ns32k: remove dupplicate definition of input_line_pointer
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 {
208 /* We may not set dynobj, an input file holding linker created
209 dynamic sections to abfd, which may be a dynamic object with
210 its own dynamic sections. We need to find a normal input file
211 to hold linker created sections if possible. */
212 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
213 {
214 bfd *ibfd;
215 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
216 if ((ibfd->flags
217 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
218 {
219 abfd = ibfd;
220 break;
221 }
222 }
223 hash_table->dynobj = abfd;
224 }
225
226 if (hash_table->dynstr == NULL)
227 {
228 hash_table->dynstr = _bfd_elf_strtab_init ();
229 if (hash_table->dynstr == NULL)
230 return FALSE;
231 }
232 return TRUE;
233 }
234
235 /* Create some sections which will be filled in with dynamic linking
236 information. ABFD is an input file which requires dynamic sections
237 to be created. The dynamic sections take up virtual memory space
238 when the final executable is run, so we need to create them before
239 addresses are assigned to the output sections. We work out the
240 actual contents and size of these sections later. */
241
242 bfd_boolean
243 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
244 {
245 flagword flags;
246 asection *s;
247 const struct elf_backend_data *bed;
248 struct elf_link_hash_entry *h;
249
250 if (! is_elf_hash_table (info->hash))
251 return FALSE;
252
253 if (elf_hash_table (info)->dynamic_sections_created)
254 return TRUE;
255
256 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
257 return FALSE;
258
259 abfd = elf_hash_table (info)->dynobj;
260 bed = get_elf_backend_data (abfd);
261
262 flags = bed->dynamic_sec_flags;
263
264 /* A dynamically linked executable has a .interp section, but a
265 shared library does not. */
266 if (bfd_link_executable (info) && !info->nointerp)
267 {
268 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
269 flags | SEC_READONLY);
270 if (s == NULL)
271 return FALSE;
272 }
273
274 /* Create sections to hold version informations. These are removed
275 if they are not needed. */
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, 1))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299 elf_hash_table (info)->dynsym = s;
300
301 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
302 flags | SEC_READONLY);
303 if (s == NULL)
304 return FALSE;
305
306 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
307 if (s == NULL
308 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 return FALSE;
310
311 /* The special symbol _DYNAMIC is always set to the start of the
312 .dynamic section. We could set _DYNAMIC in a linker script, but we
313 only want to define it if we are, in fact, creating a .dynamic
314 section. We don't want to define it if there is no .dynamic
315 section, since on some ELF platforms the start up code examines it
316 to decide how to initialize the process. */
317 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
318 elf_hash_table (info)->hdynamic = h;
319 if (h == NULL)
320 return FALSE;
321
322 if (info->emit_hash)
323 {
324 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
325 flags | SEC_READONLY);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
328 return FALSE;
329 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
330 }
331
332 if (info->emit_gnu_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
340 4 32-bit words followed by variable count of 64-bit words, then
341 variable count of 32-bit words. */
342 if (bed->s->arch_size == 64)
343 elf_section_data (s)->this_hdr.sh_entsize = 0;
344 else
345 elf_section_data (s)->this_hdr.sh_entsize = 4;
346 }
347
348 /* Let the backend create the rest of the sections. This lets the
349 backend set the right flags. The backend will normally create
350 the .got and .plt sections. */
351 if (bed->elf_backend_create_dynamic_sections == NULL
352 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
353 return FALSE;
354
355 elf_hash_table (info)->dynamic_sections_created = TRUE;
356
357 return TRUE;
358 }
359
360 /* Create dynamic sections when linking against a dynamic object. */
361
362 bfd_boolean
363 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
364 {
365 flagword flags, pltflags;
366 struct elf_link_hash_entry *h;
367 asection *s;
368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
369 struct elf_link_hash_table *htab = elf_hash_table (info);
370
371 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
372 .rel[a].bss sections. */
373 flags = bed->dynamic_sec_flags;
374
375 pltflags = flags;
376 if (bed->plt_not_loaded)
377 /* We do not clear SEC_ALLOC here because we still want the OS to
378 allocate space for the section; it's just that there's nothing
379 to read in from the object file. */
380 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
381 else
382 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
383 if (bed->plt_readonly)
384 pltflags |= SEC_READONLY;
385
386 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
389 return FALSE;
390 htab->splt = s;
391
392 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
393 .plt section. */
394 if (bed->want_plt_sym)
395 {
396 h = _bfd_elf_define_linkage_sym (abfd, info, s,
397 "_PROCEDURE_LINKAGE_TABLE_");
398 elf_hash_table (info)->hplt = h;
399 if (h == NULL)
400 return FALSE;
401 }
402
403 s = bfd_make_section_anyway_with_flags (abfd,
404 (bed->rela_plts_and_copies_p
405 ? ".rela.plt" : ".rel.plt"),
406 flags | SEC_READONLY);
407 if (s == NULL
408 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
409 return FALSE;
410 htab->srelplt = s;
411
412 if (! _bfd_elf_create_got_section (abfd, info))
413 return FALSE;
414
415 if (bed->want_dynbss)
416 {
417 /* The .dynbss section is a place to put symbols which are defined
418 by dynamic objects, are referenced by regular objects, and are
419 not functions. We must allocate space for them in the process
420 image and use a R_*_COPY reloc to tell the dynamic linker to
421 initialize them at run time. The linker script puts the .dynbss
422 section into the .bss section of the final image. */
423 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
424 (SEC_ALLOC | SEC_LINKER_CREATED));
425 if (s == NULL)
426 return FALSE;
427
428 /* The .rel[a].bss section holds copy relocs. This section is not
429 normally needed. We need to create it here, though, so that the
430 linker will map it to an output section. We can't just create it
431 only if we need it, because we will not know whether we need it
432 until we have seen all the input files, and the first time the
433 main linker code calls BFD after examining all the input files
434 (size_dynamic_sections) the input sections have already been
435 mapped to the output sections. If the section turns out not to
436 be needed, we can discard it later. We will never need this
437 section when generating a shared object, since they do not use
438 copy relocs. */
439 if (! bfd_link_pic (info))
440 {
441 s = bfd_make_section_anyway_with_flags (abfd,
442 (bed->rela_plts_and_copies_p
443 ? ".rela.bss" : ".rel.bss"),
444 flags | SEC_READONLY);
445 if (s == NULL
446 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
447 return FALSE;
448 }
449 }
450
451 return TRUE;
452 }
453 \f
454 /* Record a new dynamic symbol. We record the dynamic symbols as we
455 read the input files, since we need to have a list of all of them
456 before we can determine the final sizes of the output sections.
457 Note that we may actually call this function even though we are not
458 going to output any dynamic symbols; in some cases we know that a
459 symbol should be in the dynamic symbol table, but only if there is
460 one. */
461
462 bfd_boolean
463 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
464 struct elf_link_hash_entry *h)
465 {
466 if (h->dynindx == -1)
467 {
468 struct elf_strtab_hash *dynstr;
469 char *p;
470 const char *name;
471 bfd_size_type indx;
472
473 /* XXX: The ABI draft says the linker must turn hidden and
474 internal symbols into STB_LOCAL symbols when producing the
475 DSO. However, if ld.so honors st_other in the dynamic table,
476 this would not be necessary. */
477 switch (ELF_ST_VISIBILITY (h->other))
478 {
479 case STV_INTERNAL:
480 case STV_HIDDEN:
481 if (h->root.type != bfd_link_hash_undefined
482 && h->root.type != bfd_link_hash_undefweak)
483 {
484 h->forced_local = 1;
485 if (!elf_hash_table (info)->is_relocatable_executable)
486 return TRUE;
487 }
488
489 default:
490 break;
491 }
492
493 h->dynindx = elf_hash_table (info)->dynsymcount;
494 ++elf_hash_table (info)->dynsymcount;
495
496 dynstr = elf_hash_table (info)->dynstr;
497 if (dynstr == NULL)
498 {
499 /* Create a strtab to hold the dynamic symbol names. */
500 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
501 if (dynstr == NULL)
502 return FALSE;
503 }
504
505 /* We don't put any version information in the dynamic string
506 table. */
507 name = h->root.root.string;
508 p = strchr (name, ELF_VER_CHR);
509 if (p != NULL)
510 /* We know that the p points into writable memory. In fact,
511 there are only a few symbols that have read-only names, being
512 those like _GLOBAL_OFFSET_TABLE_ that are created specially
513 by the backends. Most symbols will have names pointing into
514 an ELF string table read from a file, or to objalloc memory. */
515 *p = 0;
516
517 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
518
519 if (p != NULL)
520 *p = ELF_VER_CHR;
521
522 if (indx == (bfd_size_type) -1)
523 return FALSE;
524 h->dynstr_index = indx;
525 }
526
527 return TRUE;
528 }
529 \f
530 /* Mark a symbol dynamic. */
531
532 static void
533 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
534 struct elf_link_hash_entry *h,
535 Elf_Internal_Sym *sym)
536 {
537 struct bfd_elf_dynamic_list *d = info->dynamic_list;
538
539 /* It may be called more than once on the same H. */
540 if(h->dynamic || bfd_link_relocatable (info))
541 return;
542
543 if ((info->dynamic_data
544 && (h->type == STT_OBJECT
545 || h->type == STT_COMMON
546 || (sym != NULL
547 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
548 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
549 || (d != NULL
550 && h->root.type == bfd_link_hash_new
551 && (*d->match) (&d->head, NULL, h->root.root.string)))
552 h->dynamic = 1;
553 }
554
555 /* Record an assignment to a symbol made by a linker script. We need
556 this in case some dynamic object refers to this symbol. */
557
558 bfd_boolean
559 bfd_elf_record_link_assignment (bfd *output_bfd,
560 struct bfd_link_info *info,
561 const char *name,
562 bfd_boolean provide,
563 bfd_boolean hidden)
564 {
565 struct elf_link_hash_entry *h, *hv;
566 struct elf_link_hash_table *htab;
567 const struct elf_backend_data *bed;
568
569 if (!is_elf_hash_table (info->hash))
570 return TRUE;
571
572 htab = elf_hash_table (info);
573 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
574 if (h == NULL)
575 return provide;
576
577 if (h->versioned == unknown)
578 {
579 /* Set versioned if symbol version is unknown. */
580 char *version = strrchr (name, ELF_VER_CHR);
581 if (version)
582 {
583 if (version > name && version[-1] != ELF_VER_CHR)
584 h->versioned = versioned_hidden;
585 else
586 h->versioned = versioned;
587 }
588 }
589
590 switch (h->root.type)
591 {
592 case bfd_link_hash_defined:
593 case bfd_link_hash_defweak:
594 case bfd_link_hash_common:
595 break;
596 case bfd_link_hash_undefweak:
597 case bfd_link_hash_undefined:
598 /* Since we're defining the symbol, don't let it seem to have not
599 been defined. record_dynamic_symbol and size_dynamic_sections
600 may depend on this. */
601 h->root.type = bfd_link_hash_new;
602 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
603 bfd_link_repair_undef_list (&htab->root);
604 break;
605 case bfd_link_hash_new:
606 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
607 h->non_elf = 0;
608 break;
609 case bfd_link_hash_indirect:
610 /* We had a versioned symbol in a dynamic library. We make the
611 the versioned symbol point to this one. */
612 bed = get_elf_backend_data (output_bfd);
613 hv = h;
614 while (hv->root.type == bfd_link_hash_indirect
615 || hv->root.type == bfd_link_hash_warning)
616 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
617 /* We don't need to update h->root.u since linker will set them
618 later. */
619 h->root.type = bfd_link_hash_undefined;
620 hv->root.type = bfd_link_hash_indirect;
621 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
622 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
623 break;
624 case bfd_link_hash_warning:
625 abort ();
626 break;
627 }
628
629 /* If this symbol is being provided by the linker script, and it is
630 currently defined by a dynamic object, but not by a regular
631 object, then mark it as undefined so that the generic linker will
632 force the correct value. */
633 if (provide
634 && h->def_dynamic
635 && !h->def_regular)
636 h->root.type = bfd_link_hash_undefined;
637
638 /* If this symbol is not being provided by the linker script, and it is
639 currently defined by a dynamic object, but not by a regular object,
640 then clear out any version information because the symbol will not be
641 associated with the dynamic object any more. */
642 if (!provide
643 && h->def_dynamic
644 && !h->def_regular)
645 h->verinfo.verdef = NULL;
646
647 h->def_regular = 1;
648
649 if (hidden)
650 {
651 bed = get_elf_backend_data (output_bfd);
652 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
653 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
654 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
655 }
656
657 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
658 and executables. */
659 if (!bfd_link_relocatable (info)
660 && h->dynindx != -1
661 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
662 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
663 h->forced_local = 1;
664
665 if ((h->def_dynamic
666 || h->ref_dynamic
667 || bfd_link_dll (info)
668 || elf_hash_table (info)->is_relocatable_executable)
669 && h->dynindx == -1)
670 {
671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
672 return FALSE;
673
674 /* If this is a weak defined symbol, and we know a corresponding
675 real symbol from the same dynamic object, make sure the real
676 symbol is also made into a dynamic symbol. */
677 if (h->u.weakdef != NULL
678 && h->u.weakdef->dynindx == -1)
679 {
680 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
681 return FALSE;
682 }
683 }
684
685 return TRUE;
686 }
687
688 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
689 success, and 2 on a failure caused by attempting to record a symbol
690 in a discarded section, eg. a discarded link-once section symbol. */
691
692 int
693 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
694 bfd *input_bfd,
695 long input_indx)
696 {
697 bfd_size_type amt;
698 struct elf_link_local_dynamic_entry *entry;
699 struct elf_link_hash_table *eht;
700 struct elf_strtab_hash *dynstr;
701 unsigned long dynstr_index;
702 char *name;
703 Elf_External_Sym_Shndx eshndx;
704 char esym[sizeof (Elf64_External_Sym)];
705
706 if (! is_elf_hash_table (info->hash))
707 return 0;
708
709 /* See if the entry exists already. */
710 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
711 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
712 return 1;
713
714 amt = sizeof (*entry);
715 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
716 if (entry == NULL)
717 return 0;
718
719 /* Go find the symbol, so that we can find it's name. */
720 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
721 1, input_indx, &entry->isym, esym, &eshndx))
722 {
723 bfd_release (input_bfd, entry);
724 return 0;
725 }
726
727 if (entry->isym.st_shndx != SHN_UNDEF
728 && entry->isym.st_shndx < SHN_LORESERVE)
729 {
730 asection *s;
731
732 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
733 if (s == NULL || bfd_is_abs_section (s->output_section))
734 {
735 /* We can still bfd_release here as nothing has done another
736 bfd_alloc. We can't do this later in this function. */
737 bfd_release (input_bfd, entry);
738 return 2;
739 }
740 }
741
742 name = (bfd_elf_string_from_elf_section
743 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
744 entry->isym.st_name));
745
746 dynstr = elf_hash_table (info)->dynstr;
747 if (dynstr == NULL)
748 {
749 /* Create a strtab to hold the dynamic symbol names. */
750 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
751 if (dynstr == NULL)
752 return 0;
753 }
754
755 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
756 if (dynstr_index == (unsigned long) -1)
757 return 0;
758 entry->isym.st_name = dynstr_index;
759
760 eht = elf_hash_table (info);
761
762 entry->next = eht->dynlocal;
763 eht->dynlocal = entry;
764 entry->input_bfd = input_bfd;
765 entry->input_indx = input_indx;
766 eht->dynsymcount++;
767
768 /* Whatever binding the symbol had before, it's now local. */
769 entry->isym.st_info
770 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
771
772 /* The dynindx will be set at the end of size_dynamic_sections. */
773
774 return 1;
775 }
776
777 /* Return the dynindex of a local dynamic symbol. */
778
779 long
780 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
781 bfd *input_bfd,
782 long input_indx)
783 {
784 struct elf_link_local_dynamic_entry *e;
785
786 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
787 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
788 return e->dynindx;
789 return -1;
790 }
791
792 /* This function is used to renumber the dynamic symbols, if some of
793 them are removed because they are marked as local. This is called
794 via elf_link_hash_traverse. */
795
796 static bfd_boolean
797 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
798 void *data)
799 {
800 size_t *count = (size_t *) data;
801
802 if (h->forced_local)
803 return TRUE;
804
805 if (h->dynindx != -1)
806 h->dynindx = ++(*count);
807
808 return TRUE;
809 }
810
811
812 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
813 STB_LOCAL binding. */
814
815 static bfd_boolean
816 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
817 void *data)
818 {
819 size_t *count = (size_t *) data;
820
821 if (!h->forced_local)
822 return TRUE;
823
824 if (h->dynindx != -1)
825 h->dynindx = ++(*count);
826
827 return TRUE;
828 }
829
830 /* Return true if the dynamic symbol for a given section should be
831 omitted when creating a shared library. */
832 bfd_boolean
833 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
834 struct bfd_link_info *info,
835 asection *p)
836 {
837 struct elf_link_hash_table *htab;
838 asection *ip;
839
840 switch (elf_section_data (p)->this_hdr.sh_type)
841 {
842 case SHT_PROGBITS:
843 case SHT_NOBITS:
844 /* If sh_type is yet undecided, assume it could be
845 SHT_PROGBITS/SHT_NOBITS. */
846 case SHT_NULL:
847 htab = elf_hash_table (info);
848 if (p == htab->tls_sec)
849 return FALSE;
850
851 if (htab->text_index_section != NULL)
852 return p != htab->text_index_section && p != htab->data_index_section;
853
854 return (htab->dynobj != NULL
855 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
856 && ip->output_section == p);
857
858 /* There shouldn't be section relative relocations
859 against any other section. */
860 default:
861 return TRUE;
862 }
863 }
864
865 /* Assign dynsym indices. In a shared library we generate a section
866 symbol for each output section, which come first. Next come symbols
867 which have been forced to local binding. Then all of the back-end
868 allocated local dynamic syms, followed by the rest of the global
869 symbols. */
870
871 static unsigned long
872 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
873 struct bfd_link_info *info,
874 unsigned long *section_sym_count)
875 {
876 unsigned long dynsymcount = 0;
877
878 if (bfd_link_pic (info)
879 || elf_hash_table (info)->is_relocatable_executable)
880 {
881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
882 asection *p;
883 for (p = output_bfd->sections; p ; p = p->next)
884 if ((p->flags & SEC_EXCLUDE) == 0
885 && (p->flags & SEC_ALLOC) != 0
886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
887 elf_section_data (p)->dynindx = ++dynsymcount;
888 else
889 elf_section_data (p)->dynindx = 0;
890 }
891 *section_sym_count = dynsymcount;
892
893 elf_link_hash_traverse (elf_hash_table (info),
894 elf_link_renumber_local_hash_table_dynsyms,
895 &dynsymcount);
896
897 if (elf_hash_table (info)->dynlocal)
898 {
899 struct elf_link_local_dynamic_entry *p;
900 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
901 p->dynindx = ++dynsymcount;
902 }
903
904 elf_link_hash_traverse (elf_hash_table (info),
905 elf_link_renumber_hash_table_dynsyms,
906 &dynsymcount);
907
908 /* There is an unused NULL entry at the head of the table which we
909 must account for in our count even if the table is empty since it
910 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
911 .dynamic section. */
912 dynsymcount++;
913
914 elf_hash_table (info)->dynsymcount = dynsymcount;
915 return dynsymcount;
916 }
917
918 /* Merge st_other field. */
919
920 static void
921 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
922 const Elf_Internal_Sym *isym, asection *sec,
923 bfd_boolean definition, bfd_boolean dynamic)
924 {
925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
926
927 /* If st_other has a processor-specific meaning, specific
928 code might be needed here. */
929 if (bed->elf_backend_merge_symbol_attribute)
930 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
931 dynamic);
932
933 if (!dynamic)
934 {
935 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
936 unsigned hvis = ELF_ST_VISIBILITY (h->other);
937
938 /* Keep the most constraining visibility. Leave the remainder
939 of the st_other field to elf_backend_merge_symbol_attribute. */
940 if (symvis - 1 < hvis - 1)
941 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
942 }
943 else if (definition
944 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
945 && (sec->flags & SEC_READONLY) == 0)
946 h->protected_def = 1;
947 }
948
949 /* This function is called when we want to merge a new symbol with an
950 existing symbol. It handles the various cases which arise when we
951 find a definition in a dynamic object, or when there is already a
952 definition in a dynamic object. The new symbol is described by
953 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
954 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
955 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
956 of an old common symbol. We set OVERRIDE if the old symbol is
957 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
958 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
959 to change. By OK to change, we mean that we shouldn't warn if the
960 type or size does change. */
961
962 static bfd_boolean
963 _bfd_elf_merge_symbol (bfd *abfd,
964 struct bfd_link_info *info,
965 const char *name,
966 Elf_Internal_Sym *sym,
967 asection **psec,
968 bfd_vma *pvalue,
969 struct elf_link_hash_entry **sym_hash,
970 bfd **poldbfd,
971 bfd_boolean *pold_weak,
972 unsigned int *pold_alignment,
973 bfd_boolean *skip,
974 bfd_boolean *override,
975 bfd_boolean *type_change_ok,
976 bfd_boolean *size_change_ok,
977 bfd_boolean *matched)
978 {
979 asection *sec, *oldsec;
980 struct elf_link_hash_entry *h;
981 struct elf_link_hash_entry *hi;
982 struct elf_link_hash_entry *flip;
983 int bind;
984 bfd *oldbfd;
985 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
986 bfd_boolean newweak, oldweak, newfunc, oldfunc;
987 const struct elf_backend_data *bed;
988 char *new_version;
989
990 *skip = FALSE;
991 *override = FALSE;
992
993 sec = *psec;
994 bind = ELF_ST_BIND (sym->st_info);
995
996 if (! bfd_is_und_section (sec))
997 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
998 else
999 h = ((struct elf_link_hash_entry *)
1000 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1001 if (h == NULL)
1002 return FALSE;
1003 *sym_hash = h;
1004
1005 bed = get_elf_backend_data (abfd);
1006
1007 /* NEW_VERSION is the symbol version of the new symbol. */
1008 if (h->versioned != unversioned)
1009 {
1010 /* Symbol version is unknown or versioned. */
1011 new_version = strrchr (name, ELF_VER_CHR);
1012 if (new_version)
1013 {
1014 if (h->versioned == unknown)
1015 {
1016 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1017 h->versioned = versioned_hidden;
1018 else
1019 h->versioned = versioned;
1020 }
1021 new_version += 1;
1022 if (new_version[0] == '\0')
1023 new_version = NULL;
1024 }
1025 else
1026 h->versioned = unversioned;
1027 }
1028 else
1029 new_version = NULL;
1030
1031 /* For merging, we only care about real symbols. But we need to make
1032 sure that indirect symbol dynamic flags are updated. */
1033 hi = h;
1034 while (h->root.type == bfd_link_hash_indirect
1035 || h->root.type == bfd_link_hash_warning)
1036 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1037
1038 if (!*matched)
1039 {
1040 if (hi == h || h->root.type == bfd_link_hash_new)
1041 *matched = TRUE;
1042 else
1043 {
1044 /* OLD_HIDDEN is true if the existing symbol is only visible
1045 to the symbol with the same symbol version. NEW_HIDDEN is
1046 true if the new symbol is only visible to the symbol with
1047 the same symbol version. */
1048 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1049 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1050 if (!old_hidden && !new_hidden)
1051 /* The new symbol matches the existing symbol if both
1052 aren't hidden. */
1053 *matched = TRUE;
1054 else
1055 {
1056 /* OLD_VERSION is the symbol version of the existing
1057 symbol. */
1058 char *old_version;
1059
1060 if (h->versioned >= versioned)
1061 old_version = strrchr (h->root.root.string,
1062 ELF_VER_CHR) + 1;
1063 else
1064 old_version = NULL;
1065
1066 /* The new symbol matches the existing symbol if they
1067 have the same symbol version. */
1068 *matched = (old_version == new_version
1069 || (old_version != NULL
1070 && new_version != NULL
1071 && strcmp (old_version, new_version) == 0));
1072 }
1073 }
1074 }
1075
1076 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1077 existing symbol. */
1078
1079 oldbfd = NULL;
1080 oldsec = NULL;
1081 switch (h->root.type)
1082 {
1083 default:
1084 break;
1085
1086 case bfd_link_hash_undefined:
1087 case bfd_link_hash_undefweak:
1088 oldbfd = h->root.u.undef.abfd;
1089 break;
1090
1091 case bfd_link_hash_defined:
1092 case bfd_link_hash_defweak:
1093 oldbfd = h->root.u.def.section->owner;
1094 oldsec = h->root.u.def.section;
1095 break;
1096
1097 case bfd_link_hash_common:
1098 oldbfd = h->root.u.c.p->section->owner;
1099 oldsec = h->root.u.c.p->section;
1100 if (pold_alignment)
1101 *pold_alignment = h->root.u.c.p->alignment_power;
1102 break;
1103 }
1104 if (poldbfd && *poldbfd == NULL)
1105 *poldbfd = oldbfd;
1106
1107 /* Differentiate strong and weak symbols. */
1108 newweak = bind == STB_WEAK;
1109 oldweak = (h->root.type == bfd_link_hash_defweak
1110 || h->root.type == bfd_link_hash_undefweak);
1111 if (pold_weak)
1112 *pold_weak = oldweak;
1113
1114 /* This code is for coping with dynamic objects, and is only useful
1115 if we are doing an ELF link. */
1116 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1117 return TRUE;
1118
1119 /* We have to check it for every instance since the first few may be
1120 references and not all compilers emit symbol type for undefined
1121 symbols. */
1122 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1123
1124 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1125 respectively, is from a dynamic object. */
1126
1127 newdyn = (abfd->flags & DYNAMIC) != 0;
1128
1129 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1130 syms and defined syms in dynamic libraries respectively.
1131 ref_dynamic on the other hand can be set for a symbol defined in
1132 a dynamic library, and def_dynamic may not be set; When the
1133 definition in a dynamic lib is overridden by a definition in the
1134 executable use of the symbol in the dynamic lib becomes a
1135 reference to the executable symbol. */
1136 if (newdyn)
1137 {
1138 if (bfd_is_und_section (sec))
1139 {
1140 if (bind != STB_WEAK)
1141 {
1142 h->ref_dynamic_nonweak = 1;
1143 hi->ref_dynamic_nonweak = 1;
1144 }
1145 }
1146 else
1147 {
1148 /* Update the existing symbol only if they match. */
1149 if (*matched)
1150 h->dynamic_def = 1;
1151 hi->dynamic_def = 1;
1152 }
1153 }
1154
1155 /* If we just created the symbol, mark it as being an ELF symbol.
1156 Other than that, there is nothing to do--there is no merge issue
1157 with a newly defined symbol--so we just return. */
1158
1159 if (h->root.type == bfd_link_hash_new)
1160 {
1161 h->non_elf = 0;
1162 return TRUE;
1163 }
1164
1165 /* In cases involving weak versioned symbols, we may wind up trying
1166 to merge a symbol with itself. Catch that here, to avoid the
1167 confusion that results if we try to override a symbol with
1168 itself. The additional tests catch cases like
1169 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1170 dynamic object, which we do want to handle here. */
1171 if (abfd == oldbfd
1172 && (newweak || oldweak)
1173 && ((abfd->flags & DYNAMIC) == 0
1174 || !h->def_regular))
1175 return TRUE;
1176
1177 olddyn = FALSE;
1178 if (oldbfd != NULL)
1179 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1180 else if (oldsec != NULL)
1181 {
1182 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1183 indices used by MIPS ELF. */
1184 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1185 }
1186
1187 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1188 respectively, appear to be a definition rather than reference. */
1189
1190 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1191
1192 olddef = (h->root.type != bfd_link_hash_undefined
1193 && h->root.type != bfd_link_hash_undefweak
1194 && h->root.type != bfd_link_hash_common);
1195
1196 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1197 respectively, appear to be a function. */
1198
1199 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1200 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1201
1202 oldfunc = (h->type != STT_NOTYPE
1203 && bed->is_function_type (h->type));
1204
1205 /* When we try to create a default indirect symbol from the dynamic
1206 definition with the default version, we skip it if its type and
1207 the type of existing regular definition mismatch. */
1208 if (pold_alignment == NULL
1209 && newdyn
1210 && newdef
1211 && !olddyn
1212 && (((olddef || h->root.type == bfd_link_hash_common)
1213 && ELF_ST_TYPE (sym->st_info) != h->type
1214 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1215 && h->type != STT_NOTYPE
1216 && !(newfunc && oldfunc))
1217 || (olddef
1218 && ((h->type == STT_GNU_IFUNC)
1219 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1220 {
1221 *skip = TRUE;
1222 return TRUE;
1223 }
1224
1225 /* Check TLS symbols. We don't check undefined symbols introduced
1226 by "ld -u" which have no type (and oldbfd NULL), and we don't
1227 check symbols from plugins because they also have no type. */
1228 if (oldbfd != NULL
1229 && (oldbfd->flags & BFD_PLUGIN) == 0
1230 && (abfd->flags & BFD_PLUGIN) == 0
1231 && ELF_ST_TYPE (sym->st_info) != h->type
1232 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1233 {
1234 bfd *ntbfd, *tbfd;
1235 bfd_boolean ntdef, tdef;
1236 asection *ntsec, *tsec;
1237
1238 if (h->type == STT_TLS)
1239 {
1240 ntbfd = abfd;
1241 ntsec = sec;
1242 ntdef = newdef;
1243 tbfd = oldbfd;
1244 tsec = oldsec;
1245 tdef = olddef;
1246 }
1247 else
1248 {
1249 ntbfd = oldbfd;
1250 ntsec = oldsec;
1251 ntdef = olddef;
1252 tbfd = abfd;
1253 tsec = sec;
1254 tdef = newdef;
1255 }
1256
1257 if (tdef && ntdef)
1258 (*_bfd_error_handler)
1259 (_("%s: TLS definition in %B section %A "
1260 "mismatches non-TLS definition in %B section %A"),
1261 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1262 else if (!tdef && !ntdef)
1263 (*_bfd_error_handler)
1264 (_("%s: TLS reference in %B "
1265 "mismatches non-TLS reference in %B"),
1266 tbfd, ntbfd, h->root.root.string);
1267 else if (tdef)
1268 (*_bfd_error_handler)
1269 (_("%s: TLS definition in %B section %A "
1270 "mismatches non-TLS reference in %B"),
1271 tbfd, tsec, ntbfd, h->root.root.string);
1272 else
1273 (*_bfd_error_handler)
1274 (_("%s: TLS reference in %B "
1275 "mismatches non-TLS definition in %B section %A"),
1276 tbfd, ntbfd, ntsec, h->root.root.string);
1277
1278 bfd_set_error (bfd_error_bad_value);
1279 return FALSE;
1280 }
1281
1282 /* If the old symbol has non-default visibility, we ignore the new
1283 definition from a dynamic object. */
1284 if (newdyn
1285 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1286 && !bfd_is_und_section (sec))
1287 {
1288 *skip = TRUE;
1289 /* Make sure this symbol is dynamic. */
1290 h->ref_dynamic = 1;
1291 hi->ref_dynamic = 1;
1292 /* A protected symbol has external availability. Make sure it is
1293 recorded as dynamic.
1294
1295 FIXME: Should we check type and size for protected symbol? */
1296 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1297 return bfd_elf_link_record_dynamic_symbol (info, h);
1298 else
1299 return TRUE;
1300 }
1301 else if (!newdyn
1302 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1303 && h->def_dynamic)
1304 {
1305 /* If the new symbol with non-default visibility comes from a
1306 relocatable file and the old definition comes from a dynamic
1307 object, we remove the old definition. */
1308 if (hi->root.type == bfd_link_hash_indirect)
1309 {
1310 /* Handle the case where the old dynamic definition is
1311 default versioned. We need to copy the symbol info from
1312 the symbol with default version to the normal one if it
1313 was referenced before. */
1314 if (h->ref_regular)
1315 {
1316 hi->root.type = h->root.type;
1317 h->root.type = bfd_link_hash_indirect;
1318 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1319
1320 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1321 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1322 {
1323 /* If the new symbol is hidden or internal, completely undo
1324 any dynamic link state. */
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 }
1329 else
1330 h->ref_dynamic = 1;
1331
1332 h->def_dynamic = 0;
1333 /* FIXME: Should we check type and size for protected symbol? */
1334 h->size = 0;
1335 h->type = 0;
1336
1337 h = hi;
1338 }
1339 else
1340 h = hi;
1341 }
1342
1343 /* If the old symbol was undefined before, then it will still be
1344 on the undefs list. If the new symbol is undefined or
1345 common, we can't make it bfd_link_hash_new here, because new
1346 undefined or common symbols will be added to the undefs list
1347 by _bfd_generic_link_add_one_symbol. Symbols may not be
1348 added twice to the undefs list. Also, if the new symbol is
1349 undefweak then we don't want to lose the strong undef. */
1350 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1351 {
1352 h->root.type = bfd_link_hash_undefined;
1353 h->root.u.undef.abfd = abfd;
1354 }
1355 else
1356 {
1357 h->root.type = bfd_link_hash_new;
1358 h->root.u.undef.abfd = NULL;
1359 }
1360
1361 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1362 {
1363 /* If the new symbol is hidden or internal, completely undo
1364 any dynamic link state. */
1365 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1366 h->forced_local = 0;
1367 h->ref_dynamic = 0;
1368 }
1369 else
1370 h->ref_dynamic = 1;
1371 h->def_dynamic = 0;
1372 /* FIXME: Should we check type and size for protected symbol? */
1373 h->size = 0;
1374 h->type = 0;
1375 return TRUE;
1376 }
1377
1378 /* If a new weak symbol definition comes from a regular file and the
1379 old symbol comes from a dynamic library, we treat the new one as
1380 strong. Similarly, an old weak symbol definition from a regular
1381 file is treated as strong when the new symbol comes from a dynamic
1382 library. Further, an old weak symbol from a dynamic library is
1383 treated as strong if the new symbol is from a dynamic library.
1384 This reflects the way glibc's ld.so works.
1385
1386 Do this before setting *type_change_ok or *size_change_ok so that
1387 we warn properly when dynamic library symbols are overridden. */
1388
1389 if (newdef && !newdyn && olddyn)
1390 newweak = FALSE;
1391 if (olddef && newdyn)
1392 oldweak = FALSE;
1393
1394 /* Allow changes between different types of function symbol. */
1395 if (newfunc && oldfunc)
1396 *type_change_ok = TRUE;
1397
1398 /* It's OK to change the type if either the existing symbol or the
1399 new symbol is weak. A type change is also OK if the old symbol
1400 is undefined and the new symbol is defined. */
1401
1402 if (oldweak
1403 || newweak
1404 || (newdef
1405 && h->root.type == bfd_link_hash_undefined))
1406 *type_change_ok = TRUE;
1407
1408 /* It's OK to change the size if either the existing symbol or the
1409 new symbol is weak, or if the old symbol is undefined. */
1410
1411 if (*type_change_ok
1412 || h->root.type == bfd_link_hash_undefined)
1413 *size_change_ok = TRUE;
1414
1415 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1416 symbol, respectively, appears to be a common symbol in a dynamic
1417 object. If a symbol appears in an uninitialized section, and is
1418 not weak, and is not a function, then it may be a common symbol
1419 which was resolved when the dynamic object was created. We want
1420 to treat such symbols specially, because they raise special
1421 considerations when setting the symbol size: if the symbol
1422 appears as a common symbol in a regular object, and the size in
1423 the regular object is larger, we must make sure that we use the
1424 larger size. This problematic case can always be avoided in C,
1425 but it must be handled correctly when using Fortran shared
1426 libraries.
1427
1428 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1429 likewise for OLDDYNCOMMON and OLDDEF.
1430
1431 Note that this test is just a heuristic, and that it is quite
1432 possible to have an uninitialized symbol in a shared object which
1433 is really a definition, rather than a common symbol. This could
1434 lead to some minor confusion when the symbol really is a common
1435 symbol in some regular object. However, I think it will be
1436 harmless. */
1437
1438 if (newdyn
1439 && newdef
1440 && !newweak
1441 && (sec->flags & SEC_ALLOC) != 0
1442 && (sec->flags & SEC_LOAD) == 0
1443 && sym->st_size > 0
1444 && !newfunc)
1445 newdyncommon = TRUE;
1446 else
1447 newdyncommon = FALSE;
1448
1449 if (olddyn
1450 && olddef
1451 && h->root.type == bfd_link_hash_defined
1452 && h->def_dynamic
1453 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1454 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1455 && h->size > 0
1456 && !oldfunc)
1457 olddyncommon = TRUE;
1458 else
1459 olddyncommon = FALSE;
1460
1461 /* We now know everything about the old and new symbols. We ask the
1462 backend to check if we can merge them. */
1463 if (bed->merge_symbol != NULL)
1464 {
1465 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1466 return FALSE;
1467 sec = *psec;
1468 }
1469
1470 /* If both the old and the new symbols look like common symbols in a
1471 dynamic object, set the size of the symbol to the larger of the
1472 two. */
1473
1474 if (olddyncommon
1475 && newdyncommon
1476 && sym->st_size != h->size)
1477 {
1478 /* Since we think we have two common symbols, issue a multiple
1479 common warning if desired. Note that we only warn if the
1480 size is different. If the size is the same, we simply let
1481 the old symbol override the new one as normally happens with
1482 symbols defined in dynamic objects. */
1483
1484 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1485 bfd_link_hash_common, sym->st_size);
1486 if (sym->st_size > h->size)
1487 h->size = sym->st_size;
1488
1489 *size_change_ok = TRUE;
1490 }
1491
1492 /* If we are looking at a dynamic object, and we have found a
1493 definition, we need to see if the symbol was already defined by
1494 some other object. If so, we want to use the existing
1495 definition, and we do not want to report a multiple symbol
1496 definition error; we do this by clobbering *PSEC to be
1497 bfd_und_section_ptr.
1498
1499 We treat a common symbol as a definition if the symbol in the
1500 shared library is a function, since common symbols always
1501 represent variables; this can cause confusion in principle, but
1502 any such confusion would seem to indicate an erroneous program or
1503 shared library. We also permit a common symbol in a regular
1504 object to override a weak symbol in a shared object. A common
1505 symbol in executable also overrides a symbol in a shared object. */
1506
1507 if (newdyn
1508 && newdef
1509 && (olddef
1510 || (h->root.type == bfd_link_hash_common
1511 && (newweak
1512 || newfunc
1513 || (!olddyn && bfd_link_executable (info))))))
1514 {
1515 *override = TRUE;
1516 newdef = FALSE;
1517 newdyncommon = FALSE;
1518
1519 *psec = sec = bfd_und_section_ptr;
1520 *size_change_ok = TRUE;
1521
1522 /* If we get here when the old symbol is a common symbol, then
1523 we are explicitly letting it override a weak symbol or
1524 function in a dynamic object, and we don't want to warn about
1525 a type change. If the old symbol is a defined symbol, a type
1526 change warning may still be appropriate. */
1527
1528 if (h->root.type == bfd_link_hash_common)
1529 *type_change_ok = TRUE;
1530 }
1531
1532 /* Handle the special case of an old common symbol merging with a
1533 new symbol which looks like a common symbol in a shared object.
1534 We change *PSEC and *PVALUE to make the new symbol look like a
1535 common symbol, and let _bfd_generic_link_add_one_symbol do the
1536 right thing. */
1537
1538 if (newdyncommon
1539 && h->root.type == bfd_link_hash_common)
1540 {
1541 *override = TRUE;
1542 newdef = FALSE;
1543 newdyncommon = FALSE;
1544 *pvalue = sym->st_size;
1545 *psec = sec = bed->common_section (oldsec);
1546 *size_change_ok = TRUE;
1547 }
1548
1549 /* Skip weak definitions of symbols that are already defined. */
1550 if (newdef && olddef && newweak)
1551 {
1552 /* Don't skip new non-IR weak syms. */
1553 if (!(oldbfd != NULL
1554 && (oldbfd->flags & BFD_PLUGIN) != 0
1555 && (abfd->flags & BFD_PLUGIN) == 0))
1556 {
1557 newdef = FALSE;
1558 *skip = TRUE;
1559 }
1560
1561 /* Merge st_other. If the symbol already has a dynamic index,
1562 but visibility says it should not be visible, turn it into a
1563 local symbol. */
1564 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1565 if (h->dynindx != -1)
1566 switch (ELF_ST_VISIBILITY (h->other))
1567 {
1568 case STV_INTERNAL:
1569 case STV_HIDDEN:
1570 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1571 break;
1572 }
1573 }
1574
1575 /* If the old symbol is from a dynamic object, and the new symbol is
1576 a definition which is not from a dynamic object, then the new
1577 symbol overrides the old symbol. Symbols from regular files
1578 always take precedence over symbols from dynamic objects, even if
1579 they are defined after the dynamic object in the link.
1580
1581 As above, we again permit a common symbol in a regular object to
1582 override a definition in a shared object if the shared object
1583 symbol is a function or is weak. */
1584
1585 flip = NULL;
1586 if (!newdyn
1587 && (newdef
1588 || (bfd_is_com_section (sec)
1589 && (oldweak || oldfunc)))
1590 && olddyn
1591 && olddef
1592 && h->def_dynamic)
1593 {
1594 /* Change the hash table entry to undefined, and let
1595 _bfd_generic_link_add_one_symbol do the right thing with the
1596 new definition. */
1597
1598 h->root.type = bfd_link_hash_undefined;
1599 h->root.u.undef.abfd = h->root.u.def.section->owner;
1600 *size_change_ok = TRUE;
1601
1602 olddef = FALSE;
1603 olddyncommon = FALSE;
1604
1605 /* We again permit a type change when a common symbol may be
1606 overriding a function. */
1607
1608 if (bfd_is_com_section (sec))
1609 {
1610 if (oldfunc)
1611 {
1612 /* If a common symbol overrides a function, make sure
1613 that it isn't defined dynamically nor has type
1614 function. */
1615 h->def_dynamic = 0;
1616 h->type = STT_NOTYPE;
1617 }
1618 *type_change_ok = TRUE;
1619 }
1620
1621 if (hi->root.type == bfd_link_hash_indirect)
1622 flip = hi;
1623 else
1624 /* This union may have been set to be non-NULL when this symbol
1625 was seen in a dynamic object. We must force the union to be
1626 NULL, so that it is correct for a regular symbol. */
1627 h->verinfo.vertree = NULL;
1628 }
1629
1630 /* Handle the special case of a new common symbol merging with an
1631 old symbol that looks like it might be a common symbol defined in
1632 a shared object. Note that we have already handled the case in
1633 which a new common symbol should simply override the definition
1634 in the shared library. */
1635
1636 if (! newdyn
1637 && bfd_is_com_section (sec)
1638 && olddyncommon)
1639 {
1640 /* It would be best if we could set the hash table entry to a
1641 common symbol, but we don't know what to use for the section
1642 or the alignment. */
1643 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1644 bfd_link_hash_common, sym->st_size);
1645
1646 /* If the presumed common symbol in the dynamic object is
1647 larger, pretend that the new symbol has its size. */
1648
1649 if (h->size > *pvalue)
1650 *pvalue = h->size;
1651
1652 /* We need to remember the alignment required by the symbol
1653 in the dynamic object. */
1654 BFD_ASSERT (pold_alignment);
1655 *pold_alignment = h->root.u.def.section->alignment_power;
1656
1657 olddef = FALSE;
1658 olddyncommon = FALSE;
1659
1660 h->root.type = bfd_link_hash_undefined;
1661 h->root.u.undef.abfd = h->root.u.def.section->owner;
1662
1663 *size_change_ok = TRUE;
1664 *type_change_ok = TRUE;
1665
1666 if (hi->root.type == bfd_link_hash_indirect)
1667 flip = hi;
1668 else
1669 h->verinfo.vertree = NULL;
1670 }
1671
1672 if (flip != NULL)
1673 {
1674 /* Handle the case where we had a versioned symbol in a dynamic
1675 library and now find a definition in a normal object. In this
1676 case, we make the versioned symbol point to the normal one. */
1677 flip->root.type = h->root.type;
1678 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1681 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1682 if (h->def_dynamic)
1683 {
1684 h->def_dynamic = 0;
1685 flip->ref_dynamic = 1;
1686 }
1687 }
1688
1689 return TRUE;
1690 }
1691
1692 /* This function is called to create an indirect symbol from the
1693 default for the symbol with the default version if needed. The
1694 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1695 set DYNSYM if the new indirect symbol is dynamic. */
1696
1697 static bfd_boolean
1698 _bfd_elf_add_default_symbol (bfd *abfd,
1699 struct bfd_link_info *info,
1700 struct elf_link_hash_entry *h,
1701 const char *name,
1702 Elf_Internal_Sym *sym,
1703 asection *sec,
1704 bfd_vma value,
1705 bfd **poldbfd,
1706 bfd_boolean *dynsym)
1707 {
1708 bfd_boolean type_change_ok;
1709 bfd_boolean size_change_ok;
1710 bfd_boolean skip;
1711 char *shortname;
1712 struct elf_link_hash_entry *hi;
1713 struct bfd_link_hash_entry *bh;
1714 const struct elf_backend_data *bed;
1715 bfd_boolean collect;
1716 bfd_boolean dynamic;
1717 bfd_boolean override;
1718 char *p;
1719 size_t len, shortlen;
1720 asection *tmp_sec;
1721 bfd_boolean matched;
1722
1723 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1724 return TRUE;
1725
1726 /* If this symbol has a version, and it is the default version, we
1727 create an indirect symbol from the default name to the fully
1728 decorated name. This will cause external references which do not
1729 specify a version to be bound to this version of the symbol. */
1730 p = strchr (name, ELF_VER_CHR);
1731 if (h->versioned == unknown)
1732 {
1733 if (p == NULL)
1734 {
1735 h->versioned = unversioned;
1736 return TRUE;
1737 }
1738 else
1739 {
1740 if (p[1] != ELF_VER_CHR)
1741 {
1742 h->versioned = versioned_hidden;
1743 return TRUE;
1744 }
1745 else
1746 h->versioned = versioned;
1747 }
1748 }
1749 else
1750 {
1751 /* PR ld/19073: We may see an unversioned definition after the
1752 default version. */
1753 if (p == NULL)
1754 return TRUE;
1755 }
1756
1757 bed = get_elf_backend_data (abfd);
1758 collect = bed->collect;
1759 dynamic = (abfd->flags & DYNAMIC) != 0;
1760
1761 shortlen = p - name;
1762 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1763 if (shortname == NULL)
1764 return FALSE;
1765 memcpy (shortname, name, shortlen);
1766 shortname[shortlen] = '\0';
1767
1768 /* We are going to create a new symbol. Merge it with any existing
1769 symbol with this name. For the purposes of the merge, act as
1770 though we were defining the symbol we just defined, although we
1771 actually going to define an indirect symbol. */
1772 type_change_ok = FALSE;
1773 size_change_ok = FALSE;
1774 matched = TRUE;
1775 tmp_sec = sec;
1776 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1777 &hi, poldbfd, NULL, NULL, &skip, &override,
1778 &type_change_ok, &size_change_ok, &matched))
1779 return FALSE;
1780
1781 if (skip)
1782 goto nondefault;
1783
1784 if (! override)
1785 {
1786 /* Add the default symbol if not performing a relocatable link. */
1787 if (! bfd_link_relocatable (info))
1788 {
1789 bh = &hi->root;
1790 if (! (_bfd_generic_link_add_one_symbol
1791 (info, abfd, shortname, BSF_INDIRECT,
1792 bfd_ind_section_ptr,
1793 0, name, FALSE, collect, &bh)))
1794 return FALSE;
1795 hi = (struct elf_link_hash_entry *) bh;
1796 }
1797 }
1798 else
1799 {
1800 /* In this case the symbol named SHORTNAME is overriding the
1801 indirect symbol we want to add. We were planning on making
1802 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1803 is the name without a version. NAME is the fully versioned
1804 name, and it is the default version.
1805
1806 Overriding means that we already saw a definition for the
1807 symbol SHORTNAME in a regular object, and it is overriding
1808 the symbol defined in the dynamic object.
1809
1810 When this happens, we actually want to change NAME, the
1811 symbol we just added, to refer to SHORTNAME. This will cause
1812 references to NAME in the shared object to become references
1813 to SHORTNAME in the regular object. This is what we expect
1814 when we override a function in a shared object: that the
1815 references in the shared object will be mapped to the
1816 definition in the regular object. */
1817
1818 while (hi->root.type == bfd_link_hash_indirect
1819 || hi->root.type == bfd_link_hash_warning)
1820 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1821
1822 h->root.type = bfd_link_hash_indirect;
1823 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1824 if (h->def_dynamic)
1825 {
1826 h->def_dynamic = 0;
1827 hi->ref_dynamic = 1;
1828 if (hi->ref_regular
1829 || hi->def_regular)
1830 {
1831 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1832 return FALSE;
1833 }
1834 }
1835
1836 /* Now set HI to H, so that the following code will set the
1837 other fields correctly. */
1838 hi = h;
1839 }
1840
1841 /* Check if HI is a warning symbol. */
1842 if (hi->root.type == bfd_link_hash_warning)
1843 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1844
1845 /* If there is a duplicate definition somewhere, then HI may not
1846 point to an indirect symbol. We will have reported an error to
1847 the user in that case. */
1848
1849 if (hi->root.type == bfd_link_hash_indirect)
1850 {
1851 struct elf_link_hash_entry *ht;
1852
1853 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1854 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1855
1856 /* A reference to the SHORTNAME symbol from a dynamic library
1857 will be satisfied by the versioned symbol at runtime. In
1858 effect, we have a reference to the versioned symbol. */
1859 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1860 hi->dynamic_def |= ht->dynamic_def;
1861
1862 /* See if the new flags lead us to realize that the symbol must
1863 be dynamic. */
1864 if (! *dynsym)
1865 {
1866 if (! dynamic)
1867 {
1868 if (! bfd_link_executable (info)
1869 || hi->def_dynamic
1870 || hi->ref_dynamic)
1871 *dynsym = TRUE;
1872 }
1873 else
1874 {
1875 if (hi->ref_regular)
1876 *dynsym = TRUE;
1877 }
1878 }
1879 }
1880
1881 /* We also need to define an indirection from the nondefault version
1882 of the symbol. */
1883
1884 nondefault:
1885 len = strlen (name);
1886 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1887 if (shortname == NULL)
1888 return FALSE;
1889 memcpy (shortname, name, shortlen);
1890 memcpy (shortname + shortlen, p + 1, len - shortlen);
1891
1892 /* Once again, merge with any existing symbol. */
1893 type_change_ok = FALSE;
1894 size_change_ok = FALSE;
1895 tmp_sec = sec;
1896 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1897 &hi, poldbfd, NULL, NULL, &skip, &override,
1898 &type_change_ok, &size_change_ok, &matched))
1899 return FALSE;
1900
1901 if (skip)
1902 return TRUE;
1903
1904 if (override)
1905 {
1906 /* Here SHORTNAME is a versioned name, so we don't expect to see
1907 the type of override we do in the case above unless it is
1908 overridden by a versioned definition. */
1909 if (hi->root.type != bfd_link_hash_defined
1910 && hi->root.type != bfd_link_hash_defweak)
1911 (*_bfd_error_handler)
1912 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1913 abfd, shortname);
1914 }
1915 else
1916 {
1917 bh = &hi->root;
1918 if (! (_bfd_generic_link_add_one_symbol
1919 (info, abfd, shortname, BSF_INDIRECT,
1920 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1921 return FALSE;
1922 hi = (struct elf_link_hash_entry *) bh;
1923
1924 /* If there is a duplicate definition somewhere, then HI may not
1925 point to an indirect symbol. We will have reported an error
1926 to the user in that case. */
1927
1928 if (hi->root.type == bfd_link_hash_indirect)
1929 {
1930 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1931 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1932 hi->dynamic_def |= h->dynamic_def;
1933
1934 /* See if the new flags lead us to realize that the symbol
1935 must be dynamic. */
1936 if (! *dynsym)
1937 {
1938 if (! dynamic)
1939 {
1940 if (! bfd_link_executable (info)
1941 || hi->ref_dynamic)
1942 *dynsym = TRUE;
1943 }
1944 else
1945 {
1946 if (hi->ref_regular)
1947 *dynsym = TRUE;
1948 }
1949 }
1950 }
1951 }
1952
1953 return TRUE;
1954 }
1955 \f
1956 /* This routine is used to export all defined symbols into the dynamic
1957 symbol table. It is called via elf_link_hash_traverse. */
1958
1959 static bfd_boolean
1960 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1961 {
1962 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1963
1964 /* Ignore indirect symbols. These are added by the versioning code. */
1965 if (h->root.type == bfd_link_hash_indirect)
1966 return TRUE;
1967
1968 /* Ignore this if we won't export it. */
1969 if (!eif->info->export_dynamic && !h->dynamic)
1970 return TRUE;
1971
1972 if (h->dynindx == -1
1973 && (h->def_regular || h->ref_regular)
1974 && ! bfd_hide_sym_by_version (eif->info->version_info,
1975 h->root.root.string))
1976 {
1977 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1978 {
1979 eif->failed = TRUE;
1980 return FALSE;
1981 }
1982 }
1983
1984 return TRUE;
1985 }
1986 \f
1987 /* Look through the symbols which are defined in other shared
1988 libraries and referenced here. Update the list of version
1989 dependencies. This will be put into the .gnu.version_r section.
1990 This function is called via elf_link_hash_traverse. */
1991
1992 static bfd_boolean
1993 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1994 void *data)
1995 {
1996 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1997 Elf_Internal_Verneed *t;
1998 Elf_Internal_Vernaux *a;
1999 bfd_size_type amt;
2000
2001 /* We only care about symbols defined in shared objects with version
2002 information. */
2003 if (!h->def_dynamic
2004 || h->def_regular
2005 || h->dynindx == -1
2006 || h->verinfo.verdef == NULL
2007 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2008 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2009 return TRUE;
2010
2011 /* See if we already know about this version. */
2012 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2013 t != NULL;
2014 t = t->vn_nextref)
2015 {
2016 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2017 continue;
2018
2019 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2020 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2021 return TRUE;
2022
2023 break;
2024 }
2025
2026 /* This is a new version. Add it to tree we are building. */
2027
2028 if (t == NULL)
2029 {
2030 amt = sizeof *t;
2031 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2032 if (t == NULL)
2033 {
2034 rinfo->failed = TRUE;
2035 return FALSE;
2036 }
2037
2038 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2039 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2040 elf_tdata (rinfo->info->output_bfd)->verref = t;
2041 }
2042
2043 amt = sizeof *a;
2044 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2045 if (a == NULL)
2046 {
2047 rinfo->failed = TRUE;
2048 return FALSE;
2049 }
2050
2051 /* Note that we are copying a string pointer here, and testing it
2052 above. If bfd_elf_string_from_elf_section is ever changed to
2053 discard the string data when low in memory, this will have to be
2054 fixed. */
2055 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2056
2057 a->vna_flags = h->verinfo.verdef->vd_flags;
2058 a->vna_nextptr = t->vn_auxptr;
2059
2060 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2061 ++rinfo->vers;
2062
2063 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2064
2065 t->vn_auxptr = a;
2066
2067 return TRUE;
2068 }
2069
2070 /* Figure out appropriate versions for all the symbols. We may not
2071 have the version number script until we have read all of the input
2072 files, so until that point we don't know which symbols should be
2073 local. This function is called via elf_link_hash_traverse. */
2074
2075 static bfd_boolean
2076 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2077 {
2078 struct elf_info_failed *sinfo;
2079 struct bfd_link_info *info;
2080 const struct elf_backend_data *bed;
2081 struct elf_info_failed eif;
2082 char *p;
2083 bfd_size_type amt;
2084
2085 sinfo = (struct elf_info_failed *) data;
2086 info = sinfo->info;
2087
2088 /* Fix the symbol flags. */
2089 eif.failed = FALSE;
2090 eif.info = info;
2091 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2092 {
2093 if (eif.failed)
2094 sinfo->failed = TRUE;
2095 return FALSE;
2096 }
2097
2098 /* We only need version numbers for symbols defined in regular
2099 objects. */
2100 if (!h->def_regular)
2101 return TRUE;
2102
2103 bed = get_elf_backend_data (info->output_bfd);
2104 p = strchr (h->root.root.string, ELF_VER_CHR);
2105 if (p != NULL && h->verinfo.vertree == NULL)
2106 {
2107 struct bfd_elf_version_tree *t;
2108
2109 ++p;
2110 if (*p == ELF_VER_CHR)
2111 ++p;
2112
2113 /* If there is no version string, we can just return out. */
2114 if (*p == '\0')
2115 return TRUE;
2116
2117 /* Look for the version. If we find it, it is no longer weak. */
2118 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2119 {
2120 if (strcmp (t->name, p) == 0)
2121 {
2122 size_t len;
2123 char *alc;
2124 struct bfd_elf_version_expr *d;
2125
2126 len = p - h->root.root.string;
2127 alc = (char *) bfd_malloc (len);
2128 if (alc == NULL)
2129 {
2130 sinfo->failed = TRUE;
2131 return FALSE;
2132 }
2133 memcpy (alc, h->root.root.string, len - 1);
2134 alc[len - 1] = '\0';
2135 if (alc[len - 2] == ELF_VER_CHR)
2136 alc[len - 2] = '\0';
2137
2138 h->verinfo.vertree = t;
2139 t->used = TRUE;
2140 d = NULL;
2141
2142 if (t->globals.list != NULL)
2143 d = (*t->match) (&t->globals, NULL, alc);
2144
2145 /* See if there is anything to force this symbol to
2146 local scope. */
2147 if (d == NULL && t->locals.list != NULL)
2148 {
2149 d = (*t->match) (&t->locals, NULL, alc);
2150 if (d != NULL
2151 && h->dynindx != -1
2152 && ! info->export_dynamic)
2153 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2154 }
2155
2156 free (alc);
2157 break;
2158 }
2159 }
2160
2161 /* If we are building an application, we need to create a
2162 version node for this version. */
2163 if (t == NULL && bfd_link_executable (info))
2164 {
2165 struct bfd_elf_version_tree **pp;
2166 int version_index;
2167
2168 /* If we aren't going to export this symbol, we don't need
2169 to worry about it. */
2170 if (h->dynindx == -1)
2171 return TRUE;
2172
2173 amt = sizeof *t;
2174 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2175 if (t == NULL)
2176 {
2177 sinfo->failed = TRUE;
2178 return FALSE;
2179 }
2180
2181 t->name = p;
2182 t->name_indx = (unsigned int) -1;
2183 t->used = TRUE;
2184
2185 version_index = 1;
2186 /* Don't count anonymous version tag. */
2187 if (sinfo->info->version_info != NULL
2188 && sinfo->info->version_info->vernum == 0)
2189 version_index = 0;
2190 for (pp = &sinfo->info->version_info;
2191 *pp != NULL;
2192 pp = &(*pp)->next)
2193 ++version_index;
2194 t->vernum = version_index;
2195
2196 *pp = t;
2197
2198 h->verinfo.vertree = t;
2199 }
2200 else if (t == NULL)
2201 {
2202 /* We could not find the version for a symbol when
2203 generating a shared archive. Return an error. */
2204 (*_bfd_error_handler)
2205 (_("%B: version node not found for symbol %s"),
2206 info->output_bfd, h->root.root.string);
2207 bfd_set_error (bfd_error_bad_value);
2208 sinfo->failed = TRUE;
2209 return FALSE;
2210 }
2211 }
2212
2213 /* If we don't have a version for this symbol, see if we can find
2214 something. */
2215 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2216 {
2217 bfd_boolean hide;
2218
2219 h->verinfo.vertree
2220 = bfd_find_version_for_sym (sinfo->info->version_info,
2221 h->root.root.string, &hide);
2222 if (h->verinfo.vertree != NULL && hide)
2223 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2224 }
2225
2226 return TRUE;
2227 }
2228 \f
2229 /* Read and swap the relocs from the section indicated by SHDR. This
2230 may be either a REL or a RELA section. The relocations are
2231 translated into RELA relocations and stored in INTERNAL_RELOCS,
2232 which should have already been allocated to contain enough space.
2233 The EXTERNAL_RELOCS are a buffer where the external form of the
2234 relocations should be stored.
2235
2236 Returns FALSE if something goes wrong. */
2237
2238 static bfd_boolean
2239 elf_link_read_relocs_from_section (bfd *abfd,
2240 asection *sec,
2241 Elf_Internal_Shdr *shdr,
2242 void *external_relocs,
2243 Elf_Internal_Rela *internal_relocs)
2244 {
2245 const struct elf_backend_data *bed;
2246 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2247 const bfd_byte *erela;
2248 const bfd_byte *erelaend;
2249 Elf_Internal_Rela *irela;
2250 Elf_Internal_Shdr *symtab_hdr;
2251 size_t nsyms;
2252
2253 /* Position ourselves at the start of the section. */
2254 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2255 return FALSE;
2256
2257 /* Read the relocations. */
2258 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2259 return FALSE;
2260
2261 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2262 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2263
2264 bed = get_elf_backend_data (abfd);
2265
2266 /* Convert the external relocations to the internal format. */
2267 if (shdr->sh_entsize == bed->s->sizeof_rel)
2268 swap_in = bed->s->swap_reloc_in;
2269 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2270 swap_in = bed->s->swap_reloca_in;
2271 else
2272 {
2273 bfd_set_error (bfd_error_wrong_format);
2274 return FALSE;
2275 }
2276
2277 erela = (const bfd_byte *) external_relocs;
2278 erelaend = erela + shdr->sh_size;
2279 irela = internal_relocs;
2280 while (erela < erelaend)
2281 {
2282 bfd_vma r_symndx;
2283
2284 (*swap_in) (abfd, erela, irela);
2285 r_symndx = ELF32_R_SYM (irela->r_info);
2286 if (bed->s->arch_size == 64)
2287 r_symndx >>= 24;
2288 if (nsyms > 0)
2289 {
2290 if ((size_t) r_symndx >= nsyms)
2291 {
2292 (*_bfd_error_handler)
2293 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2294 " for offset 0x%lx in section `%A'"),
2295 abfd, sec,
2296 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2297 bfd_set_error (bfd_error_bad_value);
2298 return FALSE;
2299 }
2300 }
2301 else if (r_symndx != STN_UNDEF)
2302 {
2303 (*_bfd_error_handler)
2304 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2305 " when the object file has no symbol table"),
2306 abfd, sec,
2307 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2308 bfd_set_error (bfd_error_bad_value);
2309 return FALSE;
2310 }
2311 irela += bed->s->int_rels_per_ext_rel;
2312 erela += shdr->sh_entsize;
2313 }
2314
2315 return TRUE;
2316 }
2317
2318 /* Read and swap the relocs for a section O. They may have been
2319 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2320 not NULL, they are used as buffers to read into. They are known to
2321 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2322 the return value is allocated using either malloc or bfd_alloc,
2323 according to the KEEP_MEMORY argument. If O has two relocation
2324 sections (both REL and RELA relocations), then the REL_HDR
2325 relocations will appear first in INTERNAL_RELOCS, followed by the
2326 RELA_HDR relocations. */
2327
2328 Elf_Internal_Rela *
2329 _bfd_elf_link_read_relocs (bfd *abfd,
2330 asection *o,
2331 void *external_relocs,
2332 Elf_Internal_Rela *internal_relocs,
2333 bfd_boolean keep_memory)
2334 {
2335 void *alloc1 = NULL;
2336 Elf_Internal_Rela *alloc2 = NULL;
2337 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2338 struct bfd_elf_section_data *esdo = elf_section_data (o);
2339 Elf_Internal_Rela *internal_rela_relocs;
2340
2341 if (esdo->relocs != NULL)
2342 return esdo->relocs;
2343
2344 if (o->reloc_count == 0)
2345 return NULL;
2346
2347 if (internal_relocs == NULL)
2348 {
2349 bfd_size_type size;
2350
2351 size = o->reloc_count;
2352 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2353 if (keep_memory)
2354 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2355 else
2356 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2357 if (internal_relocs == NULL)
2358 goto error_return;
2359 }
2360
2361 if (external_relocs == NULL)
2362 {
2363 bfd_size_type size = 0;
2364
2365 if (esdo->rel.hdr)
2366 size += esdo->rel.hdr->sh_size;
2367 if (esdo->rela.hdr)
2368 size += esdo->rela.hdr->sh_size;
2369
2370 alloc1 = bfd_malloc (size);
2371 if (alloc1 == NULL)
2372 goto error_return;
2373 external_relocs = alloc1;
2374 }
2375
2376 internal_rela_relocs = internal_relocs;
2377 if (esdo->rel.hdr)
2378 {
2379 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2380 external_relocs,
2381 internal_relocs))
2382 goto error_return;
2383 external_relocs = (((bfd_byte *) external_relocs)
2384 + esdo->rel.hdr->sh_size);
2385 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2386 * bed->s->int_rels_per_ext_rel);
2387 }
2388
2389 if (esdo->rela.hdr
2390 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2391 external_relocs,
2392 internal_rela_relocs)))
2393 goto error_return;
2394
2395 /* Cache the results for next time, if we can. */
2396 if (keep_memory)
2397 esdo->relocs = internal_relocs;
2398
2399 if (alloc1 != NULL)
2400 free (alloc1);
2401
2402 /* Don't free alloc2, since if it was allocated we are passing it
2403 back (under the name of internal_relocs). */
2404
2405 return internal_relocs;
2406
2407 error_return:
2408 if (alloc1 != NULL)
2409 free (alloc1);
2410 if (alloc2 != NULL)
2411 {
2412 if (keep_memory)
2413 bfd_release (abfd, alloc2);
2414 else
2415 free (alloc2);
2416 }
2417 return NULL;
2418 }
2419
2420 /* Compute the size of, and allocate space for, REL_HDR which is the
2421 section header for a section containing relocations for O. */
2422
2423 static bfd_boolean
2424 _bfd_elf_link_size_reloc_section (bfd *abfd,
2425 struct bfd_elf_section_reloc_data *reldata)
2426 {
2427 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2428
2429 /* That allows us to calculate the size of the section. */
2430 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2431
2432 /* The contents field must last into write_object_contents, so we
2433 allocate it with bfd_alloc rather than malloc. Also since we
2434 cannot be sure that the contents will actually be filled in,
2435 we zero the allocated space. */
2436 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2437 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2438 return FALSE;
2439
2440 if (reldata->hashes == NULL && reldata->count)
2441 {
2442 struct elf_link_hash_entry **p;
2443
2444 p = ((struct elf_link_hash_entry **)
2445 bfd_zmalloc (reldata->count * sizeof (*p)));
2446 if (p == NULL)
2447 return FALSE;
2448
2449 reldata->hashes = p;
2450 }
2451
2452 return TRUE;
2453 }
2454
2455 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2456 originated from the section given by INPUT_REL_HDR) to the
2457 OUTPUT_BFD. */
2458
2459 bfd_boolean
2460 _bfd_elf_link_output_relocs (bfd *output_bfd,
2461 asection *input_section,
2462 Elf_Internal_Shdr *input_rel_hdr,
2463 Elf_Internal_Rela *internal_relocs,
2464 struct elf_link_hash_entry **rel_hash
2465 ATTRIBUTE_UNUSED)
2466 {
2467 Elf_Internal_Rela *irela;
2468 Elf_Internal_Rela *irelaend;
2469 bfd_byte *erel;
2470 struct bfd_elf_section_reloc_data *output_reldata;
2471 asection *output_section;
2472 const struct elf_backend_data *bed;
2473 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2474 struct bfd_elf_section_data *esdo;
2475
2476 output_section = input_section->output_section;
2477
2478 bed = get_elf_backend_data (output_bfd);
2479 esdo = elf_section_data (output_section);
2480 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2481 {
2482 output_reldata = &esdo->rel;
2483 swap_out = bed->s->swap_reloc_out;
2484 }
2485 else if (esdo->rela.hdr
2486 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2487 {
2488 output_reldata = &esdo->rela;
2489 swap_out = bed->s->swap_reloca_out;
2490 }
2491 else
2492 {
2493 (*_bfd_error_handler)
2494 (_("%B: relocation size mismatch in %B section %A"),
2495 output_bfd, input_section->owner, input_section);
2496 bfd_set_error (bfd_error_wrong_format);
2497 return FALSE;
2498 }
2499
2500 erel = output_reldata->hdr->contents;
2501 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2502 irela = internal_relocs;
2503 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2504 * bed->s->int_rels_per_ext_rel);
2505 while (irela < irelaend)
2506 {
2507 (*swap_out) (output_bfd, irela, erel);
2508 irela += bed->s->int_rels_per_ext_rel;
2509 erel += input_rel_hdr->sh_entsize;
2510 }
2511
2512 /* Bump the counter, so that we know where to add the next set of
2513 relocations. */
2514 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2515
2516 return TRUE;
2517 }
2518 \f
2519 /* Make weak undefined symbols in PIE dynamic. */
2520
2521 bfd_boolean
2522 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2523 struct elf_link_hash_entry *h)
2524 {
2525 if (bfd_link_pie (info)
2526 && h->dynindx == -1
2527 && h->root.type == bfd_link_hash_undefweak)
2528 return bfd_elf_link_record_dynamic_symbol (info, h);
2529
2530 return TRUE;
2531 }
2532
2533 /* Fix up the flags for a symbol. This handles various cases which
2534 can only be fixed after all the input files are seen. This is
2535 currently called by both adjust_dynamic_symbol and
2536 assign_sym_version, which is unnecessary but perhaps more robust in
2537 the face of future changes. */
2538
2539 static bfd_boolean
2540 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2541 struct elf_info_failed *eif)
2542 {
2543 const struct elf_backend_data *bed;
2544
2545 /* If this symbol was mentioned in a non-ELF file, try to set
2546 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2547 permit a non-ELF file to correctly refer to a symbol defined in
2548 an ELF dynamic object. */
2549 if (h->non_elf)
2550 {
2551 while (h->root.type == bfd_link_hash_indirect)
2552 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2553
2554 if (h->root.type != bfd_link_hash_defined
2555 && h->root.type != bfd_link_hash_defweak)
2556 {
2557 h->ref_regular = 1;
2558 h->ref_regular_nonweak = 1;
2559 }
2560 else
2561 {
2562 if (h->root.u.def.section->owner != NULL
2563 && (bfd_get_flavour (h->root.u.def.section->owner)
2564 == bfd_target_elf_flavour))
2565 {
2566 h->ref_regular = 1;
2567 h->ref_regular_nonweak = 1;
2568 }
2569 else
2570 h->def_regular = 1;
2571 }
2572
2573 if (h->dynindx == -1
2574 && (h->def_dynamic
2575 || h->ref_dynamic))
2576 {
2577 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2578 {
2579 eif->failed = TRUE;
2580 return FALSE;
2581 }
2582 }
2583 }
2584 else
2585 {
2586 /* Unfortunately, NON_ELF is only correct if the symbol
2587 was first seen in a non-ELF file. Fortunately, if the symbol
2588 was first seen in an ELF file, we're probably OK unless the
2589 symbol was defined in a non-ELF file. Catch that case here.
2590 FIXME: We're still in trouble if the symbol was first seen in
2591 a dynamic object, and then later in a non-ELF regular object. */
2592 if ((h->root.type == bfd_link_hash_defined
2593 || h->root.type == bfd_link_hash_defweak)
2594 && !h->def_regular
2595 && (h->root.u.def.section->owner != NULL
2596 ? (bfd_get_flavour (h->root.u.def.section->owner)
2597 != bfd_target_elf_flavour)
2598 : (bfd_is_abs_section (h->root.u.def.section)
2599 && !h->def_dynamic)))
2600 h->def_regular = 1;
2601 }
2602
2603 /* Backend specific symbol fixup. */
2604 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2605 if (bed->elf_backend_fixup_symbol
2606 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2607 return FALSE;
2608
2609 /* If this is a final link, and the symbol was defined as a common
2610 symbol in a regular object file, and there was no definition in
2611 any dynamic object, then the linker will have allocated space for
2612 the symbol in a common section but the DEF_REGULAR
2613 flag will not have been set. */
2614 if (h->root.type == bfd_link_hash_defined
2615 && !h->def_regular
2616 && h->ref_regular
2617 && !h->def_dynamic
2618 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2619 h->def_regular = 1;
2620
2621 /* If -Bsymbolic was used (which means to bind references to global
2622 symbols to the definition within the shared object), and this
2623 symbol was defined in a regular object, then it actually doesn't
2624 need a PLT entry. Likewise, if the symbol has non-default
2625 visibility. If the symbol has hidden or internal visibility, we
2626 will force it local. */
2627 if (h->needs_plt
2628 && bfd_link_pic (eif->info)
2629 && is_elf_hash_table (eif->info->hash)
2630 && (SYMBOLIC_BIND (eif->info, h)
2631 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2632 && h->def_regular)
2633 {
2634 bfd_boolean force_local;
2635
2636 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2637 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2638 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2639 }
2640
2641 /* If a weak undefined symbol has non-default visibility, we also
2642 hide it from the dynamic linker. */
2643 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2644 && h->root.type == bfd_link_hash_undefweak)
2645 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2646
2647 /* If this is a weak defined symbol in a dynamic object, and we know
2648 the real definition in the dynamic object, copy interesting flags
2649 over to the real definition. */
2650 if (h->u.weakdef != NULL)
2651 {
2652 /* If the real definition is defined by a regular object file,
2653 don't do anything special. See the longer description in
2654 _bfd_elf_adjust_dynamic_symbol, below. */
2655 if (h->u.weakdef->def_regular)
2656 h->u.weakdef = NULL;
2657 else
2658 {
2659 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2660
2661 while (h->root.type == bfd_link_hash_indirect)
2662 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2663
2664 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2665 || h->root.type == bfd_link_hash_defweak);
2666 BFD_ASSERT (weakdef->def_dynamic);
2667 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2668 || weakdef->root.type == bfd_link_hash_defweak);
2669 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2670 }
2671 }
2672
2673 return TRUE;
2674 }
2675
2676 /* Make the backend pick a good value for a dynamic symbol. This is
2677 called via elf_link_hash_traverse, and also calls itself
2678 recursively. */
2679
2680 static bfd_boolean
2681 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2682 {
2683 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2684 bfd *dynobj;
2685 const struct elf_backend_data *bed;
2686
2687 if (! is_elf_hash_table (eif->info->hash))
2688 return FALSE;
2689
2690 /* Ignore indirect symbols. These are added by the versioning code. */
2691 if (h->root.type == bfd_link_hash_indirect)
2692 return TRUE;
2693
2694 /* Fix the symbol flags. */
2695 if (! _bfd_elf_fix_symbol_flags (h, eif))
2696 return FALSE;
2697
2698 /* If this symbol does not require a PLT entry, and it is not
2699 defined by a dynamic object, or is not referenced by a regular
2700 object, ignore it. We do have to handle a weak defined symbol,
2701 even if no regular object refers to it, if we decided to add it
2702 to the dynamic symbol table. FIXME: Do we normally need to worry
2703 about symbols which are defined by one dynamic object and
2704 referenced by another one? */
2705 if (!h->needs_plt
2706 && h->type != STT_GNU_IFUNC
2707 && (h->def_regular
2708 || !h->def_dynamic
2709 || (!h->ref_regular
2710 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2711 {
2712 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2713 return TRUE;
2714 }
2715
2716 /* If we've already adjusted this symbol, don't do it again. This
2717 can happen via a recursive call. */
2718 if (h->dynamic_adjusted)
2719 return TRUE;
2720
2721 /* Don't look at this symbol again. Note that we must set this
2722 after checking the above conditions, because we may look at a
2723 symbol once, decide not to do anything, and then get called
2724 recursively later after REF_REGULAR is set below. */
2725 h->dynamic_adjusted = 1;
2726
2727 /* If this is a weak definition, and we know a real definition, and
2728 the real symbol is not itself defined by a regular object file,
2729 then get a good value for the real definition. We handle the
2730 real symbol first, for the convenience of the backend routine.
2731
2732 Note that there is a confusing case here. If the real definition
2733 is defined by a regular object file, we don't get the real symbol
2734 from the dynamic object, but we do get the weak symbol. If the
2735 processor backend uses a COPY reloc, then if some routine in the
2736 dynamic object changes the real symbol, we will not see that
2737 change in the corresponding weak symbol. This is the way other
2738 ELF linkers work as well, and seems to be a result of the shared
2739 library model.
2740
2741 I will clarify this issue. Most SVR4 shared libraries define the
2742 variable _timezone and define timezone as a weak synonym. The
2743 tzset call changes _timezone. If you write
2744 extern int timezone;
2745 int _timezone = 5;
2746 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2747 you might expect that, since timezone is a synonym for _timezone,
2748 the same number will print both times. However, if the processor
2749 backend uses a COPY reloc, then actually timezone will be copied
2750 into your process image, and, since you define _timezone
2751 yourself, _timezone will not. Thus timezone and _timezone will
2752 wind up at different memory locations. The tzset call will set
2753 _timezone, leaving timezone unchanged. */
2754
2755 if (h->u.weakdef != NULL)
2756 {
2757 /* If we get to this point, there is an implicit reference to
2758 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2759 h->u.weakdef->ref_regular = 1;
2760
2761 /* Ensure that the backend adjust_dynamic_symbol function sees
2762 H->U.WEAKDEF before H by recursively calling ourselves. */
2763 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2764 return FALSE;
2765 }
2766
2767 /* If a symbol has no type and no size and does not require a PLT
2768 entry, then we are probably about to do the wrong thing here: we
2769 are probably going to create a COPY reloc for an empty object.
2770 This case can arise when a shared object is built with assembly
2771 code, and the assembly code fails to set the symbol type. */
2772 if (h->size == 0
2773 && h->type == STT_NOTYPE
2774 && !h->needs_plt)
2775 (*_bfd_error_handler)
2776 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2777 h->root.root.string);
2778
2779 dynobj = elf_hash_table (eif->info)->dynobj;
2780 bed = get_elf_backend_data (dynobj);
2781
2782 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2783 {
2784 eif->failed = TRUE;
2785 return FALSE;
2786 }
2787
2788 return TRUE;
2789 }
2790
2791 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2792 DYNBSS. */
2793
2794 bfd_boolean
2795 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2796 struct elf_link_hash_entry *h,
2797 asection *dynbss)
2798 {
2799 unsigned int power_of_two;
2800 bfd_vma mask;
2801 asection *sec = h->root.u.def.section;
2802
2803 /* The section aligment of definition is the maximum alignment
2804 requirement of symbols defined in the section. Since we don't
2805 know the symbol alignment requirement, we start with the
2806 maximum alignment and check low bits of the symbol address
2807 for the minimum alignment. */
2808 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2809 mask = ((bfd_vma) 1 << power_of_two) - 1;
2810 while ((h->root.u.def.value & mask) != 0)
2811 {
2812 mask >>= 1;
2813 --power_of_two;
2814 }
2815
2816 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2817 dynbss))
2818 {
2819 /* Adjust the section alignment if needed. */
2820 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2821 power_of_two))
2822 return FALSE;
2823 }
2824
2825 /* We make sure that the symbol will be aligned properly. */
2826 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2827
2828 /* Define the symbol as being at this point in DYNBSS. */
2829 h->root.u.def.section = dynbss;
2830 h->root.u.def.value = dynbss->size;
2831
2832 /* Increment the size of DYNBSS to make room for the symbol. */
2833 dynbss->size += h->size;
2834
2835 /* No error if extern_protected_data is true. */
2836 if (h->protected_def
2837 && (!info->extern_protected_data
2838 || (info->extern_protected_data < 0
2839 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2840 info->callbacks->einfo
2841 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2842 h->root.root.string);
2843
2844 return TRUE;
2845 }
2846
2847 /* Adjust all external symbols pointing into SEC_MERGE sections
2848 to reflect the object merging within the sections. */
2849
2850 static bfd_boolean
2851 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2852 {
2853 asection *sec;
2854
2855 if ((h->root.type == bfd_link_hash_defined
2856 || h->root.type == bfd_link_hash_defweak)
2857 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2858 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2859 {
2860 bfd *output_bfd = (bfd *) data;
2861
2862 h->root.u.def.value =
2863 _bfd_merged_section_offset (output_bfd,
2864 &h->root.u.def.section,
2865 elf_section_data (sec)->sec_info,
2866 h->root.u.def.value);
2867 }
2868
2869 return TRUE;
2870 }
2871
2872 /* Returns false if the symbol referred to by H should be considered
2873 to resolve local to the current module, and true if it should be
2874 considered to bind dynamically. */
2875
2876 bfd_boolean
2877 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2878 struct bfd_link_info *info,
2879 bfd_boolean not_local_protected)
2880 {
2881 bfd_boolean binding_stays_local_p;
2882 const struct elf_backend_data *bed;
2883 struct elf_link_hash_table *hash_table;
2884
2885 if (h == NULL)
2886 return FALSE;
2887
2888 while (h->root.type == bfd_link_hash_indirect
2889 || h->root.type == bfd_link_hash_warning)
2890 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2891
2892 /* If it was forced local, then clearly it's not dynamic. */
2893 if (h->dynindx == -1)
2894 return FALSE;
2895 if (h->forced_local)
2896 return FALSE;
2897
2898 /* Identify the cases where name binding rules say that a
2899 visible symbol resolves locally. */
2900 binding_stays_local_p = (bfd_link_executable (info)
2901 || SYMBOLIC_BIND (info, h));
2902
2903 switch (ELF_ST_VISIBILITY (h->other))
2904 {
2905 case STV_INTERNAL:
2906 case STV_HIDDEN:
2907 return FALSE;
2908
2909 case STV_PROTECTED:
2910 hash_table = elf_hash_table (info);
2911 if (!is_elf_hash_table (hash_table))
2912 return FALSE;
2913
2914 bed = get_elf_backend_data (hash_table->dynobj);
2915
2916 /* Proper resolution for function pointer equality may require
2917 that these symbols perhaps be resolved dynamically, even though
2918 we should be resolving them to the current module. */
2919 if (!not_local_protected || !bed->is_function_type (h->type))
2920 binding_stays_local_p = TRUE;
2921 break;
2922
2923 default:
2924 break;
2925 }
2926
2927 /* If it isn't defined locally, then clearly it's dynamic. */
2928 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2929 return TRUE;
2930
2931 /* Otherwise, the symbol is dynamic if binding rules don't tell
2932 us that it remains local. */
2933 return !binding_stays_local_p;
2934 }
2935
2936 /* Return true if the symbol referred to by H should be considered
2937 to resolve local to the current module, and false otherwise. Differs
2938 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2939 undefined symbols. The two functions are virtually identical except
2940 for the place where forced_local and dynindx == -1 are tested. If
2941 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2942 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2943 the symbol is local only for defined symbols.
2944 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2945 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2946 treatment of undefined weak symbols. For those that do not make
2947 undefined weak symbols dynamic, both functions may return false. */
2948
2949 bfd_boolean
2950 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2951 struct bfd_link_info *info,
2952 bfd_boolean local_protected)
2953 {
2954 const struct elf_backend_data *bed;
2955 struct elf_link_hash_table *hash_table;
2956
2957 /* If it's a local sym, of course we resolve locally. */
2958 if (h == NULL)
2959 return TRUE;
2960
2961 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2962 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2963 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2964 return TRUE;
2965
2966 /* Common symbols that become definitions don't get the DEF_REGULAR
2967 flag set, so test it first, and don't bail out. */
2968 if (ELF_COMMON_DEF_P (h))
2969 /* Do nothing. */;
2970 /* If we don't have a definition in a regular file, then we can't
2971 resolve locally. The sym is either undefined or dynamic. */
2972 else if (!h->def_regular)
2973 return FALSE;
2974
2975 /* Forced local symbols resolve locally. */
2976 if (h->forced_local)
2977 return TRUE;
2978
2979 /* As do non-dynamic symbols. */
2980 if (h->dynindx == -1)
2981 return TRUE;
2982
2983 /* At this point, we know the symbol is defined and dynamic. In an
2984 executable it must resolve locally, likewise when building symbolic
2985 shared libraries. */
2986 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2987 return TRUE;
2988
2989 /* Now deal with defined dynamic symbols in shared libraries. Ones
2990 with default visibility might not resolve locally. */
2991 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2992 return FALSE;
2993
2994 hash_table = elf_hash_table (info);
2995 if (!is_elf_hash_table (hash_table))
2996 return TRUE;
2997
2998 bed = get_elf_backend_data (hash_table->dynobj);
2999
3000 /* If extern_protected_data is false, STV_PROTECTED non-function
3001 symbols are local. */
3002 if ((!info->extern_protected_data
3003 || (info->extern_protected_data < 0
3004 && !bed->extern_protected_data))
3005 && !bed->is_function_type (h->type))
3006 return TRUE;
3007
3008 /* Function pointer equality tests may require that STV_PROTECTED
3009 symbols be treated as dynamic symbols. If the address of a
3010 function not defined in an executable is set to that function's
3011 plt entry in the executable, then the address of the function in
3012 a shared library must also be the plt entry in the executable. */
3013 return local_protected;
3014 }
3015
3016 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3017 aligned. Returns the first TLS output section. */
3018
3019 struct bfd_section *
3020 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3021 {
3022 struct bfd_section *sec, *tls;
3023 unsigned int align = 0;
3024
3025 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3026 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3027 break;
3028 tls = sec;
3029
3030 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3031 if (sec->alignment_power > align)
3032 align = sec->alignment_power;
3033
3034 elf_hash_table (info)->tls_sec = tls;
3035
3036 /* Ensure the alignment of the first section is the largest alignment,
3037 so that the tls segment starts aligned. */
3038 if (tls != NULL)
3039 tls->alignment_power = align;
3040
3041 return tls;
3042 }
3043
3044 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3045 static bfd_boolean
3046 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3047 Elf_Internal_Sym *sym)
3048 {
3049 const struct elf_backend_data *bed;
3050
3051 /* Local symbols do not count, but target specific ones might. */
3052 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3053 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3054 return FALSE;
3055
3056 bed = get_elf_backend_data (abfd);
3057 /* Function symbols do not count. */
3058 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3059 return FALSE;
3060
3061 /* If the section is undefined, then so is the symbol. */
3062 if (sym->st_shndx == SHN_UNDEF)
3063 return FALSE;
3064
3065 /* If the symbol is defined in the common section, then
3066 it is a common definition and so does not count. */
3067 if (bed->common_definition (sym))
3068 return FALSE;
3069
3070 /* If the symbol is in a target specific section then we
3071 must rely upon the backend to tell us what it is. */
3072 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3073 /* FIXME - this function is not coded yet:
3074
3075 return _bfd_is_global_symbol_definition (abfd, sym);
3076
3077 Instead for now assume that the definition is not global,
3078 Even if this is wrong, at least the linker will behave
3079 in the same way that it used to do. */
3080 return FALSE;
3081
3082 return TRUE;
3083 }
3084
3085 /* Search the symbol table of the archive element of the archive ABFD
3086 whose archive map contains a mention of SYMDEF, and determine if
3087 the symbol is defined in this element. */
3088 static bfd_boolean
3089 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3090 {
3091 Elf_Internal_Shdr * hdr;
3092 bfd_size_type symcount;
3093 bfd_size_type extsymcount;
3094 bfd_size_type extsymoff;
3095 Elf_Internal_Sym *isymbuf;
3096 Elf_Internal_Sym *isym;
3097 Elf_Internal_Sym *isymend;
3098 bfd_boolean result;
3099
3100 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3101 if (abfd == NULL)
3102 return FALSE;
3103
3104 /* Return FALSE if the object has been claimed by plugin. */
3105 if (abfd->plugin_format == bfd_plugin_yes)
3106 return FALSE;
3107
3108 if (! bfd_check_format (abfd, bfd_object))
3109 return FALSE;
3110
3111 /* Select the appropriate symbol table. */
3112 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3113 hdr = &elf_tdata (abfd)->symtab_hdr;
3114 else
3115 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3116
3117 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3118
3119 /* The sh_info field of the symtab header tells us where the
3120 external symbols start. We don't care about the local symbols. */
3121 if (elf_bad_symtab (abfd))
3122 {
3123 extsymcount = symcount;
3124 extsymoff = 0;
3125 }
3126 else
3127 {
3128 extsymcount = symcount - hdr->sh_info;
3129 extsymoff = hdr->sh_info;
3130 }
3131
3132 if (extsymcount == 0)
3133 return FALSE;
3134
3135 /* Read in the symbol table. */
3136 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3137 NULL, NULL, NULL);
3138 if (isymbuf == NULL)
3139 return FALSE;
3140
3141 /* Scan the symbol table looking for SYMDEF. */
3142 result = FALSE;
3143 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3144 {
3145 const char *name;
3146
3147 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3148 isym->st_name);
3149 if (name == NULL)
3150 break;
3151
3152 if (strcmp (name, symdef->name) == 0)
3153 {
3154 result = is_global_data_symbol_definition (abfd, isym);
3155 break;
3156 }
3157 }
3158
3159 free (isymbuf);
3160
3161 return result;
3162 }
3163 \f
3164 /* Add an entry to the .dynamic table. */
3165
3166 bfd_boolean
3167 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3168 bfd_vma tag,
3169 bfd_vma val)
3170 {
3171 struct elf_link_hash_table *hash_table;
3172 const struct elf_backend_data *bed;
3173 asection *s;
3174 bfd_size_type newsize;
3175 bfd_byte *newcontents;
3176 Elf_Internal_Dyn dyn;
3177
3178 hash_table = elf_hash_table (info);
3179 if (! is_elf_hash_table (hash_table))
3180 return FALSE;
3181
3182 bed = get_elf_backend_data (hash_table->dynobj);
3183 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3184 BFD_ASSERT (s != NULL);
3185
3186 newsize = s->size + bed->s->sizeof_dyn;
3187 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3188 if (newcontents == NULL)
3189 return FALSE;
3190
3191 dyn.d_tag = tag;
3192 dyn.d_un.d_val = val;
3193 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3194
3195 s->size = newsize;
3196 s->contents = newcontents;
3197
3198 return TRUE;
3199 }
3200
3201 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3202 otherwise just check whether one already exists. Returns -1 on error,
3203 1 if a DT_NEEDED tag already exists, and 0 on success. */
3204
3205 static int
3206 elf_add_dt_needed_tag (bfd *abfd,
3207 struct bfd_link_info *info,
3208 const char *soname,
3209 bfd_boolean do_it)
3210 {
3211 struct elf_link_hash_table *hash_table;
3212 bfd_size_type strindex;
3213
3214 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3215 return -1;
3216
3217 hash_table = elf_hash_table (info);
3218 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3219 if (strindex == (bfd_size_type) -1)
3220 return -1;
3221
3222 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3223 {
3224 asection *sdyn;
3225 const struct elf_backend_data *bed;
3226 bfd_byte *extdyn;
3227
3228 bed = get_elf_backend_data (hash_table->dynobj);
3229 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3230 if (sdyn != NULL)
3231 for (extdyn = sdyn->contents;
3232 extdyn < sdyn->contents + sdyn->size;
3233 extdyn += bed->s->sizeof_dyn)
3234 {
3235 Elf_Internal_Dyn dyn;
3236
3237 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3238 if (dyn.d_tag == DT_NEEDED
3239 && dyn.d_un.d_val == strindex)
3240 {
3241 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3242 return 1;
3243 }
3244 }
3245 }
3246
3247 if (do_it)
3248 {
3249 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3250 return -1;
3251
3252 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3253 return -1;
3254 }
3255 else
3256 /* We were just checking for existence of the tag. */
3257 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3258
3259 return 0;
3260 }
3261
3262 /* Return true if SONAME is on the needed list between NEEDED and STOP
3263 (or the end of list if STOP is NULL), and needed by a library that
3264 will be loaded. */
3265
3266 static bfd_boolean
3267 on_needed_list (const char *soname,
3268 struct bfd_link_needed_list *needed,
3269 struct bfd_link_needed_list *stop)
3270 {
3271 struct bfd_link_needed_list *look;
3272 for (look = needed; look != stop; look = look->next)
3273 if (strcmp (soname, look->name) == 0
3274 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3275 /* If needed by a library that itself is not directly
3276 needed, recursively check whether that library is
3277 indirectly needed. Since we add DT_NEEDED entries to
3278 the end of the list, library dependencies appear after
3279 the library. Therefore search prior to the current
3280 LOOK, preventing possible infinite recursion. */
3281 || on_needed_list (elf_dt_name (look->by), needed, look)))
3282 return TRUE;
3283
3284 return FALSE;
3285 }
3286
3287 /* Sort symbol by value, section, and size. */
3288 static int
3289 elf_sort_symbol (const void *arg1, const void *arg2)
3290 {
3291 const struct elf_link_hash_entry *h1;
3292 const struct elf_link_hash_entry *h2;
3293 bfd_signed_vma vdiff;
3294
3295 h1 = *(const struct elf_link_hash_entry **) arg1;
3296 h2 = *(const struct elf_link_hash_entry **) arg2;
3297 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3298 if (vdiff != 0)
3299 return vdiff > 0 ? 1 : -1;
3300 else
3301 {
3302 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3303 if (sdiff != 0)
3304 return sdiff > 0 ? 1 : -1;
3305 }
3306 vdiff = h1->size - h2->size;
3307 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3308 }
3309
3310 /* This function is used to adjust offsets into .dynstr for
3311 dynamic symbols. This is called via elf_link_hash_traverse. */
3312
3313 static bfd_boolean
3314 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3315 {
3316 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3317
3318 if (h->dynindx != -1)
3319 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3320 return TRUE;
3321 }
3322
3323 /* Assign string offsets in .dynstr, update all structures referencing
3324 them. */
3325
3326 static bfd_boolean
3327 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3328 {
3329 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3330 struct elf_link_local_dynamic_entry *entry;
3331 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3332 bfd *dynobj = hash_table->dynobj;
3333 asection *sdyn;
3334 bfd_size_type size;
3335 const struct elf_backend_data *bed;
3336 bfd_byte *extdyn;
3337
3338 _bfd_elf_strtab_finalize (dynstr);
3339 size = _bfd_elf_strtab_size (dynstr);
3340
3341 bed = get_elf_backend_data (dynobj);
3342 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3343 BFD_ASSERT (sdyn != NULL);
3344
3345 /* Update all .dynamic entries referencing .dynstr strings. */
3346 for (extdyn = sdyn->contents;
3347 extdyn < sdyn->contents + sdyn->size;
3348 extdyn += bed->s->sizeof_dyn)
3349 {
3350 Elf_Internal_Dyn dyn;
3351
3352 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3353 switch (dyn.d_tag)
3354 {
3355 case DT_STRSZ:
3356 dyn.d_un.d_val = size;
3357 break;
3358 case DT_NEEDED:
3359 case DT_SONAME:
3360 case DT_RPATH:
3361 case DT_RUNPATH:
3362 case DT_FILTER:
3363 case DT_AUXILIARY:
3364 case DT_AUDIT:
3365 case DT_DEPAUDIT:
3366 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3367 break;
3368 default:
3369 continue;
3370 }
3371 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3372 }
3373
3374 /* Now update local dynamic symbols. */
3375 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3376 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3377 entry->isym.st_name);
3378
3379 /* And the rest of dynamic symbols. */
3380 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3381
3382 /* Adjust version definitions. */
3383 if (elf_tdata (output_bfd)->cverdefs)
3384 {
3385 asection *s;
3386 bfd_byte *p;
3387 bfd_size_type i;
3388 Elf_Internal_Verdef def;
3389 Elf_Internal_Verdaux defaux;
3390
3391 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3392 p = s->contents;
3393 do
3394 {
3395 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3396 &def);
3397 p += sizeof (Elf_External_Verdef);
3398 if (def.vd_aux != sizeof (Elf_External_Verdef))
3399 continue;
3400 for (i = 0; i < def.vd_cnt; ++i)
3401 {
3402 _bfd_elf_swap_verdaux_in (output_bfd,
3403 (Elf_External_Verdaux *) p, &defaux);
3404 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3405 defaux.vda_name);
3406 _bfd_elf_swap_verdaux_out (output_bfd,
3407 &defaux, (Elf_External_Verdaux *) p);
3408 p += sizeof (Elf_External_Verdaux);
3409 }
3410 }
3411 while (def.vd_next);
3412 }
3413
3414 /* Adjust version references. */
3415 if (elf_tdata (output_bfd)->verref)
3416 {
3417 asection *s;
3418 bfd_byte *p;
3419 bfd_size_type i;
3420 Elf_Internal_Verneed need;
3421 Elf_Internal_Vernaux needaux;
3422
3423 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3424 p = s->contents;
3425 do
3426 {
3427 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3428 &need);
3429 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3430 _bfd_elf_swap_verneed_out (output_bfd, &need,
3431 (Elf_External_Verneed *) p);
3432 p += sizeof (Elf_External_Verneed);
3433 for (i = 0; i < need.vn_cnt; ++i)
3434 {
3435 _bfd_elf_swap_vernaux_in (output_bfd,
3436 (Elf_External_Vernaux *) p, &needaux);
3437 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3438 needaux.vna_name);
3439 _bfd_elf_swap_vernaux_out (output_bfd,
3440 &needaux,
3441 (Elf_External_Vernaux *) p);
3442 p += sizeof (Elf_External_Vernaux);
3443 }
3444 }
3445 while (need.vn_next);
3446 }
3447
3448 return TRUE;
3449 }
3450 \f
3451 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3452 The default is to only match when the INPUT and OUTPUT are exactly
3453 the same target. */
3454
3455 bfd_boolean
3456 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3457 const bfd_target *output)
3458 {
3459 return input == output;
3460 }
3461
3462 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3463 This version is used when different targets for the same architecture
3464 are virtually identical. */
3465
3466 bfd_boolean
3467 _bfd_elf_relocs_compatible (const bfd_target *input,
3468 const bfd_target *output)
3469 {
3470 const struct elf_backend_data *obed, *ibed;
3471
3472 if (input == output)
3473 return TRUE;
3474
3475 ibed = xvec_get_elf_backend_data (input);
3476 obed = xvec_get_elf_backend_data (output);
3477
3478 if (ibed->arch != obed->arch)
3479 return FALSE;
3480
3481 /* If both backends are using this function, deem them compatible. */
3482 return ibed->relocs_compatible == obed->relocs_compatible;
3483 }
3484
3485 /* Make a special call to the linker "notice" function to tell it that
3486 we are about to handle an as-needed lib, or have finished
3487 processing the lib. */
3488
3489 bfd_boolean
3490 _bfd_elf_notice_as_needed (bfd *ibfd,
3491 struct bfd_link_info *info,
3492 enum notice_asneeded_action act)
3493 {
3494 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3495 }
3496
3497 /* Check relocations an ELF object file. */
3498
3499 bfd_boolean
3500 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3501 {
3502 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3503 struct elf_link_hash_table *htab = elf_hash_table (info);
3504
3505 /* If this object is the same format as the output object, and it is
3506 not a shared library, then let the backend look through the
3507 relocs.
3508
3509 This is required to build global offset table entries and to
3510 arrange for dynamic relocs. It is not required for the
3511 particular common case of linking non PIC code, even when linking
3512 against shared libraries, but unfortunately there is no way of
3513 knowing whether an object file has been compiled PIC or not.
3514 Looking through the relocs is not particularly time consuming.
3515 The problem is that we must either (1) keep the relocs in memory,
3516 which causes the linker to require additional runtime memory or
3517 (2) read the relocs twice from the input file, which wastes time.
3518 This would be a good case for using mmap.
3519
3520 I have no idea how to handle linking PIC code into a file of a
3521 different format. It probably can't be done. */
3522 if ((abfd->flags & DYNAMIC) == 0
3523 && is_elf_hash_table (htab)
3524 && bed->check_relocs != NULL
3525 && elf_object_id (abfd) == elf_hash_table_id (htab)
3526 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3527 {
3528 asection *o;
3529
3530 for (o = abfd->sections; o != NULL; o = o->next)
3531 {
3532 Elf_Internal_Rela *internal_relocs;
3533 bfd_boolean ok;
3534
3535 /* Don't check relocations in excluded sections. */
3536 if ((o->flags & SEC_RELOC) == 0
3537 || (o->flags & SEC_EXCLUDE) != 0
3538 || o->reloc_count == 0
3539 || ((info->strip == strip_all || info->strip == strip_debugger)
3540 && (o->flags & SEC_DEBUGGING) != 0)
3541 || bfd_is_abs_section (o->output_section))
3542 continue;
3543
3544 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3545 info->keep_memory);
3546 if (internal_relocs == NULL)
3547 return FALSE;
3548
3549 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3550
3551 if (elf_section_data (o)->relocs != internal_relocs)
3552 free (internal_relocs);
3553
3554 if (! ok)
3555 return FALSE;
3556 }
3557 }
3558
3559 return TRUE;
3560 }
3561
3562 /* Add symbols from an ELF object file to the linker hash table. */
3563
3564 static bfd_boolean
3565 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3566 {
3567 Elf_Internal_Ehdr *ehdr;
3568 Elf_Internal_Shdr *hdr;
3569 bfd_size_type symcount;
3570 bfd_size_type extsymcount;
3571 bfd_size_type extsymoff;
3572 struct elf_link_hash_entry **sym_hash;
3573 bfd_boolean dynamic;
3574 Elf_External_Versym *extversym = NULL;
3575 Elf_External_Versym *ever;
3576 struct elf_link_hash_entry *weaks;
3577 struct elf_link_hash_entry **nondeflt_vers = NULL;
3578 bfd_size_type nondeflt_vers_cnt = 0;
3579 Elf_Internal_Sym *isymbuf = NULL;
3580 Elf_Internal_Sym *isym;
3581 Elf_Internal_Sym *isymend;
3582 const struct elf_backend_data *bed;
3583 bfd_boolean add_needed;
3584 struct elf_link_hash_table *htab;
3585 bfd_size_type amt;
3586 void *alloc_mark = NULL;
3587 struct bfd_hash_entry **old_table = NULL;
3588 unsigned int old_size = 0;
3589 unsigned int old_count = 0;
3590 void *old_tab = NULL;
3591 void *old_ent;
3592 struct bfd_link_hash_entry *old_undefs = NULL;
3593 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3594 long old_dynsymcount = 0;
3595 bfd_size_type old_dynstr_size = 0;
3596 size_t tabsize = 0;
3597 asection *s;
3598 bfd_boolean just_syms;
3599
3600 htab = elf_hash_table (info);
3601 bed = get_elf_backend_data (abfd);
3602
3603 if ((abfd->flags & DYNAMIC) == 0)
3604 dynamic = FALSE;
3605 else
3606 {
3607 dynamic = TRUE;
3608
3609 /* You can't use -r against a dynamic object. Also, there's no
3610 hope of using a dynamic object which does not exactly match
3611 the format of the output file. */
3612 if (bfd_link_relocatable (info)
3613 || !is_elf_hash_table (htab)
3614 || info->output_bfd->xvec != abfd->xvec)
3615 {
3616 if (bfd_link_relocatable (info))
3617 bfd_set_error (bfd_error_invalid_operation);
3618 else
3619 bfd_set_error (bfd_error_wrong_format);
3620 goto error_return;
3621 }
3622 }
3623
3624 ehdr = elf_elfheader (abfd);
3625 if (info->warn_alternate_em
3626 && bed->elf_machine_code != ehdr->e_machine
3627 && ((bed->elf_machine_alt1 != 0
3628 && ehdr->e_machine == bed->elf_machine_alt1)
3629 || (bed->elf_machine_alt2 != 0
3630 && ehdr->e_machine == bed->elf_machine_alt2)))
3631 info->callbacks->einfo
3632 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3633 ehdr->e_machine, abfd, bed->elf_machine_code);
3634
3635 /* As a GNU extension, any input sections which are named
3636 .gnu.warning.SYMBOL are treated as warning symbols for the given
3637 symbol. This differs from .gnu.warning sections, which generate
3638 warnings when they are included in an output file. */
3639 /* PR 12761: Also generate this warning when building shared libraries. */
3640 for (s = abfd->sections; s != NULL; s = s->next)
3641 {
3642 const char *name;
3643
3644 name = bfd_get_section_name (abfd, s);
3645 if (CONST_STRNEQ (name, ".gnu.warning."))
3646 {
3647 char *msg;
3648 bfd_size_type sz;
3649
3650 name += sizeof ".gnu.warning." - 1;
3651
3652 /* If this is a shared object, then look up the symbol
3653 in the hash table. If it is there, and it is already
3654 been defined, then we will not be using the entry
3655 from this shared object, so we don't need to warn.
3656 FIXME: If we see the definition in a regular object
3657 later on, we will warn, but we shouldn't. The only
3658 fix is to keep track of what warnings we are supposed
3659 to emit, and then handle them all at the end of the
3660 link. */
3661 if (dynamic)
3662 {
3663 struct elf_link_hash_entry *h;
3664
3665 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3666
3667 /* FIXME: What about bfd_link_hash_common? */
3668 if (h != NULL
3669 && (h->root.type == bfd_link_hash_defined
3670 || h->root.type == bfd_link_hash_defweak))
3671 continue;
3672 }
3673
3674 sz = s->size;
3675 msg = (char *) bfd_alloc (abfd, sz + 1);
3676 if (msg == NULL)
3677 goto error_return;
3678
3679 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3680 goto error_return;
3681
3682 msg[sz] = '\0';
3683
3684 if (! (_bfd_generic_link_add_one_symbol
3685 (info, abfd, name, BSF_WARNING, s, 0, msg,
3686 FALSE, bed->collect, NULL)))
3687 goto error_return;
3688
3689 if (bfd_link_executable (info))
3690 {
3691 /* Clobber the section size so that the warning does
3692 not get copied into the output file. */
3693 s->size = 0;
3694
3695 /* Also set SEC_EXCLUDE, so that symbols defined in
3696 the warning section don't get copied to the output. */
3697 s->flags |= SEC_EXCLUDE;
3698 }
3699 }
3700 }
3701
3702 just_syms = ((s = abfd->sections) != NULL
3703 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3704
3705 add_needed = TRUE;
3706 if (! dynamic)
3707 {
3708 /* If we are creating a shared library, create all the dynamic
3709 sections immediately. We need to attach them to something,
3710 so we attach them to this BFD, provided it is the right
3711 format and is not from ld --just-symbols. Always create the
3712 dynamic sections for -E/--dynamic-list. FIXME: If there
3713 are no input BFD's of the same format as the output, we can't
3714 make a shared library. */
3715 if (!just_syms
3716 && (bfd_link_pic (info)
3717 || (!bfd_link_relocatable (info)
3718 && (info->export_dynamic || info->dynamic)))
3719 && is_elf_hash_table (htab)
3720 && info->output_bfd->xvec == abfd->xvec
3721 && !htab->dynamic_sections_created)
3722 {
3723 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3724 goto error_return;
3725 }
3726 }
3727 else if (!is_elf_hash_table (htab))
3728 goto error_return;
3729 else
3730 {
3731 const char *soname = NULL;
3732 char *audit = NULL;
3733 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3734 int ret;
3735
3736 /* ld --just-symbols and dynamic objects don't mix very well.
3737 ld shouldn't allow it. */
3738 if (just_syms)
3739 abort ();
3740
3741 /* If this dynamic lib was specified on the command line with
3742 --as-needed in effect, then we don't want to add a DT_NEEDED
3743 tag unless the lib is actually used. Similary for libs brought
3744 in by another lib's DT_NEEDED. When --no-add-needed is used
3745 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3746 any dynamic library in DT_NEEDED tags in the dynamic lib at
3747 all. */
3748 add_needed = (elf_dyn_lib_class (abfd)
3749 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3750 | DYN_NO_NEEDED)) == 0;
3751
3752 s = bfd_get_section_by_name (abfd, ".dynamic");
3753 if (s != NULL)
3754 {
3755 bfd_byte *dynbuf;
3756 bfd_byte *extdyn;
3757 unsigned int elfsec;
3758 unsigned long shlink;
3759
3760 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3761 {
3762 error_free_dyn:
3763 free (dynbuf);
3764 goto error_return;
3765 }
3766
3767 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3768 if (elfsec == SHN_BAD)
3769 goto error_free_dyn;
3770 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3771
3772 for (extdyn = dynbuf;
3773 extdyn < dynbuf + s->size;
3774 extdyn += bed->s->sizeof_dyn)
3775 {
3776 Elf_Internal_Dyn dyn;
3777
3778 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3779 if (dyn.d_tag == DT_SONAME)
3780 {
3781 unsigned int tagv = dyn.d_un.d_val;
3782 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3783 if (soname == NULL)
3784 goto error_free_dyn;
3785 }
3786 if (dyn.d_tag == DT_NEEDED)
3787 {
3788 struct bfd_link_needed_list *n, **pn;
3789 char *fnm, *anm;
3790 unsigned int tagv = dyn.d_un.d_val;
3791
3792 amt = sizeof (struct bfd_link_needed_list);
3793 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3794 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3795 if (n == NULL || fnm == NULL)
3796 goto error_free_dyn;
3797 amt = strlen (fnm) + 1;
3798 anm = (char *) bfd_alloc (abfd, amt);
3799 if (anm == NULL)
3800 goto error_free_dyn;
3801 memcpy (anm, fnm, amt);
3802 n->name = anm;
3803 n->by = abfd;
3804 n->next = NULL;
3805 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3806 ;
3807 *pn = n;
3808 }
3809 if (dyn.d_tag == DT_RUNPATH)
3810 {
3811 struct bfd_link_needed_list *n, **pn;
3812 char *fnm, *anm;
3813 unsigned int tagv = dyn.d_un.d_val;
3814
3815 amt = sizeof (struct bfd_link_needed_list);
3816 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3817 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3818 if (n == NULL || fnm == NULL)
3819 goto error_free_dyn;
3820 amt = strlen (fnm) + 1;
3821 anm = (char *) bfd_alloc (abfd, amt);
3822 if (anm == NULL)
3823 goto error_free_dyn;
3824 memcpy (anm, fnm, amt);
3825 n->name = anm;
3826 n->by = abfd;
3827 n->next = NULL;
3828 for (pn = & runpath;
3829 *pn != NULL;
3830 pn = &(*pn)->next)
3831 ;
3832 *pn = n;
3833 }
3834 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3835 if (!runpath && dyn.d_tag == DT_RPATH)
3836 {
3837 struct bfd_link_needed_list *n, **pn;
3838 char *fnm, *anm;
3839 unsigned int tagv = dyn.d_un.d_val;
3840
3841 amt = sizeof (struct bfd_link_needed_list);
3842 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3843 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3844 if (n == NULL || fnm == NULL)
3845 goto error_free_dyn;
3846 amt = strlen (fnm) + 1;
3847 anm = (char *) bfd_alloc (abfd, amt);
3848 if (anm == NULL)
3849 goto error_free_dyn;
3850 memcpy (anm, fnm, amt);
3851 n->name = anm;
3852 n->by = abfd;
3853 n->next = NULL;
3854 for (pn = & rpath;
3855 *pn != NULL;
3856 pn = &(*pn)->next)
3857 ;
3858 *pn = n;
3859 }
3860 if (dyn.d_tag == DT_AUDIT)
3861 {
3862 unsigned int tagv = dyn.d_un.d_val;
3863 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3864 }
3865 }
3866
3867 free (dynbuf);
3868 }
3869
3870 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3871 frees all more recently bfd_alloc'd blocks as well. */
3872 if (runpath)
3873 rpath = runpath;
3874
3875 if (rpath)
3876 {
3877 struct bfd_link_needed_list **pn;
3878 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3879 ;
3880 *pn = rpath;
3881 }
3882
3883 /* We do not want to include any of the sections in a dynamic
3884 object in the output file. We hack by simply clobbering the
3885 list of sections in the BFD. This could be handled more
3886 cleanly by, say, a new section flag; the existing
3887 SEC_NEVER_LOAD flag is not the one we want, because that one
3888 still implies that the section takes up space in the output
3889 file. */
3890 bfd_section_list_clear (abfd);
3891
3892 /* Find the name to use in a DT_NEEDED entry that refers to this
3893 object. If the object has a DT_SONAME entry, we use it.
3894 Otherwise, if the generic linker stuck something in
3895 elf_dt_name, we use that. Otherwise, we just use the file
3896 name. */
3897 if (soname == NULL || *soname == '\0')
3898 {
3899 soname = elf_dt_name (abfd);
3900 if (soname == NULL || *soname == '\0')
3901 soname = bfd_get_filename (abfd);
3902 }
3903
3904 /* Save the SONAME because sometimes the linker emulation code
3905 will need to know it. */
3906 elf_dt_name (abfd) = soname;
3907
3908 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3909 if (ret < 0)
3910 goto error_return;
3911
3912 /* If we have already included this dynamic object in the
3913 link, just ignore it. There is no reason to include a
3914 particular dynamic object more than once. */
3915 if (ret > 0)
3916 return TRUE;
3917
3918 /* Save the DT_AUDIT entry for the linker emulation code. */
3919 elf_dt_audit (abfd) = audit;
3920 }
3921
3922 /* If this is a dynamic object, we always link against the .dynsym
3923 symbol table, not the .symtab symbol table. The dynamic linker
3924 will only see the .dynsym symbol table, so there is no reason to
3925 look at .symtab for a dynamic object. */
3926
3927 if (! dynamic || elf_dynsymtab (abfd) == 0)
3928 hdr = &elf_tdata (abfd)->symtab_hdr;
3929 else
3930 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3931
3932 symcount = hdr->sh_size / bed->s->sizeof_sym;
3933
3934 /* The sh_info field of the symtab header tells us where the
3935 external symbols start. We don't care about the local symbols at
3936 this point. */
3937 if (elf_bad_symtab (abfd))
3938 {
3939 extsymcount = symcount;
3940 extsymoff = 0;
3941 }
3942 else
3943 {
3944 extsymcount = symcount - hdr->sh_info;
3945 extsymoff = hdr->sh_info;
3946 }
3947
3948 sym_hash = elf_sym_hashes (abfd);
3949 if (extsymcount != 0)
3950 {
3951 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3952 NULL, NULL, NULL);
3953 if (isymbuf == NULL)
3954 goto error_return;
3955
3956 if (sym_hash == NULL)
3957 {
3958 /* We store a pointer to the hash table entry for each
3959 external symbol. */
3960 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3961 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3962 if (sym_hash == NULL)
3963 goto error_free_sym;
3964 elf_sym_hashes (abfd) = sym_hash;
3965 }
3966 }
3967
3968 if (dynamic)
3969 {
3970 /* Read in any version definitions. */
3971 if (!_bfd_elf_slurp_version_tables (abfd,
3972 info->default_imported_symver))
3973 goto error_free_sym;
3974
3975 /* Read in the symbol versions, but don't bother to convert them
3976 to internal format. */
3977 if (elf_dynversym (abfd) != 0)
3978 {
3979 Elf_Internal_Shdr *versymhdr;
3980
3981 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3982 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3983 if (extversym == NULL)
3984 goto error_free_sym;
3985 amt = versymhdr->sh_size;
3986 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3987 || bfd_bread (extversym, amt, abfd) != amt)
3988 goto error_free_vers;
3989 }
3990 }
3991
3992 /* If we are loading an as-needed shared lib, save the symbol table
3993 state before we start adding symbols. If the lib turns out
3994 to be unneeded, restore the state. */
3995 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3996 {
3997 unsigned int i;
3998 size_t entsize;
3999
4000 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4001 {
4002 struct bfd_hash_entry *p;
4003 struct elf_link_hash_entry *h;
4004
4005 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4006 {
4007 h = (struct elf_link_hash_entry *) p;
4008 entsize += htab->root.table.entsize;
4009 if (h->root.type == bfd_link_hash_warning)
4010 entsize += htab->root.table.entsize;
4011 }
4012 }
4013
4014 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4015 old_tab = bfd_malloc (tabsize + entsize);
4016 if (old_tab == NULL)
4017 goto error_free_vers;
4018
4019 /* Remember the current objalloc pointer, so that all mem for
4020 symbols added can later be reclaimed. */
4021 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4022 if (alloc_mark == NULL)
4023 goto error_free_vers;
4024
4025 /* Make a special call to the linker "notice" function to
4026 tell it that we are about to handle an as-needed lib. */
4027 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4028 goto error_free_vers;
4029
4030 /* Clone the symbol table. Remember some pointers into the
4031 symbol table, and dynamic symbol count. */
4032 old_ent = (char *) old_tab + tabsize;
4033 memcpy (old_tab, htab->root.table.table, tabsize);
4034 old_undefs = htab->root.undefs;
4035 old_undefs_tail = htab->root.undefs_tail;
4036 old_table = htab->root.table.table;
4037 old_size = htab->root.table.size;
4038 old_count = htab->root.table.count;
4039 old_dynsymcount = htab->dynsymcount;
4040 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
4041
4042 for (i = 0; i < htab->root.table.size; i++)
4043 {
4044 struct bfd_hash_entry *p;
4045 struct elf_link_hash_entry *h;
4046
4047 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4048 {
4049 memcpy (old_ent, p, htab->root.table.entsize);
4050 old_ent = (char *) old_ent + htab->root.table.entsize;
4051 h = (struct elf_link_hash_entry *) p;
4052 if (h->root.type == bfd_link_hash_warning)
4053 {
4054 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4055 old_ent = (char *) old_ent + htab->root.table.entsize;
4056 }
4057 }
4058 }
4059 }
4060
4061 weaks = NULL;
4062 ever = extversym != NULL ? extversym + extsymoff : NULL;
4063 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4064 isym < isymend;
4065 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4066 {
4067 int bind;
4068 bfd_vma value;
4069 asection *sec, *new_sec;
4070 flagword flags;
4071 const char *name;
4072 struct elf_link_hash_entry *h;
4073 struct elf_link_hash_entry *hi;
4074 bfd_boolean definition;
4075 bfd_boolean size_change_ok;
4076 bfd_boolean type_change_ok;
4077 bfd_boolean new_weakdef;
4078 bfd_boolean new_weak;
4079 bfd_boolean old_weak;
4080 bfd_boolean override;
4081 bfd_boolean common;
4082 bfd_boolean discarded;
4083 unsigned int old_alignment;
4084 bfd *old_bfd;
4085 bfd_boolean matched;
4086
4087 override = FALSE;
4088
4089 flags = BSF_NO_FLAGS;
4090 sec = NULL;
4091 value = isym->st_value;
4092 common = bed->common_definition (isym);
4093 discarded = FALSE;
4094
4095 bind = ELF_ST_BIND (isym->st_info);
4096 switch (bind)
4097 {
4098 case STB_LOCAL:
4099 /* This should be impossible, since ELF requires that all
4100 global symbols follow all local symbols, and that sh_info
4101 point to the first global symbol. Unfortunately, Irix 5
4102 screws this up. */
4103 continue;
4104
4105 case STB_GLOBAL:
4106 if (isym->st_shndx != SHN_UNDEF && !common)
4107 flags = BSF_GLOBAL;
4108 break;
4109
4110 case STB_WEAK:
4111 flags = BSF_WEAK;
4112 break;
4113
4114 case STB_GNU_UNIQUE:
4115 flags = BSF_GNU_UNIQUE;
4116 break;
4117
4118 default:
4119 /* Leave it up to the processor backend. */
4120 break;
4121 }
4122
4123 if (isym->st_shndx == SHN_UNDEF)
4124 sec = bfd_und_section_ptr;
4125 else if (isym->st_shndx == SHN_ABS)
4126 sec = bfd_abs_section_ptr;
4127 else if (isym->st_shndx == SHN_COMMON)
4128 {
4129 sec = bfd_com_section_ptr;
4130 /* What ELF calls the size we call the value. What ELF
4131 calls the value we call the alignment. */
4132 value = isym->st_size;
4133 }
4134 else
4135 {
4136 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4137 if (sec == NULL)
4138 sec = bfd_abs_section_ptr;
4139 else if (discarded_section (sec))
4140 {
4141 /* Symbols from discarded section are undefined. We keep
4142 its visibility. */
4143 sec = bfd_und_section_ptr;
4144 discarded = TRUE;
4145 isym->st_shndx = SHN_UNDEF;
4146 }
4147 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4148 value -= sec->vma;
4149 }
4150
4151 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4152 isym->st_name);
4153 if (name == NULL)
4154 goto error_free_vers;
4155
4156 if (isym->st_shndx == SHN_COMMON
4157 && (abfd->flags & BFD_PLUGIN) != 0)
4158 {
4159 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4160
4161 if (xc == NULL)
4162 {
4163 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4164 | SEC_EXCLUDE);
4165 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4166 if (xc == NULL)
4167 goto error_free_vers;
4168 }
4169 sec = xc;
4170 }
4171 else if (isym->st_shndx == SHN_COMMON
4172 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4173 && !bfd_link_relocatable (info))
4174 {
4175 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4176
4177 if (tcomm == NULL)
4178 {
4179 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4180 | SEC_LINKER_CREATED);
4181 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4182 if (tcomm == NULL)
4183 goto error_free_vers;
4184 }
4185 sec = tcomm;
4186 }
4187 else if (bed->elf_add_symbol_hook)
4188 {
4189 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4190 &sec, &value))
4191 goto error_free_vers;
4192
4193 /* The hook function sets the name to NULL if this symbol
4194 should be skipped for some reason. */
4195 if (name == NULL)
4196 continue;
4197 }
4198
4199 /* Sanity check that all possibilities were handled. */
4200 if (sec == NULL)
4201 {
4202 bfd_set_error (bfd_error_bad_value);
4203 goto error_free_vers;
4204 }
4205
4206 /* Silently discard TLS symbols from --just-syms. There's
4207 no way to combine a static TLS block with a new TLS block
4208 for this executable. */
4209 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4210 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4211 continue;
4212
4213 if (bfd_is_und_section (sec)
4214 || bfd_is_com_section (sec))
4215 definition = FALSE;
4216 else
4217 definition = TRUE;
4218
4219 size_change_ok = FALSE;
4220 type_change_ok = bed->type_change_ok;
4221 old_weak = FALSE;
4222 matched = FALSE;
4223 old_alignment = 0;
4224 old_bfd = NULL;
4225 new_sec = sec;
4226
4227 if (is_elf_hash_table (htab))
4228 {
4229 Elf_Internal_Versym iver;
4230 unsigned int vernum = 0;
4231 bfd_boolean skip;
4232
4233 if (ever == NULL)
4234 {
4235 if (info->default_imported_symver)
4236 /* Use the default symbol version created earlier. */
4237 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4238 else
4239 iver.vs_vers = 0;
4240 }
4241 else
4242 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4243
4244 vernum = iver.vs_vers & VERSYM_VERSION;
4245
4246 /* If this is a hidden symbol, or if it is not version
4247 1, we append the version name to the symbol name.
4248 However, we do not modify a non-hidden absolute symbol
4249 if it is not a function, because it might be the version
4250 symbol itself. FIXME: What if it isn't? */
4251 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4252 || (vernum > 1
4253 && (!bfd_is_abs_section (sec)
4254 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4255 {
4256 const char *verstr;
4257 size_t namelen, verlen, newlen;
4258 char *newname, *p;
4259
4260 if (isym->st_shndx != SHN_UNDEF)
4261 {
4262 if (vernum > elf_tdata (abfd)->cverdefs)
4263 verstr = NULL;
4264 else if (vernum > 1)
4265 verstr =
4266 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4267 else
4268 verstr = "";
4269
4270 if (verstr == NULL)
4271 {
4272 (*_bfd_error_handler)
4273 (_("%B: %s: invalid version %u (max %d)"),
4274 abfd, name, vernum,
4275 elf_tdata (abfd)->cverdefs);
4276 bfd_set_error (bfd_error_bad_value);
4277 goto error_free_vers;
4278 }
4279 }
4280 else
4281 {
4282 /* We cannot simply test for the number of
4283 entries in the VERNEED section since the
4284 numbers for the needed versions do not start
4285 at 0. */
4286 Elf_Internal_Verneed *t;
4287
4288 verstr = NULL;
4289 for (t = elf_tdata (abfd)->verref;
4290 t != NULL;
4291 t = t->vn_nextref)
4292 {
4293 Elf_Internal_Vernaux *a;
4294
4295 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4296 {
4297 if (a->vna_other == vernum)
4298 {
4299 verstr = a->vna_nodename;
4300 break;
4301 }
4302 }
4303 if (a != NULL)
4304 break;
4305 }
4306 if (verstr == NULL)
4307 {
4308 (*_bfd_error_handler)
4309 (_("%B: %s: invalid needed version %d"),
4310 abfd, name, vernum);
4311 bfd_set_error (bfd_error_bad_value);
4312 goto error_free_vers;
4313 }
4314 }
4315
4316 namelen = strlen (name);
4317 verlen = strlen (verstr);
4318 newlen = namelen + verlen + 2;
4319 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4320 && isym->st_shndx != SHN_UNDEF)
4321 ++newlen;
4322
4323 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4324 if (newname == NULL)
4325 goto error_free_vers;
4326 memcpy (newname, name, namelen);
4327 p = newname + namelen;
4328 *p++ = ELF_VER_CHR;
4329 /* If this is a defined non-hidden version symbol,
4330 we add another @ to the name. This indicates the
4331 default version of the symbol. */
4332 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4333 && isym->st_shndx != SHN_UNDEF)
4334 *p++ = ELF_VER_CHR;
4335 memcpy (p, verstr, verlen + 1);
4336
4337 name = newname;
4338 }
4339
4340 /* If this symbol has default visibility and the user has
4341 requested we not re-export it, then mark it as hidden. */
4342 if (!bfd_is_und_section (sec)
4343 && !dynamic
4344 && abfd->no_export
4345 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4346 isym->st_other = (STV_HIDDEN
4347 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4348
4349 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4350 sym_hash, &old_bfd, &old_weak,
4351 &old_alignment, &skip, &override,
4352 &type_change_ok, &size_change_ok,
4353 &matched))
4354 goto error_free_vers;
4355
4356 if (skip)
4357 continue;
4358
4359 /* Override a definition only if the new symbol matches the
4360 existing one. */
4361 if (override && matched)
4362 definition = FALSE;
4363
4364 h = *sym_hash;
4365 while (h->root.type == bfd_link_hash_indirect
4366 || h->root.type == bfd_link_hash_warning)
4367 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4368
4369 if (elf_tdata (abfd)->verdef != NULL
4370 && vernum > 1
4371 && definition)
4372 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4373 }
4374
4375 if (! (_bfd_generic_link_add_one_symbol
4376 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4377 (struct bfd_link_hash_entry **) sym_hash)))
4378 goto error_free_vers;
4379
4380 if ((flags & BSF_GNU_UNIQUE)
4381 && (abfd->flags & DYNAMIC) == 0
4382 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4383 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4384
4385 h = *sym_hash;
4386 /* We need to make sure that indirect symbol dynamic flags are
4387 updated. */
4388 hi = h;
4389 while (h->root.type == bfd_link_hash_indirect
4390 || h->root.type == bfd_link_hash_warning)
4391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4392
4393 /* Setting the index to -3 tells elf_link_output_extsym that
4394 this symbol is defined in a discarded section. */
4395 if (discarded)
4396 h->indx = -3;
4397
4398 *sym_hash = h;
4399
4400 new_weak = (flags & BSF_WEAK) != 0;
4401 new_weakdef = FALSE;
4402 if (dynamic
4403 && definition
4404 && new_weak
4405 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4406 && is_elf_hash_table (htab)
4407 && h->u.weakdef == NULL)
4408 {
4409 /* Keep a list of all weak defined non function symbols from
4410 a dynamic object, using the weakdef field. Later in this
4411 function we will set the weakdef field to the correct
4412 value. We only put non-function symbols from dynamic
4413 objects on this list, because that happens to be the only
4414 time we need to know the normal symbol corresponding to a
4415 weak symbol, and the information is time consuming to
4416 figure out. If the weakdef field is not already NULL,
4417 then this symbol was already defined by some previous
4418 dynamic object, and we will be using that previous
4419 definition anyhow. */
4420
4421 h->u.weakdef = weaks;
4422 weaks = h;
4423 new_weakdef = TRUE;
4424 }
4425
4426 /* Set the alignment of a common symbol. */
4427 if ((common || bfd_is_com_section (sec))
4428 && h->root.type == bfd_link_hash_common)
4429 {
4430 unsigned int align;
4431
4432 if (common)
4433 align = bfd_log2 (isym->st_value);
4434 else
4435 {
4436 /* The new symbol is a common symbol in a shared object.
4437 We need to get the alignment from the section. */
4438 align = new_sec->alignment_power;
4439 }
4440 if (align > old_alignment)
4441 h->root.u.c.p->alignment_power = align;
4442 else
4443 h->root.u.c.p->alignment_power = old_alignment;
4444 }
4445
4446 if (is_elf_hash_table (htab))
4447 {
4448 /* Set a flag in the hash table entry indicating the type of
4449 reference or definition we just found. A dynamic symbol
4450 is one which is referenced or defined by both a regular
4451 object and a shared object. */
4452 bfd_boolean dynsym = FALSE;
4453
4454 /* Plugin symbols aren't normal. Don't set def_regular or
4455 ref_regular for them, or make them dynamic. */
4456 if ((abfd->flags & BFD_PLUGIN) != 0)
4457 ;
4458 else if (! dynamic)
4459 {
4460 if (! definition)
4461 {
4462 h->ref_regular = 1;
4463 if (bind != STB_WEAK)
4464 h->ref_regular_nonweak = 1;
4465 }
4466 else
4467 {
4468 h->def_regular = 1;
4469 if (h->def_dynamic)
4470 {
4471 h->def_dynamic = 0;
4472 h->ref_dynamic = 1;
4473 }
4474 }
4475
4476 /* If the indirect symbol has been forced local, don't
4477 make the real symbol dynamic. */
4478 if ((h == hi || !hi->forced_local)
4479 && (bfd_link_dll (info)
4480 || h->def_dynamic
4481 || h->ref_dynamic))
4482 dynsym = TRUE;
4483 }
4484 else
4485 {
4486 if (! definition)
4487 {
4488 h->ref_dynamic = 1;
4489 hi->ref_dynamic = 1;
4490 }
4491 else
4492 {
4493 h->def_dynamic = 1;
4494 hi->def_dynamic = 1;
4495 }
4496
4497 /* If the indirect symbol has been forced local, don't
4498 make the real symbol dynamic. */
4499 if ((h == hi || !hi->forced_local)
4500 && (h->def_regular
4501 || h->ref_regular
4502 || (h->u.weakdef != NULL
4503 && ! new_weakdef
4504 && h->u.weakdef->dynindx != -1)))
4505 dynsym = TRUE;
4506 }
4507
4508 /* Check to see if we need to add an indirect symbol for
4509 the default name. */
4510 if (definition
4511 || (!override && h->root.type == bfd_link_hash_common))
4512 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4513 sec, value, &old_bfd, &dynsym))
4514 goto error_free_vers;
4515
4516 /* Check the alignment when a common symbol is involved. This
4517 can change when a common symbol is overridden by a normal
4518 definition or a common symbol is ignored due to the old
4519 normal definition. We need to make sure the maximum
4520 alignment is maintained. */
4521 if ((old_alignment || common)
4522 && h->root.type != bfd_link_hash_common)
4523 {
4524 unsigned int common_align;
4525 unsigned int normal_align;
4526 unsigned int symbol_align;
4527 bfd *normal_bfd;
4528 bfd *common_bfd;
4529
4530 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4531 || h->root.type == bfd_link_hash_defweak);
4532
4533 symbol_align = ffs (h->root.u.def.value) - 1;
4534 if (h->root.u.def.section->owner != NULL
4535 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4536 {
4537 normal_align = h->root.u.def.section->alignment_power;
4538 if (normal_align > symbol_align)
4539 normal_align = symbol_align;
4540 }
4541 else
4542 normal_align = symbol_align;
4543
4544 if (old_alignment)
4545 {
4546 common_align = old_alignment;
4547 common_bfd = old_bfd;
4548 normal_bfd = abfd;
4549 }
4550 else
4551 {
4552 common_align = bfd_log2 (isym->st_value);
4553 common_bfd = abfd;
4554 normal_bfd = old_bfd;
4555 }
4556
4557 if (normal_align < common_align)
4558 {
4559 /* PR binutils/2735 */
4560 if (normal_bfd == NULL)
4561 (*_bfd_error_handler)
4562 (_("Warning: alignment %u of common symbol `%s' in %B is"
4563 " greater than the alignment (%u) of its section %A"),
4564 common_bfd, h->root.u.def.section,
4565 1 << common_align, name, 1 << normal_align);
4566 else
4567 (*_bfd_error_handler)
4568 (_("Warning: alignment %u of symbol `%s' in %B"
4569 " is smaller than %u in %B"),
4570 normal_bfd, common_bfd,
4571 1 << normal_align, name, 1 << common_align);
4572 }
4573 }
4574
4575 /* Remember the symbol size if it isn't undefined. */
4576 if (isym->st_size != 0
4577 && isym->st_shndx != SHN_UNDEF
4578 && (definition || h->size == 0))
4579 {
4580 if (h->size != 0
4581 && h->size != isym->st_size
4582 && ! size_change_ok)
4583 (*_bfd_error_handler)
4584 (_("Warning: size of symbol `%s' changed"
4585 " from %lu in %B to %lu in %B"),
4586 old_bfd, abfd,
4587 name, (unsigned long) h->size,
4588 (unsigned long) isym->st_size);
4589
4590 h->size = isym->st_size;
4591 }
4592
4593 /* If this is a common symbol, then we always want H->SIZE
4594 to be the size of the common symbol. The code just above
4595 won't fix the size if a common symbol becomes larger. We
4596 don't warn about a size change here, because that is
4597 covered by --warn-common. Allow changes between different
4598 function types. */
4599 if (h->root.type == bfd_link_hash_common)
4600 h->size = h->root.u.c.size;
4601
4602 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4603 && ((definition && !new_weak)
4604 || (old_weak && h->root.type == bfd_link_hash_common)
4605 || h->type == STT_NOTYPE))
4606 {
4607 unsigned int type = ELF_ST_TYPE (isym->st_info);
4608
4609 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4610 symbol. */
4611 if (type == STT_GNU_IFUNC
4612 && (abfd->flags & DYNAMIC) != 0)
4613 type = STT_FUNC;
4614
4615 if (h->type != type)
4616 {
4617 if (h->type != STT_NOTYPE && ! type_change_ok)
4618 (*_bfd_error_handler)
4619 (_("Warning: type of symbol `%s' changed"
4620 " from %d to %d in %B"),
4621 abfd, name, h->type, type);
4622
4623 h->type = type;
4624 }
4625 }
4626
4627 /* Merge st_other field. */
4628 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4629
4630 /* We don't want to make debug symbol dynamic. */
4631 if (definition
4632 && (sec->flags & SEC_DEBUGGING)
4633 && !bfd_link_relocatable (info))
4634 dynsym = FALSE;
4635
4636 /* Nor should we make plugin symbols dynamic. */
4637 if ((abfd->flags & BFD_PLUGIN) != 0)
4638 dynsym = FALSE;
4639
4640 if (definition)
4641 {
4642 h->target_internal = isym->st_target_internal;
4643 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4644 }
4645
4646 if (definition && !dynamic)
4647 {
4648 char *p = strchr (name, ELF_VER_CHR);
4649 if (p != NULL && p[1] != ELF_VER_CHR)
4650 {
4651 /* Queue non-default versions so that .symver x, x@FOO
4652 aliases can be checked. */
4653 if (!nondeflt_vers)
4654 {
4655 amt = ((isymend - isym + 1)
4656 * sizeof (struct elf_link_hash_entry *));
4657 nondeflt_vers
4658 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4659 if (!nondeflt_vers)
4660 goto error_free_vers;
4661 }
4662 nondeflt_vers[nondeflt_vers_cnt++] = h;
4663 }
4664 }
4665
4666 if (dynsym && h->dynindx == -1)
4667 {
4668 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4669 goto error_free_vers;
4670 if (h->u.weakdef != NULL
4671 && ! new_weakdef
4672 && h->u.weakdef->dynindx == -1)
4673 {
4674 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4675 goto error_free_vers;
4676 }
4677 }
4678 else if (h->dynindx != -1)
4679 /* If the symbol already has a dynamic index, but
4680 visibility says it should not be visible, turn it into
4681 a local symbol. */
4682 switch (ELF_ST_VISIBILITY (h->other))
4683 {
4684 case STV_INTERNAL:
4685 case STV_HIDDEN:
4686 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4687 dynsym = FALSE;
4688 break;
4689 }
4690
4691 /* Don't add DT_NEEDED for references from the dummy bfd nor
4692 for unmatched symbol. */
4693 if (!add_needed
4694 && matched
4695 && definition
4696 && ((dynsym
4697 && h->ref_regular_nonweak
4698 && (old_bfd == NULL
4699 || (old_bfd->flags & BFD_PLUGIN) == 0))
4700 || (h->ref_dynamic_nonweak
4701 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4702 && !on_needed_list (elf_dt_name (abfd),
4703 htab->needed, NULL))))
4704 {
4705 int ret;
4706 const char *soname = elf_dt_name (abfd);
4707
4708 info->callbacks->minfo ("%!", soname, old_bfd,
4709 h->root.root.string);
4710
4711 /* A symbol from a library loaded via DT_NEEDED of some
4712 other library is referenced by a regular object.
4713 Add a DT_NEEDED entry for it. Issue an error if
4714 --no-add-needed is used and the reference was not
4715 a weak one. */
4716 if (old_bfd != NULL
4717 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4718 {
4719 (*_bfd_error_handler)
4720 (_("%B: undefined reference to symbol '%s'"),
4721 old_bfd, name);
4722 bfd_set_error (bfd_error_missing_dso);
4723 goto error_free_vers;
4724 }
4725
4726 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4727 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4728
4729 add_needed = TRUE;
4730 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4731 if (ret < 0)
4732 goto error_free_vers;
4733
4734 BFD_ASSERT (ret == 0);
4735 }
4736 }
4737 }
4738
4739 if (extversym != NULL)
4740 {
4741 free (extversym);
4742 extversym = NULL;
4743 }
4744
4745 if (isymbuf != NULL)
4746 {
4747 free (isymbuf);
4748 isymbuf = NULL;
4749 }
4750
4751 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4752 {
4753 unsigned int i;
4754
4755 /* Restore the symbol table. */
4756 old_ent = (char *) old_tab + tabsize;
4757 memset (elf_sym_hashes (abfd), 0,
4758 extsymcount * sizeof (struct elf_link_hash_entry *));
4759 htab->root.table.table = old_table;
4760 htab->root.table.size = old_size;
4761 htab->root.table.count = old_count;
4762 memcpy (htab->root.table.table, old_tab, tabsize);
4763 htab->root.undefs = old_undefs;
4764 htab->root.undefs_tail = old_undefs_tail;
4765 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4766 for (i = 0; i < htab->root.table.size; i++)
4767 {
4768 struct bfd_hash_entry *p;
4769 struct elf_link_hash_entry *h;
4770 bfd_size_type size;
4771 unsigned int alignment_power;
4772
4773 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4774 {
4775 h = (struct elf_link_hash_entry *) p;
4776 if (h->root.type == bfd_link_hash_warning)
4777 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4778 if (h->dynindx >= old_dynsymcount
4779 && h->dynstr_index < old_dynstr_size)
4780 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4781
4782 /* Preserve the maximum alignment and size for common
4783 symbols even if this dynamic lib isn't on DT_NEEDED
4784 since it can still be loaded at run time by another
4785 dynamic lib. */
4786 if (h->root.type == bfd_link_hash_common)
4787 {
4788 size = h->root.u.c.size;
4789 alignment_power = h->root.u.c.p->alignment_power;
4790 }
4791 else
4792 {
4793 size = 0;
4794 alignment_power = 0;
4795 }
4796 memcpy (p, old_ent, htab->root.table.entsize);
4797 old_ent = (char *) old_ent + htab->root.table.entsize;
4798 h = (struct elf_link_hash_entry *) p;
4799 if (h->root.type == bfd_link_hash_warning)
4800 {
4801 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4802 old_ent = (char *) old_ent + htab->root.table.entsize;
4803 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4804 }
4805 if (h->root.type == bfd_link_hash_common)
4806 {
4807 if (size > h->root.u.c.size)
4808 h->root.u.c.size = size;
4809 if (alignment_power > h->root.u.c.p->alignment_power)
4810 h->root.u.c.p->alignment_power = alignment_power;
4811 }
4812 }
4813 }
4814
4815 /* Make a special call to the linker "notice" function to
4816 tell it that symbols added for crefs may need to be removed. */
4817 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4818 goto error_free_vers;
4819
4820 free (old_tab);
4821 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4822 alloc_mark);
4823 if (nondeflt_vers != NULL)
4824 free (nondeflt_vers);
4825 return TRUE;
4826 }
4827
4828 if (old_tab != NULL)
4829 {
4830 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4831 goto error_free_vers;
4832 free (old_tab);
4833 old_tab = NULL;
4834 }
4835
4836 /* Now that all the symbols from this input file are created, if
4837 not performing a relocatable link, handle .symver foo, foo@BAR
4838 such that any relocs against foo become foo@BAR. */
4839 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4840 {
4841 bfd_size_type cnt, symidx;
4842
4843 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4844 {
4845 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4846 char *shortname, *p;
4847
4848 p = strchr (h->root.root.string, ELF_VER_CHR);
4849 if (p == NULL
4850 || (h->root.type != bfd_link_hash_defined
4851 && h->root.type != bfd_link_hash_defweak))
4852 continue;
4853
4854 amt = p - h->root.root.string;
4855 shortname = (char *) bfd_malloc (amt + 1);
4856 if (!shortname)
4857 goto error_free_vers;
4858 memcpy (shortname, h->root.root.string, amt);
4859 shortname[amt] = '\0';
4860
4861 hi = (struct elf_link_hash_entry *)
4862 bfd_link_hash_lookup (&htab->root, shortname,
4863 FALSE, FALSE, FALSE);
4864 if (hi != NULL
4865 && hi->root.type == h->root.type
4866 && hi->root.u.def.value == h->root.u.def.value
4867 && hi->root.u.def.section == h->root.u.def.section)
4868 {
4869 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4870 hi->root.type = bfd_link_hash_indirect;
4871 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4872 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4873 sym_hash = elf_sym_hashes (abfd);
4874 if (sym_hash)
4875 for (symidx = 0; symidx < extsymcount; ++symidx)
4876 if (sym_hash[symidx] == hi)
4877 {
4878 sym_hash[symidx] = h;
4879 break;
4880 }
4881 }
4882 free (shortname);
4883 }
4884 free (nondeflt_vers);
4885 nondeflt_vers = NULL;
4886 }
4887
4888 /* Now set the weakdefs field correctly for all the weak defined
4889 symbols we found. The only way to do this is to search all the
4890 symbols. Since we only need the information for non functions in
4891 dynamic objects, that's the only time we actually put anything on
4892 the list WEAKS. We need this information so that if a regular
4893 object refers to a symbol defined weakly in a dynamic object, the
4894 real symbol in the dynamic object is also put in the dynamic
4895 symbols; we also must arrange for both symbols to point to the
4896 same memory location. We could handle the general case of symbol
4897 aliasing, but a general symbol alias can only be generated in
4898 assembler code, handling it correctly would be very time
4899 consuming, and other ELF linkers don't handle general aliasing
4900 either. */
4901 if (weaks != NULL)
4902 {
4903 struct elf_link_hash_entry **hpp;
4904 struct elf_link_hash_entry **hppend;
4905 struct elf_link_hash_entry **sorted_sym_hash;
4906 struct elf_link_hash_entry *h;
4907 size_t sym_count;
4908
4909 /* Since we have to search the whole symbol list for each weak
4910 defined symbol, search time for N weak defined symbols will be
4911 O(N^2). Binary search will cut it down to O(NlogN). */
4912 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4913 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4914 if (sorted_sym_hash == NULL)
4915 goto error_return;
4916 sym_hash = sorted_sym_hash;
4917 hpp = elf_sym_hashes (abfd);
4918 hppend = hpp + extsymcount;
4919 sym_count = 0;
4920 for (; hpp < hppend; hpp++)
4921 {
4922 h = *hpp;
4923 if (h != NULL
4924 && h->root.type == bfd_link_hash_defined
4925 && !bed->is_function_type (h->type))
4926 {
4927 *sym_hash = h;
4928 sym_hash++;
4929 sym_count++;
4930 }
4931 }
4932
4933 qsort (sorted_sym_hash, sym_count,
4934 sizeof (struct elf_link_hash_entry *),
4935 elf_sort_symbol);
4936
4937 while (weaks != NULL)
4938 {
4939 struct elf_link_hash_entry *hlook;
4940 asection *slook;
4941 bfd_vma vlook;
4942 size_t i, j, idx = 0;
4943
4944 hlook = weaks;
4945 weaks = hlook->u.weakdef;
4946 hlook->u.weakdef = NULL;
4947
4948 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4949 || hlook->root.type == bfd_link_hash_defweak
4950 || hlook->root.type == bfd_link_hash_common
4951 || hlook->root.type == bfd_link_hash_indirect);
4952 slook = hlook->root.u.def.section;
4953 vlook = hlook->root.u.def.value;
4954
4955 i = 0;
4956 j = sym_count;
4957 while (i != j)
4958 {
4959 bfd_signed_vma vdiff;
4960 idx = (i + j) / 2;
4961 h = sorted_sym_hash[idx];
4962 vdiff = vlook - h->root.u.def.value;
4963 if (vdiff < 0)
4964 j = idx;
4965 else if (vdiff > 0)
4966 i = idx + 1;
4967 else
4968 {
4969 int sdiff = slook->id - h->root.u.def.section->id;
4970 if (sdiff < 0)
4971 j = idx;
4972 else if (sdiff > 0)
4973 i = idx + 1;
4974 else
4975 break;
4976 }
4977 }
4978
4979 /* We didn't find a value/section match. */
4980 if (i == j)
4981 continue;
4982
4983 /* With multiple aliases, or when the weak symbol is already
4984 strongly defined, we have multiple matching symbols and
4985 the binary search above may land on any of them. Step
4986 one past the matching symbol(s). */
4987 while (++idx != j)
4988 {
4989 h = sorted_sym_hash[idx];
4990 if (h->root.u.def.section != slook
4991 || h->root.u.def.value != vlook)
4992 break;
4993 }
4994
4995 /* Now look back over the aliases. Since we sorted by size
4996 as well as value and section, we'll choose the one with
4997 the largest size. */
4998 while (idx-- != i)
4999 {
5000 h = sorted_sym_hash[idx];
5001
5002 /* Stop if value or section doesn't match. */
5003 if (h->root.u.def.section != slook
5004 || h->root.u.def.value != vlook)
5005 break;
5006 else if (h != hlook)
5007 {
5008 hlook->u.weakdef = h;
5009
5010 /* If the weak definition is in the list of dynamic
5011 symbols, make sure the real definition is put
5012 there as well. */
5013 if (hlook->dynindx != -1 && h->dynindx == -1)
5014 {
5015 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5016 {
5017 err_free_sym_hash:
5018 free (sorted_sym_hash);
5019 goto error_return;
5020 }
5021 }
5022
5023 /* If the real definition is in the list of dynamic
5024 symbols, make sure the weak definition is put
5025 there as well. If we don't do this, then the
5026 dynamic loader might not merge the entries for the
5027 real definition and the weak definition. */
5028 if (h->dynindx != -1 && hlook->dynindx == -1)
5029 {
5030 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5031 goto err_free_sym_hash;
5032 }
5033 break;
5034 }
5035 }
5036 }
5037
5038 free (sorted_sym_hash);
5039 }
5040
5041 if (bed->check_directives
5042 && !(*bed->check_directives) (abfd, info))
5043 return FALSE;
5044
5045 if (!info->check_relocs_after_open_input
5046 && !_bfd_elf_link_check_relocs (abfd, info))
5047 return FALSE;
5048
5049 /* If this is a non-traditional link, try to optimize the handling
5050 of the .stab/.stabstr sections. */
5051 if (! dynamic
5052 && ! info->traditional_format
5053 && is_elf_hash_table (htab)
5054 && (info->strip != strip_all && info->strip != strip_debugger))
5055 {
5056 asection *stabstr;
5057
5058 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5059 if (stabstr != NULL)
5060 {
5061 bfd_size_type string_offset = 0;
5062 asection *stab;
5063
5064 for (stab = abfd->sections; stab; stab = stab->next)
5065 if (CONST_STRNEQ (stab->name, ".stab")
5066 && (!stab->name[5] ||
5067 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5068 && (stab->flags & SEC_MERGE) == 0
5069 && !bfd_is_abs_section (stab->output_section))
5070 {
5071 struct bfd_elf_section_data *secdata;
5072
5073 secdata = elf_section_data (stab);
5074 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5075 stabstr, &secdata->sec_info,
5076 &string_offset))
5077 goto error_return;
5078 if (secdata->sec_info)
5079 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5080 }
5081 }
5082 }
5083
5084 if (is_elf_hash_table (htab) && add_needed)
5085 {
5086 /* Add this bfd to the loaded list. */
5087 struct elf_link_loaded_list *n;
5088
5089 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5090 if (n == NULL)
5091 goto error_return;
5092 n->abfd = abfd;
5093 n->next = htab->loaded;
5094 htab->loaded = n;
5095 }
5096
5097 return TRUE;
5098
5099 error_free_vers:
5100 if (old_tab != NULL)
5101 free (old_tab);
5102 if (nondeflt_vers != NULL)
5103 free (nondeflt_vers);
5104 if (extversym != NULL)
5105 free (extversym);
5106 error_free_sym:
5107 if (isymbuf != NULL)
5108 free (isymbuf);
5109 error_return:
5110 return FALSE;
5111 }
5112
5113 /* Return the linker hash table entry of a symbol that might be
5114 satisfied by an archive symbol. Return -1 on error. */
5115
5116 struct elf_link_hash_entry *
5117 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5118 struct bfd_link_info *info,
5119 const char *name)
5120 {
5121 struct elf_link_hash_entry *h;
5122 char *p, *copy;
5123 size_t len, first;
5124
5125 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5126 if (h != NULL)
5127 return h;
5128
5129 /* If this is a default version (the name contains @@), look up the
5130 symbol again with only one `@' as well as without the version.
5131 The effect is that references to the symbol with and without the
5132 version will be matched by the default symbol in the archive. */
5133
5134 p = strchr (name, ELF_VER_CHR);
5135 if (p == NULL || p[1] != ELF_VER_CHR)
5136 return h;
5137
5138 /* First check with only one `@'. */
5139 len = strlen (name);
5140 copy = (char *) bfd_alloc (abfd, len);
5141 if (copy == NULL)
5142 return (struct elf_link_hash_entry *) 0 - 1;
5143
5144 first = p - name + 1;
5145 memcpy (copy, name, first);
5146 memcpy (copy + first, name + first + 1, len - first);
5147
5148 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5149 if (h == NULL)
5150 {
5151 /* We also need to check references to the symbol without the
5152 version. */
5153 copy[first - 1] = '\0';
5154 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5155 FALSE, FALSE, TRUE);
5156 }
5157
5158 bfd_release (abfd, copy);
5159 return h;
5160 }
5161
5162 /* Add symbols from an ELF archive file to the linker hash table. We
5163 don't use _bfd_generic_link_add_archive_symbols because we need to
5164 handle versioned symbols.
5165
5166 Fortunately, ELF archive handling is simpler than that done by
5167 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5168 oddities. In ELF, if we find a symbol in the archive map, and the
5169 symbol is currently undefined, we know that we must pull in that
5170 object file.
5171
5172 Unfortunately, we do have to make multiple passes over the symbol
5173 table until nothing further is resolved. */
5174
5175 static bfd_boolean
5176 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5177 {
5178 symindex c;
5179 unsigned char *included = NULL;
5180 carsym *symdefs;
5181 bfd_boolean loop;
5182 bfd_size_type amt;
5183 const struct elf_backend_data *bed;
5184 struct elf_link_hash_entry * (*archive_symbol_lookup)
5185 (bfd *, struct bfd_link_info *, const char *);
5186
5187 if (! bfd_has_map (abfd))
5188 {
5189 /* An empty archive is a special case. */
5190 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5191 return TRUE;
5192 bfd_set_error (bfd_error_no_armap);
5193 return FALSE;
5194 }
5195
5196 /* Keep track of all symbols we know to be already defined, and all
5197 files we know to be already included. This is to speed up the
5198 second and subsequent passes. */
5199 c = bfd_ardata (abfd)->symdef_count;
5200 if (c == 0)
5201 return TRUE;
5202 amt = c;
5203 amt *= sizeof (*included);
5204 included = (unsigned char *) bfd_zmalloc (amt);
5205 if (included == NULL)
5206 return FALSE;
5207
5208 symdefs = bfd_ardata (abfd)->symdefs;
5209 bed = get_elf_backend_data (abfd);
5210 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5211
5212 do
5213 {
5214 file_ptr last;
5215 symindex i;
5216 carsym *symdef;
5217 carsym *symdefend;
5218
5219 loop = FALSE;
5220 last = -1;
5221
5222 symdef = symdefs;
5223 symdefend = symdef + c;
5224 for (i = 0; symdef < symdefend; symdef++, i++)
5225 {
5226 struct elf_link_hash_entry *h;
5227 bfd *element;
5228 struct bfd_link_hash_entry *undefs_tail;
5229 symindex mark;
5230
5231 if (included[i])
5232 continue;
5233 if (symdef->file_offset == last)
5234 {
5235 included[i] = TRUE;
5236 continue;
5237 }
5238
5239 h = archive_symbol_lookup (abfd, info, symdef->name);
5240 if (h == (struct elf_link_hash_entry *) 0 - 1)
5241 goto error_return;
5242
5243 if (h == NULL)
5244 continue;
5245
5246 if (h->root.type == bfd_link_hash_common)
5247 {
5248 /* We currently have a common symbol. The archive map contains
5249 a reference to this symbol, so we may want to include it. We
5250 only want to include it however, if this archive element
5251 contains a definition of the symbol, not just another common
5252 declaration of it.
5253
5254 Unfortunately some archivers (including GNU ar) will put
5255 declarations of common symbols into their archive maps, as
5256 well as real definitions, so we cannot just go by the archive
5257 map alone. Instead we must read in the element's symbol
5258 table and check that to see what kind of symbol definition
5259 this is. */
5260 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5261 continue;
5262 }
5263 else if (h->root.type != bfd_link_hash_undefined)
5264 {
5265 if (h->root.type != bfd_link_hash_undefweak)
5266 /* Symbol must be defined. Don't check it again. */
5267 included[i] = TRUE;
5268 continue;
5269 }
5270
5271 /* We need to include this archive member. */
5272 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5273 if (element == NULL)
5274 goto error_return;
5275
5276 if (! bfd_check_format (element, bfd_object))
5277 goto error_return;
5278
5279 undefs_tail = info->hash->undefs_tail;
5280
5281 if (!(*info->callbacks
5282 ->add_archive_element) (info, element, symdef->name, &element))
5283 continue;
5284 if (!bfd_link_add_symbols (element, info))
5285 goto error_return;
5286
5287 /* If there are any new undefined symbols, we need to make
5288 another pass through the archive in order to see whether
5289 they can be defined. FIXME: This isn't perfect, because
5290 common symbols wind up on undefs_tail and because an
5291 undefined symbol which is defined later on in this pass
5292 does not require another pass. This isn't a bug, but it
5293 does make the code less efficient than it could be. */
5294 if (undefs_tail != info->hash->undefs_tail)
5295 loop = TRUE;
5296
5297 /* Look backward to mark all symbols from this object file
5298 which we have already seen in this pass. */
5299 mark = i;
5300 do
5301 {
5302 included[mark] = TRUE;
5303 if (mark == 0)
5304 break;
5305 --mark;
5306 }
5307 while (symdefs[mark].file_offset == symdef->file_offset);
5308
5309 /* We mark subsequent symbols from this object file as we go
5310 on through the loop. */
5311 last = symdef->file_offset;
5312 }
5313 }
5314 while (loop);
5315
5316 free (included);
5317
5318 return TRUE;
5319
5320 error_return:
5321 if (included != NULL)
5322 free (included);
5323 return FALSE;
5324 }
5325
5326 /* Given an ELF BFD, add symbols to the global hash table as
5327 appropriate. */
5328
5329 bfd_boolean
5330 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5331 {
5332 switch (bfd_get_format (abfd))
5333 {
5334 case bfd_object:
5335 return elf_link_add_object_symbols (abfd, info);
5336 case bfd_archive:
5337 return elf_link_add_archive_symbols (abfd, info);
5338 default:
5339 bfd_set_error (bfd_error_wrong_format);
5340 return FALSE;
5341 }
5342 }
5343 \f
5344 struct hash_codes_info
5345 {
5346 unsigned long *hashcodes;
5347 bfd_boolean error;
5348 };
5349
5350 /* This function will be called though elf_link_hash_traverse to store
5351 all hash value of the exported symbols in an array. */
5352
5353 static bfd_boolean
5354 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5355 {
5356 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5357 const char *name;
5358 unsigned long ha;
5359 char *alc = NULL;
5360
5361 /* Ignore indirect symbols. These are added by the versioning code. */
5362 if (h->dynindx == -1)
5363 return TRUE;
5364
5365 name = h->root.root.string;
5366 if (h->versioned >= versioned)
5367 {
5368 char *p = strchr (name, ELF_VER_CHR);
5369 if (p != NULL)
5370 {
5371 alc = (char *) bfd_malloc (p - name + 1);
5372 if (alc == NULL)
5373 {
5374 inf->error = TRUE;
5375 return FALSE;
5376 }
5377 memcpy (alc, name, p - name);
5378 alc[p - name] = '\0';
5379 name = alc;
5380 }
5381 }
5382
5383 /* Compute the hash value. */
5384 ha = bfd_elf_hash (name);
5385
5386 /* Store the found hash value in the array given as the argument. */
5387 *(inf->hashcodes)++ = ha;
5388
5389 /* And store it in the struct so that we can put it in the hash table
5390 later. */
5391 h->u.elf_hash_value = ha;
5392
5393 if (alc != NULL)
5394 free (alc);
5395
5396 return TRUE;
5397 }
5398
5399 struct collect_gnu_hash_codes
5400 {
5401 bfd *output_bfd;
5402 const struct elf_backend_data *bed;
5403 unsigned long int nsyms;
5404 unsigned long int maskbits;
5405 unsigned long int *hashcodes;
5406 unsigned long int *hashval;
5407 unsigned long int *indx;
5408 unsigned long int *counts;
5409 bfd_vma *bitmask;
5410 bfd_byte *contents;
5411 long int min_dynindx;
5412 unsigned long int bucketcount;
5413 unsigned long int symindx;
5414 long int local_indx;
5415 long int shift1, shift2;
5416 unsigned long int mask;
5417 bfd_boolean error;
5418 };
5419
5420 /* This function will be called though elf_link_hash_traverse to store
5421 all hash value of the exported symbols in an array. */
5422
5423 static bfd_boolean
5424 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5425 {
5426 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5427 const char *name;
5428 unsigned long ha;
5429 char *alc = NULL;
5430
5431 /* Ignore indirect symbols. These are added by the versioning code. */
5432 if (h->dynindx == -1)
5433 return TRUE;
5434
5435 /* Ignore also local symbols and undefined symbols. */
5436 if (! (*s->bed->elf_hash_symbol) (h))
5437 return TRUE;
5438
5439 name = h->root.root.string;
5440 if (h->versioned >= versioned)
5441 {
5442 char *p = strchr (name, ELF_VER_CHR);
5443 if (p != NULL)
5444 {
5445 alc = (char *) bfd_malloc (p - name + 1);
5446 if (alc == NULL)
5447 {
5448 s->error = TRUE;
5449 return FALSE;
5450 }
5451 memcpy (alc, name, p - name);
5452 alc[p - name] = '\0';
5453 name = alc;
5454 }
5455 }
5456
5457 /* Compute the hash value. */
5458 ha = bfd_elf_gnu_hash (name);
5459
5460 /* Store the found hash value in the array for compute_bucket_count,
5461 and also for .dynsym reordering purposes. */
5462 s->hashcodes[s->nsyms] = ha;
5463 s->hashval[h->dynindx] = ha;
5464 ++s->nsyms;
5465 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5466 s->min_dynindx = h->dynindx;
5467
5468 if (alc != NULL)
5469 free (alc);
5470
5471 return TRUE;
5472 }
5473
5474 /* This function will be called though elf_link_hash_traverse to do
5475 final dynaminc symbol renumbering. */
5476
5477 static bfd_boolean
5478 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5479 {
5480 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5481 unsigned long int bucket;
5482 unsigned long int val;
5483
5484 /* Ignore indirect symbols. */
5485 if (h->dynindx == -1)
5486 return TRUE;
5487
5488 /* Ignore also local symbols and undefined symbols. */
5489 if (! (*s->bed->elf_hash_symbol) (h))
5490 {
5491 if (h->dynindx >= s->min_dynindx)
5492 h->dynindx = s->local_indx++;
5493 return TRUE;
5494 }
5495
5496 bucket = s->hashval[h->dynindx] % s->bucketcount;
5497 val = (s->hashval[h->dynindx] >> s->shift1)
5498 & ((s->maskbits >> s->shift1) - 1);
5499 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5500 s->bitmask[val]
5501 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5502 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5503 if (s->counts[bucket] == 1)
5504 /* Last element terminates the chain. */
5505 val |= 1;
5506 bfd_put_32 (s->output_bfd, val,
5507 s->contents + (s->indx[bucket] - s->symindx) * 4);
5508 --s->counts[bucket];
5509 h->dynindx = s->indx[bucket]++;
5510 return TRUE;
5511 }
5512
5513 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5514
5515 bfd_boolean
5516 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5517 {
5518 return !(h->forced_local
5519 || h->root.type == bfd_link_hash_undefined
5520 || h->root.type == bfd_link_hash_undefweak
5521 || ((h->root.type == bfd_link_hash_defined
5522 || h->root.type == bfd_link_hash_defweak)
5523 && h->root.u.def.section->output_section == NULL));
5524 }
5525
5526 /* Array used to determine the number of hash table buckets to use
5527 based on the number of symbols there are. If there are fewer than
5528 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5529 fewer than 37 we use 17 buckets, and so forth. We never use more
5530 than 32771 buckets. */
5531
5532 static const size_t elf_buckets[] =
5533 {
5534 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5535 16411, 32771, 0
5536 };
5537
5538 /* Compute bucket count for hashing table. We do not use a static set
5539 of possible tables sizes anymore. Instead we determine for all
5540 possible reasonable sizes of the table the outcome (i.e., the
5541 number of collisions etc) and choose the best solution. The
5542 weighting functions are not too simple to allow the table to grow
5543 without bounds. Instead one of the weighting factors is the size.
5544 Therefore the result is always a good payoff between few collisions
5545 (= short chain lengths) and table size. */
5546 static size_t
5547 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5548 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5549 unsigned long int nsyms,
5550 int gnu_hash)
5551 {
5552 size_t best_size = 0;
5553 unsigned long int i;
5554
5555 /* We have a problem here. The following code to optimize the table
5556 size requires an integer type with more the 32 bits. If
5557 BFD_HOST_U_64_BIT is set we know about such a type. */
5558 #ifdef BFD_HOST_U_64_BIT
5559 if (info->optimize)
5560 {
5561 size_t minsize;
5562 size_t maxsize;
5563 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5564 bfd *dynobj = elf_hash_table (info)->dynobj;
5565 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5566 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5567 unsigned long int *counts;
5568 bfd_size_type amt;
5569 unsigned int no_improvement_count = 0;
5570
5571 /* Possible optimization parameters: if we have NSYMS symbols we say
5572 that the hashing table must at least have NSYMS/4 and at most
5573 2*NSYMS buckets. */
5574 minsize = nsyms / 4;
5575 if (minsize == 0)
5576 minsize = 1;
5577 best_size = maxsize = nsyms * 2;
5578 if (gnu_hash)
5579 {
5580 if (minsize < 2)
5581 minsize = 2;
5582 if ((best_size & 31) == 0)
5583 ++best_size;
5584 }
5585
5586 /* Create array where we count the collisions in. We must use bfd_malloc
5587 since the size could be large. */
5588 amt = maxsize;
5589 amt *= sizeof (unsigned long int);
5590 counts = (unsigned long int *) bfd_malloc (amt);
5591 if (counts == NULL)
5592 return 0;
5593
5594 /* Compute the "optimal" size for the hash table. The criteria is a
5595 minimal chain length. The minor criteria is (of course) the size
5596 of the table. */
5597 for (i = minsize; i < maxsize; ++i)
5598 {
5599 /* Walk through the array of hashcodes and count the collisions. */
5600 BFD_HOST_U_64_BIT max;
5601 unsigned long int j;
5602 unsigned long int fact;
5603
5604 if (gnu_hash && (i & 31) == 0)
5605 continue;
5606
5607 memset (counts, '\0', i * sizeof (unsigned long int));
5608
5609 /* Determine how often each hash bucket is used. */
5610 for (j = 0; j < nsyms; ++j)
5611 ++counts[hashcodes[j] % i];
5612
5613 /* For the weight function we need some information about the
5614 pagesize on the target. This is information need not be 100%
5615 accurate. Since this information is not available (so far) we
5616 define it here to a reasonable default value. If it is crucial
5617 to have a better value some day simply define this value. */
5618 # ifndef BFD_TARGET_PAGESIZE
5619 # define BFD_TARGET_PAGESIZE (4096)
5620 # endif
5621
5622 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5623 and the chains. */
5624 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5625
5626 # if 1
5627 /* Variant 1: optimize for short chains. We add the squares
5628 of all the chain lengths (which favors many small chain
5629 over a few long chains). */
5630 for (j = 0; j < i; ++j)
5631 max += counts[j] * counts[j];
5632
5633 /* This adds penalties for the overall size of the table. */
5634 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5635 max *= fact * fact;
5636 # else
5637 /* Variant 2: Optimize a lot more for small table. Here we
5638 also add squares of the size but we also add penalties for
5639 empty slots (the +1 term). */
5640 for (j = 0; j < i; ++j)
5641 max += (1 + counts[j]) * (1 + counts[j]);
5642
5643 /* The overall size of the table is considered, but not as
5644 strong as in variant 1, where it is squared. */
5645 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5646 max *= fact;
5647 # endif
5648
5649 /* Compare with current best results. */
5650 if (max < best_chlen)
5651 {
5652 best_chlen = max;
5653 best_size = i;
5654 no_improvement_count = 0;
5655 }
5656 /* PR 11843: Avoid futile long searches for the best bucket size
5657 when there are a large number of symbols. */
5658 else if (++no_improvement_count == 100)
5659 break;
5660 }
5661
5662 free (counts);
5663 }
5664 else
5665 #endif /* defined (BFD_HOST_U_64_BIT) */
5666 {
5667 /* This is the fallback solution if no 64bit type is available or if we
5668 are not supposed to spend much time on optimizations. We select the
5669 bucket count using a fixed set of numbers. */
5670 for (i = 0; elf_buckets[i] != 0; i++)
5671 {
5672 best_size = elf_buckets[i];
5673 if (nsyms < elf_buckets[i + 1])
5674 break;
5675 }
5676 if (gnu_hash && best_size < 2)
5677 best_size = 2;
5678 }
5679
5680 return best_size;
5681 }
5682
5683 /* Size any SHT_GROUP section for ld -r. */
5684
5685 bfd_boolean
5686 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5687 {
5688 bfd *ibfd;
5689
5690 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5691 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5692 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5693 return FALSE;
5694 return TRUE;
5695 }
5696
5697 /* Set a default stack segment size. The value in INFO wins. If it
5698 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5699 undefined it is initialized. */
5700
5701 bfd_boolean
5702 bfd_elf_stack_segment_size (bfd *output_bfd,
5703 struct bfd_link_info *info,
5704 const char *legacy_symbol,
5705 bfd_vma default_size)
5706 {
5707 struct elf_link_hash_entry *h = NULL;
5708
5709 /* Look for legacy symbol. */
5710 if (legacy_symbol)
5711 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5712 FALSE, FALSE, FALSE);
5713 if (h && (h->root.type == bfd_link_hash_defined
5714 || h->root.type == bfd_link_hash_defweak)
5715 && h->def_regular
5716 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5717 {
5718 /* The symbol has no type if specified on the command line. */
5719 h->type = STT_OBJECT;
5720 if (info->stacksize)
5721 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5722 output_bfd, legacy_symbol);
5723 else if (h->root.u.def.section != bfd_abs_section_ptr)
5724 (*_bfd_error_handler) (_("%B: %s not absolute"),
5725 output_bfd, legacy_symbol);
5726 else
5727 info->stacksize = h->root.u.def.value;
5728 }
5729
5730 if (!info->stacksize)
5731 /* If the user didn't set a size, or explicitly inhibit the
5732 size, set it now. */
5733 info->stacksize = default_size;
5734
5735 /* Provide the legacy symbol, if it is referenced. */
5736 if (h && (h->root.type == bfd_link_hash_undefined
5737 || h->root.type == bfd_link_hash_undefweak))
5738 {
5739 struct bfd_link_hash_entry *bh = NULL;
5740
5741 if (!(_bfd_generic_link_add_one_symbol
5742 (info, output_bfd, legacy_symbol,
5743 BSF_GLOBAL, bfd_abs_section_ptr,
5744 info->stacksize >= 0 ? info->stacksize : 0,
5745 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5746 return FALSE;
5747
5748 h = (struct elf_link_hash_entry *) bh;
5749 h->def_regular = 1;
5750 h->type = STT_OBJECT;
5751 }
5752
5753 return TRUE;
5754 }
5755
5756 /* Set up the sizes and contents of the ELF dynamic sections. This is
5757 called by the ELF linker emulation before_allocation routine. We
5758 must set the sizes of the sections before the linker sets the
5759 addresses of the various sections. */
5760
5761 bfd_boolean
5762 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5763 const char *soname,
5764 const char *rpath,
5765 const char *filter_shlib,
5766 const char *audit,
5767 const char *depaudit,
5768 const char * const *auxiliary_filters,
5769 struct bfd_link_info *info,
5770 asection **sinterpptr)
5771 {
5772 bfd_size_type soname_indx;
5773 bfd *dynobj;
5774 const struct elf_backend_data *bed;
5775 struct elf_info_failed asvinfo;
5776
5777 *sinterpptr = NULL;
5778
5779 soname_indx = (bfd_size_type) -1;
5780
5781 if (!is_elf_hash_table (info->hash))
5782 return TRUE;
5783
5784 bed = get_elf_backend_data (output_bfd);
5785
5786 /* Any syms created from now on start with -1 in
5787 got.refcount/offset and plt.refcount/offset. */
5788 elf_hash_table (info)->init_got_refcount
5789 = elf_hash_table (info)->init_got_offset;
5790 elf_hash_table (info)->init_plt_refcount
5791 = elf_hash_table (info)->init_plt_offset;
5792
5793 if (bfd_link_relocatable (info)
5794 && !_bfd_elf_size_group_sections (info))
5795 return FALSE;
5796
5797 /* The backend may have to create some sections regardless of whether
5798 we're dynamic or not. */
5799 if (bed->elf_backend_always_size_sections
5800 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5801 return FALSE;
5802
5803 /* Determine any GNU_STACK segment requirements, after the backend
5804 has had a chance to set a default segment size. */
5805 if (info->execstack)
5806 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5807 else if (info->noexecstack)
5808 elf_stack_flags (output_bfd) = PF_R | PF_W;
5809 else
5810 {
5811 bfd *inputobj;
5812 asection *notesec = NULL;
5813 int exec = 0;
5814
5815 for (inputobj = info->input_bfds;
5816 inputobj;
5817 inputobj = inputobj->link.next)
5818 {
5819 asection *s;
5820
5821 if (inputobj->flags
5822 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5823 continue;
5824 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5825 if (s)
5826 {
5827 if (s->flags & SEC_CODE)
5828 exec = PF_X;
5829 notesec = s;
5830 }
5831 else if (bed->default_execstack)
5832 exec = PF_X;
5833 }
5834 if (notesec || info->stacksize > 0)
5835 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5836 if (notesec && exec && bfd_link_relocatable (info)
5837 && notesec->output_section != bfd_abs_section_ptr)
5838 notesec->output_section->flags |= SEC_CODE;
5839 }
5840
5841 dynobj = elf_hash_table (info)->dynobj;
5842
5843 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5844 {
5845 struct elf_info_failed eif;
5846 struct elf_link_hash_entry *h;
5847 asection *dynstr;
5848 struct bfd_elf_version_tree *t;
5849 struct bfd_elf_version_expr *d;
5850 asection *s;
5851 bfd_boolean all_defined;
5852
5853 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5854 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5855
5856 if (soname != NULL)
5857 {
5858 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5859 soname, TRUE);
5860 if (soname_indx == (bfd_size_type) -1
5861 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5862 return FALSE;
5863 }
5864
5865 if (info->symbolic)
5866 {
5867 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5868 return FALSE;
5869 info->flags |= DF_SYMBOLIC;
5870 }
5871
5872 if (rpath != NULL)
5873 {
5874 bfd_size_type indx;
5875 bfd_vma tag;
5876
5877 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5878 TRUE);
5879 if (indx == (bfd_size_type) -1)
5880 return FALSE;
5881
5882 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5883 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5884 return FALSE;
5885 }
5886
5887 if (filter_shlib != NULL)
5888 {
5889 bfd_size_type indx;
5890
5891 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5892 filter_shlib, TRUE);
5893 if (indx == (bfd_size_type) -1
5894 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5895 return FALSE;
5896 }
5897
5898 if (auxiliary_filters != NULL)
5899 {
5900 const char * const *p;
5901
5902 for (p = auxiliary_filters; *p != NULL; p++)
5903 {
5904 bfd_size_type indx;
5905
5906 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5907 *p, TRUE);
5908 if (indx == (bfd_size_type) -1
5909 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5910 return FALSE;
5911 }
5912 }
5913
5914 if (audit != NULL)
5915 {
5916 bfd_size_type indx;
5917
5918 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5919 TRUE);
5920 if (indx == (bfd_size_type) -1
5921 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5922 return FALSE;
5923 }
5924
5925 if (depaudit != NULL)
5926 {
5927 bfd_size_type indx;
5928
5929 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5930 TRUE);
5931 if (indx == (bfd_size_type) -1
5932 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5933 return FALSE;
5934 }
5935
5936 eif.info = info;
5937 eif.failed = FALSE;
5938
5939 /* If we are supposed to export all symbols into the dynamic symbol
5940 table (this is not the normal case), then do so. */
5941 if (info->export_dynamic
5942 || (bfd_link_executable (info) && info->dynamic))
5943 {
5944 elf_link_hash_traverse (elf_hash_table (info),
5945 _bfd_elf_export_symbol,
5946 &eif);
5947 if (eif.failed)
5948 return FALSE;
5949 }
5950
5951 /* Make all global versions with definition. */
5952 for (t = info->version_info; t != NULL; t = t->next)
5953 for (d = t->globals.list; d != NULL; d = d->next)
5954 if (!d->symver && d->literal)
5955 {
5956 const char *verstr, *name;
5957 size_t namelen, verlen, newlen;
5958 char *newname, *p, leading_char;
5959 struct elf_link_hash_entry *newh;
5960
5961 leading_char = bfd_get_symbol_leading_char (output_bfd);
5962 name = d->pattern;
5963 namelen = strlen (name) + (leading_char != '\0');
5964 verstr = t->name;
5965 verlen = strlen (verstr);
5966 newlen = namelen + verlen + 3;
5967
5968 newname = (char *) bfd_malloc (newlen);
5969 if (newname == NULL)
5970 return FALSE;
5971 newname[0] = leading_char;
5972 memcpy (newname + (leading_char != '\0'), name, namelen);
5973
5974 /* Check the hidden versioned definition. */
5975 p = newname + namelen;
5976 *p++ = ELF_VER_CHR;
5977 memcpy (p, verstr, verlen + 1);
5978 newh = elf_link_hash_lookup (elf_hash_table (info),
5979 newname, FALSE, FALSE,
5980 FALSE);
5981 if (newh == NULL
5982 || (newh->root.type != bfd_link_hash_defined
5983 && newh->root.type != bfd_link_hash_defweak))
5984 {
5985 /* Check the default versioned definition. */
5986 *p++ = ELF_VER_CHR;
5987 memcpy (p, verstr, verlen + 1);
5988 newh = elf_link_hash_lookup (elf_hash_table (info),
5989 newname, FALSE, FALSE,
5990 FALSE);
5991 }
5992 free (newname);
5993
5994 /* Mark this version if there is a definition and it is
5995 not defined in a shared object. */
5996 if (newh != NULL
5997 && !newh->def_dynamic
5998 && (newh->root.type == bfd_link_hash_defined
5999 || newh->root.type == bfd_link_hash_defweak))
6000 d->symver = 1;
6001 }
6002
6003 /* Attach all the symbols to their version information. */
6004 asvinfo.info = info;
6005 asvinfo.failed = FALSE;
6006
6007 elf_link_hash_traverse (elf_hash_table (info),
6008 _bfd_elf_link_assign_sym_version,
6009 &asvinfo);
6010 if (asvinfo.failed)
6011 return FALSE;
6012
6013 if (!info->allow_undefined_version)
6014 {
6015 /* Check if all global versions have a definition. */
6016 all_defined = TRUE;
6017 for (t = info->version_info; t != NULL; t = t->next)
6018 for (d = t->globals.list; d != NULL; d = d->next)
6019 if (d->literal && !d->symver && !d->script)
6020 {
6021 (*_bfd_error_handler)
6022 (_("%s: undefined version: %s"),
6023 d->pattern, t->name);
6024 all_defined = FALSE;
6025 }
6026
6027 if (!all_defined)
6028 {
6029 bfd_set_error (bfd_error_bad_value);
6030 return FALSE;
6031 }
6032 }
6033
6034 /* Find all symbols which were defined in a dynamic object and make
6035 the backend pick a reasonable value for them. */
6036 elf_link_hash_traverse (elf_hash_table (info),
6037 _bfd_elf_adjust_dynamic_symbol,
6038 &eif);
6039 if (eif.failed)
6040 return FALSE;
6041
6042 /* Add some entries to the .dynamic section. We fill in some of the
6043 values later, in bfd_elf_final_link, but we must add the entries
6044 now so that we know the final size of the .dynamic section. */
6045
6046 /* If there are initialization and/or finalization functions to
6047 call then add the corresponding DT_INIT/DT_FINI entries. */
6048 h = (info->init_function
6049 ? elf_link_hash_lookup (elf_hash_table (info),
6050 info->init_function, FALSE,
6051 FALSE, FALSE)
6052 : NULL);
6053 if (h != NULL
6054 && (h->ref_regular
6055 || h->def_regular))
6056 {
6057 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6058 return FALSE;
6059 }
6060 h = (info->fini_function
6061 ? elf_link_hash_lookup (elf_hash_table (info),
6062 info->fini_function, FALSE,
6063 FALSE, FALSE)
6064 : NULL);
6065 if (h != NULL
6066 && (h->ref_regular
6067 || h->def_regular))
6068 {
6069 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6070 return FALSE;
6071 }
6072
6073 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6074 if (s != NULL && s->linker_has_input)
6075 {
6076 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6077 if (! bfd_link_executable (info))
6078 {
6079 bfd *sub;
6080 asection *o;
6081
6082 for (sub = info->input_bfds; sub != NULL;
6083 sub = sub->link.next)
6084 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6085 for (o = sub->sections; o != NULL; o = o->next)
6086 if (elf_section_data (o)->this_hdr.sh_type
6087 == SHT_PREINIT_ARRAY)
6088 {
6089 (*_bfd_error_handler)
6090 (_("%B: .preinit_array section is not allowed in DSO"),
6091 sub);
6092 break;
6093 }
6094
6095 bfd_set_error (bfd_error_nonrepresentable_section);
6096 return FALSE;
6097 }
6098
6099 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6100 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6101 return FALSE;
6102 }
6103 s = bfd_get_section_by_name (output_bfd, ".init_array");
6104 if (s != NULL && s->linker_has_input)
6105 {
6106 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6107 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6108 return FALSE;
6109 }
6110 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6111 if (s != NULL && s->linker_has_input)
6112 {
6113 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6114 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6115 return FALSE;
6116 }
6117
6118 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6119 /* If .dynstr is excluded from the link, we don't want any of
6120 these tags. Strictly, we should be checking each section
6121 individually; This quick check covers for the case where
6122 someone does a /DISCARD/ : { *(*) }. */
6123 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6124 {
6125 bfd_size_type strsize;
6126
6127 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6128 if ((info->emit_hash
6129 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6130 || (info->emit_gnu_hash
6131 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6132 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6133 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6134 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6135 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6136 bed->s->sizeof_sym))
6137 return FALSE;
6138 }
6139 }
6140
6141 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6142 return FALSE;
6143
6144 /* The backend must work out the sizes of all the other dynamic
6145 sections. */
6146 if (dynobj != NULL
6147 && bed->elf_backend_size_dynamic_sections != NULL
6148 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6149 return FALSE;
6150
6151 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6152 {
6153 unsigned long section_sym_count;
6154 struct bfd_elf_version_tree *verdefs;
6155 asection *s;
6156
6157 /* Set up the version definition section. */
6158 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6159 BFD_ASSERT (s != NULL);
6160
6161 /* We may have created additional version definitions if we are
6162 just linking a regular application. */
6163 verdefs = info->version_info;
6164
6165 /* Skip anonymous version tag. */
6166 if (verdefs != NULL && verdefs->vernum == 0)
6167 verdefs = verdefs->next;
6168
6169 if (verdefs == NULL && !info->create_default_symver)
6170 s->flags |= SEC_EXCLUDE;
6171 else
6172 {
6173 unsigned int cdefs;
6174 bfd_size_type size;
6175 struct bfd_elf_version_tree *t;
6176 bfd_byte *p;
6177 Elf_Internal_Verdef def;
6178 Elf_Internal_Verdaux defaux;
6179 struct bfd_link_hash_entry *bh;
6180 struct elf_link_hash_entry *h;
6181 const char *name;
6182
6183 cdefs = 0;
6184 size = 0;
6185
6186 /* Make space for the base version. */
6187 size += sizeof (Elf_External_Verdef);
6188 size += sizeof (Elf_External_Verdaux);
6189 ++cdefs;
6190
6191 /* Make space for the default version. */
6192 if (info->create_default_symver)
6193 {
6194 size += sizeof (Elf_External_Verdef);
6195 ++cdefs;
6196 }
6197
6198 for (t = verdefs; t != NULL; t = t->next)
6199 {
6200 struct bfd_elf_version_deps *n;
6201
6202 /* Don't emit base version twice. */
6203 if (t->vernum == 0)
6204 continue;
6205
6206 size += sizeof (Elf_External_Verdef);
6207 size += sizeof (Elf_External_Verdaux);
6208 ++cdefs;
6209
6210 for (n = t->deps; n != NULL; n = n->next)
6211 size += sizeof (Elf_External_Verdaux);
6212 }
6213
6214 s->size = size;
6215 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6216 if (s->contents == NULL && s->size != 0)
6217 return FALSE;
6218
6219 /* Fill in the version definition section. */
6220
6221 p = s->contents;
6222
6223 def.vd_version = VER_DEF_CURRENT;
6224 def.vd_flags = VER_FLG_BASE;
6225 def.vd_ndx = 1;
6226 def.vd_cnt = 1;
6227 if (info->create_default_symver)
6228 {
6229 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6230 def.vd_next = sizeof (Elf_External_Verdef);
6231 }
6232 else
6233 {
6234 def.vd_aux = sizeof (Elf_External_Verdef);
6235 def.vd_next = (sizeof (Elf_External_Verdef)
6236 + sizeof (Elf_External_Verdaux));
6237 }
6238
6239 if (soname_indx != (bfd_size_type) -1)
6240 {
6241 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6242 soname_indx);
6243 def.vd_hash = bfd_elf_hash (soname);
6244 defaux.vda_name = soname_indx;
6245 name = soname;
6246 }
6247 else
6248 {
6249 bfd_size_type indx;
6250
6251 name = lbasename (output_bfd->filename);
6252 def.vd_hash = bfd_elf_hash (name);
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 name, FALSE);
6255 if (indx == (bfd_size_type) -1)
6256 return FALSE;
6257 defaux.vda_name = indx;
6258 }
6259 defaux.vda_next = 0;
6260
6261 _bfd_elf_swap_verdef_out (output_bfd, &def,
6262 (Elf_External_Verdef *) p);
6263 p += sizeof (Elf_External_Verdef);
6264 if (info->create_default_symver)
6265 {
6266 /* Add a symbol representing this version. */
6267 bh = NULL;
6268 if (! (_bfd_generic_link_add_one_symbol
6269 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6270 0, NULL, FALSE,
6271 get_elf_backend_data (dynobj)->collect, &bh)))
6272 return FALSE;
6273 h = (struct elf_link_hash_entry *) bh;
6274 h->non_elf = 0;
6275 h->def_regular = 1;
6276 h->type = STT_OBJECT;
6277 h->verinfo.vertree = NULL;
6278
6279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6280 return FALSE;
6281
6282 /* Create a duplicate of the base version with the same
6283 aux block, but different flags. */
6284 def.vd_flags = 0;
6285 def.vd_ndx = 2;
6286 def.vd_aux = sizeof (Elf_External_Verdef);
6287 if (verdefs)
6288 def.vd_next = (sizeof (Elf_External_Verdef)
6289 + sizeof (Elf_External_Verdaux));
6290 else
6291 def.vd_next = 0;
6292 _bfd_elf_swap_verdef_out (output_bfd, &def,
6293 (Elf_External_Verdef *) p);
6294 p += sizeof (Elf_External_Verdef);
6295 }
6296 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6297 (Elf_External_Verdaux *) p);
6298 p += sizeof (Elf_External_Verdaux);
6299
6300 for (t = verdefs; t != NULL; t = t->next)
6301 {
6302 unsigned int cdeps;
6303 struct bfd_elf_version_deps *n;
6304
6305 /* Don't emit the base version twice. */
6306 if (t->vernum == 0)
6307 continue;
6308
6309 cdeps = 0;
6310 for (n = t->deps; n != NULL; n = n->next)
6311 ++cdeps;
6312
6313 /* Add a symbol representing this version. */
6314 bh = NULL;
6315 if (! (_bfd_generic_link_add_one_symbol
6316 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6317 0, NULL, FALSE,
6318 get_elf_backend_data (dynobj)->collect, &bh)))
6319 return FALSE;
6320 h = (struct elf_link_hash_entry *) bh;
6321 h->non_elf = 0;
6322 h->def_regular = 1;
6323 h->type = STT_OBJECT;
6324 h->verinfo.vertree = t;
6325
6326 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6327 return FALSE;
6328
6329 def.vd_version = VER_DEF_CURRENT;
6330 def.vd_flags = 0;
6331 if (t->globals.list == NULL
6332 && t->locals.list == NULL
6333 && ! t->used)
6334 def.vd_flags |= VER_FLG_WEAK;
6335 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6336 def.vd_cnt = cdeps + 1;
6337 def.vd_hash = bfd_elf_hash (t->name);
6338 def.vd_aux = sizeof (Elf_External_Verdef);
6339 def.vd_next = 0;
6340
6341 /* If a basever node is next, it *must* be the last node in
6342 the chain, otherwise Verdef construction breaks. */
6343 if (t->next != NULL && t->next->vernum == 0)
6344 BFD_ASSERT (t->next->next == NULL);
6345
6346 if (t->next != NULL && t->next->vernum != 0)
6347 def.vd_next = (sizeof (Elf_External_Verdef)
6348 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6349
6350 _bfd_elf_swap_verdef_out (output_bfd, &def,
6351 (Elf_External_Verdef *) p);
6352 p += sizeof (Elf_External_Verdef);
6353
6354 defaux.vda_name = h->dynstr_index;
6355 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6356 h->dynstr_index);
6357 defaux.vda_next = 0;
6358 if (t->deps != NULL)
6359 defaux.vda_next = sizeof (Elf_External_Verdaux);
6360 t->name_indx = defaux.vda_name;
6361
6362 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6363 (Elf_External_Verdaux *) p);
6364 p += sizeof (Elf_External_Verdaux);
6365
6366 for (n = t->deps; n != NULL; n = n->next)
6367 {
6368 if (n->version_needed == NULL)
6369 {
6370 /* This can happen if there was an error in the
6371 version script. */
6372 defaux.vda_name = 0;
6373 }
6374 else
6375 {
6376 defaux.vda_name = n->version_needed->name_indx;
6377 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6378 defaux.vda_name);
6379 }
6380 if (n->next == NULL)
6381 defaux.vda_next = 0;
6382 else
6383 defaux.vda_next = sizeof (Elf_External_Verdaux);
6384
6385 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6386 (Elf_External_Verdaux *) p);
6387 p += sizeof (Elf_External_Verdaux);
6388 }
6389 }
6390
6391 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6392 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6393 return FALSE;
6394
6395 elf_tdata (output_bfd)->cverdefs = cdefs;
6396 }
6397
6398 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6399 {
6400 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6401 return FALSE;
6402 }
6403 else if (info->flags & DF_BIND_NOW)
6404 {
6405 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6406 return FALSE;
6407 }
6408
6409 if (info->flags_1)
6410 {
6411 if (bfd_link_executable (info))
6412 info->flags_1 &= ~ (DF_1_INITFIRST
6413 | DF_1_NODELETE
6414 | DF_1_NOOPEN);
6415 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6416 return FALSE;
6417 }
6418
6419 /* Work out the size of the version reference section. */
6420
6421 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6422 BFD_ASSERT (s != NULL);
6423 {
6424 struct elf_find_verdep_info sinfo;
6425
6426 sinfo.info = info;
6427 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6428 if (sinfo.vers == 0)
6429 sinfo.vers = 1;
6430 sinfo.failed = FALSE;
6431
6432 elf_link_hash_traverse (elf_hash_table (info),
6433 _bfd_elf_link_find_version_dependencies,
6434 &sinfo);
6435 if (sinfo.failed)
6436 return FALSE;
6437
6438 if (elf_tdata (output_bfd)->verref == NULL)
6439 s->flags |= SEC_EXCLUDE;
6440 else
6441 {
6442 Elf_Internal_Verneed *t;
6443 unsigned int size;
6444 unsigned int crefs;
6445 bfd_byte *p;
6446
6447 /* Build the version dependency section. */
6448 size = 0;
6449 crefs = 0;
6450 for (t = elf_tdata (output_bfd)->verref;
6451 t != NULL;
6452 t = t->vn_nextref)
6453 {
6454 Elf_Internal_Vernaux *a;
6455
6456 size += sizeof (Elf_External_Verneed);
6457 ++crefs;
6458 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6459 size += sizeof (Elf_External_Vernaux);
6460 }
6461
6462 s->size = size;
6463 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6464 if (s->contents == NULL)
6465 return FALSE;
6466
6467 p = s->contents;
6468 for (t = elf_tdata (output_bfd)->verref;
6469 t != NULL;
6470 t = t->vn_nextref)
6471 {
6472 unsigned int caux;
6473 Elf_Internal_Vernaux *a;
6474 bfd_size_type indx;
6475
6476 caux = 0;
6477 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6478 ++caux;
6479
6480 t->vn_version = VER_NEED_CURRENT;
6481 t->vn_cnt = caux;
6482 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6483 elf_dt_name (t->vn_bfd) != NULL
6484 ? elf_dt_name (t->vn_bfd)
6485 : lbasename (t->vn_bfd->filename),
6486 FALSE);
6487 if (indx == (bfd_size_type) -1)
6488 return FALSE;
6489 t->vn_file = indx;
6490 t->vn_aux = sizeof (Elf_External_Verneed);
6491 if (t->vn_nextref == NULL)
6492 t->vn_next = 0;
6493 else
6494 t->vn_next = (sizeof (Elf_External_Verneed)
6495 + caux * sizeof (Elf_External_Vernaux));
6496
6497 _bfd_elf_swap_verneed_out (output_bfd, t,
6498 (Elf_External_Verneed *) p);
6499 p += sizeof (Elf_External_Verneed);
6500
6501 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6502 {
6503 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6504 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6505 a->vna_nodename, FALSE);
6506 if (indx == (bfd_size_type) -1)
6507 return FALSE;
6508 a->vna_name = indx;
6509 if (a->vna_nextptr == NULL)
6510 a->vna_next = 0;
6511 else
6512 a->vna_next = sizeof (Elf_External_Vernaux);
6513
6514 _bfd_elf_swap_vernaux_out (output_bfd, a,
6515 (Elf_External_Vernaux *) p);
6516 p += sizeof (Elf_External_Vernaux);
6517 }
6518 }
6519
6520 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6521 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6522 return FALSE;
6523
6524 elf_tdata (output_bfd)->cverrefs = crefs;
6525 }
6526 }
6527
6528 if ((elf_tdata (output_bfd)->cverrefs == 0
6529 && elf_tdata (output_bfd)->cverdefs == 0)
6530 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6531 &section_sym_count) == 0)
6532 {
6533 s = bfd_get_linker_section (dynobj, ".gnu.version");
6534 s->flags |= SEC_EXCLUDE;
6535 }
6536 }
6537 return TRUE;
6538 }
6539
6540 /* Find the first non-excluded output section. We'll use its
6541 section symbol for some emitted relocs. */
6542 void
6543 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6544 {
6545 asection *s;
6546
6547 for (s = output_bfd->sections; s != NULL; s = s->next)
6548 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6549 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6550 {
6551 elf_hash_table (info)->text_index_section = s;
6552 break;
6553 }
6554 }
6555
6556 /* Find two non-excluded output sections, one for code, one for data.
6557 We'll use their section symbols for some emitted relocs. */
6558 void
6559 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6560 {
6561 asection *s;
6562
6563 /* Data first, since setting text_index_section changes
6564 _bfd_elf_link_omit_section_dynsym. */
6565 for (s = output_bfd->sections; s != NULL; s = s->next)
6566 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6567 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6568 {
6569 elf_hash_table (info)->data_index_section = s;
6570 break;
6571 }
6572
6573 for (s = output_bfd->sections; s != NULL; s = s->next)
6574 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6575 == (SEC_ALLOC | SEC_READONLY))
6576 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6577 {
6578 elf_hash_table (info)->text_index_section = s;
6579 break;
6580 }
6581
6582 if (elf_hash_table (info)->text_index_section == NULL)
6583 elf_hash_table (info)->text_index_section
6584 = elf_hash_table (info)->data_index_section;
6585 }
6586
6587 bfd_boolean
6588 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6589 {
6590 const struct elf_backend_data *bed;
6591
6592 if (!is_elf_hash_table (info->hash))
6593 return TRUE;
6594
6595 bed = get_elf_backend_data (output_bfd);
6596 (*bed->elf_backend_init_index_section) (output_bfd, info);
6597
6598 if (elf_hash_table (info)->dynamic_sections_created)
6599 {
6600 bfd *dynobj;
6601 asection *s;
6602 bfd_size_type dynsymcount;
6603 unsigned long section_sym_count;
6604 unsigned int dtagcount;
6605
6606 dynobj = elf_hash_table (info)->dynobj;
6607
6608 /* Assign dynsym indicies. In a shared library we generate a
6609 section symbol for each output section, which come first.
6610 Next come all of the back-end allocated local dynamic syms,
6611 followed by the rest of the global symbols. */
6612
6613 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6614 &section_sym_count);
6615
6616 /* Work out the size of the symbol version section. */
6617 s = bfd_get_linker_section (dynobj, ".gnu.version");
6618 BFD_ASSERT (s != NULL);
6619 if ((s->flags & SEC_EXCLUDE) == 0)
6620 {
6621 s->size = dynsymcount * sizeof (Elf_External_Versym);
6622 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6623 if (s->contents == NULL)
6624 return FALSE;
6625
6626 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6627 return FALSE;
6628 }
6629
6630 /* Set the size of the .dynsym and .hash sections. We counted
6631 the number of dynamic symbols in elf_link_add_object_symbols.
6632 We will build the contents of .dynsym and .hash when we build
6633 the final symbol table, because until then we do not know the
6634 correct value to give the symbols. We built the .dynstr
6635 section as we went along in elf_link_add_object_symbols. */
6636 s = elf_hash_table (info)->dynsym;
6637 BFD_ASSERT (s != NULL);
6638 s->size = dynsymcount * bed->s->sizeof_sym;
6639
6640 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6641 if (s->contents == NULL)
6642 return FALSE;
6643
6644 /* The first entry in .dynsym is a dummy symbol. Clear all the
6645 section syms, in case we don't output them all. */
6646 ++section_sym_count;
6647 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6648
6649 elf_hash_table (info)->bucketcount = 0;
6650
6651 /* Compute the size of the hashing table. As a side effect this
6652 computes the hash values for all the names we export. */
6653 if (info->emit_hash)
6654 {
6655 unsigned long int *hashcodes;
6656 struct hash_codes_info hashinf;
6657 bfd_size_type amt;
6658 unsigned long int nsyms;
6659 size_t bucketcount;
6660 size_t hash_entry_size;
6661
6662 /* Compute the hash values for all exported symbols. At the same
6663 time store the values in an array so that we could use them for
6664 optimizations. */
6665 amt = dynsymcount * sizeof (unsigned long int);
6666 hashcodes = (unsigned long int *) bfd_malloc (amt);
6667 if (hashcodes == NULL)
6668 return FALSE;
6669 hashinf.hashcodes = hashcodes;
6670 hashinf.error = FALSE;
6671
6672 /* Put all hash values in HASHCODES. */
6673 elf_link_hash_traverse (elf_hash_table (info),
6674 elf_collect_hash_codes, &hashinf);
6675 if (hashinf.error)
6676 {
6677 free (hashcodes);
6678 return FALSE;
6679 }
6680
6681 nsyms = hashinf.hashcodes - hashcodes;
6682 bucketcount
6683 = compute_bucket_count (info, hashcodes, nsyms, 0);
6684 free (hashcodes);
6685
6686 if (bucketcount == 0)
6687 return FALSE;
6688
6689 elf_hash_table (info)->bucketcount = bucketcount;
6690
6691 s = bfd_get_linker_section (dynobj, ".hash");
6692 BFD_ASSERT (s != NULL);
6693 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6694 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6695 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6696 if (s->contents == NULL)
6697 return FALSE;
6698
6699 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6700 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6701 s->contents + hash_entry_size);
6702 }
6703
6704 if (info->emit_gnu_hash)
6705 {
6706 size_t i, cnt;
6707 unsigned char *contents;
6708 struct collect_gnu_hash_codes cinfo;
6709 bfd_size_type amt;
6710 size_t bucketcount;
6711
6712 memset (&cinfo, 0, sizeof (cinfo));
6713
6714 /* Compute the hash values for all exported symbols. At the same
6715 time store the values in an array so that we could use them for
6716 optimizations. */
6717 amt = dynsymcount * 2 * sizeof (unsigned long int);
6718 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6719 if (cinfo.hashcodes == NULL)
6720 return FALSE;
6721
6722 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6723 cinfo.min_dynindx = -1;
6724 cinfo.output_bfd = output_bfd;
6725 cinfo.bed = bed;
6726
6727 /* Put all hash values in HASHCODES. */
6728 elf_link_hash_traverse (elf_hash_table (info),
6729 elf_collect_gnu_hash_codes, &cinfo);
6730 if (cinfo.error)
6731 {
6732 free (cinfo.hashcodes);
6733 return FALSE;
6734 }
6735
6736 bucketcount
6737 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6738
6739 if (bucketcount == 0)
6740 {
6741 free (cinfo.hashcodes);
6742 return FALSE;
6743 }
6744
6745 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6746 BFD_ASSERT (s != NULL);
6747
6748 if (cinfo.nsyms == 0)
6749 {
6750 /* Empty .gnu.hash section is special. */
6751 BFD_ASSERT (cinfo.min_dynindx == -1);
6752 free (cinfo.hashcodes);
6753 s->size = 5 * 4 + bed->s->arch_size / 8;
6754 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6755 if (contents == NULL)
6756 return FALSE;
6757 s->contents = contents;
6758 /* 1 empty bucket. */
6759 bfd_put_32 (output_bfd, 1, contents);
6760 /* SYMIDX above the special symbol 0. */
6761 bfd_put_32 (output_bfd, 1, contents + 4);
6762 /* Just one word for bitmask. */
6763 bfd_put_32 (output_bfd, 1, contents + 8);
6764 /* Only hash fn bloom filter. */
6765 bfd_put_32 (output_bfd, 0, contents + 12);
6766 /* No hashes are valid - empty bitmask. */
6767 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6768 /* No hashes in the only bucket. */
6769 bfd_put_32 (output_bfd, 0,
6770 contents + 16 + bed->s->arch_size / 8);
6771 }
6772 else
6773 {
6774 unsigned long int maskwords, maskbitslog2, x;
6775 BFD_ASSERT (cinfo.min_dynindx != -1);
6776
6777 x = cinfo.nsyms;
6778 maskbitslog2 = 1;
6779 while ((x >>= 1) != 0)
6780 ++maskbitslog2;
6781 if (maskbitslog2 < 3)
6782 maskbitslog2 = 5;
6783 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6784 maskbitslog2 = maskbitslog2 + 3;
6785 else
6786 maskbitslog2 = maskbitslog2 + 2;
6787 if (bed->s->arch_size == 64)
6788 {
6789 if (maskbitslog2 == 5)
6790 maskbitslog2 = 6;
6791 cinfo.shift1 = 6;
6792 }
6793 else
6794 cinfo.shift1 = 5;
6795 cinfo.mask = (1 << cinfo.shift1) - 1;
6796 cinfo.shift2 = maskbitslog2;
6797 cinfo.maskbits = 1 << maskbitslog2;
6798 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6799 amt = bucketcount * sizeof (unsigned long int) * 2;
6800 amt += maskwords * sizeof (bfd_vma);
6801 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6802 if (cinfo.bitmask == NULL)
6803 {
6804 free (cinfo.hashcodes);
6805 return FALSE;
6806 }
6807
6808 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6809 cinfo.indx = cinfo.counts + bucketcount;
6810 cinfo.symindx = dynsymcount - cinfo.nsyms;
6811 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6812
6813 /* Determine how often each hash bucket is used. */
6814 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6815 for (i = 0; i < cinfo.nsyms; ++i)
6816 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6817
6818 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6819 if (cinfo.counts[i] != 0)
6820 {
6821 cinfo.indx[i] = cnt;
6822 cnt += cinfo.counts[i];
6823 }
6824 BFD_ASSERT (cnt == dynsymcount);
6825 cinfo.bucketcount = bucketcount;
6826 cinfo.local_indx = cinfo.min_dynindx;
6827
6828 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6829 s->size += cinfo.maskbits / 8;
6830 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6831 if (contents == NULL)
6832 {
6833 free (cinfo.bitmask);
6834 free (cinfo.hashcodes);
6835 return FALSE;
6836 }
6837
6838 s->contents = contents;
6839 bfd_put_32 (output_bfd, bucketcount, contents);
6840 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6841 bfd_put_32 (output_bfd, maskwords, contents + 8);
6842 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6843 contents += 16 + cinfo.maskbits / 8;
6844
6845 for (i = 0; i < bucketcount; ++i)
6846 {
6847 if (cinfo.counts[i] == 0)
6848 bfd_put_32 (output_bfd, 0, contents);
6849 else
6850 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6851 contents += 4;
6852 }
6853
6854 cinfo.contents = contents;
6855
6856 /* Renumber dynamic symbols, populate .gnu.hash section. */
6857 elf_link_hash_traverse (elf_hash_table (info),
6858 elf_renumber_gnu_hash_syms, &cinfo);
6859
6860 contents = s->contents + 16;
6861 for (i = 0; i < maskwords; ++i)
6862 {
6863 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6864 contents);
6865 contents += bed->s->arch_size / 8;
6866 }
6867
6868 free (cinfo.bitmask);
6869 free (cinfo.hashcodes);
6870 }
6871 }
6872
6873 s = bfd_get_linker_section (dynobj, ".dynstr");
6874 BFD_ASSERT (s != NULL);
6875
6876 elf_finalize_dynstr (output_bfd, info);
6877
6878 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6879
6880 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6881 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6882 return FALSE;
6883 }
6884
6885 return TRUE;
6886 }
6887 \f
6888 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6889
6890 static void
6891 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6892 asection *sec)
6893 {
6894 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6895 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6896 }
6897
6898 /* Finish SHF_MERGE section merging. */
6899
6900 bfd_boolean
6901 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6902 {
6903 bfd *ibfd;
6904 asection *sec;
6905
6906 if (!is_elf_hash_table (info->hash))
6907 return FALSE;
6908
6909 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6910 if ((ibfd->flags & DYNAMIC) == 0
6911 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6912 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6913 == get_elf_backend_data (obfd)->s->elfclass))
6914 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6915 if ((sec->flags & SEC_MERGE) != 0
6916 && !bfd_is_abs_section (sec->output_section))
6917 {
6918 struct bfd_elf_section_data *secdata;
6919
6920 secdata = elf_section_data (sec);
6921 if (! _bfd_add_merge_section (obfd,
6922 &elf_hash_table (info)->merge_info,
6923 sec, &secdata->sec_info))
6924 return FALSE;
6925 else if (secdata->sec_info)
6926 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6927 }
6928
6929 if (elf_hash_table (info)->merge_info != NULL)
6930 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6931 merge_sections_remove_hook);
6932 return TRUE;
6933 }
6934
6935 /* Create an entry in an ELF linker hash table. */
6936
6937 struct bfd_hash_entry *
6938 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6939 struct bfd_hash_table *table,
6940 const char *string)
6941 {
6942 /* Allocate the structure if it has not already been allocated by a
6943 subclass. */
6944 if (entry == NULL)
6945 {
6946 entry = (struct bfd_hash_entry *)
6947 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6948 if (entry == NULL)
6949 return entry;
6950 }
6951
6952 /* Call the allocation method of the superclass. */
6953 entry = _bfd_link_hash_newfunc (entry, table, string);
6954 if (entry != NULL)
6955 {
6956 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6957 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6958
6959 /* Set local fields. */
6960 ret->indx = -1;
6961 ret->dynindx = -1;
6962 ret->got = htab->init_got_refcount;
6963 ret->plt = htab->init_plt_refcount;
6964 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6965 - offsetof (struct elf_link_hash_entry, size)));
6966 /* Assume that we have been called by a non-ELF symbol reader.
6967 This flag is then reset by the code which reads an ELF input
6968 file. This ensures that a symbol created by a non-ELF symbol
6969 reader will have the flag set correctly. */
6970 ret->non_elf = 1;
6971 }
6972
6973 return entry;
6974 }
6975
6976 /* Copy data from an indirect symbol to its direct symbol, hiding the
6977 old indirect symbol. Also used for copying flags to a weakdef. */
6978
6979 void
6980 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6981 struct elf_link_hash_entry *dir,
6982 struct elf_link_hash_entry *ind)
6983 {
6984 struct elf_link_hash_table *htab;
6985
6986 /* Copy down any references that we may have already seen to the
6987 symbol which just became indirect if DIR isn't a hidden versioned
6988 symbol. */
6989
6990 if (dir->versioned != versioned_hidden)
6991 {
6992 dir->ref_dynamic |= ind->ref_dynamic;
6993 dir->ref_regular |= ind->ref_regular;
6994 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6995 dir->non_got_ref |= ind->non_got_ref;
6996 dir->needs_plt |= ind->needs_plt;
6997 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6998 }
6999
7000 if (ind->root.type != bfd_link_hash_indirect)
7001 return;
7002
7003 /* Copy over the global and procedure linkage table refcount entries.
7004 These may have been already set up by a check_relocs routine. */
7005 htab = elf_hash_table (info);
7006 if (ind->got.refcount > htab->init_got_refcount.refcount)
7007 {
7008 if (dir->got.refcount < 0)
7009 dir->got.refcount = 0;
7010 dir->got.refcount += ind->got.refcount;
7011 ind->got.refcount = htab->init_got_refcount.refcount;
7012 }
7013
7014 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7015 {
7016 if (dir->plt.refcount < 0)
7017 dir->plt.refcount = 0;
7018 dir->plt.refcount += ind->plt.refcount;
7019 ind->plt.refcount = htab->init_plt_refcount.refcount;
7020 }
7021
7022 if (ind->dynindx != -1)
7023 {
7024 if (dir->dynindx != -1)
7025 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7026 dir->dynindx = ind->dynindx;
7027 dir->dynstr_index = ind->dynstr_index;
7028 ind->dynindx = -1;
7029 ind->dynstr_index = 0;
7030 }
7031 }
7032
7033 void
7034 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7035 struct elf_link_hash_entry *h,
7036 bfd_boolean force_local)
7037 {
7038 /* STT_GNU_IFUNC symbol must go through PLT. */
7039 if (h->type != STT_GNU_IFUNC)
7040 {
7041 h->plt = elf_hash_table (info)->init_plt_offset;
7042 h->needs_plt = 0;
7043 }
7044 if (force_local)
7045 {
7046 h->forced_local = 1;
7047 if (h->dynindx != -1)
7048 {
7049 h->dynindx = -1;
7050 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7051 h->dynstr_index);
7052 }
7053 }
7054 }
7055
7056 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7057 caller. */
7058
7059 bfd_boolean
7060 _bfd_elf_link_hash_table_init
7061 (struct elf_link_hash_table *table,
7062 bfd *abfd,
7063 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7064 struct bfd_hash_table *,
7065 const char *),
7066 unsigned int entsize,
7067 enum elf_target_id target_id)
7068 {
7069 bfd_boolean ret;
7070 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7071
7072 table->init_got_refcount.refcount = can_refcount - 1;
7073 table->init_plt_refcount.refcount = can_refcount - 1;
7074 table->init_got_offset.offset = -(bfd_vma) 1;
7075 table->init_plt_offset.offset = -(bfd_vma) 1;
7076 /* The first dynamic symbol is a dummy. */
7077 table->dynsymcount = 1;
7078
7079 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7080
7081 table->root.type = bfd_link_elf_hash_table;
7082 table->hash_table_id = target_id;
7083
7084 return ret;
7085 }
7086
7087 /* Create an ELF linker hash table. */
7088
7089 struct bfd_link_hash_table *
7090 _bfd_elf_link_hash_table_create (bfd *abfd)
7091 {
7092 struct elf_link_hash_table *ret;
7093 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7094
7095 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7096 if (ret == NULL)
7097 return NULL;
7098
7099 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7100 sizeof (struct elf_link_hash_entry),
7101 GENERIC_ELF_DATA))
7102 {
7103 free (ret);
7104 return NULL;
7105 }
7106 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7107
7108 return &ret->root;
7109 }
7110
7111 /* Destroy an ELF linker hash table. */
7112
7113 void
7114 _bfd_elf_link_hash_table_free (bfd *obfd)
7115 {
7116 struct elf_link_hash_table *htab;
7117
7118 htab = (struct elf_link_hash_table *) obfd->link.hash;
7119 if (htab->dynstr != NULL)
7120 _bfd_elf_strtab_free (htab->dynstr);
7121 _bfd_merge_sections_free (htab->merge_info);
7122 _bfd_generic_link_hash_table_free (obfd);
7123 }
7124
7125 /* This is a hook for the ELF emulation code in the generic linker to
7126 tell the backend linker what file name to use for the DT_NEEDED
7127 entry for a dynamic object. */
7128
7129 void
7130 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7131 {
7132 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7133 && bfd_get_format (abfd) == bfd_object)
7134 elf_dt_name (abfd) = name;
7135 }
7136
7137 int
7138 bfd_elf_get_dyn_lib_class (bfd *abfd)
7139 {
7140 int lib_class;
7141 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7142 && bfd_get_format (abfd) == bfd_object)
7143 lib_class = elf_dyn_lib_class (abfd);
7144 else
7145 lib_class = 0;
7146 return lib_class;
7147 }
7148
7149 void
7150 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7151 {
7152 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7153 && bfd_get_format (abfd) == bfd_object)
7154 elf_dyn_lib_class (abfd) = lib_class;
7155 }
7156
7157 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7158 the linker ELF emulation code. */
7159
7160 struct bfd_link_needed_list *
7161 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7162 struct bfd_link_info *info)
7163 {
7164 if (! is_elf_hash_table (info->hash))
7165 return NULL;
7166 return elf_hash_table (info)->needed;
7167 }
7168
7169 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7170 hook for the linker ELF emulation code. */
7171
7172 struct bfd_link_needed_list *
7173 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7174 struct bfd_link_info *info)
7175 {
7176 if (! is_elf_hash_table (info->hash))
7177 return NULL;
7178 return elf_hash_table (info)->runpath;
7179 }
7180
7181 /* Get the name actually used for a dynamic object for a link. This
7182 is the SONAME entry if there is one. Otherwise, it is the string
7183 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7184
7185 const char *
7186 bfd_elf_get_dt_soname (bfd *abfd)
7187 {
7188 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7189 && bfd_get_format (abfd) == bfd_object)
7190 return elf_dt_name (abfd);
7191 return NULL;
7192 }
7193
7194 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7195 the ELF linker emulation code. */
7196
7197 bfd_boolean
7198 bfd_elf_get_bfd_needed_list (bfd *abfd,
7199 struct bfd_link_needed_list **pneeded)
7200 {
7201 asection *s;
7202 bfd_byte *dynbuf = NULL;
7203 unsigned int elfsec;
7204 unsigned long shlink;
7205 bfd_byte *extdyn, *extdynend;
7206 size_t extdynsize;
7207 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7208
7209 *pneeded = NULL;
7210
7211 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7212 || bfd_get_format (abfd) != bfd_object)
7213 return TRUE;
7214
7215 s = bfd_get_section_by_name (abfd, ".dynamic");
7216 if (s == NULL || s->size == 0)
7217 return TRUE;
7218
7219 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7220 goto error_return;
7221
7222 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7223 if (elfsec == SHN_BAD)
7224 goto error_return;
7225
7226 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7227
7228 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7229 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7230
7231 extdyn = dynbuf;
7232 extdynend = extdyn + s->size;
7233 for (; extdyn < extdynend; extdyn += extdynsize)
7234 {
7235 Elf_Internal_Dyn dyn;
7236
7237 (*swap_dyn_in) (abfd, extdyn, &dyn);
7238
7239 if (dyn.d_tag == DT_NULL)
7240 break;
7241
7242 if (dyn.d_tag == DT_NEEDED)
7243 {
7244 const char *string;
7245 struct bfd_link_needed_list *l;
7246 unsigned int tagv = dyn.d_un.d_val;
7247 bfd_size_type amt;
7248
7249 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7250 if (string == NULL)
7251 goto error_return;
7252
7253 amt = sizeof *l;
7254 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7255 if (l == NULL)
7256 goto error_return;
7257
7258 l->by = abfd;
7259 l->name = string;
7260 l->next = *pneeded;
7261 *pneeded = l;
7262 }
7263 }
7264
7265 free (dynbuf);
7266
7267 return TRUE;
7268
7269 error_return:
7270 if (dynbuf != NULL)
7271 free (dynbuf);
7272 return FALSE;
7273 }
7274
7275 struct elf_symbuf_symbol
7276 {
7277 unsigned long st_name; /* Symbol name, index in string tbl */
7278 unsigned char st_info; /* Type and binding attributes */
7279 unsigned char st_other; /* Visibilty, and target specific */
7280 };
7281
7282 struct elf_symbuf_head
7283 {
7284 struct elf_symbuf_symbol *ssym;
7285 bfd_size_type count;
7286 unsigned int st_shndx;
7287 };
7288
7289 struct elf_symbol
7290 {
7291 union
7292 {
7293 Elf_Internal_Sym *isym;
7294 struct elf_symbuf_symbol *ssym;
7295 } u;
7296 const char *name;
7297 };
7298
7299 /* Sort references to symbols by ascending section number. */
7300
7301 static int
7302 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7303 {
7304 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7305 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7306
7307 return s1->st_shndx - s2->st_shndx;
7308 }
7309
7310 static int
7311 elf_sym_name_compare (const void *arg1, const void *arg2)
7312 {
7313 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7314 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7315 return strcmp (s1->name, s2->name);
7316 }
7317
7318 static struct elf_symbuf_head *
7319 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7320 {
7321 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7322 struct elf_symbuf_symbol *ssym;
7323 struct elf_symbuf_head *ssymbuf, *ssymhead;
7324 bfd_size_type i, shndx_count, total_size;
7325
7326 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7327 if (indbuf == NULL)
7328 return NULL;
7329
7330 for (ind = indbuf, i = 0; i < symcount; i++)
7331 if (isymbuf[i].st_shndx != SHN_UNDEF)
7332 *ind++ = &isymbuf[i];
7333 indbufend = ind;
7334
7335 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7336 elf_sort_elf_symbol);
7337
7338 shndx_count = 0;
7339 if (indbufend > indbuf)
7340 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7341 if (ind[0]->st_shndx != ind[1]->st_shndx)
7342 shndx_count++;
7343
7344 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7345 + (indbufend - indbuf) * sizeof (*ssym));
7346 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7347 if (ssymbuf == NULL)
7348 {
7349 free (indbuf);
7350 return NULL;
7351 }
7352
7353 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7354 ssymbuf->ssym = NULL;
7355 ssymbuf->count = shndx_count;
7356 ssymbuf->st_shndx = 0;
7357 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7358 {
7359 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7360 {
7361 ssymhead++;
7362 ssymhead->ssym = ssym;
7363 ssymhead->count = 0;
7364 ssymhead->st_shndx = (*ind)->st_shndx;
7365 }
7366 ssym->st_name = (*ind)->st_name;
7367 ssym->st_info = (*ind)->st_info;
7368 ssym->st_other = (*ind)->st_other;
7369 ssymhead->count++;
7370 }
7371 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7372 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7373 == total_size));
7374
7375 free (indbuf);
7376 return ssymbuf;
7377 }
7378
7379 /* Check if 2 sections define the same set of local and global
7380 symbols. */
7381
7382 static bfd_boolean
7383 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7384 struct bfd_link_info *info)
7385 {
7386 bfd *bfd1, *bfd2;
7387 const struct elf_backend_data *bed1, *bed2;
7388 Elf_Internal_Shdr *hdr1, *hdr2;
7389 bfd_size_type symcount1, symcount2;
7390 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7391 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7392 Elf_Internal_Sym *isym, *isymend;
7393 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7394 bfd_size_type count1, count2, i;
7395 unsigned int shndx1, shndx2;
7396 bfd_boolean result;
7397
7398 bfd1 = sec1->owner;
7399 bfd2 = sec2->owner;
7400
7401 /* Both sections have to be in ELF. */
7402 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7403 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7404 return FALSE;
7405
7406 if (elf_section_type (sec1) != elf_section_type (sec2))
7407 return FALSE;
7408
7409 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7410 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7411 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7412 return FALSE;
7413
7414 bed1 = get_elf_backend_data (bfd1);
7415 bed2 = get_elf_backend_data (bfd2);
7416 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7417 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7418 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7419 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7420
7421 if (symcount1 == 0 || symcount2 == 0)
7422 return FALSE;
7423
7424 result = FALSE;
7425 isymbuf1 = NULL;
7426 isymbuf2 = NULL;
7427 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7428 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7429
7430 if (ssymbuf1 == NULL)
7431 {
7432 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7433 NULL, NULL, NULL);
7434 if (isymbuf1 == NULL)
7435 goto done;
7436
7437 if (!info->reduce_memory_overheads)
7438 elf_tdata (bfd1)->symbuf = ssymbuf1
7439 = elf_create_symbuf (symcount1, isymbuf1);
7440 }
7441
7442 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7443 {
7444 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7445 NULL, NULL, NULL);
7446 if (isymbuf2 == NULL)
7447 goto done;
7448
7449 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7450 elf_tdata (bfd2)->symbuf = ssymbuf2
7451 = elf_create_symbuf (symcount2, isymbuf2);
7452 }
7453
7454 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7455 {
7456 /* Optimized faster version. */
7457 bfd_size_type lo, hi, mid;
7458 struct elf_symbol *symp;
7459 struct elf_symbuf_symbol *ssym, *ssymend;
7460
7461 lo = 0;
7462 hi = ssymbuf1->count;
7463 ssymbuf1++;
7464 count1 = 0;
7465 while (lo < hi)
7466 {
7467 mid = (lo + hi) / 2;
7468 if (shndx1 < ssymbuf1[mid].st_shndx)
7469 hi = mid;
7470 else if (shndx1 > ssymbuf1[mid].st_shndx)
7471 lo = mid + 1;
7472 else
7473 {
7474 count1 = ssymbuf1[mid].count;
7475 ssymbuf1 += mid;
7476 break;
7477 }
7478 }
7479
7480 lo = 0;
7481 hi = ssymbuf2->count;
7482 ssymbuf2++;
7483 count2 = 0;
7484 while (lo < hi)
7485 {
7486 mid = (lo + hi) / 2;
7487 if (shndx2 < ssymbuf2[mid].st_shndx)
7488 hi = mid;
7489 else if (shndx2 > ssymbuf2[mid].st_shndx)
7490 lo = mid + 1;
7491 else
7492 {
7493 count2 = ssymbuf2[mid].count;
7494 ssymbuf2 += mid;
7495 break;
7496 }
7497 }
7498
7499 if (count1 == 0 || count2 == 0 || count1 != count2)
7500 goto done;
7501
7502 symtable1
7503 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7504 symtable2
7505 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7506 if (symtable1 == NULL || symtable2 == NULL)
7507 goto done;
7508
7509 symp = symtable1;
7510 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7511 ssym < ssymend; ssym++, symp++)
7512 {
7513 symp->u.ssym = ssym;
7514 symp->name = bfd_elf_string_from_elf_section (bfd1,
7515 hdr1->sh_link,
7516 ssym->st_name);
7517 }
7518
7519 symp = symtable2;
7520 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7521 ssym < ssymend; ssym++, symp++)
7522 {
7523 symp->u.ssym = ssym;
7524 symp->name = bfd_elf_string_from_elf_section (bfd2,
7525 hdr2->sh_link,
7526 ssym->st_name);
7527 }
7528
7529 /* Sort symbol by name. */
7530 qsort (symtable1, count1, sizeof (struct elf_symbol),
7531 elf_sym_name_compare);
7532 qsort (symtable2, count1, sizeof (struct elf_symbol),
7533 elf_sym_name_compare);
7534
7535 for (i = 0; i < count1; i++)
7536 /* Two symbols must have the same binding, type and name. */
7537 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7538 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7539 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7540 goto done;
7541
7542 result = TRUE;
7543 goto done;
7544 }
7545
7546 symtable1 = (struct elf_symbol *)
7547 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7548 symtable2 = (struct elf_symbol *)
7549 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7550 if (symtable1 == NULL || symtable2 == NULL)
7551 goto done;
7552
7553 /* Count definitions in the section. */
7554 count1 = 0;
7555 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7556 if (isym->st_shndx == shndx1)
7557 symtable1[count1++].u.isym = isym;
7558
7559 count2 = 0;
7560 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7561 if (isym->st_shndx == shndx2)
7562 symtable2[count2++].u.isym = isym;
7563
7564 if (count1 == 0 || count2 == 0 || count1 != count2)
7565 goto done;
7566
7567 for (i = 0; i < count1; i++)
7568 symtable1[i].name
7569 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7570 symtable1[i].u.isym->st_name);
7571
7572 for (i = 0; i < count2; i++)
7573 symtable2[i].name
7574 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7575 symtable2[i].u.isym->st_name);
7576
7577 /* Sort symbol by name. */
7578 qsort (symtable1, count1, sizeof (struct elf_symbol),
7579 elf_sym_name_compare);
7580 qsort (symtable2, count1, sizeof (struct elf_symbol),
7581 elf_sym_name_compare);
7582
7583 for (i = 0; i < count1; i++)
7584 /* Two symbols must have the same binding, type and name. */
7585 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7586 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7587 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7588 goto done;
7589
7590 result = TRUE;
7591
7592 done:
7593 if (symtable1)
7594 free (symtable1);
7595 if (symtable2)
7596 free (symtable2);
7597 if (isymbuf1)
7598 free (isymbuf1);
7599 if (isymbuf2)
7600 free (isymbuf2);
7601
7602 return result;
7603 }
7604
7605 /* Return TRUE if 2 section types are compatible. */
7606
7607 bfd_boolean
7608 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7609 bfd *bbfd, const asection *bsec)
7610 {
7611 if (asec == NULL
7612 || bsec == NULL
7613 || abfd->xvec->flavour != bfd_target_elf_flavour
7614 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7615 return TRUE;
7616
7617 return elf_section_type (asec) == elf_section_type (bsec);
7618 }
7619 \f
7620 /* Final phase of ELF linker. */
7621
7622 /* A structure we use to avoid passing large numbers of arguments. */
7623
7624 struct elf_final_link_info
7625 {
7626 /* General link information. */
7627 struct bfd_link_info *info;
7628 /* Output BFD. */
7629 bfd *output_bfd;
7630 /* Symbol string table. */
7631 struct elf_strtab_hash *symstrtab;
7632 /* .hash section. */
7633 asection *hash_sec;
7634 /* symbol version section (.gnu.version). */
7635 asection *symver_sec;
7636 /* Buffer large enough to hold contents of any section. */
7637 bfd_byte *contents;
7638 /* Buffer large enough to hold external relocs of any section. */
7639 void *external_relocs;
7640 /* Buffer large enough to hold internal relocs of any section. */
7641 Elf_Internal_Rela *internal_relocs;
7642 /* Buffer large enough to hold external local symbols of any input
7643 BFD. */
7644 bfd_byte *external_syms;
7645 /* And a buffer for symbol section indices. */
7646 Elf_External_Sym_Shndx *locsym_shndx;
7647 /* Buffer large enough to hold internal local symbols of any input
7648 BFD. */
7649 Elf_Internal_Sym *internal_syms;
7650 /* Array large enough to hold a symbol index for each local symbol
7651 of any input BFD. */
7652 long *indices;
7653 /* Array large enough to hold a section pointer for each local
7654 symbol of any input BFD. */
7655 asection **sections;
7656 /* Buffer for SHT_SYMTAB_SHNDX section. */
7657 Elf_External_Sym_Shndx *symshndxbuf;
7658 /* Number of STT_FILE syms seen. */
7659 size_t filesym_count;
7660 };
7661
7662 /* This struct is used to pass information to elf_link_output_extsym. */
7663
7664 struct elf_outext_info
7665 {
7666 bfd_boolean failed;
7667 bfd_boolean localsyms;
7668 bfd_boolean file_sym_done;
7669 struct elf_final_link_info *flinfo;
7670 };
7671
7672
7673 /* Support for evaluating a complex relocation.
7674
7675 Complex relocations are generalized, self-describing relocations. The
7676 implementation of them consists of two parts: complex symbols, and the
7677 relocations themselves.
7678
7679 The relocations are use a reserved elf-wide relocation type code (R_RELC
7680 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7681 information (start bit, end bit, word width, etc) into the addend. This
7682 information is extracted from CGEN-generated operand tables within gas.
7683
7684 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7685 internal) representing prefix-notation expressions, including but not
7686 limited to those sorts of expressions normally encoded as addends in the
7687 addend field. The symbol mangling format is:
7688
7689 <node> := <literal>
7690 | <unary-operator> ':' <node>
7691 | <binary-operator> ':' <node> ':' <node>
7692 ;
7693
7694 <literal> := 's' <digits=N> ':' <N character symbol name>
7695 | 'S' <digits=N> ':' <N character section name>
7696 | '#' <hexdigits>
7697 ;
7698
7699 <binary-operator> := as in C
7700 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7701
7702 static void
7703 set_symbol_value (bfd *bfd_with_globals,
7704 Elf_Internal_Sym *isymbuf,
7705 size_t locsymcount,
7706 size_t symidx,
7707 bfd_vma val)
7708 {
7709 struct elf_link_hash_entry **sym_hashes;
7710 struct elf_link_hash_entry *h;
7711 size_t extsymoff = locsymcount;
7712
7713 if (symidx < locsymcount)
7714 {
7715 Elf_Internal_Sym *sym;
7716
7717 sym = isymbuf + symidx;
7718 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7719 {
7720 /* It is a local symbol: move it to the
7721 "absolute" section and give it a value. */
7722 sym->st_shndx = SHN_ABS;
7723 sym->st_value = val;
7724 return;
7725 }
7726 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7727 extsymoff = 0;
7728 }
7729
7730 /* It is a global symbol: set its link type
7731 to "defined" and give it a value. */
7732
7733 sym_hashes = elf_sym_hashes (bfd_with_globals);
7734 h = sym_hashes [symidx - extsymoff];
7735 while (h->root.type == bfd_link_hash_indirect
7736 || h->root.type == bfd_link_hash_warning)
7737 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7738 h->root.type = bfd_link_hash_defined;
7739 h->root.u.def.value = val;
7740 h->root.u.def.section = bfd_abs_section_ptr;
7741 }
7742
7743 static bfd_boolean
7744 resolve_symbol (const char *name,
7745 bfd *input_bfd,
7746 struct elf_final_link_info *flinfo,
7747 bfd_vma *result,
7748 Elf_Internal_Sym *isymbuf,
7749 size_t locsymcount)
7750 {
7751 Elf_Internal_Sym *sym;
7752 struct bfd_link_hash_entry *global_entry;
7753 const char *candidate = NULL;
7754 Elf_Internal_Shdr *symtab_hdr;
7755 size_t i;
7756
7757 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7758
7759 for (i = 0; i < locsymcount; ++ i)
7760 {
7761 sym = isymbuf + i;
7762
7763 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7764 continue;
7765
7766 candidate = bfd_elf_string_from_elf_section (input_bfd,
7767 symtab_hdr->sh_link,
7768 sym->st_name);
7769 #ifdef DEBUG
7770 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7771 name, candidate, (unsigned long) sym->st_value);
7772 #endif
7773 if (candidate && strcmp (candidate, name) == 0)
7774 {
7775 asection *sec = flinfo->sections [i];
7776
7777 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7778 *result += sec->output_offset + sec->output_section->vma;
7779 #ifdef DEBUG
7780 printf ("Found symbol with value %8.8lx\n",
7781 (unsigned long) *result);
7782 #endif
7783 return TRUE;
7784 }
7785 }
7786
7787 /* Hmm, haven't found it yet. perhaps it is a global. */
7788 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7789 FALSE, FALSE, TRUE);
7790 if (!global_entry)
7791 return FALSE;
7792
7793 if (global_entry->type == bfd_link_hash_defined
7794 || global_entry->type == bfd_link_hash_defweak)
7795 {
7796 *result = (global_entry->u.def.value
7797 + global_entry->u.def.section->output_section->vma
7798 + global_entry->u.def.section->output_offset);
7799 #ifdef DEBUG
7800 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7801 global_entry->root.string, (unsigned long) *result);
7802 #endif
7803 return TRUE;
7804 }
7805
7806 return FALSE;
7807 }
7808
7809 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7810 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7811 names like "foo.end" which is the end address of section "foo". */
7812
7813 static bfd_boolean
7814 resolve_section (const char *name,
7815 asection *sections,
7816 bfd_vma *result,
7817 bfd * abfd)
7818 {
7819 asection *curr;
7820 unsigned int len;
7821
7822 for (curr = sections; curr; curr = curr->next)
7823 if (strcmp (curr->name, name) == 0)
7824 {
7825 *result = curr->vma;
7826 return TRUE;
7827 }
7828
7829 /* Hmm. still haven't found it. try pseudo-section names. */
7830 /* FIXME: This could be coded more efficiently... */
7831 for (curr = sections; curr; curr = curr->next)
7832 {
7833 len = strlen (curr->name);
7834 if (len > strlen (name))
7835 continue;
7836
7837 if (strncmp (curr->name, name, len) == 0)
7838 {
7839 if (strncmp (".end", name + len, 4) == 0)
7840 {
7841 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7842 return TRUE;
7843 }
7844
7845 /* Insert more pseudo-section names here, if you like. */
7846 }
7847 }
7848
7849 return FALSE;
7850 }
7851
7852 static void
7853 undefined_reference (const char *reftype, const char *name)
7854 {
7855 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7856 reftype, name);
7857 }
7858
7859 static bfd_boolean
7860 eval_symbol (bfd_vma *result,
7861 const char **symp,
7862 bfd *input_bfd,
7863 struct elf_final_link_info *flinfo,
7864 bfd_vma dot,
7865 Elf_Internal_Sym *isymbuf,
7866 size_t locsymcount,
7867 int signed_p)
7868 {
7869 size_t len;
7870 size_t symlen;
7871 bfd_vma a;
7872 bfd_vma b;
7873 char symbuf[4096];
7874 const char *sym = *symp;
7875 const char *symend;
7876 bfd_boolean symbol_is_section = FALSE;
7877
7878 len = strlen (sym);
7879 symend = sym + len;
7880
7881 if (len < 1 || len > sizeof (symbuf))
7882 {
7883 bfd_set_error (bfd_error_invalid_operation);
7884 return FALSE;
7885 }
7886
7887 switch (* sym)
7888 {
7889 case '.':
7890 *result = dot;
7891 *symp = sym + 1;
7892 return TRUE;
7893
7894 case '#':
7895 ++sym;
7896 *result = strtoul (sym, (char **) symp, 16);
7897 return TRUE;
7898
7899 case 'S':
7900 symbol_is_section = TRUE;
7901 case 's':
7902 ++sym;
7903 symlen = strtol (sym, (char **) symp, 10);
7904 sym = *symp + 1; /* Skip the trailing ':'. */
7905
7906 if (symend < sym || symlen + 1 > sizeof (symbuf))
7907 {
7908 bfd_set_error (bfd_error_invalid_operation);
7909 return FALSE;
7910 }
7911
7912 memcpy (symbuf, sym, symlen);
7913 symbuf[symlen] = '\0';
7914 *symp = sym + symlen;
7915
7916 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7917 the symbol as a section, or vice-versa. so we're pretty liberal in our
7918 interpretation here; section means "try section first", not "must be a
7919 section", and likewise with symbol. */
7920
7921 if (symbol_is_section)
7922 {
7923 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7924 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7925 isymbuf, locsymcount))
7926 {
7927 undefined_reference ("section", symbuf);
7928 return FALSE;
7929 }
7930 }
7931 else
7932 {
7933 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7934 isymbuf, locsymcount)
7935 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7936 result, input_bfd))
7937 {
7938 undefined_reference ("symbol", symbuf);
7939 return FALSE;
7940 }
7941 }
7942
7943 return TRUE;
7944
7945 /* All that remains are operators. */
7946
7947 #define UNARY_OP(op) \
7948 if (strncmp (sym, #op, strlen (#op)) == 0) \
7949 { \
7950 sym += strlen (#op); \
7951 if (*sym == ':') \
7952 ++sym; \
7953 *symp = sym; \
7954 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7955 isymbuf, locsymcount, signed_p)) \
7956 return FALSE; \
7957 if (signed_p) \
7958 *result = op ((bfd_signed_vma) a); \
7959 else \
7960 *result = op a; \
7961 return TRUE; \
7962 }
7963
7964 #define BINARY_OP(op) \
7965 if (strncmp (sym, #op, strlen (#op)) == 0) \
7966 { \
7967 sym += strlen (#op); \
7968 if (*sym == ':') \
7969 ++sym; \
7970 *symp = sym; \
7971 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7972 isymbuf, locsymcount, signed_p)) \
7973 return FALSE; \
7974 ++*symp; \
7975 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7976 isymbuf, locsymcount, signed_p)) \
7977 return FALSE; \
7978 if (signed_p) \
7979 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7980 else \
7981 *result = a op b; \
7982 return TRUE; \
7983 }
7984
7985 default:
7986 UNARY_OP (0-);
7987 BINARY_OP (<<);
7988 BINARY_OP (>>);
7989 BINARY_OP (==);
7990 BINARY_OP (!=);
7991 BINARY_OP (<=);
7992 BINARY_OP (>=);
7993 BINARY_OP (&&);
7994 BINARY_OP (||);
7995 UNARY_OP (~);
7996 UNARY_OP (!);
7997 BINARY_OP (*);
7998 BINARY_OP (/);
7999 BINARY_OP (%);
8000 BINARY_OP (^);
8001 BINARY_OP (|);
8002 BINARY_OP (&);
8003 BINARY_OP (+);
8004 BINARY_OP (-);
8005 BINARY_OP (<);
8006 BINARY_OP (>);
8007 #undef UNARY_OP
8008 #undef BINARY_OP
8009 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8010 bfd_set_error (bfd_error_invalid_operation);
8011 return FALSE;
8012 }
8013 }
8014
8015 static void
8016 put_value (bfd_vma size,
8017 unsigned long chunksz,
8018 bfd *input_bfd,
8019 bfd_vma x,
8020 bfd_byte *location)
8021 {
8022 location += (size - chunksz);
8023
8024 for (; size; size -= chunksz, location -= chunksz)
8025 {
8026 switch (chunksz)
8027 {
8028 case 1:
8029 bfd_put_8 (input_bfd, x, location);
8030 x >>= 8;
8031 break;
8032 case 2:
8033 bfd_put_16 (input_bfd, x, location);
8034 x >>= 16;
8035 break;
8036 case 4:
8037 bfd_put_32 (input_bfd, x, location);
8038 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8039 x >>= 16;
8040 x >>= 16;
8041 break;
8042 #ifdef BFD64
8043 case 8:
8044 bfd_put_64 (input_bfd, x, location);
8045 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8046 x >>= 32;
8047 x >>= 32;
8048 break;
8049 #endif
8050 default:
8051 abort ();
8052 break;
8053 }
8054 }
8055 }
8056
8057 static bfd_vma
8058 get_value (bfd_vma size,
8059 unsigned long chunksz,
8060 bfd *input_bfd,
8061 bfd_byte *location)
8062 {
8063 int shift;
8064 bfd_vma x = 0;
8065
8066 /* Sanity checks. */
8067 BFD_ASSERT (chunksz <= sizeof (x)
8068 && size >= chunksz
8069 && chunksz != 0
8070 && (size % chunksz) == 0
8071 && input_bfd != NULL
8072 && location != NULL);
8073
8074 if (chunksz == sizeof (x))
8075 {
8076 BFD_ASSERT (size == chunksz);
8077
8078 /* Make sure that we do not perform an undefined shift operation.
8079 We know that size == chunksz so there will only be one iteration
8080 of the loop below. */
8081 shift = 0;
8082 }
8083 else
8084 shift = 8 * chunksz;
8085
8086 for (; size; size -= chunksz, location += chunksz)
8087 {
8088 switch (chunksz)
8089 {
8090 case 1:
8091 x = (x << shift) | bfd_get_8 (input_bfd, location);
8092 break;
8093 case 2:
8094 x = (x << shift) | bfd_get_16 (input_bfd, location);
8095 break;
8096 case 4:
8097 x = (x << shift) | bfd_get_32 (input_bfd, location);
8098 break;
8099 #ifdef BFD64
8100 case 8:
8101 x = (x << shift) | bfd_get_64 (input_bfd, location);
8102 break;
8103 #endif
8104 default:
8105 abort ();
8106 }
8107 }
8108 return x;
8109 }
8110
8111 static void
8112 decode_complex_addend (unsigned long *start, /* in bits */
8113 unsigned long *oplen, /* in bits */
8114 unsigned long *len, /* in bits */
8115 unsigned long *wordsz, /* in bytes */
8116 unsigned long *chunksz, /* in bytes */
8117 unsigned long *lsb0_p,
8118 unsigned long *signed_p,
8119 unsigned long *trunc_p,
8120 unsigned long encoded)
8121 {
8122 * start = encoded & 0x3F;
8123 * len = (encoded >> 6) & 0x3F;
8124 * oplen = (encoded >> 12) & 0x3F;
8125 * wordsz = (encoded >> 18) & 0xF;
8126 * chunksz = (encoded >> 22) & 0xF;
8127 * lsb0_p = (encoded >> 27) & 1;
8128 * signed_p = (encoded >> 28) & 1;
8129 * trunc_p = (encoded >> 29) & 1;
8130 }
8131
8132 bfd_reloc_status_type
8133 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8134 asection *input_section ATTRIBUTE_UNUSED,
8135 bfd_byte *contents,
8136 Elf_Internal_Rela *rel,
8137 bfd_vma relocation)
8138 {
8139 bfd_vma shift, x, mask;
8140 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8141 bfd_reloc_status_type r;
8142
8143 /* Perform this reloc, since it is complex.
8144 (this is not to say that it necessarily refers to a complex
8145 symbol; merely that it is a self-describing CGEN based reloc.
8146 i.e. the addend has the complete reloc information (bit start, end,
8147 word size, etc) encoded within it.). */
8148
8149 decode_complex_addend (&start, &oplen, &len, &wordsz,
8150 &chunksz, &lsb0_p, &signed_p,
8151 &trunc_p, rel->r_addend);
8152
8153 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8154
8155 if (lsb0_p)
8156 shift = (start + 1) - len;
8157 else
8158 shift = (8 * wordsz) - (start + len);
8159
8160 x = get_value (wordsz, chunksz, input_bfd,
8161 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8162
8163 #ifdef DEBUG
8164 printf ("Doing complex reloc: "
8165 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8166 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8167 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8168 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8169 oplen, (unsigned long) x, (unsigned long) mask,
8170 (unsigned long) relocation);
8171 #endif
8172
8173 r = bfd_reloc_ok;
8174 if (! trunc_p)
8175 /* Now do an overflow check. */
8176 r = bfd_check_overflow ((signed_p
8177 ? complain_overflow_signed
8178 : complain_overflow_unsigned),
8179 len, 0, (8 * wordsz),
8180 relocation);
8181
8182 /* Do the deed. */
8183 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8184
8185 #ifdef DEBUG
8186 printf (" relocation: %8.8lx\n"
8187 " shifted mask: %8.8lx\n"
8188 " shifted/masked reloc: %8.8lx\n"
8189 " result: %8.8lx\n",
8190 (unsigned long) relocation, (unsigned long) (mask << shift),
8191 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8192 #endif
8193 put_value (wordsz, chunksz, input_bfd, x,
8194 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8195 return r;
8196 }
8197
8198 /* Functions to read r_offset from external (target order) reloc
8199 entry. Faster than bfd_getl32 et al, because we let the compiler
8200 know the value is aligned. */
8201
8202 static bfd_vma
8203 ext32l_r_offset (const void *p)
8204 {
8205 union aligned32
8206 {
8207 uint32_t v;
8208 unsigned char c[4];
8209 };
8210 const union aligned32 *a
8211 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8212
8213 uint32_t aval = ( (uint32_t) a->c[0]
8214 | (uint32_t) a->c[1] << 8
8215 | (uint32_t) a->c[2] << 16
8216 | (uint32_t) a->c[3] << 24);
8217 return aval;
8218 }
8219
8220 static bfd_vma
8221 ext32b_r_offset (const void *p)
8222 {
8223 union aligned32
8224 {
8225 uint32_t v;
8226 unsigned char c[4];
8227 };
8228 const union aligned32 *a
8229 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8230
8231 uint32_t aval = ( (uint32_t) a->c[0] << 24
8232 | (uint32_t) a->c[1] << 16
8233 | (uint32_t) a->c[2] << 8
8234 | (uint32_t) a->c[3]);
8235 return aval;
8236 }
8237
8238 #ifdef BFD_HOST_64_BIT
8239 static bfd_vma
8240 ext64l_r_offset (const void *p)
8241 {
8242 union aligned64
8243 {
8244 uint64_t v;
8245 unsigned char c[8];
8246 };
8247 const union aligned64 *a
8248 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8249
8250 uint64_t aval = ( (uint64_t) a->c[0]
8251 | (uint64_t) a->c[1] << 8
8252 | (uint64_t) a->c[2] << 16
8253 | (uint64_t) a->c[3] << 24
8254 | (uint64_t) a->c[4] << 32
8255 | (uint64_t) a->c[5] << 40
8256 | (uint64_t) a->c[6] << 48
8257 | (uint64_t) a->c[7] << 56);
8258 return aval;
8259 }
8260
8261 static bfd_vma
8262 ext64b_r_offset (const void *p)
8263 {
8264 union aligned64
8265 {
8266 uint64_t v;
8267 unsigned char c[8];
8268 };
8269 const union aligned64 *a
8270 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8271
8272 uint64_t aval = ( (uint64_t) a->c[0] << 56
8273 | (uint64_t) a->c[1] << 48
8274 | (uint64_t) a->c[2] << 40
8275 | (uint64_t) a->c[3] << 32
8276 | (uint64_t) a->c[4] << 24
8277 | (uint64_t) a->c[5] << 16
8278 | (uint64_t) a->c[6] << 8
8279 | (uint64_t) a->c[7]);
8280 return aval;
8281 }
8282 #endif
8283
8284 /* When performing a relocatable link, the input relocations are
8285 preserved. But, if they reference global symbols, the indices
8286 referenced must be updated. Update all the relocations found in
8287 RELDATA. */
8288
8289 static bfd_boolean
8290 elf_link_adjust_relocs (bfd *abfd,
8291 struct bfd_elf_section_reloc_data *reldata,
8292 bfd_boolean sort)
8293 {
8294 unsigned int i;
8295 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8296 bfd_byte *erela;
8297 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8298 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8299 bfd_vma r_type_mask;
8300 int r_sym_shift;
8301 unsigned int count = reldata->count;
8302 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8303
8304 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8305 {
8306 swap_in = bed->s->swap_reloc_in;
8307 swap_out = bed->s->swap_reloc_out;
8308 }
8309 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8310 {
8311 swap_in = bed->s->swap_reloca_in;
8312 swap_out = bed->s->swap_reloca_out;
8313 }
8314 else
8315 abort ();
8316
8317 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8318 abort ();
8319
8320 if (bed->s->arch_size == 32)
8321 {
8322 r_type_mask = 0xff;
8323 r_sym_shift = 8;
8324 }
8325 else
8326 {
8327 r_type_mask = 0xffffffff;
8328 r_sym_shift = 32;
8329 }
8330
8331 erela = reldata->hdr->contents;
8332 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8333 {
8334 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8335 unsigned int j;
8336
8337 if (*rel_hash == NULL)
8338 continue;
8339
8340 BFD_ASSERT ((*rel_hash)->indx >= 0);
8341
8342 (*swap_in) (abfd, erela, irela);
8343 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8344 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8345 | (irela[j].r_info & r_type_mask));
8346 (*swap_out) (abfd, irela, erela);
8347 }
8348
8349 if (sort && count != 0)
8350 {
8351 bfd_vma (*ext_r_off) (const void *);
8352 bfd_vma r_off;
8353 size_t elt_size;
8354 bfd_byte *base, *end, *p, *loc;
8355 bfd_byte *buf = NULL;
8356
8357 if (bed->s->arch_size == 32)
8358 {
8359 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8360 ext_r_off = ext32l_r_offset;
8361 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8362 ext_r_off = ext32b_r_offset;
8363 else
8364 abort ();
8365 }
8366 else
8367 {
8368 #ifdef BFD_HOST_64_BIT
8369 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8370 ext_r_off = ext64l_r_offset;
8371 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8372 ext_r_off = ext64b_r_offset;
8373 else
8374 #endif
8375 abort ();
8376 }
8377
8378 /* Must use a stable sort here. A modified insertion sort,
8379 since the relocs are mostly sorted already. */
8380 elt_size = reldata->hdr->sh_entsize;
8381 base = reldata->hdr->contents;
8382 end = base + count * elt_size;
8383 if (elt_size > sizeof (Elf64_External_Rela))
8384 abort ();
8385
8386 /* Ensure the first element is lowest. This acts as a sentinel,
8387 speeding the main loop below. */
8388 r_off = (*ext_r_off) (base);
8389 for (p = loc = base; (p += elt_size) < end; )
8390 {
8391 bfd_vma r_off2 = (*ext_r_off) (p);
8392 if (r_off > r_off2)
8393 {
8394 r_off = r_off2;
8395 loc = p;
8396 }
8397 }
8398 if (loc != base)
8399 {
8400 /* Don't just swap *base and *loc as that changes the order
8401 of the original base[0] and base[1] if they happen to
8402 have the same r_offset. */
8403 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8404 memcpy (onebuf, loc, elt_size);
8405 memmove (base + elt_size, base, loc - base);
8406 memcpy (base, onebuf, elt_size);
8407 }
8408
8409 for (p = base + elt_size; (p += elt_size) < end; )
8410 {
8411 /* base to p is sorted, *p is next to insert. */
8412 r_off = (*ext_r_off) (p);
8413 /* Search the sorted region for location to insert. */
8414 loc = p - elt_size;
8415 while (r_off < (*ext_r_off) (loc))
8416 loc -= elt_size;
8417 loc += elt_size;
8418 if (loc != p)
8419 {
8420 /* Chances are there is a run of relocs to insert here,
8421 from one of more input files. Files are not always
8422 linked in order due to the way elf_link_input_bfd is
8423 called. See pr17666. */
8424 size_t sortlen = p - loc;
8425 bfd_vma r_off2 = (*ext_r_off) (loc);
8426 size_t runlen = elt_size;
8427 size_t buf_size = 96 * 1024;
8428 while (p + runlen < end
8429 && (sortlen <= buf_size
8430 || runlen + elt_size <= buf_size)
8431 && r_off2 > (*ext_r_off) (p + runlen))
8432 runlen += elt_size;
8433 if (buf == NULL)
8434 {
8435 buf = bfd_malloc (buf_size);
8436 if (buf == NULL)
8437 return FALSE;
8438 }
8439 if (runlen < sortlen)
8440 {
8441 memcpy (buf, p, runlen);
8442 memmove (loc + runlen, loc, sortlen);
8443 memcpy (loc, buf, runlen);
8444 }
8445 else
8446 {
8447 memcpy (buf, loc, sortlen);
8448 memmove (loc, p, runlen);
8449 memcpy (loc + runlen, buf, sortlen);
8450 }
8451 p += runlen - elt_size;
8452 }
8453 }
8454 /* Hashes are no longer valid. */
8455 free (reldata->hashes);
8456 reldata->hashes = NULL;
8457 free (buf);
8458 }
8459 return TRUE;
8460 }
8461
8462 struct elf_link_sort_rela
8463 {
8464 union {
8465 bfd_vma offset;
8466 bfd_vma sym_mask;
8467 } u;
8468 enum elf_reloc_type_class type;
8469 /* We use this as an array of size int_rels_per_ext_rel. */
8470 Elf_Internal_Rela rela[1];
8471 };
8472
8473 static int
8474 elf_link_sort_cmp1 (const void *A, const void *B)
8475 {
8476 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8477 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8478 int relativea, relativeb;
8479
8480 relativea = a->type == reloc_class_relative;
8481 relativeb = b->type == reloc_class_relative;
8482
8483 if (relativea < relativeb)
8484 return 1;
8485 if (relativea > relativeb)
8486 return -1;
8487 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8488 return -1;
8489 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8490 return 1;
8491 if (a->rela->r_offset < b->rela->r_offset)
8492 return -1;
8493 if (a->rela->r_offset > b->rela->r_offset)
8494 return 1;
8495 return 0;
8496 }
8497
8498 static int
8499 elf_link_sort_cmp2 (const void *A, const void *B)
8500 {
8501 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8502 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8503
8504 if (a->type < b->type)
8505 return -1;
8506 if (a->type > b->type)
8507 return 1;
8508 if (a->u.offset < b->u.offset)
8509 return -1;
8510 if (a->u.offset > b->u.offset)
8511 return 1;
8512 if (a->rela->r_offset < b->rela->r_offset)
8513 return -1;
8514 if (a->rela->r_offset > b->rela->r_offset)
8515 return 1;
8516 return 0;
8517 }
8518
8519 static size_t
8520 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8521 {
8522 asection *dynamic_relocs;
8523 asection *rela_dyn;
8524 asection *rel_dyn;
8525 bfd_size_type count, size;
8526 size_t i, ret, sort_elt, ext_size;
8527 bfd_byte *sort, *s_non_relative, *p;
8528 struct elf_link_sort_rela *sq;
8529 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8530 int i2e = bed->s->int_rels_per_ext_rel;
8531 unsigned int opb = bfd_octets_per_byte (abfd);
8532 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8533 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8534 struct bfd_link_order *lo;
8535 bfd_vma r_sym_mask;
8536 bfd_boolean use_rela;
8537
8538 /* Find a dynamic reloc section. */
8539 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8540 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8541 if (rela_dyn != NULL && rela_dyn->size > 0
8542 && rel_dyn != NULL && rel_dyn->size > 0)
8543 {
8544 bfd_boolean use_rela_initialised = FALSE;
8545
8546 /* This is just here to stop gcc from complaining.
8547 Its initialization checking code is not perfect. */
8548 use_rela = TRUE;
8549
8550 /* Both sections are present. Examine the sizes
8551 of the indirect sections to help us choose. */
8552 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8553 if (lo->type == bfd_indirect_link_order)
8554 {
8555 asection *o = lo->u.indirect.section;
8556
8557 if ((o->size % bed->s->sizeof_rela) == 0)
8558 {
8559 if ((o->size % bed->s->sizeof_rel) == 0)
8560 /* Section size is divisible by both rel and rela sizes.
8561 It is of no help to us. */
8562 ;
8563 else
8564 {
8565 /* Section size is only divisible by rela. */
8566 if (use_rela_initialised && (use_rela == FALSE))
8567 {
8568 _bfd_error_handler (_("%B: Unable to sort relocs - "
8569 "they are in more than one size"),
8570 abfd);
8571 bfd_set_error (bfd_error_invalid_operation);
8572 return 0;
8573 }
8574 else
8575 {
8576 use_rela = TRUE;
8577 use_rela_initialised = TRUE;
8578 }
8579 }
8580 }
8581 else if ((o->size % bed->s->sizeof_rel) == 0)
8582 {
8583 /* Section size is only divisible by rel. */
8584 if (use_rela_initialised && (use_rela == TRUE))
8585 {
8586 _bfd_error_handler (_("%B: Unable to sort relocs - "
8587 "they are in more than one size"),
8588 abfd);
8589 bfd_set_error (bfd_error_invalid_operation);
8590 return 0;
8591 }
8592 else
8593 {
8594 use_rela = FALSE;
8595 use_rela_initialised = TRUE;
8596 }
8597 }
8598 else
8599 {
8600 /* The section size is not divisible by either -
8601 something is wrong. */
8602 _bfd_error_handler (_("%B: Unable to sort relocs - "
8603 "they are of an unknown size"), abfd);
8604 bfd_set_error (bfd_error_invalid_operation);
8605 return 0;
8606 }
8607 }
8608
8609 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8610 if (lo->type == bfd_indirect_link_order)
8611 {
8612 asection *o = lo->u.indirect.section;
8613
8614 if ((o->size % bed->s->sizeof_rela) == 0)
8615 {
8616 if ((o->size % bed->s->sizeof_rel) == 0)
8617 /* Section size is divisible by both rel and rela sizes.
8618 It is of no help to us. */
8619 ;
8620 else
8621 {
8622 /* Section size is only divisible by rela. */
8623 if (use_rela_initialised && (use_rela == FALSE))
8624 {
8625 _bfd_error_handler (_("%B: Unable to sort relocs - "
8626 "they are in more than one size"),
8627 abfd);
8628 bfd_set_error (bfd_error_invalid_operation);
8629 return 0;
8630 }
8631 else
8632 {
8633 use_rela = TRUE;
8634 use_rela_initialised = TRUE;
8635 }
8636 }
8637 }
8638 else if ((o->size % bed->s->sizeof_rel) == 0)
8639 {
8640 /* Section size is only divisible by rel. */
8641 if (use_rela_initialised && (use_rela == TRUE))
8642 {
8643 _bfd_error_handler (_("%B: Unable to sort relocs - "
8644 "they are in more than one size"),
8645 abfd);
8646 bfd_set_error (bfd_error_invalid_operation);
8647 return 0;
8648 }
8649 else
8650 {
8651 use_rela = FALSE;
8652 use_rela_initialised = TRUE;
8653 }
8654 }
8655 else
8656 {
8657 /* The section size is not divisible by either -
8658 something is wrong. */
8659 _bfd_error_handler (_("%B: Unable to sort relocs - "
8660 "they are of an unknown size"), abfd);
8661 bfd_set_error (bfd_error_invalid_operation);
8662 return 0;
8663 }
8664 }
8665
8666 if (! use_rela_initialised)
8667 /* Make a guess. */
8668 use_rela = TRUE;
8669 }
8670 else if (rela_dyn != NULL && rela_dyn->size > 0)
8671 use_rela = TRUE;
8672 else if (rel_dyn != NULL && rel_dyn->size > 0)
8673 use_rela = FALSE;
8674 else
8675 return 0;
8676
8677 if (use_rela)
8678 {
8679 dynamic_relocs = rela_dyn;
8680 ext_size = bed->s->sizeof_rela;
8681 swap_in = bed->s->swap_reloca_in;
8682 swap_out = bed->s->swap_reloca_out;
8683 }
8684 else
8685 {
8686 dynamic_relocs = rel_dyn;
8687 ext_size = bed->s->sizeof_rel;
8688 swap_in = bed->s->swap_reloc_in;
8689 swap_out = bed->s->swap_reloc_out;
8690 }
8691
8692 size = 0;
8693 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8694 if (lo->type == bfd_indirect_link_order)
8695 size += lo->u.indirect.section->size;
8696
8697 if (size != dynamic_relocs->size)
8698 return 0;
8699
8700 sort_elt = (sizeof (struct elf_link_sort_rela)
8701 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8702
8703 count = dynamic_relocs->size / ext_size;
8704 if (count == 0)
8705 return 0;
8706 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8707
8708 if (sort == NULL)
8709 {
8710 (*info->callbacks->warning)
8711 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8712 return 0;
8713 }
8714
8715 if (bed->s->arch_size == 32)
8716 r_sym_mask = ~(bfd_vma) 0xff;
8717 else
8718 r_sym_mask = ~(bfd_vma) 0xffffffff;
8719
8720 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8721 if (lo->type == bfd_indirect_link_order)
8722 {
8723 bfd_byte *erel, *erelend;
8724 asection *o = lo->u.indirect.section;
8725
8726 if (o->contents == NULL && o->size != 0)
8727 {
8728 /* This is a reloc section that is being handled as a normal
8729 section. See bfd_section_from_shdr. We can't combine
8730 relocs in this case. */
8731 free (sort);
8732 return 0;
8733 }
8734 erel = o->contents;
8735 erelend = o->contents + o->size;
8736 p = sort + o->output_offset * opb / ext_size * sort_elt;
8737
8738 while (erel < erelend)
8739 {
8740 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8741
8742 (*swap_in) (abfd, erel, s->rela);
8743 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8744 s->u.sym_mask = r_sym_mask;
8745 p += sort_elt;
8746 erel += ext_size;
8747 }
8748 }
8749
8750 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8751
8752 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8753 {
8754 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8755 if (s->type != reloc_class_relative)
8756 break;
8757 }
8758 ret = i;
8759 s_non_relative = p;
8760
8761 sq = (struct elf_link_sort_rela *) s_non_relative;
8762 for (; i < count; i++, p += sort_elt)
8763 {
8764 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8765 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8766 sq = sp;
8767 sp->u.offset = sq->rela->r_offset;
8768 }
8769
8770 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8771
8772 struct elf_link_hash_table *htab = elf_hash_table (info);
8773 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8774 {
8775 /* We have plt relocs in .rela.dyn. */
8776 sq = (struct elf_link_sort_rela *) sort;
8777 for (i = 0; i < count; i++)
8778 if (sq[count - i - 1].type != reloc_class_plt)
8779 break;
8780 if (i != 0 && htab->srelplt->size == i * ext_size)
8781 {
8782 struct bfd_link_order **plo;
8783 /* Put srelplt link_order last. This is so the output_offset
8784 set in the next loop is correct for DT_JMPREL. */
8785 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8786 if ((*plo)->type == bfd_indirect_link_order
8787 && (*plo)->u.indirect.section == htab->srelplt)
8788 {
8789 lo = *plo;
8790 *plo = lo->next;
8791 }
8792 else
8793 plo = &(*plo)->next;
8794 *plo = lo;
8795 lo->next = NULL;
8796 dynamic_relocs->map_tail.link_order = lo;
8797 }
8798 }
8799
8800 p = sort;
8801 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8802 if (lo->type == bfd_indirect_link_order)
8803 {
8804 bfd_byte *erel, *erelend;
8805 asection *o = lo->u.indirect.section;
8806
8807 erel = o->contents;
8808 erelend = o->contents + o->size;
8809 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8810 while (erel < erelend)
8811 {
8812 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8813 (*swap_out) (abfd, s->rela, erel);
8814 p += sort_elt;
8815 erel += ext_size;
8816 }
8817 }
8818
8819 free (sort);
8820 *psec = dynamic_relocs;
8821 return ret;
8822 }
8823
8824 /* Add a symbol to the output symbol string table. */
8825
8826 static int
8827 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8828 const char *name,
8829 Elf_Internal_Sym *elfsym,
8830 asection *input_sec,
8831 struct elf_link_hash_entry *h)
8832 {
8833 int (*output_symbol_hook)
8834 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8835 struct elf_link_hash_entry *);
8836 struct elf_link_hash_table *hash_table;
8837 const struct elf_backend_data *bed;
8838 bfd_size_type strtabsize;
8839
8840 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8841
8842 bed = get_elf_backend_data (flinfo->output_bfd);
8843 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8844 if (output_symbol_hook != NULL)
8845 {
8846 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8847 if (ret != 1)
8848 return ret;
8849 }
8850
8851 if (name == NULL
8852 || *name == '\0'
8853 || (input_sec->flags & SEC_EXCLUDE))
8854 elfsym->st_name = (unsigned long) -1;
8855 else
8856 {
8857 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8858 to get the final offset for st_name. */
8859 elfsym->st_name
8860 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8861 name, FALSE);
8862 if (elfsym->st_name == (unsigned long) -1)
8863 return 0;
8864 }
8865
8866 hash_table = elf_hash_table (flinfo->info);
8867 strtabsize = hash_table->strtabsize;
8868 if (strtabsize <= hash_table->strtabcount)
8869 {
8870 strtabsize += strtabsize;
8871 hash_table->strtabsize = strtabsize;
8872 strtabsize *= sizeof (*hash_table->strtab);
8873 hash_table->strtab
8874 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8875 strtabsize);
8876 if (hash_table->strtab == NULL)
8877 return 0;
8878 }
8879 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8880 hash_table->strtab[hash_table->strtabcount].dest_index
8881 = hash_table->strtabcount;
8882 hash_table->strtab[hash_table->strtabcount].destshndx_index
8883 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8884
8885 bfd_get_symcount (flinfo->output_bfd) += 1;
8886 hash_table->strtabcount += 1;
8887
8888 return 1;
8889 }
8890
8891 /* Swap symbols out to the symbol table and flush the output symbols to
8892 the file. */
8893
8894 static bfd_boolean
8895 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8896 {
8897 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8898 bfd_size_type amt, i;
8899 const struct elf_backend_data *bed;
8900 bfd_byte *symbuf;
8901 Elf_Internal_Shdr *hdr;
8902 file_ptr pos;
8903 bfd_boolean ret;
8904
8905 if (!hash_table->strtabcount)
8906 return TRUE;
8907
8908 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8909
8910 bed = get_elf_backend_data (flinfo->output_bfd);
8911
8912 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8913 symbuf = (bfd_byte *) bfd_malloc (amt);
8914 if (symbuf == NULL)
8915 return FALSE;
8916
8917 if (flinfo->symshndxbuf)
8918 {
8919 amt = (sizeof (Elf_External_Sym_Shndx)
8920 * (bfd_get_symcount (flinfo->output_bfd)));
8921 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8922 if (flinfo->symshndxbuf == NULL)
8923 {
8924 free (symbuf);
8925 return FALSE;
8926 }
8927 }
8928
8929 for (i = 0; i < hash_table->strtabcount; i++)
8930 {
8931 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8932 if (elfsym->sym.st_name == (unsigned long) -1)
8933 elfsym->sym.st_name = 0;
8934 else
8935 elfsym->sym.st_name
8936 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8937 elfsym->sym.st_name);
8938 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8939 ((bfd_byte *) symbuf
8940 + (elfsym->dest_index
8941 * bed->s->sizeof_sym)),
8942 (flinfo->symshndxbuf
8943 + elfsym->destshndx_index));
8944 }
8945
8946 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8947 pos = hdr->sh_offset + hdr->sh_size;
8948 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8949 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8950 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8951 {
8952 hdr->sh_size += amt;
8953 ret = TRUE;
8954 }
8955 else
8956 ret = FALSE;
8957
8958 free (symbuf);
8959
8960 free (hash_table->strtab);
8961 hash_table->strtab = NULL;
8962
8963 return ret;
8964 }
8965
8966 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8967
8968 static bfd_boolean
8969 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8970 {
8971 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8972 && sym->st_shndx < SHN_LORESERVE)
8973 {
8974 /* The gABI doesn't support dynamic symbols in output sections
8975 beyond 64k. */
8976 (*_bfd_error_handler)
8977 (_("%B: Too many sections: %d (>= %d)"),
8978 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8979 bfd_set_error (bfd_error_nonrepresentable_section);
8980 return FALSE;
8981 }
8982 return TRUE;
8983 }
8984
8985 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8986 allowing an unsatisfied unversioned symbol in the DSO to match a
8987 versioned symbol that would normally require an explicit version.
8988 We also handle the case that a DSO references a hidden symbol
8989 which may be satisfied by a versioned symbol in another DSO. */
8990
8991 static bfd_boolean
8992 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8993 const struct elf_backend_data *bed,
8994 struct elf_link_hash_entry *h)
8995 {
8996 bfd *abfd;
8997 struct elf_link_loaded_list *loaded;
8998
8999 if (!is_elf_hash_table (info->hash))
9000 return FALSE;
9001
9002 /* Check indirect symbol. */
9003 while (h->root.type == bfd_link_hash_indirect)
9004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9005
9006 switch (h->root.type)
9007 {
9008 default:
9009 abfd = NULL;
9010 break;
9011
9012 case bfd_link_hash_undefined:
9013 case bfd_link_hash_undefweak:
9014 abfd = h->root.u.undef.abfd;
9015 if ((abfd->flags & DYNAMIC) == 0
9016 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9017 return FALSE;
9018 break;
9019
9020 case bfd_link_hash_defined:
9021 case bfd_link_hash_defweak:
9022 abfd = h->root.u.def.section->owner;
9023 break;
9024
9025 case bfd_link_hash_common:
9026 abfd = h->root.u.c.p->section->owner;
9027 break;
9028 }
9029 BFD_ASSERT (abfd != NULL);
9030
9031 for (loaded = elf_hash_table (info)->loaded;
9032 loaded != NULL;
9033 loaded = loaded->next)
9034 {
9035 bfd *input;
9036 Elf_Internal_Shdr *hdr;
9037 bfd_size_type symcount;
9038 bfd_size_type extsymcount;
9039 bfd_size_type extsymoff;
9040 Elf_Internal_Shdr *versymhdr;
9041 Elf_Internal_Sym *isym;
9042 Elf_Internal_Sym *isymend;
9043 Elf_Internal_Sym *isymbuf;
9044 Elf_External_Versym *ever;
9045 Elf_External_Versym *extversym;
9046
9047 input = loaded->abfd;
9048
9049 /* We check each DSO for a possible hidden versioned definition. */
9050 if (input == abfd
9051 || (input->flags & DYNAMIC) == 0
9052 || elf_dynversym (input) == 0)
9053 continue;
9054
9055 hdr = &elf_tdata (input)->dynsymtab_hdr;
9056
9057 symcount = hdr->sh_size / bed->s->sizeof_sym;
9058 if (elf_bad_symtab (input))
9059 {
9060 extsymcount = symcount;
9061 extsymoff = 0;
9062 }
9063 else
9064 {
9065 extsymcount = symcount - hdr->sh_info;
9066 extsymoff = hdr->sh_info;
9067 }
9068
9069 if (extsymcount == 0)
9070 continue;
9071
9072 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9073 NULL, NULL, NULL);
9074 if (isymbuf == NULL)
9075 return FALSE;
9076
9077 /* Read in any version definitions. */
9078 versymhdr = &elf_tdata (input)->dynversym_hdr;
9079 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9080 if (extversym == NULL)
9081 goto error_ret;
9082
9083 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9084 || (bfd_bread (extversym, versymhdr->sh_size, input)
9085 != versymhdr->sh_size))
9086 {
9087 free (extversym);
9088 error_ret:
9089 free (isymbuf);
9090 return FALSE;
9091 }
9092
9093 ever = extversym + extsymoff;
9094 isymend = isymbuf + extsymcount;
9095 for (isym = isymbuf; isym < isymend; isym++, ever++)
9096 {
9097 const char *name;
9098 Elf_Internal_Versym iver;
9099 unsigned short version_index;
9100
9101 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9102 || isym->st_shndx == SHN_UNDEF)
9103 continue;
9104
9105 name = bfd_elf_string_from_elf_section (input,
9106 hdr->sh_link,
9107 isym->st_name);
9108 if (strcmp (name, h->root.root.string) != 0)
9109 continue;
9110
9111 _bfd_elf_swap_versym_in (input, ever, &iver);
9112
9113 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9114 && !(h->def_regular
9115 && h->forced_local))
9116 {
9117 /* If we have a non-hidden versioned sym, then it should
9118 have provided a definition for the undefined sym unless
9119 it is defined in a non-shared object and forced local.
9120 */
9121 abort ();
9122 }
9123
9124 version_index = iver.vs_vers & VERSYM_VERSION;
9125 if (version_index == 1 || version_index == 2)
9126 {
9127 /* This is the base or first version. We can use it. */
9128 free (extversym);
9129 free (isymbuf);
9130 return TRUE;
9131 }
9132 }
9133
9134 free (extversym);
9135 free (isymbuf);
9136 }
9137
9138 return FALSE;
9139 }
9140
9141 /* Convert ELF common symbol TYPE. */
9142
9143 static int
9144 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9145 {
9146 /* Commom symbol can only appear in relocatable link. */
9147 if (!bfd_link_relocatable (info))
9148 abort ();
9149 switch (info->elf_stt_common)
9150 {
9151 case unchanged:
9152 break;
9153 case elf_stt_common:
9154 type = STT_COMMON;
9155 break;
9156 case no_elf_stt_common:
9157 type = STT_OBJECT;
9158 break;
9159 }
9160 return type;
9161 }
9162
9163 /* Add an external symbol to the symbol table. This is called from
9164 the hash table traversal routine. When generating a shared object,
9165 we go through the symbol table twice. The first time we output
9166 anything that might have been forced to local scope in a version
9167 script. The second time we output the symbols that are still
9168 global symbols. */
9169
9170 static bfd_boolean
9171 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9172 {
9173 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9174 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9175 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9176 bfd_boolean strip;
9177 Elf_Internal_Sym sym;
9178 asection *input_sec;
9179 const struct elf_backend_data *bed;
9180 long indx;
9181 int ret;
9182 unsigned int type;
9183 /* A symbol is bound locally if it is forced local or it is locally
9184 defined, hidden versioned, not referenced by shared library and
9185 not exported when linking executable. */
9186 bfd_boolean local_bind = (h->forced_local
9187 || (bfd_link_executable (flinfo->info)
9188 && !flinfo->info->export_dynamic
9189 && !h->dynamic
9190 && !h->ref_dynamic
9191 && h->def_regular
9192 && h->versioned == versioned_hidden));
9193
9194 if (h->root.type == bfd_link_hash_warning)
9195 {
9196 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9197 if (h->root.type == bfd_link_hash_new)
9198 return TRUE;
9199 }
9200
9201 /* Decide whether to output this symbol in this pass. */
9202 if (eoinfo->localsyms)
9203 {
9204 if (!local_bind)
9205 return TRUE;
9206 }
9207 else
9208 {
9209 if (local_bind)
9210 return TRUE;
9211 }
9212
9213 bed = get_elf_backend_data (flinfo->output_bfd);
9214
9215 if (h->root.type == bfd_link_hash_undefined)
9216 {
9217 /* If we have an undefined symbol reference here then it must have
9218 come from a shared library that is being linked in. (Undefined
9219 references in regular files have already been handled unless
9220 they are in unreferenced sections which are removed by garbage
9221 collection). */
9222 bfd_boolean ignore_undef = FALSE;
9223
9224 /* Some symbols may be special in that the fact that they're
9225 undefined can be safely ignored - let backend determine that. */
9226 if (bed->elf_backend_ignore_undef_symbol)
9227 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9228
9229 /* If we are reporting errors for this situation then do so now. */
9230 if (!ignore_undef
9231 && h->ref_dynamic
9232 && (!h->ref_regular || flinfo->info->gc_sections)
9233 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9234 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9235 (*flinfo->info->callbacks->undefined_symbol)
9236 (flinfo->info, h->root.root.string,
9237 h->ref_regular ? NULL : h->root.u.undef.abfd,
9238 NULL, 0,
9239 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9240
9241 /* Strip a global symbol defined in a discarded section. */
9242 if (h->indx == -3)
9243 return TRUE;
9244 }
9245
9246 /* We should also warn if a forced local symbol is referenced from
9247 shared libraries. */
9248 if (bfd_link_executable (flinfo->info)
9249 && h->forced_local
9250 && h->ref_dynamic
9251 && h->def_regular
9252 && !h->dynamic_def
9253 && h->ref_dynamic_nonweak
9254 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9255 {
9256 bfd *def_bfd;
9257 const char *msg;
9258 struct elf_link_hash_entry *hi = h;
9259
9260 /* Check indirect symbol. */
9261 while (hi->root.type == bfd_link_hash_indirect)
9262 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9263
9264 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9265 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9266 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9267 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9268 else
9269 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9270 def_bfd = flinfo->output_bfd;
9271 if (hi->root.u.def.section != bfd_abs_section_ptr)
9272 def_bfd = hi->root.u.def.section->owner;
9273 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9274 h->root.root.string);
9275 bfd_set_error (bfd_error_bad_value);
9276 eoinfo->failed = TRUE;
9277 return FALSE;
9278 }
9279
9280 /* We don't want to output symbols that have never been mentioned by
9281 a regular file, or that we have been told to strip. However, if
9282 h->indx is set to -2, the symbol is used by a reloc and we must
9283 output it. */
9284 strip = FALSE;
9285 if (h->indx == -2)
9286 ;
9287 else if ((h->def_dynamic
9288 || h->ref_dynamic
9289 || h->root.type == bfd_link_hash_new)
9290 && !h->def_regular
9291 && !h->ref_regular)
9292 strip = TRUE;
9293 else if (flinfo->info->strip == strip_all)
9294 strip = TRUE;
9295 else if (flinfo->info->strip == strip_some
9296 && bfd_hash_lookup (flinfo->info->keep_hash,
9297 h->root.root.string, FALSE, FALSE) == NULL)
9298 strip = TRUE;
9299 else if ((h->root.type == bfd_link_hash_defined
9300 || h->root.type == bfd_link_hash_defweak)
9301 && ((flinfo->info->strip_discarded
9302 && discarded_section (h->root.u.def.section))
9303 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9304 && h->root.u.def.section->owner != NULL
9305 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9306 strip = TRUE;
9307 else if ((h->root.type == bfd_link_hash_undefined
9308 || h->root.type == bfd_link_hash_undefweak)
9309 && h->root.u.undef.abfd != NULL
9310 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9311 strip = TRUE;
9312
9313 type = h->type;
9314
9315 /* If we're stripping it, and it's not a dynamic symbol, there's
9316 nothing else to do. However, if it is a forced local symbol or
9317 an ifunc symbol we need to give the backend finish_dynamic_symbol
9318 function a chance to make it dynamic. */
9319 if (strip
9320 && h->dynindx == -1
9321 && type != STT_GNU_IFUNC
9322 && !h->forced_local)
9323 return TRUE;
9324
9325 sym.st_value = 0;
9326 sym.st_size = h->size;
9327 sym.st_other = h->other;
9328 switch (h->root.type)
9329 {
9330 default:
9331 case bfd_link_hash_new:
9332 case bfd_link_hash_warning:
9333 abort ();
9334 return FALSE;
9335
9336 case bfd_link_hash_undefined:
9337 case bfd_link_hash_undefweak:
9338 input_sec = bfd_und_section_ptr;
9339 sym.st_shndx = SHN_UNDEF;
9340 break;
9341
9342 case bfd_link_hash_defined:
9343 case bfd_link_hash_defweak:
9344 {
9345 input_sec = h->root.u.def.section;
9346 if (input_sec->output_section != NULL)
9347 {
9348 sym.st_shndx =
9349 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9350 input_sec->output_section);
9351 if (sym.st_shndx == SHN_BAD)
9352 {
9353 (*_bfd_error_handler)
9354 (_("%B: could not find output section %A for input section %A"),
9355 flinfo->output_bfd, input_sec->output_section, input_sec);
9356 bfd_set_error (bfd_error_nonrepresentable_section);
9357 eoinfo->failed = TRUE;
9358 return FALSE;
9359 }
9360
9361 /* ELF symbols in relocatable files are section relative,
9362 but in nonrelocatable files they are virtual
9363 addresses. */
9364 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9365 if (!bfd_link_relocatable (flinfo->info))
9366 {
9367 sym.st_value += input_sec->output_section->vma;
9368 if (h->type == STT_TLS)
9369 {
9370 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9371 if (tls_sec != NULL)
9372 sym.st_value -= tls_sec->vma;
9373 }
9374 }
9375 }
9376 else
9377 {
9378 BFD_ASSERT (input_sec->owner == NULL
9379 || (input_sec->owner->flags & DYNAMIC) != 0);
9380 sym.st_shndx = SHN_UNDEF;
9381 input_sec = bfd_und_section_ptr;
9382 }
9383 }
9384 break;
9385
9386 case bfd_link_hash_common:
9387 input_sec = h->root.u.c.p->section;
9388 sym.st_shndx = bed->common_section_index (input_sec);
9389 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9390 break;
9391
9392 case bfd_link_hash_indirect:
9393 /* These symbols are created by symbol versioning. They point
9394 to the decorated version of the name. For example, if the
9395 symbol foo@@GNU_1.2 is the default, which should be used when
9396 foo is used with no version, then we add an indirect symbol
9397 foo which points to foo@@GNU_1.2. We ignore these symbols,
9398 since the indirected symbol is already in the hash table. */
9399 return TRUE;
9400 }
9401
9402 if (type == STT_COMMON || type == STT_OBJECT)
9403 switch (h->root.type)
9404 {
9405 case bfd_link_hash_common:
9406 type = elf_link_convert_common_type (flinfo->info, type);
9407 break;
9408 case bfd_link_hash_defined:
9409 case bfd_link_hash_defweak:
9410 if (bed->common_definition (&sym))
9411 type = elf_link_convert_common_type (flinfo->info, type);
9412 else
9413 type = STT_OBJECT;
9414 break;
9415 case bfd_link_hash_undefined:
9416 case bfd_link_hash_undefweak:
9417 break;
9418 default:
9419 abort ();
9420 }
9421
9422 if (local_bind)
9423 {
9424 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9425 /* Turn off visibility on local symbol. */
9426 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9427 }
9428 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9429 else if (h->unique_global && h->def_regular)
9430 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9431 else if (h->root.type == bfd_link_hash_undefweak
9432 || h->root.type == bfd_link_hash_defweak)
9433 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9434 else
9435 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9436 sym.st_target_internal = h->target_internal;
9437
9438 /* Give the processor backend a chance to tweak the symbol value,
9439 and also to finish up anything that needs to be done for this
9440 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9441 forced local syms when non-shared is due to a historical quirk.
9442 STT_GNU_IFUNC symbol must go through PLT. */
9443 if ((h->type == STT_GNU_IFUNC
9444 && h->def_regular
9445 && !bfd_link_relocatable (flinfo->info))
9446 || ((h->dynindx != -1
9447 || h->forced_local)
9448 && ((bfd_link_pic (flinfo->info)
9449 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9450 || h->root.type != bfd_link_hash_undefweak))
9451 || !h->forced_local)
9452 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9453 {
9454 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9455 (flinfo->output_bfd, flinfo->info, h, &sym)))
9456 {
9457 eoinfo->failed = TRUE;
9458 return FALSE;
9459 }
9460 }
9461
9462 /* If we are marking the symbol as undefined, and there are no
9463 non-weak references to this symbol from a regular object, then
9464 mark the symbol as weak undefined; if there are non-weak
9465 references, mark the symbol as strong. We can't do this earlier,
9466 because it might not be marked as undefined until the
9467 finish_dynamic_symbol routine gets through with it. */
9468 if (sym.st_shndx == SHN_UNDEF
9469 && h->ref_regular
9470 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9471 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9472 {
9473 int bindtype;
9474 type = ELF_ST_TYPE (sym.st_info);
9475
9476 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9477 if (type == STT_GNU_IFUNC)
9478 type = STT_FUNC;
9479
9480 if (h->ref_regular_nonweak)
9481 bindtype = STB_GLOBAL;
9482 else
9483 bindtype = STB_WEAK;
9484 sym.st_info = ELF_ST_INFO (bindtype, type);
9485 }
9486
9487 /* If this is a symbol defined in a dynamic library, don't use the
9488 symbol size from the dynamic library. Relinking an executable
9489 against a new library may introduce gratuitous changes in the
9490 executable's symbols if we keep the size. */
9491 if (sym.st_shndx == SHN_UNDEF
9492 && !h->def_regular
9493 && h->def_dynamic)
9494 sym.st_size = 0;
9495
9496 /* If a non-weak symbol with non-default visibility is not defined
9497 locally, it is a fatal error. */
9498 if (!bfd_link_relocatable (flinfo->info)
9499 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9500 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9501 && h->root.type == bfd_link_hash_undefined
9502 && !h->def_regular)
9503 {
9504 const char *msg;
9505
9506 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9507 msg = _("%B: protected symbol `%s' isn't defined");
9508 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9509 msg = _("%B: internal symbol `%s' isn't defined");
9510 else
9511 msg = _("%B: hidden symbol `%s' isn't defined");
9512 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9513 bfd_set_error (bfd_error_bad_value);
9514 eoinfo->failed = TRUE;
9515 return FALSE;
9516 }
9517
9518 /* If this symbol should be put in the .dynsym section, then put it
9519 there now. We already know the symbol index. We also fill in
9520 the entry in the .hash section. */
9521 if (elf_hash_table (flinfo->info)->dynsym != NULL
9522 && h->dynindx != -1
9523 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9524 {
9525 bfd_byte *esym;
9526
9527 /* Since there is no version information in the dynamic string,
9528 if there is no version info in symbol version section, we will
9529 have a run-time problem if not linking executable, referenced
9530 by shared library, not locally defined, or not bound locally.
9531 */
9532 if (h->verinfo.verdef == NULL
9533 && !local_bind
9534 && (!bfd_link_executable (flinfo->info)
9535 || h->ref_dynamic
9536 || !h->def_regular))
9537 {
9538 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9539
9540 if (p && p [1] != '\0')
9541 {
9542 (*_bfd_error_handler)
9543 (_("%B: No symbol version section for versioned symbol `%s'"),
9544 flinfo->output_bfd, h->root.root.string);
9545 eoinfo->failed = TRUE;
9546 return FALSE;
9547 }
9548 }
9549
9550 sym.st_name = h->dynstr_index;
9551 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9552 + h->dynindx * bed->s->sizeof_sym);
9553 if (!check_dynsym (flinfo->output_bfd, &sym))
9554 {
9555 eoinfo->failed = TRUE;
9556 return FALSE;
9557 }
9558 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9559
9560 if (flinfo->hash_sec != NULL)
9561 {
9562 size_t hash_entry_size;
9563 bfd_byte *bucketpos;
9564 bfd_vma chain;
9565 size_t bucketcount;
9566 size_t bucket;
9567
9568 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9569 bucket = h->u.elf_hash_value % bucketcount;
9570
9571 hash_entry_size
9572 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9573 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9574 + (bucket + 2) * hash_entry_size);
9575 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9576 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9577 bucketpos);
9578 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9579 ((bfd_byte *) flinfo->hash_sec->contents
9580 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9581 }
9582
9583 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9584 {
9585 Elf_Internal_Versym iversym;
9586 Elf_External_Versym *eversym;
9587
9588 if (!h->def_regular)
9589 {
9590 if (h->verinfo.verdef == NULL
9591 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9592 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9593 iversym.vs_vers = 0;
9594 else
9595 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9596 }
9597 else
9598 {
9599 if (h->verinfo.vertree == NULL)
9600 iversym.vs_vers = 1;
9601 else
9602 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9603 if (flinfo->info->create_default_symver)
9604 iversym.vs_vers++;
9605 }
9606
9607 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9608 defined locally. */
9609 if (h->versioned == versioned_hidden && h->def_regular)
9610 iversym.vs_vers |= VERSYM_HIDDEN;
9611
9612 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9613 eversym += h->dynindx;
9614 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9615 }
9616 }
9617
9618 /* If the symbol is undefined, and we didn't output it to .dynsym,
9619 strip it from .symtab too. Obviously we can't do this for
9620 relocatable output or when needed for --emit-relocs. */
9621 else if (input_sec == bfd_und_section_ptr
9622 && h->indx != -2
9623 && !bfd_link_relocatable (flinfo->info))
9624 return TRUE;
9625 /* Also strip others that we couldn't earlier due to dynamic symbol
9626 processing. */
9627 if (strip)
9628 return TRUE;
9629 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9630 return TRUE;
9631
9632 /* Output a FILE symbol so that following locals are not associated
9633 with the wrong input file. We need one for forced local symbols
9634 if we've seen more than one FILE symbol or when we have exactly
9635 one FILE symbol but global symbols are present in a file other
9636 than the one with the FILE symbol. We also need one if linker
9637 defined symbols are present. In practice these conditions are
9638 always met, so just emit the FILE symbol unconditionally. */
9639 if (eoinfo->localsyms
9640 && !eoinfo->file_sym_done
9641 && eoinfo->flinfo->filesym_count != 0)
9642 {
9643 Elf_Internal_Sym fsym;
9644
9645 memset (&fsym, 0, sizeof (fsym));
9646 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9647 fsym.st_shndx = SHN_ABS;
9648 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9649 bfd_und_section_ptr, NULL))
9650 return FALSE;
9651
9652 eoinfo->file_sym_done = TRUE;
9653 }
9654
9655 indx = bfd_get_symcount (flinfo->output_bfd);
9656 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9657 input_sec, h);
9658 if (ret == 0)
9659 {
9660 eoinfo->failed = TRUE;
9661 return FALSE;
9662 }
9663 else if (ret == 1)
9664 h->indx = indx;
9665 else if (h->indx == -2)
9666 abort();
9667
9668 return TRUE;
9669 }
9670
9671 /* Return TRUE if special handling is done for relocs in SEC against
9672 symbols defined in discarded sections. */
9673
9674 static bfd_boolean
9675 elf_section_ignore_discarded_relocs (asection *sec)
9676 {
9677 const struct elf_backend_data *bed;
9678
9679 switch (sec->sec_info_type)
9680 {
9681 case SEC_INFO_TYPE_STABS:
9682 case SEC_INFO_TYPE_EH_FRAME:
9683 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9684 return TRUE;
9685 default:
9686 break;
9687 }
9688
9689 bed = get_elf_backend_data (sec->owner);
9690 if (bed->elf_backend_ignore_discarded_relocs != NULL
9691 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9692 return TRUE;
9693
9694 return FALSE;
9695 }
9696
9697 /* Return a mask saying how ld should treat relocations in SEC against
9698 symbols defined in discarded sections. If this function returns
9699 COMPLAIN set, ld will issue a warning message. If this function
9700 returns PRETEND set, and the discarded section was link-once and the
9701 same size as the kept link-once section, ld will pretend that the
9702 symbol was actually defined in the kept section. Otherwise ld will
9703 zero the reloc (at least that is the intent, but some cooperation by
9704 the target dependent code is needed, particularly for REL targets). */
9705
9706 unsigned int
9707 _bfd_elf_default_action_discarded (asection *sec)
9708 {
9709 if (sec->flags & SEC_DEBUGGING)
9710 return PRETEND;
9711
9712 if (strcmp (".eh_frame", sec->name) == 0)
9713 return 0;
9714
9715 if (strcmp (".gcc_except_table", sec->name) == 0)
9716 return 0;
9717
9718 return COMPLAIN | PRETEND;
9719 }
9720
9721 /* Find a match between a section and a member of a section group. */
9722
9723 static asection *
9724 match_group_member (asection *sec, asection *group,
9725 struct bfd_link_info *info)
9726 {
9727 asection *first = elf_next_in_group (group);
9728 asection *s = first;
9729
9730 while (s != NULL)
9731 {
9732 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9733 return s;
9734
9735 s = elf_next_in_group (s);
9736 if (s == first)
9737 break;
9738 }
9739
9740 return NULL;
9741 }
9742
9743 /* Check if the kept section of a discarded section SEC can be used
9744 to replace it. Return the replacement if it is OK. Otherwise return
9745 NULL. */
9746
9747 asection *
9748 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9749 {
9750 asection *kept;
9751
9752 kept = sec->kept_section;
9753 if (kept != NULL)
9754 {
9755 if ((kept->flags & SEC_GROUP) != 0)
9756 kept = match_group_member (sec, kept, info);
9757 if (kept != NULL
9758 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9759 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9760 kept = NULL;
9761 sec->kept_section = kept;
9762 }
9763 return kept;
9764 }
9765
9766 /* Link an input file into the linker output file. This function
9767 handles all the sections and relocations of the input file at once.
9768 This is so that we only have to read the local symbols once, and
9769 don't have to keep them in memory. */
9770
9771 static bfd_boolean
9772 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9773 {
9774 int (*relocate_section)
9775 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9776 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9777 bfd *output_bfd;
9778 Elf_Internal_Shdr *symtab_hdr;
9779 size_t locsymcount;
9780 size_t extsymoff;
9781 Elf_Internal_Sym *isymbuf;
9782 Elf_Internal_Sym *isym;
9783 Elf_Internal_Sym *isymend;
9784 long *pindex;
9785 asection **ppsection;
9786 asection *o;
9787 const struct elf_backend_data *bed;
9788 struct elf_link_hash_entry **sym_hashes;
9789 bfd_size_type address_size;
9790 bfd_vma r_type_mask;
9791 int r_sym_shift;
9792 bfd_boolean have_file_sym = FALSE;
9793
9794 output_bfd = flinfo->output_bfd;
9795 bed = get_elf_backend_data (output_bfd);
9796 relocate_section = bed->elf_backend_relocate_section;
9797
9798 /* If this is a dynamic object, we don't want to do anything here:
9799 we don't want the local symbols, and we don't want the section
9800 contents. */
9801 if ((input_bfd->flags & DYNAMIC) != 0)
9802 return TRUE;
9803
9804 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9805 if (elf_bad_symtab (input_bfd))
9806 {
9807 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9808 extsymoff = 0;
9809 }
9810 else
9811 {
9812 locsymcount = symtab_hdr->sh_info;
9813 extsymoff = symtab_hdr->sh_info;
9814 }
9815
9816 /* Read the local symbols. */
9817 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9818 if (isymbuf == NULL && locsymcount != 0)
9819 {
9820 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9821 flinfo->internal_syms,
9822 flinfo->external_syms,
9823 flinfo->locsym_shndx);
9824 if (isymbuf == NULL)
9825 return FALSE;
9826 }
9827
9828 /* Find local symbol sections and adjust values of symbols in
9829 SEC_MERGE sections. Write out those local symbols we know are
9830 going into the output file. */
9831 isymend = isymbuf + locsymcount;
9832 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9833 isym < isymend;
9834 isym++, pindex++, ppsection++)
9835 {
9836 asection *isec;
9837 const char *name;
9838 Elf_Internal_Sym osym;
9839 long indx;
9840 int ret;
9841
9842 *pindex = -1;
9843
9844 if (elf_bad_symtab (input_bfd))
9845 {
9846 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9847 {
9848 *ppsection = NULL;
9849 continue;
9850 }
9851 }
9852
9853 if (isym->st_shndx == SHN_UNDEF)
9854 isec = bfd_und_section_ptr;
9855 else if (isym->st_shndx == SHN_ABS)
9856 isec = bfd_abs_section_ptr;
9857 else if (isym->st_shndx == SHN_COMMON)
9858 isec = bfd_com_section_ptr;
9859 else
9860 {
9861 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9862 if (isec == NULL)
9863 {
9864 /* Don't attempt to output symbols with st_shnx in the
9865 reserved range other than SHN_ABS and SHN_COMMON. */
9866 *ppsection = NULL;
9867 continue;
9868 }
9869 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9870 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9871 isym->st_value =
9872 _bfd_merged_section_offset (output_bfd, &isec,
9873 elf_section_data (isec)->sec_info,
9874 isym->st_value);
9875 }
9876
9877 *ppsection = isec;
9878
9879 /* Don't output the first, undefined, symbol. In fact, don't
9880 output any undefined local symbol. */
9881 if (isec == bfd_und_section_ptr)
9882 continue;
9883
9884 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9885 {
9886 /* We never output section symbols. Instead, we use the
9887 section symbol of the corresponding section in the output
9888 file. */
9889 continue;
9890 }
9891
9892 /* If we are stripping all symbols, we don't want to output this
9893 one. */
9894 if (flinfo->info->strip == strip_all)
9895 continue;
9896
9897 /* If we are discarding all local symbols, we don't want to
9898 output this one. If we are generating a relocatable output
9899 file, then some of the local symbols may be required by
9900 relocs; we output them below as we discover that they are
9901 needed. */
9902 if (flinfo->info->discard == discard_all)
9903 continue;
9904
9905 /* If this symbol is defined in a section which we are
9906 discarding, we don't need to keep it. */
9907 if (isym->st_shndx != SHN_UNDEF
9908 && isym->st_shndx < SHN_LORESERVE
9909 && bfd_section_removed_from_list (output_bfd,
9910 isec->output_section))
9911 continue;
9912
9913 /* Get the name of the symbol. */
9914 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9915 isym->st_name);
9916 if (name == NULL)
9917 return FALSE;
9918
9919 /* See if we are discarding symbols with this name. */
9920 if ((flinfo->info->strip == strip_some
9921 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9922 == NULL))
9923 || (((flinfo->info->discard == discard_sec_merge
9924 && (isec->flags & SEC_MERGE)
9925 && !bfd_link_relocatable (flinfo->info))
9926 || flinfo->info->discard == discard_l)
9927 && bfd_is_local_label_name (input_bfd, name)))
9928 continue;
9929
9930 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9931 {
9932 if (input_bfd->lto_output)
9933 /* -flto puts a temp file name here. This means builds
9934 are not reproducible. Discard the symbol. */
9935 continue;
9936 have_file_sym = TRUE;
9937 flinfo->filesym_count += 1;
9938 }
9939 if (!have_file_sym)
9940 {
9941 /* In the absence of debug info, bfd_find_nearest_line uses
9942 FILE symbols to determine the source file for local
9943 function symbols. Provide a FILE symbol here if input
9944 files lack such, so that their symbols won't be
9945 associated with a previous input file. It's not the
9946 source file, but the best we can do. */
9947 have_file_sym = TRUE;
9948 flinfo->filesym_count += 1;
9949 memset (&osym, 0, sizeof (osym));
9950 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9951 osym.st_shndx = SHN_ABS;
9952 if (!elf_link_output_symstrtab (flinfo,
9953 (input_bfd->lto_output ? NULL
9954 : input_bfd->filename),
9955 &osym, bfd_abs_section_ptr,
9956 NULL))
9957 return FALSE;
9958 }
9959
9960 osym = *isym;
9961
9962 /* Adjust the section index for the output file. */
9963 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9964 isec->output_section);
9965 if (osym.st_shndx == SHN_BAD)
9966 return FALSE;
9967
9968 /* ELF symbols in relocatable files are section relative, but
9969 in executable files they are virtual addresses. Note that
9970 this code assumes that all ELF sections have an associated
9971 BFD section with a reasonable value for output_offset; below
9972 we assume that they also have a reasonable value for
9973 output_section. Any special sections must be set up to meet
9974 these requirements. */
9975 osym.st_value += isec->output_offset;
9976 if (!bfd_link_relocatable (flinfo->info))
9977 {
9978 osym.st_value += isec->output_section->vma;
9979 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9980 {
9981 /* STT_TLS symbols are relative to PT_TLS segment base. */
9982 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9983 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9984 }
9985 }
9986
9987 indx = bfd_get_symcount (output_bfd);
9988 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9989 if (ret == 0)
9990 return FALSE;
9991 else if (ret == 1)
9992 *pindex = indx;
9993 }
9994
9995 if (bed->s->arch_size == 32)
9996 {
9997 r_type_mask = 0xff;
9998 r_sym_shift = 8;
9999 address_size = 4;
10000 }
10001 else
10002 {
10003 r_type_mask = 0xffffffff;
10004 r_sym_shift = 32;
10005 address_size = 8;
10006 }
10007
10008 /* Relocate the contents of each section. */
10009 sym_hashes = elf_sym_hashes (input_bfd);
10010 for (o = input_bfd->sections; o != NULL; o = o->next)
10011 {
10012 bfd_byte *contents;
10013
10014 if (! o->linker_mark)
10015 {
10016 /* This section was omitted from the link. */
10017 continue;
10018 }
10019
10020 if (bfd_link_relocatable (flinfo->info)
10021 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10022 {
10023 /* Deal with the group signature symbol. */
10024 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10025 unsigned long symndx = sec_data->this_hdr.sh_info;
10026 asection *osec = o->output_section;
10027
10028 if (symndx >= locsymcount
10029 || (elf_bad_symtab (input_bfd)
10030 && flinfo->sections[symndx] == NULL))
10031 {
10032 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10033 while (h->root.type == bfd_link_hash_indirect
10034 || h->root.type == bfd_link_hash_warning)
10035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10036 /* Arrange for symbol to be output. */
10037 h->indx = -2;
10038 elf_section_data (osec)->this_hdr.sh_info = -2;
10039 }
10040 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10041 {
10042 /* We'll use the output section target_index. */
10043 asection *sec = flinfo->sections[symndx]->output_section;
10044 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10045 }
10046 else
10047 {
10048 if (flinfo->indices[symndx] == -1)
10049 {
10050 /* Otherwise output the local symbol now. */
10051 Elf_Internal_Sym sym = isymbuf[symndx];
10052 asection *sec = flinfo->sections[symndx]->output_section;
10053 const char *name;
10054 long indx;
10055 int ret;
10056
10057 name = bfd_elf_string_from_elf_section (input_bfd,
10058 symtab_hdr->sh_link,
10059 sym.st_name);
10060 if (name == NULL)
10061 return FALSE;
10062
10063 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10064 sec);
10065 if (sym.st_shndx == SHN_BAD)
10066 return FALSE;
10067
10068 sym.st_value += o->output_offset;
10069
10070 indx = bfd_get_symcount (output_bfd);
10071 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10072 NULL);
10073 if (ret == 0)
10074 return FALSE;
10075 else if (ret == 1)
10076 flinfo->indices[symndx] = indx;
10077 else
10078 abort ();
10079 }
10080 elf_section_data (osec)->this_hdr.sh_info
10081 = flinfo->indices[symndx];
10082 }
10083 }
10084
10085 if ((o->flags & SEC_HAS_CONTENTS) == 0
10086 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10087 continue;
10088
10089 if ((o->flags & SEC_LINKER_CREATED) != 0)
10090 {
10091 /* Section was created by _bfd_elf_link_create_dynamic_sections
10092 or somesuch. */
10093 continue;
10094 }
10095
10096 /* Get the contents of the section. They have been cached by a
10097 relaxation routine. Note that o is a section in an input
10098 file, so the contents field will not have been set by any of
10099 the routines which work on output files. */
10100 if (elf_section_data (o)->this_hdr.contents != NULL)
10101 {
10102 contents = elf_section_data (o)->this_hdr.contents;
10103 if (bed->caches_rawsize
10104 && o->rawsize != 0
10105 && o->rawsize < o->size)
10106 {
10107 memcpy (flinfo->contents, contents, o->rawsize);
10108 contents = flinfo->contents;
10109 }
10110 }
10111 else
10112 {
10113 contents = flinfo->contents;
10114 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10115 return FALSE;
10116 }
10117
10118 if ((o->flags & SEC_RELOC) != 0)
10119 {
10120 Elf_Internal_Rela *internal_relocs;
10121 Elf_Internal_Rela *rel, *relend;
10122 int action_discarded;
10123 int ret;
10124
10125 /* Get the swapped relocs. */
10126 internal_relocs
10127 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10128 flinfo->internal_relocs, FALSE);
10129 if (internal_relocs == NULL
10130 && o->reloc_count > 0)
10131 return FALSE;
10132
10133 /* We need to reverse-copy input .ctors/.dtors sections if
10134 they are placed in .init_array/.finit_array for output. */
10135 if (o->size > address_size
10136 && ((strncmp (o->name, ".ctors", 6) == 0
10137 && strcmp (o->output_section->name,
10138 ".init_array") == 0)
10139 || (strncmp (o->name, ".dtors", 6) == 0
10140 && strcmp (o->output_section->name,
10141 ".fini_array") == 0))
10142 && (o->name[6] == 0 || o->name[6] == '.'))
10143 {
10144 if (o->size != o->reloc_count * address_size)
10145 {
10146 (*_bfd_error_handler)
10147 (_("error: %B: size of section %A is not "
10148 "multiple of address size"),
10149 input_bfd, o);
10150 bfd_set_error (bfd_error_on_input);
10151 return FALSE;
10152 }
10153 o->flags |= SEC_ELF_REVERSE_COPY;
10154 }
10155
10156 action_discarded = -1;
10157 if (!elf_section_ignore_discarded_relocs (o))
10158 action_discarded = (*bed->action_discarded) (o);
10159
10160 /* Run through the relocs evaluating complex reloc symbols and
10161 looking for relocs against symbols from discarded sections
10162 or section symbols from removed link-once sections.
10163 Complain about relocs against discarded sections. Zero
10164 relocs against removed link-once sections. */
10165
10166 rel = internal_relocs;
10167 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10168 for ( ; rel < relend; rel++)
10169 {
10170 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10171 unsigned int s_type;
10172 asection **ps, *sec;
10173 struct elf_link_hash_entry *h = NULL;
10174 const char *sym_name;
10175
10176 if (r_symndx == STN_UNDEF)
10177 continue;
10178
10179 if (r_symndx >= locsymcount
10180 || (elf_bad_symtab (input_bfd)
10181 && flinfo->sections[r_symndx] == NULL))
10182 {
10183 h = sym_hashes[r_symndx - extsymoff];
10184
10185 /* Badly formatted input files can contain relocs that
10186 reference non-existant symbols. Check here so that
10187 we do not seg fault. */
10188 if (h == NULL)
10189 {
10190 char buffer [32];
10191
10192 sprintf_vma (buffer, rel->r_info);
10193 (*_bfd_error_handler)
10194 (_("error: %B contains a reloc (0x%s) for section %A "
10195 "that references a non-existent global symbol"),
10196 input_bfd, o, buffer);
10197 bfd_set_error (bfd_error_bad_value);
10198 return FALSE;
10199 }
10200
10201 while (h->root.type == bfd_link_hash_indirect
10202 || h->root.type == bfd_link_hash_warning)
10203 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10204
10205 s_type = h->type;
10206
10207 /* If a plugin symbol is referenced from a non-IR file,
10208 mark the symbol as undefined. Note that the
10209 linker may attach linker created dynamic sections
10210 to the plugin bfd. Symbols defined in linker
10211 created sections are not plugin symbols. */
10212 if (h->root.non_ir_ref
10213 && (h->root.type == bfd_link_hash_defined
10214 || h->root.type == bfd_link_hash_defweak)
10215 && (h->root.u.def.section->flags
10216 & SEC_LINKER_CREATED) == 0
10217 && h->root.u.def.section->owner != NULL
10218 && (h->root.u.def.section->owner->flags
10219 & BFD_PLUGIN) != 0)
10220 {
10221 h->root.type = bfd_link_hash_undefined;
10222 h->root.u.undef.abfd = h->root.u.def.section->owner;
10223 }
10224
10225 ps = NULL;
10226 if (h->root.type == bfd_link_hash_defined
10227 || h->root.type == bfd_link_hash_defweak)
10228 ps = &h->root.u.def.section;
10229
10230 sym_name = h->root.root.string;
10231 }
10232 else
10233 {
10234 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10235
10236 s_type = ELF_ST_TYPE (sym->st_info);
10237 ps = &flinfo->sections[r_symndx];
10238 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10239 sym, *ps);
10240 }
10241
10242 if ((s_type == STT_RELC || s_type == STT_SRELC)
10243 && !bfd_link_relocatable (flinfo->info))
10244 {
10245 bfd_vma val;
10246 bfd_vma dot = (rel->r_offset
10247 + o->output_offset + o->output_section->vma);
10248 #ifdef DEBUG
10249 printf ("Encountered a complex symbol!");
10250 printf (" (input_bfd %s, section %s, reloc %ld\n",
10251 input_bfd->filename, o->name,
10252 (long) (rel - internal_relocs));
10253 printf (" symbol: idx %8.8lx, name %s\n",
10254 r_symndx, sym_name);
10255 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10256 (unsigned long) rel->r_info,
10257 (unsigned long) rel->r_offset);
10258 #endif
10259 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10260 isymbuf, locsymcount, s_type == STT_SRELC))
10261 return FALSE;
10262
10263 /* Symbol evaluated OK. Update to absolute value. */
10264 set_symbol_value (input_bfd, isymbuf, locsymcount,
10265 r_symndx, val);
10266 continue;
10267 }
10268
10269 if (action_discarded != -1 && ps != NULL)
10270 {
10271 /* Complain if the definition comes from a
10272 discarded section. */
10273 if ((sec = *ps) != NULL && discarded_section (sec))
10274 {
10275 BFD_ASSERT (r_symndx != STN_UNDEF);
10276 if (action_discarded & COMPLAIN)
10277 (*flinfo->info->callbacks->einfo)
10278 (_("%X`%s' referenced in section `%A' of %B: "
10279 "defined in discarded section `%A' of %B\n"),
10280 sym_name, o, input_bfd, sec, sec->owner);
10281
10282 /* Try to do the best we can to support buggy old
10283 versions of gcc. Pretend that the symbol is
10284 really defined in the kept linkonce section.
10285 FIXME: This is quite broken. Modifying the
10286 symbol here means we will be changing all later
10287 uses of the symbol, not just in this section. */
10288 if (action_discarded & PRETEND)
10289 {
10290 asection *kept;
10291
10292 kept = _bfd_elf_check_kept_section (sec,
10293 flinfo->info);
10294 if (kept != NULL)
10295 {
10296 *ps = kept;
10297 continue;
10298 }
10299 }
10300 }
10301 }
10302 }
10303
10304 /* Relocate the section by invoking a back end routine.
10305
10306 The back end routine is responsible for adjusting the
10307 section contents as necessary, and (if using Rela relocs
10308 and generating a relocatable output file) adjusting the
10309 reloc addend as necessary.
10310
10311 The back end routine does not have to worry about setting
10312 the reloc address or the reloc symbol index.
10313
10314 The back end routine is given a pointer to the swapped in
10315 internal symbols, and can access the hash table entries
10316 for the external symbols via elf_sym_hashes (input_bfd).
10317
10318 When generating relocatable output, the back end routine
10319 must handle STB_LOCAL/STT_SECTION symbols specially. The
10320 output symbol is going to be a section symbol
10321 corresponding to the output section, which will require
10322 the addend to be adjusted. */
10323
10324 ret = (*relocate_section) (output_bfd, flinfo->info,
10325 input_bfd, o, contents,
10326 internal_relocs,
10327 isymbuf,
10328 flinfo->sections);
10329 if (!ret)
10330 return FALSE;
10331
10332 if (ret == 2
10333 || bfd_link_relocatable (flinfo->info)
10334 || flinfo->info->emitrelocations)
10335 {
10336 Elf_Internal_Rela *irela;
10337 Elf_Internal_Rela *irelaend, *irelamid;
10338 bfd_vma last_offset;
10339 struct elf_link_hash_entry **rel_hash;
10340 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10341 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10342 unsigned int next_erel;
10343 bfd_boolean rela_normal;
10344 struct bfd_elf_section_data *esdi, *esdo;
10345
10346 esdi = elf_section_data (o);
10347 esdo = elf_section_data (o->output_section);
10348 rela_normal = FALSE;
10349
10350 /* Adjust the reloc addresses and symbol indices. */
10351
10352 irela = internal_relocs;
10353 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10354 rel_hash = esdo->rel.hashes + esdo->rel.count;
10355 /* We start processing the REL relocs, if any. When we reach
10356 IRELAMID in the loop, we switch to the RELA relocs. */
10357 irelamid = irela;
10358 if (esdi->rel.hdr != NULL)
10359 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10360 * bed->s->int_rels_per_ext_rel);
10361 rel_hash_list = rel_hash;
10362 rela_hash_list = NULL;
10363 last_offset = o->output_offset;
10364 if (!bfd_link_relocatable (flinfo->info))
10365 last_offset += o->output_section->vma;
10366 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10367 {
10368 unsigned long r_symndx;
10369 asection *sec;
10370 Elf_Internal_Sym sym;
10371
10372 if (next_erel == bed->s->int_rels_per_ext_rel)
10373 {
10374 rel_hash++;
10375 next_erel = 0;
10376 }
10377
10378 if (irela == irelamid)
10379 {
10380 rel_hash = esdo->rela.hashes + esdo->rela.count;
10381 rela_hash_list = rel_hash;
10382 rela_normal = bed->rela_normal;
10383 }
10384
10385 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10386 flinfo->info, o,
10387 irela->r_offset);
10388 if (irela->r_offset >= (bfd_vma) -2)
10389 {
10390 /* This is a reloc for a deleted entry or somesuch.
10391 Turn it into an R_*_NONE reloc, at the same
10392 offset as the last reloc. elf_eh_frame.c and
10393 bfd_elf_discard_info rely on reloc offsets
10394 being ordered. */
10395 irela->r_offset = last_offset;
10396 irela->r_info = 0;
10397 irela->r_addend = 0;
10398 continue;
10399 }
10400
10401 irela->r_offset += o->output_offset;
10402
10403 /* Relocs in an executable have to be virtual addresses. */
10404 if (!bfd_link_relocatable (flinfo->info))
10405 irela->r_offset += o->output_section->vma;
10406
10407 last_offset = irela->r_offset;
10408
10409 r_symndx = irela->r_info >> r_sym_shift;
10410 if (r_symndx == STN_UNDEF)
10411 continue;
10412
10413 if (r_symndx >= locsymcount
10414 || (elf_bad_symtab (input_bfd)
10415 && flinfo->sections[r_symndx] == NULL))
10416 {
10417 struct elf_link_hash_entry *rh;
10418 unsigned long indx;
10419
10420 /* This is a reloc against a global symbol. We
10421 have not yet output all the local symbols, so
10422 we do not know the symbol index of any global
10423 symbol. We set the rel_hash entry for this
10424 reloc to point to the global hash table entry
10425 for this symbol. The symbol index is then
10426 set at the end of bfd_elf_final_link. */
10427 indx = r_symndx - extsymoff;
10428 rh = elf_sym_hashes (input_bfd)[indx];
10429 while (rh->root.type == bfd_link_hash_indirect
10430 || rh->root.type == bfd_link_hash_warning)
10431 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10432
10433 /* Setting the index to -2 tells
10434 elf_link_output_extsym that this symbol is
10435 used by a reloc. */
10436 BFD_ASSERT (rh->indx < 0);
10437 rh->indx = -2;
10438
10439 *rel_hash = rh;
10440
10441 continue;
10442 }
10443
10444 /* This is a reloc against a local symbol. */
10445
10446 *rel_hash = NULL;
10447 sym = isymbuf[r_symndx];
10448 sec = flinfo->sections[r_symndx];
10449 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10450 {
10451 /* I suppose the backend ought to fill in the
10452 section of any STT_SECTION symbol against a
10453 processor specific section. */
10454 r_symndx = STN_UNDEF;
10455 if (bfd_is_abs_section (sec))
10456 ;
10457 else if (sec == NULL || sec->owner == NULL)
10458 {
10459 bfd_set_error (bfd_error_bad_value);
10460 return FALSE;
10461 }
10462 else
10463 {
10464 asection *osec = sec->output_section;
10465
10466 /* If we have discarded a section, the output
10467 section will be the absolute section. In
10468 case of discarded SEC_MERGE sections, use
10469 the kept section. relocate_section should
10470 have already handled discarded linkonce
10471 sections. */
10472 if (bfd_is_abs_section (osec)
10473 && sec->kept_section != NULL
10474 && sec->kept_section->output_section != NULL)
10475 {
10476 osec = sec->kept_section->output_section;
10477 irela->r_addend -= osec->vma;
10478 }
10479
10480 if (!bfd_is_abs_section (osec))
10481 {
10482 r_symndx = osec->target_index;
10483 if (r_symndx == STN_UNDEF)
10484 {
10485 irela->r_addend += osec->vma;
10486 osec = _bfd_nearby_section (output_bfd, osec,
10487 osec->vma);
10488 irela->r_addend -= osec->vma;
10489 r_symndx = osec->target_index;
10490 }
10491 }
10492 }
10493
10494 /* Adjust the addend according to where the
10495 section winds up in the output section. */
10496 if (rela_normal)
10497 irela->r_addend += sec->output_offset;
10498 }
10499 else
10500 {
10501 if (flinfo->indices[r_symndx] == -1)
10502 {
10503 unsigned long shlink;
10504 const char *name;
10505 asection *osec;
10506 long indx;
10507
10508 if (flinfo->info->strip == strip_all)
10509 {
10510 /* You can't do ld -r -s. */
10511 bfd_set_error (bfd_error_invalid_operation);
10512 return FALSE;
10513 }
10514
10515 /* This symbol was skipped earlier, but
10516 since it is needed by a reloc, we
10517 must output it now. */
10518 shlink = symtab_hdr->sh_link;
10519 name = (bfd_elf_string_from_elf_section
10520 (input_bfd, shlink, sym.st_name));
10521 if (name == NULL)
10522 return FALSE;
10523
10524 osec = sec->output_section;
10525 sym.st_shndx =
10526 _bfd_elf_section_from_bfd_section (output_bfd,
10527 osec);
10528 if (sym.st_shndx == SHN_BAD)
10529 return FALSE;
10530
10531 sym.st_value += sec->output_offset;
10532 if (!bfd_link_relocatable (flinfo->info))
10533 {
10534 sym.st_value += osec->vma;
10535 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10536 {
10537 /* STT_TLS symbols are relative to PT_TLS
10538 segment base. */
10539 BFD_ASSERT (elf_hash_table (flinfo->info)
10540 ->tls_sec != NULL);
10541 sym.st_value -= (elf_hash_table (flinfo->info)
10542 ->tls_sec->vma);
10543 }
10544 }
10545
10546 indx = bfd_get_symcount (output_bfd);
10547 ret = elf_link_output_symstrtab (flinfo, name,
10548 &sym, sec,
10549 NULL);
10550 if (ret == 0)
10551 return FALSE;
10552 else if (ret == 1)
10553 flinfo->indices[r_symndx] = indx;
10554 else
10555 abort ();
10556 }
10557
10558 r_symndx = flinfo->indices[r_symndx];
10559 }
10560
10561 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10562 | (irela->r_info & r_type_mask));
10563 }
10564
10565 /* Swap out the relocs. */
10566 input_rel_hdr = esdi->rel.hdr;
10567 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10568 {
10569 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10570 input_rel_hdr,
10571 internal_relocs,
10572 rel_hash_list))
10573 return FALSE;
10574 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10575 * bed->s->int_rels_per_ext_rel);
10576 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10577 }
10578
10579 input_rela_hdr = esdi->rela.hdr;
10580 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10581 {
10582 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10583 input_rela_hdr,
10584 internal_relocs,
10585 rela_hash_list))
10586 return FALSE;
10587 }
10588 }
10589 }
10590
10591 /* Write out the modified section contents. */
10592 if (bed->elf_backend_write_section
10593 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10594 contents))
10595 {
10596 /* Section written out. */
10597 }
10598 else switch (o->sec_info_type)
10599 {
10600 case SEC_INFO_TYPE_STABS:
10601 if (! (_bfd_write_section_stabs
10602 (output_bfd,
10603 &elf_hash_table (flinfo->info)->stab_info,
10604 o, &elf_section_data (o)->sec_info, contents)))
10605 return FALSE;
10606 break;
10607 case SEC_INFO_TYPE_MERGE:
10608 if (! _bfd_write_merged_section (output_bfd, o,
10609 elf_section_data (o)->sec_info))
10610 return FALSE;
10611 break;
10612 case SEC_INFO_TYPE_EH_FRAME:
10613 {
10614 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10615 o, contents))
10616 return FALSE;
10617 }
10618 break;
10619 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10620 {
10621 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10622 flinfo->info,
10623 o, contents))
10624 return FALSE;
10625 }
10626 break;
10627 default:
10628 {
10629 if (! (o->flags & SEC_EXCLUDE))
10630 {
10631 file_ptr offset = (file_ptr) o->output_offset;
10632 bfd_size_type todo = o->size;
10633
10634 offset *= bfd_octets_per_byte (output_bfd);
10635
10636 if ((o->flags & SEC_ELF_REVERSE_COPY))
10637 {
10638 /* Reverse-copy input section to output. */
10639 do
10640 {
10641 todo -= address_size;
10642 if (! bfd_set_section_contents (output_bfd,
10643 o->output_section,
10644 contents + todo,
10645 offset,
10646 address_size))
10647 return FALSE;
10648 if (todo == 0)
10649 break;
10650 offset += address_size;
10651 }
10652 while (1);
10653 }
10654 else if (! bfd_set_section_contents (output_bfd,
10655 o->output_section,
10656 contents,
10657 offset, todo))
10658 return FALSE;
10659 }
10660 }
10661 break;
10662 }
10663 }
10664
10665 return TRUE;
10666 }
10667
10668 /* Generate a reloc when linking an ELF file. This is a reloc
10669 requested by the linker, and does not come from any input file. This
10670 is used to build constructor and destructor tables when linking
10671 with -Ur. */
10672
10673 static bfd_boolean
10674 elf_reloc_link_order (bfd *output_bfd,
10675 struct bfd_link_info *info,
10676 asection *output_section,
10677 struct bfd_link_order *link_order)
10678 {
10679 reloc_howto_type *howto;
10680 long indx;
10681 bfd_vma offset;
10682 bfd_vma addend;
10683 struct bfd_elf_section_reloc_data *reldata;
10684 struct elf_link_hash_entry **rel_hash_ptr;
10685 Elf_Internal_Shdr *rel_hdr;
10686 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10687 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10688 bfd_byte *erel;
10689 unsigned int i;
10690 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10691
10692 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10693 if (howto == NULL)
10694 {
10695 bfd_set_error (bfd_error_bad_value);
10696 return FALSE;
10697 }
10698
10699 addend = link_order->u.reloc.p->addend;
10700
10701 if (esdo->rel.hdr)
10702 reldata = &esdo->rel;
10703 else if (esdo->rela.hdr)
10704 reldata = &esdo->rela;
10705 else
10706 {
10707 reldata = NULL;
10708 BFD_ASSERT (0);
10709 }
10710
10711 /* Figure out the symbol index. */
10712 rel_hash_ptr = reldata->hashes + reldata->count;
10713 if (link_order->type == bfd_section_reloc_link_order)
10714 {
10715 indx = link_order->u.reloc.p->u.section->target_index;
10716 BFD_ASSERT (indx != 0);
10717 *rel_hash_ptr = NULL;
10718 }
10719 else
10720 {
10721 struct elf_link_hash_entry *h;
10722
10723 /* Treat a reloc against a defined symbol as though it were
10724 actually against the section. */
10725 h = ((struct elf_link_hash_entry *)
10726 bfd_wrapped_link_hash_lookup (output_bfd, info,
10727 link_order->u.reloc.p->u.name,
10728 FALSE, FALSE, TRUE));
10729 if (h != NULL
10730 && (h->root.type == bfd_link_hash_defined
10731 || h->root.type == bfd_link_hash_defweak))
10732 {
10733 asection *section;
10734
10735 section = h->root.u.def.section;
10736 indx = section->output_section->target_index;
10737 *rel_hash_ptr = NULL;
10738 /* It seems that we ought to add the symbol value to the
10739 addend here, but in practice it has already been added
10740 because it was passed to constructor_callback. */
10741 addend += section->output_section->vma + section->output_offset;
10742 }
10743 else if (h != NULL)
10744 {
10745 /* Setting the index to -2 tells elf_link_output_extsym that
10746 this symbol is used by a reloc. */
10747 h->indx = -2;
10748 *rel_hash_ptr = h;
10749 indx = 0;
10750 }
10751 else
10752 {
10753 (*info->callbacks->unattached_reloc)
10754 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10755 indx = 0;
10756 }
10757 }
10758
10759 /* If this is an inplace reloc, we must write the addend into the
10760 object file. */
10761 if (howto->partial_inplace && addend != 0)
10762 {
10763 bfd_size_type size;
10764 bfd_reloc_status_type rstat;
10765 bfd_byte *buf;
10766 bfd_boolean ok;
10767 const char *sym_name;
10768
10769 size = (bfd_size_type) bfd_get_reloc_size (howto);
10770 buf = (bfd_byte *) bfd_zmalloc (size);
10771 if (buf == NULL && size != 0)
10772 return FALSE;
10773 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10774 switch (rstat)
10775 {
10776 case bfd_reloc_ok:
10777 break;
10778
10779 default:
10780 case bfd_reloc_outofrange:
10781 abort ();
10782
10783 case bfd_reloc_overflow:
10784 if (link_order->type == bfd_section_reloc_link_order)
10785 sym_name = bfd_section_name (output_bfd,
10786 link_order->u.reloc.p->u.section);
10787 else
10788 sym_name = link_order->u.reloc.p->u.name;
10789 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10790 howto->name, addend, NULL, NULL,
10791 (bfd_vma) 0);
10792 break;
10793 }
10794
10795 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10796 link_order->offset
10797 * bfd_octets_per_byte (output_bfd),
10798 size);
10799 free (buf);
10800 if (! ok)
10801 return FALSE;
10802 }
10803
10804 /* The address of a reloc is relative to the section in a
10805 relocatable file, and is a virtual address in an executable
10806 file. */
10807 offset = link_order->offset;
10808 if (! bfd_link_relocatable (info))
10809 offset += output_section->vma;
10810
10811 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10812 {
10813 irel[i].r_offset = offset;
10814 irel[i].r_info = 0;
10815 irel[i].r_addend = 0;
10816 }
10817 if (bed->s->arch_size == 32)
10818 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10819 else
10820 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10821
10822 rel_hdr = reldata->hdr;
10823 erel = rel_hdr->contents;
10824 if (rel_hdr->sh_type == SHT_REL)
10825 {
10826 erel += reldata->count * bed->s->sizeof_rel;
10827 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10828 }
10829 else
10830 {
10831 irel[0].r_addend = addend;
10832 erel += reldata->count * bed->s->sizeof_rela;
10833 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10834 }
10835
10836 ++reldata->count;
10837
10838 return TRUE;
10839 }
10840
10841
10842 /* Get the output vma of the section pointed to by the sh_link field. */
10843
10844 static bfd_vma
10845 elf_get_linked_section_vma (struct bfd_link_order *p)
10846 {
10847 Elf_Internal_Shdr **elf_shdrp;
10848 asection *s;
10849 int elfsec;
10850
10851 s = p->u.indirect.section;
10852 elf_shdrp = elf_elfsections (s->owner);
10853 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10854 elfsec = elf_shdrp[elfsec]->sh_link;
10855 /* PR 290:
10856 The Intel C compiler generates SHT_IA_64_UNWIND with
10857 SHF_LINK_ORDER. But it doesn't set the sh_link or
10858 sh_info fields. Hence we could get the situation
10859 where elfsec is 0. */
10860 if (elfsec == 0)
10861 {
10862 const struct elf_backend_data *bed
10863 = get_elf_backend_data (s->owner);
10864 if (bed->link_order_error_handler)
10865 bed->link_order_error_handler
10866 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10867 return 0;
10868 }
10869 else
10870 {
10871 s = elf_shdrp[elfsec]->bfd_section;
10872 return s->output_section->vma + s->output_offset;
10873 }
10874 }
10875
10876
10877 /* Compare two sections based on the locations of the sections they are
10878 linked to. Used by elf_fixup_link_order. */
10879
10880 static int
10881 compare_link_order (const void * a, const void * b)
10882 {
10883 bfd_vma apos;
10884 bfd_vma bpos;
10885
10886 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10887 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10888 if (apos < bpos)
10889 return -1;
10890 return apos > bpos;
10891 }
10892
10893
10894 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10895 order as their linked sections. Returns false if this could not be done
10896 because an output section includes both ordered and unordered
10897 sections. Ideally we'd do this in the linker proper. */
10898
10899 static bfd_boolean
10900 elf_fixup_link_order (bfd *abfd, asection *o)
10901 {
10902 int seen_linkorder;
10903 int seen_other;
10904 int n;
10905 struct bfd_link_order *p;
10906 bfd *sub;
10907 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10908 unsigned elfsec;
10909 struct bfd_link_order **sections;
10910 asection *s, *other_sec, *linkorder_sec;
10911 bfd_vma offset;
10912
10913 other_sec = NULL;
10914 linkorder_sec = NULL;
10915 seen_other = 0;
10916 seen_linkorder = 0;
10917 for (p = o->map_head.link_order; p != NULL; p = p->next)
10918 {
10919 if (p->type == bfd_indirect_link_order)
10920 {
10921 s = p->u.indirect.section;
10922 sub = s->owner;
10923 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10924 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10925 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10926 && elfsec < elf_numsections (sub)
10927 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10928 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10929 {
10930 seen_linkorder++;
10931 linkorder_sec = s;
10932 }
10933 else
10934 {
10935 seen_other++;
10936 other_sec = s;
10937 }
10938 }
10939 else
10940 seen_other++;
10941
10942 if (seen_other && seen_linkorder)
10943 {
10944 if (other_sec && linkorder_sec)
10945 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10946 o, linkorder_sec,
10947 linkorder_sec->owner, other_sec,
10948 other_sec->owner);
10949 else
10950 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10951 o);
10952 bfd_set_error (bfd_error_bad_value);
10953 return FALSE;
10954 }
10955 }
10956
10957 if (!seen_linkorder)
10958 return TRUE;
10959
10960 sections = (struct bfd_link_order **)
10961 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10962 if (sections == NULL)
10963 return FALSE;
10964 seen_linkorder = 0;
10965
10966 for (p = o->map_head.link_order; p != NULL; p = p->next)
10967 {
10968 sections[seen_linkorder++] = p;
10969 }
10970 /* Sort the input sections in the order of their linked section. */
10971 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10972 compare_link_order);
10973
10974 /* Change the offsets of the sections. */
10975 offset = 0;
10976 for (n = 0; n < seen_linkorder; n++)
10977 {
10978 s = sections[n]->u.indirect.section;
10979 offset &= ~(bfd_vma) 0 << s->alignment_power;
10980 s->output_offset = offset / bfd_octets_per_byte (abfd);
10981 sections[n]->offset = offset;
10982 offset += sections[n]->size;
10983 }
10984
10985 free (sections);
10986 return TRUE;
10987 }
10988
10989 static void
10990 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10991 {
10992 asection *o;
10993
10994 if (flinfo->symstrtab != NULL)
10995 _bfd_elf_strtab_free (flinfo->symstrtab);
10996 if (flinfo->contents != NULL)
10997 free (flinfo->contents);
10998 if (flinfo->external_relocs != NULL)
10999 free (flinfo->external_relocs);
11000 if (flinfo->internal_relocs != NULL)
11001 free (flinfo->internal_relocs);
11002 if (flinfo->external_syms != NULL)
11003 free (flinfo->external_syms);
11004 if (flinfo->locsym_shndx != NULL)
11005 free (flinfo->locsym_shndx);
11006 if (flinfo->internal_syms != NULL)
11007 free (flinfo->internal_syms);
11008 if (flinfo->indices != NULL)
11009 free (flinfo->indices);
11010 if (flinfo->sections != NULL)
11011 free (flinfo->sections);
11012 if (flinfo->symshndxbuf != NULL)
11013 free (flinfo->symshndxbuf);
11014 for (o = obfd->sections; o != NULL; o = o->next)
11015 {
11016 struct bfd_elf_section_data *esdo = elf_section_data (o);
11017 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11018 free (esdo->rel.hashes);
11019 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11020 free (esdo->rela.hashes);
11021 }
11022 }
11023
11024 /* Do the final step of an ELF link. */
11025
11026 bfd_boolean
11027 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11028 {
11029 bfd_boolean dynamic;
11030 bfd_boolean emit_relocs;
11031 bfd *dynobj;
11032 struct elf_final_link_info flinfo;
11033 asection *o;
11034 struct bfd_link_order *p;
11035 bfd *sub;
11036 bfd_size_type max_contents_size;
11037 bfd_size_type max_external_reloc_size;
11038 bfd_size_type max_internal_reloc_count;
11039 bfd_size_type max_sym_count;
11040 bfd_size_type max_sym_shndx_count;
11041 Elf_Internal_Sym elfsym;
11042 unsigned int i;
11043 Elf_Internal_Shdr *symtab_hdr;
11044 Elf_Internal_Shdr *symtab_shndx_hdr;
11045 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11046 struct elf_outext_info eoinfo;
11047 bfd_boolean merged;
11048 size_t relativecount = 0;
11049 asection *reldyn = 0;
11050 bfd_size_type amt;
11051 asection *attr_section = NULL;
11052 bfd_vma attr_size = 0;
11053 const char *std_attrs_section;
11054
11055 if (! is_elf_hash_table (info->hash))
11056 return FALSE;
11057
11058 if (bfd_link_pic (info))
11059 abfd->flags |= DYNAMIC;
11060
11061 dynamic = elf_hash_table (info)->dynamic_sections_created;
11062 dynobj = elf_hash_table (info)->dynobj;
11063
11064 emit_relocs = (bfd_link_relocatable (info)
11065 || info->emitrelocations);
11066
11067 flinfo.info = info;
11068 flinfo.output_bfd = abfd;
11069 flinfo.symstrtab = _bfd_elf_strtab_init ();
11070 if (flinfo.symstrtab == NULL)
11071 return FALSE;
11072
11073 if (! dynamic)
11074 {
11075 flinfo.hash_sec = NULL;
11076 flinfo.symver_sec = NULL;
11077 }
11078 else
11079 {
11080 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11081 /* Note that dynsym_sec can be NULL (on VMS). */
11082 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11083 /* Note that it is OK if symver_sec is NULL. */
11084 }
11085
11086 flinfo.contents = NULL;
11087 flinfo.external_relocs = NULL;
11088 flinfo.internal_relocs = NULL;
11089 flinfo.external_syms = NULL;
11090 flinfo.locsym_shndx = NULL;
11091 flinfo.internal_syms = NULL;
11092 flinfo.indices = NULL;
11093 flinfo.sections = NULL;
11094 flinfo.symshndxbuf = NULL;
11095 flinfo.filesym_count = 0;
11096
11097 /* The object attributes have been merged. Remove the input
11098 sections from the link, and set the contents of the output
11099 secton. */
11100 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11101 for (o = abfd->sections; o != NULL; o = o->next)
11102 {
11103 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11104 || strcmp (o->name, ".gnu.attributes") == 0)
11105 {
11106 for (p = o->map_head.link_order; p != NULL; p = p->next)
11107 {
11108 asection *input_section;
11109
11110 if (p->type != bfd_indirect_link_order)
11111 continue;
11112 input_section = p->u.indirect.section;
11113 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11114 elf_link_input_bfd ignores this section. */
11115 input_section->flags &= ~SEC_HAS_CONTENTS;
11116 }
11117
11118 attr_size = bfd_elf_obj_attr_size (abfd);
11119 if (attr_size)
11120 {
11121 bfd_set_section_size (abfd, o, attr_size);
11122 attr_section = o;
11123 /* Skip this section later on. */
11124 o->map_head.link_order = NULL;
11125 }
11126 else
11127 o->flags |= SEC_EXCLUDE;
11128 }
11129 }
11130
11131 /* Count up the number of relocations we will output for each output
11132 section, so that we know the sizes of the reloc sections. We
11133 also figure out some maximum sizes. */
11134 max_contents_size = 0;
11135 max_external_reloc_size = 0;
11136 max_internal_reloc_count = 0;
11137 max_sym_count = 0;
11138 max_sym_shndx_count = 0;
11139 merged = FALSE;
11140 for (o = abfd->sections; o != NULL; o = o->next)
11141 {
11142 struct bfd_elf_section_data *esdo = elf_section_data (o);
11143 o->reloc_count = 0;
11144
11145 for (p = o->map_head.link_order; p != NULL; p = p->next)
11146 {
11147 unsigned int reloc_count = 0;
11148 unsigned int additional_reloc_count = 0;
11149 struct bfd_elf_section_data *esdi = NULL;
11150
11151 if (p->type == bfd_section_reloc_link_order
11152 || p->type == bfd_symbol_reloc_link_order)
11153 reloc_count = 1;
11154 else if (p->type == bfd_indirect_link_order)
11155 {
11156 asection *sec;
11157
11158 sec = p->u.indirect.section;
11159 esdi = elf_section_data (sec);
11160
11161 /* Mark all sections which are to be included in the
11162 link. This will normally be every section. We need
11163 to do this so that we can identify any sections which
11164 the linker has decided to not include. */
11165 sec->linker_mark = TRUE;
11166
11167 if (sec->flags & SEC_MERGE)
11168 merged = TRUE;
11169
11170 if (esdo->this_hdr.sh_type == SHT_REL
11171 || esdo->this_hdr.sh_type == SHT_RELA)
11172 /* Some backends use reloc_count in relocation sections
11173 to count particular types of relocs. Of course,
11174 reloc sections themselves can't have relocations. */
11175 reloc_count = 0;
11176 else if (emit_relocs)
11177 {
11178 reloc_count = sec->reloc_count;
11179 if (bed->elf_backend_count_additional_relocs)
11180 {
11181 int c;
11182 c = (*bed->elf_backend_count_additional_relocs) (sec);
11183 additional_reloc_count += c;
11184 }
11185 }
11186 else if (bed->elf_backend_count_relocs)
11187 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11188
11189 if (sec->rawsize > max_contents_size)
11190 max_contents_size = sec->rawsize;
11191 if (sec->size > max_contents_size)
11192 max_contents_size = sec->size;
11193
11194 /* We are interested in just local symbols, not all
11195 symbols. */
11196 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11197 && (sec->owner->flags & DYNAMIC) == 0)
11198 {
11199 size_t sym_count;
11200
11201 if (elf_bad_symtab (sec->owner))
11202 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11203 / bed->s->sizeof_sym);
11204 else
11205 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11206
11207 if (sym_count > max_sym_count)
11208 max_sym_count = sym_count;
11209
11210 if (sym_count > max_sym_shndx_count
11211 && elf_symtab_shndx_list (sec->owner) != NULL)
11212 max_sym_shndx_count = sym_count;
11213
11214 if ((sec->flags & SEC_RELOC) != 0)
11215 {
11216 size_t ext_size = 0;
11217
11218 if (esdi->rel.hdr != NULL)
11219 ext_size = esdi->rel.hdr->sh_size;
11220 if (esdi->rela.hdr != NULL)
11221 ext_size += esdi->rela.hdr->sh_size;
11222
11223 if (ext_size > max_external_reloc_size)
11224 max_external_reloc_size = ext_size;
11225 if (sec->reloc_count > max_internal_reloc_count)
11226 max_internal_reloc_count = sec->reloc_count;
11227 }
11228 }
11229 }
11230
11231 if (reloc_count == 0)
11232 continue;
11233
11234 reloc_count += additional_reloc_count;
11235 o->reloc_count += reloc_count;
11236
11237 if (p->type == bfd_indirect_link_order && emit_relocs)
11238 {
11239 if (esdi->rel.hdr)
11240 {
11241 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11242 esdo->rel.count += additional_reloc_count;
11243 }
11244 if (esdi->rela.hdr)
11245 {
11246 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11247 esdo->rela.count += additional_reloc_count;
11248 }
11249 }
11250 else
11251 {
11252 if (o->use_rela_p)
11253 esdo->rela.count += reloc_count;
11254 else
11255 esdo->rel.count += reloc_count;
11256 }
11257 }
11258
11259 if (o->reloc_count > 0)
11260 o->flags |= SEC_RELOC;
11261 else
11262 {
11263 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11264 set it (this is probably a bug) and if it is set
11265 assign_section_numbers will create a reloc section. */
11266 o->flags &=~ SEC_RELOC;
11267 }
11268
11269 /* If the SEC_ALLOC flag is not set, force the section VMA to
11270 zero. This is done in elf_fake_sections as well, but forcing
11271 the VMA to 0 here will ensure that relocs against these
11272 sections are handled correctly. */
11273 if ((o->flags & SEC_ALLOC) == 0
11274 && ! o->user_set_vma)
11275 o->vma = 0;
11276 }
11277
11278 if (! bfd_link_relocatable (info) && merged)
11279 elf_link_hash_traverse (elf_hash_table (info),
11280 _bfd_elf_link_sec_merge_syms, abfd);
11281
11282 /* Figure out the file positions for everything but the symbol table
11283 and the relocs. We set symcount to force assign_section_numbers
11284 to create a symbol table. */
11285 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11286 BFD_ASSERT (! abfd->output_has_begun);
11287 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11288 goto error_return;
11289
11290 /* Set sizes, and assign file positions for reloc sections. */
11291 for (o = abfd->sections; o != NULL; o = o->next)
11292 {
11293 struct bfd_elf_section_data *esdo = elf_section_data (o);
11294 if ((o->flags & SEC_RELOC) != 0)
11295 {
11296 if (esdo->rel.hdr
11297 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11298 goto error_return;
11299
11300 if (esdo->rela.hdr
11301 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11302 goto error_return;
11303 }
11304
11305 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11306 to count upwards while actually outputting the relocations. */
11307 esdo->rel.count = 0;
11308 esdo->rela.count = 0;
11309
11310 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11311 {
11312 /* Cache the section contents so that they can be compressed
11313 later. Use bfd_malloc since it will be freed by
11314 bfd_compress_section_contents. */
11315 unsigned char *contents = esdo->this_hdr.contents;
11316 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11317 abort ();
11318 contents
11319 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11320 if (contents == NULL)
11321 goto error_return;
11322 esdo->this_hdr.contents = contents;
11323 }
11324 }
11325
11326 /* We have now assigned file positions for all the sections except
11327 .symtab, .strtab, and non-loaded reloc sections. We start the
11328 .symtab section at the current file position, and write directly
11329 to it. We build the .strtab section in memory. */
11330 bfd_get_symcount (abfd) = 0;
11331 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11332 /* sh_name is set in prep_headers. */
11333 symtab_hdr->sh_type = SHT_SYMTAB;
11334 /* sh_flags, sh_addr and sh_size all start off zero. */
11335 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11336 /* sh_link is set in assign_section_numbers. */
11337 /* sh_info is set below. */
11338 /* sh_offset is set just below. */
11339 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11340
11341 if (max_sym_count < 20)
11342 max_sym_count = 20;
11343 elf_hash_table (info)->strtabsize = max_sym_count;
11344 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11345 elf_hash_table (info)->strtab
11346 = (struct elf_sym_strtab *) bfd_malloc (amt);
11347 if (elf_hash_table (info)->strtab == NULL)
11348 goto error_return;
11349 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11350 flinfo.symshndxbuf
11351 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11352 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11353
11354 if (info->strip != strip_all || emit_relocs)
11355 {
11356 file_ptr off = elf_next_file_pos (abfd);
11357
11358 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11359
11360 /* Note that at this point elf_next_file_pos (abfd) is
11361 incorrect. We do not yet know the size of the .symtab section.
11362 We correct next_file_pos below, after we do know the size. */
11363
11364 /* Start writing out the symbol table. The first symbol is always a
11365 dummy symbol. */
11366 elfsym.st_value = 0;
11367 elfsym.st_size = 0;
11368 elfsym.st_info = 0;
11369 elfsym.st_other = 0;
11370 elfsym.st_shndx = SHN_UNDEF;
11371 elfsym.st_target_internal = 0;
11372 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11373 bfd_und_section_ptr, NULL) != 1)
11374 goto error_return;
11375
11376 /* Output a symbol for each section. We output these even if we are
11377 discarding local symbols, since they are used for relocs. These
11378 symbols have no names. We store the index of each one in the
11379 index field of the section, so that we can find it again when
11380 outputting relocs. */
11381
11382 elfsym.st_size = 0;
11383 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11384 elfsym.st_other = 0;
11385 elfsym.st_value = 0;
11386 elfsym.st_target_internal = 0;
11387 for (i = 1; i < elf_numsections (abfd); i++)
11388 {
11389 o = bfd_section_from_elf_index (abfd, i);
11390 if (o != NULL)
11391 {
11392 o->target_index = bfd_get_symcount (abfd);
11393 elfsym.st_shndx = i;
11394 if (!bfd_link_relocatable (info))
11395 elfsym.st_value = o->vma;
11396 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11397 NULL) != 1)
11398 goto error_return;
11399 }
11400 }
11401 }
11402
11403 /* Allocate some memory to hold information read in from the input
11404 files. */
11405 if (max_contents_size != 0)
11406 {
11407 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11408 if (flinfo.contents == NULL)
11409 goto error_return;
11410 }
11411
11412 if (max_external_reloc_size != 0)
11413 {
11414 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11415 if (flinfo.external_relocs == NULL)
11416 goto error_return;
11417 }
11418
11419 if (max_internal_reloc_count != 0)
11420 {
11421 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11422 amt *= sizeof (Elf_Internal_Rela);
11423 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11424 if (flinfo.internal_relocs == NULL)
11425 goto error_return;
11426 }
11427
11428 if (max_sym_count != 0)
11429 {
11430 amt = max_sym_count * bed->s->sizeof_sym;
11431 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11432 if (flinfo.external_syms == NULL)
11433 goto error_return;
11434
11435 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11436 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11437 if (flinfo.internal_syms == NULL)
11438 goto error_return;
11439
11440 amt = max_sym_count * sizeof (long);
11441 flinfo.indices = (long int *) bfd_malloc (amt);
11442 if (flinfo.indices == NULL)
11443 goto error_return;
11444
11445 amt = max_sym_count * sizeof (asection *);
11446 flinfo.sections = (asection **) bfd_malloc (amt);
11447 if (flinfo.sections == NULL)
11448 goto error_return;
11449 }
11450
11451 if (max_sym_shndx_count != 0)
11452 {
11453 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11454 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11455 if (flinfo.locsym_shndx == NULL)
11456 goto error_return;
11457 }
11458
11459 if (elf_hash_table (info)->tls_sec)
11460 {
11461 bfd_vma base, end = 0;
11462 asection *sec;
11463
11464 for (sec = elf_hash_table (info)->tls_sec;
11465 sec && (sec->flags & SEC_THREAD_LOCAL);
11466 sec = sec->next)
11467 {
11468 bfd_size_type size = sec->size;
11469
11470 if (size == 0
11471 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11472 {
11473 struct bfd_link_order *ord = sec->map_tail.link_order;
11474
11475 if (ord != NULL)
11476 size = ord->offset + ord->size;
11477 }
11478 end = sec->vma + size;
11479 }
11480 base = elf_hash_table (info)->tls_sec->vma;
11481 /* Only align end of TLS section if static TLS doesn't have special
11482 alignment requirements. */
11483 if (bed->static_tls_alignment == 1)
11484 end = align_power (end,
11485 elf_hash_table (info)->tls_sec->alignment_power);
11486 elf_hash_table (info)->tls_size = end - base;
11487 }
11488
11489 /* Reorder SHF_LINK_ORDER sections. */
11490 for (o = abfd->sections; o != NULL; o = o->next)
11491 {
11492 if (!elf_fixup_link_order (abfd, o))
11493 return FALSE;
11494 }
11495
11496 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11497 return FALSE;
11498
11499 /* Since ELF permits relocations to be against local symbols, we
11500 must have the local symbols available when we do the relocations.
11501 Since we would rather only read the local symbols once, and we
11502 would rather not keep them in memory, we handle all the
11503 relocations for a single input file at the same time.
11504
11505 Unfortunately, there is no way to know the total number of local
11506 symbols until we have seen all of them, and the local symbol
11507 indices precede the global symbol indices. This means that when
11508 we are generating relocatable output, and we see a reloc against
11509 a global symbol, we can not know the symbol index until we have
11510 finished examining all the local symbols to see which ones we are
11511 going to output. To deal with this, we keep the relocations in
11512 memory, and don't output them until the end of the link. This is
11513 an unfortunate waste of memory, but I don't see a good way around
11514 it. Fortunately, it only happens when performing a relocatable
11515 link, which is not the common case. FIXME: If keep_memory is set
11516 we could write the relocs out and then read them again; I don't
11517 know how bad the memory loss will be. */
11518
11519 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11520 sub->output_has_begun = FALSE;
11521 for (o = abfd->sections; o != NULL; o = o->next)
11522 {
11523 for (p = o->map_head.link_order; p != NULL; p = p->next)
11524 {
11525 if (p->type == bfd_indirect_link_order
11526 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11527 == bfd_target_elf_flavour)
11528 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11529 {
11530 if (! sub->output_has_begun)
11531 {
11532 if (! elf_link_input_bfd (&flinfo, sub))
11533 goto error_return;
11534 sub->output_has_begun = TRUE;
11535 }
11536 }
11537 else if (p->type == bfd_section_reloc_link_order
11538 || p->type == bfd_symbol_reloc_link_order)
11539 {
11540 if (! elf_reloc_link_order (abfd, info, o, p))
11541 goto error_return;
11542 }
11543 else
11544 {
11545 if (! _bfd_default_link_order (abfd, info, o, p))
11546 {
11547 if (p->type == bfd_indirect_link_order
11548 && (bfd_get_flavour (sub)
11549 == bfd_target_elf_flavour)
11550 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11551 != bed->s->elfclass))
11552 {
11553 const char *iclass, *oclass;
11554
11555 switch (bed->s->elfclass)
11556 {
11557 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11558 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11559 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11560 default: abort ();
11561 }
11562
11563 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11564 {
11565 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11566 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11567 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11568 default: abort ();
11569 }
11570
11571 bfd_set_error (bfd_error_wrong_format);
11572 (*_bfd_error_handler)
11573 (_("%B: file class %s incompatible with %s"),
11574 sub, iclass, oclass);
11575 }
11576
11577 goto error_return;
11578 }
11579 }
11580 }
11581 }
11582
11583 /* Free symbol buffer if needed. */
11584 if (!info->reduce_memory_overheads)
11585 {
11586 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11587 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11588 && elf_tdata (sub)->symbuf)
11589 {
11590 free (elf_tdata (sub)->symbuf);
11591 elf_tdata (sub)->symbuf = NULL;
11592 }
11593 }
11594
11595 /* Output any global symbols that got converted to local in a
11596 version script or due to symbol visibility. We do this in a
11597 separate step since ELF requires all local symbols to appear
11598 prior to any global symbols. FIXME: We should only do this if
11599 some global symbols were, in fact, converted to become local.
11600 FIXME: Will this work correctly with the Irix 5 linker? */
11601 eoinfo.failed = FALSE;
11602 eoinfo.flinfo = &flinfo;
11603 eoinfo.localsyms = TRUE;
11604 eoinfo.file_sym_done = FALSE;
11605 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11606 if (eoinfo.failed)
11607 return FALSE;
11608
11609 /* If backend needs to output some local symbols not present in the hash
11610 table, do it now. */
11611 if (bed->elf_backend_output_arch_local_syms
11612 && (info->strip != strip_all || emit_relocs))
11613 {
11614 typedef int (*out_sym_func)
11615 (void *, const char *, Elf_Internal_Sym *, asection *,
11616 struct elf_link_hash_entry *);
11617
11618 if (! ((*bed->elf_backend_output_arch_local_syms)
11619 (abfd, info, &flinfo,
11620 (out_sym_func) elf_link_output_symstrtab)))
11621 return FALSE;
11622 }
11623
11624 /* That wrote out all the local symbols. Finish up the symbol table
11625 with the global symbols. Even if we want to strip everything we
11626 can, we still need to deal with those global symbols that got
11627 converted to local in a version script. */
11628
11629 /* The sh_info field records the index of the first non local symbol. */
11630 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11631
11632 if (dynamic
11633 && elf_hash_table (info)->dynsym != NULL
11634 && (elf_hash_table (info)->dynsym->output_section
11635 != bfd_abs_section_ptr))
11636 {
11637 Elf_Internal_Sym sym;
11638 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11639 long last_local = 0;
11640
11641 /* Write out the section symbols for the output sections. */
11642 if (bfd_link_pic (info)
11643 || elf_hash_table (info)->is_relocatable_executable)
11644 {
11645 asection *s;
11646
11647 sym.st_size = 0;
11648 sym.st_name = 0;
11649 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11650 sym.st_other = 0;
11651 sym.st_target_internal = 0;
11652
11653 for (s = abfd->sections; s != NULL; s = s->next)
11654 {
11655 int indx;
11656 bfd_byte *dest;
11657 long dynindx;
11658
11659 dynindx = elf_section_data (s)->dynindx;
11660 if (dynindx <= 0)
11661 continue;
11662 indx = elf_section_data (s)->this_idx;
11663 BFD_ASSERT (indx > 0);
11664 sym.st_shndx = indx;
11665 if (! check_dynsym (abfd, &sym))
11666 return FALSE;
11667 sym.st_value = s->vma;
11668 dest = dynsym + dynindx * bed->s->sizeof_sym;
11669 if (last_local < dynindx)
11670 last_local = dynindx;
11671 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11672 }
11673 }
11674
11675 /* Write out the local dynsyms. */
11676 if (elf_hash_table (info)->dynlocal)
11677 {
11678 struct elf_link_local_dynamic_entry *e;
11679 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11680 {
11681 asection *s;
11682 bfd_byte *dest;
11683
11684 /* Copy the internal symbol and turn off visibility.
11685 Note that we saved a word of storage and overwrote
11686 the original st_name with the dynstr_index. */
11687 sym = e->isym;
11688 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11689
11690 s = bfd_section_from_elf_index (e->input_bfd,
11691 e->isym.st_shndx);
11692 if (s != NULL)
11693 {
11694 sym.st_shndx =
11695 elf_section_data (s->output_section)->this_idx;
11696 if (! check_dynsym (abfd, &sym))
11697 return FALSE;
11698 sym.st_value = (s->output_section->vma
11699 + s->output_offset
11700 + e->isym.st_value);
11701 }
11702
11703 if (last_local < e->dynindx)
11704 last_local = e->dynindx;
11705
11706 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11707 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11708 }
11709 }
11710
11711 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11712 last_local + 1;
11713 }
11714
11715 /* We get the global symbols from the hash table. */
11716 eoinfo.failed = FALSE;
11717 eoinfo.localsyms = FALSE;
11718 eoinfo.flinfo = &flinfo;
11719 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11720 if (eoinfo.failed)
11721 return FALSE;
11722
11723 /* If backend needs to output some symbols not present in the hash
11724 table, do it now. */
11725 if (bed->elf_backend_output_arch_syms
11726 && (info->strip != strip_all || emit_relocs))
11727 {
11728 typedef int (*out_sym_func)
11729 (void *, const char *, Elf_Internal_Sym *, asection *,
11730 struct elf_link_hash_entry *);
11731
11732 if (! ((*bed->elf_backend_output_arch_syms)
11733 (abfd, info, &flinfo,
11734 (out_sym_func) elf_link_output_symstrtab)))
11735 return FALSE;
11736 }
11737
11738 /* Finalize the .strtab section. */
11739 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11740
11741 /* Swap out the .strtab section. */
11742 if (!elf_link_swap_symbols_out (&flinfo))
11743 return FALSE;
11744
11745 /* Now we know the size of the symtab section. */
11746 if (bfd_get_symcount (abfd) > 0)
11747 {
11748 /* Finish up and write out the symbol string table (.strtab)
11749 section. */
11750 Elf_Internal_Shdr *symstrtab_hdr;
11751 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11752
11753 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11754 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11755 {
11756 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11757 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11758 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11759 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11760 symtab_shndx_hdr->sh_size = amt;
11761
11762 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11763 off, TRUE);
11764
11765 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11766 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11767 return FALSE;
11768 }
11769
11770 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11771 /* sh_name was set in prep_headers. */
11772 symstrtab_hdr->sh_type = SHT_STRTAB;
11773 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11774 symstrtab_hdr->sh_addr = 0;
11775 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11776 symstrtab_hdr->sh_entsize = 0;
11777 symstrtab_hdr->sh_link = 0;
11778 symstrtab_hdr->sh_info = 0;
11779 /* sh_offset is set just below. */
11780 symstrtab_hdr->sh_addralign = 1;
11781
11782 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11783 off, TRUE);
11784 elf_next_file_pos (abfd) = off;
11785
11786 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11787 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11788 return FALSE;
11789 }
11790
11791 /* Adjust the relocs to have the correct symbol indices. */
11792 for (o = abfd->sections; o != NULL; o = o->next)
11793 {
11794 struct bfd_elf_section_data *esdo = elf_section_data (o);
11795 bfd_boolean sort;
11796 if ((o->flags & SEC_RELOC) == 0)
11797 continue;
11798
11799 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11800 if (esdo->rel.hdr != NULL
11801 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11802 return FALSE;
11803 if (esdo->rela.hdr != NULL
11804 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11805 return FALSE;
11806
11807 /* Set the reloc_count field to 0 to prevent write_relocs from
11808 trying to swap the relocs out itself. */
11809 o->reloc_count = 0;
11810 }
11811
11812 if (dynamic && info->combreloc && dynobj != NULL)
11813 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11814
11815 /* If we are linking against a dynamic object, or generating a
11816 shared library, finish up the dynamic linking information. */
11817 if (dynamic)
11818 {
11819 bfd_byte *dyncon, *dynconend;
11820
11821 /* Fix up .dynamic entries. */
11822 o = bfd_get_linker_section (dynobj, ".dynamic");
11823 BFD_ASSERT (o != NULL);
11824
11825 dyncon = o->contents;
11826 dynconend = o->contents + o->size;
11827 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11828 {
11829 Elf_Internal_Dyn dyn;
11830 const char *name;
11831 unsigned int type;
11832
11833 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11834
11835 switch (dyn.d_tag)
11836 {
11837 default:
11838 continue;
11839 case DT_NULL:
11840 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11841 {
11842 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11843 {
11844 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11845 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11846 default: continue;
11847 }
11848 dyn.d_un.d_val = relativecount;
11849 relativecount = 0;
11850 break;
11851 }
11852 continue;
11853
11854 case DT_INIT:
11855 name = info->init_function;
11856 goto get_sym;
11857 case DT_FINI:
11858 name = info->fini_function;
11859 get_sym:
11860 {
11861 struct elf_link_hash_entry *h;
11862
11863 h = elf_link_hash_lookup (elf_hash_table (info), name,
11864 FALSE, FALSE, TRUE);
11865 if (h != NULL
11866 && (h->root.type == bfd_link_hash_defined
11867 || h->root.type == bfd_link_hash_defweak))
11868 {
11869 dyn.d_un.d_ptr = h->root.u.def.value;
11870 o = h->root.u.def.section;
11871 if (o->output_section != NULL)
11872 dyn.d_un.d_ptr += (o->output_section->vma
11873 + o->output_offset);
11874 else
11875 {
11876 /* The symbol is imported from another shared
11877 library and does not apply to this one. */
11878 dyn.d_un.d_ptr = 0;
11879 }
11880 break;
11881 }
11882 }
11883 continue;
11884
11885 case DT_PREINIT_ARRAYSZ:
11886 name = ".preinit_array";
11887 goto get_out_size;
11888 case DT_INIT_ARRAYSZ:
11889 name = ".init_array";
11890 goto get_out_size;
11891 case DT_FINI_ARRAYSZ:
11892 name = ".fini_array";
11893 get_out_size:
11894 o = bfd_get_section_by_name (abfd, name);
11895 if (o == NULL)
11896 {
11897 (*_bfd_error_handler)
11898 (_("could not find section %s"), name);
11899 goto error_return;
11900 }
11901 if (o->size == 0)
11902 (*_bfd_error_handler)
11903 (_("warning: %s section has zero size"), name);
11904 dyn.d_un.d_val = o->size;
11905 break;
11906
11907 case DT_PREINIT_ARRAY:
11908 name = ".preinit_array";
11909 goto get_out_vma;
11910 case DT_INIT_ARRAY:
11911 name = ".init_array";
11912 goto get_out_vma;
11913 case DT_FINI_ARRAY:
11914 name = ".fini_array";
11915 get_out_vma:
11916 o = bfd_get_section_by_name (abfd, name);
11917 goto do_vma;
11918
11919 case DT_HASH:
11920 name = ".hash";
11921 goto get_vma;
11922 case DT_GNU_HASH:
11923 name = ".gnu.hash";
11924 goto get_vma;
11925 case DT_STRTAB:
11926 name = ".dynstr";
11927 goto get_vma;
11928 case DT_SYMTAB:
11929 name = ".dynsym";
11930 goto get_vma;
11931 case DT_VERDEF:
11932 name = ".gnu.version_d";
11933 goto get_vma;
11934 case DT_VERNEED:
11935 name = ".gnu.version_r";
11936 goto get_vma;
11937 case DT_VERSYM:
11938 name = ".gnu.version";
11939 get_vma:
11940 o = bfd_get_linker_section (dynobj, name);
11941 do_vma:
11942 if (o == NULL)
11943 {
11944 (*_bfd_error_handler)
11945 (_("could not find section %s"), name);
11946 goto error_return;
11947 }
11948 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11949 {
11950 (*_bfd_error_handler)
11951 (_("warning: section '%s' is being made into a note"), name);
11952 bfd_set_error (bfd_error_nonrepresentable_section);
11953 goto error_return;
11954 }
11955 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
11956 break;
11957
11958 case DT_REL:
11959 case DT_RELA:
11960 case DT_RELSZ:
11961 case DT_RELASZ:
11962 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11963 type = SHT_REL;
11964 else
11965 type = SHT_RELA;
11966 dyn.d_un.d_val = 0;
11967 dyn.d_un.d_ptr = 0;
11968 for (i = 1; i < elf_numsections (abfd); i++)
11969 {
11970 Elf_Internal_Shdr *hdr;
11971
11972 hdr = elf_elfsections (abfd)[i];
11973 if (hdr->sh_type == type
11974 && (hdr->sh_flags & SHF_ALLOC) != 0)
11975 {
11976 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11977 dyn.d_un.d_val += hdr->sh_size;
11978 else
11979 {
11980 if (dyn.d_un.d_ptr == 0
11981 || hdr->sh_addr < dyn.d_un.d_ptr)
11982 dyn.d_un.d_ptr = hdr->sh_addr;
11983 }
11984 }
11985 }
11986 break;
11987 }
11988 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11989 }
11990 }
11991
11992 /* If we have created any dynamic sections, then output them. */
11993 if (dynobj != NULL)
11994 {
11995 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11996 goto error_return;
11997
11998 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11999 if (((info->warn_shared_textrel && bfd_link_pic (info))
12000 || info->error_textrel)
12001 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12002 {
12003 bfd_byte *dyncon, *dynconend;
12004
12005 dyncon = o->contents;
12006 dynconend = o->contents + o->size;
12007 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12008 {
12009 Elf_Internal_Dyn dyn;
12010
12011 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12012
12013 if (dyn.d_tag == DT_TEXTREL)
12014 {
12015 if (info->error_textrel)
12016 info->callbacks->einfo
12017 (_("%P%X: read-only segment has dynamic relocations.\n"));
12018 else
12019 info->callbacks->einfo
12020 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12021 break;
12022 }
12023 }
12024 }
12025
12026 for (o = dynobj->sections; o != NULL; o = o->next)
12027 {
12028 if ((o->flags & SEC_HAS_CONTENTS) == 0
12029 || o->size == 0
12030 || o->output_section == bfd_abs_section_ptr)
12031 continue;
12032 if ((o->flags & SEC_LINKER_CREATED) == 0)
12033 {
12034 /* At this point, we are only interested in sections
12035 created by _bfd_elf_link_create_dynamic_sections. */
12036 continue;
12037 }
12038 if (elf_hash_table (info)->stab_info.stabstr == o)
12039 continue;
12040 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12041 continue;
12042 if (strcmp (o->name, ".dynstr") != 0)
12043 {
12044 if (! bfd_set_section_contents (abfd, o->output_section,
12045 o->contents,
12046 (file_ptr) o->output_offset
12047 * bfd_octets_per_byte (abfd),
12048 o->size))
12049 goto error_return;
12050 }
12051 else
12052 {
12053 /* The contents of the .dynstr section are actually in a
12054 stringtab. */
12055 file_ptr off;
12056
12057 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12058 if (bfd_seek (abfd, off, SEEK_SET) != 0
12059 || ! _bfd_elf_strtab_emit (abfd,
12060 elf_hash_table (info)->dynstr))
12061 goto error_return;
12062 }
12063 }
12064 }
12065
12066 if (bfd_link_relocatable (info))
12067 {
12068 bfd_boolean failed = FALSE;
12069
12070 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12071 if (failed)
12072 goto error_return;
12073 }
12074
12075 /* If we have optimized stabs strings, output them. */
12076 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12077 {
12078 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12079 goto error_return;
12080 }
12081
12082 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12083 goto error_return;
12084
12085 elf_final_link_free (abfd, &flinfo);
12086
12087 elf_linker (abfd) = TRUE;
12088
12089 if (attr_section)
12090 {
12091 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12092 if (contents == NULL)
12093 return FALSE; /* Bail out and fail. */
12094 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12095 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12096 free (contents);
12097 }
12098
12099 return TRUE;
12100
12101 error_return:
12102 elf_final_link_free (abfd, &flinfo);
12103 return FALSE;
12104 }
12105 \f
12106 /* Initialize COOKIE for input bfd ABFD. */
12107
12108 static bfd_boolean
12109 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12110 struct bfd_link_info *info, bfd *abfd)
12111 {
12112 Elf_Internal_Shdr *symtab_hdr;
12113 const struct elf_backend_data *bed;
12114
12115 bed = get_elf_backend_data (abfd);
12116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12117
12118 cookie->abfd = abfd;
12119 cookie->sym_hashes = elf_sym_hashes (abfd);
12120 cookie->bad_symtab = elf_bad_symtab (abfd);
12121 if (cookie->bad_symtab)
12122 {
12123 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12124 cookie->extsymoff = 0;
12125 }
12126 else
12127 {
12128 cookie->locsymcount = symtab_hdr->sh_info;
12129 cookie->extsymoff = symtab_hdr->sh_info;
12130 }
12131
12132 if (bed->s->arch_size == 32)
12133 cookie->r_sym_shift = 8;
12134 else
12135 cookie->r_sym_shift = 32;
12136
12137 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12138 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12139 {
12140 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12141 cookie->locsymcount, 0,
12142 NULL, NULL, NULL);
12143 if (cookie->locsyms == NULL)
12144 {
12145 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12146 return FALSE;
12147 }
12148 if (info->keep_memory)
12149 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12150 }
12151 return TRUE;
12152 }
12153
12154 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12155
12156 static void
12157 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12158 {
12159 Elf_Internal_Shdr *symtab_hdr;
12160
12161 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12162 if (cookie->locsyms != NULL
12163 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12164 free (cookie->locsyms);
12165 }
12166
12167 /* Initialize the relocation information in COOKIE for input section SEC
12168 of input bfd ABFD. */
12169
12170 static bfd_boolean
12171 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12172 struct bfd_link_info *info, bfd *abfd,
12173 asection *sec)
12174 {
12175 const struct elf_backend_data *bed;
12176
12177 if (sec->reloc_count == 0)
12178 {
12179 cookie->rels = NULL;
12180 cookie->relend = NULL;
12181 }
12182 else
12183 {
12184 bed = get_elf_backend_data (abfd);
12185
12186 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12187 info->keep_memory);
12188 if (cookie->rels == NULL)
12189 return FALSE;
12190 cookie->rel = cookie->rels;
12191 cookie->relend = (cookie->rels
12192 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12193 }
12194 cookie->rel = cookie->rels;
12195 return TRUE;
12196 }
12197
12198 /* Free the memory allocated by init_reloc_cookie_rels,
12199 if appropriate. */
12200
12201 static void
12202 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12203 asection *sec)
12204 {
12205 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12206 free (cookie->rels);
12207 }
12208
12209 /* Initialize the whole of COOKIE for input section SEC. */
12210
12211 static bfd_boolean
12212 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12213 struct bfd_link_info *info,
12214 asection *sec)
12215 {
12216 if (!init_reloc_cookie (cookie, info, sec->owner))
12217 goto error1;
12218 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12219 goto error2;
12220 return TRUE;
12221
12222 error2:
12223 fini_reloc_cookie (cookie, sec->owner);
12224 error1:
12225 return FALSE;
12226 }
12227
12228 /* Free the memory allocated by init_reloc_cookie_for_section,
12229 if appropriate. */
12230
12231 static void
12232 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12233 asection *sec)
12234 {
12235 fini_reloc_cookie_rels (cookie, sec);
12236 fini_reloc_cookie (cookie, sec->owner);
12237 }
12238 \f
12239 /* Garbage collect unused sections. */
12240
12241 /* Default gc_mark_hook. */
12242
12243 asection *
12244 _bfd_elf_gc_mark_hook (asection *sec,
12245 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12246 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12247 struct elf_link_hash_entry *h,
12248 Elf_Internal_Sym *sym)
12249 {
12250 if (h != NULL)
12251 {
12252 switch (h->root.type)
12253 {
12254 case bfd_link_hash_defined:
12255 case bfd_link_hash_defweak:
12256 return h->root.u.def.section;
12257
12258 case bfd_link_hash_common:
12259 return h->root.u.c.p->section;
12260
12261 default:
12262 break;
12263 }
12264 }
12265 else
12266 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12267
12268 return NULL;
12269 }
12270
12271 /* For undefined __start_<name> and __stop_<name> symbols, return the
12272 first input section matching <name>. Return NULL otherwise. */
12273
12274 asection *
12275 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12276 struct elf_link_hash_entry *h)
12277 {
12278 asection *s;
12279 const char *sec_name;
12280
12281 if (h->root.type != bfd_link_hash_undefined
12282 && h->root.type != bfd_link_hash_undefweak)
12283 return NULL;
12284
12285 s = h->root.u.undef.section;
12286 if (s != NULL)
12287 {
12288 if (s == (asection *) 0 - 1)
12289 return NULL;
12290 return s;
12291 }
12292
12293 sec_name = NULL;
12294 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12295 sec_name = h->root.root.string + 8;
12296 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12297 sec_name = h->root.root.string + 7;
12298
12299 if (sec_name != NULL && *sec_name != '\0')
12300 {
12301 bfd *i;
12302
12303 for (i = info->input_bfds; i != NULL; i = i->link.next)
12304 {
12305 s = bfd_get_section_by_name (i, sec_name);
12306 if (s != NULL)
12307 {
12308 h->root.u.undef.section = s;
12309 break;
12310 }
12311 }
12312 }
12313
12314 if (s == NULL)
12315 h->root.u.undef.section = (asection *) 0 - 1;
12316
12317 return s;
12318 }
12319
12320 /* COOKIE->rel describes a relocation against section SEC, which is
12321 a section we've decided to keep. Return the section that contains
12322 the relocation symbol, or NULL if no section contains it. */
12323
12324 asection *
12325 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12326 elf_gc_mark_hook_fn gc_mark_hook,
12327 struct elf_reloc_cookie *cookie,
12328 bfd_boolean *start_stop)
12329 {
12330 unsigned long r_symndx;
12331 struct elf_link_hash_entry *h;
12332
12333 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12334 if (r_symndx == STN_UNDEF)
12335 return NULL;
12336
12337 if (r_symndx >= cookie->locsymcount
12338 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12339 {
12340 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12341 if (h == NULL)
12342 {
12343 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12344 sec->owner);
12345 return NULL;
12346 }
12347 while (h->root.type == bfd_link_hash_indirect
12348 || h->root.type == bfd_link_hash_warning)
12349 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12350 h->mark = 1;
12351 /* If this symbol is weak and there is a non-weak definition, we
12352 keep the non-weak definition because many backends put
12353 dynamic reloc info on the non-weak definition for code
12354 handling copy relocs. */
12355 if (h->u.weakdef != NULL)
12356 h->u.weakdef->mark = 1;
12357
12358 if (start_stop != NULL)
12359 {
12360 /* To work around a glibc bug, mark all XXX input sections
12361 when there is an as yet undefined reference to __start_XXX
12362 or __stop_XXX symbols. The linker will later define such
12363 symbols for orphan input sections that have a name
12364 representable as a C identifier. */
12365 asection *s = _bfd_elf_is_start_stop (info, h);
12366
12367 if (s != NULL)
12368 {
12369 *start_stop = !s->gc_mark;
12370 return s;
12371 }
12372 }
12373
12374 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12375 }
12376
12377 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12378 &cookie->locsyms[r_symndx]);
12379 }
12380
12381 /* COOKIE->rel describes a relocation against section SEC, which is
12382 a section we've decided to keep. Mark the section that contains
12383 the relocation symbol. */
12384
12385 bfd_boolean
12386 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12387 asection *sec,
12388 elf_gc_mark_hook_fn gc_mark_hook,
12389 struct elf_reloc_cookie *cookie)
12390 {
12391 asection *rsec;
12392 bfd_boolean start_stop = FALSE;
12393
12394 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12395 while (rsec != NULL)
12396 {
12397 if (!rsec->gc_mark)
12398 {
12399 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12400 || (rsec->owner->flags & DYNAMIC) != 0)
12401 rsec->gc_mark = 1;
12402 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12403 return FALSE;
12404 }
12405 if (!start_stop)
12406 break;
12407 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12408 }
12409 return TRUE;
12410 }
12411
12412 /* The mark phase of garbage collection. For a given section, mark
12413 it and any sections in this section's group, and all the sections
12414 which define symbols to which it refers. */
12415
12416 bfd_boolean
12417 _bfd_elf_gc_mark (struct bfd_link_info *info,
12418 asection *sec,
12419 elf_gc_mark_hook_fn gc_mark_hook)
12420 {
12421 bfd_boolean ret;
12422 asection *group_sec, *eh_frame;
12423
12424 sec->gc_mark = 1;
12425
12426 /* Mark all the sections in the group. */
12427 group_sec = elf_section_data (sec)->next_in_group;
12428 if (group_sec && !group_sec->gc_mark)
12429 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12430 return FALSE;
12431
12432 /* Look through the section relocs. */
12433 ret = TRUE;
12434 eh_frame = elf_eh_frame_section (sec->owner);
12435 if ((sec->flags & SEC_RELOC) != 0
12436 && sec->reloc_count > 0
12437 && sec != eh_frame)
12438 {
12439 struct elf_reloc_cookie cookie;
12440
12441 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12442 ret = FALSE;
12443 else
12444 {
12445 for (; cookie.rel < cookie.relend; cookie.rel++)
12446 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12447 {
12448 ret = FALSE;
12449 break;
12450 }
12451 fini_reloc_cookie_for_section (&cookie, sec);
12452 }
12453 }
12454
12455 if (ret && eh_frame && elf_fde_list (sec))
12456 {
12457 struct elf_reloc_cookie cookie;
12458
12459 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12460 ret = FALSE;
12461 else
12462 {
12463 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12464 gc_mark_hook, &cookie))
12465 ret = FALSE;
12466 fini_reloc_cookie_for_section (&cookie, eh_frame);
12467 }
12468 }
12469
12470 eh_frame = elf_section_eh_frame_entry (sec);
12471 if (ret && eh_frame && !eh_frame->gc_mark)
12472 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12473 ret = FALSE;
12474
12475 return ret;
12476 }
12477
12478 /* Scan and mark sections in a special or debug section group. */
12479
12480 static void
12481 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12482 {
12483 /* Point to first section of section group. */
12484 asection *ssec;
12485 /* Used to iterate the section group. */
12486 asection *msec;
12487
12488 bfd_boolean is_special_grp = TRUE;
12489 bfd_boolean is_debug_grp = TRUE;
12490
12491 /* First scan to see if group contains any section other than debug
12492 and special section. */
12493 ssec = msec = elf_next_in_group (grp);
12494 do
12495 {
12496 if ((msec->flags & SEC_DEBUGGING) == 0)
12497 is_debug_grp = FALSE;
12498
12499 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12500 is_special_grp = FALSE;
12501
12502 msec = elf_next_in_group (msec);
12503 }
12504 while (msec != ssec);
12505
12506 /* If this is a pure debug section group or pure special section group,
12507 keep all sections in this group. */
12508 if (is_debug_grp || is_special_grp)
12509 {
12510 do
12511 {
12512 msec->gc_mark = 1;
12513 msec = elf_next_in_group (msec);
12514 }
12515 while (msec != ssec);
12516 }
12517 }
12518
12519 /* Keep debug and special sections. */
12520
12521 bfd_boolean
12522 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12523 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12524 {
12525 bfd *ibfd;
12526
12527 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12528 {
12529 asection *isec;
12530 bfd_boolean some_kept;
12531 bfd_boolean debug_frag_seen;
12532
12533 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12534 continue;
12535
12536 /* Ensure all linker created sections are kept,
12537 see if any other section is already marked,
12538 and note if we have any fragmented debug sections. */
12539 debug_frag_seen = some_kept = FALSE;
12540 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12541 {
12542 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12543 isec->gc_mark = 1;
12544 else if (isec->gc_mark)
12545 some_kept = TRUE;
12546
12547 if (debug_frag_seen == FALSE
12548 && (isec->flags & SEC_DEBUGGING)
12549 && CONST_STRNEQ (isec->name, ".debug_line."))
12550 debug_frag_seen = TRUE;
12551 }
12552
12553 /* If no section in this file will be kept, then we can
12554 toss out the debug and special sections. */
12555 if (!some_kept)
12556 continue;
12557
12558 /* Keep debug and special sections like .comment when they are
12559 not part of a group. Also keep section groups that contain
12560 just debug sections or special sections. */
12561 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12562 {
12563 if ((isec->flags & SEC_GROUP) != 0)
12564 _bfd_elf_gc_mark_debug_special_section_group (isec);
12565 else if (((isec->flags & SEC_DEBUGGING) != 0
12566 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12567 && elf_next_in_group (isec) == NULL)
12568 isec->gc_mark = 1;
12569 }
12570
12571 if (! debug_frag_seen)
12572 continue;
12573
12574 /* Look for CODE sections which are going to be discarded,
12575 and find and discard any fragmented debug sections which
12576 are associated with that code section. */
12577 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12578 if ((isec->flags & SEC_CODE) != 0
12579 && isec->gc_mark == 0)
12580 {
12581 unsigned int ilen;
12582 asection *dsec;
12583
12584 ilen = strlen (isec->name);
12585
12586 /* Association is determined by the name of the debug section
12587 containing the name of the code section as a suffix. For
12588 example .debug_line.text.foo is a debug section associated
12589 with .text.foo. */
12590 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12591 {
12592 unsigned int dlen;
12593
12594 if (dsec->gc_mark == 0
12595 || (dsec->flags & SEC_DEBUGGING) == 0)
12596 continue;
12597
12598 dlen = strlen (dsec->name);
12599
12600 if (dlen > ilen
12601 && strncmp (dsec->name + (dlen - ilen),
12602 isec->name, ilen) == 0)
12603 {
12604 dsec->gc_mark = 0;
12605 }
12606 }
12607 }
12608 }
12609 return TRUE;
12610 }
12611
12612 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12613
12614 struct elf_gc_sweep_symbol_info
12615 {
12616 struct bfd_link_info *info;
12617 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12618 bfd_boolean);
12619 };
12620
12621 static bfd_boolean
12622 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12623 {
12624 if (!h->mark
12625 && (((h->root.type == bfd_link_hash_defined
12626 || h->root.type == bfd_link_hash_defweak)
12627 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12628 && h->root.u.def.section->gc_mark))
12629 || h->root.type == bfd_link_hash_undefined
12630 || h->root.type == bfd_link_hash_undefweak))
12631 {
12632 struct elf_gc_sweep_symbol_info *inf;
12633
12634 inf = (struct elf_gc_sweep_symbol_info *) data;
12635 (*inf->hide_symbol) (inf->info, h, TRUE);
12636 h->def_regular = 0;
12637 h->ref_regular = 0;
12638 h->ref_regular_nonweak = 0;
12639 }
12640
12641 return TRUE;
12642 }
12643
12644 /* The sweep phase of garbage collection. Remove all garbage sections. */
12645
12646 typedef bfd_boolean (*gc_sweep_hook_fn)
12647 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12648
12649 static bfd_boolean
12650 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12651 {
12652 bfd *sub;
12653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12654 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12655 unsigned long section_sym_count;
12656 struct elf_gc_sweep_symbol_info sweep_info;
12657
12658 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12659 {
12660 asection *o;
12661
12662 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12663 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12664 continue;
12665
12666 for (o = sub->sections; o != NULL; o = o->next)
12667 {
12668 /* When any section in a section group is kept, we keep all
12669 sections in the section group. If the first member of
12670 the section group is excluded, we will also exclude the
12671 group section. */
12672 if (o->flags & SEC_GROUP)
12673 {
12674 asection *first = elf_next_in_group (o);
12675 o->gc_mark = first->gc_mark;
12676 }
12677
12678 if (o->gc_mark)
12679 continue;
12680
12681 /* Skip sweeping sections already excluded. */
12682 if (o->flags & SEC_EXCLUDE)
12683 continue;
12684
12685 /* Since this is early in the link process, it is simple
12686 to remove a section from the output. */
12687 o->flags |= SEC_EXCLUDE;
12688
12689 if (info->print_gc_sections && o->size != 0)
12690 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12691
12692 /* But we also have to update some of the relocation
12693 info we collected before. */
12694 if (gc_sweep_hook
12695 && (o->flags & SEC_RELOC) != 0
12696 && o->reloc_count != 0
12697 && !((info->strip == strip_all || info->strip == strip_debugger)
12698 && (o->flags & SEC_DEBUGGING) != 0)
12699 && !bfd_is_abs_section (o->output_section))
12700 {
12701 Elf_Internal_Rela *internal_relocs;
12702 bfd_boolean r;
12703
12704 internal_relocs
12705 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12706 info->keep_memory);
12707 if (internal_relocs == NULL)
12708 return FALSE;
12709
12710 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12711
12712 if (elf_section_data (o)->relocs != internal_relocs)
12713 free (internal_relocs);
12714
12715 if (!r)
12716 return FALSE;
12717 }
12718 }
12719 }
12720
12721 /* Remove the symbols that were in the swept sections from the dynamic
12722 symbol table. GCFIXME: Anyone know how to get them out of the
12723 static symbol table as well? */
12724 sweep_info.info = info;
12725 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12726 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12727 &sweep_info);
12728
12729 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12730 return TRUE;
12731 }
12732
12733 /* Propagate collected vtable information. This is called through
12734 elf_link_hash_traverse. */
12735
12736 static bfd_boolean
12737 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12738 {
12739 /* Those that are not vtables. */
12740 if (h->vtable == NULL || h->vtable->parent == NULL)
12741 return TRUE;
12742
12743 /* Those vtables that do not have parents, we cannot merge. */
12744 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12745 return TRUE;
12746
12747 /* If we've already been done, exit. */
12748 if (h->vtable->used && h->vtable->used[-1])
12749 return TRUE;
12750
12751 /* Make sure the parent's table is up to date. */
12752 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12753
12754 if (h->vtable->used == NULL)
12755 {
12756 /* None of this table's entries were referenced. Re-use the
12757 parent's table. */
12758 h->vtable->used = h->vtable->parent->vtable->used;
12759 h->vtable->size = h->vtable->parent->vtable->size;
12760 }
12761 else
12762 {
12763 size_t n;
12764 bfd_boolean *cu, *pu;
12765
12766 /* Or the parent's entries into ours. */
12767 cu = h->vtable->used;
12768 cu[-1] = TRUE;
12769 pu = h->vtable->parent->vtable->used;
12770 if (pu != NULL)
12771 {
12772 const struct elf_backend_data *bed;
12773 unsigned int log_file_align;
12774
12775 bed = get_elf_backend_data (h->root.u.def.section->owner);
12776 log_file_align = bed->s->log_file_align;
12777 n = h->vtable->parent->vtable->size >> log_file_align;
12778 while (n--)
12779 {
12780 if (*pu)
12781 *cu = TRUE;
12782 pu++;
12783 cu++;
12784 }
12785 }
12786 }
12787
12788 return TRUE;
12789 }
12790
12791 static bfd_boolean
12792 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12793 {
12794 asection *sec;
12795 bfd_vma hstart, hend;
12796 Elf_Internal_Rela *relstart, *relend, *rel;
12797 const struct elf_backend_data *bed;
12798 unsigned int log_file_align;
12799
12800 /* Take care of both those symbols that do not describe vtables as
12801 well as those that are not loaded. */
12802 if (h->vtable == NULL || h->vtable->parent == NULL)
12803 return TRUE;
12804
12805 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12806 || h->root.type == bfd_link_hash_defweak);
12807
12808 sec = h->root.u.def.section;
12809 hstart = h->root.u.def.value;
12810 hend = hstart + h->size;
12811
12812 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12813 if (!relstart)
12814 return *(bfd_boolean *) okp = FALSE;
12815 bed = get_elf_backend_data (sec->owner);
12816 log_file_align = bed->s->log_file_align;
12817
12818 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12819
12820 for (rel = relstart; rel < relend; ++rel)
12821 if (rel->r_offset >= hstart && rel->r_offset < hend)
12822 {
12823 /* If the entry is in use, do nothing. */
12824 if (h->vtable->used
12825 && (rel->r_offset - hstart) < h->vtable->size)
12826 {
12827 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12828 if (h->vtable->used[entry])
12829 continue;
12830 }
12831 /* Otherwise, kill it. */
12832 rel->r_offset = rel->r_info = rel->r_addend = 0;
12833 }
12834
12835 return TRUE;
12836 }
12837
12838 /* Mark sections containing dynamically referenced symbols. When
12839 building shared libraries, we must assume that any visible symbol is
12840 referenced. */
12841
12842 bfd_boolean
12843 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12844 {
12845 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12846 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12847
12848 if ((h->root.type == bfd_link_hash_defined
12849 || h->root.type == bfd_link_hash_defweak)
12850 && (h->ref_dynamic
12851 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12852 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12853 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12854 && (!bfd_link_executable (info)
12855 || info->export_dynamic
12856 || (h->dynamic
12857 && d != NULL
12858 && (*d->match) (&d->head, NULL, h->root.root.string)))
12859 && (h->versioned >= versioned
12860 || !bfd_hide_sym_by_version (info->version_info,
12861 h->root.root.string)))))
12862 h->root.u.def.section->flags |= SEC_KEEP;
12863
12864 return TRUE;
12865 }
12866
12867 /* Keep all sections containing symbols undefined on the command-line,
12868 and the section containing the entry symbol. */
12869
12870 void
12871 _bfd_elf_gc_keep (struct bfd_link_info *info)
12872 {
12873 struct bfd_sym_chain *sym;
12874
12875 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12876 {
12877 struct elf_link_hash_entry *h;
12878
12879 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12880 FALSE, FALSE, FALSE);
12881
12882 if (h != NULL
12883 && (h->root.type == bfd_link_hash_defined
12884 || h->root.type == bfd_link_hash_defweak)
12885 && !bfd_is_abs_section (h->root.u.def.section))
12886 h->root.u.def.section->flags |= SEC_KEEP;
12887 }
12888 }
12889
12890 bfd_boolean
12891 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12892 struct bfd_link_info *info)
12893 {
12894 bfd *ibfd = info->input_bfds;
12895
12896 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12897 {
12898 asection *sec;
12899 struct elf_reloc_cookie cookie;
12900
12901 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12902 continue;
12903
12904 if (!init_reloc_cookie (&cookie, info, ibfd))
12905 return FALSE;
12906
12907 for (sec = ibfd->sections; sec; sec = sec->next)
12908 {
12909 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12910 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12911 {
12912 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12913 fini_reloc_cookie_rels (&cookie, sec);
12914 }
12915 }
12916 }
12917 return TRUE;
12918 }
12919
12920 /* Do mark and sweep of unused sections. */
12921
12922 bfd_boolean
12923 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12924 {
12925 bfd_boolean ok = TRUE;
12926 bfd *sub;
12927 elf_gc_mark_hook_fn gc_mark_hook;
12928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12929 struct elf_link_hash_table *htab;
12930
12931 if (!bed->can_gc_sections
12932 || !is_elf_hash_table (info->hash))
12933 {
12934 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12935 return TRUE;
12936 }
12937
12938 bed->gc_keep (info);
12939 htab = elf_hash_table (info);
12940
12941 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12942 at the .eh_frame section if we can mark the FDEs individually. */
12943 for (sub = info->input_bfds;
12944 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12945 sub = sub->link.next)
12946 {
12947 asection *sec;
12948 struct elf_reloc_cookie cookie;
12949
12950 sec = bfd_get_section_by_name (sub, ".eh_frame");
12951 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12952 {
12953 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12954 if (elf_section_data (sec)->sec_info
12955 && (sec->flags & SEC_LINKER_CREATED) == 0)
12956 elf_eh_frame_section (sub) = sec;
12957 fini_reloc_cookie_for_section (&cookie, sec);
12958 sec = bfd_get_next_section_by_name (NULL, sec);
12959 }
12960 }
12961
12962 /* Apply transitive closure to the vtable entry usage info. */
12963 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12964 if (!ok)
12965 return FALSE;
12966
12967 /* Kill the vtable relocations that were not used. */
12968 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12969 if (!ok)
12970 return FALSE;
12971
12972 /* Mark dynamically referenced symbols. */
12973 if (htab->dynamic_sections_created)
12974 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12975
12976 /* Grovel through relocs to find out who stays ... */
12977 gc_mark_hook = bed->gc_mark_hook;
12978 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12979 {
12980 asection *o;
12981
12982 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12983 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12984 continue;
12985
12986 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12987 Also treat note sections as a root, if the section is not part
12988 of a group. */
12989 for (o = sub->sections; o != NULL; o = o->next)
12990 if (!o->gc_mark
12991 && (o->flags & SEC_EXCLUDE) == 0
12992 && ((o->flags & SEC_KEEP) != 0
12993 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12994 && elf_next_in_group (o) == NULL )))
12995 {
12996 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12997 return FALSE;
12998 }
12999 }
13000
13001 /* Allow the backend to mark additional target specific sections. */
13002 bed->gc_mark_extra_sections (info, gc_mark_hook);
13003
13004 /* ... and mark SEC_EXCLUDE for those that go. */
13005 return elf_gc_sweep (abfd, info);
13006 }
13007 \f
13008 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13009
13010 bfd_boolean
13011 bfd_elf_gc_record_vtinherit (bfd *abfd,
13012 asection *sec,
13013 struct elf_link_hash_entry *h,
13014 bfd_vma offset)
13015 {
13016 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13017 struct elf_link_hash_entry **search, *child;
13018 bfd_size_type extsymcount;
13019 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13020
13021 /* The sh_info field of the symtab header tells us where the
13022 external symbols start. We don't care about the local symbols at
13023 this point. */
13024 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13025 if (!elf_bad_symtab (abfd))
13026 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13027
13028 sym_hashes = elf_sym_hashes (abfd);
13029 sym_hashes_end = sym_hashes + extsymcount;
13030
13031 /* Hunt down the child symbol, which is in this section at the same
13032 offset as the relocation. */
13033 for (search = sym_hashes; search != sym_hashes_end; ++search)
13034 {
13035 if ((child = *search) != NULL
13036 && (child->root.type == bfd_link_hash_defined
13037 || child->root.type == bfd_link_hash_defweak)
13038 && child->root.u.def.section == sec
13039 && child->root.u.def.value == offset)
13040 goto win;
13041 }
13042
13043 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13044 abfd, sec, (unsigned long) offset);
13045 bfd_set_error (bfd_error_invalid_operation);
13046 return FALSE;
13047
13048 win:
13049 if (!child->vtable)
13050 {
13051 child->vtable = ((struct elf_link_virtual_table_entry *)
13052 bfd_zalloc (abfd, sizeof (*child->vtable)));
13053 if (!child->vtable)
13054 return FALSE;
13055 }
13056 if (!h)
13057 {
13058 /* This *should* only be the absolute section. It could potentially
13059 be that someone has defined a non-global vtable though, which
13060 would be bad. It isn't worth paging in the local symbols to be
13061 sure though; that case should simply be handled by the assembler. */
13062
13063 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13064 }
13065 else
13066 child->vtable->parent = h;
13067
13068 return TRUE;
13069 }
13070
13071 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13072
13073 bfd_boolean
13074 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13075 asection *sec ATTRIBUTE_UNUSED,
13076 struct elf_link_hash_entry *h,
13077 bfd_vma addend)
13078 {
13079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13080 unsigned int log_file_align = bed->s->log_file_align;
13081
13082 if (!h->vtable)
13083 {
13084 h->vtable = ((struct elf_link_virtual_table_entry *)
13085 bfd_zalloc (abfd, sizeof (*h->vtable)));
13086 if (!h->vtable)
13087 return FALSE;
13088 }
13089
13090 if (addend >= h->vtable->size)
13091 {
13092 size_t size, bytes, file_align;
13093 bfd_boolean *ptr = h->vtable->used;
13094
13095 /* While the symbol is undefined, we have to be prepared to handle
13096 a zero size. */
13097 file_align = 1 << log_file_align;
13098 if (h->root.type == bfd_link_hash_undefined)
13099 size = addend + file_align;
13100 else
13101 {
13102 size = h->size;
13103 if (addend >= size)
13104 {
13105 /* Oops! We've got a reference past the defined end of
13106 the table. This is probably a bug -- shall we warn? */
13107 size = addend + file_align;
13108 }
13109 }
13110 size = (size + file_align - 1) & -file_align;
13111
13112 /* Allocate one extra entry for use as a "done" flag for the
13113 consolidation pass. */
13114 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13115
13116 if (ptr)
13117 {
13118 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13119
13120 if (ptr != NULL)
13121 {
13122 size_t oldbytes;
13123
13124 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13125 * sizeof (bfd_boolean));
13126 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13127 }
13128 }
13129 else
13130 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13131
13132 if (ptr == NULL)
13133 return FALSE;
13134
13135 /* And arrange for that done flag to be at index -1. */
13136 h->vtable->used = ptr + 1;
13137 h->vtable->size = size;
13138 }
13139
13140 h->vtable->used[addend >> log_file_align] = TRUE;
13141
13142 return TRUE;
13143 }
13144
13145 /* Map an ELF section header flag to its corresponding string. */
13146 typedef struct
13147 {
13148 char *flag_name;
13149 flagword flag_value;
13150 } elf_flags_to_name_table;
13151
13152 static elf_flags_to_name_table elf_flags_to_names [] =
13153 {
13154 { "SHF_WRITE", SHF_WRITE },
13155 { "SHF_ALLOC", SHF_ALLOC },
13156 { "SHF_EXECINSTR", SHF_EXECINSTR },
13157 { "SHF_MERGE", SHF_MERGE },
13158 { "SHF_STRINGS", SHF_STRINGS },
13159 { "SHF_INFO_LINK", SHF_INFO_LINK},
13160 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13161 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13162 { "SHF_GROUP", SHF_GROUP },
13163 { "SHF_TLS", SHF_TLS },
13164 { "SHF_MASKOS", SHF_MASKOS },
13165 { "SHF_EXCLUDE", SHF_EXCLUDE },
13166 };
13167
13168 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13169 bfd_boolean
13170 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13171 struct flag_info *flaginfo,
13172 asection *section)
13173 {
13174 const bfd_vma sh_flags = elf_section_flags (section);
13175
13176 if (!flaginfo->flags_initialized)
13177 {
13178 bfd *obfd = info->output_bfd;
13179 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13180 struct flag_info_list *tf = flaginfo->flag_list;
13181 int with_hex = 0;
13182 int without_hex = 0;
13183
13184 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13185 {
13186 unsigned i;
13187 flagword (*lookup) (char *);
13188
13189 lookup = bed->elf_backend_lookup_section_flags_hook;
13190 if (lookup != NULL)
13191 {
13192 flagword hexval = (*lookup) ((char *) tf->name);
13193
13194 if (hexval != 0)
13195 {
13196 if (tf->with == with_flags)
13197 with_hex |= hexval;
13198 else if (tf->with == without_flags)
13199 without_hex |= hexval;
13200 tf->valid = TRUE;
13201 continue;
13202 }
13203 }
13204 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13205 {
13206 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13207 {
13208 if (tf->with == with_flags)
13209 with_hex |= elf_flags_to_names[i].flag_value;
13210 else if (tf->with == without_flags)
13211 without_hex |= elf_flags_to_names[i].flag_value;
13212 tf->valid = TRUE;
13213 break;
13214 }
13215 }
13216 if (!tf->valid)
13217 {
13218 info->callbacks->einfo
13219 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13220 return FALSE;
13221 }
13222 }
13223 flaginfo->flags_initialized = TRUE;
13224 flaginfo->only_with_flags |= with_hex;
13225 flaginfo->not_with_flags |= without_hex;
13226 }
13227
13228 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13229 return FALSE;
13230
13231 if ((flaginfo->not_with_flags & sh_flags) != 0)
13232 return FALSE;
13233
13234 return TRUE;
13235 }
13236
13237 struct alloc_got_off_arg {
13238 bfd_vma gotoff;
13239 struct bfd_link_info *info;
13240 };
13241
13242 /* We need a special top-level link routine to convert got reference counts
13243 to real got offsets. */
13244
13245 static bfd_boolean
13246 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13247 {
13248 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13249 bfd *obfd = gofarg->info->output_bfd;
13250 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13251
13252 if (h->got.refcount > 0)
13253 {
13254 h->got.offset = gofarg->gotoff;
13255 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13256 }
13257 else
13258 h->got.offset = (bfd_vma) -1;
13259
13260 return TRUE;
13261 }
13262
13263 /* And an accompanying bit to work out final got entry offsets once
13264 we're done. Should be called from final_link. */
13265
13266 bfd_boolean
13267 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13268 struct bfd_link_info *info)
13269 {
13270 bfd *i;
13271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13272 bfd_vma gotoff;
13273 struct alloc_got_off_arg gofarg;
13274
13275 BFD_ASSERT (abfd == info->output_bfd);
13276
13277 if (! is_elf_hash_table (info->hash))
13278 return FALSE;
13279
13280 /* The GOT offset is relative to the .got section, but the GOT header is
13281 put into the .got.plt section, if the backend uses it. */
13282 if (bed->want_got_plt)
13283 gotoff = 0;
13284 else
13285 gotoff = bed->got_header_size;
13286
13287 /* Do the local .got entries first. */
13288 for (i = info->input_bfds; i; i = i->link.next)
13289 {
13290 bfd_signed_vma *local_got;
13291 bfd_size_type j, locsymcount;
13292 Elf_Internal_Shdr *symtab_hdr;
13293
13294 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13295 continue;
13296
13297 local_got = elf_local_got_refcounts (i);
13298 if (!local_got)
13299 continue;
13300
13301 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13302 if (elf_bad_symtab (i))
13303 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13304 else
13305 locsymcount = symtab_hdr->sh_info;
13306
13307 for (j = 0; j < locsymcount; ++j)
13308 {
13309 if (local_got[j] > 0)
13310 {
13311 local_got[j] = gotoff;
13312 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13313 }
13314 else
13315 local_got[j] = (bfd_vma) -1;
13316 }
13317 }
13318
13319 /* Then the global .got entries. .plt refcounts are handled by
13320 adjust_dynamic_symbol */
13321 gofarg.gotoff = gotoff;
13322 gofarg.info = info;
13323 elf_link_hash_traverse (elf_hash_table (info),
13324 elf_gc_allocate_got_offsets,
13325 &gofarg);
13326 return TRUE;
13327 }
13328
13329 /* Many folk need no more in the way of final link than this, once
13330 got entry reference counting is enabled. */
13331
13332 bfd_boolean
13333 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13334 {
13335 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13336 return FALSE;
13337
13338 /* Invoke the regular ELF backend linker to do all the work. */
13339 return bfd_elf_final_link (abfd, info);
13340 }
13341
13342 bfd_boolean
13343 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13344 {
13345 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13346
13347 if (rcookie->bad_symtab)
13348 rcookie->rel = rcookie->rels;
13349
13350 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13351 {
13352 unsigned long r_symndx;
13353
13354 if (! rcookie->bad_symtab)
13355 if (rcookie->rel->r_offset > offset)
13356 return FALSE;
13357 if (rcookie->rel->r_offset != offset)
13358 continue;
13359
13360 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13361 if (r_symndx == STN_UNDEF)
13362 return TRUE;
13363
13364 if (r_symndx >= rcookie->locsymcount
13365 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13366 {
13367 struct elf_link_hash_entry *h;
13368
13369 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13370
13371 while (h->root.type == bfd_link_hash_indirect
13372 || h->root.type == bfd_link_hash_warning)
13373 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13374
13375 if ((h->root.type == bfd_link_hash_defined
13376 || h->root.type == bfd_link_hash_defweak)
13377 && (h->root.u.def.section->owner != rcookie->abfd
13378 || h->root.u.def.section->kept_section != NULL
13379 || discarded_section (h->root.u.def.section)))
13380 return TRUE;
13381 }
13382 else
13383 {
13384 /* It's not a relocation against a global symbol,
13385 but it could be a relocation against a local
13386 symbol for a discarded section. */
13387 asection *isec;
13388 Elf_Internal_Sym *isym;
13389
13390 /* Need to: get the symbol; get the section. */
13391 isym = &rcookie->locsyms[r_symndx];
13392 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13393 if (isec != NULL
13394 && (isec->kept_section != NULL
13395 || discarded_section (isec)))
13396 return TRUE;
13397 }
13398 return FALSE;
13399 }
13400 return FALSE;
13401 }
13402
13403 /* Discard unneeded references to discarded sections.
13404 Returns -1 on error, 1 if any section's size was changed, 0 if
13405 nothing changed. This function assumes that the relocations are in
13406 sorted order, which is true for all known assemblers. */
13407
13408 int
13409 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13410 {
13411 struct elf_reloc_cookie cookie;
13412 asection *o;
13413 bfd *abfd;
13414 int changed = 0;
13415
13416 if (info->traditional_format
13417 || !is_elf_hash_table (info->hash))
13418 return 0;
13419
13420 o = bfd_get_section_by_name (output_bfd, ".stab");
13421 if (o != NULL)
13422 {
13423 asection *i;
13424
13425 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13426 {
13427 if (i->size == 0
13428 || i->reloc_count == 0
13429 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13430 continue;
13431
13432 abfd = i->owner;
13433 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13434 continue;
13435
13436 if (!init_reloc_cookie_for_section (&cookie, info, i))
13437 return -1;
13438
13439 if (_bfd_discard_section_stabs (abfd, i,
13440 elf_section_data (i)->sec_info,
13441 bfd_elf_reloc_symbol_deleted_p,
13442 &cookie))
13443 changed = 1;
13444
13445 fini_reloc_cookie_for_section (&cookie, i);
13446 }
13447 }
13448
13449 o = NULL;
13450 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13451 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13452 if (o != NULL)
13453 {
13454 asection *i;
13455
13456 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13457 {
13458 if (i->size == 0)
13459 continue;
13460
13461 abfd = i->owner;
13462 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13463 continue;
13464
13465 if (!init_reloc_cookie_for_section (&cookie, info, i))
13466 return -1;
13467
13468 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13469 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13470 bfd_elf_reloc_symbol_deleted_p,
13471 &cookie))
13472 changed = 1;
13473
13474 fini_reloc_cookie_for_section (&cookie, i);
13475 }
13476 }
13477
13478 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13479 {
13480 const struct elf_backend_data *bed;
13481
13482 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13483 continue;
13484
13485 bed = get_elf_backend_data (abfd);
13486
13487 if (bed->elf_backend_discard_info != NULL)
13488 {
13489 if (!init_reloc_cookie (&cookie, info, abfd))
13490 return -1;
13491
13492 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13493 changed = 1;
13494
13495 fini_reloc_cookie (&cookie, abfd);
13496 }
13497 }
13498
13499 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13500 _bfd_elf_end_eh_frame_parsing (info);
13501
13502 if (info->eh_frame_hdr_type
13503 && !bfd_link_relocatable (info)
13504 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13505 changed = 1;
13506
13507 return changed;
13508 }
13509
13510 bfd_boolean
13511 _bfd_elf_section_already_linked (bfd *abfd,
13512 asection *sec,
13513 struct bfd_link_info *info)
13514 {
13515 flagword flags;
13516 const char *name, *key;
13517 struct bfd_section_already_linked *l;
13518 struct bfd_section_already_linked_hash_entry *already_linked_list;
13519
13520 if (sec->output_section == bfd_abs_section_ptr)
13521 return FALSE;
13522
13523 flags = sec->flags;
13524
13525 /* Return if it isn't a linkonce section. A comdat group section
13526 also has SEC_LINK_ONCE set. */
13527 if ((flags & SEC_LINK_ONCE) == 0)
13528 return FALSE;
13529
13530 /* Don't put group member sections on our list of already linked
13531 sections. They are handled as a group via their group section. */
13532 if (elf_sec_group (sec) != NULL)
13533 return FALSE;
13534
13535 /* For a SHT_GROUP section, use the group signature as the key. */
13536 name = sec->name;
13537 if ((flags & SEC_GROUP) != 0
13538 && elf_next_in_group (sec) != NULL
13539 && elf_group_name (elf_next_in_group (sec)) != NULL)
13540 key = elf_group_name (elf_next_in_group (sec));
13541 else
13542 {
13543 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13544 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13545 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13546 key++;
13547 else
13548 /* Must be a user linkonce section that doesn't follow gcc's
13549 naming convention. In this case we won't be matching
13550 single member groups. */
13551 key = name;
13552 }
13553
13554 already_linked_list = bfd_section_already_linked_table_lookup (key);
13555
13556 for (l = already_linked_list->entry; l != NULL; l = l->next)
13557 {
13558 /* We may have 2 different types of sections on the list: group
13559 sections with a signature of <key> (<key> is some string),
13560 and linkonce sections named .gnu.linkonce.<type>.<key>.
13561 Match like sections. LTO plugin sections are an exception.
13562 They are always named .gnu.linkonce.t.<key> and match either
13563 type of section. */
13564 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13565 && ((flags & SEC_GROUP) != 0
13566 || strcmp (name, l->sec->name) == 0))
13567 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13568 {
13569 /* The section has already been linked. See if we should
13570 issue a warning. */
13571 if (!_bfd_handle_already_linked (sec, l, info))
13572 return FALSE;
13573
13574 if (flags & SEC_GROUP)
13575 {
13576 asection *first = elf_next_in_group (sec);
13577 asection *s = first;
13578
13579 while (s != NULL)
13580 {
13581 s->output_section = bfd_abs_section_ptr;
13582 /* Record which group discards it. */
13583 s->kept_section = l->sec;
13584 s = elf_next_in_group (s);
13585 /* These lists are circular. */
13586 if (s == first)
13587 break;
13588 }
13589 }
13590
13591 return TRUE;
13592 }
13593 }
13594
13595 /* A single member comdat group section may be discarded by a
13596 linkonce section and vice versa. */
13597 if ((flags & SEC_GROUP) != 0)
13598 {
13599 asection *first = elf_next_in_group (sec);
13600
13601 if (first != NULL && elf_next_in_group (first) == first)
13602 /* Check this single member group against linkonce sections. */
13603 for (l = already_linked_list->entry; l != NULL; l = l->next)
13604 if ((l->sec->flags & SEC_GROUP) == 0
13605 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13606 {
13607 first->output_section = bfd_abs_section_ptr;
13608 first->kept_section = l->sec;
13609 sec->output_section = bfd_abs_section_ptr;
13610 break;
13611 }
13612 }
13613 else
13614 /* Check this linkonce section against single member groups. */
13615 for (l = already_linked_list->entry; l != NULL; l = l->next)
13616 if (l->sec->flags & SEC_GROUP)
13617 {
13618 asection *first = elf_next_in_group (l->sec);
13619
13620 if (first != NULL
13621 && elf_next_in_group (first) == first
13622 && bfd_elf_match_symbols_in_sections (first, sec, info))
13623 {
13624 sec->output_section = bfd_abs_section_ptr;
13625 sec->kept_section = first;
13626 break;
13627 }
13628 }
13629
13630 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13631 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13632 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13633 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13634 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13635 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13636 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13637 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13638 The reverse order cannot happen as there is never a bfd with only the
13639 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13640 matter as here were are looking only for cross-bfd sections. */
13641
13642 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13643 for (l = already_linked_list->entry; l != NULL; l = l->next)
13644 if ((l->sec->flags & SEC_GROUP) == 0
13645 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13646 {
13647 if (abfd != l->sec->owner)
13648 sec->output_section = bfd_abs_section_ptr;
13649 break;
13650 }
13651
13652 /* This is the first section with this name. Record it. */
13653 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13654 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13655 return sec->output_section == bfd_abs_section_ptr;
13656 }
13657
13658 bfd_boolean
13659 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13660 {
13661 return sym->st_shndx == SHN_COMMON;
13662 }
13663
13664 unsigned int
13665 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13666 {
13667 return SHN_COMMON;
13668 }
13669
13670 asection *
13671 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13672 {
13673 return bfd_com_section_ptr;
13674 }
13675
13676 bfd_vma
13677 _bfd_elf_default_got_elt_size (bfd *abfd,
13678 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13679 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13680 bfd *ibfd ATTRIBUTE_UNUSED,
13681 unsigned long symndx ATTRIBUTE_UNUSED)
13682 {
13683 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13684 return bed->s->arch_size / 8;
13685 }
13686
13687 /* Routines to support the creation of dynamic relocs. */
13688
13689 /* Returns the name of the dynamic reloc section associated with SEC. */
13690
13691 static const char *
13692 get_dynamic_reloc_section_name (bfd * abfd,
13693 asection * sec,
13694 bfd_boolean is_rela)
13695 {
13696 char *name;
13697 const char *old_name = bfd_get_section_name (NULL, sec);
13698 const char *prefix = is_rela ? ".rela" : ".rel";
13699
13700 if (old_name == NULL)
13701 return NULL;
13702
13703 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13704 sprintf (name, "%s%s", prefix, old_name);
13705
13706 return name;
13707 }
13708
13709 /* Returns the dynamic reloc section associated with SEC.
13710 If necessary compute the name of the dynamic reloc section based
13711 on SEC's name (looked up in ABFD's string table) and the setting
13712 of IS_RELA. */
13713
13714 asection *
13715 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13716 asection * sec,
13717 bfd_boolean is_rela)
13718 {
13719 asection * reloc_sec = elf_section_data (sec)->sreloc;
13720
13721 if (reloc_sec == NULL)
13722 {
13723 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13724
13725 if (name != NULL)
13726 {
13727 reloc_sec = bfd_get_linker_section (abfd, name);
13728
13729 if (reloc_sec != NULL)
13730 elf_section_data (sec)->sreloc = reloc_sec;
13731 }
13732 }
13733
13734 return reloc_sec;
13735 }
13736
13737 /* Returns the dynamic reloc section associated with SEC. If the
13738 section does not exist it is created and attached to the DYNOBJ
13739 bfd and stored in the SRELOC field of SEC's elf_section_data
13740 structure.
13741
13742 ALIGNMENT is the alignment for the newly created section and
13743 IS_RELA defines whether the name should be .rela.<SEC's name>
13744 or .rel.<SEC's name>. The section name is looked up in the
13745 string table associated with ABFD. */
13746
13747 asection *
13748 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13749 bfd *dynobj,
13750 unsigned int alignment,
13751 bfd *abfd,
13752 bfd_boolean is_rela)
13753 {
13754 asection * reloc_sec = elf_section_data (sec)->sreloc;
13755
13756 if (reloc_sec == NULL)
13757 {
13758 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13759
13760 if (name == NULL)
13761 return NULL;
13762
13763 reloc_sec = bfd_get_linker_section (dynobj, name);
13764
13765 if (reloc_sec == NULL)
13766 {
13767 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13768 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13769 if ((sec->flags & SEC_ALLOC) != 0)
13770 flags |= SEC_ALLOC | SEC_LOAD;
13771
13772 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13773 if (reloc_sec != NULL)
13774 {
13775 /* _bfd_elf_get_sec_type_attr chooses a section type by
13776 name. Override as it may be wrong, eg. for a user
13777 section named "auto" we'll get ".relauto" which is
13778 seen to be a .rela section. */
13779 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13780 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13781 reloc_sec = NULL;
13782 }
13783 }
13784
13785 elf_section_data (sec)->sreloc = reloc_sec;
13786 }
13787
13788 return reloc_sec;
13789 }
13790
13791 /* Copy the ELF symbol type and other attributes for a linker script
13792 assignment from HSRC to HDEST. Generally this should be treated as
13793 if we found a strong non-dynamic definition for HDEST (except that
13794 ld ignores multiple definition errors). */
13795 void
13796 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13797 struct bfd_link_hash_entry *hdest,
13798 struct bfd_link_hash_entry *hsrc)
13799 {
13800 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13801 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13802 Elf_Internal_Sym isym;
13803
13804 ehdest->type = ehsrc->type;
13805 ehdest->target_internal = ehsrc->target_internal;
13806
13807 isym.st_other = ehsrc->other;
13808 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13809 }
13810
13811 /* Append a RELA relocation REL to section S in BFD. */
13812
13813 void
13814 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13815 {
13816 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13817 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13818 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13819 bed->s->swap_reloca_out (abfd, rel, loc);
13820 }
13821
13822 /* Append a REL relocation REL to section S in BFD. */
13823
13824 void
13825 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13826 {
13827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13828 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13829 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13830 bed->s->swap_reloc_out (abfd, rel, loc);
13831 }
This page took 0.296904 seconds and 5 git commands to generate.