* elflink.c (elf_link_input_bfd): Don't try to resolve complex
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 int ptralign;
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 switch (bed->s->arch_size)
112 {
113 case 32:
114 ptralign = 2;
115 break;
116
117 case 64:
118 ptralign = 3;
119 break;
120
121 default:
122 bfd_set_error (bfd_error_bad_value);
123 return FALSE;
124 }
125
126 flags = bed->dynamic_sec_flags;
127
128 s = bfd_make_section_with_flags (abfd, ".got", flags);
129 if (s == NULL
130 || !bfd_set_section_alignment (abfd, s, ptralign))
131 return FALSE;
132
133 if (bed->want_got_plt)
134 {
135 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
136 if (s == NULL
137 || !bfd_set_section_alignment (abfd, s, ptralign))
138 return FALSE;
139 }
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
151 }
152
153 /* The first bit of the global offset table is the header. */
154 s->size += bed->got_header_size;
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 register asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
328 .plt section. */
329 if (bed->want_plt_sym)
330 {
331 h = _bfd_elf_define_linkage_sym (abfd, info, s,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info)->hplt = h;
334 if (h == NULL)
335 return FALSE;
336 }
337
338 s = bfd_make_section_with_flags (abfd,
339 (bed->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345
346 if (! _bfd_elf_create_got_section (abfd, info))
347 return FALSE;
348
349 if (bed->want_dynbss)
350 {
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s = bfd_make_section_with_flags (abfd, ".dynbss",
358 (SEC_ALLOC
359 | SEC_LINKER_CREATED));
360 if (s == NULL)
361 return FALSE;
362
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
373 copy relocs. */
374 if (! info->shared)
375 {
376 s = bfd_make_section_with_flags (abfd,
377 (bed->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags | SEC_READONLY);
380 if (s == NULL
381 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
382 return FALSE;
383 }
384 }
385
386 return TRUE;
387 }
388 \f
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
395 one. */
396
397 bfd_boolean
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
399 struct elf_link_hash_entry *h)
400 {
401 if (h->dynindx == -1)
402 {
403 struct elf_strtab_hash *dynstr;
404 char *p;
405 const char *name;
406 bfd_size_type indx;
407
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h->other))
413 {
414 case STV_INTERNAL:
415 case STV_HIDDEN:
416 if (h->root.type != bfd_link_hash_undefined
417 && h->root.type != bfd_link_hash_undefweak)
418 {
419 h->forced_local = 1;
420 if (!elf_hash_table (info)->is_relocatable_executable)
421 return TRUE;
422 }
423
424 default:
425 break;
426 }
427
428 h->dynindx = elf_hash_table (info)->dynsymcount;
429 ++elf_hash_table (info)->dynsymcount;
430
431 dynstr = elf_hash_table (info)->dynstr;
432 if (dynstr == NULL)
433 {
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
436 if (dynstr == NULL)
437 return FALSE;
438 }
439
440 /* We don't put any version information in the dynamic string
441 table. */
442 name = h->root.root.string;
443 p = strchr (name, ELF_VER_CHR);
444 if (p != NULL)
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
450 *p = 0;
451
452 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
453
454 if (p != NULL)
455 *p = ELF_VER_CHR;
456
457 if (indx == (bfd_size_type) -1)
458 return FALSE;
459 h->dynstr_index = indx;
460 }
461
462 return TRUE;
463 }
464 \f
465 /* Mark a symbol dynamic. */
466
467 static void
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
469 struct elf_link_hash_entry *h,
470 Elf_Internal_Sym *sym)
471 {
472 struct bfd_elf_dynamic_list *d = info->dynamic_list;
473
474 /* It may be called more than once on the same H. */
475 if(h->dynamic || info->relocatable)
476 return;
477
478 if ((info->dynamic_data
479 && (h->type == STT_OBJECT
480 || (sym != NULL
481 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
482 || (d != NULL
483 && h->root.type == bfd_link_hash_new
484 && (*d->match) (&d->head, NULL, h->root.root.string)))
485 h->dynamic = 1;
486 }
487
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
490
491 bfd_boolean
492 bfd_elf_record_link_assignment (bfd *output_bfd,
493 struct bfd_link_info *info,
494 const char *name,
495 bfd_boolean provide,
496 bfd_boolean hidden)
497 {
498 struct elf_link_hash_entry *h, *hv;
499 struct elf_link_hash_table *htab;
500 const struct elf_backend_data *bed;
501
502 if (!is_elf_hash_table (info->hash))
503 return TRUE;
504
505 htab = elf_hash_table (info);
506 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
507 if (h == NULL)
508 return provide;
509
510 switch (h->root.type)
511 {
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 case bfd_link_hash_common:
515 break;
516 case bfd_link_hash_undefweak:
517 case bfd_link_hash_undefined:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h->root.type = bfd_link_hash_new;
522 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
523 bfd_link_repair_undef_list (&htab->root);
524 break;
525 case bfd_link_hash_new:
526 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
527 h->non_elf = 0;
528 break;
529 case bfd_link_hash_indirect:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed = get_elf_backend_data (output_bfd);
533 hv = h;
534 while (hv->root.type == bfd_link_hash_indirect
535 || hv->root.type == bfd_link_hash_warning)
536 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
537 /* We don't need to update h->root.u since linker will set them
538 later. */
539 h->root.type = bfd_link_hash_undefined;
540 hv->root.type = bfd_link_hash_indirect;
541 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
542 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
543 break;
544 case bfd_link_hash_warning:
545 abort ();
546 break;
547 }
548
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
553 if (provide
554 && h->def_dynamic
555 && !h->def_regular)
556 h->root.type = bfd_link_hash_undefined;
557
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
562 if (!provide
563 && h->def_dynamic
564 && !h->def_regular)
565 h->verinfo.verdef = NULL;
566
567 h->def_regular = 1;
568
569 if (provide && hidden)
570 {
571 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
572
573 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
575 }
576
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
578 and executables. */
579 if (!info->relocatable
580 && h->dynindx != -1
581 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
583 h->forced_local = 1;
584
585 if ((h->def_dynamic
586 || h->ref_dynamic
587 || info->shared
588 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
589 && h->dynindx == -1)
590 {
591 if (! bfd_elf_link_record_dynamic_symbol (info, h))
592 return FALSE;
593
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h->u.weakdef != NULL
598 && h->u.weakdef->dynindx == -1)
599 {
600 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
601 return FALSE;
602 }
603 }
604
605 return TRUE;
606 }
607
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
611
612 int
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
614 bfd *input_bfd,
615 long input_indx)
616 {
617 bfd_size_type amt;
618 struct elf_link_local_dynamic_entry *entry;
619 struct elf_link_hash_table *eht;
620 struct elf_strtab_hash *dynstr;
621 unsigned long dynstr_index;
622 char *name;
623 Elf_External_Sym_Shndx eshndx;
624 char esym[sizeof (Elf64_External_Sym)];
625
626 if (! is_elf_hash_table (info->hash))
627 return 0;
628
629 /* See if the entry exists already. */
630 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
631 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
632 return 1;
633
634 amt = sizeof (*entry);
635 entry = bfd_alloc (input_bfd, amt);
636 if (entry == NULL)
637 return 0;
638
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
641 1, input_indx, &entry->isym, esym, &eshndx))
642 {
643 bfd_release (input_bfd, entry);
644 return 0;
645 }
646
647 if (entry->isym.st_shndx != SHN_UNDEF
648 && entry->isym.st_shndx < SHN_LORESERVE)
649 {
650 asection *s;
651
652 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
653 if (s == NULL || bfd_is_abs_section (s->output_section))
654 {
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd, entry);
658 return 2;
659 }
660 }
661
662 name = (bfd_elf_string_from_elf_section
663 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
664 entry->isym.st_name));
665
666 dynstr = elf_hash_table (info)->dynstr;
667 if (dynstr == NULL)
668 {
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
671 if (dynstr == NULL)
672 return 0;
673 }
674
675 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
676 if (dynstr_index == (unsigned long) -1)
677 return 0;
678 entry->isym.st_name = dynstr_index;
679
680 eht = elf_hash_table (info);
681
682 entry->next = eht->dynlocal;
683 eht->dynlocal = entry;
684 entry->input_bfd = input_bfd;
685 entry->input_indx = input_indx;
686 eht->dynsymcount++;
687
688 /* Whatever binding the symbol had before, it's now local. */
689 entry->isym.st_info
690 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
691
692 /* The dynindx will be set at the end of size_dynamic_sections. */
693
694 return 1;
695 }
696
697 /* Return the dynindex of a local dynamic symbol. */
698
699 long
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
701 bfd *input_bfd,
702 long input_indx)
703 {
704 struct elf_link_local_dynamic_entry *e;
705
706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
707 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
708 return e->dynindx;
709 return -1;
710 }
711
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
715
716 static bfd_boolean
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
718 void *data)
719 {
720 size_t *count = data;
721
722 if (h->root.type == bfd_link_hash_warning)
723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
724
725 if (h->forced_local)
726 return TRUE;
727
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
730
731 return TRUE;
732 }
733
734
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
737
738 static bfd_boolean
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
741 {
742 size_t *count = data;
743
744 if (h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764
765 switch (elf_section_data (p)->this_hdr.sh_type)
766 {
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
775
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
778
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
782 {
783 asection *ip;
784
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
787 && (ip->flags & SEC_LINKER_CREATED)
788 && ip->output_section == p)
789 return TRUE;
790 }
791 return FALSE;
792
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
797 }
798 }
799
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
805
806 static unsigned long
807 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
810 {
811 unsigned long dynsymcount = 0;
812
813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
814 {
815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
818 if ((p->flags & SEC_EXCLUDE) == 0
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
822 else
823 elf_section_data (p)->dynindx = 0;
824 }
825 *section_sym_count = dynsymcount;
826
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
830
831 if (elf_hash_table (info)->dynlocal)
832 {
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
836 }
837
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
841
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
847
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
850 }
851
852 /* Merge st_other field. */
853
854 static void
855 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 Elf_Internal_Sym *isym, bfd_boolean definition,
857 bfd_boolean dynamic)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed->elf_backend_merge_symbol_attribute)
865 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 dynamic);
867
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
870 if (definition
871 && !dynamic
872 && (abfd->no_export
873 || (abfd->my_archive && abfd->my_archive->no_export))
874 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
875 isym->st_other = (STV_HIDDEN
876 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
877
878 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
879 {
880 unsigned char hvis, symvis, other, nvis;
881
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other = h->other & ~ELF_ST_VISIBILITY (-1);
885
886 /* Combine visibilities, using the most constraining one. */
887 hvis = ELF_ST_VISIBILITY (h->other);
888 symvis = ELF_ST_VISIBILITY (isym->st_other);
889 if (! hvis)
890 nvis = symvis;
891 else if (! symvis)
892 nvis = hvis;
893 else
894 nvis = hvis < symvis ? hvis : symvis;
895
896 h->other = other | nvis;
897 }
898 }
899
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
911
912 bfd_boolean
913 _bfd_elf_merge_symbol (bfd *abfd,
914 struct bfd_link_info *info,
915 const char *name,
916 Elf_Internal_Sym *sym,
917 asection **psec,
918 bfd_vma *pvalue,
919 unsigned int *pold_alignment,
920 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
925 {
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. */
967
968 while (h->root.type == bfd_link_hash_indirect
969 || h->root.type == bfd_link_hash_warning)
970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
971
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
974 symbols. */
975 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
976
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
980
981 if (h->root.type == bfd_link_hash_new)
982 {
983 h->non_elf = 0;
984 return TRUE;
985 }
986
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
988 existing symbol. */
989
990 switch (h->root.type)
991 {
992 default:
993 oldbfd = NULL;
994 oldsec = NULL;
995 break;
996
997 case bfd_link_hash_undefined:
998 case bfd_link_hash_undefweak:
999 oldbfd = h->root.u.undef.abfd;
1000 oldsec = NULL;
1001 break;
1002
1003 case bfd_link_hash_defined:
1004 case bfd_link_hash_defweak:
1005 oldbfd = h->root.u.def.section->owner;
1006 oldsec = h->root.u.def.section;
1007 break;
1008
1009 case bfd_link_hash_common:
1010 oldbfd = h->root.u.c.p->section->owner;
1011 oldsec = h->root.u.c.p->section;
1012 break;
1013 }
1014
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1021 if (abfd == oldbfd
1022 && ((abfd->flags & DYNAMIC) == 0
1023 || !h->def_regular))
1024 return TRUE;
1025
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1028
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1030
1031 olddyn = FALSE;
1032 if (oldbfd != NULL)
1033 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1034 else if (oldsec != NULL)
1035 {
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1039 }
1040
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1043
1044 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1045
1046 olddef = (h->root.type != bfd_link_hash_undefined
1047 && h->root.type != bfd_link_hash_undefweak
1048 && h->root.type != bfd_link_hash_common);
1049
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1052
1053 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1054 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1055
1056 oldfunc = (h->type != STT_NOTYPE
1057 && bed->is_function_type (h->type));
1058
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment == NULL
1064 && !info->shared
1065 && !info->export_dynamic
1066 && !h->ref_dynamic
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1075 {
1076 *skip = TRUE;
1077 return TRUE;
1078 }
1079
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1081 "ld -u". */
1082 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1083 && ELF_ST_TYPE (sym->st_info) != h->type
1084 && oldbfd != NULL)
1085 {
1086 bfd *ntbfd, *tbfd;
1087 bfd_boolean ntdef, tdef;
1088 asection *ntsec, *tsec;
1089
1090 if (h->type == STT_TLS)
1091 {
1092 ntbfd = abfd;
1093 ntsec = sec;
1094 ntdef = newdef;
1095 tbfd = oldbfd;
1096 tsec = oldsec;
1097 tdef = olddef;
1098 }
1099 else
1100 {
1101 ntbfd = oldbfd;
1102 ntsec = oldsec;
1103 ntdef = olddef;
1104 tbfd = abfd;
1105 tsec = sec;
1106 tdef = newdef;
1107 }
1108
1109 if (tdef && ntdef)
1110 (*_bfd_error_handler)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1113 else if (!tdef && !ntdef)
1114 (*_bfd_error_handler)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd, ntbfd, h->root.root.string);
1117 else if (tdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd, tsec, ntbfd, h->root.root.string);
1121 else
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd, ntbfd, ntsec, h->root.root.string);
1125
1126 bfd_set_error (bfd_error_bad_value);
1127 return FALSE;
1128 }
1129
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn && !h->dynamic_def)
1134 {
1135 if (!bfd_is_und_section (sec))
1136 h->dynamic_def = 1;
1137 else
1138 {
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h->ref_dynamic)
1143 {
1144 if (bind == STB_WEAK)
1145 h->dynamic_weak = 1;
1146 }
1147 else if (bind != STB_WEAK)
1148 h->dynamic_weak = 0;
1149 }
1150 }
1151
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1154 if (newdyn
1155 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1156 && !bfd_is_und_section (sec))
1157 {
1158 *skip = TRUE;
1159 /* Make sure this symbol is dynamic. */
1160 h->ref_dynamic = 1;
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1163
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1166 return bfd_elf_link_record_dynamic_symbol (info, h);
1167 else
1168 return TRUE;
1169 }
1170 else if (!newdyn
1171 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1172 && h->def_dynamic)
1173 {
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1178 {
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1183 if (h->ref_regular)
1184 {
1185 const struct elf_backend_data *bed
1186 = get_elf_backend_data (abfd);
1187 struct elf_link_hash_entry *vh = *sym_hash;
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1213
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
1232 if (h->def_dynamic)
1233 {
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1248
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1256
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1259
1260 if (newdef && !newdyn && olddyn)
1261 newweak = FALSE;
1262 if (olddef && newdyn)
1263 oldweak = FALSE;
1264
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc && oldfunc)
1267 *type_change_ok = TRUE;
1268
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1272
1273 if (oldweak
1274 || newweak
1275 || (newdef
1276 && h->root.type == bfd_link_hash_undefined))
1277 *type_change_ok = TRUE;
1278
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1281
1282 if (*type_change_ok
1283 || h->root.type == bfd_link_hash_undefined)
1284 *size_change_ok = TRUE;
1285
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1297 libraries.
1298
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1301
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1307 harmless. */
1308
1309 if (newdyn
1310 && newdef
1311 && !newweak
1312 && (sec->flags & SEC_ALLOC) != 0
1313 && (sec->flags & SEC_LOAD) == 0
1314 && sym->st_size > 0
1315 && !newfunc)
1316 newdyncommon = TRUE;
1317 else
1318 newdyncommon = FALSE;
1319
1320 if (olddyn
1321 && olddef
1322 && h->root.type == bfd_link_hash_defined
1323 && h->def_dynamic
1324 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1325 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1326 && h->size > 0
1327 && !oldfunc)
1328 olddyncommon = TRUE;
1329 else
1330 olddyncommon = FALSE;
1331
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed->merge_symbol
1335 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1336 pold_alignment, skip, override,
1337 type_change_ok, size_change_ok,
1338 &newdyn, &newdef, &newdyncommon, &newweak,
1339 abfd, &sec,
1340 &olddyn, &olddef, &olddyncommon, &oldweak,
1341 oldbfd, &oldsec))
1342 return FALSE;
1343
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1346 two. */
1347
1348 if (olddyncommon
1349 && newdyncommon
1350 && sym->st_size != h->size)
1351 {
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1357
1358 if (! ((*info->callbacks->multiple_common)
1359 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1360 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1361 return FALSE;
1362
1363 if (sym->st_size > h->size)
1364 h->size = sym->st_size;
1365
1366 *size_change_ok = TRUE;
1367 }
1368
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1375
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1382
1383 if (newdyn
1384 && newdef
1385 && (olddef
1386 || (h->root.type == bfd_link_hash_common
1387 && (newweak || newfunc))))
1388 {
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
1392
1393 *psec = sec = bfd_und_section_ptr;
1394 *size_change_ok = TRUE;
1395
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1401
1402 if (h->root.type == bfd_link_hash_common)
1403 *type_change_ok = TRUE;
1404 }
1405
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1410 right thing. */
1411
1412 if (newdyncommon
1413 && h->root.type == bfd_link_hash_common)
1414 {
1415 *override = TRUE;
1416 newdef = FALSE;
1417 newdyncommon = FALSE;
1418 *pvalue = sym->st_size;
1419 *psec = sec = bed->common_section (oldsec);
1420 *size_change_ok = TRUE;
1421 }
1422
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef && olddef && newweak)
1425 {
1426 *skip = TRUE;
1427
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1430 local symbol. */
1431 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1432 if (h->dynindx != -1)
1433 switch (ELF_ST_VISIBILITY (h->other))
1434 {
1435 case STV_INTERNAL:
1436 case STV_HIDDEN:
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 break;
1439 }
1440 }
1441
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1447
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1451
1452 flip = NULL;
1453 if (!newdyn
1454 && (newdef
1455 || (bfd_is_com_section (sec)
1456 && (oldweak || oldfunc)))
1457 && olddyn
1458 && olddef
1459 && h->def_dynamic)
1460 {
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1463 new definition. */
1464
1465 h->root.type = bfd_link_hash_undefined;
1466 h->root.u.undef.abfd = h->root.u.def.section->owner;
1467 *size_change_ok = TRUE;
1468
1469 olddef = FALSE;
1470 olddyncommon = FALSE;
1471
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1474
1475 if (bfd_is_com_section (sec))
1476 {
1477 if (oldfunc)
1478 {
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1481 function. */
1482 h->def_dynamic = 0;
1483 h->type = STT_NOTYPE;
1484 }
1485 *type_change_ok = TRUE;
1486 }
1487
1488 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1489 flip = *sym_hash;
1490 else
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h->verinfo.vertree = NULL;
1495 }
1496
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1502
1503 if (! newdyn
1504 && bfd_is_com_section (sec)
1505 && olddyncommon)
1506 {
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info->callbacks->multiple_common)
1511 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1512 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1513 return FALSE;
1514
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1517
1518 if (h->size > *pvalue)
1519 *pvalue = h->size;
1520
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment);
1524 *pold_alignment = h->root.u.def.section->alignment_power;
1525
1526 olddef = FALSE;
1527 olddyncommon = FALSE;
1528
1529 h->root.type = bfd_link_hash_undefined;
1530 h->root.u.undef.abfd = h->root.u.def.section->owner;
1531
1532 *size_change_ok = TRUE;
1533 *type_change_ok = TRUE;
1534
1535 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1536 flip = *sym_hash;
1537 else
1538 h->verinfo.vertree = NULL;
1539 }
1540
1541 if (flip != NULL)
1542 {
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1547 flip->root.type = h->root.type;
1548 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1549 h->root.type = bfd_link_hash_indirect;
1550 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1551 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1552 if (h->def_dynamic)
1553 {
1554 h->def_dynamic = 0;
1555 flip->ref_dynamic = 1;
1556 }
1557 }
1558
1559 return TRUE;
1560 }
1561
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1566
1567 static bfd_boolean
1568 _bfd_elf_add_default_symbol (bfd *abfd,
1569 struct bfd_link_info *info,
1570 struct elf_link_hash_entry *h,
1571 const char *name,
1572 Elf_Internal_Sym *sym,
1573 asection **psec,
1574 bfd_vma *value,
1575 bfd_boolean *dynsym,
1576 bfd_boolean override)
1577 {
1578 bfd_boolean type_change_ok;
1579 bfd_boolean size_change_ok;
1580 bfd_boolean skip;
1581 char *shortname;
1582 struct elf_link_hash_entry *hi;
1583 struct bfd_link_hash_entry *bh;
1584 const struct elf_backend_data *bed;
1585 bfd_boolean collect;
1586 bfd_boolean dynamic;
1587 char *p;
1588 size_t len, shortlen;
1589 asection *sec;
1590
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p = strchr (name, ELF_VER_CHR);
1596 if (p == NULL || p[1] != ELF_VER_CHR)
1597 return TRUE;
1598
1599 if (override)
1600 {
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1604 FALSE, FALSE);
1605 BFD_ASSERT (hi != NULL);
1606 if (hi == h)
1607 return TRUE;
1608 while (hi->root.type == bfd_link_hash_indirect
1609 || hi->root.type == bfd_link_hash_warning)
1610 {
1611 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1612 if (hi == h)
1613 return TRUE;
1614 }
1615 }
1616
1617 bed = get_elf_backend_data (abfd);
1618 collect = bed->collect;
1619 dynamic = (abfd->flags & DYNAMIC) != 0;
1620
1621 shortlen = p - name;
1622 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1623 if (shortname == NULL)
1624 return FALSE;
1625 memcpy (shortname, name, shortlen);
1626 shortname[shortlen] = '\0';
1627
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok = FALSE;
1633 size_change_ok = FALSE;
1634 sec = *psec;
1635 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1636 NULL, &hi, &skip, &override,
1637 &type_change_ok, &size_change_ok))
1638 return FALSE;
1639
1640 if (skip)
1641 goto nondefault;
1642
1643 if (! override)
1644 {
1645 bh = &hi->root;
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1648 0, name, FALSE, collect, &bh)))
1649 return FALSE;
1650 hi = (struct elf_link_hash_entry *) bh;
1651 }
1652 else
1653 {
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1659
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1663
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1671
1672 while (hi->root.type == bfd_link_hash_indirect
1673 || hi->root.type == bfd_link_hash_warning)
1674 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1675
1676 h->root.type = bfd_link_hash_indirect;
1677 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1678 if (h->def_dynamic)
1679 {
1680 h->def_dynamic = 0;
1681 hi->ref_dynamic = 1;
1682 if (hi->ref_regular
1683 || hi->def_regular)
1684 {
1685 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1686 return FALSE;
1687 }
1688 }
1689
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1692 hi = h;
1693 }
1694
1695 /* Check if HI is a warning symbol. */
1696 if (hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1698
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1702
1703 if (hi->root.type == bfd_link_hash_indirect)
1704 {
1705 struct elf_link_hash_entry *ht;
1706
1707 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1709
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1713 {
1714 if (! dynamic)
1715 {
1716 if (info->shared
1717 || hi->ref_dynamic)
1718 *dynsym = TRUE;
1719 }
1720 else
1721 {
1722 if (hi->ref_regular)
1723 *dynsym = TRUE;
1724 }
1725 }
1726 }
1727
1728 /* We also need to define an indirection from the nondefault version
1729 of the symbol. */
1730
1731 nondefault:
1732 len = strlen (name);
1733 shortname = bfd_hash_allocate (&info->hash->table, len);
1734 if (shortname == NULL)
1735 return FALSE;
1736 memcpy (shortname, name, shortlen);
1737 memcpy (shortname + shortlen, p + 1, len - shortlen);
1738
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok = FALSE;
1741 size_change_ok = FALSE;
1742 sec = *psec;
1743 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1744 NULL, &hi, &skip, &override,
1745 &type_change_ok, &size_change_ok))
1746 return FALSE;
1747
1748 if (skip)
1749 return TRUE;
1750
1751 if (override)
1752 {
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi->root.type != bfd_link_hash_defined
1757 && hi->root.type != bfd_link_hash_defweak)
1758 (*_bfd_error_handler)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1760 abfd, shortname);
1761 }
1762 else
1763 {
1764 bh = &hi->root;
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info, abfd, shortname, BSF_INDIRECT,
1767 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1768 return FALSE;
1769 hi = (struct elf_link_hash_entry *) bh;
1770
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1774
1775 if (hi->root.type == bfd_link_hash_indirect)
1776 {
1777 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1778
1779 /* See if the new flags lead us to realize that the symbol
1780 must be dynamic. */
1781 if (! *dynsym)
1782 {
1783 if (! dynamic)
1784 {
1785 if (info->shared
1786 || hi->ref_dynamic)
1787 *dynsym = TRUE;
1788 }
1789 else
1790 {
1791 if (hi->ref_regular)
1792 *dynsym = TRUE;
1793 }
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799 }
1800 \f
1801 static struct bfd_elf_version_tree *
1802 find_version_for_sym (struct bfd_elf_version_tree *verdefs,
1803 const char *sym_name,
1804 bfd_boolean *hide)
1805 {
1806 struct bfd_elf_version_tree *t;
1807 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
1808
1809 local_ver = NULL;
1810 global_ver = NULL;
1811 exist_ver = NULL;
1812 for (t = verdefs; t != NULL; t = t->next)
1813 {
1814 if (t->globals.list != NULL)
1815 {
1816 struct bfd_elf_version_expr *d = NULL;
1817
1818 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
1819 {
1820 global_ver = t;
1821 if (d->symver)
1822 exist_ver = t;
1823 d->script = 1;
1824 /* If the match is a wildcard pattern, keep looking for
1825 a more explicit, perhaps even local, match. */
1826 if (d->literal)
1827 break;
1828 }
1829
1830 if (d != NULL)
1831 break;
1832 }
1833
1834 if (t->locals.list != NULL)
1835 {
1836 struct bfd_elf_version_expr *d = NULL;
1837
1838 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
1839 {
1840 local_ver = t;
1841 /* If the match is a wildcard pattern, keep looking for
1842 a more explicit, perhaps even global, match. */
1843 if (d->literal)
1844 {
1845 /* An exact match overrides a global wildcard. */
1846 global_ver = NULL;
1847 break;
1848 }
1849 }
1850
1851 if (d != NULL)
1852 break;
1853 }
1854 }
1855
1856 if (global_ver != NULL)
1857 {
1858 /* If we already have a versioned symbol that matches the
1859 node for this symbol, then we don't want to create a
1860 duplicate from the unversioned symbol. Instead hide the
1861 unversioned symbol. */
1862 *hide = exist_ver == global_ver;
1863 return global_ver;
1864 }
1865
1866 if (local_ver != NULL)
1867 {
1868 *hide = TRUE;
1869 return local_ver;
1870 }
1871
1872 return NULL;
1873 }
1874
1875 /* This routine is used to export all defined symbols into the dynamic
1876 symbol table. It is called via elf_link_hash_traverse. */
1877
1878 static bfd_boolean
1879 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1880 {
1881 struct elf_info_failed *eif = data;
1882
1883 /* Ignore this if we won't export it. */
1884 if (!eif->info->export_dynamic && !h->dynamic)
1885 return TRUE;
1886
1887 /* Ignore indirect symbols. These are added by the versioning code. */
1888 if (h->root.type == bfd_link_hash_indirect)
1889 return TRUE;
1890
1891 if (h->root.type == bfd_link_hash_warning)
1892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1893
1894 if (h->dynindx == -1
1895 && (h->def_regular
1896 || h->ref_regular))
1897 {
1898 bfd_boolean hide;
1899
1900 if (eif->verdefs == NULL
1901 || (find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1902 && !hide))
1903 {
1904 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1905 {
1906 eif->failed = TRUE;
1907 return FALSE;
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913 }
1914 \f
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1919
1920 static bfd_boolean
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1922 void *data)
1923 {
1924 struct elf_find_verdep_info *rinfo = data;
1925 Elf_Internal_Verneed *t;
1926 Elf_Internal_Vernaux *a;
1927 bfd_size_type amt;
1928
1929 if (h->root.type == bfd_link_hash_warning)
1930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1931
1932 /* We only care about symbols defined in shared objects with version
1933 information. */
1934 if (!h->def_dynamic
1935 || h->def_regular
1936 || h->dynindx == -1
1937 || h->verinfo.verdef == NULL)
1938 return TRUE;
1939
1940 /* See if we already know about this version. */
1941 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1942 t != NULL;
1943 t = t->vn_nextref)
1944 {
1945 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1946 continue;
1947
1948 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1949 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1950 return TRUE;
1951
1952 break;
1953 }
1954
1955 /* This is a new version. Add it to tree we are building. */
1956
1957 if (t == NULL)
1958 {
1959 amt = sizeof *t;
1960 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1961 if (t == NULL)
1962 {
1963 rinfo->failed = TRUE;
1964 return FALSE;
1965 }
1966
1967 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1968 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1969 elf_tdata (rinfo->info->output_bfd)->verref = t;
1970 }
1971
1972 amt = sizeof *a;
1973 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1974 if (a == NULL)
1975 {
1976 rinfo->failed = TRUE;
1977 return FALSE;
1978 }
1979
1980 /* Note that we are copying a string pointer here, and testing it
1981 above. If bfd_elf_string_from_elf_section is ever changed to
1982 discard the string data when low in memory, this will have to be
1983 fixed. */
1984 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1985
1986 a->vna_flags = h->verinfo.verdef->vd_flags;
1987 a->vna_nextptr = t->vn_auxptr;
1988
1989 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1990 ++rinfo->vers;
1991
1992 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1993
1994 t->vn_auxptr = a;
1995
1996 return TRUE;
1997 }
1998
1999 /* Figure out appropriate versions for all the symbols. We may not
2000 have the version number script until we have read all of the input
2001 files, so until that point we don't know which symbols should be
2002 local. This function is called via elf_link_hash_traverse. */
2003
2004 static bfd_boolean
2005 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2006 {
2007 struct elf_info_failed *sinfo;
2008 struct bfd_link_info *info;
2009 const struct elf_backend_data *bed;
2010 struct elf_info_failed eif;
2011 char *p;
2012 bfd_size_type amt;
2013
2014 sinfo = data;
2015 info = sinfo->info;
2016
2017 if (h->root.type == bfd_link_hash_warning)
2018 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2019
2020 /* Fix the symbol flags. */
2021 eif.failed = FALSE;
2022 eif.info = info;
2023 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2024 {
2025 if (eif.failed)
2026 sinfo->failed = TRUE;
2027 return FALSE;
2028 }
2029
2030 /* We only need version numbers for symbols defined in regular
2031 objects. */
2032 if (!h->def_regular)
2033 return TRUE;
2034
2035 bed = get_elf_backend_data (info->output_bfd);
2036 p = strchr (h->root.root.string, ELF_VER_CHR);
2037 if (p != NULL && h->verinfo.vertree == NULL)
2038 {
2039 struct bfd_elf_version_tree *t;
2040 bfd_boolean hidden;
2041
2042 hidden = TRUE;
2043
2044 /* There are two consecutive ELF_VER_CHR characters if this is
2045 not a hidden symbol. */
2046 ++p;
2047 if (*p == ELF_VER_CHR)
2048 {
2049 hidden = FALSE;
2050 ++p;
2051 }
2052
2053 /* If there is no version string, we can just return out. */
2054 if (*p == '\0')
2055 {
2056 if (hidden)
2057 h->hidden = 1;
2058 return TRUE;
2059 }
2060
2061 /* Look for the version. If we find it, it is no longer weak. */
2062 for (t = sinfo->verdefs; t != NULL; t = t->next)
2063 {
2064 if (strcmp (t->name, p) == 0)
2065 {
2066 size_t len;
2067 char *alc;
2068 struct bfd_elf_version_expr *d;
2069
2070 len = p - h->root.root.string;
2071 alc = bfd_malloc (len);
2072 if (alc == NULL)
2073 {
2074 sinfo->failed = TRUE;
2075 return FALSE;
2076 }
2077 memcpy (alc, h->root.root.string, len - 1);
2078 alc[len - 1] = '\0';
2079 if (alc[len - 2] == ELF_VER_CHR)
2080 alc[len - 2] = '\0';
2081
2082 h->verinfo.vertree = t;
2083 t->used = TRUE;
2084 d = NULL;
2085
2086 if (t->globals.list != NULL)
2087 d = (*t->match) (&t->globals, NULL, alc);
2088
2089 /* See if there is anything to force this symbol to
2090 local scope. */
2091 if (d == NULL && t->locals.list != NULL)
2092 {
2093 d = (*t->match) (&t->locals, NULL, alc);
2094 if (d != NULL
2095 && h->dynindx != -1
2096 && ! info->export_dynamic)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 }
2099
2100 free (alc);
2101 break;
2102 }
2103 }
2104
2105 /* If we are building an application, we need to create a
2106 version node for this version. */
2107 if (t == NULL && info->executable)
2108 {
2109 struct bfd_elf_version_tree **pp;
2110 int version_index;
2111
2112 /* If we aren't going to export this symbol, we don't need
2113 to worry about it. */
2114 if (h->dynindx == -1)
2115 return TRUE;
2116
2117 amt = sizeof *t;
2118 t = bfd_zalloc (info->output_bfd, amt);
2119 if (t == NULL)
2120 {
2121 sinfo->failed = TRUE;
2122 return FALSE;
2123 }
2124
2125 t->name = p;
2126 t->name_indx = (unsigned int) -1;
2127 t->used = TRUE;
2128
2129 version_index = 1;
2130 /* Don't count anonymous version tag. */
2131 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2132 version_index = 0;
2133 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2134 ++version_index;
2135 t->vernum = version_index;
2136
2137 *pp = t;
2138
2139 h->verinfo.vertree = t;
2140 }
2141 else if (t == NULL)
2142 {
2143 /* We could not find the version for a symbol when
2144 generating a shared archive. Return an error. */
2145 (*_bfd_error_handler)
2146 (_("%B: version node not found for symbol %s"),
2147 info->output_bfd, h->root.root.string);
2148 bfd_set_error (bfd_error_bad_value);
2149 sinfo->failed = TRUE;
2150 return FALSE;
2151 }
2152
2153 if (hidden)
2154 h->hidden = 1;
2155 }
2156
2157 /* If we don't have a version for this symbol, see if we can find
2158 something. */
2159 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2160 {
2161 bfd_boolean hide;
2162
2163 h->verinfo.vertree = find_version_for_sym (sinfo->verdefs,
2164 h->root.root.string, &hide);
2165 if (h->verinfo.vertree != NULL && hide)
2166 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2167 }
2168
2169 return TRUE;
2170 }
2171 \f
2172 /* Read and swap the relocs from the section indicated by SHDR. This
2173 may be either a REL or a RELA section. The relocations are
2174 translated into RELA relocations and stored in INTERNAL_RELOCS,
2175 which should have already been allocated to contain enough space.
2176 The EXTERNAL_RELOCS are a buffer where the external form of the
2177 relocations should be stored.
2178
2179 Returns FALSE if something goes wrong. */
2180
2181 static bfd_boolean
2182 elf_link_read_relocs_from_section (bfd *abfd,
2183 asection *sec,
2184 Elf_Internal_Shdr *shdr,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs)
2187 {
2188 const struct elf_backend_data *bed;
2189 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2190 const bfd_byte *erela;
2191 const bfd_byte *erelaend;
2192 Elf_Internal_Rela *irela;
2193 Elf_Internal_Shdr *symtab_hdr;
2194 size_t nsyms;
2195
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2198 return FALSE;
2199
2200 /* Read the relocations. */
2201 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2202 return FALSE;
2203
2204 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2205 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2206
2207 bed = get_elf_backend_data (abfd);
2208
2209 /* Convert the external relocations to the internal format. */
2210 if (shdr->sh_entsize == bed->s->sizeof_rel)
2211 swap_in = bed->s->swap_reloc_in;
2212 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2213 swap_in = bed->s->swap_reloca_in;
2214 else
2215 {
2216 bfd_set_error (bfd_error_wrong_format);
2217 return FALSE;
2218 }
2219
2220 erela = external_relocs;
2221 erelaend = erela + shdr->sh_size;
2222 irela = internal_relocs;
2223 while (erela < erelaend)
2224 {
2225 bfd_vma r_symndx;
2226
2227 (*swap_in) (abfd, erela, irela);
2228 r_symndx = ELF32_R_SYM (irela->r_info);
2229 if (bed->s->arch_size == 64)
2230 r_symndx >>= 24;
2231 if (nsyms > 0)
2232 {
2233 if ((size_t) r_symndx >= nsyms)
2234 {
2235 (*_bfd_error_handler)
2236 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2237 " for offset 0x%lx in section `%A'"),
2238 abfd, sec,
2239 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2240 bfd_set_error (bfd_error_bad_value);
2241 return FALSE;
2242 }
2243 }
2244 else if (r_symndx != 0)
2245 {
2246 (*_bfd_error_handler)
2247 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2248 " when the object file has no symbol table"),
2249 abfd, sec,
2250 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2251 bfd_set_error (bfd_error_bad_value);
2252 return FALSE;
2253 }
2254 irela += bed->s->int_rels_per_ext_rel;
2255 erela += shdr->sh_entsize;
2256 }
2257
2258 return TRUE;
2259 }
2260
2261 /* Read and swap the relocs for a section O. They may have been
2262 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2263 not NULL, they are used as buffers to read into. They are known to
2264 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2265 the return value is allocated using either malloc or bfd_alloc,
2266 according to the KEEP_MEMORY argument. If O has two relocation
2267 sections (both REL and RELA relocations), then the REL_HDR
2268 relocations will appear first in INTERNAL_RELOCS, followed by the
2269 REL_HDR2 relocations. */
2270
2271 Elf_Internal_Rela *
2272 _bfd_elf_link_read_relocs (bfd *abfd,
2273 asection *o,
2274 void *external_relocs,
2275 Elf_Internal_Rela *internal_relocs,
2276 bfd_boolean keep_memory)
2277 {
2278 Elf_Internal_Shdr *rel_hdr;
2279 void *alloc1 = NULL;
2280 Elf_Internal_Rela *alloc2 = NULL;
2281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2282
2283 if (elf_section_data (o)->relocs != NULL)
2284 return elf_section_data (o)->relocs;
2285
2286 if (o->reloc_count == 0)
2287 return NULL;
2288
2289 rel_hdr = &elf_section_data (o)->rel_hdr;
2290
2291 if (internal_relocs == NULL)
2292 {
2293 bfd_size_type size;
2294
2295 size = o->reloc_count;
2296 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2297 if (keep_memory)
2298 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2299 else
2300 internal_relocs = alloc2 = bfd_malloc (size);
2301 if (internal_relocs == NULL)
2302 goto error_return;
2303 }
2304
2305 if (external_relocs == NULL)
2306 {
2307 bfd_size_type size = rel_hdr->sh_size;
2308
2309 if (elf_section_data (o)->rel_hdr2)
2310 size += elf_section_data (o)->rel_hdr2->sh_size;
2311 alloc1 = bfd_malloc (size);
2312 if (alloc1 == NULL)
2313 goto error_return;
2314 external_relocs = alloc1;
2315 }
2316
2317 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2318 external_relocs,
2319 internal_relocs))
2320 goto error_return;
2321 if (elf_section_data (o)->rel_hdr2
2322 && (!elf_link_read_relocs_from_section
2323 (abfd, o,
2324 elf_section_data (o)->rel_hdr2,
2325 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2326 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2327 * bed->s->int_rels_per_ext_rel))))
2328 goto error_return;
2329
2330 /* Cache the results for next time, if we can. */
2331 if (keep_memory)
2332 elf_section_data (o)->relocs = internal_relocs;
2333
2334 if (alloc1 != NULL)
2335 free (alloc1);
2336
2337 /* Don't free alloc2, since if it was allocated we are passing it
2338 back (under the name of internal_relocs). */
2339
2340 return internal_relocs;
2341
2342 error_return:
2343 if (alloc1 != NULL)
2344 free (alloc1);
2345 if (alloc2 != NULL)
2346 {
2347 if (keep_memory)
2348 bfd_release (abfd, alloc2);
2349 else
2350 free (alloc2);
2351 }
2352 return NULL;
2353 }
2354
2355 /* Compute the size of, and allocate space for, REL_HDR which is the
2356 section header for a section containing relocations for O. */
2357
2358 static bfd_boolean
2359 _bfd_elf_link_size_reloc_section (bfd *abfd,
2360 Elf_Internal_Shdr *rel_hdr,
2361 asection *o)
2362 {
2363 bfd_size_type reloc_count;
2364 bfd_size_type num_rel_hashes;
2365
2366 /* Figure out how many relocations there will be. */
2367 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2368 reloc_count = elf_section_data (o)->rel_count;
2369 else
2370 reloc_count = elf_section_data (o)->rel_count2;
2371
2372 num_rel_hashes = o->reloc_count;
2373 if (num_rel_hashes < reloc_count)
2374 num_rel_hashes = reloc_count;
2375
2376 /* That allows us to calculate the size of the section. */
2377 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2378
2379 /* The contents field must last into write_object_contents, so we
2380 allocate it with bfd_alloc rather than malloc. Also since we
2381 cannot be sure that the contents will actually be filled in,
2382 we zero the allocated space. */
2383 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2384 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2385 return FALSE;
2386
2387 /* We only allocate one set of hash entries, so we only do it the
2388 first time we are called. */
2389 if (elf_section_data (o)->rel_hashes == NULL
2390 && num_rel_hashes)
2391 {
2392 struct elf_link_hash_entry **p;
2393
2394 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2395 if (p == NULL)
2396 return FALSE;
2397
2398 elf_section_data (o)->rel_hashes = p;
2399 }
2400
2401 return TRUE;
2402 }
2403
2404 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2405 originated from the section given by INPUT_REL_HDR) to the
2406 OUTPUT_BFD. */
2407
2408 bfd_boolean
2409 _bfd_elf_link_output_relocs (bfd *output_bfd,
2410 asection *input_section,
2411 Elf_Internal_Shdr *input_rel_hdr,
2412 Elf_Internal_Rela *internal_relocs,
2413 struct elf_link_hash_entry **rel_hash
2414 ATTRIBUTE_UNUSED)
2415 {
2416 Elf_Internal_Rela *irela;
2417 Elf_Internal_Rela *irelaend;
2418 bfd_byte *erel;
2419 Elf_Internal_Shdr *output_rel_hdr;
2420 asection *output_section;
2421 unsigned int *rel_countp = NULL;
2422 const struct elf_backend_data *bed;
2423 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2424
2425 output_section = input_section->output_section;
2426 output_rel_hdr = NULL;
2427
2428 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2429 == input_rel_hdr->sh_entsize)
2430 {
2431 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2432 rel_countp = &elf_section_data (output_section)->rel_count;
2433 }
2434 else if (elf_section_data (output_section)->rel_hdr2
2435 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2436 == input_rel_hdr->sh_entsize))
2437 {
2438 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2439 rel_countp = &elf_section_data (output_section)->rel_count2;
2440 }
2441 else
2442 {
2443 (*_bfd_error_handler)
2444 (_("%B: relocation size mismatch in %B section %A"),
2445 output_bfd, input_section->owner, input_section);
2446 bfd_set_error (bfd_error_wrong_format);
2447 return FALSE;
2448 }
2449
2450 bed = get_elf_backend_data (output_bfd);
2451 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2452 swap_out = bed->s->swap_reloc_out;
2453 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2454 swap_out = bed->s->swap_reloca_out;
2455 else
2456 abort ();
2457
2458 erel = output_rel_hdr->contents;
2459 erel += *rel_countp * input_rel_hdr->sh_entsize;
2460 irela = internal_relocs;
2461 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2462 * bed->s->int_rels_per_ext_rel);
2463 while (irela < irelaend)
2464 {
2465 (*swap_out) (output_bfd, irela, erel);
2466 irela += bed->s->int_rels_per_ext_rel;
2467 erel += input_rel_hdr->sh_entsize;
2468 }
2469
2470 /* Bump the counter, so that we know where to add the next set of
2471 relocations. */
2472 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2473
2474 return TRUE;
2475 }
2476 \f
2477 /* Make weak undefined symbols in PIE dynamic. */
2478
2479 bfd_boolean
2480 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2481 struct elf_link_hash_entry *h)
2482 {
2483 if (info->pie
2484 && h->dynindx == -1
2485 && h->root.type == bfd_link_hash_undefweak)
2486 return bfd_elf_link_record_dynamic_symbol (info, h);
2487
2488 return TRUE;
2489 }
2490
2491 /* Fix up the flags for a symbol. This handles various cases which
2492 can only be fixed after all the input files are seen. This is
2493 currently called by both adjust_dynamic_symbol and
2494 assign_sym_version, which is unnecessary but perhaps more robust in
2495 the face of future changes. */
2496
2497 static bfd_boolean
2498 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2499 struct elf_info_failed *eif)
2500 {
2501 const struct elf_backend_data *bed;
2502
2503 /* If this symbol was mentioned in a non-ELF file, try to set
2504 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2505 permit a non-ELF file to correctly refer to a symbol defined in
2506 an ELF dynamic object. */
2507 if (h->non_elf)
2508 {
2509 while (h->root.type == bfd_link_hash_indirect)
2510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2511
2512 if (h->root.type != bfd_link_hash_defined
2513 && h->root.type != bfd_link_hash_defweak)
2514 {
2515 h->ref_regular = 1;
2516 h->ref_regular_nonweak = 1;
2517 }
2518 else
2519 {
2520 if (h->root.u.def.section->owner != NULL
2521 && (bfd_get_flavour (h->root.u.def.section->owner)
2522 == bfd_target_elf_flavour))
2523 {
2524 h->ref_regular = 1;
2525 h->ref_regular_nonweak = 1;
2526 }
2527 else
2528 h->def_regular = 1;
2529 }
2530
2531 if (h->dynindx == -1
2532 && (h->def_dynamic
2533 || h->ref_dynamic))
2534 {
2535 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2536 {
2537 eif->failed = TRUE;
2538 return FALSE;
2539 }
2540 }
2541 }
2542 else
2543 {
2544 /* Unfortunately, NON_ELF is only correct if the symbol
2545 was first seen in a non-ELF file. Fortunately, if the symbol
2546 was first seen in an ELF file, we're probably OK unless the
2547 symbol was defined in a non-ELF file. Catch that case here.
2548 FIXME: We're still in trouble if the symbol was first seen in
2549 a dynamic object, and then later in a non-ELF regular object. */
2550 if ((h->root.type == bfd_link_hash_defined
2551 || h->root.type == bfd_link_hash_defweak)
2552 && !h->def_regular
2553 && (h->root.u.def.section->owner != NULL
2554 ? (bfd_get_flavour (h->root.u.def.section->owner)
2555 != bfd_target_elf_flavour)
2556 : (bfd_is_abs_section (h->root.u.def.section)
2557 && !h->def_dynamic)))
2558 h->def_regular = 1;
2559 }
2560
2561 /* Backend specific symbol fixup. */
2562 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2563 if (bed->elf_backend_fixup_symbol
2564 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2565 return FALSE;
2566
2567 /* If this is a final link, and the symbol was defined as a common
2568 symbol in a regular object file, and there was no definition in
2569 any dynamic object, then the linker will have allocated space for
2570 the symbol in a common section but the DEF_REGULAR
2571 flag will not have been set. */
2572 if (h->root.type == bfd_link_hash_defined
2573 && !h->def_regular
2574 && h->ref_regular
2575 && !h->def_dynamic
2576 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2577 h->def_regular = 1;
2578
2579 /* If -Bsymbolic was used (which means to bind references to global
2580 symbols to the definition within the shared object), and this
2581 symbol was defined in a regular object, then it actually doesn't
2582 need a PLT entry. Likewise, if the symbol has non-default
2583 visibility. If the symbol has hidden or internal visibility, we
2584 will force it local. */
2585 if (h->needs_plt
2586 && eif->info->shared
2587 && is_elf_hash_table (eif->info->hash)
2588 && (SYMBOLIC_BIND (eif->info, h)
2589 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2590 && h->def_regular)
2591 {
2592 bfd_boolean force_local;
2593
2594 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2595 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2596 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2597 }
2598
2599 /* If a weak undefined symbol has non-default visibility, we also
2600 hide it from the dynamic linker. */
2601 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2602 && h->root.type == bfd_link_hash_undefweak)
2603 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2604
2605 /* If this is a weak defined symbol in a dynamic object, and we know
2606 the real definition in the dynamic object, copy interesting flags
2607 over to the real definition. */
2608 if (h->u.weakdef != NULL)
2609 {
2610 struct elf_link_hash_entry *weakdef;
2611
2612 weakdef = h->u.weakdef;
2613 if (h->root.type == bfd_link_hash_indirect)
2614 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2615
2616 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2617 || h->root.type == bfd_link_hash_defweak);
2618 BFD_ASSERT (weakdef->def_dynamic);
2619
2620 /* If the real definition is defined by a regular object file,
2621 don't do anything special. See the longer description in
2622 _bfd_elf_adjust_dynamic_symbol, below. */
2623 if (weakdef->def_regular)
2624 h->u.weakdef = NULL;
2625 else
2626 {
2627 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2628 || weakdef->root.type == bfd_link_hash_defweak);
2629 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2630 }
2631 }
2632
2633 return TRUE;
2634 }
2635
2636 /* Make the backend pick a good value for a dynamic symbol. This is
2637 called via elf_link_hash_traverse, and also calls itself
2638 recursively. */
2639
2640 static bfd_boolean
2641 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2642 {
2643 struct elf_info_failed *eif = data;
2644 bfd *dynobj;
2645 const struct elf_backend_data *bed;
2646
2647 if (! is_elf_hash_table (eif->info->hash))
2648 return FALSE;
2649
2650 if (h->root.type == bfd_link_hash_warning)
2651 {
2652 h->got = elf_hash_table (eif->info)->init_got_offset;
2653 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2654
2655 /* When warning symbols are created, they **replace** the "real"
2656 entry in the hash table, thus we never get to see the real
2657 symbol in a hash traversal. So look at it now. */
2658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2659 }
2660
2661 /* Ignore indirect symbols. These are added by the versioning code. */
2662 if (h->root.type == bfd_link_hash_indirect)
2663 return TRUE;
2664
2665 /* Fix the symbol flags. */
2666 if (! _bfd_elf_fix_symbol_flags (h, eif))
2667 return FALSE;
2668
2669 /* If this symbol does not require a PLT entry, and it is not
2670 defined by a dynamic object, or is not referenced by a regular
2671 object, ignore it. We do have to handle a weak defined symbol,
2672 even if no regular object refers to it, if we decided to add it
2673 to the dynamic symbol table. FIXME: Do we normally need to worry
2674 about symbols which are defined by one dynamic object and
2675 referenced by another one? */
2676 if (!h->needs_plt
2677 && (h->def_regular
2678 || !h->def_dynamic
2679 || (!h->ref_regular
2680 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2681 {
2682 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2683 return TRUE;
2684 }
2685
2686 /* If we've already adjusted this symbol, don't do it again. This
2687 can happen via a recursive call. */
2688 if (h->dynamic_adjusted)
2689 return TRUE;
2690
2691 /* Don't look at this symbol again. Note that we must set this
2692 after checking the above conditions, because we may look at a
2693 symbol once, decide not to do anything, and then get called
2694 recursively later after REF_REGULAR is set below. */
2695 h->dynamic_adjusted = 1;
2696
2697 /* If this is a weak definition, and we know a real definition, and
2698 the real symbol is not itself defined by a regular object file,
2699 then get a good value for the real definition. We handle the
2700 real symbol first, for the convenience of the backend routine.
2701
2702 Note that there is a confusing case here. If the real definition
2703 is defined by a regular object file, we don't get the real symbol
2704 from the dynamic object, but we do get the weak symbol. If the
2705 processor backend uses a COPY reloc, then if some routine in the
2706 dynamic object changes the real symbol, we will not see that
2707 change in the corresponding weak symbol. This is the way other
2708 ELF linkers work as well, and seems to be a result of the shared
2709 library model.
2710
2711 I will clarify this issue. Most SVR4 shared libraries define the
2712 variable _timezone and define timezone as a weak synonym. The
2713 tzset call changes _timezone. If you write
2714 extern int timezone;
2715 int _timezone = 5;
2716 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2717 you might expect that, since timezone is a synonym for _timezone,
2718 the same number will print both times. However, if the processor
2719 backend uses a COPY reloc, then actually timezone will be copied
2720 into your process image, and, since you define _timezone
2721 yourself, _timezone will not. Thus timezone and _timezone will
2722 wind up at different memory locations. The tzset call will set
2723 _timezone, leaving timezone unchanged. */
2724
2725 if (h->u.weakdef != NULL)
2726 {
2727 /* If we get to this point, we know there is an implicit
2728 reference by a regular object file via the weak symbol H.
2729 FIXME: Is this really true? What if the traversal finds
2730 H->U.WEAKDEF before it finds H? */
2731 h->u.weakdef->ref_regular = 1;
2732
2733 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2734 return FALSE;
2735 }
2736
2737 /* If a symbol has no type and no size and does not require a PLT
2738 entry, then we are probably about to do the wrong thing here: we
2739 are probably going to create a COPY reloc for an empty object.
2740 This case can arise when a shared object is built with assembly
2741 code, and the assembly code fails to set the symbol type. */
2742 if (h->size == 0
2743 && h->type == STT_NOTYPE
2744 && !h->needs_plt)
2745 (*_bfd_error_handler)
2746 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2747 h->root.root.string);
2748
2749 dynobj = elf_hash_table (eif->info)->dynobj;
2750 bed = get_elf_backend_data (dynobj);
2751
2752 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2753 {
2754 eif->failed = TRUE;
2755 return FALSE;
2756 }
2757
2758 return TRUE;
2759 }
2760
2761 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2762 DYNBSS. */
2763
2764 bfd_boolean
2765 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2766 asection *dynbss)
2767 {
2768 unsigned int power_of_two;
2769 bfd_vma mask;
2770 asection *sec = h->root.u.def.section;
2771
2772 /* The section aligment of definition is the maximum alignment
2773 requirement of symbols defined in the section. Since we don't
2774 know the symbol alignment requirement, we start with the
2775 maximum alignment and check low bits of the symbol address
2776 for the minimum alignment. */
2777 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2778 mask = ((bfd_vma) 1 << power_of_two) - 1;
2779 while ((h->root.u.def.value & mask) != 0)
2780 {
2781 mask >>= 1;
2782 --power_of_two;
2783 }
2784
2785 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2786 dynbss))
2787 {
2788 /* Adjust the section alignment if needed. */
2789 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2790 power_of_two))
2791 return FALSE;
2792 }
2793
2794 /* We make sure that the symbol will be aligned properly. */
2795 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2796
2797 /* Define the symbol as being at this point in DYNBSS. */
2798 h->root.u.def.section = dynbss;
2799 h->root.u.def.value = dynbss->size;
2800
2801 /* Increment the size of DYNBSS to make room for the symbol. */
2802 dynbss->size += h->size;
2803
2804 return TRUE;
2805 }
2806
2807 /* Adjust all external symbols pointing into SEC_MERGE sections
2808 to reflect the object merging within the sections. */
2809
2810 static bfd_boolean
2811 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2812 {
2813 asection *sec;
2814
2815 if (h->root.type == bfd_link_hash_warning)
2816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2817
2818 if ((h->root.type == bfd_link_hash_defined
2819 || h->root.type == bfd_link_hash_defweak)
2820 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2821 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2822 {
2823 bfd *output_bfd = data;
2824
2825 h->root.u.def.value =
2826 _bfd_merged_section_offset (output_bfd,
2827 &h->root.u.def.section,
2828 elf_section_data (sec)->sec_info,
2829 h->root.u.def.value);
2830 }
2831
2832 return TRUE;
2833 }
2834
2835 /* Returns false if the symbol referred to by H should be considered
2836 to resolve local to the current module, and true if it should be
2837 considered to bind dynamically. */
2838
2839 bfd_boolean
2840 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2841 struct bfd_link_info *info,
2842 bfd_boolean ignore_protected)
2843 {
2844 bfd_boolean binding_stays_local_p;
2845 const struct elf_backend_data *bed;
2846 struct elf_link_hash_table *hash_table;
2847
2848 if (h == NULL)
2849 return FALSE;
2850
2851 while (h->root.type == bfd_link_hash_indirect
2852 || h->root.type == bfd_link_hash_warning)
2853 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2854
2855 /* If it was forced local, then clearly it's not dynamic. */
2856 if (h->dynindx == -1)
2857 return FALSE;
2858 if (h->forced_local)
2859 return FALSE;
2860
2861 /* Identify the cases where name binding rules say that a
2862 visible symbol resolves locally. */
2863 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2864
2865 switch (ELF_ST_VISIBILITY (h->other))
2866 {
2867 case STV_INTERNAL:
2868 case STV_HIDDEN:
2869 return FALSE;
2870
2871 case STV_PROTECTED:
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return FALSE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* Proper resolution for function pointer equality may require
2879 that these symbols perhaps be resolved dynamically, even though
2880 we should be resolving them to the current module. */
2881 if (!ignore_protected || !bed->is_function_type (h->type))
2882 binding_stays_local_p = TRUE;
2883 break;
2884
2885 default:
2886 break;
2887 }
2888
2889 /* If it isn't defined locally, then clearly it's dynamic. */
2890 if (!h->def_regular)
2891 return TRUE;
2892
2893 /* Otherwise, the symbol is dynamic if binding rules don't tell
2894 us that it remains local. */
2895 return !binding_stays_local_p;
2896 }
2897
2898 /* Return true if the symbol referred to by H should be considered
2899 to resolve local to the current module, and false otherwise. Differs
2900 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2901 undefined symbols and weak symbols. */
2902
2903 bfd_boolean
2904 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2905 struct bfd_link_info *info,
2906 bfd_boolean local_protected)
2907 {
2908 const struct elf_backend_data *bed;
2909 struct elf_link_hash_table *hash_table;
2910
2911 /* If it's a local sym, of course we resolve locally. */
2912 if (h == NULL)
2913 return TRUE;
2914
2915 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2916 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2917 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2918 return TRUE;
2919
2920 /* Common symbols that become definitions don't get the DEF_REGULAR
2921 flag set, so test it first, and don't bail out. */
2922 if (ELF_COMMON_DEF_P (h))
2923 /* Do nothing. */;
2924 /* If we don't have a definition in a regular file, then we can't
2925 resolve locally. The sym is either undefined or dynamic. */
2926 else if (!h->def_regular)
2927 return FALSE;
2928
2929 /* Forced local symbols resolve locally. */
2930 if (h->forced_local)
2931 return TRUE;
2932
2933 /* As do non-dynamic symbols. */
2934 if (h->dynindx == -1)
2935 return TRUE;
2936
2937 /* At this point, we know the symbol is defined and dynamic. In an
2938 executable it must resolve locally, likewise when building symbolic
2939 shared libraries. */
2940 if (info->executable || SYMBOLIC_BIND (info, h))
2941 return TRUE;
2942
2943 /* Now deal with defined dynamic symbols in shared libraries. Ones
2944 with default visibility might not resolve locally. */
2945 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2946 return FALSE;
2947
2948 hash_table = elf_hash_table (info);
2949 if (!is_elf_hash_table (hash_table))
2950 return TRUE;
2951
2952 bed = get_elf_backend_data (hash_table->dynobj);
2953
2954 /* STV_PROTECTED non-function symbols are local. */
2955 if (!bed->is_function_type (h->type))
2956 return TRUE;
2957
2958 /* Function pointer equality tests may require that STV_PROTECTED
2959 symbols be treated as dynamic symbols, even when we know that the
2960 dynamic linker will resolve them locally. */
2961 return local_protected;
2962 }
2963
2964 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2965 aligned. Returns the first TLS output section. */
2966
2967 struct bfd_section *
2968 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2969 {
2970 struct bfd_section *sec, *tls;
2971 unsigned int align = 0;
2972
2973 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2974 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2975 break;
2976 tls = sec;
2977
2978 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2979 if (sec->alignment_power > align)
2980 align = sec->alignment_power;
2981
2982 elf_hash_table (info)->tls_sec = tls;
2983
2984 /* Ensure the alignment of the first section is the largest alignment,
2985 so that the tls segment starts aligned. */
2986 if (tls != NULL)
2987 tls->alignment_power = align;
2988
2989 return tls;
2990 }
2991
2992 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2993 static bfd_boolean
2994 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2995 Elf_Internal_Sym *sym)
2996 {
2997 const struct elf_backend_data *bed;
2998
2999 /* Local symbols do not count, but target specific ones might. */
3000 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3001 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3002 return FALSE;
3003
3004 bed = get_elf_backend_data (abfd);
3005 /* Function symbols do not count. */
3006 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3007 return FALSE;
3008
3009 /* If the section is undefined, then so is the symbol. */
3010 if (sym->st_shndx == SHN_UNDEF)
3011 return FALSE;
3012
3013 /* If the symbol is defined in the common section, then
3014 it is a common definition and so does not count. */
3015 if (bed->common_definition (sym))
3016 return FALSE;
3017
3018 /* If the symbol is in a target specific section then we
3019 must rely upon the backend to tell us what it is. */
3020 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3021 /* FIXME - this function is not coded yet:
3022
3023 return _bfd_is_global_symbol_definition (abfd, sym);
3024
3025 Instead for now assume that the definition is not global,
3026 Even if this is wrong, at least the linker will behave
3027 in the same way that it used to do. */
3028 return FALSE;
3029
3030 return TRUE;
3031 }
3032
3033 /* Search the symbol table of the archive element of the archive ABFD
3034 whose archive map contains a mention of SYMDEF, and determine if
3035 the symbol is defined in this element. */
3036 static bfd_boolean
3037 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3038 {
3039 Elf_Internal_Shdr * hdr;
3040 bfd_size_type symcount;
3041 bfd_size_type extsymcount;
3042 bfd_size_type extsymoff;
3043 Elf_Internal_Sym *isymbuf;
3044 Elf_Internal_Sym *isym;
3045 Elf_Internal_Sym *isymend;
3046 bfd_boolean result;
3047
3048 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3049 if (abfd == NULL)
3050 return FALSE;
3051
3052 if (! bfd_check_format (abfd, bfd_object))
3053 return FALSE;
3054
3055 /* If we have already included the element containing this symbol in the
3056 link then we do not need to include it again. Just claim that any symbol
3057 it contains is not a definition, so that our caller will not decide to
3058 (re)include this element. */
3059 if (abfd->archive_pass)
3060 return FALSE;
3061
3062 /* Select the appropriate symbol table. */
3063 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3064 hdr = &elf_tdata (abfd)->symtab_hdr;
3065 else
3066 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3067
3068 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3069
3070 /* The sh_info field of the symtab header tells us where the
3071 external symbols start. We don't care about the local symbols. */
3072 if (elf_bad_symtab (abfd))
3073 {
3074 extsymcount = symcount;
3075 extsymoff = 0;
3076 }
3077 else
3078 {
3079 extsymcount = symcount - hdr->sh_info;
3080 extsymoff = hdr->sh_info;
3081 }
3082
3083 if (extsymcount == 0)
3084 return FALSE;
3085
3086 /* Read in the symbol table. */
3087 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3088 NULL, NULL, NULL);
3089 if (isymbuf == NULL)
3090 return FALSE;
3091
3092 /* Scan the symbol table looking for SYMDEF. */
3093 result = FALSE;
3094 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3095 {
3096 const char *name;
3097
3098 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3099 isym->st_name);
3100 if (name == NULL)
3101 break;
3102
3103 if (strcmp (name, symdef->name) == 0)
3104 {
3105 result = is_global_data_symbol_definition (abfd, isym);
3106 break;
3107 }
3108 }
3109
3110 free (isymbuf);
3111
3112 return result;
3113 }
3114 \f
3115 /* Add an entry to the .dynamic table. */
3116
3117 bfd_boolean
3118 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3119 bfd_vma tag,
3120 bfd_vma val)
3121 {
3122 struct elf_link_hash_table *hash_table;
3123 const struct elf_backend_data *bed;
3124 asection *s;
3125 bfd_size_type newsize;
3126 bfd_byte *newcontents;
3127 Elf_Internal_Dyn dyn;
3128
3129 hash_table = elf_hash_table (info);
3130 if (! is_elf_hash_table (hash_table))
3131 return FALSE;
3132
3133 bed = get_elf_backend_data (hash_table->dynobj);
3134 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3135 BFD_ASSERT (s != NULL);
3136
3137 newsize = s->size + bed->s->sizeof_dyn;
3138 newcontents = bfd_realloc (s->contents, newsize);
3139 if (newcontents == NULL)
3140 return FALSE;
3141
3142 dyn.d_tag = tag;
3143 dyn.d_un.d_val = val;
3144 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3145
3146 s->size = newsize;
3147 s->contents = newcontents;
3148
3149 return TRUE;
3150 }
3151
3152 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3153 otherwise just check whether one already exists. Returns -1 on error,
3154 1 if a DT_NEEDED tag already exists, and 0 on success. */
3155
3156 static int
3157 elf_add_dt_needed_tag (bfd *abfd,
3158 struct bfd_link_info *info,
3159 const char *soname,
3160 bfd_boolean do_it)
3161 {
3162 struct elf_link_hash_table *hash_table;
3163 bfd_size_type oldsize;
3164 bfd_size_type strindex;
3165
3166 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3167 return -1;
3168
3169 hash_table = elf_hash_table (info);
3170 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3171 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3172 if (strindex == (bfd_size_type) -1)
3173 return -1;
3174
3175 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3176 {
3177 asection *sdyn;
3178 const struct elf_backend_data *bed;
3179 bfd_byte *extdyn;
3180
3181 bed = get_elf_backend_data (hash_table->dynobj);
3182 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3183 if (sdyn != NULL)
3184 for (extdyn = sdyn->contents;
3185 extdyn < sdyn->contents + sdyn->size;
3186 extdyn += bed->s->sizeof_dyn)
3187 {
3188 Elf_Internal_Dyn dyn;
3189
3190 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3191 if (dyn.d_tag == DT_NEEDED
3192 && dyn.d_un.d_val == strindex)
3193 {
3194 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3195 return 1;
3196 }
3197 }
3198 }
3199
3200 if (do_it)
3201 {
3202 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3203 return -1;
3204
3205 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3206 return -1;
3207 }
3208 else
3209 /* We were just checking for existence of the tag. */
3210 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3211
3212 return 0;
3213 }
3214
3215 static bfd_boolean
3216 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3217 {
3218 for (; needed != NULL; needed = needed->next)
3219 if (strcmp (soname, needed->name) == 0)
3220 return TRUE;
3221
3222 return FALSE;
3223 }
3224
3225 /* Sort symbol by value and section. */
3226 static int
3227 elf_sort_symbol (const void *arg1, const void *arg2)
3228 {
3229 const struct elf_link_hash_entry *h1;
3230 const struct elf_link_hash_entry *h2;
3231 bfd_signed_vma vdiff;
3232
3233 h1 = *(const struct elf_link_hash_entry **) arg1;
3234 h2 = *(const struct elf_link_hash_entry **) arg2;
3235 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3236 if (vdiff != 0)
3237 return vdiff > 0 ? 1 : -1;
3238 else
3239 {
3240 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3241 if (sdiff != 0)
3242 return sdiff > 0 ? 1 : -1;
3243 }
3244 return 0;
3245 }
3246
3247 /* This function is used to adjust offsets into .dynstr for
3248 dynamic symbols. This is called via elf_link_hash_traverse. */
3249
3250 static bfd_boolean
3251 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3252 {
3253 struct elf_strtab_hash *dynstr = data;
3254
3255 if (h->root.type == bfd_link_hash_warning)
3256 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3257
3258 if (h->dynindx != -1)
3259 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3260 return TRUE;
3261 }
3262
3263 /* Assign string offsets in .dynstr, update all structures referencing
3264 them. */
3265
3266 static bfd_boolean
3267 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3268 {
3269 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3270 struct elf_link_local_dynamic_entry *entry;
3271 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3272 bfd *dynobj = hash_table->dynobj;
3273 asection *sdyn;
3274 bfd_size_type size;
3275 const struct elf_backend_data *bed;
3276 bfd_byte *extdyn;
3277
3278 _bfd_elf_strtab_finalize (dynstr);
3279 size = _bfd_elf_strtab_size (dynstr);
3280
3281 bed = get_elf_backend_data (dynobj);
3282 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3283 BFD_ASSERT (sdyn != NULL);
3284
3285 /* Update all .dynamic entries referencing .dynstr strings. */
3286 for (extdyn = sdyn->contents;
3287 extdyn < sdyn->contents + sdyn->size;
3288 extdyn += bed->s->sizeof_dyn)
3289 {
3290 Elf_Internal_Dyn dyn;
3291
3292 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3293 switch (dyn.d_tag)
3294 {
3295 case DT_STRSZ:
3296 dyn.d_un.d_val = size;
3297 break;
3298 case DT_NEEDED:
3299 case DT_SONAME:
3300 case DT_RPATH:
3301 case DT_RUNPATH:
3302 case DT_FILTER:
3303 case DT_AUXILIARY:
3304 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3305 break;
3306 default:
3307 continue;
3308 }
3309 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3310 }
3311
3312 /* Now update local dynamic symbols. */
3313 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3314 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3315 entry->isym.st_name);
3316
3317 /* And the rest of dynamic symbols. */
3318 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3319
3320 /* Adjust version definitions. */
3321 if (elf_tdata (output_bfd)->cverdefs)
3322 {
3323 asection *s;
3324 bfd_byte *p;
3325 bfd_size_type i;
3326 Elf_Internal_Verdef def;
3327 Elf_Internal_Verdaux defaux;
3328
3329 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3330 p = s->contents;
3331 do
3332 {
3333 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3334 &def);
3335 p += sizeof (Elf_External_Verdef);
3336 if (def.vd_aux != sizeof (Elf_External_Verdef))
3337 continue;
3338 for (i = 0; i < def.vd_cnt; ++i)
3339 {
3340 _bfd_elf_swap_verdaux_in (output_bfd,
3341 (Elf_External_Verdaux *) p, &defaux);
3342 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3343 defaux.vda_name);
3344 _bfd_elf_swap_verdaux_out (output_bfd,
3345 &defaux, (Elf_External_Verdaux *) p);
3346 p += sizeof (Elf_External_Verdaux);
3347 }
3348 }
3349 while (def.vd_next);
3350 }
3351
3352 /* Adjust version references. */
3353 if (elf_tdata (output_bfd)->verref)
3354 {
3355 asection *s;
3356 bfd_byte *p;
3357 bfd_size_type i;
3358 Elf_Internal_Verneed need;
3359 Elf_Internal_Vernaux needaux;
3360
3361 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3362 p = s->contents;
3363 do
3364 {
3365 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3366 &need);
3367 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3368 _bfd_elf_swap_verneed_out (output_bfd, &need,
3369 (Elf_External_Verneed *) p);
3370 p += sizeof (Elf_External_Verneed);
3371 for (i = 0; i < need.vn_cnt; ++i)
3372 {
3373 _bfd_elf_swap_vernaux_in (output_bfd,
3374 (Elf_External_Vernaux *) p, &needaux);
3375 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3376 needaux.vna_name);
3377 _bfd_elf_swap_vernaux_out (output_bfd,
3378 &needaux,
3379 (Elf_External_Vernaux *) p);
3380 p += sizeof (Elf_External_Vernaux);
3381 }
3382 }
3383 while (need.vn_next);
3384 }
3385
3386 return TRUE;
3387 }
3388 \f
3389 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3390 The default is to only match when the INPUT and OUTPUT are exactly
3391 the same target. */
3392
3393 bfd_boolean
3394 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3395 const bfd_target *output)
3396 {
3397 return input == output;
3398 }
3399
3400 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3401 This version is used when different targets for the same architecture
3402 are virtually identical. */
3403
3404 bfd_boolean
3405 _bfd_elf_relocs_compatible (const bfd_target *input,
3406 const bfd_target *output)
3407 {
3408 const struct elf_backend_data *obed, *ibed;
3409
3410 if (input == output)
3411 return TRUE;
3412
3413 ibed = xvec_get_elf_backend_data (input);
3414 obed = xvec_get_elf_backend_data (output);
3415
3416 if (ibed->arch != obed->arch)
3417 return FALSE;
3418
3419 /* If both backends are using this function, deem them compatible. */
3420 return ibed->relocs_compatible == obed->relocs_compatible;
3421 }
3422
3423 /* Add symbols from an ELF object file to the linker hash table. */
3424
3425 static bfd_boolean
3426 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3427 {
3428 Elf_Internal_Shdr *hdr;
3429 bfd_size_type symcount;
3430 bfd_size_type extsymcount;
3431 bfd_size_type extsymoff;
3432 struct elf_link_hash_entry **sym_hash;
3433 bfd_boolean dynamic;
3434 Elf_External_Versym *extversym = NULL;
3435 Elf_External_Versym *ever;
3436 struct elf_link_hash_entry *weaks;
3437 struct elf_link_hash_entry **nondeflt_vers = NULL;
3438 bfd_size_type nondeflt_vers_cnt = 0;
3439 Elf_Internal_Sym *isymbuf = NULL;
3440 Elf_Internal_Sym *isym;
3441 Elf_Internal_Sym *isymend;
3442 const struct elf_backend_data *bed;
3443 bfd_boolean add_needed;
3444 struct elf_link_hash_table *htab;
3445 bfd_size_type amt;
3446 void *alloc_mark = NULL;
3447 struct bfd_hash_entry **old_table = NULL;
3448 unsigned int old_size = 0;
3449 unsigned int old_count = 0;
3450 void *old_tab = NULL;
3451 void *old_hash;
3452 void *old_ent;
3453 struct bfd_link_hash_entry *old_undefs = NULL;
3454 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3455 long old_dynsymcount = 0;
3456 size_t tabsize = 0;
3457 size_t hashsize = 0;
3458
3459 htab = elf_hash_table (info);
3460 bed = get_elf_backend_data (abfd);
3461
3462 if ((abfd->flags & DYNAMIC) == 0)
3463 dynamic = FALSE;
3464 else
3465 {
3466 dynamic = TRUE;
3467
3468 /* You can't use -r against a dynamic object. Also, there's no
3469 hope of using a dynamic object which does not exactly match
3470 the format of the output file. */
3471 if (info->relocatable
3472 || !is_elf_hash_table (htab)
3473 || info->output_bfd->xvec != abfd->xvec)
3474 {
3475 if (info->relocatable)
3476 bfd_set_error (bfd_error_invalid_operation);
3477 else
3478 bfd_set_error (bfd_error_wrong_format);
3479 goto error_return;
3480 }
3481 }
3482
3483 /* As a GNU extension, any input sections which are named
3484 .gnu.warning.SYMBOL are treated as warning symbols for the given
3485 symbol. This differs from .gnu.warning sections, which generate
3486 warnings when they are included in an output file. */
3487 if (info->executable)
3488 {
3489 asection *s;
3490
3491 for (s = abfd->sections; s != NULL; s = s->next)
3492 {
3493 const char *name;
3494
3495 name = bfd_get_section_name (abfd, s);
3496 if (CONST_STRNEQ (name, ".gnu.warning."))
3497 {
3498 char *msg;
3499 bfd_size_type sz;
3500
3501 name += sizeof ".gnu.warning." - 1;
3502
3503 /* If this is a shared object, then look up the symbol
3504 in the hash table. If it is there, and it is already
3505 been defined, then we will not be using the entry
3506 from this shared object, so we don't need to warn.
3507 FIXME: If we see the definition in a regular object
3508 later on, we will warn, but we shouldn't. The only
3509 fix is to keep track of what warnings we are supposed
3510 to emit, and then handle them all at the end of the
3511 link. */
3512 if (dynamic)
3513 {
3514 struct elf_link_hash_entry *h;
3515
3516 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3517
3518 /* FIXME: What about bfd_link_hash_common? */
3519 if (h != NULL
3520 && (h->root.type == bfd_link_hash_defined
3521 || h->root.type == bfd_link_hash_defweak))
3522 {
3523 /* We don't want to issue this warning. Clobber
3524 the section size so that the warning does not
3525 get copied into the output file. */
3526 s->size = 0;
3527 continue;
3528 }
3529 }
3530
3531 sz = s->size;
3532 msg = bfd_alloc (abfd, sz + 1);
3533 if (msg == NULL)
3534 goto error_return;
3535
3536 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3537 goto error_return;
3538
3539 msg[sz] = '\0';
3540
3541 if (! (_bfd_generic_link_add_one_symbol
3542 (info, abfd, name, BSF_WARNING, s, 0, msg,
3543 FALSE, bed->collect, NULL)))
3544 goto error_return;
3545
3546 if (! info->relocatable)
3547 {
3548 /* Clobber the section size so that the warning does
3549 not get copied into the output file. */
3550 s->size = 0;
3551
3552 /* Also set SEC_EXCLUDE, so that symbols defined in
3553 the warning section don't get copied to the output. */
3554 s->flags |= SEC_EXCLUDE;
3555 }
3556 }
3557 }
3558 }
3559
3560 add_needed = TRUE;
3561 if (! dynamic)
3562 {
3563 /* If we are creating a shared library, create all the dynamic
3564 sections immediately. We need to attach them to something,
3565 so we attach them to this BFD, provided it is the right
3566 format. FIXME: If there are no input BFD's of the same
3567 format as the output, we can't make a shared library. */
3568 if (info->shared
3569 && is_elf_hash_table (htab)
3570 && info->output_bfd->xvec == abfd->xvec
3571 && !htab->dynamic_sections_created)
3572 {
3573 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3574 goto error_return;
3575 }
3576 }
3577 else if (!is_elf_hash_table (htab))
3578 goto error_return;
3579 else
3580 {
3581 asection *s;
3582 const char *soname = NULL;
3583 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3584 int ret;
3585
3586 /* ld --just-symbols and dynamic objects don't mix very well.
3587 ld shouldn't allow it. */
3588 if ((s = abfd->sections) != NULL
3589 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3590 abort ();
3591
3592 /* If this dynamic lib was specified on the command line with
3593 --as-needed in effect, then we don't want to add a DT_NEEDED
3594 tag unless the lib is actually used. Similary for libs brought
3595 in by another lib's DT_NEEDED. When --no-add-needed is used
3596 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3597 any dynamic library in DT_NEEDED tags in the dynamic lib at
3598 all. */
3599 add_needed = (elf_dyn_lib_class (abfd)
3600 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3601 | DYN_NO_NEEDED)) == 0;
3602
3603 s = bfd_get_section_by_name (abfd, ".dynamic");
3604 if (s != NULL)
3605 {
3606 bfd_byte *dynbuf;
3607 bfd_byte *extdyn;
3608 unsigned int elfsec;
3609 unsigned long shlink;
3610
3611 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3612 goto error_free_dyn;
3613
3614 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3615 if (elfsec == SHN_BAD)
3616 goto error_free_dyn;
3617 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3618
3619 for (extdyn = dynbuf;
3620 extdyn < dynbuf + s->size;
3621 extdyn += bed->s->sizeof_dyn)
3622 {
3623 Elf_Internal_Dyn dyn;
3624
3625 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3626 if (dyn.d_tag == DT_SONAME)
3627 {
3628 unsigned int tagv = dyn.d_un.d_val;
3629 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3630 if (soname == NULL)
3631 goto error_free_dyn;
3632 }
3633 if (dyn.d_tag == DT_NEEDED)
3634 {
3635 struct bfd_link_needed_list *n, **pn;
3636 char *fnm, *anm;
3637 unsigned int tagv = dyn.d_un.d_val;
3638
3639 amt = sizeof (struct bfd_link_needed_list);
3640 n = bfd_alloc (abfd, amt);
3641 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3642 if (n == NULL || fnm == NULL)
3643 goto error_free_dyn;
3644 amt = strlen (fnm) + 1;
3645 anm = bfd_alloc (abfd, amt);
3646 if (anm == NULL)
3647 goto error_free_dyn;
3648 memcpy (anm, fnm, amt);
3649 n->name = anm;
3650 n->by = abfd;
3651 n->next = NULL;
3652 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3653 ;
3654 *pn = n;
3655 }
3656 if (dyn.d_tag == DT_RUNPATH)
3657 {
3658 struct bfd_link_needed_list *n, **pn;
3659 char *fnm, *anm;
3660 unsigned int tagv = dyn.d_un.d_val;
3661
3662 amt = sizeof (struct bfd_link_needed_list);
3663 n = bfd_alloc (abfd, amt);
3664 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3665 if (n == NULL || fnm == NULL)
3666 goto error_free_dyn;
3667 amt = strlen (fnm) + 1;
3668 anm = bfd_alloc (abfd, amt);
3669 if (anm == NULL)
3670 goto error_free_dyn;
3671 memcpy (anm, fnm, amt);
3672 n->name = anm;
3673 n->by = abfd;
3674 n->next = NULL;
3675 for (pn = & runpath;
3676 *pn != NULL;
3677 pn = &(*pn)->next)
3678 ;
3679 *pn = n;
3680 }
3681 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3682 if (!runpath && dyn.d_tag == DT_RPATH)
3683 {
3684 struct bfd_link_needed_list *n, **pn;
3685 char *fnm, *anm;
3686 unsigned int tagv = dyn.d_un.d_val;
3687
3688 amt = sizeof (struct bfd_link_needed_list);
3689 n = bfd_alloc (abfd, amt);
3690 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3691 if (n == NULL || fnm == NULL)
3692 goto error_free_dyn;
3693 amt = strlen (fnm) + 1;
3694 anm = bfd_alloc (abfd, amt);
3695 if (anm == NULL)
3696 {
3697 error_free_dyn:
3698 free (dynbuf);
3699 goto error_return;
3700 }
3701 memcpy (anm, fnm, amt);
3702 n->name = anm;
3703 n->by = abfd;
3704 n->next = NULL;
3705 for (pn = & rpath;
3706 *pn != NULL;
3707 pn = &(*pn)->next)
3708 ;
3709 *pn = n;
3710 }
3711 }
3712
3713 free (dynbuf);
3714 }
3715
3716 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3717 frees all more recently bfd_alloc'd blocks as well. */
3718 if (runpath)
3719 rpath = runpath;
3720
3721 if (rpath)
3722 {
3723 struct bfd_link_needed_list **pn;
3724 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3725 ;
3726 *pn = rpath;
3727 }
3728
3729 /* We do not want to include any of the sections in a dynamic
3730 object in the output file. We hack by simply clobbering the
3731 list of sections in the BFD. This could be handled more
3732 cleanly by, say, a new section flag; the existing
3733 SEC_NEVER_LOAD flag is not the one we want, because that one
3734 still implies that the section takes up space in the output
3735 file. */
3736 bfd_section_list_clear (abfd);
3737
3738 /* Find the name to use in a DT_NEEDED entry that refers to this
3739 object. If the object has a DT_SONAME entry, we use it.
3740 Otherwise, if the generic linker stuck something in
3741 elf_dt_name, we use that. Otherwise, we just use the file
3742 name. */
3743 if (soname == NULL || *soname == '\0')
3744 {
3745 soname = elf_dt_name (abfd);
3746 if (soname == NULL || *soname == '\0')
3747 soname = bfd_get_filename (abfd);
3748 }
3749
3750 /* Save the SONAME because sometimes the linker emulation code
3751 will need to know it. */
3752 elf_dt_name (abfd) = soname;
3753
3754 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3755 if (ret < 0)
3756 goto error_return;
3757
3758 /* If we have already included this dynamic object in the
3759 link, just ignore it. There is no reason to include a
3760 particular dynamic object more than once. */
3761 if (ret > 0)
3762 return TRUE;
3763 }
3764
3765 /* If this is a dynamic object, we always link against the .dynsym
3766 symbol table, not the .symtab symbol table. The dynamic linker
3767 will only see the .dynsym symbol table, so there is no reason to
3768 look at .symtab for a dynamic object. */
3769
3770 if (! dynamic || elf_dynsymtab (abfd) == 0)
3771 hdr = &elf_tdata (abfd)->symtab_hdr;
3772 else
3773 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3774
3775 symcount = hdr->sh_size / bed->s->sizeof_sym;
3776
3777 /* The sh_info field of the symtab header tells us where the
3778 external symbols start. We don't care about the local symbols at
3779 this point. */
3780 if (elf_bad_symtab (abfd))
3781 {
3782 extsymcount = symcount;
3783 extsymoff = 0;
3784 }
3785 else
3786 {
3787 extsymcount = symcount - hdr->sh_info;
3788 extsymoff = hdr->sh_info;
3789 }
3790
3791 sym_hash = NULL;
3792 if (extsymcount != 0)
3793 {
3794 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3795 NULL, NULL, NULL);
3796 if (isymbuf == NULL)
3797 goto error_return;
3798
3799 /* We store a pointer to the hash table entry for each external
3800 symbol. */
3801 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3802 sym_hash = bfd_alloc (abfd, amt);
3803 if (sym_hash == NULL)
3804 goto error_free_sym;
3805 elf_sym_hashes (abfd) = sym_hash;
3806 }
3807
3808 if (dynamic)
3809 {
3810 /* Read in any version definitions. */
3811 if (!_bfd_elf_slurp_version_tables (abfd,
3812 info->default_imported_symver))
3813 goto error_free_sym;
3814
3815 /* Read in the symbol versions, but don't bother to convert them
3816 to internal format. */
3817 if (elf_dynversym (abfd) != 0)
3818 {
3819 Elf_Internal_Shdr *versymhdr;
3820
3821 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3822 extversym = bfd_malloc (versymhdr->sh_size);
3823 if (extversym == NULL)
3824 goto error_free_sym;
3825 amt = versymhdr->sh_size;
3826 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3827 || bfd_bread (extversym, amt, abfd) != amt)
3828 goto error_free_vers;
3829 }
3830 }
3831
3832 /* If we are loading an as-needed shared lib, save the symbol table
3833 state before we start adding symbols. If the lib turns out
3834 to be unneeded, restore the state. */
3835 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3836 {
3837 unsigned int i;
3838 size_t entsize;
3839
3840 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3841 {
3842 struct bfd_hash_entry *p;
3843 struct elf_link_hash_entry *h;
3844
3845 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3846 {
3847 h = (struct elf_link_hash_entry *) p;
3848 entsize += htab->root.table.entsize;
3849 if (h->root.type == bfd_link_hash_warning)
3850 entsize += htab->root.table.entsize;
3851 }
3852 }
3853
3854 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3855 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3856 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3857 if (old_tab == NULL)
3858 goto error_free_vers;
3859
3860 /* Remember the current objalloc pointer, so that all mem for
3861 symbols added can later be reclaimed. */
3862 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3863 if (alloc_mark == NULL)
3864 goto error_free_vers;
3865
3866 /* Make a special call to the linker "notice" function to
3867 tell it that we are about to handle an as-needed lib. */
3868 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3869 notice_as_needed))
3870 goto error_free_vers;
3871
3872 /* Clone the symbol table and sym hashes. Remember some
3873 pointers into the symbol table, and dynamic symbol count. */
3874 old_hash = (char *) old_tab + tabsize;
3875 old_ent = (char *) old_hash + hashsize;
3876 memcpy (old_tab, htab->root.table.table, tabsize);
3877 memcpy (old_hash, sym_hash, hashsize);
3878 old_undefs = htab->root.undefs;
3879 old_undefs_tail = htab->root.undefs_tail;
3880 old_table = htab->root.table.table;
3881 old_size = htab->root.table.size;
3882 old_count = htab->root.table.count;
3883 old_dynsymcount = htab->dynsymcount;
3884
3885 for (i = 0; i < htab->root.table.size; i++)
3886 {
3887 struct bfd_hash_entry *p;
3888 struct elf_link_hash_entry *h;
3889
3890 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3891 {
3892 memcpy (old_ent, p, htab->root.table.entsize);
3893 old_ent = (char *) old_ent + htab->root.table.entsize;
3894 h = (struct elf_link_hash_entry *) p;
3895 if (h->root.type == bfd_link_hash_warning)
3896 {
3897 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3898 old_ent = (char *) old_ent + htab->root.table.entsize;
3899 }
3900 }
3901 }
3902 }
3903
3904 weaks = NULL;
3905 ever = extversym != NULL ? extversym + extsymoff : NULL;
3906 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3907 isym < isymend;
3908 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3909 {
3910 int bind;
3911 bfd_vma value;
3912 asection *sec, *new_sec;
3913 flagword flags;
3914 const char *name;
3915 struct elf_link_hash_entry *h;
3916 bfd_boolean definition;
3917 bfd_boolean size_change_ok;
3918 bfd_boolean type_change_ok;
3919 bfd_boolean new_weakdef;
3920 bfd_boolean override;
3921 bfd_boolean common;
3922 unsigned int old_alignment;
3923 bfd *old_bfd;
3924
3925 override = FALSE;
3926
3927 flags = BSF_NO_FLAGS;
3928 sec = NULL;
3929 value = isym->st_value;
3930 *sym_hash = NULL;
3931 common = bed->common_definition (isym);
3932
3933 bind = ELF_ST_BIND (isym->st_info);
3934 if (bind == STB_LOCAL)
3935 {
3936 /* This should be impossible, since ELF requires that all
3937 global symbols follow all local symbols, and that sh_info
3938 point to the first global symbol. Unfortunately, Irix 5
3939 screws this up. */
3940 continue;
3941 }
3942 else if (bind == STB_GLOBAL)
3943 {
3944 if (isym->st_shndx != SHN_UNDEF && !common)
3945 flags = BSF_GLOBAL;
3946 }
3947 else if (bind == STB_WEAK)
3948 flags = BSF_WEAK;
3949 else
3950 {
3951 /* Leave it up to the processor backend. */
3952 }
3953
3954 if (isym->st_shndx == SHN_UNDEF)
3955 sec = bfd_und_section_ptr;
3956 else if (isym->st_shndx == SHN_ABS)
3957 sec = bfd_abs_section_ptr;
3958 else if (isym->st_shndx == SHN_COMMON)
3959 {
3960 sec = bfd_com_section_ptr;
3961 /* What ELF calls the size we call the value. What ELF
3962 calls the value we call the alignment. */
3963 value = isym->st_size;
3964 }
3965 else
3966 {
3967 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3968 if (sec == NULL)
3969 sec = bfd_abs_section_ptr;
3970 else if (sec->kept_section)
3971 {
3972 /* Symbols from discarded section are undefined. We keep
3973 its visibility. */
3974 sec = bfd_und_section_ptr;
3975 isym->st_shndx = SHN_UNDEF;
3976 }
3977 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3978 value -= sec->vma;
3979 }
3980
3981 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3982 isym->st_name);
3983 if (name == NULL)
3984 goto error_free_vers;
3985
3986 if (isym->st_shndx == SHN_COMMON
3987 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3988 && !info->relocatable)
3989 {
3990 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3991
3992 if (tcomm == NULL)
3993 {
3994 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3995 (SEC_ALLOC
3996 | SEC_IS_COMMON
3997 | SEC_LINKER_CREATED
3998 | SEC_THREAD_LOCAL));
3999 if (tcomm == NULL)
4000 goto error_free_vers;
4001 }
4002 sec = tcomm;
4003 }
4004 else if (bed->elf_add_symbol_hook)
4005 {
4006 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4007 &sec, &value))
4008 goto error_free_vers;
4009
4010 /* The hook function sets the name to NULL if this symbol
4011 should be skipped for some reason. */
4012 if (name == NULL)
4013 continue;
4014 }
4015
4016 /* Sanity check that all possibilities were handled. */
4017 if (sec == NULL)
4018 {
4019 bfd_set_error (bfd_error_bad_value);
4020 goto error_free_vers;
4021 }
4022
4023 if (bfd_is_und_section (sec)
4024 || bfd_is_com_section (sec))
4025 definition = FALSE;
4026 else
4027 definition = TRUE;
4028
4029 size_change_ok = FALSE;
4030 type_change_ok = bed->type_change_ok;
4031 old_alignment = 0;
4032 old_bfd = NULL;
4033 new_sec = sec;
4034
4035 if (is_elf_hash_table (htab))
4036 {
4037 Elf_Internal_Versym iver;
4038 unsigned int vernum = 0;
4039 bfd_boolean skip;
4040
4041 if (ever == NULL)
4042 {
4043 if (info->default_imported_symver)
4044 /* Use the default symbol version created earlier. */
4045 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4046 else
4047 iver.vs_vers = 0;
4048 }
4049 else
4050 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4051
4052 vernum = iver.vs_vers & VERSYM_VERSION;
4053
4054 /* If this is a hidden symbol, or if it is not version
4055 1, we append the version name to the symbol name.
4056 However, we do not modify a non-hidden absolute symbol
4057 if it is not a function, because it might be the version
4058 symbol itself. FIXME: What if it isn't? */
4059 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4060 || (vernum > 1
4061 && (!bfd_is_abs_section (sec)
4062 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4063 {
4064 const char *verstr;
4065 size_t namelen, verlen, newlen;
4066 char *newname, *p;
4067
4068 if (isym->st_shndx != SHN_UNDEF)
4069 {
4070 if (vernum > elf_tdata (abfd)->cverdefs)
4071 verstr = NULL;
4072 else if (vernum > 1)
4073 verstr =
4074 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4075 else
4076 verstr = "";
4077
4078 if (verstr == NULL)
4079 {
4080 (*_bfd_error_handler)
4081 (_("%B: %s: invalid version %u (max %d)"),
4082 abfd, name, vernum,
4083 elf_tdata (abfd)->cverdefs);
4084 bfd_set_error (bfd_error_bad_value);
4085 goto error_free_vers;
4086 }
4087 }
4088 else
4089 {
4090 /* We cannot simply test for the number of
4091 entries in the VERNEED section since the
4092 numbers for the needed versions do not start
4093 at 0. */
4094 Elf_Internal_Verneed *t;
4095
4096 verstr = NULL;
4097 for (t = elf_tdata (abfd)->verref;
4098 t != NULL;
4099 t = t->vn_nextref)
4100 {
4101 Elf_Internal_Vernaux *a;
4102
4103 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4104 {
4105 if (a->vna_other == vernum)
4106 {
4107 verstr = a->vna_nodename;
4108 break;
4109 }
4110 }
4111 if (a != NULL)
4112 break;
4113 }
4114 if (verstr == NULL)
4115 {
4116 (*_bfd_error_handler)
4117 (_("%B: %s: invalid needed version %d"),
4118 abfd, name, vernum);
4119 bfd_set_error (bfd_error_bad_value);
4120 goto error_free_vers;
4121 }
4122 }
4123
4124 namelen = strlen (name);
4125 verlen = strlen (verstr);
4126 newlen = namelen + verlen + 2;
4127 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4128 && isym->st_shndx != SHN_UNDEF)
4129 ++newlen;
4130
4131 newname = bfd_hash_allocate (&htab->root.table, newlen);
4132 if (newname == NULL)
4133 goto error_free_vers;
4134 memcpy (newname, name, namelen);
4135 p = newname + namelen;
4136 *p++ = ELF_VER_CHR;
4137 /* If this is a defined non-hidden version symbol,
4138 we add another @ to the name. This indicates the
4139 default version of the symbol. */
4140 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4141 && isym->st_shndx != SHN_UNDEF)
4142 *p++ = ELF_VER_CHR;
4143 memcpy (p, verstr, verlen + 1);
4144
4145 name = newname;
4146 }
4147
4148 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4149 &value, &old_alignment,
4150 sym_hash, &skip, &override,
4151 &type_change_ok, &size_change_ok))
4152 goto error_free_vers;
4153
4154 if (skip)
4155 continue;
4156
4157 if (override)
4158 definition = FALSE;
4159
4160 h = *sym_hash;
4161 while (h->root.type == bfd_link_hash_indirect
4162 || h->root.type == bfd_link_hash_warning)
4163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4164
4165 /* Remember the old alignment if this is a common symbol, so
4166 that we don't reduce the alignment later on. We can't
4167 check later, because _bfd_generic_link_add_one_symbol
4168 will set a default for the alignment which we want to
4169 override. We also remember the old bfd where the existing
4170 definition comes from. */
4171 switch (h->root.type)
4172 {
4173 default:
4174 break;
4175
4176 case bfd_link_hash_defined:
4177 case bfd_link_hash_defweak:
4178 old_bfd = h->root.u.def.section->owner;
4179 break;
4180
4181 case bfd_link_hash_common:
4182 old_bfd = h->root.u.c.p->section->owner;
4183 old_alignment = h->root.u.c.p->alignment_power;
4184 break;
4185 }
4186
4187 if (elf_tdata (abfd)->verdef != NULL
4188 && ! override
4189 && vernum > 1
4190 && definition)
4191 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4192 }
4193
4194 if (! (_bfd_generic_link_add_one_symbol
4195 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4196 (struct bfd_link_hash_entry **) sym_hash)))
4197 goto error_free_vers;
4198
4199 h = *sym_hash;
4200 while (h->root.type == bfd_link_hash_indirect
4201 || h->root.type == bfd_link_hash_warning)
4202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4203 *sym_hash = h;
4204
4205 new_weakdef = FALSE;
4206 if (dynamic
4207 && definition
4208 && (flags & BSF_WEAK) != 0
4209 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4210 && is_elf_hash_table (htab)
4211 && h->u.weakdef == NULL)
4212 {
4213 /* Keep a list of all weak defined non function symbols from
4214 a dynamic object, using the weakdef field. Later in this
4215 function we will set the weakdef field to the correct
4216 value. We only put non-function symbols from dynamic
4217 objects on this list, because that happens to be the only
4218 time we need to know the normal symbol corresponding to a
4219 weak symbol, and the information is time consuming to
4220 figure out. If the weakdef field is not already NULL,
4221 then this symbol was already defined by some previous
4222 dynamic object, and we will be using that previous
4223 definition anyhow. */
4224
4225 h->u.weakdef = weaks;
4226 weaks = h;
4227 new_weakdef = TRUE;
4228 }
4229
4230 /* Set the alignment of a common symbol. */
4231 if ((common || bfd_is_com_section (sec))
4232 && h->root.type == bfd_link_hash_common)
4233 {
4234 unsigned int align;
4235
4236 if (common)
4237 align = bfd_log2 (isym->st_value);
4238 else
4239 {
4240 /* The new symbol is a common symbol in a shared object.
4241 We need to get the alignment from the section. */
4242 align = new_sec->alignment_power;
4243 }
4244 if (align > old_alignment
4245 /* Permit an alignment power of zero if an alignment of one
4246 is specified and no other alignments have been specified. */
4247 || (isym->st_value == 1 && old_alignment == 0))
4248 h->root.u.c.p->alignment_power = align;
4249 else
4250 h->root.u.c.p->alignment_power = old_alignment;
4251 }
4252
4253 if (is_elf_hash_table (htab))
4254 {
4255 bfd_boolean dynsym;
4256
4257 /* Check the alignment when a common symbol is involved. This
4258 can change when a common symbol is overridden by a normal
4259 definition or a common symbol is ignored due to the old
4260 normal definition. We need to make sure the maximum
4261 alignment is maintained. */
4262 if ((old_alignment || common)
4263 && h->root.type != bfd_link_hash_common)
4264 {
4265 unsigned int common_align;
4266 unsigned int normal_align;
4267 unsigned int symbol_align;
4268 bfd *normal_bfd;
4269 bfd *common_bfd;
4270
4271 symbol_align = ffs (h->root.u.def.value) - 1;
4272 if (h->root.u.def.section->owner != NULL
4273 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4274 {
4275 normal_align = h->root.u.def.section->alignment_power;
4276 if (normal_align > symbol_align)
4277 normal_align = symbol_align;
4278 }
4279 else
4280 normal_align = symbol_align;
4281
4282 if (old_alignment)
4283 {
4284 common_align = old_alignment;
4285 common_bfd = old_bfd;
4286 normal_bfd = abfd;
4287 }
4288 else
4289 {
4290 common_align = bfd_log2 (isym->st_value);
4291 common_bfd = abfd;
4292 normal_bfd = old_bfd;
4293 }
4294
4295 if (normal_align < common_align)
4296 {
4297 /* PR binutils/2735 */
4298 if (normal_bfd == NULL)
4299 (*_bfd_error_handler)
4300 (_("Warning: alignment %u of common symbol `%s' in %B"
4301 " is greater than the alignment (%u) of its section %A"),
4302 common_bfd, h->root.u.def.section,
4303 1 << common_align, name, 1 << normal_align);
4304 else
4305 (*_bfd_error_handler)
4306 (_("Warning: alignment %u of symbol `%s' in %B"
4307 " is smaller than %u in %B"),
4308 normal_bfd, common_bfd,
4309 1 << normal_align, name, 1 << common_align);
4310 }
4311 }
4312
4313 /* Remember the symbol size if it isn't undefined. */
4314 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4315 && (definition || h->size == 0))
4316 {
4317 if (h->size != 0
4318 && h->size != isym->st_size
4319 && ! size_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4323 old_bfd, abfd,
4324 name, (unsigned long) h->size,
4325 (unsigned long) isym->st_size);
4326
4327 h->size = isym->st_size;
4328 }
4329
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changed between different
4335 function types. */
4336 if (h->root.type == bfd_link_hash_common)
4337 h->size = h->root.u.c.size;
4338
4339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4340 && (definition || h->type == STT_NOTYPE))
4341 {
4342 if (h->type != STT_NOTYPE
4343 && h->type != ELF_ST_TYPE (isym->st_info)
4344 && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4349
4350 h->type = ELF_ST_TYPE (isym->st_info);
4351 }
4352
4353 /* Merge st_other field. */
4354 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4355
4356 /* Set a flag in the hash table entry indicating the type of
4357 reference or definition we just found. Keep a count of
4358 the number of dynamic symbols we find. A dynamic symbol
4359 is one which is referenced or defined by both a regular
4360 object and a shared object. */
4361 dynsym = FALSE;
4362 if (! dynamic)
4363 {
4364 if (! definition)
4365 {
4366 h->ref_regular = 1;
4367 if (bind != STB_WEAK)
4368 h->ref_regular_nonweak = 1;
4369 }
4370 else
4371 {
4372 h->def_regular = 1;
4373 if (h->def_dynamic)
4374 {
4375 h->def_dynamic = 0;
4376 h->ref_dynamic = 1;
4377 h->dynamic_def = 1;
4378 }
4379 }
4380 if (! info->executable
4381 || h->def_dynamic
4382 || h->ref_dynamic)
4383 dynsym = TRUE;
4384 }
4385 else
4386 {
4387 if (! definition)
4388 h->ref_dynamic = 1;
4389 else
4390 h->def_dynamic = 1;
4391 if (h->def_regular
4392 || h->ref_regular
4393 || (h->u.weakdef != NULL
4394 && ! new_weakdef
4395 && h->u.weakdef->dynindx != -1))
4396 dynsym = TRUE;
4397 }
4398
4399 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4400 {
4401 /* We don't want to make debug symbol dynamic. */
4402 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4403 dynsym = FALSE;
4404 }
4405
4406 /* Check to see if we need to add an indirect symbol for
4407 the default name. */
4408 if (definition || h->root.type == bfd_link_hash_common)
4409 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4410 &sec, &value, &dynsym,
4411 override))
4412 goto error_free_vers;
4413
4414 if (definition && !dynamic)
4415 {
4416 char *p = strchr (name, ELF_VER_CHR);
4417 if (p != NULL && p[1] != ELF_VER_CHR)
4418 {
4419 /* Queue non-default versions so that .symver x, x@FOO
4420 aliases can be checked. */
4421 if (!nondeflt_vers)
4422 {
4423 amt = ((isymend - isym + 1)
4424 * sizeof (struct elf_link_hash_entry *));
4425 nondeflt_vers = bfd_malloc (amt);
4426 if (!nondeflt_vers)
4427 goto error_free_vers;
4428 }
4429 nondeflt_vers[nondeflt_vers_cnt++] = h;
4430 }
4431 }
4432
4433 if (dynsym && h->dynindx == -1)
4434 {
4435 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4436 goto error_free_vers;
4437 if (h->u.weakdef != NULL
4438 && ! new_weakdef
4439 && h->u.weakdef->dynindx == -1)
4440 {
4441 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4442 goto error_free_vers;
4443 }
4444 }
4445 else if (dynsym && h->dynindx != -1)
4446 /* If the symbol already has a dynamic index, but
4447 visibility says it should not be visible, turn it into
4448 a local symbol. */
4449 switch (ELF_ST_VISIBILITY (h->other))
4450 {
4451 case STV_INTERNAL:
4452 case STV_HIDDEN:
4453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4454 dynsym = FALSE;
4455 break;
4456 }
4457
4458 if (!add_needed
4459 && definition
4460 && ((dynsym
4461 && h->ref_regular)
4462 || (h->ref_dynamic
4463 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4464 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4465 {
4466 int ret;
4467 const char *soname = elf_dt_name (abfd);
4468
4469 /* A symbol from a library loaded via DT_NEEDED of some
4470 other library is referenced by a regular object.
4471 Add a DT_NEEDED entry for it. Issue an error if
4472 --no-add-needed is used. */
4473 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4474 {
4475 (*_bfd_error_handler)
4476 (_("%s: invalid DSO for symbol `%s' definition"),
4477 abfd, name);
4478 bfd_set_error (bfd_error_bad_value);
4479 goto error_free_vers;
4480 }
4481
4482 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4483
4484 add_needed = TRUE;
4485 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4486 if (ret < 0)
4487 goto error_free_vers;
4488
4489 BFD_ASSERT (ret == 0);
4490 }
4491 }
4492 }
4493
4494 if (extversym != NULL)
4495 {
4496 free (extversym);
4497 extversym = NULL;
4498 }
4499
4500 if (isymbuf != NULL)
4501 {
4502 free (isymbuf);
4503 isymbuf = NULL;
4504 }
4505
4506 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4507 {
4508 unsigned int i;
4509
4510 /* Restore the symbol table. */
4511 if (bed->as_needed_cleanup)
4512 (*bed->as_needed_cleanup) (abfd, info);
4513 old_hash = (char *) old_tab + tabsize;
4514 old_ent = (char *) old_hash + hashsize;
4515 sym_hash = elf_sym_hashes (abfd);
4516 htab->root.table.table = old_table;
4517 htab->root.table.size = old_size;
4518 htab->root.table.count = old_count;
4519 memcpy (htab->root.table.table, old_tab, tabsize);
4520 memcpy (sym_hash, old_hash, hashsize);
4521 htab->root.undefs = old_undefs;
4522 htab->root.undefs_tail = old_undefs_tail;
4523 for (i = 0; i < htab->root.table.size; i++)
4524 {
4525 struct bfd_hash_entry *p;
4526 struct elf_link_hash_entry *h;
4527
4528 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4529 {
4530 h = (struct elf_link_hash_entry *) p;
4531 if (h->root.type == bfd_link_hash_warning)
4532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4533 if (h->dynindx >= old_dynsymcount)
4534 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4535
4536 memcpy (p, old_ent, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 h = (struct elf_link_hash_entry *) p;
4539 if (h->root.type == bfd_link_hash_warning)
4540 {
4541 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 }
4544 }
4545 }
4546
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4550 notice_not_needed))
4551 goto error_free_vers;
4552
4553 free (old_tab);
4554 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4555 alloc_mark);
4556 if (nondeflt_vers != NULL)
4557 free (nondeflt_vers);
4558 return TRUE;
4559 }
4560
4561 if (old_tab != NULL)
4562 {
4563 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4564 notice_needed))
4565 goto error_free_vers;
4566 free (old_tab);
4567 old_tab = NULL;
4568 }
4569
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers != NULL)
4573 {
4574 bfd_size_type cnt, symidx;
4575
4576 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4577 {
4578 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4579 char *shortname, *p;
4580
4581 p = strchr (h->root.root.string, ELF_VER_CHR);
4582 if (p == NULL
4583 || (h->root.type != bfd_link_hash_defined
4584 && h->root.type != bfd_link_hash_defweak))
4585 continue;
4586
4587 amt = p - h->root.root.string;
4588 shortname = bfd_malloc (amt + 1);
4589 if (!shortname)
4590 goto error_free_vers;
4591 memcpy (shortname, h->root.root.string, amt);
4592 shortname[amt] = '\0';
4593
4594 hi = (struct elf_link_hash_entry *)
4595 bfd_link_hash_lookup (&htab->root, shortname,
4596 FALSE, FALSE, FALSE);
4597 if (hi != NULL
4598 && hi->root.type == h->root.type
4599 && hi->root.u.def.value == h->root.u.def.value
4600 && hi->root.u.def.section == h->root.u.def.section)
4601 {
4602 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4603 hi->root.type = bfd_link_hash_indirect;
4604 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4606 sym_hash = elf_sym_hashes (abfd);
4607 if (sym_hash)
4608 for (symidx = 0; symidx < extsymcount; ++symidx)
4609 if (sym_hash[symidx] == hi)
4610 {
4611 sym_hash[symidx] = h;
4612 break;
4613 }
4614 }
4615 free (shortname);
4616 }
4617 free (nondeflt_vers);
4618 nondeflt_vers = NULL;
4619 }
4620
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4633 either. */
4634 if (weaks != NULL)
4635 {
4636 struct elf_link_hash_entry **hpp;
4637 struct elf_link_hash_entry **hppend;
4638 struct elf_link_hash_entry **sorted_sym_hash;
4639 struct elf_link_hash_entry *h;
4640 size_t sym_count;
4641
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4646 sorted_sym_hash = bfd_malloc (amt);
4647 if (sorted_sym_hash == NULL)
4648 goto error_return;
4649 sym_hash = sorted_sym_hash;
4650 hpp = elf_sym_hashes (abfd);
4651 hppend = hpp + extsymcount;
4652 sym_count = 0;
4653 for (; hpp < hppend; hpp++)
4654 {
4655 h = *hpp;
4656 if (h != NULL
4657 && h->root.type == bfd_link_hash_defined
4658 && !bed->is_function_type (h->type))
4659 {
4660 *sym_hash = h;
4661 sym_hash++;
4662 sym_count++;
4663 }
4664 }
4665
4666 qsort (sorted_sym_hash, sym_count,
4667 sizeof (struct elf_link_hash_entry *),
4668 elf_sort_symbol);
4669
4670 while (weaks != NULL)
4671 {
4672 struct elf_link_hash_entry *hlook;
4673 asection *slook;
4674 bfd_vma vlook;
4675 long ilook;
4676 size_t i, j, idx;
4677
4678 hlook = weaks;
4679 weaks = hlook->u.weakdef;
4680 hlook->u.weakdef = NULL;
4681
4682 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4683 || hlook->root.type == bfd_link_hash_defweak
4684 || hlook->root.type == bfd_link_hash_common
4685 || hlook->root.type == bfd_link_hash_indirect);
4686 slook = hlook->root.u.def.section;
4687 vlook = hlook->root.u.def.value;
4688
4689 ilook = -1;
4690 i = 0;
4691 j = sym_count;
4692 while (i < j)
4693 {
4694 bfd_signed_vma vdiff;
4695 idx = (i + j) / 2;
4696 h = sorted_sym_hash [idx];
4697 vdiff = vlook - h->root.u.def.value;
4698 if (vdiff < 0)
4699 j = idx;
4700 else if (vdiff > 0)
4701 i = idx + 1;
4702 else
4703 {
4704 long sdiff = slook->id - h->root.u.def.section->id;
4705 if (sdiff < 0)
4706 j = idx;
4707 else if (sdiff > 0)
4708 i = idx + 1;
4709 else
4710 {
4711 ilook = idx;
4712 break;
4713 }
4714 }
4715 }
4716
4717 /* We didn't find a value/section match. */
4718 if (ilook == -1)
4719 continue;
4720
4721 for (i = ilook; i < sym_count; i++)
4722 {
4723 h = sorted_sym_hash [i];
4724
4725 /* Stop if value or section doesn't match. */
4726 if (h->root.u.def.value != vlook
4727 || h->root.u.def.section != slook)
4728 break;
4729 else if (h != hlook)
4730 {
4731 hlook->u.weakdef = h;
4732
4733 /* If the weak definition is in the list of dynamic
4734 symbols, make sure the real definition is put
4735 there as well. */
4736 if (hlook->dynindx != -1 && h->dynindx == -1)
4737 {
4738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4739 {
4740 err_free_sym_hash:
4741 free (sorted_sym_hash);
4742 goto error_return;
4743 }
4744 }
4745
4746 /* If the real definition is in the list of dynamic
4747 symbols, make sure the weak definition is put
4748 there as well. If we don't do this, then the
4749 dynamic loader might not merge the entries for the
4750 real definition and the weak definition. */
4751 if (h->dynindx != -1 && hlook->dynindx == -1)
4752 {
4753 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4754 goto err_free_sym_hash;
4755 }
4756 break;
4757 }
4758 }
4759 }
4760
4761 free (sorted_sym_hash);
4762 }
4763
4764 if (bed->check_directives
4765 && !(*bed->check_directives) (abfd, info))
4766 return FALSE;
4767
4768 /* If this object is the same format as the output object, and it is
4769 not a shared library, then let the backend look through the
4770 relocs.
4771
4772 This is required to build global offset table entries and to
4773 arrange for dynamic relocs. It is not required for the
4774 particular common case of linking non PIC code, even when linking
4775 against shared libraries, but unfortunately there is no way of
4776 knowing whether an object file has been compiled PIC or not.
4777 Looking through the relocs is not particularly time consuming.
4778 The problem is that we must either (1) keep the relocs in memory,
4779 which causes the linker to require additional runtime memory or
4780 (2) read the relocs twice from the input file, which wastes time.
4781 This would be a good case for using mmap.
4782
4783 I have no idea how to handle linking PIC code into a file of a
4784 different format. It probably can't be done. */
4785 if (! dynamic
4786 && is_elf_hash_table (htab)
4787 && bed->check_relocs != NULL
4788 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4789 {
4790 asection *o;
4791
4792 for (o = abfd->sections; o != NULL; o = o->next)
4793 {
4794 Elf_Internal_Rela *internal_relocs;
4795 bfd_boolean ok;
4796
4797 if ((o->flags & SEC_RELOC) == 0
4798 || o->reloc_count == 0
4799 || ((info->strip == strip_all || info->strip == strip_debugger)
4800 && (o->flags & SEC_DEBUGGING) != 0)
4801 || bfd_is_abs_section (o->output_section))
4802 continue;
4803
4804 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4805 info->keep_memory);
4806 if (internal_relocs == NULL)
4807 goto error_return;
4808
4809 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4810
4811 if (elf_section_data (o)->relocs != internal_relocs)
4812 free (internal_relocs);
4813
4814 if (! ok)
4815 goto error_return;
4816 }
4817 }
4818
4819 /* If this is a non-traditional link, try to optimize the handling
4820 of the .stab/.stabstr sections. */
4821 if (! dynamic
4822 && ! info->traditional_format
4823 && is_elf_hash_table (htab)
4824 && (info->strip != strip_all && info->strip != strip_debugger))
4825 {
4826 asection *stabstr;
4827
4828 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4829 if (stabstr != NULL)
4830 {
4831 bfd_size_type string_offset = 0;
4832 asection *stab;
4833
4834 for (stab = abfd->sections; stab; stab = stab->next)
4835 if (CONST_STRNEQ (stab->name, ".stab")
4836 && (!stab->name[5] ||
4837 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4838 && (stab->flags & SEC_MERGE) == 0
4839 && !bfd_is_abs_section (stab->output_section))
4840 {
4841 struct bfd_elf_section_data *secdata;
4842
4843 secdata = elf_section_data (stab);
4844 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4845 stabstr, &secdata->sec_info,
4846 &string_offset))
4847 goto error_return;
4848 if (secdata->sec_info)
4849 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4850 }
4851 }
4852 }
4853
4854 if (is_elf_hash_table (htab) && add_needed)
4855 {
4856 /* Add this bfd to the loaded list. */
4857 struct elf_link_loaded_list *n;
4858
4859 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4860 if (n == NULL)
4861 goto error_return;
4862 n->abfd = abfd;
4863 n->next = htab->loaded;
4864 htab->loaded = n;
4865 }
4866
4867 return TRUE;
4868
4869 error_free_vers:
4870 if (old_tab != NULL)
4871 free (old_tab);
4872 if (nondeflt_vers != NULL)
4873 free (nondeflt_vers);
4874 if (extversym != NULL)
4875 free (extversym);
4876 error_free_sym:
4877 if (isymbuf != NULL)
4878 free (isymbuf);
4879 error_return:
4880 return FALSE;
4881 }
4882
4883 /* Return the linker hash table entry of a symbol that might be
4884 satisfied by an archive symbol. Return -1 on error. */
4885
4886 struct elf_link_hash_entry *
4887 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4888 struct bfd_link_info *info,
4889 const char *name)
4890 {
4891 struct elf_link_hash_entry *h;
4892 char *p, *copy;
4893 size_t len, first;
4894
4895 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4896 if (h != NULL)
4897 return h;
4898
4899 /* If this is a default version (the name contains @@), look up the
4900 symbol again with only one `@' as well as without the version.
4901 The effect is that references to the symbol with and without the
4902 version will be matched by the default symbol in the archive. */
4903
4904 p = strchr (name, ELF_VER_CHR);
4905 if (p == NULL || p[1] != ELF_VER_CHR)
4906 return h;
4907
4908 /* First check with only one `@'. */
4909 len = strlen (name);
4910 copy = bfd_alloc (abfd, len);
4911 if (copy == NULL)
4912 return (struct elf_link_hash_entry *) 0 - 1;
4913
4914 first = p - name + 1;
4915 memcpy (copy, name, first);
4916 memcpy (copy + first, name + first + 1, len - first);
4917
4918 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4919 if (h == NULL)
4920 {
4921 /* We also need to check references to the symbol without the
4922 version. */
4923 copy[first - 1] = '\0';
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4925 FALSE, FALSE, FALSE);
4926 }
4927
4928 bfd_release (abfd, copy);
4929 return h;
4930 }
4931
4932 /* Add symbols from an ELF archive file to the linker hash table. We
4933 don't use _bfd_generic_link_add_archive_symbols because of a
4934 problem which arises on UnixWare. The UnixWare libc.so is an
4935 archive which includes an entry libc.so.1 which defines a bunch of
4936 symbols. The libc.so archive also includes a number of other
4937 object files, which also define symbols, some of which are the same
4938 as those defined in libc.so.1. Correct linking requires that we
4939 consider each object file in turn, and include it if it defines any
4940 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4941 this; it looks through the list of undefined symbols, and includes
4942 any object file which defines them. When this algorithm is used on
4943 UnixWare, it winds up pulling in libc.so.1 early and defining a
4944 bunch of symbols. This means that some of the other objects in the
4945 archive are not included in the link, which is incorrect since they
4946 precede libc.so.1 in the archive.
4947
4948 Fortunately, ELF archive handling is simpler than that done by
4949 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4950 oddities. In ELF, if we find a symbol in the archive map, and the
4951 symbol is currently undefined, we know that we must pull in that
4952 object file.
4953
4954 Unfortunately, we do have to make multiple passes over the symbol
4955 table until nothing further is resolved. */
4956
4957 static bfd_boolean
4958 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4959 {
4960 symindex c;
4961 bfd_boolean *defined = NULL;
4962 bfd_boolean *included = NULL;
4963 carsym *symdefs;
4964 bfd_boolean loop;
4965 bfd_size_type amt;
4966 const struct elf_backend_data *bed;
4967 struct elf_link_hash_entry * (*archive_symbol_lookup)
4968 (bfd *, struct bfd_link_info *, const char *);
4969
4970 if (! bfd_has_map (abfd))
4971 {
4972 /* An empty archive is a special case. */
4973 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4974 return TRUE;
4975 bfd_set_error (bfd_error_no_armap);
4976 return FALSE;
4977 }
4978
4979 /* Keep track of all symbols we know to be already defined, and all
4980 files we know to be already included. This is to speed up the
4981 second and subsequent passes. */
4982 c = bfd_ardata (abfd)->symdef_count;
4983 if (c == 0)
4984 return TRUE;
4985 amt = c;
4986 amt *= sizeof (bfd_boolean);
4987 defined = bfd_zmalloc (amt);
4988 included = bfd_zmalloc (amt);
4989 if (defined == NULL || included == NULL)
4990 goto error_return;
4991
4992 symdefs = bfd_ardata (abfd)->symdefs;
4993 bed = get_elf_backend_data (abfd);
4994 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4995
4996 do
4997 {
4998 file_ptr last;
4999 symindex i;
5000 carsym *symdef;
5001 carsym *symdefend;
5002
5003 loop = FALSE;
5004 last = -1;
5005
5006 symdef = symdefs;
5007 symdefend = symdef + c;
5008 for (i = 0; symdef < symdefend; symdef++, i++)
5009 {
5010 struct elf_link_hash_entry *h;
5011 bfd *element;
5012 struct bfd_link_hash_entry *undefs_tail;
5013 symindex mark;
5014
5015 if (defined[i] || included[i])
5016 continue;
5017 if (symdef->file_offset == last)
5018 {
5019 included[i] = TRUE;
5020 continue;
5021 }
5022
5023 h = archive_symbol_lookup (abfd, info, symdef->name);
5024 if (h == (struct elf_link_hash_entry *) 0 - 1)
5025 goto error_return;
5026
5027 if (h == NULL)
5028 continue;
5029
5030 if (h->root.type == bfd_link_hash_common)
5031 {
5032 /* We currently have a common symbol. The archive map contains
5033 a reference to this symbol, so we may want to include it. We
5034 only want to include it however, if this archive element
5035 contains a definition of the symbol, not just another common
5036 declaration of it.
5037
5038 Unfortunately some archivers (including GNU ar) will put
5039 declarations of common symbols into their archive maps, as
5040 well as real definitions, so we cannot just go by the archive
5041 map alone. Instead we must read in the element's symbol
5042 table and check that to see what kind of symbol definition
5043 this is. */
5044 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5045 continue;
5046 }
5047 else if (h->root.type != bfd_link_hash_undefined)
5048 {
5049 if (h->root.type != bfd_link_hash_undefweak)
5050 defined[i] = TRUE;
5051 continue;
5052 }
5053
5054 /* We need to include this archive member. */
5055 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5056 if (element == NULL)
5057 goto error_return;
5058
5059 if (! bfd_check_format (element, bfd_object))
5060 goto error_return;
5061
5062 /* Doublecheck that we have not included this object
5063 already--it should be impossible, but there may be
5064 something wrong with the archive. */
5065 if (element->archive_pass != 0)
5066 {
5067 bfd_set_error (bfd_error_bad_value);
5068 goto error_return;
5069 }
5070 element->archive_pass = 1;
5071
5072 undefs_tail = info->hash->undefs_tail;
5073
5074 if (! (*info->callbacks->add_archive_element) (info, element,
5075 symdef->name))
5076 goto error_return;
5077 if (! bfd_link_add_symbols (element, info))
5078 goto error_return;
5079
5080 /* If there are any new undefined symbols, we need to make
5081 another pass through the archive in order to see whether
5082 they can be defined. FIXME: This isn't perfect, because
5083 common symbols wind up on undefs_tail and because an
5084 undefined symbol which is defined later on in this pass
5085 does not require another pass. This isn't a bug, but it
5086 does make the code less efficient than it could be. */
5087 if (undefs_tail != info->hash->undefs_tail)
5088 loop = TRUE;
5089
5090 /* Look backward to mark all symbols from this object file
5091 which we have already seen in this pass. */
5092 mark = i;
5093 do
5094 {
5095 included[mark] = TRUE;
5096 if (mark == 0)
5097 break;
5098 --mark;
5099 }
5100 while (symdefs[mark].file_offset == symdef->file_offset);
5101
5102 /* We mark subsequent symbols from this object file as we go
5103 on through the loop. */
5104 last = symdef->file_offset;
5105 }
5106 }
5107 while (loop);
5108
5109 free (defined);
5110 free (included);
5111
5112 return TRUE;
5113
5114 error_return:
5115 if (defined != NULL)
5116 free (defined);
5117 if (included != NULL)
5118 free (included);
5119 return FALSE;
5120 }
5121
5122 /* Given an ELF BFD, add symbols to the global hash table as
5123 appropriate. */
5124
5125 bfd_boolean
5126 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5127 {
5128 switch (bfd_get_format (abfd))
5129 {
5130 case bfd_object:
5131 return elf_link_add_object_symbols (abfd, info);
5132 case bfd_archive:
5133 return elf_link_add_archive_symbols (abfd, info);
5134 default:
5135 bfd_set_error (bfd_error_wrong_format);
5136 return FALSE;
5137 }
5138 }
5139 \f
5140 struct hash_codes_info
5141 {
5142 unsigned long *hashcodes;
5143 bfd_boolean error;
5144 };
5145
5146 /* This function will be called though elf_link_hash_traverse to store
5147 all hash value of the exported symbols in an array. */
5148
5149 static bfd_boolean
5150 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5151 {
5152 struct hash_codes_info *inf = data;
5153 const char *name;
5154 char *p;
5155 unsigned long ha;
5156 char *alc = NULL;
5157
5158 if (h->root.type == bfd_link_hash_warning)
5159 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5160
5161 /* Ignore indirect symbols. These are added by the versioning code. */
5162 if (h->dynindx == -1)
5163 return TRUE;
5164
5165 name = h->root.root.string;
5166 p = strchr (name, ELF_VER_CHR);
5167 if (p != NULL)
5168 {
5169 alc = bfd_malloc (p - name + 1);
5170 if (alc == NULL)
5171 {
5172 inf->error = TRUE;
5173 return FALSE;
5174 }
5175 memcpy (alc, name, p - name);
5176 alc[p - name] = '\0';
5177 name = alc;
5178 }
5179
5180 /* Compute the hash value. */
5181 ha = bfd_elf_hash (name);
5182
5183 /* Store the found hash value in the array given as the argument. */
5184 *(inf->hashcodes)++ = ha;
5185
5186 /* And store it in the struct so that we can put it in the hash table
5187 later. */
5188 h->u.elf_hash_value = ha;
5189
5190 if (alc != NULL)
5191 free (alc);
5192
5193 return TRUE;
5194 }
5195
5196 struct collect_gnu_hash_codes
5197 {
5198 bfd *output_bfd;
5199 const struct elf_backend_data *bed;
5200 unsigned long int nsyms;
5201 unsigned long int maskbits;
5202 unsigned long int *hashcodes;
5203 unsigned long int *hashval;
5204 unsigned long int *indx;
5205 unsigned long int *counts;
5206 bfd_vma *bitmask;
5207 bfd_byte *contents;
5208 long int min_dynindx;
5209 unsigned long int bucketcount;
5210 unsigned long int symindx;
5211 long int local_indx;
5212 long int shift1, shift2;
5213 unsigned long int mask;
5214 bfd_boolean error;
5215 };
5216
5217 /* This function will be called though elf_link_hash_traverse to store
5218 all hash value of the exported symbols in an array. */
5219
5220 static bfd_boolean
5221 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5222 {
5223 struct collect_gnu_hash_codes *s = data;
5224 const char *name;
5225 char *p;
5226 unsigned long ha;
5227 char *alc = NULL;
5228
5229 if (h->root.type == bfd_link_hash_warning)
5230 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5231
5232 /* Ignore indirect symbols. These are added by the versioning code. */
5233 if (h->dynindx == -1)
5234 return TRUE;
5235
5236 /* Ignore also local symbols and undefined symbols. */
5237 if (! (*s->bed->elf_hash_symbol) (h))
5238 return TRUE;
5239
5240 name = h->root.root.string;
5241 p = strchr (name, ELF_VER_CHR);
5242 if (p != NULL)
5243 {
5244 alc = bfd_malloc (p - name + 1);
5245 if (alc == NULL)
5246 {
5247 s->error = TRUE;
5248 return FALSE;
5249 }
5250 memcpy (alc, name, p - name);
5251 alc[p - name] = '\0';
5252 name = alc;
5253 }
5254
5255 /* Compute the hash value. */
5256 ha = bfd_elf_gnu_hash (name);
5257
5258 /* Store the found hash value in the array for compute_bucket_count,
5259 and also for .dynsym reordering purposes. */
5260 s->hashcodes[s->nsyms] = ha;
5261 s->hashval[h->dynindx] = ha;
5262 ++s->nsyms;
5263 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5264 s->min_dynindx = h->dynindx;
5265
5266 if (alc != NULL)
5267 free (alc);
5268
5269 return TRUE;
5270 }
5271
5272 /* This function will be called though elf_link_hash_traverse to do
5273 final dynaminc symbol renumbering. */
5274
5275 static bfd_boolean
5276 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5277 {
5278 struct collect_gnu_hash_codes *s = data;
5279 unsigned long int bucket;
5280 unsigned long int val;
5281
5282 if (h->root.type == bfd_link_hash_warning)
5283 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5284
5285 /* Ignore indirect symbols. */
5286 if (h->dynindx == -1)
5287 return TRUE;
5288
5289 /* Ignore also local symbols and undefined symbols. */
5290 if (! (*s->bed->elf_hash_symbol) (h))
5291 {
5292 if (h->dynindx >= s->min_dynindx)
5293 h->dynindx = s->local_indx++;
5294 return TRUE;
5295 }
5296
5297 bucket = s->hashval[h->dynindx] % s->bucketcount;
5298 val = (s->hashval[h->dynindx] >> s->shift1)
5299 & ((s->maskbits >> s->shift1) - 1);
5300 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5301 s->bitmask[val]
5302 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5303 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5304 if (s->counts[bucket] == 1)
5305 /* Last element terminates the chain. */
5306 val |= 1;
5307 bfd_put_32 (s->output_bfd, val,
5308 s->contents + (s->indx[bucket] - s->symindx) * 4);
5309 --s->counts[bucket];
5310 h->dynindx = s->indx[bucket]++;
5311 return TRUE;
5312 }
5313
5314 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5315
5316 bfd_boolean
5317 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5318 {
5319 return !(h->forced_local
5320 || h->root.type == bfd_link_hash_undefined
5321 || h->root.type == bfd_link_hash_undefweak
5322 || ((h->root.type == bfd_link_hash_defined
5323 || h->root.type == bfd_link_hash_defweak)
5324 && h->root.u.def.section->output_section == NULL));
5325 }
5326
5327 /* Array used to determine the number of hash table buckets to use
5328 based on the number of symbols there are. If there are fewer than
5329 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5330 fewer than 37 we use 17 buckets, and so forth. We never use more
5331 than 32771 buckets. */
5332
5333 static const size_t elf_buckets[] =
5334 {
5335 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5336 16411, 32771, 0
5337 };
5338
5339 /* Compute bucket count for hashing table. We do not use a static set
5340 of possible tables sizes anymore. Instead we determine for all
5341 possible reasonable sizes of the table the outcome (i.e., the
5342 number of collisions etc) and choose the best solution. The
5343 weighting functions are not too simple to allow the table to grow
5344 without bounds. Instead one of the weighting factors is the size.
5345 Therefore the result is always a good payoff between few collisions
5346 (= short chain lengths) and table size. */
5347 static size_t
5348 compute_bucket_count (struct bfd_link_info *info,
5349 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5350 unsigned long int nsyms,
5351 int gnu_hash)
5352 {
5353 size_t best_size = 0;
5354 unsigned long int i;
5355
5356 /* We have a problem here. The following code to optimize the table
5357 size requires an integer type with more the 32 bits. If
5358 BFD_HOST_U_64_BIT is set we know about such a type. */
5359 #ifdef BFD_HOST_U_64_BIT
5360 if (info->optimize)
5361 {
5362 size_t minsize;
5363 size_t maxsize;
5364 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5365 bfd *dynobj = elf_hash_table (info)->dynobj;
5366 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5367 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5368 unsigned long int *counts;
5369 bfd_size_type amt;
5370
5371 /* Possible optimization parameters: if we have NSYMS symbols we say
5372 that the hashing table must at least have NSYMS/4 and at most
5373 2*NSYMS buckets. */
5374 minsize = nsyms / 4;
5375 if (minsize == 0)
5376 minsize = 1;
5377 best_size = maxsize = nsyms * 2;
5378 if (gnu_hash)
5379 {
5380 if (minsize < 2)
5381 minsize = 2;
5382 if ((best_size & 31) == 0)
5383 ++best_size;
5384 }
5385
5386 /* Create array where we count the collisions in. We must use bfd_malloc
5387 since the size could be large. */
5388 amt = maxsize;
5389 amt *= sizeof (unsigned long int);
5390 counts = bfd_malloc (amt);
5391 if (counts == NULL)
5392 return 0;
5393
5394 /* Compute the "optimal" size for the hash table. The criteria is a
5395 minimal chain length. The minor criteria is (of course) the size
5396 of the table. */
5397 for (i = minsize; i < maxsize; ++i)
5398 {
5399 /* Walk through the array of hashcodes and count the collisions. */
5400 BFD_HOST_U_64_BIT max;
5401 unsigned long int j;
5402 unsigned long int fact;
5403
5404 if (gnu_hash && (i & 31) == 0)
5405 continue;
5406
5407 memset (counts, '\0', i * sizeof (unsigned long int));
5408
5409 /* Determine how often each hash bucket is used. */
5410 for (j = 0; j < nsyms; ++j)
5411 ++counts[hashcodes[j] % i];
5412
5413 /* For the weight function we need some information about the
5414 pagesize on the target. This is information need not be 100%
5415 accurate. Since this information is not available (so far) we
5416 define it here to a reasonable default value. If it is crucial
5417 to have a better value some day simply define this value. */
5418 # ifndef BFD_TARGET_PAGESIZE
5419 # define BFD_TARGET_PAGESIZE (4096)
5420 # endif
5421
5422 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5423 and the chains. */
5424 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5425
5426 # if 1
5427 /* Variant 1: optimize for short chains. We add the squares
5428 of all the chain lengths (which favors many small chain
5429 over a few long chains). */
5430 for (j = 0; j < i; ++j)
5431 max += counts[j] * counts[j];
5432
5433 /* This adds penalties for the overall size of the table. */
5434 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5435 max *= fact * fact;
5436 # else
5437 /* Variant 2: Optimize a lot more for small table. Here we
5438 also add squares of the size but we also add penalties for
5439 empty slots (the +1 term). */
5440 for (j = 0; j < i; ++j)
5441 max += (1 + counts[j]) * (1 + counts[j]);
5442
5443 /* The overall size of the table is considered, but not as
5444 strong as in variant 1, where it is squared. */
5445 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5446 max *= fact;
5447 # endif
5448
5449 /* Compare with current best results. */
5450 if (max < best_chlen)
5451 {
5452 best_chlen = max;
5453 best_size = i;
5454 }
5455 }
5456
5457 free (counts);
5458 }
5459 else
5460 #endif /* defined (BFD_HOST_U_64_BIT) */
5461 {
5462 /* This is the fallback solution if no 64bit type is available or if we
5463 are not supposed to spend much time on optimizations. We select the
5464 bucket count using a fixed set of numbers. */
5465 for (i = 0; elf_buckets[i] != 0; i++)
5466 {
5467 best_size = elf_buckets[i];
5468 if (nsyms < elf_buckets[i + 1])
5469 break;
5470 }
5471 if (gnu_hash && best_size < 2)
5472 best_size = 2;
5473 }
5474
5475 return best_size;
5476 }
5477
5478 /* Set up the sizes and contents of the ELF dynamic sections. This is
5479 called by the ELF linker emulation before_allocation routine. We
5480 must set the sizes of the sections before the linker sets the
5481 addresses of the various sections. */
5482
5483 bfd_boolean
5484 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5485 const char *soname,
5486 const char *rpath,
5487 const char *filter_shlib,
5488 const char * const *auxiliary_filters,
5489 struct bfd_link_info *info,
5490 asection **sinterpptr,
5491 struct bfd_elf_version_tree *verdefs)
5492 {
5493 bfd_size_type soname_indx;
5494 bfd *dynobj;
5495 const struct elf_backend_data *bed;
5496 struct elf_info_failed asvinfo;
5497
5498 *sinterpptr = NULL;
5499
5500 soname_indx = (bfd_size_type) -1;
5501
5502 if (!is_elf_hash_table (info->hash))
5503 return TRUE;
5504
5505 bed = get_elf_backend_data (output_bfd);
5506 if (info->execstack)
5507 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5508 else if (info->noexecstack)
5509 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5510 else
5511 {
5512 bfd *inputobj;
5513 asection *notesec = NULL;
5514 int exec = 0;
5515
5516 for (inputobj = info->input_bfds;
5517 inputobj;
5518 inputobj = inputobj->link_next)
5519 {
5520 asection *s;
5521
5522 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5523 continue;
5524 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5525 if (s)
5526 {
5527 if (s->flags & SEC_CODE)
5528 exec = PF_X;
5529 notesec = s;
5530 }
5531 else if (bed->default_execstack)
5532 exec = PF_X;
5533 }
5534 if (notesec)
5535 {
5536 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5537 if (exec && info->relocatable
5538 && notesec->output_section != bfd_abs_section_ptr)
5539 notesec->output_section->flags |= SEC_CODE;
5540 }
5541 }
5542
5543 /* Any syms created from now on start with -1 in
5544 got.refcount/offset and plt.refcount/offset. */
5545 elf_hash_table (info)->init_got_refcount
5546 = elf_hash_table (info)->init_got_offset;
5547 elf_hash_table (info)->init_plt_refcount
5548 = elf_hash_table (info)->init_plt_offset;
5549
5550 /* The backend may have to create some sections regardless of whether
5551 we're dynamic or not. */
5552 if (bed->elf_backend_always_size_sections
5553 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5554 return FALSE;
5555
5556 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5557 return FALSE;
5558
5559 dynobj = elf_hash_table (info)->dynobj;
5560
5561 /* If there were no dynamic objects in the link, there is nothing to
5562 do here. */
5563 if (dynobj == NULL)
5564 return TRUE;
5565
5566 if (elf_hash_table (info)->dynamic_sections_created)
5567 {
5568 struct elf_info_failed eif;
5569 struct elf_link_hash_entry *h;
5570 asection *dynstr;
5571 struct bfd_elf_version_tree *t;
5572 struct bfd_elf_version_expr *d;
5573 asection *s;
5574 bfd_boolean all_defined;
5575
5576 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5577 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5578
5579 if (soname != NULL)
5580 {
5581 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5582 soname, TRUE);
5583 if (soname_indx == (bfd_size_type) -1
5584 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5585 return FALSE;
5586 }
5587
5588 if (info->symbolic)
5589 {
5590 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5591 return FALSE;
5592 info->flags |= DF_SYMBOLIC;
5593 }
5594
5595 if (rpath != NULL)
5596 {
5597 bfd_size_type indx;
5598
5599 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5600 TRUE);
5601 if (indx == (bfd_size_type) -1
5602 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5603 return FALSE;
5604
5605 if (info->new_dtags)
5606 {
5607 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5608 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5609 return FALSE;
5610 }
5611 }
5612
5613 if (filter_shlib != NULL)
5614 {
5615 bfd_size_type indx;
5616
5617 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5618 filter_shlib, TRUE);
5619 if (indx == (bfd_size_type) -1
5620 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5621 return FALSE;
5622 }
5623
5624 if (auxiliary_filters != NULL)
5625 {
5626 const char * const *p;
5627
5628 for (p = auxiliary_filters; *p != NULL; p++)
5629 {
5630 bfd_size_type indx;
5631
5632 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5633 *p, TRUE);
5634 if (indx == (bfd_size_type) -1
5635 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5636 return FALSE;
5637 }
5638 }
5639
5640 eif.info = info;
5641 eif.verdefs = verdefs;
5642 eif.failed = FALSE;
5643
5644 /* If we are supposed to export all symbols into the dynamic symbol
5645 table (this is not the normal case), then do so. */
5646 if (info->export_dynamic
5647 || (info->executable && info->dynamic))
5648 {
5649 elf_link_hash_traverse (elf_hash_table (info),
5650 _bfd_elf_export_symbol,
5651 &eif);
5652 if (eif.failed)
5653 return FALSE;
5654 }
5655
5656 /* Make all global versions with definition. */
5657 for (t = verdefs; t != NULL; t = t->next)
5658 for (d = t->globals.list; d != NULL; d = d->next)
5659 if (!d->symver && d->literal)
5660 {
5661 const char *verstr, *name;
5662 size_t namelen, verlen, newlen;
5663 char *newname, *p;
5664 struct elf_link_hash_entry *newh;
5665
5666 name = d->pattern;
5667 namelen = strlen (name);
5668 verstr = t->name;
5669 verlen = strlen (verstr);
5670 newlen = namelen + verlen + 3;
5671
5672 newname = bfd_malloc (newlen);
5673 if (newname == NULL)
5674 return FALSE;
5675 memcpy (newname, name, namelen);
5676
5677 /* Check the hidden versioned definition. */
5678 p = newname + namelen;
5679 *p++ = ELF_VER_CHR;
5680 memcpy (p, verstr, verlen + 1);
5681 newh = elf_link_hash_lookup (elf_hash_table (info),
5682 newname, FALSE, FALSE,
5683 FALSE);
5684 if (newh == NULL
5685 || (newh->root.type != bfd_link_hash_defined
5686 && newh->root.type != bfd_link_hash_defweak))
5687 {
5688 /* Check the default versioned definition. */
5689 *p++ = ELF_VER_CHR;
5690 memcpy (p, verstr, verlen + 1);
5691 newh = elf_link_hash_lookup (elf_hash_table (info),
5692 newname, FALSE, FALSE,
5693 FALSE);
5694 }
5695 free (newname);
5696
5697 /* Mark this version if there is a definition and it is
5698 not defined in a shared object. */
5699 if (newh != NULL
5700 && !newh->def_dynamic
5701 && (newh->root.type == bfd_link_hash_defined
5702 || newh->root.type == bfd_link_hash_defweak))
5703 d->symver = 1;
5704 }
5705
5706 /* Attach all the symbols to their version information. */
5707 asvinfo.info = info;
5708 asvinfo.verdefs = verdefs;
5709 asvinfo.failed = FALSE;
5710
5711 elf_link_hash_traverse (elf_hash_table (info),
5712 _bfd_elf_link_assign_sym_version,
5713 &asvinfo);
5714 if (asvinfo.failed)
5715 return FALSE;
5716
5717 if (!info->allow_undefined_version)
5718 {
5719 /* Check if all global versions have a definition. */
5720 all_defined = TRUE;
5721 for (t = verdefs; t != NULL; t = t->next)
5722 for (d = t->globals.list; d != NULL; d = d->next)
5723 if (d->literal && !d->symver && !d->script)
5724 {
5725 (*_bfd_error_handler)
5726 (_("%s: undefined version: %s"),
5727 d->pattern, t->name);
5728 all_defined = FALSE;
5729 }
5730
5731 if (!all_defined)
5732 {
5733 bfd_set_error (bfd_error_bad_value);
5734 return FALSE;
5735 }
5736 }
5737
5738 /* Find all symbols which were defined in a dynamic object and make
5739 the backend pick a reasonable value for them. */
5740 elf_link_hash_traverse (elf_hash_table (info),
5741 _bfd_elf_adjust_dynamic_symbol,
5742 &eif);
5743 if (eif.failed)
5744 return FALSE;
5745
5746 /* Add some entries to the .dynamic section. We fill in some of the
5747 values later, in bfd_elf_final_link, but we must add the entries
5748 now so that we know the final size of the .dynamic section. */
5749
5750 /* If there are initialization and/or finalization functions to
5751 call then add the corresponding DT_INIT/DT_FINI entries. */
5752 h = (info->init_function
5753 ? elf_link_hash_lookup (elf_hash_table (info),
5754 info->init_function, FALSE,
5755 FALSE, FALSE)
5756 : NULL);
5757 if (h != NULL
5758 && (h->ref_regular
5759 || h->def_regular))
5760 {
5761 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5762 return FALSE;
5763 }
5764 h = (info->fini_function
5765 ? elf_link_hash_lookup (elf_hash_table (info),
5766 info->fini_function, FALSE,
5767 FALSE, FALSE)
5768 : NULL);
5769 if (h != NULL
5770 && (h->ref_regular
5771 || h->def_regular))
5772 {
5773 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5774 return FALSE;
5775 }
5776
5777 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5778 if (s != NULL && s->linker_has_input)
5779 {
5780 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5781 if (! info->executable)
5782 {
5783 bfd *sub;
5784 asection *o;
5785
5786 for (sub = info->input_bfds; sub != NULL;
5787 sub = sub->link_next)
5788 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5789 for (o = sub->sections; o != NULL; o = o->next)
5790 if (elf_section_data (o)->this_hdr.sh_type
5791 == SHT_PREINIT_ARRAY)
5792 {
5793 (*_bfd_error_handler)
5794 (_("%B: .preinit_array section is not allowed in DSO"),
5795 sub);
5796 break;
5797 }
5798
5799 bfd_set_error (bfd_error_nonrepresentable_section);
5800 return FALSE;
5801 }
5802
5803 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5804 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5805 return FALSE;
5806 }
5807 s = bfd_get_section_by_name (output_bfd, ".init_array");
5808 if (s != NULL && s->linker_has_input)
5809 {
5810 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5811 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5812 return FALSE;
5813 }
5814 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5815 if (s != NULL && s->linker_has_input)
5816 {
5817 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5818 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5819 return FALSE;
5820 }
5821
5822 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5823 /* If .dynstr is excluded from the link, we don't want any of
5824 these tags. Strictly, we should be checking each section
5825 individually; This quick check covers for the case where
5826 someone does a /DISCARD/ : { *(*) }. */
5827 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5828 {
5829 bfd_size_type strsize;
5830
5831 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5832 if ((info->emit_hash
5833 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5834 || (info->emit_gnu_hash
5835 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5836 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5837 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5838 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5839 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5840 bed->s->sizeof_sym))
5841 return FALSE;
5842 }
5843 }
5844
5845 /* The backend must work out the sizes of all the other dynamic
5846 sections. */
5847 if (bed->elf_backend_size_dynamic_sections
5848 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5849 return FALSE;
5850
5851 if (elf_hash_table (info)->dynamic_sections_created)
5852 {
5853 unsigned long section_sym_count;
5854 asection *s;
5855
5856 /* Set up the version definition section. */
5857 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5858 BFD_ASSERT (s != NULL);
5859
5860 /* We may have created additional version definitions if we are
5861 just linking a regular application. */
5862 verdefs = asvinfo.verdefs;
5863
5864 /* Skip anonymous version tag. */
5865 if (verdefs != NULL && verdefs->vernum == 0)
5866 verdefs = verdefs->next;
5867
5868 if (verdefs == NULL && !info->create_default_symver)
5869 s->flags |= SEC_EXCLUDE;
5870 else
5871 {
5872 unsigned int cdefs;
5873 bfd_size_type size;
5874 struct bfd_elf_version_tree *t;
5875 bfd_byte *p;
5876 Elf_Internal_Verdef def;
5877 Elf_Internal_Verdaux defaux;
5878 struct bfd_link_hash_entry *bh;
5879 struct elf_link_hash_entry *h;
5880 const char *name;
5881
5882 cdefs = 0;
5883 size = 0;
5884
5885 /* Make space for the base version. */
5886 size += sizeof (Elf_External_Verdef);
5887 size += sizeof (Elf_External_Verdaux);
5888 ++cdefs;
5889
5890 /* Make space for the default version. */
5891 if (info->create_default_symver)
5892 {
5893 size += sizeof (Elf_External_Verdef);
5894 ++cdefs;
5895 }
5896
5897 for (t = verdefs; t != NULL; t = t->next)
5898 {
5899 struct bfd_elf_version_deps *n;
5900
5901 size += sizeof (Elf_External_Verdef);
5902 size += sizeof (Elf_External_Verdaux);
5903 ++cdefs;
5904
5905 for (n = t->deps; n != NULL; n = n->next)
5906 size += sizeof (Elf_External_Verdaux);
5907 }
5908
5909 s->size = size;
5910 s->contents = bfd_alloc (output_bfd, s->size);
5911 if (s->contents == NULL && s->size != 0)
5912 return FALSE;
5913
5914 /* Fill in the version definition section. */
5915
5916 p = s->contents;
5917
5918 def.vd_version = VER_DEF_CURRENT;
5919 def.vd_flags = VER_FLG_BASE;
5920 def.vd_ndx = 1;
5921 def.vd_cnt = 1;
5922 if (info->create_default_symver)
5923 {
5924 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5925 def.vd_next = sizeof (Elf_External_Verdef);
5926 }
5927 else
5928 {
5929 def.vd_aux = sizeof (Elf_External_Verdef);
5930 def.vd_next = (sizeof (Elf_External_Verdef)
5931 + sizeof (Elf_External_Verdaux));
5932 }
5933
5934 if (soname_indx != (bfd_size_type) -1)
5935 {
5936 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5937 soname_indx);
5938 def.vd_hash = bfd_elf_hash (soname);
5939 defaux.vda_name = soname_indx;
5940 name = soname;
5941 }
5942 else
5943 {
5944 bfd_size_type indx;
5945
5946 name = lbasename (output_bfd->filename);
5947 def.vd_hash = bfd_elf_hash (name);
5948 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5949 name, FALSE);
5950 if (indx == (bfd_size_type) -1)
5951 return FALSE;
5952 defaux.vda_name = indx;
5953 }
5954 defaux.vda_next = 0;
5955
5956 _bfd_elf_swap_verdef_out (output_bfd, &def,
5957 (Elf_External_Verdef *) p);
5958 p += sizeof (Elf_External_Verdef);
5959 if (info->create_default_symver)
5960 {
5961 /* Add a symbol representing this version. */
5962 bh = NULL;
5963 if (! (_bfd_generic_link_add_one_symbol
5964 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5965 0, NULL, FALSE,
5966 get_elf_backend_data (dynobj)->collect, &bh)))
5967 return FALSE;
5968 h = (struct elf_link_hash_entry *) bh;
5969 h->non_elf = 0;
5970 h->def_regular = 1;
5971 h->type = STT_OBJECT;
5972 h->verinfo.vertree = NULL;
5973
5974 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5975 return FALSE;
5976
5977 /* Create a duplicate of the base version with the same
5978 aux block, but different flags. */
5979 def.vd_flags = 0;
5980 def.vd_ndx = 2;
5981 def.vd_aux = sizeof (Elf_External_Verdef);
5982 if (verdefs)
5983 def.vd_next = (sizeof (Elf_External_Verdef)
5984 + sizeof (Elf_External_Verdaux));
5985 else
5986 def.vd_next = 0;
5987 _bfd_elf_swap_verdef_out (output_bfd, &def,
5988 (Elf_External_Verdef *) p);
5989 p += sizeof (Elf_External_Verdef);
5990 }
5991 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5992 (Elf_External_Verdaux *) p);
5993 p += sizeof (Elf_External_Verdaux);
5994
5995 for (t = verdefs; t != NULL; t = t->next)
5996 {
5997 unsigned int cdeps;
5998 struct bfd_elf_version_deps *n;
5999
6000 cdeps = 0;
6001 for (n = t->deps; n != NULL; n = n->next)
6002 ++cdeps;
6003
6004 /* Add a symbol representing this version. */
6005 bh = NULL;
6006 if (! (_bfd_generic_link_add_one_symbol
6007 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6008 0, NULL, FALSE,
6009 get_elf_backend_data (dynobj)->collect, &bh)))
6010 return FALSE;
6011 h = (struct elf_link_hash_entry *) bh;
6012 h->non_elf = 0;
6013 h->def_regular = 1;
6014 h->type = STT_OBJECT;
6015 h->verinfo.vertree = t;
6016
6017 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6018 return FALSE;
6019
6020 def.vd_version = VER_DEF_CURRENT;
6021 def.vd_flags = 0;
6022 if (t->globals.list == NULL
6023 && t->locals.list == NULL
6024 && ! t->used)
6025 def.vd_flags |= VER_FLG_WEAK;
6026 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6027 def.vd_cnt = cdeps + 1;
6028 def.vd_hash = bfd_elf_hash (t->name);
6029 def.vd_aux = sizeof (Elf_External_Verdef);
6030 def.vd_next = 0;
6031 if (t->next != NULL)
6032 def.vd_next = (sizeof (Elf_External_Verdef)
6033 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6034
6035 _bfd_elf_swap_verdef_out (output_bfd, &def,
6036 (Elf_External_Verdef *) p);
6037 p += sizeof (Elf_External_Verdef);
6038
6039 defaux.vda_name = h->dynstr_index;
6040 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6041 h->dynstr_index);
6042 defaux.vda_next = 0;
6043 if (t->deps != NULL)
6044 defaux.vda_next = sizeof (Elf_External_Verdaux);
6045 t->name_indx = defaux.vda_name;
6046
6047 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6048 (Elf_External_Verdaux *) p);
6049 p += sizeof (Elf_External_Verdaux);
6050
6051 for (n = t->deps; n != NULL; n = n->next)
6052 {
6053 if (n->version_needed == NULL)
6054 {
6055 /* This can happen if there was an error in the
6056 version script. */
6057 defaux.vda_name = 0;
6058 }
6059 else
6060 {
6061 defaux.vda_name = n->version_needed->name_indx;
6062 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6063 defaux.vda_name);
6064 }
6065 if (n->next == NULL)
6066 defaux.vda_next = 0;
6067 else
6068 defaux.vda_next = sizeof (Elf_External_Verdaux);
6069
6070 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6071 (Elf_External_Verdaux *) p);
6072 p += sizeof (Elf_External_Verdaux);
6073 }
6074 }
6075
6076 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6077 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6078 return FALSE;
6079
6080 elf_tdata (output_bfd)->cverdefs = cdefs;
6081 }
6082
6083 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6084 {
6085 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6086 return FALSE;
6087 }
6088 else if (info->flags & DF_BIND_NOW)
6089 {
6090 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6091 return FALSE;
6092 }
6093
6094 if (info->flags_1)
6095 {
6096 if (info->executable)
6097 info->flags_1 &= ~ (DF_1_INITFIRST
6098 | DF_1_NODELETE
6099 | DF_1_NOOPEN);
6100 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6101 return FALSE;
6102 }
6103
6104 /* Work out the size of the version reference section. */
6105
6106 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6107 BFD_ASSERT (s != NULL);
6108 {
6109 struct elf_find_verdep_info sinfo;
6110
6111 sinfo.info = info;
6112 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6113 if (sinfo.vers == 0)
6114 sinfo.vers = 1;
6115 sinfo.failed = FALSE;
6116
6117 elf_link_hash_traverse (elf_hash_table (info),
6118 _bfd_elf_link_find_version_dependencies,
6119 &sinfo);
6120 if (sinfo.failed)
6121 return FALSE;
6122
6123 if (elf_tdata (output_bfd)->verref == NULL)
6124 s->flags |= SEC_EXCLUDE;
6125 else
6126 {
6127 Elf_Internal_Verneed *t;
6128 unsigned int size;
6129 unsigned int crefs;
6130 bfd_byte *p;
6131
6132 /* Build the version definition section. */
6133 size = 0;
6134 crefs = 0;
6135 for (t = elf_tdata (output_bfd)->verref;
6136 t != NULL;
6137 t = t->vn_nextref)
6138 {
6139 Elf_Internal_Vernaux *a;
6140
6141 size += sizeof (Elf_External_Verneed);
6142 ++crefs;
6143 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6144 size += sizeof (Elf_External_Vernaux);
6145 }
6146
6147 s->size = size;
6148 s->contents = bfd_alloc (output_bfd, s->size);
6149 if (s->contents == NULL)
6150 return FALSE;
6151
6152 p = s->contents;
6153 for (t = elf_tdata (output_bfd)->verref;
6154 t != NULL;
6155 t = t->vn_nextref)
6156 {
6157 unsigned int caux;
6158 Elf_Internal_Vernaux *a;
6159 bfd_size_type indx;
6160
6161 caux = 0;
6162 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6163 ++caux;
6164
6165 t->vn_version = VER_NEED_CURRENT;
6166 t->vn_cnt = caux;
6167 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6168 elf_dt_name (t->vn_bfd) != NULL
6169 ? elf_dt_name (t->vn_bfd)
6170 : lbasename (t->vn_bfd->filename),
6171 FALSE);
6172 if (indx == (bfd_size_type) -1)
6173 return FALSE;
6174 t->vn_file = indx;
6175 t->vn_aux = sizeof (Elf_External_Verneed);
6176 if (t->vn_nextref == NULL)
6177 t->vn_next = 0;
6178 else
6179 t->vn_next = (sizeof (Elf_External_Verneed)
6180 + caux * sizeof (Elf_External_Vernaux));
6181
6182 _bfd_elf_swap_verneed_out (output_bfd, t,
6183 (Elf_External_Verneed *) p);
6184 p += sizeof (Elf_External_Verneed);
6185
6186 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6187 {
6188 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6189 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6190 a->vna_nodename, FALSE);
6191 if (indx == (bfd_size_type) -1)
6192 return FALSE;
6193 a->vna_name = indx;
6194 if (a->vna_nextptr == NULL)
6195 a->vna_next = 0;
6196 else
6197 a->vna_next = sizeof (Elf_External_Vernaux);
6198
6199 _bfd_elf_swap_vernaux_out (output_bfd, a,
6200 (Elf_External_Vernaux *) p);
6201 p += sizeof (Elf_External_Vernaux);
6202 }
6203 }
6204
6205 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6206 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6207 return FALSE;
6208
6209 elf_tdata (output_bfd)->cverrefs = crefs;
6210 }
6211 }
6212
6213 if ((elf_tdata (output_bfd)->cverrefs == 0
6214 && elf_tdata (output_bfd)->cverdefs == 0)
6215 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6216 &section_sym_count) == 0)
6217 {
6218 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6219 s->flags |= SEC_EXCLUDE;
6220 }
6221 }
6222 return TRUE;
6223 }
6224
6225 /* Find the first non-excluded output section. We'll use its
6226 section symbol for some emitted relocs. */
6227 void
6228 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6229 {
6230 asection *s;
6231
6232 for (s = output_bfd->sections; s != NULL; s = s->next)
6233 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6234 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6235 {
6236 elf_hash_table (info)->text_index_section = s;
6237 break;
6238 }
6239 }
6240
6241 /* Find two non-excluded output sections, one for code, one for data.
6242 We'll use their section symbols for some emitted relocs. */
6243 void
6244 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6245 {
6246 asection *s;
6247
6248 /* Data first, since setting text_index_section changes
6249 _bfd_elf_link_omit_section_dynsym. */
6250 for (s = output_bfd->sections; s != NULL; s = s->next)
6251 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6252 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6253 {
6254 elf_hash_table (info)->data_index_section = s;
6255 break;
6256 }
6257
6258 for (s = output_bfd->sections; s != NULL; s = s->next)
6259 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6260 == (SEC_ALLOC | SEC_READONLY))
6261 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6262 {
6263 elf_hash_table (info)->text_index_section = s;
6264 break;
6265 }
6266
6267 if (elf_hash_table (info)->text_index_section == NULL)
6268 elf_hash_table (info)->text_index_section
6269 = elf_hash_table (info)->data_index_section;
6270 }
6271
6272 bfd_boolean
6273 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6274 {
6275 const struct elf_backend_data *bed;
6276
6277 if (!is_elf_hash_table (info->hash))
6278 return TRUE;
6279
6280 bed = get_elf_backend_data (output_bfd);
6281 (*bed->elf_backend_init_index_section) (output_bfd, info);
6282
6283 if (elf_hash_table (info)->dynamic_sections_created)
6284 {
6285 bfd *dynobj;
6286 asection *s;
6287 bfd_size_type dynsymcount;
6288 unsigned long section_sym_count;
6289 unsigned int dtagcount;
6290
6291 dynobj = elf_hash_table (info)->dynobj;
6292
6293 /* Assign dynsym indicies. In a shared library we generate a
6294 section symbol for each output section, which come first.
6295 Next come all of the back-end allocated local dynamic syms,
6296 followed by the rest of the global symbols. */
6297
6298 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6299 &section_sym_count);
6300
6301 /* Work out the size of the symbol version section. */
6302 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6303 BFD_ASSERT (s != NULL);
6304 if (dynsymcount != 0
6305 && (s->flags & SEC_EXCLUDE) == 0)
6306 {
6307 s->size = dynsymcount * sizeof (Elf_External_Versym);
6308 s->contents = bfd_zalloc (output_bfd, s->size);
6309 if (s->contents == NULL)
6310 return FALSE;
6311
6312 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6313 return FALSE;
6314 }
6315
6316 /* Set the size of the .dynsym and .hash sections. We counted
6317 the number of dynamic symbols in elf_link_add_object_symbols.
6318 We will build the contents of .dynsym and .hash when we build
6319 the final symbol table, because until then we do not know the
6320 correct value to give the symbols. We built the .dynstr
6321 section as we went along in elf_link_add_object_symbols. */
6322 s = bfd_get_section_by_name (dynobj, ".dynsym");
6323 BFD_ASSERT (s != NULL);
6324 s->size = dynsymcount * bed->s->sizeof_sym;
6325
6326 if (dynsymcount != 0)
6327 {
6328 s->contents = bfd_alloc (output_bfd, s->size);
6329 if (s->contents == NULL)
6330 return FALSE;
6331
6332 /* The first entry in .dynsym is a dummy symbol.
6333 Clear all the section syms, in case we don't output them all. */
6334 ++section_sym_count;
6335 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6336 }
6337
6338 elf_hash_table (info)->bucketcount = 0;
6339
6340 /* Compute the size of the hashing table. As a side effect this
6341 computes the hash values for all the names we export. */
6342 if (info->emit_hash)
6343 {
6344 unsigned long int *hashcodes;
6345 struct hash_codes_info hashinf;
6346 bfd_size_type amt;
6347 unsigned long int nsyms;
6348 size_t bucketcount;
6349 size_t hash_entry_size;
6350
6351 /* Compute the hash values for all exported symbols. At the same
6352 time store the values in an array so that we could use them for
6353 optimizations. */
6354 amt = dynsymcount * sizeof (unsigned long int);
6355 hashcodes = bfd_malloc (amt);
6356 if (hashcodes == NULL)
6357 return FALSE;
6358 hashinf.hashcodes = hashcodes;
6359 hashinf.error = FALSE;
6360
6361 /* Put all hash values in HASHCODES. */
6362 elf_link_hash_traverse (elf_hash_table (info),
6363 elf_collect_hash_codes, &hashinf);
6364 if (hashinf.error)
6365 {
6366 free (hashcodes);
6367 return FALSE;
6368 }
6369
6370 nsyms = hashinf.hashcodes - hashcodes;
6371 bucketcount
6372 = compute_bucket_count (info, hashcodes, nsyms, 0);
6373 free (hashcodes);
6374
6375 if (bucketcount == 0)
6376 return FALSE;
6377
6378 elf_hash_table (info)->bucketcount = bucketcount;
6379
6380 s = bfd_get_section_by_name (dynobj, ".hash");
6381 BFD_ASSERT (s != NULL);
6382 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6383 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6384 s->contents = bfd_zalloc (output_bfd, s->size);
6385 if (s->contents == NULL)
6386 return FALSE;
6387
6388 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6389 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6390 s->contents + hash_entry_size);
6391 }
6392
6393 if (info->emit_gnu_hash)
6394 {
6395 size_t i, cnt;
6396 unsigned char *contents;
6397 struct collect_gnu_hash_codes cinfo;
6398 bfd_size_type amt;
6399 size_t bucketcount;
6400
6401 memset (&cinfo, 0, sizeof (cinfo));
6402
6403 /* Compute the hash values for all exported symbols. At the same
6404 time store the values in an array so that we could use them for
6405 optimizations. */
6406 amt = dynsymcount * 2 * sizeof (unsigned long int);
6407 cinfo.hashcodes = bfd_malloc (amt);
6408 if (cinfo.hashcodes == NULL)
6409 return FALSE;
6410
6411 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6412 cinfo.min_dynindx = -1;
6413 cinfo.output_bfd = output_bfd;
6414 cinfo.bed = bed;
6415
6416 /* Put all hash values in HASHCODES. */
6417 elf_link_hash_traverse (elf_hash_table (info),
6418 elf_collect_gnu_hash_codes, &cinfo);
6419 if (cinfo.error)
6420 {
6421 free (cinfo.hashcodes);
6422 return FALSE;
6423 }
6424
6425 bucketcount
6426 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6427
6428 if (bucketcount == 0)
6429 {
6430 free (cinfo.hashcodes);
6431 return FALSE;
6432 }
6433
6434 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6435 BFD_ASSERT (s != NULL);
6436
6437 if (cinfo.nsyms == 0)
6438 {
6439 /* Empty .gnu.hash section is special. */
6440 BFD_ASSERT (cinfo.min_dynindx == -1);
6441 free (cinfo.hashcodes);
6442 s->size = 5 * 4 + bed->s->arch_size / 8;
6443 contents = bfd_zalloc (output_bfd, s->size);
6444 if (contents == NULL)
6445 return FALSE;
6446 s->contents = contents;
6447 /* 1 empty bucket. */
6448 bfd_put_32 (output_bfd, 1, contents);
6449 /* SYMIDX above the special symbol 0. */
6450 bfd_put_32 (output_bfd, 1, contents + 4);
6451 /* Just one word for bitmask. */
6452 bfd_put_32 (output_bfd, 1, contents + 8);
6453 /* Only hash fn bloom filter. */
6454 bfd_put_32 (output_bfd, 0, contents + 12);
6455 /* No hashes are valid - empty bitmask. */
6456 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6457 /* No hashes in the only bucket. */
6458 bfd_put_32 (output_bfd, 0,
6459 contents + 16 + bed->s->arch_size / 8);
6460 }
6461 else
6462 {
6463 unsigned long int maskwords, maskbitslog2;
6464 BFD_ASSERT (cinfo.min_dynindx != -1);
6465
6466 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6467 if (maskbitslog2 < 3)
6468 maskbitslog2 = 5;
6469 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6470 maskbitslog2 = maskbitslog2 + 3;
6471 else
6472 maskbitslog2 = maskbitslog2 + 2;
6473 if (bed->s->arch_size == 64)
6474 {
6475 if (maskbitslog2 == 5)
6476 maskbitslog2 = 6;
6477 cinfo.shift1 = 6;
6478 }
6479 else
6480 cinfo.shift1 = 5;
6481 cinfo.mask = (1 << cinfo.shift1) - 1;
6482 cinfo.shift2 = maskbitslog2;
6483 cinfo.maskbits = 1 << maskbitslog2;
6484 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6485 amt = bucketcount * sizeof (unsigned long int) * 2;
6486 amt += maskwords * sizeof (bfd_vma);
6487 cinfo.bitmask = bfd_malloc (amt);
6488 if (cinfo.bitmask == NULL)
6489 {
6490 free (cinfo.hashcodes);
6491 return FALSE;
6492 }
6493
6494 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6495 cinfo.indx = cinfo.counts + bucketcount;
6496 cinfo.symindx = dynsymcount - cinfo.nsyms;
6497 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6498
6499 /* Determine how often each hash bucket is used. */
6500 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6501 for (i = 0; i < cinfo.nsyms; ++i)
6502 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6503
6504 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6505 if (cinfo.counts[i] != 0)
6506 {
6507 cinfo.indx[i] = cnt;
6508 cnt += cinfo.counts[i];
6509 }
6510 BFD_ASSERT (cnt == dynsymcount);
6511 cinfo.bucketcount = bucketcount;
6512 cinfo.local_indx = cinfo.min_dynindx;
6513
6514 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6515 s->size += cinfo.maskbits / 8;
6516 contents = bfd_zalloc (output_bfd, s->size);
6517 if (contents == NULL)
6518 {
6519 free (cinfo.bitmask);
6520 free (cinfo.hashcodes);
6521 return FALSE;
6522 }
6523
6524 s->contents = contents;
6525 bfd_put_32 (output_bfd, bucketcount, contents);
6526 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6527 bfd_put_32 (output_bfd, maskwords, contents + 8);
6528 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6529 contents += 16 + cinfo.maskbits / 8;
6530
6531 for (i = 0; i < bucketcount; ++i)
6532 {
6533 if (cinfo.counts[i] == 0)
6534 bfd_put_32 (output_bfd, 0, contents);
6535 else
6536 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6537 contents += 4;
6538 }
6539
6540 cinfo.contents = contents;
6541
6542 /* Renumber dynamic symbols, populate .gnu.hash section. */
6543 elf_link_hash_traverse (elf_hash_table (info),
6544 elf_renumber_gnu_hash_syms, &cinfo);
6545
6546 contents = s->contents + 16;
6547 for (i = 0; i < maskwords; ++i)
6548 {
6549 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6550 contents);
6551 contents += bed->s->arch_size / 8;
6552 }
6553
6554 free (cinfo.bitmask);
6555 free (cinfo.hashcodes);
6556 }
6557 }
6558
6559 s = bfd_get_section_by_name (dynobj, ".dynstr");
6560 BFD_ASSERT (s != NULL);
6561
6562 elf_finalize_dynstr (output_bfd, info);
6563
6564 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6565
6566 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6567 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6568 return FALSE;
6569 }
6570
6571 return TRUE;
6572 }
6573 \f
6574 /* Indicate that we are only retrieving symbol values from this
6575 section. */
6576
6577 void
6578 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6579 {
6580 if (is_elf_hash_table (info->hash))
6581 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6582 _bfd_generic_link_just_syms (sec, info);
6583 }
6584
6585 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6586
6587 static void
6588 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6589 asection *sec)
6590 {
6591 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6592 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6593 }
6594
6595 /* Finish SHF_MERGE section merging. */
6596
6597 bfd_boolean
6598 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6599 {
6600 bfd *ibfd;
6601 asection *sec;
6602
6603 if (!is_elf_hash_table (info->hash))
6604 return FALSE;
6605
6606 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6607 if ((ibfd->flags & DYNAMIC) == 0)
6608 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6609 if ((sec->flags & SEC_MERGE) != 0
6610 && !bfd_is_abs_section (sec->output_section))
6611 {
6612 struct bfd_elf_section_data *secdata;
6613
6614 secdata = elf_section_data (sec);
6615 if (! _bfd_add_merge_section (abfd,
6616 &elf_hash_table (info)->merge_info,
6617 sec, &secdata->sec_info))
6618 return FALSE;
6619 else if (secdata->sec_info)
6620 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6621 }
6622
6623 if (elf_hash_table (info)->merge_info != NULL)
6624 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6625 merge_sections_remove_hook);
6626 return TRUE;
6627 }
6628
6629 /* Create an entry in an ELF linker hash table. */
6630
6631 struct bfd_hash_entry *
6632 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6633 struct bfd_hash_table *table,
6634 const char *string)
6635 {
6636 /* Allocate the structure if it has not already been allocated by a
6637 subclass. */
6638 if (entry == NULL)
6639 {
6640 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6641 if (entry == NULL)
6642 return entry;
6643 }
6644
6645 /* Call the allocation method of the superclass. */
6646 entry = _bfd_link_hash_newfunc (entry, table, string);
6647 if (entry != NULL)
6648 {
6649 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6650 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6651
6652 /* Set local fields. */
6653 ret->indx = -1;
6654 ret->dynindx = -1;
6655 ret->got = htab->init_got_refcount;
6656 ret->plt = htab->init_plt_refcount;
6657 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6658 - offsetof (struct elf_link_hash_entry, size)));
6659 /* Assume that we have been called by a non-ELF symbol reader.
6660 This flag is then reset by the code which reads an ELF input
6661 file. This ensures that a symbol created by a non-ELF symbol
6662 reader will have the flag set correctly. */
6663 ret->non_elf = 1;
6664 }
6665
6666 return entry;
6667 }
6668
6669 /* Copy data from an indirect symbol to its direct symbol, hiding the
6670 old indirect symbol. Also used for copying flags to a weakdef. */
6671
6672 void
6673 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6674 struct elf_link_hash_entry *dir,
6675 struct elf_link_hash_entry *ind)
6676 {
6677 struct elf_link_hash_table *htab;
6678
6679 /* Copy down any references that we may have already seen to the
6680 symbol which just became indirect. */
6681
6682 dir->ref_dynamic |= ind->ref_dynamic;
6683 dir->ref_regular |= ind->ref_regular;
6684 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6685 dir->non_got_ref |= ind->non_got_ref;
6686 dir->needs_plt |= ind->needs_plt;
6687 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6688
6689 if (ind->root.type != bfd_link_hash_indirect)
6690 return;
6691
6692 /* Copy over the global and procedure linkage table refcount entries.
6693 These may have been already set up by a check_relocs routine. */
6694 htab = elf_hash_table (info);
6695 if (ind->got.refcount > htab->init_got_refcount.refcount)
6696 {
6697 if (dir->got.refcount < 0)
6698 dir->got.refcount = 0;
6699 dir->got.refcount += ind->got.refcount;
6700 ind->got.refcount = htab->init_got_refcount.refcount;
6701 }
6702
6703 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6704 {
6705 if (dir->plt.refcount < 0)
6706 dir->plt.refcount = 0;
6707 dir->plt.refcount += ind->plt.refcount;
6708 ind->plt.refcount = htab->init_plt_refcount.refcount;
6709 }
6710
6711 if (ind->dynindx != -1)
6712 {
6713 if (dir->dynindx != -1)
6714 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6715 dir->dynindx = ind->dynindx;
6716 dir->dynstr_index = ind->dynstr_index;
6717 ind->dynindx = -1;
6718 ind->dynstr_index = 0;
6719 }
6720 }
6721
6722 void
6723 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6724 struct elf_link_hash_entry *h,
6725 bfd_boolean force_local)
6726 {
6727 h->plt = elf_hash_table (info)->init_plt_offset;
6728 h->needs_plt = 0;
6729 if (force_local)
6730 {
6731 h->forced_local = 1;
6732 if (h->dynindx != -1)
6733 {
6734 h->dynindx = -1;
6735 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6736 h->dynstr_index);
6737 }
6738 }
6739 }
6740
6741 /* Initialize an ELF linker hash table. */
6742
6743 bfd_boolean
6744 _bfd_elf_link_hash_table_init
6745 (struct elf_link_hash_table *table,
6746 bfd *abfd,
6747 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6748 struct bfd_hash_table *,
6749 const char *),
6750 unsigned int entsize)
6751 {
6752 bfd_boolean ret;
6753 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6754
6755 memset (table, 0, sizeof * table);
6756 table->init_got_refcount.refcount = can_refcount - 1;
6757 table->init_plt_refcount.refcount = can_refcount - 1;
6758 table->init_got_offset.offset = -(bfd_vma) 1;
6759 table->init_plt_offset.offset = -(bfd_vma) 1;
6760 /* The first dynamic symbol is a dummy. */
6761 table->dynsymcount = 1;
6762
6763 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6764 table->root.type = bfd_link_elf_hash_table;
6765
6766 return ret;
6767 }
6768
6769 /* Create an ELF linker hash table. */
6770
6771 struct bfd_link_hash_table *
6772 _bfd_elf_link_hash_table_create (bfd *abfd)
6773 {
6774 struct elf_link_hash_table *ret;
6775 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6776
6777 ret = bfd_malloc (amt);
6778 if (ret == NULL)
6779 return NULL;
6780
6781 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6782 sizeof (struct elf_link_hash_entry)))
6783 {
6784 free (ret);
6785 return NULL;
6786 }
6787
6788 return &ret->root;
6789 }
6790
6791 /* This is a hook for the ELF emulation code in the generic linker to
6792 tell the backend linker what file name to use for the DT_NEEDED
6793 entry for a dynamic object. */
6794
6795 void
6796 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6797 {
6798 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6799 && bfd_get_format (abfd) == bfd_object)
6800 elf_dt_name (abfd) = name;
6801 }
6802
6803 int
6804 bfd_elf_get_dyn_lib_class (bfd *abfd)
6805 {
6806 int lib_class;
6807 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6808 && bfd_get_format (abfd) == bfd_object)
6809 lib_class = elf_dyn_lib_class (abfd);
6810 else
6811 lib_class = 0;
6812 return lib_class;
6813 }
6814
6815 void
6816 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6817 {
6818 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6819 && bfd_get_format (abfd) == bfd_object)
6820 elf_dyn_lib_class (abfd) = lib_class;
6821 }
6822
6823 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6824 the linker ELF emulation code. */
6825
6826 struct bfd_link_needed_list *
6827 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6828 struct bfd_link_info *info)
6829 {
6830 if (! is_elf_hash_table (info->hash))
6831 return NULL;
6832 return elf_hash_table (info)->needed;
6833 }
6834
6835 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6836 hook for the linker ELF emulation code. */
6837
6838 struct bfd_link_needed_list *
6839 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6840 struct bfd_link_info *info)
6841 {
6842 if (! is_elf_hash_table (info->hash))
6843 return NULL;
6844 return elf_hash_table (info)->runpath;
6845 }
6846
6847 /* Get the name actually used for a dynamic object for a link. This
6848 is the SONAME entry if there is one. Otherwise, it is the string
6849 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6850
6851 const char *
6852 bfd_elf_get_dt_soname (bfd *abfd)
6853 {
6854 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6855 && bfd_get_format (abfd) == bfd_object)
6856 return elf_dt_name (abfd);
6857 return NULL;
6858 }
6859
6860 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6861 the ELF linker emulation code. */
6862
6863 bfd_boolean
6864 bfd_elf_get_bfd_needed_list (bfd *abfd,
6865 struct bfd_link_needed_list **pneeded)
6866 {
6867 asection *s;
6868 bfd_byte *dynbuf = NULL;
6869 unsigned int elfsec;
6870 unsigned long shlink;
6871 bfd_byte *extdyn, *extdynend;
6872 size_t extdynsize;
6873 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6874
6875 *pneeded = NULL;
6876
6877 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6878 || bfd_get_format (abfd) != bfd_object)
6879 return TRUE;
6880
6881 s = bfd_get_section_by_name (abfd, ".dynamic");
6882 if (s == NULL || s->size == 0)
6883 return TRUE;
6884
6885 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6886 goto error_return;
6887
6888 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6889 if (elfsec == SHN_BAD)
6890 goto error_return;
6891
6892 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6893
6894 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6895 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6896
6897 extdyn = dynbuf;
6898 extdynend = extdyn + s->size;
6899 for (; extdyn < extdynend; extdyn += extdynsize)
6900 {
6901 Elf_Internal_Dyn dyn;
6902
6903 (*swap_dyn_in) (abfd, extdyn, &dyn);
6904
6905 if (dyn.d_tag == DT_NULL)
6906 break;
6907
6908 if (dyn.d_tag == DT_NEEDED)
6909 {
6910 const char *string;
6911 struct bfd_link_needed_list *l;
6912 unsigned int tagv = dyn.d_un.d_val;
6913 bfd_size_type amt;
6914
6915 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6916 if (string == NULL)
6917 goto error_return;
6918
6919 amt = sizeof *l;
6920 l = bfd_alloc (abfd, amt);
6921 if (l == NULL)
6922 goto error_return;
6923
6924 l->by = abfd;
6925 l->name = string;
6926 l->next = *pneeded;
6927 *pneeded = l;
6928 }
6929 }
6930
6931 free (dynbuf);
6932
6933 return TRUE;
6934
6935 error_return:
6936 if (dynbuf != NULL)
6937 free (dynbuf);
6938 return FALSE;
6939 }
6940
6941 struct elf_symbuf_symbol
6942 {
6943 unsigned long st_name; /* Symbol name, index in string tbl */
6944 unsigned char st_info; /* Type and binding attributes */
6945 unsigned char st_other; /* Visibilty, and target specific */
6946 };
6947
6948 struct elf_symbuf_head
6949 {
6950 struct elf_symbuf_symbol *ssym;
6951 bfd_size_type count;
6952 unsigned int st_shndx;
6953 };
6954
6955 struct elf_symbol
6956 {
6957 union
6958 {
6959 Elf_Internal_Sym *isym;
6960 struct elf_symbuf_symbol *ssym;
6961 } u;
6962 const char *name;
6963 };
6964
6965 /* Sort references to symbols by ascending section number. */
6966
6967 static int
6968 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6969 {
6970 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6971 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6972
6973 return s1->st_shndx - s2->st_shndx;
6974 }
6975
6976 static int
6977 elf_sym_name_compare (const void *arg1, const void *arg2)
6978 {
6979 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6980 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6981 return strcmp (s1->name, s2->name);
6982 }
6983
6984 static struct elf_symbuf_head *
6985 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6986 {
6987 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6988 struct elf_symbuf_symbol *ssym;
6989 struct elf_symbuf_head *ssymbuf, *ssymhead;
6990 bfd_size_type i, shndx_count, total_size;
6991
6992 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6993 if (indbuf == NULL)
6994 return NULL;
6995
6996 for (ind = indbuf, i = 0; i < symcount; i++)
6997 if (isymbuf[i].st_shndx != SHN_UNDEF)
6998 *ind++ = &isymbuf[i];
6999 indbufend = ind;
7000
7001 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7002 elf_sort_elf_symbol);
7003
7004 shndx_count = 0;
7005 if (indbufend > indbuf)
7006 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7007 if (ind[0]->st_shndx != ind[1]->st_shndx)
7008 shndx_count++;
7009
7010 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7011 + (indbufend - indbuf) * sizeof (*ssym));
7012 ssymbuf = bfd_malloc (total_size);
7013 if (ssymbuf == NULL)
7014 {
7015 free (indbuf);
7016 return NULL;
7017 }
7018
7019 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7020 ssymbuf->ssym = NULL;
7021 ssymbuf->count = shndx_count;
7022 ssymbuf->st_shndx = 0;
7023 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7024 {
7025 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7026 {
7027 ssymhead++;
7028 ssymhead->ssym = ssym;
7029 ssymhead->count = 0;
7030 ssymhead->st_shndx = (*ind)->st_shndx;
7031 }
7032 ssym->st_name = (*ind)->st_name;
7033 ssym->st_info = (*ind)->st_info;
7034 ssym->st_other = (*ind)->st_other;
7035 ssymhead->count++;
7036 }
7037 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7038 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7039 == total_size));
7040
7041 free (indbuf);
7042 return ssymbuf;
7043 }
7044
7045 /* Check if 2 sections define the same set of local and global
7046 symbols. */
7047
7048 static bfd_boolean
7049 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7050 struct bfd_link_info *info)
7051 {
7052 bfd *bfd1, *bfd2;
7053 const struct elf_backend_data *bed1, *bed2;
7054 Elf_Internal_Shdr *hdr1, *hdr2;
7055 bfd_size_type symcount1, symcount2;
7056 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7057 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7058 Elf_Internal_Sym *isym, *isymend;
7059 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7060 bfd_size_type count1, count2, i;
7061 unsigned int shndx1, shndx2;
7062 bfd_boolean result;
7063
7064 bfd1 = sec1->owner;
7065 bfd2 = sec2->owner;
7066
7067 /* Both sections have to be in ELF. */
7068 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7069 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7070 return FALSE;
7071
7072 if (elf_section_type (sec1) != elf_section_type (sec2))
7073 return FALSE;
7074
7075 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7076 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7077 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7078 return FALSE;
7079
7080 bed1 = get_elf_backend_data (bfd1);
7081 bed2 = get_elf_backend_data (bfd2);
7082 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7083 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7084 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7085 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7086
7087 if (symcount1 == 0 || symcount2 == 0)
7088 return FALSE;
7089
7090 result = FALSE;
7091 isymbuf1 = NULL;
7092 isymbuf2 = NULL;
7093 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7094 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7095
7096 if (ssymbuf1 == NULL)
7097 {
7098 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7099 NULL, NULL, NULL);
7100 if (isymbuf1 == NULL)
7101 goto done;
7102
7103 if (!info->reduce_memory_overheads)
7104 elf_tdata (bfd1)->symbuf = ssymbuf1
7105 = elf_create_symbuf (symcount1, isymbuf1);
7106 }
7107
7108 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7109 {
7110 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7111 NULL, NULL, NULL);
7112 if (isymbuf2 == NULL)
7113 goto done;
7114
7115 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7116 elf_tdata (bfd2)->symbuf = ssymbuf2
7117 = elf_create_symbuf (symcount2, isymbuf2);
7118 }
7119
7120 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7121 {
7122 /* Optimized faster version. */
7123 bfd_size_type lo, hi, mid;
7124 struct elf_symbol *symp;
7125 struct elf_symbuf_symbol *ssym, *ssymend;
7126
7127 lo = 0;
7128 hi = ssymbuf1->count;
7129 ssymbuf1++;
7130 count1 = 0;
7131 while (lo < hi)
7132 {
7133 mid = (lo + hi) / 2;
7134 if (shndx1 < ssymbuf1[mid].st_shndx)
7135 hi = mid;
7136 else if (shndx1 > ssymbuf1[mid].st_shndx)
7137 lo = mid + 1;
7138 else
7139 {
7140 count1 = ssymbuf1[mid].count;
7141 ssymbuf1 += mid;
7142 break;
7143 }
7144 }
7145
7146 lo = 0;
7147 hi = ssymbuf2->count;
7148 ssymbuf2++;
7149 count2 = 0;
7150 while (lo < hi)
7151 {
7152 mid = (lo + hi) / 2;
7153 if (shndx2 < ssymbuf2[mid].st_shndx)
7154 hi = mid;
7155 else if (shndx2 > ssymbuf2[mid].st_shndx)
7156 lo = mid + 1;
7157 else
7158 {
7159 count2 = ssymbuf2[mid].count;
7160 ssymbuf2 += mid;
7161 break;
7162 }
7163 }
7164
7165 if (count1 == 0 || count2 == 0 || count1 != count2)
7166 goto done;
7167
7168 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7169 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7170 if (symtable1 == NULL || symtable2 == NULL)
7171 goto done;
7172
7173 symp = symtable1;
7174 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7175 ssym < ssymend; ssym++, symp++)
7176 {
7177 symp->u.ssym = ssym;
7178 symp->name = bfd_elf_string_from_elf_section (bfd1,
7179 hdr1->sh_link,
7180 ssym->st_name);
7181 }
7182
7183 symp = symtable2;
7184 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7185 ssym < ssymend; ssym++, symp++)
7186 {
7187 symp->u.ssym = ssym;
7188 symp->name = bfd_elf_string_from_elf_section (bfd2,
7189 hdr2->sh_link,
7190 ssym->st_name);
7191 }
7192
7193 /* Sort symbol by name. */
7194 qsort (symtable1, count1, sizeof (struct elf_symbol),
7195 elf_sym_name_compare);
7196 qsort (symtable2, count1, sizeof (struct elf_symbol),
7197 elf_sym_name_compare);
7198
7199 for (i = 0; i < count1; i++)
7200 /* Two symbols must have the same binding, type and name. */
7201 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7202 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7203 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7204 goto done;
7205
7206 result = TRUE;
7207 goto done;
7208 }
7209
7210 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7211 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7212 if (symtable1 == NULL || symtable2 == NULL)
7213 goto done;
7214
7215 /* Count definitions in the section. */
7216 count1 = 0;
7217 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7218 if (isym->st_shndx == shndx1)
7219 symtable1[count1++].u.isym = isym;
7220
7221 count2 = 0;
7222 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7223 if (isym->st_shndx == shndx2)
7224 symtable2[count2++].u.isym = isym;
7225
7226 if (count1 == 0 || count2 == 0 || count1 != count2)
7227 goto done;
7228
7229 for (i = 0; i < count1; i++)
7230 symtable1[i].name
7231 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7232 symtable1[i].u.isym->st_name);
7233
7234 for (i = 0; i < count2; i++)
7235 symtable2[i].name
7236 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7237 symtable2[i].u.isym->st_name);
7238
7239 /* Sort symbol by name. */
7240 qsort (symtable1, count1, sizeof (struct elf_symbol),
7241 elf_sym_name_compare);
7242 qsort (symtable2, count1, sizeof (struct elf_symbol),
7243 elf_sym_name_compare);
7244
7245 for (i = 0; i < count1; i++)
7246 /* Two symbols must have the same binding, type and name. */
7247 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7248 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7249 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7250 goto done;
7251
7252 result = TRUE;
7253
7254 done:
7255 if (symtable1)
7256 free (symtable1);
7257 if (symtable2)
7258 free (symtable2);
7259 if (isymbuf1)
7260 free (isymbuf1);
7261 if (isymbuf2)
7262 free (isymbuf2);
7263
7264 return result;
7265 }
7266
7267 /* Return TRUE if 2 section types are compatible. */
7268
7269 bfd_boolean
7270 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7271 bfd *bbfd, const asection *bsec)
7272 {
7273 if (asec == NULL
7274 || bsec == NULL
7275 || abfd->xvec->flavour != bfd_target_elf_flavour
7276 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7277 return TRUE;
7278
7279 return elf_section_type (asec) == elf_section_type (bsec);
7280 }
7281 \f
7282 /* Final phase of ELF linker. */
7283
7284 /* A structure we use to avoid passing large numbers of arguments. */
7285
7286 struct elf_final_link_info
7287 {
7288 /* General link information. */
7289 struct bfd_link_info *info;
7290 /* Output BFD. */
7291 bfd *output_bfd;
7292 /* Symbol string table. */
7293 struct bfd_strtab_hash *symstrtab;
7294 /* .dynsym section. */
7295 asection *dynsym_sec;
7296 /* .hash section. */
7297 asection *hash_sec;
7298 /* symbol version section (.gnu.version). */
7299 asection *symver_sec;
7300 /* Buffer large enough to hold contents of any section. */
7301 bfd_byte *contents;
7302 /* Buffer large enough to hold external relocs of any section. */
7303 void *external_relocs;
7304 /* Buffer large enough to hold internal relocs of any section. */
7305 Elf_Internal_Rela *internal_relocs;
7306 /* Buffer large enough to hold external local symbols of any input
7307 BFD. */
7308 bfd_byte *external_syms;
7309 /* And a buffer for symbol section indices. */
7310 Elf_External_Sym_Shndx *locsym_shndx;
7311 /* Buffer large enough to hold internal local symbols of any input
7312 BFD. */
7313 Elf_Internal_Sym *internal_syms;
7314 /* Array large enough to hold a symbol index for each local symbol
7315 of any input BFD. */
7316 long *indices;
7317 /* Array large enough to hold a section pointer for each local
7318 symbol of any input BFD. */
7319 asection **sections;
7320 /* Buffer to hold swapped out symbols. */
7321 bfd_byte *symbuf;
7322 /* And one for symbol section indices. */
7323 Elf_External_Sym_Shndx *symshndxbuf;
7324 /* Number of swapped out symbols in buffer. */
7325 size_t symbuf_count;
7326 /* Number of symbols which fit in symbuf. */
7327 size_t symbuf_size;
7328 /* And same for symshndxbuf. */
7329 size_t shndxbuf_size;
7330 };
7331
7332 /* This struct is used to pass information to elf_link_output_extsym. */
7333
7334 struct elf_outext_info
7335 {
7336 bfd_boolean failed;
7337 bfd_boolean localsyms;
7338 struct elf_final_link_info *finfo;
7339 };
7340
7341
7342 /* Support for evaluating a complex relocation.
7343
7344 Complex relocations are generalized, self-describing relocations. The
7345 implementation of them consists of two parts: complex symbols, and the
7346 relocations themselves.
7347
7348 The relocations are use a reserved elf-wide relocation type code (R_RELC
7349 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7350 information (start bit, end bit, word width, etc) into the addend. This
7351 information is extracted from CGEN-generated operand tables within gas.
7352
7353 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7354 internal) representing prefix-notation expressions, including but not
7355 limited to those sorts of expressions normally encoded as addends in the
7356 addend field. The symbol mangling format is:
7357
7358 <node> := <literal>
7359 | <unary-operator> ':' <node>
7360 | <binary-operator> ':' <node> ':' <node>
7361 ;
7362
7363 <literal> := 's' <digits=N> ':' <N character symbol name>
7364 | 'S' <digits=N> ':' <N character section name>
7365 | '#' <hexdigits>
7366 ;
7367
7368 <binary-operator> := as in C
7369 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7370
7371 static void
7372 set_symbol_value (bfd *bfd_with_globals,
7373 Elf_Internal_Sym *isymbuf,
7374 size_t locsymcount,
7375 size_t symidx,
7376 bfd_vma val)
7377 {
7378 struct elf_link_hash_entry **sym_hashes;
7379 struct elf_link_hash_entry *h;
7380 size_t extsymoff = locsymcount;
7381
7382 if (symidx < locsymcount)
7383 {
7384 Elf_Internal_Sym *sym;
7385
7386 sym = isymbuf + symidx;
7387 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7388 {
7389 /* It is a local symbol: move it to the
7390 "absolute" section and give it a value. */
7391 sym->st_shndx = SHN_ABS;
7392 sym->st_value = val;
7393 return;
7394 }
7395 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7396 extsymoff = 0;
7397 }
7398
7399 /* It is a global symbol: set its link type
7400 to "defined" and give it a value. */
7401
7402 sym_hashes = elf_sym_hashes (bfd_with_globals);
7403 h = sym_hashes [symidx - extsymoff];
7404 while (h->root.type == bfd_link_hash_indirect
7405 || h->root.type == bfd_link_hash_warning)
7406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7407 h->root.type = bfd_link_hash_defined;
7408 h->root.u.def.value = val;
7409 h->root.u.def.section = bfd_abs_section_ptr;
7410 }
7411
7412 static bfd_boolean
7413 resolve_symbol (const char *name,
7414 bfd *input_bfd,
7415 struct elf_final_link_info *finfo,
7416 bfd_vma *result,
7417 Elf_Internal_Sym *isymbuf,
7418 size_t locsymcount)
7419 {
7420 Elf_Internal_Sym *sym;
7421 struct bfd_link_hash_entry *global_entry;
7422 const char *candidate = NULL;
7423 Elf_Internal_Shdr *symtab_hdr;
7424 size_t i;
7425
7426 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7427
7428 for (i = 0; i < locsymcount; ++ i)
7429 {
7430 sym = isymbuf + i;
7431
7432 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7433 continue;
7434
7435 candidate = bfd_elf_string_from_elf_section (input_bfd,
7436 symtab_hdr->sh_link,
7437 sym->st_name);
7438 #ifdef DEBUG
7439 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7440 name, candidate, (unsigned long) sym->st_value);
7441 #endif
7442 if (candidate && strcmp (candidate, name) == 0)
7443 {
7444 asection *sec = finfo->sections [i];
7445
7446 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7447 *result += sec->output_offset + sec->output_section->vma;
7448 #ifdef DEBUG
7449 printf ("Found symbol with value %8.8lx\n",
7450 (unsigned long) *result);
7451 #endif
7452 return TRUE;
7453 }
7454 }
7455
7456 /* Hmm, haven't found it yet. perhaps it is a global. */
7457 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7458 FALSE, FALSE, TRUE);
7459 if (!global_entry)
7460 return FALSE;
7461
7462 if (global_entry->type == bfd_link_hash_defined
7463 || global_entry->type == bfd_link_hash_defweak)
7464 {
7465 *result = (global_entry->u.def.value
7466 + global_entry->u.def.section->output_section->vma
7467 + global_entry->u.def.section->output_offset);
7468 #ifdef DEBUG
7469 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7470 global_entry->root.string, (unsigned long) *result);
7471 #endif
7472 return TRUE;
7473 }
7474
7475 return FALSE;
7476 }
7477
7478 static bfd_boolean
7479 resolve_section (const char *name,
7480 asection *sections,
7481 bfd_vma *result)
7482 {
7483 asection *curr;
7484 unsigned int len;
7485
7486 for (curr = sections; curr; curr = curr->next)
7487 if (strcmp (curr->name, name) == 0)
7488 {
7489 *result = curr->vma;
7490 return TRUE;
7491 }
7492
7493 /* Hmm. still haven't found it. try pseudo-section names. */
7494 for (curr = sections; curr; curr = curr->next)
7495 {
7496 len = strlen (curr->name);
7497 if (len > strlen (name))
7498 continue;
7499
7500 if (strncmp (curr->name, name, len) == 0)
7501 {
7502 if (strncmp (".end", name + len, 4) == 0)
7503 {
7504 *result = curr->vma + curr->size;
7505 return TRUE;
7506 }
7507
7508 /* Insert more pseudo-section names here, if you like. */
7509 }
7510 }
7511
7512 return FALSE;
7513 }
7514
7515 static void
7516 undefined_reference (const char *reftype, const char *name)
7517 {
7518 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7519 reftype, name);
7520 }
7521
7522 static bfd_boolean
7523 eval_symbol (bfd_vma *result,
7524 const char **symp,
7525 bfd *input_bfd,
7526 struct elf_final_link_info *finfo,
7527 bfd_vma dot,
7528 Elf_Internal_Sym *isymbuf,
7529 size_t locsymcount,
7530 int signed_p)
7531 {
7532 size_t len;
7533 size_t symlen;
7534 bfd_vma a;
7535 bfd_vma b;
7536 char symbuf[4096];
7537 const char *sym = *symp;
7538 const char *symend;
7539 bfd_boolean symbol_is_section = FALSE;
7540
7541 len = strlen (sym);
7542 symend = sym + len;
7543
7544 if (len < 1 || len > sizeof (symbuf))
7545 {
7546 bfd_set_error (bfd_error_invalid_operation);
7547 return FALSE;
7548 }
7549
7550 switch (* sym)
7551 {
7552 case '.':
7553 *result = dot;
7554 *symp = sym + 1;
7555 return TRUE;
7556
7557 case '#':
7558 ++sym;
7559 *result = strtoul (sym, (char **) symp, 16);
7560 return TRUE;
7561
7562 case 'S':
7563 symbol_is_section = TRUE;
7564 case 's':
7565 ++sym;
7566 symlen = strtol (sym, (char **) symp, 10);
7567 sym = *symp + 1; /* Skip the trailing ':'. */
7568
7569 if (symend < sym || symlen + 1 > sizeof (symbuf))
7570 {
7571 bfd_set_error (bfd_error_invalid_operation);
7572 return FALSE;
7573 }
7574
7575 memcpy (symbuf, sym, symlen);
7576 symbuf[symlen] = '\0';
7577 *symp = sym + symlen;
7578
7579 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7580 the symbol as a section, or vice-versa. so we're pretty liberal in our
7581 interpretation here; section means "try section first", not "must be a
7582 section", and likewise with symbol. */
7583
7584 if (symbol_is_section)
7585 {
7586 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7587 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7588 isymbuf, locsymcount))
7589 {
7590 undefined_reference ("section", symbuf);
7591 return FALSE;
7592 }
7593 }
7594 else
7595 {
7596 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7597 isymbuf, locsymcount)
7598 && !resolve_section (symbuf, finfo->output_bfd->sections,
7599 result))
7600 {
7601 undefined_reference ("symbol", symbuf);
7602 return FALSE;
7603 }
7604 }
7605
7606 return TRUE;
7607
7608 /* All that remains are operators. */
7609
7610 #define UNARY_OP(op) \
7611 if (strncmp (sym, #op, strlen (#op)) == 0) \
7612 { \
7613 sym += strlen (#op); \
7614 if (*sym == ':') \
7615 ++sym; \
7616 *symp = sym; \
7617 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7618 isymbuf, locsymcount, signed_p)) \
7619 return FALSE; \
7620 if (signed_p) \
7621 *result = op ((bfd_signed_vma) a); \
7622 else \
7623 *result = op a; \
7624 return TRUE; \
7625 }
7626
7627 #define BINARY_OP(op) \
7628 if (strncmp (sym, #op, strlen (#op)) == 0) \
7629 { \
7630 sym += strlen (#op); \
7631 if (*sym == ':') \
7632 ++sym; \
7633 *symp = sym; \
7634 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7635 isymbuf, locsymcount, signed_p)) \
7636 return FALSE; \
7637 ++*symp; \
7638 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7639 isymbuf, locsymcount, signed_p)) \
7640 return FALSE; \
7641 if (signed_p) \
7642 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7643 else \
7644 *result = a op b; \
7645 return TRUE; \
7646 }
7647
7648 default:
7649 UNARY_OP (0-);
7650 BINARY_OP (<<);
7651 BINARY_OP (>>);
7652 BINARY_OP (==);
7653 BINARY_OP (!=);
7654 BINARY_OP (<=);
7655 BINARY_OP (>=);
7656 BINARY_OP (&&);
7657 BINARY_OP (||);
7658 UNARY_OP (~);
7659 UNARY_OP (!);
7660 BINARY_OP (*);
7661 BINARY_OP (/);
7662 BINARY_OP (%);
7663 BINARY_OP (^);
7664 BINARY_OP (|);
7665 BINARY_OP (&);
7666 BINARY_OP (+);
7667 BINARY_OP (-);
7668 BINARY_OP (<);
7669 BINARY_OP (>);
7670 #undef UNARY_OP
7671 #undef BINARY_OP
7672 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7673 bfd_set_error (bfd_error_invalid_operation);
7674 return FALSE;
7675 }
7676 }
7677
7678 static void
7679 put_value (bfd_vma size,
7680 unsigned long chunksz,
7681 bfd *input_bfd,
7682 bfd_vma x,
7683 bfd_byte *location)
7684 {
7685 location += (size - chunksz);
7686
7687 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7688 {
7689 switch (chunksz)
7690 {
7691 default:
7692 case 0:
7693 abort ();
7694 case 1:
7695 bfd_put_8 (input_bfd, x, location);
7696 break;
7697 case 2:
7698 bfd_put_16 (input_bfd, x, location);
7699 break;
7700 case 4:
7701 bfd_put_32 (input_bfd, x, location);
7702 break;
7703 case 8:
7704 #ifdef BFD64
7705 bfd_put_64 (input_bfd, x, location);
7706 #else
7707 abort ();
7708 #endif
7709 break;
7710 }
7711 }
7712 }
7713
7714 static bfd_vma
7715 get_value (bfd_vma size,
7716 unsigned long chunksz,
7717 bfd *input_bfd,
7718 bfd_byte *location)
7719 {
7720 bfd_vma x = 0;
7721
7722 for (; size; size -= chunksz, location += chunksz)
7723 {
7724 switch (chunksz)
7725 {
7726 default:
7727 case 0:
7728 abort ();
7729 case 1:
7730 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7731 break;
7732 case 2:
7733 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7734 break;
7735 case 4:
7736 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7737 break;
7738 case 8:
7739 #ifdef BFD64
7740 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7741 #else
7742 abort ();
7743 #endif
7744 break;
7745 }
7746 }
7747 return x;
7748 }
7749
7750 static void
7751 decode_complex_addend (unsigned long *start, /* in bits */
7752 unsigned long *oplen, /* in bits */
7753 unsigned long *len, /* in bits */
7754 unsigned long *wordsz, /* in bytes */
7755 unsigned long *chunksz, /* in bytes */
7756 unsigned long *lsb0_p,
7757 unsigned long *signed_p,
7758 unsigned long *trunc_p,
7759 unsigned long encoded)
7760 {
7761 * start = encoded & 0x3F;
7762 * len = (encoded >> 6) & 0x3F;
7763 * oplen = (encoded >> 12) & 0x3F;
7764 * wordsz = (encoded >> 18) & 0xF;
7765 * chunksz = (encoded >> 22) & 0xF;
7766 * lsb0_p = (encoded >> 27) & 1;
7767 * signed_p = (encoded >> 28) & 1;
7768 * trunc_p = (encoded >> 29) & 1;
7769 }
7770
7771 bfd_reloc_status_type
7772 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7773 asection *input_section ATTRIBUTE_UNUSED,
7774 bfd_byte *contents,
7775 Elf_Internal_Rela *rel,
7776 bfd_vma relocation)
7777 {
7778 bfd_vma shift, x, mask;
7779 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7780 bfd_reloc_status_type r;
7781
7782 /* Perform this reloc, since it is complex.
7783 (this is not to say that it necessarily refers to a complex
7784 symbol; merely that it is a self-describing CGEN based reloc.
7785 i.e. the addend has the complete reloc information (bit start, end,
7786 word size, etc) encoded within it.). */
7787
7788 decode_complex_addend (&start, &oplen, &len, &wordsz,
7789 &chunksz, &lsb0_p, &signed_p,
7790 &trunc_p, rel->r_addend);
7791
7792 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7793
7794 if (lsb0_p)
7795 shift = (start + 1) - len;
7796 else
7797 shift = (8 * wordsz) - (start + len);
7798
7799 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7800
7801 #ifdef DEBUG
7802 printf ("Doing complex reloc: "
7803 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7804 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7805 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7806 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7807 oplen, x, mask, relocation);
7808 #endif
7809
7810 r = bfd_reloc_ok;
7811 if (! trunc_p)
7812 /* Now do an overflow check. */
7813 r = bfd_check_overflow ((signed_p
7814 ? complain_overflow_signed
7815 : complain_overflow_unsigned),
7816 len, 0, (8 * wordsz),
7817 relocation);
7818
7819 /* Do the deed. */
7820 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7821
7822 #ifdef DEBUG
7823 printf (" relocation: %8.8lx\n"
7824 " shifted mask: %8.8lx\n"
7825 " shifted/masked reloc: %8.8lx\n"
7826 " result: %8.8lx\n",
7827 relocation, (mask << shift),
7828 ((relocation & mask) << shift), x);
7829 #endif
7830 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7831 return r;
7832 }
7833
7834 /* When performing a relocatable link, the input relocations are
7835 preserved. But, if they reference global symbols, the indices
7836 referenced must be updated. Update all the relocations in
7837 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7838
7839 static void
7840 elf_link_adjust_relocs (bfd *abfd,
7841 Elf_Internal_Shdr *rel_hdr,
7842 unsigned int count,
7843 struct elf_link_hash_entry **rel_hash)
7844 {
7845 unsigned int i;
7846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7847 bfd_byte *erela;
7848 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7849 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7850 bfd_vma r_type_mask;
7851 int r_sym_shift;
7852
7853 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7854 {
7855 swap_in = bed->s->swap_reloc_in;
7856 swap_out = bed->s->swap_reloc_out;
7857 }
7858 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7859 {
7860 swap_in = bed->s->swap_reloca_in;
7861 swap_out = bed->s->swap_reloca_out;
7862 }
7863 else
7864 abort ();
7865
7866 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7867 abort ();
7868
7869 if (bed->s->arch_size == 32)
7870 {
7871 r_type_mask = 0xff;
7872 r_sym_shift = 8;
7873 }
7874 else
7875 {
7876 r_type_mask = 0xffffffff;
7877 r_sym_shift = 32;
7878 }
7879
7880 erela = rel_hdr->contents;
7881 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7882 {
7883 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7884 unsigned int j;
7885
7886 if (*rel_hash == NULL)
7887 continue;
7888
7889 BFD_ASSERT ((*rel_hash)->indx >= 0);
7890
7891 (*swap_in) (abfd, erela, irela);
7892 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7893 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7894 | (irela[j].r_info & r_type_mask));
7895 (*swap_out) (abfd, irela, erela);
7896 }
7897 }
7898
7899 struct elf_link_sort_rela
7900 {
7901 union {
7902 bfd_vma offset;
7903 bfd_vma sym_mask;
7904 } u;
7905 enum elf_reloc_type_class type;
7906 /* We use this as an array of size int_rels_per_ext_rel. */
7907 Elf_Internal_Rela rela[1];
7908 };
7909
7910 static int
7911 elf_link_sort_cmp1 (const void *A, const void *B)
7912 {
7913 const struct elf_link_sort_rela *a = A;
7914 const struct elf_link_sort_rela *b = B;
7915 int relativea, relativeb;
7916
7917 relativea = a->type == reloc_class_relative;
7918 relativeb = b->type == reloc_class_relative;
7919
7920 if (relativea < relativeb)
7921 return 1;
7922 if (relativea > relativeb)
7923 return -1;
7924 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7925 return -1;
7926 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7927 return 1;
7928 if (a->rela->r_offset < b->rela->r_offset)
7929 return -1;
7930 if (a->rela->r_offset > b->rela->r_offset)
7931 return 1;
7932 return 0;
7933 }
7934
7935 static int
7936 elf_link_sort_cmp2 (const void *A, const void *B)
7937 {
7938 const struct elf_link_sort_rela *a = A;
7939 const struct elf_link_sort_rela *b = B;
7940 int copya, copyb;
7941
7942 if (a->u.offset < b->u.offset)
7943 return -1;
7944 if (a->u.offset > b->u.offset)
7945 return 1;
7946 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7947 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7948 if (copya < copyb)
7949 return -1;
7950 if (copya > copyb)
7951 return 1;
7952 if (a->rela->r_offset < b->rela->r_offset)
7953 return -1;
7954 if (a->rela->r_offset > b->rela->r_offset)
7955 return 1;
7956 return 0;
7957 }
7958
7959 static size_t
7960 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7961 {
7962 asection *dynamic_relocs;
7963 asection *rela_dyn;
7964 asection *rel_dyn;
7965 bfd_size_type count, size;
7966 size_t i, ret, sort_elt, ext_size;
7967 bfd_byte *sort, *s_non_relative, *p;
7968 struct elf_link_sort_rela *sq;
7969 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7970 int i2e = bed->s->int_rels_per_ext_rel;
7971 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7972 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7973 struct bfd_link_order *lo;
7974 bfd_vma r_sym_mask;
7975 bfd_boolean use_rela;
7976
7977 /* Find a dynamic reloc section. */
7978 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7979 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7980 if (rela_dyn != NULL && rela_dyn->size > 0
7981 && rel_dyn != NULL && rel_dyn->size > 0)
7982 {
7983 bfd_boolean use_rela_initialised = FALSE;
7984
7985 /* This is just here to stop gcc from complaining.
7986 It's initialization checking code is not perfect. */
7987 use_rela = TRUE;
7988
7989 /* Both sections are present. Examine the sizes
7990 of the indirect sections to help us choose. */
7991 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7992 if (lo->type == bfd_indirect_link_order)
7993 {
7994 asection *o = lo->u.indirect.section;
7995
7996 if ((o->size % bed->s->sizeof_rela) == 0)
7997 {
7998 if ((o->size % bed->s->sizeof_rel) == 0)
7999 /* Section size is divisible by both rel and rela sizes.
8000 It is of no help to us. */
8001 ;
8002 else
8003 {
8004 /* Section size is only divisible by rela. */
8005 if (use_rela_initialised && (use_rela == FALSE))
8006 {
8007 _bfd_error_handler
8008 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8009 bfd_set_error (bfd_error_invalid_operation);
8010 return 0;
8011 }
8012 else
8013 {
8014 use_rela = TRUE;
8015 use_rela_initialised = TRUE;
8016 }
8017 }
8018 }
8019 else if ((o->size % bed->s->sizeof_rel) == 0)
8020 {
8021 /* Section size is only divisible by rel. */
8022 if (use_rela_initialised && (use_rela == TRUE))
8023 {
8024 _bfd_error_handler
8025 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8026 bfd_set_error (bfd_error_invalid_operation);
8027 return 0;
8028 }
8029 else
8030 {
8031 use_rela = FALSE;
8032 use_rela_initialised = TRUE;
8033 }
8034 }
8035 else
8036 {
8037 /* The section size is not divisible by either - something is wrong. */
8038 _bfd_error_handler
8039 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8040 bfd_set_error (bfd_error_invalid_operation);
8041 return 0;
8042 }
8043 }
8044
8045 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8046 if (lo->type == bfd_indirect_link_order)
8047 {
8048 asection *o = lo->u.indirect.section;
8049
8050 if ((o->size % bed->s->sizeof_rela) == 0)
8051 {
8052 if ((o->size % bed->s->sizeof_rel) == 0)
8053 /* Section size is divisible by both rel and rela sizes.
8054 It is of no help to us. */
8055 ;
8056 else
8057 {
8058 /* Section size is only divisible by rela. */
8059 if (use_rela_initialised && (use_rela == FALSE))
8060 {
8061 _bfd_error_handler
8062 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8063 bfd_set_error (bfd_error_invalid_operation);
8064 return 0;
8065 }
8066 else
8067 {
8068 use_rela = TRUE;
8069 use_rela_initialised = TRUE;
8070 }
8071 }
8072 }
8073 else if ((o->size % bed->s->sizeof_rel) == 0)
8074 {
8075 /* Section size is only divisible by rel. */
8076 if (use_rela_initialised && (use_rela == TRUE))
8077 {
8078 _bfd_error_handler
8079 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8080 bfd_set_error (bfd_error_invalid_operation);
8081 return 0;
8082 }
8083 else
8084 {
8085 use_rela = FALSE;
8086 use_rela_initialised = TRUE;
8087 }
8088 }
8089 else
8090 {
8091 /* The section size is not divisible by either - something is wrong. */
8092 _bfd_error_handler
8093 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8094 bfd_set_error (bfd_error_invalid_operation);
8095 return 0;
8096 }
8097 }
8098
8099 if (! use_rela_initialised)
8100 /* Make a guess. */
8101 use_rela = TRUE;
8102 }
8103 else if (rela_dyn != NULL && rela_dyn->size > 0)
8104 use_rela = TRUE;
8105 else if (rel_dyn != NULL && rel_dyn->size > 0)
8106 use_rela = FALSE;
8107 else
8108 return 0;
8109
8110 if (use_rela)
8111 {
8112 dynamic_relocs = rela_dyn;
8113 ext_size = bed->s->sizeof_rela;
8114 swap_in = bed->s->swap_reloca_in;
8115 swap_out = bed->s->swap_reloca_out;
8116 }
8117 else
8118 {
8119 dynamic_relocs = rel_dyn;
8120 ext_size = bed->s->sizeof_rel;
8121 swap_in = bed->s->swap_reloc_in;
8122 swap_out = bed->s->swap_reloc_out;
8123 }
8124
8125 size = 0;
8126 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8127 if (lo->type == bfd_indirect_link_order)
8128 size += lo->u.indirect.section->size;
8129
8130 if (size != dynamic_relocs->size)
8131 return 0;
8132
8133 sort_elt = (sizeof (struct elf_link_sort_rela)
8134 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8135
8136 count = dynamic_relocs->size / ext_size;
8137 sort = bfd_zmalloc (sort_elt * count);
8138
8139 if (sort == NULL)
8140 {
8141 (*info->callbacks->warning)
8142 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8143 return 0;
8144 }
8145
8146 if (bed->s->arch_size == 32)
8147 r_sym_mask = ~(bfd_vma) 0xff;
8148 else
8149 r_sym_mask = ~(bfd_vma) 0xffffffff;
8150
8151 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8152 if (lo->type == bfd_indirect_link_order)
8153 {
8154 bfd_byte *erel, *erelend;
8155 asection *o = lo->u.indirect.section;
8156
8157 if (o->contents == NULL && o->size != 0)
8158 {
8159 /* This is a reloc section that is being handled as a normal
8160 section. See bfd_section_from_shdr. We can't combine
8161 relocs in this case. */
8162 free (sort);
8163 return 0;
8164 }
8165 erel = o->contents;
8166 erelend = o->contents + o->size;
8167 p = sort + o->output_offset / ext_size * sort_elt;
8168
8169 while (erel < erelend)
8170 {
8171 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8172
8173 (*swap_in) (abfd, erel, s->rela);
8174 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8175 s->u.sym_mask = r_sym_mask;
8176 p += sort_elt;
8177 erel += ext_size;
8178 }
8179 }
8180
8181 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8182
8183 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8184 {
8185 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8186 if (s->type != reloc_class_relative)
8187 break;
8188 }
8189 ret = i;
8190 s_non_relative = p;
8191
8192 sq = (struct elf_link_sort_rela *) s_non_relative;
8193 for (; i < count; i++, p += sort_elt)
8194 {
8195 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8196 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8197 sq = sp;
8198 sp->u.offset = sq->rela->r_offset;
8199 }
8200
8201 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8202
8203 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8204 if (lo->type == bfd_indirect_link_order)
8205 {
8206 bfd_byte *erel, *erelend;
8207 asection *o = lo->u.indirect.section;
8208
8209 erel = o->contents;
8210 erelend = o->contents + o->size;
8211 p = sort + o->output_offset / ext_size * sort_elt;
8212 while (erel < erelend)
8213 {
8214 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8215 (*swap_out) (abfd, s->rela, erel);
8216 p += sort_elt;
8217 erel += ext_size;
8218 }
8219 }
8220
8221 free (sort);
8222 *psec = dynamic_relocs;
8223 return ret;
8224 }
8225
8226 /* Flush the output symbols to the file. */
8227
8228 static bfd_boolean
8229 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8230 const struct elf_backend_data *bed)
8231 {
8232 if (finfo->symbuf_count > 0)
8233 {
8234 Elf_Internal_Shdr *hdr;
8235 file_ptr pos;
8236 bfd_size_type amt;
8237
8238 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8239 pos = hdr->sh_offset + hdr->sh_size;
8240 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8241 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8242 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8243 return FALSE;
8244
8245 hdr->sh_size += amt;
8246 finfo->symbuf_count = 0;
8247 }
8248
8249 return TRUE;
8250 }
8251
8252 /* Add a symbol to the output symbol table. */
8253
8254 static bfd_boolean
8255 elf_link_output_sym (struct elf_final_link_info *finfo,
8256 const char *name,
8257 Elf_Internal_Sym *elfsym,
8258 asection *input_sec,
8259 struct elf_link_hash_entry *h)
8260 {
8261 bfd_byte *dest;
8262 Elf_External_Sym_Shndx *destshndx;
8263 bfd_boolean (*output_symbol_hook)
8264 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8265 struct elf_link_hash_entry *);
8266 const struct elf_backend_data *bed;
8267
8268 bed = get_elf_backend_data (finfo->output_bfd);
8269 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8270 if (output_symbol_hook != NULL)
8271 {
8272 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8273 return FALSE;
8274 }
8275
8276 if (name == NULL || *name == '\0')
8277 elfsym->st_name = 0;
8278 else if (input_sec->flags & SEC_EXCLUDE)
8279 elfsym->st_name = 0;
8280 else
8281 {
8282 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8283 name, TRUE, FALSE);
8284 if (elfsym->st_name == (unsigned long) -1)
8285 return FALSE;
8286 }
8287
8288 if (finfo->symbuf_count >= finfo->symbuf_size)
8289 {
8290 if (! elf_link_flush_output_syms (finfo, bed))
8291 return FALSE;
8292 }
8293
8294 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8295 destshndx = finfo->symshndxbuf;
8296 if (destshndx != NULL)
8297 {
8298 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8299 {
8300 bfd_size_type amt;
8301
8302 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8303 destshndx = bfd_realloc (destshndx, amt * 2);
8304 if (destshndx == NULL)
8305 return FALSE;
8306 finfo->symshndxbuf = destshndx;
8307 memset ((char *) destshndx + amt, 0, amt);
8308 finfo->shndxbuf_size *= 2;
8309 }
8310 destshndx += bfd_get_symcount (finfo->output_bfd);
8311 }
8312
8313 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8314 finfo->symbuf_count += 1;
8315 bfd_get_symcount (finfo->output_bfd) += 1;
8316
8317 return TRUE;
8318 }
8319
8320 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8321
8322 static bfd_boolean
8323 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8324 {
8325 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8326 && sym->st_shndx < SHN_LORESERVE)
8327 {
8328 /* The gABI doesn't support dynamic symbols in output sections
8329 beyond 64k. */
8330 (*_bfd_error_handler)
8331 (_("%B: Too many sections: %d (>= %d)"),
8332 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8333 bfd_set_error (bfd_error_nonrepresentable_section);
8334 return FALSE;
8335 }
8336 return TRUE;
8337 }
8338
8339 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8340 allowing an unsatisfied unversioned symbol in the DSO to match a
8341 versioned symbol that would normally require an explicit version.
8342 We also handle the case that a DSO references a hidden symbol
8343 which may be satisfied by a versioned symbol in another DSO. */
8344
8345 static bfd_boolean
8346 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8347 const struct elf_backend_data *bed,
8348 struct elf_link_hash_entry *h)
8349 {
8350 bfd *abfd;
8351 struct elf_link_loaded_list *loaded;
8352
8353 if (!is_elf_hash_table (info->hash))
8354 return FALSE;
8355
8356 switch (h->root.type)
8357 {
8358 default:
8359 abfd = NULL;
8360 break;
8361
8362 case bfd_link_hash_undefined:
8363 case bfd_link_hash_undefweak:
8364 abfd = h->root.u.undef.abfd;
8365 if ((abfd->flags & DYNAMIC) == 0
8366 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8367 return FALSE;
8368 break;
8369
8370 case bfd_link_hash_defined:
8371 case bfd_link_hash_defweak:
8372 abfd = h->root.u.def.section->owner;
8373 break;
8374
8375 case bfd_link_hash_common:
8376 abfd = h->root.u.c.p->section->owner;
8377 break;
8378 }
8379 BFD_ASSERT (abfd != NULL);
8380
8381 for (loaded = elf_hash_table (info)->loaded;
8382 loaded != NULL;
8383 loaded = loaded->next)
8384 {
8385 bfd *input;
8386 Elf_Internal_Shdr *hdr;
8387 bfd_size_type symcount;
8388 bfd_size_type extsymcount;
8389 bfd_size_type extsymoff;
8390 Elf_Internal_Shdr *versymhdr;
8391 Elf_Internal_Sym *isym;
8392 Elf_Internal_Sym *isymend;
8393 Elf_Internal_Sym *isymbuf;
8394 Elf_External_Versym *ever;
8395 Elf_External_Versym *extversym;
8396
8397 input = loaded->abfd;
8398
8399 /* We check each DSO for a possible hidden versioned definition. */
8400 if (input == abfd
8401 || (input->flags & DYNAMIC) == 0
8402 || elf_dynversym (input) == 0)
8403 continue;
8404
8405 hdr = &elf_tdata (input)->dynsymtab_hdr;
8406
8407 symcount = hdr->sh_size / bed->s->sizeof_sym;
8408 if (elf_bad_symtab (input))
8409 {
8410 extsymcount = symcount;
8411 extsymoff = 0;
8412 }
8413 else
8414 {
8415 extsymcount = symcount - hdr->sh_info;
8416 extsymoff = hdr->sh_info;
8417 }
8418
8419 if (extsymcount == 0)
8420 continue;
8421
8422 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8423 NULL, NULL, NULL);
8424 if (isymbuf == NULL)
8425 return FALSE;
8426
8427 /* Read in any version definitions. */
8428 versymhdr = &elf_tdata (input)->dynversym_hdr;
8429 extversym = bfd_malloc (versymhdr->sh_size);
8430 if (extversym == NULL)
8431 goto error_ret;
8432
8433 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8434 || (bfd_bread (extversym, versymhdr->sh_size, input)
8435 != versymhdr->sh_size))
8436 {
8437 free (extversym);
8438 error_ret:
8439 free (isymbuf);
8440 return FALSE;
8441 }
8442
8443 ever = extversym + extsymoff;
8444 isymend = isymbuf + extsymcount;
8445 for (isym = isymbuf; isym < isymend; isym++, ever++)
8446 {
8447 const char *name;
8448 Elf_Internal_Versym iver;
8449 unsigned short version_index;
8450
8451 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8452 || isym->st_shndx == SHN_UNDEF)
8453 continue;
8454
8455 name = bfd_elf_string_from_elf_section (input,
8456 hdr->sh_link,
8457 isym->st_name);
8458 if (strcmp (name, h->root.root.string) != 0)
8459 continue;
8460
8461 _bfd_elf_swap_versym_in (input, ever, &iver);
8462
8463 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8464 {
8465 /* If we have a non-hidden versioned sym, then it should
8466 have provided a definition for the undefined sym. */
8467 abort ();
8468 }
8469
8470 version_index = iver.vs_vers & VERSYM_VERSION;
8471 if (version_index == 1 || version_index == 2)
8472 {
8473 /* This is the base or first version. We can use it. */
8474 free (extversym);
8475 free (isymbuf);
8476 return TRUE;
8477 }
8478 }
8479
8480 free (extversym);
8481 free (isymbuf);
8482 }
8483
8484 return FALSE;
8485 }
8486
8487 /* Add an external symbol to the symbol table. This is called from
8488 the hash table traversal routine. When generating a shared object,
8489 we go through the symbol table twice. The first time we output
8490 anything that might have been forced to local scope in a version
8491 script. The second time we output the symbols that are still
8492 global symbols. */
8493
8494 static bfd_boolean
8495 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8496 {
8497 struct elf_outext_info *eoinfo = data;
8498 struct elf_final_link_info *finfo = eoinfo->finfo;
8499 bfd_boolean strip;
8500 Elf_Internal_Sym sym;
8501 asection *input_sec;
8502 const struct elf_backend_data *bed;
8503
8504 if (h->root.type == bfd_link_hash_warning)
8505 {
8506 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8507 if (h->root.type == bfd_link_hash_new)
8508 return TRUE;
8509 }
8510
8511 /* Decide whether to output this symbol in this pass. */
8512 if (eoinfo->localsyms)
8513 {
8514 if (!h->forced_local)
8515 return TRUE;
8516 }
8517 else
8518 {
8519 if (h->forced_local)
8520 return TRUE;
8521 }
8522
8523 bed = get_elf_backend_data (finfo->output_bfd);
8524
8525 if (h->root.type == bfd_link_hash_undefined)
8526 {
8527 /* If we have an undefined symbol reference here then it must have
8528 come from a shared library that is being linked in. (Undefined
8529 references in regular files have already been handled). */
8530 bfd_boolean ignore_undef = FALSE;
8531
8532 /* Some symbols may be special in that the fact that they're
8533 undefined can be safely ignored - let backend determine that. */
8534 if (bed->elf_backend_ignore_undef_symbol)
8535 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8536
8537 /* If we are reporting errors for this situation then do so now. */
8538 if (ignore_undef == FALSE
8539 && h->ref_dynamic
8540 && ! h->ref_regular
8541 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8542 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8543 {
8544 if (! (finfo->info->callbacks->undefined_symbol
8545 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8546 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8547 {
8548 eoinfo->failed = TRUE;
8549 return FALSE;
8550 }
8551 }
8552 }
8553
8554 /* We should also warn if a forced local symbol is referenced from
8555 shared libraries. */
8556 if (! finfo->info->relocatable
8557 && (! finfo->info->shared)
8558 && h->forced_local
8559 && h->ref_dynamic
8560 && !h->dynamic_def
8561 && !h->dynamic_weak
8562 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8563 {
8564 (*_bfd_error_handler)
8565 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8566 finfo->output_bfd,
8567 h->root.u.def.section == bfd_abs_section_ptr
8568 ? finfo->output_bfd : h->root.u.def.section->owner,
8569 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8570 ? "internal"
8571 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8572 ? "hidden" : "local",
8573 h->root.root.string);
8574 eoinfo->failed = TRUE;
8575 return FALSE;
8576 }
8577
8578 /* We don't want to output symbols that have never been mentioned by
8579 a regular file, or that we have been told to strip. However, if
8580 h->indx is set to -2, the symbol is used by a reloc and we must
8581 output it. */
8582 if (h->indx == -2)
8583 strip = FALSE;
8584 else if ((h->def_dynamic
8585 || h->ref_dynamic
8586 || h->root.type == bfd_link_hash_new)
8587 && !h->def_regular
8588 && !h->ref_regular)
8589 strip = TRUE;
8590 else if (finfo->info->strip == strip_all)
8591 strip = TRUE;
8592 else if (finfo->info->strip == strip_some
8593 && bfd_hash_lookup (finfo->info->keep_hash,
8594 h->root.root.string, FALSE, FALSE) == NULL)
8595 strip = TRUE;
8596 else if (finfo->info->strip_discarded
8597 && (h->root.type == bfd_link_hash_defined
8598 || h->root.type == bfd_link_hash_defweak)
8599 && elf_discarded_section (h->root.u.def.section))
8600 strip = TRUE;
8601 else
8602 strip = FALSE;
8603
8604 /* If we're stripping it, and it's not a dynamic symbol, there's
8605 nothing else to do unless it is a forced local symbol. */
8606 if (strip
8607 && h->dynindx == -1
8608 && !h->forced_local)
8609 return TRUE;
8610
8611 sym.st_value = 0;
8612 sym.st_size = h->size;
8613 sym.st_other = h->other;
8614 if (h->forced_local)
8615 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8616 else if (h->root.type == bfd_link_hash_undefweak
8617 || h->root.type == bfd_link_hash_defweak)
8618 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8619 else
8620 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8621
8622 switch (h->root.type)
8623 {
8624 default:
8625 case bfd_link_hash_new:
8626 case bfd_link_hash_warning:
8627 abort ();
8628 return FALSE;
8629
8630 case bfd_link_hash_undefined:
8631 case bfd_link_hash_undefweak:
8632 input_sec = bfd_und_section_ptr;
8633 sym.st_shndx = SHN_UNDEF;
8634 break;
8635
8636 case bfd_link_hash_defined:
8637 case bfd_link_hash_defweak:
8638 {
8639 input_sec = h->root.u.def.section;
8640 if (input_sec->output_section != NULL)
8641 {
8642 sym.st_shndx =
8643 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8644 input_sec->output_section);
8645 if (sym.st_shndx == SHN_BAD)
8646 {
8647 (*_bfd_error_handler)
8648 (_("%B: could not find output section %A for input section %A"),
8649 finfo->output_bfd, input_sec->output_section, input_sec);
8650 eoinfo->failed = TRUE;
8651 return FALSE;
8652 }
8653
8654 /* ELF symbols in relocatable files are section relative,
8655 but in nonrelocatable files they are virtual
8656 addresses. */
8657 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8658 if (! finfo->info->relocatable)
8659 {
8660 sym.st_value += input_sec->output_section->vma;
8661 if (h->type == STT_TLS)
8662 {
8663 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8664 if (tls_sec != NULL)
8665 sym.st_value -= tls_sec->vma;
8666 else
8667 {
8668 /* The TLS section may have been garbage collected. */
8669 BFD_ASSERT (finfo->info->gc_sections
8670 && !input_sec->gc_mark);
8671 }
8672 }
8673 }
8674 }
8675 else
8676 {
8677 BFD_ASSERT (input_sec->owner == NULL
8678 || (input_sec->owner->flags & DYNAMIC) != 0);
8679 sym.st_shndx = SHN_UNDEF;
8680 input_sec = bfd_und_section_ptr;
8681 }
8682 }
8683 break;
8684
8685 case bfd_link_hash_common:
8686 input_sec = h->root.u.c.p->section;
8687 sym.st_shndx = bed->common_section_index (input_sec);
8688 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8689 break;
8690
8691 case bfd_link_hash_indirect:
8692 /* These symbols are created by symbol versioning. They point
8693 to the decorated version of the name. For example, if the
8694 symbol foo@@GNU_1.2 is the default, which should be used when
8695 foo is used with no version, then we add an indirect symbol
8696 foo which points to foo@@GNU_1.2. We ignore these symbols,
8697 since the indirected symbol is already in the hash table. */
8698 return TRUE;
8699 }
8700
8701 /* Give the processor backend a chance to tweak the symbol value,
8702 and also to finish up anything that needs to be done for this
8703 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8704 forced local syms when non-shared is due to a historical quirk. */
8705 if ((h->dynindx != -1
8706 || h->forced_local)
8707 && ((finfo->info->shared
8708 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8709 || h->root.type != bfd_link_hash_undefweak))
8710 || !h->forced_local)
8711 && elf_hash_table (finfo->info)->dynamic_sections_created)
8712 {
8713 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8714 (finfo->output_bfd, finfo->info, h, &sym)))
8715 {
8716 eoinfo->failed = TRUE;
8717 return FALSE;
8718 }
8719 }
8720
8721 /* If we are marking the symbol as undefined, and there are no
8722 non-weak references to this symbol from a regular object, then
8723 mark the symbol as weak undefined; if there are non-weak
8724 references, mark the symbol as strong. We can't do this earlier,
8725 because it might not be marked as undefined until the
8726 finish_dynamic_symbol routine gets through with it. */
8727 if (sym.st_shndx == SHN_UNDEF
8728 && h->ref_regular
8729 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8730 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8731 {
8732 int bindtype;
8733
8734 if (h->ref_regular_nonweak)
8735 bindtype = STB_GLOBAL;
8736 else
8737 bindtype = STB_WEAK;
8738 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8739 }
8740
8741 /* If this is a symbol defined in a dynamic library, don't use the
8742 symbol size from the dynamic library. Relinking an executable
8743 against a new library may introduce gratuitous changes in the
8744 executable's symbols if we keep the size. */
8745 if (sym.st_shndx == SHN_UNDEF
8746 && !h->def_regular
8747 && h->def_dynamic)
8748 sym.st_size = 0;
8749
8750 /* If a non-weak symbol with non-default visibility is not defined
8751 locally, it is a fatal error. */
8752 if (! finfo->info->relocatable
8753 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8754 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8755 && h->root.type == bfd_link_hash_undefined
8756 && !h->def_regular)
8757 {
8758 (*_bfd_error_handler)
8759 (_("%B: %s symbol `%s' isn't defined"),
8760 finfo->output_bfd,
8761 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8762 ? "protected"
8763 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8764 ? "internal" : "hidden",
8765 h->root.root.string);
8766 eoinfo->failed = TRUE;
8767 return FALSE;
8768 }
8769
8770 /* If this symbol should be put in the .dynsym section, then put it
8771 there now. We already know the symbol index. We also fill in
8772 the entry in the .hash section. */
8773 if (h->dynindx != -1
8774 && elf_hash_table (finfo->info)->dynamic_sections_created)
8775 {
8776 bfd_byte *esym;
8777
8778 sym.st_name = h->dynstr_index;
8779 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8780 if (! check_dynsym (finfo->output_bfd, &sym))
8781 {
8782 eoinfo->failed = TRUE;
8783 return FALSE;
8784 }
8785 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8786
8787 if (finfo->hash_sec != NULL)
8788 {
8789 size_t hash_entry_size;
8790 bfd_byte *bucketpos;
8791 bfd_vma chain;
8792 size_t bucketcount;
8793 size_t bucket;
8794
8795 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8796 bucket = h->u.elf_hash_value % bucketcount;
8797
8798 hash_entry_size
8799 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8800 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8801 + (bucket + 2) * hash_entry_size);
8802 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8803 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8804 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8805 ((bfd_byte *) finfo->hash_sec->contents
8806 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8807 }
8808
8809 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8810 {
8811 Elf_Internal_Versym iversym;
8812 Elf_External_Versym *eversym;
8813
8814 if (!h->def_regular)
8815 {
8816 if (h->verinfo.verdef == NULL)
8817 iversym.vs_vers = 0;
8818 else
8819 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8820 }
8821 else
8822 {
8823 if (h->verinfo.vertree == NULL)
8824 iversym.vs_vers = 1;
8825 else
8826 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8827 if (finfo->info->create_default_symver)
8828 iversym.vs_vers++;
8829 }
8830
8831 if (h->hidden)
8832 iversym.vs_vers |= VERSYM_HIDDEN;
8833
8834 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8835 eversym += h->dynindx;
8836 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8837 }
8838 }
8839
8840 /* If we're stripping it, then it was just a dynamic symbol, and
8841 there's nothing else to do. */
8842 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8843 return TRUE;
8844
8845 h->indx = bfd_get_symcount (finfo->output_bfd);
8846
8847 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8848 {
8849 eoinfo->failed = TRUE;
8850 return FALSE;
8851 }
8852
8853 return TRUE;
8854 }
8855
8856 /* Return TRUE if special handling is done for relocs in SEC against
8857 symbols defined in discarded sections. */
8858
8859 static bfd_boolean
8860 elf_section_ignore_discarded_relocs (asection *sec)
8861 {
8862 const struct elf_backend_data *bed;
8863
8864 switch (sec->sec_info_type)
8865 {
8866 case ELF_INFO_TYPE_STABS:
8867 case ELF_INFO_TYPE_EH_FRAME:
8868 return TRUE;
8869 default:
8870 break;
8871 }
8872
8873 bed = get_elf_backend_data (sec->owner);
8874 if (bed->elf_backend_ignore_discarded_relocs != NULL
8875 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8876 return TRUE;
8877
8878 return FALSE;
8879 }
8880
8881 /* Return a mask saying how ld should treat relocations in SEC against
8882 symbols defined in discarded sections. If this function returns
8883 COMPLAIN set, ld will issue a warning message. If this function
8884 returns PRETEND set, and the discarded section was link-once and the
8885 same size as the kept link-once section, ld will pretend that the
8886 symbol was actually defined in the kept section. Otherwise ld will
8887 zero the reloc (at least that is the intent, but some cooperation by
8888 the target dependent code is needed, particularly for REL targets). */
8889
8890 unsigned int
8891 _bfd_elf_default_action_discarded (asection *sec)
8892 {
8893 if (sec->flags & SEC_DEBUGGING)
8894 return PRETEND;
8895
8896 if (strcmp (".eh_frame", sec->name) == 0)
8897 return 0;
8898
8899 if (strcmp (".gcc_except_table", sec->name) == 0)
8900 return 0;
8901
8902 return COMPLAIN | PRETEND;
8903 }
8904
8905 /* Find a match between a section and a member of a section group. */
8906
8907 static asection *
8908 match_group_member (asection *sec, asection *group,
8909 struct bfd_link_info *info)
8910 {
8911 asection *first = elf_next_in_group (group);
8912 asection *s = first;
8913
8914 while (s != NULL)
8915 {
8916 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8917 return s;
8918
8919 s = elf_next_in_group (s);
8920 if (s == first)
8921 break;
8922 }
8923
8924 return NULL;
8925 }
8926
8927 /* Check if the kept section of a discarded section SEC can be used
8928 to replace it. Return the replacement if it is OK. Otherwise return
8929 NULL. */
8930
8931 asection *
8932 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8933 {
8934 asection *kept;
8935
8936 kept = sec->kept_section;
8937 if (kept != NULL)
8938 {
8939 if ((kept->flags & SEC_GROUP) != 0)
8940 kept = match_group_member (sec, kept, info);
8941 if (kept != NULL
8942 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8943 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8944 kept = NULL;
8945 sec->kept_section = kept;
8946 }
8947 return kept;
8948 }
8949
8950 /* Link an input file into the linker output file. This function
8951 handles all the sections and relocations of the input file at once.
8952 This is so that we only have to read the local symbols once, and
8953 don't have to keep them in memory. */
8954
8955 static bfd_boolean
8956 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8957 {
8958 int (*relocate_section)
8959 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8960 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8961 bfd *output_bfd;
8962 Elf_Internal_Shdr *symtab_hdr;
8963 size_t locsymcount;
8964 size_t extsymoff;
8965 Elf_Internal_Sym *isymbuf;
8966 Elf_Internal_Sym *isym;
8967 Elf_Internal_Sym *isymend;
8968 long *pindex;
8969 asection **ppsection;
8970 asection *o;
8971 const struct elf_backend_data *bed;
8972 struct elf_link_hash_entry **sym_hashes;
8973
8974 output_bfd = finfo->output_bfd;
8975 bed = get_elf_backend_data (output_bfd);
8976 relocate_section = bed->elf_backend_relocate_section;
8977
8978 /* If this is a dynamic object, we don't want to do anything here:
8979 we don't want the local symbols, and we don't want the section
8980 contents. */
8981 if ((input_bfd->flags & DYNAMIC) != 0)
8982 return TRUE;
8983
8984 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8985 if (elf_bad_symtab (input_bfd))
8986 {
8987 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8988 extsymoff = 0;
8989 }
8990 else
8991 {
8992 locsymcount = symtab_hdr->sh_info;
8993 extsymoff = symtab_hdr->sh_info;
8994 }
8995
8996 /* Read the local symbols. */
8997 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8998 if (isymbuf == NULL && locsymcount != 0)
8999 {
9000 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9001 finfo->internal_syms,
9002 finfo->external_syms,
9003 finfo->locsym_shndx);
9004 if (isymbuf == NULL)
9005 return FALSE;
9006 }
9007
9008 /* Find local symbol sections and adjust values of symbols in
9009 SEC_MERGE sections. Write out those local symbols we know are
9010 going into the output file. */
9011 isymend = isymbuf + locsymcount;
9012 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9013 isym < isymend;
9014 isym++, pindex++, ppsection++)
9015 {
9016 asection *isec;
9017 const char *name;
9018 Elf_Internal_Sym osym;
9019
9020 *pindex = -1;
9021
9022 if (elf_bad_symtab (input_bfd))
9023 {
9024 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9025 {
9026 *ppsection = NULL;
9027 continue;
9028 }
9029 }
9030
9031 if (isym->st_shndx == SHN_UNDEF)
9032 isec = bfd_und_section_ptr;
9033 else if (isym->st_shndx == SHN_ABS)
9034 isec = bfd_abs_section_ptr;
9035 else if (isym->st_shndx == SHN_COMMON)
9036 isec = bfd_com_section_ptr;
9037 else
9038 {
9039 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9040 if (isec == NULL)
9041 {
9042 /* Don't attempt to output symbols with st_shnx in the
9043 reserved range other than SHN_ABS and SHN_COMMON. */
9044 *ppsection = NULL;
9045 continue;
9046 }
9047 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9048 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9049 isym->st_value =
9050 _bfd_merged_section_offset (output_bfd, &isec,
9051 elf_section_data (isec)->sec_info,
9052 isym->st_value);
9053 }
9054
9055 *ppsection = isec;
9056
9057 /* Don't output the first, undefined, symbol. */
9058 if (ppsection == finfo->sections)
9059 continue;
9060
9061 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9062 {
9063 /* We never output section symbols. Instead, we use the
9064 section symbol of the corresponding section in the output
9065 file. */
9066 continue;
9067 }
9068
9069 /* If we are stripping all symbols, we don't want to output this
9070 one. */
9071 if (finfo->info->strip == strip_all)
9072 continue;
9073
9074 /* If we are discarding all local symbols, we don't want to
9075 output this one. If we are generating a relocatable output
9076 file, then some of the local symbols may be required by
9077 relocs; we output them below as we discover that they are
9078 needed. */
9079 if (finfo->info->discard == discard_all)
9080 continue;
9081
9082 /* If this symbol is defined in a section which we are
9083 discarding, we don't need to keep it. */
9084 if (isym->st_shndx != SHN_UNDEF
9085 && isym->st_shndx < SHN_LORESERVE
9086 && bfd_section_removed_from_list (output_bfd,
9087 isec->output_section))
9088 continue;
9089
9090 /* Get the name of the symbol. */
9091 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9092 isym->st_name);
9093 if (name == NULL)
9094 return FALSE;
9095
9096 /* See if we are discarding symbols with this name. */
9097 if ((finfo->info->strip == strip_some
9098 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9099 == NULL))
9100 || (((finfo->info->discard == discard_sec_merge
9101 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9102 || finfo->info->discard == discard_l)
9103 && bfd_is_local_label_name (input_bfd, name)))
9104 continue;
9105
9106 /* If we get here, we are going to output this symbol. */
9107
9108 osym = *isym;
9109
9110 /* Adjust the section index for the output file. */
9111 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9112 isec->output_section);
9113 if (osym.st_shndx == SHN_BAD)
9114 return FALSE;
9115
9116 *pindex = bfd_get_symcount (output_bfd);
9117
9118 /* ELF symbols in relocatable files are section relative, but
9119 in executable files they are virtual addresses. Note that
9120 this code assumes that all ELF sections have an associated
9121 BFD section with a reasonable value for output_offset; below
9122 we assume that they also have a reasonable value for
9123 output_section. Any special sections must be set up to meet
9124 these requirements. */
9125 osym.st_value += isec->output_offset;
9126 if (! finfo->info->relocatable)
9127 {
9128 osym.st_value += isec->output_section->vma;
9129 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9130 {
9131 /* STT_TLS symbols are relative to PT_TLS segment base. */
9132 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9133 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9134 }
9135 }
9136
9137 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9138 return FALSE;
9139 }
9140
9141 /* Relocate the contents of each section. */
9142 sym_hashes = elf_sym_hashes (input_bfd);
9143 for (o = input_bfd->sections; o != NULL; o = o->next)
9144 {
9145 bfd_byte *contents;
9146
9147 if (! o->linker_mark)
9148 {
9149 /* This section was omitted from the link. */
9150 continue;
9151 }
9152
9153 if (finfo->info->relocatable
9154 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9155 {
9156 /* Deal with the group signature symbol. */
9157 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9158 unsigned long symndx = sec_data->this_hdr.sh_info;
9159 asection *osec = o->output_section;
9160
9161 if (symndx >= locsymcount
9162 || (elf_bad_symtab (input_bfd)
9163 && finfo->sections[symndx] == NULL))
9164 {
9165 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9166 while (h->root.type == bfd_link_hash_indirect
9167 || h->root.type == bfd_link_hash_warning)
9168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9169 /* Arrange for symbol to be output. */
9170 h->indx = -2;
9171 elf_section_data (osec)->this_hdr.sh_info = -2;
9172 }
9173 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9174 {
9175 /* We'll use the output section target_index. */
9176 asection *sec = finfo->sections[symndx]->output_section;
9177 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9178 }
9179 else
9180 {
9181 if (finfo->indices[symndx] == -1)
9182 {
9183 /* Otherwise output the local symbol now. */
9184 Elf_Internal_Sym sym = isymbuf[symndx];
9185 asection *sec = finfo->sections[symndx]->output_section;
9186 const char *name;
9187
9188 name = bfd_elf_string_from_elf_section (input_bfd,
9189 symtab_hdr->sh_link,
9190 sym.st_name);
9191 if (name == NULL)
9192 return FALSE;
9193
9194 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9195 sec);
9196 if (sym.st_shndx == SHN_BAD)
9197 return FALSE;
9198
9199 sym.st_value += o->output_offset;
9200
9201 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9202 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9203 return FALSE;
9204 }
9205 elf_section_data (osec)->this_hdr.sh_info
9206 = finfo->indices[symndx];
9207 }
9208 }
9209
9210 if ((o->flags & SEC_HAS_CONTENTS) == 0
9211 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9212 continue;
9213
9214 if ((o->flags & SEC_LINKER_CREATED) != 0)
9215 {
9216 /* Section was created by _bfd_elf_link_create_dynamic_sections
9217 or somesuch. */
9218 continue;
9219 }
9220
9221 /* Get the contents of the section. They have been cached by a
9222 relaxation routine. Note that o is a section in an input
9223 file, so the contents field will not have been set by any of
9224 the routines which work on output files. */
9225 if (elf_section_data (o)->this_hdr.contents != NULL)
9226 contents = elf_section_data (o)->this_hdr.contents;
9227 else
9228 {
9229 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9230
9231 contents = finfo->contents;
9232 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9233 return FALSE;
9234 }
9235
9236 if ((o->flags & SEC_RELOC) != 0)
9237 {
9238 Elf_Internal_Rela *internal_relocs;
9239 Elf_Internal_Rela *rel, *relend;
9240 bfd_vma r_type_mask;
9241 int r_sym_shift;
9242 int action_discarded;
9243 int ret;
9244
9245 /* Get the swapped relocs. */
9246 internal_relocs
9247 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9248 finfo->internal_relocs, FALSE);
9249 if (internal_relocs == NULL
9250 && o->reloc_count > 0)
9251 return FALSE;
9252
9253 if (bed->s->arch_size == 32)
9254 {
9255 r_type_mask = 0xff;
9256 r_sym_shift = 8;
9257 }
9258 else
9259 {
9260 r_type_mask = 0xffffffff;
9261 r_sym_shift = 32;
9262 }
9263
9264 action_discarded = -1;
9265 if (!elf_section_ignore_discarded_relocs (o))
9266 action_discarded = (*bed->action_discarded) (o);
9267
9268 /* Run through the relocs evaluating complex reloc symbols and
9269 looking for relocs against symbols from discarded sections
9270 or section symbols from removed link-once sections.
9271 Complain about relocs against discarded sections. Zero
9272 relocs against removed link-once sections. */
9273
9274 rel = internal_relocs;
9275 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9276 for ( ; rel < relend; rel++)
9277 {
9278 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9279 unsigned int s_type;
9280 asection **ps, *sec;
9281 struct elf_link_hash_entry *h = NULL;
9282 const char *sym_name;
9283
9284 if (r_symndx == STN_UNDEF)
9285 continue;
9286
9287 if (r_symndx >= locsymcount
9288 || (elf_bad_symtab (input_bfd)
9289 && finfo->sections[r_symndx] == NULL))
9290 {
9291 h = sym_hashes[r_symndx - extsymoff];
9292
9293 /* Badly formatted input files can contain relocs that
9294 reference non-existant symbols. Check here so that
9295 we do not seg fault. */
9296 if (h == NULL)
9297 {
9298 char buffer [32];
9299
9300 sprintf_vma (buffer, rel->r_info);
9301 (*_bfd_error_handler)
9302 (_("error: %B contains a reloc (0x%s) for section %A "
9303 "that references a non-existent global symbol"),
9304 input_bfd, o, buffer);
9305 bfd_set_error (bfd_error_bad_value);
9306 return FALSE;
9307 }
9308
9309 while (h->root.type == bfd_link_hash_indirect
9310 || h->root.type == bfd_link_hash_warning)
9311 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9312
9313 s_type = h->type;
9314
9315 ps = NULL;
9316 if (h->root.type == bfd_link_hash_defined
9317 || h->root.type == bfd_link_hash_defweak)
9318 ps = &h->root.u.def.section;
9319
9320 sym_name = h->root.root.string;
9321 }
9322 else
9323 {
9324 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9325
9326 s_type = ELF_ST_TYPE (sym->st_info);
9327 ps = &finfo->sections[r_symndx];
9328 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9329 sym, *ps);
9330 }
9331
9332 if ((s_type == STT_RELC || s_type == STT_SRELC)
9333 && !finfo->info->relocatable)
9334 {
9335 bfd_vma val;
9336 bfd_vma dot = (rel->r_offset
9337 + o->output_offset + o->output_section->vma);
9338 #ifdef DEBUG
9339 printf ("Encountered a complex symbol!");
9340 printf (" (input_bfd %s, section %s, reloc %ld\n",
9341 input_bfd->filename, o->name, rel - internal_relocs);
9342 printf (" symbol: idx %8.8lx, name %s\n",
9343 r_symndx, sym_name);
9344 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9345 (unsigned long) rel->r_info,
9346 (unsigned long) rel->r_offset);
9347 #endif
9348 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9349 isymbuf, locsymcount, s_type == STT_SRELC))
9350 return FALSE;
9351
9352 /* Symbol evaluated OK. Update to absolute value. */
9353 set_symbol_value (input_bfd, isymbuf, locsymcount,
9354 r_symndx, val);
9355 continue;
9356 }
9357
9358 if (action_discarded != -1 && ps != NULL)
9359 {
9360 /* Complain if the definition comes from a
9361 discarded section. */
9362 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9363 {
9364 BFD_ASSERT (r_symndx != 0);
9365 if (action_discarded & COMPLAIN)
9366 (*finfo->info->callbacks->einfo)
9367 (_("%X`%s' referenced in section `%A' of %B: "
9368 "defined in discarded section `%A' of %B\n"),
9369 sym_name, o, input_bfd, sec, sec->owner);
9370
9371 /* Try to do the best we can to support buggy old
9372 versions of gcc. Pretend that the symbol is
9373 really defined in the kept linkonce section.
9374 FIXME: This is quite broken. Modifying the
9375 symbol here means we will be changing all later
9376 uses of the symbol, not just in this section. */
9377 if (action_discarded & PRETEND)
9378 {
9379 asection *kept;
9380
9381 kept = _bfd_elf_check_kept_section (sec,
9382 finfo->info);
9383 if (kept != NULL)
9384 {
9385 *ps = kept;
9386 continue;
9387 }
9388 }
9389 }
9390 }
9391 }
9392
9393 /* Relocate the section by invoking a back end routine.
9394
9395 The back end routine is responsible for adjusting the
9396 section contents as necessary, and (if using Rela relocs
9397 and generating a relocatable output file) adjusting the
9398 reloc addend as necessary.
9399
9400 The back end routine does not have to worry about setting
9401 the reloc address or the reloc symbol index.
9402
9403 The back end routine is given a pointer to the swapped in
9404 internal symbols, and can access the hash table entries
9405 for the external symbols via elf_sym_hashes (input_bfd).
9406
9407 When generating relocatable output, the back end routine
9408 must handle STB_LOCAL/STT_SECTION symbols specially. The
9409 output symbol is going to be a section symbol
9410 corresponding to the output section, which will require
9411 the addend to be adjusted. */
9412
9413 ret = (*relocate_section) (output_bfd, finfo->info,
9414 input_bfd, o, contents,
9415 internal_relocs,
9416 isymbuf,
9417 finfo->sections);
9418 if (!ret)
9419 return FALSE;
9420
9421 if (ret == 2
9422 || finfo->info->relocatable
9423 || finfo->info->emitrelocations)
9424 {
9425 Elf_Internal_Rela *irela;
9426 Elf_Internal_Rela *irelaend;
9427 bfd_vma last_offset;
9428 struct elf_link_hash_entry **rel_hash;
9429 struct elf_link_hash_entry **rel_hash_list;
9430 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9431 unsigned int next_erel;
9432 bfd_boolean rela_normal;
9433
9434 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9435 rela_normal = (bed->rela_normal
9436 && (input_rel_hdr->sh_entsize
9437 == bed->s->sizeof_rela));
9438
9439 /* Adjust the reloc addresses and symbol indices. */
9440
9441 irela = internal_relocs;
9442 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9443 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9444 + elf_section_data (o->output_section)->rel_count
9445 + elf_section_data (o->output_section)->rel_count2);
9446 rel_hash_list = rel_hash;
9447 last_offset = o->output_offset;
9448 if (!finfo->info->relocatable)
9449 last_offset += o->output_section->vma;
9450 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9451 {
9452 unsigned long r_symndx;
9453 asection *sec;
9454 Elf_Internal_Sym sym;
9455
9456 if (next_erel == bed->s->int_rels_per_ext_rel)
9457 {
9458 rel_hash++;
9459 next_erel = 0;
9460 }
9461
9462 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9463 finfo->info, o,
9464 irela->r_offset);
9465 if (irela->r_offset >= (bfd_vma) -2)
9466 {
9467 /* This is a reloc for a deleted entry or somesuch.
9468 Turn it into an R_*_NONE reloc, at the same
9469 offset as the last reloc. elf_eh_frame.c and
9470 bfd_elf_discard_info rely on reloc offsets
9471 being ordered. */
9472 irela->r_offset = last_offset;
9473 irela->r_info = 0;
9474 irela->r_addend = 0;
9475 continue;
9476 }
9477
9478 irela->r_offset += o->output_offset;
9479
9480 /* Relocs in an executable have to be virtual addresses. */
9481 if (!finfo->info->relocatable)
9482 irela->r_offset += o->output_section->vma;
9483
9484 last_offset = irela->r_offset;
9485
9486 r_symndx = irela->r_info >> r_sym_shift;
9487 if (r_symndx == STN_UNDEF)
9488 continue;
9489
9490 if (r_symndx >= locsymcount
9491 || (elf_bad_symtab (input_bfd)
9492 && finfo->sections[r_symndx] == NULL))
9493 {
9494 struct elf_link_hash_entry *rh;
9495 unsigned long indx;
9496
9497 /* This is a reloc against a global symbol. We
9498 have not yet output all the local symbols, so
9499 we do not know the symbol index of any global
9500 symbol. We set the rel_hash entry for this
9501 reloc to point to the global hash table entry
9502 for this symbol. The symbol index is then
9503 set at the end of bfd_elf_final_link. */
9504 indx = r_symndx - extsymoff;
9505 rh = elf_sym_hashes (input_bfd)[indx];
9506 while (rh->root.type == bfd_link_hash_indirect
9507 || rh->root.type == bfd_link_hash_warning)
9508 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9509
9510 /* Setting the index to -2 tells
9511 elf_link_output_extsym that this symbol is
9512 used by a reloc. */
9513 BFD_ASSERT (rh->indx < 0);
9514 rh->indx = -2;
9515
9516 *rel_hash = rh;
9517
9518 continue;
9519 }
9520
9521 /* This is a reloc against a local symbol. */
9522
9523 *rel_hash = NULL;
9524 sym = isymbuf[r_symndx];
9525 sec = finfo->sections[r_symndx];
9526 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9527 {
9528 /* I suppose the backend ought to fill in the
9529 section of any STT_SECTION symbol against a
9530 processor specific section. */
9531 r_symndx = 0;
9532 if (bfd_is_abs_section (sec))
9533 ;
9534 else if (sec == NULL || sec->owner == NULL)
9535 {
9536 bfd_set_error (bfd_error_bad_value);
9537 return FALSE;
9538 }
9539 else
9540 {
9541 asection *osec = sec->output_section;
9542
9543 /* If we have discarded a section, the output
9544 section will be the absolute section. In
9545 case of discarded SEC_MERGE sections, use
9546 the kept section. relocate_section should
9547 have already handled discarded linkonce
9548 sections. */
9549 if (bfd_is_abs_section (osec)
9550 && sec->kept_section != NULL
9551 && sec->kept_section->output_section != NULL)
9552 {
9553 osec = sec->kept_section->output_section;
9554 irela->r_addend -= osec->vma;
9555 }
9556
9557 if (!bfd_is_abs_section (osec))
9558 {
9559 r_symndx = osec->target_index;
9560 if (r_symndx == 0)
9561 {
9562 struct elf_link_hash_table *htab;
9563 asection *oi;
9564
9565 htab = elf_hash_table (finfo->info);
9566 oi = htab->text_index_section;
9567 if ((osec->flags & SEC_READONLY) == 0
9568 && htab->data_index_section != NULL)
9569 oi = htab->data_index_section;
9570
9571 if (oi != NULL)
9572 {
9573 irela->r_addend += osec->vma - oi->vma;
9574 r_symndx = oi->target_index;
9575 }
9576 }
9577
9578 BFD_ASSERT (r_symndx != 0);
9579 }
9580 }
9581
9582 /* Adjust the addend according to where the
9583 section winds up in the output section. */
9584 if (rela_normal)
9585 irela->r_addend += sec->output_offset;
9586 }
9587 else
9588 {
9589 if (finfo->indices[r_symndx] == -1)
9590 {
9591 unsigned long shlink;
9592 const char *name;
9593 asection *osec;
9594
9595 if (finfo->info->strip == strip_all)
9596 {
9597 /* You can't do ld -r -s. */
9598 bfd_set_error (bfd_error_invalid_operation);
9599 return FALSE;
9600 }
9601
9602 /* This symbol was skipped earlier, but
9603 since it is needed by a reloc, we
9604 must output it now. */
9605 shlink = symtab_hdr->sh_link;
9606 name = (bfd_elf_string_from_elf_section
9607 (input_bfd, shlink, sym.st_name));
9608 if (name == NULL)
9609 return FALSE;
9610
9611 osec = sec->output_section;
9612 sym.st_shndx =
9613 _bfd_elf_section_from_bfd_section (output_bfd,
9614 osec);
9615 if (sym.st_shndx == SHN_BAD)
9616 return FALSE;
9617
9618 sym.st_value += sec->output_offset;
9619 if (! finfo->info->relocatable)
9620 {
9621 sym.st_value += osec->vma;
9622 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9623 {
9624 /* STT_TLS symbols are relative to PT_TLS
9625 segment base. */
9626 BFD_ASSERT (elf_hash_table (finfo->info)
9627 ->tls_sec != NULL);
9628 sym.st_value -= (elf_hash_table (finfo->info)
9629 ->tls_sec->vma);
9630 }
9631 }
9632
9633 finfo->indices[r_symndx]
9634 = bfd_get_symcount (output_bfd);
9635
9636 if (! elf_link_output_sym (finfo, name, &sym, sec,
9637 NULL))
9638 return FALSE;
9639 }
9640
9641 r_symndx = finfo->indices[r_symndx];
9642 }
9643
9644 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9645 | (irela->r_info & r_type_mask));
9646 }
9647
9648 /* Swap out the relocs. */
9649 if (input_rel_hdr->sh_size != 0
9650 && !bed->elf_backend_emit_relocs (output_bfd, o,
9651 input_rel_hdr,
9652 internal_relocs,
9653 rel_hash_list))
9654 return FALSE;
9655
9656 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9657 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9658 {
9659 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9660 * bed->s->int_rels_per_ext_rel);
9661 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9662 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9663 input_rel_hdr2,
9664 internal_relocs,
9665 rel_hash_list))
9666 return FALSE;
9667 }
9668 }
9669 }
9670
9671 /* Write out the modified section contents. */
9672 if (bed->elf_backend_write_section
9673 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9674 contents))
9675 {
9676 /* Section written out. */
9677 }
9678 else switch (o->sec_info_type)
9679 {
9680 case ELF_INFO_TYPE_STABS:
9681 if (! (_bfd_write_section_stabs
9682 (output_bfd,
9683 &elf_hash_table (finfo->info)->stab_info,
9684 o, &elf_section_data (o)->sec_info, contents)))
9685 return FALSE;
9686 break;
9687 case ELF_INFO_TYPE_MERGE:
9688 if (! _bfd_write_merged_section (output_bfd, o,
9689 elf_section_data (o)->sec_info))
9690 return FALSE;
9691 break;
9692 case ELF_INFO_TYPE_EH_FRAME:
9693 {
9694 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9695 o, contents))
9696 return FALSE;
9697 }
9698 break;
9699 default:
9700 {
9701 if (! (o->flags & SEC_EXCLUDE)
9702 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9703 && ! bfd_set_section_contents (output_bfd, o->output_section,
9704 contents,
9705 (file_ptr) o->output_offset,
9706 o->size))
9707 return FALSE;
9708 }
9709 break;
9710 }
9711 }
9712
9713 return TRUE;
9714 }
9715
9716 /* Generate a reloc when linking an ELF file. This is a reloc
9717 requested by the linker, and does not come from any input file. This
9718 is used to build constructor and destructor tables when linking
9719 with -Ur. */
9720
9721 static bfd_boolean
9722 elf_reloc_link_order (bfd *output_bfd,
9723 struct bfd_link_info *info,
9724 asection *output_section,
9725 struct bfd_link_order *link_order)
9726 {
9727 reloc_howto_type *howto;
9728 long indx;
9729 bfd_vma offset;
9730 bfd_vma addend;
9731 struct elf_link_hash_entry **rel_hash_ptr;
9732 Elf_Internal_Shdr *rel_hdr;
9733 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9734 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9735 bfd_byte *erel;
9736 unsigned int i;
9737
9738 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9739 if (howto == NULL)
9740 {
9741 bfd_set_error (bfd_error_bad_value);
9742 return FALSE;
9743 }
9744
9745 addend = link_order->u.reloc.p->addend;
9746
9747 /* Figure out the symbol index. */
9748 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9749 + elf_section_data (output_section)->rel_count
9750 + elf_section_data (output_section)->rel_count2);
9751 if (link_order->type == bfd_section_reloc_link_order)
9752 {
9753 indx = link_order->u.reloc.p->u.section->target_index;
9754 BFD_ASSERT (indx != 0);
9755 *rel_hash_ptr = NULL;
9756 }
9757 else
9758 {
9759 struct elf_link_hash_entry *h;
9760
9761 /* Treat a reloc against a defined symbol as though it were
9762 actually against the section. */
9763 h = ((struct elf_link_hash_entry *)
9764 bfd_wrapped_link_hash_lookup (output_bfd, info,
9765 link_order->u.reloc.p->u.name,
9766 FALSE, FALSE, TRUE));
9767 if (h != NULL
9768 && (h->root.type == bfd_link_hash_defined
9769 || h->root.type == bfd_link_hash_defweak))
9770 {
9771 asection *section;
9772
9773 section = h->root.u.def.section;
9774 indx = section->output_section->target_index;
9775 *rel_hash_ptr = NULL;
9776 /* It seems that we ought to add the symbol value to the
9777 addend here, but in practice it has already been added
9778 because it was passed to constructor_callback. */
9779 addend += section->output_section->vma + section->output_offset;
9780 }
9781 else if (h != NULL)
9782 {
9783 /* Setting the index to -2 tells elf_link_output_extsym that
9784 this symbol is used by a reloc. */
9785 h->indx = -2;
9786 *rel_hash_ptr = h;
9787 indx = 0;
9788 }
9789 else
9790 {
9791 if (! ((*info->callbacks->unattached_reloc)
9792 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9793 return FALSE;
9794 indx = 0;
9795 }
9796 }
9797
9798 /* If this is an inplace reloc, we must write the addend into the
9799 object file. */
9800 if (howto->partial_inplace && addend != 0)
9801 {
9802 bfd_size_type size;
9803 bfd_reloc_status_type rstat;
9804 bfd_byte *buf;
9805 bfd_boolean ok;
9806 const char *sym_name;
9807
9808 size = bfd_get_reloc_size (howto);
9809 buf = bfd_zmalloc (size);
9810 if (buf == NULL)
9811 return FALSE;
9812 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9813 switch (rstat)
9814 {
9815 case bfd_reloc_ok:
9816 break;
9817
9818 default:
9819 case bfd_reloc_outofrange:
9820 abort ();
9821
9822 case bfd_reloc_overflow:
9823 if (link_order->type == bfd_section_reloc_link_order)
9824 sym_name = bfd_section_name (output_bfd,
9825 link_order->u.reloc.p->u.section);
9826 else
9827 sym_name = link_order->u.reloc.p->u.name;
9828 if (! ((*info->callbacks->reloc_overflow)
9829 (info, NULL, sym_name, howto->name, addend, NULL,
9830 NULL, (bfd_vma) 0)))
9831 {
9832 free (buf);
9833 return FALSE;
9834 }
9835 break;
9836 }
9837 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9838 link_order->offset, size);
9839 free (buf);
9840 if (! ok)
9841 return FALSE;
9842 }
9843
9844 /* The address of a reloc is relative to the section in a
9845 relocatable file, and is a virtual address in an executable
9846 file. */
9847 offset = link_order->offset;
9848 if (! info->relocatable)
9849 offset += output_section->vma;
9850
9851 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9852 {
9853 irel[i].r_offset = offset;
9854 irel[i].r_info = 0;
9855 irel[i].r_addend = 0;
9856 }
9857 if (bed->s->arch_size == 32)
9858 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9859 else
9860 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9861
9862 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9863 erel = rel_hdr->contents;
9864 if (rel_hdr->sh_type == SHT_REL)
9865 {
9866 erel += (elf_section_data (output_section)->rel_count
9867 * bed->s->sizeof_rel);
9868 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9869 }
9870 else
9871 {
9872 irel[0].r_addend = addend;
9873 erel += (elf_section_data (output_section)->rel_count
9874 * bed->s->sizeof_rela);
9875 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9876 }
9877
9878 ++elf_section_data (output_section)->rel_count;
9879
9880 return TRUE;
9881 }
9882
9883
9884 /* Get the output vma of the section pointed to by the sh_link field. */
9885
9886 static bfd_vma
9887 elf_get_linked_section_vma (struct bfd_link_order *p)
9888 {
9889 Elf_Internal_Shdr **elf_shdrp;
9890 asection *s;
9891 int elfsec;
9892
9893 s = p->u.indirect.section;
9894 elf_shdrp = elf_elfsections (s->owner);
9895 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9896 elfsec = elf_shdrp[elfsec]->sh_link;
9897 /* PR 290:
9898 The Intel C compiler generates SHT_IA_64_UNWIND with
9899 SHF_LINK_ORDER. But it doesn't set the sh_link or
9900 sh_info fields. Hence we could get the situation
9901 where elfsec is 0. */
9902 if (elfsec == 0)
9903 {
9904 const struct elf_backend_data *bed
9905 = get_elf_backend_data (s->owner);
9906 if (bed->link_order_error_handler)
9907 bed->link_order_error_handler
9908 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9909 return 0;
9910 }
9911 else
9912 {
9913 s = elf_shdrp[elfsec]->bfd_section;
9914 return s->output_section->vma + s->output_offset;
9915 }
9916 }
9917
9918
9919 /* Compare two sections based on the locations of the sections they are
9920 linked to. Used by elf_fixup_link_order. */
9921
9922 static int
9923 compare_link_order (const void * a, const void * b)
9924 {
9925 bfd_vma apos;
9926 bfd_vma bpos;
9927
9928 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9929 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9930 if (apos < bpos)
9931 return -1;
9932 return apos > bpos;
9933 }
9934
9935
9936 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9937 order as their linked sections. Returns false if this could not be done
9938 because an output section includes both ordered and unordered
9939 sections. Ideally we'd do this in the linker proper. */
9940
9941 static bfd_boolean
9942 elf_fixup_link_order (bfd *abfd, asection *o)
9943 {
9944 int seen_linkorder;
9945 int seen_other;
9946 int n;
9947 struct bfd_link_order *p;
9948 bfd *sub;
9949 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9950 unsigned elfsec;
9951 struct bfd_link_order **sections;
9952 asection *s, *other_sec, *linkorder_sec;
9953 bfd_vma offset;
9954
9955 other_sec = NULL;
9956 linkorder_sec = NULL;
9957 seen_other = 0;
9958 seen_linkorder = 0;
9959 for (p = o->map_head.link_order; p != NULL; p = p->next)
9960 {
9961 if (p->type == bfd_indirect_link_order)
9962 {
9963 s = p->u.indirect.section;
9964 sub = s->owner;
9965 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9966 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9967 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9968 && elfsec < elf_numsections (sub)
9969 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9970 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9971 {
9972 seen_linkorder++;
9973 linkorder_sec = s;
9974 }
9975 else
9976 {
9977 seen_other++;
9978 other_sec = s;
9979 }
9980 }
9981 else
9982 seen_other++;
9983
9984 if (seen_other && seen_linkorder)
9985 {
9986 if (other_sec && linkorder_sec)
9987 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9988 o, linkorder_sec,
9989 linkorder_sec->owner, other_sec,
9990 other_sec->owner);
9991 else
9992 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9993 o);
9994 bfd_set_error (bfd_error_bad_value);
9995 return FALSE;
9996 }
9997 }
9998
9999 if (!seen_linkorder)
10000 return TRUE;
10001
10002 sections = (struct bfd_link_order **)
10003 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10004 if (sections == NULL)
10005 return FALSE;
10006 seen_linkorder = 0;
10007
10008 for (p = o->map_head.link_order; p != NULL; p = p->next)
10009 {
10010 sections[seen_linkorder++] = p;
10011 }
10012 /* Sort the input sections in the order of their linked section. */
10013 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10014 compare_link_order);
10015
10016 /* Change the offsets of the sections. */
10017 offset = 0;
10018 for (n = 0; n < seen_linkorder; n++)
10019 {
10020 s = sections[n]->u.indirect.section;
10021 offset &= ~(bfd_vma) 0 << s->alignment_power;
10022 s->output_offset = offset;
10023 sections[n]->offset = offset;
10024 offset += sections[n]->size;
10025 }
10026
10027 free (sections);
10028 return TRUE;
10029 }
10030
10031
10032 /* Do the final step of an ELF link. */
10033
10034 bfd_boolean
10035 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10036 {
10037 bfd_boolean dynamic;
10038 bfd_boolean emit_relocs;
10039 bfd *dynobj;
10040 struct elf_final_link_info finfo;
10041 register asection *o;
10042 register struct bfd_link_order *p;
10043 register bfd *sub;
10044 bfd_size_type max_contents_size;
10045 bfd_size_type max_external_reloc_size;
10046 bfd_size_type max_internal_reloc_count;
10047 bfd_size_type max_sym_count;
10048 bfd_size_type max_sym_shndx_count;
10049 file_ptr off;
10050 Elf_Internal_Sym elfsym;
10051 unsigned int i;
10052 Elf_Internal_Shdr *symtab_hdr;
10053 Elf_Internal_Shdr *symtab_shndx_hdr;
10054 Elf_Internal_Shdr *symstrtab_hdr;
10055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10056 struct elf_outext_info eoinfo;
10057 bfd_boolean merged;
10058 size_t relativecount = 0;
10059 asection *reldyn = 0;
10060 bfd_size_type amt;
10061 asection *attr_section = NULL;
10062 bfd_vma attr_size = 0;
10063 const char *std_attrs_section;
10064
10065 if (! is_elf_hash_table (info->hash))
10066 return FALSE;
10067
10068 if (info->shared)
10069 abfd->flags |= DYNAMIC;
10070
10071 dynamic = elf_hash_table (info)->dynamic_sections_created;
10072 dynobj = elf_hash_table (info)->dynobj;
10073
10074 emit_relocs = (info->relocatable
10075 || info->emitrelocations);
10076
10077 finfo.info = info;
10078 finfo.output_bfd = abfd;
10079 finfo.symstrtab = _bfd_elf_stringtab_init ();
10080 if (finfo.symstrtab == NULL)
10081 return FALSE;
10082
10083 if (! dynamic)
10084 {
10085 finfo.dynsym_sec = NULL;
10086 finfo.hash_sec = NULL;
10087 finfo.symver_sec = NULL;
10088 }
10089 else
10090 {
10091 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10092 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10093 BFD_ASSERT (finfo.dynsym_sec != NULL);
10094 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10095 /* Note that it is OK if symver_sec is NULL. */
10096 }
10097
10098 finfo.contents = NULL;
10099 finfo.external_relocs = NULL;
10100 finfo.internal_relocs = NULL;
10101 finfo.external_syms = NULL;
10102 finfo.locsym_shndx = NULL;
10103 finfo.internal_syms = NULL;
10104 finfo.indices = NULL;
10105 finfo.sections = NULL;
10106 finfo.symbuf = NULL;
10107 finfo.symshndxbuf = NULL;
10108 finfo.symbuf_count = 0;
10109 finfo.shndxbuf_size = 0;
10110
10111 /* The object attributes have been merged. Remove the input
10112 sections from the link, and set the contents of the output
10113 secton. */
10114 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10115 for (o = abfd->sections; o != NULL; o = o->next)
10116 {
10117 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10118 || strcmp (o->name, ".gnu.attributes") == 0)
10119 {
10120 for (p = o->map_head.link_order; p != NULL; p = p->next)
10121 {
10122 asection *input_section;
10123
10124 if (p->type != bfd_indirect_link_order)
10125 continue;
10126 input_section = p->u.indirect.section;
10127 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10128 elf_link_input_bfd ignores this section. */
10129 input_section->flags &= ~SEC_HAS_CONTENTS;
10130 }
10131
10132 attr_size = bfd_elf_obj_attr_size (abfd);
10133 if (attr_size)
10134 {
10135 bfd_set_section_size (abfd, o, attr_size);
10136 attr_section = o;
10137 /* Skip this section later on. */
10138 o->map_head.link_order = NULL;
10139 }
10140 else
10141 o->flags |= SEC_EXCLUDE;
10142 }
10143 }
10144
10145 /* Count up the number of relocations we will output for each output
10146 section, so that we know the sizes of the reloc sections. We
10147 also figure out some maximum sizes. */
10148 max_contents_size = 0;
10149 max_external_reloc_size = 0;
10150 max_internal_reloc_count = 0;
10151 max_sym_count = 0;
10152 max_sym_shndx_count = 0;
10153 merged = FALSE;
10154 for (o = abfd->sections; o != NULL; o = o->next)
10155 {
10156 struct bfd_elf_section_data *esdo = elf_section_data (o);
10157 o->reloc_count = 0;
10158
10159 for (p = o->map_head.link_order; p != NULL; p = p->next)
10160 {
10161 unsigned int reloc_count = 0;
10162 struct bfd_elf_section_data *esdi = NULL;
10163 unsigned int *rel_count1;
10164
10165 if (p->type == bfd_section_reloc_link_order
10166 || p->type == bfd_symbol_reloc_link_order)
10167 reloc_count = 1;
10168 else if (p->type == bfd_indirect_link_order)
10169 {
10170 asection *sec;
10171
10172 sec = p->u.indirect.section;
10173 esdi = elf_section_data (sec);
10174
10175 /* Mark all sections which are to be included in the
10176 link. This will normally be every section. We need
10177 to do this so that we can identify any sections which
10178 the linker has decided to not include. */
10179 sec->linker_mark = TRUE;
10180
10181 if (sec->flags & SEC_MERGE)
10182 merged = TRUE;
10183
10184 if (info->relocatable || info->emitrelocations)
10185 reloc_count = sec->reloc_count;
10186 else if (bed->elf_backend_count_relocs)
10187 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10188
10189 if (sec->rawsize > max_contents_size)
10190 max_contents_size = sec->rawsize;
10191 if (sec->size > max_contents_size)
10192 max_contents_size = sec->size;
10193
10194 /* We are interested in just local symbols, not all
10195 symbols. */
10196 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10197 && (sec->owner->flags & DYNAMIC) == 0)
10198 {
10199 size_t sym_count;
10200
10201 if (elf_bad_symtab (sec->owner))
10202 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10203 / bed->s->sizeof_sym);
10204 else
10205 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10206
10207 if (sym_count > max_sym_count)
10208 max_sym_count = sym_count;
10209
10210 if (sym_count > max_sym_shndx_count
10211 && elf_symtab_shndx (sec->owner) != 0)
10212 max_sym_shndx_count = sym_count;
10213
10214 if ((sec->flags & SEC_RELOC) != 0)
10215 {
10216 size_t ext_size;
10217
10218 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10219 if (ext_size > max_external_reloc_size)
10220 max_external_reloc_size = ext_size;
10221 if (sec->reloc_count > max_internal_reloc_count)
10222 max_internal_reloc_count = sec->reloc_count;
10223 }
10224 }
10225 }
10226
10227 if (reloc_count == 0)
10228 continue;
10229
10230 o->reloc_count += reloc_count;
10231
10232 /* MIPS may have a mix of REL and RELA relocs on sections.
10233 To support this curious ABI we keep reloc counts in
10234 elf_section_data too. We must be careful to add the
10235 relocations from the input section to the right output
10236 count. FIXME: Get rid of one count. We have
10237 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10238 rel_count1 = &esdo->rel_count;
10239 if (esdi != NULL)
10240 {
10241 bfd_boolean same_size;
10242 bfd_size_type entsize1;
10243
10244 entsize1 = esdi->rel_hdr.sh_entsize;
10245 /* PR 9827: If the header size has not been set yet then
10246 assume that it will match the output section's reloc type. */
10247 if (entsize1 == 0)
10248 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10249 else
10250 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10251 || entsize1 == bed->s->sizeof_rela);
10252 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10253
10254 if (!same_size)
10255 rel_count1 = &esdo->rel_count2;
10256
10257 if (esdi->rel_hdr2 != NULL)
10258 {
10259 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10260 unsigned int alt_count;
10261 unsigned int *rel_count2;
10262
10263 BFD_ASSERT (entsize2 != entsize1
10264 && (entsize2 == bed->s->sizeof_rel
10265 || entsize2 == bed->s->sizeof_rela));
10266
10267 rel_count2 = &esdo->rel_count2;
10268 if (!same_size)
10269 rel_count2 = &esdo->rel_count;
10270
10271 /* The following is probably too simplistic if the
10272 backend counts output relocs unusually. */
10273 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10274 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10275 *rel_count2 += alt_count;
10276 reloc_count -= alt_count;
10277 }
10278 }
10279 *rel_count1 += reloc_count;
10280 }
10281
10282 if (o->reloc_count > 0)
10283 o->flags |= SEC_RELOC;
10284 else
10285 {
10286 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10287 set it (this is probably a bug) and if it is set
10288 assign_section_numbers will create a reloc section. */
10289 o->flags &=~ SEC_RELOC;
10290 }
10291
10292 /* If the SEC_ALLOC flag is not set, force the section VMA to
10293 zero. This is done in elf_fake_sections as well, but forcing
10294 the VMA to 0 here will ensure that relocs against these
10295 sections are handled correctly. */
10296 if ((o->flags & SEC_ALLOC) == 0
10297 && ! o->user_set_vma)
10298 o->vma = 0;
10299 }
10300
10301 if (! info->relocatable && merged)
10302 elf_link_hash_traverse (elf_hash_table (info),
10303 _bfd_elf_link_sec_merge_syms, abfd);
10304
10305 /* Figure out the file positions for everything but the symbol table
10306 and the relocs. We set symcount to force assign_section_numbers
10307 to create a symbol table. */
10308 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10309 BFD_ASSERT (! abfd->output_has_begun);
10310 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10311 goto error_return;
10312
10313 /* Set sizes, and assign file positions for reloc sections. */
10314 for (o = abfd->sections; o != NULL; o = o->next)
10315 {
10316 if ((o->flags & SEC_RELOC) != 0)
10317 {
10318 if (!(_bfd_elf_link_size_reloc_section
10319 (abfd, &elf_section_data (o)->rel_hdr, o)))
10320 goto error_return;
10321
10322 if (elf_section_data (o)->rel_hdr2
10323 && !(_bfd_elf_link_size_reloc_section
10324 (abfd, elf_section_data (o)->rel_hdr2, o)))
10325 goto error_return;
10326 }
10327
10328 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10329 to count upwards while actually outputting the relocations. */
10330 elf_section_data (o)->rel_count = 0;
10331 elf_section_data (o)->rel_count2 = 0;
10332 }
10333
10334 _bfd_elf_assign_file_positions_for_relocs (abfd);
10335
10336 /* We have now assigned file positions for all the sections except
10337 .symtab and .strtab. We start the .symtab section at the current
10338 file position, and write directly to it. We build the .strtab
10339 section in memory. */
10340 bfd_get_symcount (abfd) = 0;
10341 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10342 /* sh_name is set in prep_headers. */
10343 symtab_hdr->sh_type = SHT_SYMTAB;
10344 /* sh_flags, sh_addr and sh_size all start off zero. */
10345 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10346 /* sh_link is set in assign_section_numbers. */
10347 /* sh_info is set below. */
10348 /* sh_offset is set just below. */
10349 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10350
10351 off = elf_tdata (abfd)->next_file_pos;
10352 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10353
10354 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10355 incorrect. We do not yet know the size of the .symtab section.
10356 We correct next_file_pos below, after we do know the size. */
10357
10358 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10359 continuously seeking to the right position in the file. */
10360 if (! info->keep_memory || max_sym_count < 20)
10361 finfo.symbuf_size = 20;
10362 else
10363 finfo.symbuf_size = max_sym_count;
10364 amt = finfo.symbuf_size;
10365 amt *= bed->s->sizeof_sym;
10366 finfo.symbuf = bfd_malloc (amt);
10367 if (finfo.symbuf == NULL)
10368 goto error_return;
10369 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10370 {
10371 /* Wild guess at number of output symbols. realloc'd as needed. */
10372 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10373 finfo.shndxbuf_size = amt;
10374 amt *= sizeof (Elf_External_Sym_Shndx);
10375 finfo.symshndxbuf = bfd_zmalloc (amt);
10376 if (finfo.symshndxbuf == NULL)
10377 goto error_return;
10378 }
10379
10380 /* Start writing out the symbol table. The first symbol is always a
10381 dummy symbol. */
10382 if (info->strip != strip_all
10383 || emit_relocs)
10384 {
10385 elfsym.st_value = 0;
10386 elfsym.st_size = 0;
10387 elfsym.st_info = 0;
10388 elfsym.st_other = 0;
10389 elfsym.st_shndx = SHN_UNDEF;
10390 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10391 NULL))
10392 goto error_return;
10393 }
10394
10395 /* Output a symbol for each section. We output these even if we are
10396 discarding local symbols, since they are used for relocs. These
10397 symbols have no names. We store the index of each one in the
10398 index field of the section, so that we can find it again when
10399 outputting relocs. */
10400 if (info->strip != strip_all
10401 || emit_relocs)
10402 {
10403 elfsym.st_size = 0;
10404 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10405 elfsym.st_other = 0;
10406 elfsym.st_value = 0;
10407 for (i = 1; i < elf_numsections (abfd); i++)
10408 {
10409 o = bfd_section_from_elf_index (abfd, i);
10410 if (o != NULL)
10411 {
10412 o->target_index = bfd_get_symcount (abfd);
10413 elfsym.st_shndx = i;
10414 if (!info->relocatable)
10415 elfsym.st_value = o->vma;
10416 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10417 goto error_return;
10418 }
10419 }
10420 }
10421
10422 /* Allocate some memory to hold information read in from the input
10423 files. */
10424 if (max_contents_size != 0)
10425 {
10426 finfo.contents = bfd_malloc (max_contents_size);
10427 if (finfo.contents == NULL)
10428 goto error_return;
10429 }
10430
10431 if (max_external_reloc_size != 0)
10432 {
10433 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10434 if (finfo.external_relocs == NULL)
10435 goto error_return;
10436 }
10437
10438 if (max_internal_reloc_count != 0)
10439 {
10440 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10441 amt *= sizeof (Elf_Internal_Rela);
10442 finfo.internal_relocs = bfd_malloc (amt);
10443 if (finfo.internal_relocs == NULL)
10444 goto error_return;
10445 }
10446
10447 if (max_sym_count != 0)
10448 {
10449 amt = max_sym_count * bed->s->sizeof_sym;
10450 finfo.external_syms = bfd_malloc (amt);
10451 if (finfo.external_syms == NULL)
10452 goto error_return;
10453
10454 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10455 finfo.internal_syms = bfd_malloc (amt);
10456 if (finfo.internal_syms == NULL)
10457 goto error_return;
10458
10459 amt = max_sym_count * sizeof (long);
10460 finfo.indices = bfd_malloc (amt);
10461 if (finfo.indices == NULL)
10462 goto error_return;
10463
10464 amt = max_sym_count * sizeof (asection *);
10465 finfo.sections = bfd_malloc (amt);
10466 if (finfo.sections == NULL)
10467 goto error_return;
10468 }
10469
10470 if (max_sym_shndx_count != 0)
10471 {
10472 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10473 finfo.locsym_shndx = bfd_malloc (amt);
10474 if (finfo.locsym_shndx == NULL)
10475 goto error_return;
10476 }
10477
10478 if (elf_hash_table (info)->tls_sec)
10479 {
10480 bfd_vma base, end = 0;
10481 asection *sec;
10482
10483 for (sec = elf_hash_table (info)->tls_sec;
10484 sec && (sec->flags & SEC_THREAD_LOCAL);
10485 sec = sec->next)
10486 {
10487 bfd_size_type size = sec->size;
10488
10489 if (size == 0
10490 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10491 {
10492 struct bfd_link_order *o = sec->map_tail.link_order;
10493 if (o != NULL)
10494 size = o->offset + o->size;
10495 }
10496 end = sec->vma + size;
10497 }
10498 base = elf_hash_table (info)->tls_sec->vma;
10499 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10500 elf_hash_table (info)->tls_size = end - base;
10501 }
10502
10503 /* Reorder SHF_LINK_ORDER sections. */
10504 for (o = abfd->sections; o != NULL; o = o->next)
10505 {
10506 if (!elf_fixup_link_order (abfd, o))
10507 return FALSE;
10508 }
10509
10510 /* Since ELF permits relocations to be against local symbols, we
10511 must have the local symbols available when we do the relocations.
10512 Since we would rather only read the local symbols once, and we
10513 would rather not keep them in memory, we handle all the
10514 relocations for a single input file at the same time.
10515
10516 Unfortunately, there is no way to know the total number of local
10517 symbols until we have seen all of them, and the local symbol
10518 indices precede the global symbol indices. This means that when
10519 we are generating relocatable output, and we see a reloc against
10520 a global symbol, we can not know the symbol index until we have
10521 finished examining all the local symbols to see which ones we are
10522 going to output. To deal with this, we keep the relocations in
10523 memory, and don't output them until the end of the link. This is
10524 an unfortunate waste of memory, but I don't see a good way around
10525 it. Fortunately, it only happens when performing a relocatable
10526 link, which is not the common case. FIXME: If keep_memory is set
10527 we could write the relocs out and then read them again; I don't
10528 know how bad the memory loss will be. */
10529
10530 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10531 sub->output_has_begun = FALSE;
10532 for (o = abfd->sections; o != NULL; o = o->next)
10533 {
10534 for (p = o->map_head.link_order; p != NULL; p = p->next)
10535 {
10536 if (p->type == bfd_indirect_link_order
10537 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10538 == bfd_target_elf_flavour)
10539 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10540 {
10541 if (! sub->output_has_begun)
10542 {
10543 if (! elf_link_input_bfd (&finfo, sub))
10544 goto error_return;
10545 sub->output_has_begun = TRUE;
10546 }
10547 }
10548 else if (p->type == bfd_section_reloc_link_order
10549 || p->type == bfd_symbol_reloc_link_order)
10550 {
10551 if (! elf_reloc_link_order (abfd, info, o, p))
10552 goto error_return;
10553 }
10554 else
10555 {
10556 if (! _bfd_default_link_order (abfd, info, o, p))
10557 goto error_return;
10558 }
10559 }
10560 }
10561
10562 /* Free symbol buffer if needed. */
10563 if (!info->reduce_memory_overheads)
10564 {
10565 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10566 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10567 && elf_tdata (sub)->symbuf)
10568 {
10569 free (elf_tdata (sub)->symbuf);
10570 elf_tdata (sub)->symbuf = NULL;
10571 }
10572 }
10573
10574 /* Output any global symbols that got converted to local in a
10575 version script or due to symbol visibility. We do this in a
10576 separate step since ELF requires all local symbols to appear
10577 prior to any global symbols. FIXME: We should only do this if
10578 some global symbols were, in fact, converted to become local.
10579 FIXME: Will this work correctly with the Irix 5 linker? */
10580 eoinfo.failed = FALSE;
10581 eoinfo.finfo = &finfo;
10582 eoinfo.localsyms = TRUE;
10583 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10584 &eoinfo);
10585 if (eoinfo.failed)
10586 return FALSE;
10587
10588 /* If backend needs to output some local symbols not present in the hash
10589 table, do it now. */
10590 if (bed->elf_backend_output_arch_local_syms)
10591 {
10592 typedef bfd_boolean (*out_sym_func)
10593 (void *, const char *, Elf_Internal_Sym *, asection *,
10594 struct elf_link_hash_entry *);
10595
10596 if (! ((*bed->elf_backend_output_arch_local_syms)
10597 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10598 return FALSE;
10599 }
10600
10601 /* That wrote out all the local symbols. Finish up the symbol table
10602 with the global symbols. Even if we want to strip everything we
10603 can, we still need to deal with those global symbols that got
10604 converted to local in a version script. */
10605
10606 /* The sh_info field records the index of the first non local symbol. */
10607 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10608
10609 if (dynamic
10610 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10611 {
10612 Elf_Internal_Sym sym;
10613 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10614 long last_local = 0;
10615
10616 /* Write out the section symbols for the output sections. */
10617 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10618 {
10619 asection *s;
10620
10621 sym.st_size = 0;
10622 sym.st_name = 0;
10623 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10624 sym.st_other = 0;
10625
10626 for (s = abfd->sections; s != NULL; s = s->next)
10627 {
10628 int indx;
10629 bfd_byte *dest;
10630 long dynindx;
10631
10632 dynindx = elf_section_data (s)->dynindx;
10633 if (dynindx <= 0)
10634 continue;
10635 indx = elf_section_data (s)->this_idx;
10636 BFD_ASSERT (indx > 0);
10637 sym.st_shndx = indx;
10638 if (! check_dynsym (abfd, &sym))
10639 return FALSE;
10640 sym.st_value = s->vma;
10641 dest = dynsym + dynindx * bed->s->sizeof_sym;
10642 if (last_local < dynindx)
10643 last_local = dynindx;
10644 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10645 }
10646 }
10647
10648 /* Write out the local dynsyms. */
10649 if (elf_hash_table (info)->dynlocal)
10650 {
10651 struct elf_link_local_dynamic_entry *e;
10652 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10653 {
10654 asection *s;
10655 bfd_byte *dest;
10656
10657 sym.st_size = e->isym.st_size;
10658 sym.st_other = e->isym.st_other;
10659
10660 /* Copy the internal symbol as is.
10661 Note that we saved a word of storage and overwrote
10662 the original st_name with the dynstr_index. */
10663 sym = e->isym;
10664
10665 s = bfd_section_from_elf_index (e->input_bfd,
10666 e->isym.st_shndx);
10667 if (s != NULL)
10668 {
10669 sym.st_shndx =
10670 elf_section_data (s->output_section)->this_idx;
10671 if (! check_dynsym (abfd, &sym))
10672 return FALSE;
10673 sym.st_value = (s->output_section->vma
10674 + s->output_offset
10675 + e->isym.st_value);
10676 }
10677
10678 if (last_local < e->dynindx)
10679 last_local = e->dynindx;
10680
10681 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10682 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10683 }
10684 }
10685
10686 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10687 last_local + 1;
10688 }
10689
10690 /* We get the global symbols from the hash table. */
10691 eoinfo.failed = FALSE;
10692 eoinfo.localsyms = FALSE;
10693 eoinfo.finfo = &finfo;
10694 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10695 &eoinfo);
10696 if (eoinfo.failed)
10697 return FALSE;
10698
10699 /* If backend needs to output some symbols not present in the hash
10700 table, do it now. */
10701 if (bed->elf_backend_output_arch_syms)
10702 {
10703 typedef bfd_boolean (*out_sym_func)
10704 (void *, const char *, Elf_Internal_Sym *, asection *,
10705 struct elf_link_hash_entry *);
10706
10707 if (! ((*bed->elf_backend_output_arch_syms)
10708 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10709 return FALSE;
10710 }
10711
10712 /* Flush all symbols to the file. */
10713 if (! elf_link_flush_output_syms (&finfo, bed))
10714 return FALSE;
10715
10716 /* Now we know the size of the symtab section. */
10717 off += symtab_hdr->sh_size;
10718
10719 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10720 if (symtab_shndx_hdr->sh_name != 0)
10721 {
10722 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10723 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10724 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10725 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10726 symtab_shndx_hdr->sh_size = amt;
10727
10728 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10729 off, TRUE);
10730
10731 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10732 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10733 return FALSE;
10734 }
10735
10736
10737 /* Finish up and write out the symbol string table (.strtab)
10738 section. */
10739 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10740 /* sh_name was set in prep_headers. */
10741 symstrtab_hdr->sh_type = SHT_STRTAB;
10742 symstrtab_hdr->sh_flags = 0;
10743 symstrtab_hdr->sh_addr = 0;
10744 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10745 symstrtab_hdr->sh_entsize = 0;
10746 symstrtab_hdr->sh_link = 0;
10747 symstrtab_hdr->sh_info = 0;
10748 /* sh_offset is set just below. */
10749 symstrtab_hdr->sh_addralign = 1;
10750
10751 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10752 elf_tdata (abfd)->next_file_pos = off;
10753
10754 if (bfd_get_symcount (abfd) > 0)
10755 {
10756 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10757 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10758 return FALSE;
10759 }
10760
10761 /* Adjust the relocs to have the correct symbol indices. */
10762 for (o = abfd->sections; o != NULL; o = o->next)
10763 {
10764 if ((o->flags & SEC_RELOC) == 0)
10765 continue;
10766
10767 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10768 elf_section_data (o)->rel_count,
10769 elf_section_data (o)->rel_hashes);
10770 if (elf_section_data (o)->rel_hdr2 != NULL)
10771 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10772 elf_section_data (o)->rel_count2,
10773 (elf_section_data (o)->rel_hashes
10774 + elf_section_data (o)->rel_count));
10775
10776 /* Set the reloc_count field to 0 to prevent write_relocs from
10777 trying to swap the relocs out itself. */
10778 o->reloc_count = 0;
10779 }
10780
10781 if (dynamic && info->combreloc && dynobj != NULL)
10782 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10783
10784 /* If we are linking against a dynamic object, or generating a
10785 shared library, finish up the dynamic linking information. */
10786 if (dynamic)
10787 {
10788 bfd_byte *dyncon, *dynconend;
10789
10790 /* Fix up .dynamic entries. */
10791 o = bfd_get_section_by_name (dynobj, ".dynamic");
10792 BFD_ASSERT (o != NULL);
10793
10794 dyncon = o->contents;
10795 dynconend = o->contents + o->size;
10796 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10797 {
10798 Elf_Internal_Dyn dyn;
10799 const char *name;
10800 unsigned int type;
10801
10802 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10803
10804 switch (dyn.d_tag)
10805 {
10806 default:
10807 continue;
10808 case DT_NULL:
10809 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10810 {
10811 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10812 {
10813 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10814 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10815 default: continue;
10816 }
10817 dyn.d_un.d_val = relativecount;
10818 relativecount = 0;
10819 break;
10820 }
10821 continue;
10822
10823 case DT_INIT:
10824 name = info->init_function;
10825 goto get_sym;
10826 case DT_FINI:
10827 name = info->fini_function;
10828 get_sym:
10829 {
10830 struct elf_link_hash_entry *h;
10831
10832 h = elf_link_hash_lookup (elf_hash_table (info), name,
10833 FALSE, FALSE, TRUE);
10834 if (h != NULL
10835 && (h->root.type == bfd_link_hash_defined
10836 || h->root.type == bfd_link_hash_defweak))
10837 {
10838 dyn.d_un.d_ptr = h->root.u.def.value;
10839 o = h->root.u.def.section;
10840 if (o->output_section != NULL)
10841 dyn.d_un.d_ptr += (o->output_section->vma
10842 + o->output_offset);
10843 else
10844 {
10845 /* The symbol is imported from another shared
10846 library and does not apply to this one. */
10847 dyn.d_un.d_ptr = 0;
10848 }
10849 break;
10850 }
10851 }
10852 continue;
10853
10854 case DT_PREINIT_ARRAYSZ:
10855 name = ".preinit_array";
10856 goto get_size;
10857 case DT_INIT_ARRAYSZ:
10858 name = ".init_array";
10859 goto get_size;
10860 case DT_FINI_ARRAYSZ:
10861 name = ".fini_array";
10862 get_size:
10863 o = bfd_get_section_by_name (abfd, name);
10864 if (o == NULL)
10865 {
10866 (*_bfd_error_handler)
10867 (_("%B: could not find output section %s"), abfd, name);
10868 goto error_return;
10869 }
10870 if (o->size == 0)
10871 (*_bfd_error_handler)
10872 (_("warning: %s section has zero size"), name);
10873 dyn.d_un.d_val = o->size;
10874 break;
10875
10876 case DT_PREINIT_ARRAY:
10877 name = ".preinit_array";
10878 goto get_vma;
10879 case DT_INIT_ARRAY:
10880 name = ".init_array";
10881 goto get_vma;
10882 case DT_FINI_ARRAY:
10883 name = ".fini_array";
10884 goto get_vma;
10885
10886 case DT_HASH:
10887 name = ".hash";
10888 goto get_vma;
10889 case DT_GNU_HASH:
10890 name = ".gnu.hash";
10891 goto get_vma;
10892 case DT_STRTAB:
10893 name = ".dynstr";
10894 goto get_vma;
10895 case DT_SYMTAB:
10896 name = ".dynsym";
10897 goto get_vma;
10898 case DT_VERDEF:
10899 name = ".gnu.version_d";
10900 goto get_vma;
10901 case DT_VERNEED:
10902 name = ".gnu.version_r";
10903 goto get_vma;
10904 case DT_VERSYM:
10905 name = ".gnu.version";
10906 get_vma:
10907 o = bfd_get_section_by_name (abfd, name);
10908 if (o == NULL)
10909 {
10910 (*_bfd_error_handler)
10911 (_("%B: could not find output section %s"), abfd, name);
10912 goto error_return;
10913 }
10914 dyn.d_un.d_ptr = o->vma;
10915 break;
10916
10917 case DT_REL:
10918 case DT_RELA:
10919 case DT_RELSZ:
10920 case DT_RELASZ:
10921 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10922 type = SHT_REL;
10923 else
10924 type = SHT_RELA;
10925 dyn.d_un.d_val = 0;
10926 dyn.d_un.d_ptr = 0;
10927 for (i = 1; i < elf_numsections (abfd); i++)
10928 {
10929 Elf_Internal_Shdr *hdr;
10930
10931 hdr = elf_elfsections (abfd)[i];
10932 if (hdr->sh_type == type
10933 && (hdr->sh_flags & SHF_ALLOC) != 0)
10934 {
10935 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10936 dyn.d_un.d_val += hdr->sh_size;
10937 else
10938 {
10939 if (dyn.d_un.d_ptr == 0
10940 || hdr->sh_addr < dyn.d_un.d_ptr)
10941 dyn.d_un.d_ptr = hdr->sh_addr;
10942 }
10943 }
10944 }
10945 break;
10946 }
10947 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10948 }
10949 }
10950
10951 /* If we have created any dynamic sections, then output them. */
10952 if (dynobj != NULL)
10953 {
10954 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10955 goto error_return;
10956
10957 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10958 if (info->warn_shared_textrel && info->shared)
10959 {
10960 bfd_byte *dyncon, *dynconend;
10961
10962 /* Fix up .dynamic entries. */
10963 o = bfd_get_section_by_name (dynobj, ".dynamic");
10964 BFD_ASSERT (o != NULL);
10965
10966 dyncon = o->contents;
10967 dynconend = o->contents + o->size;
10968 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10969 {
10970 Elf_Internal_Dyn dyn;
10971
10972 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10973
10974 if (dyn.d_tag == DT_TEXTREL)
10975 {
10976 info->callbacks->einfo
10977 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10978 break;
10979 }
10980 }
10981 }
10982
10983 for (o = dynobj->sections; o != NULL; o = o->next)
10984 {
10985 if ((o->flags & SEC_HAS_CONTENTS) == 0
10986 || o->size == 0
10987 || o->output_section == bfd_abs_section_ptr)
10988 continue;
10989 if ((o->flags & SEC_LINKER_CREATED) == 0)
10990 {
10991 /* At this point, we are only interested in sections
10992 created by _bfd_elf_link_create_dynamic_sections. */
10993 continue;
10994 }
10995 if (elf_hash_table (info)->stab_info.stabstr == o)
10996 continue;
10997 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10998 continue;
10999 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11000 != SHT_STRTAB)
11001 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11002 {
11003 if (! bfd_set_section_contents (abfd, o->output_section,
11004 o->contents,
11005 (file_ptr) o->output_offset,
11006 o->size))
11007 goto error_return;
11008 }
11009 else
11010 {
11011 /* The contents of the .dynstr section are actually in a
11012 stringtab. */
11013 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11014 if (bfd_seek (abfd, off, SEEK_SET) != 0
11015 || ! _bfd_elf_strtab_emit (abfd,
11016 elf_hash_table (info)->dynstr))
11017 goto error_return;
11018 }
11019 }
11020 }
11021
11022 if (info->relocatable)
11023 {
11024 bfd_boolean failed = FALSE;
11025
11026 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11027 if (failed)
11028 goto error_return;
11029 }
11030
11031 /* If we have optimized stabs strings, output them. */
11032 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11033 {
11034 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11035 goto error_return;
11036 }
11037
11038 if (info->eh_frame_hdr)
11039 {
11040 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11041 goto error_return;
11042 }
11043
11044 if (finfo.symstrtab != NULL)
11045 _bfd_stringtab_free (finfo.symstrtab);
11046 if (finfo.contents != NULL)
11047 free (finfo.contents);
11048 if (finfo.external_relocs != NULL)
11049 free (finfo.external_relocs);
11050 if (finfo.internal_relocs != NULL)
11051 free (finfo.internal_relocs);
11052 if (finfo.external_syms != NULL)
11053 free (finfo.external_syms);
11054 if (finfo.locsym_shndx != NULL)
11055 free (finfo.locsym_shndx);
11056 if (finfo.internal_syms != NULL)
11057 free (finfo.internal_syms);
11058 if (finfo.indices != NULL)
11059 free (finfo.indices);
11060 if (finfo.sections != NULL)
11061 free (finfo.sections);
11062 if (finfo.symbuf != NULL)
11063 free (finfo.symbuf);
11064 if (finfo.symshndxbuf != NULL)
11065 free (finfo.symshndxbuf);
11066 for (o = abfd->sections; o != NULL; o = o->next)
11067 {
11068 if ((o->flags & SEC_RELOC) != 0
11069 && elf_section_data (o)->rel_hashes != NULL)
11070 free (elf_section_data (o)->rel_hashes);
11071 }
11072
11073 elf_tdata (abfd)->linker = TRUE;
11074
11075 if (attr_section)
11076 {
11077 bfd_byte *contents = bfd_malloc (attr_size);
11078 if (contents == NULL)
11079 return FALSE; /* Bail out and fail. */
11080 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11081 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11082 free (contents);
11083 }
11084
11085 return TRUE;
11086
11087 error_return:
11088 if (finfo.symstrtab != NULL)
11089 _bfd_stringtab_free (finfo.symstrtab);
11090 if (finfo.contents != NULL)
11091 free (finfo.contents);
11092 if (finfo.external_relocs != NULL)
11093 free (finfo.external_relocs);
11094 if (finfo.internal_relocs != NULL)
11095 free (finfo.internal_relocs);
11096 if (finfo.external_syms != NULL)
11097 free (finfo.external_syms);
11098 if (finfo.locsym_shndx != NULL)
11099 free (finfo.locsym_shndx);
11100 if (finfo.internal_syms != NULL)
11101 free (finfo.internal_syms);
11102 if (finfo.indices != NULL)
11103 free (finfo.indices);
11104 if (finfo.sections != NULL)
11105 free (finfo.sections);
11106 if (finfo.symbuf != NULL)
11107 free (finfo.symbuf);
11108 if (finfo.symshndxbuf != NULL)
11109 free (finfo.symshndxbuf);
11110 for (o = abfd->sections; o != NULL; o = o->next)
11111 {
11112 if ((o->flags & SEC_RELOC) != 0
11113 && elf_section_data (o)->rel_hashes != NULL)
11114 free (elf_section_data (o)->rel_hashes);
11115 }
11116
11117 return FALSE;
11118 }
11119 \f
11120 /* Initialize COOKIE for input bfd ABFD. */
11121
11122 static bfd_boolean
11123 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11124 struct bfd_link_info *info, bfd *abfd)
11125 {
11126 Elf_Internal_Shdr *symtab_hdr;
11127 const struct elf_backend_data *bed;
11128
11129 bed = get_elf_backend_data (abfd);
11130 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11131
11132 cookie->abfd = abfd;
11133 cookie->sym_hashes = elf_sym_hashes (abfd);
11134 cookie->bad_symtab = elf_bad_symtab (abfd);
11135 if (cookie->bad_symtab)
11136 {
11137 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11138 cookie->extsymoff = 0;
11139 }
11140 else
11141 {
11142 cookie->locsymcount = symtab_hdr->sh_info;
11143 cookie->extsymoff = symtab_hdr->sh_info;
11144 }
11145
11146 if (bed->s->arch_size == 32)
11147 cookie->r_sym_shift = 8;
11148 else
11149 cookie->r_sym_shift = 32;
11150
11151 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11152 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11153 {
11154 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11155 cookie->locsymcount, 0,
11156 NULL, NULL, NULL);
11157 if (cookie->locsyms == NULL)
11158 {
11159 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11160 return FALSE;
11161 }
11162 if (info->keep_memory)
11163 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11164 }
11165 return TRUE;
11166 }
11167
11168 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11169
11170 static void
11171 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11172 {
11173 Elf_Internal_Shdr *symtab_hdr;
11174
11175 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11176 if (cookie->locsyms != NULL
11177 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11178 free (cookie->locsyms);
11179 }
11180
11181 /* Initialize the relocation information in COOKIE for input section SEC
11182 of input bfd ABFD. */
11183
11184 static bfd_boolean
11185 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11186 struct bfd_link_info *info, bfd *abfd,
11187 asection *sec)
11188 {
11189 const struct elf_backend_data *bed;
11190
11191 if (sec->reloc_count == 0)
11192 {
11193 cookie->rels = NULL;
11194 cookie->relend = NULL;
11195 }
11196 else
11197 {
11198 bed = get_elf_backend_data (abfd);
11199
11200 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11201 info->keep_memory);
11202 if (cookie->rels == NULL)
11203 return FALSE;
11204 cookie->rel = cookie->rels;
11205 cookie->relend = (cookie->rels
11206 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11207 }
11208 cookie->rel = cookie->rels;
11209 return TRUE;
11210 }
11211
11212 /* Free the memory allocated by init_reloc_cookie_rels,
11213 if appropriate. */
11214
11215 static void
11216 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11217 asection *sec)
11218 {
11219 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11220 free (cookie->rels);
11221 }
11222
11223 /* Initialize the whole of COOKIE for input section SEC. */
11224
11225 static bfd_boolean
11226 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11227 struct bfd_link_info *info,
11228 asection *sec)
11229 {
11230 if (!init_reloc_cookie (cookie, info, sec->owner))
11231 goto error1;
11232 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11233 goto error2;
11234 return TRUE;
11235
11236 error2:
11237 fini_reloc_cookie (cookie, sec->owner);
11238 error1:
11239 return FALSE;
11240 }
11241
11242 /* Free the memory allocated by init_reloc_cookie_for_section,
11243 if appropriate. */
11244
11245 static void
11246 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11247 asection *sec)
11248 {
11249 fini_reloc_cookie_rels (cookie, sec);
11250 fini_reloc_cookie (cookie, sec->owner);
11251 }
11252 \f
11253 /* Garbage collect unused sections. */
11254
11255 /* Default gc_mark_hook. */
11256
11257 asection *
11258 _bfd_elf_gc_mark_hook (asection *sec,
11259 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11260 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11261 struct elf_link_hash_entry *h,
11262 Elf_Internal_Sym *sym)
11263 {
11264 if (h != NULL)
11265 {
11266 switch (h->root.type)
11267 {
11268 case bfd_link_hash_defined:
11269 case bfd_link_hash_defweak:
11270 return h->root.u.def.section;
11271
11272 case bfd_link_hash_common:
11273 return h->root.u.c.p->section;
11274
11275 default:
11276 break;
11277 }
11278 }
11279 else
11280 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11281
11282 return NULL;
11283 }
11284
11285 /* COOKIE->rel describes a relocation against section SEC, which is
11286 a section we've decided to keep. Return the section that contains
11287 the relocation symbol, or NULL if no section contains it. */
11288
11289 asection *
11290 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11291 elf_gc_mark_hook_fn gc_mark_hook,
11292 struct elf_reloc_cookie *cookie)
11293 {
11294 unsigned long r_symndx;
11295 struct elf_link_hash_entry *h;
11296
11297 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11298 if (r_symndx == 0)
11299 return NULL;
11300
11301 if (r_symndx >= cookie->locsymcount
11302 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11303 {
11304 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11305 while (h->root.type == bfd_link_hash_indirect
11306 || h->root.type == bfd_link_hash_warning)
11307 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11308 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11309 }
11310
11311 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11312 &cookie->locsyms[r_symndx]);
11313 }
11314
11315 /* COOKIE->rel describes a relocation against section SEC, which is
11316 a section we've decided to keep. Mark the section that contains
11317 the relocation symbol. */
11318
11319 bfd_boolean
11320 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11321 asection *sec,
11322 elf_gc_mark_hook_fn gc_mark_hook,
11323 struct elf_reloc_cookie *cookie)
11324 {
11325 asection *rsec;
11326
11327 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11328 if (rsec && !rsec->gc_mark)
11329 {
11330 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11331 rsec->gc_mark = 1;
11332 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11333 return FALSE;
11334 }
11335 return TRUE;
11336 }
11337
11338 /* The mark phase of garbage collection. For a given section, mark
11339 it and any sections in this section's group, and all the sections
11340 which define symbols to which it refers. */
11341
11342 bfd_boolean
11343 _bfd_elf_gc_mark (struct bfd_link_info *info,
11344 asection *sec,
11345 elf_gc_mark_hook_fn gc_mark_hook)
11346 {
11347 bfd_boolean ret;
11348 asection *group_sec, *eh_frame;
11349
11350 sec->gc_mark = 1;
11351
11352 /* Mark all the sections in the group. */
11353 group_sec = elf_section_data (sec)->next_in_group;
11354 if (group_sec && !group_sec->gc_mark)
11355 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11356 return FALSE;
11357
11358 /* Look through the section relocs. */
11359 ret = TRUE;
11360 eh_frame = elf_eh_frame_section (sec->owner);
11361 if ((sec->flags & SEC_RELOC) != 0
11362 && sec->reloc_count > 0
11363 && sec != eh_frame)
11364 {
11365 struct elf_reloc_cookie cookie;
11366
11367 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11368 ret = FALSE;
11369 else
11370 {
11371 for (; cookie.rel < cookie.relend; cookie.rel++)
11372 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11373 {
11374 ret = FALSE;
11375 break;
11376 }
11377 fini_reloc_cookie_for_section (&cookie, sec);
11378 }
11379 }
11380
11381 if (ret && eh_frame && elf_fde_list (sec))
11382 {
11383 struct elf_reloc_cookie cookie;
11384
11385 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11386 ret = FALSE;
11387 else
11388 {
11389 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11390 gc_mark_hook, &cookie))
11391 ret = FALSE;
11392 fini_reloc_cookie_for_section (&cookie, eh_frame);
11393 }
11394 }
11395
11396 return ret;
11397 }
11398
11399 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11400
11401 struct elf_gc_sweep_symbol_info
11402 {
11403 struct bfd_link_info *info;
11404 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11405 bfd_boolean);
11406 };
11407
11408 static bfd_boolean
11409 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11410 {
11411 if (h->root.type == bfd_link_hash_warning)
11412 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11413
11414 if ((h->root.type == bfd_link_hash_defined
11415 || h->root.type == bfd_link_hash_defweak)
11416 && !h->root.u.def.section->gc_mark
11417 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11418 {
11419 struct elf_gc_sweep_symbol_info *inf = data;
11420 (*inf->hide_symbol) (inf->info, h, TRUE);
11421 }
11422
11423 return TRUE;
11424 }
11425
11426 /* The sweep phase of garbage collection. Remove all garbage sections. */
11427
11428 typedef bfd_boolean (*gc_sweep_hook_fn)
11429 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11430
11431 static bfd_boolean
11432 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11433 {
11434 bfd *sub;
11435 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11436 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11437 unsigned long section_sym_count;
11438 struct elf_gc_sweep_symbol_info sweep_info;
11439
11440 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11441 {
11442 asection *o;
11443
11444 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11445 continue;
11446
11447 for (o = sub->sections; o != NULL; o = o->next)
11448 {
11449 /* When any section in a section group is kept, we keep all
11450 sections in the section group. If the first member of
11451 the section group is excluded, we will also exclude the
11452 group section. */
11453 if (o->flags & SEC_GROUP)
11454 {
11455 asection *first = elf_next_in_group (o);
11456 o->gc_mark = first->gc_mark;
11457 }
11458 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11459 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11460 {
11461 /* Keep debug and special sections. */
11462 o->gc_mark = 1;
11463 }
11464
11465 if (o->gc_mark)
11466 continue;
11467
11468 /* Skip sweeping sections already excluded. */
11469 if (o->flags & SEC_EXCLUDE)
11470 continue;
11471
11472 /* Since this is early in the link process, it is simple
11473 to remove a section from the output. */
11474 o->flags |= SEC_EXCLUDE;
11475
11476 if (info->print_gc_sections && o->size != 0)
11477 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11478
11479 /* But we also have to update some of the relocation
11480 info we collected before. */
11481 if (gc_sweep_hook
11482 && (o->flags & SEC_RELOC) != 0
11483 && o->reloc_count > 0
11484 && !bfd_is_abs_section (o->output_section))
11485 {
11486 Elf_Internal_Rela *internal_relocs;
11487 bfd_boolean r;
11488
11489 internal_relocs
11490 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11491 info->keep_memory);
11492 if (internal_relocs == NULL)
11493 return FALSE;
11494
11495 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11496
11497 if (elf_section_data (o)->relocs != internal_relocs)
11498 free (internal_relocs);
11499
11500 if (!r)
11501 return FALSE;
11502 }
11503 }
11504 }
11505
11506 /* Remove the symbols that were in the swept sections from the dynamic
11507 symbol table. GCFIXME: Anyone know how to get them out of the
11508 static symbol table as well? */
11509 sweep_info.info = info;
11510 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11511 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11512 &sweep_info);
11513
11514 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11515 return TRUE;
11516 }
11517
11518 /* Propagate collected vtable information. This is called through
11519 elf_link_hash_traverse. */
11520
11521 static bfd_boolean
11522 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11523 {
11524 if (h->root.type == bfd_link_hash_warning)
11525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11526
11527 /* Those that are not vtables. */
11528 if (h->vtable == NULL || h->vtable->parent == NULL)
11529 return TRUE;
11530
11531 /* Those vtables that do not have parents, we cannot merge. */
11532 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11533 return TRUE;
11534
11535 /* If we've already been done, exit. */
11536 if (h->vtable->used && h->vtable->used[-1])
11537 return TRUE;
11538
11539 /* Make sure the parent's table is up to date. */
11540 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11541
11542 if (h->vtable->used == NULL)
11543 {
11544 /* None of this table's entries were referenced. Re-use the
11545 parent's table. */
11546 h->vtable->used = h->vtable->parent->vtable->used;
11547 h->vtable->size = h->vtable->parent->vtable->size;
11548 }
11549 else
11550 {
11551 size_t n;
11552 bfd_boolean *cu, *pu;
11553
11554 /* Or the parent's entries into ours. */
11555 cu = h->vtable->used;
11556 cu[-1] = TRUE;
11557 pu = h->vtable->parent->vtable->used;
11558 if (pu != NULL)
11559 {
11560 const struct elf_backend_data *bed;
11561 unsigned int log_file_align;
11562
11563 bed = get_elf_backend_data (h->root.u.def.section->owner);
11564 log_file_align = bed->s->log_file_align;
11565 n = h->vtable->parent->vtable->size >> log_file_align;
11566 while (n--)
11567 {
11568 if (*pu)
11569 *cu = TRUE;
11570 pu++;
11571 cu++;
11572 }
11573 }
11574 }
11575
11576 return TRUE;
11577 }
11578
11579 static bfd_boolean
11580 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11581 {
11582 asection *sec;
11583 bfd_vma hstart, hend;
11584 Elf_Internal_Rela *relstart, *relend, *rel;
11585 const struct elf_backend_data *bed;
11586 unsigned int log_file_align;
11587
11588 if (h->root.type == bfd_link_hash_warning)
11589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11590
11591 /* Take care of both those symbols that do not describe vtables as
11592 well as those that are not loaded. */
11593 if (h->vtable == NULL || h->vtable->parent == NULL)
11594 return TRUE;
11595
11596 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11597 || h->root.type == bfd_link_hash_defweak);
11598
11599 sec = h->root.u.def.section;
11600 hstart = h->root.u.def.value;
11601 hend = hstart + h->size;
11602
11603 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11604 if (!relstart)
11605 return *(bfd_boolean *) okp = FALSE;
11606 bed = get_elf_backend_data (sec->owner);
11607 log_file_align = bed->s->log_file_align;
11608
11609 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11610
11611 for (rel = relstart; rel < relend; ++rel)
11612 if (rel->r_offset >= hstart && rel->r_offset < hend)
11613 {
11614 /* If the entry is in use, do nothing. */
11615 if (h->vtable->used
11616 && (rel->r_offset - hstart) < h->vtable->size)
11617 {
11618 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11619 if (h->vtable->used[entry])
11620 continue;
11621 }
11622 /* Otherwise, kill it. */
11623 rel->r_offset = rel->r_info = rel->r_addend = 0;
11624 }
11625
11626 return TRUE;
11627 }
11628
11629 /* Mark sections containing dynamically referenced symbols. When
11630 building shared libraries, we must assume that any visible symbol is
11631 referenced. */
11632
11633 bfd_boolean
11634 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11635 {
11636 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11637
11638 if (h->root.type == bfd_link_hash_warning)
11639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11640
11641 if ((h->root.type == bfd_link_hash_defined
11642 || h->root.type == bfd_link_hash_defweak)
11643 && (h->ref_dynamic
11644 || (!info->executable
11645 && h->def_regular
11646 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11647 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11648 h->root.u.def.section->flags |= SEC_KEEP;
11649
11650 return TRUE;
11651 }
11652
11653 /* Keep all sections containing symbols undefined on the command-line,
11654 and the section containing the entry symbol. */
11655
11656 void
11657 _bfd_elf_gc_keep (struct bfd_link_info *info)
11658 {
11659 struct bfd_sym_chain *sym;
11660
11661 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11662 {
11663 struct elf_link_hash_entry *h;
11664
11665 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11666 FALSE, FALSE, FALSE);
11667
11668 if (h != NULL
11669 && (h->root.type == bfd_link_hash_defined
11670 || h->root.type == bfd_link_hash_defweak)
11671 && !bfd_is_abs_section (h->root.u.def.section))
11672 h->root.u.def.section->flags |= SEC_KEEP;
11673 }
11674 }
11675
11676 /* Do mark and sweep of unused sections. */
11677
11678 bfd_boolean
11679 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11680 {
11681 bfd_boolean ok = TRUE;
11682 bfd *sub;
11683 elf_gc_mark_hook_fn gc_mark_hook;
11684 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11685
11686 if (!bed->can_gc_sections
11687 || !is_elf_hash_table (info->hash))
11688 {
11689 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11690 return TRUE;
11691 }
11692
11693 bed->gc_keep (info);
11694
11695 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11696 at the .eh_frame section if we can mark the FDEs individually. */
11697 _bfd_elf_begin_eh_frame_parsing (info);
11698 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11699 {
11700 asection *sec;
11701 struct elf_reloc_cookie cookie;
11702
11703 sec = bfd_get_section_by_name (sub, ".eh_frame");
11704 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11705 {
11706 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11707 if (elf_section_data (sec)->sec_info)
11708 elf_eh_frame_section (sub) = sec;
11709 fini_reloc_cookie_for_section (&cookie, sec);
11710 }
11711 }
11712 _bfd_elf_end_eh_frame_parsing (info);
11713
11714 /* Apply transitive closure to the vtable entry usage info. */
11715 elf_link_hash_traverse (elf_hash_table (info),
11716 elf_gc_propagate_vtable_entries_used,
11717 &ok);
11718 if (!ok)
11719 return FALSE;
11720
11721 /* Kill the vtable relocations that were not used. */
11722 elf_link_hash_traverse (elf_hash_table (info),
11723 elf_gc_smash_unused_vtentry_relocs,
11724 &ok);
11725 if (!ok)
11726 return FALSE;
11727
11728 /* Mark dynamically referenced symbols. */
11729 if (elf_hash_table (info)->dynamic_sections_created)
11730 elf_link_hash_traverse (elf_hash_table (info),
11731 bed->gc_mark_dynamic_ref,
11732 info);
11733
11734 /* Grovel through relocs to find out who stays ... */
11735 gc_mark_hook = bed->gc_mark_hook;
11736 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11737 {
11738 asection *o;
11739
11740 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11741 continue;
11742
11743 for (o = sub->sections; o != NULL; o = o->next)
11744 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11745 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11746 return FALSE;
11747 }
11748
11749 /* Allow the backend to mark additional target specific sections. */
11750 if (bed->gc_mark_extra_sections)
11751 bed->gc_mark_extra_sections (info, gc_mark_hook);
11752
11753 /* ... and mark SEC_EXCLUDE for those that go. */
11754 return elf_gc_sweep (abfd, info);
11755 }
11756 \f
11757 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11758
11759 bfd_boolean
11760 bfd_elf_gc_record_vtinherit (bfd *abfd,
11761 asection *sec,
11762 struct elf_link_hash_entry *h,
11763 bfd_vma offset)
11764 {
11765 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11766 struct elf_link_hash_entry **search, *child;
11767 bfd_size_type extsymcount;
11768 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11769
11770 /* The sh_info field of the symtab header tells us where the
11771 external symbols start. We don't care about the local symbols at
11772 this point. */
11773 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11774 if (!elf_bad_symtab (abfd))
11775 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11776
11777 sym_hashes = elf_sym_hashes (abfd);
11778 sym_hashes_end = sym_hashes + extsymcount;
11779
11780 /* Hunt down the child symbol, which is in this section at the same
11781 offset as the relocation. */
11782 for (search = sym_hashes; search != sym_hashes_end; ++search)
11783 {
11784 if ((child = *search) != NULL
11785 && (child->root.type == bfd_link_hash_defined
11786 || child->root.type == bfd_link_hash_defweak)
11787 && child->root.u.def.section == sec
11788 && child->root.u.def.value == offset)
11789 goto win;
11790 }
11791
11792 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11793 abfd, sec, (unsigned long) offset);
11794 bfd_set_error (bfd_error_invalid_operation);
11795 return FALSE;
11796
11797 win:
11798 if (!child->vtable)
11799 {
11800 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11801 if (!child->vtable)
11802 return FALSE;
11803 }
11804 if (!h)
11805 {
11806 /* This *should* only be the absolute section. It could potentially
11807 be that someone has defined a non-global vtable though, which
11808 would be bad. It isn't worth paging in the local symbols to be
11809 sure though; that case should simply be handled by the assembler. */
11810
11811 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11812 }
11813 else
11814 child->vtable->parent = h;
11815
11816 return TRUE;
11817 }
11818
11819 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11820
11821 bfd_boolean
11822 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11823 asection *sec ATTRIBUTE_UNUSED,
11824 struct elf_link_hash_entry *h,
11825 bfd_vma addend)
11826 {
11827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11828 unsigned int log_file_align = bed->s->log_file_align;
11829
11830 if (!h->vtable)
11831 {
11832 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11833 if (!h->vtable)
11834 return FALSE;
11835 }
11836
11837 if (addend >= h->vtable->size)
11838 {
11839 size_t size, bytes, file_align;
11840 bfd_boolean *ptr = h->vtable->used;
11841
11842 /* While the symbol is undefined, we have to be prepared to handle
11843 a zero size. */
11844 file_align = 1 << log_file_align;
11845 if (h->root.type == bfd_link_hash_undefined)
11846 size = addend + file_align;
11847 else
11848 {
11849 size = h->size;
11850 if (addend >= size)
11851 {
11852 /* Oops! We've got a reference past the defined end of
11853 the table. This is probably a bug -- shall we warn? */
11854 size = addend + file_align;
11855 }
11856 }
11857 size = (size + file_align - 1) & -file_align;
11858
11859 /* Allocate one extra entry for use as a "done" flag for the
11860 consolidation pass. */
11861 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11862
11863 if (ptr)
11864 {
11865 ptr = bfd_realloc (ptr - 1, bytes);
11866
11867 if (ptr != NULL)
11868 {
11869 size_t oldbytes;
11870
11871 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11872 * sizeof (bfd_boolean));
11873 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11874 }
11875 }
11876 else
11877 ptr = bfd_zmalloc (bytes);
11878
11879 if (ptr == NULL)
11880 return FALSE;
11881
11882 /* And arrange for that done flag to be at index -1. */
11883 h->vtable->used = ptr + 1;
11884 h->vtable->size = size;
11885 }
11886
11887 h->vtable->used[addend >> log_file_align] = TRUE;
11888
11889 return TRUE;
11890 }
11891
11892 struct alloc_got_off_arg {
11893 bfd_vma gotoff;
11894 struct bfd_link_info *info;
11895 };
11896
11897 /* We need a special top-level link routine to convert got reference counts
11898 to real got offsets. */
11899
11900 static bfd_boolean
11901 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11902 {
11903 struct alloc_got_off_arg *gofarg = arg;
11904 bfd *obfd = gofarg->info->output_bfd;
11905 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11906
11907 if (h->root.type == bfd_link_hash_warning)
11908 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11909
11910 if (h->got.refcount > 0)
11911 {
11912 h->got.offset = gofarg->gotoff;
11913 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11914 }
11915 else
11916 h->got.offset = (bfd_vma) -1;
11917
11918 return TRUE;
11919 }
11920
11921 /* And an accompanying bit to work out final got entry offsets once
11922 we're done. Should be called from final_link. */
11923
11924 bfd_boolean
11925 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11926 struct bfd_link_info *info)
11927 {
11928 bfd *i;
11929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11930 bfd_vma gotoff;
11931 struct alloc_got_off_arg gofarg;
11932
11933 BFD_ASSERT (abfd == info->output_bfd);
11934
11935 if (! is_elf_hash_table (info->hash))
11936 return FALSE;
11937
11938 /* The GOT offset is relative to the .got section, but the GOT header is
11939 put into the .got.plt section, if the backend uses it. */
11940 if (bed->want_got_plt)
11941 gotoff = 0;
11942 else
11943 gotoff = bed->got_header_size;
11944
11945 /* Do the local .got entries first. */
11946 for (i = info->input_bfds; i; i = i->link_next)
11947 {
11948 bfd_signed_vma *local_got;
11949 bfd_size_type j, locsymcount;
11950 Elf_Internal_Shdr *symtab_hdr;
11951
11952 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11953 continue;
11954
11955 local_got = elf_local_got_refcounts (i);
11956 if (!local_got)
11957 continue;
11958
11959 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11960 if (elf_bad_symtab (i))
11961 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11962 else
11963 locsymcount = symtab_hdr->sh_info;
11964
11965 for (j = 0; j < locsymcount; ++j)
11966 {
11967 if (local_got[j] > 0)
11968 {
11969 local_got[j] = gotoff;
11970 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11971 }
11972 else
11973 local_got[j] = (bfd_vma) -1;
11974 }
11975 }
11976
11977 /* Then the global .got entries. .plt refcounts are handled by
11978 adjust_dynamic_symbol */
11979 gofarg.gotoff = gotoff;
11980 gofarg.info = info;
11981 elf_link_hash_traverse (elf_hash_table (info),
11982 elf_gc_allocate_got_offsets,
11983 &gofarg);
11984 return TRUE;
11985 }
11986
11987 /* Many folk need no more in the way of final link than this, once
11988 got entry reference counting is enabled. */
11989
11990 bfd_boolean
11991 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11992 {
11993 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11994 return FALSE;
11995
11996 /* Invoke the regular ELF backend linker to do all the work. */
11997 return bfd_elf_final_link (abfd, info);
11998 }
11999
12000 bfd_boolean
12001 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12002 {
12003 struct elf_reloc_cookie *rcookie = cookie;
12004
12005 if (rcookie->bad_symtab)
12006 rcookie->rel = rcookie->rels;
12007
12008 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12009 {
12010 unsigned long r_symndx;
12011
12012 if (! rcookie->bad_symtab)
12013 if (rcookie->rel->r_offset > offset)
12014 return FALSE;
12015 if (rcookie->rel->r_offset != offset)
12016 continue;
12017
12018 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12019 if (r_symndx == SHN_UNDEF)
12020 return TRUE;
12021
12022 if (r_symndx >= rcookie->locsymcount
12023 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12024 {
12025 struct elf_link_hash_entry *h;
12026
12027 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12028
12029 while (h->root.type == bfd_link_hash_indirect
12030 || h->root.type == bfd_link_hash_warning)
12031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12032
12033 if ((h->root.type == bfd_link_hash_defined
12034 || h->root.type == bfd_link_hash_defweak)
12035 && elf_discarded_section (h->root.u.def.section))
12036 return TRUE;
12037 else
12038 return FALSE;
12039 }
12040 else
12041 {
12042 /* It's not a relocation against a global symbol,
12043 but it could be a relocation against a local
12044 symbol for a discarded section. */
12045 asection *isec;
12046 Elf_Internal_Sym *isym;
12047
12048 /* Need to: get the symbol; get the section. */
12049 isym = &rcookie->locsyms[r_symndx];
12050 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12051 if (isec != NULL && elf_discarded_section (isec))
12052 return TRUE;
12053 }
12054 return FALSE;
12055 }
12056 return FALSE;
12057 }
12058
12059 /* Discard unneeded references to discarded sections.
12060 Returns TRUE if any section's size was changed. */
12061 /* This function assumes that the relocations are in sorted order,
12062 which is true for all known assemblers. */
12063
12064 bfd_boolean
12065 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12066 {
12067 struct elf_reloc_cookie cookie;
12068 asection *stab, *eh;
12069 const struct elf_backend_data *bed;
12070 bfd *abfd;
12071 bfd_boolean ret = FALSE;
12072
12073 if (info->traditional_format
12074 || !is_elf_hash_table (info->hash))
12075 return FALSE;
12076
12077 _bfd_elf_begin_eh_frame_parsing (info);
12078 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12079 {
12080 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12081 continue;
12082
12083 bed = get_elf_backend_data (abfd);
12084
12085 if ((abfd->flags & DYNAMIC) != 0)
12086 continue;
12087
12088 eh = NULL;
12089 if (!info->relocatable)
12090 {
12091 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12092 if (eh != NULL
12093 && (eh->size == 0
12094 || bfd_is_abs_section (eh->output_section)))
12095 eh = NULL;
12096 }
12097
12098 stab = bfd_get_section_by_name (abfd, ".stab");
12099 if (stab != NULL
12100 && (stab->size == 0
12101 || bfd_is_abs_section (stab->output_section)
12102 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12103 stab = NULL;
12104
12105 if (stab == NULL
12106 && eh == NULL
12107 && bed->elf_backend_discard_info == NULL)
12108 continue;
12109
12110 if (!init_reloc_cookie (&cookie, info, abfd))
12111 return FALSE;
12112
12113 if (stab != NULL
12114 && stab->reloc_count > 0
12115 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12116 {
12117 if (_bfd_discard_section_stabs (abfd, stab,
12118 elf_section_data (stab)->sec_info,
12119 bfd_elf_reloc_symbol_deleted_p,
12120 &cookie))
12121 ret = TRUE;
12122 fini_reloc_cookie_rels (&cookie, stab);
12123 }
12124
12125 if (eh != NULL
12126 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12127 {
12128 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12129 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12130 bfd_elf_reloc_symbol_deleted_p,
12131 &cookie))
12132 ret = TRUE;
12133 fini_reloc_cookie_rels (&cookie, eh);
12134 }
12135
12136 if (bed->elf_backend_discard_info != NULL
12137 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12138 ret = TRUE;
12139
12140 fini_reloc_cookie (&cookie, abfd);
12141 }
12142 _bfd_elf_end_eh_frame_parsing (info);
12143
12144 if (info->eh_frame_hdr
12145 && !info->relocatable
12146 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12147 ret = TRUE;
12148
12149 return ret;
12150 }
12151
12152 /* For a SHT_GROUP section, return the group signature. For other
12153 sections, return the normal section name. */
12154
12155 static const char *
12156 section_signature (asection *sec)
12157 {
12158 if ((sec->flags & SEC_GROUP) != 0
12159 && elf_next_in_group (sec) != NULL
12160 && elf_group_name (elf_next_in_group (sec)) != NULL)
12161 return elf_group_name (elf_next_in_group (sec));
12162 return sec->name;
12163 }
12164
12165 void
12166 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12167 struct bfd_link_info *info)
12168 {
12169 flagword flags;
12170 const char *name, *p;
12171 struct bfd_section_already_linked *l;
12172 struct bfd_section_already_linked_hash_entry *already_linked_list;
12173
12174 if (sec->output_section == bfd_abs_section_ptr)
12175 return;
12176
12177 flags = sec->flags;
12178
12179 /* Return if it isn't a linkonce section. A comdat group section
12180 also has SEC_LINK_ONCE set. */
12181 if ((flags & SEC_LINK_ONCE) == 0)
12182 return;
12183
12184 /* Don't put group member sections on our list of already linked
12185 sections. They are handled as a group via their group section. */
12186 if (elf_sec_group (sec) != NULL)
12187 return;
12188
12189 /* FIXME: When doing a relocatable link, we may have trouble
12190 copying relocations in other sections that refer to local symbols
12191 in the section being discarded. Those relocations will have to
12192 be converted somehow; as of this writing I'm not sure that any of
12193 the backends handle that correctly.
12194
12195 It is tempting to instead not discard link once sections when
12196 doing a relocatable link (technically, they should be discarded
12197 whenever we are building constructors). However, that fails,
12198 because the linker winds up combining all the link once sections
12199 into a single large link once section, which defeats the purpose
12200 of having link once sections in the first place.
12201
12202 Also, not merging link once sections in a relocatable link
12203 causes trouble for MIPS ELF, which relies on link once semantics
12204 to handle the .reginfo section correctly. */
12205
12206 name = section_signature (sec);
12207
12208 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12209 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12210 p++;
12211 else
12212 p = name;
12213
12214 already_linked_list = bfd_section_already_linked_table_lookup (p);
12215
12216 for (l = already_linked_list->entry; l != NULL; l = l->next)
12217 {
12218 /* We may have 2 different types of sections on the list: group
12219 sections and linkonce sections. Match like sections. */
12220 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12221 && strcmp (name, section_signature (l->sec)) == 0
12222 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12223 {
12224 /* The section has already been linked. See if we should
12225 issue a warning. */
12226 switch (flags & SEC_LINK_DUPLICATES)
12227 {
12228 default:
12229 abort ();
12230
12231 case SEC_LINK_DUPLICATES_DISCARD:
12232 break;
12233
12234 case SEC_LINK_DUPLICATES_ONE_ONLY:
12235 (*_bfd_error_handler)
12236 (_("%B: ignoring duplicate section `%A'"),
12237 abfd, sec);
12238 break;
12239
12240 case SEC_LINK_DUPLICATES_SAME_SIZE:
12241 if (sec->size != l->sec->size)
12242 (*_bfd_error_handler)
12243 (_("%B: duplicate section `%A' has different size"),
12244 abfd, sec);
12245 break;
12246
12247 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12248 if (sec->size != l->sec->size)
12249 (*_bfd_error_handler)
12250 (_("%B: duplicate section `%A' has different size"),
12251 abfd, sec);
12252 else if (sec->size != 0)
12253 {
12254 bfd_byte *sec_contents, *l_sec_contents;
12255
12256 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12257 (*_bfd_error_handler)
12258 (_("%B: warning: could not read contents of section `%A'"),
12259 abfd, sec);
12260 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12261 &l_sec_contents))
12262 (*_bfd_error_handler)
12263 (_("%B: warning: could not read contents of section `%A'"),
12264 l->sec->owner, l->sec);
12265 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12266 (*_bfd_error_handler)
12267 (_("%B: warning: duplicate section `%A' has different contents"),
12268 abfd, sec);
12269
12270 if (sec_contents)
12271 free (sec_contents);
12272 if (l_sec_contents)
12273 free (l_sec_contents);
12274 }
12275 break;
12276 }
12277
12278 /* Set the output_section field so that lang_add_section
12279 does not create a lang_input_section structure for this
12280 section. Since there might be a symbol in the section
12281 being discarded, we must retain a pointer to the section
12282 which we are really going to use. */
12283 sec->output_section = bfd_abs_section_ptr;
12284 sec->kept_section = l->sec;
12285
12286 if (flags & SEC_GROUP)
12287 {
12288 asection *first = elf_next_in_group (sec);
12289 asection *s = first;
12290
12291 while (s != NULL)
12292 {
12293 s->output_section = bfd_abs_section_ptr;
12294 /* Record which group discards it. */
12295 s->kept_section = l->sec;
12296 s = elf_next_in_group (s);
12297 /* These lists are circular. */
12298 if (s == first)
12299 break;
12300 }
12301 }
12302
12303 return;
12304 }
12305 }
12306
12307 /* A single member comdat group section may be discarded by a
12308 linkonce section and vice versa. */
12309
12310 if ((flags & SEC_GROUP) != 0)
12311 {
12312 asection *first = elf_next_in_group (sec);
12313
12314 if (first != NULL && elf_next_in_group (first) == first)
12315 /* Check this single member group against linkonce sections. */
12316 for (l = already_linked_list->entry; l != NULL; l = l->next)
12317 if ((l->sec->flags & SEC_GROUP) == 0
12318 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12319 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12320 {
12321 first->output_section = bfd_abs_section_ptr;
12322 first->kept_section = l->sec;
12323 sec->output_section = bfd_abs_section_ptr;
12324 break;
12325 }
12326 }
12327 else
12328 /* Check this linkonce section against single member groups. */
12329 for (l = already_linked_list->entry; l != NULL; l = l->next)
12330 if (l->sec->flags & SEC_GROUP)
12331 {
12332 asection *first = elf_next_in_group (l->sec);
12333
12334 if (first != NULL
12335 && elf_next_in_group (first) == first
12336 && bfd_elf_match_symbols_in_sections (first, sec, info))
12337 {
12338 sec->output_section = bfd_abs_section_ptr;
12339 sec->kept_section = first;
12340 break;
12341 }
12342 }
12343
12344 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12345 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12346 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12347 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12348 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12349 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12350 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12351 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12352 The reverse order cannot happen as there is never a bfd with only the
12353 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12354 matter as here were are looking only for cross-bfd sections. */
12355
12356 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12357 for (l = already_linked_list->entry; l != NULL; l = l->next)
12358 if ((l->sec->flags & SEC_GROUP) == 0
12359 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12360 {
12361 if (abfd != l->sec->owner)
12362 sec->output_section = bfd_abs_section_ptr;
12363 break;
12364 }
12365
12366 /* This is the first section with this name. Record it. */
12367 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12368 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12369 }
12370
12371 bfd_boolean
12372 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12373 {
12374 return sym->st_shndx == SHN_COMMON;
12375 }
12376
12377 unsigned int
12378 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12379 {
12380 return SHN_COMMON;
12381 }
12382
12383 asection *
12384 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12385 {
12386 return bfd_com_section_ptr;
12387 }
12388
12389 bfd_vma
12390 _bfd_elf_default_got_elt_size (bfd *abfd,
12391 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12392 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12393 bfd *ibfd ATTRIBUTE_UNUSED,
12394 unsigned long symndx ATTRIBUTE_UNUSED)
12395 {
12396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12397 return bed->s->arch_size / 8;
12398 }
12399
12400 /* Routines to support the creation of dynamic relocs. */
12401
12402 /* Return true if NAME is a name of a relocation
12403 section associated with section S. */
12404
12405 static bfd_boolean
12406 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12407 {
12408 if (rela)
12409 return CONST_STRNEQ (name, ".rela")
12410 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12411
12412 return CONST_STRNEQ (name, ".rel")
12413 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12414 }
12415
12416 /* Returns the name of the dynamic reloc section associated with SEC. */
12417
12418 static const char *
12419 get_dynamic_reloc_section_name (bfd * abfd,
12420 asection * sec,
12421 bfd_boolean is_rela)
12422 {
12423 const char * name;
12424 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12425 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12426
12427 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12428 if (name == NULL)
12429 return NULL;
12430
12431 if (! is_reloc_section (is_rela, name, sec))
12432 {
12433 static bfd_boolean complained = FALSE;
12434
12435 if (! complained)
12436 {
12437 (*_bfd_error_handler)
12438 (_("%B: bad relocation section name `%s\'"), abfd, name);
12439 complained = TRUE;
12440 }
12441 name = NULL;
12442 }
12443
12444 return name;
12445 }
12446
12447 /* Returns the dynamic reloc section associated with SEC.
12448 If necessary compute the name of the dynamic reloc section based
12449 on SEC's name (looked up in ABFD's string table) and the setting
12450 of IS_RELA. */
12451
12452 asection *
12453 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12454 asection * sec,
12455 bfd_boolean is_rela)
12456 {
12457 asection * reloc_sec = elf_section_data (sec)->sreloc;
12458
12459 if (reloc_sec == NULL)
12460 {
12461 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12462
12463 if (name != NULL)
12464 {
12465 reloc_sec = bfd_get_section_by_name (abfd, name);
12466
12467 if (reloc_sec != NULL)
12468 elf_section_data (sec)->sreloc = reloc_sec;
12469 }
12470 }
12471
12472 return reloc_sec;
12473 }
12474
12475 /* Returns the dynamic reloc section associated with SEC. If the
12476 section does not exist it is created and attached to the DYNOBJ
12477 bfd and stored in the SRELOC field of SEC's elf_section_data
12478 structure.
12479
12480 ALIGNMENT is the alignment for the newly created section and
12481 IS_RELA defines whether the name should be .rela.<SEC's name>
12482 or .rel.<SEC's name>. The section name is looked up in the
12483 string table associated with ABFD. */
12484
12485 asection *
12486 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12487 bfd * dynobj,
12488 unsigned int alignment,
12489 bfd * abfd,
12490 bfd_boolean is_rela)
12491 {
12492 asection * reloc_sec = elf_section_data (sec)->sreloc;
12493
12494 if (reloc_sec == NULL)
12495 {
12496 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12497
12498 if (name == NULL)
12499 return NULL;
12500
12501 reloc_sec = bfd_get_section_by_name (dynobj, name);
12502
12503 if (reloc_sec == NULL)
12504 {
12505 flagword flags;
12506
12507 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12508 if ((sec->flags & SEC_ALLOC) != 0)
12509 flags |= SEC_ALLOC | SEC_LOAD;
12510
12511 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12512 if (reloc_sec != NULL)
12513 {
12514 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12515 reloc_sec = NULL;
12516 }
12517 }
12518
12519 elf_section_data (sec)->sreloc = reloc_sec;
12520 }
12521
12522 return reloc_sec;
12523 }
This page took 0.316559 seconds and 5 git commands to generate.