Fix date in some of my recent ChangeLog entries...
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
89
90 bed = get_elf_backend_data (abfd);
91 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
92 return h;
93 }
94
95 bfd_boolean
96 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
97 {
98 flagword flags;
99 asection *s;
100 struct elf_link_hash_entry *h;
101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
102 struct elf_link_hash_table *htab = elf_hash_table (info);
103
104 /* This function may be called more than once. */
105 s = bfd_get_linker_section (abfd, ".got");
106 if (s != NULL)
107 return TRUE;
108
109 flags = bed->dynamic_sec_flags;
110
111 s = bfd_make_section_anyway_with_flags (abfd,
112 (bed->rela_plts_and_copies_p
113 ? ".rela.got" : ".rel.got"),
114 (bed->dynamic_sec_flags
115 | SEC_READONLY));
116 if (s == NULL
117 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
118 return FALSE;
119 htab->srelgot = s;
120
121 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
122 if (s == NULL
123 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
124 return FALSE;
125 htab->sgot = s;
126
127 if (bed->want_got_plt)
128 {
129 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
130 if (s == NULL
131 || !bfd_set_section_alignment (abfd, s,
132 bed->s->log_file_align))
133 return FALSE;
134 htab->sgotplt = s;
135 }
136
137 /* The first bit of the global offset table is the header. */
138 s->size += bed->got_header_size;
139
140 if (bed->want_got_sym)
141 {
142 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
143 (or .got.plt) section. We don't do this in the linker script
144 because we don't want to define the symbol if we are not creating
145 a global offset table. */
146 h = _bfd_elf_define_linkage_sym (abfd, info, s,
147 "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
151 }
152
153 return TRUE;
154 }
155 \f
156 /* Create a strtab to hold the dynamic symbol names. */
157 static bfd_boolean
158 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
159 {
160 struct elf_link_hash_table *hash_table;
161
162 hash_table = elf_hash_table (info);
163 if (hash_table->dynobj == NULL)
164 hash_table->dynobj = abfd;
165
166 if (hash_table->dynstr == NULL)
167 {
168 hash_table->dynstr = _bfd_elf_strtab_init ();
169 if (hash_table->dynstr == NULL)
170 return FALSE;
171 }
172 return TRUE;
173 }
174
175 /* Create some sections which will be filled in with dynamic linking
176 information. ABFD is an input file which requires dynamic sections
177 to be created. The dynamic sections take up virtual memory space
178 when the final executable is run, so we need to create them before
179 addresses are assigned to the output sections. We work out the
180 actual contents and size of these sections later. */
181
182 bfd_boolean
183 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
184 {
185 flagword flags;
186 asection *s;
187 const struct elf_backend_data *bed;
188 struct elf_link_hash_entry *h;
189
190 if (! is_elf_hash_table (info->hash))
191 return FALSE;
192
193 if (elf_hash_table (info)->dynamic_sections_created)
194 return TRUE;
195
196 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
197 return FALSE;
198
199 abfd = elf_hash_table (info)->dynobj;
200 bed = get_elf_backend_data (abfd);
201
202 flags = bed->dynamic_sec_flags;
203
204 /* A dynamically linked executable has a .interp section, but a
205 shared library does not. */
206 if (info->executable)
207 {
208 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
209 flags | SEC_READONLY);
210 if (s == NULL)
211 return FALSE;
212 }
213
214 /* Create sections to hold version informations. These are removed
215 if they are not needed. */
216 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
217 flags | SEC_READONLY);
218 if (s == NULL
219 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
220 return FALSE;
221
222 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
223 flags | SEC_READONLY);
224 if (s == NULL
225 || ! bfd_set_section_alignment (abfd, s, 1))
226 return FALSE;
227
228 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
229 flags | SEC_READONLY);
230 if (s == NULL
231 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 return FALSE;
233
234 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
235 flags | SEC_READONLY);
236 if (s == NULL
237 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
238 return FALSE;
239
240 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
241 flags | SEC_READONLY);
242 if (s == NULL)
243 return FALSE;
244
245 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
246 if (s == NULL
247 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
248 return FALSE;
249
250 /* The special symbol _DYNAMIC is always set to the start of the
251 .dynamic section. We could set _DYNAMIC in a linker script, but we
252 only want to define it if we are, in fact, creating a .dynamic
253 section. We don't want to define it if there is no .dynamic
254 section, since on some ELF platforms the start up code examines it
255 to decide how to initialize the process. */
256 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
257 elf_hash_table (info)->hdynamic = h;
258 if (h == NULL)
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
264 flags | SEC_READONLY);
265 if (s == NULL
266 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
267 return FALSE;
268 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 }
270
271 if (info->emit_gnu_hash)
272 {
273 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
274 flags | SEC_READONLY);
275 if (s == NULL
276 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
277 return FALSE;
278 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
279 4 32-bit words followed by variable count of 64-bit words, then
280 variable count of 32-bit words. */
281 if (bed->s->arch_size == 64)
282 elf_section_data (s)->this_hdr.sh_entsize = 0;
283 else
284 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 }
286
287 /* Let the backend create the rest of the sections. This lets the
288 backend set the right flags. The backend will normally create
289 the .got and .plt sections. */
290 if (bed->elf_backend_create_dynamic_sections == NULL
291 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
292 return FALSE;
293
294 elf_hash_table (info)->dynamic_sections_created = TRUE;
295
296 return TRUE;
297 }
298
299 /* Create dynamic sections when linking against a dynamic object. */
300
301 bfd_boolean
302 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
303 {
304 flagword flags, pltflags;
305 struct elf_link_hash_entry *h;
306 asection *s;
307 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
308 struct elf_link_hash_table *htab = elf_hash_table (info);
309
310 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
311 .rel[a].bss sections. */
312 flags = bed->dynamic_sec_flags;
313
314 pltflags = flags;
315 if (bed->plt_not_loaded)
316 /* We do not clear SEC_ALLOC here because we still want the OS to
317 allocate space for the section; it's just that there's nothing
318 to read in from the object file. */
319 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
320 else
321 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
322 if (bed->plt_readonly)
323 pltflags |= SEC_READONLY;
324
325 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
328 return FALSE;
329 htab->splt = s;
330
331 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
332 .plt section. */
333 if (bed->want_plt_sym)
334 {
335 h = _bfd_elf_define_linkage_sym (abfd, info, s,
336 "_PROCEDURE_LINKAGE_TABLE_");
337 elf_hash_table (info)->hplt = h;
338 if (h == NULL)
339 return FALSE;
340 }
341
342 s = bfd_make_section_anyway_with_flags (abfd,
343 (bed->rela_plts_and_copies_p
344 ? ".rela.plt" : ".rel.plt"),
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 htab->srelplt = s;
350
351 if (! _bfd_elf_create_got_section (abfd, info))
352 return FALSE;
353
354 if (bed->want_dynbss)
355 {
356 /* The .dynbss section is a place to put symbols which are defined
357 by dynamic objects, are referenced by regular objects, and are
358 not functions. We must allocate space for them in the process
359 image and use a R_*_COPY reloc to tell the dynamic linker to
360 initialize them at run time. The linker script puts the .dynbss
361 section into the .bss section of the final image. */
362 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
363 (SEC_ALLOC | SEC_LINKER_CREATED));
364 if (s == NULL)
365 return FALSE;
366
367 /* The .rel[a].bss section holds copy relocs. This section is not
368 normally needed. We need to create it here, though, so that the
369 linker will map it to an output section. We can't just create it
370 only if we need it, because we will not know whether we need it
371 until we have seen all the input files, and the first time the
372 main linker code calls BFD after examining all the input files
373 (size_dynamic_sections) the input sections have already been
374 mapped to the output sections. If the section turns out not to
375 be needed, we can discard it later. We will never need this
376 section when generating a shared object, since they do not use
377 copy relocs. */
378 if (! info->shared)
379 {
380 s = bfd_make_section_anyway_with_flags (abfd,
381 (bed->rela_plts_and_copies_p
382 ? ".rela.bss" : ".rel.bss"),
383 flags | SEC_READONLY);
384 if (s == NULL
385 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
386 return FALSE;
387 }
388 }
389
390 return TRUE;
391 }
392 \f
393 /* Record a new dynamic symbol. We record the dynamic symbols as we
394 read the input files, since we need to have a list of all of them
395 before we can determine the final sizes of the output sections.
396 Note that we may actually call this function even though we are not
397 going to output any dynamic symbols; in some cases we know that a
398 symbol should be in the dynamic symbol table, but only if there is
399 one. */
400
401 bfd_boolean
402 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
403 struct elf_link_hash_entry *h)
404 {
405 if (h->dynindx == -1)
406 {
407 struct elf_strtab_hash *dynstr;
408 char *p;
409 const char *name;
410 bfd_size_type indx;
411
412 /* XXX: The ABI draft says the linker must turn hidden and
413 internal symbols into STB_LOCAL symbols when producing the
414 DSO. However, if ld.so honors st_other in the dynamic table,
415 this would not be necessary. */
416 switch (ELF_ST_VISIBILITY (h->other))
417 {
418 case STV_INTERNAL:
419 case STV_HIDDEN:
420 if (h->root.type != bfd_link_hash_undefined
421 && h->root.type != bfd_link_hash_undefweak)
422 {
423 h->forced_local = 1;
424 if (!elf_hash_table (info)->is_relocatable_executable)
425 return TRUE;
426 }
427
428 default:
429 break;
430 }
431
432 h->dynindx = elf_hash_table (info)->dynsymcount;
433 ++elf_hash_table (info)->dynsymcount;
434
435 dynstr = elf_hash_table (info)->dynstr;
436 if (dynstr == NULL)
437 {
438 /* Create a strtab to hold the dynamic symbol names. */
439 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
440 if (dynstr == NULL)
441 return FALSE;
442 }
443
444 /* We don't put any version information in the dynamic string
445 table. */
446 name = h->root.root.string;
447 p = strchr (name, ELF_VER_CHR);
448 if (p != NULL)
449 /* We know that the p points into writable memory. In fact,
450 there are only a few symbols that have read-only names, being
451 those like _GLOBAL_OFFSET_TABLE_ that are created specially
452 by the backends. Most symbols will have names pointing into
453 an ELF string table read from a file, or to objalloc memory. */
454 *p = 0;
455
456 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457
458 if (p != NULL)
459 *p = ELF_VER_CHR;
460
461 if (indx == (bfd_size_type) -1)
462 return FALSE;
463 h->dynstr_index = indx;
464 }
465
466 return TRUE;
467 }
468 \f
469 /* Mark a symbol dynamic. */
470
471 static void
472 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
473 struct elf_link_hash_entry *h,
474 Elf_Internal_Sym *sym)
475 {
476 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477
478 /* It may be called more than once on the same H. */
479 if(h->dynamic || info->relocatable)
480 return;
481
482 if ((info->dynamic_data
483 && (h->type == STT_OBJECT
484 || (sym != NULL
485 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 || (d != NULL
487 && h->root.type == bfd_link_hash_new
488 && (*d->match) (&d->head, NULL, h->root.root.string)))
489 h->dynamic = 1;
490 }
491
492 /* Record an assignment to a symbol made by a linker script. We need
493 this in case some dynamic object refers to this symbol. */
494
495 bfd_boolean
496 bfd_elf_record_link_assignment (bfd *output_bfd,
497 struct bfd_link_info *info,
498 const char *name,
499 bfd_boolean provide,
500 bfd_boolean hidden)
501 {
502 struct elf_link_hash_entry *h, *hv;
503 struct elf_link_hash_table *htab;
504 const struct elf_backend_data *bed;
505
506 if (!is_elf_hash_table (info->hash))
507 return TRUE;
508
509 htab = elf_hash_table (info);
510 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
511 if (h == NULL)
512 return provide;
513
514 switch (h->root.type)
515 {
516 case bfd_link_hash_defined:
517 case bfd_link_hash_defweak:
518 case bfd_link_hash_common:
519 break;
520 case bfd_link_hash_undefweak:
521 case bfd_link_hash_undefined:
522 /* Since we're defining the symbol, don't let it seem to have not
523 been defined. record_dynamic_symbol and size_dynamic_sections
524 may depend on this. */
525 h->root.type = bfd_link_hash_new;
526 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
527 bfd_link_repair_undef_list (&htab->root);
528 break;
529 case bfd_link_hash_new:
530 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531 h->non_elf = 0;
532 break;
533 case bfd_link_hash_indirect:
534 /* We had a versioned symbol in a dynamic library. We make the
535 the versioned symbol point to this one. */
536 bed = get_elf_backend_data (output_bfd);
537 hv = h;
538 while (hv->root.type == bfd_link_hash_indirect
539 || hv->root.type == bfd_link_hash_warning)
540 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
541 /* We don't need to update h->root.u since linker will set them
542 later. */
543 h->root.type = bfd_link_hash_undefined;
544 hv->root.type = bfd_link_hash_indirect;
545 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
546 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 break;
548 case bfd_link_hash_warning:
549 abort ();
550 break;
551 }
552
553 /* If this symbol is being provided by the linker script, and it is
554 currently defined by a dynamic object, but not by a regular
555 object, then mark it as undefined so that the generic linker will
556 force the correct value. */
557 if (provide
558 && h->def_dynamic
559 && !h->def_regular)
560 h->root.type = bfd_link_hash_undefined;
561
562 /* If this symbol is not being provided by the linker script, and it is
563 currently defined by a dynamic object, but not by a regular object,
564 then clear out any version information because the symbol will not be
565 associated with the dynamic object any more. */
566 if (!provide
567 && h->def_dynamic
568 && !h->def_regular)
569 h->verinfo.verdef = NULL;
570
571 h->def_regular = 1;
572
573 if (hidden)
574 {
575 bed = get_elf_backend_data (output_bfd);
576 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
577 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
578 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 }
580
581 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
582 and executables. */
583 if (!info->relocatable
584 && h->dynindx != -1
585 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
586 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
587 h->forced_local = 1;
588
589 if ((h->def_dynamic
590 || h->ref_dynamic
591 || info->shared
592 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 && h->dynindx == -1)
594 {
595 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 return FALSE;
597
598 /* If this is a weak defined symbol, and we know a corresponding
599 real symbol from the same dynamic object, make sure the real
600 symbol is also made into a dynamic symbol. */
601 if (h->u.weakdef != NULL
602 && h->u.weakdef->dynindx == -1)
603 {
604 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
605 return FALSE;
606 }
607 }
608
609 return TRUE;
610 }
611
612 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
613 success, and 2 on a failure caused by attempting to record a symbol
614 in a discarded section, eg. a discarded link-once section symbol. */
615
616 int
617 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
618 bfd *input_bfd,
619 long input_indx)
620 {
621 bfd_size_type amt;
622 struct elf_link_local_dynamic_entry *entry;
623 struct elf_link_hash_table *eht;
624 struct elf_strtab_hash *dynstr;
625 unsigned long dynstr_index;
626 char *name;
627 Elf_External_Sym_Shndx eshndx;
628 char esym[sizeof (Elf64_External_Sym)];
629
630 if (! is_elf_hash_table (info->hash))
631 return 0;
632
633 /* See if the entry exists already. */
634 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
635 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 return 1;
637
638 amt = sizeof (*entry);
639 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
640 if (entry == NULL)
641 return 0;
642
643 /* Go find the symbol, so that we can find it's name. */
644 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
645 1, input_indx, &entry->isym, esym, &eshndx))
646 {
647 bfd_release (input_bfd, entry);
648 return 0;
649 }
650
651 if (entry->isym.st_shndx != SHN_UNDEF
652 && entry->isym.st_shndx < SHN_LORESERVE)
653 {
654 asection *s;
655
656 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
657 if (s == NULL || bfd_is_abs_section (s->output_section))
658 {
659 /* We can still bfd_release here as nothing has done another
660 bfd_alloc. We can't do this later in this function. */
661 bfd_release (input_bfd, entry);
662 return 2;
663 }
664 }
665
666 name = (bfd_elf_string_from_elf_section
667 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
668 entry->isym.st_name));
669
670 dynstr = elf_hash_table (info)->dynstr;
671 if (dynstr == NULL)
672 {
673 /* Create a strtab to hold the dynamic symbol names. */
674 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
675 if (dynstr == NULL)
676 return 0;
677 }
678
679 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
680 if (dynstr_index == (unsigned long) -1)
681 return 0;
682 entry->isym.st_name = dynstr_index;
683
684 eht = elf_hash_table (info);
685
686 entry->next = eht->dynlocal;
687 eht->dynlocal = entry;
688 entry->input_bfd = input_bfd;
689 entry->input_indx = input_indx;
690 eht->dynsymcount++;
691
692 /* Whatever binding the symbol had before, it's now local. */
693 entry->isym.st_info
694 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
695
696 /* The dynindx will be set at the end of size_dynamic_sections. */
697
698 return 1;
699 }
700
701 /* Return the dynindex of a local dynamic symbol. */
702
703 long
704 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
705 bfd *input_bfd,
706 long input_indx)
707 {
708 struct elf_link_local_dynamic_entry *e;
709
710 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
711 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
712 return e->dynindx;
713 return -1;
714 }
715
716 /* This function is used to renumber the dynamic symbols, if some of
717 them are removed because they are marked as local. This is called
718 via elf_link_hash_traverse. */
719
720 static bfd_boolean
721 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 void *data)
723 {
724 size_t *count = (size_t *) data;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (!h->forced_local)
746 return TRUE;
747
748 if (h->dynindx != -1)
749 h->dynindx = ++(*count);
750
751 return TRUE;
752 }
753
754 /* Return true if the dynamic symbol for a given section should be
755 omitted when creating a shared library. */
756 bfd_boolean
757 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
758 struct bfd_link_info *info,
759 asection *p)
760 {
761 struct elf_link_hash_table *htab;
762
763 switch (elf_section_data (p)->this_hdr.sh_type)
764 {
765 case SHT_PROGBITS:
766 case SHT_NOBITS:
767 /* If sh_type is yet undecided, assume it could be
768 SHT_PROGBITS/SHT_NOBITS. */
769 case SHT_NULL:
770 htab = elf_hash_table (info);
771 if (p == htab->tls_sec)
772 return FALSE;
773
774 if (htab->text_index_section != NULL)
775 return p != htab->text_index_section && p != htab->data_index_section;
776
777 if (strcmp (p->name, ".got") == 0
778 || strcmp (p->name, ".got.plt") == 0
779 || strcmp (p->name, ".plt") == 0)
780 {
781 asection *ip;
782
783 if (htab->dynobj != NULL
784 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
785 && ip->output_section == p)
786 return TRUE;
787 }
788 return FALSE;
789
790 /* There shouldn't be section relative relocations
791 against any other section. */
792 default:
793 return TRUE;
794 }
795 }
796
797 /* Assign dynsym indices. In a shared library we generate a section
798 symbol for each output section, which come first. Next come symbols
799 which have been forced to local binding. Then all of the back-end
800 allocated local dynamic syms, followed by the rest of the global
801 symbols. */
802
803 static unsigned long
804 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
805 struct bfd_link_info *info,
806 unsigned long *section_sym_count)
807 {
808 unsigned long dynsymcount = 0;
809
810 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 {
812 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813 asection *p;
814 for (p = output_bfd->sections; p ; p = p->next)
815 if ((p->flags & SEC_EXCLUDE) == 0
816 && (p->flags & SEC_ALLOC) != 0
817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
818 elf_section_data (p)->dynindx = ++dynsymcount;
819 else
820 elf_section_data (p)->dynindx = 0;
821 }
822 *section_sym_count = dynsymcount;
823
824 elf_link_hash_traverse (elf_hash_table (info),
825 elf_link_renumber_local_hash_table_dynsyms,
826 &dynsymcount);
827
828 if (elf_hash_table (info)->dynlocal)
829 {
830 struct elf_link_local_dynamic_entry *p;
831 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
832 p->dynindx = ++dynsymcount;
833 }
834
835 elf_link_hash_traverse (elf_hash_table (info),
836 elf_link_renumber_hash_table_dynsyms,
837 &dynsymcount);
838
839 /* There is an unused NULL entry at the head of the table which
840 we must account for in our count. Unless there weren't any
841 symbols, which means we'll have no table at all. */
842 if (dynsymcount != 0)
843 ++dynsymcount;
844
845 elf_hash_table (info)->dynsymcount = dynsymcount;
846 return dynsymcount;
847 }
848
849 /* Merge st_other field. */
850
851 static void
852 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
853 Elf_Internal_Sym *isym, bfd_boolean definition,
854 bfd_boolean dynamic)
855 {
856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857
858 /* If st_other has a processor-specific meaning, specific
859 code might be needed here. We never merge the visibility
860 attribute with the one from a dynamic object. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 /* If this symbol has default visibility and the user has requested
866 we not re-export it, then mark it as hidden. */
867 if (definition
868 && !dynamic
869 && (abfd->no_export
870 || (abfd->my_archive && abfd->my_archive->no_export))
871 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
872 isym->st_other = (STV_HIDDEN
873 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874
875 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 {
877 unsigned char hvis, symvis, other, nvis;
878
879 /* Only merge the visibility. Leave the remainder of the
880 st_other field to elf_backend_merge_symbol_attribute. */
881 other = h->other & ~ELF_ST_VISIBILITY (-1);
882
883 /* Combine visibilities, using the most constraining one. */
884 hvis = ELF_ST_VISIBILITY (h->other);
885 symvis = ELF_ST_VISIBILITY (isym->st_other);
886 if (! hvis)
887 nvis = symvis;
888 else if (! symvis)
889 nvis = hvis;
890 else
891 nvis = hvis < symvis ? hvis : symvis;
892
893 h->other = other | nvis;
894 }
895 }
896
897 /* This function is called when we want to merge a new symbol with an
898 existing symbol. It handles the various cases which arise when we
899 find a definition in a dynamic object, or when there is already a
900 definition in a dynamic object. The new symbol is described by
901 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
902 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
903 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
904 of an old common symbol. We set OVERRIDE if the old symbol is
905 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
906 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
907 to change. By OK to change, we mean that we shouldn't warn if the
908 type or size does change. */
909
910 static bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 struct elf_link_hash_entry **sym_hash,
918 bfd **poldbfd,
919 bfd_boolean *pold_weak,
920 unsigned int *pold_alignment,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
925 {
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *hi;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 if (! bfd_is_und_section (sec))
943 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
944 else
945 h = ((struct elf_link_hash_entry *)
946 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
947 if (h == NULL)
948 return FALSE;
949 *sym_hash = h;
950
951 bed = get_elf_backend_data (abfd);
952
953 /* This code is for coping with dynamic objects, and is only useful
954 if we are doing an ELF link. */
955 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
956 return TRUE;
957
958 /* For merging, we only care about real symbols. But we need to make
959 sure that indirect symbol dynamic flags are updated. */
960 hi = h;
961 while (h->root.type == bfd_link_hash_indirect
962 || h->root.type == bfd_link_hash_warning)
963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
964
965 /* We have to check it for every instance since the first few may be
966 references and not all compilers emit symbol type for undefined
967 symbols. */
968 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
969
970 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
971 respectively, is from a dynamic object. */
972
973 newdyn = (abfd->flags & DYNAMIC) != 0;
974
975 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
976 syms and defined syms in dynamic libraries respectively.
977 ref_dynamic on the other hand can be set for a symbol defined in
978 a dynamic library, and def_dynamic may not be set; When the
979 definition in a dynamic lib is overridden by a definition in the
980 executable use of the symbol in the dynamic lib becomes a
981 reference to the executable symbol. */
982 if (newdyn)
983 {
984 if (bfd_is_und_section (sec))
985 {
986 if (bind != STB_WEAK)
987 {
988 h->ref_dynamic_nonweak = 1;
989 hi->ref_dynamic_nonweak = 1;
990 }
991 }
992 else
993 {
994 h->dynamic_def = 1;
995 hi->dynamic_def = 1;
996 }
997 }
998
999 /* If we just created the symbol, mark it as being an ELF symbol.
1000 Other than that, there is nothing to do--there is no merge issue
1001 with a newly defined symbol--so we just return. */
1002
1003 if (h->root.type == bfd_link_hash_new)
1004 {
1005 h->non_elf = 0;
1006 return TRUE;
1007 }
1008
1009 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1010 existing symbol. */
1011
1012 switch (h->root.type)
1013 {
1014 default:
1015 oldbfd = NULL;
1016 oldsec = NULL;
1017 break;
1018
1019 case bfd_link_hash_undefined:
1020 case bfd_link_hash_undefweak:
1021 oldbfd = h->root.u.undef.abfd;
1022 oldsec = NULL;
1023 break;
1024
1025 case bfd_link_hash_defined:
1026 case bfd_link_hash_defweak:
1027 oldbfd = h->root.u.def.section->owner;
1028 oldsec = h->root.u.def.section;
1029 break;
1030
1031 case bfd_link_hash_common:
1032 oldbfd = h->root.u.c.p->section->owner;
1033 oldsec = h->root.u.c.p->section;
1034 if (pold_alignment)
1035 *pold_alignment = h->root.u.c.p->alignment_power;
1036 break;
1037 }
1038 if (poldbfd && *poldbfd == NULL)
1039 *poldbfd = oldbfd;
1040
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
1045 if (pold_weak)
1046 *pold_weak = oldweak;
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. We only do it
1091 if the existing regular definition won't be dynamic. */
1092 if (pold_alignment == NULL
1093 && !info->shared
1094 && !info->export_dynamic
1095 && !h->ref_dynamic
1096 && newdyn
1097 && newdef
1098 && !olddyn
1099 && (olddef || h->root.type == bfd_link_hash_common)
1100 && ELF_ST_TYPE (sym->st_info) != h->type
1101 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1102 && h->type != STT_NOTYPE
1103 && !(newfunc && oldfunc))
1104 {
1105 *skip = TRUE;
1106 return TRUE;
1107 }
1108
1109 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1110 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1111 *type_change_ok = TRUE;
1112
1113 /* Check TLS symbol. We don't check undefined symbol introduced by
1114 "ld -u". */
1115 else if (oldbfd != NULL
1116 && ELF_ST_TYPE (sym->st_info) != h->type
1117 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1118 {
1119 bfd *ntbfd, *tbfd;
1120 bfd_boolean ntdef, tdef;
1121 asection *ntsec, *tsec;
1122
1123 if (h->type == STT_TLS)
1124 {
1125 ntbfd = abfd;
1126 ntsec = sec;
1127 ntdef = newdef;
1128 tbfd = oldbfd;
1129 tsec = oldsec;
1130 tdef = olddef;
1131 }
1132 else
1133 {
1134 ntbfd = oldbfd;
1135 ntsec = oldsec;
1136 ntdef = olddef;
1137 tbfd = abfd;
1138 tsec = sec;
1139 tdef = newdef;
1140 }
1141
1142 if (tdef && ntdef)
1143 (*_bfd_error_handler)
1144 (_("%s: TLS definition in %B section %A "
1145 "mismatches non-TLS definition in %B section %A"),
1146 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1147 else if (!tdef && !ntdef)
1148 (*_bfd_error_handler)
1149 (_("%s: TLS reference in %B "
1150 "mismatches non-TLS reference in %B"),
1151 tbfd, ntbfd, h->root.root.string);
1152 else if (tdef)
1153 (*_bfd_error_handler)
1154 (_("%s: TLS definition in %B section %A "
1155 "mismatches non-TLS reference in %B"),
1156 tbfd, tsec, ntbfd, h->root.root.string);
1157 else
1158 (*_bfd_error_handler)
1159 (_("%s: TLS reference in %B "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if (hi->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 hi->root.type = h->root.type;
1202 h->root.type = bfd_link_hash_indirect;
1203 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1204
1205 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1206 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1207 {
1208 /* If the new symbol is hidden or internal, completely undo
1209 any dynamic link state. */
1210 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1211 h->forced_local = 0;
1212 h->ref_dynamic = 0;
1213 }
1214 else
1215 h->ref_dynamic = 1;
1216
1217 h->def_dynamic = 0;
1218 /* FIXME: Should we check type and size for protected symbol? */
1219 h->size = 0;
1220 h->type = 0;
1221
1222 h = hi;
1223 }
1224 else
1225 h = hi;
1226 }
1227
1228 /* If the old symbol was undefined before, then it will still be
1229 on the undefs list. If the new symbol is undefined or
1230 common, we can't make it bfd_link_hash_new here, because new
1231 undefined or common symbols will be added to the undefs list
1232 by _bfd_generic_link_add_one_symbol. Symbols may not be
1233 added twice to the undefs list. Also, if the new symbol is
1234 undefweak then we don't want to lose the strong undef. */
1235 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1236 {
1237 h->root.type = bfd_link_hash_undefined;
1238 h->root.u.undef.abfd = abfd;
1239 }
1240 else
1241 {
1242 h->root.type = bfd_link_hash_new;
1243 h->root.u.undef.abfd = NULL;
1244 }
1245
1246 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1247 {
1248 /* If the new symbol is hidden or internal, completely undo
1249 any dynamic link state. */
1250 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1251 h->forced_local = 0;
1252 h->ref_dynamic = 0;
1253 }
1254 else
1255 h->ref_dynamic = 1;
1256 h->def_dynamic = 0;
1257 /* FIXME: Should we check type and size for protected symbol? */
1258 h->size = 0;
1259 h->type = 0;
1260 return TRUE;
1261 }
1262
1263 /* If a new weak symbol definition comes from a regular file and the
1264 old symbol comes from a dynamic library, we treat the new one as
1265 strong. Similarly, an old weak symbol definition from a regular
1266 file is treated as strong when the new symbol comes from a dynamic
1267 library. Further, an old weak symbol from a dynamic library is
1268 treated as strong if the new symbol is from a dynamic library.
1269 This reflects the way glibc's ld.so works.
1270
1271 Do this before setting *type_change_ok or *size_change_ok so that
1272 we warn properly when dynamic library symbols are overridden. */
1273
1274 if (newdef && !newdyn && olddyn)
1275 newweak = FALSE;
1276 if (olddef && newdyn)
1277 oldweak = FALSE;
1278
1279 /* Allow changes between different types of function symbol. */
1280 if (newfunc && oldfunc)
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the type if either the existing symbol or the
1284 new symbol is weak. A type change is also OK if the old symbol
1285 is undefined and the new symbol is defined. */
1286
1287 if (oldweak
1288 || newweak
1289 || (newdef
1290 && h->root.type == bfd_link_hash_undefined))
1291 *type_change_ok = TRUE;
1292
1293 /* It's OK to change the size if either the existing symbol or the
1294 new symbol is weak, or if the old symbol is undefined. */
1295
1296 if (*type_change_ok
1297 || h->root.type == bfd_link_hash_undefined)
1298 *size_change_ok = TRUE;
1299
1300 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1301 symbol, respectively, appears to be a common symbol in a dynamic
1302 object. If a symbol appears in an uninitialized section, and is
1303 not weak, and is not a function, then it may be a common symbol
1304 which was resolved when the dynamic object was created. We want
1305 to treat such symbols specially, because they raise special
1306 considerations when setting the symbol size: if the symbol
1307 appears as a common symbol in a regular object, and the size in
1308 the regular object is larger, we must make sure that we use the
1309 larger size. This problematic case can always be avoided in C,
1310 but it must be handled correctly when using Fortran shared
1311 libraries.
1312
1313 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1314 likewise for OLDDYNCOMMON and OLDDEF.
1315
1316 Note that this test is just a heuristic, and that it is quite
1317 possible to have an uninitialized symbol in a shared object which
1318 is really a definition, rather than a common symbol. This could
1319 lead to some minor confusion when the symbol really is a common
1320 symbol in some regular object. However, I think it will be
1321 harmless. */
1322
1323 if (newdyn
1324 && newdef
1325 && !newweak
1326 && (sec->flags & SEC_ALLOC) != 0
1327 && (sec->flags & SEC_LOAD) == 0
1328 && sym->st_size > 0
1329 && !newfunc)
1330 newdyncommon = TRUE;
1331 else
1332 newdyncommon = FALSE;
1333
1334 if (olddyn
1335 && olddef
1336 && h->root.type == bfd_link_hash_defined
1337 && h->def_dynamic
1338 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1339 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1340 && h->size > 0
1341 && !oldfunc)
1342 olddyncommon = TRUE;
1343 else
1344 olddyncommon = FALSE;
1345
1346 /* We now know everything about the old and new symbols. We ask the
1347 backend to check if we can merge them. */
1348 if (bed->merge_symbol != NULL)
1349 {
1350 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1351 return FALSE;
1352 sec = *psec;
1353 }
1354
1355 /* If both the old and the new symbols look like common symbols in a
1356 dynamic object, set the size of the symbol to the larger of the
1357 two. */
1358
1359 if (olddyncommon
1360 && newdyncommon
1361 && sym->st_size != h->size)
1362 {
1363 /* Since we think we have two common symbols, issue a multiple
1364 common warning if desired. Note that we only warn if the
1365 size is different. If the size is the same, we simply let
1366 the old symbol override the new one as normally happens with
1367 symbols defined in dynamic objects. */
1368
1369 if (! ((*info->callbacks->multiple_common)
1370 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1371 return FALSE;
1372
1373 if (sym->st_size > h->size)
1374 h->size = sym->st_size;
1375
1376 *size_change_ok = TRUE;
1377 }
1378
1379 /* If we are looking at a dynamic object, and we have found a
1380 definition, we need to see if the symbol was already defined by
1381 some other object. If so, we want to use the existing
1382 definition, and we do not want to report a multiple symbol
1383 definition error; we do this by clobbering *PSEC to be
1384 bfd_und_section_ptr.
1385
1386 We treat a common symbol as a definition if the symbol in the
1387 shared library is a function, since common symbols always
1388 represent variables; this can cause confusion in principle, but
1389 any such confusion would seem to indicate an erroneous program or
1390 shared library. We also permit a common symbol in a regular
1391 object to override a weak symbol in a shared object. */
1392
1393 if (newdyn
1394 && newdef
1395 && (olddef
1396 || (h->root.type == bfd_link_hash_common
1397 && (newweak || newfunc))))
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402
1403 *psec = sec = bfd_und_section_ptr;
1404 *size_change_ok = TRUE;
1405
1406 /* If we get here when the old symbol is a common symbol, then
1407 we are explicitly letting it override a weak symbol or
1408 function in a dynamic object, and we don't want to warn about
1409 a type change. If the old symbol is a defined symbol, a type
1410 change warning may still be appropriate. */
1411
1412 if (h->root.type == bfd_link_hash_common)
1413 *type_change_ok = TRUE;
1414 }
1415
1416 /* Handle the special case of an old common symbol merging with a
1417 new symbol which looks like a common symbol in a shared object.
1418 We change *PSEC and *PVALUE to make the new symbol look like a
1419 common symbol, and let _bfd_generic_link_add_one_symbol do the
1420 right thing. */
1421
1422 if (newdyncommon
1423 && h->root.type == bfd_link_hash_common)
1424 {
1425 *override = TRUE;
1426 newdef = FALSE;
1427 newdyncommon = FALSE;
1428 *pvalue = sym->st_size;
1429 *psec = sec = bed->common_section (oldsec);
1430 *size_change_ok = TRUE;
1431 }
1432
1433 /* Skip weak definitions of symbols that are already defined. */
1434 if (newdef && olddef && newweak)
1435 {
1436 /* Don't skip new non-IR weak syms. */
1437 if (!(oldbfd != NULL
1438 && (oldbfd->flags & BFD_PLUGIN) != 0
1439 && (abfd->flags & BFD_PLUGIN) == 0))
1440 *skip = TRUE;
1441
1442 /* Merge st_other. If the symbol already has a dynamic index,
1443 but visibility says it should not be visible, turn it into a
1444 local symbol. */
1445 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1446 if (h->dynindx != -1)
1447 switch (ELF_ST_VISIBILITY (h->other))
1448 {
1449 case STV_INTERNAL:
1450 case STV_HIDDEN:
1451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1452 break;
1453 }
1454 }
1455
1456 /* If the old symbol is from a dynamic object, and the new symbol is
1457 a definition which is not from a dynamic object, then the new
1458 symbol overrides the old symbol. Symbols from regular files
1459 always take precedence over symbols from dynamic objects, even if
1460 they are defined after the dynamic object in the link.
1461
1462 As above, we again permit a common symbol in a regular object to
1463 override a definition in a shared object if the shared object
1464 symbol is a function or is weak. */
1465
1466 flip = NULL;
1467 if (!newdyn
1468 && (newdef
1469 || (bfd_is_com_section (sec)
1470 && (oldweak || oldfunc)))
1471 && olddyn
1472 && olddef
1473 && h->def_dynamic)
1474 {
1475 /* Change the hash table entry to undefined, and let
1476 _bfd_generic_link_add_one_symbol do the right thing with the
1477 new definition. */
1478
1479 h->root.type = bfd_link_hash_undefined;
1480 h->root.u.undef.abfd = h->root.u.def.section->owner;
1481 *size_change_ok = TRUE;
1482
1483 olddef = FALSE;
1484 olddyncommon = FALSE;
1485
1486 /* We again permit a type change when a common symbol may be
1487 overriding a function. */
1488
1489 if (bfd_is_com_section (sec))
1490 {
1491 if (oldfunc)
1492 {
1493 /* If a common symbol overrides a function, make sure
1494 that it isn't defined dynamically nor has type
1495 function. */
1496 h->def_dynamic = 0;
1497 h->type = STT_NOTYPE;
1498 }
1499 *type_change_ok = TRUE;
1500 }
1501
1502 if (hi->root.type == bfd_link_hash_indirect)
1503 flip = hi;
1504 else
1505 /* This union may have been set to be non-NULL when this symbol
1506 was seen in a dynamic object. We must force the union to be
1507 NULL, so that it is correct for a regular symbol. */
1508 h->verinfo.vertree = NULL;
1509 }
1510
1511 /* Handle the special case of a new common symbol merging with an
1512 old symbol that looks like it might be a common symbol defined in
1513 a shared object. Note that we have already handled the case in
1514 which a new common symbol should simply override the definition
1515 in the shared library. */
1516
1517 if (! newdyn
1518 && bfd_is_com_section (sec)
1519 && olddyncommon)
1520 {
1521 /* It would be best if we could set the hash table entry to a
1522 common symbol, but we don't know what to use for the section
1523 or the alignment. */
1524 if (! ((*info->callbacks->multiple_common)
1525 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1526 return FALSE;
1527
1528 /* If the presumed common symbol in the dynamic object is
1529 larger, pretend that the new symbol has its size. */
1530
1531 if (h->size > *pvalue)
1532 *pvalue = h->size;
1533
1534 /* We need to remember the alignment required by the symbol
1535 in the dynamic object. */
1536 BFD_ASSERT (pold_alignment);
1537 *pold_alignment = h->root.u.def.section->alignment_power;
1538
1539 olddef = FALSE;
1540 olddyncommon = FALSE;
1541
1542 h->root.type = bfd_link_hash_undefined;
1543 h->root.u.undef.abfd = h->root.u.def.section->owner;
1544
1545 *size_change_ok = TRUE;
1546 *type_change_ok = TRUE;
1547
1548 if (hi->root.type == bfd_link_hash_indirect)
1549 flip = hi;
1550 else
1551 h->verinfo.vertree = NULL;
1552 }
1553
1554 if (flip != NULL)
1555 {
1556 /* Handle the case where we had a versioned symbol in a dynamic
1557 library and now find a definition in a normal object. In this
1558 case, we make the versioned symbol point to the normal one. */
1559 flip->root.type = h->root.type;
1560 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1561 h->root.type = bfd_link_hash_indirect;
1562 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1563 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 if (h->def_dynamic)
1565 {
1566 h->def_dynamic = 0;
1567 flip->ref_dynamic = 1;
1568 }
1569 }
1570
1571 return TRUE;
1572 }
1573
1574 /* This function is called to create an indirect symbol from the
1575 default for the symbol with the default version if needed. The
1576 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1577 set DYNSYM if the new indirect symbol is dynamic. */
1578
1579 static bfd_boolean
1580 _bfd_elf_add_default_symbol (bfd *abfd,
1581 struct bfd_link_info *info,
1582 struct elf_link_hash_entry *h,
1583 const char *name,
1584 Elf_Internal_Sym *sym,
1585 asection *sec,
1586 bfd_vma value,
1587 bfd **poldbfd,
1588 bfd_boolean *dynsym)
1589 {
1590 bfd_boolean type_change_ok;
1591 bfd_boolean size_change_ok;
1592 bfd_boolean skip;
1593 char *shortname;
1594 struct elf_link_hash_entry *hi;
1595 struct bfd_link_hash_entry *bh;
1596 const struct elf_backend_data *bed;
1597 bfd_boolean collect;
1598 bfd_boolean dynamic;
1599 bfd_boolean override;
1600 char *p;
1601 size_t len, shortlen;
1602 asection *tmp_sec;
1603
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1611
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1615
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1622
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 tmp_sec = sec;
1630 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1631 &hi, poldbfd, NULL, NULL, &skip, &override,
1632 &type_change_ok, &size_change_ok))
1633 return FALSE;
1634
1635 if (skip)
1636 goto nondefault;
1637
1638 if (! override)
1639 {
1640 bh = &hi->root;
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1643 0, name, FALSE, collect, &bh)))
1644 return FALSE;
1645 hi = (struct elf_link_hash_entry *) bh;
1646 }
1647 else
1648 {
1649 /* In this case the symbol named SHORTNAME is overriding the
1650 indirect symbol we want to add. We were planning on making
1651 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1652 is the name without a version. NAME is the fully versioned
1653 name, and it is the default version.
1654
1655 Overriding means that we already saw a definition for the
1656 symbol SHORTNAME in a regular object, and it is overriding
1657 the symbol defined in the dynamic object.
1658
1659 When this happens, we actually want to change NAME, the
1660 symbol we just added, to refer to SHORTNAME. This will cause
1661 references to NAME in the shared object to become references
1662 to SHORTNAME in the regular object. This is what we expect
1663 when we override a function in a shared object: that the
1664 references in the shared object will be mapped to the
1665 definition in the regular object. */
1666
1667 while (hi->root.type == bfd_link_hash_indirect
1668 || hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 h->root.type = bfd_link_hash_indirect;
1672 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1673 if (h->def_dynamic)
1674 {
1675 h->def_dynamic = 0;
1676 hi->ref_dynamic = 1;
1677 if (hi->ref_regular
1678 || hi->def_regular)
1679 {
1680 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1681 return FALSE;
1682 }
1683 }
1684
1685 /* Now set HI to H, so that the following code will set the
1686 other fields correctly. */
1687 hi = h;
1688 }
1689
1690 /* Check if HI is a warning symbol. */
1691 if (hi->root.type == bfd_link_hash_warning)
1692 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1693
1694 /* If there is a duplicate definition somewhere, then HI may not
1695 point to an indirect symbol. We will have reported an error to
1696 the user in that case. */
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 {
1700 struct elf_link_hash_entry *ht;
1701
1702 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1704
1705 /* See if the new flags lead us to realize that the symbol must
1706 be dynamic. */
1707 if (! *dynsym)
1708 {
1709 if (! dynamic)
1710 {
1711 if (! info->executable
1712 || hi->def_dynamic
1713 || hi->ref_dynamic)
1714 *dynsym = TRUE;
1715 }
1716 else
1717 {
1718 if (hi->ref_regular)
1719 *dynsym = TRUE;
1720 }
1721 }
1722 }
1723
1724 /* We also need to define an indirection from the nondefault version
1725 of the symbol. */
1726
1727 nondefault:
1728 len = strlen (name);
1729 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1730 if (shortname == NULL)
1731 return FALSE;
1732 memcpy (shortname, name, shortlen);
1733 memcpy (shortname + shortlen, p + 1, len - shortlen);
1734
1735 /* Once again, merge with any existing symbol. */
1736 type_change_ok = FALSE;
1737 size_change_ok = FALSE;
1738 tmp_sec = sec;
1739 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1740 &hi, NULL, NULL, NULL, &skip, &override,
1741 &type_change_ok, &size_change_ok))
1742 return FALSE;
1743
1744 if (skip)
1745 return TRUE;
1746
1747 if (override)
1748 {
1749 /* Here SHORTNAME is a versioned name, so we don't expect to see
1750 the type of override we do in the case above unless it is
1751 overridden by a versioned definition. */
1752 if (hi->root.type != bfd_link_hash_defined
1753 && hi->root.type != bfd_link_hash_defweak)
1754 (*_bfd_error_handler)
1755 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1756 abfd, shortname);
1757 }
1758 else
1759 {
1760 bh = &hi->root;
1761 if (! (_bfd_generic_link_add_one_symbol
1762 (info, abfd, shortname, BSF_INDIRECT,
1763 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1764 return FALSE;
1765 hi = (struct elf_link_hash_entry *) bh;
1766
1767 /* If there is a duplicate definition somewhere, then HI may not
1768 point to an indirect symbol. We will have reported an error
1769 to the user in that case. */
1770
1771 if (hi->root.type == bfd_link_hash_indirect)
1772 {
1773 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1774
1775 /* See if the new flags lead us to realize that the symbol
1776 must be dynamic. */
1777 if (! *dynsym)
1778 {
1779 if (! dynamic)
1780 {
1781 if (! info->executable
1782 || hi->ref_dynamic)
1783 *dynsym = TRUE;
1784 }
1785 else
1786 {
1787 if (hi->ref_regular)
1788 *dynsym = TRUE;
1789 }
1790 }
1791 }
1792 }
1793
1794 return TRUE;
1795 }
1796 \f
1797 /* This routine is used to export all defined symbols into the dynamic
1798 symbol table. It is called via elf_link_hash_traverse. */
1799
1800 static bfd_boolean
1801 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1802 {
1803 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1804
1805 /* Ignore indirect symbols. These are added by the versioning code. */
1806 if (h->root.type == bfd_link_hash_indirect)
1807 return TRUE;
1808
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1812
1813 if (h->dynindx == -1
1814 && (h->def_regular || h->ref_regular)
1815 && ! bfd_hide_sym_by_version (eif->info->version_info,
1816 h->root.root.string))
1817 {
1818 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1819 {
1820 eif->failed = TRUE;
1821 return FALSE;
1822 }
1823 }
1824
1825 return TRUE;
1826 }
1827 \f
1828 /* Look through the symbols which are defined in other shared
1829 libraries and referenced here. Update the list of version
1830 dependencies. This will be put into the .gnu.version_r section.
1831 This function is called via elf_link_hash_traverse. */
1832
1833 static bfd_boolean
1834 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1835 void *data)
1836 {
1837 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1838 Elf_Internal_Verneed *t;
1839 Elf_Internal_Vernaux *a;
1840 bfd_size_type amt;
1841
1842 /* We only care about symbols defined in shared objects with version
1843 information. */
1844 if (!h->def_dynamic
1845 || h->def_regular
1846 || h->dynindx == -1
1847 || h->verinfo.verdef == NULL)
1848 return TRUE;
1849
1850 /* See if we already know about this version. */
1851 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1852 t != NULL;
1853 t = t->vn_nextref)
1854 {
1855 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1856 continue;
1857
1858 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1859 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1860 return TRUE;
1861
1862 break;
1863 }
1864
1865 /* This is a new version. Add it to tree we are building. */
1866
1867 if (t == NULL)
1868 {
1869 amt = sizeof *t;
1870 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (t == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1878 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1879 elf_tdata (rinfo->info->output_bfd)->verref = t;
1880 }
1881
1882 amt = sizeof *a;
1883 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1884 if (a == NULL)
1885 {
1886 rinfo->failed = TRUE;
1887 return FALSE;
1888 }
1889
1890 /* Note that we are copying a string pointer here, and testing it
1891 above. If bfd_elf_string_from_elf_section is ever changed to
1892 discard the string data when low in memory, this will have to be
1893 fixed. */
1894 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1895
1896 a->vna_flags = h->verinfo.verdef->vd_flags;
1897 a->vna_nextptr = t->vn_auxptr;
1898
1899 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1900 ++rinfo->vers;
1901
1902 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1903
1904 t->vn_auxptr = a;
1905
1906 return TRUE;
1907 }
1908
1909 /* Figure out appropriate versions for all the symbols. We may not
1910 have the version number script until we have read all of the input
1911 files, so until that point we don't know which symbols should be
1912 local. This function is called via elf_link_hash_traverse. */
1913
1914 static bfd_boolean
1915 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1916 {
1917 struct elf_info_failed *sinfo;
1918 struct bfd_link_info *info;
1919 const struct elf_backend_data *bed;
1920 struct elf_info_failed eif;
1921 char *p;
1922 bfd_size_type amt;
1923
1924 sinfo = (struct elf_info_failed *) data;
1925 info = sinfo->info;
1926
1927 /* Fix the symbol flags. */
1928 eif.failed = FALSE;
1929 eif.info = info;
1930 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1931 {
1932 if (eif.failed)
1933 sinfo->failed = TRUE;
1934 return FALSE;
1935 }
1936
1937 /* We only need version numbers for symbols defined in regular
1938 objects. */
1939 if (!h->def_regular)
1940 return TRUE;
1941
1942 bed = get_elf_backend_data (info->output_bfd);
1943 p = strchr (h->root.root.string, ELF_VER_CHR);
1944 if (p != NULL && h->verinfo.vertree == NULL)
1945 {
1946 struct bfd_elf_version_tree *t;
1947 bfd_boolean hidden;
1948
1949 hidden = TRUE;
1950
1951 /* There are two consecutive ELF_VER_CHR characters if this is
1952 not a hidden symbol. */
1953 ++p;
1954 if (*p == ELF_VER_CHR)
1955 {
1956 hidden = FALSE;
1957 ++p;
1958 }
1959
1960 /* If there is no version string, we can just return out. */
1961 if (*p == '\0')
1962 {
1963 if (hidden)
1964 h->hidden = 1;
1965 return TRUE;
1966 }
1967
1968 /* Look for the version. If we find it, it is no longer weak. */
1969 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1970 {
1971 if (strcmp (t->name, p) == 0)
1972 {
1973 size_t len;
1974 char *alc;
1975 struct bfd_elf_version_expr *d;
1976
1977 len = p - h->root.root.string;
1978 alc = (char *) bfd_malloc (len);
1979 if (alc == NULL)
1980 {
1981 sinfo->failed = TRUE;
1982 return FALSE;
1983 }
1984 memcpy (alc, h->root.root.string, len - 1);
1985 alc[len - 1] = '\0';
1986 if (alc[len - 2] == ELF_VER_CHR)
1987 alc[len - 2] = '\0';
1988
1989 h->verinfo.vertree = t;
1990 t->used = TRUE;
1991 d = NULL;
1992
1993 if (t->globals.list != NULL)
1994 d = (*t->match) (&t->globals, NULL, alc);
1995
1996 /* See if there is anything to force this symbol to
1997 local scope. */
1998 if (d == NULL && t->locals.list != NULL)
1999 {
2000 d = (*t->match) (&t->locals, NULL, alc);
2001 if (d != NULL
2002 && h->dynindx != -1
2003 && ! info->export_dynamic)
2004 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2005 }
2006
2007 free (alc);
2008 break;
2009 }
2010 }
2011
2012 /* If we are building an application, we need to create a
2013 version node for this version. */
2014 if (t == NULL && info->executable)
2015 {
2016 struct bfd_elf_version_tree **pp;
2017 int version_index;
2018
2019 /* If we aren't going to export this symbol, we don't need
2020 to worry about it. */
2021 if (h->dynindx == -1)
2022 return TRUE;
2023
2024 amt = sizeof *t;
2025 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2026 if (t == NULL)
2027 {
2028 sinfo->failed = TRUE;
2029 return FALSE;
2030 }
2031
2032 t->name = p;
2033 t->name_indx = (unsigned int) -1;
2034 t->used = TRUE;
2035
2036 version_index = 1;
2037 /* Don't count anonymous version tag. */
2038 if (sinfo->info->version_info != NULL
2039 && sinfo->info->version_info->vernum == 0)
2040 version_index = 0;
2041 for (pp = &sinfo->info->version_info;
2042 *pp != NULL;
2043 pp = &(*pp)->next)
2044 ++version_index;
2045 t->vernum = version_index;
2046
2047 *pp = t;
2048
2049 h->verinfo.vertree = t;
2050 }
2051 else if (t == NULL)
2052 {
2053 /* We could not find the version for a symbol when
2054 generating a shared archive. Return an error. */
2055 (*_bfd_error_handler)
2056 (_("%B: version node not found for symbol %s"),
2057 info->output_bfd, h->root.root.string);
2058 bfd_set_error (bfd_error_bad_value);
2059 sinfo->failed = TRUE;
2060 return FALSE;
2061 }
2062
2063 if (hidden)
2064 h->hidden = 1;
2065 }
2066
2067 /* If we don't have a version for this symbol, see if we can find
2068 something. */
2069 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2070 {
2071 bfd_boolean hide;
2072
2073 h->verinfo.vertree
2074 = bfd_find_version_for_sym (sinfo->info->version_info,
2075 h->root.root.string, &hide);
2076 if (h->verinfo.vertree != NULL && hide)
2077 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2089
2090 Returns FALSE if something goes wrong. */
2091
2092 static bfd_boolean
2093 elf_link_read_relocs_from_section (bfd *abfd,
2094 asection *sec,
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
2098 {
2099 const struct elf_backend_data *bed;
2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
2106
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2110
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2114
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2117
2118 bed = get_elf_backend_data (abfd);
2119
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2126 {
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2129 }
2130
2131 erela = (const bfd_byte *) external_relocs;
2132 erelaend = erela + shdr->sh_size;
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2135 {
2136 bfd_vma r_symndx;
2137
2138 (*swap_in) (abfd, erela, irela);
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if (nsyms > 0)
2143 {
2144 if ((size_t) r_symndx >= nsyms)
2145 {
2146 (*_bfd_error_handler)
2147 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2148 " for offset 0x%lx in section `%A'"),
2149 abfd, sec,
2150 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2153 }
2154 }
2155 else if (r_symndx != STN_UNDEF)
2156 {
2157 (*_bfd_error_handler)
2158 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2159 " when the object file has no symbol table"),
2160 abfd, sec,
2161 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2164 }
2165 irela += bed->s->int_rels_per_ext_rel;
2166 erela += shdr->sh_entsize;
2167 }
2168
2169 return TRUE;
2170 }
2171
2172 /* Read and swap the relocs for a section O. They may have been
2173 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2174 not NULL, they are used as buffers to read into. They are known to
2175 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2176 the return value is allocated using either malloc or bfd_alloc,
2177 according to the KEEP_MEMORY argument. If O has two relocation
2178 sections (both REL and RELA relocations), then the REL_HDR
2179 relocations will appear first in INTERNAL_RELOCS, followed by the
2180 RELA_HDR relocations. */
2181
2182 Elf_Internal_Rela *
2183 _bfd_elf_link_read_relocs (bfd *abfd,
2184 asection *o,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs,
2187 bfd_boolean keep_memory)
2188 {
2189 void *alloc1 = NULL;
2190 Elf_Internal_Rela *alloc2 = NULL;
2191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2192 struct bfd_elf_section_data *esdo = elf_section_data (o);
2193 Elf_Internal_Rela *internal_rela_relocs;
2194
2195 if (esdo->relocs != NULL)
2196 return esdo->relocs;
2197
2198 if (o->reloc_count == 0)
2199 return NULL;
2200
2201 if (internal_relocs == NULL)
2202 {
2203 bfd_size_type size;
2204
2205 size = o->reloc_count;
2206 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2207 if (keep_memory)
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2209 else
2210 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2211 if (internal_relocs == NULL)
2212 goto error_return;
2213 }
2214
2215 if (external_relocs == NULL)
2216 {
2217 bfd_size_type size = 0;
2218
2219 if (esdo->rel.hdr)
2220 size += esdo->rel.hdr->sh_size;
2221 if (esdo->rela.hdr)
2222 size += esdo->rela.hdr->sh_size;
2223
2224 alloc1 = bfd_malloc (size);
2225 if (alloc1 == NULL)
2226 goto error_return;
2227 external_relocs = alloc1;
2228 }
2229
2230 internal_rela_relocs = internal_relocs;
2231 if (esdo->rel.hdr)
2232 {
2233 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2234 external_relocs,
2235 internal_relocs))
2236 goto error_return;
2237 external_relocs = (((bfd_byte *) external_relocs)
2238 + esdo->rel.hdr->sh_size);
2239 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2240 * bed->s->int_rels_per_ext_rel);
2241 }
2242
2243 if (esdo->rela.hdr
2244 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2245 external_relocs,
2246 internal_rela_relocs)))
2247 goto error_return;
2248
2249 /* Cache the results for next time, if we can. */
2250 if (keep_memory)
2251 esdo->relocs = internal_relocs;
2252
2253 if (alloc1 != NULL)
2254 free (alloc1);
2255
2256 /* Don't free alloc2, since if it was allocated we are passing it
2257 back (under the name of internal_relocs). */
2258
2259 return internal_relocs;
2260
2261 error_return:
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264 if (alloc2 != NULL)
2265 {
2266 if (keep_memory)
2267 bfd_release (abfd, alloc2);
2268 else
2269 free (alloc2);
2270 }
2271 return NULL;
2272 }
2273
2274 /* Compute the size of, and allocate space for, REL_HDR which is the
2275 section header for a section containing relocations for O. */
2276
2277 static bfd_boolean
2278 _bfd_elf_link_size_reloc_section (bfd *abfd,
2279 struct bfd_elf_section_reloc_data *reldata)
2280 {
2281 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2282
2283 /* That allows us to calculate the size of the section. */
2284 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2285
2286 /* The contents field must last into write_object_contents, so we
2287 allocate it with bfd_alloc rather than malloc. Also since we
2288 cannot be sure that the contents will actually be filled in,
2289 we zero the allocated space. */
2290 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2291 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2292 return FALSE;
2293
2294 if (reldata->hashes == NULL && reldata->count)
2295 {
2296 struct elf_link_hash_entry **p;
2297
2298 p = (struct elf_link_hash_entry **)
2299 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2300 if (p == NULL)
2301 return FALSE;
2302
2303 reldata->hashes = p;
2304 }
2305
2306 return TRUE;
2307 }
2308
2309 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2310 originated from the section given by INPUT_REL_HDR) to the
2311 OUTPUT_BFD. */
2312
2313 bfd_boolean
2314 _bfd_elf_link_output_relocs (bfd *output_bfd,
2315 asection *input_section,
2316 Elf_Internal_Shdr *input_rel_hdr,
2317 Elf_Internal_Rela *internal_relocs,
2318 struct elf_link_hash_entry **rel_hash
2319 ATTRIBUTE_UNUSED)
2320 {
2321 Elf_Internal_Rela *irela;
2322 Elf_Internal_Rela *irelaend;
2323 bfd_byte *erel;
2324 struct bfd_elf_section_reloc_data *output_reldata;
2325 asection *output_section;
2326 const struct elf_backend_data *bed;
2327 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2328 struct bfd_elf_section_data *esdo;
2329
2330 output_section = input_section->output_section;
2331
2332 bed = get_elf_backend_data (output_bfd);
2333 esdo = elf_section_data (output_section);
2334 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2335 {
2336 output_reldata = &esdo->rel;
2337 swap_out = bed->s->swap_reloc_out;
2338 }
2339 else if (esdo->rela.hdr
2340 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2341 {
2342 output_reldata = &esdo->rela;
2343 swap_out = bed->s->swap_reloca_out;
2344 }
2345 else
2346 {
2347 (*_bfd_error_handler)
2348 (_("%B: relocation size mismatch in %B section %A"),
2349 output_bfd, input_section->owner, input_section);
2350 bfd_set_error (bfd_error_wrong_format);
2351 return FALSE;
2352 }
2353
2354 erel = output_reldata->hdr->contents;
2355 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2356 irela = internal_relocs;
2357 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2358 * bed->s->int_rels_per_ext_rel);
2359 while (irela < irelaend)
2360 {
2361 (*swap_out) (output_bfd, irela, erel);
2362 irela += bed->s->int_rels_per_ext_rel;
2363 erel += input_rel_hdr->sh_entsize;
2364 }
2365
2366 /* Bump the counter, so that we know where to add the next set of
2367 relocations. */
2368 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2369
2370 return TRUE;
2371 }
2372 \f
2373 /* Make weak undefined symbols in PIE dynamic. */
2374
2375 bfd_boolean
2376 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2377 struct elf_link_hash_entry *h)
2378 {
2379 if (info->pie
2380 && h->dynindx == -1
2381 && h->root.type == bfd_link_hash_undefweak)
2382 return bfd_elf_link_record_dynamic_symbol (info, h);
2383
2384 return TRUE;
2385 }
2386
2387 /* Fix up the flags for a symbol. This handles various cases which
2388 can only be fixed after all the input files are seen. This is
2389 currently called by both adjust_dynamic_symbol and
2390 assign_sym_version, which is unnecessary but perhaps more robust in
2391 the face of future changes. */
2392
2393 static bfd_boolean
2394 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2395 struct elf_info_failed *eif)
2396 {
2397 const struct elf_backend_data *bed;
2398
2399 /* If this symbol was mentioned in a non-ELF file, try to set
2400 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2401 permit a non-ELF file to correctly refer to a symbol defined in
2402 an ELF dynamic object. */
2403 if (h->non_elf)
2404 {
2405 while (h->root.type == bfd_link_hash_indirect)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2407
2408 if (h->root.type != bfd_link_hash_defined
2409 && h->root.type != bfd_link_hash_defweak)
2410 {
2411 h->ref_regular = 1;
2412 h->ref_regular_nonweak = 1;
2413 }
2414 else
2415 {
2416 if (h->root.u.def.section->owner != NULL
2417 && (bfd_get_flavour (h->root.u.def.section->owner)
2418 == bfd_target_elf_flavour))
2419 {
2420 h->ref_regular = 1;
2421 h->ref_regular_nonweak = 1;
2422 }
2423 else
2424 h->def_regular = 1;
2425 }
2426
2427 if (h->dynindx == -1
2428 && (h->def_dynamic
2429 || h->ref_dynamic))
2430 {
2431 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2432 {
2433 eif->failed = TRUE;
2434 return FALSE;
2435 }
2436 }
2437 }
2438 else
2439 {
2440 /* Unfortunately, NON_ELF is only correct if the symbol
2441 was first seen in a non-ELF file. Fortunately, if the symbol
2442 was first seen in an ELF file, we're probably OK unless the
2443 symbol was defined in a non-ELF file. Catch that case here.
2444 FIXME: We're still in trouble if the symbol was first seen in
2445 a dynamic object, and then later in a non-ELF regular object. */
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && !h->def_regular
2449 && (h->root.u.def.section->owner != NULL
2450 ? (bfd_get_flavour (h->root.u.def.section->owner)
2451 != bfd_target_elf_flavour)
2452 : (bfd_is_abs_section (h->root.u.def.section)
2453 && !h->def_dynamic)))
2454 h->def_regular = 1;
2455 }
2456
2457 /* Backend specific symbol fixup. */
2458 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2459 if (bed->elf_backend_fixup_symbol
2460 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 return FALSE;
2462
2463 /* If this is a final link, and the symbol was defined as a common
2464 symbol in a regular object file, and there was no definition in
2465 any dynamic object, then the linker will have allocated space for
2466 the symbol in a common section but the DEF_REGULAR
2467 flag will not have been set. */
2468 if (h->root.type == bfd_link_hash_defined
2469 && !h->def_regular
2470 && h->ref_regular
2471 && !h->def_dynamic
2472 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 h->def_regular = 1;
2474
2475 /* If -Bsymbolic was used (which means to bind references to global
2476 symbols to the definition within the shared object), and this
2477 symbol was defined in a regular object, then it actually doesn't
2478 need a PLT entry. Likewise, if the symbol has non-default
2479 visibility. If the symbol has hidden or internal visibility, we
2480 will force it local. */
2481 if (h->needs_plt
2482 && eif->info->shared
2483 && is_elf_hash_table (eif->info->hash)
2484 && (SYMBOLIC_BIND (eif->info, h)
2485 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 && h->def_regular)
2487 {
2488 bfd_boolean force_local;
2489
2490 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2491 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2493 }
2494
2495 /* If a weak undefined symbol has non-default visibility, we also
2496 hide it from the dynamic linker. */
2497 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2498 && h->root.type == bfd_link_hash_undefweak)
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2500
2501 /* If this is a weak defined symbol in a dynamic object, and we know
2502 the real definition in the dynamic object, copy interesting flags
2503 over to the real definition. */
2504 if (h->u.weakdef != NULL)
2505 {
2506 /* If the real definition is defined by a regular object file,
2507 don't do anything special. See the longer description in
2508 _bfd_elf_adjust_dynamic_symbol, below. */
2509 if (h->u.weakdef->def_regular)
2510 h->u.weakdef = NULL;
2511 else
2512 {
2513 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2514
2515 while (h->root.type == bfd_link_hash_indirect)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520 BFD_ASSERT (weakdef->def_dynamic);
2521 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2522 || weakdef->root.type == bfd_link_hash_defweak);
2523 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2524 }
2525 }
2526
2527 return TRUE;
2528 }
2529
2530 /* Make the backend pick a good value for a dynamic symbol. This is
2531 called via elf_link_hash_traverse, and also calls itself
2532 recursively. */
2533
2534 static bfd_boolean
2535 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2536 {
2537 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2538 bfd *dynobj;
2539 const struct elf_backend_data *bed;
2540
2541 if (! is_elf_hash_table (eif->info->hash))
2542 return FALSE;
2543
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h->root.type == bfd_link_hash_indirect)
2546 return TRUE;
2547
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 return FALSE;
2551
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2559 if (!h->needs_plt
2560 && h->type != STT_GNU_IFUNC
2561 && (h->def_regular
2562 || !h->def_dynamic
2563 || (!h->ref_regular
2564 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2565 {
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567 return TRUE;
2568 }
2569
2570 /* If we've already adjusted this symbol, don't do it again. This
2571 can happen via a recursive call. */
2572 if (h->dynamic_adjusted)
2573 return TRUE;
2574
2575 /* Don't look at this symbol again. Note that we must set this
2576 after checking the above conditions, because we may look at a
2577 symbol once, decide not to do anything, and then get called
2578 recursively later after REF_REGULAR is set below. */
2579 h->dynamic_adjusted = 1;
2580
2581 /* If this is a weak definition, and we know a real definition, and
2582 the real symbol is not itself defined by a regular object file,
2583 then get a good value for the real definition. We handle the
2584 real symbol first, for the convenience of the backend routine.
2585
2586 Note that there is a confusing case here. If the real definition
2587 is defined by a regular object file, we don't get the real symbol
2588 from the dynamic object, but we do get the weak symbol. If the
2589 processor backend uses a COPY reloc, then if some routine in the
2590 dynamic object changes the real symbol, we will not see that
2591 change in the corresponding weak symbol. This is the way other
2592 ELF linkers work as well, and seems to be a result of the shared
2593 library model.
2594
2595 I will clarify this issue. Most SVR4 shared libraries define the
2596 variable _timezone and define timezone as a weak synonym. The
2597 tzset call changes _timezone. If you write
2598 extern int timezone;
2599 int _timezone = 5;
2600 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2601 you might expect that, since timezone is a synonym for _timezone,
2602 the same number will print both times. However, if the processor
2603 backend uses a COPY reloc, then actually timezone will be copied
2604 into your process image, and, since you define _timezone
2605 yourself, _timezone will not. Thus timezone and _timezone will
2606 wind up at different memory locations. The tzset call will set
2607 _timezone, leaving timezone unchanged. */
2608
2609 if (h->u.weakdef != NULL)
2610 {
2611 /* If we get to this point, there is an implicit reference to
2612 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2613 h->u.weakdef->ref_regular = 1;
2614
2615 /* Ensure that the backend adjust_dynamic_symbol function sees
2616 H->U.WEAKDEF before H by recursively calling ourselves. */
2617 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2618 return FALSE;
2619 }
2620
2621 /* If a symbol has no type and no size and does not require a PLT
2622 entry, then we are probably about to do the wrong thing here: we
2623 are probably going to create a COPY reloc for an empty object.
2624 This case can arise when a shared object is built with assembly
2625 code, and the assembly code fails to set the symbol type. */
2626 if (h->size == 0
2627 && h->type == STT_NOTYPE
2628 && !h->needs_plt)
2629 (*_bfd_error_handler)
2630 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2631 h->root.root.string);
2632
2633 dynobj = elf_hash_table (eif->info)->dynobj;
2634 bed = get_elf_backend_data (dynobj);
2635
2636 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2637 {
2638 eif->failed = TRUE;
2639 return FALSE;
2640 }
2641
2642 return TRUE;
2643 }
2644
2645 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2646 DYNBSS. */
2647
2648 bfd_boolean
2649 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2650 asection *dynbss)
2651 {
2652 unsigned int power_of_two;
2653 bfd_vma mask;
2654 asection *sec = h->root.u.def.section;
2655
2656 /* The section aligment of definition is the maximum alignment
2657 requirement of symbols defined in the section. Since we don't
2658 know the symbol alignment requirement, we start with the
2659 maximum alignment and check low bits of the symbol address
2660 for the minimum alignment. */
2661 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2662 mask = ((bfd_vma) 1 << power_of_two) - 1;
2663 while ((h->root.u.def.value & mask) != 0)
2664 {
2665 mask >>= 1;
2666 --power_of_two;
2667 }
2668
2669 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2670 dynbss))
2671 {
2672 /* Adjust the section alignment if needed. */
2673 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2674 power_of_two))
2675 return FALSE;
2676 }
2677
2678 /* We make sure that the symbol will be aligned properly. */
2679 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2680
2681 /* Define the symbol as being at this point in DYNBSS. */
2682 h->root.u.def.section = dynbss;
2683 h->root.u.def.value = dynbss->size;
2684
2685 /* Increment the size of DYNBSS to make room for the symbol. */
2686 dynbss->size += h->size;
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust all external symbols pointing into SEC_MERGE sections
2692 to reflect the object merging within the sections. */
2693
2694 static bfd_boolean
2695 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2696 {
2697 asection *sec;
2698
2699 if ((h->root.type == bfd_link_hash_defined
2700 || h->root.type == bfd_link_hash_defweak)
2701 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2702 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2703 {
2704 bfd *output_bfd = (bfd *) data;
2705
2706 h->root.u.def.value =
2707 _bfd_merged_section_offset (output_bfd,
2708 &h->root.u.def.section,
2709 elf_section_data (sec)->sec_info,
2710 h->root.u.def.value);
2711 }
2712
2713 return TRUE;
2714 }
2715
2716 /* Returns false if the symbol referred to by H should be considered
2717 to resolve local to the current module, and true if it should be
2718 considered to bind dynamically. */
2719
2720 bfd_boolean
2721 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2722 struct bfd_link_info *info,
2723 bfd_boolean not_local_protected)
2724 {
2725 bfd_boolean binding_stays_local_p;
2726 const struct elf_backend_data *bed;
2727 struct elf_link_hash_table *hash_table;
2728
2729 if (h == NULL)
2730 return FALSE;
2731
2732 while (h->root.type == bfd_link_hash_indirect
2733 || h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735
2736 /* If it was forced local, then clearly it's not dynamic. */
2737 if (h->dynindx == -1)
2738 return FALSE;
2739 if (h->forced_local)
2740 return FALSE;
2741
2742 /* Identify the cases where name binding rules say that a
2743 visible symbol resolves locally. */
2744 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2745
2746 switch (ELF_ST_VISIBILITY (h->other))
2747 {
2748 case STV_INTERNAL:
2749 case STV_HIDDEN:
2750 return FALSE;
2751
2752 case STV_PROTECTED:
2753 hash_table = elf_hash_table (info);
2754 if (!is_elf_hash_table (hash_table))
2755 return FALSE;
2756
2757 bed = get_elf_backend_data (hash_table->dynobj);
2758
2759 /* Proper resolution for function pointer equality may require
2760 that these symbols perhaps be resolved dynamically, even though
2761 we should be resolving them to the current module. */
2762 if (!not_local_protected || !bed->is_function_type (h->type))
2763 binding_stays_local_p = TRUE;
2764 break;
2765
2766 default:
2767 break;
2768 }
2769
2770 /* If it isn't defined locally, then clearly it's dynamic. */
2771 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2772 return TRUE;
2773
2774 /* Otherwise, the symbol is dynamic if binding rules don't tell
2775 us that it remains local. */
2776 return !binding_stays_local_p;
2777 }
2778
2779 /* Return true if the symbol referred to by H should be considered
2780 to resolve local to the current module, and false otherwise. Differs
2781 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2782 undefined symbols. The two functions are virtually identical except
2783 for the place where forced_local and dynindx == -1 are tested. If
2784 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2785 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2786 the symbol is local only for defined symbols.
2787 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2788 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2789 treatment of undefined weak symbols. For those that do not make
2790 undefined weak symbols dynamic, both functions may return false. */
2791
2792 bfd_boolean
2793 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2794 struct bfd_link_info *info,
2795 bfd_boolean local_protected)
2796 {
2797 const struct elf_backend_data *bed;
2798 struct elf_link_hash_table *hash_table;
2799
2800 /* If it's a local sym, of course we resolve locally. */
2801 if (h == NULL)
2802 return TRUE;
2803
2804 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2805 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2806 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2807 return TRUE;
2808
2809 /* Common symbols that become definitions don't get the DEF_REGULAR
2810 flag set, so test it first, and don't bail out. */
2811 if (ELF_COMMON_DEF_P (h))
2812 /* Do nothing. */;
2813 /* If we don't have a definition in a regular file, then we can't
2814 resolve locally. The sym is either undefined or dynamic. */
2815 else if (!h->def_regular)
2816 return FALSE;
2817
2818 /* Forced local symbols resolve locally. */
2819 if (h->forced_local)
2820 return TRUE;
2821
2822 /* As do non-dynamic symbols. */
2823 if (h->dynindx == -1)
2824 return TRUE;
2825
2826 /* At this point, we know the symbol is defined and dynamic. In an
2827 executable it must resolve locally, likewise when building symbolic
2828 shared libraries. */
2829 if (info->executable || SYMBOLIC_BIND (info, h))
2830 return TRUE;
2831
2832 /* Now deal with defined dynamic symbols in shared libraries. Ones
2833 with default visibility might not resolve locally. */
2834 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2835 return FALSE;
2836
2837 hash_table = elf_hash_table (info);
2838 if (!is_elf_hash_table (hash_table))
2839 return TRUE;
2840
2841 bed = get_elf_backend_data (hash_table->dynobj);
2842
2843 /* STV_PROTECTED non-function symbols are local. */
2844 if (!bed->is_function_type (h->type))
2845 return TRUE;
2846
2847 /* Function pointer equality tests may require that STV_PROTECTED
2848 symbols be treated as dynamic symbols. If the address of a
2849 function not defined in an executable is set to that function's
2850 plt entry in the executable, then the address of the function in
2851 a shared library must also be the plt entry in the executable. */
2852 return local_protected;
2853 }
2854
2855 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2856 aligned. Returns the first TLS output section. */
2857
2858 struct bfd_section *
2859 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2860 {
2861 struct bfd_section *sec, *tls;
2862 unsigned int align = 0;
2863
2864 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2865 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2866 break;
2867 tls = sec;
2868
2869 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2870 if (sec->alignment_power > align)
2871 align = sec->alignment_power;
2872
2873 elf_hash_table (info)->tls_sec = tls;
2874
2875 /* Ensure the alignment of the first section is the largest alignment,
2876 so that the tls segment starts aligned. */
2877 if (tls != NULL)
2878 tls->alignment_power = align;
2879
2880 return tls;
2881 }
2882
2883 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2884 static bfd_boolean
2885 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2886 Elf_Internal_Sym *sym)
2887 {
2888 const struct elf_backend_data *bed;
2889
2890 /* Local symbols do not count, but target specific ones might. */
2891 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2892 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 return FALSE;
2894
2895 bed = get_elf_backend_data (abfd);
2896 /* Function symbols do not count. */
2897 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 return FALSE;
2899
2900 /* If the section is undefined, then so is the symbol. */
2901 if (sym->st_shndx == SHN_UNDEF)
2902 return FALSE;
2903
2904 /* If the symbol is defined in the common section, then
2905 it is a common definition and so does not count. */
2906 if (bed->common_definition (sym))
2907 return FALSE;
2908
2909 /* If the symbol is in a target specific section then we
2910 must rely upon the backend to tell us what it is. */
2911 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2912 /* FIXME - this function is not coded yet:
2913
2914 return _bfd_is_global_symbol_definition (abfd, sym);
2915
2916 Instead for now assume that the definition is not global,
2917 Even if this is wrong, at least the linker will behave
2918 in the same way that it used to do. */
2919 return FALSE;
2920
2921 return TRUE;
2922 }
2923
2924 /* Search the symbol table of the archive element of the archive ABFD
2925 whose archive map contains a mention of SYMDEF, and determine if
2926 the symbol is defined in this element. */
2927 static bfd_boolean
2928 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2929 {
2930 Elf_Internal_Shdr * hdr;
2931 bfd_size_type symcount;
2932 bfd_size_type extsymcount;
2933 bfd_size_type extsymoff;
2934 Elf_Internal_Sym *isymbuf;
2935 Elf_Internal_Sym *isym;
2936 Elf_Internal_Sym *isymend;
2937 bfd_boolean result;
2938
2939 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2940 if (abfd == NULL)
2941 return FALSE;
2942
2943 if (! bfd_check_format (abfd, bfd_object))
2944 return FALSE;
2945
2946 /* If we have already included the element containing this symbol in the
2947 link then we do not need to include it again. Just claim that any symbol
2948 it contains is not a definition, so that our caller will not decide to
2949 (re)include this element. */
2950 if (abfd->archive_pass)
2951 return FALSE;
2952
2953 /* Select the appropriate symbol table. */
2954 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2955 hdr = &elf_tdata (abfd)->symtab_hdr;
2956 else
2957 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2958
2959 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2960
2961 /* The sh_info field of the symtab header tells us where the
2962 external symbols start. We don't care about the local symbols. */
2963 if (elf_bad_symtab (abfd))
2964 {
2965 extsymcount = symcount;
2966 extsymoff = 0;
2967 }
2968 else
2969 {
2970 extsymcount = symcount - hdr->sh_info;
2971 extsymoff = hdr->sh_info;
2972 }
2973
2974 if (extsymcount == 0)
2975 return FALSE;
2976
2977 /* Read in the symbol table. */
2978 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2979 NULL, NULL, NULL);
2980 if (isymbuf == NULL)
2981 return FALSE;
2982
2983 /* Scan the symbol table looking for SYMDEF. */
2984 result = FALSE;
2985 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2986 {
2987 const char *name;
2988
2989 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2990 isym->st_name);
2991 if (name == NULL)
2992 break;
2993
2994 if (strcmp (name, symdef->name) == 0)
2995 {
2996 result = is_global_data_symbol_definition (abfd, isym);
2997 break;
2998 }
2999 }
3000
3001 free (isymbuf);
3002
3003 return result;
3004 }
3005 \f
3006 /* Add an entry to the .dynamic table. */
3007
3008 bfd_boolean
3009 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3010 bfd_vma tag,
3011 bfd_vma val)
3012 {
3013 struct elf_link_hash_table *hash_table;
3014 const struct elf_backend_data *bed;
3015 asection *s;
3016 bfd_size_type newsize;
3017 bfd_byte *newcontents;
3018 Elf_Internal_Dyn dyn;
3019
3020 hash_table = elf_hash_table (info);
3021 if (! is_elf_hash_table (hash_table))
3022 return FALSE;
3023
3024 bed = get_elf_backend_data (hash_table->dynobj);
3025 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3026 BFD_ASSERT (s != NULL);
3027
3028 newsize = s->size + bed->s->sizeof_dyn;
3029 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3030 if (newcontents == NULL)
3031 return FALSE;
3032
3033 dyn.d_tag = tag;
3034 dyn.d_un.d_val = val;
3035 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3036
3037 s->size = newsize;
3038 s->contents = newcontents;
3039
3040 return TRUE;
3041 }
3042
3043 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3044 otherwise just check whether one already exists. Returns -1 on error,
3045 1 if a DT_NEEDED tag already exists, and 0 on success. */
3046
3047 static int
3048 elf_add_dt_needed_tag (bfd *abfd,
3049 struct bfd_link_info *info,
3050 const char *soname,
3051 bfd_boolean do_it)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 bfd_size_type strindex;
3055
3056 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3057 return -1;
3058
3059 hash_table = elf_hash_table (info);
3060 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3061 if (strindex == (bfd_size_type) -1)
3062 return -1;
3063
3064 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3065 {
3066 asection *sdyn;
3067 const struct elf_backend_data *bed;
3068 bfd_byte *extdyn;
3069
3070 bed = get_elf_backend_data (hash_table->dynobj);
3071 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3072 if (sdyn != NULL)
3073 for (extdyn = sdyn->contents;
3074 extdyn < sdyn->contents + sdyn->size;
3075 extdyn += bed->s->sizeof_dyn)
3076 {
3077 Elf_Internal_Dyn dyn;
3078
3079 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3080 if (dyn.d_tag == DT_NEEDED
3081 && dyn.d_un.d_val == strindex)
3082 {
3083 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084 return 1;
3085 }
3086 }
3087 }
3088
3089 if (do_it)
3090 {
3091 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3092 return -1;
3093
3094 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3095 return -1;
3096 }
3097 else
3098 /* We were just checking for existence of the tag. */
3099 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3100
3101 return 0;
3102 }
3103
3104 static bfd_boolean
3105 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3106 {
3107 for (; needed != NULL; needed = needed->next)
3108 if (strcmp (soname, needed->name) == 0)
3109 return TRUE;
3110
3111 return FALSE;
3112 }
3113
3114 /* Sort symbol by value, section, and size. */
3115 static int
3116 elf_sort_symbol (const void *arg1, const void *arg2)
3117 {
3118 const struct elf_link_hash_entry *h1;
3119 const struct elf_link_hash_entry *h2;
3120 bfd_signed_vma vdiff;
3121
3122 h1 = *(const struct elf_link_hash_entry **) arg1;
3123 h2 = *(const struct elf_link_hash_entry **) arg2;
3124 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3125 if (vdiff != 0)
3126 return vdiff > 0 ? 1 : -1;
3127 else
3128 {
3129 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3130 if (sdiff != 0)
3131 return sdiff > 0 ? 1 : -1;
3132 }
3133 vdiff = h1->size - h2->size;
3134 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3135 }
3136
3137 /* This function is used to adjust offsets into .dynstr for
3138 dynamic symbols. This is called via elf_link_hash_traverse. */
3139
3140 static bfd_boolean
3141 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3142 {
3143 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3144
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3148 }
3149
3150 /* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3152
3153 static bfd_boolean
3154 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3155 {
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3164
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3167
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3171
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
3174 extdyn < sdyn->contents + sdyn->size;
3175 extdyn += bed->s->sizeof_dyn)
3176 {
3177 Elf_Internal_Dyn dyn;
3178
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3181 {
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 case DT_AUDIT:
3192 case DT_DEPAUDIT:
3193 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3194 break;
3195 default:
3196 continue;
3197 }
3198 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3199 }
3200
3201 /* Now update local dynamic symbols. */
3202 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3203 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3204 entry->isym.st_name);
3205
3206 /* And the rest of dynamic symbols. */
3207 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3208
3209 /* Adjust version definitions. */
3210 if (elf_tdata (output_bfd)->cverdefs)
3211 {
3212 asection *s;
3213 bfd_byte *p;
3214 bfd_size_type i;
3215 Elf_Internal_Verdef def;
3216 Elf_Internal_Verdaux defaux;
3217
3218 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3219 p = s->contents;
3220 do
3221 {
3222 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3223 &def);
3224 p += sizeof (Elf_External_Verdef);
3225 if (def.vd_aux != sizeof (Elf_External_Verdef))
3226 continue;
3227 for (i = 0; i < def.vd_cnt; ++i)
3228 {
3229 _bfd_elf_swap_verdaux_in (output_bfd,
3230 (Elf_External_Verdaux *) p, &defaux);
3231 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3232 defaux.vda_name);
3233 _bfd_elf_swap_verdaux_out (output_bfd,
3234 &defaux, (Elf_External_Verdaux *) p);
3235 p += sizeof (Elf_External_Verdaux);
3236 }
3237 }
3238 while (def.vd_next);
3239 }
3240
3241 /* Adjust version references. */
3242 if (elf_tdata (output_bfd)->verref)
3243 {
3244 asection *s;
3245 bfd_byte *p;
3246 bfd_size_type i;
3247 Elf_Internal_Verneed need;
3248 Elf_Internal_Vernaux needaux;
3249
3250 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3251 p = s->contents;
3252 do
3253 {
3254 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3255 &need);
3256 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3257 _bfd_elf_swap_verneed_out (output_bfd, &need,
3258 (Elf_External_Verneed *) p);
3259 p += sizeof (Elf_External_Verneed);
3260 for (i = 0; i < need.vn_cnt; ++i)
3261 {
3262 _bfd_elf_swap_vernaux_in (output_bfd,
3263 (Elf_External_Vernaux *) p, &needaux);
3264 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3265 needaux.vna_name);
3266 _bfd_elf_swap_vernaux_out (output_bfd,
3267 &needaux,
3268 (Elf_External_Vernaux *) p);
3269 p += sizeof (Elf_External_Vernaux);
3270 }
3271 }
3272 while (need.vn_next);
3273 }
3274
3275 return TRUE;
3276 }
3277 \f
3278 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3279 The default is to only match when the INPUT and OUTPUT are exactly
3280 the same target. */
3281
3282 bfd_boolean
3283 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3284 const bfd_target *output)
3285 {
3286 return input == output;
3287 }
3288
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 This version is used when different targets for the same architecture
3291 are virtually identical. */
3292
3293 bfd_boolean
3294 _bfd_elf_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3296 {
3297 const struct elf_backend_data *obed, *ibed;
3298
3299 if (input == output)
3300 return TRUE;
3301
3302 ibed = xvec_get_elf_backend_data (input);
3303 obed = xvec_get_elf_backend_data (output);
3304
3305 if (ibed->arch != obed->arch)
3306 return FALSE;
3307
3308 /* If both backends are using this function, deem them compatible. */
3309 return ibed->relocs_compatible == obed->relocs_compatible;
3310 }
3311
3312 /* Add symbols from an ELF object file to the linker hash table. */
3313
3314 static bfd_boolean
3315 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3316 {
3317 Elf_Internal_Ehdr *ehdr;
3318 Elf_Internal_Shdr *hdr;
3319 bfd_size_type symcount;
3320 bfd_size_type extsymcount;
3321 bfd_size_type extsymoff;
3322 struct elf_link_hash_entry **sym_hash;
3323 bfd_boolean dynamic;
3324 Elf_External_Versym *extversym = NULL;
3325 Elf_External_Versym *ever;
3326 struct elf_link_hash_entry *weaks;
3327 struct elf_link_hash_entry **nondeflt_vers = NULL;
3328 bfd_size_type nondeflt_vers_cnt = 0;
3329 Elf_Internal_Sym *isymbuf = NULL;
3330 Elf_Internal_Sym *isym;
3331 Elf_Internal_Sym *isymend;
3332 const struct elf_backend_data *bed;
3333 bfd_boolean add_needed;
3334 struct elf_link_hash_table *htab;
3335 bfd_size_type amt;
3336 void *alloc_mark = NULL;
3337 struct bfd_hash_entry **old_table = NULL;
3338 unsigned int old_size = 0;
3339 unsigned int old_count = 0;
3340 void *old_tab = NULL;
3341 void *old_hash;
3342 void *old_ent;
3343 struct bfd_link_hash_entry *old_undefs = NULL;
3344 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3345 long old_dynsymcount = 0;
3346 bfd_size_type old_dynstr_size = 0;
3347 size_t tabsize = 0;
3348 size_t hashsize = 0;
3349
3350 htab = elf_hash_table (info);
3351 bed = get_elf_backend_data (abfd);
3352
3353 if ((abfd->flags & DYNAMIC) == 0)
3354 dynamic = FALSE;
3355 else
3356 {
3357 dynamic = TRUE;
3358
3359 /* You can't use -r against a dynamic object. Also, there's no
3360 hope of using a dynamic object which does not exactly match
3361 the format of the output file. */
3362 if (info->relocatable
3363 || !is_elf_hash_table (htab)
3364 || info->output_bfd->xvec != abfd->xvec)
3365 {
3366 if (info->relocatable)
3367 bfd_set_error (bfd_error_invalid_operation);
3368 else
3369 bfd_set_error (bfd_error_wrong_format);
3370 goto error_return;
3371 }
3372 }
3373
3374 ehdr = elf_elfheader (abfd);
3375 if (info->warn_alternate_em
3376 && bed->elf_machine_code != ehdr->e_machine
3377 && ((bed->elf_machine_alt1 != 0
3378 && ehdr->e_machine == bed->elf_machine_alt1)
3379 || (bed->elf_machine_alt2 != 0
3380 && ehdr->e_machine == bed->elf_machine_alt2)))
3381 info->callbacks->einfo
3382 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3383 ehdr->e_machine, abfd, bed->elf_machine_code);
3384
3385 /* As a GNU extension, any input sections which are named
3386 .gnu.warning.SYMBOL are treated as warning symbols for the given
3387 symbol. This differs from .gnu.warning sections, which generate
3388 warnings when they are included in an output file. */
3389 /* PR 12761: Also generate this warning when building shared libraries. */
3390 if (info->executable || info->shared)
3391 {
3392 asection *s;
3393
3394 for (s = abfd->sections; s != NULL; s = s->next)
3395 {
3396 const char *name;
3397
3398 name = bfd_get_section_name (abfd, s);
3399 if (CONST_STRNEQ (name, ".gnu.warning."))
3400 {
3401 char *msg;
3402 bfd_size_type sz;
3403
3404 name += sizeof ".gnu.warning." - 1;
3405
3406 /* If this is a shared object, then look up the symbol
3407 in the hash table. If it is there, and it is already
3408 been defined, then we will not be using the entry
3409 from this shared object, so we don't need to warn.
3410 FIXME: If we see the definition in a regular object
3411 later on, we will warn, but we shouldn't. The only
3412 fix is to keep track of what warnings we are supposed
3413 to emit, and then handle them all at the end of the
3414 link. */
3415 if (dynamic)
3416 {
3417 struct elf_link_hash_entry *h;
3418
3419 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3420
3421 /* FIXME: What about bfd_link_hash_common? */
3422 if (h != NULL
3423 && (h->root.type == bfd_link_hash_defined
3424 || h->root.type == bfd_link_hash_defweak))
3425 {
3426 /* We don't want to issue this warning. Clobber
3427 the section size so that the warning does not
3428 get copied into the output file. */
3429 s->size = 0;
3430 continue;
3431 }
3432 }
3433
3434 sz = s->size;
3435 msg = (char *) bfd_alloc (abfd, sz + 1);
3436 if (msg == NULL)
3437 goto error_return;
3438
3439 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3440 goto error_return;
3441
3442 msg[sz] = '\0';
3443
3444 if (! (_bfd_generic_link_add_one_symbol
3445 (info, abfd, name, BSF_WARNING, s, 0, msg,
3446 FALSE, bed->collect, NULL)))
3447 goto error_return;
3448
3449 if (! info->relocatable)
3450 {
3451 /* Clobber the section size so that the warning does
3452 not get copied into the output file. */
3453 s->size = 0;
3454
3455 /* Also set SEC_EXCLUDE, so that symbols defined in
3456 the warning section don't get copied to the output. */
3457 s->flags |= SEC_EXCLUDE;
3458 }
3459 }
3460 }
3461 }
3462
3463 add_needed = TRUE;
3464 if (! dynamic)
3465 {
3466 /* If we are creating a shared library, create all the dynamic
3467 sections immediately. We need to attach them to something,
3468 so we attach them to this BFD, provided it is the right
3469 format. FIXME: If there are no input BFD's of the same
3470 format as the output, we can't make a shared library. */
3471 if (info->shared
3472 && is_elf_hash_table (htab)
3473 && info->output_bfd->xvec == abfd->xvec
3474 && !htab->dynamic_sections_created)
3475 {
3476 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3477 goto error_return;
3478 }
3479 }
3480 else if (!is_elf_hash_table (htab))
3481 goto error_return;
3482 else
3483 {
3484 asection *s;
3485 const char *soname = NULL;
3486 char *audit = NULL;
3487 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3488 int ret;
3489
3490 /* ld --just-symbols and dynamic objects don't mix very well.
3491 ld shouldn't allow it. */
3492 if ((s = abfd->sections) != NULL
3493 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3494 abort ();
3495
3496 /* If this dynamic lib was specified on the command line with
3497 --as-needed in effect, then we don't want to add a DT_NEEDED
3498 tag unless the lib is actually used. Similary for libs brought
3499 in by another lib's DT_NEEDED. When --no-add-needed is used
3500 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3501 any dynamic library in DT_NEEDED tags in the dynamic lib at
3502 all. */
3503 add_needed = (elf_dyn_lib_class (abfd)
3504 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3505 | DYN_NO_NEEDED)) == 0;
3506
3507 s = bfd_get_section_by_name (abfd, ".dynamic");
3508 if (s != NULL)
3509 {
3510 bfd_byte *dynbuf;
3511 bfd_byte *extdyn;
3512 unsigned int elfsec;
3513 unsigned long shlink;
3514
3515 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3516 {
3517 error_free_dyn:
3518 free (dynbuf);
3519 goto error_return;
3520 }
3521
3522 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3523 if (elfsec == SHN_BAD)
3524 goto error_free_dyn;
3525 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3526
3527 for (extdyn = dynbuf;
3528 extdyn < dynbuf + s->size;
3529 extdyn += bed->s->sizeof_dyn)
3530 {
3531 Elf_Internal_Dyn dyn;
3532
3533 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3534 if (dyn.d_tag == DT_SONAME)
3535 {
3536 unsigned int tagv = dyn.d_un.d_val;
3537 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3538 if (soname == NULL)
3539 goto error_free_dyn;
3540 }
3541 if (dyn.d_tag == DT_NEEDED)
3542 {
3543 struct bfd_link_needed_list *n, **pn;
3544 char *fnm, *anm;
3545 unsigned int tagv = dyn.d_un.d_val;
3546
3547 amt = sizeof (struct bfd_link_needed_list);
3548 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3549 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3550 if (n == NULL || fnm == NULL)
3551 goto error_free_dyn;
3552 amt = strlen (fnm) + 1;
3553 anm = (char *) bfd_alloc (abfd, amt);
3554 if (anm == NULL)
3555 goto error_free_dyn;
3556 memcpy (anm, fnm, amt);
3557 n->name = anm;
3558 n->by = abfd;
3559 n->next = NULL;
3560 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3561 ;
3562 *pn = n;
3563 }
3564 if (dyn.d_tag == DT_RUNPATH)
3565 {
3566 struct bfd_link_needed_list *n, **pn;
3567 char *fnm, *anm;
3568 unsigned int tagv = dyn.d_un.d_val;
3569
3570 amt = sizeof (struct bfd_link_needed_list);
3571 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3572 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3573 if (n == NULL || fnm == NULL)
3574 goto error_free_dyn;
3575 amt = strlen (fnm) + 1;
3576 anm = (char *) bfd_alloc (abfd, amt);
3577 if (anm == NULL)
3578 goto error_free_dyn;
3579 memcpy (anm, fnm, amt);
3580 n->name = anm;
3581 n->by = abfd;
3582 n->next = NULL;
3583 for (pn = & runpath;
3584 *pn != NULL;
3585 pn = &(*pn)->next)
3586 ;
3587 *pn = n;
3588 }
3589 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3590 if (!runpath && dyn.d_tag == DT_RPATH)
3591 {
3592 struct bfd_link_needed_list *n, **pn;
3593 char *fnm, *anm;
3594 unsigned int tagv = dyn.d_un.d_val;
3595
3596 amt = sizeof (struct bfd_link_needed_list);
3597 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3598 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3599 if (n == NULL || fnm == NULL)
3600 goto error_free_dyn;
3601 amt = strlen (fnm) + 1;
3602 anm = (char *) bfd_alloc (abfd, amt);
3603 if (anm == NULL)
3604 goto error_free_dyn;
3605 memcpy (anm, fnm, amt);
3606 n->name = anm;
3607 n->by = abfd;
3608 n->next = NULL;
3609 for (pn = & rpath;
3610 *pn != NULL;
3611 pn = &(*pn)->next)
3612 ;
3613 *pn = n;
3614 }
3615 if (dyn.d_tag == DT_AUDIT)
3616 {
3617 unsigned int tagv = dyn.d_un.d_val;
3618 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3619 }
3620 }
3621
3622 free (dynbuf);
3623 }
3624
3625 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3626 frees all more recently bfd_alloc'd blocks as well. */
3627 if (runpath)
3628 rpath = runpath;
3629
3630 if (rpath)
3631 {
3632 struct bfd_link_needed_list **pn;
3633 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3634 ;
3635 *pn = rpath;
3636 }
3637
3638 /* We do not want to include any of the sections in a dynamic
3639 object in the output file. We hack by simply clobbering the
3640 list of sections in the BFD. This could be handled more
3641 cleanly by, say, a new section flag; the existing
3642 SEC_NEVER_LOAD flag is not the one we want, because that one
3643 still implies that the section takes up space in the output
3644 file. */
3645 bfd_section_list_clear (abfd);
3646
3647 /* Find the name to use in a DT_NEEDED entry that refers to this
3648 object. If the object has a DT_SONAME entry, we use it.
3649 Otherwise, if the generic linker stuck something in
3650 elf_dt_name, we use that. Otherwise, we just use the file
3651 name. */
3652 if (soname == NULL || *soname == '\0')
3653 {
3654 soname = elf_dt_name (abfd);
3655 if (soname == NULL || *soname == '\0')
3656 soname = bfd_get_filename (abfd);
3657 }
3658
3659 /* Save the SONAME because sometimes the linker emulation code
3660 will need to know it. */
3661 elf_dt_name (abfd) = soname;
3662
3663 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3664 if (ret < 0)
3665 goto error_return;
3666
3667 /* If we have already included this dynamic object in the
3668 link, just ignore it. There is no reason to include a
3669 particular dynamic object more than once. */
3670 if (ret > 0)
3671 return TRUE;
3672
3673 /* Save the DT_AUDIT entry for the linker emulation code. */
3674 elf_dt_audit (abfd) = audit;
3675 }
3676
3677 /* If this is a dynamic object, we always link against the .dynsym
3678 symbol table, not the .symtab symbol table. The dynamic linker
3679 will only see the .dynsym symbol table, so there is no reason to
3680 look at .symtab for a dynamic object. */
3681
3682 if (! dynamic || elf_dynsymtab (abfd) == 0)
3683 hdr = &elf_tdata (abfd)->symtab_hdr;
3684 else
3685 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3686
3687 symcount = hdr->sh_size / bed->s->sizeof_sym;
3688
3689 /* The sh_info field of the symtab header tells us where the
3690 external symbols start. We don't care about the local symbols at
3691 this point. */
3692 if (elf_bad_symtab (abfd))
3693 {
3694 extsymcount = symcount;
3695 extsymoff = 0;
3696 }
3697 else
3698 {
3699 extsymcount = symcount - hdr->sh_info;
3700 extsymoff = hdr->sh_info;
3701 }
3702
3703 sym_hash = NULL;
3704 if (extsymcount != 0)
3705 {
3706 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3707 NULL, NULL, NULL);
3708 if (isymbuf == NULL)
3709 goto error_return;
3710
3711 /* We store a pointer to the hash table entry for each external
3712 symbol. */
3713 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3714 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3715 if (sym_hash == NULL)
3716 goto error_free_sym;
3717 elf_sym_hashes (abfd) = sym_hash;
3718 }
3719
3720 if (dynamic)
3721 {
3722 /* Read in any version definitions. */
3723 if (!_bfd_elf_slurp_version_tables (abfd,
3724 info->default_imported_symver))
3725 goto error_free_sym;
3726
3727 /* Read in the symbol versions, but don't bother to convert them
3728 to internal format. */
3729 if (elf_dynversym (abfd) != 0)
3730 {
3731 Elf_Internal_Shdr *versymhdr;
3732
3733 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3734 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3735 if (extversym == NULL)
3736 goto error_free_sym;
3737 amt = versymhdr->sh_size;
3738 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3739 || bfd_bread (extversym, amt, abfd) != amt)
3740 goto error_free_vers;
3741 }
3742 }
3743
3744 /* If we are loading an as-needed shared lib, save the symbol table
3745 state before we start adding symbols. If the lib turns out
3746 to be unneeded, restore the state. */
3747 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3748 {
3749 unsigned int i;
3750 size_t entsize;
3751
3752 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3753 {
3754 struct bfd_hash_entry *p;
3755 struct elf_link_hash_entry *h;
3756
3757 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3758 {
3759 h = (struct elf_link_hash_entry *) p;
3760 entsize += htab->root.table.entsize;
3761 if (h->root.type == bfd_link_hash_warning)
3762 entsize += htab->root.table.entsize;
3763 }
3764 }
3765
3766 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3767 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3768 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3769 if (old_tab == NULL)
3770 goto error_free_vers;
3771
3772 /* Remember the current objalloc pointer, so that all mem for
3773 symbols added can later be reclaimed. */
3774 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3775 if (alloc_mark == NULL)
3776 goto error_free_vers;
3777
3778 /* Make a special call to the linker "notice" function to
3779 tell it that we are about to handle an as-needed lib. */
3780 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3781 notice_as_needed, 0, NULL))
3782 goto error_free_vers;
3783
3784 /* Clone the symbol table and sym hashes. Remember some
3785 pointers into the symbol table, and dynamic symbol count. */
3786 old_hash = (char *) old_tab + tabsize;
3787 old_ent = (char *) old_hash + hashsize;
3788 memcpy (old_tab, htab->root.table.table, tabsize);
3789 memcpy (old_hash, sym_hash, hashsize);
3790 old_undefs = htab->root.undefs;
3791 old_undefs_tail = htab->root.undefs_tail;
3792 old_table = htab->root.table.table;
3793 old_size = htab->root.table.size;
3794 old_count = htab->root.table.count;
3795 old_dynsymcount = htab->dynsymcount;
3796 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3797
3798 for (i = 0; i < htab->root.table.size; i++)
3799 {
3800 struct bfd_hash_entry *p;
3801 struct elf_link_hash_entry *h;
3802
3803 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3804 {
3805 memcpy (old_ent, p, htab->root.table.entsize);
3806 old_ent = (char *) old_ent + htab->root.table.entsize;
3807 h = (struct elf_link_hash_entry *) p;
3808 if (h->root.type == bfd_link_hash_warning)
3809 {
3810 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3811 old_ent = (char *) old_ent + htab->root.table.entsize;
3812 }
3813 }
3814 }
3815 }
3816
3817 weaks = NULL;
3818 ever = extversym != NULL ? extversym + extsymoff : NULL;
3819 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3820 isym < isymend;
3821 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3822 {
3823 int bind;
3824 bfd_vma value;
3825 asection *sec, *new_sec;
3826 flagword flags;
3827 const char *name;
3828 struct elf_link_hash_entry *h;
3829 struct elf_link_hash_entry *hi;
3830 bfd_boolean definition;
3831 bfd_boolean size_change_ok;
3832 bfd_boolean type_change_ok;
3833 bfd_boolean new_weakdef;
3834 bfd_boolean new_weak;
3835 bfd_boolean old_weak;
3836 bfd_boolean override;
3837 bfd_boolean common;
3838 unsigned int old_alignment;
3839 bfd *old_bfd;
3840
3841 override = FALSE;
3842
3843 flags = BSF_NO_FLAGS;
3844 sec = NULL;
3845 value = isym->st_value;
3846 *sym_hash = NULL;
3847 common = bed->common_definition (isym);
3848
3849 bind = ELF_ST_BIND (isym->st_info);
3850 switch (bind)
3851 {
3852 case STB_LOCAL:
3853 /* This should be impossible, since ELF requires that all
3854 global symbols follow all local symbols, and that sh_info
3855 point to the first global symbol. Unfortunately, Irix 5
3856 screws this up. */
3857 continue;
3858
3859 case STB_GLOBAL:
3860 if (isym->st_shndx != SHN_UNDEF && !common)
3861 flags = BSF_GLOBAL;
3862 break;
3863
3864 case STB_WEAK:
3865 flags = BSF_WEAK;
3866 break;
3867
3868 case STB_GNU_UNIQUE:
3869 flags = BSF_GNU_UNIQUE;
3870 break;
3871
3872 default:
3873 /* Leave it up to the processor backend. */
3874 break;
3875 }
3876
3877 if (isym->st_shndx == SHN_UNDEF)
3878 sec = bfd_und_section_ptr;
3879 else if (isym->st_shndx == SHN_ABS)
3880 sec = bfd_abs_section_ptr;
3881 else if (isym->st_shndx == SHN_COMMON)
3882 {
3883 sec = bfd_com_section_ptr;
3884 /* What ELF calls the size we call the value. What ELF
3885 calls the value we call the alignment. */
3886 value = isym->st_size;
3887 }
3888 else
3889 {
3890 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3891 if (sec == NULL)
3892 sec = bfd_abs_section_ptr;
3893 else if (discarded_section (sec))
3894 {
3895 /* Symbols from discarded section are undefined. We keep
3896 its visibility. */
3897 sec = bfd_und_section_ptr;
3898 isym->st_shndx = SHN_UNDEF;
3899 }
3900 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3901 value -= sec->vma;
3902 }
3903
3904 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3905 isym->st_name);
3906 if (name == NULL)
3907 goto error_free_vers;
3908
3909 if (isym->st_shndx == SHN_COMMON
3910 && (abfd->flags & BFD_PLUGIN) != 0)
3911 {
3912 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3913
3914 if (xc == NULL)
3915 {
3916 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3917 | SEC_EXCLUDE);
3918 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3919 if (xc == NULL)
3920 goto error_free_vers;
3921 }
3922 sec = xc;
3923 }
3924 else if (isym->st_shndx == SHN_COMMON
3925 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3926 && !info->relocatable)
3927 {
3928 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3929
3930 if (tcomm == NULL)
3931 {
3932 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3933 | SEC_LINKER_CREATED);
3934 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3935 if (tcomm == NULL)
3936 goto error_free_vers;
3937 }
3938 sec = tcomm;
3939 }
3940 else if (bed->elf_add_symbol_hook)
3941 {
3942 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3943 &sec, &value))
3944 goto error_free_vers;
3945
3946 /* The hook function sets the name to NULL if this symbol
3947 should be skipped for some reason. */
3948 if (name == NULL)
3949 continue;
3950 }
3951
3952 /* Sanity check that all possibilities were handled. */
3953 if (sec == NULL)
3954 {
3955 bfd_set_error (bfd_error_bad_value);
3956 goto error_free_vers;
3957 }
3958
3959 /* Silently discard TLS symbols from --just-syms. There's
3960 no way to combine a static TLS block with a new TLS block
3961 for this executable. */
3962 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3963 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3964 continue;
3965
3966 if (bfd_is_und_section (sec)
3967 || bfd_is_com_section (sec))
3968 definition = FALSE;
3969 else
3970 definition = TRUE;
3971
3972 size_change_ok = FALSE;
3973 type_change_ok = bed->type_change_ok;
3974 old_weak = FALSE;
3975 old_alignment = 0;
3976 old_bfd = NULL;
3977 new_sec = sec;
3978
3979 if (is_elf_hash_table (htab))
3980 {
3981 Elf_Internal_Versym iver;
3982 unsigned int vernum = 0;
3983 bfd_boolean skip;
3984
3985 if (ever == NULL)
3986 {
3987 if (info->default_imported_symver)
3988 /* Use the default symbol version created earlier. */
3989 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3990 else
3991 iver.vs_vers = 0;
3992 }
3993 else
3994 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3995
3996 vernum = iver.vs_vers & VERSYM_VERSION;
3997
3998 /* If this is a hidden symbol, or if it is not version
3999 1, we append the version name to the symbol name.
4000 However, we do not modify a non-hidden absolute symbol
4001 if it is not a function, because it might be the version
4002 symbol itself. FIXME: What if it isn't? */
4003 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4004 || (vernum > 1
4005 && (!bfd_is_abs_section (sec)
4006 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4007 {
4008 const char *verstr;
4009 size_t namelen, verlen, newlen;
4010 char *newname, *p;
4011
4012 if (isym->st_shndx != SHN_UNDEF)
4013 {
4014 if (vernum > elf_tdata (abfd)->cverdefs)
4015 verstr = NULL;
4016 else if (vernum > 1)
4017 verstr =
4018 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4019 else
4020 verstr = "";
4021
4022 if (verstr == NULL)
4023 {
4024 (*_bfd_error_handler)
4025 (_("%B: %s: invalid version %u (max %d)"),
4026 abfd, name, vernum,
4027 elf_tdata (abfd)->cverdefs);
4028 bfd_set_error (bfd_error_bad_value);
4029 goto error_free_vers;
4030 }
4031 }
4032 else
4033 {
4034 /* We cannot simply test for the number of
4035 entries in the VERNEED section since the
4036 numbers for the needed versions do not start
4037 at 0. */
4038 Elf_Internal_Verneed *t;
4039
4040 verstr = NULL;
4041 for (t = elf_tdata (abfd)->verref;
4042 t != NULL;
4043 t = t->vn_nextref)
4044 {
4045 Elf_Internal_Vernaux *a;
4046
4047 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4048 {
4049 if (a->vna_other == vernum)
4050 {
4051 verstr = a->vna_nodename;
4052 break;
4053 }
4054 }
4055 if (a != NULL)
4056 break;
4057 }
4058 if (verstr == NULL)
4059 {
4060 (*_bfd_error_handler)
4061 (_("%B: %s: invalid needed version %d"),
4062 abfd, name, vernum);
4063 bfd_set_error (bfd_error_bad_value);
4064 goto error_free_vers;
4065 }
4066 }
4067
4068 namelen = strlen (name);
4069 verlen = strlen (verstr);
4070 newlen = namelen + verlen + 2;
4071 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4072 && isym->st_shndx != SHN_UNDEF)
4073 ++newlen;
4074
4075 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4076 if (newname == NULL)
4077 goto error_free_vers;
4078 memcpy (newname, name, namelen);
4079 p = newname + namelen;
4080 *p++ = ELF_VER_CHR;
4081 /* If this is a defined non-hidden version symbol,
4082 we add another @ to the name. This indicates the
4083 default version of the symbol. */
4084 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4085 && isym->st_shndx != SHN_UNDEF)
4086 *p++ = ELF_VER_CHR;
4087 memcpy (p, verstr, verlen + 1);
4088
4089 name = newname;
4090 }
4091
4092 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4093 sym_hash, &old_bfd, &old_weak,
4094 &old_alignment, &skip, &override,
4095 &type_change_ok, &size_change_ok))
4096 goto error_free_vers;
4097
4098 if (skip)
4099 continue;
4100
4101 if (override)
4102 definition = FALSE;
4103
4104 h = *sym_hash;
4105 while (h->root.type == bfd_link_hash_indirect
4106 || h->root.type == bfd_link_hash_warning)
4107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4108
4109 if (elf_tdata (abfd)->verdef != NULL
4110 && vernum > 1
4111 && definition)
4112 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4113 }
4114
4115 if (! (_bfd_generic_link_add_one_symbol
4116 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4117 (struct bfd_link_hash_entry **) sym_hash)))
4118 goto error_free_vers;
4119
4120 h = *sym_hash;
4121 /* We need to make sure that indirect symbol dynamic flags are
4122 updated. */
4123 hi = h;
4124 while (h->root.type == bfd_link_hash_indirect
4125 || h->root.type == bfd_link_hash_warning)
4126 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4127
4128 *sym_hash = h;
4129
4130 new_weak = (flags & BSF_WEAK) != 0;
4131 new_weakdef = FALSE;
4132 if (dynamic
4133 && definition
4134 && new_weak
4135 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4136 && is_elf_hash_table (htab)
4137 && h->u.weakdef == NULL)
4138 {
4139 /* Keep a list of all weak defined non function symbols from
4140 a dynamic object, using the weakdef field. Later in this
4141 function we will set the weakdef field to the correct
4142 value. We only put non-function symbols from dynamic
4143 objects on this list, because that happens to be the only
4144 time we need to know the normal symbol corresponding to a
4145 weak symbol, and the information is time consuming to
4146 figure out. If the weakdef field is not already NULL,
4147 then this symbol was already defined by some previous
4148 dynamic object, and we will be using that previous
4149 definition anyhow. */
4150
4151 h->u.weakdef = weaks;
4152 weaks = h;
4153 new_weakdef = TRUE;
4154 }
4155
4156 /* Set the alignment of a common symbol. */
4157 if ((common || bfd_is_com_section (sec))
4158 && h->root.type == bfd_link_hash_common)
4159 {
4160 unsigned int align;
4161
4162 if (common)
4163 align = bfd_log2 (isym->st_value);
4164 else
4165 {
4166 /* The new symbol is a common symbol in a shared object.
4167 We need to get the alignment from the section. */
4168 align = new_sec->alignment_power;
4169 }
4170 if (align > old_alignment)
4171 h->root.u.c.p->alignment_power = align;
4172 else
4173 h->root.u.c.p->alignment_power = old_alignment;
4174 }
4175
4176 if (is_elf_hash_table (htab))
4177 {
4178 /* Set a flag in the hash table entry indicating the type of
4179 reference or definition we just found. A dynamic symbol
4180 is one which is referenced or defined by both a regular
4181 object and a shared object. */
4182 bfd_boolean dynsym = FALSE;
4183
4184 /* Plugin symbols aren't normal. Don't set def_regular or
4185 ref_regular for them, or make them dynamic. */
4186 if ((abfd->flags & BFD_PLUGIN) != 0)
4187 ;
4188 else if (! dynamic)
4189 {
4190 if (! definition)
4191 {
4192 h->ref_regular = 1;
4193 if (bind != STB_WEAK)
4194 h->ref_regular_nonweak = 1;
4195 }
4196 else
4197 {
4198 h->def_regular = 1;
4199 if (h->def_dynamic)
4200 {
4201 h->def_dynamic = 0;
4202 h->ref_dynamic = 1;
4203 }
4204 }
4205
4206 /* If the indirect symbol has been forced local, don't
4207 make the real symbol dynamic. */
4208 if ((h == hi || !hi->forced_local)
4209 && (! info->executable
4210 || h->def_dynamic
4211 || h->ref_dynamic))
4212 dynsym = TRUE;
4213 }
4214 else
4215 {
4216 if (! definition)
4217 {
4218 h->ref_dynamic = 1;
4219 hi->ref_dynamic = 1;
4220 }
4221 else
4222 {
4223 h->def_dynamic = 1;
4224 hi->def_dynamic = 1;
4225 }
4226
4227 /* If the indirect symbol has been forced local, don't
4228 make the real symbol dynamic. */
4229 if ((h == hi || !hi->forced_local)
4230 && (h->def_regular
4231 || h->ref_regular
4232 || (h->u.weakdef != NULL
4233 && ! new_weakdef
4234 && h->u.weakdef->dynindx != -1)))
4235 dynsym = TRUE;
4236 }
4237
4238 /* Check to see if we need to add an indirect symbol for
4239 the default name. */
4240 if (definition
4241 || (!override && h->root.type == bfd_link_hash_common))
4242 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4243 sec, value, &old_bfd, &dynsym))
4244 goto error_free_vers;
4245
4246 /* Check the alignment when a common symbol is involved. This
4247 can change when a common symbol is overridden by a normal
4248 definition or a common symbol is ignored due to the old
4249 normal definition. We need to make sure the maximum
4250 alignment is maintained. */
4251 if ((old_alignment || common)
4252 && h->root.type != bfd_link_hash_common)
4253 {
4254 unsigned int common_align;
4255 unsigned int normal_align;
4256 unsigned int symbol_align;
4257 bfd *normal_bfd;
4258 bfd *common_bfd;
4259
4260 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4261 || h->root.type == bfd_link_hash_defweak);
4262
4263 symbol_align = ffs (h->root.u.def.value) - 1;
4264 if (h->root.u.def.section->owner != NULL
4265 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4266 {
4267 normal_align = h->root.u.def.section->alignment_power;
4268 if (normal_align > symbol_align)
4269 normal_align = symbol_align;
4270 }
4271 else
4272 normal_align = symbol_align;
4273
4274 if (old_alignment)
4275 {
4276 common_align = old_alignment;
4277 common_bfd = old_bfd;
4278 normal_bfd = abfd;
4279 }
4280 else
4281 {
4282 common_align = bfd_log2 (isym->st_value);
4283 common_bfd = abfd;
4284 normal_bfd = old_bfd;
4285 }
4286
4287 if (normal_align < common_align)
4288 {
4289 /* PR binutils/2735 */
4290 if (normal_bfd == NULL)
4291 (*_bfd_error_handler)
4292 (_("Warning: alignment %u of common symbol `%s' in %B is"
4293 " greater than the alignment (%u) of its section %A"),
4294 common_bfd, h->root.u.def.section,
4295 1 << common_align, name, 1 << normal_align);
4296 else
4297 (*_bfd_error_handler)
4298 (_("Warning: alignment %u of symbol `%s' in %B"
4299 " is smaller than %u in %B"),
4300 normal_bfd, common_bfd,
4301 1 << normal_align, name, 1 << common_align);
4302 }
4303 }
4304
4305 /* Remember the symbol size if it isn't undefined. */
4306 if (isym->st_size != 0
4307 && isym->st_shndx != SHN_UNDEF
4308 && (definition || h->size == 0))
4309 {
4310 if (h->size != 0
4311 && h->size != isym->st_size
4312 && ! size_change_ok)
4313 (*_bfd_error_handler)
4314 (_("Warning: size of symbol `%s' changed"
4315 " from %lu in %B to %lu in %B"),
4316 old_bfd, abfd,
4317 name, (unsigned long) h->size,
4318 (unsigned long) isym->st_size);
4319
4320 h->size = isym->st_size;
4321 }
4322
4323 /* If this is a common symbol, then we always want H->SIZE
4324 to be the size of the common symbol. The code just above
4325 won't fix the size if a common symbol becomes larger. We
4326 don't warn about a size change here, because that is
4327 covered by --warn-common. Allow changes between different
4328 function types. */
4329 if (h->root.type == bfd_link_hash_common)
4330 h->size = h->root.u.c.size;
4331
4332 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4333 && ((definition && !new_weak)
4334 || (old_weak && h->root.type == bfd_link_hash_common)
4335 || h->type == STT_NOTYPE))
4336 {
4337 unsigned int type = ELF_ST_TYPE (isym->st_info);
4338
4339 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4340 symbol. */
4341 if (type == STT_GNU_IFUNC
4342 && (abfd->flags & DYNAMIC) != 0)
4343 type = STT_FUNC;
4344
4345 if (h->type != type)
4346 {
4347 if (h->type != STT_NOTYPE && ! type_change_ok)
4348 (*_bfd_error_handler)
4349 (_("Warning: type of symbol `%s' changed"
4350 " from %d to %d in %B"),
4351 abfd, name, h->type, type);
4352
4353 h->type = type;
4354 }
4355 }
4356
4357 /* Merge st_other field. */
4358 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4359
4360 /* We don't want to make debug symbol dynamic. */
4361 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4362 dynsym = FALSE;
4363
4364 /* Nor should we make plugin symbols dynamic. */
4365 if ((abfd->flags & BFD_PLUGIN) != 0)
4366 dynsym = FALSE;
4367
4368 if (definition)
4369 {
4370 h->target_internal = isym->st_target_internal;
4371 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4372 }
4373
4374 if (definition && !dynamic)
4375 {
4376 char *p = strchr (name, ELF_VER_CHR);
4377 if (p != NULL && p[1] != ELF_VER_CHR)
4378 {
4379 /* Queue non-default versions so that .symver x, x@FOO
4380 aliases can be checked. */
4381 if (!nondeflt_vers)
4382 {
4383 amt = ((isymend - isym + 1)
4384 * sizeof (struct elf_link_hash_entry *));
4385 nondeflt_vers =
4386 (struct elf_link_hash_entry **) bfd_malloc (amt);
4387 if (!nondeflt_vers)
4388 goto error_free_vers;
4389 }
4390 nondeflt_vers[nondeflt_vers_cnt++] = h;
4391 }
4392 }
4393
4394 if (dynsym && h->dynindx == -1)
4395 {
4396 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4397 goto error_free_vers;
4398 if (h->u.weakdef != NULL
4399 && ! new_weakdef
4400 && h->u.weakdef->dynindx == -1)
4401 {
4402 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4403 goto error_free_vers;
4404 }
4405 }
4406 else if (dynsym && h->dynindx != -1)
4407 /* If the symbol already has a dynamic index, but
4408 visibility says it should not be visible, turn it into
4409 a local symbol. */
4410 switch (ELF_ST_VISIBILITY (h->other))
4411 {
4412 case STV_INTERNAL:
4413 case STV_HIDDEN:
4414 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4415 dynsym = FALSE;
4416 break;
4417 }
4418
4419 /* Don't add DT_NEEDED for references from the dummy bfd. */
4420 if (!add_needed
4421 && definition
4422 && ((dynsym
4423 && h->ref_regular_nonweak
4424 && (old_bfd == NULL
4425 || (old_bfd->flags & BFD_PLUGIN) == 0))
4426 || (h->ref_dynamic_nonweak
4427 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4428 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4429 {
4430 int ret;
4431 const char *soname = elf_dt_name (abfd);
4432
4433 /* A symbol from a library loaded via DT_NEEDED of some
4434 other library is referenced by a regular object.
4435 Add a DT_NEEDED entry for it. Issue an error if
4436 --no-add-needed is used and the reference was not
4437 a weak one. */
4438 if (old_bfd != NULL
4439 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4440 {
4441 (*_bfd_error_handler)
4442 (_("%B: undefined reference to symbol '%s'"),
4443 old_bfd, name);
4444 bfd_set_error (bfd_error_missing_dso);
4445 goto error_free_vers;
4446 }
4447
4448 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4449 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4450
4451 add_needed = TRUE;
4452 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4453 if (ret < 0)
4454 goto error_free_vers;
4455
4456 BFD_ASSERT (ret == 0);
4457 }
4458 }
4459 }
4460
4461 if (extversym != NULL)
4462 {
4463 free (extversym);
4464 extversym = NULL;
4465 }
4466
4467 if (isymbuf != NULL)
4468 {
4469 free (isymbuf);
4470 isymbuf = NULL;
4471 }
4472
4473 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4474 {
4475 unsigned int i;
4476
4477 /* Restore the symbol table. */
4478 if (bed->as_needed_cleanup)
4479 (*bed->as_needed_cleanup) (abfd, info);
4480 old_hash = (char *) old_tab + tabsize;
4481 old_ent = (char *) old_hash + hashsize;
4482 sym_hash = elf_sym_hashes (abfd);
4483 htab->root.table.table = old_table;
4484 htab->root.table.size = old_size;
4485 htab->root.table.count = old_count;
4486 memcpy (htab->root.table.table, old_tab, tabsize);
4487 memcpy (sym_hash, old_hash, hashsize);
4488 htab->root.undefs = old_undefs;
4489 htab->root.undefs_tail = old_undefs_tail;
4490 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4491 for (i = 0; i < htab->root.table.size; i++)
4492 {
4493 struct bfd_hash_entry *p;
4494 struct elf_link_hash_entry *h;
4495 bfd_size_type size;
4496 unsigned int alignment_power;
4497
4498 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4499 {
4500 h = (struct elf_link_hash_entry *) p;
4501 if (h->root.type == bfd_link_hash_warning)
4502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4503 if (h->dynindx >= old_dynsymcount
4504 && h->dynstr_index < old_dynstr_size)
4505 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4506
4507 /* Preserve the maximum alignment and size for common
4508 symbols even if this dynamic lib isn't on DT_NEEDED
4509 since it can still be loaded at run time by another
4510 dynamic lib. */
4511 if (h->root.type == bfd_link_hash_common)
4512 {
4513 size = h->root.u.c.size;
4514 alignment_power = h->root.u.c.p->alignment_power;
4515 }
4516 else
4517 {
4518 size = 0;
4519 alignment_power = 0;
4520 }
4521 memcpy (p, old_ent, htab->root.table.entsize);
4522 old_ent = (char *) old_ent + htab->root.table.entsize;
4523 h = (struct elf_link_hash_entry *) p;
4524 if (h->root.type == bfd_link_hash_warning)
4525 {
4526 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4527 old_ent = (char *) old_ent + htab->root.table.entsize;
4528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4529 }
4530 if (h->root.type == bfd_link_hash_common)
4531 {
4532 if (size > h->root.u.c.size)
4533 h->root.u.c.size = size;
4534 if (alignment_power > h->root.u.c.p->alignment_power)
4535 h->root.u.c.p->alignment_power = alignment_power;
4536 }
4537 }
4538 }
4539
4540 /* Make a special call to the linker "notice" function to
4541 tell it that symbols added for crefs may need to be removed. */
4542 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4543 notice_not_needed, 0, NULL))
4544 goto error_free_vers;
4545
4546 free (old_tab);
4547 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4548 alloc_mark);
4549 if (nondeflt_vers != NULL)
4550 free (nondeflt_vers);
4551 return TRUE;
4552 }
4553
4554 if (old_tab != NULL)
4555 {
4556 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4557 notice_needed, 0, NULL))
4558 goto error_free_vers;
4559 free (old_tab);
4560 old_tab = NULL;
4561 }
4562
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers != NULL)
4566 {
4567 bfd_size_type cnt, symidx;
4568
4569 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4570 {
4571 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4572 char *shortname, *p;
4573
4574 p = strchr (h->root.root.string, ELF_VER_CHR);
4575 if (p == NULL
4576 || (h->root.type != bfd_link_hash_defined
4577 && h->root.type != bfd_link_hash_defweak))
4578 continue;
4579
4580 amt = p - h->root.root.string;
4581 shortname = (char *) bfd_malloc (amt + 1);
4582 if (!shortname)
4583 goto error_free_vers;
4584 memcpy (shortname, h->root.root.string, amt);
4585 shortname[amt] = '\0';
4586
4587 hi = (struct elf_link_hash_entry *)
4588 bfd_link_hash_lookup (&htab->root, shortname,
4589 FALSE, FALSE, FALSE);
4590 if (hi != NULL
4591 && hi->root.type == h->root.type
4592 && hi->root.u.def.value == h->root.u.def.value
4593 && hi->root.u.def.section == h->root.u.def.section)
4594 {
4595 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4596 hi->root.type = bfd_link_hash_indirect;
4597 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4598 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4599 sym_hash = elf_sym_hashes (abfd);
4600 if (sym_hash)
4601 for (symidx = 0; symidx < extsymcount; ++symidx)
4602 if (sym_hash[symidx] == hi)
4603 {
4604 sym_hash[symidx] = h;
4605 break;
4606 }
4607 }
4608 free (shortname);
4609 }
4610 free (nondeflt_vers);
4611 nondeflt_vers = NULL;
4612 }
4613
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4626 either. */
4627 if (weaks != NULL)
4628 {
4629 struct elf_link_hash_entry **hpp;
4630 struct elf_link_hash_entry **hppend;
4631 struct elf_link_hash_entry **sorted_sym_hash;
4632 struct elf_link_hash_entry *h;
4633 size_t sym_count;
4634
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4639 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4640 if (sorted_sym_hash == NULL)
4641 goto error_return;
4642 sym_hash = sorted_sym_hash;
4643 hpp = elf_sym_hashes (abfd);
4644 hppend = hpp + extsymcount;
4645 sym_count = 0;
4646 for (; hpp < hppend; hpp++)
4647 {
4648 h = *hpp;
4649 if (h != NULL
4650 && h->root.type == bfd_link_hash_defined
4651 && !bed->is_function_type (h->type))
4652 {
4653 *sym_hash = h;
4654 sym_hash++;
4655 sym_count++;
4656 }
4657 }
4658
4659 qsort (sorted_sym_hash, sym_count,
4660 sizeof (struct elf_link_hash_entry *),
4661 elf_sort_symbol);
4662
4663 while (weaks != NULL)
4664 {
4665 struct elf_link_hash_entry *hlook;
4666 asection *slook;
4667 bfd_vma vlook;
4668 size_t i, j, idx;
4669
4670 hlook = weaks;
4671 weaks = hlook->u.weakdef;
4672 hlook->u.weakdef = NULL;
4673
4674 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4675 || hlook->root.type == bfd_link_hash_defweak
4676 || hlook->root.type == bfd_link_hash_common
4677 || hlook->root.type == bfd_link_hash_indirect);
4678 slook = hlook->root.u.def.section;
4679 vlook = hlook->root.u.def.value;
4680
4681 i = 0;
4682 j = sym_count;
4683 while (i != j)
4684 {
4685 bfd_signed_vma vdiff;
4686 idx = (i + j) / 2;
4687 h = sorted_sym_hash[idx];
4688 vdiff = vlook - h->root.u.def.value;
4689 if (vdiff < 0)
4690 j = idx;
4691 else if (vdiff > 0)
4692 i = idx + 1;
4693 else
4694 {
4695 long sdiff = slook->id - h->root.u.def.section->id;
4696 if (sdiff < 0)
4697 j = idx;
4698 else if (sdiff > 0)
4699 i = idx + 1;
4700 else
4701 break;
4702 }
4703 }
4704
4705 /* We didn't find a value/section match. */
4706 if (i == j)
4707 continue;
4708
4709 /* With multiple aliases, or when the weak symbol is already
4710 strongly defined, we have multiple matching symbols and
4711 the binary search above may land on any of them. Step
4712 one past the matching symbol(s). */
4713 while (++idx != j)
4714 {
4715 h = sorted_sym_hash[idx];
4716 if (h->root.u.def.section != slook
4717 || h->root.u.def.value != vlook)
4718 break;
4719 }
4720
4721 /* Now look back over the aliases. Since we sorted by size
4722 as well as value and section, we'll choose the one with
4723 the largest size. */
4724 while (idx-- != i)
4725 {
4726 h = sorted_sym_hash[idx];
4727
4728 /* Stop if value or section doesn't match. */
4729 if (h->root.u.def.section != slook
4730 || h->root.u.def.value != vlook)
4731 break;
4732 else if (h != hlook)
4733 {
4734 hlook->u.weakdef = h;
4735
4736 /* If the weak definition is in the list of dynamic
4737 symbols, make sure the real definition is put
4738 there as well. */
4739 if (hlook->dynindx != -1 && h->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4742 {
4743 err_free_sym_hash:
4744 free (sorted_sym_hash);
4745 goto error_return;
4746 }
4747 }
4748
4749 /* If the real definition is in the list of dynamic
4750 symbols, make sure the weak definition is put
4751 there as well. If we don't do this, then the
4752 dynamic loader might not merge the entries for the
4753 real definition and the weak definition. */
4754 if (h->dynindx != -1 && hlook->dynindx == -1)
4755 {
4756 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4757 goto err_free_sym_hash;
4758 }
4759 break;
4760 }
4761 }
4762 }
4763
4764 free (sorted_sym_hash);
4765 }
4766
4767 if (bed->check_directives
4768 && !(*bed->check_directives) (abfd, info))
4769 return FALSE;
4770
4771 /* If this object is the same format as the output object, and it is
4772 not a shared library, then let the backend look through the
4773 relocs.
4774
4775 This is required to build global offset table entries and to
4776 arrange for dynamic relocs. It is not required for the
4777 particular common case of linking non PIC code, even when linking
4778 against shared libraries, but unfortunately there is no way of
4779 knowing whether an object file has been compiled PIC or not.
4780 Looking through the relocs is not particularly time consuming.
4781 The problem is that we must either (1) keep the relocs in memory,
4782 which causes the linker to require additional runtime memory or
4783 (2) read the relocs twice from the input file, which wastes time.
4784 This would be a good case for using mmap.
4785
4786 I have no idea how to handle linking PIC code into a file of a
4787 different format. It probably can't be done. */
4788 if (! dynamic
4789 && is_elf_hash_table (htab)
4790 && bed->check_relocs != NULL
4791 && elf_object_id (abfd) == elf_hash_table_id (htab)
4792 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4793 {
4794 asection *o;
4795
4796 for (o = abfd->sections; o != NULL; o = o->next)
4797 {
4798 Elf_Internal_Rela *internal_relocs;
4799 bfd_boolean ok;
4800
4801 if ((o->flags & SEC_RELOC) == 0
4802 || o->reloc_count == 0
4803 || ((info->strip == strip_all || info->strip == strip_debugger)
4804 && (o->flags & SEC_DEBUGGING) != 0)
4805 || bfd_is_abs_section (o->output_section))
4806 continue;
4807
4808 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4809 info->keep_memory);
4810 if (internal_relocs == NULL)
4811 goto error_return;
4812
4813 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4814
4815 if (elf_section_data (o)->relocs != internal_relocs)
4816 free (internal_relocs);
4817
4818 if (! ok)
4819 goto error_return;
4820 }
4821 }
4822
4823 /* If this is a non-traditional link, try to optimize the handling
4824 of the .stab/.stabstr sections. */
4825 if (! dynamic
4826 && ! info->traditional_format
4827 && is_elf_hash_table (htab)
4828 && (info->strip != strip_all && info->strip != strip_debugger))
4829 {
4830 asection *stabstr;
4831
4832 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4833 if (stabstr != NULL)
4834 {
4835 bfd_size_type string_offset = 0;
4836 asection *stab;
4837
4838 for (stab = abfd->sections; stab; stab = stab->next)
4839 if (CONST_STRNEQ (stab->name, ".stab")
4840 && (!stab->name[5] ||
4841 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4842 && (stab->flags & SEC_MERGE) == 0
4843 && !bfd_is_abs_section (stab->output_section))
4844 {
4845 struct bfd_elf_section_data *secdata;
4846
4847 secdata = elf_section_data (stab);
4848 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4849 stabstr, &secdata->sec_info,
4850 &string_offset))
4851 goto error_return;
4852 if (secdata->sec_info)
4853 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4854 }
4855 }
4856 }
4857
4858 if (is_elf_hash_table (htab) && add_needed)
4859 {
4860 /* Add this bfd to the loaded list. */
4861 struct elf_link_loaded_list *n;
4862
4863 n = (struct elf_link_loaded_list *)
4864 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because of a
4939 problem which arises on UnixWare. The UnixWare libc.so is an
4940 archive which includes an entry libc.so.1 which defines a bunch of
4941 symbols. The libc.so archive also includes a number of other
4942 object files, which also define symbols, some of which are the same
4943 as those defined in libc.so.1. Correct linking requires that we
4944 consider each object file in turn, and include it if it defines any
4945 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4946 this; it looks through the list of undefined symbols, and includes
4947 any object file which defines them. When this algorithm is used on
4948 UnixWare, it winds up pulling in libc.so.1 early and defining a
4949 bunch of symbols. This means that some of the other objects in the
4950 archive are not included in the link, which is incorrect since they
4951 precede libc.so.1 in the archive.
4952
4953 Fortunately, ELF archive handling is simpler than that done by
4954 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4955 oddities. In ELF, if we find a symbol in the archive map, and the
4956 symbol is currently undefined, we know that we must pull in that
4957 object file.
4958
4959 Unfortunately, we do have to make multiple passes over the symbol
4960 table until nothing further is resolved. */
4961
4962 static bfd_boolean
4963 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4964 {
4965 symindex c;
4966 bfd_boolean *defined = NULL;
4967 bfd_boolean *included = NULL;
4968 carsym *symdefs;
4969 bfd_boolean loop;
4970 bfd_size_type amt;
4971 const struct elf_backend_data *bed;
4972 struct elf_link_hash_entry * (*archive_symbol_lookup)
4973 (bfd *, struct bfd_link_info *, const char *);
4974
4975 if (! bfd_has_map (abfd))
4976 {
4977 /* An empty archive is a special case. */
4978 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4979 return TRUE;
4980 bfd_set_error (bfd_error_no_armap);
4981 return FALSE;
4982 }
4983
4984 /* Keep track of all symbols we know to be already defined, and all
4985 files we know to be already included. This is to speed up the
4986 second and subsequent passes. */
4987 c = bfd_ardata (abfd)->symdef_count;
4988 if (c == 0)
4989 return TRUE;
4990 amt = c;
4991 amt *= sizeof (bfd_boolean);
4992 defined = (bfd_boolean *) bfd_zmalloc (amt);
4993 included = (bfd_boolean *) bfd_zmalloc (amt);
4994 if (defined == NULL || included == NULL)
4995 goto error_return;
4996
4997 symdefs = bfd_ardata (abfd)->symdefs;
4998 bed = get_elf_backend_data (abfd);
4999 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5000
5001 do
5002 {
5003 file_ptr last;
5004 symindex i;
5005 carsym *symdef;
5006 carsym *symdefend;
5007
5008 loop = FALSE;
5009 last = -1;
5010
5011 symdef = symdefs;
5012 symdefend = symdef + c;
5013 for (i = 0; symdef < symdefend; symdef++, i++)
5014 {
5015 struct elf_link_hash_entry *h;
5016 bfd *element;
5017 struct bfd_link_hash_entry *undefs_tail;
5018 symindex mark;
5019
5020 if (defined[i] || included[i])
5021 continue;
5022 if (symdef->file_offset == last)
5023 {
5024 included[i] = TRUE;
5025 continue;
5026 }
5027
5028 h = archive_symbol_lookup (abfd, info, symdef->name);
5029 if (h == (struct elf_link_hash_entry *) 0 - 1)
5030 goto error_return;
5031
5032 if (h == NULL)
5033 continue;
5034
5035 if (h->root.type == bfd_link_hash_common)
5036 {
5037 /* We currently have a common symbol. The archive map contains
5038 a reference to this symbol, so we may want to include it. We
5039 only want to include it however, if this archive element
5040 contains a definition of the symbol, not just another common
5041 declaration of it.
5042
5043 Unfortunately some archivers (including GNU ar) will put
5044 declarations of common symbols into their archive maps, as
5045 well as real definitions, so we cannot just go by the archive
5046 map alone. Instead we must read in the element's symbol
5047 table and check that to see what kind of symbol definition
5048 this is. */
5049 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5050 continue;
5051 }
5052 else if (h->root.type != bfd_link_hash_undefined)
5053 {
5054 if (h->root.type != bfd_link_hash_undefweak)
5055 defined[i] = TRUE;
5056 continue;
5057 }
5058
5059 /* We need to include this archive member. */
5060 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5061 if (element == NULL)
5062 goto error_return;
5063
5064 if (! bfd_check_format (element, bfd_object))
5065 goto error_return;
5066
5067 /* Doublecheck that we have not included this object
5068 already--it should be impossible, but there may be
5069 something wrong with the archive. */
5070 if (element->archive_pass != 0)
5071 {
5072 bfd_set_error (bfd_error_bad_value);
5073 goto error_return;
5074 }
5075 element->archive_pass = 1;
5076
5077 undefs_tail = info->hash->undefs_tail;
5078
5079 if (!(*info->callbacks
5080 ->add_archive_element) (info, element, symdef->name, &element))
5081 goto error_return;
5082 if (!bfd_link_add_symbols (element, info))
5083 goto error_return;
5084
5085 /* If there are any new undefined symbols, we need to make
5086 another pass through the archive in order to see whether
5087 they can be defined. FIXME: This isn't perfect, because
5088 common symbols wind up on undefs_tail and because an
5089 undefined symbol which is defined later on in this pass
5090 does not require another pass. This isn't a bug, but it
5091 does make the code less efficient than it could be. */
5092 if (undefs_tail != info->hash->undefs_tail)
5093 loop = TRUE;
5094
5095 /* Look backward to mark all symbols from this object file
5096 which we have already seen in this pass. */
5097 mark = i;
5098 do
5099 {
5100 included[mark] = TRUE;
5101 if (mark == 0)
5102 break;
5103 --mark;
5104 }
5105 while (symdefs[mark].file_offset == symdef->file_offset);
5106
5107 /* We mark subsequent symbols from this object file as we go
5108 on through the loop. */
5109 last = symdef->file_offset;
5110 }
5111 }
5112 while (loop);
5113
5114 free (defined);
5115 free (included);
5116
5117 return TRUE;
5118
5119 error_return:
5120 if (defined != NULL)
5121 free (defined);
5122 if (included != NULL)
5123 free (included);
5124 return FALSE;
5125 }
5126
5127 /* Given an ELF BFD, add symbols to the global hash table as
5128 appropriate. */
5129
5130 bfd_boolean
5131 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5132 {
5133 switch (bfd_get_format (abfd))
5134 {
5135 case bfd_object:
5136 return elf_link_add_object_symbols (abfd, info);
5137 case bfd_archive:
5138 return elf_link_add_archive_symbols (abfd, info);
5139 default:
5140 bfd_set_error (bfd_error_wrong_format);
5141 return FALSE;
5142 }
5143 }
5144 \f
5145 struct hash_codes_info
5146 {
5147 unsigned long *hashcodes;
5148 bfd_boolean error;
5149 };
5150
5151 /* This function will be called though elf_link_hash_traverse to store
5152 all hash value of the exported symbols in an array. */
5153
5154 static bfd_boolean
5155 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5156 {
5157 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5158 const char *name;
5159 char *p;
5160 unsigned long ha;
5161 char *alc = NULL;
5162
5163 /* Ignore indirect symbols. These are added by the versioning code. */
5164 if (h->dynindx == -1)
5165 return TRUE;
5166
5167 name = h->root.root.string;
5168 p = strchr (name, ELF_VER_CHR);
5169 if (p != NULL)
5170 {
5171 alc = (char *) bfd_malloc (p - name + 1);
5172 if (alc == NULL)
5173 {
5174 inf->error = TRUE;
5175 return FALSE;
5176 }
5177 memcpy (alc, name, p - name);
5178 alc[p - name] = '\0';
5179 name = alc;
5180 }
5181
5182 /* Compute the hash value. */
5183 ha = bfd_elf_hash (name);
5184
5185 /* Store the found hash value in the array given as the argument. */
5186 *(inf->hashcodes)++ = ha;
5187
5188 /* And store it in the struct so that we can put it in the hash table
5189 later. */
5190 h->u.elf_hash_value = ha;
5191
5192 if (alc != NULL)
5193 free (alc);
5194
5195 return TRUE;
5196 }
5197
5198 struct collect_gnu_hash_codes
5199 {
5200 bfd *output_bfd;
5201 const struct elf_backend_data *bed;
5202 unsigned long int nsyms;
5203 unsigned long int maskbits;
5204 unsigned long int *hashcodes;
5205 unsigned long int *hashval;
5206 unsigned long int *indx;
5207 unsigned long int *counts;
5208 bfd_vma *bitmask;
5209 bfd_byte *contents;
5210 long int min_dynindx;
5211 unsigned long int bucketcount;
5212 unsigned long int symindx;
5213 long int local_indx;
5214 long int shift1, shift2;
5215 unsigned long int mask;
5216 bfd_boolean error;
5217 };
5218
5219 /* This function will be called though elf_link_hash_traverse to store
5220 all hash value of the exported symbols in an array. */
5221
5222 static bfd_boolean
5223 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5224 {
5225 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5226 const char *name;
5227 char *p;
5228 unsigned long ha;
5229 char *alc = NULL;
5230
5231 /* Ignore indirect symbols. These are added by the versioning code. */
5232 if (h->dynindx == -1)
5233 return TRUE;
5234
5235 /* Ignore also local symbols and undefined symbols. */
5236 if (! (*s->bed->elf_hash_symbol) (h))
5237 return TRUE;
5238
5239 name = h->root.root.string;
5240 p = strchr (name, ELF_VER_CHR);
5241 if (p != NULL)
5242 {
5243 alc = (char *) bfd_malloc (p - name + 1);
5244 if (alc == NULL)
5245 {
5246 s->error = TRUE;
5247 return FALSE;
5248 }
5249 memcpy (alc, name, p - name);
5250 alc[p - name] = '\0';
5251 name = alc;
5252 }
5253
5254 /* Compute the hash value. */
5255 ha = bfd_elf_gnu_hash (name);
5256
5257 /* Store the found hash value in the array for compute_bucket_count,
5258 and also for .dynsym reordering purposes. */
5259 s->hashcodes[s->nsyms] = ha;
5260 s->hashval[h->dynindx] = ha;
5261 ++s->nsyms;
5262 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5263 s->min_dynindx = h->dynindx;
5264
5265 if (alc != NULL)
5266 free (alc);
5267
5268 return TRUE;
5269 }
5270
5271 /* This function will be called though elf_link_hash_traverse to do
5272 final dynaminc symbol renumbering. */
5273
5274 static bfd_boolean
5275 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5276 {
5277 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5278 unsigned long int bucket;
5279 unsigned long int val;
5280
5281 /* Ignore indirect symbols. */
5282 if (h->dynindx == -1)
5283 return TRUE;
5284
5285 /* Ignore also local symbols and undefined symbols. */
5286 if (! (*s->bed->elf_hash_symbol) (h))
5287 {
5288 if (h->dynindx >= s->min_dynindx)
5289 h->dynindx = s->local_indx++;
5290 return TRUE;
5291 }
5292
5293 bucket = s->hashval[h->dynindx] % s->bucketcount;
5294 val = (s->hashval[h->dynindx] >> s->shift1)
5295 & ((s->maskbits >> s->shift1) - 1);
5296 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5297 s->bitmask[val]
5298 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5299 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5300 if (s->counts[bucket] == 1)
5301 /* Last element terminates the chain. */
5302 val |= 1;
5303 bfd_put_32 (s->output_bfd, val,
5304 s->contents + (s->indx[bucket] - s->symindx) * 4);
5305 --s->counts[bucket];
5306 h->dynindx = s->indx[bucket]++;
5307 return TRUE;
5308 }
5309
5310 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5311
5312 bfd_boolean
5313 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5314 {
5315 return !(h->forced_local
5316 || h->root.type == bfd_link_hash_undefined
5317 || h->root.type == bfd_link_hash_undefweak
5318 || ((h->root.type == bfd_link_hash_defined
5319 || h->root.type == bfd_link_hash_defweak)
5320 && h->root.u.def.section->output_section == NULL));
5321 }
5322
5323 /* Array used to determine the number of hash table buckets to use
5324 based on the number of symbols there are. If there are fewer than
5325 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5326 fewer than 37 we use 17 buckets, and so forth. We never use more
5327 than 32771 buckets. */
5328
5329 static const size_t elf_buckets[] =
5330 {
5331 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5332 16411, 32771, 0
5333 };
5334
5335 /* Compute bucket count for hashing table. We do not use a static set
5336 of possible tables sizes anymore. Instead we determine for all
5337 possible reasonable sizes of the table the outcome (i.e., the
5338 number of collisions etc) and choose the best solution. The
5339 weighting functions are not too simple to allow the table to grow
5340 without bounds. Instead one of the weighting factors is the size.
5341 Therefore the result is always a good payoff between few collisions
5342 (= short chain lengths) and table size. */
5343 static size_t
5344 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5345 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5346 unsigned long int nsyms,
5347 int gnu_hash)
5348 {
5349 size_t best_size = 0;
5350 unsigned long int i;
5351
5352 /* We have a problem here. The following code to optimize the table
5353 size requires an integer type with more the 32 bits. If
5354 BFD_HOST_U_64_BIT is set we know about such a type. */
5355 #ifdef BFD_HOST_U_64_BIT
5356 if (info->optimize)
5357 {
5358 size_t minsize;
5359 size_t maxsize;
5360 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5361 bfd *dynobj = elf_hash_table (info)->dynobj;
5362 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5363 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5364 unsigned long int *counts;
5365 bfd_size_type amt;
5366 unsigned int no_improvement_count = 0;
5367
5368 /* Possible optimization parameters: if we have NSYMS symbols we say
5369 that the hashing table must at least have NSYMS/4 and at most
5370 2*NSYMS buckets. */
5371 minsize = nsyms / 4;
5372 if (minsize == 0)
5373 minsize = 1;
5374 best_size = maxsize = nsyms * 2;
5375 if (gnu_hash)
5376 {
5377 if (minsize < 2)
5378 minsize = 2;
5379 if ((best_size & 31) == 0)
5380 ++best_size;
5381 }
5382
5383 /* Create array where we count the collisions in. We must use bfd_malloc
5384 since the size could be large. */
5385 amt = maxsize;
5386 amt *= sizeof (unsigned long int);
5387 counts = (unsigned long int *) bfd_malloc (amt);
5388 if (counts == NULL)
5389 return 0;
5390
5391 /* Compute the "optimal" size for the hash table. The criteria is a
5392 minimal chain length. The minor criteria is (of course) the size
5393 of the table. */
5394 for (i = minsize; i < maxsize; ++i)
5395 {
5396 /* Walk through the array of hashcodes and count the collisions. */
5397 BFD_HOST_U_64_BIT max;
5398 unsigned long int j;
5399 unsigned long int fact;
5400
5401 if (gnu_hash && (i & 31) == 0)
5402 continue;
5403
5404 memset (counts, '\0', i * sizeof (unsigned long int));
5405
5406 /* Determine how often each hash bucket is used. */
5407 for (j = 0; j < nsyms; ++j)
5408 ++counts[hashcodes[j] % i];
5409
5410 /* For the weight function we need some information about the
5411 pagesize on the target. This is information need not be 100%
5412 accurate. Since this information is not available (so far) we
5413 define it here to a reasonable default value. If it is crucial
5414 to have a better value some day simply define this value. */
5415 # ifndef BFD_TARGET_PAGESIZE
5416 # define BFD_TARGET_PAGESIZE (4096)
5417 # endif
5418
5419 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5420 and the chains. */
5421 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5422
5423 # if 1
5424 /* Variant 1: optimize for short chains. We add the squares
5425 of all the chain lengths (which favors many small chain
5426 over a few long chains). */
5427 for (j = 0; j < i; ++j)
5428 max += counts[j] * counts[j];
5429
5430 /* This adds penalties for the overall size of the table. */
5431 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5432 max *= fact * fact;
5433 # else
5434 /* Variant 2: Optimize a lot more for small table. Here we
5435 also add squares of the size but we also add penalties for
5436 empty slots (the +1 term). */
5437 for (j = 0; j < i; ++j)
5438 max += (1 + counts[j]) * (1 + counts[j]);
5439
5440 /* The overall size of the table is considered, but not as
5441 strong as in variant 1, where it is squared. */
5442 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5443 max *= fact;
5444 # endif
5445
5446 /* Compare with current best results. */
5447 if (max < best_chlen)
5448 {
5449 best_chlen = max;
5450 best_size = i;
5451 no_improvement_count = 0;
5452 }
5453 /* PR 11843: Avoid futile long searches for the best bucket size
5454 when there are a large number of symbols. */
5455 else if (++no_improvement_count == 100)
5456 break;
5457 }
5458
5459 free (counts);
5460 }
5461 else
5462 #endif /* defined (BFD_HOST_U_64_BIT) */
5463 {
5464 /* This is the fallback solution if no 64bit type is available or if we
5465 are not supposed to spend much time on optimizations. We select the
5466 bucket count using a fixed set of numbers. */
5467 for (i = 0; elf_buckets[i] != 0; i++)
5468 {
5469 best_size = elf_buckets[i];
5470 if (nsyms < elf_buckets[i + 1])
5471 break;
5472 }
5473 if (gnu_hash && best_size < 2)
5474 best_size = 2;
5475 }
5476
5477 return best_size;
5478 }
5479
5480 /* Size any SHT_GROUP section for ld -r. */
5481
5482 bfd_boolean
5483 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5484 {
5485 bfd *ibfd;
5486
5487 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5488 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5489 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5490 return FALSE;
5491 return TRUE;
5492 }
5493
5494 /* Set a default stack segment size. The value in INFO wins. If it
5495 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5496 undefined it is initialized. */
5497
5498 bfd_boolean
5499 bfd_elf_stack_segment_size (bfd *output_bfd,
5500 struct bfd_link_info *info,
5501 const char *legacy_symbol,
5502 bfd_vma default_size)
5503 {
5504 struct elf_link_hash_entry *h = NULL;
5505
5506 /* Look for legacy symbol. */
5507 if (legacy_symbol)
5508 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5509 FALSE, FALSE, FALSE);
5510 if (h && (h->root.type == bfd_link_hash_defined
5511 || h->root.type == bfd_link_hash_defweak)
5512 && h->def_regular
5513 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5514 {
5515 /* The symbol has no type if specified on the command line. */
5516 h->type = STT_OBJECT;
5517 if (info->stacksize)
5518 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5519 output_bfd, legacy_symbol);
5520 else if (h->root.u.def.section != bfd_abs_section_ptr)
5521 (*_bfd_error_handler) (_("%B: %s not absolute"),
5522 output_bfd, legacy_symbol);
5523 else
5524 info->stacksize = h->root.u.def.value;
5525 }
5526
5527 if (!info->stacksize)
5528 /* If the user didn't set a size, or explicitly inhibit the
5529 size, set it now. */
5530 info->stacksize = default_size;
5531
5532 /* Provide the legacy symbol, if it is referenced. */
5533 if (h && (h->root.type == bfd_link_hash_undefined
5534 || h->root.type == bfd_link_hash_undefweak))
5535 {
5536 struct bfd_link_hash_entry *bh = NULL;
5537
5538 if (!(_bfd_generic_link_add_one_symbol
5539 (info, output_bfd, legacy_symbol,
5540 BSF_GLOBAL, bfd_abs_section_ptr,
5541 info->stacksize >= 0 ? info->stacksize : 0,
5542 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5543 return FALSE;
5544
5545 h = (struct elf_link_hash_entry *) bh;
5546 h->def_regular = 1;
5547 h->type = STT_OBJECT;
5548 }
5549
5550 return TRUE;
5551 }
5552
5553 /* Set up the sizes and contents of the ELF dynamic sections. This is
5554 called by the ELF linker emulation before_allocation routine. We
5555 must set the sizes of the sections before the linker sets the
5556 addresses of the various sections. */
5557
5558 bfd_boolean
5559 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5560 const char *soname,
5561 const char *rpath,
5562 const char *filter_shlib,
5563 const char *audit,
5564 const char *depaudit,
5565 const char * const *auxiliary_filters,
5566 struct bfd_link_info *info,
5567 asection **sinterpptr)
5568 {
5569 bfd_size_type soname_indx;
5570 bfd *dynobj;
5571 const struct elf_backend_data *bed;
5572 struct elf_info_failed asvinfo;
5573
5574 *sinterpptr = NULL;
5575
5576 soname_indx = (bfd_size_type) -1;
5577
5578 if (!is_elf_hash_table (info->hash))
5579 return TRUE;
5580
5581 bed = get_elf_backend_data (output_bfd);
5582
5583 /* Any syms created from now on start with -1 in
5584 got.refcount/offset and plt.refcount/offset. */
5585 elf_hash_table (info)->init_got_refcount
5586 = elf_hash_table (info)->init_got_offset;
5587 elf_hash_table (info)->init_plt_refcount
5588 = elf_hash_table (info)->init_plt_offset;
5589
5590 if (info->relocatable
5591 && !_bfd_elf_size_group_sections (info))
5592 return FALSE;
5593
5594 /* The backend may have to create some sections regardless of whether
5595 we're dynamic or not. */
5596 if (bed->elf_backend_always_size_sections
5597 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5598 return FALSE;
5599
5600 /* Determine any GNU_STACK segment requirements, after the backend
5601 has had a chance to set a default segment size. */
5602 if (info->execstack)
5603 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5604 else if (info->noexecstack)
5605 elf_stack_flags (output_bfd) = PF_R | PF_W;
5606 else
5607 {
5608 bfd *inputobj;
5609 asection *notesec = NULL;
5610 int exec = 0;
5611
5612 for (inputobj = info->input_bfds;
5613 inputobj;
5614 inputobj = inputobj->link_next)
5615 {
5616 asection *s;
5617
5618 if (inputobj->flags
5619 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5620 continue;
5621 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5622 if (s)
5623 {
5624 if (s->flags & SEC_CODE)
5625 exec = PF_X;
5626 notesec = s;
5627 }
5628 else if (bed->default_execstack)
5629 exec = PF_X;
5630 }
5631 if (notesec || info->stacksize > 0)
5632 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5633 if (notesec && exec && info->relocatable
5634 && notesec->output_section != bfd_abs_section_ptr)
5635 notesec->output_section->flags |= SEC_CODE;
5636 }
5637
5638 dynobj = elf_hash_table (info)->dynobj;
5639
5640 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5641 {
5642 struct elf_info_failed eif;
5643 struct elf_link_hash_entry *h;
5644 asection *dynstr;
5645 struct bfd_elf_version_tree *t;
5646 struct bfd_elf_version_expr *d;
5647 asection *s;
5648 bfd_boolean all_defined;
5649
5650 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5651 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5652
5653 if (soname != NULL)
5654 {
5655 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5656 soname, TRUE);
5657 if (soname_indx == (bfd_size_type) -1
5658 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5659 return FALSE;
5660 }
5661
5662 if (info->symbolic)
5663 {
5664 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5665 return FALSE;
5666 info->flags |= DF_SYMBOLIC;
5667 }
5668
5669 if (rpath != NULL)
5670 {
5671 bfd_size_type indx;
5672 bfd_vma tag;
5673
5674 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5675 TRUE);
5676 if (indx == (bfd_size_type) -1)
5677 return FALSE;
5678
5679 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5680 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5681 return FALSE;
5682 }
5683
5684 if (filter_shlib != NULL)
5685 {
5686 bfd_size_type indx;
5687
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5689 filter_shlib, TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5692 return FALSE;
5693 }
5694
5695 if (auxiliary_filters != NULL)
5696 {
5697 const char * const *p;
5698
5699 for (p = auxiliary_filters; *p != NULL; p++)
5700 {
5701 bfd_size_type indx;
5702
5703 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5704 *p, TRUE);
5705 if (indx == (bfd_size_type) -1
5706 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5707 return FALSE;
5708 }
5709 }
5710
5711 if (audit != NULL)
5712 {
5713 bfd_size_type indx;
5714
5715 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5716 TRUE);
5717 if (indx == (bfd_size_type) -1
5718 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5719 return FALSE;
5720 }
5721
5722 if (depaudit != NULL)
5723 {
5724 bfd_size_type indx;
5725
5726 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5727 TRUE);
5728 if (indx == (bfd_size_type) -1
5729 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5730 return FALSE;
5731 }
5732
5733 eif.info = info;
5734 eif.failed = FALSE;
5735
5736 /* If we are supposed to export all symbols into the dynamic symbol
5737 table (this is not the normal case), then do so. */
5738 if (info->export_dynamic
5739 || (info->executable && info->dynamic))
5740 {
5741 elf_link_hash_traverse (elf_hash_table (info),
5742 _bfd_elf_export_symbol,
5743 &eif);
5744 if (eif.failed)
5745 return FALSE;
5746 }
5747
5748 /* Make all global versions with definition. */
5749 for (t = info->version_info; t != NULL; t = t->next)
5750 for (d = t->globals.list; d != NULL; d = d->next)
5751 if (!d->symver && d->literal)
5752 {
5753 const char *verstr, *name;
5754 size_t namelen, verlen, newlen;
5755 char *newname, *p, leading_char;
5756 struct elf_link_hash_entry *newh;
5757
5758 leading_char = bfd_get_symbol_leading_char (output_bfd);
5759 name = d->pattern;
5760 namelen = strlen (name) + (leading_char != '\0');
5761 verstr = t->name;
5762 verlen = strlen (verstr);
5763 newlen = namelen + verlen + 3;
5764
5765 newname = (char *) bfd_malloc (newlen);
5766 if (newname == NULL)
5767 return FALSE;
5768 newname[0] = leading_char;
5769 memcpy (newname + (leading_char != '\0'), name, namelen);
5770
5771 /* Check the hidden versioned definition. */
5772 p = newname + namelen;
5773 *p++ = ELF_VER_CHR;
5774 memcpy (p, verstr, verlen + 1);
5775 newh = elf_link_hash_lookup (elf_hash_table (info),
5776 newname, FALSE, FALSE,
5777 FALSE);
5778 if (newh == NULL
5779 || (newh->root.type != bfd_link_hash_defined
5780 && newh->root.type != bfd_link_hash_defweak))
5781 {
5782 /* Check the default versioned definition. */
5783 *p++ = ELF_VER_CHR;
5784 memcpy (p, verstr, verlen + 1);
5785 newh = elf_link_hash_lookup (elf_hash_table (info),
5786 newname, FALSE, FALSE,
5787 FALSE);
5788 }
5789 free (newname);
5790
5791 /* Mark this version if there is a definition and it is
5792 not defined in a shared object. */
5793 if (newh != NULL
5794 && !newh->def_dynamic
5795 && (newh->root.type == bfd_link_hash_defined
5796 || newh->root.type == bfd_link_hash_defweak))
5797 d->symver = 1;
5798 }
5799
5800 /* Attach all the symbols to their version information. */
5801 asvinfo.info = info;
5802 asvinfo.failed = FALSE;
5803
5804 elf_link_hash_traverse (elf_hash_table (info),
5805 _bfd_elf_link_assign_sym_version,
5806 &asvinfo);
5807 if (asvinfo.failed)
5808 return FALSE;
5809
5810 if (!info->allow_undefined_version)
5811 {
5812 /* Check if all global versions have a definition. */
5813 all_defined = TRUE;
5814 for (t = info->version_info; t != NULL; t = t->next)
5815 for (d = t->globals.list; d != NULL; d = d->next)
5816 if (d->literal && !d->symver && !d->script)
5817 {
5818 (*_bfd_error_handler)
5819 (_("%s: undefined version: %s"),
5820 d->pattern, t->name);
5821 all_defined = FALSE;
5822 }
5823
5824 if (!all_defined)
5825 {
5826 bfd_set_error (bfd_error_bad_value);
5827 return FALSE;
5828 }
5829 }
5830
5831 /* Find all symbols which were defined in a dynamic object and make
5832 the backend pick a reasonable value for them. */
5833 elf_link_hash_traverse (elf_hash_table (info),
5834 _bfd_elf_adjust_dynamic_symbol,
5835 &eif);
5836 if (eif.failed)
5837 return FALSE;
5838
5839 /* Add some entries to the .dynamic section. We fill in some of the
5840 values later, in bfd_elf_final_link, but we must add the entries
5841 now so that we know the final size of the .dynamic section. */
5842
5843 /* If there are initialization and/or finalization functions to
5844 call then add the corresponding DT_INIT/DT_FINI entries. */
5845 h = (info->init_function
5846 ? elf_link_hash_lookup (elf_hash_table (info),
5847 info->init_function, FALSE,
5848 FALSE, FALSE)
5849 : NULL);
5850 if (h != NULL
5851 && (h->ref_regular
5852 || h->def_regular))
5853 {
5854 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5855 return FALSE;
5856 }
5857 h = (info->fini_function
5858 ? elf_link_hash_lookup (elf_hash_table (info),
5859 info->fini_function, FALSE,
5860 FALSE, FALSE)
5861 : NULL);
5862 if (h != NULL
5863 && (h->ref_regular
5864 || h->def_regular))
5865 {
5866 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5867 return FALSE;
5868 }
5869
5870 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5871 if (s != NULL && s->linker_has_input)
5872 {
5873 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5874 if (! info->executable)
5875 {
5876 bfd *sub;
5877 asection *o;
5878
5879 for (sub = info->input_bfds; sub != NULL;
5880 sub = sub->link_next)
5881 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5882 for (o = sub->sections; o != NULL; o = o->next)
5883 if (elf_section_data (o)->this_hdr.sh_type
5884 == SHT_PREINIT_ARRAY)
5885 {
5886 (*_bfd_error_handler)
5887 (_("%B: .preinit_array section is not allowed in DSO"),
5888 sub);
5889 break;
5890 }
5891
5892 bfd_set_error (bfd_error_nonrepresentable_section);
5893 return FALSE;
5894 }
5895
5896 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5897 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5898 return FALSE;
5899 }
5900 s = bfd_get_section_by_name (output_bfd, ".init_array");
5901 if (s != NULL && s->linker_has_input)
5902 {
5903 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5905 return FALSE;
5906 }
5907 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5908 if (s != NULL && s->linker_has_input)
5909 {
5910 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5911 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5912 return FALSE;
5913 }
5914
5915 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5916 /* If .dynstr is excluded from the link, we don't want any of
5917 these tags. Strictly, we should be checking each section
5918 individually; This quick check covers for the case where
5919 someone does a /DISCARD/ : { *(*) }. */
5920 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5921 {
5922 bfd_size_type strsize;
5923
5924 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5925 if ((info->emit_hash
5926 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5927 || (info->emit_gnu_hash
5928 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5929 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5930 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5931 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5932 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5933 bed->s->sizeof_sym))
5934 return FALSE;
5935 }
5936 }
5937
5938 /* The backend must work out the sizes of all the other dynamic
5939 sections. */
5940 if (dynobj != NULL
5941 && bed->elf_backend_size_dynamic_sections != NULL
5942 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5943 return FALSE;
5944
5945 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5946 return FALSE;
5947
5948 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5949 {
5950 unsigned long section_sym_count;
5951 struct bfd_elf_version_tree *verdefs;
5952 asection *s;
5953
5954 /* Set up the version definition section. */
5955 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5956 BFD_ASSERT (s != NULL);
5957
5958 /* We may have created additional version definitions if we are
5959 just linking a regular application. */
5960 verdefs = info->version_info;
5961
5962 /* Skip anonymous version tag. */
5963 if (verdefs != NULL && verdefs->vernum == 0)
5964 verdefs = verdefs->next;
5965
5966 if (verdefs == NULL && !info->create_default_symver)
5967 s->flags |= SEC_EXCLUDE;
5968 else
5969 {
5970 unsigned int cdefs;
5971 bfd_size_type size;
5972 struct bfd_elf_version_tree *t;
5973 bfd_byte *p;
5974 Elf_Internal_Verdef def;
5975 Elf_Internal_Verdaux defaux;
5976 struct bfd_link_hash_entry *bh;
5977 struct elf_link_hash_entry *h;
5978 const char *name;
5979
5980 cdefs = 0;
5981 size = 0;
5982
5983 /* Make space for the base version. */
5984 size += sizeof (Elf_External_Verdef);
5985 size += sizeof (Elf_External_Verdaux);
5986 ++cdefs;
5987
5988 /* Make space for the default version. */
5989 if (info->create_default_symver)
5990 {
5991 size += sizeof (Elf_External_Verdef);
5992 ++cdefs;
5993 }
5994
5995 for (t = verdefs; t != NULL; t = t->next)
5996 {
5997 struct bfd_elf_version_deps *n;
5998
5999 /* Don't emit base version twice. */
6000 if (t->vernum == 0)
6001 continue;
6002
6003 size += sizeof (Elf_External_Verdef);
6004 size += sizeof (Elf_External_Verdaux);
6005 ++cdefs;
6006
6007 for (n = t->deps; n != NULL; n = n->next)
6008 size += sizeof (Elf_External_Verdaux);
6009 }
6010
6011 s->size = size;
6012 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6013 if (s->contents == NULL && s->size != 0)
6014 return FALSE;
6015
6016 /* Fill in the version definition section. */
6017
6018 p = s->contents;
6019
6020 def.vd_version = VER_DEF_CURRENT;
6021 def.vd_flags = VER_FLG_BASE;
6022 def.vd_ndx = 1;
6023 def.vd_cnt = 1;
6024 if (info->create_default_symver)
6025 {
6026 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6027 def.vd_next = sizeof (Elf_External_Verdef);
6028 }
6029 else
6030 {
6031 def.vd_aux = sizeof (Elf_External_Verdef);
6032 def.vd_next = (sizeof (Elf_External_Verdef)
6033 + sizeof (Elf_External_Verdaux));
6034 }
6035
6036 if (soname_indx != (bfd_size_type) -1)
6037 {
6038 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6039 soname_indx);
6040 def.vd_hash = bfd_elf_hash (soname);
6041 defaux.vda_name = soname_indx;
6042 name = soname;
6043 }
6044 else
6045 {
6046 bfd_size_type indx;
6047
6048 name = lbasename (output_bfd->filename);
6049 def.vd_hash = bfd_elf_hash (name);
6050 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6051 name, FALSE);
6052 if (indx == (bfd_size_type) -1)
6053 return FALSE;
6054 defaux.vda_name = indx;
6055 }
6056 defaux.vda_next = 0;
6057
6058 _bfd_elf_swap_verdef_out (output_bfd, &def,
6059 (Elf_External_Verdef *) p);
6060 p += sizeof (Elf_External_Verdef);
6061 if (info->create_default_symver)
6062 {
6063 /* Add a symbol representing this version. */
6064 bh = NULL;
6065 if (! (_bfd_generic_link_add_one_symbol
6066 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6067 0, NULL, FALSE,
6068 get_elf_backend_data (dynobj)->collect, &bh)))
6069 return FALSE;
6070 h = (struct elf_link_hash_entry *) bh;
6071 h->non_elf = 0;
6072 h->def_regular = 1;
6073 h->type = STT_OBJECT;
6074 h->verinfo.vertree = NULL;
6075
6076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6077 return FALSE;
6078
6079 /* Create a duplicate of the base version with the same
6080 aux block, but different flags. */
6081 def.vd_flags = 0;
6082 def.vd_ndx = 2;
6083 def.vd_aux = sizeof (Elf_External_Verdef);
6084 if (verdefs)
6085 def.vd_next = (sizeof (Elf_External_Verdef)
6086 + sizeof (Elf_External_Verdaux));
6087 else
6088 def.vd_next = 0;
6089 _bfd_elf_swap_verdef_out (output_bfd, &def,
6090 (Elf_External_Verdef *) p);
6091 p += sizeof (Elf_External_Verdef);
6092 }
6093 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6094 (Elf_External_Verdaux *) p);
6095 p += sizeof (Elf_External_Verdaux);
6096
6097 for (t = verdefs; t != NULL; t = t->next)
6098 {
6099 unsigned int cdeps;
6100 struct bfd_elf_version_deps *n;
6101
6102 /* Don't emit the base version twice. */
6103 if (t->vernum == 0)
6104 continue;
6105
6106 cdeps = 0;
6107 for (n = t->deps; n != NULL; n = n->next)
6108 ++cdeps;
6109
6110 /* Add a symbol representing this version. */
6111 bh = NULL;
6112 if (! (_bfd_generic_link_add_one_symbol
6113 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6114 0, NULL, FALSE,
6115 get_elf_backend_data (dynobj)->collect, &bh)))
6116 return FALSE;
6117 h = (struct elf_link_hash_entry *) bh;
6118 h->non_elf = 0;
6119 h->def_regular = 1;
6120 h->type = STT_OBJECT;
6121 h->verinfo.vertree = t;
6122
6123 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6124 return FALSE;
6125
6126 def.vd_version = VER_DEF_CURRENT;
6127 def.vd_flags = 0;
6128 if (t->globals.list == NULL
6129 && t->locals.list == NULL
6130 && ! t->used)
6131 def.vd_flags |= VER_FLG_WEAK;
6132 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6133 def.vd_cnt = cdeps + 1;
6134 def.vd_hash = bfd_elf_hash (t->name);
6135 def.vd_aux = sizeof (Elf_External_Verdef);
6136 def.vd_next = 0;
6137
6138 /* If a basever node is next, it *must* be the last node in
6139 the chain, otherwise Verdef construction breaks. */
6140 if (t->next != NULL && t->next->vernum == 0)
6141 BFD_ASSERT (t->next->next == NULL);
6142
6143 if (t->next != NULL && t->next->vernum != 0)
6144 def.vd_next = (sizeof (Elf_External_Verdef)
6145 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6146
6147 _bfd_elf_swap_verdef_out (output_bfd, &def,
6148 (Elf_External_Verdef *) p);
6149 p += sizeof (Elf_External_Verdef);
6150
6151 defaux.vda_name = h->dynstr_index;
6152 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6153 h->dynstr_index);
6154 defaux.vda_next = 0;
6155 if (t->deps != NULL)
6156 defaux.vda_next = sizeof (Elf_External_Verdaux);
6157 t->name_indx = defaux.vda_name;
6158
6159 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6160 (Elf_External_Verdaux *) p);
6161 p += sizeof (Elf_External_Verdaux);
6162
6163 for (n = t->deps; n != NULL; n = n->next)
6164 {
6165 if (n->version_needed == NULL)
6166 {
6167 /* This can happen if there was an error in the
6168 version script. */
6169 defaux.vda_name = 0;
6170 }
6171 else
6172 {
6173 defaux.vda_name = n->version_needed->name_indx;
6174 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6175 defaux.vda_name);
6176 }
6177 if (n->next == NULL)
6178 defaux.vda_next = 0;
6179 else
6180 defaux.vda_next = sizeof (Elf_External_Verdaux);
6181
6182 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6183 (Elf_External_Verdaux *) p);
6184 p += sizeof (Elf_External_Verdaux);
6185 }
6186 }
6187
6188 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6189 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6190 return FALSE;
6191
6192 elf_tdata (output_bfd)->cverdefs = cdefs;
6193 }
6194
6195 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6196 {
6197 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6198 return FALSE;
6199 }
6200 else if (info->flags & DF_BIND_NOW)
6201 {
6202 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6203 return FALSE;
6204 }
6205
6206 if (info->flags_1)
6207 {
6208 if (info->executable)
6209 info->flags_1 &= ~ (DF_1_INITFIRST
6210 | DF_1_NODELETE
6211 | DF_1_NOOPEN);
6212 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6213 return FALSE;
6214 }
6215
6216 /* Work out the size of the version reference section. */
6217
6218 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6219 BFD_ASSERT (s != NULL);
6220 {
6221 struct elf_find_verdep_info sinfo;
6222
6223 sinfo.info = info;
6224 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6225 if (sinfo.vers == 0)
6226 sinfo.vers = 1;
6227 sinfo.failed = FALSE;
6228
6229 elf_link_hash_traverse (elf_hash_table (info),
6230 _bfd_elf_link_find_version_dependencies,
6231 &sinfo);
6232 if (sinfo.failed)
6233 return FALSE;
6234
6235 if (elf_tdata (output_bfd)->verref == NULL)
6236 s->flags |= SEC_EXCLUDE;
6237 else
6238 {
6239 Elf_Internal_Verneed *t;
6240 unsigned int size;
6241 unsigned int crefs;
6242 bfd_byte *p;
6243
6244 /* Build the version dependency section. */
6245 size = 0;
6246 crefs = 0;
6247 for (t = elf_tdata (output_bfd)->verref;
6248 t != NULL;
6249 t = t->vn_nextref)
6250 {
6251 Elf_Internal_Vernaux *a;
6252
6253 size += sizeof (Elf_External_Verneed);
6254 ++crefs;
6255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 size += sizeof (Elf_External_Vernaux);
6257 }
6258
6259 s->size = size;
6260 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6261 if (s->contents == NULL)
6262 return FALSE;
6263
6264 p = s->contents;
6265 for (t = elf_tdata (output_bfd)->verref;
6266 t != NULL;
6267 t = t->vn_nextref)
6268 {
6269 unsigned int caux;
6270 Elf_Internal_Vernaux *a;
6271 bfd_size_type indx;
6272
6273 caux = 0;
6274 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6275 ++caux;
6276
6277 t->vn_version = VER_NEED_CURRENT;
6278 t->vn_cnt = caux;
6279 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6280 elf_dt_name (t->vn_bfd) != NULL
6281 ? elf_dt_name (t->vn_bfd)
6282 : lbasename (t->vn_bfd->filename),
6283 FALSE);
6284 if (indx == (bfd_size_type) -1)
6285 return FALSE;
6286 t->vn_file = indx;
6287 t->vn_aux = sizeof (Elf_External_Verneed);
6288 if (t->vn_nextref == NULL)
6289 t->vn_next = 0;
6290 else
6291 t->vn_next = (sizeof (Elf_External_Verneed)
6292 + caux * sizeof (Elf_External_Vernaux));
6293
6294 _bfd_elf_swap_verneed_out (output_bfd, t,
6295 (Elf_External_Verneed *) p);
6296 p += sizeof (Elf_External_Verneed);
6297
6298 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6299 {
6300 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6301 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6302 a->vna_nodename, FALSE);
6303 if (indx == (bfd_size_type) -1)
6304 return FALSE;
6305 a->vna_name = indx;
6306 if (a->vna_nextptr == NULL)
6307 a->vna_next = 0;
6308 else
6309 a->vna_next = sizeof (Elf_External_Vernaux);
6310
6311 _bfd_elf_swap_vernaux_out (output_bfd, a,
6312 (Elf_External_Vernaux *) p);
6313 p += sizeof (Elf_External_Vernaux);
6314 }
6315 }
6316
6317 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6318 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6319 return FALSE;
6320
6321 elf_tdata (output_bfd)->cverrefs = crefs;
6322 }
6323 }
6324
6325 if ((elf_tdata (output_bfd)->cverrefs == 0
6326 && elf_tdata (output_bfd)->cverdefs == 0)
6327 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6328 &section_sym_count) == 0)
6329 {
6330 s = bfd_get_linker_section (dynobj, ".gnu.version");
6331 s->flags |= SEC_EXCLUDE;
6332 }
6333 }
6334 return TRUE;
6335 }
6336
6337 /* Find the first non-excluded output section. We'll use its
6338 section symbol for some emitted relocs. */
6339 void
6340 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6341 {
6342 asection *s;
6343
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6346 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6347 {
6348 elf_hash_table (info)->text_index_section = s;
6349 break;
6350 }
6351 }
6352
6353 /* Find two non-excluded output sections, one for code, one for data.
6354 We'll use their section symbols for some emitted relocs. */
6355 void
6356 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6357 {
6358 asection *s;
6359
6360 /* Data first, since setting text_index_section changes
6361 _bfd_elf_link_omit_section_dynsym. */
6362 for (s = output_bfd->sections; s != NULL; s = s->next)
6363 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6364 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6365 {
6366 elf_hash_table (info)->data_index_section = s;
6367 break;
6368 }
6369
6370 for (s = output_bfd->sections; s != NULL; s = s->next)
6371 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6372 == (SEC_ALLOC | SEC_READONLY))
6373 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6374 {
6375 elf_hash_table (info)->text_index_section = s;
6376 break;
6377 }
6378
6379 if (elf_hash_table (info)->text_index_section == NULL)
6380 elf_hash_table (info)->text_index_section
6381 = elf_hash_table (info)->data_index_section;
6382 }
6383
6384 bfd_boolean
6385 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6386 {
6387 const struct elf_backend_data *bed;
6388
6389 if (!is_elf_hash_table (info->hash))
6390 return TRUE;
6391
6392 bed = get_elf_backend_data (output_bfd);
6393 (*bed->elf_backend_init_index_section) (output_bfd, info);
6394
6395 if (elf_hash_table (info)->dynamic_sections_created)
6396 {
6397 bfd *dynobj;
6398 asection *s;
6399 bfd_size_type dynsymcount;
6400 unsigned long section_sym_count;
6401 unsigned int dtagcount;
6402
6403 dynobj = elf_hash_table (info)->dynobj;
6404
6405 /* Assign dynsym indicies. In a shared library we generate a
6406 section symbol for each output section, which come first.
6407 Next come all of the back-end allocated local dynamic syms,
6408 followed by the rest of the global symbols. */
6409
6410 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6411 &section_sym_count);
6412
6413 /* Work out the size of the symbol version section. */
6414 s = bfd_get_linker_section (dynobj, ".gnu.version");
6415 BFD_ASSERT (s != NULL);
6416 if (dynsymcount != 0
6417 && (s->flags & SEC_EXCLUDE) == 0)
6418 {
6419 s->size = dynsymcount * sizeof (Elf_External_Versym);
6420 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6421 if (s->contents == NULL)
6422 return FALSE;
6423
6424 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6425 return FALSE;
6426 }
6427
6428 /* Set the size of the .dynsym and .hash sections. We counted
6429 the number of dynamic symbols in elf_link_add_object_symbols.
6430 We will build the contents of .dynsym and .hash when we build
6431 the final symbol table, because until then we do not know the
6432 correct value to give the symbols. We built the .dynstr
6433 section as we went along in elf_link_add_object_symbols. */
6434 s = bfd_get_linker_section (dynobj, ".dynsym");
6435 BFD_ASSERT (s != NULL);
6436 s->size = dynsymcount * bed->s->sizeof_sym;
6437
6438 if (dynsymcount != 0)
6439 {
6440 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6441 if (s->contents == NULL)
6442 return FALSE;
6443
6444 /* The first entry in .dynsym is a dummy symbol.
6445 Clear all the section syms, in case we don't output them all. */
6446 ++section_sym_count;
6447 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6448 }
6449
6450 elf_hash_table (info)->bucketcount = 0;
6451
6452 /* Compute the size of the hashing table. As a side effect this
6453 computes the hash values for all the names we export. */
6454 if (info->emit_hash)
6455 {
6456 unsigned long int *hashcodes;
6457 struct hash_codes_info hashinf;
6458 bfd_size_type amt;
6459 unsigned long int nsyms;
6460 size_t bucketcount;
6461 size_t hash_entry_size;
6462
6463 /* Compute the hash values for all exported symbols. At the same
6464 time store the values in an array so that we could use them for
6465 optimizations. */
6466 amt = dynsymcount * sizeof (unsigned long int);
6467 hashcodes = (unsigned long int *) bfd_malloc (amt);
6468 if (hashcodes == NULL)
6469 return FALSE;
6470 hashinf.hashcodes = hashcodes;
6471 hashinf.error = FALSE;
6472
6473 /* Put all hash values in HASHCODES. */
6474 elf_link_hash_traverse (elf_hash_table (info),
6475 elf_collect_hash_codes, &hashinf);
6476 if (hashinf.error)
6477 {
6478 free (hashcodes);
6479 return FALSE;
6480 }
6481
6482 nsyms = hashinf.hashcodes - hashcodes;
6483 bucketcount
6484 = compute_bucket_count (info, hashcodes, nsyms, 0);
6485 free (hashcodes);
6486
6487 if (bucketcount == 0)
6488 return FALSE;
6489
6490 elf_hash_table (info)->bucketcount = bucketcount;
6491
6492 s = bfd_get_linker_section (dynobj, ".hash");
6493 BFD_ASSERT (s != NULL);
6494 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6495 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6496 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6497 if (s->contents == NULL)
6498 return FALSE;
6499
6500 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6501 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6502 s->contents + hash_entry_size);
6503 }
6504
6505 if (info->emit_gnu_hash)
6506 {
6507 size_t i, cnt;
6508 unsigned char *contents;
6509 struct collect_gnu_hash_codes cinfo;
6510 bfd_size_type amt;
6511 size_t bucketcount;
6512
6513 memset (&cinfo, 0, sizeof (cinfo));
6514
6515 /* Compute the hash values for all exported symbols. At the same
6516 time store the values in an array so that we could use them for
6517 optimizations. */
6518 amt = dynsymcount * 2 * sizeof (unsigned long int);
6519 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6520 if (cinfo.hashcodes == NULL)
6521 return FALSE;
6522
6523 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6524 cinfo.min_dynindx = -1;
6525 cinfo.output_bfd = output_bfd;
6526 cinfo.bed = bed;
6527
6528 /* Put all hash values in HASHCODES. */
6529 elf_link_hash_traverse (elf_hash_table (info),
6530 elf_collect_gnu_hash_codes, &cinfo);
6531 if (cinfo.error)
6532 {
6533 free (cinfo.hashcodes);
6534 return FALSE;
6535 }
6536
6537 bucketcount
6538 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6539
6540 if (bucketcount == 0)
6541 {
6542 free (cinfo.hashcodes);
6543 return FALSE;
6544 }
6545
6546 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6547 BFD_ASSERT (s != NULL);
6548
6549 if (cinfo.nsyms == 0)
6550 {
6551 /* Empty .gnu.hash section is special. */
6552 BFD_ASSERT (cinfo.min_dynindx == -1);
6553 free (cinfo.hashcodes);
6554 s->size = 5 * 4 + bed->s->arch_size / 8;
6555 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6556 if (contents == NULL)
6557 return FALSE;
6558 s->contents = contents;
6559 /* 1 empty bucket. */
6560 bfd_put_32 (output_bfd, 1, contents);
6561 /* SYMIDX above the special symbol 0. */
6562 bfd_put_32 (output_bfd, 1, contents + 4);
6563 /* Just one word for bitmask. */
6564 bfd_put_32 (output_bfd, 1, contents + 8);
6565 /* Only hash fn bloom filter. */
6566 bfd_put_32 (output_bfd, 0, contents + 12);
6567 /* No hashes are valid - empty bitmask. */
6568 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6569 /* No hashes in the only bucket. */
6570 bfd_put_32 (output_bfd, 0,
6571 contents + 16 + bed->s->arch_size / 8);
6572 }
6573 else
6574 {
6575 unsigned long int maskwords, maskbitslog2, x;
6576 BFD_ASSERT (cinfo.min_dynindx != -1);
6577
6578 x = cinfo.nsyms;
6579 maskbitslog2 = 1;
6580 while ((x >>= 1) != 0)
6581 ++maskbitslog2;
6582 if (maskbitslog2 < 3)
6583 maskbitslog2 = 5;
6584 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6585 maskbitslog2 = maskbitslog2 + 3;
6586 else
6587 maskbitslog2 = maskbitslog2 + 2;
6588 if (bed->s->arch_size == 64)
6589 {
6590 if (maskbitslog2 == 5)
6591 maskbitslog2 = 6;
6592 cinfo.shift1 = 6;
6593 }
6594 else
6595 cinfo.shift1 = 5;
6596 cinfo.mask = (1 << cinfo.shift1) - 1;
6597 cinfo.shift2 = maskbitslog2;
6598 cinfo.maskbits = 1 << maskbitslog2;
6599 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6600 amt = bucketcount * sizeof (unsigned long int) * 2;
6601 amt += maskwords * sizeof (bfd_vma);
6602 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6603 if (cinfo.bitmask == NULL)
6604 {
6605 free (cinfo.hashcodes);
6606 return FALSE;
6607 }
6608
6609 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6610 cinfo.indx = cinfo.counts + bucketcount;
6611 cinfo.symindx = dynsymcount - cinfo.nsyms;
6612 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6613
6614 /* Determine how often each hash bucket is used. */
6615 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6616 for (i = 0; i < cinfo.nsyms; ++i)
6617 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6618
6619 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6620 if (cinfo.counts[i] != 0)
6621 {
6622 cinfo.indx[i] = cnt;
6623 cnt += cinfo.counts[i];
6624 }
6625 BFD_ASSERT (cnt == dynsymcount);
6626 cinfo.bucketcount = bucketcount;
6627 cinfo.local_indx = cinfo.min_dynindx;
6628
6629 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6630 s->size += cinfo.maskbits / 8;
6631 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6632 if (contents == NULL)
6633 {
6634 free (cinfo.bitmask);
6635 free (cinfo.hashcodes);
6636 return FALSE;
6637 }
6638
6639 s->contents = contents;
6640 bfd_put_32 (output_bfd, bucketcount, contents);
6641 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6642 bfd_put_32 (output_bfd, maskwords, contents + 8);
6643 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6644 contents += 16 + cinfo.maskbits / 8;
6645
6646 for (i = 0; i < bucketcount; ++i)
6647 {
6648 if (cinfo.counts[i] == 0)
6649 bfd_put_32 (output_bfd, 0, contents);
6650 else
6651 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6652 contents += 4;
6653 }
6654
6655 cinfo.contents = contents;
6656
6657 /* Renumber dynamic symbols, populate .gnu.hash section. */
6658 elf_link_hash_traverse (elf_hash_table (info),
6659 elf_renumber_gnu_hash_syms, &cinfo);
6660
6661 contents = s->contents + 16;
6662 for (i = 0; i < maskwords; ++i)
6663 {
6664 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6665 contents);
6666 contents += bed->s->arch_size / 8;
6667 }
6668
6669 free (cinfo.bitmask);
6670 free (cinfo.hashcodes);
6671 }
6672 }
6673
6674 s = bfd_get_linker_section (dynobj, ".dynstr");
6675 BFD_ASSERT (s != NULL);
6676
6677 elf_finalize_dynstr (output_bfd, info);
6678
6679 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6680
6681 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6682 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6683 return FALSE;
6684 }
6685
6686 return TRUE;
6687 }
6688 \f
6689 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6690
6691 static void
6692 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6693 asection *sec)
6694 {
6695 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6696 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6697 }
6698
6699 /* Finish SHF_MERGE section merging. */
6700
6701 bfd_boolean
6702 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6703 {
6704 bfd *ibfd;
6705 asection *sec;
6706
6707 if (!is_elf_hash_table (info->hash))
6708 return FALSE;
6709
6710 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6711 if ((ibfd->flags & DYNAMIC) == 0)
6712 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6713 if ((sec->flags & SEC_MERGE) != 0
6714 && !bfd_is_abs_section (sec->output_section))
6715 {
6716 struct bfd_elf_section_data *secdata;
6717
6718 secdata = elf_section_data (sec);
6719 if (! _bfd_add_merge_section (abfd,
6720 &elf_hash_table (info)->merge_info,
6721 sec, &secdata->sec_info))
6722 return FALSE;
6723 else if (secdata->sec_info)
6724 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6725 }
6726
6727 if (elf_hash_table (info)->merge_info != NULL)
6728 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6729 merge_sections_remove_hook);
6730 return TRUE;
6731 }
6732
6733 /* Create an entry in an ELF linker hash table. */
6734
6735 struct bfd_hash_entry *
6736 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6737 struct bfd_hash_table *table,
6738 const char *string)
6739 {
6740 /* Allocate the structure if it has not already been allocated by a
6741 subclass. */
6742 if (entry == NULL)
6743 {
6744 entry = (struct bfd_hash_entry *)
6745 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6746 if (entry == NULL)
6747 return entry;
6748 }
6749
6750 /* Call the allocation method of the superclass. */
6751 entry = _bfd_link_hash_newfunc (entry, table, string);
6752 if (entry != NULL)
6753 {
6754 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6755 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6756
6757 /* Set local fields. */
6758 ret->indx = -1;
6759 ret->dynindx = -1;
6760 ret->got = htab->init_got_refcount;
6761 ret->plt = htab->init_plt_refcount;
6762 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6763 - offsetof (struct elf_link_hash_entry, size)));
6764 /* Assume that we have been called by a non-ELF symbol reader.
6765 This flag is then reset by the code which reads an ELF input
6766 file. This ensures that a symbol created by a non-ELF symbol
6767 reader will have the flag set correctly. */
6768 ret->non_elf = 1;
6769 }
6770
6771 return entry;
6772 }
6773
6774 /* Copy data from an indirect symbol to its direct symbol, hiding the
6775 old indirect symbol. Also used for copying flags to a weakdef. */
6776
6777 void
6778 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6779 struct elf_link_hash_entry *dir,
6780 struct elf_link_hash_entry *ind)
6781 {
6782 struct elf_link_hash_table *htab;
6783
6784 /* Copy down any references that we may have already seen to the
6785 symbol which just became indirect. */
6786
6787 dir->ref_dynamic |= ind->ref_dynamic;
6788 dir->ref_regular |= ind->ref_regular;
6789 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6790 dir->non_got_ref |= ind->non_got_ref;
6791 dir->needs_plt |= ind->needs_plt;
6792 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6793
6794 if (ind->root.type != bfd_link_hash_indirect)
6795 return;
6796
6797 /* Copy over the global and procedure linkage table refcount entries.
6798 These may have been already set up by a check_relocs routine. */
6799 htab = elf_hash_table (info);
6800 if (ind->got.refcount > htab->init_got_refcount.refcount)
6801 {
6802 if (dir->got.refcount < 0)
6803 dir->got.refcount = 0;
6804 dir->got.refcount += ind->got.refcount;
6805 ind->got.refcount = htab->init_got_refcount.refcount;
6806 }
6807
6808 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6809 {
6810 if (dir->plt.refcount < 0)
6811 dir->plt.refcount = 0;
6812 dir->plt.refcount += ind->plt.refcount;
6813 ind->plt.refcount = htab->init_plt_refcount.refcount;
6814 }
6815
6816 if (ind->dynindx != -1)
6817 {
6818 if (dir->dynindx != -1)
6819 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6820 dir->dynindx = ind->dynindx;
6821 dir->dynstr_index = ind->dynstr_index;
6822 ind->dynindx = -1;
6823 ind->dynstr_index = 0;
6824 }
6825 }
6826
6827 void
6828 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6829 struct elf_link_hash_entry *h,
6830 bfd_boolean force_local)
6831 {
6832 /* STT_GNU_IFUNC symbol must go through PLT. */
6833 if (h->type != STT_GNU_IFUNC)
6834 {
6835 h->plt = elf_hash_table (info)->init_plt_offset;
6836 h->needs_plt = 0;
6837 }
6838 if (force_local)
6839 {
6840 h->forced_local = 1;
6841 if (h->dynindx != -1)
6842 {
6843 h->dynindx = -1;
6844 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6845 h->dynstr_index);
6846 }
6847 }
6848 }
6849
6850 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6851 caller. */
6852
6853 bfd_boolean
6854 _bfd_elf_link_hash_table_init
6855 (struct elf_link_hash_table *table,
6856 bfd *abfd,
6857 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6858 struct bfd_hash_table *,
6859 const char *),
6860 unsigned int entsize,
6861 enum elf_target_id target_id)
6862 {
6863 bfd_boolean ret;
6864 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6865
6866 table->init_got_refcount.refcount = can_refcount - 1;
6867 table->init_plt_refcount.refcount = can_refcount - 1;
6868 table->init_got_offset.offset = -(bfd_vma) 1;
6869 table->init_plt_offset.offset = -(bfd_vma) 1;
6870 /* The first dynamic symbol is a dummy. */
6871 table->dynsymcount = 1;
6872
6873 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6874
6875 table->root.type = bfd_link_elf_hash_table;
6876 table->hash_table_id = target_id;
6877
6878 return ret;
6879 }
6880
6881 /* Create an ELF linker hash table. */
6882
6883 struct bfd_link_hash_table *
6884 _bfd_elf_link_hash_table_create (bfd *abfd)
6885 {
6886 struct elf_link_hash_table *ret;
6887 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6888
6889 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6890 if (ret == NULL)
6891 return NULL;
6892
6893 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6894 sizeof (struct elf_link_hash_entry),
6895 GENERIC_ELF_DATA))
6896 {
6897 free (ret);
6898 return NULL;
6899 }
6900
6901 return &ret->root;
6902 }
6903
6904 /* Destroy an ELF linker hash table. */
6905
6906 void
6907 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6908 {
6909 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6910 if (htab->dynstr != NULL)
6911 _bfd_elf_strtab_free (htab->dynstr);
6912 _bfd_merge_sections_free (htab->merge_info);
6913 _bfd_generic_link_hash_table_free (hash);
6914 }
6915
6916 /* This is a hook for the ELF emulation code in the generic linker to
6917 tell the backend linker what file name to use for the DT_NEEDED
6918 entry for a dynamic object. */
6919
6920 void
6921 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6922 {
6923 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6924 && bfd_get_format (abfd) == bfd_object)
6925 elf_dt_name (abfd) = name;
6926 }
6927
6928 int
6929 bfd_elf_get_dyn_lib_class (bfd *abfd)
6930 {
6931 int lib_class;
6932 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6933 && bfd_get_format (abfd) == bfd_object)
6934 lib_class = elf_dyn_lib_class (abfd);
6935 else
6936 lib_class = 0;
6937 return lib_class;
6938 }
6939
6940 void
6941 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6942 {
6943 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6944 && bfd_get_format (abfd) == bfd_object)
6945 elf_dyn_lib_class (abfd) = lib_class;
6946 }
6947
6948 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6949 the linker ELF emulation code. */
6950
6951 struct bfd_link_needed_list *
6952 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6953 struct bfd_link_info *info)
6954 {
6955 if (! is_elf_hash_table (info->hash))
6956 return NULL;
6957 return elf_hash_table (info)->needed;
6958 }
6959
6960 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6961 hook for the linker ELF emulation code. */
6962
6963 struct bfd_link_needed_list *
6964 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6965 struct bfd_link_info *info)
6966 {
6967 if (! is_elf_hash_table (info->hash))
6968 return NULL;
6969 return elf_hash_table (info)->runpath;
6970 }
6971
6972 /* Get the name actually used for a dynamic object for a link. This
6973 is the SONAME entry if there is one. Otherwise, it is the string
6974 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6975
6976 const char *
6977 bfd_elf_get_dt_soname (bfd *abfd)
6978 {
6979 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6980 && bfd_get_format (abfd) == bfd_object)
6981 return elf_dt_name (abfd);
6982 return NULL;
6983 }
6984
6985 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6986 the ELF linker emulation code. */
6987
6988 bfd_boolean
6989 bfd_elf_get_bfd_needed_list (bfd *abfd,
6990 struct bfd_link_needed_list **pneeded)
6991 {
6992 asection *s;
6993 bfd_byte *dynbuf = NULL;
6994 unsigned int elfsec;
6995 unsigned long shlink;
6996 bfd_byte *extdyn, *extdynend;
6997 size_t extdynsize;
6998 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6999
7000 *pneeded = NULL;
7001
7002 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7003 || bfd_get_format (abfd) != bfd_object)
7004 return TRUE;
7005
7006 s = bfd_get_section_by_name (abfd, ".dynamic");
7007 if (s == NULL || s->size == 0)
7008 return TRUE;
7009
7010 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7011 goto error_return;
7012
7013 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7014 if (elfsec == SHN_BAD)
7015 goto error_return;
7016
7017 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7018
7019 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7020 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7021
7022 extdyn = dynbuf;
7023 extdynend = extdyn + s->size;
7024 for (; extdyn < extdynend; extdyn += extdynsize)
7025 {
7026 Elf_Internal_Dyn dyn;
7027
7028 (*swap_dyn_in) (abfd, extdyn, &dyn);
7029
7030 if (dyn.d_tag == DT_NULL)
7031 break;
7032
7033 if (dyn.d_tag == DT_NEEDED)
7034 {
7035 const char *string;
7036 struct bfd_link_needed_list *l;
7037 unsigned int tagv = dyn.d_un.d_val;
7038 bfd_size_type amt;
7039
7040 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7041 if (string == NULL)
7042 goto error_return;
7043
7044 amt = sizeof *l;
7045 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7046 if (l == NULL)
7047 goto error_return;
7048
7049 l->by = abfd;
7050 l->name = string;
7051 l->next = *pneeded;
7052 *pneeded = l;
7053 }
7054 }
7055
7056 free (dynbuf);
7057
7058 return TRUE;
7059
7060 error_return:
7061 if (dynbuf != NULL)
7062 free (dynbuf);
7063 return FALSE;
7064 }
7065
7066 struct elf_symbuf_symbol
7067 {
7068 unsigned long st_name; /* Symbol name, index in string tbl */
7069 unsigned char st_info; /* Type and binding attributes */
7070 unsigned char st_other; /* Visibilty, and target specific */
7071 };
7072
7073 struct elf_symbuf_head
7074 {
7075 struct elf_symbuf_symbol *ssym;
7076 bfd_size_type count;
7077 unsigned int st_shndx;
7078 };
7079
7080 struct elf_symbol
7081 {
7082 union
7083 {
7084 Elf_Internal_Sym *isym;
7085 struct elf_symbuf_symbol *ssym;
7086 } u;
7087 const char *name;
7088 };
7089
7090 /* Sort references to symbols by ascending section number. */
7091
7092 static int
7093 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7094 {
7095 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7096 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7097
7098 return s1->st_shndx - s2->st_shndx;
7099 }
7100
7101 static int
7102 elf_sym_name_compare (const void *arg1, const void *arg2)
7103 {
7104 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7105 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7106 return strcmp (s1->name, s2->name);
7107 }
7108
7109 static struct elf_symbuf_head *
7110 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7111 {
7112 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7113 struct elf_symbuf_symbol *ssym;
7114 struct elf_symbuf_head *ssymbuf, *ssymhead;
7115 bfd_size_type i, shndx_count, total_size;
7116
7117 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7118 if (indbuf == NULL)
7119 return NULL;
7120
7121 for (ind = indbuf, i = 0; i < symcount; i++)
7122 if (isymbuf[i].st_shndx != SHN_UNDEF)
7123 *ind++ = &isymbuf[i];
7124 indbufend = ind;
7125
7126 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7127 elf_sort_elf_symbol);
7128
7129 shndx_count = 0;
7130 if (indbufend > indbuf)
7131 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7132 if (ind[0]->st_shndx != ind[1]->st_shndx)
7133 shndx_count++;
7134
7135 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7136 + (indbufend - indbuf) * sizeof (*ssym));
7137 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7138 if (ssymbuf == NULL)
7139 {
7140 free (indbuf);
7141 return NULL;
7142 }
7143
7144 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7145 ssymbuf->ssym = NULL;
7146 ssymbuf->count = shndx_count;
7147 ssymbuf->st_shndx = 0;
7148 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7149 {
7150 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7151 {
7152 ssymhead++;
7153 ssymhead->ssym = ssym;
7154 ssymhead->count = 0;
7155 ssymhead->st_shndx = (*ind)->st_shndx;
7156 }
7157 ssym->st_name = (*ind)->st_name;
7158 ssym->st_info = (*ind)->st_info;
7159 ssym->st_other = (*ind)->st_other;
7160 ssymhead->count++;
7161 }
7162 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7163 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7164 == total_size));
7165
7166 free (indbuf);
7167 return ssymbuf;
7168 }
7169
7170 /* Check if 2 sections define the same set of local and global
7171 symbols. */
7172
7173 static bfd_boolean
7174 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7175 struct bfd_link_info *info)
7176 {
7177 bfd *bfd1, *bfd2;
7178 const struct elf_backend_data *bed1, *bed2;
7179 Elf_Internal_Shdr *hdr1, *hdr2;
7180 bfd_size_type symcount1, symcount2;
7181 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7182 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7183 Elf_Internal_Sym *isym, *isymend;
7184 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7185 bfd_size_type count1, count2, i;
7186 unsigned int shndx1, shndx2;
7187 bfd_boolean result;
7188
7189 bfd1 = sec1->owner;
7190 bfd2 = sec2->owner;
7191
7192 /* Both sections have to be in ELF. */
7193 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7194 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7195 return FALSE;
7196
7197 if (elf_section_type (sec1) != elf_section_type (sec2))
7198 return FALSE;
7199
7200 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7201 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7202 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7203 return FALSE;
7204
7205 bed1 = get_elf_backend_data (bfd1);
7206 bed2 = get_elf_backend_data (bfd2);
7207 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7208 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7209 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7210 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7211
7212 if (symcount1 == 0 || symcount2 == 0)
7213 return FALSE;
7214
7215 result = FALSE;
7216 isymbuf1 = NULL;
7217 isymbuf2 = NULL;
7218 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7219 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7220
7221 if (ssymbuf1 == NULL)
7222 {
7223 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7224 NULL, NULL, NULL);
7225 if (isymbuf1 == NULL)
7226 goto done;
7227
7228 if (!info->reduce_memory_overheads)
7229 elf_tdata (bfd1)->symbuf = ssymbuf1
7230 = elf_create_symbuf (symcount1, isymbuf1);
7231 }
7232
7233 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7234 {
7235 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7236 NULL, NULL, NULL);
7237 if (isymbuf2 == NULL)
7238 goto done;
7239
7240 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7241 elf_tdata (bfd2)->symbuf = ssymbuf2
7242 = elf_create_symbuf (symcount2, isymbuf2);
7243 }
7244
7245 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7246 {
7247 /* Optimized faster version. */
7248 bfd_size_type lo, hi, mid;
7249 struct elf_symbol *symp;
7250 struct elf_symbuf_symbol *ssym, *ssymend;
7251
7252 lo = 0;
7253 hi = ssymbuf1->count;
7254 ssymbuf1++;
7255 count1 = 0;
7256 while (lo < hi)
7257 {
7258 mid = (lo + hi) / 2;
7259 if (shndx1 < ssymbuf1[mid].st_shndx)
7260 hi = mid;
7261 else if (shndx1 > ssymbuf1[mid].st_shndx)
7262 lo = mid + 1;
7263 else
7264 {
7265 count1 = ssymbuf1[mid].count;
7266 ssymbuf1 += mid;
7267 break;
7268 }
7269 }
7270
7271 lo = 0;
7272 hi = ssymbuf2->count;
7273 ssymbuf2++;
7274 count2 = 0;
7275 while (lo < hi)
7276 {
7277 mid = (lo + hi) / 2;
7278 if (shndx2 < ssymbuf2[mid].st_shndx)
7279 hi = mid;
7280 else if (shndx2 > ssymbuf2[mid].st_shndx)
7281 lo = mid + 1;
7282 else
7283 {
7284 count2 = ssymbuf2[mid].count;
7285 ssymbuf2 += mid;
7286 break;
7287 }
7288 }
7289
7290 if (count1 == 0 || count2 == 0 || count1 != count2)
7291 goto done;
7292
7293 symtable1 = (struct elf_symbol *)
7294 bfd_malloc (count1 * sizeof (struct elf_symbol));
7295 symtable2 = (struct elf_symbol *)
7296 bfd_malloc (count2 * sizeof (struct elf_symbol));
7297 if (symtable1 == NULL || symtable2 == NULL)
7298 goto done;
7299
7300 symp = symtable1;
7301 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7302 ssym < ssymend; ssym++, symp++)
7303 {
7304 symp->u.ssym = ssym;
7305 symp->name = bfd_elf_string_from_elf_section (bfd1,
7306 hdr1->sh_link,
7307 ssym->st_name);
7308 }
7309
7310 symp = symtable2;
7311 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7312 ssym < ssymend; ssym++, symp++)
7313 {
7314 symp->u.ssym = ssym;
7315 symp->name = bfd_elf_string_from_elf_section (bfd2,
7316 hdr2->sh_link,
7317 ssym->st_name);
7318 }
7319
7320 /* Sort symbol by name. */
7321 qsort (symtable1, count1, sizeof (struct elf_symbol),
7322 elf_sym_name_compare);
7323 qsort (symtable2, count1, sizeof (struct elf_symbol),
7324 elf_sym_name_compare);
7325
7326 for (i = 0; i < count1; i++)
7327 /* Two symbols must have the same binding, type and name. */
7328 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7329 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7330 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7331 goto done;
7332
7333 result = TRUE;
7334 goto done;
7335 }
7336
7337 symtable1 = (struct elf_symbol *)
7338 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7339 symtable2 = (struct elf_symbol *)
7340 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7341 if (symtable1 == NULL || symtable2 == NULL)
7342 goto done;
7343
7344 /* Count definitions in the section. */
7345 count1 = 0;
7346 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7347 if (isym->st_shndx == shndx1)
7348 symtable1[count1++].u.isym = isym;
7349
7350 count2 = 0;
7351 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7352 if (isym->st_shndx == shndx2)
7353 symtable2[count2++].u.isym = isym;
7354
7355 if (count1 == 0 || count2 == 0 || count1 != count2)
7356 goto done;
7357
7358 for (i = 0; i < count1; i++)
7359 symtable1[i].name
7360 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7361 symtable1[i].u.isym->st_name);
7362
7363 for (i = 0; i < count2; i++)
7364 symtable2[i].name
7365 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7366 symtable2[i].u.isym->st_name);
7367
7368 /* Sort symbol by name. */
7369 qsort (symtable1, count1, sizeof (struct elf_symbol),
7370 elf_sym_name_compare);
7371 qsort (symtable2, count1, sizeof (struct elf_symbol),
7372 elf_sym_name_compare);
7373
7374 for (i = 0; i < count1; i++)
7375 /* Two symbols must have the same binding, type and name. */
7376 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7377 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7378 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7379 goto done;
7380
7381 result = TRUE;
7382
7383 done:
7384 if (symtable1)
7385 free (symtable1);
7386 if (symtable2)
7387 free (symtable2);
7388 if (isymbuf1)
7389 free (isymbuf1);
7390 if (isymbuf2)
7391 free (isymbuf2);
7392
7393 return result;
7394 }
7395
7396 /* Return TRUE if 2 section types are compatible. */
7397
7398 bfd_boolean
7399 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7400 bfd *bbfd, const asection *bsec)
7401 {
7402 if (asec == NULL
7403 || bsec == NULL
7404 || abfd->xvec->flavour != bfd_target_elf_flavour
7405 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7406 return TRUE;
7407
7408 return elf_section_type (asec) == elf_section_type (bsec);
7409 }
7410 \f
7411 /* Final phase of ELF linker. */
7412
7413 /* A structure we use to avoid passing large numbers of arguments. */
7414
7415 struct elf_final_link_info
7416 {
7417 /* General link information. */
7418 struct bfd_link_info *info;
7419 /* Output BFD. */
7420 bfd *output_bfd;
7421 /* Symbol string table. */
7422 struct bfd_strtab_hash *symstrtab;
7423 /* .dynsym section. */
7424 asection *dynsym_sec;
7425 /* .hash section. */
7426 asection *hash_sec;
7427 /* symbol version section (.gnu.version). */
7428 asection *symver_sec;
7429 /* Buffer large enough to hold contents of any section. */
7430 bfd_byte *contents;
7431 /* Buffer large enough to hold external relocs of any section. */
7432 void *external_relocs;
7433 /* Buffer large enough to hold internal relocs of any section. */
7434 Elf_Internal_Rela *internal_relocs;
7435 /* Buffer large enough to hold external local symbols of any input
7436 BFD. */
7437 bfd_byte *external_syms;
7438 /* And a buffer for symbol section indices. */
7439 Elf_External_Sym_Shndx *locsym_shndx;
7440 /* Buffer large enough to hold internal local symbols of any input
7441 BFD. */
7442 Elf_Internal_Sym *internal_syms;
7443 /* Array large enough to hold a symbol index for each local symbol
7444 of any input BFD. */
7445 long *indices;
7446 /* Array large enough to hold a section pointer for each local
7447 symbol of any input BFD. */
7448 asection **sections;
7449 /* Buffer to hold swapped out symbols. */
7450 bfd_byte *symbuf;
7451 /* And one for symbol section indices. */
7452 Elf_External_Sym_Shndx *symshndxbuf;
7453 /* Number of swapped out symbols in buffer. */
7454 size_t symbuf_count;
7455 /* Number of symbols which fit in symbuf. */
7456 size_t symbuf_size;
7457 /* And same for symshndxbuf. */
7458 size_t shndxbuf_size;
7459 /* Number of STT_FILE syms seen. */
7460 size_t filesym_count;
7461 };
7462
7463 /* This struct is used to pass information to elf_link_output_extsym. */
7464
7465 struct elf_outext_info
7466 {
7467 bfd_boolean failed;
7468 bfd_boolean localsyms;
7469 bfd_boolean need_second_pass;
7470 bfd_boolean second_pass;
7471 struct elf_final_link_info *flinfo;
7472 };
7473
7474
7475 /* Support for evaluating a complex relocation.
7476
7477 Complex relocations are generalized, self-describing relocations. The
7478 implementation of them consists of two parts: complex symbols, and the
7479 relocations themselves.
7480
7481 The relocations are use a reserved elf-wide relocation type code (R_RELC
7482 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7483 information (start bit, end bit, word width, etc) into the addend. This
7484 information is extracted from CGEN-generated operand tables within gas.
7485
7486 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7487 internal) representing prefix-notation expressions, including but not
7488 limited to those sorts of expressions normally encoded as addends in the
7489 addend field. The symbol mangling format is:
7490
7491 <node> := <literal>
7492 | <unary-operator> ':' <node>
7493 | <binary-operator> ':' <node> ':' <node>
7494 ;
7495
7496 <literal> := 's' <digits=N> ':' <N character symbol name>
7497 | 'S' <digits=N> ':' <N character section name>
7498 | '#' <hexdigits>
7499 ;
7500
7501 <binary-operator> := as in C
7502 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7503
7504 static void
7505 set_symbol_value (bfd *bfd_with_globals,
7506 Elf_Internal_Sym *isymbuf,
7507 size_t locsymcount,
7508 size_t symidx,
7509 bfd_vma val)
7510 {
7511 struct elf_link_hash_entry **sym_hashes;
7512 struct elf_link_hash_entry *h;
7513 size_t extsymoff = locsymcount;
7514
7515 if (symidx < locsymcount)
7516 {
7517 Elf_Internal_Sym *sym;
7518
7519 sym = isymbuf + symidx;
7520 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7521 {
7522 /* It is a local symbol: move it to the
7523 "absolute" section and give it a value. */
7524 sym->st_shndx = SHN_ABS;
7525 sym->st_value = val;
7526 return;
7527 }
7528 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7529 extsymoff = 0;
7530 }
7531
7532 /* It is a global symbol: set its link type
7533 to "defined" and give it a value. */
7534
7535 sym_hashes = elf_sym_hashes (bfd_with_globals);
7536 h = sym_hashes [symidx - extsymoff];
7537 while (h->root.type == bfd_link_hash_indirect
7538 || h->root.type == bfd_link_hash_warning)
7539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7540 h->root.type = bfd_link_hash_defined;
7541 h->root.u.def.value = val;
7542 h->root.u.def.section = bfd_abs_section_ptr;
7543 }
7544
7545 static bfd_boolean
7546 resolve_symbol (const char *name,
7547 bfd *input_bfd,
7548 struct elf_final_link_info *flinfo,
7549 bfd_vma *result,
7550 Elf_Internal_Sym *isymbuf,
7551 size_t locsymcount)
7552 {
7553 Elf_Internal_Sym *sym;
7554 struct bfd_link_hash_entry *global_entry;
7555 const char *candidate = NULL;
7556 Elf_Internal_Shdr *symtab_hdr;
7557 size_t i;
7558
7559 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7560
7561 for (i = 0; i < locsymcount; ++ i)
7562 {
7563 sym = isymbuf + i;
7564
7565 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7566 continue;
7567
7568 candidate = bfd_elf_string_from_elf_section (input_bfd,
7569 symtab_hdr->sh_link,
7570 sym->st_name);
7571 #ifdef DEBUG
7572 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7573 name, candidate, (unsigned long) sym->st_value);
7574 #endif
7575 if (candidate && strcmp (candidate, name) == 0)
7576 {
7577 asection *sec = flinfo->sections [i];
7578
7579 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7580 *result += sec->output_offset + sec->output_section->vma;
7581 #ifdef DEBUG
7582 printf ("Found symbol with value %8.8lx\n",
7583 (unsigned long) *result);
7584 #endif
7585 return TRUE;
7586 }
7587 }
7588
7589 /* Hmm, haven't found it yet. perhaps it is a global. */
7590 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7591 FALSE, FALSE, TRUE);
7592 if (!global_entry)
7593 return FALSE;
7594
7595 if (global_entry->type == bfd_link_hash_defined
7596 || global_entry->type == bfd_link_hash_defweak)
7597 {
7598 *result = (global_entry->u.def.value
7599 + global_entry->u.def.section->output_section->vma
7600 + global_entry->u.def.section->output_offset);
7601 #ifdef DEBUG
7602 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7603 global_entry->root.string, (unsigned long) *result);
7604 #endif
7605 return TRUE;
7606 }
7607
7608 return FALSE;
7609 }
7610
7611 static bfd_boolean
7612 resolve_section (const char *name,
7613 asection *sections,
7614 bfd_vma *result)
7615 {
7616 asection *curr;
7617 unsigned int len;
7618
7619 for (curr = sections; curr; curr = curr->next)
7620 if (strcmp (curr->name, name) == 0)
7621 {
7622 *result = curr->vma;
7623 return TRUE;
7624 }
7625
7626 /* Hmm. still haven't found it. try pseudo-section names. */
7627 for (curr = sections; curr; curr = curr->next)
7628 {
7629 len = strlen (curr->name);
7630 if (len > strlen (name))
7631 continue;
7632
7633 if (strncmp (curr->name, name, len) == 0)
7634 {
7635 if (strncmp (".end", name + len, 4) == 0)
7636 {
7637 *result = curr->vma + curr->size;
7638 return TRUE;
7639 }
7640
7641 /* Insert more pseudo-section names here, if you like. */
7642 }
7643 }
7644
7645 return FALSE;
7646 }
7647
7648 static void
7649 undefined_reference (const char *reftype, const char *name)
7650 {
7651 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7652 reftype, name);
7653 }
7654
7655 static bfd_boolean
7656 eval_symbol (bfd_vma *result,
7657 const char **symp,
7658 bfd *input_bfd,
7659 struct elf_final_link_info *flinfo,
7660 bfd_vma dot,
7661 Elf_Internal_Sym *isymbuf,
7662 size_t locsymcount,
7663 int signed_p)
7664 {
7665 size_t len;
7666 size_t symlen;
7667 bfd_vma a;
7668 bfd_vma b;
7669 char symbuf[4096];
7670 const char *sym = *symp;
7671 const char *symend;
7672 bfd_boolean symbol_is_section = FALSE;
7673
7674 len = strlen (sym);
7675 symend = sym + len;
7676
7677 if (len < 1 || len > sizeof (symbuf))
7678 {
7679 bfd_set_error (bfd_error_invalid_operation);
7680 return FALSE;
7681 }
7682
7683 switch (* sym)
7684 {
7685 case '.':
7686 *result = dot;
7687 *symp = sym + 1;
7688 return TRUE;
7689
7690 case '#':
7691 ++sym;
7692 *result = strtoul (sym, (char **) symp, 16);
7693 return TRUE;
7694
7695 case 'S':
7696 symbol_is_section = TRUE;
7697 case 's':
7698 ++sym;
7699 symlen = strtol (sym, (char **) symp, 10);
7700 sym = *symp + 1; /* Skip the trailing ':'. */
7701
7702 if (symend < sym || symlen + 1 > sizeof (symbuf))
7703 {
7704 bfd_set_error (bfd_error_invalid_operation);
7705 return FALSE;
7706 }
7707
7708 memcpy (symbuf, sym, symlen);
7709 symbuf[symlen] = '\0';
7710 *symp = sym + symlen;
7711
7712 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7713 the symbol as a section, or vice-versa. so we're pretty liberal in our
7714 interpretation here; section means "try section first", not "must be a
7715 section", and likewise with symbol. */
7716
7717 if (symbol_is_section)
7718 {
7719 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7720 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7721 isymbuf, locsymcount))
7722 {
7723 undefined_reference ("section", symbuf);
7724 return FALSE;
7725 }
7726 }
7727 else
7728 {
7729 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7730 isymbuf, locsymcount)
7731 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7732 result))
7733 {
7734 undefined_reference ("symbol", symbuf);
7735 return FALSE;
7736 }
7737 }
7738
7739 return TRUE;
7740
7741 /* All that remains are operators. */
7742
7743 #define UNARY_OP(op) \
7744 if (strncmp (sym, #op, strlen (#op)) == 0) \
7745 { \
7746 sym += strlen (#op); \
7747 if (*sym == ':') \
7748 ++sym; \
7749 *symp = sym; \
7750 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7751 isymbuf, locsymcount, signed_p)) \
7752 return FALSE; \
7753 if (signed_p) \
7754 *result = op ((bfd_signed_vma) a); \
7755 else \
7756 *result = op a; \
7757 return TRUE; \
7758 }
7759
7760 #define BINARY_OP(op) \
7761 if (strncmp (sym, #op, strlen (#op)) == 0) \
7762 { \
7763 sym += strlen (#op); \
7764 if (*sym == ':') \
7765 ++sym; \
7766 *symp = sym; \
7767 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7768 isymbuf, locsymcount, signed_p)) \
7769 return FALSE; \
7770 ++*symp; \
7771 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7772 isymbuf, locsymcount, signed_p)) \
7773 return FALSE; \
7774 if (signed_p) \
7775 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7776 else \
7777 *result = a op b; \
7778 return TRUE; \
7779 }
7780
7781 default:
7782 UNARY_OP (0-);
7783 BINARY_OP (<<);
7784 BINARY_OP (>>);
7785 BINARY_OP (==);
7786 BINARY_OP (!=);
7787 BINARY_OP (<=);
7788 BINARY_OP (>=);
7789 BINARY_OP (&&);
7790 BINARY_OP (||);
7791 UNARY_OP (~);
7792 UNARY_OP (!);
7793 BINARY_OP (*);
7794 BINARY_OP (/);
7795 BINARY_OP (%);
7796 BINARY_OP (^);
7797 BINARY_OP (|);
7798 BINARY_OP (&);
7799 BINARY_OP (+);
7800 BINARY_OP (-);
7801 BINARY_OP (<);
7802 BINARY_OP (>);
7803 #undef UNARY_OP
7804 #undef BINARY_OP
7805 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7806 bfd_set_error (bfd_error_invalid_operation);
7807 return FALSE;
7808 }
7809 }
7810
7811 static void
7812 put_value (bfd_vma size,
7813 unsigned long chunksz,
7814 bfd *input_bfd,
7815 bfd_vma x,
7816 bfd_byte *location)
7817 {
7818 location += (size - chunksz);
7819
7820 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7821 {
7822 switch (chunksz)
7823 {
7824 default:
7825 case 0:
7826 abort ();
7827 case 1:
7828 bfd_put_8 (input_bfd, x, location);
7829 break;
7830 case 2:
7831 bfd_put_16 (input_bfd, x, location);
7832 break;
7833 case 4:
7834 bfd_put_32 (input_bfd, x, location);
7835 break;
7836 case 8:
7837 #ifdef BFD64
7838 bfd_put_64 (input_bfd, x, location);
7839 #else
7840 abort ();
7841 #endif
7842 break;
7843 }
7844 }
7845 }
7846
7847 static bfd_vma
7848 get_value (bfd_vma size,
7849 unsigned long chunksz,
7850 bfd *input_bfd,
7851 bfd_byte *location)
7852 {
7853 int shift;
7854 bfd_vma x = 0;
7855
7856 /* Sanity checks. */
7857 BFD_ASSERT (chunksz <= sizeof (x)
7858 && size >= chunksz
7859 && chunksz != 0
7860 && (size % chunksz) == 0
7861 && input_bfd != NULL
7862 && location != NULL);
7863
7864 if (chunksz == sizeof (x))
7865 {
7866 BFD_ASSERT (size == chunksz);
7867
7868 /* Make sure that we do not perform an undefined shift operation.
7869 We know that size == chunksz so there will only be one iteration
7870 of the loop below. */
7871 shift = 0;
7872 }
7873 else
7874 shift = 8 * chunksz;
7875
7876 for (; size; size -= chunksz, location += chunksz)
7877 {
7878 switch (chunksz)
7879 {
7880 case 1:
7881 x = (x << shift) | bfd_get_8 (input_bfd, location);
7882 break;
7883 case 2:
7884 x = (x << shift) | bfd_get_16 (input_bfd, location);
7885 break;
7886 case 4:
7887 x = (x << shift) | bfd_get_32 (input_bfd, location);
7888 break;
7889 #ifdef BFD64
7890 case 8:
7891 x = (x << shift) | bfd_get_64 (input_bfd, location);
7892 break;
7893 #endif
7894 default:
7895 abort ();
7896 }
7897 }
7898 return x;
7899 }
7900
7901 static void
7902 decode_complex_addend (unsigned long *start, /* in bits */
7903 unsigned long *oplen, /* in bits */
7904 unsigned long *len, /* in bits */
7905 unsigned long *wordsz, /* in bytes */
7906 unsigned long *chunksz, /* in bytes */
7907 unsigned long *lsb0_p,
7908 unsigned long *signed_p,
7909 unsigned long *trunc_p,
7910 unsigned long encoded)
7911 {
7912 * start = encoded & 0x3F;
7913 * len = (encoded >> 6) & 0x3F;
7914 * oplen = (encoded >> 12) & 0x3F;
7915 * wordsz = (encoded >> 18) & 0xF;
7916 * chunksz = (encoded >> 22) & 0xF;
7917 * lsb0_p = (encoded >> 27) & 1;
7918 * signed_p = (encoded >> 28) & 1;
7919 * trunc_p = (encoded >> 29) & 1;
7920 }
7921
7922 bfd_reloc_status_type
7923 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7924 asection *input_section ATTRIBUTE_UNUSED,
7925 bfd_byte *contents,
7926 Elf_Internal_Rela *rel,
7927 bfd_vma relocation)
7928 {
7929 bfd_vma shift, x, mask;
7930 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7931 bfd_reloc_status_type r;
7932
7933 /* Perform this reloc, since it is complex.
7934 (this is not to say that it necessarily refers to a complex
7935 symbol; merely that it is a self-describing CGEN based reloc.
7936 i.e. the addend has the complete reloc information (bit start, end,
7937 word size, etc) encoded within it.). */
7938
7939 decode_complex_addend (&start, &oplen, &len, &wordsz,
7940 &chunksz, &lsb0_p, &signed_p,
7941 &trunc_p, rel->r_addend);
7942
7943 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7944
7945 if (lsb0_p)
7946 shift = (start + 1) - len;
7947 else
7948 shift = (8 * wordsz) - (start + len);
7949
7950 /* FIXME: octets_per_byte. */
7951 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7952
7953 #ifdef DEBUG
7954 printf ("Doing complex reloc: "
7955 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7956 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7957 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7958 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7959 oplen, (unsigned long) x, (unsigned long) mask,
7960 (unsigned long) relocation);
7961 #endif
7962
7963 r = bfd_reloc_ok;
7964 if (! trunc_p)
7965 /* Now do an overflow check. */
7966 r = bfd_check_overflow ((signed_p
7967 ? complain_overflow_signed
7968 : complain_overflow_unsigned),
7969 len, 0, (8 * wordsz),
7970 relocation);
7971
7972 /* Do the deed. */
7973 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7974
7975 #ifdef DEBUG
7976 printf (" relocation: %8.8lx\n"
7977 " shifted mask: %8.8lx\n"
7978 " shifted/masked reloc: %8.8lx\n"
7979 " result: %8.8lx\n",
7980 (unsigned long) relocation, (unsigned long) (mask << shift),
7981 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7982 #endif
7983 /* FIXME: octets_per_byte. */
7984 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7985 return r;
7986 }
7987
7988 /* When performing a relocatable link, the input relocations are
7989 preserved. But, if they reference global symbols, the indices
7990 referenced must be updated. Update all the relocations found in
7991 RELDATA. */
7992
7993 static void
7994 elf_link_adjust_relocs (bfd *abfd,
7995 struct bfd_elf_section_reloc_data *reldata)
7996 {
7997 unsigned int i;
7998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7999 bfd_byte *erela;
8000 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8001 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8002 bfd_vma r_type_mask;
8003 int r_sym_shift;
8004 unsigned int count = reldata->count;
8005 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8006
8007 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8008 {
8009 swap_in = bed->s->swap_reloc_in;
8010 swap_out = bed->s->swap_reloc_out;
8011 }
8012 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8013 {
8014 swap_in = bed->s->swap_reloca_in;
8015 swap_out = bed->s->swap_reloca_out;
8016 }
8017 else
8018 abort ();
8019
8020 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8021 abort ();
8022
8023 if (bed->s->arch_size == 32)
8024 {
8025 r_type_mask = 0xff;
8026 r_sym_shift = 8;
8027 }
8028 else
8029 {
8030 r_type_mask = 0xffffffff;
8031 r_sym_shift = 32;
8032 }
8033
8034 erela = reldata->hdr->contents;
8035 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8036 {
8037 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8038 unsigned int j;
8039
8040 if (*rel_hash == NULL)
8041 continue;
8042
8043 BFD_ASSERT ((*rel_hash)->indx >= 0);
8044
8045 (*swap_in) (abfd, erela, irela);
8046 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8047 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8048 | (irela[j].r_info & r_type_mask));
8049 (*swap_out) (abfd, irela, erela);
8050 }
8051 }
8052
8053 struct elf_link_sort_rela
8054 {
8055 union {
8056 bfd_vma offset;
8057 bfd_vma sym_mask;
8058 } u;
8059 enum elf_reloc_type_class type;
8060 /* We use this as an array of size int_rels_per_ext_rel. */
8061 Elf_Internal_Rela rela[1];
8062 };
8063
8064 static int
8065 elf_link_sort_cmp1 (const void *A, const void *B)
8066 {
8067 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8068 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8069 int relativea, relativeb;
8070
8071 relativea = a->type == reloc_class_relative;
8072 relativeb = b->type == reloc_class_relative;
8073
8074 if (relativea < relativeb)
8075 return 1;
8076 if (relativea > relativeb)
8077 return -1;
8078 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8079 return -1;
8080 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8081 return 1;
8082 if (a->rela->r_offset < b->rela->r_offset)
8083 return -1;
8084 if (a->rela->r_offset > b->rela->r_offset)
8085 return 1;
8086 return 0;
8087 }
8088
8089 static int
8090 elf_link_sort_cmp2 (const void *A, const void *B)
8091 {
8092 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8093 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8094
8095 if (a->type < b->type)
8096 return -1;
8097 if (a->type > b->type)
8098 return 1;
8099 if (a->u.offset < b->u.offset)
8100 return -1;
8101 if (a->u.offset > b->u.offset)
8102 return 1;
8103 if (a->rela->r_offset < b->rela->r_offset)
8104 return -1;
8105 if (a->rela->r_offset > b->rela->r_offset)
8106 return 1;
8107 return 0;
8108 }
8109
8110 static size_t
8111 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8112 {
8113 asection *dynamic_relocs;
8114 asection *rela_dyn;
8115 asection *rel_dyn;
8116 bfd_size_type count, size;
8117 size_t i, ret, sort_elt, ext_size;
8118 bfd_byte *sort, *s_non_relative, *p;
8119 struct elf_link_sort_rela *sq;
8120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8121 int i2e = bed->s->int_rels_per_ext_rel;
8122 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8123 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8124 struct bfd_link_order *lo;
8125 bfd_vma r_sym_mask;
8126 bfd_boolean use_rela;
8127
8128 /* Find a dynamic reloc section. */
8129 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8130 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8131 if (rela_dyn != NULL && rela_dyn->size > 0
8132 && rel_dyn != NULL && rel_dyn->size > 0)
8133 {
8134 bfd_boolean use_rela_initialised = FALSE;
8135
8136 /* This is just here to stop gcc from complaining.
8137 It's initialization checking code is not perfect. */
8138 use_rela = TRUE;
8139
8140 /* Both sections are present. Examine the sizes
8141 of the indirect sections to help us choose. */
8142 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8143 if (lo->type == bfd_indirect_link_order)
8144 {
8145 asection *o = lo->u.indirect.section;
8146
8147 if ((o->size % bed->s->sizeof_rela) == 0)
8148 {
8149 if ((o->size % bed->s->sizeof_rel) == 0)
8150 /* Section size is divisible by both rel and rela sizes.
8151 It is of no help to us. */
8152 ;
8153 else
8154 {
8155 /* Section size is only divisible by rela. */
8156 if (use_rela_initialised && (use_rela == FALSE))
8157 {
8158 _bfd_error_handler
8159 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8160 bfd_set_error (bfd_error_invalid_operation);
8161 return 0;
8162 }
8163 else
8164 {
8165 use_rela = TRUE;
8166 use_rela_initialised = TRUE;
8167 }
8168 }
8169 }
8170 else if ((o->size % bed->s->sizeof_rel) == 0)
8171 {
8172 /* Section size is only divisible by rel. */
8173 if (use_rela_initialised && (use_rela == TRUE))
8174 {
8175 _bfd_error_handler
8176 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8177 bfd_set_error (bfd_error_invalid_operation);
8178 return 0;
8179 }
8180 else
8181 {
8182 use_rela = FALSE;
8183 use_rela_initialised = TRUE;
8184 }
8185 }
8186 else
8187 {
8188 /* The section size is not divisible by either - something is wrong. */
8189 _bfd_error_handler
8190 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8191 bfd_set_error (bfd_error_invalid_operation);
8192 return 0;
8193 }
8194 }
8195
8196 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8197 if (lo->type == bfd_indirect_link_order)
8198 {
8199 asection *o = lo->u.indirect.section;
8200
8201 if ((o->size % bed->s->sizeof_rela) == 0)
8202 {
8203 if ((o->size % bed->s->sizeof_rel) == 0)
8204 /* Section size is divisible by both rel and rela sizes.
8205 It is of no help to us. */
8206 ;
8207 else
8208 {
8209 /* Section size is only divisible by rela. */
8210 if (use_rela_initialised && (use_rela == FALSE))
8211 {
8212 _bfd_error_handler
8213 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8214 bfd_set_error (bfd_error_invalid_operation);
8215 return 0;
8216 }
8217 else
8218 {
8219 use_rela = TRUE;
8220 use_rela_initialised = TRUE;
8221 }
8222 }
8223 }
8224 else if ((o->size % bed->s->sizeof_rel) == 0)
8225 {
8226 /* Section size is only divisible by rel. */
8227 if (use_rela_initialised && (use_rela == TRUE))
8228 {
8229 _bfd_error_handler
8230 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8231 bfd_set_error (bfd_error_invalid_operation);
8232 return 0;
8233 }
8234 else
8235 {
8236 use_rela = FALSE;
8237 use_rela_initialised = TRUE;
8238 }
8239 }
8240 else
8241 {
8242 /* The section size is not divisible by either - something is wrong. */
8243 _bfd_error_handler
8244 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8245 bfd_set_error (bfd_error_invalid_operation);
8246 return 0;
8247 }
8248 }
8249
8250 if (! use_rela_initialised)
8251 /* Make a guess. */
8252 use_rela = TRUE;
8253 }
8254 else if (rela_dyn != NULL && rela_dyn->size > 0)
8255 use_rela = TRUE;
8256 else if (rel_dyn != NULL && rel_dyn->size > 0)
8257 use_rela = FALSE;
8258 else
8259 return 0;
8260
8261 if (use_rela)
8262 {
8263 dynamic_relocs = rela_dyn;
8264 ext_size = bed->s->sizeof_rela;
8265 swap_in = bed->s->swap_reloca_in;
8266 swap_out = bed->s->swap_reloca_out;
8267 }
8268 else
8269 {
8270 dynamic_relocs = rel_dyn;
8271 ext_size = bed->s->sizeof_rel;
8272 swap_in = bed->s->swap_reloc_in;
8273 swap_out = bed->s->swap_reloc_out;
8274 }
8275
8276 size = 0;
8277 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8278 if (lo->type == bfd_indirect_link_order)
8279 size += lo->u.indirect.section->size;
8280
8281 if (size != dynamic_relocs->size)
8282 return 0;
8283
8284 sort_elt = (sizeof (struct elf_link_sort_rela)
8285 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8286
8287 count = dynamic_relocs->size / ext_size;
8288 if (count == 0)
8289 return 0;
8290 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8291
8292 if (sort == NULL)
8293 {
8294 (*info->callbacks->warning)
8295 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8296 return 0;
8297 }
8298
8299 if (bed->s->arch_size == 32)
8300 r_sym_mask = ~(bfd_vma) 0xff;
8301 else
8302 r_sym_mask = ~(bfd_vma) 0xffffffff;
8303
8304 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8305 if (lo->type == bfd_indirect_link_order)
8306 {
8307 bfd_byte *erel, *erelend;
8308 asection *o = lo->u.indirect.section;
8309
8310 if (o->contents == NULL && o->size != 0)
8311 {
8312 /* This is a reloc section that is being handled as a normal
8313 section. See bfd_section_from_shdr. We can't combine
8314 relocs in this case. */
8315 free (sort);
8316 return 0;
8317 }
8318 erel = o->contents;
8319 erelend = o->contents + o->size;
8320 /* FIXME: octets_per_byte. */
8321 p = sort + o->output_offset / ext_size * sort_elt;
8322
8323 while (erel < erelend)
8324 {
8325 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8326
8327 (*swap_in) (abfd, erel, s->rela);
8328 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8329 s->u.sym_mask = r_sym_mask;
8330 p += sort_elt;
8331 erel += ext_size;
8332 }
8333 }
8334
8335 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8336
8337 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8338 {
8339 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8340 if (s->type != reloc_class_relative)
8341 break;
8342 }
8343 ret = i;
8344 s_non_relative = p;
8345
8346 sq = (struct elf_link_sort_rela *) s_non_relative;
8347 for (; i < count; i++, p += sort_elt)
8348 {
8349 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8350 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8351 sq = sp;
8352 sp->u.offset = sq->rela->r_offset;
8353 }
8354
8355 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8356
8357 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8358 if (lo->type == bfd_indirect_link_order)
8359 {
8360 bfd_byte *erel, *erelend;
8361 asection *o = lo->u.indirect.section;
8362
8363 erel = o->contents;
8364 erelend = o->contents + o->size;
8365 /* FIXME: octets_per_byte. */
8366 p = sort + o->output_offset / ext_size * sort_elt;
8367 while (erel < erelend)
8368 {
8369 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8370 (*swap_out) (abfd, s->rela, erel);
8371 p += sort_elt;
8372 erel += ext_size;
8373 }
8374 }
8375
8376 free (sort);
8377 *psec = dynamic_relocs;
8378 return ret;
8379 }
8380
8381 /* Flush the output symbols to the file. */
8382
8383 static bfd_boolean
8384 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8385 const struct elf_backend_data *bed)
8386 {
8387 if (flinfo->symbuf_count > 0)
8388 {
8389 Elf_Internal_Shdr *hdr;
8390 file_ptr pos;
8391 bfd_size_type amt;
8392
8393 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8394 pos = hdr->sh_offset + hdr->sh_size;
8395 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8396 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8397 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8398 return FALSE;
8399
8400 hdr->sh_size += amt;
8401 flinfo->symbuf_count = 0;
8402 }
8403
8404 return TRUE;
8405 }
8406
8407 /* Add a symbol to the output symbol table. */
8408
8409 static int
8410 elf_link_output_sym (struct elf_final_link_info *flinfo,
8411 const char *name,
8412 Elf_Internal_Sym *elfsym,
8413 asection *input_sec,
8414 struct elf_link_hash_entry *h)
8415 {
8416 bfd_byte *dest;
8417 Elf_External_Sym_Shndx *destshndx;
8418 int (*output_symbol_hook)
8419 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8420 struct elf_link_hash_entry *);
8421 const struct elf_backend_data *bed;
8422
8423 bed = get_elf_backend_data (flinfo->output_bfd);
8424 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8425 if (output_symbol_hook != NULL)
8426 {
8427 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8428 if (ret != 1)
8429 return ret;
8430 }
8431
8432 if (name == NULL || *name == '\0')
8433 elfsym->st_name = 0;
8434 else if (input_sec->flags & SEC_EXCLUDE)
8435 elfsym->st_name = 0;
8436 else
8437 {
8438 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8439 name, TRUE, FALSE);
8440 if (elfsym->st_name == (unsigned long) -1)
8441 return 0;
8442 }
8443
8444 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8445 {
8446 if (! elf_link_flush_output_syms (flinfo, bed))
8447 return 0;
8448 }
8449
8450 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8451 destshndx = flinfo->symshndxbuf;
8452 if (destshndx != NULL)
8453 {
8454 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8455 {
8456 bfd_size_type amt;
8457
8458 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8459 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8460 amt * 2);
8461 if (destshndx == NULL)
8462 return 0;
8463 flinfo->symshndxbuf = destshndx;
8464 memset ((char *) destshndx + amt, 0, amt);
8465 flinfo->shndxbuf_size *= 2;
8466 }
8467 destshndx += bfd_get_symcount (flinfo->output_bfd);
8468 }
8469
8470 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8471 flinfo->symbuf_count += 1;
8472 bfd_get_symcount (flinfo->output_bfd) += 1;
8473
8474 return 1;
8475 }
8476
8477 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8478
8479 static bfd_boolean
8480 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8481 {
8482 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8483 && sym->st_shndx < SHN_LORESERVE)
8484 {
8485 /* The gABI doesn't support dynamic symbols in output sections
8486 beyond 64k. */
8487 (*_bfd_error_handler)
8488 (_("%B: Too many sections: %d (>= %d)"),
8489 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8490 bfd_set_error (bfd_error_nonrepresentable_section);
8491 return FALSE;
8492 }
8493 return TRUE;
8494 }
8495
8496 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8497 allowing an unsatisfied unversioned symbol in the DSO to match a
8498 versioned symbol that would normally require an explicit version.
8499 We also handle the case that a DSO references a hidden symbol
8500 which may be satisfied by a versioned symbol in another DSO. */
8501
8502 static bfd_boolean
8503 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8504 const struct elf_backend_data *bed,
8505 struct elf_link_hash_entry *h)
8506 {
8507 bfd *abfd;
8508 struct elf_link_loaded_list *loaded;
8509
8510 if (!is_elf_hash_table (info->hash))
8511 return FALSE;
8512
8513 /* Check indirect symbol. */
8514 while (h->root.type == bfd_link_hash_indirect)
8515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8516
8517 switch (h->root.type)
8518 {
8519 default:
8520 abfd = NULL;
8521 break;
8522
8523 case bfd_link_hash_undefined:
8524 case bfd_link_hash_undefweak:
8525 abfd = h->root.u.undef.abfd;
8526 if ((abfd->flags & DYNAMIC) == 0
8527 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8528 return FALSE;
8529 break;
8530
8531 case bfd_link_hash_defined:
8532 case bfd_link_hash_defweak:
8533 abfd = h->root.u.def.section->owner;
8534 break;
8535
8536 case bfd_link_hash_common:
8537 abfd = h->root.u.c.p->section->owner;
8538 break;
8539 }
8540 BFD_ASSERT (abfd != NULL);
8541
8542 for (loaded = elf_hash_table (info)->loaded;
8543 loaded != NULL;
8544 loaded = loaded->next)
8545 {
8546 bfd *input;
8547 Elf_Internal_Shdr *hdr;
8548 bfd_size_type symcount;
8549 bfd_size_type extsymcount;
8550 bfd_size_type extsymoff;
8551 Elf_Internal_Shdr *versymhdr;
8552 Elf_Internal_Sym *isym;
8553 Elf_Internal_Sym *isymend;
8554 Elf_Internal_Sym *isymbuf;
8555 Elf_External_Versym *ever;
8556 Elf_External_Versym *extversym;
8557
8558 input = loaded->abfd;
8559
8560 /* We check each DSO for a possible hidden versioned definition. */
8561 if (input == abfd
8562 || (input->flags & DYNAMIC) == 0
8563 || elf_dynversym (input) == 0)
8564 continue;
8565
8566 hdr = &elf_tdata (input)->dynsymtab_hdr;
8567
8568 symcount = hdr->sh_size / bed->s->sizeof_sym;
8569 if (elf_bad_symtab (input))
8570 {
8571 extsymcount = symcount;
8572 extsymoff = 0;
8573 }
8574 else
8575 {
8576 extsymcount = symcount - hdr->sh_info;
8577 extsymoff = hdr->sh_info;
8578 }
8579
8580 if (extsymcount == 0)
8581 continue;
8582
8583 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8584 NULL, NULL, NULL);
8585 if (isymbuf == NULL)
8586 return FALSE;
8587
8588 /* Read in any version definitions. */
8589 versymhdr = &elf_tdata (input)->dynversym_hdr;
8590 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8591 if (extversym == NULL)
8592 goto error_ret;
8593
8594 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8595 || (bfd_bread (extversym, versymhdr->sh_size, input)
8596 != versymhdr->sh_size))
8597 {
8598 free (extversym);
8599 error_ret:
8600 free (isymbuf);
8601 return FALSE;
8602 }
8603
8604 ever = extversym + extsymoff;
8605 isymend = isymbuf + extsymcount;
8606 for (isym = isymbuf; isym < isymend; isym++, ever++)
8607 {
8608 const char *name;
8609 Elf_Internal_Versym iver;
8610 unsigned short version_index;
8611
8612 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8613 || isym->st_shndx == SHN_UNDEF)
8614 continue;
8615
8616 name = bfd_elf_string_from_elf_section (input,
8617 hdr->sh_link,
8618 isym->st_name);
8619 if (strcmp (name, h->root.root.string) != 0)
8620 continue;
8621
8622 _bfd_elf_swap_versym_in (input, ever, &iver);
8623
8624 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8625 && !(h->def_regular
8626 && h->forced_local))
8627 {
8628 /* If we have a non-hidden versioned sym, then it should
8629 have provided a definition for the undefined sym unless
8630 it is defined in a non-shared object and forced local.
8631 */
8632 abort ();
8633 }
8634
8635 version_index = iver.vs_vers & VERSYM_VERSION;
8636 if (version_index == 1 || version_index == 2)
8637 {
8638 /* This is the base or first version. We can use it. */
8639 free (extversym);
8640 free (isymbuf);
8641 return TRUE;
8642 }
8643 }
8644
8645 free (extversym);
8646 free (isymbuf);
8647 }
8648
8649 return FALSE;
8650 }
8651
8652 /* Add an external symbol to the symbol table. This is called from
8653 the hash table traversal routine. When generating a shared object,
8654 we go through the symbol table twice. The first time we output
8655 anything that might have been forced to local scope in a version
8656 script. The second time we output the symbols that are still
8657 global symbols. */
8658
8659 static bfd_boolean
8660 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8661 {
8662 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8663 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8664 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8665 bfd_boolean strip;
8666 Elf_Internal_Sym sym;
8667 asection *input_sec;
8668 const struct elf_backend_data *bed;
8669 long indx;
8670 int ret;
8671
8672 if (h->root.type == bfd_link_hash_warning)
8673 {
8674 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8675 if (h->root.type == bfd_link_hash_new)
8676 return TRUE;
8677 }
8678
8679 /* Decide whether to output this symbol in this pass. */
8680 if (eoinfo->localsyms)
8681 {
8682 if (!h->forced_local)
8683 return TRUE;
8684 if (eoinfo->second_pass
8685 && !((h->root.type == bfd_link_hash_defined
8686 || h->root.type == bfd_link_hash_defweak)
8687 && h->root.u.def.section->output_section != NULL))
8688 return TRUE;
8689 }
8690 else
8691 {
8692 if (h->forced_local)
8693 return TRUE;
8694 }
8695
8696 bed = get_elf_backend_data (flinfo->output_bfd);
8697
8698 if (h->root.type == bfd_link_hash_undefined)
8699 {
8700 /* If we have an undefined symbol reference here then it must have
8701 come from a shared library that is being linked in. (Undefined
8702 references in regular files have already been handled unless
8703 they are in unreferenced sections which are removed by garbage
8704 collection). */
8705 bfd_boolean ignore_undef = FALSE;
8706
8707 /* Some symbols may be special in that the fact that they're
8708 undefined can be safely ignored - let backend determine that. */
8709 if (bed->elf_backend_ignore_undef_symbol)
8710 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8711
8712 /* If we are reporting errors for this situation then do so now. */
8713 if (!ignore_undef
8714 && h->ref_dynamic
8715 && (!h->ref_regular || flinfo->info->gc_sections)
8716 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8717 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8718 {
8719 if (!(flinfo->info->callbacks->undefined_symbol
8720 (flinfo->info, h->root.root.string,
8721 h->ref_regular ? NULL : h->root.u.undef.abfd,
8722 NULL, 0,
8723 (flinfo->info->unresolved_syms_in_shared_libs
8724 == RM_GENERATE_ERROR))))
8725 {
8726 bfd_set_error (bfd_error_bad_value);
8727 eoinfo->failed = TRUE;
8728 return FALSE;
8729 }
8730 }
8731 }
8732
8733 /* We should also warn if a forced local symbol is referenced from
8734 shared libraries. */
8735 if (!flinfo->info->relocatable
8736 && flinfo->info->executable
8737 && h->forced_local
8738 && h->ref_dynamic
8739 && h->def_regular
8740 && !h->dynamic_def
8741 && h->ref_dynamic_nonweak
8742 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8743 {
8744 bfd *def_bfd;
8745 const char *msg;
8746 struct elf_link_hash_entry *hi = h;
8747
8748 /* Check indirect symbol. */
8749 while (hi->root.type == bfd_link_hash_indirect)
8750 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8751
8752 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8753 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8754 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8755 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8756 else
8757 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8758 def_bfd = flinfo->output_bfd;
8759 if (hi->root.u.def.section != bfd_abs_section_ptr)
8760 def_bfd = hi->root.u.def.section->owner;
8761 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8762 h->root.root.string);
8763 bfd_set_error (bfd_error_bad_value);
8764 eoinfo->failed = TRUE;
8765 return FALSE;
8766 }
8767
8768 /* We don't want to output symbols that have never been mentioned by
8769 a regular file, or that we have been told to strip. However, if
8770 h->indx is set to -2, the symbol is used by a reloc and we must
8771 output it. */
8772 if (h->indx == -2)
8773 strip = FALSE;
8774 else if ((h->def_dynamic
8775 || h->ref_dynamic
8776 || h->root.type == bfd_link_hash_new)
8777 && !h->def_regular
8778 && !h->ref_regular)
8779 strip = TRUE;
8780 else if (flinfo->info->strip == strip_all)
8781 strip = TRUE;
8782 else if (flinfo->info->strip == strip_some
8783 && bfd_hash_lookup (flinfo->info->keep_hash,
8784 h->root.root.string, FALSE, FALSE) == NULL)
8785 strip = TRUE;
8786 else if ((h->root.type == bfd_link_hash_defined
8787 || h->root.type == bfd_link_hash_defweak)
8788 && ((flinfo->info->strip_discarded
8789 && discarded_section (h->root.u.def.section))
8790 || (h->root.u.def.section->owner != NULL
8791 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8792 strip = TRUE;
8793 else if ((h->root.type == bfd_link_hash_undefined
8794 || h->root.type == bfd_link_hash_undefweak)
8795 && h->root.u.undef.abfd != NULL
8796 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8797 strip = TRUE;
8798 else
8799 strip = FALSE;
8800
8801 /* If we're stripping it, and it's not a dynamic symbol, there's
8802 nothing else to do unless it is a forced local symbol or a
8803 STT_GNU_IFUNC symbol. */
8804 if (strip
8805 && h->dynindx == -1
8806 && h->type != STT_GNU_IFUNC
8807 && !h->forced_local)
8808 return TRUE;
8809
8810 sym.st_value = 0;
8811 sym.st_size = h->size;
8812 sym.st_other = h->other;
8813 if (h->forced_local)
8814 {
8815 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8816 /* Turn off visibility on local symbol. */
8817 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8818 }
8819 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8820 else if (h->unique_global && h->def_regular)
8821 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8822 else if (h->root.type == bfd_link_hash_undefweak
8823 || h->root.type == bfd_link_hash_defweak)
8824 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8825 else
8826 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8827 sym.st_target_internal = h->target_internal;
8828
8829 switch (h->root.type)
8830 {
8831 default:
8832 case bfd_link_hash_new:
8833 case bfd_link_hash_warning:
8834 abort ();
8835 return FALSE;
8836
8837 case bfd_link_hash_undefined:
8838 case bfd_link_hash_undefweak:
8839 input_sec = bfd_und_section_ptr;
8840 sym.st_shndx = SHN_UNDEF;
8841 break;
8842
8843 case bfd_link_hash_defined:
8844 case bfd_link_hash_defweak:
8845 {
8846 input_sec = h->root.u.def.section;
8847 if (input_sec->output_section != NULL)
8848 {
8849 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8850 {
8851 bfd_boolean second_pass_sym
8852 = (input_sec->owner == flinfo->output_bfd
8853 || input_sec->owner == NULL
8854 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8855 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8856
8857 eoinfo->need_second_pass |= second_pass_sym;
8858 if (eoinfo->second_pass != second_pass_sym)
8859 return TRUE;
8860 }
8861
8862 sym.st_shndx =
8863 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8864 input_sec->output_section);
8865 if (sym.st_shndx == SHN_BAD)
8866 {
8867 (*_bfd_error_handler)
8868 (_("%B: could not find output section %A for input section %A"),
8869 flinfo->output_bfd, input_sec->output_section, input_sec);
8870 bfd_set_error (bfd_error_nonrepresentable_section);
8871 eoinfo->failed = TRUE;
8872 return FALSE;
8873 }
8874
8875 /* ELF symbols in relocatable files are section relative,
8876 but in nonrelocatable files they are virtual
8877 addresses. */
8878 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8879 if (!flinfo->info->relocatable)
8880 {
8881 sym.st_value += input_sec->output_section->vma;
8882 if (h->type == STT_TLS)
8883 {
8884 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8885 if (tls_sec != NULL)
8886 sym.st_value -= tls_sec->vma;
8887 else
8888 {
8889 /* The TLS section may have been garbage collected. */
8890 BFD_ASSERT (flinfo->info->gc_sections
8891 && !input_sec->gc_mark);
8892 }
8893 }
8894 }
8895 }
8896 else
8897 {
8898 BFD_ASSERT (input_sec->owner == NULL
8899 || (input_sec->owner->flags & DYNAMIC) != 0);
8900 sym.st_shndx = SHN_UNDEF;
8901 input_sec = bfd_und_section_ptr;
8902 }
8903 }
8904 break;
8905
8906 case bfd_link_hash_common:
8907 input_sec = h->root.u.c.p->section;
8908 sym.st_shndx = bed->common_section_index (input_sec);
8909 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8910 break;
8911
8912 case bfd_link_hash_indirect:
8913 /* These symbols are created by symbol versioning. They point
8914 to the decorated version of the name. For example, if the
8915 symbol foo@@GNU_1.2 is the default, which should be used when
8916 foo is used with no version, then we add an indirect symbol
8917 foo which points to foo@@GNU_1.2. We ignore these symbols,
8918 since the indirected symbol is already in the hash table. */
8919 return TRUE;
8920 }
8921
8922 /* Give the processor backend a chance to tweak the symbol value,
8923 and also to finish up anything that needs to be done for this
8924 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8925 forced local syms when non-shared is due to a historical quirk.
8926 STT_GNU_IFUNC symbol must go through PLT. */
8927 if ((h->type == STT_GNU_IFUNC
8928 && h->def_regular
8929 && !flinfo->info->relocatable)
8930 || ((h->dynindx != -1
8931 || h->forced_local)
8932 && ((flinfo->info->shared
8933 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8934 || h->root.type != bfd_link_hash_undefweak))
8935 || !h->forced_local)
8936 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8937 {
8938 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8939 (flinfo->output_bfd, flinfo->info, h, &sym)))
8940 {
8941 eoinfo->failed = TRUE;
8942 return FALSE;
8943 }
8944 }
8945
8946 /* If we are marking the symbol as undefined, and there are no
8947 non-weak references to this symbol from a regular object, then
8948 mark the symbol as weak undefined; if there are non-weak
8949 references, mark the symbol as strong. We can't do this earlier,
8950 because it might not be marked as undefined until the
8951 finish_dynamic_symbol routine gets through with it. */
8952 if (sym.st_shndx == SHN_UNDEF
8953 && h->ref_regular
8954 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8955 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8956 {
8957 int bindtype;
8958 unsigned int type = ELF_ST_TYPE (sym.st_info);
8959
8960 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8961 if (type == STT_GNU_IFUNC)
8962 type = STT_FUNC;
8963
8964 if (h->ref_regular_nonweak)
8965 bindtype = STB_GLOBAL;
8966 else
8967 bindtype = STB_WEAK;
8968 sym.st_info = ELF_ST_INFO (bindtype, type);
8969 }
8970
8971 /* If this is a symbol defined in a dynamic library, don't use the
8972 symbol size from the dynamic library. Relinking an executable
8973 against a new library may introduce gratuitous changes in the
8974 executable's symbols if we keep the size. */
8975 if (sym.st_shndx == SHN_UNDEF
8976 && !h->def_regular
8977 && h->def_dynamic)
8978 sym.st_size = 0;
8979
8980 /* If a non-weak symbol with non-default visibility is not defined
8981 locally, it is a fatal error. */
8982 if (!flinfo->info->relocatable
8983 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8984 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8985 && h->root.type == bfd_link_hash_undefined
8986 && !h->def_regular)
8987 {
8988 const char *msg;
8989
8990 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8991 msg = _("%B: protected symbol `%s' isn't defined");
8992 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8993 msg = _("%B: internal symbol `%s' isn't defined");
8994 else
8995 msg = _("%B: hidden symbol `%s' isn't defined");
8996 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8997 bfd_set_error (bfd_error_bad_value);
8998 eoinfo->failed = TRUE;
8999 return FALSE;
9000 }
9001
9002 /* If this symbol should be put in the .dynsym section, then put it
9003 there now. We already know the symbol index. We also fill in
9004 the entry in the .hash section. */
9005 if (flinfo->dynsym_sec != NULL
9006 && h->dynindx != -1
9007 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9008 {
9009 bfd_byte *esym;
9010
9011 /* Since there is no version information in the dynamic string,
9012 if there is no version info in symbol version section, we will
9013 have a run-time problem. */
9014 if (h->verinfo.verdef == NULL)
9015 {
9016 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9017
9018 if (p && p [1] != '\0')
9019 {
9020 (*_bfd_error_handler)
9021 (_("%B: No symbol version section for versioned symbol `%s'"),
9022 flinfo->output_bfd, h->root.root.string);
9023 eoinfo->failed = TRUE;
9024 return FALSE;
9025 }
9026 }
9027
9028 sym.st_name = h->dynstr_index;
9029 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9030 if (!check_dynsym (flinfo->output_bfd, &sym))
9031 {
9032 eoinfo->failed = TRUE;
9033 return FALSE;
9034 }
9035 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9036
9037 if (flinfo->hash_sec != NULL)
9038 {
9039 size_t hash_entry_size;
9040 bfd_byte *bucketpos;
9041 bfd_vma chain;
9042 size_t bucketcount;
9043 size_t bucket;
9044
9045 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9046 bucket = h->u.elf_hash_value % bucketcount;
9047
9048 hash_entry_size
9049 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9050 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9051 + (bucket + 2) * hash_entry_size);
9052 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9053 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9054 bucketpos);
9055 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9056 ((bfd_byte *) flinfo->hash_sec->contents
9057 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9058 }
9059
9060 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9061 {
9062 Elf_Internal_Versym iversym;
9063 Elf_External_Versym *eversym;
9064
9065 if (!h->def_regular)
9066 {
9067 if (h->verinfo.verdef == NULL)
9068 iversym.vs_vers = 0;
9069 else
9070 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9071 }
9072 else
9073 {
9074 if (h->verinfo.vertree == NULL)
9075 iversym.vs_vers = 1;
9076 else
9077 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9078 if (flinfo->info->create_default_symver)
9079 iversym.vs_vers++;
9080 }
9081
9082 if (h->hidden)
9083 iversym.vs_vers |= VERSYM_HIDDEN;
9084
9085 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9086 eversym += h->dynindx;
9087 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9088 }
9089 }
9090
9091 /* If we're stripping it, then it was just a dynamic symbol, and
9092 there's nothing else to do. */
9093 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9094 return TRUE;
9095
9096 indx = bfd_get_symcount (flinfo->output_bfd);
9097 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9098 if (ret == 0)
9099 {
9100 eoinfo->failed = TRUE;
9101 return FALSE;
9102 }
9103 else if (ret == 1)
9104 h->indx = indx;
9105 else if (h->indx == -2)
9106 abort();
9107
9108 return TRUE;
9109 }
9110
9111 /* Return TRUE if special handling is done for relocs in SEC against
9112 symbols defined in discarded sections. */
9113
9114 static bfd_boolean
9115 elf_section_ignore_discarded_relocs (asection *sec)
9116 {
9117 const struct elf_backend_data *bed;
9118
9119 switch (sec->sec_info_type)
9120 {
9121 case SEC_INFO_TYPE_STABS:
9122 case SEC_INFO_TYPE_EH_FRAME:
9123 return TRUE;
9124 default:
9125 break;
9126 }
9127
9128 bed = get_elf_backend_data (sec->owner);
9129 if (bed->elf_backend_ignore_discarded_relocs != NULL
9130 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9131 return TRUE;
9132
9133 return FALSE;
9134 }
9135
9136 /* Return a mask saying how ld should treat relocations in SEC against
9137 symbols defined in discarded sections. If this function returns
9138 COMPLAIN set, ld will issue a warning message. If this function
9139 returns PRETEND set, and the discarded section was link-once and the
9140 same size as the kept link-once section, ld will pretend that the
9141 symbol was actually defined in the kept section. Otherwise ld will
9142 zero the reloc (at least that is the intent, but some cooperation by
9143 the target dependent code is needed, particularly for REL targets). */
9144
9145 unsigned int
9146 _bfd_elf_default_action_discarded (asection *sec)
9147 {
9148 if (sec->flags & SEC_DEBUGGING)
9149 return PRETEND;
9150
9151 if (strcmp (".eh_frame", sec->name) == 0)
9152 return 0;
9153
9154 if (strcmp (".gcc_except_table", sec->name) == 0)
9155 return 0;
9156
9157 return COMPLAIN | PRETEND;
9158 }
9159
9160 /* Find a match between a section and a member of a section group. */
9161
9162 static asection *
9163 match_group_member (asection *sec, asection *group,
9164 struct bfd_link_info *info)
9165 {
9166 asection *first = elf_next_in_group (group);
9167 asection *s = first;
9168
9169 while (s != NULL)
9170 {
9171 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9172 return s;
9173
9174 s = elf_next_in_group (s);
9175 if (s == first)
9176 break;
9177 }
9178
9179 return NULL;
9180 }
9181
9182 /* Check if the kept section of a discarded section SEC can be used
9183 to replace it. Return the replacement if it is OK. Otherwise return
9184 NULL. */
9185
9186 asection *
9187 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9188 {
9189 asection *kept;
9190
9191 kept = sec->kept_section;
9192 if (kept != NULL)
9193 {
9194 if ((kept->flags & SEC_GROUP) != 0)
9195 kept = match_group_member (sec, kept, info);
9196 if (kept != NULL
9197 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9198 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9199 kept = NULL;
9200 sec->kept_section = kept;
9201 }
9202 return kept;
9203 }
9204
9205 /* Link an input file into the linker output file. This function
9206 handles all the sections and relocations of the input file at once.
9207 This is so that we only have to read the local symbols once, and
9208 don't have to keep them in memory. */
9209
9210 static bfd_boolean
9211 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9212 {
9213 int (*relocate_section)
9214 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9215 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9216 bfd *output_bfd;
9217 Elf_Internal_Shdr *symtab_hdr;
9218 size_t locsymcount;
9219 size_t extsymoff;
9220 Elf_Internal_Sym *isymbuf;
9221 Elf_Internal_Sym *isym;
9222 Elf_Internal_Sym *isymend;
9223 long *pindex;
9224 asection **ppsection;
9225 asection *o;
9226 const struct elf_backend_data *bed;
9227 struct elf_link_hash_entry **sym_hashes;
9228 bfd_size_type address_size;
9229 bfd_vma r_type_mask;
9230 int r_sym_shift;
9231 bfd_boolean have_file_sym = FALSE;
9232
9233 output_bfd = flinfo->output_bfd;
9234 bed = get_elf_backend_data (output_bfd);
9235 relocate_section = bed->elf_backend_relocate_section;
9236
9237 /* If this is a dynamic object, we don't want to do anything here:
9238 we don't want the local symbols, and we don't want the section
9239 contents. */
9240 if ((input_bfd->flags & DYNAMIC) != 0)
9241 return TRUE;
9242
9243 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9244 if (elf_bad_symtab (input_bfd))
9245 {
9246 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9247 extsymoff = 0;
9248 }
9249 else
9250 {
9251 locsymcount = symtab_hdr->sh_info;
9252 extsymoff = symtab_hdr->sh_info;
9253 }
9254
9255 /* Read the local symbols. */
9256 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9257 if (isymbuf == NULL && locsymcount != 0)
9258 {
9259 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9260 flinfo->internal_syms,
9261 flinfo->external_syms,
9262 flinfo->locsym_shndx);
9263 if (isymbuf == NULL)
9264 return FALSE;
9265 }
9266
9267 /* Find local symbol sections and adjust values of symbols in
9268 SEC_MERGE sections. Write out those local symbols we know are
9269 going into the output file. */
9270 isymend = isymbuf + locsymcount;
9271 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9272 isym < isymend;
9273 isym++, pindex++, ppsection++)
9274 {
9275 asection *isec;
9276 const char *name;
9277 Elf_Internal_Sym osym;
9278 long indx;
9279 int ret;
9280
9281 *pindex = -1;
9282
9283 if (elf_bad_symtab (input_bfd))
9284 {
9285 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9286 {
9287 *ppsection = NULL;
9288 continue;
9289 }
9290 }
9291
9292 if (isym->st_shndx == SHN_UNDEF)
9293 isec = bfd_und_section_ptr;
9294 else if (isym->st_shndx == SHN_ABS)
9295 isec = bfd_abs_section_ptr;
9296 else if (isym->st_shndx == SHN_COMMON)
9297 isec = bfd_com_section_ptr;
9298 else
9299 {
9300 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9301 if (isec == NULL)
9302 {
9303 /* Don't attempt to output symbols with st_shnx in the
9304 reserved range other than SHN_ABS and SHN_COMMON. */
9305 *ppsection = NULL;
9306 continue;
9307 }
9308 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9309 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9310 isym->st_value =
9311 _bfd_merged_section_offset (output_bfd, &isec,
9312 elf_section_data (isec)->sec_info,
9313 isym->st_value);
9314 }
9315
9316 *ppsection = isec;
9317
9318 /* Don't output the first, undefined, symbol. */
9319 if (ppsection == flinfo->sections)
9320 continue;
9321
9322 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9323 {
9324 /* We never output section symbols. Instead, we use the
9325 section symbol of the corresponding section in the output
9326 file. */
9327 continue;
9328 }
9329
9330 /* If we are stripping all symbols, we don't want to output this
9331 one. */
9332 if (flinfo->info->strip == strip_all)
9333 continue;
9334
9335 /* If we are discarding all local symbols, we don't want to
9336 output this one. If we are generating a relocatable output
9337 file, then some of the local symbols may be required by
9338 relocs; we output them below as we discover that they are
9339 needed. */
9340 if (flinfo->info->discard == discard_all)
9341 continue;
9342
9343 /* If this symbol is defined in a section which we are
9344 discarding, we don't need to keep it. */
9345 if (isym->st_shndx != SHN_UNDEF
9346 && isym->st_shndx < SHN_LORESERVE
9347 && bfd_section_removed_from_list (output_bfd,
9348 isec->output_section))
9349 continue;
9350
9351 /* Get the name of the symbol. */
9352 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9353 isym->st_name);
9354 if (name == NULL)
9355 return FALSE;
9356
9357 /* See if we are discarding symbols with this name. */
9358 if ((flinfo->info->strip == strip_some
9359 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9360 == NULL))
9361 || (((flinfo->info->discard == discard_sec_merge
9362 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9363 || flinfo->info->discard == discard_l)
9364 && bfd_is_local_label_name (input_bfd, name)))
9365 continue;
9366
9367 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9368 {
9369 have_file_sym = TRUE;
9370 flinfo->filesym_count += 1;
9371 }
9372 if (!have_file_sym)
9373 {
9374 /* In the absence of debug info, bfd_find_nearest_line uses
9375 FILE symbols to determine the source file for local
9376 function symbols. Provide a FILE symbol here if input
9377 files lack such, so that their symbols won't be
9378 associated with a previous input file. It's not the
9379 source file, but the best we can do. */
9380 have_file_sym = TRUE;
9381 flinfo->filesym_count += 1;
9382 memset (&osym, 0, sizeof (osym));
9383 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9384 osym.st_shndx = SHN_ABS;
9385 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9386 bfd_abs_section_ptr, NULL))
9387 return FALSE;
9388 }
9389
9390 osym = *isym;
9391
9392 /* Adjust the section index for the output file. */
9393 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9394 isec->output_section);
9395 if (osym.st_shndx == SHN_BAD)
9396 return FALSE;
9397
9398 /* ELF symbols in relocatable files are section relative, but
9399 in executable files they are virtual addresses. Note that
9400 this code assumes that all ELF sections have an associated
9401 BFD section with a reasonable value for output_offset; below
9402 we assume that they also have a reasonable value for
9403 output_section. Any special sections must be set up to meet
9404 these requirements. */
9405 osym.st_value += isec->output_offset;
9406 if (!flinfo->info->relocatable)
9407 {
9408 osym.st_value += isec->output_section->vma;
9409 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9410 {
9411 /* STT_TLS symbols are relative to PT_TLS segment base. */
9412 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9413 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9414 }
9415 }
9416
9417 indx = bfd_get_symcount (output_bfd);
9418 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9419 if (ret == 0)
9420 return FALSE;
9421 else if (ret == 1)
9422 *pindex = indx;
9423 }
9424
9425 if (bed->s->arch_size == 32)
9426 {
9427 r_type_mask = 0xff;
9428 r_sym_shift = 8;
9429 address_size = 4;
9430 }
9431 else
9432 {
9433 r_type_mask = 0xffffffff;
9434 r_sym_shift = 32;
9435 address_size = 8;
9436 }
9437
9438 /* Relocate the contents of each section. */
9439 sym_hashes = elf_sym_hashes (input_bfd);
9440 for (o = input_bfd->sections; o != NULL; o = o->next)
9441 {
9442 bfd_byte *contents;
9443
9444 if (! o->linker_mark)
9445 {
9446 /* This section was omitted from the link. */
9447 continue;
9448 }
9449
9450 if (flinfo->info->relocatable
9451 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9452 {
9453 /* Deal with the group signature symbol. */
9454 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9455 unsigned long symndx = sec_data->this_hdr.sh_info;
9456 asection *osec = o->output_section;
9457
9458 if (symndx >= locsymcount
9459 || (elf_bad_symtab (input_bfd)
9460 && flinfo->sections[symndx] == NULL))
9461 {
9462 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9463 while (h->root.type == bfd_link_hash_indirect
9464 || h->root.type == bfd_link_hash_warning)
9465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9466 /* Arrange for symbol to be output. */
9467 h->indx = -2;
9468 elf_section_data (osec)->this_hdr.sh_info = -2;
9469 }
9470 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9471 {
9472 /* We'll use the output section target_index. */
9473 asection *sec = flinfo->sections[symndx]->output_section;
9474 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9475 }
9476 else
9477 {
9478 if (flinfo->indices[symndx] == -1)
9479 {
9480 /* Otherwise output the local symbol now. */
9481 Elf_Internal_Sym sym = isymbuf[symndx];
9482 asection *sec = flinfo->sections[symndx]->output_section;
9483 const char *name;
9484 long indx;
9485 int ret;
9486
9487 name = bfd_elf_string_from_elf_section (input_bfd,
9488 symtab_hdr->sh_link,
9489 sym.st_name);
9490 if (name == NULL)
9491 return FALSE;
9492
9493 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9494 sec);
9495 if (sym.st_shndx == SHN_BAD)
9496 return FALSE;
9497
9498 sym.st_value += o->output_offset;
9499
9500 indx = bfd_get_symcount (output_bfd);
9501 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9502 if (ret == 0)
9503 return FALSE;
9504 else if (ret == 1)
9505 flinfo->indices[symndx] = indx;
9506 else
9507 abort ();
9508 }
9509 elf_section_data (osec)->this_hdr.sh_info
9510 = flinfo->indices[symndx];
9511 }
9512 }
9513
9514 if ((o->flags & SEC_HAS_CONTENTS) == 0
9515 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9516 continue;
9517
9518 if ((o->flags & SEC_LINKER_CREATED) != 0)
9519 {
9520 /* Section was created by _bfd_elf_link_create_dynamic_sections
9521 or somesuch. */
9522 continue;
9523 }
9524
9525 /* Get the contents of the section. They have been cached by a
9526 relaxation routine. Note that o is a section in an input
9527 file, so the contents field will not have been set by any of
9528 the routines which work on output files. */
9529 if (elf_section_data (o)->this_hdr.contents != NULL)
9530 contents = elf_section_data (o)->this_hdr.contents;
9531 else
9532 {
9533 contents = flinfo->contents;
9534 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9535 return FALSE;
9536 }
9537
9538 if ((o->flags & SEC_RELOC) != 0)
9539 {
9540 Elf_Internal_Rela *internal_relocs;
9541 Elf_Internal_Rela *rel, *relend;
9542 int action_discarded;
9543 int ret;
9544
9545 /* Get the swapped relocs. */
9546 internal_relocs
9547 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9548 flinfo->internal_relocs, FALSE);
9549 if (internal_relocs == NULL
9550 && o->reloc_count > 0)
9551 return FALSE;
9552
9553 /* We need to reverse-copy input .ctors/.dtors sections if
9554 they are placed in .init_array/.finit_array for output. */
9555 if (o->size > address_size
9556 && ((strncmp (o->name, ".ctors", 6) == 0
9557 && strcmp (o->output_section->name,
9558 ".init_array") == 0)
9559 || (strncmp (o->name, ".dtors", 6) == 0
9560 && strcmp (o->output_section->name,
9561 ".fini_array") == 0))
9562 && (o->name[6] == 0 || o->name[6] == '.'))
9563 {
9564 if (o->size != o->reloc_count * address_size)
9565 {
9566 (*_bfd_error_handler)
9567 (_("error: %B: size of section %A is not "
9568 "multiple of address size"),
9569 input_bfd, o);
9570 bfd_set_error (bfd_error_on_input);
9571 return FALSE;
9572 }
9573 o->flags |= SEC_ELF_REVERSE_COPY;
9574 }
9575
9576 action_discarded = -1;
9577 if (!elf_section_ignore_discarded_relocs (o))
9578 action_discarded = (*bed->action_discarded) (o);
9579
9580 /* Run through the relocs evaluating complex reloc symbols and
9581 looking for relocs against symbols from discarded sections
9582 or section symbols from removed link-once sections.
9583 Complain about relocs against discarded sections. Zero
9584 relocs against removed link-once sections. */
9585
9586 rel = internal_relocs;
9587 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9588 for ( ; rel < relend; rel++)
9589 {
9590 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9591 unsigned int s_type;
9592 asection **ps, *sec;
9593 struct elf_link_hash_entry *h = NULL;
9594 const char *sym_name;
9595
9596 if (r_symndx == STN_UNDEF)
9597 continue;
9598
9599 if (r_symndx >= locsymcount
9600 || (elf_bad_symtab (input_bfd)
9601 && flinfo->sections[r_symndx] == NULL))
9602 {
9603 h = sym_hashes[r_symndx - extsymoff];
9604
9605 /* Badly formatted input files can contain relocs that
9606 reference non-existant symbols. Check here so that
9607 we do not seg fault. */
9608 if (h == NULL)
9609 {
9610 char buffer [32];
9611
9612 sprintf_vma (buffer, rel->r_info);
9613 (*_bfd_error_handler)
9614 (_("error: %B contains a reloc (0x%s) for section %A "
9615 "that references a non-existent global symbol"),
9616 input_bfd, o, buffer);
9617 bfd_set_error (bfd_error_bad_value);
9618 return FALSE;
9619 }
9620
9621 while (h->root.type == bfd_link_hash_indirect
9622 || h->root.type == bfd_link_hash_warning)
9623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9624
9625 s_type = h->type;
9626
9627 ps = NULL;
9628 if (h->root.type == bfd_link_hash_defined
9629 || h->root.type == bfd_link_hash_defweak)
9630 ps = &h->root.u.def.section;
9631
9632 sym_name = h->root.root.string;
9633 }
9634 else
9635 {
9636 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9637
9638 s_type = ELF_ST_TYPE (sym->st_info);
9639 ps = &flinfo->sections[r_symndx];
9640 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9641 sym, *ps);
9642 }
9643
9644 if ((s_type == STT_RELC || s_type == STT_SRELC)
9645 && !flinfo->info->relocatable)
9646 {
9647 bfd_vma val;
9648 bfd_vma dot = (rel->r_offset
9649 + o->output_offset + o->output_section->vma);
9650 #ifdef DEBUG
9651 printf ("Encountered a complex symbol!");
9652 printf (" (input_bfd %s, section %s, reloc %ld\n",
9653 input_bfd->filename, o->name,
9654 (long) (rel - internal_relocs));
9655 printf (" symbol: idx %8.8lx, name %s\n",
9656 r_symndx, sym_name);
9657 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9658 (unsigned long) rel->r_info,
9659 (unsigned long) rel->r_offset);
9660 #endif
9661 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9662 isymbuf, locsymcount, s_type == STT_SRELC))
9663 return FALSE;
9664
9665 /* Symbol evaluated OK. Update to absolute value. */
9666 set_symbol_value (input_bfd, isymbuf, locsymcount,
9667 r_symndx, val);
9668 continue;
9669 }
9670
9671 if (action_discarded != -1 && ps != NULL)
9672 {
9673 /* Complain if the definition comes from a
9674 discarded section. */
9675 if ((sec = *ps) != NULL && discarded_section (sec))
9676 {
9677 BFD_ASSERT (r_symndx != STN_UNDEF);
9678 if (action_discarded & COMPLAIN)
9679 (*flinfo->info->callbacks->einfo)
9680 (_("%X`%s' referenced in section `%A' of %B: "
9681 "defined in discarded section `%A' of %B\n"),
9682 sym_name, o, input_bfd, sec, sec->owner);
9683
9684 /* Try to do the best we can to support buggy old
9685 versions of gcc. Pretend that the symbol is
9686 really defined in the kept linkonce section.
9687 FIXME: This is quite broken. Modifying the
9688 symbol here means we will be changing all later
9689 uses of the symbol, not just in this section. */
9690 if (action_discarded & PRETEND)
9691 {
9692 asection *kept;
9693
9694 kept = _bfd_elf_check_kept_section (sec,
9695 flinfo->info);
9696 if (kept != NULL)
9697 {
9698 *ps = kept;
9699 continue;
9700 }
9701 }
9702 }
9703 }
9704 }
9705
9706 /* Relocate the section by invoking a back end routine.
9707
9708 The back end routine is responsible for adjusting the
9709 section contents as necessary, and (if using Rela relocs
9710 and generating a relocatable output file) adjusting the
9711 reloc addend as necessary.
9712
9713 The back end routine does not have to worry about setting
9714 the reloc address or the reloc symbol index.
9715
9716 The back end routine is given a pointer to the swapped in
9717 internal symbols, and can access the hash table entries
9718 for the external symbols via elf_sym_hashes (input_bfd).
9719
9720 When generating relocatable output, the back end routine
9721 must handle STB_LOCAL/STT_SECTION symbols specially. The
9722 output symbol is going to be a section symbol
9723 corresponding to the output section, which will require
9724 the addend to be adjusted. */
9725
9726 ret = (*relocate_section) (output_bfd, flinfo->info,
9727 input_bfd, o, contents,
9728 internal_relocs,
9729 isymbuf,
9730 flinfo->sections);
9731 if (!ret)
9732 return FALSE;
9733
9734 if (ret == 2
9735 || flinfo->info->relocatable
9736 || flinfo->info->emitrelocations)
9737 {
9738 Elf_Internal_Rela *irela;
9739 Elf_Internal_Rela *irelaend, *irelamid;
9740 bfd_vma last_offset;
9741 struct elf_link_hash_entry **rel_hash;
9742 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9743 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9744 unsigned int next_erel;
9745 bfd_boolean rela_normal;
9746 struct bfd_elf_section_data *esdi, *esdo;
9747
9748 esdi = elf_section_data (o);
9749 esdo = elf_section_data (o->output_section);
9750 rela_normal = FALSE;
9751
9752 /* Adjust the reloc addresses and symbol indices. */
9753
9754 irela = internal_relocs;
9755 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9756 rel_hash = esdo->rel.hashes + esdo->rel.count;
9757 /* We start processing the REL relocs, if any. When we reach
9758 IRELAMID in the loop, we switch to the RELA relocs. */
9759 irelamid = irela;
9760 if (esdi->rel.hdr != NULL)
9761 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9762 * bed->s->int_rels_per_ext_rel);
9763 rel_hash_list = rel_hash;
9764 rela_hash_list = NULL;
9765 last_offset = o->output_offset;
9766 if (!flinfo->info->relocatable)
9767 last_offset += o->output_section->vma;
9768 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9769 {
9770 unsigned long r_symndx;
9771 asection *sec;
9772 Elf_Internal_Sym sym;
9773
9774 if (next_erel == bed->s->int_rels_per_ext_rel)
9775 {
9776 rel_hash++;
9777 next_erel = 0;
9778 }
9779
9780 if (irela == irelamid)
9781 {
9782 rel_hash = esdo->rela.hashes + esdo->rela.count;
9783 rela_hash_list = rel_hash;
9784 rela_normal = bed->rela_normal;
9785 }
9786
9787 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9788 flinfo->info, o,
9789 irela->r_offset);
9790 if (irela->r_offset >= (bfd_vma) -2)
9791 {
9792 /* This is a reloc for a deleted entry or somesuch.
9793 Turn it into an R_*_NONE reloc, at the same
9794 offset as the last reloc. elf_eh_frame.c and
9795 bfd_elf_discard_info rely on reloc offsets
9796 being ordered. */
9797 irela->r_offset = last_offset;
9798 irela->r_info = 0;
9799 irela->r_addend = 0;
9800 continue;
9801 }
9802
9803 irela->r_offset += o->output_offset;
9804
9805 /* Relocs in an executable have to be virtual addresses. */
9806 if (!flinfo->info->relocatable)
9807 irela->r_offset += o->output_section->vma;
9808
9809 last_offset = irela->r_offset;
9810
9811 r_symndx = irela->r_info >> r_sym_shift;
9812 if (r_symndx == STN_UNDEF)
9813 continue;
9814
9815 if (r_symndx >= locsymcount
9816 || (elf_bad_symtab (input_bfd)
9817 && flinfo->sections[r_symndx] == NULL))
9818 {
9819 struct elf_link_hash_entry *rh;
9820 unsigned long indx;
9821
9822 /* This is a reloc against a global symbol. We
9823 have not yet output all the local symbols, so
9824 we do not know the symbol index of any global
9825 symbol. We set the rel_hash entry for this
9826 reloc to point to the global hash table entry
9827 for this symbol. The symbol index is then
9828 set at the end of bfd_elf_final_link. */
9829 indx = r_symndx - extsymoff;
9830 rh = elf_sym_hashes (input_bfd)[indx];
9831 while (rh->root.type == bfd_link_hash_indirect
9832 || rh->root.type == bfd_link_hash_warning)
9833 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9834
9835 /* Setting the index to -2 tells
9836 elf_link_output_extsym that this symbol is
9837 used by a reloc. */
9838 BFD_ASSERT (rh->indx < 0);
9839 rh->indx = -2;
9840
9841 *rel_hash = rh;
9842
9843 continue;
9844 }
9845
9846 /* This is a reloc against a local symbol. */
9847
9848 *rel_hash = NULL;
9849 sym = isymbuf[r_symndx];
9850 sec = flinfo->sections[r_symndx];
9851 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9852 {
9853 /* I suppose the backend ought to fill in the
9854 section of any STT_SECTION symbol against a
9855 processor specific section. */
9856 r_symndx = STN_UNDEF;
9857 if (bfd_is_abs_section (sec))
9858 ;
9859 else if (sec == NULL || sec->owner == NULL)
9860 {
9861 bfd_set_error (bfd_error_bad_value);
9862 return FALSE;
9863 }
9864 else
9865 {
9866 asection *osec = sec->output_section;
9867
9868 /* If we have discarded a section, the output
9869 section will be the absolute section. In
9870 case of discarded SEC_MERGE sections, use
9871 the kept section. relocate_section should
9872 have already handled discarded linkonce
9873 sections. */
9874 if (bfd_is_abs_section (osec)
9875 && sec->kept_section != NULL
9876 && sec->kept_section->output_section != NULL)
9877 {
9878 osec = sec->kept_section->output_section;
9879 irela->r_addend -= osec->vma;
9880 }
9881
9882 if (!bfd_is_abs_section (osec))
9883 {
9884 r_symndx = osec->target_index;
9885 if (r_symndx == STN_UNDEF)
9886 {
9887 irela->r_addend += osec->vma;
9888 osec = _bfd_nearby_section (output_bfd, osec,
9889 osec->vma);
9890 irela->r_addend -= osec->vma;
9891 r_symndx = osec->target_index;
9892 }
9893 }
9894 }
9895
9896 /* Adjust the addend according to where the
9897 section winds up in the output section. */
9898 if (rela_normal)
9899 irela->r_addend += sec->output_offset;
9900 }
9901 else
9902 {
9903 if (flinfo->indices[r_symndx] == -1)
9904 {
9905 unsigned long shlink;
9906 const char *name;
9907 asection *osec;
9908 long indx;
9909
9910 if (flinfo->info->strip == strip_all)
9911 {
9912 /* You can't do ld -r -s. */
9913 bfd_set_error (bfd_error_invalid_operation);
9914 return FALSE;
9915 }
9916
9917 /* This symbol was skipped earlier, but
9918 since it is needed by a reloc, we
9919 must output it now. */
9920 shlink = symtab_hdr->sh_link;
9921 name = (bfd_elf_string_from_elf_section
9922 (input_bfd, shlink, sym.st_name));
9923 if (name == NULL)
9924 return FALSE;
9925
9926 osec = sec->output_section;
9927 sym.st_shndx =
9928 _bfd_elf_section_from_bfd_section (output_bfd,
9929 osec);
9930 if (sym.st_shndx == SHN_BAD)
9931 return FALSE;
9932
9933 sym.st_value += sec->output_offset;
9934 if (!flinfo->info->relocatable)
9935 {
9936 sym.st_value += osec->vma;
9937 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9938 {
9939 /* STT_TLS symbols are relative to PT_TLS
9940 segment base. */
9941 BFD_ASSERT (elf_hash_table (flinfo->info)
9942 ->tls_sec != NULL);
9943 sym.st_value -= (elf_hash_table (flinfo->info)
9944 ->tls_sec->vma);
9945 }
9946 }
9947
9948 indx = bfd_get_symcount (output_bfd);
9949 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9950 NULL);
9951 if (ret == 0)
9952 return FALSE;
9953 else if (ret == 1)
9954 flinfo->indices[r_symndx] = indx;
9955 else
9956 abort ();
9957 }
9958
9959 r_symndx = flinfo->indices[r_symndx];
9960 }
9961
9962 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9963 | (irela->r_info & r_type_mask));
9964 }
9965
9966 /* Swap out the relocs. */
9967 input_rel_hdr = esdi->rel.hdr;
9968 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9969 {
9970 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9971 input_rel_hdr,
9972 internal_relocs,
9973 rel_hash_list))
9974 return FALSE;
9975 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9976 * bed->s->int_rels_per_ext_rel);
9977 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9978 }
9979
9980 input_rela_hdr = esdi->rela.hdr;
9981 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9982 {
9983 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9984 input_rela_hdr,
9985 internal_relocs,
9986 rela_hash_list))
9987 return FALSE;
9988 }
9989 }
9990 }
9991
9992 /* Write out the modified section contents. */
9993 if (bed->elf_backend_write_section
9994 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9995 contents))
9996 {
9997 /* Section written out. */
9998 }
9999 else switch (o->sec_info_type)
10000 {
10001 case SEC_INFO_TYPE_STABS:
10002 if (! (_bfd_write_section_stabs
10003 (output_bfd,
10004 &elf_hash_table (flinfo->info)->stab_info,
10005 o, &elf_section_data (o)->sec_info, contents)))
10006 return FALSE;
10007 break;
10008 case SEC_INFO_TYPE_MERGE:
10009 if (! _bfd_write_merged_section (output_bfd, o,
10010 elf_section_data (o)->sec_info))
10011 return FALSE;
10012 break;
10013 case SEC_INFO_TYPE_EH_FRAME:
10014 {
10015 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10016 o, contents))
10017 return FALSE;
10018 }
10019 break;
10020 default:
10021 {
10022 /* FIXME: octets_per_byte. */
10023 if (! (o->flags & SEC_EXCLUDE))
10024 {
10025 file_ptr offset = (file_ptr) o->output_offset;
10026 bfd_size_type todo = o->size;
10027 if ((o->flags & SEC_ELF_REVERSE_COPY))
10028 {
10029 /* Reverse-copy input section to output. */
10030 do
10031 {
10032 todo -= address_size;
10033 if (! bfd_set_section_contents (output_bfd,
10034 o->output_section,
10035 contents + todo,
10036 offset,
10037 address_size))
10038 return FALSE;
10039 if (todo == 0)
10040 break;
10041 offset += address_size;
10042 }
10043 while (1);
10044 }
10045 else if (! bfd_set_section_contents (output_bfd,
10046 o->output_section,
10047 contents,
10048 offset, todo))
10049 return FALSE;
10050 }
10051 }
10052 break;
10053 }
10054 }
10055
10056 return TRUE;
10057 }
10058
10059 /* Generate a reloc when linking an ELF file. This is a reloc
10060 requested by the linker, and does not come from any input file. This
10061 is used to build constructor and destructor tables when linking
10062 with -Ur. */
10063
10064 static bfd_boolean
10065 elf_reloc_link_order (bfd *output_bfd,
10066 struct bfd_link_info *info,
10067 asection *output_section,
10068 struct bfd_link_order *link_order)
10069 {
10070 reloc_howto_type *howto;
10071 long indx;
10072 bfd_vma offset;
10073 bfd_vma addend;
10074 struct bfd_elf_section_reloc_data *reldata;
10075 struct elf_link_hash_entry **rel_hash_ptr;
10076 Elf_Internal_Shdr *rel_hdr;
10077 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10078 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10079 bfd_byte *erel;
10080 unsigned int i;
10081 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10082
10083 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10084 if (howto == NULL)
10085 {
10086 bfd_set_error (bfd_error_bad_value);
10087 return FALSE;
10088 }
10089
10090 addend = link_order->u.reloc.p->addend;
10091
10092 if (esdo->rel.hdr)
10093 reldata = &esdo->rel;
10094 else if (esdo->rela.hdr)
10095 reldata = &esdo->rela;
10096 else
10097 {
10098 reldata = NULL;
10099 BFD_ASSERT (0);
10100 }
10101
10102 /* Figure out the symbol index. */
10103 rel_hash_ptr = reldata->hashes + reldata->count;
10104 if (link_order->type == bfd_section_reloc_link_order)
10105 {
10106 indx = link_order->u.reloc.p->u.section->target_index;
10107 BFD_ASSERT (indx != 0);
10108 *rel_hash_ptr = NULL;
10109 }
10110 else
10111 {
10112 struct elf_link_hash_entry *h;
10113
10114 /* Treat a reloc against a defined symbol as though it were
10115 actually against the section. */
10116 h = ((struct elf_link_hash_entry *)
10117 bfd_wrapped_link_hash_lookup (output_bfd, info,
10118 link_order->u.reloc.p->u.name,
10119 FALSE, FALSE, TRUE));
10120 if (h != NULL
10121 && (h->root.type == bfd_link_hash_defined
10122 || h->root.type == bfd_link_hash_defweak))
10123 {
10124 asection *section;
10125
10126 section = h->root.u.def.section;
10127 indx = section->output_section->target_index;
10128 *rel_hash_ptr = NULL;
10129 /* It seems that we ought to add the symbol value to the
10130 addend here, but in practice it has already been added
10131 because it was passed to constructor_callback. */
10132 addend += section->output_section->vma + section->output_offset;
10133 }
10134 else if (h != NULL)
10135 {
10136 /* Setting the index to -2 tells elf_link_output_extsym that
10137 this symbol is used by a reloc. */
10138 h->indx = -2;
10139 *rel_hash_ptr = h;
10140 indx = 0;
10141 }
10142 else
10143 {
10144 if (! ((*info->callbacks->unattached_reloc)
10145 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10146 return FALSE;
10147 indx = 0;
10148 }
10149 }
10150
10151 /* If this is an inplace reloc, we must write the addend into the
10152 object file. */
10153 if (howto->partial_inplace && addend != 0)
10154 {
10155 bfd_size_type size;
10156 bfd_reloc_status_type rstat;
10157 bfd_byte *buf;
10158 bfd_boolean ok;
10159 const char *sym_name;
10160
10161 size = (bfd_size_type) bfd_get_reloc_size (howto);
10162 buf = (bfd_byte *) bfd_zmalloc (size);
10163 if (buf == NULL)
10164 return FALSE;
10165 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10166 switch (rstat)
10167 {
10168 case bfd_reloc_ok:
10169 break;
10170
10171 default:
10172 case bfd_reloc_outofrange:
10173 abort ();
10174
10175 case bfd_reloc_overflow:
10176 if (link_order->type == bfd_section_reloc_link_order)
10177 sym_name = bfd_section_name (output_bfd,
10178 link_order->u.reloc.p->u.section);
10179 else
10180 sym_name = link_order->u.reloc.p->u.name;
10181 if (! ((*info->callbacks->reloc_overflow)
10182 (info, NULL, sym_name, howto->name, addend, NULL,
10183 NULL, (bfd_vma) 0)))
10184 {
10185 free (buf);
10186 return FALSE;
10187 }
10188 break;
10189 }
10190 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10191 link_order->offset, size);
10192 free (buf);
10193 if (! ok)
10194 return FALSE;
10195 }
10196
10197 /* The address of a reloc is relative to the section in a
10198 relocatable file, and is a virtual address in an executable
10199 file. */
10200 offset = link_order->offset;
10201 if (! info->relocatable)
10202 offset += output_section->vma;
10203
10204 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10205 {
10206 irel[i].r_offset = offset;
10207 irel[i].r_info = 0;
10208 irel[i].r_addend = 0;
10209 }
10210 if (bed->s->arch_size == 32)
10211 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10212 else
10213 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10214
10215 rel_hdr = reldata->hdr;
10216 erel = rel_hdr->contents;
10217 if (rel_hdr->sh_type == SHT_REL)
10218 {
10219 erel += reldata->count * bed->s->sizeof_rel;
10220 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10221 }
10222 else
10223 {
10224 irel[0].r_addend = addend;
10225 erel += reldata->count * bed->s->sizeof_rela;
10226 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10227 }
10228
10229 ++reldata->count;
10230
10231 return TRUE;
10232 }
10233
10234
10235 /* Get the output vma of the section pointed to by the sh_link field. */
10236
10237 static bfd_vma
10238 elf_get_linked_section_vma (struct bfd_link_order *p)
10239 {
10240 Elf_Internal_Shdr **elf_shdrp;
10241 asection *s;
10242 int elfsec;
10243
10244 s = p->u.indirect.section;
10245 elf_shdrp = elf_elfsections (s->owner);
10246 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10247 elfsec = elf_shdrp[elfsec]->sh_link;
10248 /* PR 290:
10249 The Intel C compiler generates SHT_IA_64_UNWIND with
10250 SHF_LINK_ORDER. But it doesn't set the sh_link or
10251 sh_info fields. Hence we could get the situation
10252 where elfsec is 0. */
10253 if (elfsec == 0)
10254 {
10255 const struct elf_backend_data *bed
10256 = get_elf_backend_data (s->owner);
10257 if (bed->link_order_error_handler)
10258 bed->link_order_error_handler
10259 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10260 return 0;
10261 }
10262 else
10263 {
10264 s = elf_shdrp[elfsec]->bfd_section;
10265 return s->output_section->vma + s->output_offset;
10266 }
10267 }
10268
10269
10270 /* Compare two sections based on the locations of the sections they are
10271 linked to. Used by elf_fixup_link_order. */
10272
10273 static int
10274 compare_link_order (const void * a, const void * b)
10275 {
10276 bfd_vma apos;
10277 bfd_vma bpos;
10278
10279 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10280 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10281 if (apos < bpos)
10282 return -1;
10283 return apos > bpos;
10284 }
10285
10286
10287 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10288 order as their linked sections. Returns false if this could not be done
10289 because an output section includes both ordered and unordered
10290 sections. Ideally we'd do this in the linker proper. */
10291
10292 static bfd_boolean
10293 elf_fixup_link_order (bfd *abfd, asection *o)
10294 {
10295 int seen_linkorder;
10296 int seen_other;
10297 int n;
10298 struct bfd_link_order *p;
10299 bfd *sub;
10300 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10301 unsigned elfsec;
10302 struct bfd_link_order **sections;
10303 asection *s, *other_sec, *linkorder_sec;
10304 bfd_vma offset;
10305
10306 other_sec = NULL;
10307 linkorder_sec = NULL;
10308 seen_other = 0;
10309 seen_linkorder = 0;
10310 for (p = o->map_head.link_order; p != NULL; p = p->next)
10311 {
10312 if (p->type == bfd_indirect_link_order)
10313 {
10314 s = p->u.indirect.section;
10315 sub = s->owner;
10316 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10317 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10318 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10319 && elfsec < elf_numsections (sub)
10320 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10321 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10322 {
10323 seen_linkorder++;
10324 linkorder_sec = s;
10325 }
10326 else
10327 {
10328 seen_other++;
10329 other_sec = s;
10330 }
10331 }
10332 else
10333 seen_other++;
10334
10335 if (seen_other && seen_linkorder)
10336 {
10337 if (other_sec && linkorder_sec)
10338 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10339 o, linkorder_sec,
10340 linkorder_sec->owner, other_sec,
10341 other_sec->owner);
10342 else
10343 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10344 o);
10345 bfd_set_error (bfd_error_bad_value);
10346 return FALSE;
10347 }
10348 }
10349
10350 if (!seen_linkorder)
10351 return TRUE;
10352
10353 sections = (struct bfd_link_order **)
10354 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10355 if (sections == NULL)
10356 return FALSE;
10357 seen_linkorder = 0;
10358
10359 for (p = o->map_head.link_order; p != NULL; p = p->next)
10360 {
10361 sections[seen_linkorder++] = p;
10362 }
10363 /* Sort the input sections in the order of their linked section. */
10364 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10365 compare_link_order);
10366
10367 /* Change the offsets of the sections. */
10368 offset = 0;
10369 for (n = 0; n < seen_linkorder; n++)
10370 {
10371 s = sections[n]->u.indirect.section;
10372 offset &= ~(bfd_vma) 0 << s->alignment_power;
10373 s->output_offset = offset;
10374 sections[n]->offset = offset;
10375 /* FIXME: octets_per_byte. */
10376 offset += sections[n]->size;
10377 }
10378
10379 free (sections);
10380 return TRUE;
10381 }
10382
10383 static void
10384 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10385 {
10386 asection *o;
10387
10388 if (flinfo->symstrtab != NULL)
10389 _bfd_stringtab_free (flinfo->symstrtab);
10390 if (flinfo->contents != NULL)
10391 free (flinfo->contents);
10392 if (flinfo->external_relocs != NULL)
10393 free (flinfo->external_relocs);
10394 if (flinfo->internal_relocs != NULL)
10395 free (flinfo->internal_relocs);
10396 if (flinfo->external_syms != NULL)
10397 free (flinfo->external_syms);
10398 if (flinfo->locsym_shndx != NULL)
10399 free (flinfo->locsym_shndx);
10400 if (flinfo->internal_syms != NULL)
10401 free (flinfo->internal_syms);
10402 if (flinfo->indices != NULL)
10403 free (flinfo->indices);
10404 if (flinfo->sections != NULL)
10405 free (flinfo->sections);
10406 if (flinfo->symbuf != NULL)
10407 free (flinfo->symbuf);
10408 if (flinfo->symshndxbuf != NULL)
10409 free (flinfo->symshndxbuf);
10410 for (o = obfd->sections; o != NULL; o = o->next)
10411 {
10412 struct bfd_elf_section_data *esdo = elf_section_data (o);
10413 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10414 free (esdo->rel.hashes);
10415 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10416 free (esdo->rela.hashes);
10417 }
10418 }
10419
10420 /* Do the final step of an ELF link. */
10421
10422 bfd_boolean
10423 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10424 {
10425 bfd_boolean dynamic;
10426 bfd_boolean emit_relocs;
10427 bfd *dynobj;
10428 struct elf_final_link_info flinfo;
10429 asection *o;
10430 struct bfd_link_order *p;
10431 bfd *sub;
10432 bfd_size_type max_contents_size;
10433 bfd_size_type max_external_reloc_size;
10434 bfd_size_type max_internal_reloc_count;
10435 bfd_size_type max_sym_count;
10436 bfd_size_type max_sym_shndx_count;
10437 file_ptr off;
10438 Elf_Internal_Sym elfsym;
10439 unsigned int i;
10440 Elf_Internal_Shdr *symtab_hdr;
10441 Elf_Internal_Shdr *symtab_shndx_hdr;
10442 Elf_Internal_Shdr *symstrtab_hdr;
10443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10444 struct elf_outext_info eoinfo;
10445 bfd_boolean merged;
10446 size_t relativecount = 0;
10447 asection *reldyn = 0;
10448 bfd_size_type amt;
10449 asection *attr_section = NULL;
10450 bfd_vma attr_size = 0;
10451 const char *std_attrs_section;
10452
10453 if (! is_elf_hash_table (info->hash))
10454 return FALSE;
10455
10456 if (info->shared)
10457 abfd->flags |= DYNAMIC;
10458
10459 dynamic = elf_hash_table (info)->dynamic_sections_created;
10460 dynobj = elf_hash_table (info)->dynobj;
10461
10462 emit_relocs = (info->relocatable
10463 || info->emitrelocations);
10464
10465 flinfo.info = info;
10466 flinfo.output_bfd = abfd;
10467 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10468 if (flinfo.symstrtab == NULL)
10469 return FALSE;
10470
10471 if (! dynamic)
10472 {
10473 flinfo.dynsym_sec = NULL;
10474 flinfo.hash_sec = NULL;
10475 flinfo.symver_sec = NULL;
10476 }
10477 else
10478 {
10479 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10480 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10481 /* Note that dynsym_sec can be NULL (on VMS). */
10482 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10483 /* Note that it is OK if symver_sec is NULL. */
10484 }
10485
10486 flinfo.contents = NULL;
10487 flinfo.external_relocs = NULL;
10488 flinfo.internal_relocs = NULL;
10489 flinfo.external_syms = NULL;
10490 flinfo.locsym_shndx = NULL;
10491 flinfo.internal_syms = NULL;
10492 flinfo.indices = NULL;
10493 flinfo.sections = NULL;
10494 flinfo.symbuf = NULL;
10495 flinfo.symshndxbuf = NULL;
10496 flinfo.symbuf_count = 0;
10497 flinfo.shndxbuf_size = 0;
10498 flinfo.filesym_count = 0;
10499
10500 /* The object attributes have been merged. Remove the input
10501 sections from the link, and set the contents of the output
10502 secton. */
10503 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10504 for (o = abfd->sections; o != NULL; o = o->next)
10505 {
10506 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10507 || strcmp (o->name, ".gnu.attributes") == 0)
10508 {
10509 for (p = o->map_head.link_order; p != NULL; p = p->next)
10510 {
10511 asection *input_section;
10512
10513 if (p->type != bfd_indirect_link_order)
10514 continue;
10515 input_section = p->u.indirect.section;
10516 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10517 elf_link_input_bfd ignores this section. */
10518 input_section->flags &= ~SEC_HAS_CONTENTS;
10519 }
10520
10521 attr_size = bfd_elf_obj_attr_size (abfd);
10522 if (attr_size)
10523 {
10524 bfd_set_section_size (abfd, o, attr_size);
10525 attr_section = o;
10526 /* Skip this section later on. */
10527 o->map_head.link_order = NULL;
10528 }
10529 else
10530 o->flags |= SEC_EXCLUDE;
10531 }
10532 }
10533
10534 /* Count up the number of relocations we will output for each output
10535 section, so that we know the sizes of the reloc sections. We
10536 also figure out some maximum sizes. */
10537 max_contents_size = 0;
10538 max_external_reloc_size = 0;
10539 max_internal_reloc_count = 0;
10540 max_sym_count = 0;
10541 max_sym_shndx_count = 0;
10542 merged = FALSE;
10543 for (o = abfd->sections; o != NULL; o = o->next)
10544 {
10545 struct bfd_elf_section_data *esdo = elf_section_data (o);
10546 o->reloc_count = 0;
10547
10548 for (p = o->map_head.link_order; p != NULL; p = p->next)
10549 {
10550 unsigned int reloc_count = 0;
10551 struct bfd_elf_section_data *esdi = NULL;
10552
10553 if (p->type == bfd_section_reloc_link_order
10554 || p->type == bfd_symbol_reloc_link_order)
10555 reloc_count = 1;
10556 else if (p->type == bfd_indirect_link_order)
10557 {
10558 asection *sec;
10559
10560 sec = p->u.indirect.section;
10561 esdi = elf_section_data (sec);
10562
10563 /* Mark all sections which are to be included in the
10564 link. This will normally be every section. We need
10565 to do this so that we can identify any sections which
10566 the linker has decided to not include. */
10567 sec->linker_mark = TRUE;
10568
10569 if (sec->flags & SEC_MERGE)
10570 merged = TRUE;
10571
10572 if (esdo->this_hdr.sh_type == SHT_REL
10573 || esdo->this_hdr.sh_type == SHT_RELA)
10574 /* Some backends use reloc_count in relocation sections
10575 to count particular types of relocs. Of course,
10576 reloc sections themselves can't have relocations. */
10577 reloc_count = 0;
10578 else if (info->relocatable || info->emitrelocations)
10579 reloc_count = sec->reloc_count;
10580 else if (bed->elf_backend_count_relocs)
10581 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10582
10583 if (sec->rawsize > max_contents_size)
10584 max_contents_size = sec->rawsize;
10585 if (sec->size > max_contents_size)
10586 max_contents_size = sec->size;
10587
10588 /* We are interested in just local symbols, not all
10589 symbols. */
10590 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10591 && (sec->owner->flags & DYNAMIC) == 0)
10592 {
10593 size_t sym_count;
10594
10595 if (elf_bad_symtab (sec->owner))
10596 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10597 / bed->s->sizeof_sym);
10598 else
10599 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10600
10601 if (sym_count > max_sym_count)
10602 max_sym_count = sym_count;
10603
10604 if (sym_count > max_sym_shndx_count
10605 && elf_symtab_shndx (sec->owner) != 0)
10606 max_sym_shndx_count = sym_count;
10607
10608 if ((sec->flags & SEC_RELOC) != 0)
10609 {
10610 size_t ext_size = 0;
10611
10612 if (esdi->rel.hdr != NULL)
10613 ext_size = esdi->rel.hdr->sh_size;
10614 if (esdi->rela.hdr != NULL)
10615 ext_size += esdi->rela.hdr->sh_size;
10616
10617 if (ext_size > max_external_reloc_size)
10618 max_external_reloc_size = ext_size;
10619 if (sec->reloc_count > max_internal_reloc_count)
10620 max_internal_reloc_count = sec->reloc_count;
10621 }
10622 }
10623 }
10624
10625 if (reloc_count == 0)
10626 continue;
10627
10628 o->reloc_count += reloc_count;
10629
10630 if (p->type == bfd_indirect_link_order
10631 && (info->relocatable || info->emitrelocations))
10632 {
10633 if (esdi->rel.hdr)
10634 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10635 if (esdi->rela.hdr)
10636 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10637 }
10638 else
10639 {
10640 if (o->use_rela_p)
10641 esdo->rela.count += reloc_count;
10642 else
10643 esdo->rel.count += reloc_count;
10644 }
10645 }
10646
10647 if (o->reloc_count > 0)
10648 o->flags |= SEC_RELOC;
10649 else
10650 {
10651 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10652 set it (this is probably a bug) and if it is set
10653 assign_section_numbers will create a reloc section. */
10654 o->flags &=~ SEC_RELOC;
10655 }
10656
10657 /* If the SEC_ALLOC flag is not set, force the section VMA to
10658 zero. This is done in elf_fake_sections as well, but forcing
10659 the VMA to 0 here will ensure that relocs against these
10660 sections are handled correctly. */
10661 if ((o->flags & SEC_ALLOC) == 0
10662 && ! o->user_set_vma)
10663 o->vma = 0;
10664 }
10665
10666 if (! info->relocatable && merged)
10667 elf_link_hash_traverse (elf_hash_table (info),
10668 _bfd_elf_link_sec_merge_syms, abfd);
10669
10670 /* Figure out the file positions for everything but the symbol table
10671 and the relocs. We set symcount to force assign_section_numbers
10672 to create a symbol table. */
10673 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10674 BFD_ASSERT (! abfd->output_has_begun);
10675 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10676 goto error_return;
10677
10678 /* Set sizes, and assign file positions for reloc sections. */
10679 for (o = abfd->sections; o != NULL; o = o->next)
10680 {
10681 struct bfd_elf_section_data *esdo = elf_section_data (o);
10682 if ((o->flags & SEC_RELOC) != 0)
10683 {
10684 if (esdo->rel.hdr
10685 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10686 goto error_return;
10687
10688 if (esdo->rela.hdr
10689 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10690 goto error_return;
10691 }
10692
10693 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10694 to count upwards while actually outputting the relocations. */
10695 esdo->rel.count = 0;
10696 esdo->rela.count = 0;
10697 }
10698
10699 _bfd_elf_assign_file_positions_for_relocs (abfd);
10700
10701 /* We have now assigned file positions for all the sections except
10702 .symtab and .strtab. We start the .symtab section at the current
10703 file position, and write directly to it. We build the .strtab
10704 section in memory. */
10705 bfd_get_symcount (abfd) = 0;
10706 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10707 /* sh_name is set in prep_headers. */
10708 symtab_hdr->sh_type = SHT_SYMTAB;
10709 /* sh_flags, sh_addr and sh_size all start off zero. */
10710 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10711 /* sh_link is set in assign_section_numbers. */
10712 /* sh_info is set below. */
10713 /* sh_offset is set just below. */
10714 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10715
10716 off = elf_next_file_pos (abfd);
10717 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10718
10719 /* Note that at this point elf_next_file_pos (abfd) is
10720 incorrect. We do not yet know the size of the .symtab section.
10721 We correct next_file_pos below, after we do know the size. */
10722
10723 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10724 continuously seeking to the right position in the file. */
10725 if (! info->keep_memory || max_sym_count < 20)
10726 flinfo.symbuf_size = 20;
10727 else
10728 flinfo.symbuf_size = max_sym_count;
10729 amt = flinfo.symbuf_size;
10730 amt *= bed->s->sizeof_sym;
10731 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10732 if (flinfo.symbuf == NULL)
10733 goto error_return;
10734 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10735 {
10736 /* Wild guess at number of output symbols. realloc'd as needed. */
10737 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10738 flinfo.shndxbuf_size = amt;
10739 amt *= sizeof (Elf_External_Sym_Shndx);
10740 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10741 if (flinfo.symshndxbuf == NULL)
10742 goto error_return;
10743 }
10744
10745 /* Start writing out the symbol table. The first symbol is always a
10746 dummy symbol. */
10747 if (info->strip != strip_all
10748 || emit_relocs)
10749 {
10750 elfsym.st_value = 0;
10751 elfsym.st_size = 0;
10752 elfsym.st_info = 0;
10753 elfsym.st_other = 0;
10754 elfsym.st_shndx = SHN_UNDEF;
10755 elfsym.st_target_internal = 0;
10756 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10757 NULL) != 1)
10758 goto error_return;
10759 }
10760
10761 /* Output a symbol for each section. We output these even if we are
10762 discarding local symbols, since they are used for relocs. These
10763 symbols have no names. We store the index of each one in the
10764 index field of the section, so that we can find it again when
10765 outputting relocs. */
10766 if (info->strip != strip_all
10767 || emit_relocs)
10768 {
10769 elfsym.st_size = 0;
10770 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10771 elfsym.st_other = 0;
10772 elfsym.st_value = 0;
10773 elfsym.st_target_internal = 0;
10774 for (i = 1; i < elf_numsections (abfd); i++)
10775 {
10776 o = bfd_section_from_elf_index (abfd, i);
10777 if (o != NULL)
10778 {
10779 o->target_index = bfd_get_symcount (abfd);
10780 elfsym.st_shndx = i;
10781 if (!info->relocatable)
10782 elfsym.st_value = o->vma;
10783 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10784 goto error_return;
10785 }
10786 }
10787 }
10788
10789 /* Allocate some memory to hold information read in from the input
10790 files. */
10791 if (max_contents_size != 0)
10792 {
10793 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10794 if (flinfo.contents == NULL)
10795 goto error_return;
10796 }
10797
10798 if (max_external_reloc_size != 0)
10799 {
10800 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10801 if (flinfo.external_relocs == NULL)
10802 goto error_return;
10803 }
10804
10805 if (max_internal_reloc_count != 0)
10806 {
10807 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10808 amt *= sizeof (Elf_Internal_Rela);
10809 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10810 if (flinfo.internal_relocs == NULL)
10811 goto error_return;
10812 }
10813
10814 if (max_sym_count != 0)
10815 {
10816 amt = max_sym_count * bed->s->sizeof_sym;
10817 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10818 if (flinfo.external_syms == NULL)
10819 goto error_return;
10820
10821 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10822 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10823 if (flinfo.internal_syms == NULL)
10824 goto error_return;
10825
10826 amt = max_sym_count * sizeof (long);
10827 flinfo.indices = (long int *) bfd_malloc (amt);
10828 if (flinfo.indices == NULL)
10829 goto error_return;
10830
10831 amt = max_sym_count * sizeof (asection *);
10832 flinfo.sections = (asection **) bfd_malloc (amt);
10833 if (flinfo.sections == NULL)
10834 goto error_return;
10835 }
10836
10837 if (max_sym_shndx_count != 0)
10838 {
10839 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10840 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10841 if (flinfo.locsym_shndx == NULL)
10842 goto error_return;
10843 }
10844
10845 if (elf_hash_table (info)->tls_sec)
10846 {
10847 bfd_vma base, end = 0;
10848 asection *sec;
10849
10850 for (sec = elf_hash_table (info)->tls_sec;
10851 sec && (sec->flags & SEC_THREAD_LOCAL);
10852 sec = sec->next)
10853 {
10854 bfd_size_type size = sec->size;
10855
10856 if (size == 0
10857 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10858 {
10859 struct bfd_link_order *ord = sec->map_tail.link_order;
10860
10861 if (ord != NULL)
10862 size = ord->offset + ord->size;
10863 }
10864 end = sec->vma + size;
10865 }
10866 base = elf_hash_table (info)->tls_sec->vma;
10867 /* Only align end of TLS section if static TLS doesn't have special
10868 alignment requirements. */
10869 if (bed->static_tls_alignment == 1)
10870 end = align_power (end,
10871 elf_hash_table (info)->tls_sec->alignment_power);
10872 elf_hash_table (info)->tls_size = end - base;
10873 }
10874
10875 /* Reorder SHF_LINK_ORDER sections. */
10876 for (o = abfd->sections; o != NULL; o = o->next)
10877 {
10878 if (!elf_fixup_link_order (abfd, o))
10879 return FALSE;
10880 }
10881
10882 /* Since ELF permits relocations to be against local symbols, we
10883 must have the local symbols available when we do the relocations.
10884 Since we would rather only read the local symbols once, and we
10885 would rather not keep them in memory, we handle all the
10886 relocations for a single input file at the same time.
10887
10888 Unfortunately, there is no way to know the total number of local
10889 symbols until we have seen all of them, and the local symbol
10890 indices precede the global symbol indices. This means that when
10891 we are generating relocatable output, and we see a reloc against
10892 a global symbol, we can not know the symbol index until we have
10893 finished examining all the local symbols to see which ones we are
10894 going to output. To deal with this, we keep the relocations in
10895 memory, and don't output them until the end of the link. This is
10896 an unfortunate waste of memory, but I don't see a good way around
10897 it. Fortunately, it only happens when performing a relocatable
10898 link, which is not the common case. FIXME: If keep_memory is set
10899 we could write the relocs out and then read them again; I don't
10900 know how bad the memory loss will be. */
10901
10902 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10903 sub->output_has_begun = FALSE;
10904 for (o = abfd->sections; o != NULL; o = o->next)
10905 {
10906 for (p = o->map_head.link_order; p != NULL; p = p->next)
10907 {
10908 if (p->type == bfd_indirect_link_order
10909 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10910 == bfd_target_elf_flavour)
10911 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10912 {
10913 if (! sub->output_has_begun)
10914 {
10915 if (! elf_link_input_bfd (&flinfo, sub))
10916 goto error_return;
10917 sub->output_has_begun = TRUE;
10918 }
10919 }
10920 else if (p->type == bfd_section_reloc_link_order
10921 || p->type == bfd_symbol_reloc_link_order)
10922 {
10923 if (! elf_reloc_link_order (abfd, info, o, p))
10924 goto error_return;
10925 }
10926 else
10927 {
10928 if (! _bfd_default_link_order (abfd, info, o, p))
10929 {
10930 if (p->type == bfd_indirect_link_order
10931 && (bfd_get_flavour (sub)
10932 == bfd_target_elf_flavour)
10933 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10934 != bed->s->elfclass))
10935 {
10936 const char *iclass, *oclass;
10937
10938 if (bed->s->elfclass == ELFCLASS64)
10939 {
10940 iclass = "ELFCLASS32";
10941 oclass = "ELFCLASS64";
10942 }
10943 else
10944 {
10945 iclass = "ELFCLASS64";
10946 oclass = "ELFCLASS32";
10947 }
10948
10949 bfd_set_error (bfd_error_wrong_format);
10950 (*_bfd_error_handler)
10951 (_("%B: file class %s incompatible with %s"),
10952 sub, iclass, oclass);
10953 }
10954
10955 goto error_return;
10956 }
10957 }
10958 }
10959 }
10960
10961 /* Free symbol buffer if needed. */
10962 if (!info->reduce_memory_overheads)
10963 {
10964 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10965 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10966 && elf_tdata (sub)->symbuf)
10967 {
10968 free (elf_tdata (sub)->symbuf);
10969 elf_tdata (sub)->symbuf = NULL;
10970 }
10971 }
10972
10973 /* Output a FILE symbol so that following locals are not associated
10974 with the wrong input file. */
10975 memset (&elfsym, 0, sizeof (elfsym));
10976 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10977 elfsym.st_shndx = SHN_ABS;
10978
10979 if (flinfo.filesym_count > 1
10980 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10981 bfd_und_section_ptr, NULL))
10982 return FALSE;
10983
10984 /* Output any global symbols that got converted to local in a
10985 version script or due to symbol visibility. We do this in a
10986 separate step since ELF requires all local symbols to appear
10987 prior to any global symbols. FIXME: We should only do this if
10988 some global symbols were, in fact, converted to become local.
10989 FIXME: Will this work correctly with the Irix 5 linker? */
10990 eoinfo.failed = FALSE;
10991 eoinfo.flinfo = &flinfo;
10992 eoinfo.localsyms = TRUE;
10993 eoinfo.need_second_pass = FALSE;
10994 eoinfo.second_pass = FALSE;
10995 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10996 if (eoinfo.failed)
10997 return FALSE;
10998
10999 if (flinfo.filesym_count == 1
11000 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11001 bfd_und_section_ptr, NULL))
11002 return FALSE;
11003
11004 if (eoinfo.need_second_pass)
11005 {
11006 eoinfo.second_pass = TRUE;
11007 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11008 if (eoinfo.failed)
11009 return FALSE;
11010 }
11011
11012 /* If backend needs to output some local symbols not present in the hash
11013 table, do it now. */
11014 if (bed->elf_backend_output_arch_local_syms)
11015 {
11016 typedef int (*out_sym_func)
11017 (void *, const char *, Elf_Internal_Sym *, asection *,
11018 struct elf_link_hash_entry *);
11019
11020 if (! ((*bed->elf_backend_output_arch_local_syms)
11021 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11022 return FALSE;
11023 }
11024
11025 /* That wrote out all the local symbols. Finish up the symbol table
11026 with the global symbols. Even if we want to strip everything we
11027 can, we still need to deal with those global symbols that got
11028 converted to local in a version script. */
11029
11030 /* The sh_info field records the index of the first non local symbol. */
11031 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11032
11033 if (dynamic
11034 && flinfo.dynsym_sec != NULL
11035 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11036 {
11037 Elf_Internal_Sym sym;
11038 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11039 long last_local = 0;
11040
11041 /* Write out the section symbols for the output sections. */
11042 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11043 {
11044 asection *s;
11045
11046 sym.st_size = 0;
11047 sym.st_name = 0;
11048 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11049 sym.st_other = 0;
11050 sym.st_target_internal = 0;
11051
11052 for (s = abfd->sections; s != NULL; s = s->next)
11053 {
11054 int indx;
11055 bfd_byte *dest;
11056 long dynindx;
11057
11058 dynindx = elf_section_data (s)->dynindx;
11059 if (dynindx <= 0)
11060 continue;
11061 indx = elf_section_data (s)->this_idx;
11062 BFD_ASSERT (indx > 0);
11063 sym.st_shndx = indx;
11064 if (! check_dynsym (abfd, &sym))
11065 return FALSE;
11066 sym.st_value = s->vma;
11067 dest = dynsym + dynindx * bed->s->sizeof_sym;
11068 if (last_local < dynindx)
11069 last_local = dynindx;
11070 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11071 }
11072 }
11073
11074 /* Write out the local dynsyms. */
11075 if (elf_hash_table (info)->dynlocal)
11076 {
11077 struct elf_link_local_dynamic_entry *e;
11078 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11079 {
11080 asection *s;
11081 bfd_byte *dest;
11082
11083 /* Copy the internal symbol and turn off visibility.
11084 Note that we saved a word of storage and overwrote
11085 the original st_name with the dynstr_index. */
11086 sym = e->isym;
11087 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11088
11089 s = bfd_section_from_elf_index (e->input_bfd,
11090 e->isym.st_shndx);
11091 if (s != NULL)
11092 {
11093 sym.st_shndx =
11094 elf_section_data (s->output_section)->this_idx;
11095 if (! check_dynsym (abfd, &sym))
11096 return FALSE;
11097 sym.st_value = (s->output_section->vma
11098 + s->output_offset
11099 + e->isym.st_value);
11100 }
11101
11102 if (last_local < e->dynindx)
11103 last_local = e->dynindx;
11104
11105 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11106 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11107 }
11108 }
11109
11110 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11111 last_local + 1;
11112 }
11113
11114 /* We get the global symbols from the hash table. */
11115 eoinfo.failed = FALSE;
11116 eoinfo.localsyms = FALSE;
11117 eoinfo.flinfo = &flinfo;
11118 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11119 if (eoinfo.failed)
11120 return FALSE;
11121
11122 /* If backend needs to output some symbols not present in the hash
11123 table, do it now. */
11124 if (bed->elf_backend_output_arch_syms)
11125 {
11126 typedef int (*out_sym_func)
11127 (void *, const char *, Elf_Internal_Sym *, asection *,
11128 struct elf_link_hash_entry *);
11129
11130 if (! ((*bed->elf_backend_output_arch_syms)
11131 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11132 return FALSE;
11133 }
11134
11135 /* Flush all symbols to the file. */
11136 if (! elf_link_flush_output_syms (&flinfo, bed))
11137 return FALSE;
11138
11139 /* Now we know the size of the symtab section. */
11140 off += symtab_hdr->sh_size;
11141
11142 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11143 if (symtab_shndx_hdr->sh_name != 0)
11144 {
11145 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11146 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11147 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11148 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11149 symtab_shndx_hdr->sh_size = amt;
11150
11151 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11152 off, TRUE);
11153
11154 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11155 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11156 return FALSE;
11157 }
11158
11159
11160 /* Finish up and write out the symbol string table (.strtab)
11161 section. */
11162 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11163 /* sh_name was set in prep_headers. */
11164 symstrtab_hdr->sh_type = SHT_STRTAB;
11165 symstrtab_hdr->sh_flags = 0;
11166 symstrtab_hdr->sh_addr = 0;
11167 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11168 symstrtab_hdr->sh_entsize = 0;
11169 symstrtab_hdr->sh_link = 0;
11170 symstrtab_hdr->sh_info = 0;
11171 /* sh_offset is set just below. */
11172 symstrtab_hdr->sh_addralign = 1;
11173
11174 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11175 elf_next_file_pos (abfd) = off;
11176
11177 if (bfd_get_symcount (abfd) > 0)
11178 {
11179 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11180 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11181 return FALSE;
11182 }
11183
11184 /* Adjust the relocs to have the correct symbol indices. */
11185 for (o = abfd->sections; o != NULL; o = o->next)
11186 {
11187 struct bfd_elf_section_data *esdo = elf_section_data (o);
11188 if ((o->flags & SEC_RELOC) == 0)
11189 continue;
11190
11191 if (esdo->rel.hdr != NULL)
11192 elf_link_adjust_relocs (abfd, &esdo->rel);
11193 if (esdo->rela.hdr != NULL)
11194 elf_link_adjust_relocs (abfd, &esdo->rela);
11195
11196 /* Set the reloc_count field to 0 to prevent write_relocs from
11197 trying to swap the relocs out itself. */
11198 o->reloc_count = 0;
11199 }
11200
11201 if (dynamic && info->combreloc && dynobj != NULL)
11202 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11203
11204 /* If we are linking against a dynamic object, or generating a
11205 shared library, finish up the dynamic linking information. */
11206 if (dynamic)
11207 {
11208 bfd_byte *dyncon, *dynconend;
11209
11210 /* Fix up .dynamic entries. */
11211 o = bfd_get_linker_section (dynobj, ".dynamic");
11212 BFD_ASSERT (o != NULL);
11213
11214 dyncon = o->contents;
11215 dynconend = o->contents + o->size;
11216 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11217 {
11218 Elf_Internal_Dyn dyn;
11219 const char *name;
11220 unsigned int type;
11221
11222 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11223
11224 switch (dyn.d_tag)
11225 {
11226 default:
11227 continue;
11228 case DT_NULL:
11229 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11230 {
11231 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11232 {
11233 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11234 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11235 default: continue;
11236 }
11237 dyn.d_un.d_val = relativecount;
11238 relativecount = 0;
11239 break;
11240 }
11241 continue;
11242
11243 case DT_INIT:
11244 name = info->init_function;
11245 goto get_sym;
11246 case DT_FINI:
11247 name = info->fini_function;
11248 get_sym:
11249 {
11250 struct elf_link_hash_entry *h;
11251
11252 h = elf_link_hash_lookup (elf_hash_table (info), name,
11253 FALSE, FALSE, TRUE);
11254 if (h != NULL
11255 && (h->root.type == bfd_link_hash_defined
11256 || h->root.type == bfd_link_hash_defweak))
11257 {
11258 dyn.d_un.d_ptr = h->root.u.def.value;
11259 o = h->root.u.def.section;
11260 if (o->output_section != NULL)
11261 dyn.d_un.d_ptr += (o->output_section->vma
11262 + o->output_offset);
11263 else
11264 {
11265 /* The symbol is imported from another shared
11266 library and does not apply to this one. */
11267 dyn.d_un.d_ptr = 0;
11268 }
11269 break;
11270 }
11271 }
11272 continue;
11273
11274 case DT_PREINIT_ARRAYSZ:
11275 name = ".preinit_array";
11276 goto get_size;
11277 case DT_INIT_ARRAYSZ:
11278 name = ".init_array";
11279 goto get_size;
11280 case DT_FINI_ARRAYSZ:
11281 name = ".fini_array";
11282 get_size:
11283 o = bfd_get_section_by_name (abfd, name);
11284 if (o == NULL)
11285 {
11286 (*_bfd_error_handler)
11287 (_("%B: could not find output section %s"), abfd, name);
11288 goto error_return;
11289 }
11290 if (o->size == 0)
11291 (*_bfd_error_handler)
11292 (_("warning: %s section has zero size"), name);
11293 dyn.d_un.d_val = o->size;
11294 break;
11295
11296 case DT_PREINIT_ARRAY:
11297 name = ".preinit_array";
11298 goto get_vma;
11299 case DT_INIT_ARRAY:
11300 name = ".init_array";
11301 goto get_vma;
11302 case DT_FINI_ARRAY:
11303 name = ".fini_array";
11304 goto get_vma;
11305
11306 case DT_HASH:
11307 name = ".hash";
11308 goto get_vma;
11309 case DT_GNU_HASH:
11310 name = ".gnu.hash";
11311 goto get_vma;
11312 case DT_STRTAB:
11313 name = ".dynstr";
11314 goto get_vma;
11315 case DT_SYMTAB:
11316 name = ".dynsym";
11317 goto get_vma;
11318 case DT_VERDEF:
11319 name = ".gnu.version_d";
11320 goto get_vma;
11321 case DT_VERNEED:
11322 name = ".gnu.version_r";
11323 goto get_vma;
11324 case DT_VERSYM:
11325 name = ".gnu.version";
11326 get_vma:
11327 o = bfd_get_section_by_name (abfd, name);
11328 if (o == NULL)
11329 {
11330 (*_bfd_error_handler)
11331 (_("%B: could not find output section %s"), abfd, name);
11332 goto error_return;
11333 }
11334 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11335 {
11336 (*_bfd_error_handler)
11337 (_("warning: section '%s' is being made into a note"), name);
11338 bfd_set_error (bfd_error_nonrepresentable_section);
11339 goto error_return;
11340 }
11341 dyn.d_un.d_ptr = o->vma;
11342 break;
11343
11344 case DT_REL:
11345 case DT_RELA:
11346 case DT_RELSZ:
11347 case DT_RELASZ:
11348 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11349 type = SHT_REL;
11350 else
11351 type = SHT_RELA;
11352 dyn.d_un.d_val = 0;
11353 dyn.d_un.d_ptr = 0;
11354 for (i = 1; i < elf_numsections (abfd); i++)
11355 {
11356 Elf_Internal_Shdr *hdr;
11357
11358 hdr = elf_elfsections (abfd)[i];
11359 if (hdr->sh_type == type
11360 && (hdr->sh_flags & SHF_ALLOC) != 0)
11361 {
11362 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11363 dyn.d_un.d_val += hdr->sh_size;
11364 else
11365 {
11366 if (dyn.d_un.d_ptr == 0
11367 || hdr->sh_addr < dyn.d_un.d_ptr)
11368 dyn.d_un.d_ptr = hdr->sh_addr;
11369 }
11370 }
11371 }
11372 break;
11373 }
11374 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11375 }
11376 }
11377
11378 /* If we have created any dynamic sections, then output them. */
11379 if (dynobj != NULL)
11380 {
11381 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11382 goto error_return;
11383
11384 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11385 if (((info->warn_shared_textrel && info->shared)
11386 || info->error_textrel)
11387 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11388 {
11389 bfd_byte *dyncon, *dynconend;
11390
11391 dyncon = o->contents;
11392 dynconend = o->contents + o->size;
11393 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11394 {
11395 Elf_Internal_Dyn dyn;
11396
11397 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11398
11399 if (dyn.d_tag == DT_TEXTREL)
11400 {
11401 if (info->error_textrel)
11402 info->callbacks->einfo
11403 (_("%P%X: read-only segment has dynamic relocations.\n"));
11404 else
11405 info->callbacks->einfo
11406 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11407 break;
11408 }
11409 }
11410 }
11411
11412 for (o = dynobj->sections; o != NULL; o = o->next)
11413 {
11414 if ((o->flags & SEC_HAS_CONTENTS) == 0
11415 || o->size == 0
11416 || o->output_section == bfd_abs_section_ptr)
11417 continue;
11418 if ((o->flags & SEC_LINKER_CREATED) == 0)
11419 {
11420 /* At this point, we are only interested in sections
11421 created by _bfd_elf_link_create_dynamic_sections. */
11422 continue;
11423 }
11424 if (elf_hash_table (info)->stab_info.stabstr == o)
11425 continue;
11426 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11427 continue;
11428 if (strcmp (o->name, ".dynstr") != 0)
11429 {
11430 /* FIXME: octets_per_byte. */
11431 if (! bfd_set_section_contents (abfd, o->output_section,
11432 o->contents,
11433 (file_ptr) o->output_offset,
11434 o->size))
11435 goto error_return;
11436 }
11437 else
11438 {
11439 /* The contents of the .dynstr section are actually in a
11440 stringtab. */
11441 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11442 if (bfd_seek (abfd, off, SEEK_SET) != 0
11443 || ! _bfd_elf_strtab_emit (abfd,
11444 elf_hash_table (info)->dynstr))
11445 goto error_return;
11446 }
11447 }
11448 }
11449
11450 if (info->relocatable)
11451 {
11452 bfd_boolean failed = FALSE;
11453
11454 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11455 if (failed)
11456 goto error_return;
11457 }
11458
11459 /* If we have optimized stabs strings, output them. */
11460 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11461 {
11462 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11463 goto error_return;
11464 }
11465
11466 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11467 goto error_return;
11468
11469 elf_final_link_free (abfd, &flinfo);
11470
11471 elf_linker (abfd) = TRUE;
11472
11473 if (attr_section)
11474 {
11475 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11476 if (contents == NULL)
11477 return FALSE; /* Bail out and fail. */
11478 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11479 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11480 free (contents);
11481 }
11482
11483 return TRUE;
11484
11485 error_return:
11486 elf_final_link_free (abfd, &flinfo);
11487 return FALSE;
11488 }
11489 \f
11490 /* Initialize COOKIE for input bfd ABFD. */
11491
11492 static bfd_boolean
11493 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11494 struct bfd_link_info *info, bfd *abfd)
11495 {
11496 Elf_Internal_Shdr *symtab_hdr;
11497 const struct elf_backend_data *bed;
11498
11499 bed = get_elf_backend_data (abfd);
11500 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11501
11502 cookie->abfd = abfd;
11503 cookie->sym_hashes = elf_sym_hashes (abfd);
11504 cookie->bad_symtab = elf_bad_symtab (abfd);
11505 if (cookie->bad_symtab)
11506 {
11507 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11508 cookie->extsymoff = 0;
11509 }
11510 else
11511 {
11512 cookie->locsymcount = symtab_hdr->sh_info;
11513 cookie->extsymoff = symtab_hdr->sh_info;
11514 }
11515
11516 if (bed->s->arch_size == 32)
11517 cookie->r_sym_shift = 8;
11518 else
11519 cookie->r_sym_shift = 32;
11520
11521 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11522 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11523 {
11524 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11525 cookie->locsymcount, 0,
11526 NULL, NULL, NULL);
11527 if (cookie->locsyms == NULL)
11528 {
11529 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11530 return FALSE;
11531 }
11532 if (info->keep_memory)
11533 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11534 }
11535 return TRUE;
11536 }
11537
11538 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11539
11540 static void
11541 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11542 {
11543 Elf_Internal_Shdr *symtab_hdr;
11544
11545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11546 if (cookie->locsyms != NULL
11547 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11548 free (cookie->locsyms);
11549 }
11550
11551 /* Initialize the relocation information in COOKIE for input section SEC
11552 of input bfd ABFD. */
11553
11554 static bfd_boolean
11555 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11556 struct bfd_link_info *info, bfd *abfd,
11557 asection *sec)
11558 {
11559 const struct elf_backend_data *bed;
11560
11561 if (sec->reloc_count == 0)
11562 {
11563 cookie->rels = NULL;
11564 cookie->relend = NULL;
11565 }
11566 else
11567 {
11568 bed = get_elf_backend_data (abfd);
11569
11570 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11571 info->keep_memory);
11572 if (cookie->rels == NULL)
11573 return FALSE;
11574 cookie->rel = cookie->rels;
11575 cookie->relend = (cookie->rels
11576 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11577 }
11578 cookie->rel = cookie->rels;
11579 return TRUE;
11580 }
11581
11582 /* Free the memory allocated by init_reloc_cookie_rels,
11583 if appropriate. */
11584
11585 static void
11586 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11587 asection *sec)
11588 {
11589 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11590 free (cookie->rels);
11591 }
11592
11593 /* Initialize the whole of COOKIE for input section SEC. */
11594
11595 static bfd_boolean
11596 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11597 struct bfd_link_info *info,
11598 asection *sec)
11599 {
11600 if (!init_reloc_cookie (cookie, info, sec->owner))
11601 goto error1;
11602 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11603 goto error2;
11604 return TRUE;
11605
11606 error2:
11607 fini_reloc_cookie (cookie, sec->owner);
11608 error1:
11609 return FALSE;
11610 }
11611
11612 /* Free the memory allocated by init_reloc_cookie_for_section,
11613 if appropriate. */
11614
11615 static void
11616 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11617 asection *sec)
11618 {
11619 fini_reloc_cookie_rels (cookie, sec);
11620 fini_reloc_cookie (cookie, sec->owner);
11621 }
11622 \f
11623 /* Garbage collect unused sections. */
11624
11625 /* Default gc_mark_hook. */
11626
11627 asection *
11628 _bfd_elf_gc_mark_hook (asection *sec,
11629 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11630 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11631 struct elf_link_hash_entry *h,
11632 Elf_Internal_Sym *sym)
11633 {
11634 const char *sec_name;
11635
11636 if (h != NULL)
11637 {
11638 switch (h->root.type)
11639 {
11640 case bfd_link_hash_defined:
11641 case bfd_link_hash_defweak:
11642 return h->root.u.def.section;
11643
11644 case bfd_link_hash_common:
11645 return h->root.u.c.p->section;
11646
11647 case bfd_link_hash_undefined:
11648 case bfd_link_hash_undefweak:
11649 /* To work around a glibc bug, keep all XXX input sections
11650 when there is an as yet undefined reference to __start_XXX
11651 or __stop_XXX symbols. The linker will later define such
11652 symbols for orphan input sections that have a name
11653 representable as a C identifier. */
11654 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11655 sec_name = h->root.root.string + 8;
11656 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11657 sec_name = h->root.root.string + 7;
11658 else
11659 sec_name = NULL;
11660
11661 if (sec_name && *sec_name != '\0')
11662 {
11663 bfd *i;
11664
11665 for (i = info->input_bfds; i; i = i->link_next)
11666 {
11667 sec = bfd_get_section_by_name (i, sec_name);
11668 if (sec)
11669 sec->flags |= SEC_KEEP;
11670 }
11671 }
11672 break;
11673
11674 default:
11675 break;
11676 }
11677 }
11678 else
11679 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11680
11681 return NULL;
11682 }
11683
11684 /* COOKIE->rel describes a relocation against section SEC, which is
11685 a section we've decided to keep. Return the section that contains
11686 the relocation symbol, or NULL if no section contains it. */
11687
11688 asection *
11689 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11690 elf_gc_mark_hook_fn gc_mark_hook,
11691 struct elf_reloc_cookie *cookie)
11692 {
11693 unsigned long r_symndx;
11694 struct elf_link_hash_entry *h;
11695
11696 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11697 if (r_symndx == STN_UNDEF)
11698 return NULL;
11699
11700 if (r_symndx >= cookie->locsymcount
11701 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11702 {
11703 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11704 while (h->root.type == bfd_link_hash_indirect
11705 || h->root.type == bfd_link_hash_warning)
11706 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11707 h->mark = 1;
11708 /* If this symbol is weak and there is a non-weak definition, we
11709 keep the non-weak definition because many backends put
11710 dynamic reloc info on the non-weak definition for code
11711 handling copy relocs. */
11712 if (h->u.weakdef != NULL)
11713 h->u.weakdef->mark = 1;
11714 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11715 }
11716
11717 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11718 &cookie->locsyms[r_symndx]);
11719 }
11720
11721 /* COOKIE->rel describes a relocation against section SEC, which is
11722 a section we've decided to keep. Mark the section that contains
11723 the relocation symbol. */
11724
11725 bfd_boolean
11726 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11727 asection *sec,
11728 elf_gc_mark_hook_fn gc_mark_hook,
11729 struct elf_reloc_cookie *cookie)
11730 {
11731 asection *rsec;
11732
11733 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11734 if (rsec && !rsec->gc_mark)
11735 {
11736 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11737 || (rsec->owner->flags & DYNAMIC) != 0)
11738 rsec->gc_mark = 1;
11739 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11740 return FALSE;
11741 }
11742 return TRUE;
11743 }
11744
11745 /* The mark phase of garbage collection. For a given section, mark
11746 it and any sections in this section's group, and all the sections
11747 which define symbols to which it refers. */
11748
11749 bfd_boolean
11750 _bfd_elf_gc_mark (struct bfd_link_info *info,
11751 asection *sec,
11752 elf_gc_mark_hook_fn gc_mark_hook)
11753 {
11754 bfd_boolean ret;
11755 asection *group_sec, *eh_frame;
11756
11757 sec->gc_mark = 1;
11758
11759 /* Mark all the sections in the group. */
11760 group_sec = elf_section_data (sec)->next_in_group;
11761 if (group_sec && !group_sec->gc_mark)
11762 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11763 return FALSE;
11764
11765 /* Look through the section relocs. */
11766 ret = TRUE;
11767 eh_frame = elf_eh_frame_section (sec->owner);
11768 if ((sec->flags & SEC_RELOC) != 0
11769 && sec->reloc_count > 0
11770 && sec != eh_frame)
11771 {
11772 struct elf_reloc_cookie cookie;
11773
11774 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11775 ret = FALSE;
11776 else
11777 {
11778 for (; cookie.rel < cookie.relend; cookie.rel++)
11779 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11780 {
11781 ret = FALSE;
11782 break;
11783 }
11784 fini_reloc_cookie_for_section (&cookie, sec);
11785 }
11786 }
11787
11788 if (ret && eh_frame && elf_fde_list (sec))
11789 {
11790 struct elf_reloc_cookie cookie;
11791
11792 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11793 ret = FALSE;
11794 else
11795 {
11796 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11797 gc_mark_hook, &cookie))
11798 ret = FALSE;
11799 fini_reloc_cookie_for_section (&cookie, eh_frame);
11800 }
11801 }
11802
11803 return ret;
11804 }
11805
11806 /* Keep debug and special sections. */
11807
11808 bfd_boolean
11809 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11810 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11811 {
11812 bfd *ibfd;
11813
11814 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11815 {
11816 asection *isec;
11817 bfd_boolean some_kept;
11818 bfd_boolean debug_frag_seen;
11819
11820 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11821 continue;
11822
11823 /* Ensure all linker created sections are kept,
11824 see if any other section is already marked,
11825 and note if we have any fragmented debug sections. */
11826 debug_frag_seen = some_kept = FALSE;
11827 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11828 {
11829 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11830 isec->gc_mark = 1;
11831 else if (isec->gc_mark)
11832 some_kept = TRUE;
11833
11834 if (debug_frag_seen == FALSE
11835 && (isec->flags & SEC_DEBUGGING)
11836 && CONST_STRNEQ (isec->name, ".debug_line."))
11837 debug_frag_seen = TRUE;
11838 }
11839
11840 /* If no section in this file will be kept, then we can
11841 toss out the debug and special sections. */
11842 if (!some_kept)
11843 continue;
11844
11845 /* Keep debug and special sections like .comment when they are
11846 not part of a group, or when we have single-member groups. */
11847 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11848 if ((elf_next_in_group (isec) == NULL
11849 || elf_next_in_group (isec) == isec)
11850 && ((isec->flags & SEC_DEBUGGING) != 0
11851 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11852 isec->gc_mark = 1;
11853
11854 if (! debug_frag_seen)
11855 continue;
11856
11857 /* Look for CODE sections which are going to be discarded,
11858 and find and discard any fragmented debug sections which
11859 are associated with that code section. */
11860 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11861 if ((isec->flags & SEC_CODE) != 0
11862 && isec->gc_mark == 0)
11863 {
11864 unsigned int ilen;
11865 asection *dsec;
11866
11867 ilen = strlen (isec->name);
11868
11869 /* Association is determined by the name of the debug section
11870 containing the name of the code section as a suffix. For
11871 example .debug_line.text.foo is a debug section associated
11872 with .text.foo. */
11873 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11874 {
11875 unsigned int dlen;
11876
11877 if (dsec->gc_mark == 0
11878 || (dsec->flags & SEC_DEBUGGING) == 0)
11879 continue;
11880
11881 dlen = strlen (dsec->name);
11882
11883 if (dlen > ilen
11884 && strncmp (dsec->name + (dlen - ilen),
11885 isec->name, ilen) == 0)
11886 {
11887 dsec->gc_mark = 0;
11888 break;
11889 }
11890 }
11891 }
11892 }
11893 return TRUE;
11894 }
11895
11896 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11897
11898 struct elf_gc_sweep_symbol_info
11899 {
11900 struct bfd_link_info *info;
11901 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11902 bfd_boolean);
11903 };
11904
11905 static bfd_boolean
11906 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11907 {
11908 if (!h->mark
11909 && (((h->root.type == bfd_link_hash_defined
11910 || h->root.type == bfd_link_hash_defweak)
11911 && !(h->def_regular
11912 && h->root.u.def.section->gc_mark))
11913 || h->root.type == bfd_link_hash_undefined
11914 || h->root.type == bfd_link_hash_undefweak))
11915 {
11916 struct elf_gc_sweep_symbol_info *inf;
11917
11918 inf = (struct elf_gc_sweep_symbol_info *) data;
11919 (*inf->hide_symbol) (inf->info, h, TRUE);
11920 h->def_regular = 0;
11921 h->ref_regular = 0;
11922 h->ref_regular_nonweak = 0;
11923 }
11924
11925 return TRUE;
11926 }
11927
11928 /* The sweep phase of garbage collection. Remove all garbage sections. */
11929
11930 typedef bfd_boolean (*gc_sweep_hook_fn)
11931 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11932
11933 static bfd_boolean
11934 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11935 {
11936 bfd *sub;
11937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11938 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11939 unsigned long section_sym_count;
11940 struct elf_gc_sweep_symbol_info sweep_info;
11941
11942 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11943 {
11944 asection *o;
11945
11946 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11947 continue;
11948
11949 for (o = sub->sections; o != NULL; o = o->next)
11950 {
11951 /* When any section in a section group is kept, we keep all
11952 sections in the section group. If the first member of
11953 the section group is excluded, we will also exclude the
11954 group section. */
11955 if (o->flags & SEC_GROUP)
11956 {
11957 asection *first = elf_next_in_group (o);
11958 o->gc_mark = first->gc_mark;
11959 }
11960
11961 if (o->gc_mark)
11962 continue;
11963
11964 /* Skip sweeping sections already excluded. */
11965 if (o->flags & SEC_EXCLUDE)
11966 continue;
11967
11968 /* Since this is early in the link process, it is simple
11969 to remove a section from the output. */
11970 o->flags |= SEC_EXCLUDE;
11971
11972 if (info->print_gc_sections && o->size != 0)
11973 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11974
11975 /* But we also have to update some of the relocation
11976 info we collected before. */
11977 if (gc_sweep_hook
11978 && (o->flags & SEC_RELOC) != 0
11979 && o->reloc_count > 0
11980 && !bfd_is_abs_section (o->output_section))
11981 {
11982 Elf_Internal_Rela *internal_relocs;
11983 bfd_boolean r;
11984
11985 internal_relocs
11986 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11987 info->keep_memory);
11988 if (internal_relocs == NULL)
11989 return FALSE;
11990
11991 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11992
11993 if (elf_section_data (o)->relocs != internal_relocs)
11994 free (internal_relocs);
11995
11996 if (!r)
11997 return FALSE;
11998 }
11999 }
12000 }
12001
12002 /* Remove the symbols that were in the swept sections from the dynamic
12003 symbol table. GCFIXME: Anyone know how to get them out of the
12004 static symbol table as well? */
12005 sweep_info.info = info;
12006 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12007 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12008 &sweep_info);
12009
12010 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12011 return TRUE;
12012 }
12013
12014 /* Propagate collected vtable information. This is called through
12015 elf_link_hash_traverse. */
12016
12017 static bfd_boolean
12018 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12019 {
12020 /* Those that are not vtables. */
12021 if (h->vtable == NULL || h->vtable->parent == NULL)
12022 return TRUE;
12023
12024 /* Those vtables that do not have parents, we cannot merge. */
12025 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12026 return TRUE;
12027
12028 /* If we've already been done, exit. */
12029 if (h->vtable->used && h->vtable->used[-1])
12030 return TRUE;
12031
12032 /* Make sure the parent's table is up to date. */
12033 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12034
12035 if (h->vtable->used == NULL)
12036 {
12037 /* None of this table's entries were referenced. Re-use the
12038 parent's table. */
12039 h->vtable->used = h->vtable->parent->vtable->used;
12040 h->vtable->size = h->vtable->parent->vtable->size;
12041 }
12042 else
12043 {
12044 size_t n;
12045 bfd_boolean *cu, *pu;
12046
12047 /* Or the parent's entries into ours. */
12048 cu = h->vtable->used;
12049 cu[-1] = TRUE;
12050 pu = h->vtable->parent->vtable->used;
12051 if (pu != NULL)
12052 {
12053 const struct elf_backend_data *bed;
12054 unsigned int log_file_align;
12055
12056 bed = get_elf_backend_data (h->root.u.def.section->owner);
12057 log_file_align = bed->s->log_file_align;
12058 n = h->vtable->parent->vtable->size >> log_file_align;
12059 while (n--)
12060 {
12061 if (*pu)
12062 *cu = TRUE;
12063 pu++;
12064 cu++;
12065 }
12066 }
12067 }
12068
12069 return TRUE;
12070 }
12071
12072 static bfd_boolean
12073 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12074 {
12075 asection *sec;
12076 bfd_vma hstart, hend;
12077 Elf_Internal_Rela *relstart, *relend, *rel;
12078 const struct elf_backend_data *bed;
12079 unsigned int log_file_align;
12080
12081 /* Take care of both those symbols that do not describe vtables as
12082 well as those that are not loaded. */
12083 if (h->vtable == NULL || h->vtable->parent == NULL)
12084 return TRUE;
12085
12086 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12087 || h->root.type == bfd_link_hash_defweak);
12088
12089 sec = h->root.u.def.section;
12090 hstart = h->root.u.def.value;
12091 hend = hstart + h->size;
12092
12093 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12094 if (!relstart)
12095 return *(bfd_boolean *) okp = FALSE;
12096 bed = get_elf_backend_data (sec->owner);
12097 log_file_align = bed->s->log_file_align;
12098
12099 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12100
12101 for (rel = relstart; rel < relend; ++rel)
12102 if (rel->r_offset >= hstart && rel->r_offset < hend)
12103 {
12104 /* If the entry is in use, do nothing. */
12105 if (h->vtable->used
12106 && (rel->r_offset - hstart) < h->vtable->size)
12107 {
12108 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12109 if (h->vtable->used[entry])
12110 continue;
12111 }
12112 /* Otherwise, kill it. */
12113 rel->r_offset = rel->r_info = rel->r_addend = 0;
12114 }
12115
12116 return TRUE;
12117 }
12118
12119 /* Mark sections containing dynamically referenced symbols. When
12120 building shared libraries, we must assume that any visible symbol is
12121 referenced. */
12122
12123 bfd_boolean
12124 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12125 {
12126 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12127
12128 if ((h->root.type == bfd_link_hash_defined
12129 || h->root.type == bfd_link_hash_defweak)
12130 && (h->ref_dynamic
12131 || ((!info->executable || info->export_dynamic)
12132 && h->def_regular
12133 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12134 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12135 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12136 || !bfd_hide_sym_by_version (info->version_info,
12137 h->root.root.string)))))
12138 h->root.u.def.section->flags |= SEC_KEEP;
12139
12140 return TRUE;
12141 }
12142
12143 /* Keep all sections containing symbols undefined on the command-line,
12144 and the section containing the entry symbol. */
12145
12146 void
12147 _bfd_elf_gc_keep (struct bfd_link_info *info)
12148 {
12149 struct bfd_sym_chain *sym;
12150
12151 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12152 {
12153 struct elf_link_hash_entry *h;
12154
12155 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12156 FALSE, FALSE, FALSE);
12157
12158 if (h != NULL
12159 && (h->root.type == bfd_link_hash_defined
12160 || h->root.type == bfd_link_hash_defweak)
12161 && !bfd_is_abs_section (h->root.u.def.section))
12162 h->root.u.def.section->flags |= SEC_KEEP;
12163 }
12164 }
12165
12166 /* Do mark and sweep of unused sections. */
12167
12168 bfd_boolean
12169 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12170 {
12171 bfd_boolean ok = TRUE;
12172 bfd *sub;
12173 elf_gc_mark_hook_fn gc_mark_hook;
12174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12175
12176 if (!bed->can_gc_sections
12177 || !is_elf_hash_table (info->hash))
12178 {
12179 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12180 return TRUE;
12181 }
12182
12183 bed->gc_keep (info);
12184
12185 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12186 at the .eh_frame section if we can mark the FDEs individually. */
12187 _bfd_elf_begin_eh_frame_parsing (info);
12188 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12189 {
12190 asection *sec;
12191 struct elf_reloc_cookie cookie;
12192
12193 sec = bfd_get_section_by_name (sub, ".eh_frame");
12194 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12195 {
12196 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12197 if (elf_section_data (sec)->sec_info
12198 && (sec->flags & SEC_LINKER_CREATED) == 0)
12199 elf_eh_frame_section (sub) = sec;
12200 fini_reloc_cookie_for_section (&cookie, sec);
12201 sec = bfd_get_next_section_by_name (sec);
12202 }
12203 }
12204 _bfd_elf_end_eh_frame_parsing (info);
12205
12206 /* Apply transitive closure to the vtable entry usage info. */
12207 elf_link_hash_traverse (elf_hash_table (info),
12208 elf_gc_propagate_vtable_entries_used,
12209 &ok);
12210 if (!ok)
12211 return FALSE;
12212
12213 /* Kill the vtable relocations that were not used. */
12214 elf_link_hash_traverse (elf_hash_table (info),
12215 elf_gc_smash_unused_vtentry_relocs,
12216 &ok);
12217 if (!ok)
12218 return FALSE;
12219
12220 /* Mark dynamically referenced symbols. */
12221 if (elf_hash_table (info)->dynamic_sections_created)
12222 elf_link_hash_traverse (elf_hash_table (info),
12223 bed->gc_mark_dynamic_ref,
12224 info);
12225
12226 /* Grovel through relocs to find out who stays ... */
12227 gc_mark_hook = bed->gc_mark_hook;
12228 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12229 {
12230 asection *o;
12231
12232 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12233 continue;
12234
12235 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12236 Also treat note sections as a root, if the section is not part
12237 of a group. */
12238 for (o = sub->sections; o != NULL; o = o->next)
12239 if (!o->gc_mark
12240 && (o->flags & SEC_EXCLUDE) == 0
12241 && ((o->flags & SEC_KEEP) != 0
12242 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12243 && elf_next_in_group (o) == NULL )))
12244 {
12245 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12246 return FALSE;
12247 }
12248 }
12249
12250 /* Allow the backend to mark additional target specific sections. */
12251 bed->gc_mark_extra_sections (info, gc_mark_hook);
12252
12253 /* ... and mark SEC_EXCLUDE for those that go. */
12254 return elf_gc_sweep (abfd, info);
12255 }
12256 \f
12257 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12258
12259 bfd_boolean
12260 bfd_elf_gc_record_vtinherit (bfd *abfd,
12261 asection *sec,
12262 struct elf_link_hash_entry *h,
12263 bfd_vma offset)
12264 {
12265 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12266 struct elf_link_hash_entry **search, *child;
12267 bfd_size_type extsymcount;
12268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12269
12270 /* The sh_info field of the symtab header tells us where the
12271 external symbols start. We don't care about the local symbols at
12272 this point. */
12273 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12274 if (!elf_bad_symtab (abfd))
12275 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12276
12277 sym_hashes = elf_sym_hashes (abfd);
12278 sym_hashes_end = sym_hashes + extsymcount;
12279
12280 /* Hunt down the child symbol, which is in this section at the same
12281 offset as the relocation. */
12282 for (search = sym_hashes; search != sym_hashes_end; ++search)
12283 {
12284 if ((child = *search) != NULL
12285 && (child->root.type == bfd_link_hash_defined
12286 || child->root.type == bfd_link_hash_defweak)
12287 && child->root.u.def.section == sec
12288 && child->root.u.def.value == offset)
12289 goto win;
12290 }
12291
12292 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12293 abfd, sec, (unsigned long) offset);
12294 bfd_set_error (bfd_error_invalid_operation);
12295 return FALSE;
12296
12297 win:
12298 if (!child->vtable)
12299 {
12300 child->vtable = (struct elf_link_virtual_table_entry *)
12301 bfd_zalloc (abfd, sizeof (*child->vtable));
12302 if (!child->vtable)
12303 return FALSE;
12304 }
12305 if (!h)
12306 {
12307 /* This *should* only be the absolute section. It could potentially
12308 be that someone has defined a non-global vtable though, which
12309 would be bad. It isn't worth paging in the local symbols to be
12310 sure though; that case should simply be handled by the assembler. */
12311
12312 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12313 }
12314 else
12315 child->vtable->parent = h;
12316
12317 return TRUE;
12318 }
12319
12320 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12321
12322 bfd_boolean
12323 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12324 asection *sec ATTRIBUTE_UNUSED,
12325 struct elf_link_hash_entry *h,
12326 bfd_vma addend)
12327 {
12328 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12329 unsigned int log_file_align = bed->s->log_file_align;
12330
12331 if (!h->vtable)
12332 {
12333 h->vtable = (struct elf_link_virtual_table_entry *)
12334 bfd_zalloc (abfd, sizeof (*h->vtable));
12335 if (!h->vtable)
12336 return FALSE;
12337 }
12338
12339 if (addend >= h->vtable->size)
12340 {
12341 size_t size, bytes, file_align;
12342 bfd_boolean *ptr = h->vtable->used;
12343
12344 /* While the symbol is undefined, we have to be prepared to handle
12345 a zero size. */
12346 file_align = 1 << log_file_align;
12347 if (h->root.type == bfd_link_hash_undefined)
12348 size = addend + file_align;
12349 else
12350 {
12351 size = h->size;
12352 if (addend >= size)
12353 {
12354 /* Oops! We've got a reference past the defined end of
12355 the table. This is probably a bug -- shall we warn? */
12356 size = addend + file_align;
12357 }
12358 }
12359 size = (size + file_align - 1) & -file_align;
12360
12361 /* Allocate one extra entry for use as a "done" flag for the
12362 consolidation pass. */
12363 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12364
12365 if (ptr)
12366 {
12367 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12368
12369 if (ptr != NULL)
12370 {
12371 size_t oldbytes;
12372
12373 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12374 * sizeof (bfd_boolean));
12375 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12376 }
12377 }
12378 else
12379 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12380
12381 if (ptr == NULL)
12382 return FALSE;
12383
12384 /* And arrange for that done flag to be at index -1. */
12385 h->vtable->used = ptr + 1;
12386 h->vtable->size = size;
12387 }
12388
12389 h->vtable->used[addend >> log_file_align] = TRUE;
12390
12391 return TRUE;
12392 }
12393
12394 /* Map an ELF section header flag to its corresponding string. */
12395 typedef struct
12396 {
12397 char *flag_name;
12398 flagword flag_value;
12399 } elf_flags_to_name_table;
12400
12401 static elf_flags_to_name_table elf_flags_to_names [] =
12402 {
12403 { "SHF_WRITE", SHF_WRITE },
12404 { "SHF_ALLOC", SHF_ALLOC },
12405 { "SHF_EXECINSTR", SHF_EXECINSTR },
12406 { "SHF_MERGE", SHF_MERGE },
12407 { "SHF_STRINGS", SHF_STRINGS },
12408 { "SHF_INFO_LINK", SHF_INFO_LINK},
12409 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12410 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12411 { "SHF_GROUP", SHF_GROUP },
12412 { "SHF_TLS", SHF_TLS },
12413 { "SHF_MASKOS", SHF_MASKOS },
12414 { "SHF_EXCLUDE", SHF_EXCLUDE },
12415 };
12416
12417 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12418 bfd_boolean
12419 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12420 struct flag_info *flaginfo,
12421 asection *section)
12422 {
12423 const bfd_vma sh_flags = elf_section_flags (section);
12424
12425 if (!flaginfo->flags_initialized)
12426 {
12427 bfd *obfd = info->output_bfd;
12428 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12429 struct flag_info_list *tf = flaginfo->flag_list;
12430 int with_hex = 0;
12431 int without_hex = 0;
12432
12433 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12434 {
12435 unsigned i;
12436 flagword (*lookup) (char *);
12437
12438 lookup = bed->elf_backend_lookup_section_flags_hook;
12439 if (lookup != NULL)
12440 {
12441 flagword hexval = (*lookup) ((char *) tf->name);
12442
12443 if (hexval != 0)
12444 {
12445 if (tf->with == with_flags)
12446 with_hex |= hexval;
12447 else if (tf->with == without_flags)
12448 without_hex |= hexval;
12449 tf->valid = TRUE;
12450 continue;
12451 }
12452 }
12453 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12454 {
12455 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12456 {
12457 if (tf->with == with_flags)
12458 with_hex |= elf_flags_to_names[i].flag_value;
12459 else if (tf->with == without_flags)
12460 without_hex |= elf_flags_to_names[i].flag_value;
12461 tf->valid = TRUE;
12462 break;
12463 }
12464 }
12465 if (!tf->valid)
12466 {
12467 info->callbacks->einfo
12468 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12469 return FALSE;
12470 }
12471 }
12472 flaginfo->flags_initialized = TRUE;
12473 flaginfo->only_with_flags |= with_hex;
12474 flaginfo->not_with_flags |= without_hex;
12475 }
12476
12477 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12478 return FALSE;
12479
12480 if ((flaginfo->not_with_flags & sh_flags) != 0)
12481 return FALSE;
12482
12483 return TRUE;
12484 }
12485
12486 struct alloc_got_off_arg {
12487 bfd_vma gotoff;
12488 struct bfd_link_info *info;
12489 };
12490
12491 /* We need a special top-level link routine to convert got reference counts
12492 to real got offsets. */
12493
12494 static bfd_boolean
12495 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12496 {
12497 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12498 bfd *obfd = gofarg->info->output_bfd;
12499 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12500
12501 if (h->got.refcount > 0)
12502 {
12503 h->got.offset = gofarg->gotoff;
12504 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12505 }
12506 else
12507 h->got.offset = (bfd_vma) -1;
12508
12509 return TRUE;
12510 }
12511
12512 /* And an accompanying bit to work out final got entry offsets once
12513 we're done. Should be called from final_link. */
12514
12515 bfd_boolean
12516 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12517 struct bfd_link_info *info)
12518 {
12519 bfd *i;
12520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12521 bfd_vma gotoff;
12522 struct alloc_got_off_arg gofarg;
12523
12524 BFD_ASSERT (abfd == info->output_bfd);
12525
12526 if (! is_elf_hash_table (info->hash))
12527 return FALSE;
12528
12529 /* The GOT offset is relative to the .got section, but the GOT header is
12530 put into the .got.plt section, if the backend uses it. */
12531 if (bed->want_got_plt)
12532 gotoff = 0;
12533 else
12534 gotoff = bed->got_header_size;
12535
12536 /* Do the local .got entries first. */
12537 for (i = info->input_bfds; i; i = i->link_next)
12538 {
12539 bfd_signed_vma *local_got;
12540 bfd_size_type j, locsymcount;
12541 Elf_Internal_Shdr *symtab_hdr;
12542
12543 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12544 continue;
12545
12546 local_got = elf_local_got_refcounts (i);
12547 if (!local_got)
12548 continue;
12549
12550 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12551 if (elf_bad_symtab (i))
12552 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12553 else
12554 locsymcount = symtab_hdr->sh_info;
12555
12556 for (j = 0; j < locsymcount; ++j)
12557 {
12558 if (local_got[j] > 0)
12559 {
12560 local_got[j] = gotoff;
12561 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12562 }
12563 else
12564 local_got[j] = (bfd_vma) -1;
12565 }
12566 }
12567
12568 /* Then the global .got entries. .plt refcounts are handled by
12569 adjust_dynamic_symbol */
12570 gofarg.gotoff = gotoff;
12571 gofarg.info = info;
12572 elf_link_hash_traverse (elf_hash_table (info),
12573 elf_gc_allocate_got_offsets,
12574 &gofarg);
12575 return TRUE;
12576 }
12577
12578 /* Many folk need no more in the way of final link than this, once
12579 got entry reference counting is enabled. */
12580
12581 bfd_boolean
12582 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12583 {
12584 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12585 return FALSE;
12586
12587 /* Invoke the regular ELF backend linker to do all the work. */
12588 return bfd_elf_final_link (abfd, info);
12589 }
12590
12591 bfd_boolean
12592 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12593 {
12594 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12595
12596 if (rcookie->bad_symtab)
12597 rcookie->rel = rcookie->rels;
12598
12599 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12600 {
12601 unsigned long r_symndx;
12602
12603 if (! rcookie->bad_symtab)
12604 if (rcookie->rel->r_offset > offset)
12605 return FALSE;
12606 if (rcookie->rel->r_offset != offset)
12607 continue;
12608
12609 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12610 if (r_symndx == STN_UNDEF)
12611 return TRUE;
12612
12613 if (r_symndx >= rcookie->locsymcount
12614 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12615 {
12616 struct elf_link_hash_entry *h;
12617
12618 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12619
12620 while (h->root.type == bfd_link_hash_indirect
12621 || h->root.type == bfd_link_hash_warning)
12622 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12623
12624 if ((h->root.type == bfd_link_hash_defined
12625 || h->root.type == bfd_link_hash_defweak)
12626 && discarded_section (h->root.u.def.section))
12627 return TRUE;
12628 else
12629 return FALSE;
12630 }
12631 else
12632 {
12633 /* It's not a relocation against a global symbol,
12634 but it could be a relocation against a local
12635 symbol for a discarded section. */
12636 asection *isec;
12637 Elf_Internal_Sym *isym;
12638
12639 /* Need to: get the symbol; get the section. */
12640 isym = &rcookie->locsyms[r_symndx];
12641 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12642 if (isec != NULL && discarded_section (isec))
12643 return TRUE;
12644 }
12645 return FALSE;
12646 }
12647 return FALSE;
12648 }
12649
12650 /* Discard unneeded references to discarded sections.
12651 Returns TRUE if any section's size was changed. */
12652 /* This function assumes that the relocations are in sorted order,
12653 which is true for all known assemblers. */
12654
12655 bfd_boolean
12656 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12657 {
12658 struct elf_reloc_cookie cookie;
12659 asection *stab, *eh;
12660 const struct elf_backend_data *bed;
12661 bfd *abfd;
12662 bfd_boolean ret = FALSE;
12663
12664 if (info->traditional_format
12665 || !is_elf_hash_table (info->hash))
12666 return FALSE;
12667
12668 _bfd_elf_begin_eh_frame_parsing (info);
12669 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12670 {
12671 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12672 continue;
12673
12674 bed = get_elf_backend_data (abfd);
12675
12676 eh = NULL;
12677 if (!info->relocatable)
12678 {
12679 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12680 while (eh != NULL
12681 && (eh->size == 0
12682 || bfd_is_abs_section (eh->output_section)))
12683 eh = bfd_get_next_section_by_name (eh);
12684 }
12685
12686 stab = bfd_get_section_by_name (abfd, ".stab");
12687 if (stab != NULL
12688 && (stab->size == 0
12689 || bfd_is_abs_section (stab->output_section)
12690 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12691 stab = NULL;
12692
12693 if (stab == NULL
12694 && eh == NULL
12695 && bed->elf_backend_discard_info == NULL)
12696 continue;
12697
12698 if (!init_reloc_cookie (&cookie, info, abfd))
12699 return FALSE;
12700
12701 if (stab != NULL
12702 && stab->reloc_count > 0
12703 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12704 {
12705 if (_bfd_discard_section_stabs (abfd, stab,
12706 elf_section_data (stab)->sec_info,
12707 bfd_elf_reloc_symbol_deleted_p,
12708 &cookie))
12709 ret = TRUE;
12710 fini_reloc_cookie_rels (&cookie, stab);
12711 }
12712
12713 while (eh != NULL
12714 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12715 {
12716 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12717 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12718 bfd_elf_reloc_symbol_deleted_p,
12719 &cookie))
12720 ret = TRUE;
12721 fini_reloc_cookie_rels (&cookie, eh);
12722 eh = bfd_get_next_section_by_name (eh);
12723 }
12724
12725 if (bed->elf_backend_discard_info != NULL
12726 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12727 ret = TRUE;
12728
12729 fini_reloc_cookie (&cookie, abfd);
12730 }
12731 _bfd_elf_end_eh_frame_parsing (info);
12732
12733 if (info->eh_frame_hdr
12734 && !info->relocatable
12735 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12736 ret = TRUE;
12737
12738 return ret;
12739 }
12740
12741 bfd_boolean
12742 _bfd_elf_section_already_linked (bfd *abfd,
12743 asection *sec,
12744 struct bfd_link_info *info)
12745 {
12746 flagword flags;
12747 const char *name, *key;
12748 struct bfd_section_already_linked *l;
12749 struct bfd_section_already_linked_hash_entry *already_linked_list;
12750
12751 if (sec->output_section == bfd_abs_section_ptr)
12752 return FALSE;
12753
12754 flags = sec->flags;
12755
12756 /* Return if it isn't a linkonce section. A comdat group section
12757 also has SEC_LINK_ONCE set. */
12758 if ((flags & SEC_LINK_ONCE) == 0)
12759 return FALSE;
12760
12761 /* Don't put group member sections on our list of already linked
12762 sections. They are handled as a group via their group section. */
12763 if (elf_sec_group (sec) != NULL)
12764 return FALSE;
12765
12766 /* For a SHT_GROUP section, use the group signature as the key. */
12767 name = sec->name;
12768 if ((flags & SEC_GROUP) != 0
12769 && elf_next_in_group (sec) != NULL
12770 && elf_group_name (elf_next_in_group (sec)) != NULL)
12771 key = elf_group_name (elf_next_in_group (sec));
12772 else
12773 {
12774 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12775 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12776 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12777 key++;
12778 else
12779 /* Must be a user linkonce section that doesn't follow gcc's
12780 naming convention. In this case we won't be matching
12781 single member groups. */
12782 key = name;
12783 }
12784
12785 already_linked_list = bfd_section_already_linked_table_lookup (key);
12786
12787 for (l = already_linked_list->entry; l != NULL; l = l->next)
12788 {
12789 /* We may have 2 different types of sections on the list: group
12790 sections with a signature of <key> (<key> is some string),
12791 and linkonce sections named .gnu.linkonce.<type>.<key>.
12792 Match like sections. LTO plugin sections are an exception.
12793 They are always named .gnu.linkonce.t.<key> and match either
12794 type of section. */
12795 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12796 && ((flags & SEC_GROUP) != 0
12797 || strcmp (name, l->sec->name) == 0))
12798 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12799 {
12800 /* The section has already been linked. See if we should
12801 issue a warning. */
12802 if (!_bfd_handle_already_linked (sec, l, info))
12803 return FALSE;
12804
12805 if (flags & SEC_GROUP)
12806 {
12807 asection *first = elf_next_in_group (sec);
12808 asection *s = first;
12809
12810 while (s != NULL)
12811 {
12812 s->output_section = bfd_abs_section_ptr;
12813 /* Record which group discards it. */
12814 s->kept_section = l->sec;
12815 s = elf_next_in_group (s);
12816 /* These lists are circular. */
12817 if (s == first)
12818 break;
12819 }
12820 }
12821
12822 return TRUE;
12823 }
12824 }
12825
12826 /* A single member comdat group section may be discarded by a
12827 linkonce section and vice versa. */
12828 if ((flags & SEC_GROUP) != 0)
12829 {
12830 asection *first = elf_next_in_group (sec);
12831
12832 if (first != NULL && elf_next_in_group (first) == first)
12833 /* Check this single member group against linkonce sections. */
12834 for (l = already_linked_list->entry; l != NULL; l = l->next)
12835 if ((l->sec->flags & SEC_GROUP) == 0
12836 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12837 {
12838 first->output_section = bfd_abs_section_ptr;
12839 first->kept_section = l->sec;
12840 sec->output_section = bfd_abs_section_ptr;
12841 break;
12842 }
12843 }
12844 else
12845 /* Check this linkonce section against single member groups. */
12846 for (l = already_linked_list->entry; l != NULL; l = l->next)
12847 if (l->sec->flags & SEC_GROUP)
12848 {
12849 asection *first = elf_next_in_group (l->sec);
12850
12851 if (first != NULL
12852 && elf_next_in_group (first) == first
12853 && bfd_elf_match_symbols_in_sections (first, sec, info))
12854 {
12855 sec->output_section = bfd_abs_section_ptr;
12856 sec->kept_section = first;
12857 break;
12858 }
12859 }
12860
12861 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12862 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12863 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12864 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12865 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12866 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12867 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12868 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12869 The reverse order cannot happen as there is never a bfd with only the
12870 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12871 matter as here were are looking only for cross-bfd sections. */
12872
12873 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12874 for (l = already_linked_list->entry; l != NULL; l = l->next)
12875 if ((l->sec->flags & SEC_GROUP) == 0
12876 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12877 {
12878 if (abfd != l->sec->owner)
12879 sec->output_section = bfd_abs_section_ptr;
12880 break;
12881 }
12882
12883 /* This is the first section with this name. Record it. */
12884 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12885 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12886 return sec->output_section == bfd_abs_section_ptr;
12887 }
12888
12889 bfd_boolean
12890 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12891 {
12892 return sym->st_shndx == SHN_COMMON;
12893 }
12894
12895 unsigned int
12896 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12897 {
12898 return SHN_COMMON;
12899 }
12900
12901 asection *
12902 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12903 {
12904 return bfd_com_section_ptr;
12905 }
12906
12907 bfd_vma
12908 _bfd_elf_default_got_elt_size (bfd *abfd,
12909 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12910 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12911 bfd *ibfd ATTRIBUTE_UNUSED,
12912 unsigned long symndx ATTRIBUTE_UNUSED)
12913 {
12914 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12915 return bed->s->arch_size / 8;
12916 }
12917
12918 /* Routines to support the creation of dynamic relocs. */
12919
12920 /* Returns the name of the dynamic reloc section associated with SEC. */
12921
12922 static const char *
12923 get_dynamic_reloc_section_name (bfd * abfd,
12924 asection * sec,
12925 bfd_boolean is_rela)
12926 {
12927 char *name;
12928 const char *old_name = bfd_get_section_name (NULL, sec);
12929 const char *prefix = is_rela ? ".rela" : ".rel";
12930
12931 if (old_name == NULL)
12932 return NULL;
12933
12934 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12935 sprintf (name, "%s%s", prefix, old_name);
12936
12937 return name;
12938 }
12939
12940 /* Returns the dynamic reloc section associated with SEC.
12941 If necessary compute the name of the dynamic reloc section based
12942 on SEC's name (looked up in ABFD's string table) and the setting
12943 of IS_RELA. */
12944
12945 asection *
12946 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12947 asection * sec,
12948 bfd_boolean is_rela)
12949 {
12950 asection * reloc_sec = elf_section_data (sec)->sreloc;
12951
12952 if (reloc_sec == NULL)
12953 {
12954 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12955
12956 if (name != NULL)
12957 {
12958 reloc_sec = bfd_get_linker_section (abfd, name);
12959
12960 if (reloc_sec != NULL)
12961 elf_section_data (sec)->sreloc = reloc_sec;
12962 }
12963 }
12964
12965 return reloc_sec;
12966 }
12967
12968 /* Returns the dynamic reloc section associated with SEC. If the
12969 section does not exist it is created and attached to the DYNOBJ
12970 bfd and stored in the SRELOC field of SEC's elf_section_data
12971 structure.
12972
12973 ALIGNMENT is the alignment for the newly created section and
12974 IS_RELA defines whether the name should be .rela.<SEC's name>
12975 or .rel.<SEC's name>. The section name is looked up in the
12976 string table associated with ABFD. */
12977
12978 asection *
12979 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12980 bfd * dynobj,
12981 unsigned int alignment,
12982 bfd * abfd,
12983 bfd_boolean is_rela)
12984 {
12985 asection * reloc_sec = elf_section_data (sec)->sreloc;
12986
12987 if (reloc_sec == NULL)
12988 {
12989 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12990
12991 if (name == NULL)
12992 return NULL;
12993
12994 reloc_sec = bfd_get_linker_section (dynobj, name);
12995
12996 if (reloc_sec == NULL)
12997 {
12998 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12999 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13000 if ((sec->flags & SEC_ALLOC) != 0)
13001 flags |= SEC_ALLOC | SEC_LOAD;
13002
13003 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13004 if (reloc_sec != NULL)
13005 {
13006 /* _bfd_elf_get_sec_type_attr chooses a section type by
13007 name. Override as it may be wrong, eg. for a user
13008 section named "auto" we'll get ".relauto" which is
13009 seen to be a .rela section. */
13010 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13011 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13012 reloc_sec = NULL;
13013 }
13014 }
13015
13016 elf_section_data (sec)->sreloc = reloc_sec;
13017 }
13018
13019 return reloc_sec;
13020 }
13021
13022 /* Copy the ELF symbol type associated with a linker hash entry. */
13023 void
13024 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13025 struct bfd_link_hash_entry * hdest,
13026 struct bfd_link_hash_entry * hsrc)
13027 {
13028 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13029 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13030
13031 ehdest->type = ehsrc->type;
13032 ehdest->target_internal = ehsrc->target_internal;
13033 }
13034
13035 /* Append a RELA relocation REL to section S in BFD. */
13036
13037 void
13038 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13039 {
13040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13041 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13042 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13043 bed->s->swap_reloca_out (abfd, rel, loc);
13044 }
13045
13046 /* Append a REL relocation REL to section S in BFD. */
13047
13048 void
13049 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13050 {
13051 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13052 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13053 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13054 bed->s->swap_reloc_out (abfd, rel, loc);
13055 }
This page took 0.292212 seconds and 5 git commands to generate.