bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->rela_plts_and_copies_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->rela_plts_and_copies_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && entry->isym.st_shndx < SHN_LORESERVE)
622 {
623 asection *s;
624
625 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
626 if (s == NULL || bfd_is_abs_section (s->output_section))
627 {
628 /* We can still bfd_release here as nothing has done another
629 bfd_alloc. We can't do this later in this function. */
630 bfd_release (input_bfd, entry);
631 return 2;
632 }
633 }
634
635 name = (bfd_elf_string_from_elf_section
636 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
637 entry->isym.st_name));
638
639 dynstr = elf_hash_table (info)->dynstr;
640 if (dynstr == NULL)
641 {
642 /* Create a strtab to hold the dynamic symbol names. */
643 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
644 if (dynstr == NULL)
645 return 0;
646 }
647
648 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
649 if (dynstr_index == (unsigned long) -1)
650 return 0;
651 entry->isym.st_name = dynstr_index;
652
653 eht = elf_hash_table (info);
654
655 entry->next = eht->dynlocal;
656 eht->dynlocal = entry;
657 entry->input_bfd = input_bfd;
658 entry->input_indx = input_indx;
659 eht->dynsymcount++;
660
661 /* Whatever binding the symbol had before, it's now local. */
662 entry->isym.st_info
663 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
664
665 /* The dynindx will be set at the end of size_dynamic_sections. */
666
667 return 1;
668 }
669
670 /* Return the dynindex of a local dynamic symbol. */
671
672 long
673 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
674 bfd *input_bfd,
675 long input_indx)
676 {
677 struct elf_link_local_dynamic_entry *e;
678
679 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
680 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
681 return e->dynindx;
682 return -1;
683 }
684
685 /* This function is used to renumber the dynamic symbols, if some of
686 them are removed because they are marked as local. This is called
687 via elf_link_hash_traverse. */
688
689 static bfd_boolean
690 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
691 void *data)
692 {
693 size_t *count = data;
694
695 if (h->root.type == bfd_link_hash_warning)
696 h = (struct elf_link_hash_entry *) h->root.u.i.link;
697
698 if (h->forced_local)
699 return TRUE;
700
701 if (h->dynindx != -1)
702 h->dynindx = ++(*count);
703
704 return TRUE;
705 }
706
707
708 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
709 STB_LOCAL binding. */
710
711 static bfd_boolean
712 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
713 void *data)
714 {
715 size_t *count = data;
716
717 if (h->root.type == bfd_link_hash_warning)
718 h = (struct elf_link_hash_entry *) h->root.u.i.link;
719
720 if (!h->forced_local)
721 return TRUE;
722
723 if (h->dynindx != -1)
724 h->dynindx = ++(*count);
725
726 return TRUE;
727 }
728
729 /* Return true if the dynamic symbol for a given section should be
730 omitted when creating a shared library. */
731 bfd_boolean
732 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
733 struct bfd_link_info *info,
734 asection *p)
735 {
736 struct elf_link_hash_table *htab;
737
738 switch (elf_section_data (p)->this_hdr.sh_type)
739 {
740 case SHT_PROGBITS:
741 case SHT_NOBITS:
742 /* If sh_type is yet undecided, assume it could be
743 SHT_PROGBITS/SHT_NOBITS. */
744 case SHT_NULL:
745 htab = elf_hash_table (info);
746 if (p == htab->tls_sec)
747 return FALSE;
748
749 if (htab->text_index_section != NULL)
750 return p != htab->text_index_section && p != htab->data_index_section;
751
752 if (strcmp (p->name, ".got") == 0
753 || strcmp (p->name, ".got.plt") == 0
754 || strcmp (p->name, ".plt") == 0)
755 {
756 asection *ip;
757
758 if (htab->dynobj != NULL
759 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
760 && (ip->flags & SEC_LINKER_CREATED)
761 && ip->output_section == p)
762 return TRUE;
763 }
764 return FALSE;
765
766 /* There shouldn't be section relative relocations
767 against any other section. */
768 default:
769 return TRUE;
770 }
771 }
772
773 /* Assign dynsym indices. In a shared library we generate a section
774 symbol for each output section, which come first. Next come symbols
775 which have been forced to local binding. Then all of the back-end
776 allocated local dynamic syms, followed by the rest of the global
777 symbols. */
778
779 static unsigned long
780 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
781 struct bfd_link_info *info,
782 unsigned long *section_sym_count)
783 {
784 unsigned long dynsymcount = 0;
785
786 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
787 {
788 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
789 asection *p;
790 for (p = output_bfd->sections; p ; p = p->next)
791 if ((p->flags & SEC_EXCLUDE) == 0
792 && (p->flags & SEC_ALLOC) != 0
793 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
794 elf_section_data (p)->dynindx = ++dynsymcount;
795 else
796 elf_section_data (p)->dynindx = 0;
797 }
798 *section_sym_count = dynsymcount;
799
800 elf_link_hash_traverse (elf_hash_table (info),
801 elf_link_renumber_local_hash_table_dynsyms,
802 &dynsymcount);
803
804 if (elf_hash_table (info)->dynlocal)
805 {
806 struct elf_link_local_dynamic_entry *p;
807 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
808 p->dynindx = ++dynsymcount;
809 }
810
811 elf_link_hash_traverse (elf_hash_table (info),
812 elf_link_renumber_hash_table_dynsyms,
813 &dynsymcount);
814
815 /* There is an unused NULL entry at the head of the table which
816 we must account for in our count. Unless there weren't any
817 symbols, which means we'll have no table at all. */
818 if (dynsymcount != 0)
819 ++dynsymcount;
820
821 elf_hash_table (info)->dynsymcount = dynsymcount;
822 return dynsymcount;
823 }
824
825 /* This function is called when we want to define a new symbol. It
826 handles the various cases which arise when we find a definition in
827 a dynamic object, or when there is already a definition in a
828 dynamic object. The new symbol is described by NAME, SYM, PSEC,
829 and PVALUE. We set SYM_HASH to the hash table entry. We set
830 OVERRIDE if the old symbol is overriding a new definition. We set
831 TYPE_CHANGE_OK if it is OK for the type to change. We set
832 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
833 change, we mean that we shouldn't warn if the type or size does
834 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
835 object is overridden by a regular object. */
836
837 bfd_boolean
838 _bfd_elf_merge_symbol (bfd *abfd,
839 struct bfd_link_info *info,
840 const char *name,
841 Elf_Internal_Sym *sym,
842 asection **psec,
843 bfd_vma *pvalue,
844 unsigned int *pold_alignment,
845 struct elf_link_hash_entry **sym_hash,
846 bfd_boolean *skip,
847 bfd_boolean *override,
848 bfd_boolean *type_change_ok,
849 bfd_boolean *size_change_ok)
850 {
851 asection *sec, *oldsec;
852 struct elf_link_hash_entry *h;
853 struct elf_link_hash_entry *flip;
854 int bind;
855 bfd *oldbfd;
856 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
857 bfd_boolean newweak, oldweak;
858 const struct elf_backend_data *bed;
859
860 *skip = FALSE;
861 *override = FALSE;
862
863 sec = *psec;
864 bind = ELF_ST_BIND (sym->st_info);
865
866 /* Silently discard TLS symbols from --just-syms. There's no way to
867 combine a static TLS block with a new TLS block for this executable. */
868 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
869 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
870 {
871 *skip = TRUE;
872 return TRUE;
873 }
874
875 if (! bfd_is_und_section (sec))
876 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
877 else
878 h = ((struct elf_link_hash_entry *)
879 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
880 if (h == NULL)
881 return FALSE;
882 *sym_hash = h;
883
884 bed = get_elf_backend_data (abfd);
885
886 /* This code is for coping with dynamic objects, and is only useful
887 if we are doing an ELF link. */
888 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
889 return TRUE;
890
891 /* For merging, we only care about real symbols. */
892
893 while (h->root.type == bfd_link_hash_indirect
894 || h->root.type == bfd_link_hash_warning)
895 h = (struct elf_link_hash_entry *) h->root.u.i.link;
896
897 /* We have to check it for every instance since the first few may be
898 refereences and not all compilers emit symbol type for undefined
899 symbols. */
900 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
901
902 /* If we just created the symbol, mark it as being an ELF symbol.
903 Other than that, there is nothing to do--there is no merge issue
904 with a newly defined symbol--so we just return. */
905
906 if (h->root.type == bfd_link_hash_new)
907 {
908 h->non_elf = 0;
909 return TRUE;
910 }
911
912 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
913 existing symbol. */
914
915 switch (h->root.type)
916 {
917 default:
918 oldbfd = NULL;
919 oldsec = NULL;
920 break;
921
922 case bfd_link_hash_undefined:
923 case bfd_link_hash_undefweak:
924 oldbfd = h->root.u.undef.abfd;
925 oldsec = NULL;
926 break;
927
928 case bfd_link_hash_defined:
929 case bfd_link_hash_defweak:
930 oldbfd = h->root.u.def.section->owner;
931 oldsec = h->root.u.def.section;
932 break;
933
934 case bfd_link_hash_common:
935 oldbfd = h->root.u.c.p->section->owner;
936 oldsec = h->root.u.c.p->section;
937 break;
938 }
939
940 /* In cases involving weak versioned symbols, we may wind up trying
941 to merge a symbol with itself. Catch that here, to avoid the
942 confusion that results if we try to override a symbol with
943 itself. The additional tests catch cases like
944 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
945 dynamic object, which we do want to handle here. */
946 if (abfd == oldbfd
947 && ((abfd->flags & DYNAMIC) == 0
948 || !h->def_regular))
949 return TRUE;
950
951 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
952 respectively, is from a dynamic object. */
953
954 newdyn = (abfd->flags & DYNAMIC) != 0;
955
956 olddyn = FALSE;
957 if (oldbfd != NULL)
958 olddyn = (oldbfd->flags & DYNAMIC) != 0;
959 else if (oldsec != NULL)
960 {
961 /* This handles the special SHN_MIPS_{TEXT,DATA} section
962 indices used by MIPS ELF. */
963 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
964 }
965
966 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
967 respectively, appear to be a definition rather than reference. */
968
969 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
970
971 olddef = (h->root.type != bfd_link_hash_undefined
972 && h->root.type != bfd_link_hash_undefweak
973 && h->root.type != bfd_link_hash_common);
974
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1811 {
1812 rinfo->failed = TRUE;
1813 return FALSE;
1814 }
1815
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1821
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1824
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1827
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1829
1830 t->vn_auxptr = a;
1831
1832 return TRUE;
1833 }
1834
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1839
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1849
1850 sinfo = data;
1851 info = sinfo->info;
1852
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1860 {
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1864 }
1865
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1870
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1874 {
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1877
1878 hidden = TRUE;
1879
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1884 {
1885 hidden = FALSE;
1886 ++p;
1887 }
1888
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1891 {
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1895 }
1896
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1899 {
1900 if (strcmp (t->name, p) == 0)
1901 {
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1905
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1909 {
1910 sinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1917
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1921
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1924
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1928 {
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1934 }
1935
1936 free (alc);
1937 break;
1938 }
1939 }
1940
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1944 {
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1947
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1952
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1956 {
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1964
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1972
1973 *pp = t;
1974
1975 h->verinfo.vertree = t;
1976 }
1977 else if (t == NULL)
1978 {
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1987 }
1988
1989 if (hidden)
1990 h->hidden = 1;
1991 }
1992
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1996 {
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2000
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (t->globals.list != NULL)
2008 {
2009 bfd_boolean matched;
2010
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2018 {
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2026 }
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 if (t->locals.list != NULL)
2036 {
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2040 {
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2047 }
2048
2049 if (d != NULL)
2050 break;
2051 }
2052 }
2053
2054 if (local_ver != NULL)
2055 {
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2059 {
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2061 }
2062 }
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2128 {
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2136 }
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2153
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2160 {
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2165
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2168
2169 if (o->reloc_count == 0)
2170 return NULL;
2171
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2173
2174 if (internal_relocs == NULL)
2175 {
2176 bfd_size_type size;
2177
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2186 }
2187
2188 if (external_relocs == NULL)
2189 {
2190 bfd_size_type size = rel_hdr->sh_size;
2191
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2198 }
2199
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231 }
2232
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2235
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2240 {
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2243
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2249
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2253
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2256
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2264
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2269 {
2270 struct elf_link_hash_entry **p;
2271
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2275
2276 elf_section_data (o)->rel_hashes = p;
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2285
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2293 {
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2302
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2305
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2308 {
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2311 }
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2315 {
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2318 }
2319 else
2320 {
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_format);
2325 return FALSE;
2326 }
2327
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2335
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2342 {
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2346 }
2347
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Make weak undefined symbols in PIE dynamic. */
2356
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2365
2366 return TRUE;
2367 }
2368
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2374
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2386 {
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2392 {
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2395 }
2396 else
2397 {
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 h->def_regular = 1;
2407 }
2408
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2412 {
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2414 {
2415 eif->failed = TRUE;
2416 return FALSE;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2437 }
2438
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2444
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2456
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2469 {
2470 bfd_boolean force_local;
2471
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2475 }
2476
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2482
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2487 {
2488 struct elf_link_hash_entry *weakdef;
2489
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2493
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2497
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2504 {
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2508 }
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2517
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2520 {
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2524
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2527
2528 if (h->root.type == bfd_link_hash_warning)
2529 {
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2532
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 }
2538
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2542
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2546
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2610
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2644 {
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2648
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2657 {
2658 mask >>= 1;
2659 --power_of_two;
2660 }
2661
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2664 {
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2669 }
2670
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2673
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2677
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2793 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2794 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2795 return TRUE;
2796
2797 /* Common symbols that become definitions don't get the DEF_REGULAR
2798 flag set, so test it first, and don't bail out. */
2799 if (ELF_COMMON_DEF_P (h))
2800 /* Do nothing. */;
2801 /* If we don't have a definition in a regular file, then we can't
2802 resolve locally. The sym is either undefined or dynamic. */
2803 else if (!h->def_regular)
2804 return FALSE;
2805
2806 /* Forced local symbols resolve locally. */
2807 if (h->forced_local)
2808 return TRUE;
2809
2810 /* As do non-dynamic symbols. */
2811 if (h->dynindx == -1)
2812 return TRUE;
2813
2814 /* At this point, we know the symbol is defined and dynamic. In an
2815 executable it must resolve locally, likewise when building symbolic
2816 shared libraries. */
2817 if (info->executable || SYMBOLIC_BIND (info, h))
2818 return TRUE;
2819
2820 /* Now deal with defined dynamic symbols in shared libraries. Ones
2821 with default visibility might not resolve locally. */
2822 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2823 return FALSE;
2824
2825 hash_table = elf_hash_table (info);
2826 if (!is_elf_hash_table (hash_table))
2827 return TRUE;
2828
2829 bed = get_elf_backend_data (hash_table->dynobj);
2830
2831 /* STV_PROTECTED non-function symbols are local. */
2832 if (!bed->is_function_type (h->type))
2833 return TRUE;
2834
2835 /* Function pointer equality tests may require that STV_PROTECTED
2836 symbols be treated as dynamic symbols, even when we know that the
2837 dynamic linker will resolve them locally. */
2838 return local_protected;
2839 }
2840
2841 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2842 aligned. Returns the first TLS output section. */
2843
2844 struct bfd_section *
2845 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2846 {
2847 struct bfd_section *sec, *tls;
2848 unsigned int align = 0;
2849
2850 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2851 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2852 break;
2853 tls = sec;
2854
2855 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2856 if (sec->alignment_power > align)
2857 align = sec->alignment_power;
2858
2859 elf_hash_table (info)->tls_sec = tls;
2860
2861 /* Ensure the alignment of the first section is the largest alignment,
2862 so that the tls segment starts aligned. */
2863 if (tls != NULL)
2864 tls->alignment_power = align;
2865
2866 return tls;
2867 }
2868
2869 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2870 static bfd_boolean
2871 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2872 Elf_Internal_Sym *sym)
2873 {
2874 const struct elf_backend_data *bed;
2875
2876 /* Local symbols do not count, but target specific ones might. */
2877 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2878 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2879 return FALSE;
2880
2881 bed = get_elf_backend_data (abfd);
2882 /* Function symbols do not count. */
2883 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2884 return FALSE;
2885
2886 /* If the section is undefined, then so is the symbol. */
2887 if (sym->st_shndx == SHN_UNDEF)
2888 return FALSE;
2889
2890 /* If the symbol is defined in the common section, then
2891 it is a common definition and so does not count. */
2892 if (bed->common_definition (sym))
2893 return FALSE;
2894
2895 /* If the symbol is in a target specific section then we
2896 must rely upon the backend to tell us what it is. */
2897 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2898 /* FIXME - this function is not coded yet:
2899
2900 return _bfd_is_global_symbol_definition (abfd, sym);
2901
2902 Instead for now assume that the definition is not global,
2903 Even if this is wrong, at least the linker will behave
2904 in the same way that it used to do. */
2905 return FALSE;
2906
2907 return TRUE;
2908 }
2909
2910 /* Search the symbol table of the archive element of the archive ABFD
2911 whose archive map contains a mention of SYMDEF, and determine if
2912 the symbol is defined in this element. */
2913 static bfd_boolean
2914 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2915 {
2916 Elf_Internal_Shdr * hdr;
2917 bfd_size_type symcount;
2918 bfd_size_type extsymcount;
2919 bfd_size_type extsymoff;
2920 Elf_Internal_Sym *isymbuf;
2921 Elf_Internal_Sym *isym;
2922 Elf_Internal_Sym *isymend;
2923 bfd_boolean result;
2924
2925 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2926 if (abfd == NULL)
2927 return FALSE;
2928
2929 if (! bfd_check_format (abfd, bfd_object))
2930 return FALSE;
2931
2932 /* If we have already included the element containing this symbol in the
2933 link then we do not need to include it again. Just claim that any symbol
2934 it contains is not a definition, so that our caller will not decide to
2935 (re)include this element. */
2936 if (abfd->archive_pass)
2937 return FALSE;
2938
2939 /* Select the appropriate symbol table. */
2940 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2941 hdr = &elf_tdata (abfd)->symtab_hdr;
2942 else
2943 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2944
2945 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2946
2947 /* The sh_info field of the symtab header tells us where the
2948 external symbols start. We don't care about the local symbols. */
2949 if (elf_bad_symtab (abfd))
2950 {
2951 extsymcount = symcount;
2952 extsymoff = 0;
2953 }
2954 else
2955 {
2956 extsymcount = symcount - hdr->sh_info;
2957 extsymoff = hdr->sh_info;
2958 }
2959
2960 if (extsymcount == 0)
2961 return FALSE;
2962
2963 /* Read in the symbol table. */
2964 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2965 NULL, NULL, NULL);
2966 if (isymbuf == NULL)
2967 return FALSE;
2968
2969 /* Scan the symbol table looking for SYMDEF. */
2970 result = FALSE;
2971 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2972 {
2973 const char *name;
2974
2975 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2976 isym->st_name);
2977 if (name == NULL)
2978 break;
2979
2980 if (strcmp (name, symdef->name) == 0)
2981 {
2982 result = is_global_data_symbol_definition (abfd, isym);
2983 break;
2984 }
2985 }
2986
2987 free (isymbuf);
2988
2989 return result;
2990 }
2991 \f
2992 /* Add an entry to the .dynamic table. */
2993
2994 bfd_boolean
2995 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2996 bfd_vma tag,
2997 bfd_vma val)
2998 {
2999 struct elf_link_hash_table *hash_table;
3000 const struct elf_backend_data *bed;
3001 asection *s;
3002 bfd_size_type newsize;
3003 bfd_byte *newcontents;
3004 Elf_Internal_Dyn dyn;
3005
3006 hash_table = elf_hash_table (info);
3007 if (! is_elf_hash_table (hash_table))
3008 return FALSE;
3009
3010 bed = get_elf_backend_data (hash_table->dynobj);
3011 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3012 BFD_ASSERT (s != NULL);
3013
3014 newsize = s->size + bed->s->sizeof_dyn;
3015 newcontents = bfd_realloc (s->contents, newsize);
3016 if (newcontents == NULL)
3017 return FALSE;
3018
3019 dyn.d_tag = tag;
3020 dyn.d_un.d_val = val;
3021 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3022
3023 s->size = newsize;
3024 s->contents = newcontents;
3025
3026 return TRUE;
3027 }
3028
3029 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3030 otherwise just check whether one already exists. Returns -1 on error,
3031 1 if a DT_NEEDED tag already exists, and 0 on success. */
3032
3033 static int
3034 elf_add_dt_needed_tag (bfd *abfd,
3035 struct bfd_link_info *info,
3036 const char *soname,
3037 bfd_boolean do_it)
3038 {
3039 struct elf_link_hash_table *hash_table;
3040 bfd_size_type oldsize;
3041 bfd_size_type strindex;
3042
3043 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3044 return -1;
3045
3046 hash_table = elf_hash_table (info);
3047 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3048 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3049 if (strindex == (bfd_size_type) -1)
3050 return -1;
3051
3052 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3053 {
3054 asection *sdyn;
3055 const struct elf_backend_data *bed;
3056 bfd_byte *extdyn;
3057
3058 bed = get_elf_backend_data (hash_table->dynobj);
3059 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3060 if (sdyn != NULL)
3061 for (extdyn = sdyn->contents;
3062 extdyn < sdyn->contents + sdyn->size;
3063 extdyn += bed->s->sizeof_dyn)
3064 {
3065 Elf_Internal_Dyn dyn;
3066
3067 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3068 if (dyn.d_tag == DT_NEEDED
3069 && dyn.d_un.d_val == strindex)
3070 {
3071 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3072 return 1;
3073 }
3074 }
3075 }
3076
3077 if (do_it)
3078 {
3079 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3080 return -1;
3081
3082 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3083 return -1;
3084 }
3085 else
3086 /* We were just checking for existence of the tag. */
3087 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3088
3089 return 0;
3090 }
3091
3092 /* Sort symbol by value and section. */
3093 static int
3094 elf_sort_symbol (const void *arg1, const void *arg2)
3095 {
3096 const struct elf_link_hash_entry *h1;
3097 const struct elf_link_hash_entry *h2;
3098 bfd_signed_vma vdiff;
3099
3100 h1 = *(const struct elf_link_hash_entry **) arg1;
3101 h2 = *(const struct elf_link_hash_entry **) arg2;
3102 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3103 if (vdiff != 0)
3104 return vdiff > 0 ? 1 : -1;
3105 else
3106 {
3107 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3108 if (sdiff != 0)
3109 return sdiff > 0 ? 1 : -1;
3110 }
3111 return 0;
3112 }
3113
3114 /* This function is used to adjust offsets into .dynstr for
3115 dynamic symbols. This is called via elf_link_hash_traverse. */
3116
3117 static bfd_boolean
3118 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3119 {
3120 struct elf_strtab_hash *dynstr = data;
3121
3122 if (h->root.type == bfd_link_hash_warning)
3123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3124
3125 if (h->dynindx != -1)
3126 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3127 return TRUE;
3128 }
3129
3130 /* Assign string offsets in .dynstr, update all structures referencing
3131 them. */
3132
3133 static bfd_boolean
3134 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3135 {
3136 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3137 struct elf_link_local_dynamic_entry *entry;
3138 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3139 bfd *dynobj = hash_table->dynobj;
3140 asection *sdyn;
3141 bfd_size_type size;
3142 const struct elf_backend_data *bed;
3143 bfd_byte *extdyn;
3144
3145 _bfd_elf_strtab_finalize (dynstr);
3146 size = _bfd_elf_strtab_size (dynstr);
3147
3148 bed = get_elf_backend_data (dynobj);
3149 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3150 BFD_ASSERT (sdyn != NULL);
3151
3152 /* Update all .dynamic entries referencing .dynstr strings. */
3153 for (extdyn = sdyn->contents;
3154 extdyn < sdyn->contents + sdyn->size;
3155 extdyn += bed->s->sizeof_dyn)
3156 {
3157 Elf_Internal_Dyn dyn;
3158
3159 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3160 switch (dyn.d_tag)
3161 {
3162 case DT_STRSZ:
3163 dyn.d_un.d_val = size;
3164 break;
3165 case DT_NEEDED:
3166 case DT_SONAME:
3167 case DT_RPATH:
3168 case DT_RUNPATH:
3169 case DT_FILTER:
3170 case DT_AUXILIARY:
3171 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3172 break;
3173 default:
3174 continue;
3175 }
3176 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3177 }
3178
3179 /* Now update local dynamic symbols. */
3180 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3181 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3182 entry->isym.st_name);
3183
3184 /* And the rest of dynamic symbols. */
3185 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3186
3187 /* Adjust version definitions. */
3188 if (elf_tdata (output_bfd)->cverdefs)
3189 {
3190 asection *s;
3191 bfd_byte *p;
3192 bfd_size_type i;
3193 Elf_Internal_Verdef def;
3194 Elf_Internal_Verdaux defaux;
3195
3196 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3197 p = s->contents;
3198 do
3199 {
3200 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3201 &def);
3202 p += sizeof (Elf_External_Verdef);
3203 if (def.vd_aux != sizeof (Elf_External_Verdef))
3204 continue;
3205 for (i = 0; i < def.vd_cnt; ++i)
3206 {
3207 _bfd_elf_swap_verdaux_in (output_bfd,
3208 (Elf_External_Verdaux *) p, &defaux);
3209 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3210 defaux.vda_name);
3211 _bfd_elf_swap_verdaux_out (output_bfd,
3212 &defaux, (Elf_External_Verdaux *) p);
3213 p += sizeof (Elf_External_Verdaux);
3214 }
3215 }
3216 while (def.vd_next);
3217 }
3218
3219 /* Adjust version references. */
3220 if (elf_tdata (output_bfd)->verref)
3221 {
3222 asection *s;
3223 bfd_byte *p;
3224 bfd_size_type i;
3225 Elf_Internal_Verneed need;
3226 Elf_Internal_Vernaux needaux;
3227
3228 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3229 p = s->contents;
3230 do
3231 {
3232 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3233 &need);
3234 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3235 _bfd_elf_swap_verneed_out (output_bfd, &need,
3236 (Elf_External_Verneed *) p);
3237 p += sizeof (Elf_External_Verneed);
3238 for (i = 0; i < need.vn_cnt; ++i)
3239 {
3240 _bfd_elf_swap_vernaux_in (output_bfd,
3241 (Elf_External_Vernaux *) p, &needaux);
3242 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3243 needaux.vna_name);
3244 _bfd_elf_swap_vernaux_out (output_bfd,
3245 &needaux,
3246 (Elf_External_Vernaux *) p);
3247 p += sizeof (Elf_External_Vernaux);
3248 }
3249 }
3250 while (need.vn_next);
3251 }
3252
3253 return TRUE;
3254 }
3255 \f
3256 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3257 The default is to only match when the INPUT and OUTPUT are exactly
3258 the same target. */
3259
3260 bfd_boolean
3261 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3262 const bfd_target *output)
3263 {
3264 return input == output;
3265 }
3266
3267 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3268 This version is used when different targets for the same architecture
3269 are virtually identical. */
3270
3271 bfd_boolean
3272 _bfd_elf_relocs_compatible (const bfd_target *input,
3273 const bfd_target *output)
3274 {
3275 const struct elf_backend_data *obed, *ibed;
3276
3277 if (input == output)
3278 return TRUE;
3279
3280 ibed = xvec_get_elf_backend_data (input);
3281 obed = xvec_get_elf_backend_data (output);
3282
3283 if (ibed->arch != obed->arch)
3284 return FALSE;
3285
3286 /* If both backends are using this function, deem them compatible. */
3287 return ibed->relocs_compatible == obed->relocs_compatible;
3288 }
3289
3290 /* Add symbols from an ELF object file to the linker hash table. */
3291
3292 static bfd_boolean
3293 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3294 {
3295 Elf_Internal_Shdr *hdr;
3296 bfd_size_type symcount;
3297 bfd_size_type extsymcount;
3298 bfd_size_type extsymoff;
3299 struct elf_link_hash_entry **sym_hash;
3300 bfd_boolean dynamic;
3301 Elf_External_Versym *extversym = NULL;
3302 Elf_External_Versym *ever;
3303 struct elf_link_hash_entry *weaks;
3304 struct elf_link_hash_entry **nondeflt_vers = NULL;
3305 bfd_size_type nondeflt_vers_cnt = 0;
3306 Elf_Internal_Sym *isymbuf = NULL;
3307 Elf_Internal_Sym *isym;
3308 Elf_Internal_Sym *isymend;
3309 const struct elf_backend_data *bed;
3310 bfd_boolean add_needed;
3311 struct elf_link_hash_table *htab;
3312 bfd_size_type amt;
3313 void *alloc_mark = NULL;
3314 struct bfd_hash_entry **old_table = NULL;
3315 unsigned int old_size = 0;
3316 unsigned int old_count = 0;
3317 void *old_tab = NULL;
3318 void *old_hash;
3319 void *old_ent;
3320 struct bfd_link_hash_entry *old_undefs = NULL;
3321 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3322 long old_dynsymcount = 0;
3323 size_t tabsize = 0;
3324 size_t hashsize = 0;
3325
3326 htab = elf_hash_table (info);
3327 bed = get_elf_backend_data (abfd);
3328
3329 if ((abfd->flags & DYNAMIC) == 0)
3330 dynamic = FALSE;
3331 else
3332 {
3333 dynamic = TRUE;
3334
3335 /* You can't use -r against a dynamic object. Also, there's no
3336 hope of using a dynamic object which does not exactly match
3337 the format of the output file. */
3338 if (info->relocatable
3339 || !is_elf_hash_table (htab)
3340 || info->output_bfd->xvec != abfd->xvec)
3341 {
3342 if (info->relocatable)
3343 bfd_set_error (bfd_error_invalid_operation);
3344 else
3345 bfd_set_error (bfd_error_wrong_format);
3346 goto error_return;
3347 }
3348 }
3349
3350 /* As a GNU extension, any input sections which are named
3351 .gnu.warning.SYMBOL are treated as warning symbols for the given
3352 symbol. This differs from .gnu.warning sections, which generate
3353 warnings when they are included in an output file. */
3354 if (info->executable)
3355 {
3356 asection *s;
3357
3358 for (s = abfd->sections; s != NULL; s = s->next)
3359 {
3360 const char *name;
3361
3362 name = bfd_get_section_name (abfd, s);
3363 if (CONST_STRNEQ (name, ".gnu.warning."))
3364 {
3365 char *msg;
3366 bfd_size_type sz;
3367
3368 name += sizeof ".gnu.warning." - 1;
3369
3370 /* If this is a shared object, then look up the symbol
3371 in the hash table. If it is there, and it is already
3372 been defined, then we will not be using the entry
3373 from this shared object, so we don't need to warn.
3374 FIXME: If we see the definition in a regular object
3375 later on, we will warn, but we shouldn't. The only
3376 fix is to keep track of what warnings we are supposed
3377 to emit, and then handle them all at the end of the
3378 link. */
3379 if (dynamic)
3380 {
3381 struct elf_link_hash_entry *h;
3382
3383 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3384
3385 /* FIXME: What about bfd_link_hash_common? */
3386 if (h != NULL
3387 && (h->root.type == bfd_link_hash_defined
3388 || h->root.type == bfd_link_hash_defweak))
3389 {
3390 /* We don't want to issue this warning. Clobber
3391 the section size so that the warning does not
3392 get copied into the output file. */
3393 s->size = 0;
3394 continue;
3395 }
3396 }
3397
3398 sz = s->size;
3399 msg = bfd_alloc (abfd, sz + 1);
3400 if (msg == NULL)
3401 goto error_return;
3402
3403 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3404 goto error_return;
3405
3406 msg[sz] = '\0';
3407
3408 if (! (_bfd_generic_link_add_one_symbol
3409 (info, abfd, name, BSF_WARNING, s, 0, msg,
3410 FALSE, bed->collect, NULL)))
3411 goto error_return;
3412
3413 if (! info->relocatable)
3414 {
3415 /* Clobber the section size so that the warning does
3416 not get copied into the output file. */
3417 s->size = 0;
3418
3419 /* Also set SEC_EXCLUDE, so that symbols defined in
3420 the warning section don't get copied to the output. */
3421 s->flags |= SEC_EXCLUDE;
3422 }
3423 }
3424 }
3425 }
3426
3427 add_needed = TRUE;
3428 if (! dynamic)
3429 {
3430 /* If we are creating a shared library, create all the dynamic
3431 sections immediately. We need to attach them to something,
3432 so we attach them to this BFD, provided it is the right
3433 format. FIXME: If there are no input BFD's of the same
3434 format as the output, we can't make a shared library. */
3435 if (info->shared
3436 && is_elf_hash_table (htab)
3437 && info->output_bfd->xvec == abfd->xvec
3438 && !htab->dynamic_sections_created)
3439 {
3440 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3441 goto error_return;
3442 }
3443 }
3444 else if (!is_elf_hash_table (htab))
3445 goto error_return;
3446 else
3447 {
3448 asection *s;
3449 const char *soname = NULL;
3450 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3451 int ret;
3452
3453 /* ld --just-symbols and dynamic objects don't mix very well.
3454 ld shouldn't allow it. */
3455 if ((s = abfd->sections) != NULL
3456 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3457 abort ();
3458
3459 /* If this dynamic lib was specified on the command line with
3460 --as-needed in effect, then we don't want to add a DT_NEEDED
3461 tag unless the lib is actually used. Similary for libs brought
3462 in by another lib's DT_NEEDED. When --no-add-needed is used
3463 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3464 any dynamic library in DT_NEEDED tags in the dynamic lib at
3465 all. */
3466 add_needed = (elf_dyn_lib_class (abfd)
3467 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3468 | DYN_NO_NEEDED)) == 0;
3469
3470 s = bfd_get_section_by_name (abfd, ".dynamic");
3471 if (s != NULL)
3472 {
3473 bfd_byte *dynbuf;
3474 bfd_byte *extdyn;
3475 unsigned int elfsec;
3476 unsigned long shlink;
3477
3478 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3479 goto error_free_dyn;
3480
3481 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3482 if (elfsec == SHN_BAD)
3483 goto error_free_dyn;
3484 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3485
3486 for (extdyn = dynbuf;
3487 extdyn < dynbuf + s->size;
3488 extdyn += bed->s->sizeof_dyn)
3489 {
3490 Elf_Internal_Dyn dyn;
3491
3492 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3493 if (dyn.d_tag == DT_SONAME)
3494 {
3495 unsigned int tagv = dyn.d_un.d_val;
3496 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3497 if (soname == NULL)
3498 goto error_free_dyn;
3499 }
3500 if (dyn.d_tag == DT_NEEDED)
3501 {
3502 struct bfd_link_needed_list *n, **pn;
3503 char *fnm, *anm;
3504 unsigned int tagv = dyn.d_un.d_val;
3505
3506 amt = sizeof (struct bfd_link_needed_list);
3507 n = bfd_alloc (abfd, amt);
3508 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3509 if (n == NULL || fnm == NULL)
3510 goto error_free_dyn;
3511 amt = strlen (fnm) + 1;
3512 anm = bfd_alloc (abfd, amt);
3513 if (anm == NULL)
3514 goto error_free_dyn;
3515 memcpy (anm, fnm, amt);
3516 n->name = anm;
3517 n->by = abfd;
3518 n->next = NULL;
3519 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3520 ;
3521 *pn = n;
3522 }
3523 if (dyn.d_tag == DT_RUNPATH)
3524 {
3525 struct bfd_link_needed_list *n, **pn;
3526 char *fnm, *anm;
3527 unsigned int tagv = dyn.d_un.d_val;
3528
3529 amt = sizeof (struct bfd_link_needed_list);
3530 n = bfd_alloc (abfd, amt);
3531 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3532 if (n == NULL || fnm == NULL)
3533 goto error_free_dyn;
3534 amt = strlen (fnm) + 1;
3535 anm = bfd_alloc (abfd, amt);
3536 if (anm == NULL)
3537 goto error_free_dyn;
3538 memcpy (anm, fnm, amt);
3539 n->name = anm;
3540 n->by = abfd;
3541 n->next = NULL;
3542 for (pn = & runpath;
3543 *pn != NULL;
3544 pn = &(*pn)->next)
3545 ;
3546 *pn = n;
3547 }
3548 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3549 if (!runpath && dyn.d_tag == DT_RPATH)
3550 {
3551 struct bfd_link_needed_list *n, **pn;
3552 char *fnm, *anm;
3553 unsigned int tagv = dyn.d_un.d_val;
3554
3555 amt = sizeof (struct bfd_link_needed_list);
3556 n = bfd_alloc (abfd, amt);
3557 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3558 if (n == NULL || fnm == NULL)
3559 goto error_free_dyn;
3560 amt = strlen (fnm) + 1;
3561 anm = bfd_alloc (abfd, amt);
3562 if (anm == NULL)
3563 {
3564 error_free_dyn:
3565 free (dynbuf);
3566 goto error_return;
3567 }
3568 memcpy (anm, fnm, amt);
3569 n->name = anm;
3570 n->by = abfd;
3571 n->next = NULL;
3572 for (pn = & rpath;
3573 *pn != NULL;
3574 pn = &(*pn)->next)
3575 ;
3576 *pn = n;
3577 }
3578 }
3579
3580 free (dynbuf);
3581 }
3582
3583 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3584 frees all more recently bfd_alloc'd blocks as well. */
3585 if (runpath)
3586 rpath = runpath;
3587
3588 if (rpath)
3589 {
3590 struct bfd_link_needed_list **pn;
3591 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3592 ;
3593 *pn = rpath;
3594 }
3595
3596 /* We do not want to include any of the sections in a dynamic
3597 object in the output file. We hack by simply clobbering the
3598 list of sections in the BFD. This could be handled more
3599 cleanly by, say, a new section flag; the existing
3600 SEC_NEVER_LOAD flag is not the one we want, because that one
3601 still implies that the section takes up space in the output
3602 file. */
3603 bfd_section_list_clear (abfd);
3604
3605 /* Find the name to use in a DT_NEEDED entry that refers to this
3606 object. If the object has a DT_SONAME entry, we use it.
3607 Otherwise, if the generic linker stuck something in
3608 elf_dt_name, we use that. Otherwise, we just use the file
3609 name. */
3610 if (soname == NULL || *soname == '\0')
3611 {
3612 soname = elf_dt_name (abfd);
3613 if (soname == NULL || *soname == '\0')
3614 soname = bfd_get_filename (abfd);
3615 }
3616
3617 /* Save the SONAME because sometimes the linker emulation code
3618 will need to know it. */
3619 elf_dt_name (abfd) = soname;
3620
3621 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3622 if (ret < 0)
3623 goto error_return;
3624
3625 /* If we have already included this dynamic object in the
3626 link, just ignore it. There is no reason to include a
3627 particular dynamic object more than once. */
3628 if (ret > 0)
3629 return TRUE;
3630 }
3631
3632 /* If this is a dynamic object, we always link against the .dynsym
3633 symbol table, not the .symtab symbol table. The dynamic linker
3634 will only see the .dynsym symbol table, so there is no reason to
3635 look at .symtab for a dynamic object. */
3636
3637 if (! dynamic || elf_dynsymtab (abfd) == 0)
3638 hdr = &elf_tdata (abfd)->symtab_hdr;
3639 else
3640 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3641
3642 symcount = hdr->sh_size / bed->s->sizeof_sym;
3643
3644 /* The sh_info field of the symtab header tells us where the
3645 external symbols start. We don't care about the local symbols at
3646 this point. */
3647 if (elf_bad_symtab (abfd))
3648 {
3649 extsymcount = symcount;
3650 extsymoff = 0;
3651 }
3652 else
3653 {
3654 extsymcount = symcount - hdr->sh_info;
3655 extsymoff = hdr->sh_info;
3656 }
3657
3658 sym_hash = NULL;
3659 if (extsymcount != 0)
3660 {
3661 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3662 NULL, NULL, NULL);
3663 if (isymbuf == NULL)
3664 goto error_return;
3665
3666 /* We store a pointer to the hash table entry for each external
3667 symbol. */
3668 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3669 sym_hash = bfd_alloc (abfd, amt);
3670 if (sym_hash == NULL)
3671 goto error_free_sym;
3672 elf_sym_hashes (abfd) = sym_hash;
3673 }
3674
3675 if (dynamic)
3676 {
3677 /* Read in any version definitions. */
3678 if (!_bfd_elf_slurp_version_tables (abfd,
3679 info->default_imported_symver))
3680 goto error_free_sym;
3681
3682 /* Read in the symbol versions, but don't bother to convert them
3683 to internal format. */
3684 if (elf_dynversym (abfd) != 0)
3685 {
3686 Elf_Internal_Shdr *versymhdr;
3687
3688 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3689 extversym = bfd_malloc (versymhdr->sh_size);
3690 if (extversym == NULL)
3691 goto error_free_sym;
3692 amt = versymhdr->sh_size;
3693 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3694 || bfd_bread (extversym, amt, abfd) != amt)
3695 goto error_free_vers;
3696 }
3697 }
3698
3699 /* If we are loading an as-needed shared lib, save the symbol table
3700 state before we start adding symbols. If the lib turns out
3701 to be unneeded, restore the state. */
3702 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3703 {
3704 unsigned int i;
3705 size_t entsize;
3706
3707 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3708 {
3709 struct bfd_hash_entry *p;
3710 struct elf_link_hash_entry *h;
3711
3712 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3713 {
3714 h = (struct elf_link_hash_entry *) p;
3715 entsize += htab->root.table.entsize;
3716 if (h->root.type == bfd_link_hash_warning)
3717 entsize += htab->root.table.entsize;
3718 }
3719 }
3720
3721 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3722 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3723 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3724 if (old_tab == NULL)
3725 goto error_free_vers;
3726
3727 /* Remember the current objalloc pointer, so that all mem for
3728 symbols added can later be reclaimed. */
3729 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3730 if (alloc_mark == NULL)
3731 goto error_free_vers;
3732
3733 /* Make a special call to the linker "notice" function to
3734 tell it that we are about to handle an as-needed lib. */
3735 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3736 notice_as_needed))
3737 goto error_free_vers;
3738
3739 /* Clone the symbol table and sym hashes. Remember some
3740 pointers into the symbol table, and dynamic symbol count. */
3741 old_hash = (char *) old_tab + tabsize;
3742 old_ent = (char *) old_hash + hashsize;
3743 memcpy (old_tab, htab->root.table.table, tabsize);
3744 memcpy (old_hash, sym_hash, hashsize);
3745 old_undefs = htab->root.undefs;
3746 old_undefs_tail = htab->root.undefs_tail;
3747 old_table = htab->root.table.table;
3748 old_size = htab->root.table.size;
3749 old_count = htab->root.table.count;
3750 old_dynsymcount = htab->dynsymcount;
3751
3752 for (i = 0; i < htab->root.table.size; i++)
3753 {
3754 struct bfd_hash_entry *p;
3755 struct elf_link_hash_entry *h;
3756
3757 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3758 {
3759 memcpy (old_ent, p, htab->root.table.entsize);
3760 old_ent = (char *) old_ent + htab->root.table.entsize;
3761 h = (struct elf_link_hash_entry *) p;
3762 if (h->root.type == bfd_link_hash_warning)
3763 {
3764 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3765 old_ent = (char *) old_ent + htab->root.table.entsize;
3766 }
3767 }
3768 }
3769 }
3770
3771 weaks = NULL;
3772 ever = extversym != NULL ? extversym + extsymoff : NULL;
3773 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3774 isym < isymend;
3775 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3776 {
3777 int bind;
3778 bfd_vma value;
3779 asection *sec, *new_sec;
3780 flagword flags;
3781 const char *name;
3782 struct elf_link_hash_entry *h;
3783 bfd_boolean definition;
3784 bfd_boolean size_change_ok;
3785 bfd_boolean type_change_ok;
3786 bfd_boolean new_weakdef;
3787 bfd_boolean override;
3788 bfd_boolean common;
3789 unsigned int old_alignment;
3790 bfd *old_bfd;
3791
3792 override = FALSE;
3793
3794 flags = BSF_NO_FLAGS;
3795 sec = NULL;
3796 value = isym->st_value;
3797 *sym_hash = NULL;
3798 common = bed->common_definition (isym);
3799
3800 bind = ELF_ST_BIND (isym->st_info);
3801 if (bind == STB_LOCAL)
3802 {
3803 /* This should be impossible, since ELF requires that all
3804 global symbols follow all local symbols, and that sh_info
3805 point to the first global symbol. Unfortunately, Irix 5
3806 screws this up. */
3807 continue;
3808 }
3809 else if (bind == STB_GLOBAL)
3810 {
3811 if (isym->st_shndx != SHN_UNDEF && !common)
3812 flags = BSF_GLOBAL;
3813 }
3814 else if (bind == STB_WEAK)
3815 flags = BSF_WEAK;
3816 else
3817 {
3818 /* Leave it up to the processor backend. */
3819 }
3820
3821 if (isym->st_shndx == SHN_UNDEF)
3822 sec = bfd_und_section_ptr;
3823 else if (isym->st_shndx == SHN_ABS)
3824 sec = bfd_abs_section_ptr;
3825 else if (isym->st_shndx == SHN_COMMON)
3826 {
3827 sec = bfd_com_section_ptr;
3828 /* What ELF calls the size we call the value. What ELF
3829 calls the value we call the alignment. */
3830 value = isym->st_size;
3831 }
3832 else
3833 {
3834 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3835 if (sec == NULL)
3836 sec = bfd_abs_section_ptr;
3837 else if (sec->kept_section)
3838 {
3839 /* Symbols from discarded section are undefined. We keep
3840 its visibility. */
3841 sec = bfd_und_section_ptr;
3842 isym->st_shndx = SHN_UNDEF;
3843 }
3844 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3845 value -= sec->vma;
3846 }
3847
3848 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3849 isym->st_name);
3850 if (name == NULL)
3851 goto error_free_vers;
3852
3853 if (isym->st_shndx == SHN_COMMON
3854 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3855 && !info->relocatable)
3856 {
3857 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3858
3859 if (tcomm == NULL)
3860 {
3861 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3862 (SEC_ALLOC
3863 | SEC_IS_COMMON
3864 | SEC_LINKER_CREATED
3865 | SEC_THREAD_LOCAL));
3866 if (tcomm == NULL)
3867 goto error_free_vers;
3868 }
3869 sec = tcomm;
3870 }
3871 else if (bed->elf_add_symbol_hook)
3872 {
3873 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3874 &sec, &value))
3875 goto error_free_vers;
3876
3877 /* The hook function sets the name to NULL if this symbol
3878 should be skipped for some reason. */
3879 if (name == NULL)
3880 continue;
3881 }
3882
3883 /* Sanity check that all possibilities were handled. */
3884 if (sec == NULL)
3885 {
3886 bfd_set_error (bfd_error_bad_value);
3887 goto error_free_vers;
3888 }
3889
3890 if (bfd_is_und_section (sec)
3891 || bfd_is_com_section (sec))
3892 definition = FALSE;
3893 else
3894 definition = TRUE;
3895
3896 size_change_ok = FALSE;
3897 type_change_ok = bed->type_change_ok;
3898 old_alignment = 0;
3899 old_bfd = NULL;
3900 new_sec = sec;
3901
3902 if (is_elf_hash_table (htab))
3903 {
3904 Elf_Internal_Versym iver;
3905 unsigned int vernum = 0;
3906 bfd_boolean skip;
3907
3908 if (ever == NULL)
3909 {
3910 if (info->default_imported_symver)
3911 /* Use the default symbol version created earlier. */
3912 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3913 else
3914 iver.vs_vers = 0;
3915 }
3916 else
3917 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3918
3919 vernum = iver.vs_vers & VERSYM_VERSION;
3920
3921 /* If this is a hidden symbol, or if it is not version
3922 1, we append the version name to the symbol name.
3923 However, we do not modify a non-hidden absolute symbol
3924 if it is not a function, because it might be the version
3925 symbol itself. FIXME: What if it isn't? */
3926 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3927 || (vernum > 1
3928 && (!bfd_is_abs_section (sec)
3929 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3930 {
3931 const char *verstr;
3932 size_t namelen, verlen, newlen;
3933 char *newname, *p;
3934
3935 if (isym->st_shndx != SHN_UNDEF)
3936 {
3937 if (vernum > elf_tdata (abfd)->cverdefs)
3938 verstr = NULL;
3939 else if (vernum > 1)
3940 verstr =
3941 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3942 else
3943 verstr = "";
3944
3945 if (verstr == NULL)
3946 {
3947 (*_bfd_error_handler)
3948 (_("%B: %s: invalid version %u (max %d)"),
3949 abfd, name, vernum,
3950 elf_tdata (abfd)->cverdefs);
3951 bfd_set_error (bfd_error_bad_value);
3952 goto error_free_vers;
3953 }
3954 }
3955 else
3956 {
3957 /* We cannot simply test for the number of
3958 entries in the VERNEED section since the
3959 numbers for the needed versions do not start
3960 at 0. */
3961 Elf_Internal_Verneed *t;
3962
3963 verstr = NULL;
3964 for (t = elf_tdata (abfd)->verref;
3965 t != NULL;
3966 t = t->vn_nextref)
3967 {
3968 Elf_Internal_Vernaux *a;
3969
3970 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3971 {
3972 if (a->vna_other == vernum)
3973 {
3974 verstr = a->vna_nodename;
3975 break;
3976 }
3977 }
3978 if (a != NULL)
3979 break;
3980 }
3981 if (verstr == NULL)
3982 {
3983 (*_bfd_error_handler)
3984 (_("%B: %s: invalid needed version %d"),
3985 abfd, name, vernum);
3986 bfd_set_error (bfd_error_bad_value);
3987 goto error_free_vers;
3988 }
3989 }
3990
3991 namelen = strlen (name);
3992 verlen = strlen (verstr);
3993 newlen = namelen + verlen + 2;
3994 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3995 && isym->st_shndx != SHN_UNDEF)
3996 ++newlen;
3997
3998 newname = bfd_hash_allocate (&htab->root.table, newlen);
3999 if (newname == NULL)
4000 goto error_free_vers;
4001 memcpy (newname, name, namelen);
4002 p = newname + namelen;
4003 *p++ = ELF_VER_CHR;
4004 /* If this is a defined non-hidden version symbol,
4005 we add another @ to the name. This indicates the
4006 default version of the symbol. */
4007 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4008 && isym->st_shndx != SHN_UNDEF)
4009 *p++ = ELF_VER_CHR;
4010 memcpy (p, verstr, verlen + 1);
4011
4012 name = newname;
4013 }
4014
4015 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4016 &value, &old_alignment,
4017 sym_hash, &skip, &override,
4018 &type_change_ok, &size_change_ok))
4019 goto error_free_vers;
4020
4021 if (skip)
4022 continue;
4023
4024 if (override)
4025 definition = FALSE;
4026
4027 h = *sym_hash;
4028 while (h->root.type == bfd_link_hash_indirect
4029 || h->root.type == bfd_link_hash_warning)
4030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4031
4032 /* Remember the old alignment if this is a common symbol, so
4033 that we don't reduce the alignment later on. We can't
4034 check later, because _bfd_generic_link_add_one_symbol
4035 will set a default for the alignment which we want to
4036 override. We also remember the old bfd where the existing
4037 definition comes from. */
4038 switch (h->root.type)
4039 {
4040 default:
4041 break;
4042
4043 case bfd_link_hash_defined:
4044 case bfd_link_hash_defweak:
4045 old_bfd = h->root.u.def.section->owner;
4046 break;
4047
4048 case bfd_link_hash_common:
4049 old_bfd = h->root.u.c.p->section->owner;
4050 old_alignment = h->root.u.c.p->alignment_power;
4051 break;
4052 }
4053
4054 if (elf_tdata (abfd)->verdef != NULL
4055 && ! override
4056 && vernum > 1
4057 && definition)
4058 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4059 }
4060
4061 if (! (_bfd_generic_link_add_one_symbol
4062 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4063 (struct bfd_link_hash_entry **) sym_hash)))
4064 goto error_free_vers;
4065
4066 h = *sym_hash;
4067 while (h->root.type == bfd_link_hash_indirect
4068 || h->root.type == bfd_link_hash_warning)
4069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4070 *sym_hash = h;
4071
4072 new_weakdef = FALSE;
4073 if (dynamic
4074 && definition
4075 && (flags & BSF_WEAK) != 0
4076 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4077 && is_elf_hash_table (htab)
4078 && h->u.weakdef == NULL)
4079 {
4080 /* Keep a list of all weak defined non function symbols from
4081 a dynamic object, using the weakdef field. Later in this
4082 function we will set the weakdef field to the correct
4083 value. We only put non-function symbols from dynamic
4084 objects on this list, because that happens to be the only
4085 time we need to know the normal symbol corresponding to a
4086 weak symbol, and the information is time consuming to
4087 figure out. If the weakdef field is not already NULL,
4088 then this symbol was already defined by some previous
4089 dynamic object, and we will be using that previous
4090 definition anyhow. */
4091
4092 h->u.weakdef = weaks;
4093 weaks = h;
4094 new_weakdef = TRUE;
4095 }
4096
4097 /* Set the alignment of a common symbol. */
4098 if ((common || bfd_is_com_section (sec))
4099 && h->root.type == bfd_link_hash_common)
4100 {
4101 unsigned int align;
4102
4103 if (common)
4104 align = bfd_log2 (isym->st_value);
4105 else
4106 {
4107 /* The new symbol is a common symbol in a shared object.
4108 We need to get the alignment from the section. */
4109 align = new_sec->alignment_power;
4110 }
4111 if (align > old_alignment
4112 /* Permit an alignment power of zero if an alignment of one
4113 is specified and no other alignments have been specified. */
4114 || (isym->st_value == 1 && old_alignment == 0))
4115 h->root.u.c.p->alignment_power = align;
4116 else
4117 h->root.u.c.p->alignment_power = old_alignment;
4118 }
4119
4120 if (is_elf_hash_table (htab))
4121 {
4122 bfd_boolean dynsym;
4123
4124 /* Check the alignment when a common symbol is involved. This
4125 can change when a common symbol is overridden by a normal
4126 definition or a common symbol is ignored due to the old
4127 normal definition. We need to make sure the maximum
4128 alignment is maintained. */
4129 if ((old_alignment || common)
4130 && h->root.type != bfd_link_hash_common)
4131 {
4132 unsigned int common_align;
4133 unsigned int normal_align;
4134 unsigned int symbol_align;
4135 bfd *normal_bfd;
4136 bfd *common_bfd;
4137
4138 symbol_align = ffs (h->root.u.def.value) - 1;
4139 if (h->root.u.def.section->owner != NULL
4140 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4141 {
4142 normal_align = h->root.u.def.section->alignment_power;
4143 if (normal_align > symbol_align)
4144 normal_align = symbol_align;
4145 }
4146 else
4147 normal_align = symbol_align;
4148
4149 if (old_alignment)
4150 {
4151 common_align = old_alignment;
4152 common_bfd = old_bfd;
4153 normal_bfd = abfd;
4154 }
4155 else
4156 {
4157 common_align = bfd_log2 (isym->st_value);
4158 common_bfd = abfd;
4159 normal_bfd = old_bfd;
4160 }
4161
4162 if (normal_align < common_align)
4163 {
4164 /* PR binutils/2735 */
4165 if (normal_bfd == NULL)
4166 (*_bfd_error_handler)
4167 (_("Warning: alignment %u of common symbol `%s' in %B"
4168 " is greater than the alignment (%u) of its section %A"),
4169 common_bfd, h->root.u.def.section,
4170 1 << common_align, name, 1 << normal_align);
4171 else
4172 (*_bfd_error_handler)
4173 (_("Warning: alignment %u of symbol `%s' in %B"
4174 " is smaller than %u in %B"),
4175 normal_bfd, common_bfd,
4176 1 << normal_align, name, 1 << common_align);
4177 }
4178 }
4179
4180 /* Remember the symbol size if it isn't undefined. */
4181 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4182 && (definition || h->size == 0))
4183 {
4184 if (h->size != 0
4185 && h->size != isym->st_size
4186 && ! size_change_ok)
4187 (*_bfd_error_handler)
4188 (_("Warning: size of symbol `%s' changed"
4189 " from %lu in %B to %lu in %B"),
4190 old_bfd, abfd,
4191 name, (unsigned long) h->size,
4192 (unsigned long) isym->st_size);
4193
4194 h->size = isym->st_size;
4195 }
4196
4197 /* If this is a common symbol, then we always want H->SIZE
4198 to be the size of the common symbol. The code just above
4199 won't fix the size if a common symbol becomes larger. We
4200 don't warn about a size change here, because that is
4201 covered by --warn-common. Allow changed between different
4202 function types. */
4203 if (h->root.type == bfd_link_hash_common)
4204 h->size = h->root.u.c.size;
4205
4206 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4207 && (definition || h->type == STT_NOTYPE))
4208 {
4209 if (h->type != STT_NOTYPE
4210 && h->type != ELF_ST_TYPE (isym->st_info)
4211 && ! type_change_ok)
4212 (*_bfd_error_handler)
4213 (_("Warning: type of symbol `%s' changed"
4214 " from %d to %d in %B"),
4215 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4216
4217 h->type = ELF_ST_TYPE (isym->st_info);
4218 }
4219
4220 /* If st_other has a processor-specific meaning, specific
4221 code might be needed here. We never merge the visibility
4222 attribute with the one from a dynamic object. */
4223 if (bed->elf_backend_merge_symbol_attribute)
4224 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4225 dynamic);
4226
4227 /* If this symbol has default visibility and the user has requested
4228 we not re-export it, then mark it as hidden. */
4229 if (definition && !dynamic
4230 && (abfd->no_export
4231 || (abfd->my_archive && abfd->my_archive->no_export))
4232 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4233 isym->st_other = (STV_HIDDEN
4234 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4235
4236 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4237 {
4238 unsigned char hvis, symvis, other, nvis;
4239
4240 /* Only merge the visibility. Leave the remainder of the
4241 st_other field to elf_backend_merge_symbol_attribute. */
4242 other = h->other & ~ELF_ST_VISIBILITY (-1);
4243
4244 /* Combine visibilities, using the most constraining one. */
4245 hvis = ELF_ST_VISIBILITY (h->other);
4246 symvis = ELF_ST_VISIBILITY (isym->st_other);
4247 if (! hvis)
4248 nvis = symvis;
4249 else if (! symvis)
4250 nvis = hvis;
4251 else
4252 nvis = hvis < symvis ? hvis : symvis;
4253
4254 h->other = other | nvis;
4255 }
4256
4257 /* Set a flag in the hash table entry indicating the type of
4258 reference or definition we just found. Keep a count of
4259 the number of dynamic symbols we find. A dynamic symbol
4260 is one which is referenced or defined by both a regular
4261 object and a shared object. */
4262 dynsym = FALSE;
4263 if (! dynamic)
4264 {
4265 if (! definition)
4266 {
4267 h->ref_regular = 1;
4268 if (bind != STB_WEAK)
4269 h->ref_regular_nonweak = 1;
4270 }
4271 else
4272 h->def_regular = 1;
4273 if (! info->executable
4274 || h->def_dynamic
4275 || h->ref_dynamic)
4276 dynsym = TRUE;
4277 }
4278 else
4279 {
4280 if (! definition)
4281 h->ref_dynamic = 1;
4282 else
4283 h->def_dynamic = 1;
4284 if (h->def_regular
4285 || h->ref_regular
4286 || (h->u.weakdef != NULL
4287 && ! new_weakdef
4288 && h->u.weakdef->dynindx != -1))
4289 dynsym = TRUE;
4290 }
4291
4292 if (definition && (sec->flags & SEC_DEBUGGING))
4293 {
4294 /* We don't want to make debug symbol dynamic. */
4295 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4296 dynsym = FALSE;
4297 }
4298
4299 /* Check to see if we need to add an indirect symbol for
4300 the default name. */
4301 if (definition || h->root.type == bfd_link_hash_common)
4302 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4303 &sec, &value, &dynsym,
4304 override))
4305 goto error_free_vers;
4306
4307 if (definition && !dynamic)
4308 {
4309 char *p = strchr (name, ELF_VER_CHR);
4310 if (p != NULL && p[1] != ELF_VER_CHR)
4311 {
4312 /* Queue non-default versions so that .symver x, x@FOO
4313 aliases can be checked. */
4314 if (!nondeflt_vers)
4315 {
4316 amt = ((isymend - isym + 1)
4317 * sizeof (struct elf_link_hash_entry *));
4318 nondeflt_vers = bfd_malloc (amt);
4319 if (!nondeflt_vers)
4320 goto error_free_vers;
4321 }
4322 nondeflt_vers[nondeflt_vers_cnt++] = h;
4323 }
4324 }
4325
4326 if (dynsym && h->dynindx == -1)
4327 {
4328 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4329 goto error_free_vers;
4330 if (h->u.weakdef != NULL
4331 && ! new_weakdef
4332 && h->u.weakdef->dynindx == -1)
4333 {
4334 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4335 goto error_free_vers;
4336 }
4337 }
4338 else if (dynsym && h->dynindx != -1)
4339 /* If the symbol already has a dynamic index, but
4340 visibility says it should not be visible, turn it into
4341 a local symbol. */
4342 switch (ELF_ST_VISIBILITY (h->other))
4343 {
4344 case STV_INTERNAL:
4345 case STV_HIDDEN:
4346 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4347 dynsym = FALSE;
4348 break;
4349 }
4350
4351 if (!add_needed
4352 && definition
4353 && dynsym
4354 && h->ref_regular)
4355 {
4356 int ret;
4357 const char *soname = elf_dt_name (abfd);
4358
4359 /* A symbol from a library loaded via DT_NEEDED of some
4360 other library is referenced by a regular object.
4361 Add a DT_NEEDED entry for it. Issue an error if
4362 --no-add-needed is used. */
4363 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4364 {
4365 (*_bfd_error_handler)
4366 (_("%s: invalid DSO for symbol `%s' definition"),
4367 abfd, name);
4368 bfd_set_error (bfd_error_bad_value);
4369 goto error_free_vers;
4370 }
4371
4372 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4373
4374 add_needed = TRUE;
4375 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4376 if (ret < 0)
4377 goto error_free_vers;
4378
4379 BFD_ASSERT (ret == 0);
4380 }
4381 }
4382 }
4383
4384 if (extversym != NULL)
4385 {
4386 free (extversym);
4387 extversym = NULL;
4388 }
4389
4390 if (isymbuf != NULL)
4391 {
4392 free (isymbuf);
4393 isymbuf = NULL;
4394 }
4395
4396 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4397 {
4398 unsigned int i;
4399
4400 /* Restore the symbol table. */
4401 if (bed->as_needed_cleanup)
4402 (*bed->as_needed_cleanup) (abfd, info);
4403 old_hash = (char *) old_tab + tabsize;
4404 old_ent = (char *) old_hash + hashsize;
4405 sym_hash = elf_sym_hashes (abfd);
4406 htab->root.table.table = old_table;
4407 htab->root.table.size = old_size;
4408 htab->root.table.count = old_count;
4409 memcpy (htab->root.table.table, old_tab, tabsize);
4410 memcpy (sym_hash, old_hash, hashsize);
4411 htab->root.undefs = old_undefs;
4412 htab->root.undefs_tail = old_undefs_tail;
4413 for (i = 0; i < htab->root.table.size; i++)
4414 {
4415 struct bfd_hash_entry *p;
4416 struct elf_link_hash_entry *h;
4417
4418 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4419 {
4420 h = (struct elf_link_hash_entry *) p;
4421 if (h->root.type == bfd_link_hash_warning)
4422 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4423 if (h->dynindx >= old_dynsymcount)
4424 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4425
4426 memcpy (p, old_ent, htab->root.table.entsize);
4427 old_ent = (char *) old_ent + htab->root.table.entsize;
4428 h = (struct elf_link_hash_entry *) p;
4429 if (h->root.type == bfd_link_hash_warning)
4430 {
4431 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4432 old_ent = (char *) old_ent + htab->root.table.entsize;
4433 }
4434 }
4435 }
4436
4437 /* Make a special call to the linker "notice" function to
4438 tell it that symbols added for crefs may need to be removed. */
4439 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4440 notice_not_needed))
4441 goto error_free_vers;
4442
4443 free (old_tab);
4444 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4445 alloc_mark);
4446 if (nondeflt_vers != NULL)
4447 free (nondeflt_vers);
4448 return TRUE;
4449 }
4450
4451 if (old_tab != NULL)
4452 {
4453 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4454 notice_needed))
4455 goto error_free_vers;
4456 free (old_tab);
4457 old_tab = NULL;
4458 }
4459
4460 /* Now that all the symbols from this input file are created, handle
4461 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4462 if (nondeflt_vers != NULL)
4463 {
4464 bfd_size_type cnt, symidx;
4465
4466 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4467 {
4468 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4469 char *shortname, *p;
4470
4471 p = strchr (h->root.root.string, ELF_VER_CHR);
4472 if (p == NULL
4473 || (h->root.type != bfd_link_hash_defined
4474 && h->root.type != bfd_link_hash_defweak))
4475 continue;
4476
4477 amt = p - h->root.root.string;
4478 shortname = bfd_malloc (amt + 1);
4479 if (!shortname)
4480 goto error_free_vers;
4481 memcpy (shortname, h->root.root.string, amt);
4482 shortname[amt] = '\0';
4483
4484 hi = (struct elf_link_hash_entry *)
4485 bfd_link_hash_lookup (&htab->root, shortname,
4486 FALSE, FALSE, FALSE);
4487 if (hi != NULL
4488 && hi->root.type == h->root.type
4489 && hi->root.u.def.value == h->root.u.def.value
4490 && hi->root.u.def.section == h->root.u.def.section)
4491 {
4492 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4493 hi->root.type = bfd_link_hash_indirect;
4494 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4495 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4496 sym_hash = elf_sym_hashes (abfd);
4497 if (sym_hash)
4498 for (symidx = 0; symidx < extsymcount; ++symidx)
4499 if (sym_hash[symidx] == hi)
4500 {
4501 sym_hash[symidx] = h;
4502 break;
4503 }
4504 }
4505 free (shortname);
4506 }
4507 free (nondeflt_vers);
4508 nondeflt_vers = NULL;
4509 }
4510
4511 /* Now set the weakdefs field correctly for all the weak defined
4512 symbols we found. The only way to do this is to search all the
4513 symbols. Since we only need the information for non functions in
4514 dynamic objects, that's the only time we actually put anything on
4515 the list WEAKS. We need this information so that if a regular
4516 object refers to a symbol defined weakly in a dynamic object, the
4517 real symbol in the dynamic object is also put in the dynamic
4518 symbols; we also must arrange for both symbols to point to the
4519 same memory location. We could handle the general case of symbol
4520 aliasing, but a general symbol alias can only be generated in
4521 assembler code, handling it correctly would be very time
4522 consuming, and other ELF linkers don't handle general aliasing
4523 either. */
4524 if (weaks != NULL)
4525 {
4526 struct elf_link_hash_entry **hpp;
4527 struct elf_link_hash_entry **hppend;
4528 struct elf_link_hash_entry **sorted_sym_hash;
4529 struct elf_link_hash_entry *h;
4530 size_t sym_count;
4531
4532 /* Since we have to search the whole symbol list for each weak
4533 defined symbol, search time for N weak defined symbols will be
4534 O(N^2). Binary search will cut it down to O(NlogN). */
4535 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4536 sorted_sym_hash = bfd_malloc (amt);
4537 if (sorted_sym_hash == NULL)
4538 goto error_return;
4539 sym_hash = sorted_sym_hash;
4540 hpp = elf_sym_hashes (abfd);
4541 hppend = hpp + extsymcount;
4542 sym_count = 0;
4543 for (; hpp < hppend; hpp++)
4544 {
4545 h = *hpp;
4546 if (h != NULL
4547 && h->root.type == bfd_link_hash_defined
4548 && !bed->is_function_type (h->type))
4549 {
4550 *sym_hash = h;
4551 sym_hash++;
4552 sym_count++;
4553 }
4554 }
4555
4556 qsort (sorted_sym_hash, sym_count,
4557 sizeof (struct elf_link_hash_entry *),
4558 elf_sort_symbol);
4559
4560 while (weaks != NULL)
4561 {
4562 struct elf_link_hash_entry *hlook;
4563 asection *slook;
4564 bfd_vma vlook;
4565 long ilook;
4566 size_t i, j, idx;
4567
4568 hlook = weaks;
4569 weaks = hlook->u.weakdef;
4570 hlook->u.weakdef = NULL;
4571
4572 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4573 || hlook->root.type == bfd_link_hash_defweak
4574 || hlook->root.type == bfd_link_hash_common
4575 || hlook->root.type == bfd_link_hash_indirect);
4576 slook = hlook->root.u.def.section;
4577 vlook = hlook->root.u.def.value;
4578
4579 ilook = -1;
4580 i = 0;
4581 j = sym_count;
4582 while (i < j)
4583 {
4584 bfd_signed_vma vdiff;
4585 idx = (i + j) / 2;
4586 h = sorted_sym_hash [idx];
4587 vdiff = vlook - h->root.u.def.value;
4588 if (vdiff < 0)
4589 j = idx;
4590 else if (vdiff > 0)
4591 i = idx + 1;
4592 else
4593 {
4594 long sdiff = slook->id - h->root.u.def.section->id;
4595 if (sdiff < 0)
4596 j = idx;
4597 else if (sdiff > 0)
4598 i = idx + 1;
4599 else
4600 {
4601 ilook = idx;
4602 break;
4603 }
4604 }
4605 }
4606
4607 /* We didn't find a value/section match. */
4608 if (ilook == -1)
4609 continue;
4610
4611 for (i = ilook; i < sym_count; i++)
4612 {
4613 h = sorted_sym_hash [i];
4614
4615 /* Stop if value or section doesn't match. */
4616 if (h->root.u.def.value != vlook
4617 || h->root.u.def.section != slook)
4618 break;
4619 else if (h != hlook)
4620 {
4621 hlook->u.weakdef = h;
4622
4623 /* If the weak definition is in the list of dynamic
4624 symbols, make sure the real definition is put
4625 there as well. */
4626 if (hlook->dynindx != -1 && h->dynindx == -1)
4627 {
4628 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4629 goto error_return;
4630 }
4631
4632 /* If the real definition is in the list of dynamic
4633 symbols, make sure the weak definition is put
4634 there as well. If we don't do this, then the
4635 dynamic loader might not merge the entries for the
4636 real definition and the weak definition. */
4637 if (h->dynindx != -1 && hlook->dynindx == -1)
4638 {
4639 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4640 goto error_return;
4641 }
4642 break;
4643 }
4644 }
4645 }
4646
4647 free (sorted_sym_hash);
4648 }
4649
4650 if (bed->check_directives)
4651 (*bed->check_directives) (abfd, info);
4652
4653 /* If this object is the same format as the output object, and it is
4654 not a shared library, then let the backend look through the
4655 relocs.
4656
4657 This is required to build global offset table entries and to
4658 arrange for dynamic relocs. It is not required for the
4659 particular common case of linking non PIC code, even when linking
4660 against shared libraries, but unfortunately there is no way of
4661 knowing whether an object file has been compiled PIC or not.
4662 Looking through the relocs is not particularly time consuming.
4663 The problem is that we must either (1) keep the relocs in memory,
4664 which causes the linker to require additional runtime memory or
4665 (2) read the relocs twice from the input file, which wastes time.
4666 This would be a good case for using mmap.
4667
4668 I have no idea how to handle linking PIC code into a file of a
4669 different format. It probably can't be done. */
4670 if (! dynamic
4671 && is_elf_hash_table (htab)
4672 && bed->check_relocs != NULL
4673 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4674 {
4675 asection *o;
4676
4677 for (o = abfd->sections; o != NULL; o = o->next)
4678 {
4679 Elf_Internal_Rela *internal_relocs;
4680 bfd_boolean ok;
4681
4682 if ((o->flags & SEC_RELOC) == 0
4683 || o->reloc_count == 0
4684 || ((info->strip == strip_all || info->strip == strip_debugger)
4685 && (o->flags & SEC_DEBUGGING) != 0)
4686 || bfd_is_abs_section (o->output_section))
4687 continue;
4688
4689 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4690 info->keep_memory);
4691 if (internal_relocs == NULL)
4692 goto error_return;
4693
4694 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4695
4696 if (elf_section_data (o)->relocs != internal_relocs)
4697 free (internal_relocs);
4698
4699 if (! ok)
4700 goto error_return;
4701 }
4702 }
4703
4704 /* If this is a non-traditional link, try to optimize the handling
4705 of the .stab/.stabstr sections. */
4706 if (! dynamic
4707 && ! info->traditional_format
4708 && is_elf_hash_table (htab)
4709 && (info->strip != strip_all && info->strip != strip_debugger))
4710 {
4711 asection *stabstr;
4712
4713 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4714 if (stabstr != NULL)
4715 {
4716 bfd_size_type string_offset = 0;
4717 asection *stab;
4718
4719 for (stab = abfd->sections; stab; stab = stab->next)
4720 if (CONST_STRNEQ (stab->name, ".stab")
4721 && (!stab->name[5] ||
4722 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4723 && (stab->flags & SEC_MERGE) == 0
4724 && !bfd_is_abs_section (stab->output_section))
4725 {
4726 struct bfd_elf_section_data *secdata;
4727
4728 secdata = elf_section_data (stab);
4729 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4730 stabstr, &secdata->sec_info,
4731 &string_offset))
4732 goto error_return;
4733 if (secdata->sec_info)
4734 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4735 }
4736 }
4737 }
4738
4739 if (is_elf_hash_table (htab) && add_needed)
4740 {
4741 /* Add this bfd to the loaded list. */
4742 struct elf_link_loaded_list *n;
4743
4744 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4745 if (n == NULL)
4746 goto error_return;
4747 n->abfd = abfd;
4748 n->next = htab->loaded;
4749 htab->loaded = n;
4750 }
4751
4752 return TRUE;
4753
4754 error_free_vers:
4755 if (old_tab != NULL)
4756 free (old_tab);
4757 if (nondeflt_vers != NULL)
4758 free (nondeflt_vers);
4759 if (extversym != NULL)
4760 free (extversym);
4761 error_free_sym:
4762 if (isymbuf != NULL)
4763 free (isymbuf);
4764 error_return:
4765 return FALSE;
4766 }
4767
4768 /* Return the linker hash table entry of a symbol that might be
4769 satisfied by an archive symbol. Return -1 on error. */
4770
4771 struct elf_link_hash_entry *
4772 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4773 struct bfd_link_info *info,
4774 const char *name)
4775 {
4776 struct elf_link_hash_entry *h;
4777 char *p, *copy;
4778 size_t len, first;
4779
4780 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4781 if (h != NULL)
4782 return h;
4783
4784 /* If this is a default version (the name contains @@), look up the
4785 symbol again with only one `@' as well as without the version.
4786 The effect is that references to the symbol with and without the
4787 version will be matched by the default symbol in the archive. */
4788
4789 p = strchr (name, ELF_VER_CHR);
4790 if (p == NULL || p[1] != ELF_VER_CHR)
4791 return h;
4792
4793 /* First check with only one `@'. */
4794 len = strlen (name);
4795 copy = bfd_alloc (abfd, len);
4796 if (copy == NULL)
4797 return (struct elf_link_hash_entry *) 0 - 1;
4798
4799 first = p - name + 1;
4800 memcpy (copy, name, first);
4801 memcpy (copy + first, name + first + 1, len - first);
4802
4803 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4804 if (h == NULL)
4805 {
4806 /* We also need to check references to the symbol without the
4807 version. */
4808 copy[first - 1] = '\0';
4809 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4810 FALSE, FALSE, FALSE);
4811 }
4812
4813 bfd_release (abfd, copy);
4814 return h;
4815 }
4816
4817 /* Add symbols from an ELF archive file to the linker hash table. We
4818 don't use _bfd_generic_link_add_archive_symbols because of a
4819 problem which arises on UnixWare. The UnixWare libc.so is an
4820 archive which includes an entry libc.so.1 which defines a bunch of
4821 symbols. The libc.so archive also includes a number of other
4822 object files, which also define symbols, some of which are the same
4823 as those defined in libc.so.1. Correct linking requires that we
4824 consider each object file in turn, and include it if it defines any
4825 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4826 this; it looks through the list of undefined symbols, and includes
4827 any object file which defines them. When this algorithm is used on
4828 UnixWare, it winds up pulling in libc.so.1 early and defining a
4829 bunch of symbols. This means that some of the other objects in the
4830 archive are not included in the link, which is incorrect since they
4831 precede libc.so.1 in the archive.
4832
4833 Fortunately, ELF archive handling is simpler than that done by
4834 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4835 oddities. In ELF, if we find a symbol in the archive map, and the
4836 symbol is currently undefined, we know that we must pull in that
4837 object file.
4838
4839 Unfortunately, we do have to make multiple passes over the symbol
4840 table until nothing further is resolved. */
4841
4842 static bfd_boolean
4843 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4844 {
4845 symindex c;
4846 bfd_boolean *defined = NULL;
4847 bfd_boolean *included = NULL;
4848 carsym *symdefs;
4849 bfd_boolean loop;
4850 bfd_size_type amt;
4851 const struct elf_backend_data *bed;
4852 struct elf_link_hash_entry * (*archive_symbol_lookup)
4853 (bfd *, struct bfd_link_info *, const char *);
4854
4855 if (! bfd_has_map (abfd))
4856 {
4857 /* An empty archive is a special case. */
4858 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4859 return TRUE;
4860 bfd_set_error (bfd_error_no_armap);
4861 return FALSE;
4862 }
4863
4864 /* Keep track of all symbols we know to be already defined, and all
4865 files we know to be already included. This is to speed up the
4866 second and subsequent passes. */
4867 c = bfd_ardata (abfd)->symdef_count;
4868 if (c == 0)
4869 return TRUE;
4870 amt = c;
4871 amt *= sizeof (bfd_boolean);
4872 defined = bfd_zmalloc (amt);
4873 included = bfd_zmalloc (amt);
4874 if (defined == NULL || included == NULL)
4875 goto error_return;
4876
4877 symdefs = bfd_ardata (abfd)->symdefs;
4878 bed = get_elf_backend_data (abfd);
4879 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4880
4881 do
4882 {
4883 file_ptr last;
4884 symindex i;
4885 carsym *symdef;
4886 carsym *symdefend;
4887
4888 loop = FALSE;
4889 last = -1;
4890
4891 symdef = symdefs;
4892 symdefend = symdef + c;
4893 for (i = 0; symdef < symdefend; symdef++, i++)
4894 {
4895 struct elf_link_hash_entry *h;
4896 bfd *element;
4897 struct bfd_link_hash_entry *undefs_tail;
4898 symindex mark;
4899
4900 if (defined[i] || included[i])
4901 continue;
4902 if (symdef->file_offset == last)
4903 {
4904 included[i] = TRUE;
4905 continue;
4906 }
4907
4908 h = archive_symbol_lookup (abfd, info, symdef->name);
4909 if (h == (struct elf_link_hash_entry *) 0 - 1)
4910 goto error_return;
4911
4912 if (h == NULL)
4913 continue;
4914
4915 if (h->root.type == bfd_link_hash_common)
4916 {
4917 /* We currently have a common symbol. The archive map contains
4918 a reference to this symbol, so we may want to include it. We
4919 only want to include it however, if this archive element
4920 contains a definition of the symbol, not just another common
4921 declaration of it.
4922
4923 Unfortunately some archivers (including GNU ar) will put
4924 declarations of common symbols into their archive maps, as
4925 well as real definitions, so we cannot just go by the archive
4926 map alone. Instead we must read in the element's symbol
4927 table and check that to see what kind of symbol definition
4928 this is. */
4929 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4930 continue;
4931 }
4932 else if (h->root.type != bfd_link_hash_undefined)
4933 {
4934 if (h->root.type != bfd_link_hash_undefweak)
4935 defined[i] = TRUE;
4936 continue;
4937 }
4938
4939 /* We need to include this archive member. */
4940 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4941 if (element == NULL)
4942 goto error_return;
4943
4944 if (! bfd_check_format (element, bfd_object))
4945 goto error_return;
4946
4947 /* Doublecheck that we have not included this object
4948 already--it should be impossible, but there may be
4949 something wrong with the archive. */
4950 if (element->archive_pass != 0)
4951 {
4952 bfd_set_error (bfd_error_bad_value);
4953 goto error_return;
4954 }
4955 element->archive_pass = 1;
4956
4957 undefs_tail = info->hash->undefs_tail;
4958
4959 if (! (*info->callbacks->add_archive_element) (info, element,
4960 symdef->name))
4961 goto error_return;
4962 if (! bfd_link_add_symbols (element, info))
4963 goto error_return;
4964
4965 /* If there are any new undefined symbols, we need to make
4966 another pass through the archive in order to see whether
4967 they can be defined. FIXME: This isn't perfect, because
4968 common symbols wind up on undefs_tail and because an
4969 undefined symbol which is defined later on in this pass
4970 does not require another pass. This isn't a bug, but it
4971 does make the code less efficient than it could be. */
4972 if (undefs_tail != info->hash->undefs_tail)
4973 loop = TRUE;
4974
4975 /* Look backward to mark all symbols from this object file
4976 which we have already seen in this pass. */
4977 mark = i;
4978 do
4979 {
4980 included[mark] = TRUE;
4981 if (mark == 0)
4982 break;
4983 --mark;
4984 }
4985 while (symdefs[mark].file_offset == symdef->file_offset);
4986
4987 /* We mark subsequent symbols from this object file as we go
4988 on through the loop. */
4989 last = symdef->file_offset;
4990 }
4991 }
4992 while (loop);
4993
4994 free (defined);
4995 free (included);
4996
4997 return TRUE;
4998
4999 error_return:
5000 if (defined != NULL)
5001 free (defined);
5002 if (included != NULL)
5003 free (included);
5004 return FALSE;
5005 }
5006
5007 /* Given an ELF BFD, add symbols to the global hash table as
5008 appropriate. */
5009
5010 bfd_boolean
5011 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5012 {
5013 switch (bfd_get_format (abfd))
5014 {
5015 case bfd_object:
5016 return elf_link_add_object_symbols (abfd, info);
5017 case bfd_archive:
5018 return elf_link_add_archive_symbols (abfd, info);
5019 default:
5020 bfd_set_error (bfd_error_wrong_format);
5021 return FALSE;
5022 }
5023 }
5024 \f
5025 struct hash_codes_info
5026 {
5027 unsigned long *hashcodes;
5028 bfd_boolean error;
5029 };
5030
5031 /* This function will be called though elf_link_hash_traverse to store
5032 all hash value of the exported symbols in an array. */
5033
5034 static bfd_boolean
5035 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5036 {
5037 struct hash_codes_info *inf = data;
5038 const char *name;
5039 char *p;
5040 unsigned long ha;
5041 char *alc = NULL;
5042
5043 if (h->root.type == bfd_link_hash_warning)
5044 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5045
5046 /* Ignore indirect symbols. These are added by the versioning code. */
5047 if (h->dynindx == -1)
5048 return TRUE;
5049
5050 name = h->root.root.string;
5051 p = strchr (name, ELF_VER_CHR);
5052 if (p != NULL)
5053 {
5054 alc = bfd_malloc (p - name + 1);
5055 if (alc == NULL)
5056 {
5057 inf->error = TRUE;
5058 return FALSE;
5059 }
5060 memcpy (alc, name, p - name);
5061 alc[p - name] = '\0';
5062 name = alc;
5063 }
5064
5065 /* Compute the hash value. */
5066 ha = bfd_elf_hash (name);
5067
5068 /* Store the found hash value in the array given as the argument. */
5069 *(inf->hashcodes)++ = ha;
5070
5071 /* And store it in the struct so that we can put it in the hash table
5072 later. */
5073 h->u.elf_hash_value = ha;
5074
5075 if (alc != NULL)
5076 free (alc);
5077
5078 return TRUE;
5079 }
5080
5081 struct collect_gnu_hash_codes
5082 {
5083 bfd *output_bfd;
5084 const struct elf_backend_data *bed;
5085 unsigned long int nsyms;
5086 unsigned long int maskbits;
5087 unsigned long int *hashcodes;
5088 unsigned long int *hashval;
5089 unsigned long int *indx;
5090 unsigned long int *counts;
5091 bfd_vma *bitmask;
5092 bfd_byte *contents;
5093 long int min_dynindx;
5094 unsigned long int bucketcount;
5095 unsigned long int symindx;
5096 long int local_indx;
5097 long int shift1, shift2;
5098 unsigned long int mask;
5099 bfd_boolean error;
5100 };
5101
5102 /* This function will be called though elf_link_hash_traverse to store
5103 all hash value of the exported symbols in an array. */
5104
5105 static bfd_boolean
5106 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5107 {
5108 struct collect_gnu_hash_codes *s = data;
5109 const char *name;
5110 char *p;
5111 unsigned long ha;
5112 char *alc = NULL;
5113
5114 if (h->root.type == bfd_link_hash_warning)
5115 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5116
5117 /* Ignore indirect symbols. These are added by the versioning code. */
5118 if (h->dynindx == -1)
5119 return TRUE;
5120
5121 /* Ignore also local symbols and undefined symbols. */
5122 if (! (*s->bed->elf_hash_symbol) (h))
5123 return TRUE;
5124
5125 name = h->root.root.string;
5126 p = strchr (name, ELF_VER_CHR);
5127 if (p != NULL)
5128 {
5129 alc = bfd_malloc (p - name + 1);
5130 if (alc == NULL)
5131 {
5132 s->error = TRUE;
5133 return FALSE;
5134 }
5135 memcpy (alc, name, p - name);
5136 alc[p - name] = '\0';
5137 name = alc;
5138 }
5139
5140 /* Compute the hash value. */
5141 ha = bfd_elf_gnu_hash (name);
5142
5143 /* Store the found hash value in the array for compute_bucket_count,
5144 and also for .dynsym reordering purposes. */
5145 s->hashcodes[s->nsyms] = ha;
5146 s->hashval[h->dynindx] = ha;
5147 ++s->nsyms;
5148 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5149 s->min_dynindx = h->dynindx;
5150
5151 if (alc != NULL)
5152 free (alc);
5153
5154 return TRUE;
5155 }
5156
5157 /* This function will be called though elf_link_hash_traverse to do
5158 final dynaminc symbol renumbering. */
5159
5160 static bfd_boolean
5161 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5162 {
5163 struct collect_gnu_hash_codes *s = data;
5164 unsigned long int bucket;
5165 unsigned long int val;
5166
5167 if (h->root.type == bfd_link_hash_warning)
5168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5169
5170 /* Ignore indirect symbols. */
5171 if (h->dynindx == -1)
5172 return TRUE;
5173
5174 /* Ignore also local symbols and undefined symbols. */
5175 if (! (*s->bed->elf_hash_symbol) (h))
5176 {
5177 if (h->dynindx >= s->min_dynindx)
5178 h->dynindx = s->local_indx++;
5179 return TRUE;
5180 }
5181
5182 bucket = s->hashval[h->dynindx] % s->bucketcount;
5183 val = (s->hashval[h->dynindx] >> s->shift1)
5184 & ((s->maskbits >> s->shift1) - 1);
5185 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5186 s->bitmask[val]
5187 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5188 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5189 if (s->counts[bucket] == 1)
5190 /* Last element terminates the chain. */
5191 val |= 1;
5192 bfd_put_32 (s->output_bfd, val,
5193 s->contents + (s->indx[bucket] - s->symindx) * 4);
5194 --s->counts[bucket];
5195 h->dynindx = s->indx[bucket]++;
5196 return TRUE;
5197 }
5198
5199 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5200
5201 bfd_boolean
5202 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5203 {
5204 return !(h->forced_local
5205 || h->root.type == bfd_link_hash_undefined
5206 || h->root.type == bfd_link_hash_undefweak
5207 || ((h->root.type == bfd_link_hash_defined
5208 || h->root.type == bfd_link_hash_defweak)
5209 && h->root.u.def.section->output_section == NULL));
5210 }
5211
5212 /* Array used to determine the number of hash table buckets to use
5213 based on the number of symbols there are. If there are fewer than
5214 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5215 fewer than 37 we use 17 buckets, and so forth. We never use more
5216 than 32771 buckets. */
5217
5218 static const size_t elf_buckets[] =
5219 {
5220 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5221 16411, 32771, 0
5222 };
5223
5224 /* Compute bucket count for hashing table. We do not use a static set
5225 of possible tables sizes anymore. Instead we determine for all
5226 possible reasonable sizes of the table the outcome (i.e., the
5227 number of collisions etc) and choose the best solution. The
5228 weighting functions are not too simple to allow the table to grow
5229 without bounds. Instead one of the weighting factors is the size.
5230 Therefore the result is always a good payoff between few collisions
5231 (= short chain lengths) and table size. */
5232 static size_t
5233 compute_bucket_count (struct bfd_link_info *info,
5234 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5235 unsigned long int nsyms,
5236 int gnu_hash)
5237 {
5238 size_t best_size = 0;
5239 unsigned long int i;
5240
5241 /* We have a problem here. The following code to optimize the table
5242 size requires an integer type with more the 32 bits. If
5243 BFD_HOST_U_64_BIT is set we know about such a type. */
5244 #ifdef BFD_HOST_U_64_BIT
5245 if (info->optimize)
5246 {
5247 size_t minsize;
5248 size_t maxsize;
5249 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5250 bfd *dynobj = elf_hash_table (info)->dynobj;
5251 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5252 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5253 unsigned long int *counts;
5254 bfd_size_type amt;
5255
5256 /* Possible optimization parameters: if we have NSYMS symbols we say
5257 that the hashing table must at least have NSYMS/4 and at most
5258 2*NSYMS buckets. */
5259 minsize = nsyms / 4;
5260 if (minsize == 0)
5261 minsize = 1;
5262 best_size = maxsize = nsyms * 2;
5263 if (gnu_hash)
5264 {
5265 if (minsize < 2)
5266 minsize = 2;
5267 if ((best_size & 31) == 0)
5268 ++best_size;
5269 }
5270
5271 /* Create array where we count the collisions in. We must use bfd_malloc
5272 since the size could be large. */
5273 amt = maxsize;
5274 amt *= sizeof (unsigned long int);
5275 counts = bfd_malloc (amt);
5276 if (counts == NULL)
5277 return 0;
5278
5279 /* Compute the "optimal" size for the hash table. The criteria is a
5280 minimal chain length. The minor criteria is (of course) the size
5281 of the table. */
5282 for (i = minsize; i < maxsize; ++i)
5283 {
5284 /* Walk through the array of hashcodes and count the collisions. */
5285 BFD_HOST_U_64_BIT max;
5286 unsigned long int j;
5287 unsigned long int fact;
5288
5289 if (gnu_hash && (i & 31) == 0)
5290 continue;
5291
5292 memset (counts, '\0', i * sizeof (unsigned long int));
5293
5294 /* Determine how often each hash bucket is used. */
5295 for (j = 0; j < nsyms; ++j)
5296 ++counts[hashcodes[j] % i];
5297
5298 /* For the weight function we need some information about the
5299 pagesize on the target. This is information need not be 100%
5300 accurate. Since this information is not available (so far) we
5301 define it here to a reasonable default value. If it is crucial
5302 to have a better value some day simply define this value. */
5303 # ifndef BFD_TARGET_PAGESIZE
5304 # define BFD_TARGET_PAGESIZE (4096)
5305 # endif
5306
5307 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5308 and the chains. */
5309 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5310
5311 # if 1
5312 /* Variant 1: optimize for short chains. We add the squares
5313 of all the chain lengths (which favors many small chain
5314 over a few long chains). */
5315 for (j = 0; j < i; ++j)
5316 max += counts[j] * counts[j];
5317
5318 /* This adds penalties for the overall size of the table. */
5319 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5320 max *= fact * fact;
5321 # else
5322 /* Variant 2: Optimize a lot more for small table. Here we
5323 also add squares of the size but we also add penalties for
5324 empty slots (the +1 term). */
5325 for (j = 0; j < i; ++j)
5326 max += (1 + counts[j]) * (1 + counts[j]);
5327
5328 /* The overall size of the table is considered, but not as
5329 strong as in variant 1, where it is squared. */
5330 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5331 max *= fact;
5332 # endif
5333
5334 /* Compare with current best results. */
5335 if (max < best_chlen)
5336 {
5337 best_chlen = max;
5338 best_size = i;
5339 }
5340 }
5341
5342 free (counts);
5343 }
5344 else
5345 #endif /* defined (BFD_HOST_U_64_BIT) */
5346 {
5347 /* This is the fallback solution if no 64bit type is available or if we
5348 are not supposed to spend much time on optimizations. We select the
5349 bucket count using a fixed set of numbers. */
5350 for (i = 0; elf_buckets[i] != 0; i++)
5351 {
5352 best_size = elf_buckets[i];
5353 if (nsyms < elf_buckets[i + 1])
5354 break;
5355 }
5356 if (gnu_hash && best_size < 2)
5357 best_size = 2;
5358 }
5359
5360 return best_size;
5361 }
5362
5363 /* Set up the sizes and contents of the ELF dynamic sections. This is
5364 called by the ELF linker emulation before_allocation routine. We
5365 must set the sizes of the sections before the linker sets the
5366 addresses of the various sections. */
5367
5368 bfd_boolean
5369 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5370 const char *soname,
5371 const char *rpath,
5372 const char *filter_shlib,
5373 const char * const *auxiliary_filters,
5374 struct bfd_link_info *info,
5375 asection **sinterpptr,
5376 struct bfd_elf_version_tree *verdefs)
5377 {
5378 bfd_size_type soname_indx;
5379 bfd *dynobj;
5380 const struct elf_backend_data *bed;
5381 struct elf_assign_sym_version_info asvinfo;
5382
5383 *sinterpptr = NULL;
5384
5385 soname_indx = (bfd_size_type) -1;
5386
5387 if (!is_elf_hash_table (info->hash))
5388 return TRUE;
5389
5390 bed = get_elf_backend_data (output_bfd);
5391 if (info->execstack)
5392 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5393 else if (info->noexecstack)
5394 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5395 else
5396 {
5397 bfd *inputobj;
5398 asection *notesec = NULL;
5399 int exec = 0;
5400
5401 for (inputobj = info->input_bfds;
5402 inputobj;
5403 inputobj = inputobj->link_next)
5404 {
5405 asection *s;
5406
5407 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5408 continue;
5409 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5410 if (s)
5411 {
5412 if (s->flags & SEC_CODE)
5413 exec = PF_X;
5414 notesec = s;
5415 }
5416 else if (bed->default_execstack)
5417 exec = PF_X;
5418 }
5419 if (notesec)
5420 {
5421 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5422 if (exec && info->relocatable
5423 && notesec->output_section != bfd_abs_section_ptr)
5424 notesec->output_section->flags |= SEC_CODE;
5425 }
5426 }
5427
5428 /* Any syms created from now on start with -1 in
5429 got.refcount/offset and plt.refcount/offset. */
5430 elf_hash_table (info)->init_got_refcount
5431 = elf_hash_table (info)->init_got_offset;
5432 elf_hash_table (info)->init_plt_refcount
5433 = elf_hash_table (info)->init_plt_offset;
5434
5435 /* The backend may have to create some sections regardless of whether
5436 we're dynamic or not. */
5437 if (bed->elf_backend_always_size_sections
5438 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5439 return FALSE;
5440
5441 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5442 return FALSE;
5443
5444 dynobj = elf_hash_table (info)->dynobj;
5445
5446 /* If there were no dynamic objects in the link, there is nothing to
5447 do here. */
5448 if (dynobj == NULL)
5449 return TRUE;
5450
5451 if (elf_hash_table (info)->dynamic_sections_created)
5452 {
5453 struct elf_info_failed eif;
5454 struct elf_link_hash_entry *h;
5455 asection *dynstr;
5456 struct bfd_elf_version_tree *t;
5457 struct bfd_elf_version_expr *d;
5458 asection *s;
5459 bfd_boolean all_defined;
5460
5461 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5462 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5463
5464 if (soname != NULL)
5465 {
5466 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5467 soname, TRUE);
5468 if (soname_indx == (bfd_size_type) -1
5469 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5470 return FALSE;
5471 }
5472
5473 if (info->symbolic)
5474 {
5475 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5476 return FALSE;
5477 info->flags |= DF_SYMBOLIC;
5478 }
5479
5480 if (rpath != NULL)
5481 {
5482 bfd_size_type indx;
5483
5484 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5485 TRUE);
5486 if (indx == (bfd_size_type) -1
5487 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5488 return FALSE;
5489
5490 if (info->new_dtags)
5491 {
5492 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5493 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5494 return FALSE;
5495 }
5496 }
5497
5498 if (filter_shlib != NULL)
5499 {
5500 bfd_size_type indx;
5501
5502 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5503 filter_shlib, TRUE);
5504 if (indx == (bfd_size_type) -1
5505 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5506 return FALSE;
5507 }
5508
5509 if (auxiliary_filters != NULL)
5510 {
5511 const char * const *p;
5512
5513 for (p = auxiliary_filters; *p != NULL; p++)
5514 {
5515 bfd_size_type indx;
5516
5517 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5518 *p, TRUE);
5519 if (indx == (bfd_size_type) -1
5520 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5521 return FALSE;
5522 }
5523 }
5524
5525 eif.info = info;
5526 eif.verdefs = verdefs;
5527 eif.failed = FALSE;
5528
5529 /* If we are supposed to export all symbols into the dynamic symbol
5530 table (this is not the normal case), then do so. */
5531 if (info->export_dynamic
5532 || (info->executable && info->dynamic))
5533 {
5534 elf_link_hash_traverse (elf_hash_table (info),
5535 _bfd_elf_export_symbol,
5536 &eif);
5537 if (eif.failed)
5538 return FALSE;
5539 }
5540
5541 /* Make all global versions with definition. */
5542 for (t = verdefs; t != NULL; t = t->next)
5543 for (d = t->globals.list; d != NULL; d = d->next)
5544 if (!d->symver && d->symbol)
5545 {
5546 const char *verstr, *name;
5547 size_t namelen, verlen, newlen;
5548 char *newname, *p;
5549 struct elf_link_hash_entry *newh;
5550
5551 name = d->symbol;
5552 namelen = strlen (name);
5553 verstr = t->name;
5554 verlen = strlen (verstr);
5555 newlen = namelen + verlen + 3;
5556
5557 newname = bfd_malloc (newlen);
5558 if (newname == NULL)
5559 return FALSE;
5560 memcpy (newname, name, namelen);
5561
5562 /* Check the hidden versioned definition. */
5563 p = newname + namelen;
5564 *p++ = ELF_VER_CHR;
5565 memcpy (p, verstr, verlen + 1);
5566 newh = elf_link_hash_lookup (elf_hash_table (info),
5567 newname, FALSE, FALSE,
5568 FALSE);
5569 if (newh == NULL
5570 || (newh->root.type != bfd_link_hash_defined
5571 && newh->root.type != bfd_link_hash_defweak))
5572 {
5573 /* Check the default versioned definition. */
5574 *p++ = ELF_VER_CHR;
5575 memcpy (p, verstr, verlen + 1);
5576 newh = elf_link_hash_lookup (elf_hash_table (info),
5577 newname, FALSE, FALSE,
5578 FALSE);
5579 }
5580 free (newname);
5581
5582 /* Mark this version if there is a definition and it is
5583 not defined in a shared object. */
5584 if (newh != NULL
5585 && !newh->def_dynamic
5586 && (newh->root.type == bfd_link_hash_defined
5587 || newh->root.type == bfd_link_hash_defweak))
5588 d->symver = 1;
5589 }
5590
5591 /* Attach all the symbols to their version information. */
5592 asvinfo.output_bfd = output_bfd;
5593 asvinfo.info = info;
5594 asvinfo.verdefs = verdefs;
5595 asvinfo.failed = FALSE;
5596
5597 elf_link_hash_traverse (elf_hash_table (info),
5598 _bfd_elf_link_assign_sym_version,
5599 &asvinfo);
5600 if (asvinfo.failed)
5601 return FALSE;
5602
5603 if (!info->allow_undefined_version)
5604 {
5605 /* Check if all global versions have a definition. */
5606 all_defined = TRUE;
5607 for (t = verdefs; t != NULL; t = t->next)
5608 for (d = t->globals.list; d != NULL; d = d->next)
5609 if (!d->symver && !d->script)
5610 {
5611 (*_bfd_error_handler)
5612 (_("%s: undefined version: %s"),
5613 d->pattern, t->name);
5614 all_defined = FALSE;
5615 }
5616
5617 if (!all_defined)
5618 {
5619 bfd_set_error (bfd_error_bad_value);
5620 return FALSE;
5621 }
5622 }
5623
5624 /* Find all symbols which were defined in a dynamic object and make
5625 the backend pick a reasonable value for them. */
5626 elf_link_hash_traverse (elf_hash_table (info),
5627 _bfd_elf_adjust_dynamic_symbol,
5628 &eif);
5629 if (eif.failed)
5630 return FALSE;
5631
5632 /* Add some entries to the .dynamic section. We fill in some of the
5633 values later, in bfd_elf_final_link, but we must add the entries
5634 now so that we know the final size of the .dynamic section. */
5635
5636 /* If there are initialization and/or finalization functions to
5637 call then add the corresponding DT_INIT/DT_FINI entries. */
5638 h = (info->init_function
5639 ? elf_link_hash_lookup (elf_hash_table (info),
5640 info->init_function, FALSE,
5641 FALSE, FALSE)
5642 : NULL);
5643 if (h != NULL
5644 && (h->ref_regular
5645 || h->def_regular))
5646 {
5647 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5648 return FALSE;
5649 }
5650 h = (info->fini_function
5651 ? elf_link_hash_lookup (elf_hash_table (info),
5652 info->fini_function, FALSE,
5653 FALSE, FALSE)
5654 : NULL);
5655 if (h != NULL
5656 && (h->ref_regular
5657 || h->def_regular))
5658 {
5659 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5660 return FALSE;
5661 }
5662
5663 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5664 if (s != NULL && s->linker_has_input)
5665 {
5666 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5667 if (! info->executable)
5668 {
5669 bfd *sub;
5670 asection *o;
5671
5672 for (sub = info->input_bfds; sub != NULL;
5673 sub = sub->link_next)
5674 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5675 for (o = sub->sections; o != NULL; o = o->next)
5676 if (elf_section_data (o)->this_hdr.sh_type
5677 == SHT_PREINIT_ARRAY)
5678 {
5679 (*_bfd_error_handler)
5680 (_("%B: .preinit_array section is not allowed in DSO"),
5681 sub);
5682 break;
5683 }
5684
5685 bfd_set_error (bfd_error_nonrepresentable_section);
5686 return FALSE;
5687 }
5688
5689 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5690 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5691 return FALSE;
5692 }
5693 s = bfd_get_section_by_name (output_bfd, ".init_array");
5694 if (s != NULL && s->linker_has_input)
5695 {
5696 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5697 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5698 return FALSE;
5699 }
5700 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5701 if (s != NULL && s->linker_has_input)
5702 {
5703 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5704 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5705 return FALSE;
5706 }
5707
5708 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5709 /* If .dynstr is excluded from the link, we don't want any of
5710 these tags. Strictly, we should be checking each section
5711 individually; This quick check covers for the case where
5712 someone does a /DISCARD/ : { *(*) }. */
5713 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5714 {
5715 bfd_size_type strsize;
5716
5717 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5718 if ((info->emit_hash
5719 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5720 || (info->emit_gnu_hash
5721 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5722 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5723 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5724 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5725 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5726 bed->s->sizeof_sym))
5727 return FALSE;
5728 }
5729 }
5730
5731 /* The backend must work out the sizes of all the other dynamic
5732 sections. */
5733 if (bed->elf_backend_size_dynamic_sections
5734 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5735 return FALSE;
5736
5737 if (elf_hash_table (info)->dynamic_sections_created)
5738 {
5739 unsigned long section_sym_count;
5740 asection *s;
5741
5742 /* Set up the version definition section. */
5743 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5744 BFD_ASSERT (s != NULL);
5745
5746 /* We may have created additional version definitions if we are
5747 just linking a regular application. */
5748 verdefs = asvinfo.verdefs;
5749
5750 /* Skip anonymous version tag. */
5751 if (verdefs != NULL && verdefs->vernum == 0)
5752 verdefs = verdefs->next;
5753
5754 if (verdefs == NULL && !info->create_default_symver)
5755 s->flags |= SEC_EXCLUDE;
5756 else
5757 {
5758 unsigned int cdefs;
5759 bfd_size_type size;
5760 struct bfd_elf_version_tree *t;
5761 bfd_byte *p;
5762 Elf_Internal_Verdef def;
5763 Elf_Internal_Verdaux defaux;
5764 struct bfd_link_hash_entry *bh;
5765 struct elf_link_hash_entry *h;
5766 const char *name;
5767
5768 cdefs = 0;
5769 size = 0;
5770
5771 /* Make space for the base version. */
5772 size += sizeof (Elf_External_Verdef);
5773 size += sizeof (Elf_External_Verdaux);
5774 ++cdefs;
5775
5776 /* Make space for the default version. */
5777 if (info->create_default_symver)
5778 {
5779 size += sizeof (Elf_External_Verdef);
5780 ++cdefs;
5781 }
5782
5783 for (t = verdefs; t != NULL; t = t->next)
5784 {
5785 struct bfd_elf_version_deps *n;
5786
5787 size += sizeof (Elf_External_Verdef);
5788 size += sizeof (Elf_External_Verdaux);
5789 ++cdefs;
5790
5791 for (n = t->deps; n != NULL; n = n->next)
5792 size += sizeof (Elf_External_Verdaux);
5793 }
5794
5795 s->size = size;
5796 s->contents = bfd_alloc (output_bfd, s->size);
5797 if (s->contents == NULL && s->size != 0)
5798 return FALSE;
5799
5800 /* Fill in the version definition section. */
5801
5802 p = s->contents;
5803
5804 def.vd_version = VER_DEF_CURRENT;
5805 def.vd_flags = VER_FLG_BASE;
5806 def.vd_ndx = 1;
5807 def.vd_cnt = 1;
5808 if (info->create_default_symver)
5809 {
5810 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5811 def.vd_next = sizeof (Elf_External_Verdef);
5812 }
5813 else
5814 {
5815 def.vd_aux = sizeof (Elf_External_Verdef);
5816 def.vd_next = (sizeof (Elf_External_Verdef)
5817 + sizeof (Elf_External_Verdaux));
5818 }
5819
5820 if (soname_indx != (bfd_size_type) -1)
5821 {
5822 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5823 soname_indx);
5824 def.vd_hash = bfd_elf_hash (soname);
5825 defaux.vda_name = soname_indx;
5826 name = soname;
5827 }
5828 else
5829 {
5830 bfd_size_type indx;
5831
5832 name = lbasename (output_bfd->filename);
5833 def.vd_hash = bfd_elf_hash (name);
5834 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5835 name, FALSE);
5836 if (indx == (bfd_size_type) -1)
5837 return FALSE;
5838 defaux.vda_name = indx;
5839 }
5840 defaux.vda_next = 0;
5841
5842 _bfd_elf_swap_verdef_out (output_bfd, &def,
5843 (Elf_External_Verdef *) p);
5844 p += sizeof (Elf_External_Verdef);
5845 if (info->create_default_symver)
5846 {
5847 /* Add a symbol representing this version. */
5848 bh = NULL;
5849 if (! (_bfd_generic_link_add_one_symbol
5850 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5851 0, NULL, FALSE,
5852 get_elf_backend_data (dynobj)->collect, &bh)))
5853 return FALSE;
5854 h = (struct elf_link_hash_entry *) bh;
5855 h->non_elf = 0;
5856 h->def_regular = 1;
5857 h->type = STT_OBJECT;
5858 h->verinfo.vertree = NULL;
5859
5860 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5861 return FALSE;
5862
5863 /* Create a duplicate of the base version with the same
5864 aux block, but different flags. */
5865 def.vd_flags = 0;
5866 def.vd_ndx = 2;
5867 def.vd_aux = sizeof (Elf_External_Verdef);
5868 if (verdefs)
5869 def.vd_next = (sizeof (Elf_External_Verdef)
5870 + sizeof (Elf_External_Verdaux));
5871 else
5872 def.vd_next = 0;
5873 _bfd_elf_swap_verdef_out (output_bfd, &def,
5874 (Elf_External_Verdef *) p);
5875 p += sizeof (Elf_External_Verdef);
5876 }
5877 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5878 (Elf_External_Verdaux *) p);
5879 p += sizeof (Elf_External_Verdaux);
5880
5881 for (t = verdefs; t != NULL; t = t->next)
5882 {
5883 unsigned int cdeps;
5884 struct bfd_elf_version_deps *n;
5885
5886 cdeps = 0;
5887 for (n = t->deps; n != NULL; n = n->next)
5888 ++cdeps;
5889
5890 /* Add a symbol representing this version. */
5891 bh = NULL;
5892 if (! (_bfd_generic_link_add_one_symbol
5893 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5894 0, NULL, FALSE,
5895 get_elf_backend_data (dynobj)->collect, &bh)))
5896 return FALSE;
5897 h = (struct elf_link_hash_entry *) bh;
5898 h->non_elf = 0;
5899 h->def_regular = 1;
5900 h->type = STT_OBJECT;
5901 h->verinfo.vertree = t;
5902
5903 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5904 return FALSE;
5905
5906 def.vd_version = VER_DEF_CURRENT;
5907 def.vd_flags = 0;
5908 if (t->globals.list == NULL
5909 && t->locals.list == NULL
5910 && ! t->used)
5911 def.vd_flags |= VER_FLG_WEAK;
5912 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5913 def.vd_cnt = cdeps + 1;
5914 def.vd_hash = bfd_elf_hash (t->name);
5915 def.vd_aux = sizeof (Elf_External_Verdef);
5916 def.vd_next = 0;
5917 if (t->next != NULL)
5918 def.vd_next = (sizeof (Elf_External_Verdef)
5919 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5920
5921 _bfd_elf_swap_verdef_out (output_bfd, &def,
5922 (Elf_External_Verdef *) p);
5923 p += sizeof (Elf_External_Verdef);
5924
5925 defaux.vda_name = h->dynstr_index;
5926 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5927 h->dynstr_index);
5928 defaux.vda_next = 0;
5929 if (t->deps != NULL)
5930 defaux.vda_next = sizeof (Elf_External_Verdaux);
5931 t->name_indx = defaux.vda_name;
5932
5933 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5934 (Elf_External_Verdaux *) p);
5935 p += sizeof (Elf_External_Verdaux);
5936
5937 for (n = t->deps; n != NULL; n = n->next)
5938 {
5939 if (n->version_needed == NULL)
5940 {
5941 /* This can happen if there was an error in the
5942 version script. */
5943 defaux.vda_name = 0;
5944 }
5945 else
5946 {
5947 defaux.vda_name = n->version_needed->name_indx;
5948 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5949 defaux.vda_name);
5950 }
5951 if (n->next == NULL)
5952 defaux.vda_next = 0;
5953 else
5954 defaux.vda_next = sizeof (Elf_External_Verdaux);
5955
5956 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5957 (Elf_External_Verdaux *) p);
5958 p += sizeof (Elf_External_Verdaux);
5959 }
5960 }
5961
5962 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5963 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5964 return FALSE;
5965
5966 elf_tdata (output_bfd)->cverdefs = cdefs;
5967 }
5968
5969 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5970 {
5971 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5972 return FALSE;
5973 }
5974 else if (info->flags & DF_BIND_NOW)
5975 {
5976 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5977 return FALSE;
5978 }
5979
5980 if (info->flags_1)
5981 {
5982 if (info->executable)
5983 info->flags_1 &= ~ (DF_1_INITFIRST
5984 | DF_1_NODELETE
5985 | DF_1_NOOPEN);
5986 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5987 return FALSE;
5988 }
5989
5990 /* Work out the size of the version reference section. */
5991
5992 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5993 BFD_ASSERT (s != NULL);
5994 {
5995 struct elf_find_verdep_info sinfo;
5996
5997 sinfo.output_bfd = output_bfd;
5998 sinfo.info = info;
5999 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6000 if (sinfo.vers == 0)
6001 sinfo.vers = 1;
6002 sinfo.failed = FALSE;
6003
6004 elf_link_hash_traverse (elf_hash_table (info),
6005 _bfd_elf_link_find_version_dependencies,
6006 &sinfo);
6007 if (sinfo.failed)
6008 return FALSE;
6009
6010 if (elf_tdata (output_bfd)->verref == NULL)
6011 s->flags |= SEC_EXCLUDE;
6012 else
6013 {
6014 Elf_Internal_Verneed *t;
6015 unsigned int size;
6016 unsigned int crefs;
6017 bfd_byte *p;
6018
6019 /* Build the version definition section. */
6020 size = 0;
6021 crefs = 0;
6022 for (t = elf_tdata (output_bfd)->verref;
6023 t != NULL;
6024 t = t->vn_nextref)
6025 {
6026 Elf_Internal_Vernaux *a;
6027
6028 size += sizeof (Elf_External_Verneed);
6029 ++crefs;
6030 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6031 size += sizeof (Elf_External_Vernaux);
6032 }
6033
6034 s->size = size;
6035 s->contents = bfd_alloc (output_bfd, s->size);
6036 if (s->contents == NULL)
6037 return FALSE;
6038
6039 p = s->contents;
6040 for (t = elf_tdata (output_bfd)->verref;
6041 t != NULL;
6042 t = t->vn_nextref)
6043 {
6044 unsigned int caux;
6045 Elf_Internal_Vernaux *a;
6046 bfd_size_type indx;
6047
6048 caux = 0;
6049 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6050 ++caux;
6051
6052 t->vn_version = VER_NEED_CURRENT;
6053 t->vn_cnt = caux;
6054 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6055 elf_dt_name (t->vn_bfd) != NULL
6056 ? elf_dt_name (t->vn_bfd)
6057 : lbasename (t->vn_bfd->filename),
6058 FALSE);
6059 if (indx == (bfd_size_type) -1)
6060 return FALSE;
6061 t->vn_file = indx;
6062 t->vn_aux = sizeof (Elf_External_Verneed);
6063 if (t->vn_nextref == NULL)
6064 t->vn_next = 0;
6065 else
6066 t->vn_next = (sizeof (Elf_External_Verneed)
6067 + caux * sizeof (Elf_External_Vernaux));
6068
6069 _bfd_elf_swap_verneed_out (output_bfd, t,
6070 (Elf_External_Verneed *) p);
6071 p += sizeof (Elf_External_Verneed);
6072
6073 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6074 {
6075 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6076 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6077 a->vna_nodename, FALSE);
6078 if (indx == (bfd_size_type) -1)
6079 return FALSE;
6080 a->vna_name = indx;
6081 if (a->vna_nextptr == NULL)
6082 a->vna_next = 0;
6083 else
6084 a->vna_next = sizeof (Elf_External_Vernaux);
6085
6086 _bfd_elf_swap_vernaux_out (output_bfd, a,
6087 (Elf_External_Vernaux *) p);
6088 p += sizeof (Elf_External_Vernaux);
6089 }
6090 }
6091
6092 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6093 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6094 return FALSE;
6095
6096 elf_tdata (output_bfd)->cverrefs = crefs;
6097 }
6098 }
6099
6100 if ((elf_tdata (output_bfd)->cverrefs == 0
6101 && elf_tdata (output_bfd)->cverdefs == 0)
6102 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6103 &section_sym_count) == 0)
6104 {
6105 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6106 s->flags |= SEC_EXCLUDE;
6107 }
6108 }
6109 return TRUE;
6110 }
6111
6112 /* Find the first non-excluded output section. We'll use its
6113 section symbol for some emitted relocs. */
6114 void
6115 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6116 {
6117 asection *s;
6118
6119 for (s = output_bfd->sections; s != NULL; s = s->next)
6120 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6121 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6122 {
6123 elf_hash_table (info)->text_index_section = s;
6124 break;
6125 }
6126 }
6127
6128 /* Find two non-excluded output sections, one for code, one for data.
6129 We'll use their section symbols for some emitted relocs. */
6130 void
6131 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6132 {
6133 asection *s;
6134
6135 /* Data first, since setting text_index_section changes
6136 _bfd_elf_link_omit_section_dynsym. */
6137 for (s = output_bfd->sections; s != NULL; s = s->next)
6138 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6139 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6140 {
6141 elf_hash_table (info)->data_index_section = s;
6142 break;
6143 }
6144
6145 for (s = output_bfd->sections; s != NULL; s = s->next)
6146 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6147 == (SEC_ALLOC | SEC_READONLY))
6148 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6149 {
6150 elf_hash_table (info)->text_index_section = s;
6151 break;
6152 }
6153
6154 if (elf_hash_table (info)->text_index_section == NULL)
6155 elf_hash_table (info)->text_index_section
6156 = elf_hash_table (info)->data_index_section;
6157 }
6158
6159 bfd_boolean
6160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6161 {
6162 const struct elf_backend_data *bed;
6163
6164 if (!is_elf_hash_table (info->hash))
6165 return TRUE;
6166
6167 bed = get_elf_backend_data (output_bfd);
6168 (*bed->elf_backend_init_index_section) (output_bfd, info);
6169
6170 if (elf_hash_table (info)->dynamic_sections_created)
6171 {
6172 bfd *dynobj;
6173 asection *s;
6174 bfd_size_type dynsymcount;
6175 unsigned long section_sym_count;
6176 unsigned int dtagcount;
6177
6178 dynobj = elf_hash_table (info)->dynobj;
6179
6180 /* Assign dynsym indicies. In a shared library we generate a
6181 section symbol for each output section, which come first.
6182 Next come all of the back-end allocated local dynamic syms,
6183 followed by the rest of the global symbols. */
6184
6185 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6186 &section_sym_count);
6187
6188 /* Work out the size of the symbol version section. */
6189 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6190 BFD_ASSERT (s != NULL);
6191 if (dynsymcount != 0
6192 && (s->flags & SEC_EXCLUDE) == 0)
6193 {
6194 s->size = dynsymcount * sizeof (Elf_External_Versym);
6195 s->contents = bfd_zalloc (output_bfd, s->size);
6196 if (s->contents == NULL)
6197 return FALSE;
6198
6199 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6200 return FALSE;
6201 }
6202
6203 /* Set the size of the .dynsym and .hash sections. We counted
6204 the number of dynamic symbols in elf_link_add_object_symbols.
6205 We will build the contents of .dynsym and .hash when we build
6206 the final symbol table, because until then we do not know the
6207 correct value to give the symbols. We built the .dynstr
6208 section as we went along in elf_link_add_object_symbols. */
6209 s = bfd_get_section_by_name (dynobj, ".dynsym");
6210 BFD_ASSERT (s != NULL);
6211 s->size = dynsymcount * bed->s->sizeof_sym;
6212
6213 if (dynsymcount != 0)
6214 {
6215 s->contents = bfd_alloc (output_bfd, s->size);
6216 if (s->contents == NULL)
6217 return FALSE;
6218
6219 /* The first entry in .dynsym is a dummy symbol.
6220 Clear all the section syms, in case we don't output them all. */
6221 ++section_sym_count;
6222 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6223 }
6224
6225 elf_hash_table (info)->bucketcount = 0;
6226
6227 /* Compute the size of the hashing table. As a side effect this
6228 computes the hash values for all the names we export. */
6229 if (info->emit_hash)
6230 {
6231 unsigned long int *hashcodes;
6232 struct hash_codes_info hashinf;
6233 bfd_size_type amt;
6234 unsigned long int nsyms;
6235 size_t bucketcount;
6236 size_t hash_entry_size;
6237
6238 /* Compute the hash values for all exported symbols. At the same
6239 time store the values in an array so that we could use them for
6240 optimizations. */
6241 amt = dynsymcount * sizeof (unsigned long int);
6242 hashcodes = bfd_malloc (amt);
6243 if (hashcodes == NULL)
6244 return FALSE;
6245 hashinf.hashcodes = hashcodes;
6246 hashinf.error = FALSE;
6247
6248 /* Put all hash values in HASHCODES. */
6249 elf_link_hash_traverse (elf_hash_table (info),
6250 elf_collect_hash_codes, &hashinf);
6251 if (hashinf.error)
6252 return FALSE;
6253
6254 nsyms = hashinf.hashcodes - hashcodes;
6255 bucketcount
6256 = compute_bucket_count (info, hashcodes, nsyms, 0);
6257 free (hashcodes);
6258
6259 if (bucketcount == 0)
6260 return FALSE;
6261
6262 elf_hash_table (info)->bucketcount = bucketcount;
6263
6264 s = bfd_get_section_by_name (dynobj, ".hash");
6265 BFD_ASSERT (s != NULL);
6266 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6267 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6268 s->contents = bfd_zalloc (output_bfd, s->size);
6269 if (s->contents == NULL)
6270 return FALSE;
6271
6272 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6273 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6274 s->contents + hash_entry_size);
6275 }
6276
6277 if (info->emit_gnu_hash)
6278 {
6279 size_t i, cnt;
6280 unsigned char *contents;
6281 struct collect_gnu_hash_codes cinfo;
6282 bfd_size_type amt;
6283 size_t bucketcount;
6284
6285 memset (&cinfo, 0, sizeof (cinfo));
6286
6287 /* Compute the hash values for all exported symbols. At the same
6288 time store the values in an array so that we could use them for
6289 optimizations. */
6290 amt = dynsymcount * 2 * sizeof (unsigned long int);
6291 cinfo.hashcodes = bfd_malloc (amt);
6292 if (cinfo.hashcodes == NULL)
6293 return FALSE;
6294
6295 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6296 cinfo.min_dynindx = -1;
6297 cinfo.output_bfd = output_bfd;
6298 cinfo.bed = bed;
6299
6300 /* Put all hash values in HASHCODES. */
6301 elf_link_hash_traverse (elf_hash_table (info),
6302 elf_collect_gnu_hash_codes, &cinfo);
6303 if (cinfo.error)
6304 return FALSE;
6305
6306 bucketcount
6307 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6308
6309 if (bucketcount == 0)
6310 {
6311 free (cinfo.hashcodes);
6312 return FALSE;
6313 }
6314
6315 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6316 BFD_ASSERT (s != NULL);
6317
6318 if (cinfo.nsyms == 0)
6319 {
6320 /* Empty .gnu.hash section is special. */
6321 BFD_ASSERT (cinfo.min_dynindx == -1);
6322 free (cinfo.hashcodes);
6323 s->size = 5 * 4 + bed->s->arch_size / 8;
6324 contents = bfd_zalloc (output_bfd, s->size);
6325 if (contents == NULL)
6326 return FALSE;
6327 s->contents = contents;
6328 /* 1 empty bucket. */
6329 bfd_put_32 (output_bfd, 1, contents);
6330 /* SYMIDX above the special symbol 0. */
6331 bfd_put_32 (output_bfd, 1, contents + 4);
6332 /* Just one word for bitmask. */
6333 bfd_put_32 (output_bfd, 1, contents + 8);
6334 /* Only hash fn bloom filter. */
6335 bfd_put_32 (output_bfd, 0, contents + 12);
6336 /* No hashes are valid - empty bitmask. */
6337 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6338 /* No hashes in the only bucket. */
6339 bfd_put_32 (output_bfd, 0,
6340 contents + 16 + bed->s->arch_size / 8);
6341 }
6342 else
6343 {
6344 unsigned long int maskwords, maskbitslog2;
6345 BFD_ASSERT (cinfo.min_dynindx != -1);
6346
6347 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6348 if (maskbitslog2 < 3)
6349 maskbitslog2 = 5;
6350 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6351 maskbitslog2 = maskbitslog2 + 3;
6352 else
6353 maskbitslog2 = maskbitslog2 + 2;
6354 if (bed->s->arch_size == 64)
6355 {
6356 if (maskbitslog2 == 5)
6357 maskbitslog2 = 6;
6358 cinfo.shift1 = 6;
6359 }
6360 else
6361 cinfo.shift1 = 5;
6362 cinfo.mask = (1 << cinfo.shift1) - 1;
6363 cinfo.shift2 = maskbitslog2;
6364 cinfo.maskbits = 1 << maskbitslog2;
6365 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6366 amt = bucketcount * sizeof (unsigned long int) * 2;
6367 amt += maskwords * sizeof (bfd_vma);
6368 cinfo.bitmask = bfd_malloc (amt);
6369 if (cinfo.bitmask == NULL)
6370 {
6371 free (cinfo.hashcodes);
6372 return FALSE;
6373 }
6374
6375 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6376 cinfo.indx = cinfo.counts + bucketcount;
6377 cinfo.symindx = dynsymcount - cinfo.nsyms;
6378 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6379
6380 /* Determine how often each hash bucket is used. */
6381 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6382 for (i = 0; i < cinfo.nsyms; ++i)
6383 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6384
6385 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6386 if (cinfo.counts[i] != 0)
6387 {
6388 cinfo.indx[i] = cnt;
6389 cnt += cinfo.counts[i];
6390 }
6391 BFD_ASSERT (cnt == dynsymcount);
6392 cinfo.bucketcount = bucketcount;
6393 cinfo.local_indx = cinfo.min_dynindx;
6394
6395 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6396 s->size += cinfo.maskbits / 8;
6397 contents = bfd_zalloc (output_bfd, s->size);
6398 if (contents == NULL)
6399 {
6400 free (cinfo.bitmask);
6401 free (cinfo.hashcodes);
6402 return FALSE;
6403 }
6404
6405 s->contents = contents;
6406 bfd_put_32 (output_bfd, bucketcount, contents);
6407 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6408 bfd_put_32 (output_bfd, maskwords, contents + 8);
6409 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6410 contents += 16 + cinfo.maskbits / 8;
6411
6412 for (i = 0; i < bucketcount; ++i)
6413 {
6414 if (cinfo.counts[i] == 0)
6415 bfd_put_32 (output_bfd, 0, contents);
6416 else
6417 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6418 contents += 4;
6419 }
6420
6421 cinfo.contents = contents;
6422
6423 /* Renumber dynamic symbols, populate .gnu.hash section. */
6424 elf_link_hash_traverse (elf_hash_table (info),
6425 elf_renumber_gnu_hash_syms, &cinfo);
6426
6427 contents = s->contents + 16;
6428 for (i = 0; i < maskwords; ++i)
6429 {
6430 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6431 contents);
6432 contents += bed->s->arch_size / 8;
6433 }
6434
6435 free (cinfo.bitmask);
6436 free (cinfo.hashcodes);
6437 }
6438 }
6439
6440 s = bfd_get_section_by_name (dynobj, ".dynstr");
6441 BFD_ASSERT (s != NULL);
6442
6443 elf_finalize_dynstr (output_bfd, info);
6444
6445 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6446
6447 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6448 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6449 return FALSE;
6450 }
6451
6452 return TRUE;
6453 }
6454 \f
6455 /* Indicate that we are only retrieving symbol values from this
6456 section. */
6457
6458 void
6459 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6460 {
6461 if (is_elf_hash_table (info->hash))
6462 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6463 _bfd_generic_link_just_syms (sec, info);
6464 }
6465
6466 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6467
6468 static void
6469 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6470 asection *sec)
6471 {
6472 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6473 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6474 }
6475
6476 /* Finish SHF_MERGE section merging. */
6477
6478 bfd_boolean
6479 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6480 {
6481 bfd *ibfd;
6482 asection *sec;
6483
6484 if (!is_elf_hash_table (info->hash))
6485 return FALSE;
6486
6487 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6488 if ((ibfd->flags & DYNAMIC) == 0)
6489 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6490 if ((sec->flags & SEC_MERGE) != 0
6491 && !bfd_is_abs_section (sec->output_section))
6492 {
6493 struct bfd_elf_section_data *secdata;
6494
6495 secdata = elf_section_data (sec);
6496 if (! _bfd_add_merge_section (abfd,
6497 &elf_hash_table (info)->merge_info,
6498 sec, &secdata->sec_info))
6499 return FALSE;
6500 else if (secdata->sec_info)
6501 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6502 }
6503
6504 if (elf_hash_table (info)->merge_info != NULL)
6505 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6506 merge_sections_remove_hook);
6507 return TRUE;
6508 }
6509
6510 /* Create an entry in an ELF linker hash table. */
6511
6512 struct bfd_hash_entry *
6513 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6514 struct bfd_hash_table *table,
6515 const char *string)
6516 {
6517 /* Allocate the structure if it has not already been allocated by a
6518 subclass. */
6519 if (entry == NULL)
6520 {
6521 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6522 if (entry == NULL)
6523 return entry;
6524 }
6525
6526 /* Call the allocation method of the superclass. */
6527 entry = _bfd_link_hash_newfunc (entry, table, string);
6528 if (entry != NULL)
6529 {
6530 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6531 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6532
6533 /* Set local fields. */
6534 ret->indx = -1;
6535 ret->dynindx = -1;
6536 ret->got = htab->init_got_refcount;
6537 ret->plt = htab->init_plt_refcount;
6538 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6539 - offsetof (struct elf_link_hash_entry, size)));
6540 /* Assume that we have been called by a non-ELF symbol reader.
6541 This flag is then reset by the code which reads an ELF input
6542 file. This ensures that a symbol created by a non-ELF symbol
6543 reader will have the flag set correctly. */
6544 ret->non_elf = 1;
6545 }
6546
6547 return entry;
6548 }
6549
6550 /* Copy data from an indirect symbol to its direct symbol, hiding the
6551 old indirect symbol. Also used for copying flags to a weakdef. */
6552
6553 void
6554 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6555 struct elf_link_hash_entry *dir,
6556 struct elf_link_hash_entry *ind)
6557 {
6558 struct elf_link_hash_table *htab;
6559
6560 /* Copy down any references that we may have already seen to the
6561 symbol which just became indirect. */
6562
6563 dir->ref_dynamic |= ind->ref_dynamic;
6564 dir->ref_regular |= ind->ref_regular;
6565 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6566 dir->non_got_ref |= ind->non_got_ref;
6567 dir->needs_plt |= ind->needs_plt;
6568 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6569
6570 if (ind->root.type != bfd_link_hash_indirect)
6571 return;
6572
6573 /* Copy over the global and procedure linkage table refcount entries.
6574 These may have been already set up by a check_relocs routine. */
6575 htab = elf_hash_table (info);
6576 if (ind->got.refcount > htab->init_got_refcount.refcount)
6577 {
6578 if (dir->got.refcount < 0)
6579 dir->got.refcount = 0;
6580 dir->got.refcount += ind->got.refcount;
6581 ind->got.refcount = htab->init_got_refcount.refcount;
6582 }
6583
6584 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6585 {
6586 if (dir->plt.refcount < 0)
6587 dir->plt.refcount = 0;
6588 dir->plt.refcount += ind->plt.refcount;
6589 ind->plt.refcount = htab->init_plt_refcount.refcount;
6590 }
6591
6592 if (ind->dynindx != -1)
6593 {
6594 if (dir->dynindx != -1)
6595 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6596 dir->dynindx = ind->dynindx;
6597 dir->dynstr_index = ind->dynstr_index;
6598 ind->dynindx = -1;
6599 ind->dynstr_index = 0;
6600 }
6601 }
6602
6603 void
6604 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6605 struct elf_link_hash_entry *h,
6606 bfd_boolean force_local)
6607 {
6608 h->plt = elf_hash_table (info)->init_plt_offset;
6609 h->needs_plt = 0;
6610 if (force_local)
6611 {
6612 h->forced_local = 1;
6613 if (h->dynindx != -1)
6614 {
6615 h->dynindx = -1;
6616 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6617 h->dynstr_index);
6618 }
6619 }
6620 }
6621
6622 /* Initialize an ELF linker hash table. */
6623
6624 bfd_boolean
6625 _bfd_elf_link_hash_table_init
6626 (struct elf_link_hash_table *table,
6627 bfd *abfd,
6628 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6629 struct bfd_hash_table *,
6630 const char *),
6631 unsigned int entsize)
6632 {
6633 bfd_boolean ret;
6634 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6635
6636 memset (table, 0, sizeof * table);
6637 table->init_got_refcount.refcount = can_refcount - 1;
6638 table->init_plt_refcount.refcount = can_refcount - 1;
6639 table->init_got_offset.offset = -(bfd_vma) 1;
6640 table->init_plt_offset.offset = -(bfd_vma) 1;
6641 /* The first dynamic symbol is a dummy. */
6642 table->dynsymcount = 1;
6643
6644 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6645 table->root.type = bfd_link_elf_hash_table;
6646
6647 return ret;
6648 }
6649
6650 /* Create an ELF linker hash table. */
6651
6652 struct bfd_link_hash_table *
6653 _bfd_elf_link_hash_table_create (bfd *abfd)
6654 {
6655 struct elf_link_hash_table *ret;
6656 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6657
6658 ret = bfd_malloc (amt);
6659 if (ret == NULL)
6660 return NULL;
6661
6662 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6663 sizeof (struct elf_link_hash_entry)))
6664 {
6665 free (ret);
6666 return NULL;
6667 }
6668
6669 return &ret->root;
6670 }
6671
6672 /* This is a hook for the ELF emulation code in the generic linker to
6673 tell the backend linker what file name to use for the DT_NEEDED
6674 entry for a dynamic object. */
6675
6676 void
6677 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6678 {
6679 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6680 && bfd_get_format (abfd) == bfd_object)
6681 elf_dt_name (abfd) = name;
6682 }
6683
6684 int
6685 bfd_elf_get_dyn_lib_class (bfd *abfd)
6686 {
6687 int lib_class;
6688 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6689 && bfd_get_format (abfd) == bfd_object)
6690 lib_class = elf_dyn_lib_class (abfd);
6691 else
6692 lib_class = 0;
6693 return lib_class;
6694 }
6695
6696 void
6697 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6698 {
6699 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6700 && bfd_get_format (abfd) == bfd_object)
6701 elf_dyn_lib_class (abfd) = lib_class;
6702 }
6703
6704 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6705 the linker ELF emulation code. */
6706
6707 struct bfd_link_needed_list *
6708 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6709 struct bfd_link_info *info)
6710 {
6711 if (! is_elf_hash_table (info->hash))
6712 return NULL;
6713 return elf_hash_table (info)->needed;
6714 }
6715
6716 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6717 hook for the linker ELF emulation code. */
6718
6719 struct bfd_link_needed_list *
6720 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6721 struct bfd_link_info *info)
6722 {
6723 if (! is_elf_hash_table (info->hash))
6724 return NULL;
6725 return elf_hash_table (info)->runpath;
6726 }
6727
6728 /* Get the name actually used for a dynamic object for a link. This
6729 is the SONAME entry if there is one. Otherwise, it is the string
6730 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6731
6732 const char *
6733 bfd_elf_get_dt_soname (bfd *abfd)
6734 {
6735 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6736 && bfd_get_format (abfd) == bfd_object)
6737 return elf_dt_name (abfd);
6738 return NULL;
6739 }
6740
6741 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6742 the ELF linker emulation code. */
6743
6744 bfd_boolean
6745 bfd_elf_get_bfd_needed_list (bfd *abfd,
6746 struct bfd_link_needed_list **pneeded)
6747 {
6748 asection *s;
6749 bfd_byte *dynbuf = NULL;
6750 unsigned int elfsec;
6751 unsigned long shlink;
6752 bfd_byte *extdyn, *extdynend;
6753 size_t extdynsize;
6754 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6755
6756 *pneeded = NULL;
6757
6758 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6759 || bfd_get_format (abfd) != bfd_object)
6760 return TRUE;
6761
6762 s = bfd_get_section_by_name (abfd, ".dynamic");
6763 if (s == NULL || s->size == 0)
6764 return TRUE;
6765
6766 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6767 goto error_return;
6768
6769 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6770 if (elfsec == SHN_BAD)
6771 goto error_return;
6772
6773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6774
6775 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6776 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6777
6778 extdyn = dynbuf;
6779 extdynend = extdyn + s->size;
6780 for (; extdyn < extdynend; extdyn += extdynsize)
6781 {
6782 Elf_Internal_Dyn dyn;
6783
6784 (*swap_dyn_in) (abfd, extdyn, &dyn);
6785
6786 if (dyn.d_tag == DT_NULL)
6787 break;
6788
6789 if (dyn.d_tag == DT_NEEDED)
6790 {
6791 const char *string;
6792 struct bfd_link_needed_list *l;
6793 unsigned int tagv = dyn.d_un.d_val;
6794 bfd_size_type amt;
6795
6796 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6797 if (string == NULL)
6798 goto error_return;
6799
6800 amt = sizeof *l;
6801 l = bfd_alloc (abfd, amt);
6802 if (l == NULL)
6803 goto error_return;
6804
6805 l->by = abfd;
6806 l->name = string;
6807 l->next = *pneeded;
6808 *pneeded = l;
6809 }
6810 }
6811
6812 free (dynbuf);
6813
6814 return TRUE;
6815
6816 error_return:
6817 if (dynbuf != NULL)
6818 free (dynbuf);
6819 return FALSE;
6820 }
6821
6822 struct elf_symbuf_symbol
6823 {
6824 unsigned long st_name; /* Symbol name, index in string tbl */
6825 unsigned char st_info; /* Type and binding attributes */
6826 unsigned char st_other; /* Visibilty, and target specific */
6827 };
6828
6829 struct elf_symbuf_head
6830 {
6831 struct elf_symbuf_symbol *ssym;
6832 bfd_size_type count;
6833 unsigned int st_shndx;
6834 };
6835
6836 struct elf_symbol
6837 {
6838 union
6839 {
6840 Elf_Internal_Sym *isym;
6841 struct elf_symbuf_symbol *ssym;
6842 } u;
6843 const char *name;
6844 };
6845
6846 /* Sort references to symbols by ascending section number. */
6847
6848 static int
6849 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6850 {
6851 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6852 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6853
6854 return s1->st_shndx - s2->st_shndx;
6855 }
6856
6857 static int
6858 elf_sym_name_compare (const void *arg1, const void *arg2)
6859 {
6860 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6861 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6862 return strcmp (s1->name, s2->name);
6863 }
6864
6865 static struct elf_symbuf_head *
6866 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6867 {
6868 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6869 struct elf_symbuf_symbol *ssym;
6870 struct elf_symbuf_head *ssymbuf, *ssymhead;
6871 bfd_size_type i, shndx_count, total_size;
6872
6873 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6874 if (indbuf == NULL)
6875 return NULL;
6876
6877 for (ind = indbuf, i = 0; i < symcount; i++)
6878 if (isymbuf[i].st_shndx != SHN_UNDEF)
6879 *ind++ = &isymbuf[i];
6880 indbufend = ind;
6881
6882 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6883 elf_sort_elf_symbol);
6884
6885 shndx_count = 0;
6886 if (indbufend > indbuf)
6887 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6888 if (ind[0]->st_shndx != ind[1]->st_shndx)
6889 shndx_count++;
6890
6891 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6892 + (indbufend - indbuf) * sizeof (*ssym));
6893 ssymbuf = bfd_malloc (total_size);
6894 if (ssymbuf == NULL)
6895 {
6896 free (indbuf);
6897 return NULL;
6898 }
6899
6900 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6901 ssymbuf->ssym = NULL;
6902 ssymbuf->count = shndx_count;
6903 ssymbuf->st_shndx = 0;
6904 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6905 {
6906 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6907 {
6908 ssymhead++;
6909 ssymhead->ssym = ssym;
6910 ssymhead->count = 0;
6911 ssymhead->st_shndx = (*ind)->st_shndx;
6912 }
6913 ssym->st_name = (*ind)->st_name;
6914 ssym->st_info = (*ind)->st_info;
6915 ssym->st_other = (*ind)->st_other;
6916 ssymhead->count++;
6917 }
6918 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6919 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6920 == total_size));
6921
6922 free (indbuf);
6923 return ssymbuf;
6924 }
6925
6926 /* Check if 2 sections define the same set of local and global
6927 symbols. */
6928
6929 static bfd_boolean
6930 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6931 struct bfd_link_info *info)
6932 {
6933 bfd *bfd1, *bfd2;
6934 const struct elf_backend_data *bed1, *bed2;
6935 Elf_Internal_Shdr *hdr1, *hdr2;
6936 bfd_size_type symcount1, symcount2;
6937 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6938 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6939 Elf_Internal_Sym *isym, *isymend;
6940 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6941 bfd_size_type count1, count2, i;
6942 unsigned int shndx1, shndx2;
6943 bfd_boolean result;
6944
6945 bfd1 = sec1->owner;
6946 bfd2 = sec2->owner;
6947
6948 /* Both sections have to be in ELF. */
6949 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6950 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6951 return FALSE;
6952
6953 if (elf_section_type (sec1) != elf_section_type (sec2))
6954 return FALSE;
6955
6956 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6957 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6958 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
6959 return FALSE;
6960
6961 bed1 = get_elf_backend_data (bfd1);
6962 bed2 = get_elf_backend_data (bfd2);
6963 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6964 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6965 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6966 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6967
6968 if (symcount1 == 0 || symcount2 == 0)
6969 return FALSE;
6970
6971 result = FALSE;
6972 isymbuf1 = NULL;
6973 isymbuf2 = NULL;
6974 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6975 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6976
6977 if (ssymbuf1 == NULL)
6978 {
6979 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6980 NULL, NULL, NULL);
6981 if (isymbuf1 == NULL)
6982 goto done;
6983
6984 if (!info->reduce_memory_overheads)
6985 elf_tdata (bfd1)->symbuf = ssymbuf1
6986 = elf_create_symbuf (symcount1, isymbuf1);
6987 }
6988
6989 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6990 {
6991 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6992 NULL, NULL, NULL);
6993 if (isymbuf2 == NULL)
6994 goto done;
6995
6996 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6997 elf_tdata (bfd2)->symbuf = ssymbuf2
6998 = elf_create_symbuf (symcount2, isymbuf2);
6999 }
7000
7001 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7002 {
7003 /* Optimized faster version. */
7004 bfd_size_type lo, hi, mid;
7005 struct elf_symbol *symp;
7006 struct elf_symbuf_symbol *ssym, *ssymend;
7007
7008 lo = 0;
7009 hi = ssymbuf1->count;
7010 ssymbuf1++;
7011 count1 = 0;
7012 while (lo < hi)
7013 {
7014 mid = (lo + hi) / 2;
7015 if (shndx1 < ssymbuf1[mid].st_shndx)
7016 hi = mid;
7017 else if (shndx1 > ssymbuf1[mid].st_shndx)
7018 lo = mid + 1;
7019 else
7020 {
7021 count1 = ssymbuf1[mid].count;
7022 ssymbuf1 += mid;
7023 break;
7024 }
7025 }
7026
7027 lo = 0;
7028 hi = ssymbuf2->count;
7029 ssymbuf2++;
7030 count2 = 0;
7031 while (lo < hi)
7032 {
7033 mid = (lo + hi) / 2;
7034 if (shndx2 < ssymbuf2[mid].st_shndx)
7035 hi = mid;
7036 else if (shndx2 > ssymbuf2[mid].st_shndx)
7037 lo = mid + 1;
7038 else
7039 {
7040 count2 = ssymbuf2[mid].count;
7041 ssymbuf2 += mid;
7042 break;
7043 }
7044 }
7045
7046 if (count1 == 0 || count2 == 0 || count1 != count2)
7047 goto done;
7048
7049 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7050 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7051 if (symtable1 == NULL || symtable2 == NULL)
7052 goto done;
7053
7054 symp = symtable1;
7055 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7056 ssym < ssymend; ssym++, symp++)
7057 {
7058 symp->u.ssym = ssym;
7059 symp->name = bfd_elf_string_from_elf_section (bfd1,
7060 hdr1->sh_link,
7061 ssym->st_name);
7062 }
7063
7064 symp = symtable2;
7065 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7066 ssym < ssymend; ssym++, symp++)
7067 {
7068 symp->u.ssym = ssym;
7069 symp->name = bfd_elf_string_from_elf_section (bfd2,
7070 hdr2->sh_link,
7071 ssym->st_name);
7072 }
7073
7074 /* Sort symbol by name. */
7075 qsort (symtable1, count1, sizeof (struct elf_symbol),
7076 elf_sym_name_compare);
7077 qsort (symtable2, count1, sizeof (struct elf_symbol),
7078 elf_sym_name_compare);
7079
7080 for (i = 0; i < count1; i++)
7081 /* Two symbols must have the same binding, type and name. */
7082 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7083 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7084 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7085 goto done;
7086
7087 result = TRUE;
7088 goto done;
7089 }
7090
7091 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7092 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7093 if (symtable1 == NULL || symtable2 == NULL)
7094 goto done;
7095
7096 /* Count definitions in the section. */
7097 count1 = 0;
7098 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7099 if (isym->st_shndx == shndx1)
7100 symtable1[count1++].u.isym = isym;
7101
7102 count2 = 0;
7103 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7104 if (isym->st_shndx == shndx2)
7105 symtable2[count2++].u.isym = isym;
7106
7107 if (count1 == 0 || count2 == 0 || count1 != count2)
7108 goto done;
7109
7110 for (i = 0; i < count1; i++)
7111 symtable1[i].name
7112 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7113 symtable1[i].u.isym->st_name);
7114
7115 for (i = 0; i < count2; i++)
7116 symtable2[i].name
7117 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7118 symtable2[i].u.isym->st_name);
7119
7120 /* Sort symbol by name. */
7121 qsort (symtable1, count1, sizeof (struct elf_symbol),
7122 elf_sym_name_compare);
7123 qsort (symtable2, count1, sizeof (struct elf_symbol),
7124 elf_sym_name_compare);
7125
7126 for (i = 0; i < count1; i++)
7127 /* Two symbols must have the same binding, type and name. */
7128 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7129 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7130 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7131 goto done;
7132
7133 result = TRUE;
7134
7135 done:
7136 if (symtable1)
7137 free (symtable1);
7138 if (symtable2)
7139 free (symtable2);
7140 if (isymbuf1)
7141 free (isymbuf1);
7142 if (isymbuf2)
7143 free (isymbuf2);
7144
7145 return result;
7146 }
7147
7148 /* Return TRUE if 2 section types are compatible. */
7149
7150 bfd_boolean
7151 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7152 bfd *bbfd, const asection *bsec)
7153 {
7154 if (asec == NULL
7155 || bsec == NULL
7156 || abfd->xvec->flavour != bfd_target_elf_flavour
7157 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7158 return TRUE;
7159
7160 return elf_section_type (asec) == elf_section_type (bsec);
7161 }
7162 \f
7163 /* Final phase of ELF linker. */
7164
7165 /* A structure we use to avoid passing large numbers of arguments. */
7166
7167 struct elf_final_link_info
7168 {
7169 /* General link information. */
7170 struct bfd_link_info *info;
7171 /* Output BFD. */
7172 bfd *output_bfd;
7173 /* Symbol string table. */
7174 struct bfd_strtab_hash *symstrtab;
7175 /* .dynsym section. */
7176 asection *dynsym_sec;
7177 /* .hash section. */
7178 asection *hash_sec;
7179 /* symbol version section (.gnu.version). */
7180 asection *symver_sec;
7181 /* Buffer large enough to hold contents of any section. */
7182 bfd_byte *contents;
7183 /* Buffer large enough to hold external relocs of any section. */
7184 void *external_relocs;
7185 /* Buffer large enough to hold internal relocs of any section. */
7186 Elf_Internal_Rela *internal_relocs;
7187 /* Buffer large enough to hold external local symbols of any input
7188 BFD. */
7189 bfd_byte *external_syms;
7190 /* And a buffer for symbol section indices. */
7191 Elf_External_Sym_Shndx *locsym_shndx;
7192 /* Buffer large enough to hold internal local symbols of any input
7193 BFD. */
7194 Elf_Internal_Sym *internal_syms;
7195 /* Array large enough to hold a symbol index for each local symbol
7196 of any input BFD. */
7197 long *indices;
7198 /* Array large enough to hold a section pointer for each local
7199 symbol of any input BFD. */
7200 asection **sections;
7201 /* Buffer to hold swapped out symbols. */
7202 bfd_byte *symbuf;
7203 /* And one for symbol section indices. */
7204 Elf_External_Sym_Shndx *symshndxbuf;
7205 /* Number of swapped out symbols in buffer. */
7206 size_t symbuf_count;
7207 /* Number of symbols which fit in symbuf. */
7208 size_t symbuf_size;
7209 /* And same for symshndxbuf. */
7210 size_t shndxbuf_size;
7211 };
7212
7213 /* This struct is used to pass information to elf_link_output_extsym. */
7214
7215 struct elf_outext_info
7216 {
7217 bfd_boolean failed;
7218 bfd_boolean localsyms;
7219 struct elf_final_link_info *finfo;
7220 };
7221
7222
7223 /* Support for evaluating a complex relocation.
7224
7225 Complex relocations are generalized, self-describing relocations. The
7226 implementation of them consists of two parts: complex symbols, and the
7227 relocations themselves.
7228
7229 The relocations are use a reserved elf-wide relocation type code (R_RELC
7230 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7231 information (start bit, end bit, word width, etc) into the addend. This
7232 information is extracted from CGEN-generated operand tables within gas.
7233
7234 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7235 internal) representing prefix-notation expressions, including but not
7236 limited to those sorts of expressions normally encoded as addends in the
7237 addend field. The symbol mangling format is:
7238
7239 <node> := <literal>
7240 | <unary-operator> ':' <node>
7241 | <binary-operator> ':' <node> ':' <node>
7242 ;
7243
7244 <literal> := 's' <digits=N> ':' <N character symbol name>
7245 | 'S' <digits=N> ':' <N character section name>
7246 | '#' <hexdigits>
7247 ;
7248
7249 <binary-operator> := as in C
7250 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7251
7252 static void
7253 set_symbol_value (bfd *bfd_with_globals,
7254 Elf_Internal_Sym *isymbuf,
7255 size_t locsymcount,
7256 size_t symidx,
7257 bfd_vma val)
7258 {
7259 struct elf_link_hash_entry **sym_hashes;
7260 struct elf_link_hash_entry *h;
7261 size_t extsymoff = locsymcount;
7262
7263 if (symidx < locsymcount)
7264 {
7265 Elf_Internal_Sym *sym;
7266
7267 sym = isymbuf + symidx;
7268 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7269 {
7270 /* It is a local symbol: move it to the
7271 "absolute" section and give it a value. */
7272 sym->st_shndx = SHN_ABS;
7273 sym->st_value = val;
7274 return;
7275 }
7276 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7277 extsymoff = 0;
7278 }
7279
7280 /* It is a global symbol: set its link type
7281 to "defined" and give it a value. */
7282
7283 sym_hashes = elf_sym_hashes (bfd_with_globals);
7284 h = sym_hashes [symidx - extsymoff];
7285 while (h->root.type == bfd_link_hash_indirect
7286 || h->root.type == bfd_link_hash_warning)
7287 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7288 h->root.type = bfd_link_hash_defined;
7289 h->root.u.def.value = val;
7290 h->root.u.def.section = bfd_abs_section_ptr;
7291 }
7292
7293 static bfd_boolean
7294 resolve_symbol (const char *name,
7295 bfd *input_bfd,
7296 struct elf_final_link_info *finfo,
7297 bfd_vma *result,
7298 Elf_Internal_Sym *isymbuf,
7299 size_t locsymcount)
7300 {
7301 Elf_Internal_Sym *sym;
7302 struct bfd_link_hash_entry *global_entry;
7303 const char *candidate = NULL;
7304 Elf_Internal_Shdr *symtab_hdr;
7305 size_t i;
7306
7307 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7308
7309 for (i = 0; i < locsymcount; ++ i)
7310 {
7311 sym = isymbuf + i;
7312
7313 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7314 continue;
7315
7316 candidate = bfd_elf_string_from_elf_section (input_bfd,
7317 symtab_hdr->sh_link,
7318 sym->st_name);
7319 #ifdef DEBUG
7320 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7321 name, candidate, (unsigned long) sym->st_value);
7322 #endif
7323 if (candidate && strcmp (candidate, name) == 0)
7324 {
7325 asection *sec = finfo->sections [i];
7326
7327 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7328 *result += sec->output_offset + sec->output_section->vma;
7329 #ifdef DEBUG
7330 printf ("Found symbol with value %8.8lx\n",
7331 (unsigned long) *result);
7332 #endif
7333 return TRUE;
7334 }
7335 }
7336
7337 /* Hmm, haven't found it yet. perhaps it is a global. */
7338 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7339 FALSE, FALSE, TRUE);
7340 if (!global_entry)
7341 return FALSE;
7342
7343 if (global_entry->type == bfd_link_hash_defined
7344 || global_entry->type == bfd_link_hash_defweak)
7345 {
7346 *result = (global_entry->u.def.value
7347 + global_entry->u.def.section->output_section->vma
7348 + global_entry->u.def.section->output_offset);
7349 #ifdef DEBUG
7350 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7351 global_entry->root.string, (unsigned long) *result);
7352 #endif
7353 return TRUE;
7354 }
7355
7356 return FALSE;
7357 }
7358
7359 static bfd_boolean
7360 resolve_section (const char *name,
7361 asection *sections,
7362 bfd_vma *result)
7363 {
7364 asection *curr;
7365 unsigned int len;
7366
7367 for (curr = sections; curr; curr = curr->next)
7368 if (strcmp (curr->name, name) == 0)
7369 {
7370 *result = curr->vma;
7371 return TRUE;
7372 }
7373
7374 /* Hmm. still haven't found it. try pseudo-section names. */
7375 for (curr = sections; curr; curr = curr->next)
7376 {
7377 len = strlen (curr->name);
7378 if (len > strlen (name))
7379 continue;
7380
7381 if (strncmp (curr->name, name, len) == 0)
7382 {
7383 if (strncmp (".end", name + len, 4) == 0)
7384 {
7385 *result = curr->vma + curr->size;
7386 return TRUE;
7387 }
7388
7389 /* Insert more pseudo-section names here, if you like. */
7390 }
7391 }
7392
7393 return FALSE;
7394 }
7395
7396 static void
7397 undefined_reference (const char *reftype, const char *name)
7398 {
7399 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7400 reftype, name);
7401 }
7402
7403 static bfd_boolean
7404 eval_symbol (bfd_vma *result,
7405 const char **symp,
7406 bfd *input_bfd,
7407 struct elf_final_link_info *finfo,
7408 bfd_vma dot,
7409 Elf_Internal_Sym *isymbuf,
7410 size_t locsymcount,
7411 int signed_p)
7412 {
7413 size_t len;
7414 size_t symlen;
7415 bfd_vma a;
7416 bfd_vma b;
7417 char symbuf[4096];
7418 const char *sym = *symp;
7419 const char *symend;
7420 bfd_boolean symbol_is_section = FALSE;
7421
7422 len = strlen (sym);
7423 symend = sym + len;
7424
7425 if (len < 1 || len > sizeof (symbuf))
7426 {
7427 bfd_set_error (bfd_error_invalid_operation);
7428 return FALSE;
7429 }
7430
7431 switch (* sym)
7432 {
7433 case '.':
7434 *result = dot;
7435 *symp = sym + 1;
7436 return TRUE;
7437
7438 case '#':
7439 ++sym;
7440 *result = strtoul (sym, (char **) symp, 16);
7441 return TRUE;
7442
7443 case 'S':
7444 symbol_is_section = TRUE;
7445 case 's':
7446 ++sym;
7447 symlen = strtol (sym, (char **) symp, 10);
7448 sym = *symp + 1; /* Skip the trailing ':'. */
7449
7450 if (symend < sym || symlen + 1 > sizeof (symbuf))
7451 {
7452 bfd_set_error (bfd_error_invalid_operation);
7453 return FALSE;
7454 }
7455
7456 memcpy (symbuf, sym, symlen);
7457 symbuf[symlen] = '\0';
7458 *symp = sym + symlen;
7459
7460 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7461 the symbol as a section, or vice-versa. so we're pretty liberal in our
7462 interpretation here; section means "try section first", not "must be a
7463 section", and likewise with symbol. */
7464
7465 if (symbol_is_section)
7466 {
7467 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7468 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7469 isymbuf, locsymcount))
7470 {
7471 undefined_reference ("section", symbuf);
7472 return FALSE;
7473 }
7474 }
7475 else
7476 {
7477 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7478 isymbuf, locsymcount)
7479 && !resolve_section (symbuf, finfo->output_bfd->sections,
7480 result))
7481 {
7482 undefined_reference ("symbol", symbuf);
7483 return FALSE;
7484 }
7485 }
7486
7487 return TRUE;
7488
7489 /* All that remains are operators. */
7490
7491 #define UNARY_OP(op) \
7492 if (strncmp (sym, #op, strlen (#op)) == 0) \
7493 { \
7494 sym += strlen (#op); \
7495 if (*sym == ':') \
7496 ++sym; \
7497 *symp = sym; \
7498 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7499 isymbuf, locsymcount, signed_p)) \
7500 return FALSE; \
7501 if (signed_p) \
7502 *result = op ((bfd_signed_vma) a); \
7503 else \
7504 *result = op a; \
7505 return TRUE; \
7506 }
7507
7508 #define BINARY_OP(op) \
7509 if (strncmp (sym, #op, strlen (#op)) == 0) \
7510 { \
7511 sym += strlen (#op); \
7512 if (*sym == ':') \
7513 ++sym; \
7514 *symp = sym; \
7515 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7516 isymbuf, locsymcount, signed_p)) \
7517 return FALSE; \
7518 ++*symp; \
7519 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7520 isymbuf, locsymcount, signed_p)) \
7521 return FALSE; \
7522 if (signed_p) \
7523 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7524 else \
7525 *result = a op b; \
7526 return TRUE; \
7527 }
7528
7529 default:
7530 UNARY_OP (0-);
7531 BINARY_OP (<<);
7532 BINARY_OP (>>);
7533 BINARY_OP (==);
7534 BINARY_OP (!=);
7535 BINARY_OP (<=);
7536 BINARY_OP (>=);
7537 BINARY_OP (&&);
7538 BINARY_OP (||);
7539 UNARY_OP (~);
7540 UNARY_OP (!);
7541 BINARY_OP (*);
7542 BINARY_OP (/);
7543 BINARY_OP (%);
7544 BINARY_OP (^);
7545 BINARY_OP (|);
7546 BINARY_OP (&);
7547 BINARY_OP (+);
7548 BINARY_OP (-);
7549 BINARY_OP (<);
7550 BINARY_OP (>);
7551 #undef UNARY_OP
7552 #undef BINARY_OP
7553 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7554 bfd_set_error (bfd_error_invalid_operation);
7555 return FALSE;
7556 }
7557 }
7558
7559 static void
7560 put_value (bfd_vma size,
7561 unsigned long chunksz,
7562 bfd *input_bfd,
7563 bfd_vma x,
7564 bfd_byte *location)
7565 {
7566 location += (size - chunksz);
7567
7568 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7569 {
7570 switch (chunksz)
7571 {
7572 default:
7573 case 0:
7574 abort ();
7575 case 1:
7576 bfd_put_8 (input_bfd, x, location);
7577 break;
7578 case 2:
7579 bfd_put_16 (input_bfd, x, location);
7580 break;
7581 case 4:
7582 bfd_put_32 (input_bfd, x, location);
7583 break;
7584 case 8:
7585 #ifdef BFD64
7586 bfd_put_64 (input_bfd, x, location);
7587 #else
7588 abort ();
7589 #endif
7590 break;
7591 }
7592 }
7593 }
7594
7595 static bfd_vma
7596 get_value (bfd_vma size,
7597 unsigned long chunksz,
7598 bfd *input_bfd,
7599 bfd_byte *location)
7600 {
7601 bfd_vma x = 0;
7602
7603 for (; size; size -= chunksz, location += chunksz)
7604 {
7605 switch (chunksz)
7606 {
7607 default:
7608 case 0:
7609 abort ();
7610 case 1:
7611 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7612 break;
7613 case 2:
7614 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7615 break;
7616 case 4:
7617 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7618 break;
7619 case 8:
7620 #ifdef BFD64
7621 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7622 #else
7623 abort ();
7624 #endif
7625 break;
7626 }
7627 }
7628 return x;
7629 }
7630
7631 static void
7632 decode_complex_addend (unsigned long *start, /* in bits */
7633 unsigned long *oplen, /* in bits */
7634 unsigned long *len, /* in bits */
7635 unsigned long *wordsz, /* in bytes */
7636 unsigned long *chunksz, /* in bytes */
7637 unsigned long *lsb0_p,
7638 unsigned long *signed_p,
7639 unsigned long *trunc_p,
7640 unsigned long encoded)
7641 {
7642 * start = encoded & 0x3F;
7643 * len = (encoded >> 6) & 0x3F;
7644 * oplen = (encoded >> 12) & 0x3F;
7645 * wordsz = (encoded >> 18) & 0xF;
7646 * chunksz = (encoded >> 22) & 0xF;
7647 * lsb0_p = (encoded >> 27) & 1;
7648 * signed_p = (encoded >> 28) & 1;
7649 * trunc_p = (encoded >> 29) & 1;
7650 }
7651
7652 bfd_reloc_status_type
7653 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7654 asection *input_section ATTRIBUTE_UNUSED,
7655 bfd_byte *contents,
7656 Elf_Internal_Rela *rel,
7657 bfd_vma relocation)
7658 {
7659 bfd_vma shift, x, mask;
7660 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7661 bfd_reloc_status_type r;
7662
7663 /* Perform this reloc, since it is complex.
7664 (this is not to say that it necessarily refers to a complex
7665 symbol; merely that it is a self-describing CGEN based reloc.
7666 i.e. the addend has the complete reloc information (bit start, end,
7667 word size, etc) encoded within it.). */
7668
7669 decode_complex_addend (&start, &oplen, &len, &wordsz,
7670 &chunksz, &lsb0_p, &signed_p,
7671 &trunc_p, rel->r_addend);
7672
7673 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7674
7675 if (lsb0_p)
7676 shift = (start + 1) - len;
7677 else
7678 shift = (8 * wordsz) - (start + len);
7679
7680 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7681
7682 #ifdef DEBUG
7683 printf ("Doing complex reloc: "
7684 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7685 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7686 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7687 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7688 oplen, x, mask, relocation);
7689 #endif
7690
7691 r = bfd_reloc_ok;
7692 if (! trunc_p)
7693 /* Now do an overflow check. */
7694 r = bfd_check_overflow ((signed_p
7695 ? complain_overflow_signed
7696 : complain_overflow_unsigned),
7697 len, 0, (8 * wordsz),
7698 relocation);
7699
7700 /* Do the deed. */
7701 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7702
7703 #ifdef DEBUG
7704 printf (" relocation: %8.8lx\n"
7705 " shifted mask: %8.8lx\n"
7706 " shifted/masked reloc: %8.8lx\n"
7707 " result: %8.8lx\n",
7708 relocation, (mask << shift),
7709 ((relocation & mask) << shift), x);
7710 #endif
7711 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7712 return r;
7713 }
7714
7715 /* When performing a relocatable link, the input relocations are
7716 preserved. But, if they reference global symbols, the indices
7717 referenced must be updated. Update all the relocations in
7718 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7719
7720 static void
7721 elf_link_adjust_relocs (bfd *abfd,
7722 Elf_Internal_Shdr *rel_hdr,
7723 unsigned int count,
7724 struct elf_link_hash_entry **rel_hash)
7725 {
7726 unsigned int i;
7727 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7728 bfd_byte *erela;
7729 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7730 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7731 bfd_vma r_type_mask;
7732 int r_sym_shift;
7733
7734 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7735 {
7736 swap_in = bed->s->swap_reloc_in;
7737 swap_out = bed->s->swap_reloc_out;
7738 }
7739 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7740 {
7741 swap_in = bed->s->swap_reloca_in;
7742 swap_out = bed->s->swap_reloca_out;
7743 }
7744 else
7745 abort ();
7746
7747 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7748 abort ();
7749
7750 if (bed->s->arch_size == 32)
7751 {
7752 r_type_mask = 0xff;
7753 r_sym_shift = 8;
7754 }
7755 else
7756 {
7757 r_type_mask = 0xffffffff;
7758 r_sym_shift = 32;
7759 }
7760
7761 erela = rel_hdr->contents;
7762 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7763 {
7764 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7765 unsigned int j;
7766
7767 if (*rel_hash == NULL)
7768 continue;
7769
7770 BFD_ASSERT ((*rel_hash)->indx >= 0);
7771
7772 (*swap_in) (abfd, erela, irela);
7773 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7774 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7775 | (irela[j].r_info & r_type_mask));
7776 (*swap_out) (abfd, irela, erela);
7777 }
7778 }
7779
7780 struct elf_link_sort_rela
7781 {
7782 union {
7783 bfd_vma offset;
7784 bfd_vma sym_mask;
7785 } u;
7786 enum elf_reloc_type_class type;
7787 /* We use this as an array of size int_rels_per_ext_rel. */
7788 Elf_Internal_Rela rela[1];
7789 };
7790
7791 static int
7792 elf_link_sort_cmp1 (const void *A, const void *B)
7793 {
7794 const struct elf_link_sort_rela *a = A;
7795 const struct elf_link_sort_rela *b = B;
7796 int relativea, relativeb;
7797
7798 relativea = a->type == reloc_class_relative;
7799 relativeb = b->type == reloc_class_relative;
7800
7801 if (relativea < relativeb)
7802 return 1;
7803 if (relativea > relativeb)
7804 return -1;
7805 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7806 return -1;
7807 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7808 return 1;
7809 if (a->rela->r_offset < b->rela->r_offset)
7810 return -1;
7811 if (a->rela->r_offset > b->rela->r_offset)
7812 return 1;
7813 return 0;
7814 }
7815
7816 static int
7817 elf_link_sort_cmp2 (const void *A, const void *B)
7818 {
7819 const struct elf_link_sort_rela *a = A;
7820 const struct elf_link_sort_rela *b = B;
7821 int copya, copyb;
7822
7823 if (a->u.offset < b->u.offset)
7824 return -1;
7825 if (a->u.offset > b->u.offset)
7826 return 1;
7827 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7828 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7829 if (copya < copyb)
7830 return -1;
7831 if (copya > copyb)
7832 return 1;
7833 if (a->rela->r_offset < b->rela->r_offset)
7834 return -1;
7835 if (a->rela->r_offset > b->rela->r_offset)
7836 return 1;
7837 return 0;
7838 }
7839
7840 static size_t
7841 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7842 {
7843 asection *dynamic_relocs;
7844 asection *rela_dyn;
7845 asection *rel_dyn;
7846 bfd_size_type count, size;
7847 size_t i, ret, sort_elt, ext_size;
7848 bfd_byte *sort, *s_non_relative, *p;
7849 struct elf_link_sort_rela *sq;
7850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7851 int i2e = bed->s->int_rels_per_ext_rel;
7852 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7853 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7854 struct bfd_link_order *lo;
7855 bfd_vma r_sym_mask;
7856 bfd_boolean use_rela;
7857
7858 /* Find a dynamic reloc section. */
7859 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7860 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7861 if (rela_dyn != NULL && rela_dyn->size > 0
7862 && rel_dyn != NULL && rel_dyn->size > 0)
7863 {
7864 bfd_boolean use_rela_initialised = FALSE;
7865
7866 /* This is just here to stop gcc from complaining.
7867 It's initialization checking code is not perfect. */
7868 use_rela = TRUE;
7869
7870 /* Both sections are present. Examine the sizes
7871 of the indirect sections to help us choose. */
7872 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7873 if (lo->type == bfd_indirect_link_order)
7874 {
7875 asection *o = lo->u.indirect.section;
7876
7877 if ((o->size % bed->s->sizeof_rela) == 0)
7878 {
7879 if ((o->size % bed->s->sizeof_rel) == 0)
7880 /* Section size is divisible by both rel and rela sizes.
7881 It is of no help to us. */
7882 ;
7883 else
7884 {
7885 /* Section size is only divisible by rela. */
7886 if (use_rela_initialised && (use_rela == FALSE))
7887 {
7888 _bfd_error_handler
7889 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7890 bfd_set_error (bfd_error_invalid_operation);
7891 return 0;
7892 }
7893 else
7894 {
7895 use_rela = TRUE;
7896 use_rela_initialised = TRUE;
7897 }
7898 }
7899 }
7900 else if ((o->size % bed->s->sizeof_rel) == 0)
7901 {
7902 /* Section size is only divisible by rel. */
7903 if (use_rela_initialised && (use_rela == TRUE))
7904 {
7905 _bfd_error_handler
7906 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7907 bfd_set_error (bfd_error_invalid_operation);
7908 return 0;
7909 }
7910 else
7911 {
7912 use_rela = FALSE;
7913 use_rela_initialised = TRUE;
7914 }
7915 }
7916 else
7917 {
7918 /* The section size is not divisible by either - something is wrong. */
7919 _bfd_error_handler
7920 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7921 bfd_set_error (bfd_error_invalid_operation);
7922 return 0;
7923 }
7924 }
7925
7926 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7927 if (lo->type == bfd_indirect_link_order)
7928 {
7929 asection *o = lo->u.indirect.section;
7930
7931 if ((o->size % bed->s->sizeof_rela) == 0)
7932 {
7933 if ((o->size % bed->s->sizeof_rel) == 0)
7934 /* Section size is divisible by both rel and rela sizes.
7935 It is of no help to us. */
7936 ;
7937 else
7938 {
7939 /* Section size is only divisible by rela. */
7940 if (use_rela_initialised && (use_rela == FALSE))
7941 {
7942 _bfd_error_handler
7943 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7944 bfd_set_error (bfd_error_invalid_operation);
7945 return 0;
7946 }
7947 else
7948 {
7949 use_rela = TRUE;
7950 use_rela_initialised = TRUE;
7951 }
7952 }
7953 }
7954 else if ((o->size % bed->s->sizeof_rel) == 0)
7955 {
7956 /* Section size is only divisible by rel. */
7957 if (use_rela_initialised && (use_rela == TRUE))
7958 {
7959 _bfd_error_handler
7960 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7961 bfd_set_error (bfd_error_invalid_operation);
7962 return 0;
7963 }
7964 else
7965 {
7966 use_rela = FALSE;
7967 use_rela_initialised = TRUE;
7968 }
7969 }
7970 else
7971 {
7972 /* The section size is not divisible by either - something is wrong. */
7973 _bfd_error_handler
7974 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7975 bfd_set_error (bfd_error_invalid_operation);
7976 return 0;
7977 }
7978 }
7979
7980 if (! use_rela_initialised)
7981 /* Make a guess. */
7982 use_rela = TRUE;
7983 }
7984 else if (rela_dyn != NULL && rela_dyn->size > 0)
7985 use_rela = TRUE;
7986 else if (rel_dyn != NULL && rel_dyn->size > 0)
7987 use_rela = FALSE;
7988 else
7989 return 0;
7990
7991 if (use_rela)
7992 {
7993 dynamic_relocs = rela_dyn;
7994 ext_size = bed->s->sizeof_rela;
7995 swap_in = bed->s->swap_reloca_in;
7996 swap_out = bed->s->swap_reloca_out;
7997 }
7998 else
7999 {
8000 dynamic_relocs = rel_dyn;
8001 ext_size = bed->s->sizeof_rel;
8002 swap_in = bed->s->swap_reloc_in;
8003 swap_out = bed->s->swap_reloc_out;
8004 }
8005
8006 size = 0;
8007 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8008 if (lo->type == bfd_indirect_link_order)
8009 size += lo->u.indirect.section->size;
8010
8011 if (size != dynamic_relocs->size)
8012 return 0;
8013
8014 sort_elt = (sizeof (struct elf_link_sort_rela)
8015 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8016
8017 count = dynamic_relocs->size / ext_size;
8018 sort = bfd_zmalloc (sort_elt * count);
8019
8020 if (sort == NULL)
8021 {
8022 (*info->callbacks->warning)
8023 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8024 return 0;
8025 }
8026
8027 if (bed->s->arch_size == 32)
8028 r_sym_mask = ~(bfd_vma) 0xff;
8029 else
8030 r_sym_mask = ~(bfd_vma) 0xffffffff;
8031
8032 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8033 if (lo->type == bfd_indirect_link_order)
8034 {
8035 bfd_byte *erel, *erelend;
8036 asection *o = lo->u.indirect.section;
8037
8038 if (o->contents == NULL && o->size != 0)
8039 {
8040 /* This is a reloc section that is being handled as a normal
8041 section. See bfd_section_from_shdr. We can't combine
8042 relocs in this case. */
8043 free (sort);
8044 return 0;
8045 }
8046 erel = o->contents;
8047 erelend = o->contents + o->size;
8048 p = sort + o->output_offset / ext_size * sort_elt;
8049
8050 while (erel < erelend)
8051 {
8052 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8053
8054 (*swap_in) (abfd, erel, s->rela);
8055 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8056 s->u.sym_mask = r_sym_mask;
8057 p += sort_elt;
8058 erel += ext_size;
8059 }
8060 }
8061
8062 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8063
8064 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8065 {
8066 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8067 if (s->type != reloc_class_relative)
8068 break;
8069 }
8070 ret = i;
8071 s_non_relative = p;
8072
8073 sq = (struct elf_link_sort_rela *) s_non_relative;
8074 for (; i < count; i++, p += sort_elt)
8075 {
8076 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8077 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8078 sq = sp;
8079 sp->u.offset = sq->rela->r_offset;
8080 }
8081
8082 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8083
8084 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8085 if (lo->type == bfd_indirect_link_order)
8086 {
8087 bfd_byte *erel, *erelend;
8088 asection *o = lo->u.indirect.section;
8089
8090 erel = o->contents;
8091 erelend = o->contents + o->size;
8092 p = sort + o->output_offset / ext_size * sort_elt;
8093 while (erel < erelend)
8094 {
8095 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8096 (*swap_out) (abfd, s->rela, erel);
8097 p += sort_elt;
8098 erel += ext_size;
8099 }
8100 }
8101
8102 free (sort);
8103 *psec = dynamic_relocs;
8104 return ret;
8105 }
8106
8107 /* Flush the output symbols to the file. */
8108
8109 static bfd_boolean
8110 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8111 const struct elf_backend_data *bed)
8112 {
8113 if (finfo->symbuf_count > 0)
8114 {
8115 Elf_Internal_Shdr *hdr;
8116 file_ptr pos;
8117 bfd_size_type amt;
8118
8119 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8120 pos = hdr->sh_offset + hdr->sh_size;
8121 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8122 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8123 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8124 return FALSE;
8125
8126 hdr->sh_size += amt;
8127 finfo->symbuf_count = 0;
8128 }
8129
8130 return TRUE;
8131 }
8132
8133 /* Add a symbol to the output symbol table. */
8134
8135 static bfd_boolean
8136 elf_link_output_sym (struct elf_final_link_info *finfo,
8137 const char *name,
8138 Elf_Internal_Sym *elfsym,
8139 asection *input_sec,
8140 struct elf_link_hash_entry *h)
8141 {
8142 bfd_byte *dest;
8143 Elf_External_Sym_Shndx *destshndx;
8144 bfd_boolean (*output_symbol_hook)
8145 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8146 struct elf_link_hash_entry *);
8147 const struct elf_backend_data *bed;
8148
8149 bed = get_elf_backend_data (finfo->output_bfd);
8150 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8151 if (output_symbol_hook != NULL)
8152 {
8153 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8154 return FALSE;
8155 }
8156
8157 if (name == NULL || *name == '\0')
8158 elfsym->st_name = 0;
8159 else if (input_sec->flags & SEC_EXCLUDE)
8160 elfsym->st_name = 0;
8161 else
8162 {
8163 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8164 name, TRUE, FALSE);
8165 if (elfsym->st_name == (unsigned long) -1)
8166 return FALSE;
8167 }
8168
8169 if (finfo->symbuf_count >= finfo->symbuf_size)
8170 {
8171 if (! elf_link_flush_output_syms (finfo, bed))
8172 return FALSE;
8173 }
8174
8175 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8176 destshndx = finfo->symshndxbuf;
8177 if (destshndx != NULL)
8178 {
8179 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8180 {
8181 bfd_size_type amt;
8182
8183 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8184 destshndx = bfd_realloc (destshndx, amt * 2);
8185 if (destshndx == NULL)
8186 return FALSE;
8187 finfo->symshndxbuf = destshndx;
8188 memset ((char *) destshndx + amt, 0, amt);
8189 finfo->shndxbuf_size *= 2;
8190 }
8191 destshndx += bfd_get_symcount (finfo->output_bfd);
8192 }
8193
8194 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8195 finfo->symbuf_count += 1;
8196 bfd_get_symcount (finfo->output_bfd) += 1;
8197
8198 return TRUE;
8199 }
8200
8201 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8202
8203 static bfd_boolean
8204 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8205 {
8206 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8207 && sym->st_shndx < SHN_LORESERVE)
8208 {
8209 /* The gABI doesn't support dynamic symbols in output sections
8210 beyond 64k. */
8211 (*_bfd_error_handler)
8212 (_("%B: Too many sections: %d (>= %d)"),
8213 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8214 bfd_set_error (bfd_error_nonrepresentable_section);
8215 return FALSE;
8216 }
8217 return TRUE;
8218 }
8219
8220 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8221 allowing an unsatisfied unversioned symbol in the DSO to match a
8222 versioned symbol that would normally require an explicit version.
8223 We also handle the case that a DSO references a hidden symbol
8224 which may be satisfied by a versioned symbol in another DSO. */
8225
8226 static bfd_boolean
8227 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8228 const struct elf_backend_data *bed,
8229 struct elf_link_hash_entry *h)
8230 {
8231 bfd *abfd;
8232 struct elf_link_loaded_list *loaded;
8233
8234 if (!is_elf_hash_table (info->hash))
8235 return FALSE;
8236
8237 switch (h->root.type)
8238 {
8239 default:
8240 abfd = NULL;
8241 break;
8242
8243 case bfd_link_hash_undefined:
8244 case bfd_link_hash_undefweak:
8245 abfd = h->root.u.undef.abfd;
8246 if ((abfd->flags & DYNAMIC) == 0
8247 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8248 return FALSE;
8249 break;
8250
8251 case bfd_link_hash_defined:
8252 case bfd_link_hash_defweak:
8253 abfd = h->root.u.def.section->owner;
8254 break;
8255
8256 case bfd_link_hash_common:
8257 abfd = h->root.u.c.p->section->owner;
8258 break;
8259 }
8260 BFD_ASSERT (abfd != NULL);
8261
8262 for (loaded = elf_hash_table (info)->loaded;
8263 loaded != NULL;
8264 loaded = loaded->next)
8265 {
8266 bfd *input;
8267 Elf_Internal_Shdr *hdr;
8268 bfd_size_type symcount;
8269 bfd_size_type extsymcount;
8270 bfd_size_type extsymoff;
8271 Elf_Internal_Shdr *versymhdr;
8272 Elf_Internal_Sym *isym;
8273 Elf_Internal_Sym *isymend;
8274 Elf_Internal_Sym *isymbuf;
8275 Elf_External_Versym *ever;
8276 Elf_External_Versym *extversym;
8277
8278 input = loaded->abfd;
8279
8280 /* We check each DSO for a possible hidden versioned definition. */
8281 if (input == abfd
8282 || (input->flags & DYNAMIC) == 0
8283 || elf_dynversym (input) == 0)
8284 continue;
8285
8286 hdr = &elf_tdata (input)->dynsymtab_hdr;
8287
8288 symcount = hdr->sh_size / bed->s->sizeof_sym;
8289 if (elf_bad_symtab (input))
8290 {
8291 extsymcount = symcount;
8292 extsymoff = 0;
8293 }
8294 else
8295 {
8296 extsymcount = symcount - hdr->sh_info;
8297 extsymoff = hdr->sh_info;
8298 }
8299
8300 if (extsymcount == 0)
8301 continue;
8302
8303 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8304 NULL, NULL, NULL);
8305 if (isymbuf == NULL)
8306 return FALSE;
8307
8308 /* Read in any version definitions. */
8309 versymhdr = &elf_tdata (input)->dynversym_hdr;
8310 extversym = bfd_malloc (versymhdr->sh_size);
8311 if (extversym == NULL)
8312 goto error_ret;
8313
8314 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8315 || (bfd_bread (extversym, versymhdr->sh_size, input)
8316 != versymhdr->sh_size))
8317 {
8318 free (extversym);
8319 error_ret:
8320 free (isymbuf);
8321 return FALSE;
8322 }
8323
8324 ever = extversym + extsymoff;
8325 isymend = isymbuf + extsymcount;
8326 for (isym = isymbuf; isym < isymend; isym++, ever++)
8327 {
8328 const char *name;
8329 Elf_Internal_Versym iver;
8330 unsigned short version_index;
8331
8332 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8333 || isym->st_shndx == SHN_UNDEF)
8334 continue;
8335
8336 name = bfd_elf_string_from_elf_section (input,
8337 hdr->sh_link,
8338 isym->st_name);
8339 if (strcmp (name, h->root.root.string) != 0)
8340 continue;
8341
8342 _bfd_elf_swap_versym_in (input, ever, &iver);
8343
8344 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8345 {
8346 /* If we have a non-hidden versioned sym, then it should
8347 have provided a definition for the undefined sym. */
8348 abort ();
8349 }
8350
8351 version_index = iver.vs_vers & VERSYM_VERSION;
8352 if (version_index == 1 || version_index == 2)
8353 {
8354 /* This is the base or first version. We can use it. */
8355 free (extversym);
8356 free (isymbuf);
8357 return TRUE;
8358 }
8359 }
8360
8361 free (extversym);
8362 free (isymbuf);
8363 }
8364
8365 return FALSE;
8366 }
8367
8368 /* Add an external symbol to the symbol table. This is called from
8369 the hash table traversal routine. When generating a shared object,
8370 we go through the symbol table twice. The first time we output
8371 anything that might have been forced to local scope in a version
8372 script. The second time we output the symbols that are still
8373 global symbols. */
8374
8375 static bfd_boolean
8376 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8377 {
8378 struct elf_outext_info *eoinfo = data;
8379 struct elf_final_link_info *finfo = eoinfo->finfo;
8380 bfd_boolean strip;
8381 Elf_Internal_Sym sym;
8382 asection *input_sec;
8383 const struct elf_backend_data *bed;
8384
8385 if (h->root.type == bfd_link_hash_warning)
8386 {
8387 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8388 if (h->root.type == bfd_link_hash_new)
8389 return TRUE;
8390 }
8391
8392 /* Decide whether to output this symbol in this pass. */
8393 if (eoinfo->localsyms)
8394 {
8395 if (!h->forced_local)
8396 return TRUE;
8397 }
8398 else
8399 {
8400 if (h->forced_local)
8401 return TRUE;
8402 }
8403
8404 bed = get_elf_backend_data (finfo->output_bfd);
8405
8406 if (h->root.type == bfd_link_hash_undefined)
8407 {
8408 /* If we have an undefined symbol reference here then it must have
8409 come from a shared library that is being linked in. (Undefined
8410 references in regular files have already been handled). */
8411 bfd_boolean ignore_undef = FALSE;
8412
8413 /* Some symbols may be special in that the fact that they're
8414 undefined can be safely ignored - let backend determine that. */
8415 if (bed->elf_backend_ignore_undef_symbol)
8416 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8417
8418 /* If we are reporting errors for this situation then do so now. */
8419 if (ignore_undef == FALSE
8420 && h->ref_dynamic
8421 && ! h->ref_regular
8422 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8423 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8424 {
8425 if (! (finfo->info->callbacks->undefined_symbol
8426 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8427 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8428 {
8429 eoinfo->failed = TRUE;
8430 return FALSE;
8431 }
8432 }
8433 }
8434
8435 /* We should also warn if a forced local symbol is referenced from
8436 shared libraries. */
8437 if (! finfo->info->relocatable
8438 && (! finfo->info->shared)
8439 && h->forced_local
8440 && h->ref_dynamic
8441 && !h->dynamic_def
8442 && !h->dynamic_weak
8443 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8444 {
8445 (*_bfd_error_handler)
8446 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8447 finfo->output_bfd,
8448 h->root.u.def.section == bfd_abs_section_ptr
8449 ? finfo->output_bfd : h->root.u.def.section->owner,
8450 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8451 ? "internal"
8452 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8453 ? "hidden" : "local",
8454 h->root.root.string);
8455 eoinfo->failed = TRUE;
8456 return FALSE;
8457 }
8458
8459 /* We don't want to output symbols that have never been mentioned by
8460 a regular file, or that we have been told to strip. However, if
8461 h->indx is set to -2, the symbol is used by a reloc and we must
8462 output it. */
8463 if (h->indx == -2)
8464 strip = FALSE;
8465 else if ((h->def_dynamic
8466 || h->ref_dynamic
8467 || h->root.type == bfd_link_hash_new)
8468 && !h->def_regular
8469 && !h->ref_regular)
8470 strip = TRUE;
8471 else if (finfo->info->strip == strip_all)
8472 strip = TRUE;
8473 else if (finfo->info->strip == strip_some
8474 && bfd_hash_lookup (finfo->info->keep_hash,
8475 h->root.root.string, FALSE, FALSE) == NULL)
8476 strip = TRUE;
8477 else if (finfo->info->strip_discarded
8478 && (h->root.type == bfd_link_hash_defined
8479 || h->root.type == bfd_link_hash_defweak)
8480 && elf_discarded_section (h->root.u.def.section))
8481 strip = TRUE;
8482 else
8483 strip = FALSE;
8484
8485 /* If we're stripping it, and it's not a dynamic symbol, there's
8486 nothing else to do unless it is a forced local symbol. */
8487 if (strip
8488 && h->dynindx == -1
8489 && !h->forced_local)
8490 return TRUE;
8491
8492 sym.st_value = 0;
8493 sym.st_size = h->size;
8494 sym.st_other = h->other;
8495 if (h->forced_local)
8496 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8497 else if (h->root.type == bfd_link_hash_undefweak
8498 || h->root.type == bfd_link_hash_defweak)
8499 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8500 else
8501 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8502
8503 switch (h->root.type)
8504 {
8505 default:
8506 case bfd_link_hash_new:
8507 case bfd_link_hash_warning:
8508 abort ();
8509 return FALSE;
8510
8511 case bfd_link_hash_undefined:
8512 case bfd_link_hash_undefweak:
8513 input_sec = bfd_und_section_ptr;
8514 sym.st_shndx = SHN_UNDEF;
8515 break;
8516
8517 case bfd_link_hash_defined:
8518 case bfd_link_hash_defweak:
8519 {
8520 input_sec = h->root.u.def.section;
8521 if (input_sec->output_section != NULL)
8522 {
8523 sym.st_shndx =
8524 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8525 input_sec->output_section);
8526 if (sym.st_shndx == SHN_BAD)
8527 {
8528 (*_bfd_error_handler)
8529 (_("%B: could not find output section %A for input section %A"),
8530 finfo->output_bfd, input_sec->output_section, input_sec);
8531 eoinfo->failed = TRUE;
8532 return FALSE;
8533 }
8534
8535 /* ELF symbols in relocatable files are section relative,
8536 but in nonrelocatable files they are virtual
8537 addresses. */
8538 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8539 if (! finfo->info->relocatable)
8540 {
8541 sym.st_value += input_sec->output_section->vma;
8542 if (h->type == STT_TLS)
8543 {
8544 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8545 if (tls_sec != NULL)
8546 sym.st_value -= tls_sec->vma;
8547 else
8548 {
8549 /* The TLS section may have been garbage collected. */
8550 BFD_ASSERT (finfo->info->gc_sections
8551 && !input_sec->gc_mark);
8552 }
8553 }
8554 }
8555 }
8556 else
8557 {
8558 BFD_ASSERT (input_sec->owner == NULL
8559 || (input_sec->owner->flags & DYNAMIC) != 0);
8560 sym.st_shndx = SHN_UNDEF;
8561 input_sec = bfd_und_section_ptr;
8562 }
8563 }
8564 break;
8565
8566 case bfd_link_hash_common:
8567 input_sec = h->root.u.c.p->section;
8568 sym.st_shndx = bed->common_section_index (input_sec);
8569 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8570 break;
8571
8572 case bfd_link_hash_indirect:
8573 /* These symbols are created by symbol versioning. They point
8574 to the decorated version of the name. For example, if the
8575 symbol foo@@GNU_1.2 is the default, which should be used when
8576 foo is used with no version, then we add an indirect symbol
8577 foo which points to foo@@GNU_1.2. We ignore these symbols,
8578 since the indirected symbol is already in the hash table. */
8579 return TRUE;
8580 }
8581
8582 /* Give the processor backend a chance to tweak the symbol value,
8583 and also to finish up anything that needs to be done for this
8584 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8585 forced local syms when non-shared is due to a historical quirk. */
8586 if ((h->dynindx != -1
8587 || h->forced_local)
8588 && ((finfo->info->shared
8589 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8590 || h->root.type != bfd_link_hash_undefweak))
8591 || !h->forced_local)
8592 && elf_hash_table (finfo->info)->dynamic_sections_created)
8593 {
8594 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8595 (finfo->output_bfd, finfo->info, h, &sym)))
8596 {
8597 eoinfo->failed = TRUE;
8598 return FALSE;
8599 }
8600 }
8601
8602 /* If we are marking the symbol as undefined, and there are no
8603 non-weak references to this symbol from a regular object, then
8604 mark the symbol as weak undefined; if there are non-weak
8605 references, mark the symbol as strong. We can't do this earlier,
8606 because it might not be marked as undefined until the
8607 finish_dynamic_symbol routine gets through with it. */
8608 if (sym.st_shndx == SHN_UNDEF
8609 && h->ref_regular
8610 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8611 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8612 {
8613 int bindtype;
8614
8615 if (h->ref_regular_nonweak)
8616 bindtype = STB_GLOBAL;
8617 else
8618 bindtype = STB_WEAK;
8619 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8620 }
8621
8622 /* If this is a symbol defined in a dynamic library, don't use the
8623 symbol size from the dynamic library. Relinking an executable
8624 against a new library may introduce gratuitous changes in the
8625 executable's symbols if we keep the size. */
8626 if (sym.st_shndx == SHN_UNDEF
8627 && !h->def_regular
8628 && h->def_dynamic)
8629 sym.st_size = 0;
8630
8631 /* If a non-weak symbol with non-default visibility is not defined
8632 locally, it is a fatal error. */
8633 if (! finfo->info->relocatable
8634 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8635 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8636 && h->root.type == bfd_link_hash_undefined
8637 && !h->def_regular)
8638 {
8639 (*_bfd_error_handler)
8640 (_("%B: %s symbol `%s' isn't defined"),
8641 finfo->output_bfd,
8642 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8643 ? "protected"
8644 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8645 ? "internal" : "hidden",
8646 h->root.root.string);
8647 eoinfo->failed = TRUE;
8648 return FALSE;
8649 }
8650
8651 /* If this symbol should be put in the .dynsym section, then put it
8652 there now. We already know the symbol index. We also fill in
8653 the entry in the .hash section. */
8654 if (h->dynindx != -1
8655 && elf_hash_table (finfo->info)->dynamic_sections_created)
8656 {
8657 bfd_byte *esym;
8658
8659 sym.st_name = h->dynstr_index;
8660 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8661 if (! check_dynsym (finfo->output_bfd, &sym))
8662 {
8663 eoinfo->failed = TRUE;
8664 return FALSE;
8665 }
8666 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8667
8668 if (finfo->hash_sec != NULL)
8669 {
8670 size_t hash_entry_size;
8671 bfd_byte *bucketpos;
8672 bfd_vma chain;
8673 size_t bucketcount;
8674 size_t bucket;
8675
8676 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8677 bucket = h->u.elf_hash_value % bucketcount;
8678
8679 hash_entry_size
8680 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8681 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8682 + (bucket + 2) * hash_entry_size);
8683 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8684 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8685 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8686 ((bfd_byte *) finfo->hash_sec->contents
8687 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8688 }
8689
8690 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8691 {
8692 Elf_Internal_Versym iversym;
8693 Elf_External_Versym *eversym;
8694
8695 if (!h->def_regular)
8696 {
8697 if (h->verinfo.verdef == NULL)
8698 iversym.vs_vers = 0;
8699 else
8700 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8701 }
8702 else
8703 {
8704 if (h->verinfo.vertree == NULL)
8705 iversym.vs_vers = 1;
8706 else
8707 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8708 if (finfo->info->create_default_symver)
8709 iversym.vs_vers++;
8710 }
8711
8712 if (h->hidden)
8713 iversym.vs_vers |= VERSYM_HIDDEN;
8714
8715 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8716 eversym += h->dynindx;
8717 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8718 }
8719 }
8720
8721 /* If we're stripping it, then it was just a dynamic symbol, and
8722 there's nothing else to do. */
8723 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8724 return TRUE;
8725
8726 h->indx = bfd_get_symcount (finfo->output_bfd);
8727
8728 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8729 {
8730 eoinfo->failed = TRUE;
8731 return FALSE;
8732 }
8733
8734 return TRUE;
8735 }
8736
8737 /* Return TRUE if special handling is done for relocs in SEC against
8738 symbols defined in discarded sections. */
8739
8740 static bfd_boolean
8741 elf_section_ignore_discarded_relocs (asection *sec)
8742 {
8743 const struct elf_backend_data *bed;
8744
8745 switch (sec->sec_info_type)
8746 {
8747 case ELF_INFO_TYPE_STABS:
8748 case ELF_INFO_TYPE_EH_FRAME:
8749 return TRUE;
8750 default:
8751 break;
8752 }
8753
8754 bed = get_elf_backend_data (sec->owner);
8755 if (bed->elf_backend_ignore_discarded_relocs != NULL
8756 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8757 return TRUE;
8758
8759 return FALSE;
8760 }
8761
8762 /* Return a mask saying how ld should treat relocations in SEC against
8763 symbols defined in discarded sections. If this function returns
8764 COMPLAIN set, ld will issue a warning message. If this function
8765 returns PRETEND set, and the discarded section was link-once and the
8766 same size as the kept link-once section, ld will pretend that the
8767 symbol was actually defined in the kept section. Otherwise ld will
8768 zero the reloc (at least that is the intent, but some cooperation by
8769 the target dependent code is needed, particularly for REL targets). */
8770
8771 unsigned int
8772 _bfd_elf_default_action_discarded (asection *sec)
8773 {
8774 if (sec->flags & SEC_DEBUGGING)
8775 return PRETEND;
8776
8777 if (strcmp (".eh_frame", sec->name) == 0)
8778 return 0;
8779
8780 if (strcmp (".gcc_except_table", sec->name) == 0)
8781 return 0;
8782
8783 return COMPLAIN | PRETEND;
8784 }
8785
8786 /* Find a match between a section and a member of a section group. */
8787
8788 static asection *
8789 match_group_member (asection *sec, asection *group,
8790 struct bfd_link_info *info)
8791 {
8792 asection *first = elf_next_in_group (group);
8793 asection *s = first;
8794
8795 while (s != NULL)
8796 {
8797 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8798 return s;
8799
8800 s = elf_next_in_group (s);
8801 if (s == first)
8802 break;
8803 }
8804
8805 return NULL;
8806 }
8807
8808 /* Check if the kept section of a discarded section SEC can be used
8809 to replace it. Return the replacement if it is OK. Otherwise return
8810 NULL. */
8811
8812 asection *
8813 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8814 {
8815 asection *kept;
8816
8817 kept = sec->kept_section;
8818 if (kept != NULL)
8819 {
8820 if ((kept->flags & SEC_GROUP) != 0)
8821 kept = match_group_member (sec, kept, info);
8822 if (kept != NULL
8823 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8824 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8825 kept = NULL;
8826 sec->kept_section = kept;
8827 }
8828 return kept;
8829 }
8830
8831 /* Link an input file into the linker output file. This function
8832 handles all the sections and relocations of the input file at once.
8833 This is so that we only have to read the local symbols once, and
8834 don't have to keep them in memory. */
8835
8836 static bfd_boolean
8837 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8838 {
8839 int (*relocate_section)
8840 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8841 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8842 bfd *output_bfd;
8843 Elf_Internal_Shdr *symtab_hdr;
8844 size_t locsymcount;
8845 size_t extsymoff;
8846 Elf_Internal_Sym *isymbuf;
8847 Elf_Internal_Sym *isym;
8848 Elf_Internal_Sym *isymend;
8849 long *pindex;
8850 asection **ppsection;
8851 asection *o;
8852 const struct elf_backend_data *bed;
8853 struct elf_link_hash_entry **sym_hashes;
8854
8855 output_bfd = finfo->output_bfd;
8856 bed = get_elf_backend_data (output_bfd);
8857 relocate_section = bed->elf_backend_relocate_section;
8858
8859 /* If this is a dynamic object, we don't want to do anything here:
8860 we don't want the local symbols, and we don't want the section
8861 contents. */
8862 if ((input_bfd->flags & DYNAMIC) != 0)
8863 return TRUE;
8864
8865 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8866 if (elf_bad_symtab (input_bfd))
8867 {
8868 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8869 extsymoff = 0;
8870 }
8871 else
8872 {
8873 locsymcount = symtab_hdr->sh_info;
8874 extsymoff = symtab_hdr->sh_info;
8875 }
8876
8877 /* Read the local symbols. */
8878 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8879 if (isymbuf == NULL && locsymcount != 0)
8880 {
8881 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8882 finfo->internal_syms,
8883 finfo->external_syms,
8884 finfo->locsym_shndx);
8885 if (isymbuf == NULL)
8886 return FALSE;
8887 }
8888
8889 /* Find local symbol sections and adjust values of symbols in
8890 SEC_MERGE sections. Write out those local symbols we know are
8891 going into the output file. */
8892 isymend = isymbuf + locsymcount;
8893 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8894 isym < isymend;
8895 isym++, pindex++, ppsection++)
8896 {
8897 asection *isec;
8898 const char *name;
8899 Elf_Internal_Sym osym;
8900
8901 *pindex = -1;
8902
8903 if (elf_bad_symtab (input_bfd))
8904 {
8905 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8906 {
8907 *ppsection = NULL;
8908 continue;
8909 }
8910 }
8911
8912 if (isym->st_shndx == SHN_UNDEF)
8913 isec = bfd_und_section_ptr;
8914 else if (isym->st_shndx == SHN_ABS)
8915 isec = bfd_abs_section_ptr;
8916 else if (isym->st_shndx == SHN_COMMON)
8917 isec = bfd_com_section_ptr;
8918 else
8919 {
8920 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8921 if (isec == NULL)
8922 {
8923 /* Don't attempt to output symbols with st_shnx in the
8924 reserved range other than SHN_ABS and SHN_COMMON. */
8925 *ppsection = NULL;
8926 continue;
8927 }
8928 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
8929 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8930 isym->st_value =
8931 _bfd_merged_section_offset (output_bfd, &isec,
8932 elf_section_data (isec)->sec_info,
8933 isym->st_value);
8934 }
8935
8936 *ppsection = isec;
8937
8938 /* Don't output the first, undefined, symbol. */
8939 if (ppsection == finfo->sections)
8940 continue;
8941
8942 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8943 {
8944 /* We never output section symbols. Instead, we use the
8945 section symbol of the corresponding section in the output
8946 file. */
8947 continue;
8948 }
8949
8950 /* If we are stripping all symbols, we don't want to output this
8951 one. */
8952 if (finfo->info->strip == strip_all)
8953 continue;
8954
8955 /* If we are discarding all local symbols, we don't want to
8956 output this one. If we are generating a relocatable output
8957 file, then some of the local symbols may be required by
8958 relocs; we output them below as we discover that they are
8959 needed. */
8960 if (finfo->info->discard == discard_all)
8961 continue;
8962
8963 /* If this symbol is defined in a section which we are
8964 discarding, we don't need to keep it. */
8965 if (isym->st_shndx != SHN_UNDEF
8966 && isym->st_shndx < SHN_LORESERVE
8967 && bfd_section_removed_from_list (output_bfd,
8968 isec->output_section))
8969 continue;
8970
8971 /* Get the name of the symbol. */
8972 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8973 isym->st_name);
8974 if (name == NULL)
8975 return FALSE;
8976
8977 /* See if we are discarding symbols with this name. */
8978 if ((finfo->info->strip == strip_some
8979 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8980 == NULL))
8981 || (((finfo->info->discard == discard_sec_merge
8982 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8983 || finfo->info->discard == discard_l)
8984 && bfd_is_local_label_name (input_bfd, name)))
8985 continue;
8986
8987 /* If we get here, we are going to output this symbol. */
8988
8989 osym = *isym;
8990
8991 /* Adjust the section index for the output file. */
8992 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8993 isec->output_section);
8994 if (osym.st_shndx == SHN_BAD)
8995 return FALSE;
8996
8997 *pindex = bfd_get_symcount (output_bfd);
8998
8999 /* ELF symbols in relocatable files are section relative, but
9000 in executable files they are virtual addresses. Note that
9001 this code assumes that all ELF sections have an associated
9002 BFD section with a reasonable value for output_offset; below
9003 we assume that they also have a reasonable value for
9004 output_section. Any special sections must be set up to meet
9005 these requirements. */
9006 osym.st_value += isec->output_offset;
9007 if (! finfo->info->relocatable)
9008 {
9009 osym.st_value += isec->output_section->vma;
9010 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9011 {
9012 /* STT_TLS symbols are relative to PT_TLS segment base. */
9013 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9014 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9015 }
9016 }
9017
9018 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9019 return FALSE;
9020 }
9021
9022 /* Relocate the contents of each section. */
9023 sym_hashes = elf_sym_hashes (input_bfd);
9024 for (o = input_bfd->sections; o != NULL; o = o->next)
9025 {
9026 bfd_byte *contents;
9027
9028 if (! o->linker_mark)
9029 {
9030 /* This section was omitted from the link. */
9031 continue;
9032 }
9033
9034 if ((o->flags & SEC_HAS_CONTENTS) == 0
9035 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9036 continue;
9037
9038 if ((o->flags & SEC_LINKER_CREATED) != 0)
9039 {
9040 /* Section was created by _bfd_elf_link_create_dynamic_sections
9041 or somesuch. */
9042 continue;
9043 }
9044
9045 /* Get the contents of the section. They have been cached by a
9046 relaxation routine. Note that o is a section in an input
9047 file, so the contents field will not have been set by any of
9048 the routines which work on output files. */
9049 if (elf_section_data (o)->this_hdr.contents != NULL)
9050 contents = elf_section_data (o)->this_hdr.contents;
9051 else
9052 {
9053 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9054
9055 contents = finfo->contents;
9056 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9057 return FALSE;
9058 }
9059
9060 if ((o->flags & SEC_RELOC) != 0)
9061 {
9062 Elf_Internal_Rela *internal_relocs;
9063 Elf_Internal_Rela *rel, *relend;
9064 bfd_vma r_type_mask;
9065 int r_sym_shift;
9066 int action_discarded;
9067 int ret;
9068
9069 /* Get the swapped relocs. */
9070 internal_relocs
9071 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9072 finfo->internal_relocs, FALSE);
9073 if (internal_relocs == NULL
9074 && o->reloc_count > 0)
9075 return FALSE;
9076
9077 if (bed->s->arch_size == 32)
9078 {
9079 r_type_mask = 0xff;
9080 r_sym_shift = 8;
9081 }
9082 else
9083 {
9084 r_type_mask = 0xffffffff;
9085 r_sym_shift = 32;
9086 }
9087
9088 action_discarded = -1;
9089 if (!elf_section_ignore_discarded_relocs (o))
9090 action_discarded = (*bed->action_discarded) (o);
9091
9092 /* Run through the relocs evaluating complex reloc symbols and
9093 looking for relocs against symbols from discarded sections
9094 or section symbols from removed link-once sections.
9095 Complain about relocs against discarded sections. Zero
9096 relocs against removed link-once sections. */
9097
9098 rel = internal_relocs;
9099 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9100 for ( ; rel < relend; rel++)
9101 {
9102 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9103 unsigned int s_type;
9104 asection **ps, *sec;
9105 struct elf_link_hash_entry *h = NULL;
9106 const char *sym_name;
9107
9108 if (r_symndx == STN_UNDEF)
9109 continue;
9110
9111 if (r_symndx >= locsymcount
9112 || (elf_bad_symtab (input_bfd)
9113 && finfo->sections[r_symndx] == NULL))
9114 {
9115 h = sym_hashes[r_symndx - extsymoff];
9116
9117 /* Badly formatted input files can contain relocs that
9118 reference non-existant symbols. Check here so that
9119 we do not seg fault. */
9120 if (h == NULL)
9121 {
9122 char buffer [32];
9123
9124 sprintf_vma (buffer, rel->r_info);
9125 (*_bfd_error_handler)
9126 (_("error: %B contains a reloc (0x%s) for section %A "
9127 "that references a non-existent global symbol"),
9128 input_bfd, o, buffer);
9129 bfd_set_error (bfd_error_bad_value);
9130 return FALSE;
9131 }
9132
9133 while (h->root.type == bfd_link_hash_indirect
9134 || h->root.type == bfd_link_hash_warning)
9135 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9136
9137 s_type = h->type;
9138
9139 ps = NULL;
9140 if (h->root.type == bfd_link_hash_defined
9141 || h->root.type == bfd_link_hash_defweak)
9142 ps = &h->root.u.def.section;
9143
9144 sym_name = h->root.root.string;
9145 }
9146 else
9147 {
9148 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9149
9150 s_type = ELF_ST_TYPE (sym->st_info);
9151 ps = &finfo->sections[r_symndx];
9152 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9153 sym, *ps);
9154 }
9155
9156 if (s_type == STT_RELC || s_type == STT_SRELC)
9157 {
9158 bfd_vma val;
9159 bfd_vma dot = (rel->r_offset
9160 + o->output_offset + o->output_section->vma);
9161 #ifdef DEBUG
9162 printf ("Encountered a complex symbol!");
9163 printf (" (input_bfd %s, section %s, reloc %ld\n",
9164 input_bfd->filename, o->name, rel - internal_relocs);
9165 printf (" symbol: idx %8.8lx, name %s\n",
9166 r_symndx, sym_name);
9167 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9168 (unsigned long) rel->r_info,
9169 (unsigned long) rel->r_offset);
9170 #endif
9171 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9172 isymbuf, locsymcount, s_type == STT_SRELC))
9173 return FALSE;
9174
9175 /* Symbol evaluated OK. Update to absolute value. */
9176 set_symbol_value (input_bfd, isymbuf, locsymcount,
9177 r_symndx, val);
9178 continue;
9179 }
9180
9181 if (action_discarded != -1 && ps != NULL)
9182 {
9183 /* Complain if the definition comes from a
9184 discarded section. */
9185 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9186 {
9187 BFD_ASSERT (r_symndx != 0);
9188 if (action_discarded & COMPLAIN)
9189 (*finfo->info->callbacks->einfo)
9190 (_("%X`%s' referenced in section `%A' of %B: "
9191 "defined in discarded section `%A' of %B\n"),
9192 sym_name, o, input_bfd, sec, sec->owner);
9193
9194 /* Try to do the best we can to support buggy old
9195 versions of gcc. Pretend that the symbol is
9196 really defined in the kept linkonce section.
9197 FIXME: This is quite broken. Modifying the
9198 symbol here means we will be changing all later
9199 uses of the symbol, not just in this section. */
9200 if (action_discarded & PRETEND)
9201 {
9202 asection *kept;
9203
9204 kept = _bfd_elf_check_kept_section (sec,
9205 finfo->info);
9206 if (kept != NULL)
9207 {
9208 *ps = kept;
9209 continue;
9210 }
9211 }
9212 }
9213 }
9214 }
9215
9216 /* Relocate the section by invoking a back end routine.
9217
9218 The back end routine is responsible for adjusting the
9219 section contents as necessary, and (if using Rela relocs
9220 and generating a relocatable output file) adjusting the
9221 reloc addend as necessary.
9222
9223 The back end routine does not have to worry about setting
9224 the reloc address or the reloc symbol index.
9225
9226 The back end routine is given a pointer to the swapped in
9227 internal symbols, and can access the hash table entries
9228 for the external symbols via elf_sym_hashes (input_bfd).
9229
9230 When generating relocatable output, the back end routine
9231 must handle STB_LOCAL/STT_SECTION symbols specially. The
9232 output symbol is going to be a section symbol
9233 corresponding to the output section, which will require
9234 the addend to be adjusted. */
9235
9236 ret = (*relocate_section) (output_bfd, finfo->info,
9237 input_bfd, o, contents,
9238 internal_relocs,
9239 isymbuf,
9240 finfo->sections);
9241 if (!ret)
9242 return FALSE;
9243
9244 if (ret == 2
9245 || finfo->info->relocatable
9246 || finfo->info->emitrelocations)
9247 {
9248 Elf_Internal_Rela *irela;
9249 Elf_Internal_Rela *irelaend;
9250 bfd_vma last_offset;
9251 struct elf_link_hash_entry **rel_hash;
9252 struct elf_link_hash_entry **rel_hash_list;
9253 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9254 unsigned int next_erel;
9255 bfd_boolean rela_normal;
9256
9257 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9258 rela_normal = (bed->rela_normal
9259 && (input_rel_hdr->sh_entsize
9260 == bed->s->sizeof_rela));
9261
9262 /* Adjust the reloc addresses and symbol indices. */
9263
9264 irela = internal_relocs;
9265 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9266 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9267 + elf_section_data (o->output_section)->rel_count
9268 + elf_section_data (o->output_section)->rel_count2);
9269 rel_hash_list = rel_hash;
9270 last_offset = o->output_offset;
9271 if (!finfo->info->relocatable)
9272 last_offset += o->output_section->vma;
9273 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9274 {
9275 unsigned long r_symndx;
9276 asection *sec;
9277 Elf_Internal_Sym sym;
9278
9279 if (next_erel == bed->s->int_rels_per_ext_rel)
9280 {
9281 rel_hash++;
9282 next_erel = 0;
9283 }
9284
9285 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9286 finfo->info, o,
9287 irela->r_offset);
9288 if (irela->r_offset >= (bfd_vma) -2)
9289 {
9290 /* This is a reloc for a deleted entry or somesuch.
9291 Turn it into an R_*_NONE reloc, at the same
9292 offset as the last reloc. elf_eh_frame.c and
9293 bfd_elf_discard_info rely on reloc offsets
9294 being ordered. */
9295 irela->r_offset = last_offset;
9296 irela->r_info = 0;
9297 irela->r_addend = 0;
9298 continue;
9299 }
9300
9301 irela->r_offset += o->output_offset;
9302
9303 /* Relocs in an executable have to be virtual addresses. */
9304 if (!finfo->info->relocatable)
9305 irela->r_offset += o->output_section->vma;
9306
9307 last_offset = irela->r_offset;
9308
9309 r_symndx = irela->r_info >> r_sym_shift;
9310 if (r_symndx == STN_UNDEF)
9311 continue;
9312
9313 if (r_symndx >= locsymcount
9314 || (elf_bad_symtab (input_bfd)
9315 && finfo->sections[r_symndx] == NULL))
9316 {
9317 struct elf_link_hash_entry *rh;
9318 unsigned long indx;
9319
9320 /* This is a reloc against a global symbol. We
9321 have not yet output all the local symbols, so
9322 we do not know the symbol index of any global
9323 symbol. We set the rel_hash entry for this
9324 reloc to point to the global hash table entry
9325 for this symbol. The symbol index is then
9326 set at the end of bfd_elf_final_link. */
9327 indx = r_symndx - extsymoff;
9328 rh = elf_sym_hashes (input_bfd)[indx];
9329 while (rh->root.type == bfd_link_hash_indirect
9330 || rh->root.type == bfd_link_hash_warning)
9331 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9332
9333 /* Setting the index to -2 tells
9334 elf_link_output_extsym that this symbol is
9335 used by a reloc. */
9336 BFD_ASSERT (rh->indx < 0);
9337 rh->indx = -2;
9338
9339 *rel_hash = rh;
9340
9341 continue;
9342 }
9343
9344 /* This is a reloc against a local symbol. */
9345
9346 *rel_hash = NULL;
9347 sym = isymbuf[r_symndx];
9348 sec = finfo->sections[r_symndx];
9349 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9350 {
9351 /* I suppose the backend ought to fill in the
9352 section of any STT_SECTION symbol against a
9353 processor specific section. */
9354 r_symndx = 0;
9355 if (bfd_is_abs_section (sec))
9356 ;
9357 else if (sec == NULL || sec->owner == NULL)
9358 {
9359 bfd_set_error (bfd_error_bad_value);
9360 return FALSE;
9361 }
9362 else
9363 {
9364 asection *osec = sec->output_section;
9365
9366 /* If we have discarded a section, the output
9367 section will be the absolute section. In
9368 case of discarded SEC_MERGE sections, use
9369 the kept section. relocate_section should
9370 have already handled discarded linkonce
9371 sections. */
9372 if (bfd_is_abs_section (osec)
9373 && sec->kept_section != NULL
9374 && sec->kept_section->output_section != NULL)
9375 {
9376 osec = sec->kept_section->output_section;
9377 irela->r_addend -= osec->vma;
9378 }
9379
9380 if (!bfd_is_abs_section (osec))
9381 {
9382 r_symndx = osec->target_index;
9383 if (r_symndx == 0)
9384 {
9385 struct elf_link_hash_table *htab;
9386 asection *oi;
9387
9388 htab = elf_hash_table (finfo->info);
9389 oi = htab->text_index_section;
9390 if ((osec->flags & SEC_READONLY) == 0
9391 && htab->data_index_section != NULL)
9392 oi = htab->data_index_section;
9393
9394 if (oi != NULL)
9395 {
9396 irela->r_addend += osec->vma - oi->vma;
9397 r_symndx = oi->target_index;
9398 }
9399 }
9400
9401 BFD_ASSERT (r_symndx != 0);
9402 }
9403 }
9404
9405 /* Adjust the addend according to where the
9406 section winds up in the output section. */
9407 if (rela_normal)
9408 irela->r_addend += sec->output_offset;
9409 }
9410 else
9411 {
9412 if (finfo->indices[r_symndx] == -1)
9413 {
9414 unsigned long shlink;
9415 const char *name;
9416 asection *osec;
9417
9418 if (finfo->info->strip == strip_all)
9419 {
9420 /* You can't do ld -r -s. */
9421 bfd_set_error (bfd_error_invalid_operation);
9422 return FALSE;
9423 }
9424
9425 /* This symbol was skipped earlier, but
9426 since it is needed by a reloc, we
9427 must output it now. */
9428 shlink = symtab_hdr->sh_link;
9429 name = (bfd_elf_string_from_elf_section
9430 (input_bfd, shlink, sym.st_name));
9431 if (name == NULL)
9432 return FALSE;
9433
9434 osec = sec->output_section;
9435 sym.st_shndx =
9436 _bfd_elf_section_from_bfd_section (output_bfd,
9437 osec);
9438 if (sym.st_shndx == SHN_BAD)
9439 return FALSE;
9440
9441 sym.st_value += sec->output_offset;
9442 if (! finfo->info->relocatable)
9443 {
9444 sym.st_value += osec->vma;
9445 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9446 {
9447 /* STT_TLS symbols are relative to PT_TLS
9448 segment base. */
9449 BFD_ASSERT (elf_hash_table (finfo->info)
9450 ->tls_sec != NULL);
9451 sym.st_value -= (elf_hash_table (finfo->info)
9452 ->tls_sec->vma);
9453 }
9454 }
9455
9456 finfo->indices[r_symndx]
9457 = bfd_get_symcount (output_bfd);
9458
9459 if (! elf_link_output_sym (finfo, name, &sym, sec,
9460 NULL))
9461 return FALSE;
9462 }
9463
9464 r_symndx = finfo->indices[r_symndx];
9465 }
9466
9467 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9468 | (irela->r_info & r_type_mask));
9469 }
9470
9471 /* Swap out the relocs. */
9472 if (input_rel_hdr->sh_size != 0
9473 && !bed->elf_backend_emit_relocs (output_bfd, o,
9474 input_rel_hdr,
9475 internal_relocs,
9476 rel_hash_list))
9477 return FALSE;
9478
9479 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9480 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9481 {
9482 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9483 * bed->s->int_rels_per_ext_rel);
9484 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9485 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9486 input_rel_hdr2,
9487 internal_relocs,
9488 rel_hash_list))
9489 return FALSE;
9490 }
9491 }
9492 }
9493
9494 /* Write out the modified section contents. */
9495 if (bed->elf_backend_write_section
9496 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9497 contents))
9498 {
9499 /* Section written out. */
9500 }
9501 else switch (o->sec_info_type)
9502 {
9503 case ELF_INFO_TYPE_STABS:
9504 if (! (_bfd_write_section_stabs
9505 (output_bfd,
9506 &elf_hash_table (finfo->info)->stab_info,
9507 o, &elf_section_data (o)->sec_info, contents)))
9508 return FALSE;
9509 break;
9510 case ELF_INFO_TYPE_MERGE:
9511 if (! _bfd_write_merged_section (output_bfd, o,
9512 elf_section_data (o)->sec_info))
9513 return FALSE;
9514 break;
9515 case ELF_INFO_TYPE_EH_FRAME:
9516 {
9517 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9518 o, contents))
9519 return FALSE;
9520 }
9521 break;
9522 default:
9523 {
9524 if (! (o->flags & SEC_EXCLUDE)
9525 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9526 && ! bfd_set_section_contents (output_bfd, o->output_section,
9527 contents,
9528 (file_ptr) o->output_offset,
9529 o->size))
9530 return FALSE;
9531 }
9532 break;
9533 }
9534 }
9535
9536 return TRUE;
9537 }
9538
9539 /* Generate a reloc when linking an ELF file. This is a reloc
9540 requested by the linker, and does not come from any input file. This
9541 is used to build constructor and destructor tables when linking
9542 with -Ur. */
9543
9544 static bfd_boolean
9545 elf_reloc_link_order (bfd *output_bfd,
9546 struct bfd_link_info *info,
9547 asection *output_section,
9548 struct bfd_link_order *link_order)
9549 {
9550 reloc_howto_type *howto;
9551 long indx;
9552 bfd_vma offset;
9553 bfd_vma addend;
9554 struct elf_link_hash_entry **rel_hash_ptr;
9555 Elf_Internal_Shdr *rel_hdr;
9556 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9557 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9558 bfd_byte *erel;
9559 unsigned int i;
9560
9561 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9562 if (howto == NULL)
9563 {
9564 bfd_set_error (bfd_error_bad_value);
9565 return FALSE;
9566 }
9567
9568 addend = link_order->u.reloc.p->addend;
9569
9570 /* Figure out the symbol index. */
9571 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9572 + elf_section_data (output_section)->rel_count
9573 + elf_section_data (output_section)->rel_count2);
9574 if (link_order->type == bfd_section_reloc_link_order)
9575 {
9576 indx = link_order->u.reloc.p->u.section->target_index;
9577 BFD_ASSERT (indx != 0);
9578 *rel_hash_ptr = NULL;
9579 }
9580 else
9581 {
9582 struct elf_link_hash_entry *h;
9583
9584 /* Treat a reloc against a defined symbol as though it were
9585 actually against the section. */
9586 h = ((struct elf_link_hash_entry *)
9587 bfd_wrapped_link_hash_lookup (output_bfd, info,
9588 link_order->u.reloc.p->u.name,
9589 FALSE, FALSE, TRUE));
9590 if (h != NULL
9591 && (h->root.type == bfd_link_hash_defined
9592 || h->root.type == bfd_link_hash_defweak))
9593 {
9594 asection *section;
9595
9596 section = h->root.u.def.section;
9597 indx = section->output_section->target_index;
9598 *rel_hash_ptr = NULL;
9599 /* It seems that we ought to add the symbol value to the
9600 addend here, but in practice it has already been added
9601 because it was passed to constructor_callback. */
9602 addend += section->output_section->vma + section->output_offset;
9603 }
9604 else if (h != NULL)
9605 {
9606 /* Setting the index to -2 tells elf_link_output_extsym that
9607 this symbol is used by a reloc. */
9608 h->indx = -2;
9609 *rel_hash_ptr = h;
9610 indx = 0;
9611 }
9612 else
9613 {
9614 if (! ((*info->callbacks->unattached_reloc)
9615 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9616 return FALSE;
9617 indx = 0;
9618 }
9619 }
9620
9621 /* If this is an inplace reloc, we must write the addend into the
9622 object file. */
9623 if (howto->partial_inplace && addend != 0)
9624 {
9625 bfd_size_type size;
9626 bfd_reloc_status_type rstat;
9627 bfd_byte *buf;
9628 bfd_boolean ok;
9629 const char *sym_name;
9630
9631 size = bfd_get_reloc_size (howto);
9632 buf = bfd_zmalloc (size);
9633 if (buf == NULL)
9634 return FALSE;
9635 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9636 switch (rstat)
9637 {
9638 case bfd_reloc_ok:
9639 break;
9640
9641 default:
9642 case bfd_reloc_outofrange:
9643 abort ();
9644
9645 case bfd_reloc_overflow:
9646 if (link_order->type == bfd_section_reloc_link_order)
9647 sym_name = bfd_section_name (output_bfd,
9648 link_order->u.reloc.p->u.section);
9649 else
9650 sym_name = link_order->u.reloc.p->u.name;
9651 if (! ((*info->callbacks->reloc_overflow)
9652 (info, NULL, sym_name, howto->name, addend, NULL,
9653 NULL, (bfd_vma) 0)))
9654 {
9655 free (buf);
9656 return FALSE;
9657 }
9658 break;
9659 }
9660 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9661 link_order->offset, size);
9662 free (buf);
9663 if (! ok)
9664 return FALSE;
9665 }
9666
9667 /* The address of a reloc is relative to the section in a
9668 relocatable file, and is a virtual address in an executable
9669 file. */
9670 offset = link_order->offset;
9671 if (! info->relocatable)
9672 offset += output_section->vma;
9673
9674 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9675 {
9676 irel[i].r_offset = offset;
9677 irel[i].r_info = 0;
9678 irel[i].r_addend = 0;
9679 }
9680 if (bed->s->arch_size == 32)
9681 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9682 else
9683 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9684
9685 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9686 erel = rel_hdr->contents;
9687 if (rel_hdr->sh_type == SHT_REL)
9688 {
9689 erel += (elf_section_data (output_section)->rel_count
9690 * bed->s->sizeof_rel);
9691 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9692 }
9693 else
9694 {
9695 irel[0].r_addend = addend;
9696 erel += (elf_section_data (output_section)->rel_count
9697 * bed->s->sizeof_rela);
9698 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9699 }
9700
9701 ++elf_section_data (output_section)->rel_count;
9702
9703 return TRUE;
9704 }
9705
9706
9707 /* Get the output vma of the section pointed to by the sh_link field. */
9708
9709 static bfd_vma
9710 elf_get_linked_section_vma (struct bfd_link_order *p)
9711 {
9712 Elf_Internal_Shdr **elf_shdrp;
9713 asection *s;
9714 int elfsec;
9715
9716 s = p->u.indirect.section;
9717 elf_shdrp = elf_elfsections (s->owner);
9718 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9719 elfsec = elf_shdrp[elfsec]->sh_link;
9720 /* PR 290:
9721 The Intel C compiler generates SHT_IA_64_UNWIND with
9722 SHF_LINK_ORDER. But it doesn't set the sh_link or
9723 sh_info fields. Hence we could get the situation
9724 where elfsec is 0. */
9725 if (elfsec == 0)
9726 {
9727 const struct elf_backend_data *bed
9728 = get_elf_backend_data (s->owner);
9729 if (bed->link_order_error_handler)
9730 bed->link_order_error_handler
9731 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9732 return 0;
9733 }
9734 else
9735 {
9736 s = elf_shdrp[elfsec]->bfd_section;
9737 return s->output_section->vma + s->output_offset;
9738 }
9739 }
9740
9741
9742 /* Compare two sections based on the locations of the sections they are
9743 linked to. Used by elf_fixup_link_order. */
9744
9745 static int
9746 compare_link_order (const void * a, const void * b)
9747 {
9748 bfd_vma apos;
9749 bfd_vma bpos;
9750
9751 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9752 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9753 if (apos < bpos)
9754 return -1;
9755 return apos > bpos;
9756 }
9757
9758
9759 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9760 order as their linked sections. Returns false if this could not be done
9761 because an output section includes both ordered and unordered
9762 sections. Ideally we'd do this in the linker proper. */
9763
9764 static bfd_boolean
9765 elf_fixup_link_order (bfd *abfd, asection *o)
9766 {
9767 int seen_linkorder;
9768 int seen_other;
9769 int n;
9770 struct bfd_link_order *p;
9771 bfd *sub;
9772 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9773 unsigned elfsec;
9774 struct bfd_link_order **sections;
9775 asection *s, *other_sec, *linkorder_sec;
9776 bfd_vma offset;
9777
9778 other_sec = NULL;
9779 linkorder_sec = NULL;
9780 seen_other = 0;
9781 seen_linkorder = 0;
9782 for (p = o->map_head.link_order; p != NULL; p = p->next)
9783 {
9784 if (p->type == bfd_indirect_link_order)
9785 {
9786 s = p->u.indirect.section;
9787 sub = s->owner;
9788 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9789 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9790 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9791 && elfsec < elf_numsections (sub)
9792 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9793 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9794 {
9795 seen_linkorder++;
9796 linkorder_sec = s;
9797 }
9798 else
9799 {
9800 seen_other++;
9801 other_sec = s;
9802 }
9803 }
9804 else
9805 seen_other++;
9806
9807 if (seen_other && seen_linkorder)
9808 {
9809 if (other_sec && linkorder_sec)
9810 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9811 o, linkorder_sec,
9812 linkorder_sec->owner, other_sec,
9813 other_sec->owner);
9814 else
9815 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9816 o);
9817 bfd_set_error (bfd_error_bad_value);
9818 return FALSE;
9819 }
9820 }
9821
9822 if (!seen_linkorder)
9823 return TRUE;
9824
9825 sections = (struct bfd_link_order **)
9826 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9827 if (sections == NULL)
9828 return FALSE;
9829 seen_linkorder = 0;
9830
9831 for (p = o->map_head.link_order; p != NULL; p = p->next)
9832 {
9833 sections[seen_linkorder++] = p;
9834 }
9835 /* Sort the input sections in the order of their linked section. */
9836 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9837 compare_link_order);
9838
9839 /* Change the offsets of the sections. */
9840 offset = 0;
9841 for (n = 0; n < seen_linkorder; n++)
9842 {
9843 s = sections[n]->u.indirect.section;
9844 offset &= ~(bfd_vma) 0 << s->alignment_power;
9845 s->output_offset = offset;
9846 sections[n]->offset = offset;
9847 offset += sections[n]->size;
9848 }
9849
9850 return TRUE;
9851 }
9852
9853
9854 /* Do the final step of an ELF link. */
9855
9856 bfd_boolean
9857 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9858 {
9859 bfd_boolean dynamic;
9860 bfd_boolean emit_relocs;
9861 bfd *dynobj;
9862 struct elf_final_link_info finfo;
9863 register asection *o;
9864 register struct bfd_link_order *p;
9865 register bfd *sub;
9866 bfd_size_type max_contents_size;
9867 bfd_size_type max_external_reloc_size;
9868 bfd_size_type max_internal_reloc_count;
9869 bfd_size_type max_sym_count;
9870 bfd_size_type max_sym_shndx_count;
9871 file_ptr off;
9872 Elf_Internal_Sym elfsym;
9873 unsigned int i;
9874 Elf_Internal_Shdr *symtab_hdr;
9875 Elf_Internal_Shdr *symtab_shndx_hdr;
9876 Elf_Internal_Shdr *symstrtab_hdr;
9877 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9878 struct elf_outext_info eoinfo;
9879 bfd_boolean merged;
9880 size_t relativecount = 0;
9881 asection *reldyn = 0;
9882 bfd_size_type amt;
9883 asection *attr_section = NULL;
9884 bfd_vma attr_size = 0;
9885 const char *std_attrs_section;
9886
9887 if (! is_elf_hash_table (info->hash))
9888 return FALSE;
9889
9890 if (info->shared)
9891 abfd->flags |= DYNAMIC;
9892
9893 dynamic = elf_hash_table (info)->dynamic_sections_created;
9894 dynobj = elf_hash_table (info)->dynobj;
9895
9896 emit_relocs = (info->relocatable
9897 || info->emitrelocations);
9898
9899 finfo.info = info;
9900 finfo.output_bfd = abfd;
9901 finfo.symstrtab = _bfd_elf_stringtab_init ();
9902 if (finfo.symstrtab == NULL)
9903 return FALSE;
9904
9905 if (! dynamic)
9906 {
9907 finfo.dynsym_sec = NULL;
9908 finfo.hash_sec = NULL;
9909 finfo.symver_sec = NULL;
9910 }
9911 else
9912 {
9913 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9914 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9915 BFD_ASSERT (finfo.dynsym_sec != NULL);
9916 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9917 /* Note that it is OK if symver_sec is NULL. */
9918 }
9919
9920 finfo.contents = NULL;
9921 finfo.external_relocs = NULL;
9922 finfo.internal_relocs = NULL;
9923 finfo.external_syms = NULL;
9924 finfo.locsym_shndx = NULL;
9925 finfo.internal_syms = NULL;
9926 finfo.indices = NULL;
9927 finfo.sections = NULL;
9928 finfo.symbuf = NULL;
9929 finfo.symshndxbuf = NULL;
9930 finfo.symbuf_count = 0;
9931 finfo.shndxbuf_size = 0;
9932
9933 /* The object attributes have been merged. Remove the input
9934 sections from the link, and set the contents of the output
9935 secton. */
9936 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9937 for (o = abfd->sections; o != NULL; o = o->next)
9938 {
9939 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9940 || strcmp (o->name, ".gnu.attributes") == 0)
9941 {
9942 for (p = o->map_head.link_order; p != NULL; p = p->next)
9943 {
9944 asection *input_section;
9945
9946 if (p->type != bfd_indirect_link_order)
9947 continue;
9948 input_section = p->u.indirect.section;
9949 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9950 elf_link_input_bfd ignores this section. */
9951 input_section->flags &= ~SEC_HAS_CONTENTS;
9952 }
9953
9954 attr_size = bfd_elf_obj_attr_size (abfd);
9955 if (attr_size)
9956 {
9957 bfd_set_section_size (abfd, o, attr_size);
9958 attr_section = o;
9959 /* Skip this section later on. */
9960 o->map_head.link_order = NULL;
9961 }
9962 else
9963 o->flags |= SEC_EXCLUDE;
9964 }
9965 }
9966
9967 /* Count up the number of relocations we will output for each output
9968 section, so that we know the sizes of the reloc sections. We
9969 also figure out some maximum sizes. */
9970 max_contents_size = 0;
9971 max_external_reloc_size = 0;
9972 max_internal_reloc_count = 0;
9973 max_sym_count = 0;
9974 max_sym_shndx_count = 0;
9975 merged = FALSE;
9976 for (o = abfd->sections; o != NULL; o = o->next)
9977 {
9978 struct bfd_elf_section_data *esdo = elf_section_data (o);
9979 o->reloc_count = 0;
9980
9981 for (p = o->map_head.link_order; p != NULL; p = p->next)
9982 {
9983 unsigned int reloc_count = 0;
9984 struct bfd_elf_section_data *esdi = NULL;
9985 unsigned int *rel_count1;
9986
9987 if (p->type == bfd_section_reloc_link_order
9988 || p->type == bfd_symbol_reloc_link_order)
9989 reloc_count = 1;
9990 else if (p->type == bfd_indirect_link_order)
9991 {
9992 asection *sec;
9993
9994 sec = p->u.indirect.section;
9995 esdi = elf_section_data (sec);
9996
9997 /* Mark all sections which are to be included in the
9998 link. This will normally be every section. We need
9999 to do this so that we can identify any sections which
10000 the linker has decided to not include. */
10001 sec->linker_mark = TRUE;
10002
10003 if (sec->flags & SEC_MERGE)
10004 merged = TRUE;
10005
10006 if (info->relocatable || info->emitrelocations)
10007 reloc_count = sec->reloc_count;
10008 else if (bed->elf_backend_count_relocs)
10009 {
10010 Elf_Internal_Rela * relocs;
10011
10012 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10013 NULL, NULL,
10014 info->keep_memory);
10015
10016 if (relocs != NULL)
10017 {
10018 reloc_count
10019 = (*bed->elf_backend_count_relocs) (sec, relocs);
10020
10021 if (elf_section_data (sec)->relocs != relocs)
10022 free (relocs);
10023 }
10024 }
10025
10026 if (sec->rawsize > max_contents_size)
10027 max_contents_size = sec->rawsize;
10028 if (sec->size > max_contents_size)
10029 max_contents_size = sec->size;
10030
10031 /* We are interested in just local symbols, not all
10032 symbols. */
10033 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10034 && (sec->owner->flags & DYNAMIC) == 0)
10035 {
10036 size_t sym_count;
10037
10038 if (elf_bad_symtab (sec->owner))
10039 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10040 / bed->s->sizeof_sym);
10041 else
10042 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10043
10044 if (sym_count > max_sym_count)
10045 max_sym_count = sym_count;
10046
10047 if (sym_count > max_sym_shndx_count
10048 && elf_symtab_shndx (sec->owner) != 0)
10049 max_sym_shndx_count = sym_count;
10050
10051 if ((sec->flags & SEC_RELOC) != 0)
10052 {
10053 size_t ext_size;
10054
10055 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10056 if (ext_size > max_external_reloc_size)
10057 max_external_reloc_size = ext_size;
10058 if (sec->reloc_count > max_internal_reloc_count)
10059 max_internal_reloc_count = sec->reloc_count;
10060 }
10061 }
10062 }
10063
10064 if (reloc_count == 0)
10065 continue;
10066
10067 o->reloc_count += reloc_count;
10068
10069 /* MIPS may have a mix of REL and RELA relocs on sections.
10070 To support this curious ABI we keep reloc counts in
10071 elf_section_data too. We must be careful to add the
10072 relocations from the input section to the right output
10073 count. FIXME: Get rid of one count. We have
10074 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10075 rel_count1 = &esdo->rel_count;
10076 if (esdi != NULL)
10077 {
10078 bfd_boolean same_size;
10079 bfd_size_type entsize1;
10080
10081 entsize1 = esdi->rel_hdr.sh_entsize;
10082 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10083 || entsize1 == bed->s->sizeof_rela);
10084 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10085
10086 if (!same_size)
10087 rel_count1 = &esdo->rel_count2;
10088
10089 if (esdi->rel_hdr2 != NULL)
10090 {
10091 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10092 unsigned int alt_count;
10093 unsigned int *rel_count2;
10094
10095 BFD_ASSERT (entsize2 != entsize1
10096 && (entsize2 == bed->s->sizeof_rel
10097 || entsize2 == bed->s->sizeof_rela));
10098
10099 rel_count2 = &esdo->rel_count2;
10100 if (!same_size)
10101 rel_count2 = &esdo->rel_count;
10102
10103 /* The following is probably too simplistic if the
10104 backend counts output relocs unusually. */
10105 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10106 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10107 *rel_count2 += alt_count;
10108 reloc_count -= alt_count;
10109 }
10110 }
10111 *rel_count1 += reloc_count;
10112 }
10113
10114 if (o->reloc_count > 0)
10115 o->flags |= SEC_RELOC;
10116 else
10117 {
10118 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10119 set it (this is probably a bug) and if it is set
10120 assign_section_numbers will create a reloc section. */
10121 o->flags &=~ SEC_RELOC;
10122 }
10123
10124 /* If the SEC_ALLOC flag is not set, force the section VMA to
10125 zero. This is done in elf_fake_sections as well, but forcing
10126 the VMA to 0 here will ensure that relocs against these
10127 sections are handled correctly. */
10128 if ((o->flags & SEC_ALLOC) == 0
10129 && ! o->user_set_vma)
10130 o->vma = 0;
10131 }
10132
10133 if (! info->relocatable && merged)
10134 elf_link_hash_traverse (elf_hash_table (info),
10135 _bfd_elf_link_sec_merge_syms, abfd);
10136
10137 /* Figure out the file positions for everything but the symbol table
10138 and the relocs. We set symcount to force assign_section_numbers
10139 to create a symbol table. */
10140 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10141 BFD_ASSERT (! abfd->output_has_begun);
10142 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10143 goto error_return;
10144
10145 /* Set sizes, and assign file positions for reloc sections. */
10146 for (o = abfd->sections; o != NULL; o = o->next)
10147 {
10148 if ((o->flags & SEC_RELOC) != 0)
10149 {
10150 if (!(_bfd_elf_link_size_reloc_section
10151 (abfd, &elf_section_data (o)->rel_hdr, o)))
10152 goto error_return;
10153
10154 if (elf_section_data (o)->rel_hdr2
10155 && !(_bfd_elf_link_size_reloc_section
10156 (abfd, elf_section_data (o)->rel_hdr2, o)))
10157 goto error_return;
10158 }
10159
10160 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10161 to count upwards while actually outputting the relocations. */
10162 elf_section_data (o)->rel_count = 0;
10163 elf_section_data (o)->rel_count2 = 0;
10164 }
10165
10166 _bfd_elf_assign_file_positions_for_relocs (abfd);
10167
10168 /* We have now assigned file positions for all the sections except
10169 .symtab and .strtab. We start the .symtab section at the current
10170 file position, and write directly to it. We build the .strtab
10171 section in memory. */
10172 bfd_get_symcount (abfd) = 0;
10173 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10174 /* sh_name is set in prep_headers. */
10175 symtab_hdr->sh_type = SHT_SYMTAB;
10176 /* sh_flags, sh_addr and sh_size all start off zero. */
10177 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10178 /* sh_link is set in assign_section_numbers. */
10179 /* sh_info is set below. */
10180 /* sh_offset is set just below. */
10181 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10182
10183 off = elf_tdata (abfd)->next_file_pos;
10184 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10185
10186 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10187 incorrect. We do not yet know the size of the .symtab section.
10188 We correct next_file_pos below, after we do know the size. */
10189
10190 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10191 continuously seeking to the right position in the file. */
10192 if (! info->keep_memory || max_sym_count < 20)
10193 finfo.symbuf_size = 20;
10194 else
10195 finfo.symbuf_size = max_sym_count;
10196 amt = finfo.symbuf_size;
10197 amt *= bed->s->sizeof_sym;
10198 finfo.symbuf = bfd_malloc (amt);
10199 if (finfo.symbuf == NULL)
10200 goto error_return;
10201 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10202 {
10203 /* Wild guess at number of output symbols. realloc'd as needed. */
10204 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10205 finfo.shndxbuf_size = amt;
10206 amt *= sizeof (Elf_External_Sym_Shndx);
10207 finfo.symshndxbuf = bfd_zmalloc (amt);
10208 if (finfo.symshndxbuf == NULL)
10209 goto error_return;
10210 }
10211
10212 /* Start writing out the symbol table. The first symbol is always a
10213 dummy symbol. */
10214 if (info->strip != strip_all
10215 || emit_relocs)
10216 {
10217 elfsym.st_value = 0;
10218 elfsym.st_size = 0;
10219 elfsym.st_info = 0;
10220 elfsym.st_other = 0;
10221 elfsym.st_shndx = SHN_UNDEF;
10222 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10223 NULL))
10224 goto error_return;
10225 }
10226
10227 /* Output a symbol for each section. We output these even if we are
10228 discarding local symbols, since they are used for relocs. These
10229 symbols have no names. We store the index of each one in the
10230 index field of the section, so that we can find it again when
10231 outputting relocs. */
10232 if (info->strip != strip_all
10233 || emit_relocs)
10234 {
10235 elfsym.st_size = 0;
10236 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10237 elfsym.st_other = 0;
10238 elfsym.st_value = 0;
10239 for (i = 1; i < elf_numsections (abfd); i++)
10240 {
10241 o = bfd_section_from_elf_index (abfd, i);
10242 if (o != NULL)
10243 {
10244 o->target_index = bfd_get_symcount (abfd);
10245 elfsym.st_shndx = i;
10246 if (!info->relocatable)
10247 elfsym.st_value = o->vma;
10248 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10249 goto error_return;
10250 }
10251 }
10252 }
10253
10254 /* Allocate some memory to hold information read in from the input
10255 files. */
10256 if (max_contents_size != 0)
10257 {
10258 finfo.contents = bfd_malloc (max_contents_size);
10259 if (finfo.contents == NULL)
10260 goto error_return;
10261 }
10262
10263 if (max_external_reloc_size != 0)
10264 {
10265 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10266 if (finfo.external_relocs == NULL)
10267 goto error_return;
10268 }
10269
10270 if (max_internal_reloc_count != 0)
10271 {
10272 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10273 amt *= sizeof (Elf_Internal_Rela);
10274 finfo.internal_relocs = bfd_malloc (amt);
10275 if (finfo.internal_relocs == NULL)
10276 goto error_return;
10277 }
10278
10279 if (max_sym_count != 0)
10280 {
10281 amt = max_sym_count * bed->s->sizeof_sym;
10282 finfo.external_syms = bfd_malloc (amt);
10283 if (finfo.external_syms == NULL)
10284 goto error_return;
10285
10286 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10287 finfo.internal_syms = bfd_malloc (amt);
10288 if (finfo.internal_syms == NULL)
10289 goto error_return;
10290
10291 amt = max_sym_count * sizeof (long);
10292 finfo.indices = bfd_malloc (amt);
10293 if (finfo.indices == NULL)
10294 goto error_return;
10295
10296 amt = max_sym_count * sizeof (asection *);
10297 finfo.sections = bfd_malloc (amt);
10298 if (finfo.sections == NULL)
10299 goto error_return;
10300 }
10301
10302 if (max_sym_shndx_count != 0)
10303 {
10304 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10305 finfo.locsym_shndx = bfd_malloc (amt);
10306 if (finfo.locsym_shndx == NULL)
10307 goto error_return;
10308 }
10309
10310 if (elf_hash_table (info)->tls_sec)
10311 {
10312 bfd_vma base, end = 0;
10313 asection *sec;
10314
10315 for (sec = elf_hash_table (info)->tls_sec;
10316 sec && (sec->flags & SEC_THREAD_LOCAL);
10317 sec = sec->next)
10318 {
10319 bfd_size_type size = sec->size;
10320
10321 if (size == 0
10322 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10323 {
10324 struct bfd_link_order *o = sec->map_tail.link_order;
10325 if (o != NULL)
10326 size = o->offset + o->size;
10327 }
10328 end = sec->vma + size;
10329 }
10330 base = elf_hash_table (info)->tls_sec->vma;
10331 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10332 elf_hash_table (info)->tls_size = end - base;
10333 }
10334
10335 /* Reorder SHF_LINK_ORDER sections. */
10336 for (o = abfd->sections; o != NULL; o = o->next)
10337 {
10338 if (!elf_fixup_link_order (abfd, o))
10339 return FALSE;
10340 }
10341
10342 /* Since ELF permits relocations to be against local symbols, we
10343 must have the local symbols available when we do the relocations.
10344 Since we would rather only read the local symbols once, and we
10345 would rather not keep them in memory, we handle all the
10346 relocations for a single input file at the same time.
10347
10348 Unfortunately, there is no way to know the total number of local
10349 symbols until we have seen all of them, and the local symbol
10350 indices precede the global symbol indices. This means that when
10351 we are generating relocatable output, and we see a reloc against
10352 a global symbol, we can not know the symbol index until we have
10353 finished examining all the local symbols to see which ones we are
10354 going to output. To deal with this, we keep the relocations in
10355 memory, and don't output them until the end of the link. This is
10356 an unfortunate waste of memory, but I don't see a good way around
10357 it. Fortunately, it only happens when performing a relocatable
10358 link, which is not the common case. FIXME: If keep_memory is set
10359 we could write the relocs out and then read them again; I don't
10360 know how bad the memory loss will be. */
10361
10362 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10363 sub->output_has_begun = FALSE;
10364 for (o = abfd->sections; o != NULL; o = o->next)
10365 {
10366 for (p = o->map_head.link_order; p != NULL; p = p->next)
10367 {
10368 if (p->type == bfd_indirect_link_order
10369 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10370 == bfd_target_elf_flavour)
10371 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10372 {
10373 if (! sub->output_has_begun)
10374 {
10375 if (! elf_link_input_bfd (&finfo, sub))
10376 goto error_return;
10377 sub->output_has_begun = TRUE;
10378 }
10379 }
10380 else if (p->type == bfd_section_reloc_link_order
10381 || p->type == bfd_symbol_reloc_link_order)
10382 {
10383 if (! elf_reloc_link_order (abfd, info, o, p))
10384 goto error_return;
10385 }
10386 else
10387 {
10388 if (! _bfd_default_link_order (abfd, info, o, p))
10389 goto error_return;
10390 }
10391 }
10392 }
10393
10394 /* Free symbol buffer if needed. */
10395 if (!info->reduce_memory_overheads)
10396 {
10397 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10398 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10399 && elf_tdata (sub)->symbuf)
10400 {
10401 free (elf_tdata (sub)->symbuf);
10402 elf_tdata (sub)->symbuf = NULL;
10403 }
10404 }
10405
10406 /* Output any global symbols that got converted to local in a
10407 version script or due to symbol visibility. We do this in a
10408 separate step since ELF requires all local symbols to appear
10409 prior to any global symbols. FIXME: We should only do this if
10410 some global symbols were, in fact, converted to become local.
10411 FIXME: Will this work correctly with the Irix 5 linker? */
10412 eoinfo.failed = FALSE;
10413 eoinfo.finfo = &finfo;
10414 eoinfo.localsyms = TRUE;
10415 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10416 &eoinfo);
10417 if (eoinfo.failed)
10418 return FALSE;
10419
10420 /* If backend needs to output some local symbols not present in the hash
10421 table, do it now. */
10422 if (bed->elf_backend_output_arch_local_syms)
10423 {
10424 typedef bfd_boolean (*out_sym_func)
10425 (void *, const char *, Elf_Internal_Sym *, asection *,
10426 struct elf_link_hash_entry *);
10427
10428 if (! ((*bed->elf_backend_output_arch_local_syms)
10429 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10430 return FALSE;
10431 }
10432
10433 /* That wrote out all the local symbols. Finish up the symbol table
10434 with the global symbols. Even if we want to strip everything we
10435 can, we still need to deal with those global symbols that got
10436 converted to local in a version script. */
10437
10438 /* The sh_info field records the index of the first non local symbol. */
10439 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10440
10441 if (dynamic
10442 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10443 {
10444 Elf_Internal_Sym sym;
10445 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10446 long last_local = 0;
10447
10448 /* Write out the section symbols for the output sections. */
10449 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10450 {
10451 asection *s;
10452
10453 sym.st_size = 0;
10454 sym.st_name = 0;
10455 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10456 sym.st_other = 0;
10457
10458 for (s = abfd->sections; s != NULL; s = s->next)
10459 {
10460 int indx;
10461 bfd_byte *dest;
10462 long dynindx;
10463
10464 dynindx = elf_section_data (s)->dynindx;
10465 if (dynindx <= 0)
10466 continue;
10467 indx = elf_section_data (s)->this_idx;
10468 BFD_ASSERT (indx > 0);
10469 sym.st_shndx = indx;
10470 if (! check_dynsym (abfd, &sym))
10471 return FALSE;
10472 sym.st_value = s->vma;
10473 dest = dynsym + dynindx * bed->s->sizeof_sym;
10474 if (last_local < dynindx)
10475 last_local = dynindx;
10476 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10477 }
10478 }
10479
10480 /* Write out the local dynsyms. */
10481 if (elf_hash_table (info)->dynlocal)
10482 {
10483 struct elf_link_local_dynamic_entry *e;
10484 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10485 {
10486 asection *s;
10487 bfd_byte *dest;
10488
10489 sym.st_size = e->isym.st_size;
10490 sym.st_other = e->isym.st_other;
10491
10492 /* Copy the internal symbol as is.
10493 Note that we saved a word of storage and overwrote
10494 the original st_name with the dynstr_index. */
10495 sym = e->isym;
10496
10497 s = bfd_section_from_elf_index (e->input_bfd,
10498 e->isym.st_shndx);
10499 if (s != NULL)
10500 {
10501 sym.st_shndx =
10502 elf_section_data (s->output_section)->this_idx;
10503 if (! check_dynsym (abfd, &sym))
10504 return FALSE;
10505 sym.st_value = (s->output_section->vma
10506 + s->output_offset
10507 + e->isym.st_value);
10508 }
10509
10510 if (last_local < e->dynindx)
10511 last_local = e->dynindx;
10512
10513 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10514 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10515 }
10516 }
10517
10518 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10519 last_local + 1;
10520 }
10521
10522 /* We get the global symbols from the hash table. */
10523 eoinfo.failed = FALSE;
10524 eoinfo.localsyms = FALSE;
10525 eoinfo.finfo = &finfo;
10526 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10527 &eoinfo);
10528 if (eoinfo.failed)
10529 return FALSE;
10530
10531 /* If backend needs to output some symbols not present in the hash
10532 table, do it now. */
10533 if (bed->elf_backend_output_arch_syms)
10534 {
10535 typedef bfd_boolean (*out_sym_func)
10536 (void *, const char *, Elf_Internal_Sym *, asection *,
10537 struct elf_link_hash_entry *);
10538
10539 if (! ((*bed->elf_backend_output_arch_syms)
10540 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10541 return FALSE;
10542 }
10543
10544 /* Flush all symbols to the file. */
10545 if (! elf_link_flush_output_syms (&finfo, bed))
10546 return FALSE;
10547
10548 /* Now we know the size of the symtab section. */
10549 off += symtab_hdr->sh_size;
10550
10551 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10552 if (symtab_shndx_hdr->sh_name != 0)
10553 {
10554 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10555 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10556 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10557 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10558 symtab_shndx_hdr->sh_size = amt;
10559
10560 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10561 off, TRUE);
10562
10563 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10564 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10565 return FALSE;
10566 }
10567
10568
10569 /* Finish up and write out the symbol string table (.strtab)
10570 section. */
10571 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10572 /* sh_name was set in prep_headers. */
10573 symstrtab_hdr->sh_type = SHT_STRTAB;
10574 symstrtab_hdr->sh_flags = 0;
10575 symstrtab_hdr->sh_addr = 0;
10576 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10577 symstrtab_hdr->sh_entsize = 0;
10578 symstrtab_hdr->sh_link = 0;
10579 symstrtab_hdr->sh_info = 0;
10580 /* sh_offset is set just below. */
10581 symstrtab_hdr->sh_addralign = 1;
10582
10583 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10584 elf_tdata (abfd)->next_file_pos = off;
10585
10586 if (bfd_get_symcount (abfd) > 0)
10587 {
10588 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10589 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10590 return FALSE;
10591 }
10592
10593 /* Adjust the relocs to have the correct symbol indices. */
10594 for (o = abfd->sections; o != NULL; o = o->next)
10595 {
10596 if ((o->flags & SEC_RELOC) == 0)
10597 continue;
10598
10599 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10600 elf_section_data (o)->rel_count,
10601 elf_section_data (o)->rel_hashes);
10602 if (elf_section_data (o)->rel_hdr2 != NULL)
10603 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10604 elf_section_data (o)->rel_count2,
10605 (elf_section_data (o)->rel_hashes
10606 + elf_section_data (o)->rel_count));
10607
10608 /* Set the reloc_count field to 0 to prevent write_relocs from
10609 trying to swap the relocs out itself. */
10610 o->reloc_count = 0;
10611 }
10612
10613 if (dynamic && info->combreloc && dynobj != NULL)
10614 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10615
10616 /* If we are linking against a dynamic object, or generating a
10617 shared library, finish up the dynamic linking information. */
10618 if (dynamic)
10619 {
10620 bfd_byte *dyncon, *dynconend;
10621
10622 /* Fix up .dynamic entries. */
10623 o = bfd_get_section_by_name (dynobj, ".dynamic");
10624 BFD_ASSERT (o != NULL);
10625
10626 dyncon = o->contents;
10627 dynconend = o->contents + o->size;
10628 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10629 {
10630 Elf_Internal_Dyn dyn;
10631 const char *name;
10632 unsigned int type;
10633
10634 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10635
10636 switch (dyn.d_tag)
10637 {
10638 default:
10639 continue;
10640 case DT_NULL:
10641 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10642 {
10643 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10644 {
10645 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10646 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10647 default: continue;
10648 }
10649 dyn.d_un.d_val = relativecount;
10650 relativecount = 0;
10651 break;
10652 }
10653 continue;
10654
10655 case DT_INIT:
10656 name = info->init_function;
10657 goto get_sym;
10658 case DT_FINI:
10659 name = info->fini_function;
10660 get_sym:
10661 {
10662 struct elf_link_hash_entry *h;
10663
10664 h = elf_link_hash_lookup (elf_hash_table (info), name,
10665 FALSE, FALSE, TRUE);
10666 if (h != NULL
10667 && (h->root.type == bfd_link_hash_defined
10668 || h->root.type == bfd_link_hash_defweak))
10669 {
10670 dyn.d_un.d_val = h->root.u.def.value;
10671 o = h->root.u.def.section;
10672 if (o->output_section != NULL)
10673 dyn.d_un.d_val += (o->output_section->vma
10674 + o->output_offset);
10675 else
10676 {
10677 /* The symbol is imported from another shared
10678 library and does not apply to this one. */
10679 dyn.d_un.d_val = 0;
10680 }
10681 break;
10682 }
10683 }
10684 continue;
10685
10686 case DT_PREINIT_ARRAYSZ:
10687 name = ".preinit_array";
10688 goto get_size;
10689 case DT_INIT_ARRAYSZ:
10690 name = ".init_array";
10691 goto get_size;
10692 case DT_FINI_ARRAYSZ:
10693 name = ".fini_array";
10694 get_size:
10695 o = bfd_get_section_by_name (abfd, name);
10696 if (o == NULL)
10697 {
10698 (*_bfd_error_handler)
10699 (_("%B: could not find output section %s"), abfd, name);
10700 goto error_return;
10701 }
10702 if (o->size == 0)
10703 (*_bfd_error_handler)
10704 (_("warning: %s section has zero size"), name);
10705 dyn.d_un.d_val = o->size;
10706 break;
10707
10708 case DT_PREINIT_ARRAY:
10709 name = ".preinit_array";
10710 goto get_vma;
10711 case DT_INIT_ARRAY:
10712 name = ".init_array";
10713 goto get_vma;
10714 case DT_FINI_ARRAY:
10715 name = ".fini_array";
10716 goto get_vma;
10717
10718 case DT_HASH:
10719 name = ".hash";
10720 goto get_vma;
10721 case DT_GNU_HASH:
10722 name = ".gnu.hash";
10723 goto get_vma;
10724 case DT_STRTAB:
10725 name = ".dynstr";
10726 goto get_vma;
10727 case DT_SYMTAB:
10728 name = ".dynsym";
10729 goto get_vma;
10730 case DT_VERDEF:
10731 name = ".gnu.version_d";
10732 goto get_vma;
10733 case DT_VERNEED:
10734 name = ".gnu.version_r";
10735 goto get_vma;
10736 case DT_VERSYM:
10737 name = ".gnu.version";
10738 get_vma:
10739 o = bfd_get_section_by_name (abfd, name);
10740 if (o == NULL)
10741 {
10742 (*_bfd_error_handler)
10743 (_("%B: could not find output section %s"), abfd, name);
10744 goto error_return;
10745 }
10746 dyn.d_un.d_ptr = o->vma;
10747 break;
10748
10749 case DT_REL:
10750 case DT_RELA:
10751 case DT_RELSZ:
10752 case DT_RELASZ:
10753 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10754 type = SHT_REL;
10755 else
10756 type = SHT_RELA;
10757 dyn.d_un.d_val = 0;
10758 for (i = 1; i < elf_numsections (abfd); i++)
10759 {
10760 Elf_Internal_Shdr *hdr;
10761
10762 hdr = elf_elfsections (abfd)[i];
10763 if (hdr->sh_type == type
10764 && (hdr->sh_flags & SHF_ALLOC) != 0)
10765 {
10766 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10767 dyn.d_un.d_val += hdr->sh_size;
10768 else
10769 {
10770 if (dyn.d_un.d_val == 0
10771 || hdr->sh_addr < dyn.d_un.d_val)
10772 dyn.d_un.d_val = hdr->sh_addr;
10773 }
10774 }
10775 }
10776 break;
10777 }
10778 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10779 }
10780 }
10781
10782 /* If we have created any dynamic sections, then output them. */
10783 if (dynobj != NULL)
10784 {
10785 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10786 goto error_return;
10787
10788 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10789 if (info->warn_shared_textrel && info->shared)
10790 {
10791 bfd_byte *dyncon, *dynconend;
10792
10793 /* Fix up .dynamic entries. */
10794 o = bfd_get_section_by_name (dynobj, ".dynamic");
10795 BFD_ASSERT (o != NULL);
10796
10797 dyncon = o->contents;
10798 dynconend = o->contents + o->size;
10799 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10800 {
10801 Elf_Internal_Dyn dyn;
10802
10803 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10804
10805 if (dyn.d_tag == DT_TEXTREL)
10806 {
10807 info->callbacks->einfo
10808 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10809 break;
10810 }
10811 }
10812 }
10813
10814 for (o = dynobj->sections; o != NULL; o = o->next)
10815 {
10816 if ((o->flags & SEC_HAS_CONTENTS) == 0
10817 || o->size == 0
10818 || o->output_section == bfd_abs_section_ptr)
10819 continue;
10820 if ((o->flags & SEC_LINKER_CREATED) == 0)
10821 {
10822 /* At this point, we are only interested in sections
10823 created by _bfd_elf_link_create_dynamic_sections. */
10824 continue;
10825 }
10826 if (elf_hash_table (info)->stab_info.stabstr == o)
10827 continue;
10828 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10829 continue;
10830 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10831 != SHT_STRTAB)
10832 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10833 {
10834 if (! bfd_set_section_contents (abfd, o->output_section,
10835 o->contents,
10836 (file_ptr) o->output_offset,
10837 o->size))
10838 goto error_return;
10839 }
10840 else
10841 {
10842 /* The contents of the .dynstr section are actually in a
10843 stringtab. */
10844 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10845 if (bfd_seek (abfd, off, SEEK_SET) != 0
10846 || ! _bfd_elf_strtab_emit (abfd,
10847 elf_hash_table (info)->dynstr))
10848 goto error_return;
10849 }
10850 }
10851 }
10852
10853 if (info->relocatable)
10854 {
10855 bfd_boolean failed = FALSE;
10856
10857 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10858 if (failed)
10859 goto error_return;
10860 }
10861
10862 /* If we have optimized stabs strings, output them. */
10863 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10864 {
10865 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10866 goto error_return;
10867 }
10868
10869 if (info->eh_frame_hdr)
10870 {
10871 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10872 goto error_return;
10873 }
10874
10875 if (finfo.symstrtab != NULL)
10876 _bfd_stringtab_free (finfo.symstrtab);
10877 if (finfo.contents != NULL)
10878 free (finfo.contents);
10879 if (finfo.external_relocs != NULL)
10880 free (finfo.external_relocs);
10881 if (finfo.internal_relocs != NULL)
10882 free (finfo.internal_relocs);
10883 if (finfo.external_syms != NULL)
10884 free (finfo.external_syms);
10885 if (finfo.locsym_shndx != NULL)
10886 free (finfo.locsym_shndx);
10887 if (finfo.internal_syms != NULL)
10888 free (finfo.internal_syms);
10889 if (finfo.indices != NULL)
10890 free (finfo.indices);
10891 if (finfo.sections != NULL)
10892 free (finfo.sections);
10893 if (finfo.symbuf != NULL)
10894 free (finfo.symbuf);
10895 if (finfo.symshndxbuf != NULL)
10896 free (finfo.symshndxbuf);
10897 for (o = abfd->sections; o != NULL; o = o->next)
10898 {
10899 if ((o->flags & SEC_RELOC) != 0
10900 && elf_section_data (o)->rel_hashes != NULL)
10901 free (elf_section_data (o)->rel_hashes);
10902 }
10903
10904 elf_tdata (abfd)->linker = TRUE;
10905
10906 if (attr_section)
10907 {
10908 bfd_byte *contents = bfd_malloc (attr_size);
10909 if (contents == NULL)
10910 return FALSE; /* Bail out and fail. */
10911 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10912 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10913 free (contents);
10914 }
10915
10916 return TRUE;
10917
10918 error_return:
10919 if (finfo.symstrtab != NULL)
10920 _bfd_stringtab_free (finfo.symstrtab);
10921 if (finfo.contents != NULL)
10922 free (finfo.contents);
10923 if (finfo.external_relocs != NULL)
10924 free (finfo.external_relocs);
10925 if (finfo.internal_relocs != NULL)
10926 free (finfo.internal_relocs);
10927 if (finfo.external_syms != NULL)
10928 free (finfo.external_syms);
10929 if (finfo.locsym_shndx != NULL)
10930 free (finfo.locsym_shndx);
10931 if (finfo.internal_syms != NULL)
10932 free (finfo.internal_syms);
10933 if (finfo.indices != NULL)
10934 free (finfo.indices);
10935 if (finfo.sections != NULL)
10936 free (finfo.sections);
10937 if (finfo.symbuf != NULL)
10938 free (finfo.symbuf);
10939 if (finfo.symshndxbuf != NULL)
10940 free (finfo.symshndxbuf);
10941 for (o = abfd->sections; o != NULL; o = o->next)
10942 {
10943 if ((o->flags & SEC_RELOC) != 0
10944 && elf_section_data (o)->rel_hashes != NULL)
10945 free (elf_section_data (o)->rel_hashes);
10946 }
10947
10948 return FALSE;
10949 }
10950 \f
10951 /* Initialize COOKIE for input bfd ABFD. */
10952
10953 static bfd_boolean
10954 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10955 struct bfd_link_info *info, bfd *abfd)
10956 {
10957 Elf_Internal_Shdr *symtab_hdr;
10958 const struct elf_backend_data *bed;
10959
10960 bed = get_elf_backend_data (abfd);
10961 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10962
10963 cookie->abfd = abfd;
10964 cookie->sym_hashes = elf_sym_hashes (abfd);
10965 cookie->bad_symtab = elf_bad_symtab (abfd);
10966 if (cookie->bad_symtab)
10967 {
10968 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10969 cookie->extsymoff = 0;
10970 }
10971 else
10972 {
10973 cookie->locsymcount = symtab_hdr->sh_info;
10974 cookie->extsymoff = symtab_hdr->sh_info;
10975 }
10976
10977 if (bed->s->arch_size == 32)
10978 cookie->r_sym_shift = 8;
10979 else
10980 cookie->r_sym_shift = 32;
10981
10982 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10983 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10984 {
10985 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10986 cookie->locsymcount, 0,
10987 NULL, NULL, NULL);
10988 if (cookie->locsyms == NULL)
10989 {
10990 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10991 return FALSE;
10992 }
10993 if (info->keep_memory)
10994 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10995 }
10996 return TRUE;
10997 }
10998
10999 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11000
11001 static void
11002 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11003 {
11004 Elf_Internal_Shdr *symtab_hdr;
11005
11006 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11007 if (cookie->locsyms != NULL
11008 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11009 free (cookie->locsyms);
11010 }
11011
11012 /* Initialize the relocation information in COOKIE for input section SEC
11013 of input bfd ABFD. */
11014
11015 static bfd_boolean
11016 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11017 struct bfd_link_info *info, bfd *abfd,
11018 asection *sec)
11019 {
11020 const struct elf_backend_data *bed;
11021
11022 if (sec->reloc_count == 0)
11023 {
11024 cookie->rels = NULL;
11025 cookie->relend = NULL;
11026 }
11027 else
11028 {
11029 bed = get_elf_backend_data (abfd);
11030
11031 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11032 info->keep_memory);
11033 if (cookie->rels == NULL)
11034 return FALSE;
11035 cookie->rel = cookie->rels;
11036 cookie->relend = (cookie->rels
11037 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11038 }
11039 cookie->rel = cookie->rels;
11040 return TRUE;
11041 }
11042
11043 /* Free the memory allocated by init_reloc_cookie_rels,
11044 if appropriate. */
11045
11046 static void
11047 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11048 asection *sec)
11049 {
11050 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11051 free (cookie->rels);
11052 }
11053
11054 /* Initialize the whole of COOKIE for input section SEC. */
11055
11056 static bfd_boolean
11057 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11058 struct bfd_link_info *info,
11059 asection *sec)
11060 {
11061 if (!init_reloc_cookie (cookie, info, sec->owner))
11062 goto error1;
11063 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11064 goto error2;
11065 return TRUE;
11066
11067 error2:
11068 fini_reloc_cookie (cookie, sec->owner);
11069 error1:
11070 return FALSE;
11071 }
11072
11073 /* Free the memory allocated by init_reloc_cookie_for_section,
11074 if appropriate. */
11075
11076 static void
11077 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11078 asection *sec)
11079 {
11080 fini_reloc_cookie_rels (cookie, sec);
11081 fini_reloc_cookie (cookie, sec->owner);
11082 }
11083 \f
11084 /* Garbage collect unused sections. */
11085
11086 /* Default gc_mark_hook. */
11087
11088 asection *
11089 _bfd_elf_gc_mark_hook (asection *sec,
11090 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11091 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11092 struct elf_link_hash_entry *h,
11093 Elf_Internal_Sym *sym)
11094 {
11095 if (h != NULL)
11096 {
11097 switch (h->root.type)
11098 {
11099 case bfd_link_hash_defined:
11100 case bfd_link_hash_defweak:
11101 return h->root.u.def.section;
11102
11103 case bfd_link_hash_common:
11104 return h->root.u.c.p->section;
11105
11106 default:
11107 break;
11108 }
11109 }
11110 else
11111 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11112
11113 return NULL;
11114 }
11115
11116 /* COOKIE->rel describes a relocation against section SEC, which is
11117 a section we've decided to keep. Return the section that contains
11118 the relocation symbol, or NULL if no section contains it. */
11119
11120 asection *
11121 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11122 elf_gc_mark_hook_fn gc_mark_hook,
11123 struct elf_reloc_cookie *cookie)
11124 {
11125 unsigned long r_symndx;
11126 struct elf_link_hash_entry *h;
11127
11128 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11129 if (r_symndx == 0)
11130 return NULL;
11131
11132 if (r_symndx >= cookie->locsymcount
11133 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11134 {
11135 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11136 while (h->root.type == bfd_link_hash_indirect
11137 || h->root.type == bfd_link_hash_warning)
11138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11139 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11140 }
11141
11142 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11143 &cookie->locsyms[r_symndx]);
11144 }
11145
11146 /* COOKIE->rel describes a relocation against section SEC, which is
11147 a section we've decided to keep. Mark the section that contains
11148 the relocation symbol. */
11149
11150 bfd_boolean
11151 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11152 asection *sec,
11153 elf_gc_mark_hook_fn gc_mark_hook,
11154 struct elf_reloc_cookie *cookie)
11155 {
11156 asection *rsec;
11157
11158 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11159 if (rsec && !rsec->gc_mark)
11160 {
11161 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11162 rsec->gc_mark = 1;
11163 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11164 return FALSE;
11165 }
11166 return TRUE;
11167 }
11168
11169 /* The mark phase of garbage collection. For a given section, mark
11170 it and any sections in this section's group, and all the sections
11171 which define symbols to which it refers. */
11172
11173 bfd_boolean
11174 _bfd_elf_gc_mark (struct bfd_link_info *info,
11175 asection *sec,
11176 elf_gc_mark_hook_fn gc_mark_hook)
11177 {
11178 bfd_boolean ret;
11179 asection *group_sec, *eh_frame;
11180
11181 sec->gc_mark = 1;
11182
11183 /* Mark all the sections in the group. */
11184 group_sec = elf_section_data (sec)->next_in_group;
11185 if (group_sec && !group_sec->gc_mark)
11186 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11187 return FALSE;
11188
11189 /* Look through the section relocs. */
11190 ret = TRUE;
11191 eh_frame = elf_eh_frame_section (sec->owner);
11192 if ((sec->flags & SEC_RELOC) != 0
11193 && sec->reloc_count > 0
11194 && sec != eh_frame)
11195 {
11196 struct elf_reloc_cookie cookie;
11197
11198 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11199 ret = FALSE;
11200 else
11201 {
11202 for (; cookie.rel < cookie.relend; cookie.rel++)
11203 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11204 {
11205 ret = FALSE;
11206 break;
11207 }
11208 fini_reloc_cookie_for_section (&cookie, sec);
11209 }
11210 }
11211
11212 if (ret && eh_frame && elf_fde_list (sec))
11213 {
11214 struct elf_reloc_cookie cookie;
11215
11216 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11217 ret = FALSE;
11218 else
11219 {
11220 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11221 gc_mark_hook, &cookie))
11222 ret = FALSE;
11223 fini_reloc_cookie_for_section (&cookie, eh_frame);
11224 }
11225 }
11226
11227 return ret;
11228 }
11229
11230 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11231
11232 struct elf_gc_sweep_symbol_info
11233 {
11234 struct bfd_link_info *info;
11235 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11236 bfd_boolean);
11237 };
11238
11239 static bfd_boolean
11240 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11241 {
11242 if (h->root.type == bfd_link_hash_warning)
11243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11244
11245 if ((h->root.type == bfd_link_hash_defined
11246 || h->root.type == bfd_link_hash_defweak)
11247 && !h->root.u.def.section->gc_mark
11248 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11249 {
11250 struct elf_gc_sweep_symbol_info *inf = data;
11251 (*inf->hide_symbol) (inf->info, h, TRUE);
11252 }
11253
11254 return TRUE;
11255 }
11256
11257 /* The sweep phase of garbage collection. Remove all garbage sections. */
11258
11259 typedef bfd_boolean (*gc_sweep_hook_fn)
11260 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11261
11262 static bfd_boolean
11263 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11264 {
11265 bfd *sub;
11266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11267 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11268 unsigned long section_sym_count;
11269 struct elf_gc_sweep_symbol_info sweep_info;
11270
11271 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11272 {
11273 asection *o;
11274
11275 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11276 continue;
11277
11278 for (o = sub->sections; o != NULL; o = o->next)
11279 {
11280 /* Keep debug and special sections. */
11281 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11282 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11283 o->gc_mark = 1;
11284
11285 if (o->gc_mark)
11286 continue;
11287
11288 /* Skip sweeping sections already excluded. */
11289 if (o->flags & SEC_EXCLUDE)
11290 continue;
11291
11292 /* Since this is early in the link process, it is simple
11293 to remove a section from the output. */
11294 o->flags |= SEC_EXCLUDE;
11295
11296 if (info->print_gc_sections && o->size != 0)
11297 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11298
11299 /* But we also have to update some of the relocation
11300 info we collected before. */
11301 if (gc_sweep_hook
11302 && (o->flags & SEC_RELOC) != 0
11303 && o->reloc_count > 0
11304 && !bfd_is_abs_section (o->output_section))
11305 {
11306 Elf_Internal_Rela *internal_relocs;
11307 bfd_boolean r;
11308
11309 internal_relocs
11310 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11311 info->keep_memory);
11312 if (internal_relocs == NULL)
11313 return FALSE;
11314
11315 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11316
11317 if (elf_section_data (o)->relocs != internal_relocs)
11318 free (internal_relocs);
11319
11320 if (!r)
11321 return FALSE;
11322 }
11323 }
11324 }
11325
11326 /* Remove the symbols that were in the swept sections from the dynamic
11327 symbol table. GCFIXME: Anyone know how to get them out of the
11328 static symbol table as well? */
11329 sweep_info.info = info;
11330 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11331 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11332 &sweep_info);
11333
11334 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11335 return TRUE;
11336 }
11337
11338 /* Propagate collected vtable information. This is called through
11339 elf_link_hash_traverse. */
11340
11341 static bfd_boolean
11342 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11343 {
11344 if (h->root.type == bfd_link_hash_warning)
11345 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11346
11347 /* Those that are not vtables. */
11348 if (h->vtable == NULL || h->vtable->parent == NULL)
11349 return TRUE;
11350
11351 /* Those vtables that do not have parents, we cannot merge. */
11352 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11353 return TRUE;
11354
11355 /* If we've already been done, exit. */
11356 if (h->vtable->used && h->vtable->used[-1])
11357 return TRUE;
11358
11359 /* Make sure the parent's table is up to date. */
11360 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11361
11362 if (h->vtable->used == NULL)
11363 {
11364 /* None of this table's entries were referenced. Re-use the
11365 parent's table. */
11366 h->vtable->used = h->vtable->parent->vtable->used;
11367 h->vtable->size = h->vtable->parent->vtable->size;
11368 }
11369 else
11370 {
11371 size_t n;
11372 bfd_boolean *cu, *pu;
11373
11374 /* Or the parent's entries into ours. */
11375 cu = h->vtable->used;
11376 cu[-1] = TRUE;
11377 pu = h->vtable->parent->vtable->used;
11378 if (pu != NULL)
11379 {
11380 const struct elf_backend_data *bed;
11381 unsigned int log_file_align;
11382
11383 bed = get_elf_backend_data (h->root.u.def.section->owner);
11384 log_file_align = bed->s->log_file_align;
11385 n = h->vtable->parent->vtable->size >> log_file_align;
11386 while (n--)
11387 {
11388 if (*pu)
11389 *cu = TRUE;
11390 pu++;
11391 cu++;
11392 }
11393 }
11394 }
11395
11396 return TRUE;
11397 }
11398
11399 static bfd_boolean
11400 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11401 {
11402 asection *sec;
11403 bfd_vma hstart, hend;
11404 Elf_Internal_Rela *relstart, *relend, *rel;
11405 const struct elf_backend_data *bed;
11406 unsigned int log_file_align;
11407
11408 if (h->root.type == bfd_link_hash_warning)
11409 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11410
11411 /* Take care of both those symbols that do not describe vtables as
11412 well as those that are not loaded. */
11413 if (h->vtable == NULL || h->vtable->parent == NULL)
11414 return TRUE;
11415
11416 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11417 || h->root.type == bfd_link_hash_defweak);
11418
11419 sec = h->root.u.def.section;
11420 hstart = h->root.u.def.value;
11421 hend = hstart + h->size;
11422
11423 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11424 if (!relstart)
11425 return *(bfd_boolean *) okp = FALSE;
11426 bed = get_elf_backend_data (sec->owner);
11427 log_file_align = bed->s->log_file_align;
11428
11429 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11430
11431 for (rel = relstart; rel < relend; ++rel)
11432 if (rel->r_offset >= hstart && rel->r_offset < hend)
11433 {
11434 /* If the entry is in use, do nothing. */
11435 if (h->vtable->used
11436 && (rel->r_offset - hstart) < h->vtable->size)
11437 {
11438 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11439 if (h->vtable->used[entry])
11440 continue;
11441 }
11442 /* Otherwise, kill it. */
11443 rel->r_offset = rel->r_info = rel->r_addend = 0;
11444 }
11445
11446 return TRUE;
11447 }
11448
11449 /* Mark sections containing dynamically referenced symbols. When
11450 building shared libraries, we must assume that any visible symbol is
11451 referenced. */
11452
11453 bfd_boolean
11454 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11455 {
11456 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11457
11458 if (h->root.type == bfd_link_hash_warning)
11459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11460
11461 if ((h->root.type == bfd_link_hash_defined
11462 || h->root.type == bfd_link_hash_defweak)
11463 && (h->ref_dynamic
11464 || (!info->executable
11465 && h->def_regular
11466 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11467 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11468 h->root.u.def.section->flags |= SEC_KEEP;
11469
11470 return TRUE;
11471 }
11472
11473 /* Keep all sections containing symbols undefined on the command-line,
11474 and the section containing the entry symbol. */
11475
11476 void
11477 _bfd_elf_gc_keep (struct bfd_link_info *info)
11478 {
11479 struct bfd_sym_chain *sym;
11480
11481 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11482 {
11483 struct elf_link_hash_entry *h;
11484
11485 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11486 FALSE, FALSE, FALSE);
11487
11488 if (h != NULL
11489 && (h->root.type == bfd_link_hash_defined
11490 || h->root.type == bfd_link_hash_defweak)
11491 && !bfd_is_abs_section (h->root.u.def.section))
11492 h->root.u.def.section->flags |= SEC_KEEP;
11493 }
11494 }
11495
11496 /* Do mark and sweep of unused sections. */
11497
11498 bfd_boolean
11499 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11500 {
11501 bfd_boolean ok = TRUE;
11502 bfd *sub;
11503 elf_gc_mark_hook_fn gc_mark_hook;
11504 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11505
11506 if (!bed->can_gc_sections
11507 || !is_elf_hash_table (info->hash))
11508 {
11509 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11510 return TRUE;
11511 }
11512
11513 bed->gc_keep (info);
11514
11515 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11516 at the .eh_frame section if we can mark the FDEs individually. */
11517 _bfd_elf_begin_eh_frame_parsing (info);
11518 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11519 {
11520 asection *sec;
11521 struct elf_reloc_cookie cookie;
11522
11523 sec = bfd_get_section_by_name (sub, ".eh_frame");
11524 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11525 {
11526 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11527 if (elf_section_data (sec)->sec_info)
11528 elf_eh_frame_section (sub) = sec;
11529 fini_reloc_cookie_for_section (&cookie, sec);
11530 }
11531 }
11532 _bfd_elf_end_eh_frame_parsing (info);
11533
11534 /* Apply transitive closure to the vtable entry usage info. */
11535 elf_link_hash_traverse (elf_hash_table (info),
11536 elf_gc_propagate_vtable_entries_used,
11537 &ok);
11538 if (!ok)
11539 return FALSE;
11540
11541 /* Kill the vtable relocations that were not used. */
11542 elf_link_hash_traverse (elf_hash_table (info),
11543 elf_gc_smash_unused_vtentry_relocs,
11544 &ok);
11545 if (!ok)
11546 return FALSE;
11547
11548 /* Mark dynamically referenced symbols. */
11549 if (elf_hash_table (info)->dynamic_sections_created)
11550 elf_link_hash_traverse (elf_hash_table (info),
11551 bed->gc_mark_dynamic_ref,
11552 info);
11553
11554 /* Grovel through relocs to find out who stays ... */
11555 gc_mark_hook = bed->gc_mark_hook;
11556 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11557 {
11558 asection *o;
11559
11560 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11561 continue;
11562
11563 for (o = sub->sections; o != NULL; o = o->next)
11564 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11565 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11566 return FALSE;
11567 }
11568
11569 /* Allow the backend to mark additional target specific sections. */
11570 if (bed->gc_mark_extra_sections)
11571 bed->gc_mark_extra_sections (info, gc_mark_hook);
11572
11573 /* ... and mark SEC_EXCLUDE for those that go. */
11574 return elf_gc_sweep (abfd, info);
11575 }
11576 \f
11577 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11578
11579 bfd_boolean
11580 bfd_elf_gc_record_vtinherit (bfd *abfd,
11581 asection *sec,
11582 struct elf_link_hash_entry *h,
11583 bfd_vma offset)
11584 {
11585 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11586 struct elf_link_hash_entry **search, *child;
11587 bfd_size_type extsymcount;
11588 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11589
11590 /* The sh_info field of the symtab header tells us where the
11591 external symbols start. We don't care about the local symbols at
11592 this point. */
11593 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11594 if (!elf_bad_symtab (abfd))
11595 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11596
11597 sym_hashes = elf_sym_hashes (abfd);
11598 sym_hashes_end = sym_hashes + extsymcount;
11599
11600 /* Hunt down the child symbol, which is in this section at the same
11601 offset as the relocation. */
11602 for (search = sym_hashes; search != sym_hashes_end; ++search)
11603 {
11604 if ((child = *search) != NULL
11605 && (child->root.type == bfd_link_hash_defined
11606 || child->root.type == bfd_link_hash_defweak)
11607 && child->root.u.def.section == sec
11608 && child->root.u.def.value == offset)
11609 goto win;
11610 }
11611
11612 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11613 abfd, sec, (unsigned long) offset);
11614 bfd_set_error (bfd_error_invalid_operation);
11615 return FALSE;
11616
11617 win:
11618 if (!child->vtable)
11619 {
11620 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11621 if (!child->vtable)
11622 return FALSE;
11623 }
11624 if (!h)
11625 {
11626 /* This *should* only be the absolute section. It could potentially
11627 be that someone has defined a non-global vtable though, which
11628 would be bad. It isn't worth paging in the local symbols to be
11629 sure though; that case should simply be handled by the assembler. */
11630
11631 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11632 }
11633 else
11634 child->vtable->parent = h;
11635
11636 return TRUE;
11637 }
11638
11639 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11640
11641 bfd_boolean
11642 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11643 asection *sec ATTRIBUTE_UNUSED,
11644 struct elf_link_hash_entry *h,
11645 bfd_vma addend)
11646 {
11647 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11648 unsigned int log_file_align = bed->s->log_file_align;
11649
11650 if (!h->vtable)
11651 {
11652 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11653 if (!h->vtable)
11654 return FALSE;
11655 }
11656
11657 if (addend >= h->vtable->size)
11658 {
11659 size_t size, bytes, file_align;
11660 bfd_boolean *ptr = h->vtable->used;
11661
11662 /* While the symbol is undefined, we have to be prepared to handle
11663 a zero size. */
11664 file_align = 1 << log_file_align;
11665 if (h->root.type == bfd_link_hash_undefined)
11666 size = addend + file_align;
11667 else
11668 {
11669 size = h->size;
11670 if (addend >= size)
11671 {
11672 /* Oops! We've got a reference past the defined end of
11673 the table. This is probably a bug -- shall we warn? */
11674 size = addend + file_align;
11675 }
11676 }
11677 size = (size + file_align - 1) & -file_align;
11678
11679 /* Allocate one extra entry for use as a "done" flag for the
11680 consolidation pass. */
11681 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11682
11683 if (ptr)
11684 {
11685 ptr = bfd_realloc (ptr - 1, bytes);
11686
11687 if (ptr != NULL)
11688 {
11689 size_t oldbytes;
11690
11691 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11692 * sizeof (bfd_boolean));
11693 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11694 }
11695 }
11696 else
11697 ptr = bfd_zmalloc (bytes);
11698
11699 if (ptr == NULL)
11700 return FALSE;
11701
11702 /* And arrange for that done flag to be at index -1. */
11703 h->vtable->used = ptr + 1;
11704 h->vtable->size = size;
11705 }
11706
11707 h->vtable->used[addend >> log_file_align] = TRUE;
11708
11709 return TRUE;
11710 }
11711
11712 struct alloc_got_off_arg {
11713 bfd_vma gotoff;
11714 unsigned int got_elt_size;
11715 };
11716
11717 /* We need a special top-level link routine to convert got reference counts
11718 to real got offsets. */
11719
11720 static bfd_boolean
11721 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11722 {
11723 struct alloc_got_off_arg *gofarg = arg;
11724
11725 if (h->root.type == bfd_link_hash_warning)
11726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11727
11728 if (h->got.refcount > 0)
11729 {
11730 h->got.offset = gofarg->gotoff;
11731 gofarg->gotoff += gofarg->got_elt_size;
11732 }
11733 else
11734 h->got.offset = (bfd_vma) -1;
11735
11736 return TRUE;
11737 }
11738
11739 /* And an accompanying bit to work out final got entry offsets once
11740 we're done. Should be called from final_link. */
11741
11742 bfd_boolean
11743 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11744 struct bfd_link_info *info)
11745 {
11746 bfd *i;
11747 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11748 bfd_vma gotoff;
11749 unsigned int got_elt_size = bed->s->arch_size / 8;
11750 struct alloc_got_off_arg gofarg;
11751
11752 if (! is_elf_hash_table (info->hash))
11753 return FALSE;
11754
11755 /* The GOT offset is relative to the .got section, but the GOT header is
11756 put into the .got.plt section, if the backend uses it. */
11757 if (bed->want_got_plt)
11758 gotoff = 0;
11759 else
11760 gotoff = bed->got_header_size;
11761
11762 /* Do the local .got entries first. */
11763 for (i = info->input_bfds; i; i = i->link_next)
11764 {
11765 bfd_signed_vma *local_got;
11766 bfd_size_type j, locsymcount;
11767 Elf_Internal_Shdr *symtab_hdr;
11768
11769 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11770 continue;
11771
11772 local_got = elf_local_got_refcounts (i);
11773 if (!local_got)
11774 continue;
11775
11776 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11777 if (elf_bad_symtab (i))
11778 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11779 else
11780 locsymcount = symtab_hdr->sh_info;
11781
11782 for (j = 0; j < locsymcount; ++j)
11783 {
11784 if (local_got[j] > 0)
11785 {
11786 local_got[j] = gotoff;
11787 gotoff += got_elt_size;
11788 }
11789 else
11790 local_got[j] = (bfd_vma) -1;
11791 }
11792 }
11793
11794 /* Then the global .got entries. .plt refcounts are handled by
11795 adjust_dynamic_symbol */
11796 gofarg.gotoff = gotoff;
11797 gofarg.got_elt_size = got_elt_size;
11798 elf_link_hash_traverse (elf_hash_table (info),
11799 elf_gc_allocate_got_offsets,
11800 &gofarg);
11801 return TRUE;
11802 }
11803
11804 /* Many folk need no more in the way of final link than this, once
11805 got entry reference counting is enabled. */
11806
11807 bfd_boolean
11808 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11809 {
11810 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11811 return FALSE;
11812
11813 /* Invoke the regular ELF backend linker to do all the work. */
11814 return bfd_elf_final_link (abfd, info);
11815 }
11816
11817 bfd_boolean
11818 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11819 {
11820 struct elf_reloc_cookie *rcookie = cookie;
11821
11822 if (rcookie->bad_symtab)
11823 rcookie->rel = rcookie->rels;
11824
11825 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11826 {
11827 unsigned long r_symndx;
11828
11829 if (! rcookie->bad_symtab)
11830 if (rcookie->rel->r_offset > offset)
11831 return FALSE;
11832 if (rcookie->rel->r_offset != offset)
11833 continue;
11834
11835 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11836 if (r_symndx == SHN_UNDEF)
11837 return TRUE;
11838
11839 if (r_symndx >= rcookie->locsymcount
11840 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11841 {
11842 struct elf_link_hash_entry *h;
11843
11844 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11845
11846 while (h->root.type == bfd_link_hash_indirect
11847 || h->root.type == bfd_link_hash_warning)
11848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11849
11850 if ((h->root.type == bfd_link_hash_defined
11851 || h->root.type == bfd_link_hash_defweak)
11852 && elf_discarded_section (h->root.u.def.section))
11853 return TRUE;
11854 else
11855 return FALSE;
11856 }
11857 else
11858 {
11859 /* It's not a relocation against a global symbol,
11860 but it could be a relocation against a local
11861 symbol for a discarded section. */
11862 asection *isec;
11863 Elf_Internal_Sym *isym;
11864
11865 /* Need to: get the symbol; get the section. */
11866 isym = &rcookie->locsyms[r_symndx];
11867 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11868 if (isec != NULL && elf_discarded_section (isec))
11869 return TRUE;
11870 }
11871 return FALSE;
11872 }
11873 return FALSE;
11874 }
11875
11876 /* Discard unneeded references to discarded sections.
11877 Returns TRUE if any section's size was changed. */
11878 /* This function assumes that the relocations are in sorted order,
11879 which is true for all known assemblers. */
11880
11881 bfd_boolean
11882 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11883 {
11884 struct elf_reloc_cookie cookie;
11885 asection *stab, *eh;
11886 const struct elf_backend_data *bed;
11887 bfd *abfd;
11888 bfd_boolean ret = FALSE;
11889
11890 if (info->traditional_format
11891 || !is_elf_hash_table (info->hash))
11892 return FALSE;
11893
11894 _bfd_elf_begin_eh_frame_parsing (info);
11895 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11896 {
11897 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11898 continue;
11899
11900 bed = get_elf_backend_data (abfd);
11901
11902 if ((abfd->flags & DYNAMIC) != 0)
11903 continue;
11904
11905 eh = NULL;
11906 if (!info->relocatable)
11907 {
11908 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11909 if (eh != NULL
11910 && (eh->size == 0
11911 || bfd_is_abs_section (eh->output_section)))
11912 eh = NULL;
11913 }
11914
11915 stab = bfd_get_section_by_name (abfd, ".stab");
11916 if (stab != NULL
11917 && (stab->size == 0
11918 || bfd_is_abs_section (stab->output_section)
11919 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11920 stab = NULL;
11921
11922 if (stab == NULL
11923 && eh == NULL
11924 && bed->elf_backend_discard_info == NULL)
11925 continue;
11926
11927 if (!init_reloc_cookie (&cookie, info, abfd))
11928 return FALSE;
11929
11930 if (stab != NULL
11931 && stab->reloc_count > 0
11932 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11933 {
11934 if (_bfd_discard_section_stabs (abfd, stab,
11935 elf_section_data (stab)->sec_info,
11936 bfd_elf_reloc_symbol_deleted_p,
11937 &cookie))
11938 ret = TRUE;
11939 fini_reloc_cookie_rels (&cookie, stab);
11940 }
11941
11942 if (eh != NULL
11943 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11944 {
11945 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11946 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11947 bfd_elf_reloc_symbol_deleted_p,
11948 &cookie))
11949 ret = TRUE;
11950 fini_reloc_cookie_rels (&cookie, eh);
11951 }
11952
11953 if (bed->elf_backend_discard_info != NULL
11954 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11955 ret = TRUE;
11956
11957 fini_reloc_cookie (&cookie, abfd);
11958 }
11959 _bfd_elf_end_eh_frame_parsing (info);
11960
11961 if (info->eh_frame_hdr
11962 && !info->relocatable
11963 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11964 ret = TRUE;
11965
11966 return ret;
11967 }
11968
11969 void
11970 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11971 struct bfd_link_info *info)
11972 {
11973 flagword flags;
11974 const char *name, *p;
11975 struct bfd_section_already_linked *l;
11976 struct bfd_section_already_linked_hash_entry *already_linked_list;
11977
11978 if (sec->output_section == bfd_abs_section_ptr)
11979 return;
11980
11981 flags = sec->flags;
11982
11983 /* Return if it isn't a linkonce section. A comdat group section
11984 also has SEC_LINK_ONCE set. */
11985 if ((flags & SEC_LINK_ONCE) == 0)
11986 return;
11987
11988 /* Don't put group member sections on our list of already linked
11989 sections. They are handled as a group via their group section. */
11990 if (elf_sec_group (sec) != NULL)
11991 return;
11992
11993 /* FIXME: When doing a relocatable link, we may have trouble
11994 copying relocations in other sections that refer to local symbols
11995 in the section being discarded. Those relocations will have to
11996 be converted somehow; as of this writing I'm not sure that any of
11997 the backends handle that correctly.
11998
11999 It is tempting to instead not discard link once sections when
12000 doing a relocatable link (technically, they should be discarded
12001 whenever we are building constructors). However, that fails,
12002 because the linker winds up combining all the link once sections
12003 into a single large link once section, which defeats the purpose
12004 of having link once sections in the first place.
12005
12006 Also, not merging link once sections in a relocatable link
12007 causes trouble for MIPS ELF, which relies on link once semantics
12008 to handle the .reginfo section correctly. */
12009
12010 name = bfd_get_section_name (abfd, sec);
12011
12012 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12013 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12014 p++;
12015 else
12016 p = name;
12017
12018 already_linked_list = bfd_section_already_linked_table_lookup (p);
12019
12020 for (l = already_linked_list->entry; l != NULL; l = l->next)
12021 {
12022 /* We may have 2 different types of sections on the list: group
12023 sections and linkonce sections. Match like sections. */
12024 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12025 && strcmp (name, l->sec->name) == 0
12026 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12027 {
12028 /* The section has already been linked. See if we should
12029 issue a warning. */
12030 switch (flags & SEC_LINK_DUPLICATES)
12031 {
12032 default:
12033 abort ();
12034
12035 case SEC_LINK_DUPLICATES_DISCARD:
12036 break;
12037
12038 case SEC_LINK_DUPLICATES_ONE_ONLY:
12039 (*_bfd_error_handler)
12040 (_("%B: ignoring duplicate section `%A'"),
12041 abfd, sec);
12042 break;
12043
12044 case SEC_LINK_DUPLICATES_SAME_SIZE:
12045 if (sec->size != l->sec->size)
12046 (*_bfd_error_handler)
12047 (_("%B: duplicate section `%A' has different size"),
12048 abfd, sec);
12049 break;
12050
12051 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12052 if (sec->size != l->sec->size)
12053 (*_bfd_error_handler)
12054 (_("%B: duplicate section `%A' has different size"),
12055 abfd, sec);
12056 else if (sec->size != 0)
12057 {
12058 bfd_byte *sec_contents, *l_sec_contents;
12059
12060 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12061 (*_bfd_error_handler)
12062 (_("%B: warning: could not read contents of section `%A'"),
12063 abfd, sec);
12064 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12065 &l_sec_contents))
12066 (*_bfd_error_handler)
12067 (_("%B: warning: could not read contents of section `%A'"),
12068 l->sec->owner, l->sec);
12069 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12070 (*_bfd_error_handler)
12071 (_("%B: warning: duplicate section `%A' has different contents"),
12072 abfd, sec);
12073
12074 if (sec_contents)
12075 free (sec_contents);
12076 if (l_sec_contents)
12077 free (l_sec_contents);
12078 }
12079 break;
12080 }
12081
12082 /* Set the output_section field so that lang_add_section
12083 does not create a lang_input_section structure for this
12084 section. Since there might be a symbol in the section
12085 being discarded, we must retain a pointer to the section
12086 which we are really going to use. */
12087 sec->output_section = bfd_abs_section_ptr;
12088 sec->kept_section = l->sec;
12089
12090 if (flags & SEC_GROUP)
12091 {
12092 asection *first = elf_next_in_group (sec);
12093 asection *s = first;
12094
12095 while (s != NULL)
12096 {
12097 s->output_section = bfd_abs_section_ptr;
12098 /* Record which group discards it. */
12099 s->kept_section = l->sec;
12100 s = elf_next_in_group (s);
12101 /* These lists are circular. */
12102 if (s == first)
12103 break;
12104 }
12105 }
12106
12107 return;
12108 }
12109 }
12110
12111 /* A single member comdat group section may be discarded by a
12112 linkonce section and vice versa. */
12113
12114 if ((flags & SEC_GROUP) != 0)
12115 {
12116 asection *first = elf_next_in_group (sec);
12117
12118 if (first != NULL && elf_next_in_group (first) == first)
12119 /* Check this single member group against linkonce sections. */
12120 for (l = already_linked_list->entry; l != NULL; l = l->next)
12121 if ((l->sec->flags & SEC_GROUP) == 0
12122 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12123 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12124 {
12125 first->output_section = bfd_abs_section_ptr;
12126 first->kept_section = l->sec;
12127 sec->output_section = bfd_abs_section_ptr;
12128 break;
12129 }
12130 }
12131 else
12132 /* Check this linkonce section against single member groups. */
12133 for (l = already_linked_list->entry; l != NULL; l = l->next)
12134 if (l->sec->flags & SEC_GROUP)
12135 {
12136 asection *first = elf_next_in_group (l->sec);
12137
12138 if (first != NULL
12139 && elf_next_in_group (first) == first
12140 && bfd_elf_match_symbols_in_sections (first, sec, info))
12141 {
12142 sec->output_section = bfd_abs_section_ptr;
12143 sec->kept_section = first;
12144 break;
12145 }
12146 }
12147
12148 /* This is the first section with this name. Record it. */
12149 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12150 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12151 }
12152
12153 bfd_boolean
12154 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12155 {
12156 return sym->st_shndx == SHN_COMMON;
12157 }
12158
12159 unsigned int
12160 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12161 {
12162 return SHN_COMMON;
12163 }
12164
12165 asection *
12166 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12167 {
12168 return bfd_com_section_ptr;
12169 }
This page took 0.459764 seconds and 5 git commands to generate.