Downgrade linker error on protected symbols in .dynbss to a warning
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym, asection *sec,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition
869 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
870 && (sec->flags & SEC_READONLY) == 0)
871 h->protected_def = 1;
872 }
873
874 /* This function is called when we want to merge a new symbol with an
875 existing symbol. It handles the various cases which arise when we
876 find a definition in a dynamic object, or when there is already a
877 definition in a dynamic object. The new symbol is described by
878 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
879 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
880 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
881 of an old common symbol. We set OVERRIDE if the old symbol is
882 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
883 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
884 to change. By OK to change, we mean that we shouldn't warn if the
885 type or size does change. */
886
887 static bfd_boolean
888 _bfd_elf_merge_symbol (bfd *abfd,
889 struct bfd_link_info *info,
890 const char *name,
891 Elf_Internal_Sym *sym,
892 asection **psec,
893 bfd_vma *pvalue,
894 struct elf_link_hash_entry **sym_hash,
895 bfd **poldbfd,
896 bfd_boolean *pold_weak,
897 unsigned int *pold_alignment,
898 bfd_boolean *skip,
899 bfd_boolean *override,
900 bfd_boolean *type_change_ok,
901 bfd_boolean *size_change_ok)
902 {
903 asection *sec, *oldsec;
904 struct elf_link_hash_entry *h;
905 struct elf_link_hash_entry *hi;
906 struct elf_link_hash_entry *flip;
907 int bind;
908 bfd *oldbfd;
909 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
910 bfd_boolean newweak, oldweak, newfunc, oldfunc;
911 const struct elf_backend_data *bed;
912
913 *skip = FALSE;
914 *override = FALSE;
915
916 sec = *psec;
917 bind = ELF_ST_BIND (sym->st_info);
918
919 if (! bfd_is_und_section (sec))
920 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
921 else
922 h = ((struct elf_link_hash_entry *)
923 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
924 if (h == NULL)
925 return FALSE;
926 *sym_hash = h;
927
928 bed = get_elf_backend_data (abfd);
929
930 /* For merging, we only care about real symbols. But we need to make
931 sure that indirect symbol dynamic flags are updated. */
932 hi = h;
933 while (h->root.type == bfd_link_hash_indirect
934 || h->root.type == bfd_link_hash_warning)
935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
936
937 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
938 existing symbol. */
939
940 oldbfd = NULL;
941 oldsec = NULL;
942 switch (h->root.type)
943 {
944 default:
945 break;
946
947 case bfd_link_hash_undefined:
948 case bfd_link_hash_undefweak:
949 oldbfd = h->root.u.undef.abfd;
950 break;
951
952 case bfd_link_hash_defined:
953 case bfd_link_hash_defweak:
954 oldbfd = h->root.u.def.section->owner;
955 oldsec = h->root.u.def.section;
956 break;
957
958 case bfd_link_hash_common:
959 oldbfd = h->root.u.c.p->section->owner;
960 oldsec = h->root.u.c.p->section;
961 if (pold_alignment)
962 *pold_alignment = h->root.u.c.p->alignment_power;
963 break;
964 }
965 if (poldbfd && *poldbfd == NULL)
966 *poldbfd = oldbfd;
967
968 /* Differentiate strong and weak symbols. */
969 newweak = bind == STB_WEAK;
970 oldweak = (h->root.type == bfd_link_hash_defweak
971 || h->root.type == bfd_link_hash_undefweak);
972 if (pold_weak)
973 *pold_weak = oldweak;
974
975 /* This code is for coping with dynamic objects, and is only useful
976 if we are doing an ELF link. */
977 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
978 return TRUE;
979
980 /* We have to check it for every instance since the first few may be
981 references and not all compilers emit symbol type for undefined
982 symbols. */
983 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
984
985 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
986 respectively, is from a dynamic object. */
987
988 newdyn = (abfd->flags & DYNAMIC) != 0;
989
990 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
991 syms and defined syms in dynamic libraries respectively.
992 ref_dynamic on the other hand can be set for a symbol defined in
993 a dynamic library, and def_dynamic may not be set; When the
994 definition in a dynamic lib is overridden by a definition in the
995 executable use of the symbol in the dynamic lib becomes a
996 reference to the executable symbol. */
997 if (newdyn)
998 {
999 if (bfd_is_und_section (sec))
1000 {
1001 if (bind != STB_WEAK)
1002 {
1003 h->ref_dynamic_nonweak = 1;
1004 hi->ref_dynamic_nonweak = 1;
1005 }
1006 }
1007 else
1008 {
1009 h->dynamic_def = 1;
1010 hi->dynamic_def = 1;
1011 }
1012 }
1013
1014 /* If we just created the symbol, mark it as being an ELF symbol.
1015 Other than that, there is nothing to do--there is no merge issue
1016 with a newly defined symbol--so we just return. */
1017
1018 if (h->root.type == bfd_link_hash_new)
1019 {
1020 h->non_elf = 0;
1021 return TRUE;
1022 }
1023
1024 /* In cases involving weak versioned symbols, we may wind up trying
1025 to merge a symbol with itself. Catch that here, to avoid the
1026 confusion that results if we try to override a symbol with
1027 itself. The additional tests catch cases like
1028 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1029 dynamic object, which we do want to handle here. */
1030 if (abfd == oldbfd
1031 && (newweak || oldweak)
1032 && ((abfd->flags & DYNAMIC) == 0
1033 || !h->def_regular))
1034 return TRUE;
1035
1036 olddyn = FALSE;
1037 if (oldbfd != NULL)
1038 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1039 else if (oldsec != NULL)
1040 {
1041 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1042 indices used by MIPS ELF. */
1043 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1044 }
1045
1046 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1047 respectively, appear to be a definition rather than reference. */
1048
1049 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1050
1051 olddef = (h->root.type != bfd_link_hash_undefined
1052 && h->root.type != bfd_link_hash_undefweak
1053 && h->root.type != bfd_link_hash_common);
1054
1055 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1056 respectively, appear to be a function. */
1057
1058 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1059 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1060
1061 oldfunc = (h->type != STT_NOTYPE
1062 && bed->is_function_type (h->type));
1063
1064 /* When we try to create a default indirect symbol from the dynamic
1065 definition with the default version, we skip it if its type and
1066 the type of existing regular definition mismatch. */
1067 if (pold_alignment == NULL
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (((olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 || (olddef
1077 && ((h->type == STT_GNU_IFUNC)
1078 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1079 {
1080 *skip = TRUE;
1081 return TRUE;
1082 }
1083
1084 /* Check TLS symbols. We don't check undefined symbols introduced
1085 by "ld -u" which have no type (and oldbfd NULL), and we don't
1086 check symbols from plugins because they also have no type. */
1087 if (oldbfd != NULL
1088 && (oldbfd->flags & BFD_PLUGIN) == 0
1089 && (abfd->flags & BFD_PLUGIN) == 0
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A "
1119 "mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B "
1124 "mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1126 else if (tdef)
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A "
1129 "mismatches non-TLS reference in %B"),
1130 tbfd, tsec, ntbfd, h->root.root.string);
1131 else
1132 (*_bfd_error_handler)
1133 (_("%s: TLS reference in %B "
1134 "mismatches non-TLS definition in %B section %A"),
1135 tbfd, ntbfd, ntsec, h->root.root.string);
1136
1137 bfd_set_error (bfd_error_bad_value);
1138 return FALSE;
1139 }
1140
1141 /* If the old symbol has non-default visibility, we ignore the new
1142 definition from a dynamic object. */
1143 if (newdyn
1144 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1145 && !bfd_is_und_section (sec))
1146 {
1147 *skip = TRUE;
1148 /* Make sure this symbol is dynamic. */
1149 h->ref_dynamic = 1;
1150 hi->ref_dynamic = 1;
1151 /* A protected symbol has external availability. Make sure it is
1152 recorded as dynamic.
1153
1154 FIXME: Should we check type and size for protected symbol? */
1155 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1156 return bfd_elf_link_record_dynamic_symbol (info, h);
1157 else
1158 return TRUE;
1159 }
1160 else if (!newdyn
1161 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1162 && h->def_dynamic)
1163 {
1164 /* If the new symbol with non-default visibility comes from a
1165 relocatable file and the old definition comes from a dynamic
1166 object, we remove the old definition. */
1167 if (hi->root.type == bfd_link_hash_indirect)
1168 {
1169 /* Handle the case where the old dynamic definition is
1170 default versioned. We need to copy the symbol info from
1171 the symbol with default version to the normal one if it
1172 was referenced before. */
1173 if (h->ref_regular)
1174 {
1175 hi->root.type = h->root.type;
1176 h->root.type = bfd_link_hash_indirect;
1177 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1178
1179 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1180 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1181 {
1182 /* If the new symbol is hidden or internal, completely undo
1183 any dynamic link state. */
1184 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1185 h->forced_local = 0;
1186 h->ref_dynamic = 0;
1187 }
1188 else
1189 h->ref_dynamic = 1;
1190
1191 h->def_dynamic = 0;
1192 /* FIXME: Should we check type and size for protected symbol? */
1193 h->size = 0;
1194 h->type = 0;
1195
1196 h = hi;
1197 }
1198 else
1199 h = hi;
1200 }
1201
1202 /* If the old symbol was undefined before, then it will still be
1203 on the undefs list. If the new symbol is undefined or
1204 common, we can't make it bfd_link_hash_new here, because new
1205 undefined or common symbols will be added to the undefs list
1206 by _bfd_generic_link_add_one_symbol. Symbols may not be
1207 added twice to the undefs list. Also, if the new symbol is
1208 undefweak then we don't want to lose the strong undef. */
1209 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1210 {
1211 h->root.type = bfd_link_hash_undefined;
1212 h->root.u.undef.abfd = abfd;
1213 }
1214 else
1215 {
1216 h->root.type = bfd_link_hash_new;
1217 h->root.u.undef.abfd = NULL;
1218 }
1219
1220 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1221 {
1222 /* If the new symbol is hidden or internal, completely undo
1223 any dynamic link state. */
1224 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1225 h->forced_local = 0;
1226 h->ref_dynamic = 0;
1227 }
1228 else
1229 h->ref_dynamic = 1;
1230 h->def_dynamic = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1232 h->size = 0;
1233 h->type = 0;
1234 return TRUE;
1235 }
1236
1237 /* If a new weak symbol definition comes from a regular file and the
1238 old symbol comes from a dynamic library, we treat the new one as
1239 strong. Similarly, an old weak symbol definition from a regular
1240 file is treated as strong when the new symbol comes from a dynamic
1241 library. Further, an old weak symbol from a dynamic library is
1242 treated as strong if the new symbol is from a dynamic library.
1243 This reflects the way glibc's ld.so works.
1244
1245 Do this before setting *type_change_ok or *size_change_ok so that
1246 we warn properly when dynamic library symbols are overridden. */
1247
1248 if (newdef && !newdyn && olddyn)
1249 newweak = FALSE;
1250 if (olddef && newdyn)
1251 oldweak = FALSE;
1252
1253 /* Allow changes between different types of function symbol. */
1254 if (newfunc && oldfunc)
1255 *type_change_ok = TRUE;
1256
1257 /* It's OK to change the type if either the existing symbol or the
1258 new symbol is weak. A type change is also OK if the old symbol
1259 is undefined and the new symbol is defined. */
1260
1261 if (oldweak
1262 || newweak
1263 || (newdef
1264 && h->root.type == bfd_link_hash_undefined))
1265 *type_change_ok = TRUE;
1266
1267 /* It's OK to change the size if either the existing symbol or the
1268 new symbol is weak, or if the old symbol is undefined. */
1269
1270 if (*type_change_ok
1271 || h->root.type == bfd_link_hash_undefined)
1272 *size_change_ok = TRUE;
1273
1274 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1275 symbol, respectively, appears to be a common symbol in a dynamic
1276 object. If a symbol appears in an uninitialized section, and is
1277 not weak, and is not a function, then it may be a common symbol
1278 which was resolved when the dynamic object was created. We want
1279 to treat such symbols specially, because they raise special
1280 considerations when setting the symbol size: if the symbol
1281 appears as a common symbol in a regular object, and the size in
1282 the regular object is larger, we must make sure that we use the
1283 larger size. This problematic case can always be avoided in C,
1284 but it must be handled correctly when using Fortran shared
1285 libraries.
1286
1287 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1288 likewise for OLDDYNCOMMON and OLDDEF.
1289
1290 Note that this test is just a heuristic, and that it is quite
1291 possible to have an uninitialized symbol in a shared object which
1292 is really a definition, rather than a common symbol. This could
1293 lead to some minor confusion when the symbol really is a common
1294 symbol in some regular object. However, I think it will be
1295 harmless. */
1296
1297 if (newdyn
1298 && newdef
1299 && !newweak
1300 && (sec->flags & SEC_ALLOC) != 0
1301 && (sec->flags & SEC_LOAD) == 0
1302 && sym->st_size > 0
1303 && !newfunc)
1304 newdyncommon = TRUE;
1305 else
1306 newdyncommon = FALSE;
1307
1308 if (olddyn
1309 && olddef
1310 && h->root.type == bfd_link_hash_defined
1311 && h->def_dynamic
1312 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1313 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1314 && h->size > 0
1315 && !oldfunc)
1316 olddyncommon = TRUE;
1317 else
1318 olddyncommon = FALSE;
1319
1320 /* We now know everything about the old and new symbols. We ask the
1321 backend to check if we can merge them. */
1322 if (bed->merge_symbol != NULL)
1323 {
1324 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1325 return FALSE;
1326 sec = *psec;
1327 }
1328
1329 /* If both the old and the new symbols look like common symbols in a
1330 dynamic object, set the size of the symbol to the larger of the
1331 two. */
1332
1333 if (olddyncommon
1334 && newdyncommon
1335 && sym->st_size != h->size)
1336 {
1337 /* Since we think we have two common symbols, issue a multiple
1338 common warning if desired. Note that we only warn if the
1339 size is different. If the size is the same, we simply let
1340 the old symbol override the new one as normally happens with
1341 symbols defined in dynamic objects. */
1342
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1345 return FALSE;
1346
1347 if (sym->st_size > h->size)
1348 h->size = sym->st_size;
1349
1350 *size_change_ok = TRUE;
1351 }
1352
1353 /* If we are looking at a dynamic object, and we have found a
1354 definition, we need to see if the symbol was already defined by
1355 some other object. If so, we want to use the existing
1356 definition, and we do not want to report a multiple symbol
1357 definition error; we do this by clobbering *PSEC to be
1358 bfd_und_section_ptr.
1359
1360 We treat a common symbol as a definition if the symbol in the
1361 shared library is a function, since common symbols always
1362 represent variables; this can cause confusion in principle, but
1363 any such confusion would seem to indicate an erroneous program or
1364 shared library. We also permit a common symbol in a regular
1365 object to override a weak symbol in a shared object. */
1366
1367 if (newdyn
1368 && newdef
1369 && (olddef
1370 || (h->root.type == bfd_link_hash_common
1371 && (newweak || newfunc))))
1372 {
1373 *override = TRUE;
1374 newdef = FALSE;
1375 newdyncommon = FALSE;
1376
1377 *psec = sec = bfd_und_section_ptr;
1378 *size_change_ok = TRUE;
1379
1380 /* If we get here when the old symbol is a common symbol, then
1381 we are explicitly letting it override a weak symbol or
1382 function in a dynamic object, and we don't want to warn about
1383 a type change. If the old symbol is a defined symbol, a type
1384 change warning may still be appropriate. */
1385
1386 if (h->root.type == bfd_link_hash_common)
1387 *type_change_ok = TRUE;
1388 }
1389
1390 /* Handle the special case of an old common symbol merging with a
1391 new symbol which looks like a common symbol in a shared object.
1392 We change *PSEC and *PVALUE to make the new symbol look like a
1393 common symbol, and let _bfd_generic_link_add_one_symbol do the
1394 right thing. */
1395
1396 if (newdyncommon
1397 && h->root.type == bfd_link_hash_common)
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402 *pvalue = sym->st_size;
1403 *psec = sec = bed->common_section (oldsec);
1404 *size_change_ok = TRUE;
1405 }
1406
1407 /* Skip weak definitions of symbols that are already defined. */
1408 if (newdef && olddef && newweak)
1409 {
1410 /* Don't skip new non-IR weak syms. */
1411 if (!(oldbfd != NULL
1412 && (oldbfd->flags & BFD_PLUGIN) != 0
1413 && (abfd->flags & BFD_PLUGIN) == 0))
1414 {
1415 newdef = FALSE;
1416 *skip = TRUE;
1417 }
1418
1419 /* Merge st_other. If the symbol already has a dynamic index,
1420 but visibility says it should not be visible, turn it into a
1421 local symbol. */
1422 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1423 if (h->dynindx != -1)
1424 switch (ELF_ST_VISIBILITY (h->other))
1425 {
1426 case STV_INTERNAL:
1427 case STV_HIDDEN:
1428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1429 break;
1430 }
1431 }
1432
1433 /* If the old symbol is from a dynamic object, and the new symbol is
1434 a definition which is not from a dynamic object, then the new
1435 symbol overrides the old symbol. Symbols from regular files
1436 always take precedence over symbols from dynamic objects, even if
1437 they are defined after the dynamic object in the link.
1438
1439 As above, we again permit a common symbol in a regular object to
1440 override a definition in a shared object if the shared object
1441 symbol is a function or is weak. */
1442
1443 flip = NULL;
1444 if (!newdyn
1445 && (newdef
1446 || (bfd_is_com_section (sec)
1447 && (oldweak || oldfunc)))
1448 && olddyn
1449 && olddef
1450 && h->def_dynamic)
1451 {
1452 /* Change the hash table entry to undefined, and let
1453 _bfd_generic_link_add_one_symbol do the right thing with the
1454 new definition. */
1455
1456 h->root.type = bfd_link_hash_undefined;
1457 h->root.u.undef.abfd = h->root.u.def.section->owner;
1458 *size_change_ok = TRUE;
1459
1460 olddef = FALSE;
1461 olddyncommon = FALSE;
1462
1463 /* We again permit a type change when a common symbol may be
1464 overriding a function. */
1465
1466 if (bfd_is_com_section (sec))
1467 {
1468 if (oldfunc)
1469 {
1470 /* If a common symbol overrides a function, make sure
1471 that it isn't defined dynamically nor has type
1472 function. */
1473 h->def_dynamic = 0;
1474 h->type = STT_NOTYPE;
1475 }
1476 *type_change_ok = TRUE;
1477 }
1478
1479 if (hi->root.type == bfd_link_hash_indirect)
1480 flip = hi;
1481 else
1482 /* This union may have been set to be non-NULL when this symbol
1483 was seen in a dynamic object. We must force the union to be
1484 NULL, so that it is correct for a regular symbol. */
1485 h->verinfo.vertree = NULL;
1486 }
1487
1488 /* Handle the special case of a new common symbol merging with an
1489 old symbol that looks like it might be a common symbol defined in
1490 a shared object. Note that we have already handled the case in
1491 which a new common symbol should simply override the definition
1492 in the shared library. */
1493
1494 if (! newdyn
1495 && bfd_is_com_section (sec)
1496 && olddyncommon)
1497 {
1498 /* It would be best if we could set the hash table entry to a
1499 common symbol, but we don't know what to use for the section
1500 or the alignment. */
1501 if (! ((*info->callbacks->multiple_common)
1502 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1503 return FALSE;
1504
1505 /* If the presumed common symbol in the dynamic object is
1506 larger, pretend that the new symbol has its size. */
1507
1508 if (h->size > *pvalue)
1509 *pvalue = h->size;
1510
1511 /* We need to remember the alignment required by the symbol
1512 in the dynamic object. */
1513 BFD_ASSERT (pold_alignment);
1514 *pold_alignment = h->root.u.def.section->alignment_power;
1515
1516 olddef = FALSE;
1517 olddyncommon = FALSE;
1518
1519 h->root.type = bfd_link_hash_undefined;
1520 h->root.u.undef.abfd = h->root.u.def.section->owner;
1521
1522 *size_change_ok = TRUE;
1523 *type_change_ok = TRUE;
1524
1525 if (hi->root.type == bfd_link_hash_indirect)
1526 flip = hi;
1527 else
1528 h->verinfo.vertree = NULL;
1529 }
1530
1531 if (flip != NULL)
1532 {
1533 /* Handle the case where we had a versioned symbol in a dynamic
1534 library and now find a definition in a normal object. In this
1535 case, we make the versioned symbol point to the normal one. */
1536 flip->root.type = h->root.type;
1537 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1540 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1541 if (h->def_dynamic)
1542 {
1543 h->def_dynamic = 0;
1544 flip->ref_dynamic = 1;
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 /* This function is called to create an indirect symbol from the
1552 default for the symbol with the default version if needed. The
1553 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1554 set DYNSYM if the new indirect symbol is dynamic. */
1555
1556 static bfd_boolean
1557 _bfd_elf_add_default_symbol (bfd *abfd,
1558 struct bfd_link_info *info,
1559 struct elf_link_hash_entry *h,
1560 const char *name,
1561 Elf_Internal_Sym *sym,
1562 asection *sec,
1563 bfd_vma value,
1564 bfd **poldbfd,
1565 bfd_boolean *dynsym)
1566 {
1567 bfd_boolean type_change_ok;
1568 bfd_boolean size_change_ok;
1569 bfd_boolean skip;
1570 char *shortname;
1571 struct elf_link_hash_entry *hi;
1572 struct bfd_link_hash_entry *bh;
1573 const struct elf_backend_data *bed;
1574 bfd_boolean collect;
1575 bfd_boolean dynamic;
1576 bfd_boolean override;
1577 char *p;
1578 size_t len, shortlen;
1579 asection *tmp_sec;
1580
1581 /* If this symbol has a version, and it is the default version, we
1582 create an indirect symbol from the default name to the fully
1583 decorated name. This will cause external references which do not
1584 specify a version to be bound to this version of the symbol. */
1585 p = strchr (name, ELF_VER_CHR);
1586 if (p == NULL || p[1] != ELF_VER_CHR)
1587 return TRUE;
1588
1589 bed = get_elf_backend_data (abfd);
1590 collect = bed->collect;
1591 dynamic = (abfd->flags & DYNAMIC) != 0;
1592
1593 shortlen = p - name;
1594 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1595 if (shortname == NULL)
1596 return FALSE;
1597 memcpy (shortname, name, shortlen);
1598 shortname[shortlen] = '\0';
1599
1600 /* We are going to create a new symbol. Merge it with any existing
1601 symbol with this name. For the purposes of the merge, act as
1602 though we were defining the symbol we just defined, although we
1603 actually going to define an indirect symbol. */
1604 type_change_ok = FALSE;
1605 size_change_ok = FALSE;
1606 tmp_sec = sec;
1607 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1608 &hi, poldbfd, NULL, NULL, &skip, &override,
1609 &type_change_ok, &size_change_ok))
1610 return FALSE;
1611
1612 if (skip)
1613 goto nondefault;
1614
1615 if (! override)
1616 {
1617 bh = &hi->root;
1618 if (! (_bfd_generic_link_add_one_symbol
1619 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1620 0, name, FALSE, collect, &bh)))
1621 return FALSE;
1622 hi = (struct elf_link_hash_entry *) bh;
1623 }
1624 else
1625 {
1626 /* In this case the symbol named SHORTNAME is overriding the
1627 indirect symbol we want to add. We were planning on making
1628 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1629 is the name without a version. NAME is the fully versioned
1630 name, and it is the default version.
1631
1632 Overriding means that we already saw a definition for the
1633 symbol SHORTNAME in a regular object, and it is overriding
1634 the symbol defined in the dynamic object.
1635
1636 When this happens, we actually want to change NAME, the
1637 symbol we just added, to refer to SHORTNAME. This will cause
1638 references to NAME in the shared object to become references
1639 to SHORTNAME in the regular object. This is what we expect
1640 when we override a function in a shared object: that the
1641 references in the shared object will be mapped to the
1642 definition in the regular object. */
1643
1644 while (hi->root.type == bfd_link_hash_indirect
1645 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1650 if (h->def_dynamic)
1651 {
1652 h->def_dynamic = 0;
1653 hi->ref_dynamic = 1;
1654 if (hi->ref_regular
1655 || hi->def_regular)
1656 {
1657 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1658 return FALSE;
1659 }
1660 }
1661
1662 /* Now set HI to H, so that the following code will set the
1663 other fields correctly. */
1664 hi = h;
1665 }
1666
1667 /* Check if HI is a warning symbol. */
1668 if (hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 /* If there is a duplicate definition somewhere, then HI may not
1672 point to an indirect symbol. We will have reported an error to
1673 the user in that case. */
1674
1675 if (hi->root.type == bfd_link_hash_indirect)
1676 {
1677 struct elf_link_hash_entry *ht;
1678
1679 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1681
1682 /* A reference to the SHORTNAME symbol from a dynamic library
1683 will be satisfied by the versioned symbol at runtime. In
1684 effect, we have a reference to the versioned symbol. */
1685 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1686 hi->dynamic_def |= ht->dynamic_def;
1687
1688 /* See if the new flags lead us to realize that the symbol must
1689 be dynamic. */
1690 if (! *dynsym)
1691 {
1692 if (! dynamic)
1693 {
1694 if (! info->executable
1695 || hi->def_dynamic
1696 || hi->ref_dynamic)
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
1701 if (hi->ref_regular)
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706
1707 /* We also need to define an indirection from the nondefault version
1708 of the symbol. */
1709
1710 nondefault:
1711 len = strlen (name);
1712 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1713 if (shortname == NULL)
1714 return FALSE;
1715 memcpy (shortname, name, shortlen);
1716 memcpy (shortname + shortlen, p + 1, len - shortlen);
1717
1718 /* Once again, merge with any existing symbol. */
1719 type_change_ok = FALSE;
1720 size_change_ok = FALSE;
1721 tmp_sec = sec;
1722 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1723 &hi, poldbfd, NULL, NULL, &skip, &override,
1724 &type_change_ok, &size_change_ok))
1725 return FALSE;
1726
1727 if (skip)
1728 return TRUE;
1729
1730 if (override)
1731 {
1732 /* Here SHORTNAME is a versioned name, so we don't expect to see
1733 the type of override we do in the case above unless it is
1734 overridden by a versioned definition. */
1735 if (hi->root.type != bfd_link_hash_defined
1736 && hi->root.type != bfd_link_hash_defweak)
1737 (*_bfd_error_handler)
1738 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1739 abfd, shortname);
1740 }
1741 else
1742 {
1743 bh = &hi->root;
1744 if (! (_bfd_generic_link_add_one_symbol
1745 (info, abfd, shortname, BSF_INDIRECT,
1746 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1747 return FALSE;
1748 hi = (struct elf_link_hash_entry *) bh;
1749
1750 /* If there is a duplicate definition somewhere, then HI may not
1751 point to an indirect symbol. We will have reported an error
1752 to the user in that case. */
1753
1754 if (hi->root.type == bfd_link_hash_indirect)
1755 {
1756 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1757 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1758 hi->dynamic_def |= h->dynamic_def;
1759
1760 /* See if the new flags lead us to realize that the symbol
1761 must be dynamic. */
1762 if (! *dynsym)
1763 {
1764 if (! dynamic)
1765 {
1766 if (! info->executable
1767 || hi->ref_dynamic)
1768 *dynsym = TRUE;
1769 }
1770 else
1771 {
1772 if (hi->ref_regular)
1773 *dynsym = TRUE;
1774 }
1775 }
1776 }
1777 }
1778
1779 return TRUE;
1780 }
1781 \f
1782 /* This routine is used to export all defined symbols into the dynamic
1783 symbol table. It is called via elf_link_hash_traverse. */
1784
1785 static bfd_boolean
1786 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1787 {
1788 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1789
1790 /* Ignore indirect symbols. These are added by the versioning code. */
1791 if (h->root.type == bfd_link_hash_indirect)
1792 return TRUE;
1793
1794 /* Ignore this if we won't export it. */
1795 if (!eif->info->export_dynamic && !h->dynamic)
1796 return TRUE;
1797
1798 if (h->dynindx == -1
1799 && (h->def_regular || h->ref_regular)
1800 && ! bfd_hide_sym_by_version (eif->info->version_info,
1801 h->root.root.string))
1802 {
1803 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1804 {
1805 eif->failed = TRUE;
1806 return FALSE;
1807 }
1808 }
1809
1810 return TRUE;
1811 }
1812 \f
1813 /* Look through the symbols which are defined in other shared
1814 libraries and referenced here. Update the list of version
1815 dependencies. This will be put into the .gnu.version_r section.
1816 This function is called via elf_link_hash_traverse. */
1817
1818 static bfd_boolean
1819 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1820 void *data)
1821 {
1822 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1823 Elf_Internal_Verneed *t;
1824 Elf_Internal_Vernaux *a;
1825 bfd_size_type amt;
1826
1827 /* We only care about symbols defined in shared objects with version
1828 information. */
1829 if (!h->def_dynamic
1830 || h->def_regular
1831 || h->dynindx == -1
1832 || h->verinfo.verdef == NULL
1833 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1834 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1835 return TRUE;
1836
1837 /* See if we already know about this version. */
1838 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1839 t != NULL;
1840 t = t->vn_nextref)
1841 {
1842 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1843 continue;
1844
1845 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1846 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1847 return TRUE;
1848
1849 break;
1850 }
1851
1852 /* This is a new version. Add it to tree we are building. */
1853
1854 if (t == NULL)
1855 {
1856 amt = sizeof *t;
1857 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1858 if (t == NULL)
1859 {
1860 rinfo->failed = TRUE;
1861 return FALSE;
1862 }
1863
1864 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1865 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1866 elf_tdata (rinfo->info->output_bfd)->verref = t;
1867 }
1868
1869 amt = sizeof *a;
1870 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (a == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 /* Note that we are copying a string pointer here, and testing it
1878 above. If bfd_elf_string_from_elf_section is ever changed to
1879 discard the string data when low in memory, this will have to be
1880 fixed. */
1881 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1882
1883 a->vna_flags = h->verinfo.verdef->vd_flags;
1884 a->vna_nextptr = t->vn_auxptr;
1885
1886 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1887 ++rinfo->vers;
1888
1889 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1890
1891 t->vn_auxptr = a;
1892
1893 return TRUE;
1894 }
1895
1896 /* Figure out appropriate versions for all the symbols. We may not
1897 have the version number script until we have read all of the input
1898 files, so until that point we don't know which symbols should be
1899 local. This function is called via elf_link_hash_traverse. */
1900
1901 static bfd_boolean
1902 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1903 {
1904 struct elf_info_failed *sinfo;
1905 struct bfd_link_info *info;
1906 const struct elf_backend_data *bed;
1907 struct elf_info_failed eif;
1908 char *p;
1909 bfd_size_type amt;
1910
1911 sinfo = (struct elf_info_failed *) data;
1912 info = sinfo->info;
1913
1914 /* Fix the symbol flags. */
1915 eif.failed = FALSE;
1916 eif.info = info;
1917 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1918 {
1919 if (eif.failed)
1920 sinfo->failed = TRUE;
1921 return FALSE;
1922 }
1923
1924 /* We only need version numbers for symbols defined in regular
1925 objects. */
1926 if (!h->def_regular)
1927 return TRUE;
1928
1929 bed = get_elf_backend_data (info->output_bfd);
1930 p = strchr (h->root.root.string, ELF_VER_CHR);
1931 if (p != NULL && h->verinfo.vertree == NULL)
1932 {
1933 struct bfd_elf_version_tree *t;
1934 bfd_boolean hidden;
1935
1936 hidden = TRUE;
1937
1938 /* There are two consecutive ELF_VER_CHR characters if this is
1939 not a hidden symbol. */
1940 ++p;
1941 if (*p == ELF_VER_CHR)
1942 {
1943 hidden = FALSE;
1944 ++p;
1945 }
1946
1947 /* If there is no version string, we can just return out. */
1948 if (*p == '\0')
1949 {
1950 if (hidden)
1951 h->hidden = 1;
1952 return TRUE;
1953 }
1954
1955 /* Look for the version. If we find it, it is no longer weak. */
1956 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1957 {
1958 if (strcmp (t->name, p) == 0)
1959 {
1960 size_t len;
1961 char *alc;
1962 struct bfd_elf_version_expr *d;
1963
1964 len = p - h->root.root.string;
1965 alc = (char *) bfd_malloc (len);
1966 if (alc == NULL)
1967 {
1968 sinfo->failed = TRUE;
1969 return FALSE;
1970 }
1971 memcpy (alc, h->root.root.string, len - 1);
1972 alc[len - 1] = '\0';
1973 if (alc[len - 2] == ELF_VER_CHR)
1974 alc[len - 2] = '\0';
1975
1976 h->verinfo.vertree = t;
1977 t->used = TRUE;
1978 d = NULL;
1979
1980 if (t->globals.list != NULL)
1981 d = (*t->match) (&t->globals, NULL, alc);
1982
1983 /* See if there is anything to force this symbol to
1984 local scope. */
1985 if (d == NULL && t->locals.list != NULL)
1986 {
1987 d = (*t->match) (&t->locals, NULL, alc);
1988 if (d != NULL
1989 && h->dynindx != -1
1990 && ! info->export_dynamic)
1991 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1992 }
1993
1994 free (alc);
1995 break;
1996 }
1997 }
1998
1999 /* If we are building an application, we need to create a
2000 version node for this version. */
2001 if (t == NULL && info->executable)
2002 {
2003 struct bfd_elf_version_tree **pp;
2004 int version_index;
2005
2006 /* If we aren't going to export this symbol, we don't need
2007 to worry about it. */
2008 if (h->dynindx == -1)
2009 return TRUE;
2010
2011 amt = sizeof *t;
2012 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2013 if (t == NULL)
2014 {
2015 sinfo->failed = TRUE;
2016 return FALSE;
2017 }
2018
2019 t->name = p;
2020 t->name_indx = (unsigned int) -1;
2021 t->used = TRUE;
2022
2023 version_index = 1;
2024 /* Don't count anonymous version tag. */
2025 if (sinfo->info->version_info != NULL
2026 && sinfo->info->version_info->vernum == 0)
2027 version_index = 0;
2028 for (pp = &sinfo->info->version_info;
2029 *pp != NULL;
2030 pp = &(*pp)->next)
2031 ++version_index;
2032 t->vernum = version_index;
2033
2034 *pp = t;
2035
2036 h->verinfo.vertree = t;
2037 }
2038 else if (t == NULL)
2039 {
2040 /* We could not find the version for a symbol when
2041 generating a shared archive. Return an error. */
2042 (*_bfd_error_handler)
2043 (_("%B: version node not found for symbol %s"),
2044 info->output_bfd, h->root.root.string);
2045 bfd_set_error (bfd_error_bad_value);
2046 sinfo->failed = TRUE;
2047 return FALSE;
2048 }
2049
2050 if (hidden)
2051 h->hidden = 1;
2052 }
2053
2054 /* If we don't have a version for this symbol, see if we can find
2055 something. */
2056 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2057 {
2058 bfd_boolean hide;
2059
2060 h->verinfo.vertree
2061 = bfd_find_version_for_sym (sinfo->info->version_info,
2062 h->root.root.string, &hide);
2063 if (h->verinfo.vertree != NULL && hide)
2064 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 }
2066
2067 return TRUE;
2068 }
2069 \f
2070 /* Read and swap the relocs from the section indicated by SHDR. This
2071 may be either a REL or a RELA section. The relocations are
2072 translated into RELA relocations and stored in INTERNAL_RELOCS,
2073 which should have already been allocated to contain enough space.
2074 The EXTERNAL_RELOCS are a buffer where the external form of the
2075 relocations should be stored.
2076
2077 Returns FALSE if something goes wrong. */
2078
2079 static bfd_boolean
2080 elf_link_read_relocs_from_section (bfd *abfd,
2081 asection *sec,
2082 Elf_Internal_Shdr *shdr,
2083 void *external_relocs,
2084 Elf_Internal_Rela *internal_relocs)
2085 {
2086 const struct elf_backend_data *bed;
2087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2088 const bfd_byte *erela;
2089 const bfd_byte *erelaend;
2090 Elf_Internal_Rela *irela;
2091 Elf_Internal_Shdr *symtab_hdr;
2092 size_t nsyms;
2093
2094 /* Position ourselves at the start of the section. */
2095 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2096 return FALSE;
2097
2098 /* Read the relocations. */
2099 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2100 return FALSE;
2101
2102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2103 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2104
2105 bed = get_elf_backend_data (abfd);
2106
2107 /* Convert the external relocations to the internal format. */
2108 if (shdr->sh_entsize == bed->s->sizeof_rel)
2109 swap_in = bed->s->swap_reloc_in;
2110 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2111 swap_in = bed->s->swap_reloca_in;
2112 else
2113 {
2114 bfd_set_error (bfd_error_wrong_format);
2115 return FALSE;
2116 }
2117
2118 erela = (const bfd_byte *) external_relocs;
2119 erelaend = erela + shdr->sh_size;
2120 irela = internal_relocs;
2121 while (erela < erelaend)
2122 {
2123 bfd_vma r_symndx;
2124
2125 (*swap_in) (abfd, erela, irela);
2126 r_symndx = ELF32_R_SYM (irela->r_info);
2127 if (bed->s->arch_size == 64)
2128 r_symndx >>= 24;
2129 if (nsyms > 0)
2130 {
2131 if ((size_t) r_symndx >= nsyms)
2132 {
2133 (*_bfd_error_handler)
2134 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2135 " for offset 0x%lx in section `%A'"),
2136 abfd, sec,
2137 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2138 bfd_set_error (bfd_error_bad_value);
2139 return FALSE;
2140 }
2141 }
2142 else if (r_symndx != STN_UNDEF)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2146 " when the object file has no symbol table"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157 }
2158
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 RELA_HDR relocations. */
2168
2169 Elf_Internal_Rela *
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2175 {
2176 void *alloc1 = NULL;
2177 Elf_Internal_Rela *alloc2 = NULL;
2178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2179 struct bfd_elf_section_data *esdo = elf_section_data (o);
2180 Elf_Internal_Rela *internal_rela_relocs;
2181
2182 if (esdo->relocs != NULL)
2183 return esdo->relocs;
2184
2185 if (o->reloc_count == 0)
2186 return NULL;
2187
2188 if (internal_relocs == NULL)
2189 {
2190 bfd_size_type size;
2191
2192 size = o->reloc_count;
2193 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2194 if (keep_memory)
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2196 else
2197 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2198 if (internal_relocs == NULL)
2199 goto error_return;
2200 }
2201
2202 if (external_relocs == NULL)
2203 {
2204 bfd_size_type size = 0;
2205
2206 if (esdo->rel.hdr)
2207 size += esdo->rel.hdr->sh_size;
2208 if (esdo->rela.hdr)
2209 size += esdo->rela.hdr->sh_size;
2210
2211 alloc1 = bfd_malloc (size);
2212 if (alloc1 == NULL)
2213 goto error_return;
2214 external_relocs = alloc1;
2215 }
2216
2217 internal_rela_relocs = internal_relocs;
2218 if (esdo->rel.hdr)
2219 {
2220 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2221 external_relocs,
2222 internal_relocs))
2223 goto error_return;
2224 external_relocs = (((bfd_byte *) external_relocs)
2225 + esdo->rel.hdr->sh_size);
2226 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2227 * bed->s->int_rels_per_ext_rel);
2228 }
2229
2230 if (esdo->rela.hdr
2231 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2232 external_relocs,
2233 internal_rela_relocs)))
2234 goto error_return;
2235
2236 /* Cache the results for next time, if we can. */
2237 if (keep_memory)
2238 esdo->relocs = internal_relocs;
2239
2240 if (alloc1 != NULL)
2241 free (alloc1);
2242
2243 /* Don't free alloc2, since if it was allocated we are passing it
2244 back (under the name of internal_relocs). */
2245
2246 return internal_relocs;
2247
2248 error_return:
2249 if (alloc1 != NULL)
2250 free (alloc1);
2251 if (alloc2 != NULL)
2252 {
2253 if (keep_memory)
2254 bfd_release (abfd, alloc2);
2255 else
2256 free (alloc2);
2257 }
2258 return NULL;
2259 }
2260
2261 /* Compute the size of, and allocate space for, REL_HDR which is the
2262 section header for a section containing relocations for O. */
2263
2264 static bfd_boolean
2265 _bfd_elf_link_size_reloc_section (bfd *abfd,
2266 struct bfd_elf_section_reloc_data *reldata)
2267 {
2268 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2269
2270 /* That allows us to calculate the size of the section. */
2271 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2272
2273 /* The contents field must last into write_object_contents, so we
2274 allocate it with bfd_alloc rather than malloc. Also since we
2275 cannot be sure that the contents will actually be filled in,
2276 we zero the allocated space. */
2277 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2278 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2279 return FALSE;
2280
2281 if (reldata->hashes == NULL && reldata->count)
2282 {
2283 struct elf_link_hash_entry **p;
2284
2285 p = ((struct elf_link_hash_entry **)
2286 bfd_zmalloc (reldata->count * sizeof (*p)));
2287 if (p == NULL)
2288 return FALSE;
2289
2290 reldata->hashes = p;
2291 }
2292
2293 return TRUE;
2294 }
2295
2296 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2297 originated from the section given by INPUT_REL_HDR) to the
2298 OUTPUT_BFD. */
2299
2300 bfd_boolean
2301 _bfd_elf_link_output_relocs (bfd *output_bfd,
2302 asection *input_section,
2303 Elf_Internal_Shdr *input_rel_hdr,
2304 Elf_Internal_Rela *internal_relocs,
2305 struct elf_link_hash_entry **rel_hash
2306 ATTRIBUTE_UNUSED)
2307 {
2308 Elf_Internal_Rela *irela;
2309 Elf_Internal_Rela *irelaend;
2310 bfd_byte *erel;
2311 struct bfd_elf_section_reloc_data *output_reldata;
2312 asection *output_section;
2313 const struct elf_backend_data *bed;
2314 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2315 struct bfd_elf_section_data *esdo;
2316
2317 output_section = input_section->output_section;
2318
2319 bed = get_elf_backend_data (output_bfd);
2320 esdo = elf_section_data (output_section);
2321 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2322 {
2323 output_reldata = &esdo->rel;
2324 swap_out = bed->s->swap_reloc_out;
2325 }
2326 else if (esdo->rela.hdr
2327 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 {
2329 output_reldata = &esdo->rela;
2330 swap_out = bed->s->swap_reloca_out;
2331 }
2332 else
2333 {
2334 (*_bfd_error_handler)
2335 (_("%B: relocation size mismatch in %B section %A"),
2336 output_bfd, input_section->owner, input_section);
2337 bfd_set_error (bfd_error_wrong_format);
2338 return FALSE;
2339 }
2340
2341 erel = output_reldata->hdr->contents;
2342 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2343 irela = internal_relocs;
2344 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 while (irela < irelaend)
2347 {
2348 (*swap_out) (output_bfd, irela, erel);
2349 irela += bed->s->int_rels_per_ext_rel;
2350 erel += input_rel_hdr->sh_entsize;
2351 }
2352
2353 /* Bump the counter, so that we know where to add the next set of
2354 relocations. */
2355 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2356
2357 return TRUE;
2358 }
2359 \f
2360 /* Make weak undefined symbols in PIE dynamic. */
2361
2362 bfd_boolean
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2365 {
2366 if (info->pie
2367 && h->dynindx == -1
2368 && h->root.type == bfd_link_hash_undefweak)
2369 return bfd_elf_link_record_dynamic_symbol (info, h);
2370
2371 return TRUE;
2372 }
2373
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2379
2380 static bfd_boolean
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2382 struct elf_info_failed *eif)
2383 {
2384 const struct elf_backend_data *bed;
2385
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2390 if (h->non_elf)
2391 {
2392 while (h->root.type == bfd_link_hash_indirect)
2393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2394
2395 if (h->root.type != bfd_link_hash_defined
2396 && h->root.type != bfd_link_hash_defweak)
2397 {
2398 h->ref_regular = 1;
2399 h->ref_regular_nonweak = 1;
2400 }
2401 else
2402 {
2403 if (h->root.u.def.section->owner != NULL
2404 && (bfd_get_flavour (h->root.u.def.section->owner)
2405 == bfd_target_elf_flavour))
2406 {
2407 h->ref_regular = 1;
2408 h->ref_regular_nonweak = 1;
2409 }
2410 else
2411 h->def_regular = 1;
2412 }
2413
2414 if (h->dynindx == -1
2415 && (h->def_dynamic
2416 || h->ref_dynamic))
2417 {
2418 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2419 {
2420 eif->failed = TRUE;
2421 return FALSE;
2422 }
2423 }
2424 }
2425 else
2426 {
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h->root.type == bfd_link_hash_defined
2434 || h->root.type == bfd_link_hash_defweak)
2435 && !h->def_regular
2436 && (h->root.u.def.section->owner != NULL
2437 ? (bfd_get_flavour (h->root.u.def.section->owner)
2438 != bfd_target_elf_flavour)
2439 : (bfd_is_abs_section (h->root.u.def.section)
2440 && !h->def_dynamic)))
2441 h->def_regular = 1;
2442 }
2443
2444 /* Backend specific symbol fixup. */
2445 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2446 if (bed->elf_backend_fixup_symbol
2447 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2448 return FALSE;
2449
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h->root.type == bfd_link_hash_defined
2456 && !h->def_regular
2457 && h->ref_regular
2458 && !h->def_dynamic
2459 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2460 h->def_regular = 1;
2461
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2468 if (h->needs_plt
2469 && eif->info->shared
2470 && is_elf_hash_table (eif->info->hash)
2471 && (SYMBOLIC_BIND (eif->info, h)
2472 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2473 && h->def_regular)
2474 {
2475 bfd_boolean force_local;
2476
2477 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2479 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2480 }
2481
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2485 && h->root.type == bfd_link_hash_undefweak)
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2487
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h->u.weakdef != NULL)
2492 {
2493 /* If the real definition is defined by a regular object file,
2494 don't do anything special. See the longer description in
2495 _bfd_elf_adjust_dynamic_symbol, below. */
2496 if (h->u.weakdef->def_regular)
2497 h->u.weakdef = NULL;
2498 else
2499 {
2500 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2501
2502 while (h->root.type == bfd_link_hash_indirect)
2503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2504
2505 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2506 || h->root.type == bfd_link_hash_defweak);
2507 BFD_ASSERT (weakdef->def_dynamic);
2508 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2509 || weakdef->root.type == bfd_link_hash_defweak);
2510 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 }
2512 }
2513
2514 return TRUE;
2515 }
2516
2517 /* Make the backend pick a good value for a dynamic symbol. This is
2518 called via elf_link_hash_traverse, and also calls itself
2519 recursively. */
2520
2521 static bfd_boolean
2522 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2523 {
2524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2525 bfd *dynobj;
2526 const struct elf_backend_data *bed;
2527
2528 if (! is_elf_hash_table (eif->info->hash))
2529 return FALSE;
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && h->type != STT_GNU_IFUNC
2548 && (h->def_regular
2549 || !h->def_dynamic
2550 || (!h->ref_regular
2551 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2552 {
2553 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2554 return TRUE;
2555 }
2556
2557 /* If we've already adjusted this symbol, don't do it again. This
2558 can happen via a recursive call. */
2559 if (h->dynamic_adjusted)
2560 return TRUE;
2561
2562 /* Don't look at this symbol again. Note that we must set this
2563 after checking the above conditions, because we may look at a
2564 symbol once, decide not to do anything, and then get called
2565 recursively later after REF_REGULAR is set below. */
2566 h->dynamic_adjusted = 1;
2567
2568 /* If this is a weak definition, and we know a real definition, and
2569 the real symbol is not itself defined by a regular object file,
2570 then get a good value for the real definition. We handle the
2571 real symbol first, for the convenience of the backend routine.
2572
2573 Note that there is a confusing case here. If the real definition
2574 is defined by a regular object file, we don't get the real symbol
2575 from the dynamic object, but we do get the weak symbol. If the
2576 processor backend uses a COPY reloc, then if some routine in the
2577 dynamic object changes the real symbol, we will not see that
2578 change in the corresponding weak symbol. This is the way other
2579 ELF linkers work as well, and seems to be a result of the shared
2580 library model.
2581
2582 I will clarify this issue. Most SVR4 shared libraries define the
2583 variable _timezone and define timezone as a weak synonym. The
2584 tzset call changes _timezone. If you write
2585 extern int timezone;
2586 int _timezone = 5;
2587 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2588 you might expect that, since timezone is a synonym for _timezone,
2589 the same number will print both times. However, if the processor
2590 backend uses a COPY reloc, then actually timezone will be copied
2591 into your process image, and, since you define _timezone
2592 yourself, _timezone will not. Thus timezone and _timezone will
2593 wind up at different memory locations. The tzset call will set
2594 _timezone, leaving timezone unchanged. */
2595
2596 if (h->u.weakdef != NULL)
2597 {
2598 /* If we get to this point, there is an implicit reference to
2599 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2600 h->u.weakdef->ref_regular = 1;
2601
2602 /* Ensure that the backend adjust_dynamic_symbol function sees
2603 H->U.WEAKDEF before H by recursively calling ourselves. */
2604 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2605 return FALSE;
2606 }
2607
2608 /* If a symbol has no type and no size and does not require a PLT
2609 entry, then we are probably about to do the wrong thing here: we
2610 are probably going to create a COPY reloc for an empty object.
2611 This case can arise when a shared object is built with assembly
2612 code, and the assembly code fails to set the symbol type. */
2613 if (h->size == 0
2614 && h->type == STT_NOTYPE
2615 && !h->needs_plt)
2616 (*_bfd_error_handler)
2617 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2618 h->root.root.string);
2619
2620 dynobj = elf_hash_table (eif->info)->dynobj;
2621 bed = get_elf_backend_data (dynobj);
2622
2623 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2624 {
2625 eif->failed = TRUE;
2626 return FALSE;
2627 }
2628
2629 return TRUE;
2630 }
2631
2632 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2633 DYNBSS. */
2634
2635 bfd_boolean
2636 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2637 struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 if (h->protected_def)
2677 info->callbacks->einfo
2678 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2679 h->root.root.string);
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 static bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if ((h->root.type == bfd_link_hash_defined
2693 || h->root.type == bfd_link_hash_defweak)
2694 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2695 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2696 {
2697 bfd *output_bfd = (bfd *) data;
2698
2699 h->root.u.def.value =
2700 _bfd_merged_section_offset (output_bfd,
2701 &h->root.u.def.section,
2702 elf_section_data (sec)->sec_info,
2703 h->root.u.def.value);
2704 }
2705
2706 return TRUE;
2707 }
2708
2709 /* Returns false if the symbol referred to by H should be considered
2710 to resolve local to the current module, and true if it should be
2711 considered to bind dynamically. */
2712
2713 bfd_boolean
2714 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2715 struct bfd_link_info *info,
2716 bfd_boolean not_local_protected)
2717 {
2718 bfd_boolean binding_stays_local_p;
2719 const struct elf_backend_data *bed;
2720 struct elf_link_hash_table *hash_table;
2721
2722 if (h == NULL)
2723 return FALSE;
2724
2725 while (h->root.type == bfd_link_hash_indirect
2726 || h->root.type == bfd_link_hash_warning)
2727 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2728
2729 /* If it was forced local, then clearly it's not dynamic. */
2730 if (h->dynindx == -1)
2731 return FALSE;
2732 if (h->forced_local)
2733 return FALSE;
2734
2735 /* Identify the cases where name binding rules say that a
2736 visible symbol resolves locally. */
2737 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2738
2739 switch (ELF_ST_VISIBILITY (h->other))
2740 {
2741 case STV_INTERNAL:
2742 case STV_HIDDEN:
2743 return FALSE;
2744
2745 case STV_PROTECTED:
2746 hash_table = elf_hash_table (info);
2747 if (!is_elf_hash_table (hash_table))
2748 return FALSE;
2749
2750 bed = get_elf_backend_data (hash_table->dynobj);
2751
2752 /* Proper resolution for function pointer equality may require
2753 that these symbols perhaps be resolved dynamically, even though
2754 we should be resolving them to the current module. */
2755 if (!not_local_protected || !bed->is_function_type (h->type))
2756 binding_stays_local_p = TRUE;
2757 break;
2758
2759 default:
2760 break;
2761 }
2762
2763 /* If it isn't defined locally, then clearly it's dynamic. */
2764 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2765 return TRUE;
2766
2767 /* Otherwise, the symbol is dynamic if binding rules don't tell
2768 us that it remains local. */
2769 return !binding_stays_local_p;
2770 }
2771
2772 /* Return true if the symbol referred to by H should be considered
2773 to resolve local to the current module, and false otherwise. Differs
2774 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2775 undefined symbols. The two functions are virtually identical except
2776 for the place where forced_local and dynindx == -1 are tested. If
2777 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2778 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2779 the symbol is local only for defined symbols.
2780 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2781 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2782 treatment of undefined weak symbols. For those that do not make
2783 undefined weak symbols dynamic, both functions may return false. */
2784
2785 bfd_boolean
2786 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2787 struct bfd_link_info *info,
2788 bfd_boolean local_protected)
2789 {
2790 const struct elf_backend_data *bed;
2791 struct elf_link_hash_table *hash_table;
2792
2793 /* If it's a local sym, of course we resolve locally. */
2794 if (h == NULL)
2795 return TRUE;
2796
2797 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2798 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2799 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2800 return TRUE;
2801
2802 /* Common symbols that become definitions don't get the DEF_REGULAR
2803 flag set, so test it first, and don't bail out. */
2804 if (ELF_COMMON_DEF_P (h))
2805 /* Do nothing. */;
2806 /* If we don't have a definition in a regular file, then we can't
2807 resolve locally. The sym is either undefined or dynamic. */
2808 else if (!h->def_regular)
2809 return FALSE;
2810
2811 /* Forced local symbols resolve locally. */
2812 if (h->forced_local)
2813 return TRUE;
2814
2815 /* As do non-dynamic symbols. */
2816 if (h->dynindx == -1)
2817 return TRUE;
2818
2819 /* At this point, we know the symbol is defined and dynamic. In an
2820 executable it must resolve locally, likewise when building symbolic
2821 shared libraries. */
2822 if (info->executable || SYMBOLIC_BIND (info, h))
2823 return TRUE;
2824
2825 /* Now deal with defined dynamic symbols in shared libraries. Ones
2826 with default visibility might not resolve locally. */
2827 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2828 return FALSE;
2829
2830 hash_table = elf_hash_table (info);
2831 if (!is_elf_hash_table (hash_table))
2832 return TRUE;
2833
2834 bed = get_elf_backend_data (hash_table->dynobj);
2835
2836 /* STV_PROTECTED non-function symbols are local. */
2837 if (!bed->is_function_type (h->type))
2838 return TRUE;
2839
2840 /* Function pointer equality tests may require that STV_PROTECTED
2841 symbols be treated as dynamic symbols. If the address of a
2842 function not defined in an executable is set to that function's
2843 plt entry in the executable, then the address of the function in
2844 a shared library must also be the plt entry in the executable. */
2845 return local_protected;
2846 }
2847
2848 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2849 aligned. Returns the first TLS output section. */
2850
2851 struct bfd_section *
2852 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2853 {
2854 struct bfd_section *sec, *tls;
2855 unsigned int align = 0;
2856
2857 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2858 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2859 break;
2860 tls = sec;
2861
2862 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2863 if (sec->alignment_power > align)
2864 align = sec->alignment_power;
2865
2866 elf_hash_table (info)->tls_sec = tls;
2867
2868 /* Ensure the alignment of the first section is the largest alignment,
2869 so that the tls segment starts aligned. */
2870 if (tls != NULL)
2871 tls->alignment_power = align;
2872
2873 return tls;
2874 }
2875
2876 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2877 static bfd_boolean
2878 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2879 Elf_Internal_Sym *sym)
2880 {
2881 const struct elf_backend_data *bed;
2882
2883 /* Local symbols do not count, but target specific ones might. */
2884 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2885 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2886 return FALSE;
2887
2888 bed = get_elf_backend_data (abfd);
2889 /* Function symbols do not count. */
2890 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2891 return FALSE;
2892
2893 /* If the section is undefined, then so is the symbol. */
2894 if (sym->st_shndx == SHN_UNDEF)
2895 return FALSE;
2896
2897 /* If the symbol is defined in the common section, then
2898 it is a common definition and so does not count. */
2899 if (bed->common_definition (sym))
2900 return FALSE;
2901
2902 /* If the symbol is in a target specific section then we
2903 must rely upon the backend to tell us what it is. */
2904 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2905 /* FIXME - this function is not coded yet:
2906
2907 return _bfd_is_global_symbol_definition (abfd, sym);
2908
2909 Instead for now assume that the definition is not global,
2910 Even if this is wrong, at least the linker will behave
2911 in the same way that it used to do. */
2912 return FALSE;
2913
2914 return TRUE;
2915 }
2916
2917 /* Search the symbol table of the archive element of the archive ABFD
2918 whose archive map contains a mention of SYMDEF, and determine if
2919 the symbol is defined in this element. */
2920 static bfd_boolean
2921 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2922 {
2923 Elf_Internal_Shdr * hdr;
2924 bfd_size_type symcount;
2925 bfd_size_type extsymcount;
2926 bfd_size_type extsymoff;
2927 Elf_Internal_Sym *isymbuf;
2928 Elf_Internal_Sym *isym;
2929 Elf_Internal_Sym *isymend;
2930 bfd_boolean result;
2931
2932 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2933 if (abfd == NULL)
2934 return FALSE;
2935
2936 if (! bfd_check_format (abfd, bfd_object))
2937 return FALSE;
2938
2939 /* Select the appropriate symbol table. */
2940 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2941 hdr = &elf_tdata (abfd)->symtab_hdr;
2942 else
2943 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2944
2945 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2946
2947 /* The sh_info field of the symtab header tells us where the
2948 external symbols start. We don't care about the local symbols. */
2949 if (elf_bad_symtab (abfd))
2950 {
2951 extsymcount = symcount;
2952 extsymoff = 0;
2953 }
2954 else
2955 {
2956 extsymcount = symcount - hdr->sh_info;
2957 extsymoff = hdr->sh_info;
2958 }
2959
2960 if (extsymcount == 0)
2961 return FALSE;
2962
2963 /* Read in the symbol table. */
2964 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2965 NULL, NULL, NULL);
2966 if (isymbuf == NULL)
2967 return FALSE;
2968
2969 /* Scan the symbol table looking for SYMDEF. */
2970 result = FALSE;
2971 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2972 {
2973 const char *name;
2974
2975 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2976 isym->st_name);
2977 if (name == NULL)
2978 break;
2979
2980 if (strcmp (name, symdef->name) == 0)
2981 {
2982 result = is_global_data_symbol_definition (abfd, isym);
2983 break;
2984 }
2985 }
2986
2987 free (isymbuf);
2988
2989 return result;
2990 }
2991 \f
2992 /* Add an entry to the .dynamic table. */
2993
2994 bfd_boolean
2995 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2996 bfd_vma tag,
2997 bfd_vma val)
2998 {
2999 struct elf_link_hash_table *hash_table;
3000 const struct elf_backend_data *bed;
3001 asection *s;
3002 bfd_size_type newsize;
3003 bfd_byte *newcontents;
3004 Elf_Internal_Dyn dyn;
3005
3006 hash_table = elf_hash_table (info);
3007 if (! is_elf_hash_table (hash_table))
3008 return FALSE;
3009
3010 bed = get_elf_backend_data (hash_table->dynobj);
3011 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3012 BFD_ASSERT (s != NULL);
3013
3014 newsize = s->size + bed->s->sizeof_dyn;
3015 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3016 if (newcontents == NULL)
3017 return FALSE;
3018
3019 dyn.d_tag = tag;
3020 dyn.d_un.d_val = val;
3021 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3022
3023 s->size = newsize;
3024 s->contents = newcontents;
3025
3026 return TRUE;
3027 }
3028
3029 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3030 otherwise just check whether one already exists. Returns -1 on error,
3031 1 if a DT_NEEDED tag already exists, and 0 on success. */
3032
3033 static int
3034 elf_add_dt_needed_tag (bfd *abfd,
3035 struct bfd_link_info *info,
3036 const char *soname,
3037 bfd_boolean do_it)
3038 {
3039 struct elf_link_hash_table *hash_table;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3047 if (strindex == (bfd_size_type) -1)
3048 return -1;
3049
3050 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3051 {
3052 asection *sdyn;
3053 const struct elf_backend_data *bed;
3054 bfd_byte *extdyn;
3055
3056 bed = get_elf_backend_data (hash_table->dynobj);
3057 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3058 if (sdyn != NULL)
3059 for (extdyn = sdyn->contents;
3060 extdyn < sdyn->contents + sdyn->size;
3061 extdyn += bed->s->sizeof_dyn)
3062 {
3063 Elf_Internal_Dyn dyn;
3064
3065 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3066 if (dyn.d_tag == DT_NEEDED
3067 && dyn.d_un.d_val == strindex)
3068 {
3069 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3070 return 1;
3071 }
3072 }
3073 }
3074
3075 if (do_it)
3076 {
3077 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3078 return -1;
3079
3080 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3081 return -1;
3082 }
3083 else
3084 /* We were just checking for existence of the tag. */
3085 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3086
3087 return 0;
3088 }
3089
3090 static bfd_boolean
3091 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3092 {
3093 for (; needed != NULL; needed = needed->next)
3094 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3095 && strcmp (soname, needed->name) == 0)
3096 return TRUE;
3097
3098 return FALSE;
3099 }
3100
3101 /* Sort symbol by value, section, and size. */
3102 static int
3103 elf_sort_symbol (const void *arg1, const void *arg2)
3104 {
3105 const struct elf_link_hash_entry *h1;
3106 const struct elf_link_hash_entry *h2;
3107 bfd_signed_vma vdiff;
3108
3109 h1 = *(const struct elf_link_hash_entry **) arg1;
3110 h2 = *(const struct elf_link_hash_entry **) arg2;
3111 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3112 if (vdiff != 0)
3113 return vdiff > 0 ? 1 : -1;
3114 else
3115 {
3116 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3117 if (sdiff != 0)
3118 return sdiff > 0 ? 1 : -1;
3119 }
3120 vdiff = h1->size - h2->size;
3121 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3122 }
3123
3124 /* This function is used to adjust offsets into .dynstr for
3125 dynamic symbols. This is called via elf_link_hash_traverse. */
3126
3127 static bfd_boolean
3128 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3129 {
3130 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3131
3132 if (h->dynindx != -1)
3133 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3134 return TRUE;
3135 }
3136
3137 /* Assign string offsets in .dynstr, update all structures referencing
3138 them. */
3139
3140 static bfd_boolean
3141 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3142 {
3143 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3144 struct elf_link_local_dynamic_entry *entry;
3145 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3146 bfd *dynobj = hash_table->dynobj;
3147 asection *sdyn;
3148 bfd_size_type size;
3149 const struct elf_backend_data *bed;
3150 bfd_byte *extdyn;
3151
3152 _bfd_elf_strtab_finalize (dynstr);
3153 size = _bfd_elf_strtab_size (dynstr);
3154
3155 bed = get_elf_backend_data (dynobj);
3156 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3157 BFD_ASSERT (sdyn != NULL);
3158
3159 /* Update all .dynamic entries referencing .dynstr strings. */
3160 for (extdyn = sdyn->contents;
3161 extdyn < sdyn->contents + sdyn->size;
3162 extdyn += bed->s->sizeof_dyn)
3163 {
3164 Elf_Internal_Dyn dyn;
3165
3166 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3167 switch (dyn.d_tag)
3168 {
3169 case DT_STRSZ:
3170 dyn.d_un.d_val = size;
3171 break;
3172 case DT_NEEDED:
3173 case DT_SONAME:
3174 case DT_RPATH:
3175 case DT_RUNPATH:
3176 case DT_FILTER:
3177 case DT_AUXILIARY:
3178 case DT_AUDIT:
3179 case DT_DEPAUDIT:
3180 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3181 break;
3182 default:
3183 continue;
3184 }
3185 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3186 }
3187
3188 /* Now update local dynamic symbols. */
3189 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3190 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3191 entry->isym.st_name);
3192
3193 /* And the rest of dynamic symbols. */
3194 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3195
3196 /* Adjust version definitions. */
3197 if (elf_tdata (output_bfd)->cverdefs)
3198 {
3199 asection *s;
3200 bfd_byte *p;
3201 bfd_size_type i;
3202 Elf_Internal_Verdef def;
3203 Elf_Internal_Verdaux defaux;
3204
3205 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3206 p = s->contents;
3207 do
3208 {
3209 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3210 &def);
3211 p += sizeof (Elf_External_Verdef);
3212 if (def.vd_aux != sizeof (Elf_External_Verdef))
3213 continue;
3214 for (i = 0; i < def.vd_cnt; ++i)
3215 {
3216 _bfd_elf_swap_verdaux_in (output_bfd,
3217 (Elf_External_Verdaux *) p, &defaux);
3218 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3219 defaux.vda_name);
3220 _bfd_elf_swap_verdaux_out (output_bfd,
3221 &defaux, (Elf_External_Verdaux *) p);
3222 p += sizeof (Elf_External_Verdaux);
3223 }
3224 }
3225 while (def.vd_next);
3226 }
3227
3228 /* Adjust version references. */
3229 if (elf_tdata (output_bfd)->verref)
3230 {
3231 asection *s;
3232 bfd_byte *p;
3233 bfd_size_type i;
3234 Elf_Internal_Verneed need;
3235 Elf_Internal_Vernaux needaux;
3236
3237 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3238 p = s->contents;
3239 do
3240 {
3241 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3242 &need);
3243 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3244 _bfd_elf_swap_verneed_out (output_bfd, &need,
3245 (Elf_External_Verneed *) p);
3246 p += sizeof (Elf_External_Verneed);
3247 for (i = 0; i < need.vn_cnt; ++i)
3248 {
3249 _bfd_elf_swap_vernaux_in (output_bfd,
3250 (Elf_External_Vernaux *) p, &needaux);
3251 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3252 needaux.vna_name);
3253 _bfd_elf_swap_vernaux_out (output_bfd,
3254 &needaux,
3255 (Elf_External_Vernaux *) p);
3256 p += sizeof (Elf_External_Vernaux);
3257 }
3258 }
3259 while (need.vn_next);
3260 }
3261
3262 return TRUE;
3263 }
3264 \f
3265 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3266 The default is to only match when the INPUT and OUTPUT are exactly
3267 the same target. */
3268
3269 bfd_boolean
3270 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3271 const bfd_target *output)
3272 {
3273 return input == output;
3274 }
3275
3276 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3277 This version is used when different targets for the same architecture
3278 are virtually identical. */
3279
3280 bfd_boolean
3281 _bfd_elf_relocs_compatible (const bfd_target *input,
3282 const bfd_target *output)
3283 {
3284 const struct elf_backend_data *obed, *ibed;
3285
3286 if (input == output)
3287 return TRUE;
3288
3289 ibed = xvec_get_elf_backend_data (input);
3290 obed = xvec_get_elf_backend_data (output);
3291
3292 if (ibed->arch != obed->arch)
3293 return FALSE;
3294
3295 /* If both backends are using this function, deem them compatible. */
3296 return ibed->relocs_compatible == obed->relocs_compatible;
3297 }
3298
3299 /* Make a special call to the linker "notice" function to tell it that
3300 we are about to handle an as-needed lib, or have finished
3301 processing the lib. */
3302
3303 bfd_boolean
3304 _bfd_elf_notice_as_needed (bfd *ibfd,
3305 struct bfd_link_info *info,
3306 enum notice_asneeded_action act)
3307 {
3308 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3309 }
3310
3311 /* Add symbols from an ELF object file to the linker hash table. */
3312
3313 static bfd_boolean
3314 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3315 {
3316 Elf_Internal_Ehdr *ehdr;
3317 Elf_Internal_Shdr *hdr;
3318 bfd_size_type symcount;
3319 bfd_size_type extsymcount;
3320 bfd_size_type extsymoff;
3321 struct elf_link_hash_entry **sym_hash;
3322 bfd_boolean dynamic;
3323 Elf_External_Versym *extversym = NULL;
3324 Elf_External_Versym *ever;
3325 struct elf_link_hash_entry *weaks;
3326 struct elf_link_hash_entry **nondeflt_vers = NULL;
3327 bfd_size_type nondeflt_vers_cnt = 0;
3328 Elf_Internal_Sym *isymbuf = NULL;
3329 Elf_Internal_Sym *isym;
3330 Elf_Internal_Sym *isymend;
3331 const struct elf_backend_data *bed;
3332 bfd_boolean add_needed;
3333 struct elf_link_hash_table *htab;
3334 bfd_size_type amt;
3335 void *alloc_mark = NULL;
3336 struct bfd_hash_entry **old_table = NULL;
3337 unsigned int old_size = 0;
3338 unsigned int old_count = 0;
3339 void *old_tab = NULL;
3340 void *old_ent;
3341 struct bfd_link_hash_entry *old_undefs = NULL;
3342 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3343 long old_dynsymcount = 0;
3344 bfd_size_type old_dynstr_size = 0;
3345 size_t tabsize = 0;
3346 asection *s;
3347 bfd_boolean just_syms;
3348
3349 htab = elf_hash_table (info);
3350 bed = get_elf_backend_data (abfd);
3351
3352 if ((abfd->flags & DYNAMIC) == 0)
3353 dynamic = FALSE;
3354 else
3355 {
3356 dynamic = TRUE;
3357
3358 /* You can't use -r against a dynamic object. Also, there's no
3359 hope of using a dynamic object which does not exactly match
3360 the format of the output file. */
3361 if (info->relocatable
3362 || !is_elf_hash_table (htab)
3363 || info->output_bfd->xvec != abfd->xvec)
3364 {
3365 if (info->relocatable)
3366 bfd_set_error (bfd_error_invalid_operation);
3367 else
3368 bfd_set_error (bfd_error_wrong_format);
3369 goto error_return;
3370 }
3371 }
3372
3373 ehdr = elf_elfheader (abfd);
3374 if (info->warn_alternate_em
3375 && bed->elf_machine_code != ehdr->e_machine
3376 && ((bed->elf_machine_alt1 != 0
3377 && ehdr->e_machine == bed->elf_machine_alt1)
3378 || (bed->elf_machine_alt2 != 0
3379 && ehdr->e_machine == bed->elf_machine_alt2)))
3380 info->callbacks->einfo
3381 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3382 ehdr->e_machine, abfd, bed->elf_machine_code);
3383
3384 /* As a GNU extension, any input sections which are named
3385 .gnu.warning.SYMBOL are treated as warning symbols for the given
3386 symbol. This differs from .gnu.warning sections, which generate
3387 warnings when they are included in an output file. */
3388 /* PR 12761: Also generate this warning when building shared libraries. */
3389 for (s = abfd->sections; s != NULL; s = s->next)
3390 {
3391 const char *name;
3392
3393 name = bfd_get_section_name (abfd, s);
3394 if (CONST_STRNEQ (name, ".gnu.warning."))
3395 {
3396 char *msg;
3397 bfd_size_type sz;
3398
3399 name += sizeof ".gnu.warning." - 1;
3400
3401 /* If this is a shared object, then look up the symbol
3402 in the hash table. If it is there, and it is already
3403 been defined, then we will not be using the entry
3404 from this shared object, so we don't need to warn.
3405 FIXME: If we see the definition in a regular object
3406 later on, we will warn, but we shouldn't. The only
3407 fix is to keep track of what warnings we are supposed
3408 to emit, and then handle them all at the end of the
3409 link. */
3410 if (dynamic)
3411 {
3412 struct elf_link_hash_entry *h;
3413
3414 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3415
3416 /* FIXME: What about bfd_link_hash_common? */
3417 if (h != NULL
3418 && (h->root.type == bfd_link_hash_defined
3419 || h->root.type == bfd_link_hash_defweak))
3420 continue;
3421 }
3422
3423 sz = s->size;
3424 msg = (char *) bfd_alloc (abfd, sz + 1);
3425 if (msg == NULL)
3426 goto error_return;
3427
3428 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3429 goto error_return;
3430
3431 msg[sz] = '\0';
3432
3433 if (! (_bfd_generic_link_add_one_symbol
3434 (info, abfd, name, BSF_WARNING, s, 0, msg,
3435 FALSE, bed->collect, NULL)))
3436 goto error_return;
3437
3438 if (!info->relocatable && info->executable)
3439 {
3440 /* Clobber the section size so that the warning does
3441 not get copied into the output file. */
3442 s->size = 0;
3443
3444 /* Also set SEC_EXCLUDE, so that symbols defined in
3445 the warning section don't get copied to the output. */
3446 s->flags |= SEC_EXCLUDE;
3447 }
3448 }
3449 }
3450
3451 just_syms = ((s = abfd->sections) != NULL
3452 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3453
3454 add_needed = TRUE;
3455 if (! dynamic)
3456 {
3457 /* If we are creating a shared library, create all the dynamic
3458 sections immediately. We need to attach them to something,
3459 so we attach them to this BFD, provided it is the right
3460 format and is not from ld --just-symbols. FIXME: If there
3461 are no input BFD's of the same format as the output, we can't
3462 make a shared library. */
3463 if (!just_syms
3464 && info->shared
3465 && is_elf_hash_table (htab)
3466 && info->output_bfd->xvec == abfd->xvec
3467 && !htab->dynamic_sections_created)
3468 {
3469 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3470 goto error_return;
3471 }
3472 }
3473 else if (!is_elf_hash_table (htab))
3474 goto error_return;
3475 else
3476 {
3477 const char *soname = NULL;
3478 char *audit = NULL;
3479 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3480 int ret;
3481
3482 /* ld --just-symbols and dynamic objects don't mix very well.
3483 ld shouldn't allow it. */
3484 if (just_syms)
3485 abort ();
3486
3487 /* If this dynamic lib was specified on the command line with
3488 --as-needed in effect, then we don't want to add a DT_NEEDED
3489 tag unless the lib is actually used. Similary for libs brought
3490 in by another lib's DT_NEEDED. When --no-add-needed is used
3491 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3492 any dynamic library in DT_NEEDED tags in the dynamic lib at
3493 all. */
3494 add_needed = (elf_dyn_lib_class (abfd)
3495 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3496 | DYN_NO_NEEDED)) == 0;
3497
3498 s = bfd_get_section_by_name (abfd, ".dynamic");
3499 if (s != NULL)
3500 {
3501 bfd_byte *dynbuf;
3502 bfd_byte *extdyn;
3503 unsigned int elfsec;
3504 unsigned long shlink;
3505
3506 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3507 {
3508 error_free_dyn:
3509 free (dynbuf);
3510 goto error_return;
3511 }
3512
3513 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3514 if (elfsec == SHN_BAD)
3515 goto error_free_dyn;
3516 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3517
3518 for (extdyn = dynbuf;
3519 extdyn < dynbuf + s->size;
3520 extdyn += bed->s->sizeof_dyn)
3521 {
3522 Elf_Internal_Dyn dyn;
3523
3524 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3525 if (dyn.d_tag == DT_SONAME)
3526 {
3527 unsigned int tagv = dyn.d_un.d_val;
3528 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3529 if (soname == NULL)
3530 goto error_free_dyn;
3531 }
3532 if (dyn.d_tag == DT_NEEDED)
3533 {
3534 struct bfd_link_needed_list *n, **pn;
3535 char *fnm, *anm;
3536 unsigned int tagv = dyn.d_un.d_val;
3537
3538 amt = sizeof (struct bfd_link_needed_list);
3539 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3540 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3541 if (n == NULL || fnm == NULL)
3542 goto error_free_dyn;
3543 amt = strlen (fnm) + 1;
3544 anm = (char *) bfd_alloc (abfd, amt);
3545 if (anm == NULL)
3546 goto error_free_dyn;
3547 memcpy (anm, fnm, amt);
3548 n->name = anm;
3549 n->by = abfd;
3550 n->next = NULL;
3551 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3552 ;
3553 *pn = n;
3554 }
3555 if (dyn.d_tag == DT_RUNPATH)
3556 {
3557 struct bfd_link_needed_list *n, **pn;
3558 char *fnm, *anm;
3559 unsigned int tagv = dyn.d_un.d_val;
3560
3561 amt = sizeof (struct bfd_link_needed_list);
3562 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3563 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3564 if (n == NULL || fnm == NULL)
3565 goto error_free_dyn;
3566 amt = strlen (fnm) + 1;
3567 anm = (char *) bfd_alloc (abfd, amt);
3568 if (anm == NULL)
3569 goto error_free_dyn;
3570 memcpy (anm, fnm, amt);
3571 n->name = anm;
3572 n->by = abfd;
3573 n->next = NULL;
3574 for (pn = & runpath;
3575 *pn != NULL;
3576 pn = &(*pn)->next)
3577 ;
3578 *pn = n;
3579 }
3580 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3581 if (!runpath && dyn.d_tag == DT_RPATH)
3582 {
3583 struct bfd_link_needed_list *n, **pn;
3584 char *fnm, *anm;
3585 unsigned int tagv = dyn.d_un.d_val;
3586
3587 amt = sizeof (struct bfd_link_needed_list);
3588 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3589 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3590 if (n == NULL || fnm == NULL)
3591 goto error_free_dyn;
3592 amt = strlen (fnm) + 1;
3593 anm = (char *) bfd_alloc (abfd, amt);
3594 if (anm == NULL)
3595 goto error_free_dyn;
3596 memcpy (anm, fnm, amt);
3597 n->name = anm;
3598 n->by = abfd;
3599 n->next = NULL;
3600 for (pn = & rpath;
3601 *pn != NULL;
3602 pn = &(*pn)->next)
3603 ;
3604 *pn = n;
3605 }
3606 if (dyn.d_tag == DT_AUDIT)
3607 {
3608 unsigned int tagv = dyn.d_un.d_val;
3609 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3610 }
3611 }
3612
3613 free (dynbuf);
3614 }
3615
3616 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3617 frees all more recently bfd_alloc'd blocks as well. */
3618 if (runpath)
3619 rpath = runpath;
3620
3621 if (rpath)
3622 {
3623 struct bfd_link_needed_list **pn;
3624 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3625 ;
3626 *pn = rpath;
3627 }
3628
3629 /* We do not want to include any of the sections in a dynamic
3630 object in the output file. We hack by simply clobbering the
3631 list of sections in the BFD. This could be handled more
3632 cleanly by, say, a new section flag; the existing
3633 SEC_NEVER_LOAD flag is not the one we want, because that one
3634 still implies that the section takes up space in the output
3635 file. */
3636 bfd_section_list_clear (abfd);
3637
3638 /* Find the name to use in a DT_NEEDED entry that refers to this
3639 object. If the object has a DT_SONAME entry, we use it.
3640 Otherwise, if the generic linker stuck something in
3641 elf_dt_name, we use that. Otherwise, we just use the file
3642 name. */
3643 if (soname == NULL || *soname == '\0')
3644 {
3645 soname = elf_dt_name (abfd);
3646 if (soname == NULL || *soname == '\0')
3647 soname = bfd_get_filename (abfd);
3648 }
3649
3650 /* Save the SONAME because sometimes the linker emulation code
3651 will need to know it. */
3652 elf_dt_name (abfd) = soname;
3653
3654 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3655 if (ret < 0)
3656 goto error_return;
3657
3658 /* If we have already included this dynamic object in the
3659 link, just ignore it. There is no reason to include a
3660 particular dynamic object more than once. */
3661 if (ret > 0)
3662 return TRUE;
3663
3664 /* Save the DT_AUDIT entry for the linker emulation code. */
3665 elf_dt_audit (abfd) = audit;
3666 }
3667
3668 /* If this is a dynamic object, we always link against the .dynsym
3669 symbol table, not the .symtab symbol table. The dynamic linker
3670 will only see the .dynsym symbol table, so there is no reason to
3671 look at .symtab for a dynamic object. */
3672
3673 if (! dynamic || elf_dynsymtab (abfd) == 0)
3674 hdr = &elf_tdata (abfd)->symtab_hdr;
3675 else
3676 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3677
3678 symcount = hdr->sh_size / bed->s->sizeof_sym;
3679
3680 /* The sh_info field of the symtab header tells us where the
3681 external symbols start. We don't care about the local symbols at
3682 this point. */
3683 if (elf_bad_symtab (abfd))
3684 {
3685 extsymcount = symcount;
3686 extsymoff = 0;
3687 }
3688 else
3689 {
3690 extsymcount = symcount - hdr->sh_info;
3691 extsymoff = hdr->sh_info;
3692 }
3693
3694 sym_hash = elf_sym_hashes (abfd);
3695 if (extsymcount != 0)
3696 {
3697 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3698 NULL, NULL, NULL);
3699 if (isymbuf == NULL)
3700 goto error_return;
3701
3702 if (sym_hash == NULL)
3703 {
3704 /* We store a pointer to the hash table entry for each
3705 external symbol. */
3706 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3707 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3708 if (sym_hash == NULL)
3709 goto error_free_sym;
3710 elf_sym_hashes (abfd) = sym_hash;
3711 }
3712 }
3713
3714 if (dynamic)
3715 {
3716 /* Read in any version definitions. */
3717 if (!_bfd_elf_slurp_version_tables (abfd,
3718 info->default_imported_symver))
3719 goto error_free_sym;
3720
3721 /* Read in the symbol versions, but don't bother to convert them
3722 to internal format. */
3723 if (elf_dynversym (abfd) != 0)
3724 {
3725 Elf_Internal_Shdr *versymhdr;
3726
3727 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3728 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3729 if (extversym == NULL)
3730 goto error_free_sym;
3731 amt = versymhdr->sh_size;
3732 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3733 || bfd_bread (extversym, amt, abfd) != amt)
3734 goto error_free_vers;
3735 }
3736 }
3737
3738 /* If we are loading an as-needed shared lib, save the symbol table
3739 state before we start adding symbols. If the lib turns out
3740 to be unneeded, restore the state. */
3741 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3742 {
3743 unsigned int i;
3744 size_t entsize;
3745
3746 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3747 {
3748 struct bfd_hash_entry *p;
3749 struct elf_link_hash_entry *h;
3750
3751 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3752 {
3753 h = (struct elf_link_hash_entry *) p;
3754 entsize += htab->root.table.entsize;
3755 if (h->root.type == bfd_link_hash_warning)
3756 entsize += htab->root.table.entsize;
3757 }
3758 }
3759
3760 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3761 old_tab = bfd_malloc (tabsize + entsize);
3762 if (old_tab == NULL)
3763 goto error_free_vers;
3764
3765 /* Remember the current objalloc pointer, so that all mem for
3766 symbols added can later be reclaimed. */
3767 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3768 if (alloc_mark == NULL)
3769 goto error_free_vers;
3770
3771 /* Make a special call to the linker "notice" function to
3772 tell it that we are about to handle an as-needed lib. */
3773 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3774 goto error_free_vers;
3775
3776 /* Clone the symbol table. Remember some pointers into the
3777 symbol table, and dynamic symbol count. */
3778 old_ent = (char *) old_tab + tabsize;
3779 memcpy (old_tab, htab->root.table.table, tabsize);
3780 old_undefs = htab->root.undefs;
3781 old_undefs_tail = htab->root.undefs_tail;
3782 old_table = htab->root.table.table;
3783 old_size = htab->root.table.size;
3784 old_count = htab->root.table.count;
3785 old_dynsymcount = htab->dynsymcount;
3786 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3787
3788 for (i = 0; i < htab->root.table.size; i++)
3789 {
3790 struct bfd_hash_entry *p;
3791 struct elf_link_hash_entry *h;
3792
3793 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3794 {
3795 memcpy (old_ent, p, htab->root.table.entsize);
3796 old_ent = (char *) old_ent + htab->root.table.entsize;
3797 h = (struct elf_link_hash_entry *) p;
3798 if (h->root.type == bfd_link_hash_warning)
3799 {
3800 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3801 old_ent = (char *) old_ent + htab->root.table.entsize;
3802 }
3803 }
3804 }
3805 }
3806
3807 weaks = NULL;
3808 ever = extversym != NULL ? extversym + extsymoff : NULL;
3809 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3810 isym < isymend;
3811 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3812 {
3813 int bind;
3814 bfd_vma value;
3815 asection *sec, *new_sec;
3816 flagword flags;
3817 const char *name;
3818 struct elf_link_hash_entry *h;
3819 struct elf_link_hash_entry *hi;
3820 bfd_boolean definition;
3821 bfd_boolean size_change_ok;
3822 bfd_boolean type_change_ok;
3823 bfd_boolean new_weakdef;
3824 bfd_boolean new_weak;
3825 bfd_boolean old_weak;
3826 bfd_boolean override;
3827 bfd_boolean common;
3828 unsigned int old_alignment;
3829 bfd *old_bfd;
3830
3831 override = FALSE;
3832
3833 flags = BSF_NO_FLAGS;
3834 sec = NULL;
3835 value = isym->st_value;
3836 common = bed->common_definition (isym);
3837
3838 bind = ELF_ST_BIND (isym->st_info);
3839 switch (bind)
3840 {
3841 case STB_LOCAL:
3842 /* This should be impossible, since ELF requires that all
3843 global symbols follow all local symbols, and that sh_info
3844 point to the first global symbol. Unfortunately, Irix 5
3845 screws this up. */
3846 continue;
3847
3848 case STB_GLOBAL:
3849 if (isym->st_shndx != SHN_UNDEF && !common)
3850 flags = BSF_GLOBAL;
3851 break;
3852
3853 case STB_WEAK:
3854 flags = BSF_WEAK;
3855 break;
3856
3857 case STB_GNU_UNIQUE:
3858 flags = BSF_GNU_UNIQUE;
3859 break;
3860
3861 default:
3862 /* Leave it up to the processor backend. */
3863 break;
3864 }
3865
3866 if (isym->st_shndx == SHN_UNDEF)
3867 sec = bfd_und_section_ptr;
3868 else if (isym->st_shndx == SHN_ABS)
3869 sec = bfd_abs_section_ptr;
3870 else if (isym->st_shndx == SHN_COMMON)
3871 {
3872 sec = bfd_com_section_ptr;
3873 /* What ELF calls the size we call the value. What ELF
3874 calls the value we call the alignment. */
3875 value = isym->st_size;
3876 }
3877 else
3878 {
3879 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3880 if (sec == NULL)
3881 sec = bfd_abs_section_ptr;
3882 else if (discarded_section (sec))
3883 {
3884 /* Symbols from discarded section are undefined. We keep
3885 its visibility. */
3886 sec = bfd_und_section_ptr;
3887 isym->st_shndx = SHN_UNDEF;
3888 }
3889 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3890 value -= sec->vma;
3891 }
3892
3893 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3894 isym->st_name);
3895 if (name == NULL)
3896 goto error_free_vers;
3897
3898 if (isym->st_shndx == SHN_COMMON
3899 && (abfd->flags & BFD_PLUGIN) != 0)
3900 {
3901 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3902
3903 if (xc == NULL)
3904 {
3905 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3906 | SEC_EXCLUDE);
3907 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3908 if (xc == NULL)
3909 goto error_free_vers;
3910 }
3911 sec = xc;
3912 }
3913 else if (isym->st_shndx == SHN_COMMON
3914 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3915 && !info->relocatable)
3916 {
3917 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3918
3919 if (tcomm == NULL)
3920 {
3921 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3922 | SEC_LINKER_CREATED);
3923 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3924 if (tcomm == NULL)
3925 goto error_free_vers;
3926 }
3927 sec = tcomm;
3928 }
3929 else if (bed->elf_add_symbol_hook)
3930 {
3931 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3932 &sec, &value))
3933 goto error_free_vers;
3934
3935 /* The hook function sets the name to NULL if this symbol
3936 should be skipped for some reason. */
3937 if (name == NULL)
3938 continue;
3939 }
3940
3941 /* Sanity check that all possibilities were handled. */
3942 if (sec == NULL)
3943 {
3944 bfd_set_error (bfd_error_bad_value);
3945 goto error_free_vers;
3946 }
3947
3948 /* Silently discard TLS symbols from --just-syms. There's
3949 no way to combine a static TLS block with a new TLS block
3950 for this executable. */
3951 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3953 continue;
3954
3955 if (bfd_is_und_section (sec)
3956 || bfd_is_com_section (sec))
3957 definition = FALSE;
3958 else
3959 definition = TRUE;
3960
3961 size_change_ok = FALSE;
3962 type_change_ok = bed->type_change_ok;
3963 old_weak = FALSE;
3964 old_alignment = 0;
3965 old_bfd = NULL;
3966 new_sec = sec;
3967
3968 if (is_elf_hash_table (htab))
3969 {
3970 Elf_Internal_Versym iver;
3971 unsigned int vernum = 0;
3972 bfd_boolean skip;
3973
3974 if (ever == NULL)
3975 {
3976 if (info->default_imported_symver)
3977 /* Use the default symbol version created earlier. */
3978 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3979 else
3980 iver.vs_vers = 0;
3981 }
3982 else
3983 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3984
3985 vernum = iver.vs_vers & VERSYM_VERSION;
3986
3987 /* If this is a hidden symbol, or if it is not version
3988 1, we append the version name to the symbol name.
3989 However, we do not modify a non-hidden absolute symbol
3990 if it is not a function, because it might be the version
3991 symbol itself. FIXME: What if it isn't? */
3992 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3993 || (vernum > 1
3994 && (!bfd_is_abs_section (sec)
3995 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3996 {
3997 const char *verstr;
3998 size_t namelen, verlen, newlen;
3999 char *newname, *p;
4000
4001 if (isym->st_shndx != SHN_UNDEF)
4002 {
4003 if (vernum > elf_tdata (abfd)->cverdefs)
4004 verstr = NULL;
4005 else if (vernum > 1)
4006 verstr =
4007 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4008 else
4009 verstr = "";
4010
4011 if (verstr == NULL)
4012 {
4013 (*_bfd_error_handler)
4014 (_("%B: %s: invalid version %u (max %d)"),
4015 abfd, name, vernum,
4016 elf_tdata (abfd)->cverdefs);
4017 bfd_set_error (bfd_error_bad_value);
4018 goto error_free_vers;
4019 }
4020 }
4021 else
4022 {
4023 /* We cannot simply test for the number of
4024 entries in the VERNEED section since the
4025 numbers for the needed versions do not start
4026 at 0. */
4027 Elf_Internal_Verneed *t;
4028
4029 verstr = NULL;
4030 for (t = elf_tdata (abfd)->verref;
4031 t != NULL;
4032 t = t->vn_nextref)
4033 {
4034 Elf_Internal_Vernaux *a;
4035
4036 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4037 {
4038 if (a->vna_other == vernum)
4039 {
4040 verstr = a->vna_nodename;
4041 break;
4042 }
4043 }
4044 if (a != NULL)
4045 break;
4046 }
4047 if (verstr == NULL)
4048 {
4049 (*_bfd_error_handler)
4050 (_("%B: %s: invalid needed version %d"),
4051 abfd, name, vernum);
4052 bfd_set_error (bfd_error_bad_value);
4053 goto error_free_vers;
4054 }
4055 }
4056
4057 namelen = strlen (name);
4058 verlen = strlen (verstr);
4059 newlen = namelen + verlen + 2;
4060 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4061 && isym->st_shndx != SHN_UNDEF)
4062 ++newlen;
4063
4064 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4065 if (newname == NULL)
4066 goto error_free_vers;
4067 memcpy (newname, name, namelen);
4068 p = newname + namelen;
4069 *p++ = ELF_VER_CHR;
4070 /* If this is a defined non-hidden version symbol,
4071 we add another @ to the name. This indicates the
4072 default version of the symbol. */
4073 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4074 && isym->st_shndx != SHN_UNDEF)
4075 *p++ = ELF_VER_CHR;
4076 memcpy (p, verstr, verlen + 1);
4077
4078 name = newname;
4079 }
4080
4081 /* If this symbol has default visibility and the user has
4082 requested we not re-export it, then mark it as hidden. */
4083 if (definition
4084 && !dynamic
4085 && abfd->no_export
4086 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4087 isym->st_other = (STV_HIDDEN
4088 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4089
4090 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4091 sym_hash, &old_bfd, &old_weak,
4092 &old_alignment, &skip, &override,
4093 &type_change_ok, &size_change_ok))
4094 goto error_free_vers;
4095
4096 if (skip)
4097 continue;
4098
4099 if (override)
4100 definition = FALSE;
4101
4102 h = *sym_hash;
4103 while (h->root.type == bfd_link_hash_indirect
4104 || h->root.type == bfd_link_hash_warning)
4105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4106
4107 if (elf_tdata (abfd)->verdef != NULL
4108 && vernum > 1
4109 && definition)
4110 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4111 }
4112
4113 if (! (_bfd_generic_link_add_one_symbol
4114 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4115 (struct bfd_link_hash_entry **) sym_hash)))
4116 goto error_free_vers;
4117
4118 h = *sym_hash;
4119 /* We need to make sure that indirect symbol dynamic flags are
4120 updated. */
4121 hi = h;
4122 while (h->root.type == bfd_link_hash_indirect
4123 || h->root.type == bfd_link_hash_warning)
4124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4125
4126 *sym_hash = h;
4127
4128 new_weak = (flags & BSF_WEAK) != 0;
4129 new_weakdef = FALSE;
4130 if (dynamic
4131 && definition
4132 && new_weak
4133 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4134 && is_elf_hash_table (htab)
4135 && h->u.weakdef == NULL)
4136 {
4137 /* Keep a list of all weak defined non function symbols from
4138 a dynamic object, using the weakdef field. Later in this
4139 function we will set the weakdef field to the correct
4140 value. We only put non-function symbols from dynamic
4141 objects on this list, because that happens to be the only
4142 time we need to know the normal symbol corresponding to a
4143 weak symbol, and the information is time consuming to
4144 figure out. If the weakdef field is not already NULL,
4145 then this symbol was already defined by some previous
4146 dynamic object, and we will be using that previous
4147 definition anyhow. */
4148
4149 h->u.weakdef = weaks;
4150 weaks = h;
4151 new_weakdef = TRUE;
4152 }
4153
4154 /* Set the alignment of a common symbol. */
4155 if ((common || bfd_is_com_section (sec))
4156 && h->root.type == bfd_link_hash_common)
4157 {
4158 unsigned int align;
4159
4160 if (common)
4161 align = bfd_log2 (isym->st_value);
4162 else
4163 {
4164 /* The new symbol is a common symbol in a shared object.
4165 We need to get the alignment from the section. */
4166 align = new_sec->alignment_power;
4167 }
4168 if (align > old_alignment)
4169 h->root.u.c.p->alignment_power = align;
4170 else
4171 h->root.u.c.p->alignment_power = old_alignment;
4172 }
4173
4174 if (is_elf_hash_table (htab))
4175 {
4176 /* Set a flag in the hash table entry indicating the type of
4177 reference or definition we just found. A dynamic symbol
4178 is one which is referenced or defined by both a regular
4179 object and a shared object. */
4180 bfd_boolean dynsym = FALSE;
4181
4182 /* Plugin symbols aren't normal. Don't set def_regular or
4183 ref_regular for them, or make them dynamic. */
4184 if ((abfd->flags & BFD_PLUGIN) != 0)
4185 ;
4186 else if (! dynamic)
4187 {
4188 if (! definition)
4189 {
4190 h->ref_regular = 1;
4191 if (bind != STB_WEAK)
4192 h->ref_regular_nonweak = 1;
4193 }
4194 else
4195 {
4196 h->def_regular = 1;
4197 if (h->def_dynamic)
4198 {
4199 h->def_dynamic = 0;
4200 h->ref_dynamic = 1;
4201 }
4202 }
4203
4204 /* If the indirect symbol has been forced local, don't
4205 make the real symbol dynamic. */
4206 if ((h == hi || !hi->forced_local)
4207 && (! info->executable
4208 || h->def_dynamic
4209 || h->ref_dynamic))
4210 dynsym = TRUE;
4211 }
4212 else
4213 {
4214 if (! definition)
4215 {
4216 h->ref_dynamic = 1;
4217 hi->ref_dynamic = 1;
4218 }
4219 else
4220 {
4221 h->def_dynamic = 1;
4222 hi->def_dynamic = 1;
4223 }
4224
4225 /* If the indirect symbol has been forced local, don't
4226 make the real symbol dynamic. */
4227 if ((h == hi || !hi->forced_local)
4228 && (h->def_regular
4229 || h->ref_regular
4230 || (h->u.weakdef != NULL
4231 && ! new_weakdef
4232 && h->u.weakdef->dynindx != -1)))
4233 dynsym = TRUE;
4234 }
4235
4236 /* Check to see if we need to add an indirect symbol for
4237 the default name. */
4238 if (definition
4239 || (!override && h->root.type == bfd_link_hash_common))
4240 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4241 sec, value, &old_bfd, &dynsym))
4242 goto error_free_vers;
4243
4244 /* Check the alignment when a common symbol is involved. This
4245 can change when a common symbol is overridden by a normal
4246 definition or a common symbol is ignored due to the old
4247 normal definition. We need to make sure the maximum
4248 alignment is maintained. */
4249 if ((old_alignment || common)
4250 && h->root.type != bfd_link_hash_common)
4251 {
4252 unsigned int common_align;
4253 unsigned int normal_align;
4254 unsigned int symbol_align;
4255 bfd *normal_bfd;
4256 bfd *common_bfd;
4257
4258 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4259 || h->root.type == bfd_link_hash_defweak);
4260
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4264 {
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4268 }
4269 else
4270 normal_align = symbol_align;
4271
4272 if (old_alignment)
4273 {
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4276 normal_bfd = abfd;
4277 }
4278 else
4279 {
4280 common_align = bfd_log2 (isym->st_value);
4281 common_bfd = abfd;
4282 normal_bfd = old_bfd;
4283 }
4284
4285 if (normal_align < common_align)
4286 {
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B is"
4291 " greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4294 else
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4300 }
4301 }
4302
4303 /* Remember the symbol size if it isn't undefined. */
4304 if (isym->st_size != 0
4305 && isym->st_shndx != SHN_UNDEF
4306 && (definition || h->size == 0))
4307 {
4308 if (h->size != 0
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4314 old_bfd, abfd,
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4317
4318 h->size = isym->st_size;
4319 }
4320
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changes between different
4326 function types. */
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4329
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && ((definition && !new_weak)
4332 || (old_weak && h->root.type == bfd_link_hash_common)
4333 || h->type == STT_NOTYPE))
4334 {
4335 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336
4337 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 symbol. */
4339 if (type == STT_GNU_IFUNC
4340 && (abfd->flags & DYNAMIC) != 0)
4341 type = STT_FUNC;
4342
4343 if (h->type != type)
4344 {
4345 if (h->type != STT_NOTYPE && ! type_change_ok)
4346 (*_bfd_error_handler)
4347 (_("Warning: type of symbol `%s' changed"
4348 " from %d to %d in %B"),
4349 abfd, name, h->type, type);
4350
4351 h->type = type;
4352 }
4353 }
4354
4355 /* Merge st_other field. */
4356 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4357
4358 /* We don't want to make debug symbol dynamic. */
4359 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4360 dynsym = FALSE;
4361
4362 /* Nor should we make plugin symbols dynamic. */
4363 if ((abfd->flags & BFD_PLUGIN) != 0)
4364 dynsym = FALSE;
4365
4366 if (definition)
4367 {
4368 h->target_internal = isym->st_target_internal;
4369 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4370 }
4371
4372 if (definition && !dynamic)
4373 {
4374 char *p = strchr (name, ELF_VER_CHR);
4375 if (p != NULL && p[1] != ELF_VER_CHR)
4376 {
4377 /* Queue non-default versions so that .symver x, x@FOO
4378 aliases can be checked. */
4379 if (!nondeflt_vers)
4380 {
4381 amt = ((isymend - isym + 1)
4382 * sizeof (struct elf_link_hash_entry *));
4383 nondeflt_vers
4384 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4385 if (!nondeflt_vers)
4386 goto error_free_vers;
4387 }
4388 nondeflt_vers[nondeflt_vers_cnt++] = h;
4389 }
4390 }
4391
4392 if (dynsym && h->dynindx == -1)
4393 {
4394 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4395 goto error_free_vers;
4396 if (h->u.weakdef != NULL
4397 && ! new_weakdef
4398 && h->u.weakdef->dynindx == -1)
4399 {
4400 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4401 goto error_free_vers;
4402 }
4403 }
4404 else if (dynsym && h->dynindx != -1)
4405 /* If the symbol already has a dynamic index, but
4406 visibility says it should not be visible, turn it into
4407 a local symbol. */
4408 switch (ELF_ST_VISIBILITY (h->other))
4409 {
4410 case STV_INTERNAL:
4411 case STV_HIDDEN:
4412 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4413 dynsym = FALSE;
4414 break;
4415 }
4416
4417 /* Don't add DT_NEEDED for references from the dummy bfd. */
4418 if (!add_needed
4419 && definition
4420 && ((dynsym
4421 && h->ref_regular_nonweak
4422 && (old_bfd == NULL
4423 || (old_bfd->flags & BFD_PLUGIN) == 0))
4424 || (h->ref_dynamic_nonweak
4425 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4426 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4427 {
4428 int ret;
4429 const char *soname = elf_dt_name (abfd);
4430
4431 info->callbacks->minfo ("%!", soname, old_bfd,
4432 h->root.root.string);
4433
4434 /* A symbol from a library loaded via DT_NEEDED of some
4435 other library is referenced by a regular object.
4436 Add a DT_NEEDED entry for it. Issue an error if
4437 --no-add-needed is used and the reference was not
4438 a weak one. */
4439 if (old_bfd != NULL
4440 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4441 {
4442 (*_bfd_error_handler)
4443 (_("%B: undefined reference to symbol '%s'"),
4444 old_bfd, name);
4445 bfd_set_error (bfd_error_missing_dso);
4446 goto error_free_vers;
4447 }
4448
4449 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4450 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4451
4452 add_needed = TRUE;
4453 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4454 if (ret < 0)
4455 goto error_free_vers;
4456
4457 BFD_ASSERT (ret == 0);
4458 }
4459 }
4460 }
4461
4462 if (extversym != NULL)
4463 {
4464 free (extversym);
4465 extversym = NULL;
4466 }
4467
4468 if (isymbuf != NULL)
4469 {
4470 free (isymbuf);
4471 isymbuf = NULL;
4472 }
4473
4474 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4475 {
4476 unsigned int i;
4477
4478 /* Restore the symbol table. */
4479 old_ent = (char *) old_tab + tabsize;
4480 memset (elf_sym_hashes (abfd), 0,
4481 extsymcount * sizeof (struct elf_link_hash_entry *));
4482 htab->root.table.table = old_table;
4483 htab->root.table.size = old_size;
4484 htab->root.table.count = old_count;
4485 memcpy (htab->root.table.table, old_tab, tabsize);
4486 htab->root.undefs = old_undefs;
4487 htab->root.undefs_tail = old_undefs_tail;
4488 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4489 for (i = 0; i < htab->root.table.size; i++)
4490 {
4491 struct bfd_hash_entry *p;
4492 struct elf_link_hash_entry *h;
4493 bfd_size_type size;
4494 unsigned int alignment_power;
4495
4496 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4497 {
4498 h = (struct elf_link_hash_entry *) p;
4499 if (h->root.type == bfd_link_hash_warning)
4500 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4501 if (h->dynindx >= old_dynsymcount
4502 && h->dynstr_index < old_dynstr_size)
4503 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4504
4505 /* Preserve the maximum alignment and size for common
4506 symbols even if this dynamic lib isn't on DT_NEEDED
4507 since it can still be loaded at run time by another
4508 dynamic lib. */
4509 if (h->root.type == bfd_link_hash_common)
4510 {
4511 size = h->root.u.c.size;
4512 alignment_power = h->root.u.c.p->alignment_power;
4513 }
4514 else
4515 {
4516 size = 0;
4517 alignment_power = 0;
4518 }
4519 memcpy (p, old_ent, htab->root.table.entsize);
4520 old_ent = (char *) old_ent + htab->root.table.entsize;
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 {
4524 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4527 }
4528 if (h->root.type == bfd_link_hash_common)
4529 {
4530 if (size > h->root.u.c.size)
4531 h->root.u.c.size = size;
4532 if (alignment_power > h->root.u.c.p->alignment_power)
4533 h->root.u.c.p->alignment_power = alignment_power;
4534 }
4535 }
4536 }
4537
4538 /* Make a special call to the linker "notice" function to
4539 tell it that symbols added for crefs may need to be removed. */
4540 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4541 goto error_free_vers;
4542
4543 free (old_tab);
4544 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4545 alloc_mark);
4546 if (nondeflt_vers != NULL)
4547 free (nondeflt_vers);
4548 return TRUE;
4549 }
4550
4551 if (old_tab != NULL)
4552 {
4553 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4554 goto error_free_vers;
4555 free (old_tab);
4556 old_tab = NULL;
4557 }
4558
4559 /* Now that all the symbols from this input file are created, handle
4560 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4561 if (nondeflt_vers != NULL)
4562 {
4563 bfd_size_type cnt, symidx;
4564
4565 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4566 {
4567 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4568 char *shortname, *p;
4569
4570 p = strchr (h->root.root.string, ELF_VER_CHR);
4571 if (p == NULL
4572 || (h->root.type != bfd_link_hash_defined
4573 && h->root.type != bfd_link_hash_defweak))
4574 continue;
4575
4576 amt = p - h->root.root.string;
4577 shortname = (char *) bfd_malloc (amt + 1);
4578 if (!shortname)
4579 goto error_free_vers;
4580 memcpy (shortname, h->root.root.string, amt);
4581 shortname[amt] = '\0';
4582
4583 hi = (struct elf_link_hash_entry *)
4584 bfd_link_hash_lookup (&htab->root, shortname,
4585 FALSE, FALSE, FALSE);
4586 if (hi != NULL
4587 && hi->root.type == h->root.type
4588 && hi->root.u.def.value == h->root.u.def.value
4589 && hi->root.u.def.section == h->root.u.def.section)
4590 {
4591 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4592 hi->root.type = bfd_link_hash_indirect;
4593 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4594 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4595 sym_hash = elf_sym_hashes (abfd);
4596 if (sym_hash)
4597 for (symidx = 0; symidx < extsymcount; ++symidx)
4598 if (sym_hash[symidx] == hi)
4599 {
4600 sym_hash[symidx] = h;
4601 break;
4602 }
4603 }
4604 free (shortname);
4605 }
4606 free (nondeflt_vers);
4607 nondeflt_vers = NULL;
4608 }
4609
4610 /* Now set the weakdefs field correctly for all the weak defined
4611 symbols we found. The only way to do this is to search all the
4612 symbols. Since we only need the information for non functions in
4613 dynamic objects, that's the only time we actually put anything on
4614 the list WEAKS. We need this information so that if a regular
4615 object refers to a symbol defined weakly in a dynamic object, the
4616 real symbol in the dynamic object is also put in the dynamic
4617 symbols; we also must arrange for both symbols to point to the
4618 same memory location. We could handle the general case of symbol
4619 aliasing, but a general symbol alias can only be generated in
4620 assembler code, handling it correctly would be very time
4621 consuming, and other ELF linkers don't handle general aliasing
4622 either. */
4623 if (weaks != NULL)
4624 {
4625 struct elf_link_hash_entry **hpp;
4626 struct elf_link_hash_entry **hppend;
4627 struct elf_link_hash_entry **sorted_sym_hash;
4628 struct elf_link_hash_entry *h;
4629 size_t sym_count;
4630
4631 /* Since we have to search the whole symbol list for each weak
4632 defined symbol, search time for N weak defined symbols will be
4633 O(N^2). Binary search will cut it down to O(NlogN). */
4634 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4635 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4636 if (sorted_sym_hash == NULL)
4637 goto error_return;
4638 sym_hash = sorted_sym_hash;
4639 hpp = elf_sym_hashes (abfd);
4640 hppend = hpp + extsymcount;
4641 sym_count = 0;
4642 for (; hpp < hppend; hpp++)
4643 {
4644 h = *hpp;
4645 if (h != NULL
4646 && h->root.type == bfd_link_hash_defined
4647 && !bed->is_function_type (h->type))
4648 {
4649 *sym_hash = h;
4650 sym_hash++;
4651 sym_count++;
4652 }
4653 }
4654
4655 qsort (sorted_sym_hash, sym_count,
4656 sizeof (struct elf_link_hash_entry *),
4657 elf_sort_symbol);
4658
4659 while (weaks != NULL)
4660 {
4661 struct elf_link_hash_entry *hlook;
4662 asection *slook;
4663 bfd_vma vlook;
4664 size_t i, j, idx = 0;
4665
4666 hlook = weaks;
4667 weaks = hlook->u.weakdef;
4668 hlook->u.weakdef = NULL;
4669
4670 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4671 || hlook->root.type == bfd_link_hash_defweak
4672 || hlook->root.type == bfd_link_hash_common
4673 || hlook->root.type == bfd_link_hash_indirect);
4674 slook = hlook->root.u.def.section;
4675 vlook = hlook->root.u.def.value;
4676
4677 i = 0;
4678 j = sym_count;
4679 while (i != j)
4680 {
4681 bfd_signed_vma vdiff;
4682 idx = (i + j) / 2;
4683 h = sorted_sym_hash[idx];
4684 vdiff = vlook - h->root.u.def.value;
4685 if (vdiff < 0)
4686 j = idx;
4687 else if (vdiff > 0)
4688 i = idx + 1;
4689 else
4690 {
4691 long sdiff = slook->id - h->root.u.def.section->id;
4692 if (sdiff < 0)
4693 j = idx;
4694 else if (sdiff > 0)
4695 i = idx + 1;
4696 else
4697 break;
4698 }
4699 }
4700
4701 /* We didn't find a value/section match. */
4702 if (i == j)
4703 continue;
4704
4705 /* With multiple aliases, or when the weak symbol is already
4706 strongly defined, we have multiple matching symbols and
4707 the binary search above may land on any of them. Step
4708 one past the matching symbol(s). */
4709 while (++idx != j)
4710 {
4711 h = sorted_sym_hash[idx];
4712 if (h->root.u.def.section != slook
4713 || h->root.u.def.value != vlook)
4714 break;
4715 }
4716
4717 /* Now look back over the aliases. Since we sorted by size
4718 as well as value and section, we'll choose the one with
4719 the largest size. */
4720 while (idx-- != i)
4721 {
4722 h = sorted_sym_hash[idx];
4723
4724 /* Stop if value or section doesn't match. */
4725 if (h->root.u.def.section != slook
4726 || h->root.u.def.value != vlook)
4727 break;
4728 else if (h != hlook)
4729 {
4730 hlook->u.weakdef = h;
4731
4732 /* If the weak definition is in the list of dynamic
4733 symbols, make sure the real definition is put
4734 there as well. */
4735 if (hlook->dynindx != -1 && h->dynindx == -1)
4736 {
4737 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4738 {
4739 err_free_sym_hash:
4740 free (sorted_sym_hash);
4741 goto error_return;
4742 }
4743 }
4744
4745 /* If the real definition is in the list of dynamic
4746 symbols, make sure the weak definition is put
4747 there as well. If we don't do this, then the
4748 dynamic loader might not merge the entries for the
4749 real definition and the weak definition. */
4750 if (h->dynindx != -1 && hlook->dynindx == -1)
4751 {
4752 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4753 goto err_free_sym_hash;
4754 }
4755 break;
4756 }
4757 }
4758 }
4759
4760 free (sorted_sym_hash);
4761 }
4762
4763 if (bed->check_directives
4764 && !(*bed->check_directives) (abfd, info))
4765 return FALSE;
4766
4767 /* If this object is the same format as the output object, and it is
4768 not a shared library, then let the backend look through the
4769 relocs.
4770
4771 This is required to build global offset table entries and to
4772 arrange for dynamic relocs. It is not required for the
4773 particular common case of linking non PIC code, even when linking
4774 against shared libraries, but unfortunately there is no way of
4775 knowing whether an object file has been compiled PIC or not.
4776 Looking through the relocs is not particularly time consuming.
4777 The problem is that we must either (1) keep the relocs in memory,
4778 which causes the linker to require additional runtime memory or
4779 (2) read the relocs twice from the input file, which wastes time.
4780 This would be a good case for using mmap.
4781
4782 I have no idea how to handle linking PIC code into a file of a
4783 different format. It probably can't be done. */
4784 if (! dynamic
4785 && is_elf_hash_table (htab)
4786 && bed->check_relocs != NULL
4787 && elf_object_id (abfd) == elf_hash_table_id (htab)
4788 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4789 {
4790 asection *o;
4791
4792 for (o = abfd->sections; o != NULL; o = o->next)
4793 {
4794 Elf_Internal_Rela *internal_relocs;
4795 bfd_boolean ok;
4796
4797 if ((o->flags & SEC_RELOC) == 0
4798 || o->reloc_count == 0
4799 || ((info->strip == strip_all || info->strip == strip_debugger)
4800 && (o->flags & SEC_DEBUGGING) != 0)
4801 || bfd_is_abs_section (o->output_section))
4802 continue;
4803
4804 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4805 info->keep_memory);
4806 if (internal_relocs == NULL)
4807 goto error_return;
4808
4809 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4810
4811 if (elf_section_data (o)->relocs != internal_relocs)
4812 free (internal_relocs);
4813
4814 if (! ok)
4815 goto error_return;
4816 }
4817 }
4818
4819 /* If this is a non-traditional link, try to optimize the handling
4820 of the .stab/.stabstr sections. */
4821 if (! dynamic
4822 && ! info->traditional_format
4823 && is_elf_hash_table (htab)
4824 && (info->strip != strip_all && info->strip != strip_debugger))
4825 {
4826 asection *stabstr;
4827
4828 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4829 if (stabstr != NULL)
4830 {
4831 bfd_size_type string_offset = 0;
4832 asection *stab;
4833
4834 for (stab = abfd->sections; stab; stab = stab->next)
4835 if (CONST_STRNEQ (stab->name, ".stab")
4836 && (!stab->name[5] ||
4837 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4838 && (stab->flags & SEC_MERGE) == 0
4839 && !bfd_is_abs_section (stab->output_section))
4840 {
4841 struct bfd_elf_section_data *secdata;
4842
4843 secdata = elf_section_data (stab);
4844 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4845 stabstr, &secdata->sec_info,
4846 &string_offset))
4847 goto error_return;
4848 if (secdata->sec_info)
4849 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4850 }
4851 }
4852 }
4853
4854 if (is_elf_hash_table (htab) && add_needed)
4855 {
4856 /* Add this bfd to the loaded list. */
4857 struct elf_link_loaded_list *n;
4858
4859 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4860 if (n == NULL)
4861 goto error_return;
4862 n->abfd = abfd;
4863 n->next = htab->loaded;
4864 htab->loaded = n;
4865 }
4866
4867 return TRUE;
4868
4869 error_free_vers:
4870 if (old_tab != NULL)
4871 free (old_tab);
4872 if (nondeflt_vers != NULL)
4873 free (nondeflt_vers);
4874 if (extversym != NULL)
4875 free (extversym);
4876 error_free_sym:
4877 if (isymbuf != NULL)
4878 free (isymbuf);
4879 error_return:
4880 return FALSE;
4881 }
4882
4883 /* Return the linker hash table entry of a symbol that might be
4884 satisfied by an archive symbol. Return -1 on error. */
4885
4886 struct elf_link_hash_entry *
4887 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4888 struct bfd_link_info *info,
4889 const char *name)
4890 {
4891 struct elf_link_hash_entry *h;
4892 char *p, *copy;
4893 size_t len, first;
4894
4895 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4896 if (h != NULL)
4897 return h;
4898
4899 /* If this is a default version (the name contains @@), look up the
4900 symbol again with only one `@' as well as without the version.
4901 The effect is that references to the symbol with and without the
4902 version will be matched by the default symbol in the archive. */
4903
4904 p = strchr (name, ELF_VER_CHR);
4905 if (p == NULL || p[1] != ELF_VER_CHR)
4906 return h;
4907
4908 /* First check with only one `@'. */
4909 len = strlen (name);
4910 copy = (char *) bfd_alloc (abfd, len);
4911 if (copy == NULL)
4912 return (struct elf_link_hash_entry *) 0 - 1;
4913
4914 first = p - name + 1;
4915 memcpy (copy, name, first);
4916 memcpy (copy + first, name + first + 1, len - first);
4917
4918 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4919 if (h == NULL)
4920 {
4921 /* We also need to check references to the symbol without the
4922 version. */
4923 copy[first - 1] = '\0';
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4925 FALSE, FALSE, TRUE);
4926 }
4927
4928 bfd_release (abfd, copy);
4929 return h;
4930 }
4931
4932 /* Add symbols from an ELF archive file to the linker hash table. We
4933 don't use _bfd_generic_link_add_archive_symbols because we need to
4934 handle versioned symbols.
4935
4936 Fortunately, ELF archive handling is simpler than that done by
4937 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4938 oddities. In ELF, if we find a symbol in the archive map, and the
4939 symbol is currently undefined, we know that we must pull in that
4940 object file.
4941
4942 Unfortunately, we do have to make multiple passes over the symbol
4943 table until nothing further is resolved. */
4944
4945 static bfd_boolean
4946 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4947 {
4948 symindex c;
4949 unsigned char *included = NULL;
4950 carsym *symdefs;
4951 bfd_boolean loop;
4952 bfd_size_type amt;
4953 const struct elf_backend_data *bed;
4954 struct elf_link_hash_entry * (*archive_symbol_lookup)
4955 (bfd *, struct bfd_link_info *, const char *);
4956
4957 if (! bfd_has_map (abfd))
4958 {
4959 /* An empty archive is a special case. */
4960 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4961 return TRUE;
4962 bfd_set_error (bfd_error_no_armap);
4963 return FALSE;
4964 }
4965
4966 /* Keep track of all symbols we know to be already defined, and all
4967 files we know to be already included. This is to speed up the
4968 second and subsequent passes. */
4969 c = bfd_ardata (abfd)->symdef_count;
4970 if (c == 0)
4971 return TRUE;
4972 amt = c;
4973 amt *= sizeof (*included);
4974 included = (unsigned char *) bfd_zmalloc (amt);
4975 if (included == NULL)
4976 return FALSE;
4977
4978 symdefs = bfd_ardata (abfd)->symdefs;
4979 bed = get_elf_backend_data (abfd);
4980 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4981
4982 do
4983 {
4984 file_ptr last;
4985 symindex i;
4986 carsym *symdef;
4987 carsym *symdefend;
4988
4989 loop = FALSE;
4990 last = -1;
4991
4992 symdef = symdefs;
4993 symdefend = symdef + c;
4994 for (i = 0; symdef < symdefend; symdef++, i++)
4995 {
4996 struct elf_link_hash_entry *h;
4997 bfd *element;
4998 struct bfd_link_hash_entry *undefs_tail;
4999 symindex mark;
5000
5001 if (included[i])
5002 continue;
5003 if (symdef->file_offset == last)
5004 {
5005 included[i] = TRUE;
5006 continue;
5007 }
5008
5009 h = archive_symbol_lookup (abfd, info, symdef->name);
5010 if (h == (struct elf_link_hash_entry *) 0 - 1)
5011 goto error_return;
5012
5013 if (h == NULL)
5014 continue;
5015
5016 if (h->root.type == bfd_link_hash_common)
5017 {
5018 /* We currently have a common symbol. The archive map contains
5019 a reference to this symbol, so we may want to include it. We
5020 only want to include it however, if this archive element
5021 contains a definition of the symbol, not just another common
5022 declaration of it.
5023
5024 Unfortunately some archivers (including GNU ar) will put
5025 declarations of common symbols into their archive maps, as
5026 well as real definitions, so we cannot just go by the archive
5027 map alone. Instead we must read in the element's symbol
5028 table and check that to see what kind of symbol definition
5029 this is. */
5030 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5031 continue;
5032 }
5033 else if (h->root.type != bfd_link_hash_undefined)
5034 {
5035 if (h->root.type != bfd_link_hash_undefweak)
5036 /* Symbol must be defined. Don't check it again. */
5037 included[i] = TRUE;
5038 continue;
5039 }
5040
5041 /* We need to include this archive member. */
5042 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5043 if (element == NULL)
5044 goto error_return;
5045
5046 if (! bfd_check_format (element, bfd_object))
5047 goto error_return;
5048
5049 undefs_tail = info->hash->undefs_tail;
5050
5051 if (!(*info->callbacks
5052 ->add_archive_element) (info, element, symdef->name, &element))
5053 goto error_return;
5054 if (!bfd_link_add_symbols (element, info))
5055 goto error_return;
5056
5057 /* If there are any new undefined symbols, we need to make
5058 another pass through the archive in order to see whether
5059 they can be defined. FIXME: This isn't perfect, because
5060 common symbols wind up on undefs_tail and because an
5061 undefined symbol which is defined later on in this pass
5062 does not require another pass. This isn't a bug, but it
5063 does make the code less efficient than it could be. */
5064 if (undefs_tail != info->hash->undefs_tail)
5065 loop = TRUE;
5066
5067 /* Look backward to mark all symbols from this object file
5068 which we have already seen in this pass. */
5069 mark = i;
5070 do
5071 {
5072 included[mark] = TRUE;
5073 if (mark == 0)
5074 break;
5075 --mark;
5076 }
5077 while (symdefs[mark].file_offset == symdef->file_offset);
5078
5079 /* We mark subsequent symbols from this object file as we go
5080 on through the loop. */
5081 last = symdef->file_offset;
5082 }
5083 }
5084 while (loop);
5085
5086 free (included);
5087
5088 return TRUE;
5089
5090 error_return:
5091 if (included != NULL)
5092 free (included);
5093 return FALSE;
5094 }
5095
5096 /* Given an ELF BFD, add symbols to the global hash table as
5097 appropriate. */
5098
5099 bfd_boolean
5100 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5101 {
5102 switch (bfd_get_format (abfd))
5103 {
5104 case bfd_object:
5105 return elf_link_add_object_symbols (abfd, info);
5106 case bfd_archive:
5107 return elf_link_add_archive_symbols (abfd, info);
5108 default:
5109 bfd_set_error (bfd_error_wrong_format);
5110 return FALSE;
5111 }
5112 }
5113 \f
5114 struct hash_codes_info
5115 {
5116 unsigned long *hashcodes;
5117 bfd_boolean error;
5118 };
5119
5120 /* This function will be called though elf_link_hash_traverse to store
5121 all hash value of the exported symbols in an array. */
5122
5123 static bfd_boolean
5124 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5125 {
5126 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5127 const char *name;
5128 char *p;
5129 unsigned long ha;
5130 char *alc = NULL;
5131
5132 /* Ignore indirect symbols. These are added by the versioning code. */
5133 if (h->dynindx == -1)
5134 return TRUE;
5135
5136 name = h->root.root.string;
5137 p = strchr (name, ELF_VER_CHR);
5138 if (p != NULL)
5139 {
5140 alc = (char *) bfd_malloc (p - name + 1);
5141 if (alc == NULL)
5142 {
5143 inf->error = TRUE;
5144 return FALSE;
5145 }
5146 memcpy (alc, name, p - name);
5147 alc[p - name] = '\0';
5148 name = alc;
5149 }
5150
5151 /* Compute the hash value. */
5152 ha = bfd_elf_hash (name);
5153
5154 /* Store the found hash value in the array given as the argument. */
5155 *(inf->hashcodes)++ = ha;
5156
5157 /* And store it in the struct so that we can put it in the hash table
5158 later. */
5159 h->u.elf_hash_value = ha;
5160
5161 if (alc != NULL)
5162 free (alc);
5163
5164 return TRUE;
5165 }
5166
5167 struct collect_gnu_hash_codes
5168 {
5169 bfd *output_bfd;
5170 const struct elf_backend_data *bed;
5171 unsigned long int nsyms;
5172 unsigned long int maskbits;
5173 unsigned long int *hashcodes;
5174 unsigned long int *hashval;
5175 unsigned long int *indx;
5176 unsigned long int *counts;
5177 bfd_vma *bitmask;
5178 bfd_byte *contents;
5179 long int min_dynindx;
5180 unsigned long int bucketcount;
5181 unsigned long int symindx;
5182 long int local_indx;
5183 long int shift1, shift2;
5184 unsigned long int mask;
5185 bfd_boolean error;
5186 };
5187
5188 /* This function will be called though elf_link_hash_traverse to store
5189 all hash value of the exported symbols in an array. */
5190
5191 static bfd_boolean
5192 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5193 {
5194 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5195 const char *name;
5196 char *p;
5197 unsigned long ha;
5198 char *alc = NULL;
5199
5200 /* Ignore indirect symbols. These are added by the versioning code. */
5201 if (h->dynindx == -1)
5202 return TRUE;
5203
5204 /* Ignore also local symbols and undefined symbols. */
5205 if (! (*s->bed->elf_hash_symbol) (h))
5206 return TRUE;
5207
5208 name = h->root.root.string;
5209 p = strchr (name, ELF_VER_CHR);
5210 if (p != NULL)
5211 {
5212 alc = (char *) bfd_malloc (p - name + 1);
5213 if (alc == NULL)
5214 {
5215 s->error = TRUE;
5216 return FALSE;
5217 }
5218 memcpy (alc, name, p - name);
5219 alc[p - name] = '\0';
5220 name = alc;
5221 }
5222
5223 /* Compute the hash value. */
5224 ha = bfd_elf_gnu_hash (name);
5225
5226 /* Store the found hash value in the array for compute_bucket_count,
5227 and also for .dynsym reordering purposes. */
5228 s->hashcodes[s->nsyms] = ha;
5229 s->hashval[h->dynindx] = ha;
5230 ++s->nsyms;
5231 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5232 s->min_dynindx = h->dynindx;
5233
5234 if (alc != NULL)
5235 free (alc);
5236
5237 return TRUE;
5238 }
5239
5240 /* This function will be called though elf_link_hash_traverse to do
5241 final dynaminc symbol renumbering. */
5242
5243 static bfd_boolean
5244 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5245 {
5246 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5247 unsigned long int bucket;
5248 unsigned long int val;
5249
5250 /* Ignore indirect symbols. */
5251 if (h->dynindx == -1)
5252 return TRUE;
5253
5254 /* Ignore also local symbols and undefined symbols. */
5255 if (! (*s->bed->elf_hash_symbol) (h))
5256 {
5257 if (h->dynindx >= s->min_dynindx)
5258 h->dynindx = s->local_indx++;
5259 return TRUE;
5260 }
5261
5262 bucket = s->hashval[h->dynindx] % s->bucketcount;
5263 val = (s->hashval[h->dynindx] >> s->shift1)
5264 & ((s->maskbits >> s->shift1) - 1);
5265 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5266 s->bitmask[val]
5267 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5268 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5269 if (s->counts[bucket] == 1)
5270 /* Last element terminates the chain. */
5271 val |= 1;
5272 bfd_put_32 (s->output_bfd, val,
5273 s->contents + (s->indx[bucket] - s->symindx) * 4);
5274 --s->counts[bucket];
5275 h->dynindx = s->indx[bucket]++;
5276 return TRUE;
5277 }
5278
5279 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5280
5281 bfd_boolean
5282 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5283 {
5284 return !(h->forced_local
5285 || h->root.type == bfd_link_hash_undefined
5286 || h->root.type == bfd_link_hash_undefweak
5287 || ((h->root.type == bfd_link_hash_defined
5288 || h->root.type == bfd_link_hash_defweak)
5289 && h->root.u.def.section->output_section == NULL));
5290 }
5291
5292 /* Array used to determine the number of hash table buckets to use
5293 based on the number of symbols there are. If there are fewer than
5294 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5295 fewer than 37 we use 17 buckets, and so forth. We never use more
5296 than 32771 buckets. */
5297
5298 static const size_t elf_buckets[] =
5299 {
5300 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5301 16411, 32771, 0
5302 };
5303
5304 /* Compute bucket count for hashing table. We do not use a static set
5305 of possible tables sizes anymore. Instead we determine for all
5306 possible reasonable sizes of the table the outcome (i.e., the
5307 number of collisions etc) and choose the best solution. The
5308 weighting functions are not too simple to allow the table to grow
5309 without bounds. Instead one of the weighting factors is the size.
5310 Therefore the result is always a good payoff between few collisions
5311 (= short chain lengths) and table size. */
5312 static size_t
5313 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5314 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5315 unsigned long int nsyms,
5316 int gnu_hash)
5317 {
5318 size_t best_size = 0;
5319 unsigned long int i;
5320
5321 /* We have a problem here. The following code to optimize the table
5322 size requires an integer type with more the 32 bits. If
5323 BFD_HOST_U_64_BIT is set we know about such a type. */
5324 #ifdef BFD_HOST_U_64_BIT
5325 if (info->optimize)
5326 {
5327 size_t minsize;
5328 size_t maxsize;
5329 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5330 bfd *dynobj = elf_hash_table (info)->dynobj;
5331 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5332 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5333 unsigned long int *counts;
5334 bfd_size_type amt;
5335 unsigned int no_improvement_count = 0;
5336
5337 /* Possible optimization parameters: if we have NSYMS symbols we say
5338 that the hashing table must at least have NSYMS/4 and at most
5339 2*NSYMS buckets. */
5340 minsize = nsyms / 4;
5341 if (minsize == 0)
5342 minsize = 1;
5343 best_size = maxsize = nsyms * 2;
5344 if (gnu_hash)
5345 {
5346 if (minsize < 2)
5347 minsize = 2;
5348 if ((best_size & 31) == 0)
5349 ++best_size;
5350 }
5351
5352 /* Create array where we count the collisions in. We must use bfd_malloc
5353 since the size could be large. */
5354 amt = maxsize;
5355 amt *= sizeof (unsigned long int);
5356 counts = (unsigned long int *) bfd_malloc (amt);
5357 if (counts == NULL)
5358 return 0;
5359
5360 /* Compute the "optimal" size for the hash table. The criteria is a
5361 minimal chain length. The minor criteria is (of course) the size
5362 of the table. */
5363 for (i = minsize; i < maxsize; ++i)
5364 {
5365 /* Walk through the array of hashcodes and count the collisions. */
5366 BFD_HOST_U_64_BIT max;
5367 unsigned long int j;
5368 unsigned long int fact;
5369
5370 if (gnu_hash && (i & 31) == 0)
5371 continue;
5372
5373 memset (counts, '\0', i * sizeof (unsigned long int));
5374
5375 /* Determine how often each hash bucket is used. */
5376 for (j = 0; j < nsyms; ++j)
5377 ++counts[hashcodes[j] % i];
5378
5379 /* For the weight function we need some information about the
5380 pagesize on the target. This is information need not be 100%
5381 accurate. Since this information is not available (so far) we
5382 define it here to a reasonable default value. If it is crucial
5383 to have a better value some day simply define this value. */
5384 # ifndef BFD_TARGET_PAGESIZE
5385 # define BFD_TARGET_PAGESIZE (4096)
5386 # endif
5387
5388 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5389 and the chains. */
5390 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5391
5392 # if 1
5393 /* Variant 1: optimize for short chains. We add the squares
5394 of all the chain lengths (which favors many small chain
5395 over a few long chains). */
5396 for (j = 0; j < i; ++j)
5397 max += counts[j] * counts[j];
5398
5399 /* This adds penalties for the overall size of the table. */
5400 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5401 max *= fact * fact;
5402 # else
5403 /* Variant 2: Optimize a lot more for small table. Here we
5404 also add squares of the size but we also add penalties for
5405 empty slots (the +1 term). */
5406 for (j = 0; j < i; ++j)
5407 max += (1 + counts[j]) * (1 + counts[j]);
5408
5409 /* The overall size of the table is considered, but not as
5410 strong as in variant 1, where it is squared. */
5411 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5412 max *= fact;
5413 # endif
5414
5415 /* Compare with current best results. */
5416 if (max < best_chlen)
5417 {
5418 best_chlen = max;
5419 best_size = i;
5420 no_improvement_count = 0;
5421 }
5422 /* PR 11843: Avoid futile long searches for the best bucket size
5423 when there are a large number of symbols. */
5424 else if (++no_improvement_count == 100)
5425 break;
5426 }
5427
5428 free (counts);
5429 }
5430 else
5431 #endif /* defined (BFD_HOST_U_64_BIT) */
5432 {
5433 /* This is the fallback solution if no 64bit type is available or if we
5434 are not supposed to spend much time on optimizations. We select the
5435 bucket count using a fixed set of numbers. */
5436 for (i = 0; elf_buckets[i] != 0; i++)
5437 {
5438 best_size = elf_buckets[i];
5439 if (nsyms < elf_buckets[i + 1])
5440 break;
5441 }
5442 if (gnu_hash && best_size < 2)
5443 best_size = 2;
5444 }
5445
5446 return best_size;
5447 }
5448
5449 /* Size any SHT_GROUP section for ld -r. */
5450
5451 bfd_boolean
5452 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5453 {
5454 bfd *ibfd;
5455
5456 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5457 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5458 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5459 return FALSE;
5460 return TRUE;
5461 }
5462
5463 /* Set a default stack segment size. The value in INFO wins. If it
5464 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5465 undefined it is initialized. */
5466
5467 bfd_boolean
5468 bfd_elf_stack_segment_size (bfd *output_bfd,
5469 struct bfd_link_info *info,
5470 const char *legacy_symbol,
5471 bfd_vma default_size)
5472 {
5473 struct elf_link_hash_entry *h = NULL;
5474
5475 /* Look for legacy symbol. */
5476 if (legacy_symbol)
5477 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5478 FALSE, FALSE, FALSE);
5479 if (h && (h->root.type == bfd_link_hash_defined
5480 || h->root.type == bfd_link_hash_defweak)
5481 && h->def_regular
5482 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5483 {
5484 /* The symbol has no type if specified on the command line. */
5485 h->type = STT_OBJECT;
5486 if (info->stacksize)
5487 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5488 output_bfd, legacy_symbol);
5489 else if (h->root.u.def.section != bfd_abs_section_ptr)
5490 (*_bfd_error_handler) (_("%B: %s not absolute"),
5491 output_bfd, legacy_symbol);
5492 else
5493 info->stacksize = h->root.u.def.value;
5494 }
5495
5496 if (!info->stacksize)
5497 /* If the user didn't set a size, or explicitly inhibit the
5498 size, set it now. */
5499 info->stacksize = default_size;
5500
5501 /* Provide the legacy symbol, if it is referenced. */
5502 if (h && (h->root.type == bfd_link_hash_undefined
5503 || h->root.type == bfd_link_hash_undefweak))
5504 {
5505 struct bfd_link_hash_entry *bh = NULL;
5506
5507 if (!(_bfd_generic_link_add_one_symbol
5508 (info, output_bfd, legacy_symbol,
5509 BSF_GLOBAL, bfd_abs_section_ptr,
5510 info->stacksize >= 0 ? info->stacksize : 0,
5511 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5512 return FALSE;
5513
5514 h = (struct elf_link_hash_entry *) bh;
5515 h->def_regular = 1;
5516 h->type = STT_OBJECT;
5517 }
5518
5519 return TRUE;
5520 }
5521
5522 /* Set up the sizes and contents of the ELF dynamic sections. This is
5523 called by the ELF linker emulation before_allocation routine. We
5524 must set the sizes of the sections before the linker sets the
5525 addresses of the various sections. */
5526
5527 bfd_boolean
5528 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5529 const char *soname,
5530 const char *rpath,
5531 const char *filter_shlib,
5532 const char *audit,
5533 const char *depaudit,
5534 const char * const *auxiliary_filters,
5535 struct bfd_link_info *info,
5536 asection **sinterpptr)
5537 {
5538 bfd_size_type soname_indx;
5539 bfd *dynobj;
5540 const struct elf_backend_data *bed;
5541 struct elf_info_failed asvinfo;
5542
5543 *sinterpptr = NULL;
5544
5545 soname_indx = (bfd_size_type) -1;
5546
5547 if (!is_elf_hash_table (info->hash))
5548 return TRUE;
5549
5550 bed = get_elf_backend_data (output_bfd);
5551
5552 /* Any syms created from now on start with -1 in
5553 got.refcount/offset and plt.refcount/offset. */
5554 elf_hash_table (info)->init_got_refcount
5555 = elf_hash_table (info)->init_got_offset;
5556 elf_hash_table (info)->init_plt_refcount
5557 = elf_hash_table (info)->init_plt_offset;
5558
5559 if (info->relocatable
5560 && !_bfd_elf_size_group_sections (info))
5561 return FALSE;
5562
5563 /* The backend may have to create some sections regardless of whether
5564 we're dynamic or not. */
5565 if (bed->elf_backend_always_size_sections
5566 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5567 return FALSE;
5568
5569 /* Determine any GNU_STACK segment requirements, after the backend
5570 has had a chance to set a default segment size. */
5571 if (info->execstack)
5572 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5573 else if (info->noexecstack)
5574 elf_stack_flags (output_bfd) = PF_R | PF_W;
5575 else
5576 {
5577 bfd *inputobj;
5578 asection *notesec = NULL;
5579 int exec = 0;
5580
5581 for (inputobj = info->input_bfds;
5582 inputobj;
5583 inputobj = inputobj->link.next)
5584 {
5585 asection *s;
5586
5587 if (inputobj->flags
5588 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5589 continue;
5590 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5591 if (s)
5592 {
5593 if (s->flags & SEC_CODE)
5594 exec = PF_X;
5595 notesec = s;
5596 }
5597 else if (bed->default_execstack)
5598 exec = PF_X;
5599 }
5600 if (notesec || info->stacksize > 0)
5601 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5602 if (notesec && exec && info->relocatable
5603 && notesec->output_section != bfd_abs_section_ptr)
5604 notesec->output_section->flags |= SEC_CODE;
5605 }
5606
5607 dynobj = elf_hash_table (info)->dynobj;
5608
5609 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5610 {
5611 struct elf_info_failed eif;
5612 struct elf_link_hash_entry *h;
5613 asection *dynstr;
5614 struct bfd_elf_version_tree *t;
5615 struct bfd_elf_version_expr *d;
5616 asection *s;
5617 bfd_boolean all_defined;
5618
5619 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5620 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5621
5622 if (soname != NULL)
5623 {
5624 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 soname, TRUE);
5626 if (soname_indx == (bfd_size_type) -1
5627 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5628 return FALSE;
5629 }
5630
5631 if (info->symbolic)
5632 {
5633 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5634 return FALSE;
5635 info->flags |= DF_SYMBOLIC;
5636 }
5637
5638 if (rpath != NULL)
5639 {
5640 bfd_size_type indx;
5641 bfd_vma tag;
5642
5643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5644 TRUE);
5645 if (indx == (bfd_size_type) -1)
5646 return FALSE;
5647
5648 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5649 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5650 return FALSE;
5651 }
5652
5653 if (filter_shlib != NULL)
5654 {
5655 bfd_size_type indx;
5656
5657 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5658 filter_shlib, TRUE);
5659 if (indx == (bfd_size_type) -1
5660 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5661 return FALSE;
5662 }
5663
5664 if (auxiliary_filters != NULL)
5665 {
5666 const char * const *p;
5667
5668 for (p = auxiliary_filters; *p != NULL; p++)
5669 {
5670 bfd_size_type indx;
5671
5672 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5673 *p, TRUE);
5674 if (indx == (bfd_size_type) -1
5675 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5676 return FALSE;
5677 }
5678 }
5679
5680 if (audit != NULL)
5681 {
5682 bfd_size_type indx;
5683
5684 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5685 TRUE);
5686 if (indx == (bfd_size_type) -1
5687 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5688 return FALSE;
5689 }
5690
5691 if (depaudit != NULL)
5692 {
5693 bfd_size_type indx;
5694
5695 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5696 TRUE);
5697 if (indx == (bfd_size_type) -1
5698 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5699 return FALSE;
5700 }
5701
5702 eif.info = info;
5703 eif.failed = FALSE;
5704
5705 /* If we are supposed to export all symbols into the dynamic symbol
5706 table (this is not the normal case), then do so. */
5707 if (info->export_dynamic
5708 || (info->executable && info->dynamic))
5709 {
5710 elf_link_hash_traverse (elf_hash_table (info),
5711 _bfd_elf_export_symbol,
5712 &eif);
5713 if (eif.failed)
5714 return FALSE;
5715 }
5716
5717 /* Make all global versions with definition. */
5718 for (t = info->version_info; t != NULL; t = t->next)
5719 for (d = t->globals.list; d != NULL; d = d->next)
5720 if (!d->symver && d->literal)
5721 {
5722 const char *verstr, *name;
5723 size_t namelen, verlen, newlen;
5724 char *newname, *p, leading_char;
5725 struct elf_link_hash_entry *newh;
5726
5727 leading_char = bfd_get_symbol_leading_char (output_bfd);
5728 name = d->pattern;
5729 namelen = strlen (name) + (leading_char != '\0');
5730 verstr = t->name;
5731 verlen = strlen (verstr);
5732 newlen = namelen + verlen + 3;
5733
5734 newname = (char *) bfd_malloc (newlen);
5735 if (newname == NULL)
5736 return FALSE;
5737 newname[0] = leading_char;
5738 memcpy (newname + (leading_char != '\0'), name, namelen);
5739
5740 /* Check the hidden versioned definition. */
5741 p = newname + namelen;
5742 *p++ = ELF_VER_CHR;
5743 memcpy (p, verstr, verlen + 1);
5744 newh = elf_link_hash_lookup (elf_hash_table (info),
5745 newname, FALSE, FALSE,
5746 FALSE);
5747 if (newh == NULL
5748 || (newh->root.type != bfd_link_hash_defined
5749 && newh->root.type != bfd_link_hash_defweak))
5750 {
5751 /* Check the default versioned definition. */
5752 *p++ = ELF_VER_CHR;
5753 memcpy (p, verstr, verlen + 1);
5754 newh = elf_link_hash_lookup (elf_hash_table (info),
5755 newname, FALSE, FALSE,
5756 FALSE);
5757 }
5758 free (newname);
5759
5760 /* Mark this version if there is a definition and it is
5761 not defined in a shared object. */
5762 if (newh != NULL
5763 && !newh->def_dynamic
5764 && (newh->root.type == bfd_link_hash_defined
5765 || newh->root.type == bfd_link_hash_defweak))
5766 d->symver = 1;
5767 }
5768
5769 /* Attach all the symbols to their version information. */
5770 asvinfo.info = info;
5771 asvinfo.failed = FALSE;
5772
5773 elf_link_hash_traverse (elf_hash_table (info),
5774 _bfd_elf_link_assign_sym_version,
5775 &asvinfo);
5776 if (asvinfo.failed)
5777 return FALSE;
5778
5779 if (!info->allow_undefined_version)
5780 {
5781 /* Check if all global versions have a definition. */
5782 all_defined = TRUE;
5783 for (t = info->version_info; t != NULL; t = t->next)
5784 for (d = t->globals.list; d != NULL; d = d->next)
5785 if (d->literal && !d->symver && !d->script)
5786 {
5787 (*_bfd_error_handler)
5788 (_("%s: undefined version: %s"),
5789 d->pattern, t->name);
5790 all_defined = FALSE;
5791 }
5792
5793 if (!all_defined)
5794 {
5795 bfd_set_error (bfd_error_bad_value);
5796 return FALSE;
5797 }
5798 }
5799
5800 /* Find all symbols which were defined in a dynamic object and make
5801 the backend pick a reasonable value for them. */
5802 elf_link_hash_traverse (elf_hash_table (info),
5803 _bfd_elf_adjust_dynamic_symbol,
5804 &eif);
5805 if (eif.failed)
5806 return FALSE;
5807
5808 /* Add some entries to the .dynamic section. We fill in some of the
5809 values later, in bfd_elf_final_link, but we must add the entries
5810 now so that we know the final size of the .dynamic section. */
5811
5812 /* If there are initialization and/or finalization functions to
5813 call then add the corresponding DT_INIT/DT_FINI entries. */
5814 h = (info->init_function
5815 ? elf_link_hash_lookup (elf_hash_table (info),
5816 info->init_function, FALSE,
5817 FALSE, FALSE)
5818 : NULL);
5819 if (h != NULL
5820 && (h->ref_regular
5821 || h->def_regular))
5822 {
5823 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5824 return FALSE;
5825 }
5826 h = (info->fini_function
5827 ? elf_link_hash_lookup (elf_hash_table (info),
5828 info->fini_function, FALSE,
5829 FALSE, FALSE)
5830 : NULL);
5831 if (h != NULL
5832 && (h->ref_regular
5833 || h->def_regular))
5834 {
5835 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5836 return FALSE;
5837 }
5838
5839 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5840 if (s != NULL && s->linker_has_input)
5841 {
5842 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5843 if (! info->executable)
5844 {
5845 bfd *sub;
5846 asection *o;
5847
5848 for (sub = info->input_bfds; sub != NULL;
5849 sub = sub->link.next)
5850 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5851 for (o = sub->sections; o != NULL; o = o->next)
5852 if (elf_section_data (o)->this_hdr.sh_type
5853 == SHT_PREINIT_ARRAY)
5854 {
5855 (*_bfd_error_handler)
5856 (_("%B: .preinit_array section is not allowed in DSO"),
5857 sub);
5858 break;
5859 }
5860
5861 bfd_set_error (bfd_error_nonrepresentable_section);
5862 return FALSE;
5863 }
5864
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869 s = bfd_get_section_by_name (output_bfd, ".init_array");
5870 if (s != NULL && s->linker_has_input)
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5874 return FALSE;
5875 }
5876 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5877 if (s != NULL && s->linker_has_input)
5878 {
5879 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5880 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5881 return FALSE;
5882 }
5883
5884 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5885 /* If .dynstr is excluded from the link, we don't want any of
5886 these tags. Strictly, we should be checking each section
5887 individually; This quick check covers for the case where
5888 someone does a /DISCARD/ : { *(*) }. */
5889 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5890 {
5891 bfd_size_type strsize;
5892
5893 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5894 if ((info->emit_hash
5895 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5896 || (info->emit_gnu_hash
5897 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5898 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5899 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5900 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5901 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5902 bed->s->sizeof_sym))
5903 return FALSE;
5904 }
5905 }
5906
5907 /* The backend must work out the sizes of all the other dynamic
5908 sections. */
5909 if (dynobj != NULL
5910 && bed->elf_backend_size_dynamic_sections != NULL
5911 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5912 return FALSE;
5913
5914 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5915 return FALSE;
5916
5917 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5918 {
5919 unsigned long section_sym_count;
5920 struct bfd_elf_version_tree *verdefs;
5921 asection *s;
5922
5923 /* Set up the version definition section. */
5924 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5925 BFD_ASSERT (s != NULL);
5926
5927 /* We may have created additional version definitions if we are
5928 just linking a regular application. */
5929 verdefs = info->version_info;
5930
5931 /* Skip anonymous version tag. */
5932 if (verdefs != NULL && verdefs->vernum == 0)
5933 verdefs = verdefs->next;
5934
5935 if (verdefs == NULL && !info->create_default_symver)
5936 s->flags |= SEC_EXCLUDE;
5937 else
5938 {
5939 unsigned int cdefs;
5940 bfd_size_type size;
5941 struct bfd_elf_version_tree *t;
5942 bfd_byte *p;
5943 Elf_Internal_Verdef def;
5944 Elf_Internal_Verdaux defaux;
5945 struct bfd_link_hash_entry *bh;
5946 struct elf_link_hash_entry *h;
5947 const char *name;
5948
5949 cdefs = 0;
5950 size = 0;
5951
5952 /* Make space for the base version. */
5953 size += sizeof (Elf_External_Verdef);
5954 size += sizeof (Elf_External_Verdaux);
5955 ++cdefs;
5956
5957 /* Make space for the default version. */
5958 if (info->create_default_symver)
5959 {
5960 size += sizeof (Elf_External_Verdef);
5961 ++cdefs;
5962 }
5963
5964 for (t = verdefs; t != NULL; t = t->next)
5965 {
5966 struct bfd_elf_version_deps *n;
5967
5968 /* Don't emit base version twice. */
5969 if (t->vernum == 0)
5970 continue;
5971
5972 size += sizeof (Elf_External_Verdef);
5973 size += sizeof (Elf_External_Verdaux);
5974 ++cdefs;
5975
5976 for (n = t->deps; n != NULL; n = n->next)
5977 size += sizeof (Elf_External_Verdaux);
5978 }
5979
5980 s->size = size;
5981 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5982 if (s->contents == NULL && s->size != 0)
5983 return FALSE;
5984
5985 /* Fill in the version definition section. */
5986
5987 p = s->contents;
5988
5989 def.vd_version = VER_DEF_CURRENT;
5990 def.vd_flags = VER_FLG_BASE;
5991 def.vd_ndx = 1;
5992 def.vd_cnt = 1;
5993 if (info->create_default_symver)
5994 {
5995 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5996 def.vd_next = sizeof (Elf_External_Verdef);
5997 }
5998 else
5999 {
6000 def.vd_aux = sizeof (Elf_External_Verdef);
6001 def.vd_next = (sizeof (Elf_External_Verdef)
6002 + sizeof (Elf_External_Verdaux));
6003 }
6004
6005 if (soname_indx != (bfd_size_type) -1)
6006 {
6007 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6008 soname_indx);
6009 def.vd_hash = bfd_elf_hash (soname);
6010 defaux.vda_name = soname_indx;
6011 name = soname;
6012 }
6013 else
6014 {
6015 bfd_size_type indx;
6016
6017 name = lbasename (output_bfd->filename);
6018 def.vd_hash = bfd_elf_hash (name);
6019 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6020 name, FALSE);
6021 if (indx == (bfd_size_type) -1)
6022 return FALSE;
6023 defaux.vda_name = indx;
6024 }
6025 defaux.vda_next = 0;
6026
6027 _bfd_elf_swap_verdef_out (output_bfd, &def,
6028 (Elf_External_Verdef *) p);
6029 p += sizeof (Elf_External_Verdef);
6030 if (info->create_default_symver)
6031 {
6032 /* Add a symbol representing this version. */
6033 bh = NULL;
6034 if (! (_bfd_generic_link_add_one_symbol
6035 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6036 0, NULL, FALSE,
6037 get_elf_backend_data (dynobj)->collect, &bh)))
6038 return FALSE;
6039 h = (struct elf_link_hash_entry *) bh;
6040 h->non_elf = 0;
6041 h->def_regular = 1;
6042 h->type = STT_OBJECT;
6043 h->verinfo.vertree = NULL;
6044
6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6046 return FALSE;
6047
6048 /* Create a duplicate of the base version with the same
6049 aux block, but different flags. */
6050 def.vd_flags = 0;
6051 def.vd_ndx = 2;
6052 def.vd_aux = sizeof (Elf_External_Verdef);
6053 if (verdefs)
6054 def.vd_next = (sizeof (Elf_External_Verdef)
6055 + sizeof (Elf_External_Verdaux));
6056 else
6057 def.vd_next = 0;
6058 _bfd_elf_swap_verdef_out (output_bfd, &def,
6059 (Elf_External_Verdef *) p);
6060 p += sizeof (Elf_External_Verdef);
6061 }
6062 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6063 (Elf_External_Verdaux *) p);
6064 p += sizeof (Elf_External_Verdaux);
6065
6066 for (t = verdefs; t != NULL; t = t->next)
6067 {
6068 unsigned int cdeps;
6069 struct bfd_elf_version_deps *n;
6070
6071 /* Don't emit the base version twice. */
6072 if (t->vernum == 0)
6073 continue;
6074
6075 cdeps = 0;
6076 for (n = t->deps; n != NULL; n = n->next)
6077 ++cdeps;
6078
6079 /* Add a symbol representing this version. */
6080 bh = NULL;
6081 if (! (_bfd_generic_link_add_one_symbol
6082 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6083 0, NULL, FALSE,
6084 get_elf_backend_data (dynobj)->collect, &bh)))
6085 return FALSE;
6086 h = (struct elf_link_hash_entry *) bh;
6087 h->non_elf = 0;
6088 h->def_regular = 1;
6089 h->type = STT_OBJECT;
6090 h->verinfo.vertree = t;
6091
6092 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6093 return FALSE;
6094
6095 def.vd_version = VER_DEF_CURRENT;
6096 def.vd_flags = 0;
6097 if (t->globals.list == NULL
6098 && t->locals.list == NULL
6099 && ! t->used)
6100 def.vd_flags |= VER_FLG_WEAK;
6101 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6102 def.vd_cnt = cdeps + 1;
6103 def.vd_hash = bfd_elf_hash (t->name);
6104 def.vd_aux = sizeof (Elf_External_Verdef);
6105 def.vd_next = 0;
6106
6107 /* If a basever node is next, it *must* be the last node in
6108 the chain, otherwise Verdef construction breaks. */
6109 if (t->next != NULL && t->next->vernum == 0)
6110 BFD_ASSERT (t->next->next == NULL);
6111
6112 if (t->next != NULL && t->next->vernum != 0)
6113 def.vd_next = (sizeof (Elf_External_Verdef)
6114 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6115
6116 _bfd_elf_swap_verdef_out (output_bfd, &def,
6117 (Elf_External_Verdef *) p);
6118 p += sizeof (Elf_External_Verdef);
6119
6120 defaux.vda_name = h->dynstr_index;
6121 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6122 h->dynstr_index);
6123 defaux.vda_next = 0;
6124 if (t->deps != NULL)
6125 defaux.vda_next = sizeof (Elf_External_Verdaux);
6126 t->name_indx = defaux.vda_name;
6127
6128 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6129 (Elf_External_Verdaux *) p);
6130 p += sizeof (Elf_External_Verdaux);
6131
6132 for (n = t->deps; n != NULL; n = n->next)
6133 {
6134 if (n->version_needed == NULL)
6135 {
6136 /* This can happen if there was an error in the
6137 version script. */
6138 defaux.vda_name = 0;
6139 }
6140 else
6141 {
6142 defaux.vda_name = n->version_needed->name_indx;
6143 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6144 defaux.vda_name);
6145 }
6146 if (n->next == NULL)
6147 defaux.vda_next = 0;
6148 else
6149 defaux.vda_next = sizeof (Elf_External_Verdaux);
6150
6151 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6152 (Elf_External_Verdaux *) p);
6153 p += sizeof (Elf_External_Verdaux);
6154 }
6155 }
6156
6157 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6158 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6159 return FALSE;
6160
6161 elf_tdata (output_bfd)->cverdefs = cdefs;
6162 }
6163
6164 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6165 {
6166 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6167 return FALSE;
6168 }
6169 else if (info->flags & DF_BIND_NOW)
6170 {
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6172 return FALSE;
6173 }
6174
6175 if (info->flags_1)
6176 {
6177 if (info->executable)
6178 info->flags_1 &= ~ (DF_1_INITFIRST
6179 | DF_1_NODELETE
6180 | DF_1_NOOPEN);
6181 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6182 return FALSE;
6183 }
6184
6185 /* Work out the size of the version reference section. */
6186
6187 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6188 BFD_ASSERT (s != NULL);
6189 {
6190 struct elf_find_verdep_info sinfo;
6191
6192 sinfo.info = info;
6193 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6194 if (sinfo.vers == 0)
6195 sinfo.vers = 1;
6196 sinfo.failed = FALSE;
6197
6198 elf_link_hash_traverse (elf_hash_table (info),
6199 _bfd_elf_link_find_version_dependencies,
6200 &sinfo);
6201 if (sinfo.failed)
6202 return FALSE;
6203
6204 if (elf_tdata (output_bfd)->verref == NULL)
6205 s->flags |= SEC_EXCLUDE;
6206 else
6207 {
6208 Elf_Internal_Verneed *t;
6209 unsigned int size;
6210 unsigned int crefs;
6211 bfd_byte *p;
6212
6213 /* Build the version dependency section. */
6214 size = 0;
6215 crefs = 0;
6216 for (t = elf_tdata (output_bfd)->verref;
6217 t != NULL;
6218 t = t->vn_nextref)
6219 {
6220 Elf_Internal_Vernaux *a;
6221
6222 size += sizeof (Elf_External_Verneed);
6223 ++crefs;
6224 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6225 size += sizeof (Elf_External_Vernaux);
6226 }
6227
6228 s->size = size;
6229 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6230 if (s->contents == NULL)
6231 return FALSE;
6232
6233 p = s->contents;
6234 for (t = elf_tdata (output_bfd)->verref;
6235 t != NULL;
6236 t = t->vn_nextref)
6237 {
6238 unsigned int caux;
6239 Elf_Internal_Vernaux *a;
6240 bfd_size_type indx;
6241
6242 caux = 0;
6243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6244 ++caux;
6245
6246 t->vn_version = VER_NEED_CURRENT;
6247 t->vn_cnt = caux;
6248 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6249 elf_dt_name (t->vn_bfd) != NULL
6250 ? elf_dt_name (t->vn_bfd)
6251 : lbasename (t->vn_bfd->filename),
6252 FALSE);
6253 if (indx == (bfd_size_type) -1)
6254 return FALSE;
6255 t->vn_file = indx;
6256 t->vn_aux = sizeof (Elf_External_Verneed);
6257 if (t->vn_nextref == NULL)
6258 t->vn_next = 0;
6259 else
6260 t->vn_next = (sizeof (Elf_External_Verneed)
6261 + caux * sizeof (Elf_External_Vernaux));
6262
6263 _bfd_elf_swap_verneed_out (output_bfd, t,
6264 (Elf_External_Verneed *) p);
6265 p += sizeof (Elf_External_Verneed);
6266
6267 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6268 {
6269 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6270 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6271 a->vna_nodename, FALSE);
6272 if (indx == (bfd_size_type) -1)
6273 return FALSE;
6274 a->vna_name = indx;
6275 if (a->vna_nextptr == NULL)
6276 a->vna_next = 0;
6277 else
6278 a->vna_next = sizeof (Elf_External_Vernaux);
6279
6280 _bfd_elf_swap_vernaux_out (output_bfd, a,
6281 (Elf_External_Vernaux *) p);
6282 p += sizeof (Elf_External_Vernaux);
6283 }
6284 }
6285
6286 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6287 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6288 return FALSE;
6289
6290 elf_tdata (output_bfd)->cverrefs = crefs;
6291 }
6292 }
6293
6294 if ((elf_tdata (output_bfd)->cverrefs == 0
6295 && elf_tdata (output_bfd)->cverdefs == 0)
6296 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6297 &section_sym_count) == 0)
6298 {
6299 s = bfd_get_linker_section (dynobj, ".gnu.version");
6300 s->flags |= SEC_EXCLUDE;
6301 }
6302 }
6303 return TRUE;
6304 }
6305
6306 /* Find the first non-excluded output section. We'll use its
6307 section symbol for some emitted relocs. */
6308 void
6309 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6310 {
6311 asection *s;
6312
6313 for (s = output_bfd->sections; s != NULL; s = s->next)
6314 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6315 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6316 {
6317 elf_hash_table (info)->text_index_section = s;
6318 break;
6319 }
6320 }
6321
6322 /* Find two non-excluded output sections, one for code, one for data.
6323 We'll use their section symbols for some emitted relocs. */
6324 void
6325 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6326 {
6327 asection *s;
6328
6329 /* Data first, since setting text_index_section changes
6330 _bfd_elf_link_omit_section_dynsym. */
6331 for (s = output_bfd->sections; s != NULL; s = s->next)
6332 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6333 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6334 {
6335 elf_hash_table (info)->data_index_section = s;
6336 break;
6337 }
6338
6339 for (s = output_bfd->sections; s != NULL; s = s->next)
6340 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6341 == (SEC_ALLOC | SEC_READONLY))
6342 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6343 {
6344 elf_hash_table (info)->text_index_section = s;
6345 break;
6346 }
6347
6348 if (elf_hash_table (info)->text_index_section == NULL)
6349 elf_hash_table (info)->text_index_section
6350 = elf_hash_table (info)->data_index_section;
6351 }
6352
6353 bfd_boolean
6354 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6355 {
6356 const struct elf_backend_data *bed;
6357
6358 if (!is_elf_hash_table (info->hash))
6359 return TRUE;
6360
6361 bed = get_elf_backend_data (output_bfd);
6362 (*bed->elf_backend_init_index_section) (output_bfd, info);
6363
6364 if (elf_hash_table (info)->dynamic_sections_created)
6365 {
6366 bfd *dynobj;
6367 asection *s;
6368 bfd_size_type dynsymcount;
6369 unsigned long section_sym_count;
6370 unsigned int dtagcount;
6371
6372 dynobj = elf_hash_table (info)->dynobj;
6373
6374 /* Assign dynsym indicies. In a shared library we generate a
6375 section symbol for each output section, which come first.
6376 Next come all of the back-end allocated local dynamic syms,
6377 followed by the rest of the global symbols. */
6378
6379 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6380 &section_sym_count);
6381
6382 /* Work out the size of the symbol version section. */
6383 s = bfd_get_linker_section (dynobj, ".gnu.version");
6384 BFD_ASSERT (s != NULL);
6385 if (dynsymcount != 0
6386 && (s->flags & SEC_EXCLUDE) == 0)
6387 {
6388 s->size = dynsymcount * sizeof (Elf_External_Versym);
6389 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6390 if (s->contents == NULL)
6391 return FALSE;
6392
6393 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6394 return FALSE;
6395 }
6396
6397 /* Set the size of the .dynsym and .hash sections. We counted
6398 the number of dynamic symbols in elf_link_add_object_symbols.
6399 We will build the contents of .dynsym and .hash when we build
6400 the final symbol table, because until then we do not know the
6401 correct value to give the symbols. We built the .dynstr
6402 section as we went along in elf_link_add_object_symbols. */
6403 s = bfd_get_linker_section (dynobj, ".dynsym");
6404 BFD_ASSERT (s != NULL);
6405 s->size = dynsymcount * bed->s->sizeof_sym;
6406
6407 if (dynsymcount != 0)
6408 {
6409 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6410 if (s->contents == NULL)
6411 return FALSE;
6412
6413 /* The first entry in .dynsym is a dummy symbol.
6414 Clear all the section syms, in case we don't output them all. */
6415 ++section_sym_count;
6416 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6417 }
6418
6419 elf_hash_table (info)->bucketcount = 0;
6420
6421 /* Compute the size of the hashing table. As a side effect this
6422 computes the hash values for all the names we export. */
6423 if (info->emit_hash)
6424 {
6425 unsigned long int *hashcodes;
6426 struct hash_codes_info hashinf;
6427 bfd_size_type amt;
6428 unsigned long int nsyms;
6429 size_t bucketcount;
6430 size_t hash_entry_size;
6431
6432 /* Compute the hash values for all exported symbols. At the same
6433 time store the values in an array so that we could use them for
6434 optimizations. */
6435 amt = dynsymcount * sizeof (unsigned long int);
6436 hashcodes = (unsigned long int *) bfd_malloc (amt);
6437 if (hashcodes == NULL)
6438 return FALSE;
6439 hashinf.hashcodes = hashcodes;
6440 hashinf.error = FALSE;
6441
6442 /* Put all hash values in HASHCODES. */
6443 elf_link_hash_traverse (elf_hash_table (info),
6444 elf_collect_hash_codes, &hashinf);
6445 if (hashinf.error)
6446 {
6447 free (hashcodes);
6448 return FALSE;
6449 }
6450
6451 nsyms = hashinf.hashcodes - hashcodes;
6452 bucketcount
6453 = compute_bucket_count (info, hashcodes, nsyms, 0);
6454 free (hashcodes);
6455
6456 if (bucketcount == 0)
6457 return FALSE;
6458
6459 elf_hash_table (info)->bucketcount = bucketcount;
6460
6461 s = bfd_get_linker_section (dynobj, ".hash");
6462 BFD_ASSERT (s != NULL);
6463 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6464 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6465 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6466 if (s->contents == NULL)
6467 return FALSE;
6468
6469 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6470 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6471 s->contents + hash_entry_size);
6472 }
6473
6474 if (info->emit_gnu_hash)
6475 {
6476 size_t i, cnt;
6477 unsigned char *contents;
6478 struct collect_gnu_hash_codes cinfo;
6479 bfd_size_type amt;
6480 size_t bucketcount;
6481
6482 memset (&cinfo, 0, sizeof (cinfo));
6483
6484 /* Compute the hash values for all exported symbols. At the same
6485 time store the values in an array so that we could use them for
6486 optimizations. */
6487 amt = dynsymcount * 2 * sizeof (unsigned long int);
6488 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6489 if (cinfo.hashcodes == NULL)
6490 return FALSE;
6491
6492 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6493 cinfo.min_dynindx = -1;
6494 cinfo.output_bfd = output_bfd;
6495 cinfo.bed = bed;
6496
6497 /* Put all hash values in HASHCODES. */
6498 elf_link_hash_traverse (elf_hash_table (info),
6499 elf_collect_gnu_hash_codes, &cinfo);
6500 if (cinfo.error)
6501 {
6502 free (cinfo.hashcodes);
6503 return FALSE;
6504 }
6505
6506 bucketcount
6507 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6508
6509 if (bucketcount == 0)
6510 {
6511 free (cinfo.hashcodes);
6512 return FALSE;
6513 }
6514
6515 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6516 BFD_ASSERT (s != NULL);
6517
6518 if (cinfo.nsyms == 0)
6519 {
6520 /* Empty .gnu.hash section is special. */
6521 BFD_ASSERT (cinfo.min_dynindx == -1);
6522 free (cinfo.hashcodes);
6523 s->size = 5 * 4 + bed->s->arch_size / 8;
6524 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6525 if (contents == NULL)
6526 return FALSE;
6527 s->contents = contents;
6528 /* 1 empty bucket. */
6529 bfd_put_32 (output_bfd, 1, contents);
6530 /* SYMIDX above the special symbol 0. */
6531 bfd_put_32 (output_bfd, 1, contents + 4);
6532 /* Just one word for bitmask. */
6533 bfd_put_32 (output_bfd, 1, contents + 8);
6534 /* Only hash fn bloom filter. */
6535 bfd_put_32 (output_bfd, 0, contents + 12);
6536 /* No hashes are valid - empty bitmask. */
6537 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6538 /* No hashes in the only bucket. */
6539 bfd_put_32 (output_bfd, 0,
6540 contents + 16 + bed->s->arch_size / 8);
6541 }
6542 else
6543 {
6544 unsigned long int maskwords, maskbitslog2, x;
6545 BFD_ASSERT (cinfo.min_dynindx != -1);
6546
6547 x = cinfo.nsyms;
6548 maskbitslog2 = 1;
6549 while ((x >>= 1) != 0)
6550 ++maskbitslog2;
6551 if (maskbitslog2 < 3)
6552 maskbitslog2 = 5;
6553 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6554 maskbitslog2 = maskbitslog2 + 3;
6555 else
6556 maskbitslog2 = maskbitslog2 + 2;
6557 if (bed->s->arch_size == 64)
6558 {
6559 if (maskbitslog2 == 5)
6560 maskbitslog2 = 6;
6561 cinfo.shift1 = 6;
6562 }
6563 else
6564 cinfo.shift1 = 5;
6565 cinfo.mask = (1 << cinfo.shift1) - 1;
6566 cinfo.shift2 = maskbitslog2;
6567 cinfo.maskbits = 1 << maskbitslog2;
6568 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6569 amt = bucketcount * sizeof (unsigned long int) * 2;
6570 amt += maskwords * sizeof (bfd_vma);
6571 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6572 if (cinfo.bitmask == NULL)
6573 {
6574 free (cinfo.hashcodes);
6575 return FALSE;
6576 }
6577
6578 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6579 cinfo.indx = cinfo.counts + bucketcount;
6580 cinfo.symindx = dynsymcount - cinfo.nsyms;
6581 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6582
6583 /* Determine how often each hash bucket is used. */
6584 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6585 for (i = 0; i < cinfo.nsyms; ++i)
6586 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6587
6588 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6589 if (cinfo.counts[i] != 0)
6590 {
6591 cinfo.indx[i] = cnt;
6592 cnt += cinfo.counts[i];
6593 }
6594 BFD_ASSERT (cnt == dynsymcount);
6595 cinfo.bucketcount = bucketcount;
6596 cinfo.local_indx = cinfo.min_dynindx;
6597
6598 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6599 s->size += cinfo.maskbits / 8;
6600 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6601 if (contents == NULL)
6602 {
6603 free (cinfo.bitmask);
6604 free (cinfo.hashcodes);
6605 return FALSE;
6606 }
6607
6608 s->contents = contents;
6609 bfd_put_32 (output_bfd, bucketcount, contents);
6610 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6611 bfd_put_32 (output_bfd, maskwords, contents + 8);
6612 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6613 contents += 16 + cinfo.maskbits / 8;
6614
6615 for (i = 0; i < bucketcount; ++i)
6616 {
6617 if (cinfo.counts[i] == 0)
6618 bfd_put_32 (output_bfd, 0, contents);
6619 else
6620 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6621 contents += 4;
6622 }
6623
6624 cinfo.contents = contents;
6625
6626 /* Renumber dynamic symbols, populate .gnu.hash section. */
6627 elf_link_hash_traverse (elf_hash_table (info),
6628 elf_renumber_gnu_hash_syms, &cinfo);
6629
6630 contents = s->contents + 16;
6631 for (i = 0; i < maskwords; ++i)
6632 {
6633 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6634 contents);
6635 contents += bed->s->arch_size / 8;
6636 }
6637
6638 free (cinfo.bitmask);
6639 free (cinfo.hashcodes);
6640 }
6641 }
6642
6643 s = bfd_get_linker_section (dynobj, ".dynstr");
6644 BFD_ASSERT (s != NULL);
6645
6646 elf_finalize_dynstr (output_bfd, info);
6647
6648 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6649
6650 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6651 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6652 return FALSE;
6653 }
6654
6655 return TRUE;
6656 }
6657 \f
6658 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6659
6660 static void
6661 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6662 asection *sec)
6663 {
6664 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6665 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6666 }
6667
6668 /* Finish SHF_MERGE section merging. */
6669
6670 bfd_boolean
6671 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6672 {
6673 bfd *ibfd;
6674 asection *sec;
6675
6676 if (!is_elf_hash_table (info->hash))
6677 return FALSE;
6678
6679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6680 if ((ibfd->flags & DYNAMIC) == 0)
6681 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6682 if ((sec->flags & SEC_MERGE) != 0
6683 && !bfd_is_abs_section (sec->output_section))
6684 {
6685 struct bfd_elf_section_data *secdata;
6686
6687 secdata = elf_section_data (sec);
6688 if (! _bfd_add_merge_section (abfd,
6689 &elf_hash_table (info)->merge_info,
6690 sec, &secdata->sec_info))
6691 return FALSE;
6692 else if (secdata->sec_info)
6693 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6694 }
6695
6696 if (elf_hash_table (info)->merge_info != NULL)
6697 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6698 merge_sections_remove_hook);
6699 return TRUE;
6700 }
6701
6702 /* Create an entry in an ELF linker hash table. */
6703
6704 struct bfd_hash_entry *
6705 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6706 struct bfd_hash_table *table,
6707 const char *string)
6708 {
6709 /* Allocate the structure if it has not already been allocated by a
6710 subclass. */
6711 if (entry == NULL)
6712 {
6713 entry = (struct bfd_hash_entry *)
6714 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6715 if (entry == NULL)
6716 return entry;
6717 }
6718
6719 /* Call the allocation method of the superclass. */
6720 entry = _bfd_link_hash_newfunc (entry, table, string);
6721 if (entry != NULL)
6722 {
6723 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6724 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6725
6726 /* Set local fields. */
6727 ret->indx = -1;
6728 ret->dynindx = -1;
6729 ret->got = htab->init_got_refcount;
6730 ret->plt = htab->init_plt_refcount;
6731 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6732 - offsetof (struct elf_link_hash_entry, size)));
6733 /* Assume that we have been called by a non-ELF symbol reader.
6734 This flag is then reset by the code which reads an ELF input
6735 file. This ensures that a symbol created by a non-ELF symbol
6736 reader will have the flag set correctly. */
6737 ret->non_elf = 1;
6738 }
6739
6740 return entry;
6741 }
6742
6743 /* Copy data from an indirect symbol to its direct symbol, hiding the
6744 old indirect symbol. Also used for copying flags to a weakdef. */
6745
6746 void
6747 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6748 struct elf_link_hash_entry *dir,
6749 struct elf_link_hash_entry *ind)
6750 {
6751 struct elf_link_hash_table *htab;
6752
6753 /* Copy down any references that we may have already seen to the
6754 symbol which just became indirect. */
6755
6756 dir->ref_dynamic |= ind->ref_dynamic;
6757 dir->ref_regular |= ind->ref_regular;
6758 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6759 dir->non_got_ref |= ind->non_got_ref;
6760 dir->needs_plt |= ind->needs_plt;
6761 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6762
6763 if (ind->root.type != bfd_link_hash_indirect)
6764 return;
6765
6766 /* Copy over the global and procedure linkage table refcount entries.
6767 These may have been already set up by a check_relocs routine. */
6768 htab = elf_hash_table (info);
6769 if (ind->got.refcount > htab->init_got_refcount.refcount)
6770 {
6771 if (dir->got.refcount < 0)
6772 dir->got.refcount = 0;
6773 dir->got.refcount += ind->got.refcount;
6774 ind->got.refcount = htab->init_got_refcount.refcount;
6775 }
6776
6777 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6778 {
6779 if (dir->plt.refcount < 0)
6780 dir->plt.refcount = 0;
6781 dir->plt.refcount += ind->plt.refcount;
6782 ind->plt.refcount = htab->init_plt_refcount.refcount;
6783 }
6784
6785 if (ind->dynindx != -1)
6786 {
6787 if (dir->dynindx != -1)
6788 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6789 dir->dynindx = ind->dynindx;
6790 dir->dynstr_index = ind->dynstr_index;
6791 ind->dynindx = -1;
6792 ind->dynstr_index = 0;
6793 }
6794 }
6795
6796 void
6797 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6798 struct elf_link_hash_entry *h,
6799 bfd_boolean force_local)
6800 {
6801 /* STT_GNU_IFUNC symbol must go through PLT. */
6802 if (h->type != STT_GNU_IFUNC)
6803 {
6804 h->plt = elf_hash_table (info)->init_plt_offset;
6805 h->needs_plt = 0;
6806 }
6807 if (force_local)
6808 {
6809 h->forced_local = 1;
6810 if (h->dynindx != -1)
6811 {
6812 h->dynindx = -1;
6813 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6814 h->dynstr_index);
6815 }
6816 }
6817 }
6818
6819 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6820 caller. */
6821
6822 bfd_boolean
6823 _bfd_elf_link_hash_table_init
6824 (struct elf_link_hash_table *table,
6825 bfd *abfd,
6826 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6827 struct bfd_hash_table *,
6828 const char *),
6829 unsigned int entsize,
6830 enum elf_target_id target_id)
6831 {
6832 bfd_boolean ret;
6833 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6834
6835 table->init_got_refcount.refcount = can_refcount - 1;
6836 table->init_plt_refcount.refcount = can_refcount - 1;
6837 table->init_got_offset.offset = -(bfd_vma) 1;
6838 table->init_plt_offset.offset = -(bfd_vma) 1;
6839 /* The first dynamic symbol is a dummy. */
6840 table->dynsymcount = 1;
6841
6842 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6843
6844 table->root.type = bfd_link_elf_hash_table;
6845 table->hash_table_id = target_id;
6846
6847 return ret;
6848 }
6849
6850 /* Create an ELF linker hash table. */
6851
6852 struct bfd_link_hash_table *
6853 _bfd_elf_link_hash_table_create (bfd *abfd)
6854 {
6855 struct elf_link_hash_table *ret;
6856 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6857
6858 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6859 if (ret == NULL)
6860 return NULL;
6861
6862 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6863 sizeof (struct elf_link_hash_entry),
6864 GENERIC_ELF_DATA))
6865 {
6866 free (ret);
6867 return NULL;
6868 }
6869 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6870
6871 return &ret->root;
6872 }
6873
6874 /* Destroy an ELF linker hash table. */
6875
6876 void
6877 _bfd_elf_link_hash_table_free (bfd *obfd)
6878 {
6879 struct elf_link_hash_table *htab;
6880
6881 htab = (struct elf_link_hash_table *) obfd->link.hash;
6882 if (htab->dynstr != NULL)
6883 _bfd_elf_strtab_free (htab->dynstr);
6884 _bfd_merge_sections_free (htab->merge_info);
6885 _bfd_generic_link_hash_table_free (obfd);
6886 }
6887
6888 /* This is a hook for the ELF emulation code in the generic linker to
6889 tell the backend linker what file name to use for the DT_NEEDED
6890 entry for a dynamic object. */
6891
6892 void
6893 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6894 {
6895 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6896 && bfd_get_format (abfd) == bfd_object)
6897 elf_dt_name (abfd) = name;
6898 }
6899
6900 int
6901 bfd_elf_get_dyn_lib_class (bfd *abfd)
6902 {
6903 int lib_class;
6904 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6905 && bfd_get_format (abfd) == bfd_object)
6906 lib_class = elf_dyn_lib_class (abfd);
6907 else
6908 lib_class = 0;
6909 return lib_class;
6910 }
6911
6912 void
6913 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6914 {
6915 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6916 && bfd_get_format (abfd) == bfd_object)
6917 elf_dyn_lib_class (abfd) = lib_class;
6918 }
6919
6920 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6921 the linker ELF emulation code. */
6922
6923 struct bfd_link_needed_list *
6924 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6925 struct bfd_link_info *info)
6926 {
6927 if (! is_elf_hash_table (info->hash))
6928 return NULL;
6929 return elf_hash_table (info)->needed;
6930 }
6931
6932 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6933 hook for the linker ELF emulation code. */
6934
6935 struct bfd_link_needed_list *
6936 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6937 struct bfd_link_info *info)
6938 {
6939 if (! is_elf_hash_table (info->hash))
6940 return NULL;
6941 return elf_hash_table (info)->runpath;
6942 }
6943
6944 /* Get the name actually used for a dynamic object for a link. This
6945 is the SONAME entry if there is one. Otherwise, it is the string
6946 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6947
6948 const char *
6949 bfd_elf_get_dt_soname (bfd *abfd)
6950 {
6951 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6952 && bfd_get_format (abfd) == bfd_object)
6953 return elf_dt_name (abfd);
6954 return NULL;
6955 }
6956
6957 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6958 the ELF linker emulation code. */
6959
6960 bfd_boolean
6961 bfd_elf_get_bfd_needed_list (bfd *abfd,
6962 struct bfd_link_needed_list **pneeded)
6963 {
6964 asection *s;
6965 bfd_byte *dynbuf = NULL;
6966 unsigned int elfsec;
6967 unsigned long shlink;
6968 bfd_byte *extdyn, *extdynend;
6969 size_t extdynsize;
6970 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6971
6972 *pneeded = NULL;
6973
6974 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6975 || bfd_get_format (abfd) != bfd_object)
6976 return TRUE;
6977
6978 s = bfd_get_section_by_name (abfd, ".dynamic");
6979 if (s == NULL || s->size == 0)
6980 return TRUE;
6981
6982 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6983 goto error_return;
6984
6985 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6986 if (elfsec == SHN_BAD)
6987 goto error_return;
6988
6989 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6990
6991 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6992 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6993
6994 extdyn = dynbuf;
6995 extdynend = extdyn + s->size;
6996 for (; extdyn < extdynend; extdyn += extdynsize)
6997 {
6998 Elf_Internal_Dyn dyn;
6999
7000 (*swap_dyn_in) (abfd, extdyn, &dyn);
7001
7002 if (dyn.d_tag == DT_NULL)
7003 break;
7004
7005 if (dyn.d_tag == DT_NEEDED)
7006 {
7007 const char *string;
7008 struct bfd_link_needed_list *l;
7009 unsigned int tagv = dyn.d_un.d_val;
7010 bfd_size_type amt;
7011
7012 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7013 if (string == NULL)
7014 goto error_return;
7015
7016 amt = sizeof *l;
7017 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7018 if (l == NULL)
7019 goto error_return;
7020
7021 l->by = abfd;
7022 l->name = string;
7023 l->next = *pneeded;
7024 *pneeded = l;
7025 }
7026 }
7027
7028 free (dynbuf);
7029
7030 return TRUE;
7031
7032 error_return:
7033 if (dynbuf != NULL)
7034 free (dynbuf);
7035 return FALSE;
7036 }
7037
7038 struct elf_symbuf_symbol
7039 {
7040 unsigned long st_name; /* Symbol name, index in string tbl */
7041 unsigned char st_info; /* Type and binding attributes */
7042 unsigned char st_other; /* Visibilty, and target specific */
7043 };
7044
7045 struct elf_symbuf_head
7046 {
7047 struct elf_symbuf_symbol *ssym;
7048 bfd_size_type count;
7049 unsigned int st_shndx;
7050 };
7051
7052 struct elf_symbol
7053 {
7054 union
7055 {
7056 Elf_Internal_Sym *isym;
7057 struct elf_symbuf_symbol *ssym;
7058 } u;
7059 const char *name;
7060 };
7061
7062 /* Sort references to symbols by ascending section number. */
7063
7064 static int
7065 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7066 {
7067 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7068 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7069
7070 return s1->st_shndx - s2->st_shndx;
7071 }
7072
7073 static int
7074 elf_sym_name_compare (const void *arg1, const void *arg2)
7075 {
7076 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7077 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7078 return strcmp (s1->name, s2->name);
7079 }
7080
7081 static struct elf_symbuf_head *
7082 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7083 {
7084 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7085 struct elf_symbuf_symbol *ssym;
7086 struct elf_symbuf_head *ssymbuf, *ssymhead;
7087 bfd_size_type i, shndx_count, total_size;
7088
7089 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7090 if (indbuf == NULL)
7091 return NULL;
7092
7093 for (ind = indbuf, i = 0; i < symcount; i++)
7094 if (isymbuf[i].st_shndx != SHN_UNDEF)
7095 *ind++ = &isymbuf[i];
7096 indbufend = ind;
7097
7098 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7099 elf_sort_elf_symbol);
7100
7101 shndx_count = 0;
7102 if (indbufend > indbuf)
7103 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7104 if (ind[0]->st_shndx != ind[1]->st_shndx)
7105 shndx_count++;
7106
7107 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7108 + (indbufend - indbuf) * sizeof (*ssym));
7109 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7110 if (ssymbuf == NULL)
7111 {
7112 free (indbuf);
7113 return NULL;
7114 }
7115
7116 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7117 ssymbuf->ssym = NULL;
7118 ssymbuf->count = shndx_count;
7119 ssymbuf->st_shndx = 0;
7120 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7121 {
7122 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7123 {
7124 ssymhead++;
7125 ssymhead->ssym = ssym;
7126 ssymhead->count = 0;
7127 ssymhead->st_shndx = (*ind)->st_shndx;
7128 }
7129 ssym->st_name = (*ind)->st_name;
7130 ssym->st_info = (*ind)->st_info;
7131 ssym->st_other = (*ind)->st_other;
7132 ssymhead->count++;
7133 }
7134 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7135 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7136 == total_size));
7137
7138 free (indbuf);
7139 return ssymbuf;
7140 }
7141
7142 /* Check if 2 sections define the same set of local and global
7143 symbols. */
7144
7145 static bfd_boolean
7146 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7147 struct bfd_link_info *info)
7148 {
7149 bfd *bfd1, *bfd2;
7150 const struct elf_backend_data *bed1, *bed2;
7151 Elf_Internal_Shdr *hdr1, *hdr2;
7152 bfd_size_type symcount1, symcount2;
7153 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7154 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7155 Elf_Internal_Sym *isym, *isymend;
7156 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7157 bfd_size_type count1, count2, i;
7158 unsigned int shndx1, shndx2;
7159 bfd_boolean result;
7160
7161 bfd1 = sec1->owner;
7162 bfd2 = sec2->owner;
7163
7164 /* Both sections have to be in ELF. */
7165 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7166 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7167 return FALSE;
7168
7169 if (elf_section_type (sec1) != elf_section_type (sec2))
7170 return FALSE;
7171
7172 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7173 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7174 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7175 return FALSE;
7176
7177 bed1 = get_elf_backend_data (bfd1);
7178 bed2 = get_elf_backend_data (bfd2);
7179 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7180 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7181 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7182 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7183
7184 if (symcount1 == 0 || symcount2 == 0)
7185 return FALSE;
7186
7187 result = FALSE;
7188 isymbuf1 = NULL;
7189 isymbuf2 = NULL;
7190 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7191 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7192
7193 if (ssymbuf1 == NULL)
7194 {
7195 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7196 NULL, NULL, NULL);
7197 if (isymbuf1 == NULL)
7198 goto done;
7199
7200 if (!info->reduce_memory_overheads)
7201 elf_tdata (bfd1)->symbuf = ssymbuf1
7202 = elf_create_symbuf (symcount1, isymbuf1);
7203 }
7204
7205 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7206 {
7207 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7208 NULL, NULL, NULL);
7209 if (isymbuf2 == NULL)
7210 goto done;
7211
7212 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7213 elf_tdata (bfd2)->symbuf = ssymbuf2
7214 = elf_create_symbuf (symcount2, isymbuf2);
7215 }
7216
7217 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7218 {
7219 /* Optimized faster version. */
7220 bfd_size_type lo, hi, mid;
7221 struct elf_symbol *symp;
7222 struct elf_symbuf_symbol *ssym, *ssymend;
7223
7224 lo = 0;
7225 hi = ssymbuf1->count;
7226 ssymbuf1++;
7227 count1 = 0;
7228 while (lo < hi)
7229 {
7230 mid = (lo + hi) / 2;
7231 if (shndx1 < ssymbuf1[mid].st_shndx)
7232 hi = mid;
7233 else if (shndx1 > ssymbuf1[mid].st_shndx)
7234 lo = mid + 1;
7235 else
7236 {
7237 count1 = ssymbuf1[mid].count;
7238 ssymbuf1 += mid;
7239 break;
7240 }
7241 }
7242
7243 lo = 0;
7244 hi = ssymbuf2->count;
7245 ssymbuf2++;
7246 count2 = 0;
7247 while (lo < hi)
7248 {
7249 mid = (lo + hi) / 2;
7250 if (shndx2 < ssymbuf2[mid].st_shndx)
7251 hi = mid;
7252 else if (shndx2 > ssymbuf2[mid].st_shndx)
7253 lo = mid + 1;
7254 else
7255 {
7256 count2 = ssymbuf2[mid].count;
7257 ssymbuf2 += mid;
7258 break;
7259 }
7260 }
7261
7262 if (count1 == 0 || count2 == 0 || count1 != count2)
7263 goto done;
7264
7265 symtable1
7266 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7267 symtable2
7268 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7269 if (symtable1 == NULL || symtable2 == NULL)
7270 goto done;
7271
7272 symp = symtable1;
7273 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7274 ssym < ssymend; ssym++, symp++)
7275 {
7276 symp->u.ssym = ssym;
7277 symp->name = bfd_elf_string_from_elf_section (bfd1,
7278 hdr1->sh_link,
7279 ssym->st_name);
7280 }
7281
7282 symp = symtable2;
7283 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7284 ssym < ssymend; ssym++, symp++)
7285 {
7286 symp->u.ssym = ssym;
7287 symp->name = bfd_elf_string_from_elf_section (bfd2,
7288 hdr2->sh_link,
7289 ssym->st_name);
7290 }
7291
7292 /* Sort symbol by name. */
7293 qsort (symtable1, count1, sizeof (struct elf_symbol),
7294 elf_sym_name_compare);
7295 qsort (symtable2, count1, sizeof (struct elf_symbol),
7296 elf_sym_name_compare);
7297
7298 for (i = 0; i < count1; i++)
7299 /* Two symbols must have the same binding, type and name. */
7300 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7301 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7302 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7303 goto done;
7304
7305 result = TRUE;
7306 goto done;
7307 }
7308
7309 symtable1 = (struct elf_symbol *)
7310 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7311 symtable2 = (struct elf_symbol *)
7312 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7313 if (symtable1 == NULL || symtable2 == NULL)
7314 goto done;
7315
7316 /* Count definitions in the section. */
7317 count1 = 0;
7318 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7319 if (isym->st_shndx == shndx1)
7320 symtable1[count1++].u.isym = isym;
7321
7322 count2 = 0;
7323 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx2)
7325 symtable2[count2++].u.isym = isym;
7326
7327 if (count1 == 0 || count2 == 0 || count1 != count2)
7328 goto done;
7329
7330 for (i = 0; i < count1; i++)
7331 symtable1[i].name
7332 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7333 symtable1[i].u.isym->st_name);
7334
7335 for (i = 0; i < count2; i++)
7336 symtable2[i].name
7337 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7338 symtable2[i].u.isym->st_name);
7339
7340 /* Sort symbol by name. */
7341 qsort (symtable1, count1, sizeof (struct elf_symbol),
7342 elf_sym_name_compare);
7343 qsort (symtable2, count1, sizeof (struct elf_symbol),
7344 elf_sym_name_compare);
7345
7346 for (i = 0; i < count1; i++)
7347 /* Two symbols must have the same binding, type and name. */
7348 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7349 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7350 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7351 goto done;
7352
7353 result = TRUE;
7354
7355 done:
7356 if (symtable1)
7357 free (symtable1);
7358 if (symtable2)
7359 free (symtable2);
7360 if (isymbuf1)
7361 free (isymbuf1);
7362 if (isymbuf2)
7363 free (isymbuf2);
7364
7365 return result;
7366 }
7367
7368 /* Return TRUE if 2 section types are compatible. */
7369
7370 bfd_boolean
7371 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7372 bfd *bbfd, const asection *bsec)
7373 {
7374 if (asec == NULL
7375 || bsec == NULL
7376 || abfd->xvec->flavour != bfd_target_elf_flavour
7377 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7378 return TRUE;
7379
7380 return elf_section_type (asec) == elf_section_type (bsec);
7381 }
7382 \f
7383 /* Final phase of ELF linker. */
7384
7385 /* A structure we use to avoid passing large numbers of arguments. */
7386
7387 struct elf_final_link_info
7388 {
7389 /* General link information. */
7390 struct bfd_link_info *info;
7391 /* Output BFD. */
7392 bfd *output_bfd;
7393 /* Symbol string table. */
7394 struct bfd_strtab_hash *symstrtab;
7395 /* .dynsym section. */
7396 asection *dynsym_sec;
7397 /* .hash section. */
7398 asection *hash_sec;
7399 /* symbol version section (.gnu.version). */
7400 asection *symver_sec;
7401 /* Buffer large enough to hold contents of any section. */
7402 bfd_byte *contents;
7403 /* Buffer large enough to hold external relocs of any section. */
7404 void *external_relocs;
7405 /* Buffer large enough to hold internal relocs of any section. */
7406 Elf_Internal_Rela *internal_relocs;
7407 /* Buffer large enough to hold external local symbols of any input
7408 BFD. */
7409 bfd_byte *external_syms;
7410 /* And a buffer for symbol section indices. */
7411 Elf_External_Sym_Shndx *locsym_shndx;
7412 /* Buffer large enough to hold internal local symbols of any input
7413 BFD. */
7414 Elf_Internal_Sym *internal_syms;
7415 /* Array large enough to hold a symbol index for each local symbol
7416 of any input BFD. */
7417 long *indices;
7418 /* Array large enough to hold a section pointer for each local
7419 symbol of any input BFD. */
7420 asection **sections;
7421 /* Buffer to hold swapped out symbols. */
7422 bfd_byte *symbuf;
7423 /* And one for symbol section indices. */
7424 Elf_External_Sym_Shndx *symshndxbuf;
7425 /* Number of swapped out symbols in buffer. */
7426 size_t symbuf_count;
7427 /* Number of symbols which fit in symbuf. */
7428 size_t symbuf_size;
7429 /* And same for symshndxbuf. */
7430 size_t shndxbuf_size;
7431 /* Number of STT_FILE syms seen. */
7432 size_t filesym_count;
7433 };
7434
7435 /* This struct is used to pass information to elf_link_output_extsym. */
7436
7437 struct elf_outext_info
7438 {
7439 bfd_boolean failed;
7440 bfd_boolean localsyms;
7441 bfd_boolean file_sym_done;
7442 struct elf_final_link_info *flinfo;
7443 };
7444
7445
7446 /* Support for evaluating a complex relocation.
7447
7448 Complex relocations are generalized, self-describing relocations. The
7449 implementation of them consists of two parts: complex symbols, and the
7450 relocations themselves.
7451
7452 The relocations are use a reserved elf-wide relocation type code (R_RELC
7453 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7454 information (start bit, end bit, word width, etc) into the addend. This
7455 information is extracted from CGEN-generated operand tables within gas.
7456
7457 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7458 internal) representing prefix-notation expressions, including but not
7459 limited to those sorts of expressions normally encoded as addends in the
7460 addend field. The symbol mangling format is:
7461
7462 <node> := <literal>
7463 | <unary-operator> ':' <node>
7464 | <binary-operator> ':' <node> ':' <node>
7465 ;
7466
7467 <literal> := 's' <digits=N> ':' <N character symbol name>
7468 | 'S' <digits=N> ':' <N character section name>
7469 | '#' <hexdigits>
7470 ;
7471
7472 <binary-operator> := as in C
7473 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7474
7475 static void
7476 set_symbol_value (bfd *bfd_with_globals,
7477 Elf_Internal_Sym *isymbuf,
7478 size_t locsymcount,
7479 size_t symidx,
7480 bfd_vma val)
7481 {
7482 struct elf_link_hash_entry **sym_hashes;
7483 struct elf_link_hash_entry *h;
7484 size_t extsymoff = locsymcount;
7485
7486 if (symidx < locsymcount)
7487 {
7488 Elf_Internal_Sym *sym;
7489
7490 sym = isymbuf + symidx;
7491 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7492 {
7493 /* It is a local symbol: move it to the
7494 "absolute" section and give it a value. */
7495 sym->st_shndx = SHN_ABS;
7496 sym->st_value = val;
7497 return;
7498 }
7499 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7500 extsymoff = 0;
7501 }
7502
7503 /* It is a global symbol: set its link type
7504 to "defined" and give it a value. */
7505
7506 sym_hashes = elf_sym_hashes (bfd_with_globals);
7507 h = sym_hashes [symidx - extsymoff];
7508 while (h->root.type == bfd_link_hash_indirect
7509 || h->root.type == bfd_link_hash_warning)
7510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7511 h->root.type = bfd_link_hash_defined;
7512 h->root.u.def.value = val;
7513 h->root.u.def.section = bfd_abs_section_ptr;
7514 }
7515
7516 static bfd_boolean
7517 resolve_symbol (const char *name,
7518 bfd *input_bfd,
7519 struct elf_final_link_info *flinfo,
7520 bfd_vma *result,
7521 Elf_Internal_Sym *isymbuf,
7522 size_t locsymcount)
7523 {
7524 Elf_Internal_Sym *sym;
7525 struct bfd_link_hash_entry *global_entry;
7526 const char *candidate = NULL;
7527 Elf_Internal_Shdr *symtab_hdr;
7528 size_t i;
7529
7530 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7531
7532 for (i = 0; i < locsymcount; ++ i)
7533 {
7534 sym = isymbuf + i;
7535
7536 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7537 continue;
7538
7539 candidate = bfd_elf_string_from_elf_section (input_bfd,
7540 symtab_hdr->sh_link,
7541 sym->st_name);
7542 #ifdef DEBUG
7543 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7544 name, candidate, (unsigned long) sym->st_value);
7545 #endif
7546 if (candidate && strcmp (candidate, name) == 0)
7547 {
7548 asection *sec = flinfo->sections [i];
7549
7550 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7551 *result += sec->output_offset + sec->output_section->vma;
7552 #ifdef DEBUG
7553 printf ("Found symbol with value %8.8lx\n",
7554 (unsigned long) *result);
7555 #endif
7556 return TRUE;
7557 }
7558 }
7559
7560 /* Hmm, haven't found it yet. perhaps it is a global. */
7561 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7562 FALSE, FALSE, TRUE);
7563 if (!global_entry)
7564 return FALSE;
7565
7566 if (global_entry->type == bfd_link_hash_defined
7567 || global_entry->type == bfd_link_hash_defweak)
7568 {
7569 *result = (global_entry->u.def.value
7570 + global_entry->u.def.section->output_section->vma
7571 + global_entry->u.def.section->output_offset);
7572 #ifdef DEBUG
7573 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7574 global_entry->root.string, (unsigned long) *result);
7575 #endif
7576 return TRUE;
7577 }
7578
7579 return FALSE;
7580 }
7581
7582 static bfd_boolean
7583 resolve_section (const char *name,
7584 asection *sections,
7585 bfd_vma *result)
7586 {
7587 asection *curr;
7588 unsigned int len;
7589
7590 for (curr = sections; curr; curr = curr->next)
7591 if (strcmp (curr->name, name) == 0)
7592 {
7593 *result = curr->vma;
7594 return TRUE;
7595 }
7596
7597 /* Hmm. still haven't found it. try pseudo-section names. */
7598 for (curr = sections; curr; curr = curr->next)
7599 {
7600 len = strlen (curr->name);
7601 if (len > strlen (name))
7602 continue;
7603
7604 if (strncmp (curr->name, name, len) == 0)
7605 {
7606 if (strncmp (".end", name + len, 4) == 0)
7607 {
7608 *result = curr->vma + curr->size;
7609 return TRUE;
7610 }
7611
7612 /* Insert more pseudo-section names here, if you like. */
7613 }
7614 }
7615
7616 return FALSE;
7617 }
7618
7619 static void
7620 undefined_reference (const char *reftype, const char *name)
7621 {
7622 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7623 reftype, name);
7624 }
7625
7626 static bfd_boolean
7627 eval_symbol (bfd_vma *result,
7628 const char **symp,
7629 bfd *input_bfd,
7630 struct elf_final_link_info *flinfo,
7631 bfd_vma dot,
7632 Elf_Internal_Sym *isymbuf,
7633 size_t locsymcount,
7634 int signed_p)
7635 {
7636 size_t len;
7637 size_t symlen;
7638 bfd_vma a;
7639 bfd_vma b;
7640 char symbuf[4096];
7641 const char *sym = *symp;
7642 const char *symend;
7643 bfd_boolean symbol_is_section = FALSE;
7644
7645 len = strlen (sym);
7646 symend = sym + len;
7647
7648 if (len < 1 || len > sizeof (symbuf))
7649 {
7650 bfd_set_error (bfd_error_invalid_operation);
7651 return FALSE;
7652 }
7653
7654 switch (* sym)
7655 {
7656 case '.':
7657 *result = dot;
7658 *symp = sym + 1;
7659 return TRUE;
7660
7661 case '#':
7662 ++sym;
7663 *result = strtoul (sym, (char **) symp, 16);
7664 return TRUE;
7665
7666 case 'S':
7667 symbol_is_section = TRUE;
7668 case 's':
7669 ++sym;
7670 symlen = strtol (sym, (char **) symp, 10);
7671 sym = *symp + 1; /* Skip the trailing ':'. */
7672
7673 if (symend < sym || symlen + 1 > sizeof (symbuf))
7674 {
7675 bfd_set_error (bfd_error_invalid_operation);
7676 return FALSE;
7677 }
7678
7679 memcpy (symbuf, sym, symlen);
7680 symbuf[symlen] = '\0';
7681 *symp = sym + symlen;
7682
7683 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7684 the symbol as a section, or vice-versa. so we're pretty liberal in our
7685 interpretation here; section means "try section first", not "must be a
7686 section", and likewise with symbol. */
7687
7688 if (symbol_is_section)
7689 {
7690 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7691 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7692 isymbuf, locsymcount))
7693 {
7694 undefined_reference ("section", symbuf);
7695 return FALSE;
7696 }
7697 }
7698 else
7699 {
7700 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7701 isymbuf, locsymcount)
7702 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7703 result))
7704 {
7705 undefined_reference ("symbol", symbuf);
7706 return FALSE;
7707 }
7708 }
7709
7710 return TRUE;
7711
7712 /* All that remains are operators. */
7713
7714 #define UNARY_OP(op) \
7715 if (strncmp (sym, #op, strlen (#op)) == 0) \
7716 { \
7717 sym += strlen (#op); \
7718 if (*sym == ':') \
7719 ++sym; \
7720 *symp = sym; \
7721 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7722 isymbuf, locsymcount, signed_p)) \
7723 return FALSE; \
7724 if (signed_p) \
7725 *result = op ((bfd_signed_vma) a); \
7726 else \
7727 *result = op a; \
7728 return TRUE; \
7729 }
7730
7731 #define BINARY_OP(op) \
7732 if (strncmp (sym, #op, strlen (#op)) == 0) \
7733 { \
7734 sym += strlen (#op); \
7735 if (*sym == ':') \
7736 ++sym; \
7737 *symp = sym; \
7738 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7739 isymbuf, locsymcount, signed_p)) \
7740 return FALSE; \
7741 ++*symp; \
7742 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7743 isymbuf, locsymcount, signed_p)) \
7744 return FALSE; \
7745 if (signed_p) \
7746 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7747 else \
7748 *result = a op b; \
7749 return TRUE; \
7750 }
7751
7752 default:
7753 UNARY_OP (0-);
7754 BINARY_OP (<<);
7755 BINARY_OP (>>);
7756 BINARY_OP (==);
7757 BINARY_OP (!=);
7758 BINARY_OP (<=);
7759 BINARY_OP (>=);
7760 BINARY_OP (&&);
7761 BINARY_OP (||);
7762 UNARY_OP (~);
7763 UNARY_OP (!);
7764 BINARY_OP (*);
7765 BINARY_OP (/);
7766 BINARY_OP (%);
7767 BINARY_OP (^);
7768 BINARY_OP (|);
7769 BINARY_OP (&);
7770 BINARY_OP (+);
7771 BINARY_OP (-);
7772 BINARY_OP (<);
7773 BINARY_OP (>);
7774 #undef UNARY_OP
7775 #undef BINARY_OP
7776 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7777 bfd_set_error (bfd_error_invalid_operation);
7778 return FALSE;
7779 }
7780 }
7781
7782 static void
7783 put_value (bfd_vma size,
7784 unsigned long chunksz,
7785 bfd *input_bfd,
7786 bfd_vma x,
7787 bfd_byte *location)
7788 {
7789 location += (size - chunksz);
7790
7791 for (; size; size -= chunksz, location -= chunksz)
7792 {
7793 switch (chunksz)
7794 {
7795 case 1:
7796 bfd_put_8 (input_bfd, x, location);
7797 x >>= 8;
7798 break;
7799 case 2:
7800 bfd_put_16 (input_bfd, x, location);
7801 x >>= 16;
7802 break;
7803 case 4:
7804 bfd_put_32 (input_bfd, x, location);
7805 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7806 x >>= 16;
7807 x >>= 16;
7808 break;
7809 #ifdef BFD64
7810 case 8:
7811 bfd_put_64 (input_bfd, x, location);
7812 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7813 x >>= 32;
7814 x >>= 32;
7815 break;
7816 #endif
7817 default:
7818 abort ();
7819 break;
7820 }
7821 }
7822 }
7823
7824 static bfd_vma
7825 get_value (bfd_vma size,
7826 unsigned long chunksz,
7827 bfd *input_bfd,
7828 bfd_byte *location)
7829 {
7830 int shift;
7831 bfd_vma x = 0;
7832
7833 /* Sanity checks. */
7834 BFD_ASSERT (chunksz <= sizeof (x)
7835 && size >= chunksz
7836 && chunksz != 0
7837 && (size % chunksz) == 0
7838 && input_bfd != NULL
7839 && location != NULL);
7840
7841 if (chunksz == sizeof (x))
7842 {
7843 BFD_ASSERT (size == chunksz);
7844
7845 /* Make sure that we do not perform an undefined shift operation.
7846 We know that size == chunksz so there will only be one iteration
7847 of the loop below. */
7848 shift = 0;
7849 }
7850 else
7851 shift = 8 * chunksz;
7852
7853 for (; size; size -= chunksz, location += chunksz)
7854 {
7855 switch (chunksz)
7856 {
7857 case 1:
7858 x = (x << shift) | bfd_get_8 (input_bfd, location);
7859 break;
7860 case 2:
7861 x = (x << shift) | bfd_get_16 (input_bfd, location);
7862 break;
7863 case 4:
7864 x = (x << shift) | bfd_get_32 (input_bfd, location);
7865 break;
7866 #ifdef BFD64
7867 case 8:
7868 x = (x << shift) | bfd_get_64 (input_bfd, location);
7869 break;
7870 #endif
7871 default:
7872 abort ();
7873 }
7874 }
7875 return x;
7876 }
7877
7878 static void
7879 decode_complex_addend (unsigned long *start, /* in bits */
7880 unsigned long *oplen, /* in bits */
7881 unsigned long *len, /* in bits */
7882 unsigned long *wordsz, /* in bytes */
7883 unsigned long *chunksz, /* in bytes */
7884 unsigned long *lsb0_p,
7885 unsigned long *signed_p,
7886 unsigned long *trunc_p,
7887 unsigned long encoded)
7888 {
7889 * start = encoded & 0x3F;
7890 * len = (encoded >> 6) & 0x3F;
7891 * oplen = (encoded >> 12) & 0x3F;
7892 * wordsz = (encoded >> 18) & 0xF;
7893 * chunksz = (encoded >> 22) & 0xF;
7894 * lsb0_p = (encoded >> 27) & 1;
7895 * signed_p = (encoded >> 28) & 1;
7896 * trunc_p = (encoded >> 29) & 1;
7897 }
7898
7899 bfd_reloc_status_type
7900 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7901 asection *input_section ATTRIBUTE_UNUSED,
7902 bfd_byte *contents,
7903 Elf_Internal_Rela *rel,
7904 bfd_vma relocation)
7905 {
7906 bfd_vma shift, x, mask;
7907 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7908 bfd_reloc_status_type r;
7909
7910 /* Perform this reloc, since it is complex.
7911 (this is not to say that it necessarily refers to a complex
7912 symbol; merely that it is a self-describing CGEN based reloc.
7913 i.e. the addend has the complete reloc information (bit start, end,
7914 word size, etc) encoded within it.). */
7915
7916 decode_complex_addend (&start, &oplen, &len, &wordsz,
7917 &chunksz, &lsb0_p, &signed_p,
7918 &trunc_p, rel->r_addend);
7919
7920 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7921
7922 if (lsb0_p)
7923 shift = (start + 1) - len;
7924 else
7925 shift = (8 * wordsz) - (start + len);
7926
7927 /* FIXME: octets_per_byte. */
7928 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7929
7930 #ifdef DEBUG
7931 printf ("Doing complex reloc: "
7932 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7933 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7934 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7935 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7936 oplen, (unsigned long) x, (unsigned long) mask,
7937 (unsigned long) relocation);
7938 #endif
7939
7940 r = bfd_reloc_ok;
7941 if (! trunc_p)
7942 /* Now do an overflow check. */
7943 r = bfd_check_overflow ((signed_p
7944 ? complain_overflow_signed
7945 : complain_overflow_unsigned),
7946 len, 0, (8 * wordsz),
7947 relocation);
7948
7949 /* Do the deed. */
7950 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7951
7952 #ifdef DEBUG
7953 printf (" relocation: %8.8lx\n"
7954 " shifted mask: %8.8lx\n"
7955 " shifted/masked reloc: %8.8lx\n"
7956 " result: %8.8lx\n",
7957 (unsigned long) relocation, (unsigned long) (mask << shift),
7958 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7959 #endif
7960 /* FIXME: octets_per_byte. */
7961 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7962 return r;
7963 }
7964
7965 /* qsort comparison functions sorting external relocs by r_offset. */
7966
7967 static int
7968 cmp_ext32l_r_offset (const void *p, const void *q)
7969 {
7970 union aligned32
7971 {
7972 uint32_t v;
7973 unsigned char c[4];
7974 };
7975 const union aligned32 *a
7976 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7977 const union aligned32 *b
7978 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7979
7980 uint32_t aval = ( (uint32_t) a->c[0]
7981 | (uint32_t) a->c[1] << 8
7982 | (uint32_t) a->c[2] << 16
7983 | (uint32_t) a->c[3] << 24);
7984 uint32_t bval = ( (uint32_t) b->c[0]
7985 | (uint32_t) b->c[1] << 8
7986 | (uint32_t) b->c[2] << 16
7987 | (uint32_t) b->c[3] << 24);
7988 if (aval < bval)
7989 return -1;
7990 else if (aval > bval)
7991 return 1;
7992 return 0;
7993 }
7994
7995 static int
7996 cmp_ext32b_r_offset (const void *p, const void *q)
7997 {
7998 union aligned32
7999 {
8000 uint32_t v;
8001 unsigned char c[4];
8002 };
8003 const union aligned32 *a
8004 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8005 const union aligned32 *b
8006 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8007
8008 uint32_t aval = ( (uint32_t) a->c[0] << 24
8009 | (uint32_t) a->c[1] << 16
8010 | (uint32_t) a->c[2] << 8
8011 | (uint32_t) a->c[3]);
8012 uint32_t bval = ( (uint32_t) b->c[0] << 24
8013 | (uint32_t) b->c[1] << 16
8014 | (uint32_t) b->c[2] << 8
8015 | (uint32_t) b->c[3]);
8016 if (aval < bval)
8017 return -1;
8018 else if (aval > bval)
8019 return 1;
8020 return 0;
8021 }
8022
8023 #ifdef BFD_HOST_64_BIT
8024 static int
8025 cmp_ext64l_r_offset (const void *p, const void *q)
8026 {
8027 union aligned64
8028 {
8029 uint64_t v;
8030 unsigned char c[8];
8031 };
8032 const union aligned64 *a
8033 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8034 const union aligned64 *b
8035 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8036
8037 uint64_t aval = ( (uint64_t) a->c[0]
8038 | (uint64_t) a->c[1] << 8
8039 | (uint64_t) a->c[2] << 16
8040 | (uint64_t) a->c[3] << 24
8041 | (uint64_t) a->c[4] << 32
8042 | (uint64_t) a->c[5] << 40
8043 | (uint64_t) a->c[6] << 48
8044 | (uint64_t) a->c[7] << 56);
8045 uint64_t bval = ( (uint64_t) b->c[0]
8046 | (uint64_t) b->c[1] << 8
8047 | (uint64_t) b->c[2] << 16
8048 | (uint64_t) b->c[3] << 24
8049 | (uint64_t) b->c[4] << 32
8050 | (uint64_t) b->c[5] << 40
8051 | (uint64_t) b->c[6] << 48
8052 | (uint64_t) b->c[7] << 56);
8053 if (aval < bval)
8054 return -1;
8055 else if (aval > bval)
8056 return 1;
8057 return 0;
8058 }
8059
8060 static int
8061 cmp_ext64b_r_offset (const void *p, const void *q)
8062 {
8063 union aligned64
8064 {
8065 uint64_t v;
8066 unsigned char c[8];
8067 };
8068 const union aligned64 *a
8069 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8070 const union aligned64 *b
8071 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8072
8073 uint64_t aval = ( (uint64_t) a->c[0] << 56
8074 | (uint64_t) a->c[1] << 48
8075 | (uint64_t) a->c[2] << 40
8076 | (uint64_t) a->c[3] << 32
8077 | (uint64_t) a->c[4] << 24
8078 | (uint64_t) a->c[5] << 16
8079 | (uint64_t) a->c[6] << 8
8080 | (uint64_t) a->c[7]);
8081 uint64_t bval = ( (uint64_t) b->c[0] << 56
8082 | (uint64_t) b->c[1] << 48
8083 | (uint64_t) b->c[2] << 40
8084 | (uint64_t) b->c[3] << 32
8085 | (uint64_t) b->c[4] << 24
8086 | (uint64_t) b->c[5] << 16
8087 | (uint64_t) b->c[6] << 8
8088 | (uint64_t) b->c[7]);
8089 if (aval < bval)
8090 return -1;
8091 else if (aval > bval)
8092 return 1;
8093 return 0;
8094 }
8095 #endif
8096
8097 /* When performing a relocatable link, the input relocations are
8098 preserved. But, if they reference global symbols, the indices
8099 referenced must be updated. Update all the relocations found in
8100 RELDATA. */
8101
8102 static void
8103 elf_link_adjust_relocs (bfd *abfd,
8104 struct bfd_elf_section_reloc_data *reldata,
8105 bfd_boolean sort)
8106 {
8107 unsigned int i;
8108 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8109 bfd_byte *erela;
8110 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8111 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8112 bfd_vma r_type_mask;
8113 int r_sym_shift;
8114 unsigned int count = reldata->count;
8115 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8116
8117 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8118 {
8119 swap_in = bed->s->swap_reloc_in;
8120 swap_out = bed->s->swap_reloc_out;
8121 }
8122 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8123 {
8124 swap_in = bed->s->swap_reloca_in;
8125 swap_out = bed->s->swap_reloca_out;
8126 }
8127 else
8128 abort ();
8129
8130 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8131 abort ();
8132
8133 if (bed->s->arch_size == 32)
8134 {
8135 r_type_mask = 0xff;
8136 r_sym_shift = 8;
8137 }
8138 else
8139 {
8140 r_type_mask = 0xffffffff;
8141 r_sym_shift = 32;
8142 }
8143
8144 erela = reldata->hdr->contents;
8145 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8146 {
8147 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8148 unsigned int j;
8149
8150 if (*rel_hash == NULL)
8151 continue;
8152
8153 BFD_ASSERT ((*rel_hash)->indx >= 0);
8154
8155 (*swap_in) (abfd, erela, irela);
8156 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8157 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8158 | (irela[j].r_info & r_type_mask));
8159 (*swap_out) (abfd, irela, erela);
8160 }
8161
8162 if (sort)
8163 {
8164 int (*compare) (const void *, const void *);
8165
8166 if (bed->s->arch_size == 32)
8167 {
8168 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8169 compare = cmp_ext32l_r_offset;
8170 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8171 compare = cmp_ext32b_r_offset;
8172 else
8173 abort ();
8174 }
8175 else
8176 {
8177 #ifdef BFD_HOST_64_BIT
8178 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8179 compare = cmp_ext64l_r_offset;
8180 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8181 compare = cmp_ext64b_r_offset;
8182 else
8183 #endif
8184 abort ();
8185 }
8186 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8187 free (reldata->hashes);
8188 reldata->hashes = NULL;
8189 }
8190 }
8191
8192 struct elf_link_sort_rela
8193 {
8194 union {
8195 bfd_vma offset;
8196 bfd_vma sym_mask;
8197 } u;
8198 enum elf_reloc_type_class type;
8199 /* We use this as an array of size int_rels_per_ext_rel. */
8200 Elf_Internal_Rela rela[1];
8201 };
8202
8203 static int
8204 elf_link_sort_cmp1 (const void *A, const void *B)
8205 {
8206 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8207 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8208 int relativea, relativeb;
8209
8210 relativea = a->type == reloc_class_relative;
8211 relativeb = b->type == reloc_class_relative;
8212
8213 if (relativea < relativeb)
8214 return 1;
8215 if (relativea > relativeb)
8216 return -1;
8217 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8218 return -1;
8219 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8220 return 1;
8221 if (a->rela->r_offset < b->rela->r_offset)
8222 return -1;
8223 if (a->rela->r_offset > b->rela->r_offset)
8224 return 1;
8225 return 0;
8226 }
8227
8228 static int
8229 elf_link_sort_cmp2 (const void *A, const void *B)
8230 {
8231 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8232 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8233
8234 if (a->type < b->type)
8235 return -1;
8236 if (a->type > b->type)
8237 return 1;
8238 if (a->u.offset < b->u.offset)
8239 return -1;
8240 if (a->u.offset > b->u.offset)
8241 return 1;
8242 if (a->rela->r_offset < b->rela->r_offset)
8243 return -1;
8244 if (a->rela->r_offset > b->rela->r_offset)
8245 return 1;
8246 return 0;
8247 }
8248
8249 static size_t
8250 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8251 {
8252 asection *dynamic_relocs;
8253 asection *rela_dyn;
8254 asection *rel_dyn;
8255 bfd_size_type count, size;
8256 size_t i, ret, sort_elt, ext_size;
8257 bfd_byte *sort, *s_non_relative, *p;
8258 struct elf_link_sort_rela *sq;
8259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8260 int i2e = bed->s->int_rels_per_ext_rel;
8261 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8262 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8263 struct bfd_link_order *lo;
8264 bfd_vma r_sym_mask;
8265 bfd_boolean use_rela;
8266
8267 /* Find a dynamic reloc section. */
8268 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8269 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8270 if (rela_dyn != NULL && rela_dyn->size > 0
8271 && rel_dyn != NULL && rel_dyn->size > 0)
8272 {
8273 bfd_boolean use_rela_initialised = FALSE;
8274
8275 /* This is just here to stop gcc from complaining.
8276 It's initialization checking code is not perfect. */
8277 use_rela = TRUE;
8278
8279 /* Both sections are present. Examine the sizes
8280 of the indirect sections to help us choose. */
8281 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8282 if (lo->type == bfd_indirect_link_order)
8283 {
8284 asection *o = lo->u.indirect.section;
8285
8286 if ((o->size % bed->s->sizeof_rela) == 0)
8287 {
8288 if ((o->size % bed->s->sizeof_rel) == 0)
8289 /* Section size is divisible by both rel and rela sizes.
8290 It is of no help to us. */
8291 ;
8292 else
8293 {
8294 /* Section size is only divisible by rela. */
8295 if (use_rela_initialised && (use_rela == FALSE))
8296 {
8297 _bfd_error_handler
8298 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8299 bfd_set_error (bfd_error_invalid_operation);
8300 return 0;
8301 }
8302 else
8303 {
8304 use_rela = TRUE;
8305 use_rela_initialised = TRUE;
8306 }
8307 }
8308 }
8309 else if ((o->size % bed->s->sizeof_rel) == 0)
8310 {
8311 /* Section size is only divisible by rel. */
8312 if (use_rela_initialised && (use_rela == TRUE))
8313 {
8314 _bfd_error_handler
8315 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8316 bfd_set_error (bfd_error_invalid_operation);
8317 return 0;
8318 }
8319 else
8320 {
8321 use_rela = FALSE;
8322 use_rela_initialised = TRUE;
8323 }
8324 }
8325 else
8326 {
8327 /* The section size is not divisible by either - something is wrong. */
8328 _bfd_error_handler
8329 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8330 bfd_set_error (bfd_error_invalid_operation);
8331 return 0;
8332 }
8333 }
8334
8335 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8336 if (lo->type == bfd_indirect_link_order)
8337 {
8338 asection *o = lo->u.indirect.section;
8339
8340 if ((o->size % bed->s->sizeof_rela) == 0)
8341 {
8342 if ((o->size % bed->s->sizeof_rel) == 0)
8343 /* Section size is divisible by both rel and rela sizes.
8344 It is of no help to us. */
8345 ;
8346 else
8347 {
8348 /* Section size is only divisible by rela. */
8349 if (use_rela_initialised && (use_rela == FALSE))
8350 {
8351 _bfd_error_handler
8352 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8353 bfd_set_error (bfd_error_invalid_operation);
8354 return 0;
8355 }
8356 else
8357 {
8358 use_rela = TRUE;
8359 use_rela_initialised = TRUE;
8360 }
8361 }
8362 }
8363 else if ((o->size % bed->s->sizeof_rel) == 0)
8364 {
8365 /* Section size is only divisible by rel. */
8366 if (use_rela_initialised && (use_rela == TRUE))
8367 {
8368 _bfd_error_handler
8369 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8370 bfd_set_error (bfd_error_invalid_operation);
8371 return 0;
8372 }
8373 else
8374 {
8375 use_rela = FALSE;
8376 use_rela_initialised = TRUE;
8377 }
8378 }
8379 else
8380 {
8381 /* The section size is not divisible by either - something is wrong. */
8382 _bfd_error_handler
8383 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8384 bfd_set_error (bfd_error_invalid_operation);
8385 return 0;
8386 }
8387 }
8388
8389 if (! use_rela_initialised)
8390 /* Make a guess. */
8391 use_rela = TRUE;
8392 }
8393 else if (rela_dyn != NULL && rela_dyn->size > 0)
8394 use_rela = TRUE;
8395 else if (rel_dyn != NULL && rel_dyn->size > 0)
8396 use_rela = FALSE;
8397 else
8398 return 0;
8399
8400 if (use_rela)
8401 {
8402 dynamic_relocs = rela_dyn;
8403 ext_size = bed->s->sizeof_rela;
8404 swap_in = bed->s->swap_reloca_in;
8405 swap_out = bed->s->swap_reloca_out;
8406 }
8407 else
8408 {
8409 dynamic_relocs = rel_dyn;
8410 ext_size = bed->s->sizeof_rel;
8411 swap_in = bed->s->swap_reloc_in;
8412 swap_out = bed->s->swap_reloc_out;
8413 }
8414
8415 size = 0;
8416 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8417 if (lo->type == bfd_indirect_link_order)
8418 size += lo->u.indirect.section->size;
8419
8420 if (size != dynamic_relocs->size)
8421 return 0;
8422
8423 sort_elt = (sizeof (struct elf_link_sort_rela)
8424 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8425
8426 count = dynamic_relocs->size / ext_size;
8427 if (count == 0)
8428 return 0;
8429 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8430
8431 if (sort == NULL)
8432 {
8433 (*info->callbacks->warning)
8434 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8435 return 0;
8436 }
8437
8438 if (bed->s->arch_size == 32)
8439 r_sym_mask = ~(bfd_vma) 0xff;
8440 else
8441 r_sym_mask = ~(bfd_vma) 0xffffffff;
8442
8443 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8444 if (lo->type == bfd_indirect_link_order)
8445 {
8446 bfd_byte *erel, *erelend;
8447 asection *o = lo->u.indirect.section;
8448
8449 if (o->contents == NULL && o->size != 0)
8450 {
8451 /* This is a reloc section that is being handled as a normal
8452 section. See bfd_section_from_shdr. We can't combine
8453 relocs in this case. */
8454 free (sort);
8455 return 0;
8456 }
8457 erel = o->contents;
8458 erelend = o->contents + o->size;
8459 /* FIXME: octets_per_byte. */
8460 p = sort + o->output_offset / ext_size * sort_elt;
8461
8462 while (erel < erelend)
8463 {
8464 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8465
8466 (*swap_in) (abfd, erel, s->rela);
8467 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8468 s->u.sym_mask = r_sym_mask;
8469 p += sort_elt;
8470 erel += ext_size;
8471 }
8472 }
8473
8474 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8475
8476 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8477 {
8478 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8479 if (s->type != reloc_class_relative)
8480 break;
8481 }
8482 ret = i;
8483 s_non_relative = p;
8484
8485 sq = (struct elf_link_sort_rela *) s_non_relative;
8486 for (; i < count; i++, p += sort_elt)
8487 {
8488 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8489 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8490 sq = sp;
8491 sp->u.offset = sq->rela->r_offset;
8492 }
8493
8494 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8495
8496 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8497 if (lo->type == bfd_indirect_link_order)
8498 {
8499 bfd_byte *erel, *erelend;
8500 asection *o = lo->u.indirect.section;
8501
8502 erel = o->contents;
8503 erelend = o->contents + o->size;
8504 /* FIXME: octets_per_byte. */
8505 p = sort + o->output_offset / ext_size * sort_elt;
8506 while (erel < erelend)
8507 {
8508 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8509 (*swap_out) (abfd, s->rela, erel);
8510 p += sort_elt;
8511 erel += ext_size;
8512 }
8513 }
8514
8515 free (sort);
8516 *psec = dynamic_relocs;
8517 return ret;
8518 }
8519
8520 /* Flush the output symbols to the file. */
8521
8522 static bfd_boolean
8523 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8524 const struct elf_backend_data *bed)
8525 {
8526 if (flinfo->symbuf_count > 0)
8527 {
8528 Elf_Internal_Shdr *hdr;
8529 file_ptr pos;
8530 bfd_size_type amt;
8531
8532 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8533 pos = hdr->sh_offset + hdr->sh_size;
8534 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8535 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8536 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8537 return FALSE;
8538
8539 hdr->sh_size += amt;
8540 flinfo->symbuf_count = 0;
8541 }
8542
8543 return TRUE;
8544 }
8545
8546 /* Add a symbol to the output symbol table. */
8547
8548 static int
8549 elf_link_output_sym (struct elf_final_link_info *flinfo,
8550 const char *name,
8551 Elf_Internal_Sym *elfsym,
8552 asection *input_sec,
8553 struct elf_link_hash_entry *h)
8554 {
8555 bfd_byte *dest;
8556 Elf_External_Sym_Shndx *destshndx;
8557 int (*output_symbol_hook)
8558 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8559 struct elf_link_hash_entry *);
8560 const struct elf_backend_data *bed;
8561
8562 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8563
8564 bed = get_elf_backend_data (flinfo->output_bfd);
8565 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8566 if (output_symbol_hook != NULL)
8567 {
8568 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8569 if (ret != 1)
8570 return ret;
8571 }
8572
8573 if (name == NULL || *name == '\0')
8574 elfsym->st_name = 0;
8575 else if (input_sec->flags & SEC_EXCLUDE)
8576 elfsym->st_name = 0;
8577 else
8578 {
8579 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8580 name, TRUE, FALSE);
8581 if (elfsym->st_name == (unsigned long) -1)
8582 return 0;
8583 }
8584
8585 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8586 {
8587 if (! elf_link_flush_output_syms (flinfo, bed))
8588 return 0;
8589 }
8590
8591 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8592 destshndx = flinfo->symshndxbuf;
8593 if (destshndx != NULL)
8594 {
8595 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8596 {
8597 bfd_size_type amt;
8598
8599 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8600 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8601 amt * 2);
8602 if (destshndx == NULL)
8603 return 0;
8604 flinfo->symshndxbuf = destshndx;
8605 memset ((char *) destshndx + amt, 0, amt);
8606 flinfo->shndxbuf_size *= 2;
8607 }
8608 destshndx += bfd_get_symcount (flinfo->output_bfd);
8609 }
8610
8611 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8612 flinfo->symbuf_count += 1;
8613 bfd_get_symcount (flinfo->output_bfd) += 1;
8614
8615 return 1;
8616 }
8617
8618 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8619
8620 static bfd_boolean
8621 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8622 {
8623 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8624 && sym->st_shndx < SHN_LORESERVE)
8625 {
8626 /* The gABI doesn't support dynamic symbols in output sections
8627 beyond 64k. */
8628 (*_bfd_error_handler)
8629 (_("%B: Too many sections: %d (>= %d)"),
8630 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8631 bfd_set_error (bfd_error_nonrepresentable_section);
8632 return FALSE;
8633 }
8634 return TRUE;
8635 }
8636
8637 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8638 allowing an unsatisfied unversioned symbol in the DSO to match a
8639 versioned symbol that would normally require an explicit version.
8640 We also handle the case that a DSO references a hidden symbol
8641 which may be satisfied by a versioned symbol in another DSO. */
8642
8643 static bfd_boolean
8644 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8645 const struct elf_backend_data *bed,
8646 struct elf_link_hash_entry *h)
8647 {
8648 bfd *abfd;
8649 struct elf_link_loaded_list *loaded;
8650
8651 if (!is_elf_hash_table (info->hash))
8652 return FALSE;
8653
8654 /* Check indirect symbol. */
8655 while (h->root.type == bfd_link_hash_indirect)
8656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8657
8658 switch (h->root.type)
8659 {
8660 default:
8661 abfd = NULL;
8662 break;
8663
8664 case bfd_link_hash_undefined:
8665 case bfd_link_hash_undefweak:
8666 abfd = h->root.u.undef.abfd;
8667 if ((abfd->flags & DYNAMIC) == 0
8668 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8669 return FALSE;
8670 break;
8671
8672 case bfd_link_hash_defined:
8673 case bfd_link_hash_defweak:
8674 abfd = h->root.u.def.section->owner;
8675 break;
8676
8677 case bfd_link_hash_common:
8678 abfd = h->root.u.c.p->section->owner;
8679 break;
8680 }
8681 BFD_ASSERT (abfd != NULL);
8682
8683 for (loaded = elf_hash_table (info)->loaded;
8684 loaded != NULL;
8685 loaded = loaded->next)
8686 {
8687 bfd *input;
8688 Elf_Internal_Shdr *hdr;
8689 bfd_size_type symcount;
8690 bfd_size_type extsymcount;
8691 bfd_size_type extsymoff;
8692 Elf_Internal_Shdr *versymhdr;
8693 Elf_Internal_Sym *isym;
8694 Elf_Internal_Sym *isymend;
8695 Elf_Internal_Sym *isymbuf;
8696 Elf_External_Versym *ever;
8697 Elf_External_Versym *extversym;
8698
8699 input = loaded->abfd;
8700
8701 /* We check each DSO for a possible hidden versioned definition. */
8702 if (input == abfd
8703 || (input->flags & DYNAMIC) == 0
8704 || elf_dynversym (input) == 0)
8705 continue;
8706
8707 hdr = &elf_tdata (input)->dynsymtab_hdr;
8708
8709 symcount = hdr->sh_size / bed->s->sizeof_sym;
8710 if (elf_bad_symtab (input))
8711 {
8712 extsymcount = symcount;
8713 extsymoff = 0;
8714 }
8715 else
8716 {
8717 extsymcount = symcount - hdr->sh_info;
8718 extsymoff = hdr->sh_info;
8719 }
8720
8721 if (extsymcount == 0)
8722 continue;
8723
8724 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8725 NULL, NULL, NULL);
8726 if (isymbuf == NULL)
8727 return FALSE;
8728
8729 /* Read in any version definitions. */
8730 versymhdr = &elf_tdata (input)->dynversym_hdr;
8731 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8732 if (extversym == NULL)
8733 goto error_ret;
8734
8735 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8736 || (bfd_bread (extversym, versymhdr->sh_size, input)
8737 != versymhdr->sh_size))
8738 {
8739 free (extversym);
8740 error_ret:
8741 free (isymbuf);
8742 return FALSE;
8743 }
8744
8745 ever = extversym + extsymoff;
8746 isymend = isymbuf + extsymcount;
8747 for (isym = isymbuf; isym < isymend; isym++, ever++)
8748 {
8749 const char *name;
8750 Elf_Internal_Versym iver;
8751 unsigned short version_index;
8752
8753 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8754 || isym->st_shndx == SHN_UNDEF)
8755 continue;
8756
8757 name = bfd_elf_string_from_elf_section (input,
8758 hdr->sh_link,
8759 isym->st_name);
8760 if (strcmp (name, h->root.root.string) != 0)
8761 continue;
8762
8763 _bfd_elf_swap_versym_in (input, ever, &iver);
8764
8765 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8766 && !(h->def_regular
8767 && h->forced_local))
8768 {
8769 /* If we have a non-hidden versioned sym, then it should
8770 have provided a definition for the undefined sym unless
8771 it is defined in a non-shared object and forced local.
8772 */
8773 abort ();
8774 }
8775
8776 version_index = iver.vs_vers & VERSYM_VERSION;
8777 if (version_index == 1 || version_index == 2)
8778 {
8779 /* This is the base or first version. We can use it. */
8780 free (extversym);
8781 free (isymbuf);
8782 return TRUE;
8783 }
8784 }
8785
8786 free (extversym);
8787 free (isymbuf);
8788 }
8789
8790 return FALSE;
8791 }
8792
8793 /* Add an external symbol to the symbol table. This is called from
8794 the hash table traversal routine. When generating a shared object,
8795 we go through the symbol table twice. The first time we output
8796 anything that might have been forced to local scope in a version
8797 script. The second time we output the symbols that are still
8798 global symbols. */
8799
8800 static bfd_boolean
8801 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8802 {
8803 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8804 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8805 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8806 bfd_boolean strip;
8807 Elf_Internal_Sym sym;
8808 asection *input_sec;
8809 const struct elf_backend_data *bed;
8810 long indx;
8811 int ret;
8812
8813 if (h->root.type == bfd_link_hash_warning)
8814 {
8815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8816 if (h->root.type == bfd_link_hash_new)
8817 return TRUE;
8818 }
8819
8820 /* Decide whether to output this symbol in this pass. */
8821 if (eoinfo->localsyms)
8822 {
8823 if (!h->forced_local)
8824 return TRUE;
8825 }
8826 else
8827 {
8828 if (h->forced_local)
8829 return TRUE;
8830 }
8831
8832 bed = get_elf_backend_data (flinfo->output_bfd);
8833
8834 if (h->root.type == bfd_link_hash_undefined)
8835 {
8836 /* If we have an undefined symbol reference here then it must have
8837 come from a shared library that is being linked in. (Undefined
8838 references in regular files have already been handled unless
8839 they are in unreferenced sections which are removed by garbage
8840 collection). */
8841 bfd_boolean ignore_undef = FALSE;
8842
8843 /* Some symbols may be special in that the fact that they're
8844 undefined can be safely ignored - let backend determine that. */
8845 if (bed->elf_backend_ignore_undef_symbol)
8846 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8847
8848 /* If we are reporting errors for this situation then do so now. */
8849 if (!ignore_undef
8850 && h->ref_dynamic
8851 && (!h->ref_regular || flinfo->info->gc_sections)
8852 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8853 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8854 {
8855 if (!(flinfo->info->callbacks->undefined_symbol
8856 (flinfo->info, h->root.root.string,
8857 h->ref_regular ? NULL : h->root.u.undef.abfd,
8858 NULL, 0,
8859 (flinfo->info->unresolved_syms_in_shared_libs
8860 == RM_GENERATE_ERROR))))
8861 {
8862 bfd_set_error (bfd_error_bad_value);
8863 eoinfo->failed = TRUE;
8864 return FALSE;
8865 }
8866 }
8867 }
8868
8869 /* We should also warn if a forced local symbol is referenced from
8870 shared libraries. */
8871 if (!flinfo->info->relocatable
8872 && flinfo->info->executable
8873 && h->forced_local
8874 && h->ref_dynamic
8875 && h->def_regular
8876 && !h->dynamic_def
8877 && h->ref_dynamic_nonweak
8878 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8879 {
8880 bfd *def_bfd;
8881 const char *msg;
8882 struct elf_link_hash_entry *hi = h;
8883
8884 /* Check indirect symbol. */
8885 while (hi->root.type == bfd_link_hash_indirect)
8886 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8887
8888 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8889 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8890 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8891 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8892 else
8893 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8894 def_bfd = flinfo->output_bfd;
8895 if (hi->root.u.def.section != bfd_abs_section_ptr)
8896 def_bfd = hi->root.u.def.section->owner;
8897 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8898 h->root.root.string);
8899 bfd_set_error (bfd_error_bad_value);
8900 eoinfo->failed = TRUE;
8901 return FALSE;
8902 }
8903
8904 /* We don't want to output symbols that have never been mentioned by
8905 a regular file, or that we have been told to strip. However, if
8906 h->indx is set to -2, the symbol is used by a reloc and we must
8907 output it. */
8908 strip = FALSE;
8909 if (h->indx == -2)
8910 ;
8911 else if ((h->def_dynamic
8912 || h->ref_dynamic
8913 || h->root.type == bfd_link_hash_new)
8914 && !h->def_regular
8915 && !h->ref_regular)
8916 strip = TRUE;
8917 else if (flinfo->info->strip == strip_all)
8918 strip = TRUE;
8919 else if (flinfo->info->strip == strip_some
8920 && bfd_hash_lookup (flinfo->info->keep_hash,
8921 h->root.root.string, FALSE, FALSE) == NULL)
8922 strip = TRUE;
8923 else if ((h->root.type == bfd_link_hash_defined
8924 || h->root.type == bfd_link_hash_defweak)
8925 && ((flinfo->info->strip_discarded
8926 && discarded_section (h->root.u.def.section))
8927 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8928 && h->root.u.def.section->owner != NULL
8929 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8930 strip = TRUE;
8931 else if ((h->root.type == bfd_link_hash_undefined
8932 || h->root.type == bfd_link_hash_undefweak)
8933 && h->root.u.undef.abfd != NULL
8934 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8935 strip = TRUE;
8936
8937 /* If we're stripping it, and it's not a dynamic symbol, there's
8938 nothing else to do. However, if it is a forced local symbol or
8939 an ifunc symbol we need to give the backend finish_dynamic_symbol
8940 function a chance to make it dynamic. */
8941 if (strip
8942 && h->dynindx == -1
8943 && h->type != STT_GNU_IFUNC
8944 && !h->forced_local)
8945 return TRUE;
8946
8947 sym.st_value = 0;
8948 sym.st_size = h->size;
8949 sym.st_other = h->other;
8950 if (h->forced_local)
8951 {
8952 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8953 /* Turn off visibility on local symbol. */
8954 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8955 }
8956 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8957 else if (h->unique_global && h->def_regular)
8958 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8959 else if (h->root.type == bfd_link_hash_undefweak
8960 || h->root.type == bfd_link_hash_defweak)
8961 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8962 else
8963 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8964 sym.st_target_internal = h->target_internal;
8965
8966 switch (h->root.type)
8967 {
8968 default:
8969 case bfd_link_hash_new:
8970 case bfd_link_hash_warning:
8971 abort ();
8972 return FALSE;
8973
8974 case bfd_link_hash_undefined:
8975 case bfd_link_hash_undefweak:
8976 input_sec = bfd_und_section_ptr;
8977 sym.st_shndx = SHN_UNDEF;
8978 break;
8979
8980 case bfd_link_hash_defined:
8981 case bfd_link_hash_defweak:
8982 {
8983 input_sec = h->root.u.def.section;
8984 if (input_sec->output_section != NULL)
8985 {
8986 sym.st_shndx =
8987 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8988 input_sec->output_section);
8989 if (sym.st_shndx == SHN_BAD)
8990 {
8991 (*_bfd_error_handler)
8992 (_("%B: could not find output section %A for input section %A"),
8993 flinfo->output_bfd, input_sec->output_section, input_sec);
8994 bfd_set_error (bfd_error_nonrepresentable_section);
8995 eoinfo->failed = TRUE;
8996 return FALSE;
8997 }
8998
8999 /* ELF symbols in relocatable files are section relative,
9000 but in nonrelocatable files they are virtual
9001 addresses. */
9002 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9003 if (!flinfo->info->relocatable)
9004 {
9005 sym.st_value += input_sec->output_section->vma;
9006 if (h->type == STT_TLS)
9007 {
9008 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9009 if (tls_sec != NULL)
9010 sym.st_value -= tls_sec->vma;
9011 }
9012 }
9013 }
9014 else
9015 {
9016 BFD_ASSERT (input_sec->owner == NULL
9017 || (input_sec->owner->flags & DYNAMIC) != 0);
9018 sym.st_shndx = SHN_UNDEF;
9019 input_sec = bfd_und_section_ptr;
9020 }
9021 }
9022 break;
9023
9024 case bfd_link_hash_common:
9025 input_sec = h->root.u.c.p->section;
9026 sym.st_shndx = bed->common_section_index (input_sec);
9027 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9028 break;
9029
9030 case bfd_link_hash_indirect:
9031 /* These symbols are created by symbol versioning. They point
9032 to the decorated version of the name. For example, if the
9033 symbol foo@@GNU_1.2 is the default, which should be used when
9034 foo is used with no version, then we add an indirect symbol
9035 foo which points to foo@@GNU_1.2. We ignore these symbols,
9036 since the indirected symbol is already in the hash table. */
9037 return TRUE;
9038 }
9039
9040 /* Give the processor backend a chance to tweak the symbol value,
9041 and also to finish up anything that needs to be done for this
9042 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9043 forced local syms when non-shared is due to a historical quirk.
9044 STT_GNU_IFUNC symbol must go through PLT. */
9045 if ((h->type == STT_GNU_IFUNC
9046 && h->def_regular
9047 && !flinfo->info->relocatable)
9048 || ((h->dynindx != -1
9049 || h->forced_local)
9050 && ((flinfo->info->shared
9051 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9052 || h->root.type != bfd_link_hash_undefweak))
9053 || !h->forced_local)
9054 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9055 {
9056 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9057 (flinfo->output_bfd, flinfo->info, h, &sym)))
9058 {
9059 eoinfo->failed = TRUE;
9060 return FALSE;
9061 }
9062 }
9063
9064 /* If we are marking the symbol as undefined, and there are no
9065 non-weak references to this symbol from a regular object, then
9066 mark the symbol as weak undefined; if there are non-weak
9067 references, mark the symbol as strong. We can't do this earlier,
9068 because it might not be marked as undefined until the
9069 finish_dynamic_symbol routine gets through with it. */
9070 if (sym.st_shndx == SHN_UNDEF
9071 && h->ref_regular
9072 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9073 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9074 {
9075 int bindtype;
9076 unsigned int type = ELF_ST_TYPE (sym.st_info);
9077
9078 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9079 if (type == STT_GNU_IFUNC)
9080 type = STT_FUNC;
9081
9082 if (h->ref_regular_nonweak)
9083 bindtype = STB_GLOBAL;
9084 else
9085 bindtype = STB_WEAK;
9086 sym.st_info = ELF_ST_INFO (bindtype, type);
9087 }
9088
9089 /* If this is a symbol defined in a dynamic library, don't use the
9090 symbol size from the dynamic library. Relinking an executable
9091 against a new library may introduce gratuitous changes in the
9092 executable's symbols if we keep the size. */
9093 if (sym.st_shndx == SHN_UNDEF
9094 && !h->def_regular
9095 && h->def_dynamic)
9096 sym.st_size = 0;
9097
9098 /* If a non-weak symbol with non-default visibility is not defined
9099 locally, it is a fatal error. */
9100 if (!flinfo->info->relocatable
9101 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9102 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9103 && h->root.type == bfd_link_hash_undefined
9104 && !h->def_regular)
9105 {
9106 const char *msg;
9107
9108 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9109 msg = _("%B: protected symbol `%s' isn't defined");
9110 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9111 msg = _("%B: internal symbol `%s' isn't defined");
9112 else
9113 msg = _("%B: hidden symbol `%s' isn't defined");
9114 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9115 bfd_set_error (bfd_error_bad_value);
9116 eoinfo->failed = TRUE;
9117 return FALSE;
9118 }
9119
9120 /* If this symbol should be put in the .dynsym section, then put it
9121 there now. We already know the symbol index. We also fill in
9122 the entry in the .hash section. */
9123 if (flinfo->dynsym_sec != NULL
9124 && h->dynindx != -1
9125 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9126 {
9127 bfd_byte *esym;
9128
9129 /* Since there is no version information in the dynamic string,
9130 if there is no version info in symbol version section, we will
9131 have a run-time problem. */
9132 if (h->verinfo.verdef == NULL)
9133 {
9134 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9135
9136 if (p && p [1] != '\0')
9137 {
9138 (*_bfd_error_handler)
9139 (_("%B: No symbol version section for versioned symbol `%s'"),
9140 flinfo->output_bfd, h->root.root.string);
9141 eoinfo->failed = TRUE;
9142 return FALSE;
9143 }
9144 }
9145
9146 sym.st_name = h->dynstr_index;
9147 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9148 if (!check_dynsym (flinfo->output_bfd, &sym))
9149 {
9150 eoinfo->failed = TRUE;
9151 return FALSE;
9152 }
9153 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9154
9155 if (flinfo->hash_sec != NULL)
9156 {
9157 size_t hash_entry_size;
9158 bfd_byte *bucketpos;
9159 bfd_vma chain;
9160 size_t bucketcount;
9161 size_t bucket;
9162
9163 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9164 bucket = h->u.elf_hash_value % bucketcount;
9165
9166 hash_entry_size
9167 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9168 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9169 + (bucket + 2) * hash_entry_size);
9170 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9171 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9172 bucketpos);
9173 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9174 ((bfd_byte *) flinfo->hash_sec->contents
9175 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9176 }
9177
9178 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9179 {
9180 Elf_Internal_Versym iversym;
9181 Elf_External_Versym *eversym;
9182
9183 if (!h->def_regular)
9184 {
9185 if (h->verinfo.verdef == NULL
9186 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9187 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9188 iversym.vs_vers = 0;
9189 else
9190 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9191 }
9192 else
9193 {
9194 if (h->verinfo.vertree == NULL)
9195 iversym.vs_vers = 1;
9196 else
9197 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9198 if (flinfo->info->create_default_symver)
9199 iversym.vs_vers++;
9200 }
9201
9202 if (h->hidden)
9203 iversym.vs_vers |= VERSYM_HIDDEN;
9204
9205 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9206 eversym += h->dynindx;
9207 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9208 }
9209 }
9210
9211 /* If the symbol is undefined, and we didn't output it to .dynsym,
9212 strip it from .symtab too. Obviously we can't do this for
9213 relocatable output or when needed for --emit-relocs. */
9214 else if (input_sec == bfd_und_section_ptr
9215 && h->indx != -2
9216 && !flinfo->info->relocatable)
9217 return TRUE;
9218 /* Also strip others that we couldn't earlier due to dynamic symbol
9219 processing. */
9220 if (strip)
9221 return TRUE;
9222 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9223 return TRUE;
9224
9225 /* Output a FILE symbol so that following locals are not associated
9226 with the wrong input file. We need one for forced local symbols
9227 if we've seen more than one FILE symbol or when we have exactly
9228 one FILE symbol but global symbols are present in a file other
9229 than the one with the FILE symbol. We also need one if linker
9230 defined symbols are present. In practice these conditions are
9231 always met, so just emit the FILE symbol unconditionally. */
9232 if (eoinfo->localsyms
9233 && !eoinfo->file_sym_done
9234 && eoinfo->flinfo->filesym_count != 0)
9235 {
9236 Elf_Internal_Sym fsym;
9237
9238 memset (&fsym, 0, sizeof (fsym));
9239 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9240 fsym.st_shndx = SHN_ABS;
9241 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9242 bfd_und_section_ptr, NULL))
9243 return FALSE;
9244
9245 eoinfo->file_sym_done = TRUE;
9246 }
9247
9248 indx = bfd_get_symcount (flinfo->output_bfd);
9249 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9250 if (ret == 0)
9251 {
9252 eoinfo->failed = TRUE;
9253 return FALSE;
9254 }
9255 else if (ret == 1)
9256 h->indx = indx;
9257 else if (h->indx == -2)
9258 abort();
9259
9260 return TRUE;
9261 }
9262
9263 /* Return TRUE if special handling is done for relocs in SEC against
9264 symbols defined in discarded sections. */
9265
9266 static bfd_boolean
9267 elf_section_ignore_discarded_relocs (asection *sec)
9268 {
9269 const struct elf_backend_data *bed;
9270
9271 switch (sec->sec_info_type)
9272 {
9273 case SEC_INFO_TYPE_STABS:
9274 case SEC_INFO_TYPE_EH_FRAME:
9275 return TRUE;
9276 default:
9277 break;
9278 }
9279
9280 bed = get_elf_backend_data (sec->owner);
9281 if (bed->elf_backend_ignore_discarded_relocs != NULL
9282 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9283 return TRUE;
9284
9285 return FALSE;
9286 }
9287
9288 /* Return a mask saying how ld should treat relocations in SEC against
9289 symbols defined in discarded sections. If this function returns
9290 COMPLAIN set, ld will issue a warning message. If this function
9291 returns PRETEND set, and the discarded section was link-once and the
9292 same size as the kept link-once section, ld will pretend that the
9293 symbol was actually defined in the kept section. Otherwise ld will
9294 zero the reloc (at least that is the intent, but some cooperation by
9295 the target dependent code is needed, particularly for REL targets). */
9296
9297 unsigned int
9298 _bfd_elf_default_action_discarded (asection *sec)
9299 {
9300 if (sec->flags & SEC_DEBUGGING)
9301 return PRETEND;
9302
9303 if (strcmp (".eh_frame", sec->name) == 0)
9304 return 0;
9305
9306 if (strcmp (".gcc_except_table", sec->name) == 0)
9307 return 0;
9308
9309 return COMPLAIN | PRETEND;
9310 }
9311
9312 /* Find a match between a section and a member of a section group. */
9313
9314 static asection *
9315 match_group_member (asection *sec, asection *group,
9316 struct bfd_link_info *info)
9317 {
9318 asection *first = elf_next_in_group (group);
9319 asection *s = first;
9320
9321 while (s != NULL)
9322 {
9323 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9324 return s;
9325
9326 s = elf_next_in_group (s);
9327 if (s == first)
9328 break;
9329 }
9330
9331 return NULL;
9332 }
9333
9334 /* Check if the kept section of a discarded section SEC can be used
9335 to replace it. Return the replacement if it is OK. Otherwise return
9336 NULL. */
9337
9338 asection *
9339 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9340 {
9341 asection *kept;
9342
9343 kept = sec->kept_section;
9344 if (kept != NULL)
9345 {
9346 if ((kept->flags & SEC_GROUP) != 0)
9347 kept = match_group_member (sec, kept, info);
9348 if (kept != NULL
9349 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9350 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9351 kept = NULL;
9352 sec->kept_section = kept;
9353 }
9354 return kept;
9355 }
9356
9357 /* Link an input file into the linker output file. This function
9358 handles all the sections and relocations of the input file at once.
9359 This is so that we only have to read the local symbols once, and
9360 don't have to keep them in memory. */
9361
9362 static bfd_boolean
9363 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9364 {
9365 int (*relocate_section)
9366 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9367 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9368 bfd *output_bfd;
9369 Elf_Internal_Shdr *symtab_hdr;
9370 size_t locsymcount;
9371 size_t extsymoff;
9372 Elf_Internal_Sym *isymbuf;
9373 Elf_Internal_Sym *isym;
9374 Elf_Internal_Sym *isymend;
9375 long *pindex;
9376 asection **ppsection;
9377 asection *o;
9378 const struct elf_backend_data *bed;
9379 struct elf_link_hash_entry **sym_hashes;
9380 bfd_size_type address_size;
9381 bfd_vma r_type_mask;
9382 int r_sym_shift;
9383 bfd_boolean have_file_sym = FALSE;
9384
9385 output_bfd = flinfo->output_bfd;
9386 bed = get_elf_backend_data (output_bfd);
9387 relocate_section = bed->elf_backend_relocate_section;
9388
9389 /* If this is a dynamic object, we don't want to do anything here:
9390 we don't want the local symbols, and we don't want the section
9391 contents. */
9392 if ((input_bfd->flags & DYNAMIC) != 0)
9393 return TRUE;
9394
9395 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9396 if (elf_bad_symtab (input_bfd))
9397 {
9398 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9399 extsymoff = 0;
9400 }
9401 else
9402 {
9403 locsymcount = symtab_hdr->sh_info;
9404 extsymoff = symtab_hdr->sh_info;
9405 }
9406
9407 /* Read the local symbols. */
9408 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9409 if (isymbuf == NULL && locsymcount != 0)
9410 {
9411 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9412 flinfo->internal_syms,
9413 flinfo->external_syms,
9414 flinfo->locsym_shndx);
9415 if (isymbuf == NULL)
9416 return FALSE;
9417 }
9418
9419 /* Find local symbol sections and adjust values of symbols in
9420 SEC_MERGE sections. Write out those local symbols we know are
9421 going into the output file. */
9422 isymend = isymbuf + locsymcount;
9423 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9424 isym < isymend;
9425 isym++, pindex++, ppsection++)
9426 {
9427 asection *isec;
9428 const char *name;
9429 Elf_Internal_Sym osym;
9430 long indx;
9431 int ret;
9432
9433 *pindex = -1;
9434
9435 if (elf_bad_symtab (input_bfd))
9436 {
9437 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9438 {
9439 *ppsection = NULL;
9440 continue;
9441 }
9442 }
9443
9444 if (isym->st_shndx == SHN_UNDEF)
9445 isec = bfd_und_section_ptr;
9446 else if (isym->st_shndx == SHN_ABS)
9447 isec = bfd_abs_section_ptr;
9448 else if (isym->st_shndx == SHN_COMMON)
9449 isec = bfd_com_section_ptr;
9450 else
9451 {
9452 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9453 if (isec == NULL)
9454 {
9455 /* Don't attempt to output symbols with st_shnx in the
9456 reserved range other than SHN_ABS and SHN_COMMON. */
9457 *ppsection = NULL;
9458 continue;
9459 }
9460 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9461 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9462 isym->st_value =
9463 _bfd_merged_section_offset (output_bfd, &isec,
9464 elf_section_data (isec)->sec_info,
9465 isym->st_value);
9466 }
9467
9468 *ppsection = isec;
9469
9470 /* Don't output the first, undefined, symbol. In fact, don't
9471 output any undefined local symbol. */
9472 if (isec == bfd_und_section_ptr)
9473 continue;
9474
9475 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9476 {
9477 /* We never output section symbols. Instead, we use the
9478 section symbol of the corresponding section in the output
9479 file. */
9480 continue;
9481 }
9482
9483 /* If we are stripping all symbols, we don't want to output this
9484 one. */
9485 if (flinfo->info->strip == strip_all)
9486 continue;
9487
9488 /* If we are discarding all local symbols, we don't want to
9489 output this one. If we are generating a relocatable output
9490 file, then some of the local symbols may be required by
9491 relocs; we output them below as we discover that they are
9492 needed. */
9493 if (flinfo->info->discard == discard_all)
9494 continue;
9495
9496 /* If this symbol is defined in a section which we are
9497 discarding, we don't need to keep it. */
9498 if (isym->st_shndx != SHN_UNDEF
9499 && isym->st_shndx < SHN_LORESERVE
9500 && bfd_section_removed_from_list (output_bfd,
9501 isec->output_section))
9502 continue;
9503
9504 /* Get the name of the symbol. */
9505 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9506 isym->st_name);
9507 if (name == NULL)
9508 return FALSE;
9509
9510 /* See if we are discarding symbols with this name. */
9511 if ((flinfo->info->strip == strip_some
9512 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9513 == NULL))
9514 || (((flinfo->info->discard == discard_sec_merge
9515 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9516 || flinfo->info->discard == discard_l)
9517 && bfd_is_local_label_name (input_bfd, name)))
9518 continue;
9519
9520 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9521 {
9522 if (input_bfd->lto_output)
9523 /* -flto puts a temp file name here. This means builds
9524 are not reproducible. Discard the symbol. */
9525 continue;
9526 have_file_sym = TRUE;
9527 flinfo->filesym_count += 1;
9528 }
9529 if (!have_file_sym)
9530 {
9531 /* In the absence of debug info, bfd_find_nearest_line uses
9532 FILE symbols to determine the source file for local
9533 function symbols. Provide a FILE symbol here if input
9534 files lack such, so that their symbols won't be
9535 associated with a previous input file. It's not the
9536 source file, but the best we can do. */
9537 have_file_sym = TRUE;
9538 flinfo->filesym_count += 1;
9539 memset (&osym, 0, sizeof (osym));
9540 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9541 osym.st_shndx = SHN_ABS;
9542 if (!elf_link_output_sym (flinfo,
9543 (input_bfd->lto_output ? NULL
9544 : input_bfd->filename),
9545 &osym, bfd_abs_section_ptr, NULL))
9546 return FALSE;
9547 }
9548
9549 osym = *isym;
9550
9551 /* Adjust the section index for the output file. */
9552 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9553 isec->output_section);
9554 if (osym.st_shndx == SHN_BAD)
9555 return FALSE;
9556
9557 /* ELF symbols in relocatable files are section relative, but
9558 in executable files they are virtual addresses. Note that
9559 this code assumes that all ELF sections have an associated
9560 BFD section with a reasonable value for output_offset; below
9561 we assume that they also have a reasonable value for
9562 output_section. Any special sections must be set up to meet
9563 these requirements. */
9564 osym.st_value += isec->output_offset;
9565 if (!flinfo->info->relocatable)
9566 {
9567 osym.st_value += isec->output_section->vma;
9568 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9569 {
9570 /* STT_TLS symbols are relative to PT_TLS segment base. */
9571 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9572 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9573 }
9574 }
9575
9576 indx = bfd_get_symcount (output_bfd);
9577 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9578 if (ret == 0)
9579 return FALSE;
9580 else if (ret == 1)
9581 *pindex = indx;
9582 }
9583
9584 if (bed->s->arch_size == 32)
9585 {
9586 r_type_mask = 0xff;
9587 r_sym_shift = 8;
9588 address_size = 4;
9589 }
9590 else
9591 {
9592 r_type_mask = 0xffffffff;
9593 r_sym_shift = 32;
9594 address_size = 8;
9595 }
9596
9597 /* Relocate the contents of each section. */
9598 sym_hashes = elf_sym_hashes (input_bfd);
9599 for (o = input_bfd->sections; o != NULL; o = o->next)
9600 {
9601 bfd_byte *contents;
9602
9603 if (! o->linker_mark)
9604 {
9605 /* This section was omitted from the link. */
9606 continue;
9607 }
9608
9609 if (flinfo->info->relocatable
9610 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9611 {
9612 /* Deal with the group signature symbol. */
9613 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9614 unsigned long symndx = sec_data->this_hdr.sh_info;
9615 asection *osec = o->output_section;
9616
9617 if (symndx >= locsymcount
9618 || (elf_bad_symtab (input_bfd)
9619 && flinfo->sections[symndx] == NULL))
9620 {
9621 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9622 while (h->root.type == bfd_link_hash_indirect
9623 || h->root.type == bfd_link_hash_warning)
9624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9625 /* Arrange for symbol to be output. */
9626 h->indx = -2;
9627 elf_section_data (osec)->this_hdr.sh_info = -2;
9628 }
9629 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9630 {
9631 /* We'll use the output section target_index. */
9632 asection *sec = flinfo->sections[symndx]->output_section;
9633 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9634 }
9635 else
9636 {
9637 if (flinfo->indices[symndx] == -1)
9638 {
9639 /* Otherwise output the local symbol now. */
9640 Elf_Internal_Sym sym = isymbuf[symndx];
9641 asection *sec = flinfo->sections[symndx]->output_section;
9642 const char *name;
9643 long indx;
9644 int ret;
9645
9646 name = bfd_elf_string_from_elf_section (input_bfd,
9647 symtab_hdr->sh_link,
9648 sym.st_name);
9649 if (name == NULL)
9650 return FALSE;
9651
9652 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9653 sec);
9654 if (sym.st_shndx == SHN_BAD)
9655 return FALSE;
9656
9657 sym.st_value += o->output_offset;
9658
9659 indx = bfd_get_symcount (output_bfd);
9660 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9661 if (ret == 0)
9662 return FALSE;
9663 else if (ret == 1)
9664 flinfo->indices[symndx] = indx;
9665 else
9666 abort ();
9667 }
9668 elf_section_data (osec)->this_hdr.sh_info
9669 = flinfo->indices[symndx];
9670 }
9671 }
9672
9673 if ((o->flags & SEC_HAS_CONTENTS) == 0
9674 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9675 continue;
9676
9677 if ((o->flags & SEC_LINKER_CREATED) != 0)
9678 {
9679 /* Section was created by _bfd_elf_link_create_dynamic_sections
9680 or somesuch. */
9681 continue;
9682 }
9683
9684 /* Get the contents of the section. They have been cached by a
9685 relaxation routine. Note that o is a section in an input
9686 file, so the contents field will not have been set by any of
9687 the routines which work on output files. */
9688 if (elf_section_data (o)->this_hdr.contents != NULL)
9689 {
9690 contents = elf_section_data (o)->this_hdr.contents;
9691 if (bed->caches_rawsize
9692 && o->rawsize != 0
9693 && o->rawsize < o->size)
9694 {
9695 memcpy (flinfo->contents, contents, o->rawsize);
9696 contents = flinfo->contents;
9697 }
9698 }
9699 else
9700 {
9701 contents = flinfo->contents;
9702 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9703 return FALSE;
9704 }
9705
9706 if ((o->flags & SEC_RELOC) != 0)
9707 {
9708 Elf_Internal_Rela *internal_relocs;
9709 Elf_Internal_Rela *rel, *relend;
9710 int action_discarded;
9711 int ret;
9712
9713 /* Get the swapped relocs. */
9714 internal_relocs
9715 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9716 flinfo->internal_relocs, FALSE);
9717 if (internal_relocs == NULL
9718 && o->reloc_count > 0)
9719 return FALSE;
9720
9721 /* We need to reverse-copy input .ctors/.dtors sections if
9722 they are placed in .init_array/.finit_array for output. */
9723 if (o->size > address_size
9724 && ((strncmp (o->name, ".ctors", 6) == 0
9725 && strcmp (o->output_section->name,
9726 ".init_array") == 0)
9727 || (strncmp (o->name, ".dtors", 6) == 0
9728 && strcmp (o->output_section->name,
9729 ".fini_array") == 0))
9730 && (o->name[6] == 0 || o->name[6] == '.'))
9731 {
9732 if (o->size != o->reloc_count * address_size)
9733 {
9734 (*_bfd_error_handler)
9735 (_("error: %B: size of section %A is not "
9736 "multiple of address size"),
9737 input_bfd, o);
9738 bfd_set_error (bfd_error_on_input);
9739 return FALSE;
9740 }
9741 o->flags |= SEC_ELF_REVERSE_COPY;
9742 }
9743
9744 action_discarded = -1;
9745 if (!elf_section_ignore_discarded_relocs (o))
9746 action_discarded = (*bed->action_discarded) (o);
9747
9748 /* Run through the relocs evaluating complex reloc symbols and
9749 looking for relocs against symbols from discarded sections
9750 or section symbols from removed link-once sections.
9751 Complain about relocs against discarded sections. Zero
9752 relocs against removed link-once sections. */
9753
9754 rel = internal_relocs;
9755 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9756 for ( ; rel < relend; rel++)
9757 {
9758 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9759 unsigned int s_type;
9760 asection **ps, *sec;
9761 struct elf_link_hash_entry *h = NULL;
9762 const char *sym_name;
9763
9764 if (r_symndx == STN_UNDEF)
9765 continue;
9766
9767 if (r_symndx >= locsymcount
9768 || (elf_bad_symtab (input_bfd)
9769 && flinfo->sections[r_symndx] == NULL))
9770 {
9771 h = sym_hashes[r_symndx - extsymoff];
9772
9773 /* Badly formatted input files can contain relocs that
9774 reference non-existant symbols. Check here so that
9775 we do not seg fault. */
9776 if (h == NULL)
9777 {
9778 char buffer [32];
9779
9780 sprintf_vma (buffer, rel->r_info);
9781 (*_bfd_error_handler)
9782 (_("error: %B contains a reloc (0x%s) for section %A "
9783 "that references a non-existent global symbol"),
9784 input_bfd, o, buffer);
9785 bfd_set_error (bfd_error_bad_value);
9786 return FALSE;
9787 }
9788
9789 while (h->root.type == bfd_link_hash_indirect
9790 || h->root.type == bfd_link_hash_warning)
9791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9792
9793 s_type = h->type;
9794
9795 /* If a plugin symbol is referenced from a non-IR file,
9796 mark the symbol as undefined. Note that the
9797 linker may attach linker created dynamic sections
9798 to the plugin bfd. Symbols defined in linker
9799 created sections are not plugin symbols. */
9800 if (h->root.non_ir_ref
9801 && (h->root.type == bfd_link_hash_defined
9802 || h->root.type == bfd_link_hash_defweak)
9803 && (h->root.u.def.section->flags
9804 & SEC_LINKER_CREATED) == 0
9805 && h->root.u.def.section->owner != NULL
9806 && (h->root.u.def.section->owner->flags
9807 & BFD_PLUGIN) != 0)
9808 {
9809 h->root.type = bfd_link_hash_undefined;
9810 h->root.u.undef.abfd = h->root.u.def.section->owner;
9811 }
9812
9813 ps = NULL;
9814 if (h->root.type == bfd_link_hash_defined
9815 || h->root.type == bfd_link_hash_defweak)
9816 ps = &h->root.u.def.section;
9817
9818 sym_name = h->root.root.string;
9819 }
9820 else
9821 {
9822 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9823
9824 s_type = ELF_ST_TYPE (sym->st_info);
9825 ps = &flinfo->sections[r_symndx];
9826 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9827 sym, *ps);
9828 }
9829
9830 if ((s_type == STT_RELC || s_type == STT_SRELC)
9831 && !flinfo->info->relocatable)
9832 {
9833 bfd_vma val;
9834 bfd_vma dot = (rel->r_offset
9835 + o->output_offset + o->output_section->vma);
9836 #ifdef DEBUG
9837 printf ("Encountered a complex symbol!");
9838 printf (" (input_bfd %s, section %s, reloc %ld\n",
9839 input_bfd->filename, o->name,
9840 (long) (rel - internal_relocs));
9841 printf (" symbol: idx %8.8lx, name %s\n",
9842 r_symndx, sym_name);
9843 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9844 (unsigned long) rel->r_info,
9845 (unsigned long) rel->r_offset);
9846 #endif
9847 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9848 isymbuf, locsymcount, s_type == STT_SRELC))
9849 return FALSE;
9850
9851 /* Symbol evaluated OK. Update to absolute value. */
9852 set_symbol_value (input_bfd, isymbuf, locsymcount,
9853 r_symndx, val);
9854 continue;
9855 }
9856
9857 if (action_discarded != -1 && ps != NULL)
9858 {
9859 /* Complain if the definition comes from a
9860 discarded section. */
9861 if ((sec = *ps) != NULL && discarded_section (sec))
9862 {
9863 BFD_ASSERT (r_symndx != STN_UNDEF);
9864 if (action_discarded & COMPLAIN)
9865 (*flinfo->info->callbacks->einfo)
9866 (_("%X`%s' referenced in section `%A' of %B: "
9867 "defined in discarded section `%A' of %B\n"),
9868 sym_name, o, input_bfd, sec, sec->owner);
9869
9870 /* Try to do the best we can to support buggy old
9871 versions of gcc. Pretend that the symbol is
9872 really defined in the kept linkonce section.
9873 FIXME: This is quite broken. Modifying the
9874 symbol here means we will be changing all later
9875 uses of the symbol, not just in this section. */
9876 if (action_discarded & PRETEND)
9877 {
9878 asection *kept;
9879
9880 kept = _bfd_elf_check_kept_section (sec,
9881 flinfo->info);
9882 if (kept != NULL)
9883 {
9884 *ps = kept;
9885 continue;
9886 }
9887 }
9888 }
9889 }
9890 }
9891
9892 /* Relocate the section by invoking a back end routine.
9893
9894 The back end routine is responsible for adjusting the
9895 section contents as necessary, and (if using Rela relocs
9896 and generating a relocatable output file) adjusting the
9897 reloc addend as necessary.
9898
9899 The back end routine does not have to worry about setting
9900 the reloc address or the reloc symbol index.
9901
9902 The back end routine is given a pointer to the swapped in
9903 internal symbols, and can access the hash table entries
9904 for the external symbols via elf_sym_hashes (input_bfd).
9905
9906 When generating relocatable output, the back end routine
9907 must handle STB_LOCAL/STT_SECTION symbols specially. The
9908 output symbol is going to be a section symbol
9909 corresponding to the output section, which will require
9910 the addend to be adjusted. */
9911
9912 ret = (*relocate_section) (output_bfd, flinfo->info,
9913 input_bfd, o, contents,
9914 internal_relocs,
9915 isymbuf,
9916 flinfo->sections);
9917 if (!ret)
9918 return FALSE;
9919
9920 if (ret == 2
9921 || flinfo->info->relocatable
9922 || flinfo->info->emitrelocations)
9923 {
9924 Elf_Internal_Rela *irela;
9925 Elf_Internal_Rela *irelaend, *irelamid;
9926 bfd_vma last_offset;
9927 struct elf_link_hash_entry **rel_hash;
9928 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9929 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9930 unsigned int next_erel;
9931 bfd_boolean rela_normal;
9932 struct bfd_elf_section_data *esdi, *esdo;
9933
9934 esdi = elf_section_data (o);
9935 esdo = elf_section_data (o->output_section);
9936 rela_normal = FALSE;
9937
9938 /* Adjust the reloc addresses and symbol indices. */
9939
9940 irela = internal_relocs;
9941 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9942 rel_hash = esdo->rel.hashes + esdo->rel.count;
9943 /* We start processing the REL relocs, if any. When we reach
9944 IRELAMID in the loop, we switch to the RELA relocs. */
9945 irelamid = irela;
9946 if (esdi->rel.hdr != NULL)
9947 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9948 * bed->s->int_rels_per_ext_rel);
9949 rel_hash_list = rel_hash;
9950 rela_hash_list = NULL;
9951 last_offset = o->output_offset;
9952 if (!flinfo->info->relocatable)
9953 last_offset += o->output_section->vma;
9954 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9955 {
9956 unsigned long r_symndx;
9957 asection *sec;
9958 Elf_Internal_Sym sym;
9959
9960 if (next_erel == bed->s->int_rels_per_ext_rel)
9961 {
9962 rel_hash++;
9963 next_erel = 0;
9964 }
9965
9966 if (irela == irelamid)
9967 {
9968 rel_hash = esdo->rela.hashes + esdo->rela.count;
9969 rela_hash_list = rel_hash;
9970 rela_normal = bed->rela_normal;
9971 }
9972
9973 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9974 flinfo->info, o,
9975 irela->r_offset);
9976 if (irela->r_offset >= (bfd_vma) -2)
9977 {
9978 /* This is a reloc for a deleted entry or somesuch.
9979 Turn it into an R_*_NONE reloc, at the same
9980 offset as the last reloc. elf_eh_frame.c and
9981 bfd_elf_discard_info rely on reloc offsets
9982 being ordered. */
9983 irela->r_offset = last_offset;
9984 irela->r_info = 0;
9985 irela->r_addend = 0;
9986 continue;
9987 }
9988
9989 irela->r_offset += o->output_offset;
9990
9991 /* Relocs in an executable have to be virtual addresses. */
9992 if (!flinfo->info->relocatable)
9993 irela->r_offset += o->output_section->vma;
9994
9995 last_offset = irela->r_offset;
9996
9997 r_symndx = irela->r_info >> r_sym_shift;
9998 if (r_symndx == STN_UNDEF)
9999 continue;
10000
10001 if (r_symndx >= locsymcount
10002 || (elf_bad_symtab (input_bfd)
10003 && flinfo->sections[r_symndx] == NULL))
10004 {
10005 struct elf_link_hash_entry *rh;
10006 unsigned long indx;
10007
10008 /* This is a reloc against a global symbol. We
10009 have not yet output all the local symbols, so
10010 we do not know the symbol index of any global
10011 symbol. We set the rel_hash entry for this
10012 reloc to point to the global hash table entry
10013 for this symbol. The symbol index is then
10014 set at the end of bfd_elf_final_link. */
10015 indx = r_symndx - extsymoff;
10016 rh = elf_sym_hashes (input_bfd)[indx];
10017 while (rh->root.type == bfd_link_hash_indirect
10018 || rh->root.type == bfd_link_hash_warning)
10019 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10020
10021 /* Setting the index to -2 tells
10022 elf_link_output_extsym that this symbol is
10023 used by a reloc. */
10024 BFD_ASSERT (rh->indx < 0);
10025 rh->indx = -2;
10026
10027 *rel_hash = rh;
10028
10029 continue;
10030 }
10031
10032 /* This is a reloc against a local symbol. */
10033
10034 *rel_hash = NULL;
10035 sym = isymbuf[r_symndx];
10036 sec = flinfo->sections[r_symndx];
10037 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10038 {
10039 /* I suppose the backend ought to fill in the
10040 section of any STT_SECTION symbol against a
10041 processor specific section. */
10042 r_symndx = STN_UNDEF;
10043 if (bfd_is_abs_section (sec))
10044 ;
10045 else if (sec == NULL || sec->owner == NULL)
10046 {
10047 bfd_set_error (bfd_error_bad_value);
10048 return FALSE;
10049 }
10050 else
10051 {
10052 asection *osec = sec->output_section;
10053
10054 /* If we have discarded a section, the output
10055 section will be the absolute section. In
10056 case of discarded SEC_MERGE sections, use
10057 the kept section. relocate_section should
10058 have already handled discarded linkonce
10059 sections. */
10060 if (bfd_is_abs_section (osec)
10061 && sec->kept_section != NULL
10062 && sec->kept_section->output_section != NULL)
10063 {
10064 osec = sec->kept_section->output_section;
10065 irela->r_addend -= osec->vma;
10066 }
10067
10068 if (!bfd_is_abs_section (osec))
10069 {
10070 r_symndx = osec->target_index;
10071 if (r_symndx == STN_UNDEF)
10072 {
10073 irela->r_addend += osec->vma;
10074 osec = _bfd_nearby_section (output_bfd, osec,
10075 osec->vma);
10076 irela->r_addend -= osec->vma;
10077 r_symndx = osec->target_index;
10078 }
10079 }
10080 }
10081
10082 /* Adjust the addend according to where the
10083 section winds up in the output section. */
10084 if (rela_normal)
10085 irela->r_addend += sec->output_offset;
10086 }
10087 else
10088 {
10089 if (flinfo->indices[r_symndx] == -1)
10090 {
10091 unsigned long shlink;
10092 const char *name;
10093 asection *osec;
10094 long indx;
10095
10096 if (flinfo->info->strip == strip_all)
10097 {
10098 /* You can't do ld -r -s. */
10099 bfd_set_error (bfd_error_invalid_operation);
10100 return FALSE;
10101 }
10102
10103 /* This symbol was skipped earlier, but
10104 since it is needed by a reloc, we
10105 must output it now. */
10106 shlink = symtab_hdr->sh_link;
10107 name = (bfd_elf_string_from_elf_section
10108 (input_bfd, shlink, sym.st_name));
10109 if (name == NULL)
10110 return FALSE;
10111
10112 osec = sec->output_section;
10113 sym.st_shndx =
10114 _bfd_elf_section_from_bfd_section (output_bfd,
10115 osec);
10116 if (sym.st_shndx == SHN_BAD)
10117 return FALSE;
10118
10119 sym.st_value += sec->output_offset;
10120 if (!flinfo->info->relocatable)
10121 {
10122 sym.st_value += osec->vma;
10123 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10124 {
10125 /* STT_TLS symbols are relative to PT_TLS
10126 segment base. */
10127 BFD_ASSERT (elf_hash_table (flinfo->info)
10128 ->tls_sec != NULL);
10129 sym.st_value -= (elf_hash_table (flinfo->info)
10130 ->tls_sec->vma);
10131 }
10132 }
10133
10134 indx = bfd_get_symcount (output_bfd);
10135 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10136 NULL);
10137 if (ret == 0)
10138 return FALSE;
10139 else if (ret == 1)
10140 flinfo->indices[r_symndx] = indx;
10141 else
10142 abort ();
10143 }
10144
10145 r_symndx = flinfo->indices[r_symndx];
10146 }
10147
10148 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10149 | (irela->r_info & r_type_mask));
10150 }
10151
10152 /* Swap out the relocs. */
10153 input_rel_hdr = esdi->rel.hdr;
10154 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10155 {
10156 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10157 input_rel_hdr,
10158 internal_relocs,
10159 rel_hash_list))
10160 return FALSE;
10161 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10162 * bed->s->int_rels_per_ext_rel);
10163 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10164 }
10165
10166 input_rela_hdr = esdi->rela.hdr;
10167 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10168 {
10169 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10170 input_rela_hdr,
10171 internal_relocs,
10172 rela_hash_list))
10173 return FALSE;
10174 }
10175 }
10176 }
10177
10178 /* Write out the modified section contents. */
10179 if (bed->elf_backend_write_section
10180 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10181 contents))
10182 {
10183 /* Section written out. */
10184 }
10185 else switch (o->sec_info_type)
10186 {
10187 case SEC_INFO_TYPE_STABS:
10188 if (! (_bfd_write_section_stabs
10189 (output_bfd,
10190 &elf_hash_table (flinfo->info)->stab_info,
10191 o, &elf_section_data (o)->sec_info, contents)))
10192 return FALSE;
10193 break;
10194 case SEC_INFO_TYPE_MERGE:
10195 if (! _bfd_write_merged_section (output_bfd, o,
10196 elf_section_data (o)->sec_info))
10197 return FALSE;
10198 break;
10199 case SEC_INFO_TYPE_EH_FRAME:
10200 {
10201 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10202 o, contents))
10203 return FALSE;
10204 }
10205 break;
10206 default:
10207 {
10208 /* FIXME: octets_per_byte. */
10209 if (! (o->flags & SEC_EXCLUDE))
10210 {
10211 file_ptr offset = (file_ptr) o->output_offset;
10212 bfd_size_type todo = o->size;
10213 if ((o->flags & SEC_ELF_REVERSE_COPY))
10214 {
10215 /* Reverse-copy input section to output. */
10216 do
10217 {
10218 todo -= address_size;
10219 if (! bfd_set_section_contents (output_bfd,
10220 o->output_section,
10221 contents + todo,
10222 offset,
10223 address_size))
10224 return FALSE;
10225 if (todo == 0)
10226 break;
10227 offset += address_size;
10228 }
10229 while (1);
10230 }
10231 else if (! bfd_set_section_contents (output_bfd,
10232 o->output_section,
10233 contents,
10234 offset, todo))
10235 return FALSE;
10236 }
10237 }
10238 break;
10239 }
10240 }
10241
10242 return TRUE;
10243 }
10244
10245 /* Generate a reloc when linking an ELF file. This is a reloc
10246 requested by the linker, and does not come from any input file. This
10247 is used to build constructor and destructor tables when linking
10248 with -Ur. */
10249
10250 static bfd_boolean
10251 elf_reloc_link_order (bfd *output_bfd,
10252 struct bfd_link_info *info,
10253 asection *output_section,
10254 struct bfd_link_order *link_order)
10255 {
10256 reloc_howto_type *howto;
10257 long indx;
10258 bfd_vma offset;
10259 bfd_vma addend;
10260 struct bfd_elf_section_reloc_data *reldata;
10261 struct elf_link_hash_entry **rel_hash_ptr;
10262 Elf_Internal_Shdr *rel_hdr;
10263 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10264 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10265 bfd_byte *erel;
10266 unsigned int i;
10267 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10268
10269 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10270 if (howto == NULL)
10271 {
10272 bfd_set_error (bfd_error_bad_value);
10273 return FALSE;
10274 }
10275
10276 addend = link_order->u.reloc.p->addend;
10277
10278 if (esdo->rel.hdr)
10279 reldata = &esdo->rel;
10280 else if (esdo->rela.hdr)
10281 reldata = &esdo->rela;
10282 else
10283 {
10284 reldata = NULL;
10285 BFD_ASSERT (0);
10286 }
10287
10288 /* Figure out the symbol index. */
10289 rel_hash_ptr = reldata->hashes + reldata->count;
10290 if (link_order->type == bfd_section_reloc_link_order)
10291 {
10292 indx = link_order->u.reloc.p->u.section->target_index;
10293 BFD_ASSERT (indx != 0);
10294 *rel_hash_ptr = NULL;
10295 }
10296 else
10297 {
10298 struct elf_link_hash_entry *h;
10299
10300 /* Treat a reloc against a defined symbol as though it were
10301 actually against the section. */
10302 h = ((struct elf_link_hash_entry *)
10303 bfd_wrapped_link_hash_lookup (output_bfd, info,
10304 link_order->u.reloc.p->u.name,
10305 FALSE, FALSE, TRUE));
10306 if (h != NULL
10307 && (h->root.type == bfd_link_hash_defined
10308 || h->root.type == bfd_link_hash_defweak))
10309 {
10310 asection *section;
10311
10312 section = h->root.u.def.section;
10313 indx = section->output_section->target_index;
10314 *rel_hash_ptr = NULL;
10315 /* It seems that we ought to add the symbol value to the
10316 addend here, but in practice it has already been added
10317 because it was passed to constructor_callback. */
10318 addend += section->output_section->vma + section->output_offset;
10319 }
10320 else if (h != NULL)
10321 {
10322 /* Setting the index to -2 tells elf_link_output_extsym that
10323 this symbol is used by a reloc. */
10324 h->indx = -2;
10325 *rel_hash_ptr = h;
10326 indx = 0;
10327 }
10328 else
10329 {
10330 if (! ((*info->callbacks->unattached_reloc)
10331 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10332 return FALSE;
10333 indx = 0;
10334 }
10335 }
10336
10337 /* If this is an inplace reloc, we must write the addend into the
10338 object file. */
10339 if (howto->partial_inplace && addend != 0)
10340 {
10341 bfd_size_type size;
10342 bfd_reloc_status_type rstat;
10343 bfd_byte *buf;
10344 bfd_boolean ok;
10345 const char *sym_name;
10346
10347 size = (bfd_size_type) bfd_get_reloc_size (howto);
10348 buf = (bfd_byte *) bfd_zmalloc (size);
10349 if (buf == NULL && size != 0)
10350 return FALSE;
10351 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10352 switch (rstat)
10353 {
10354 case bfd_reloc_ok:
10355 break;
10356
10357 default:
10358 case bfd_reloc_outofrange:
10359 abort ();
10360
10361 case bfd_reloc_overflow:
10362 if (link_order->type == bfd_section_reloc_link_order)
10363 sym_name = bfd_section_name (output_bfd,
10364 link_order->u.reloc.p->u.section);
10365 else
10366 sym_name = link_order->u.reloc.p->u.name;
10367 if (! ((*info->callbacks->reloc_overflow)
10368 (info, NULL, sym_name, howto->name, addend, NULL,
10369 NULL, (bfd_vma) 0)))
10370 {
10371 free (buf);
10372 return FALSE;
10373 }
10374 break;
10375 }
10376 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10377 link_order->offset, size);
10378 free (buf);
10379 if (! ok)
10380 return FALSE;
10381 }
10382
10383 /* The address of a reloc is relative to the section in a
10384 relocatable file, and is a virtual address in an executable
10385 file. */
10386 offset = link_order->offset;
10387 if (! info->relocatable)
10388 offset += output_section->vma;
10389
10390 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10391 {
10392 irel[i].r_offset = offset;
10393 irel[i].r_info = 0;
10394 irel[i].r_addend = 0;
10395 }
10396 if (bed->s->arch_size == 32)
10397 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10398 else
10399 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10400
10401 rel_hdr = reldata->hdr;
10402 erel = rel_hdr->contents;
10403 if (rel_hdr->sh_type == SHT_REL)
10404 {
10405 erel += reldata->count * bed->s->sizeof_rel;
10406 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10407 }
10408 else
10409 {
10410 irel[0].r_addend = addend;
10411 erel += reldata->count * bed->s->sizeof_rela;
10412 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10413 }
10414
10415 ++reldata->count;
10416
10417 return TRUE;
10418 }
10419
10420
10421 /* Get the output vma of the section pointed to by the sh_link field. */
10422
10423 static bfd_vma
10424 elf_get_linked_section_vma (struct bfd_link_order *p)
10425 {
10426 Elf_Internal_Shdr **elf_shdrp;
10427 asection *s;
10428 int elfsec;
10429
10430 s = p->u.indirect.section;
10431 elf_shdrp = elf_elfsections (s->owner);
10432 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10433 elfsec = elf_shdrp[elfsec]->sh_link;
10434 /* PR 290:
10435 The Intel C compiler generates SHT_IA_64_UNWIND with
10436 SHF_LINK_ORDER. But it doesn't set the sh_link or
10437 sh_info fields. Hence we could get the situation
10438 where elfsec is 0. */
10439 if (elfsec == 0)
10440 {
10441 const struct elf_backend_data *bed
10442 = get_elf_backend_data (s->owner);
10443 if (bed->link_order_error_handler)
10444 bed->link_order_error_handler
10445 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10446 return 0;
10447 }
10448 else
10449 {
10450 s = elf_shdrp[elfsec]->bfd_section;
10451 return s->output_section->vma + s->output_offset;
10452 }
10453 }
10454
10455
10456 /* Compare two sections based on the locations of the sections they are
10457 linked to. Used by elf_fixup_link_order. */
10458
10459 static int
10460 compare_link_order (const void * a, const void * b)
10461 {
10462 bfd_vma apos;
10463 bfd_vma bpos;
10464
10465 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10466 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10467 if (apos < bpos)
10468 return -1;
10469 return apos > bpos;
10470 }
10471
10472
10473 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10474 order as their linked sections. Returns false if this could not be done
10475 because an output section includes both ordered and unordered
10476 sections. Ideally we'd do this in the linker proper. */
10477
10478 static bfd_boolean
10479 elf_fixup_link_order (bfd *abfd, asection *o)
10480 {
10481 int seen_linkorder;
10482 int seen_other;
10483 int n;
10484 struct bfd_link_order *p;
10485 bfd *sub;
10486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10487 unsigned elfsec;
10488 struct bfd_link_order **sections;
10489 asection *s, *other_sec, *linkorder_sec;
10490 bfd_vma offset;
10491
10492 other_sec = NULL;
10493 linkorder_sec = NULL;
10494 seen_other = 0;
10495 seen_linkorder = 0;
10496 for (p = o->map_head.link_order; p != NULL; p = p->next)
10497 {
10498 if (p->type == bfd_indirect_link_order)
10499 {
10500 s = p->u.indirect.section;
10501 sub = s->owner;
10502 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10503 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10504 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10505 && elfsec < elf_numsections (sub)
10506 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10507 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10508 {
10509 seen_linkorder++;
10510 linkorder_sec = s;
10511 }
10512 else
10513 {
10514 seen_other++;
10515 other_sec = s;
10516 }
10517 }
10518 else
10519 seen_other++;
10520
10521 if (seen_other && seen_linkorder)
10522 {
10523 if (other_sec && linkorder_sec)
10524 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10525 o, linkorder_sec,
10526 linkorder_sec->owner, other_sec,
10527 other_sec->owner);
10528 else
10529 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10530 o);
10531 bfd_set_error (bfd_error_bad_value);
10532 return FALSE;
10533 }
10534 }
10535
10536 if (!seen_linkorder)
10537 return TRUE;
10538
10539 sections = (struct bfd_link_order **)
10540 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10541 if (sections == NULL)
10542 return FALSE;
10543 seen_linkorder = 0;
10544
10545 for (p = o->map_head.link_order; p != NULL; p = p->next)
10546 {
10547 sections[seen_linkorder++] = p;
10548 }
10549 /* Sort the input sections in the order of their linked section. */
10550 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10551 compare_link_order);
10552
10553 /* Change the offsets of the sections. */
10554 offset = 0;
10555 for (n = 0; n < seen_linkorder; n++)
10556 {
10557 s = sections[n]->u.indirect.section;
10558 offset &= ~(bfd_vma) 0 << s->alignment_power;
10559 s->output_offset = offset;
10560 sections[n]->offset = offset;
10561 /* FIXME: octets_per_byte. */
10562 offset += sections[n]->size;
10563 }
10564
10565 free (sections);
10566 return TRUE;
10567 }
10568
10569 static void
10570 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10571 {
10572 asection *o;
10573
10574 if (flinfo->symstrtab != NULL)
10575 _bfd_stringtab_free (flinfo->symstrtab);
10576 if (flinfo->contents != NULL)
10577 free (flinfo->contents);
10578 if (flinfo->external_relocs != NULL)
10579 free (flinfo->external_relocs);
10580 if (flinfo->internal_relocs != NULL)
10581 free (flinfo->internal_relocs);
10582 if (flinfo->external_syms != NULL)
10583 free (flinfo->external_syms);
10584 if (flinfo->locsym_shndx != NULL)
10585 free (flinfo->locsym_shndx);
10586 if (flinfo->internal_syms != NULL)
10587 free (flinfo->internal_syms);
10588 if (flinfo->indices != NULL)
10589 free (flinfo->indices);
10590 if (flinfo->sections != NULL)
10591 free (flinfo->sections);
10592 if (flinfo->symbuf != NULL)
10593 free (flinfo->symbuf);
10594 if (flinfo->symshndxbuf != NULL)
10595 free (flinfo->symshndxbuf);
10596 for (o = obfd->sections; o != NULL; o = o->next)
10597 {
10598 struct bfd_elf_section_data *esdo = elf_section_data (o);
10599 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10600 free (esdo->rel.hashes);
10601 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10602 free (esdo->rela.hashes);
10603 }
10604 }
10605
10606 /* Do the final step of an ELF link. */
10607
10608 bfd_boolean
10609 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10610 {
10611 bfd_boolean dynamic;
10612 bfd_boolean emit_relocs;
10613 bfd *dynobj;
10614 struct elf_final_link_info flinfo;
10615 asection *o;
10616 struct bfd_link_order *p;
10617 bfd *sub;
10618 bfd_size_type max_contents_size;
10619 bfd_size_type max_external_reloc_size;
10620 bfd_size_type max_internal_reloc_count;
10621 bfd_size_type max_sym_count;
10622 bfd_size_type max_sym_shndx_count;
10623 Elf_Internal_Sym elfsym;
10624 unsigned int i;
10625 Elf_Internal_Shdr *symtab_hdr;
10626 Elf_Internal_Shdr *symtab_shndx_hdr;
10627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10628 struct elf_outext_info eoinfo;
10629 bfd_boolean merged;
10630 size_t relativecount = 0;
10631 asection *reldyn = 0;
10632 bfd_size_type amt;
10633 asection *attr_section = NULL;
10634 bfd_vma attr_size = 0;
10635 const char *std_attrs_section;
10636
10637 if (! is_elf_hash_table (info->hash))
10638 return FALSE;
10639
10640 if (info->shared)
10641 abfd->flags |= DYNAMIC;
10642
10643 dynamic = elf_hash_table (info)->dynamic_sections_created;
10644 dynobj = elf_hash_table (info)->dynobj;
10645
10646 emit_relocs = (info->relocatable
10647 || info->emitrelocations);
10648
10649 flinfo.info = info;
10650 flinfo.output_bfd = abfd;
10651 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10652 if (flinfo.symstrtab == NULL)
10653 return FALSE;
10654
10655 if (! dynamic)
10656 {
10657 flinfo.dynsym_sec = NULL;
10658 flinfo.hash_sec = NULL;
10659 flinfo.symver_sec = NULL;
10660 }
10661 else
10662 {
10663 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10664 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10665 /* Note that dynsym_sec can be NULL (on VMS). */
10666 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10667 /* Note that it is OK if symver_sec is NULL. */
10668 }
10669
10670 flinfo.contents = NULL;
10671 flinfo.external_relocs = NULL;
10672 flinfo.internal_relocs = NULL;
10673 flinfo.external_syms = NULL;
10674 flinfo.locsym_shndx = NULL;
10675 flinfo.internal_syms = NULL;
10676 flinfo.indices = NULL;
10677 flinfo.sections = NULL;
10678 flinfo.symbuf = NULL;
10679 flinfo.symshndxbuf = NULL;
10680 flinfo.symbuf_count = 0;
10681 flinfo.shndxbuf_size = 0;
10682 flinfo.filesym_count = 0;
10683
10684 /* The object attributes have been merged. Remove the input
10685 sections from the link, and set the contents of the output
10686 secton. */
10687 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10688 for (o = abfd->sections; o != NULL; o = o->next)
10689 {
10690 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10691 || strcmp (o->name, ".gnu.attributes") == 0)
10692 {
10693 for (p = o->map_head.link_order; p != NULL; p = p->next)
10694 {
10695 asection *input_section;
10696
10697 if (p->type != bfd_indirect_link_order)
10698 continue;
10699 input_section = p->u.indirect.section;
10700 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10701 elf_link_input_bfd ignores this section. */
10702 input_section->flags &= ~SEC_HAS_CONTENTS;
10703 }
10704
10705 attr_size = bfd_elf_obj_attr_size (abfd);
10706 if (attr_size)
10707 {
10708 bfd_set_section_size (abfd, o, attr_size);
10709 attr_section = o;
10710 /* Skip this section later on. */
10711 o->map_head.link_order = NULL;
10712 }
10713 else
10714 o->flags |= SEC_EXCLUDE;
10715 }
10716 }
10717
10718 /* Count up the number of relocations we will output for each output
10719 section, so that we know the sizes of the reloc sections. We
10720 also figure out some maximum sizes. */
10721 max_contents_size = 0;
10722 max_external_reloc_size = 0;
10723 max_internal_reloc_count = 0;
10724 max_sym_count = 0;
10725 max_sym_shndx_count = 0;
10726 merged = FALSE;
10727 for (o = abfd->sections; o != NULL; o = o->next)
10728 {
10729 struct bfd_elf_section_data *esdo = elf_section_data (o);
10730 o->reloc_count = 0;
10731
10732 for (p = o->map_head.link_order; p != NULL; p = p->next)
10733 {
10734 unsigned int reloc_count = 0;
10735 struct bfd_elf_section_data *esdi = NULL;
10736
10737 if (p->type == bfd_section_reloc_link_order
10738 || p->type == bfd_symbol_reloc_link_order)
10739 reloc_count = 1;
10740 else if (p->type == bfd_indirect_link_order)
10741 {
10742 asection *sec;
10743
10744 sec = p->u.indirect.section;
10745 esdi = elf_section_data (sec);
10746
10747 /* Mark all sections which are to be included in the
10748 link. This will normally be every section. We need
10749 to do this so that we can identify any sections which
10750 the linker has decided to not include. */
10751 sec->linker_mark = TRUE;
10752
10753 if (sec->flags & SEC_MERGE)
10754 merged = TRUE;
10755
10756 if (esdo->this_hdr.sh_type == SHT_REL
10757 || esdo->this_hdr.sh_type == SHT_RELA)
10758 /* Some backends use reloc_count in relocation sections
10759 to count particular types of relocs. Of course,
10760 reloc sections themselves can't have relocations. */
10761 reloc_count = 0;
10762 else if (info->relocatable || info->emitrelocations)
10763 reloc_count = sec->reloc_count;
10764 else if (bed->elf_backend_count_relocs)
10765 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10766
10767 if (sec->rawsize > max_contents_size)
10768 max_contents_size = sec->rawsize;
10769 if (sec->size > max_contents_size)
10770 max_contents_size = sec->size;
10771
10772 /* We are interested in just local symbols, not all
10773 symbols. */
10774 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10775 && (sec->owner->flags & DYNAMIC) == 0)
10776 {
10777 size_t sym_count;
10778
10779 if (elf_bad_symtab (sec->owner))
10780 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10781 / bed->s->sizeof_sym);
10782 else
10783 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10784
10785 if (sym_count > max_sym_count)
10786 max_sym_count = sym_count;
10787
10788 if (sym_count > max_sym_shndx_count
10789 && elf_symtab_shndx (sec->owner) != 0)
10790 max_sym_shndx_count = sym_count;
10791
10792 if ((sec->flags & SEC_RELOC) != 0)
10793 {
10794 size_t ext_size = 0;
10795
10796 if (esdi->rel.hdr != NULL)
10797 ext_size = esdi->rel.hdr->sh_size;
10798 if (esdi->rela.hdr != NULL)
10799 ext_size += esdi->rela.hdr->sh_size;
10800
10801 if (ext_size > max_external_reloc_size)
10802 max_external_reloc_size = ext_size;
10803 if (sec->reloc_count > max_internal_reloc_count)
10804 max_internal_reloc_count = sec->reloc_count;
10805 }
10806 }
10807 }
10808
10809 if (reloc_count == 0)
10810 continue;
10811
10812 o->reloc_count += reloc_count;
10813
10814 if (p->type == bfd_indirect_link_order
10815 && (info->relocatable || info->emitrelocations))
10816 {
10817 if (esdi->rel.hdr)
10818 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10819 if (esdi->rela.hdr)
10820 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10821 }
10822 else
10823 {
10824 if (o->use_rela_p)
10825 esdo->rela.count += reloc_count;
10826 else
10827 esdo->rel.count += reloc_count;
10828 }
10829 }
10830
10831 if (o->reloc_count > 0)
10832 o->flags |= SEC_RELOC;
10833 else
10834 {
10835 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10836 set it (this is probably a bug) and if it is set
10837 assign_section_numbers will create a reloc section. */
10838 o->flags &=~ SEC_RELOC;
10839 }
10840
10841 /* If the SEC_ALLOC flag is not set, force the section VMA to
10842 zero. This is done in elf_fake_sections as well, but forcing
10843 the VMA to 0 here will ensure that relocs against these
10844 sections are handled correctly. */
10845 if ((o->flags & SEC_ALLOC) == 0
10846 && ! o->user_set_vma)
10847 o->vma = 0;
10848 }
10849
10850 if (! info->relocatable && merged)
10851 elf_link_hash_traverse (elf_hash_table (info),
10852 _bfd_elf_link_sec_merge_syms, abfd);
10853
10854 /* Figure out the file positions for everything but the symbol table
10855 and the relocs. We set symcount to force assign_section_numbers
10856 to create a symbol table. */
10857 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10858 BFD_ASSERT (! abfd->output_has_begun);
10859 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10860 goto error_return;
10861
10862 /* Set sizes, and assign file positions for reloc sections. */
10863 for (o = abfd->sections; o != NULL; o = o->next)
10864 {
10865 struct bfd_elf_section_data *esdo = elf_section_data (o);
10866 if ((o->flags & SEC_RELOC) != 0)
10867 {
10868 if (esdo->rel.hdr
10869 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10870 goto error_return;
10871
10872 if (esdo->rela.hdr
10873 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10874 goto error_return;
10875 }
10876
10877 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10878 to count upwards while actually outputting the relocations. */
10879 esdo->rel.count = 0;
10880 esdo->rela.count = 0;
10881 }
10882
10883 /* We have now assigned file positions for all the sections except
10884 .symtab, .strtab, and non-loaded reloc sections. We start the
10885 .symtab section at the current file position, and write directly
10886 to it. We build the .strtab section in memory. */
10887 bfd_get_symcount (abfd) = 0;
10888 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10889 /* sh_name is set in prep_headers. */
10890 symtab_hdr->sh_type = SHT_SYMTAB;
10891 /* sh_flags, sh_addr and sh_size all start off zero. */
10892 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10893 /* sh_link is set in assign_section_numbers. */
10894 /* sh_info is set below. */
10895 /* sh_offset is set just below. */
10896 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10897
10898 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10899 continuously seeking to the right position in the file. */
10900 if (! info->keep_memory || max_sym_count < 20)
10901 flinfo.symbuf_size = 20;
10902 else
10903 flinfo.symbuf_size = max_sym_count;
10904 amt = flinfo.symbuf_size;
10905 amt *= bed->s->sizeof_sym;
10906 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10907 if (flinfo.symbuf == NULL)
10908 goto error_return;
10909 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10910 {
10911 /* Wild guess at number of output symbols. realloc'd as needed. */
10912 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10913 flinfo.shndxbuf_size = amt;
10914 amt *= sizeof (Elf_External_Sym_Shndx);
10915 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10916 if (flinfo.symshndxbuf == NULL)
10917 goto error_return;
10918 }
10919
10920 if (info->strip != strip_all || emit_relocs)
10921 {
10922 file_ptr off = elf_next_file_pos (abfd);
10923
10924 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10925
10926 /* Note that at this point elf_next_file_pos (abfd) is
10927 incorrect. We do not yet know the size of the .symtab section.
10928 We correct next_file_pos below, after we do know the size. */
10929
10930 /* Start writing out the symbol table. The first symbol is always a
10931 dummy symbol. */
10932 elfsym.st_value = 0;
10933 elfsym.st_size = 0;
10934 elfsym.st_info = 0;
10935 elfsym.st_other = 0;
10936 elfsym.st_shndx = SHN_UNDEF;
10937 elfsym.st_target_internal = 0;
10938 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10939 NULL) != 1)
10940 goto error_return;
10941
10942 /* Output a symbol for each section. We output these even if we are
10943 discarding local symbols, since they are used for relocs. These
10944 symbols have no names. We store the index of each one in the
10945 index field of the section, so that we can find it again when
10946 outputting relocs. */
10947
10948 elfsym.st_size = 0;
10949 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10950 elfsym.st_other = 0;
10951 elfsym.st_value = 0;
10952 elfsym.st_target_internal = 0;
10953 for (i = 1; i < elf_numsections (abfd); i++)
10954 {
10955 o = bfd_section_from_elf_index (abfd, i);
10956 if (o != NULL)
10957 {
10958 o->target_index = bfd_get_symcount (abfd);
10959 elfsym.st_shndx = i;
10960 if (!info->relocatable)
10961 elfsym.st_value = o->vma;
10962 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10963 goto error_return;
10964 }
10965 }
10966 }
10967
10968 /* Allocate some memory to hold information read in from the input
10969 files. */
10970 if (max_contents_size != 0)
10971 {
10972 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10973 if (flinfo.contents == NULL)
10974 goto error_return;
10975 }
10976
10977 if (max_external_reloc_size != 0)
10978 {
10979 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10980 if (flinfo.external_relocs == NULL)
10981 goto error_return;
10982 }
10983
10984 if (max_internal_reloc_count != 0)
10985 {
10986 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10987 amt *= sizeof (Elf_Internal_Rela);
10988 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10989 if (flinfo.internal_relocs == NULL)
10990 goto error_return;
10991 }
10992
10993 if (max_sym_count != 0)
10994 {
10995 amt = max_sym_count * bed->s->sizeof_sym;
10996 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10997 if (flinfo.external_syms == NULL)
10998 goto error_return;
10999
11000 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11001 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11002 if (flinfo.internal_syms == NULL)
11003 goto error_return;
11004
11005 amt = max_sym_count * sizeof (long);
11006 flinfo.indices = (long int *) bfd_malloc (amt);
11007 if (flinfo.indices == NULL)
11008 goto error_return;
11009
11010 amt = max_sym_count * sizeof (asection *);
11011 flinfo.sections = (asection **) bfd_malloc (amt);
11012 if (flinfo.sections == NULL)
11013 goto error_return;
11014 }
11015
11016 if (max_sym_shndx_count != 0)
11017 {
11018 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11019 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11020 if (flinfo.locsym_shndx == NULL)
11021 goto error_return;
11022 }
11023
11024 if (elf_hash_table (info)->tls_sec)
11025 {
11026 bfd_vma base, end = 0;
11027 asection *sec;
11028
11029 for (sec = elf_hash_table (info)->tls_sec;
11030 sec && (sec->flags & SEC_THREAD_LOCAL);
11031 sec = sec->next)
11032 {
11033 bfd_size_type size = sec->size;
11034
11035 if (size == 0
11036 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11037 {
11038 struct bfd_link_order *ord = sec->map_tail.link_order;
11039
11040 if (ord != NULL)
11041 size = ord->offset + ord->size;
11042 }
11043 end = sec->vma + size;
11044 }
11045 base = elf_hash_table (info)->tls_sec->vma;
11046 /* Only align end of TLS section if static TLS doesn't have special
11047 alignment requirements. */
11048 if (bed->static_tls_alignment == 1)
11049 end = align_power (end,
11050 elf_hash_table (info)->tls_sec->alignment_power);
11051 elf_hash_table (info)->tls_size = end - base;
11052 }
11053
11054 /* Reorder SHF_LINK_ORDER sections. */
11055 for (o = abfd->sections; o != NULL; o = o->next)
11056 {
11057 if (!elf_fixup_link_order (abfd, o))
11058 return FALSE;
11059 }
11060
11061 /* Since ELF permits relocations to be against local symbols, we
11062 must have the local symbols available when we do the relocations.
11063 Since we would rather only read the local symbols once, and we
11064 would rather not keep them in memory, we handle all the
11065 relocations for a single input file at the same time.
11066
11067 Unfortunately, there is no way to know the total number of local
11068 symbols until we have seen all of them, and the local symbol
11069 indices precede the global symbol indices. This means that when
11070 we are generating relocatable output, and we see a reloc against
11071 a global symbol, we can not know the symbol index until we have
11072 finished examining all the local symbols to see which ones we are
11073 going to output. To deal with this, we keep the relocations in
11074 memory, and don't output them until the end of the link. This is
11075 an unfortunate waste of memory, but I don't see a good way around
11076 it. Fortunately, it only happens when performing a relocatable
11077 link, which is not the common case. FIXME: If keep_memory is set
11078 we could write the relocs out and then read them again; I don't
11079 know how bad the memory loss will be. */
11080
11081 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11082 sub->output_has_begun = FALSE;
11083 for (o = abfd->sections; o != NULL; o = o->next)
11084 {
11085 for (p = o->map_head.link_order; p != NULL; p = p->next)
11086 {
11087 if (p->type == bfd_indirect_link_order
11088 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11089 == bfd_target_elf_flavour)
11090 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11091 {
11092 if (! sub->output_has_begun)
11093 {
11094 if (! elf_link_input_bfd (&flinfo, sub))
11095 goto error_return;
11096 sub->output_has_begun = TRUE;
11097 }
11098 }
11099 else if (p->type == bfd_section_reloc_link_order
11100 || p->type == bfd_symbol_reloc_link_order)
11101 {
11102 if (! elf_reloc_link_order (abfd, info, o, p))
11103 goto error_return;
11104 }
11105 else
11106 {
11107 if (! _bfd_default_link_order (abfd, info, o, p))
11108 {
11109 if (p->type == bfd_indirect_link_order
11110 && (bfd_get_flavour (sub)
11111 == bfd_target_elf_flavour)
11112 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11113 != bed->s->elfclass))
11114 {
11115 const char *iclass, *oclass;
11116
11117 if (bed->s->elfclass == ELFCLASS64)
11118 {
11119 iclass = "ELFCLASS32";
11120 oclass = "ELFCLASS64";
11121 }
11122 else
11123 {
11124 iclass = "ELFCLASS64";
11125 oclass = "ELFCLASS32";
11126 }
11127
11128 bfd_set_error (bfd_error_wrong_format);
11129 (*_bfd_error_handler)
11130 (_("%B: file class %s incompatible with %s"),
11131 sub, iclass, oclass);
11132 }
11133
11134 goto error_return;
11135 }
11136 }
11137 }
11138 }
11139
11140 /* Free symbol buffer if needed. */
11141 if (!info->reduce_memory_overheads)
11142 {
11143 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11144 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11145 && elf_tdata (sub)->symbuf)
11146 {
11147 free (elf_tdata (sub)->symbuf);
11148 elf_tdata (sub)->symbuf = NULL;
11149 }
11150 }
11151
11152 /* Output any global symbols that got converted to local in a
11153 version script or due to symbol visibility. We do this in a
11154 separate step since ELF requires all local symbols to appear
11155 prior to any global symbols. FIXME: We should only do this if
11156 some global symbols were, in fact, converted to become local.
11157 FIXME: Will this work correctly with the Irix 5 linker? */
11158 eoinfo.failed = FALSE;
11159 eoinfo.flinfo = &flinfo;
11160 eoinfo.localsyms = TRUE;
11161 eoinfo.file_sym_done = FALSE;
11162 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11163 if (eoinfo.failed)
11164 return FALSE;
11165
11166 /* If backend needs to output some local symbols not present in the hash
11167 table, do it now. */
11168 if (bed->elf_backend_output_arch_local_syms
11169 && (info->strip != strip_all || emit_relocs))
11170 {
11171 typedef int (*out_sym_func)
11172 (void *, const char *, Elf_Internal_Sym *, asection *,
11173 struct elf_link_hash_entry *);
11174
11175 if (! ((*bed->elf_backend_output_arch_local_syms)
11176 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11177 return FALSE;
11178 }
11179
11180 /* That wrote out all the local symbols. Finish up the symbol table
11181 with the global symbols. Even if we want to strip everything we
11182 can, we still need to deal with those global symbols that got
11183 converted to local in a version script. */
11184
11185 /* The sh_info field records the index of the first non local symbol. */
11186 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11187
11188 if (dynamic
11189 && flinfo.dynsym_sec != NULL
11190 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11191 {
11192 Elf_Internal_Sym sym;
11193 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11194 long last_local = 0;
11195
11196 /* Write out the section symbols for the output sections. */
11197 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11198 {
11199 asection *s;
11200
11201 sym.st_size = 0;
11202 sym.st_name = 0;
11203 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11204 sym.st_other = 0;
11205 sym.st_target_internal = 0;
11206
11207 for (s = abfd->sections; s != NULL; s = s->next)
11208 {
11209 int indx;
11210 bfd_byte *dest;
11211 long dynindx;
11212
11213 dynindx = elf_section_data (s)->dynindx;
11214 if (dynindx <= 0)
11215 continue;
11216 indx = elf_section_data (s)->this_idx;
11217 BFD_ASSERT (indx > 0);
11218 sym.st_shndx = indx;
11219 if (! check_dynsym (abfd, &sym))
11220 return FALSE;
11221 sym.st_value = s->vma;
11222 dest = dynsym + dynindx * bed->s->sizeof_sym;
11223 if (last_local < dynindx)
11224 last_local = dynindx;
11225 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11226 }
11227 }
11228
11229 /* Write out the local dynsyms. */
11230 if (elf_hash_table (info)->dynlocal)
11231 {
11232 struct elf_link_local_dynamic_entry *e;
11233 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11234 {
11235 asection *s;
11236 bfd_byte *dest;
11237
11238 /* Copy the internal symbol and turn off visibility.
11239 Note that we saved a word of storage and overwrote
11240 the original st_name with the dynstr_index. */
11241 sym = e->isym;
11242 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11243
11244 s = bfd_section_from_elf_index (e->input_bfd,
11245 e->isym.st_shndx);
11246 if (s != NULL)
11247 {
11248 sym.st_shndx =
11249 elf_section_data (s->output_section)->this_idx;
11250 if (! check_dynsym (abfd, &sym))
11251 return FALSE;
11252 sym.st_value = (s->output_section->vma
11253 + s->output_offset
11254 + e->isym.st_value);
11255 }
11256
11257 if (last_local < e->dynindx)
11258 last_local = e->dynindx;
11259
11260 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11261 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11262 }
11263 }
11264
11265 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11266 last_local + 1;
11267 }
11268
11269 /* We get the global symbols from the hash table. */
11270 eoinfo.failed = FALSE;
11271 eoinfo.localsyms = FALSE;
11272 eoinfo.flinfo = &flinfo;
11273 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11274 if (eoinfo.failed)
11275 return FALSE;
11276
11277 /* If backend needs to output some symbols not present in the hash
11278 table, do it now. */
11279 if (bed->elf_backend_output_arch_syms
11280 && (info->strip != strip_all || emit_relocs))
11281 {
11282 typedef int (*out_sym_func)
11283 (void *, const char *, Elf_Internal_Sym *, asection *,
11284 struct elf_link_hash_entry *);
11285
11286 if (! ((*bed->elf_backend_output_arch_syms)
11287 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11288 return FALSE;
11289 }
11290
11291 /* Flush all symbols to the file. */
11292 if (! elf_link_flush_output_syms (&flinfo, bed))
11293 return FALSE;
11294
11295 /* Now we know the size of the symtab section. */
11296 if (bfd_get_symcount (abfd) > 0)
11297 {
11298 /* Finish up and write out the symbol string table (.strtab)
11299 section. */
11300 Elf_Internal_Shdr *symstrtab_hdr;
11301 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11302
11303 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11304 if (symtab_shndx_hdr->sh_name != 0)
11305 {
11306 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11307 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11308 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11309 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11310 symtab_shndx_hdr->sh_size = amt;
11311
11312 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11313 off, TRUE);
11314
11315 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11316 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11317 return FALSE;
11318 }
11319
11320 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11321 /* sh_name was set in prep_headers. */
11322 symstrtab_hdr->sh_type = SHT_STRTAB;
11323 symstrtab_hdr->sh_flags = 0;
11324 symstrtab_hdr->sh_addr = 0;
11325 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11326 symstrtab_hdr->sh_entsize = 0;
11327 symstrtab_hdr->sh_link = 0;
11328 symstrtab_hdr->sh_info = 0;
11329 /* sh_offset is set just below. */
11330 symstrtab_hdr->sh_addralign = 1;
11331
11332 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11333 off, TRUE);
11334 elf_next_file_pos (abfd) = off;
11335
11336 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11337 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11338 return FALSE;
11339 }
11340
11341 /* Adjust the relocs to have the correct symbol indices. */
11342 for (o = abfd->sections; o != NULL; o = o->next)
11343 {
11344 struct bfd_elf_section_data *esdo = elf_section_data (o);
11345 bfd_boolean sort;
11346 if ((o->flags & SEC_RELOC) == 0)
11347 continue;
11348
11349 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11350 if (esdo->rel.hdr != NULL)
11351 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11352 if (esdo->rela.hdr != NULL)
11353 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11354
11355 /* Set the reloc_count field to 0 to prevent write_relocs from
11356 trying to swap the relocs out itself. */
11357 o->reloc_count = 0;
11358 }
11359
11360 if (dynamic && info->combreloc && dynobj != NULL)
11361 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11362
11363 /* If we are linking against a dynamic object, or generating a
11364 shared library, finish up the dynamic linking information. */
11365 if (dynamic)
11366 {
11367 bfd_byte *dyncon, *dynconend;
11368
11369 /* Fix up .dynamic entries. */
11370 o = bfd_get_linker_section (dynobj, ".dynamic");
11371 BFD_ASSERT (o != NULL);
11372
11373 dyncon = o->contents;
11374 dynconend = o->contents + o->size;
11375 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11376 {
11377 Elf_Internal_Dyn dyn;
11378 const char *name;
11379 unsigned int type;
11380
11381 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11382
11383 switch (dyn.d_tag)
11384 {
11385 default:
11386 continue;
11387 case DT_NULL:
11388 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11389 {
11390 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11391 {
11392 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11393 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11394 default: continue;
11395 }
11396 dyn.d_un.d_val = relativecount;
11397 relativecount = 0;
11398 break;
11399 }
11400 continue;
11401
11402 case DT_INIT:
11403 name = info->init_function;
11404 goto get_sym;
11405 case DT_FINI:
11406 name = info->fini_function;
11407 get_sym:
11408 {
11409 struct elf_link_hash_entry *h;
11410
11411 h = elf_link_hash_lookup (elf_hash_table (info), name,
11412 FALSE, FALSE, TRUE);
11413 if (h != NULL
11414 && (h->root.type == bfd_link_hash_defined
11415 || h->root.type == bfd_link_hash_defweak))
11416 {
11417 dyn.d_un.d_ptr = h->root.u.def.value;
11418 o = h->root.u.def.section;
11419 if (o->output_section != NULL)
11420 dyn.d_un.d_ptr += (o->output_section->vma
11421 + o->output_offset);
11422 else
11423 {
11424 /* The symbol is imported from another shared
11425 library and does not apply to this one. */
11426 dyn.d_un.d_ptr = 0;
11427 }
11428 break;
11429 }
11430 }
11431 continue;
11432
11433 case DT_PREINIT_ARRAYSZ:
11434 name = ".preinit_array";
11435 goto get_size;
11436 case DT_INIT_ARRAYSZ:
11437 name = ".init_array";
11438 goto get_size;
11439 case DT_FINI_ARRAYSZ:
11440 name = ".fini_array";
11441 get_size:
11442 o = bfd_get_section_by_name (abfd, name);
11443 if (o == NULL)
11444 {
11445 (*_bfd_error_handler)
11446 (_("%B: could not find output section %s"), abfd, name);
11447 goto error_return;
11448 }
11449 if (o->size == 0)
11450 (*_bfd_error_handler)
11451 (_("warning: %s section has zero size"), name);
11452 dyn.d_un.d_val = o->size;
11453 break;
11454
11455 case DT_PREINIT_ARRAY:
11456 name = ".preinit_array";
11457 goto get_vma;
11458 case DT_INIT_ARRAY:
11459 name = ".init_array";
11460 goto get_vma;
11461 case DT_FINI_ARRAY:
11462 name = ".fini_array";
11463 goto get_vma;
11464
11465 case DT_HASH:
11466 name = ".hash";
11467 goto get_vma;
11468 case DT_GNU_HASH:
11469 name = ".gnu.hash";
11470 goto get_vma;
11471 case DT_STRTAB:
11472 name = ".dynstr";
11473 goto get_vma;
11474 case DT_SYMTAB:
11475 name = ".dynsym";
11476 goto get_vma;
11477 case DT_VERDEF:
11478 name = ".gnu.version_d";
11479 goto get_vma;
11480 case DT_VERNEED:
11481 name = ".gnu.version_r";
11482 goto get_vma;
11483 case DT_VERSYM:
11484 name = ".gnu.version";
11485 get_vma:
11486 o = bfd_get_section_by_name (abfd, name);
11487 if (o == NULL)
11488 {
11489 (*_bfd_error_handler)
11490 (_("%B: could not find output section %s"), abfd, name);
11491 goto error_return;
11492 }
11493 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11494 {
11495 (*_bfd_error_handler)
11496 (_("warning: section '%s' is being made into a note"), name);
11497 bfd_set_error (bfd_error_nonrepresentable_section);
11498 goto error_return;
11499 }
11500 dyn.d_un.d_ptr = o->vma;
11501 break;
11502
11503 case DT_REL:
11504 case DT_RELA:
11505 case DT_RELSZ:
11506 case DT_RELASZ:
11507 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11508 type = SHT_REL;
11509 else
11510 type = SHT_RELA;
11511 dyn.d_un.d_val = 0;
11512 dyn.d_un.d_ptr = 0;
11513 for (i = 1; i < elf_numsections (abfd); i++)
11514 {
11515 Elf_Internal_Shdr *hdr;
11516
11517 hdr = elf_elfsections (abfd)[i];
11518 if (hdr->sh_type == type
11519 && (hdr->sh_flags & SHF_ALLOC) != 0)
11520 {
11521 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11522 dyn.d_un.d_val += hdr->sh_size;
11523 else
11524 {
11525 if (dyn.d_un.d_ptr == 0
11526 || hdr->sh_addr < dyn.d_un.d_ptr)
11527 dyn.d_un.d_ptr = hdr->sh_addr;
11528 }
11529 }
11530 }
11531 break;
11532 }
11533 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11534 }
11535 }
11536
11537 /* If we have created any dynamic sections, then output them. */
11538 if (dynobj != NULL)
11539 {
11540 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11541 goto error_return;
11542
11543 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11544 if (((info->warn_shared_textrel && info->shared)
11545 || info->error_textrel)
11546 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11547 {
11548 bfd_byte *dyncon, *dynconend;
11549
11550 dyncon = o->contents;
11551 dynconend = o->contents + o->size;
11552 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11553 {
11554 Elf_Internal_Dyn dyn;
11555
11556 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11557
11558 if (dyn.d_tag == DT_TEXTREL)
11559 {
11560 if (info->error_textrel)
11561 info->callbacks->einfo
11562 (_("%P%X: read-only segment has dynamic relocations.\n"));
11563 else
11564 info->callbacks->einfo
11565 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11566 break;
11567 }
11568 }
11569 }
11570
11571 for (o = dynobj->sections; o != NULL; o = o->next)
11572 {
11573 if ((o->flags & SEC_HAS_CONTENTS) == 0
11574 || o->size == 0
11575 || o->output_section == bfd_abs_section_ptr)
11576 continue;
11577 if ((o->flags & SEC_LINKER_CREATED) == 0)
11578 {
11579 /* At this point, we are only interested in sections
11580 created by _bfd_elf_link_create_dynamic_sections. */
11581 continue;
11582 }
11583 if (elf_hash_table (info)->stab_info.stabstr == o)
11584 continue;
11585 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11586 continue;
11587 if (strcmp (o->name, ".dynstr") != 0)
11588 {
11589 /* FIXME: octets_per_byte. */
11590 if (! bfd_set_section_contents (abfd, o->output_section,
11591 o->contents,
11592 (file_ptr) o->output_offset,
11593 o->size))
11594 goto error_return;
11595 }
11596 else
11597 {
11598 /* The contents of the .dynstr section are actually in a
11599 stringtab. */
11600 file_ptr off;
11601
11602 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11603 if (bfd_seek (abfd, off, SEEK_SET) != 0
11604 || ! _bfd_elf_strtab_emit (abfd,
11605 elf_hash_table (info)->dynstr))
11606 goto error_return;
11607 }
11608 }
11609 }
11610
11611 if (info->relocatable)
11612 {
11613 bfd_boolean failed = FALSE;
11614
11615 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11616 if (failed)
11617 goto error_return;
11618 }
11619
11620 /* If we have optimized stabs strings, output them. */
11621 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11622 {
11623 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11624 goto error_return;
11625 }
11626
11627 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11628 goto error_return;
11629
11630 elf_final_link_free (abfd, &flinfo);
11631
11632 elf_linker (abfd) = TRUE;
11633
11634 if (attr_section)
11635 {
11636 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11637 if (contents == NULL)
11638 return FALSE; /* Bail out and fail. */
11639 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11640 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11641 free (contents);
11642 }
11643
11644 return TRUE;
11645
11646 error_return:
11647 elf_final_link_free (abfd, &flinfo);
11648 return FALSE;
11649 }
11650 \f
11651 /* Initialize COOKIE for input bfd ABFD. */
11652
11653 static bfd_boolean
11654 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11655 struct bfd_link_info *info, bfd *abfd)
11656 {
11657 Elf_Internal_Shdr *symtab_hdr;
11658 const struct elf_backend_data *bed;
11659
11660 bed = get_elf_backend_data (abfd);
11661 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11662
11663 cookie->abfd = abfd;
11664 cookie->sym_hashes = elf_sym_hashes (abfd);
11665 cookie->bad_symtab = elf_bad_symtab (abfd);
11666 if (cookie->bad_symtab)
11667 {
11668 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11669 cookie->extsymoff = 0;
11670 }
11671 else
11672 {
11673 cookie->locsymcount = symtab_hdr->sh_info;
11674 cookie->extsymoff = symtab_hdr->sh_info;
11675 }
11676
11677 if (bed->s->arch_size == 32)
11678 cookie->r_sym_shift = 8;
11679 else
11680 cookie->r_sym_shift = 32;
11681
11682 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11683 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11684 {
11685 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11686 cookie->locsymcount, 0,
11687 NULL, NULL, NULL);
11688 if (cookie->locsyms == NULL)
11689 {
11690 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11691 return FALSE;
11692 }
11693 if (info->keep_memory)
11694 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11695 }
11696 return TRUE;
11697 }
11698
11699 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11700
11701 static void
11702 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11703 {
11704 Elf_Internal_Shdr *symtab_hdr;
11705
11706 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11707 if (cookie->locsyms != NULL
11708 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11709 free (cookie->locsyms);
11710 }
11711
11712 /* Initialize the relocation information in COOKIE for input section SEC
11713 of input bfd ABFD. */
11714
11715 static bfd_boolean
11716 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11717 struct bfd_link_info *info, bfd *abfd,
11718 asection *sec)
11719 {
11720 const struct elf_backend_data *bed;
11721
11722 if (sec->reloc_count == 0)
11723 {
11724 cookie->rels = NULL;
11725 cookie->relend = NULL;
11726 }
11727 else
11728 {
11729 bed = get_elf_backend_data (abfd);
11730
11731 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11732 info->keep_memory);
11733 if (cookie->rels == NULL)
11734 return FALSE;
11735 cookie->rel = cookie->rels;
11736 cookie->relend = (cookie->rels
11737 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11738 }
11739 cookie->rel = cookie->rels;
11740 return TRUE;
11741 }
11742
11743 /* Free the memory allocated by init_reloc_cookie_rels,
11744 if appropriate. */
11745
11746 static void
11747 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11748 asection *sec)
11749 {
11750 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11751 free (cookie->rels);
11752 }
11753
11754 /* Initialize the whole of COOKIE for input section SEC. */
11755
11756 static bfd_boolean
11757 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11758 struct bfd_link_info *info,
11759 asection *sec)
11760 {
11761 if (!init_reloc_cookie (cookie, info, sec->owner))
11762 goto error1;
11763 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11764 goto error2;
11765 return TRUE;
11766
11767 error2:
11768 fini_reloc_cookie (cookie, sec->owner);
11769 error1:
11770 return FALSE;
11771 }
11772
11773 /* Free the memory allocated by init_reloc_cookie_for_section,
11774 if appropriate. */
11775
11776 static void
11777 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11778 asection *sec)
11779 {
11780 fini_reloc_cookie_rels (cookie, sec);
11781 fini_reloc_cookie (cookie, sec->owner);
11782 }
11783 \f
11784 /* Garbage collect unused sections. */
11785
11786 /* Default gc_mark_hook. */
11787
11788 asection *
11789 _bfd_elf_gc_mark_hook (asection *sec,
11790 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11791 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11792 struct elf_link_hash_entry *h,
11793 Elf_Internal_Sym *sym)
11794 {
11795 const char *sec_name;
11796
11797 if (h != NULL)
11798 {
11799 switch (h->root.type)
11800 {
11801 case bfd_link_hash_defined:
11802 case bfd_link_hash_defweak:
11803 return h->root.u.def.section;
11804
11805 case bfd_link_hash_common:
11806 return h->root.u.c.p->section;
11807
11808 case bfd_link_hash_undefined:
11809 case bfd_link_hash_undefweak:
11810 /* To work around a glibc bug, keep all XXX input sections
11811 when there is an as yet undefined reference to __start_XXX
11812 or __stop_XXX symbols. The linker will later define such
11813 symbols for orphan input sections that have a name
11814 representable as a C identifier. */
11815 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11816 sec_name = h->root.root.string + 8;
11817 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11818 sec_name = h->root.root.string + 7;
11819 else
11820 sec_name = NULL;
11821
11822 if (sec_name && *sec_name != '\0')
11823 {
11824 bfd *i;
11825
11826 for (i = info->input_bfds; i; i = i->link.next)
11827 {
11828 sec = bfd_get_section_by_name (i, sec_name);
11829 if (sec)
11830 sec->flags |= SEC_KEEP;
11831 }
11832 }
11833 break;
11834
11835 default:
11836 break;
11837 }
11838 }
11839 else
11840 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11841
11842 return NULL;
11843 }
11844
11845 /* COOKIE->rel describes a relocation against section SEC, which is
11846 a section we've decided to keep. Return the section that contains
11847 the relocation symbol, or NULL if no section contains it. */
11848
11849 asection *
11850 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11851 elf_gc_mark_hook_fn gc_mark_hook,
11852 struct elf_reloc_cookie *cookie)
11853 {
11854 unsigned long r_symndx;
11855 struct elf_link_hash_entry *h;
11856
11857 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11858 if (r_symndx == STN_UNDEF)
11859 return NULL;
11860
11861 if (r_symndx >= cookie->locsymcount
11862 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11863 {
11864 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11865 if (h == NULL)
11866 {
11867 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11868 sec->owner);
11869 return NULL;
11870 }
11871 while (h->root.type == bfd_link_hash_indirect
11872 || h->root.type == bfd_link_hash_warning)
11873 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11874 h->mark = 1;
11875 /* If this symbol is weak and there is a non-weak definition, we
11876 keep the non-weak definition because many backends put
11877 dynamic reloc info on the non-weak definition for code
11878 handling copy relocs. */
11879 if (h->u.weakdef != NULL)
11880 h->u.weakdef->mark = 1;
11881 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11882 }
11883
11884 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11885 &cookie->locsyms[r_symndx]);
11886 }
11887
11888 /* COOKIE->rel describes a relocation against section SEC, which is
11889 a section we've decided to keep. Mark the section that contains
11890 the relocation symbol. */
11891
11892 bfd_boolean
11893 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11894 asection *sec,
11895 elf_gc_mark_hook_fn gc_mark_hook,
11896 struct elf_reloc_cookie *cookie)
11897 {
11898 asection *rsec;
11899
11900 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11901 if (rsec && !rsec->gc_mark)
11902 {
11903 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11904 || (rsec->owner->flags & DYNAMIC) != 0)
11905 rsec->gc_mark = 1;
11906 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11907 return FALSE;
11908 }
11909 return TRUE;
11910 }
11911
11912 /* The mark phase of garbage collection. For a given section, mark
11913 it and any sections in this section's group, and all the sections
11914 which define symbols to which it refers. */
11915
11916 bfd_boolean
11917 _bfd_elf_gc_mark (struct bfd_link_info *info,
11918 asection *sec,
11919 elf_gc_mark_hook_fn gc_mark_hook)
11920 {
11921 bfd_boolean ret;
11922 asection *group_sec, *eh_frame;
11923
11924 sec->gc_mark = 1;
11925
11926 /* Mark all the sections in the group. */
11927 group_sec = elf_section_data (sec)->next_in_group;
11928 if (group_sec && !group_sec->gc_mark)
11929 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11930 return FALSE;
11931
11932 /* Look through the section relocs. */
11933 ret = TRUE;
11934 eh_frame = elf_eh_frame_section (sec->owner);
11935 if ((sec->flags & SEC_RELOC) != 0
11936 && sec->reloc_count > 0
11937 && sec != eh_frame)
11938 {
11939 struct elf_reloc_cookie cookie;
11940
11941 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11942 ret = FALSE;
11943 else
11944 {
11945 for (; cookie.rel < cookie.relend; cookie.rel++)
11946 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11947 {
11948 ret = FALSE;
11949 break;
11950 }
11951 fini_reloc_cookie_for_section (&cookie, sec);
11952 }
11953 }
11954
11955 if (ret && eh_frame && elf_fde_list (sec))
11956 {
11957 struct elf_reloc_cookie cookie;
11958
11959 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11960 ret = FALSE;
11961 else
11962 {
11963 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11964 gc_mark_hook, &cookie))
11965 ret = FALSE;
11966 fini_reloc_cookie_for_section (&cookie, eh_frame);
11967 }
11968 }
11969
11970 return ret;
11971 }
11972
11973 /* Scan and mark sections in a special or debug section group. */
11974
11975 static void
11976 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11977 {
11978 /* Point to first section of section group. */
11979 asection *ssec;
11980 /* Used to iterate the section group. */
11981 asection *msec;
11982
11983 bfd_boolean is_special_grp = TRUE;
11984 bfd_boolean is_debug_grp = TRUE;
11985
11986 /* First scan to see if group contains any section other than debug
11987 and special section. */
11988 ssec = msec = elf_next_in_group (grp);
11989 do
11990 {
11991 if ((msec->flags & SEC_DEBUGGING) == 0)
11992 is_debug_grp = FALSE;
11993
11994 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11995 is_special_grp = FALSE;
11996
11997 msec = elf_next_in_group (msec);
11998 }
11999 while (msec != ssec);
12000
12001 /* If this is a pure debug section group or pure special section group,
12002 keep all sections in this group. */
12003 if (is_debug_grp || is_special_grp)
12004 {
12005 do
12006 {
12007 msec->gc_mark = 1;
12008 msec = elf_next_in_group (msec);
12009 }
12010 while (msec != ssec);
12011 }
12012 }
12013
12014 /* Keep debug and special sections. */
12015
12016 bfd_boolean
12017 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12018 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12019 {
12020 bfd *ibfd;
12021
12022 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12023 {
12024 asection *isec;
12025 bfd_boolean some_kept;
12026 bfd_boolean debug_frag_seen;
12027
12028 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12029 continue;
12030
12031 /* Ensure all linker created sections are kept,
12032 see if any other section is already marked,
12033 and note if we have any fragmented debug sections. */
12034 debug_frag_seen = some_kept = FALSE;
12035 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12036 {
12037 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12038 isec->gc_mark = 1;
12039 else if (isec->gc_mark)
12040 some_kept = TRUE;
12041
12042 if (debug_frag_seen == FALSE
12043 && (isec->flags & SEC_DEBUGGING)
12044 && CONST_STRNEQ (isec->name, ".debug_line."))
12045 debug_frag_seen = TRUE;
12046 }
12047
12048 /* If no section in this file will be kept, then we can
12049 toss out the debug and special sections. */
12050 if (!some_kept)
12051 continue;
12052
12053 /* Keep debug and special sections like .comment when they are
12054 not part of a group. Also keep section groups that contain
12055 just debug sections or special sections. */
12056 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12057 {
12058 if ((isec->flags & SEC_GROUP) != 0)
12059 _bfd_elf_gc_mark_debug_special_section_group (isec);
12060 else if (((isec->flags & SEC_DEBUGGING) != 0
12061 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12062 && elf_next_in_group (isec) == NULL)
12063 isec->gc_mark = 1;
12064 }
12065
12066 if (! debug_frag_seen)
12067 continue;
12068
12069 /* Look for CODE sections which are going to be discarded,
12070 and find and discard any fragmented debug sections which
12071 are associated with that code section. */
12072 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12073 if ((isec->flags & SEC_CODE) != 0
12074 && isec->gc_mark == 0)
12075 {
12076 unsigned int ilen;
12077 asection *dsec;
12078
12079 ilen = strlen (isec->name);
12080
12081 /* Association is determined by the name of the debug section
12082 containing the name of the code section as a suffix. For
12083 example .debug_line.text.foo is a debug section associated
12084 with .text.foo. */
12085 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12086 {
12087 unsigned int dlen;
12088
12089 if (dsec->gc_mark == 0
12090 || (dsec->flags & SEC_DEBUGGING) == 0)
12091 continue;
12092
12093 dlen = strlen (dsec->name);
12094
12095 if (dlen > ilen
12096 && strncmp (dsec->name + (dlen - ilen),
12097 isec->name, ilen) == 0)
12098 {
12099 dsec->gc_mark = 0;
12100 }
12101 }
12102 }
12103 }
12104 return TRUE;
12105 }
12106
12107 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12108
12109 struct elf_gc_sweep_symbol_info
12110 {
12111 struct bfd_link_info *info;
12112 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12113 bfd_boolean);
12114 };
12115
12116 static bfd_boolean
12117 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12118 {
12119 if (!h->mark
12120 && (((h->root.type == bfd_link_hash_defined
12121 || h->root.type == bfd_link_hash_defweak)
12122 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12123 && h->root.u.def.section->gc_mark))
12124 || h->root.type == bfd_link_hash_undefined
12125 || h->root.type == bfd_link_hash_undefweak))
12126 {
12127 struct elf_gc_sweep_symbol_info *inf;
12128
12129 inf = (struct elf_gc_sweep_symbol_info *) data;
12130 (*inf->hide_symbol) (inf->info, h, TRUE);
12131 h->def_regular = 0;
12132 h->ref_regular = 0;
12133 h->ref_regular_nonweak = 0;
12134 }
12135
12136 return TRUE;
12137 }
12138
12139 /* The sweep phase of garbage collection. Remove all garbage sections. */
12140
12141 typedef bfd_boolean (*gc_sweep_hook_fn)
12142 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12143
12144 static bfd_boolean
12145 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12146 {
12147 bfd *sub;
12148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12149 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12150 unsigned long section_sym_count;
12151 struct elf_gc_sweep_symbol_info sweep_info;
12152
12153 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12154 {
12155 asection *o;
12156
12157 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12158 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12159 continue;
12160
12161 for (o = sub->sections; o != NULL; o = o->next)
12162 {
12163 /* When any section in a section group is kept, we keep all
12164 sections in the section group. If the first member of
12165 the section group is excluded, we will also exclude the
12166 group section. */
12167 if (o->flags & SEC_GROUP)
12168 {
12169 asection *first = elf_next_in_group (o);
12170 o->gc_mark = first->gc_mark;
12171 }
12172
12173 if (o->gc_mark)
12174 continue;
12175
12176 /* Skip sweeping sections already excluded. */
12177 if (o->flags & SEC_EXCLUDE)
12178 continue;
12179
12180 /* Since this is early in the link process, it is simple
12181 to remove a section from the output. */
12182 o->flags |= SEC_EXCLUDE;
12183
12184 if (info->print_gc_sections && o->size != 0)
12185 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12186
12187 /* But we also have to update some of the relocation
12188 info we collected before. */
12189 if (gc_sweep_hook
12190 && (o->flags & SEC_RELOC) != 0
12191 && o->reloc_count != 0
12192 && !((info->strip == strip_all || info->strip == strip_debugger)
12193 && (o->flags & SEC_DEBUGGING) != 0)
12194 && !bfd_is_abs_section (o->output_section))
12195 {
12196 Elf_Internal_Rela *internal_relocs;
12197 bfd_boolean r;
12198
12199 internal_relocs
12200 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12201 info->keep_memory);
12202 if (internal_relocs == NULL)
12203 return FALSE;
12204
12205 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12206
12207 if (elf_section_data (o)->relocs != internal_relocs)
12208 free (internal_relocs);
12209
12210 if (!r)
12211 return FALSE;
12212 }
12213 }
12214 }
12215
12216 /* Remove the symbols that were in the swept sections from the dynamic
12217 symbol table. GCFIXME: Anyone know how to get them out of the
12218 static symbol table as well? */
12219 sweep_info.info = info;
12220 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12221 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12222 &sweep_info);
12223
12224 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12225 return TRUE;
12226 }
12227
12228 /* Propagate collected vtable information. This is called through
12229 elf_link_hash_traverse. */
12230
12231 static bfd_boolean
12232 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12233 {
12234 /* Those that are not vtables. */
12235 if (h->vtable == NULL || h->vtable->parent == NULL)
12236 return TRUE;
12237
12238 /* Those vtables that do not have parents, we cannot merge. */
12239 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12240 return TRUE;
12241
12242 /* If we've already been done, exit. */
12243 if (h->vtable->used && h->vtable->used[-1])
12244 return TRUE;
12245
12246 /* Make sure the parent's table is up to date. */
12247 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12248
12249 if (h->vtable->used == NULL)
12250 {
12251 /* None of this table's entries were referenced. Re-use the
12252 parent's table. */
12253 h->vtable->used = h->vtable->parent->vtable->used;
12254 h->vtable->size = h->vtable->parent->vtable->size;
12255 }
12256 else
12257 {
12258 size_t n;
12259 bfd_boolean *cu, *pu;
12260
12261 /* Or the parent's entries into ours. */
12262 cu = h->vtable->used;
12263 cu[-1] = TRUE;
12264 pu = h->vtable->parent->vtable->used;
12265 if (pu != NULL)
12266 {
12267 const struct elf_backend_data *bed;
12268 unsigned int log_file_align;
12269
12270 bed = get_elf_backend_data (h->root.u.def.section->owner);
12271 log_file_align = bed->s->log_file_align;
12272 n = h->vtable->parent->vtable->size >> log_file_align;
12273 while (n--)
12274 {
12275 if (*pu)
12276 *cu = TRUE;
12277 pu++;
12278 cu++;
12279 }
12280 }
12281 }
12282
12283 return TRUE;
12284 }
12285
12286 static bfd_boolean
12287 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12288 {
12289 asection *sec;
12290 bfd_vma hstart, hend;
12291 Elf_Internal_Rela *relstart, *relend, *rel;
12292 const struct elf_backend_data *bed;
12293 unsigned int log_file_align;
12294
12295 /* Take care of both those symbols that do not describe vtables as
12296 well as those that are not loaded. */
12297 if (h->vtable == NULL || h->vtable->parent == NULL)
12298 return TRUE;
12299
12300 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12301 || h->root.type == bfd_link_hash_defweak);
12302
12303 sec = h->root.u.def.section;
12304 hstart = h->root.u.def.value;
12305 hend = hstart + h->size;
12306
12307 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12308 if (!relstart)
12309 return *(bfd_boolean *) okp = FALSE;
12310 bed = get_elf_backend_data (sec->owner);
12311 log_file_align = bed->s->log_file_align;
12312
12313 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12314
12315 for (rel = relstart; rel < relend; ++rel)
12316 if (rel->r_offset >= hstart && rel->r_offset < hend)
12317 {
12318 /* If the entry is in use, do nothing. */
12319 if (h->vtable->used
12320 && (rel->r_offset - hstart) < h->vtable->size)
12321 {
12322 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12323 if (h->vtable->used[entry])
12324 continue;
12325 }
12326 /* Otherwise, kill it. */
12327 rel->r_offset = rel->r_info = rel->r_addend = 0;
12328 }
12329
12330 return TRUE;
12331 }
12332
12333 /* Mark sections containing dynamically referenced symbols. When
12334 building shared libraries, we must assume that any visible symbol is
12335 referenced. */
12336
12337 bfd_boolean
12338 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12339 {
12340 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12341 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12342
12343 if ((h->root.type == bfd_link_hash_defined
12344 || h->root.type == bfd_link_hash_defweak)
12345 && (h->ref_dynamic
12346 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12347 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12348 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12349 && (!info->executable
12350 || info->export_dynamic
12351 || (h->dynamic
12352 && d != NULL
12353 && (*d->match) (&d->head, NULL, h->root.root.string)))
12354 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12355 || !bfd_hide_sym_by_version (info->version_info,
12356 h->root.root.string)))))
12357 h->root.u.def.section->flags |= SEC_KEEP;
12358
12359 return TRUE;
12360 }
12361
12362 /* Keep all sections containing symbols undefined on the command-line,
12363 and the section containing the entry symbol. */
12364
12365 void
12366 _bfd_elf_gc_keep (struct bfd_link_info *info)
12367 {
12368 struct bfd_sym_chain *sym;
12369
12370 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12371 {
12372 struct elf_link_hash_entry *h;
12373
12374 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12375 FALSE, FALSE, FALSE);
12376
12377 if (h != NULL
12378 && (h->root.type == bfd_link_hash_defined
12379 || h->root.type == bfd_link_hash_defweak)
12380 && !bfd_is_abs_section (h->root.u.def.section))
12381 h->root.u.def.section->flags |= SEC_KEEP;
12382 }
12383 }
12384
12385 /* Do mark and sweep of unused sections. */
12386
12387 bfd_boolean
12388 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12389 {
12390 bfd_boolean ok = TRUE;
12391 bfd *sub;
12392 elf_gc_mark_hook_fn gc_mark_hook;
12393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12394 struct elf_link_hash_table *htab;
12395
12396 if (!bed->can_gc_sections
12397 || !is_elf_hash_table (info->hash))
12398 {
12399 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12400 return TRUE;
12401 }
12402
12403 bed->gc_keep (info);
12404 htab = elf_hash_table (info);
12405
12406 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12407 at the .eh_frame section if we can mark the FDEs individually. */
12408 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12409 {
12410 asection *sec;
12411 struct elf_reloc_cookie cookie;
12412
12413 sec = bfd_get_section_by_name (sub, ".eh_frame");
12414 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12415 {
12416 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12417 if (elf_section_data (sec)->sec_info
12418 && (sec->flags & SEC_LINKER_CREATED) == 0)
12419 elf_eh_frame_section (sub) = sec;
12420 fini_reloc_cookie_for_section (&cookie, sec);
12421 sec = bfd_get_next_section_by_name (sec);
12422 }
12423 }
12424
12425 /* Apply transitive closure to the vtable entry usage info. */
12426 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12427 if (!ok)
12428 return FALSE;
12429
12430 /* Kill the vtable relocations that were not used. */
12431 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12432 if (!ok)
12433 return FALSE;
12434
12435 /* Mark dynamically referenced symbols. */
12436 if (htab->dynamic_sections_created)
12437 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12438
12439 /* Grovel through relocs to find out who stays ... */
12440 gc_mark_hook = bed->gc_mark_hook;
12441 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12442 {
12443 asection *o;
12444
12445 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12446 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12447 continue;
12448
12449 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12450 Also treat note sections as a root, if the section is not part
12451 of a group. */
12452 for (o = sub->sections; o != NULL; o = o->next)
12453 if (!o->gc_mark
12454 && (o->flags & SEC_EXCLUDE) == 0
12455 && ((o->flags & SEC_KEEP) != 0
12456 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12457 && elf_next_in_group (o) == NULL )))
12458 {
12459 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12460 return FALSE;
12461 }
12462 }
12463
12464 /* Allow the backend to mark additional target specific sections. */
12465 bed->gc_mark_extra_sections (info, gc_mark_hook);
12466
12467 /* ... and mark SEC_EXCLUDE for those that go. */
12468 return elf_gc_sweep (abfd, info);
12469 }
12470 \f
12471 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12472
12473 bfd_boolean
12474 bfd_elf_gc_record_vtinherit (bfd *abfd,
12475 asection *sec,
12476 struct elf_link_hash_entry *h,
12477 bfd_vma offset)
12478 {
12479 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12480 struct elf_link_hash_entry **search, *child;
12481 bfd_size_type extsymcount;
12482 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12483
12484 /* The sh_info field of the symtab header tells us where the
12485 external symbols start. We don't care about the local symbols at
12486 this point. */
12487 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12488 if (!elf_bad_symtab (abfd))
12489 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12490
12491 sym_hashes = elf_sym_hashes (abfd);
12492 sym_hashes_end = sym_hashes + extsymcount;
12493
12494 /* Hunt down the child symbol, which is in this section at the same
12495 offset as the relocation. */
12496 for (search = sym_hashes; search != sym_hashes_end; ++search)
12497 {
12498 if ((child = *search) != NULL
12499 && (child->root.type == bfd_link_hash_defined
12500 || child->root.type == bfd_link_hash_defweak)
12501 && child->root.u.def.section == sec
12502 && child->root.u.def.value == offset)
12503 goto win;
12504 }
12505
12506 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12507 abfd, sec, (unsigned long) offset);
12508 bfd_set_error (bfd_error_invalid_operation);
12509 return FALSE;
12510
12511 win:
12512 if (!child->vtable)
12513 {
12514 child->vtable = ((struct elf_link_virtual_table_entry *)
12515 bfd_zalloc (abfd, sizeof (*child->vtable)));
12516 if (!child->vtable)
12517 return FALSE;
12518 }
12519 if (!h)
12520 {
12521 /* This *should* only be the absolute section. It could potentially
12522 be that someone has defined a non-global vtable though, which
12523 would be bad. It isn't worth paging in the local symbols to be
12524 sure though; that case should simply be handled by the assembler. */
12525
12526 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12527 }
12528 else
12529 child->vtable->parent = h;
12530
12531 return TRUE;
12532 }
12533
12534 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12535
12536 bfd_boolean
12537 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12538 asection *sec ATTRIBUTE_UNUSED,
12539 struct elf_link_hash_entry *h,
12540 bfd_vma addend)
12541 {
12542 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12543 unsigned int log_file_align = bed->s->log_file_align;
12544
12545 if (!h->vtable)
12546 {
12547 h->vtable = ((struct elf_link_virtual_table_entry *)
12548 bfd_zalloc (abfd, sizeof (*h->vtable)));
12549 if (!h->vtable)
12550 return FALSE;
12551 }
12552
12553 if (addend >= h->vtable->size)
12554 {
12555 size_t size, bytes, file_align;
12556 bfd_boolean *ptr = h->vtable->used;
12557
12558 /* While the symbol is undefined, we have to be prepared to handle
12559 a zero size. */
12560 file_align = 1 << log_file_align;
12561 if (h->root.type == bfd_link_hash_undefined)
12562 size = addend + file_align;
12563 else
12564 {
12565 size = h->size;
12566 if (addend >= size)
12567 {
12568 /* Oops! We've got a reference past the defined end of
12569 the table. This is probably a bug -- shall we warn? */
12570 size = addend + file_align;
12571 }
12572 }
12573 size = (size + file_align - 1) & -file_align;
12574
12575 /* Allocate one extra entry for use as a "done" flag for the
12576 consolidation pass. */
12577 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12578
12579 if (ptr)
12580 {
12581 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12582
12583 if (ptr != NULL)
12584 {
12585 size_t oldbytes;
12586
12587 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12588 * sizeof (bfd_boolean));
12589 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12590 }
12591 }
12592 else
12593 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12594
12595 if (ptr == NULL)
12596 return FALSE;
12597
12598 /* And arrange for that done flag to be at index -1. */
12599 h->vtable->used = ptr + 1;
12600 h->vtable->size = size;
12601 }
12602
12603 h->vtable->used[addend >> log_file_align] = TRUE;
12604
12605 return TRUE;
12606 }
12607
12608 /* Map an ELF section header flag to its corresponding string. */
12609 typedef struct
12610 {
12611 char *flag_name;
12612 flagword flag_value;
12613 } elf_flags_to_name_table;
12614
12615 static elf_flags_to_name_table elf_flags_to_names [] =
12616 {
12617 { "SHF_WRITE", SHF_WRITE },
12618 { "SHF_ALLOC", SHF_ALLOC },
12619 { "SHF_EXECINSTR", SHF_EXECINSTR },
12620 { "SHF_MERGE", SHF_MERGE },
12621 { "SHF_STRINGS", SHF_STRINGS },
12622 { "SHF_INFO_LINK", SHF_INFO_LINK},
12623 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12624 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12625 { "SHF_GROUP", SHF_GROUP },
12626 { "SHF_TLS", SHF_TLS },
12627 { "SHF_MASKOS", SHF_MASKOS },
12628 { "SHF_EXCLUDE", SHF_EXCLUDE },
12629 };
12630
12631 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12632 bfd_boolean
12633 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12634 struct flag_info *flaginfo,
12635 asection *section)
12636 {
12637 const bfd_vma sh_flags = elf_section_flags (section);
12638
12639 if (!flaginfo->flags_initialized)
12640 {
12641 bfd *obfd = info->output_bfd;
12642 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12643 struct flag_info_list *tf = flaginfo->flag_list;
12644 int with_hex = 0;
12645 int without_hex = 0;
12646
12647 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12648 {
12649 unsigned i;
12650 flagword (*lookup) (char *);
12651
12652 lookup = bed->elf_backend_lookup_section_flags_hook;
12653 if (lookup != NULL)
12654 {
12655 flagword hexval = (*lookup) ((char *) tf->name);
12656
12657 if (hexval != 0)
12658 {
12659 if (tf->with == with_flags)
12660 with_hex |= hexval;
12661 else if (tf->with == without_flags)
12662 without_hex |= hexval;
12663 tf->valid = TRUE;
12664 continue;
12665 }
12666 }
12667 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12668 {
12669 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12670 {
12671 if (tf->with == with_flags)
12672 with_hex |= elf_flags_to_names[i].flag_value;
12673 else if (tf->with == without_flags)
12674 without_hex |= elf_flags_to_names[i].flag_value;
12675 tf->valid = TRUE;
12676 break;
12677 }
12678 }
12679 if (!tf->valid)
12680 {
12681 info->callbacks->einfo
12682 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12683 return FALSE;
12684 }
12685 }
12686 flaginfo->flags_initialized = TRUE;
12687 flaginfo->only_with_flags |= with_hex;
12688 flaginfo->not_with_flags |= without_hex;
12689 }
12690
12691 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12692 return FALSE;
12693
12694 if ((flaginfo->not_with_flags & sh_flags) != 0)
12695 return FALSE;
12696
12697 return TRUE;
12698 }
12699
12700 struct alloc_got_off_arg {
12701 bfd_vma gotoff;
12702 struct bfd_link_info *info;
12703 };
12704
12705 /* We need a special top-level link routine to convert got reference counts
12706 to real got offsets. */
12707
12708 static bfd_boolean
12709 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12710 {
12711 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12712 bfd *obfd = gofarg->info->output_bfd;
12713 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12714
12715 if (h->got.refcount > 0)
12716 {
12717 h->got.offset = gofarg->gotoff;
12718 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12719 }
12720 else
12721 h->got.offset = (bfd_vma) -1;
12722
12723 return TRUE;
12724 }
12725
12726 /* And an accompanying bit to work out final got entry offsets once
12727 we're done. Should be called from final_link. */
12728
12729 bfd_boolean
12730 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12731 struct bfd_link_info *info)
12732 {
12733 bfd *i;
12734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12735 bfd_vma gotoff;
12736 struct alloc_got_off_arg gofarg;
12737
12738 BFD_ASSERT (abfd == info->output_bfd);
12739
12740 if (! is_elf_hash_table (info->hash))
12741 return FALSE;
12742
12743 /* The GOT offset is relative to the .got section, but the GOT header is
12744 put into the .got.plt section, if the backend uses it. */
12745 if (bed->want_got_plt)
12746 gotoff = 0;
12747 else
12748 gotoff = bed->got_header_size;
12749
12750 /* Do the local .got entries first. */
12751 for (i = info->input_bfds; i; i = i->link.next)
12752 {
12753 bfd_signed_vma *local_got;
12754 bfd_size_type j, locsymcount;
12755 Elf_Internal_Shdr *symtab_hdr;
12756
12757 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12758 continue;
12759
12760 local_got = elf_local_got_refcounts (i);
12761 if (!local_got)
12762 continue;
12763
12764 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12765 if (elf_bad_symtab (i))
12766 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12767 else
12768 locsymcount = symtab_hdr->sh_info;
12769
12770 for (j = 0; j < locsymcount; ++j)
12771 {
12772 if (local_got[j] > 0)
12773 {
12774 local_got[j] = gotoff;
12775 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12776 }
12777 else
12778 local_got[j] = (bfd_vma) -1;
12779 }
12780 }
12781
12782 /* Then the global .got entries. .plt refcounts are handled by
12783 adjust_dynamic_symbol */
12784 gofarg.gotoff = gotoff;
12785 gofarg.info = info;
12786 elf_link_hash_traverse (elf_hash_table (info),
12787 elf_gc_allocate_got_offsets,
12788 &gofarg);
12789 return TRUE;
12790 }
12791
12792 /* Many folk need no more in the way of final link than this, once
12793 got entry reference counting is enabled. */
12794
12795 bfd_boolean
12796 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12797 {
12798 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12799 return FALSE;
12800
12801 /* Invoke the regular ELF backend linker to do all the work. */
12802 return bfd_elf_final_link (abfd, info);
12803 }
12804
12805 bfd_boolean
12806 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12807 {
12808 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12809
12810 if (rcookie->bad_symtab)
12811 rcookie->rel = rcookie->rels;
12812
12813 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12814 {
12815 unsigned long r_symndx;
12816
12817 if (! rcookie->bad_symtab)
12818 if (rcookie->rel->r_offset > offset)
12819 return FALSE;
12820 if (rcookie->rel->r_offset != offset)
12821 continue;
12822
12823 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12824 if (r_symndx == STN_UNDEF)
12825 return TRUE;
12826
12827 if (r_symndx >= rcookie->locsymcount
12828 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12829 {
12830 struct elf_link_hash_entry *h;
12831
12832 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12833
12834 while (h->root.type == bfd_link_hash_indirect
12835 || h->root.type == bfd_link_hash_warning)
12836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12837
12838 if ((h->root.type == bfd_link_hash_defined
12839 || h->root.type == bfd_link_hash_defweak)
12840 && (h->root.u.def.section->owner != rcookie->abfd
12841 || h->root.u.def.section->kept_section != NULL
12842 || discarded_section (h->root.u.def.section)))
12843 return TRUE;
12844 }
12845 else
12846 {
12847 /* It's not a relocation against a global symbol,
12848 but it could be a relocation against a local
12849 symbol for a discarded section. */
12850 asection *isec;
12851 Elf_Internal_Sym *isym;
12852
12853 /* Need to: get the symbol; get the section. */
12854 isym = &rcookie->locsyms[r_symndx];
12855 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12856 if (isec != NULL
12857 && (isec->kept_section != NULL
12858 || discarded_section (isec)))
12859 return TRUE;
12860 }
12861 return FALSE;
12862 }
12863 return FALSE;
12864 }
12865
12866 /* Discard unneeded references to discarded sections.
12867 Returns -1 on error, 1 if any section's size was changed, 0 if
12868 nothing changed. This function assumes that the relocations are in
12869 sorted order, which is true for all known assemblers. */
12870
12871 int
12872 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12873 {
12874 struct elf_reloc_cookie cookie;
12875 asection *o;
12876 bfd *abfd;
12877 int changed = 0;
12878
12879 if (info->traditional_format
12880 || !is_elf_hash_table (info->hash))
12881 return 0;
12882
12883 o = bfd_get_section_by_name (output_bfd, ".stab");
12884 if (o != NULL)
12885 {
12886 asection *i;
12887
12888 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12889 {
12890 if (i->size == 0
12891 || i->reloc_count == 0
12892 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12893 continue;
12894
12895 abfd = i->owner;
12896 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12897 continue;
12898
12899 if (!init_reloc_cookie_for_section (&cookie, info, i))
12900 return -1;
12901
12902 if (_bfd_discard_section_stabs (abfd, i,
12903 elf_section_data (i)->sec_info,
12904 bfd_elf_reloc_symbol_deleted_p,
12905 &cookie))
12906 changed = 1;
12907
12908 fini_reloc_cookie_for_section (&cookie, i);
12909 }
12910 }
12911
12912 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12913 if (o != NULL)
12914 {
12915 asection *i;
12916
12917 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12918 {
12919 if (i->size == 0)
12920 continue;
12921
12922 abfd = i->owner;
12923 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12924 continue;
12925
12926 if (!init_reloc_cookie_for_section (&cookie, info, i))
12927 return -1;
12928
12929 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12930 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12931 bfd_elf_reloc_symbol_deleted_p,
12932 &cookie))
12933 changed = 1;
12934
12935 fini_reloc_cookie_for_section (&cookie, i);
12936 }
12937 }
12938
12939 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12940 {
12941 const struct elf_backend_data *bed;
12942
12943 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12944 continue;
12945
12946 bed = get_elf_backend_data (abfd);
12947
12948 if (bed->elf_backend_discard_info != NULL)
12949 {
12950 if (!init_reloc_cookie (&cookie, info, abfd))
12951 return -1;
12952
12953 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12954 changed = 1;
12955
12956 fini_reloc_cookie (&cookie, abfd);
12957 }
12958 }
12959
12960 if (info->eh_frame_hdr
12961 && !info->relocatable
12962 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12963 changed = 1;
12964
12965 return changed;
12966 }
12967
12968 bfd_boolean
12969 _bfd_elf_section_already_linked (bfd *abfd,
12970 asection *sec,
12971 struct bfd_link_info *info)
12972 {
12973 flagword flags;
12974 const char *name, *key;
12975 struct bfd_section_already_linked *l;
12976 struct bfd_section_already_linked_hash_entry *already_linked_list;
12977
12978 if (sec->output_section == bfd_abs_section_ptr)
12979 return FALSE;
12980
12981 flags = sec->flags;
12982
12983 /* Return if it isn't a linkonce section. A comdat group section
12984 also has SEC_LINK_ONCE set. */
12985 if ((flags & SEC_LINK_ONCE) == 0)
12986 return FALSE;
12987
12988 /* Don't put group member sections on our list of already linked
12989 sections. They are handled as a group via their group section. */
12990 if (elf_sec_group (sec) != NULL)
12991 return FALSE;
12992
12993 /* For a SHT_GROUP section, use the group signature as the key. */
12994 name = sec->name;
12995 if ((flags & SEC_GROUP) != 0
12996 && elf_next_in_group (sec) != NULL
12997 && elf_group_name (elf_next_in_group (sec)) != NULL)
12998 key = elf_group_name (elf_next_in_group (sec));
12999 else
13000 {
13001 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13002 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13003 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13004 key++;
13005 else
13006 /* Must be a user linkonce section that doesn't follow gcc's
13007 naming convention. In this case we won't be matching
13008 single member groups. */
13009 key = name;
13010 }
13011
13012 already_linked_list = bfd_section_already_linked_table_lookup (key);
13013
13014 for (l = already_linked_list->entry; l != NULL; l = l->next)
13015 {
13016 /* We may have 2 different types of sections on the list: group
13017 sections with a signature of <key> (<key> is some string),
13018 and linkonce sections named .gnu.linkonce.<type>.<key>.
13019 Match like sections. LTO plugin sections are an exception.
13020 They are always named .gnu.linkonce.t.<key> and match either
13021 type of section. */
13022 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13023 && ((flags & SEC_GROUP) != 0
13024 || strcmp (name, l->sec->name) == 0))
13025 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13026 {
13027 /* The section has already been linked. See if we should
13028 issue a warning. */
13029 if (!_bfd_handle_already_linked (sec, l, info))
13030 return FALSE;
13031
13032 if (flags & SEC_GROUP)
13033 {
13034 asection *first = elf_next_in_group (sec);
13035 asection *s = first;
13036
13037 while (s != NULL)
13038 {
13039 s->output_section = bfd_abs_section_ptr;
13040 /* Record which group discards it. */
13041 s->kept_section = l->sec;
13042 s = elf_next_in_group (s);
13043 /* These lists are circular. */
13044 if (s == first)
13045 break;
13046 }
13047 }
13048
13049 return TRUE;
13050 }
13051 }
13052
13053 /* A single member comdat group section may be discarded by a
13054 linkonce section and vice versa. */
13055 if ((flags & SEC_GROUP) != 0)
13056 {
13057 asection *first = elf_next_in_group (sec);
13058
13059 if (first != NULL && elf_next_in_group (first) == first)
13060 /* Check this single member group against linkonce sections. */
13061 for (l = already_linked_list->entry; l != NULL; l = l->next)
13062 if ((l->sec->flags & SEC_GROUP) == 0
13063 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13064 {
13065 first->output_section = bfd_abs_section_ptr;
13066 first->kept_section = l->sec;
13067 sec->output_section = bfd_abs_section_ptr;
13068 break;
13069 }
13070 }
13071 else
13072 /* Check this linkonce section against single member groups. */
13073 for (l = already_linked_list->entry; l != NULL; l = l->next)
13074 if (l->sec->flags & SEC_GROUP)
13075 {
13076 asection *first = elf_next_in_group (l->sec);
13077
13078 if (first != NULL
13079 && elf_next_in_group (first) == first
13080 && bfd_elf_match_symbols_in_sections (first, sec, info))
13081 {
13082 sec->output_section = bfd_abs_section_ptr;
13083 sec->kept_section = first;
13084 break;
13085 }
13086 }
13087
13088 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13089 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13090 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13091 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13092 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13093 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13094 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13095 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13096 The reverse order cannot happen as there is never a bfd with only the
13097 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13098 matter as here were are looking only for cross-bfd sections. */
13099
13100 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13101 for (l = already_linked_list->entry; l != NULL; l = l->next)
13102 if ((l->sec->flags & SEC_GROUP) == 0
13103 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13104 {
13105 if (abfd != l->sec->owner)
13106 sec->output_section = bfd_abs_section_ptr;
13107 break;
13108 }
13109
13110 /* This is the first section with this name. Record it. */
13111 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13112 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13113 return sec->output_section == bfd_abs_section_ptr;
13114 }
13115
13116 bfd_boolean
13117 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13118 {
13119 return sym->st_shndx == SHN_COMMON;
13120 }
13121
13122 unsigned int
13123 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13124 {
13125 return SHN_COMMON;
13126 }
13127
13128 asection *
13129 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13130 {
13131 return bfd_com_section_ptr;
13132 }
13133
13134 bfd_vma
13135 _bfd_elf_default_got_elt_size (bfd *abfd,
13136 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13137 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13138 bfd *ibfd ATTRIBUTE_UNUSED,
13139 unsigned long symndx ATTRIBUTE_UNUSED)
13140 {
13141 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13142 return bed->s->arch_size / 8;
13143 }
13144
13145 /* Routines to support the creation of dynamic relocs. */
13146
13147 /* Returns the name of the dynamic reloc section associated with SEC. */
13148
13149 static const char *
13150 get_dynamic_reloc_section_name (bfd * abfd,
13151 asection * sec,
13152 bfd_boolean is_rela)
13153 {
13154 char *name;
13155 const char *old_name = bfd_get_section_name (NULL, sec);
13156 const char *prefix = is_rela ? ".rela" : ".rel";
13157
13158 if (old_name == NULL)
13159 return NULL;
13160
13161 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13162 sprintf (name, "%s%s", prefix, old_name);
13163
13164 return name;
13165 }
13166
13167 /* Returns the dynamic reloc section associated with SEC.
13168 If necessary compute the name of the dynamic reloc section based
13169 on SEC's name (looked up in ABFD's string table) and the setting
13170 of IS_RELA. */
13171
13172 asection *
13173 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13174 asection * sec,
13175 bfd_boolean is_rela)
13176 {
13177 asection * reloc_sec = elf_section_data (sec)->sreloc;
13178
13179 if (reloc_sec == NULL)
13180 {
13181 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13182
13183 if (name != NULL)
13184 {
13185 reloc_sec = bfd_get_linker_section (abfd, name);
13186
13187 if (reloc_sec != NULL)
13188 elf_section_data (sec)->sreloc = reloc_sec;
13189 }
13190 }
13191
13192 return reloc_sec;
13193 }
13194
13195 /* Returns the dynamic reloc section associated with SEC. If the
13196 section does not exist it is created and attached to the DYNOBJ
13197 bfd and stored in the SRELOC field of SEC's elf_section_data
13198 structure.
13199
13200 ALIGNMENT is the alignment for the newly created section and
13201 IS_RELA defines whether the name should be .rela.<SEC's name>
13202 or .rel.<SEC's name>. The section name is looked up in the
13203 string table associated with ABFD. */
13204
13205 asection *
13206 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13207 bfd *dynobj,
13208 unsigned int alignment,
13209 bfd *abfd,
13210 bfd_boolean is_rela)
13211 {
13212 asection * reloc_sec = elf_section_data (sec)->sreloc;
13213
13214 if (reloc_sec == NULL)
13215 {
13216 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13217
13218 if (name == NULL)
13219 return NULL;
13220
13221 reloc_sec = bfd_get_linker_section (dynobj, name);
13222
13223 if (reloc_sec == NULL)
13224 {
13225 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13226 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13227 if ((sec->flags & SEC_ALLOC) != 0)
13228 flags |= SEC_ALLOC | SEC_LOAD;
13229
13230 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13231 if (reloc_sec != NULL)
13232 {
13233 /* _bfd_elf_get_sec_type_attr chooses a section type by
13234 name. Override as it may be wrong, eg. for a user
13235 section named "auto" we'll get ".relauto" which is
13236 seen to be a .rela section. */
13237 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13238 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13239 reloc_sec = NULL;
13240 }
13241 }
13242
13243 elf_section_data (sec)->sreloc = reloc_sec;
13244 }
13245
13246 return reloc_sec;
13247 }
13248
13249 /* Copy the ELF symbol type and other attributes for a linker script
13250 assignment from HSRC to HDEST. Generally this should be treated as
13251 if we found a strong non-dynamic definition for HDEST (except that
13252 ld ignores multiple definition errors). */
13253 void
13254 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13255 struct bfd_link_hash_entry *hdest,
13256 struct bfd_link_hash_entry *hsrc)
13257 {
13258 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13259 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13260 Elf_Internal_Sym isym;
13261
13262 ehdest->type = ehsrc->type;
13263 ehdest->target_internal = ehsrc->target_internal;
13264
13265 isym.st_other = ehsrc->other;
13266 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13267 }
13268
13269 /* Append a RELA relocation REL to section S in BFD. */
13270
13271 void
13272 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13273 {
13274 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13275 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13276 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13277 bed->s->swap_reloca_out (abfd, rel, loc);
13278 }
13279
13280 /* Append a REL relocation REL to section S in BFD. */
13281
13282 void
13283 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13284 {
13285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13286 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13287 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13288 bed->s->swap_reloc_out (abfd, rel, loc);
13289 }
This page took 0.296834 seconds and 5 git commands to generate.