child = *search) != NULL
11632 && (child->root.type == bfd_link_hash_defined
11633 || child->root.type == bfd_link_hash_defweak)
11634 && child->root.u.def.section == sec
11635 && child->root.u.def.value == offset)
11636 goto win;
11637 }
11638
11639 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11640 abfd, sec, (unsigned long) offset);
11641 bfd_set_error (bfd_error_invalid_operation);
11642 return FALSE;
11643
11644 win:
11645 if (!child->vtable)
11646 {
11647 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11648 if (!child->vtable)
11649 return FALSE;
11650 }
11651 if (!h)
11652 {
11653 /* This *should* only be the absolute section. It could potentially
11654 be that someone has defined a non-global vtable though, which
11655 would be bad. It isn't worth paging in the local symbols to be
11656 sure though; that case should simply be handled by the assembler. */
11657
11658 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11659 }
11660 else
11661 child->vtable->parent = h;
11662
11663 return TRUE;
11664 }
11665
11666 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11667
11668 bfd_boolean
11669 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11670 asection *sec ATTRIBUTE_UNUSED,
11671 struct elf_link_hash_entry *h,
11672 bfd_vma addend)
11673 {
11674 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11675 unsigned int log_file_align = bed->s->log_file_align;
11676
11677 if (!h->vtable)
11678 {
11679 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11680 if (!h->vtable)
11681 return FALSE;
11682 }
11683
11684 if (addend >= h->vtable->size)
11685 {
11686 size_t size, bytes, file_align;
11687 bfd_boolean *ptr = h->vtable->used;
11688
11689 /* While the symbol is undefined, we have to be prepared to handle
11690 a zero size. */
11691 file_align = 1 << log_file_align;
11692 if (h->root.type == bfd_link_hash_undefined)
11693 size = addend + file_align;
11694 else
11695 {
11696 size = h->size;
11697 if (addend >= size)
11698 {
11699 /* Oops! We've got a reference past the defined end of
11700 the table. This is probably a bug -- shall we warn? */
11701 size = addend + file_align;
11702 }
11703 }
11704 size = (size + file_align - 1) & -file_align;
11705
11706 /* Allocate one extra entry for use as a "done" flag for the
11707 consolidation pass. */
11708 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11709
11710 if (ptr)
11711 {
11712 ptr = bfd_realloc (ptr - 1, bytes);
11713
11714 if (ptr != NULL)
11715 {
11716 size_t oldbytes;
11717
11718 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11719 * sizeof (bfd_boolean));
11720 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11721 }
11722 }
11723 else
11724 ptr = bfd_zmalloc (bytes);
11725
11726 if (ptr == NULL)
11727 return FALSE;
11728
11729 /* And arrange for that done flag to be at index -1. */
11730 h->vtable->used = ptr + 1;
11731 h->vtable->size = size;
11732 }
11733
11734 h->vtable->used[addend >> log_file_align] = TRUE;
11735
11736 return TRUE;
11737 }
11738
11739 struct alloc_got_off_arg {
11740 bfd_vma gotoff;
11741 unsigned int got_elt_size;
11742 };
11743
11744 /* We need a special top-level link routine to convert got reference counts
11745 to real got offsets. */
11746
11747 static bfd_boolean
11748 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11749 {
11750 struct alloc_got_off_arg *gofarg = arg;
11751
11752 if (h->root.type == bfd_link_hash_warning)
11753 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11754
11755 if (h->got.refcount > 0)
11756 {
11757 h->got.offset = gofarg->gotoff;
11758 gofarg->gotoff += gofarg->got_elt_size;
11759 }
11760 else
11761 h->got.offset = (bfd_vma) -1;
11762
11763 return TRUE;
11764 }
11765
11766 /* And an accompanying bit to work out final got entry offsets once
11767 we're done. Should be called from final_link. */
11768
11769 bfd_boolean
11770 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11771 struct bfd_link_info *info)
11772 {
11773 bfd *i;
11774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11775 bfd_vma gotoff;
11776 unsigned int got_elt_size = bed->s->arch_size / 8;
11777 struct alloc_got_off_arg gofarg;
11778
11779 if (! is_elf_hash_table (info->hash))
11780 return FALSE;
11781
11782 /* The GOT offset is relative to the .got section, but the GOT header is
11783 put into the .got.plt section, if the backend uses it. */
11784 if (bed->want_got_plt)
11785 gotoff = 0;
11786 else
11787 gotoff = bed->got_header_size;
11788
11789 /* Do the local .got entries first. */
11790 for (i = info->input_bfds; i; i = i->link_next)
11791 {
11792 bfd_signed_vma *local_got;
11793 bfd_size_type j, locsymcount;
11794 Elf_Internal_Shdr *symtab_hdr;
11795
11796 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11797 continue;
11798
11799 local_got = elf_local_got_refcounts (i);
11800 if (!local_got)
11801 continue;
11802
11803 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11804 if (elf_bad_symtab (i))
11805 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11806 else
11807 locsymcount = symtab_hdr->sh_info;
11808
11809 for (j = 0; j < locsymcount; ++j)
11810 {
11811 if (local_got[j] > 0)
11812 {
11813 local_got[j] = gotoff;
11814 gotoff += got_elt_size;
11815 }
11816 else
11817 local_got[j] = (bfd_vma) -1;
11818 }
11819 }
11820
11821 /* Then the global .got entries. .plt refcounts are handled by
11822 adjust_dynamic_symbol */
11823 gofarg.gotoff = gotoff;
11824 gofarg.got_elt_size = got_elt_size;
11825 elf_link_hash_traverse (elf_hash_table (info),
11826 elf_gc_allocate_got_offsets,
11827 &gofarg);
11828 return TRUE;
11829 }
11830
11831 /* Many folk need no more in the way of final link than this, once
11832 got entry reference counting is enabled. */
11833
11834 bfd_boolean
11835 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11836 {
11837 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11838 return FALSE;
11839
11840 /* Invoke the regular ELF backend linker to do all the work. */
11841 return bfd_elf_final_link (abfd, info);
11842 }
11843
11844 bfd_boolean
11845 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11846 {
11847 struct elf_reloc_cookie *rcookie = cookie;
11848
11849 if (rcookie->bad_symtab)
11850 rcookie->rel = rcookie->rels;
11851
11852 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11853 {
11854 unsigned long r_symndx;
11855
11856 if (! rcookie->bad_symtab)
11857 if (rcookie->rel->r_offset > offset)
11858 return FALSE;
11859 if (rcookie->rel->r_offset != offset)
11860 continue;
11861
11862 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11863 if (r_symndx == SHN_UNDEF)
11864 return TRUE;
11865
11866 if (r_symndx >= rcookie->locsymcount
11867 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11868 {
11869 struct elf_link_hash_entry *h;
11870
11871 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11872
11873 while (h->root.type == bfd_link_hash_indirect
11874 || h->root.type == bfd_link_hash_warning)
11875 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11876
11877 if ((h->root.type == bfd_link_hash_defined
11878 || h->root.type == bfd_link_hash_defweak)
11879 && elf_discarded_section (h->root.u.def.section))
11880 return TRUE;
11881 else
11882 return FALSE;
11883 }
11884 else
11885 {
11886 /* It's not a relocation against a global symbol,
11887 but it could be a relocation against a local
11888 symbol for a discarded section. */
11889 asection *isec;
11890 Elf_Internal_Sym *isym;
11891
11892 /* Need to: get the symbol; get the section. */
11893 isym = &rcookie->locsyms[r_symndx];
11894 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11895 {
11896 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11897 if (isec != NULL && elf_discarded_section (isec))
11898 return TRUE;
11899 }
11900 }
11901 return FALSE;
11902 }
11903 return FALSE;
11904 }
11905
11906 /* Discard unneeded references to discarded sections.
11907 Returns TRUE if any section's size was changed. */
11908 /* This function assumes that the relocations are in sorted order,
11909 which is true for all known assemblers. */
11910
11911 bfd_boolean
11912 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11913 {
11914 struct elf_reloc_cookie cookie;
11915 asection *stab, *eh;
11916 Elf_Internal_Shdr *symtab_hdr;
11917 const struct elf_backend_data *bed;
11918 bfd *abfd;
11919 unsigned int count;
11920 bfd_boolean ret = FALSE;
11921
11922 if (info->traditional_format
11923 || !is_elf_hash_table (info->hash))
11924 return FALSE;
11925
11926 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11927 {
11928 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11929 continue;
11930
11931 bed = get_elf_backend_data (abfd);
11932
11933 if ((abfd->flags & DYNAMIC) != 0)
11934 continue;
11935
11936 eh = NULL;
11937 if (!info->relocatable)
11938 {
11939 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11940 if (eh != NULL
11941 && (eh->size == 0
11942 || bfd_is_abs_section (eh->output_section)))
11943 eh = NULL;
11944 }
11945
11946 stab = bfd_get_section_by_name (abfd, ".stab");
11947 if (stab != NULL
11948 && (stab->size == 0
11949 || bfd_is_abs_section (stab->output_section)
11950 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11951 stab = NULL;
11952
11953 if (stab == NULL
11954 && eh == NULL
11955 && bed->elf_backend_discard_info == NULL)
11956 continue;
11957
11958 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11959 cookie.abfd = abfd;
11960 cookie.sym_hashes = elf_sym_hashes (abfd);
11961 cookie.bad_symtab = elf_bad_symtab (abfd);
11962 if (cookie.bad_symtab)
11963 {
11964 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11965 cookie.extsymoff = 0;
11966 }
11967 else
11968 {
11969 cookie.locsymcount = symtab_hdr->sh_info;
11970 cookie.extsymoff = symtab_hdr->sh_info;
11971 }
11972
11973 if (bed->s->arch_size == 32)
11974 cookie.r_sym_shift = 8;
11975 else
11976 cookie.r_sym_shift = 32;
11977
11978 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11979 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
11980 {
11981 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11982 cookie.locsymcount, 0,
11983 NULL, NULL, NULL);
11984 if (cookie.locsyms == NULL)
11985 {
11986 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11987 return FALSE;
11988 }
11989 }
11990
11991 if (stab != NULL)
11992 {
11993 cookie.rels = NULL;
11994 count = stab->reloc_count;
11995 if (count != 0)
11996 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
11997 info->keep_memory);
11998 if (cookie.rels != NULL)
11999 {
12000 cookie.rel = cookie.rels;
12001 cookie.relend = cookie.rels;
12002 cookie.relend += count * bed->s->int_rels_per_ext_rel;
12003 if (_bfd_discard_section_stabs (abfd, stab,
12004 elf_section_data (stab)->sec_info,
12005 bfd_elf_reloc_symbol_deleted_p,
12006 &cookie))
12007 ret = TRUE;
12008 if (elf_section_data (stab)->relocs != cookie.rels)
12009 free (cookie.rels);
12010 }
12011 }
12012
12013 if (eh != NULL)
12014 {
12015 cookie.rels = NULL;
12016 count = eh->reloc_count;
12017 if (count != 0)
12018 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
12019 info->keep_memory);
12020 cookie.rel = cookie.rels;
12021 cookie.relend = cookie.rels;
12022 if (cookie.rels != NULL)
12023 cookie.relend += count * bed->s->int_rels_per_ext_rel;
12024
12025 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12026 bfd_elf_reloc_symbol_deleted_p,
12027 &cookie))
12028 ret = TRUE;
12029
12030 if (cookie.rels != NULL
12031 && elf_section_data (eh)->relocs != cookie.rels)
12032 free (cookie.rels);
12033 }
12034
12035 if (bed->elf_backend_discard_info != NULL
12036 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12037 ret = TRUE;
12038
12039 if (cookie.locsyms != NULL
12040 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
12041 {
12042 if (! info->keep_memory)
12043 free (cookie.locsyms);
12044 else
12045 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
12046 }
12047 }
12048
12049 if (info->eh_frame_hdr
12050 && !info->relocatable
12051 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12052 ret = TRUE;
12053
12054 return ret;
12055 }
12056
12057 void
12058 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
12059 struct bfd_link_info *info)
12060 {
12061 flagword flags;
12062 const char *name, *p;
12063 struct bfd_section_already_linked *l;
12064 struct bfd_section_already_linked_hash_entry *already_linked_list;
12065
12066 if (sec->output_section == bfd_abs_section_ptr)
12067 return;
12068
12069 flags = sec->flags;
12070
12071 /* Return if it isn't a linkonce section. A comdat group section
12072 also has SEC_LINK_ONCE set. */
12073 if ((flags & SEC_LINK_ONCE) == 0)
12074 return;
12075
12076 /* Don't put group member sections on our list of already linked
12077 sections. They are handled as a group via their group section. */
12078 if (elf_sec_group (sec) != NULL)
12079 return;
12080
12081 /* FIXME: When doing a relocatable link, we may have trouble
12082 copying relocations in other sections that refer to local symbols
12083 in the section being discarded. Those relocations will have to
12084 be converted somehow; as of this writing I'm not sure that any of
12085 the backends handle that correctly.
12086
12087 It is tempting to instead not discard link once sections when
12088 doing a relocatable link (technically, they should be discarded
12089 whenever we are building constructors). However, that fails,
12090 because the linker winds up combining all the link once sections
12091 into a single large link once section, which defeats the purpose
12092 of having link once sections in the first place.
12093
12094 Also, not merging link once sections in a relocatable link
12095 causes trouble for MIPS ELF, which relies on link once semantics
12096 to handle the .reginfo section correctly. */
12097
12098 name = bfd_get_section_name (abfd, sec);
12099
12100 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12101 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12102 p++;
12103 else
12104 p = name;
12105
12106 already_linked_list = bfd_section_already_linked_table_lookup (p);
12107
12108 for (l = already_linked_list->entry; l != NULL; l = l->next)
12109 {
12110 /* We may have 2 different types of sections on the list: group
12111 sections and linkonce sections. Match like sections. */
12112 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12113 && strcmp (name, l->sec->name) == 0
12114 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12115 {
12116 /* The section has already been linked. See if we should
12117 issue a warning. */
12118 switch (flags & SEC_LINK_DUPLICATES)
12119 {
12120 default:
12121 abort ();
12122
12123 case SEC_LINK_DUPLICATES_DISCARD:
12124 break;
12125
12126 case SEC_LINK_DUPLICATES_ONE_ONLY:
12127 (*_bfd_error_handler)
12128 (_("%B: ignoring duplicate section `%A'"),
12129 abfd, sec);
12130 break;
12131
12132 case SEC_LINK_DUPLICATES_SAME_SIZE:
12133 if (sec->size != l->sec->size)
12134 (*_bfd_error_handler)
12135 (_("%B: duplicate section `%A' has different size"),
12136 abfd, sec);
12137 break;
12138
12139 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12140 if (sec->size != l->sec->size)
12141 (*_bfd_error_handler)
12142 (_("%B: duplicate section `%A' has different size"),
12143 abfd, sec);
12144 else if (sec->size != 0)
12145 {
12146 bfd_byte *sec_contents, *l_sec_contents;
12147
12148 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12149 (*_bfd_error_handler)
12150 (_("%B: warning: could not read contents of section `%A'"),
12151 abfd, sec);
12152 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12153 &l_sec_contents))
12154 (*_bfd_error_handler)
12155 (_("%B: warning: could not read contents of section `%A'"),
12156 l->sec->owner, l->sec);
12157 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12158 (*_bfd_error_handler)
12159 (_("%B: warning: duplicate section `%A' has different contents"),
12160 abfd, sec);
12161
12162 if (sec_contents)
12163 free (sec_contents);
12164 if (l_sec_contents)
12165 free (l_sec_contents);
12166 }
12167 break;
12168 }
12169
12170 /* Set the output_section field so that lang_add_section
12171 does not create a lang_input_section structure for this
12172 section. Since there might be a symbol in the section
12173 being discarded, we must retain a pointer to the section
12174 which we are really going to use. */
12175 sec->output_section = bfd_abs_section_ptr;
12176 sec->kept_section = l->sec;
12177
12178 if (flags & SEC_GROUP)
12179 {
12180 asection *first = elf_next_in_group (sec);
12181 asection *s = first;
12182
12183 while (s != NULL)
12184 {
12185 s->output_section = bfd_abs_section_ptr;
12186 /* Record which group discards it. */
12187 s->kept_section = l->sec;
12188 s = elf_next_in_group (s);
12189 /* These lists are circular. */
12190 if (s == first)
12191 break;
12192 }
12193 }
12194
12195 return;
12196 }
12197 }
12198
12199 /* A single member comdat group section may be discarded by a
12200 linkonce section and vice versa. */
12201
12202 if ((flags & SEC_GROUP) != 0)
12203 {
12204 asection *first = elf_next_in_group (sec);
12205
12206 if (first != NULL && elf_next_in_group (first) == first)
12207 /* Check this single member group against linkonce sections. */
12208 for (l = already_linked_list->entry; l != NULL; l = l->next)
12209 if ((l->sec->flags & SEC_GROUP) == 0
12210 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12211 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12212 {
12213 first->output_section = bfd_abs_section_ptr;
12214 first->kept_section = l->sec;
12215 sec->output_section = bfd_abs_section_ptr;
12216 break;
12217 }
12218 }
12219 else
12220 /* Check this linkonce section against single member groups. */
12221 for (l = already_linked_list->entry; l != NULL; l = l->next)
12222 if (l->sec->flags & SEC_GROUP)
12223 {
12224 asection *first = elf_next_in_group (l->sec);
12225
12226 if (first != NULL
12227 && elf_next_in_group (first) == first
12228 && bfd_elf_match_symbols_in_sections (first, sec, info))
12229 {
12230 sec->output_section = bfd_abs_section_ptr;
12231 sec->kept_section = first;
12232 break;
12233 }
12234 }
12235
12236 /* This is the first section with this name. Record it. */
12237 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12238 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12239 }
12240
12241 bfd_boolean
12242 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12243 {
12244 return sym->st_shndx == SHN_COMMON;
12245 }
12246
12247 unsigned int
12248 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12249 {
12250 return SHN_COMMON;
12251 }
12252
12253 asection *
12254 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12255 {
12256 return bfd_com_section_ptr;
12257 }
This page took 0.263417 seconds and 5 git commands to generate.