Add extern_protected_data and set it for x86
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym, asection *sec,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition
869 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
870 && (sec->flags & SEC_READONLY) == 0)
871 h->protected_def = 1;
872 }
873
874 /* This function is called when we want to merge a new symbol with an
875 existing symbol. It handles the various cases which arise when we
876 find a definition in a dynamic object, or when there is already a
877 definition in a dynamic object. The new symbol is described by
878 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
879 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
880 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
881 of an old common symbol. We set OVERRIDE if the old symbol is
882 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
883 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
884 to change. By OK to change, we mean that we shouldn't warn if the
885 type or size does change. */
886
887 static bfd_boolean
888 _bfd_elf_merge_symbol (bfd *abfd,
889 struct bfd_link_info *info,
890 const char *name,
891 Elf_Internal_Sym *sym,
892 asection **psec,
893 bfd_vma *pvalue,
894 struct elf_link_hash_entry **sym_hash,
895 bfd **poldbfd,
896 bfd_boolean *pold_weak,
897 unsigned int *pold_alignment,
898 bfd_boolean *skip,
899 bfd_boolean *override,
900 bfd_boolean *type_change_ok,
901 bfd_boolean *size_change_ok)
902 {
903 asection *sec, *oldsec;
904 struct elf_link_hash_entry *h;
905 struct elf_link_hash_entry *hi;
906 struct elf_link_hash_entry *flip;
907 int bind;
908 bfd *oldbfd;
909 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
910 bfd_boolean newweak, oldweak, newfunc, oldfunc;
911 const struct elf_backend_data *bed;
912
913 *skip = FALSE;
914 *override = FALSE;
915
916 sec = *psec;
917 bind = ELF_ST_BIND (sym->st_info);
918
919 if (! bfd_is_und_section (sec))
920 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
921 else
922 h = ((struct elf_link_hash_entry *)
923 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
924 if (h == NULL)
925 return FALSE;
926 *sym_hash = h;
927
928 bed = get_elf_backend_data (abfd);
929
930 /* For merging, we only care about real symbols. But we need to make
931 sure that indirect symbol dynamic flags are updated. */
932 hi = h;
933 while (h->root.type == bfd_link_hash_indirect
934 || h->root.type == bfd_link_hash_warning)
935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
936
937 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
938 existing symbol. */
939
940 oldbfd = NULL;
941 oldsec = NULL;
942 switch (h->root.type)
943 {
944 default:
945 break;
946
947 case bfd_link_hash_undefined:
948 case bfd_link_hash_undefweak:
949 oldbfd = h->root.u.undef.abfd;
950 break;
951
952 case bfd_link_hash_defined:
953 case bfd_link_hash_defweak:
954 oldbfd = h->root.u.def.section->owner;
955 oldsec = h->root.u.def.section;
956 break;
957
958 case bfd_link_hash_common:
959 oldbfd = h->root.u.c.p->section->owner;
960 oldsec = h->root.u.c.p->section;
961 if (pold_alignment)
962 *pold_alignment = h->root.u.c.p->alignment_power;
963 break;
964 }
965 if (poldbfd && *poldbfd == NULL)
966 *poldbfd = oldbfd;
967
968 /* Differentiate strong and weak symbols. */
969 newweak = bind == STB_WEAK;
970 oldweak = (h->root.type == bfd_link_hash_defweak
971 || h->root.type == bfd_link_hash_undefweak);
972 if (pold_weak)
973 *pold_weak = oldweak;
974
975 /* This code is for coping with dynamic objects, and is only useful
976 if we are doing an ELF link. */
977 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
978 return TRUE;
979
980 /* We have to check it for every instance since the first few may be
981 references and not all compilers emit symbol type for undefined
982 symbols. */
983 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
984
985 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
986 respectively, is from a dynamic object. */
987
988 newdyn = (abfd->flags & DYNAMIC) != 0;
989
990 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
991 syms and defined syms in dynamic libraries respectively.
992 ref_dynamic on the other hand can be set for a symbol defined in
993 a dynamic library, and def_dynamic may not be set; When the
994 definition in a dynamic lib is overridden by a definition in the
995 executable use of the symbol in the dynamic lib becomes a
996 reference to the executable symbol. */
997 if (newdyn)
998 {
999 if (bfd_is_und_section (sec))
1000 {
1001 if (bind != STB_WEAK)
1002 {
1003 h->ref_dynamic_nonweak = 1;
1004 hi->ref_dynamic_nonweak = 1;
1005 }
1006 }
1007 else
1008 {
1009 h->dynamic_def = 1;
1010 hi->dynamic_def = 1;
1011 }
1012 }
1013
1014 /* If we just created the symbol, mark it as being an ELF symbol.
1015 Other than that, there is nothing to do--there is no merge issue
1016 with a newly defined symbol--so we just return. */
1017
1018 if (h->root.type == bfd_link_hash_new)
1019 {
1020 h->non_elf = 0;
1021 return TRUE;
1022 }
1023
1024 /* In cases involving weak versioned symbols, we may wind up trying
1025 to merge a symbol with itself. Catch that here, to avoid the
1026 confusion that results if we try to override a symbol with
1027 itself. The additional tests catch cases like
1028 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1029 dynamic object, which we do want to handle here. */
1030 if (abfd == oldbfd
1031 && (newweak || oldweak)
1032 && ((abfd->flags & DYNAMIC) == 0
1033 || !h->def_regular))
1034 return TRUE;
1035
1036 olddyn = FALSE;
1037 if (oldbfd != NULL)
1038 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1039 else if (oldsec != NULL)
1040 {
1041 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1042 indices used by MIPS ELF. */
1043 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1044 }
1045
1046 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1047 respectively, appear to be a definition rather than reference. */
1048
1049 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1050
1051 olddef = (h->root.type != bfd_link_hash_undefined
1052 && h->root.type != bfd_link_hash_undefweak
1053 && h->root.type != bfd_link_hash_common);
1054
1055 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1056 respectively, appear to be a function. */
1057
1058 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1059 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1060
1061 oldfunc = (h->type != STT_NOTYPE
1062 && bed->is_function_type (h->type));
1063
1064 /* When we try to create a default indirect symbol from the dynamic
1065 definition with the default version, we skip it if its type and
1066 the type of existing regular definition mismatch. */
1067 if (pold_alignment == NULL
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (((olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 || (olddef
1077 && ((h->type == STT_GNU_IFUNC)
1078 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1079 {
1080 *skip = TRUE;
1081 return TRUE;
1082 }
1083
1084 /* Check TLS symbols. We don't check undefined symbols introduced
1085 by "ld -u" which have no type (and oldbfd NULL), and we don't
1086 check symbols from plugins because they also have no type. */
1087 if (oldbfd != NULL
1088 && (oldbfd->flags & BFD_PLUGIN) == 0
1089 && (abfd->flags & BFD_PLUGIN) == 0
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A "
1119 "mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B "
1124 "mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1126 else if (tdef)
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A "
1129 "mismatches non-TLS reference in %B"),
1130 tbfd, tsec, ntbfd, h->root.root.string);
1131 else
1132 (*_bfd_error_handler)
1133 (_("%s: TLS reference in %B "
1134 "mismatches non-TLS definition in %B section %A"),
1135 tbfd, ntbfd, ntsec, h->root.root.string);
1136
1137 bfd_set_error (bfd_error_bad_value);
1138 return FALSE;
1139 }
1140
1141 /* If the old symbol has non-default visibility, we ignore the new
1142 definition from a dynamic object. */
1143 if (newdyn
1144 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1145 && !bfd_is_und_section (sec))
1146 {
1147 *skip = TRUE;
1148 /* Make sure this symbol is dynamic. */
1149 h->ref_dynamic = 1;
1150 hi->ref_dynamic = 1;
1151 /* A protected symbol has external availability. Make sure it is
1152 recorded as dynamic.
1153
1154 FIXME: Should we check type and size for protected symbol? */
1155 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1156 return bfd_elf_link_record_dynamic_symbol (info, h);
1157 else
1158 return TRUE;
1159 }
1160 else if (!newdyn
1161 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1162 && h->def_dynamic)
1163 {
1164 /* If the new symbol with non-default visibility comes from a
1165 relocatable file and the old definition comes from a dynamic
1166 object, we remove the old definition. */
1167 if (hi->root.type == bfd_link_hash_indirect)
1168 {
1169 /* Handle the case where the old dynamic definition is
1170 default versioned. We need to copy the symbol info from
1171 the symbol with default version to the normal one if it
1172 was referenced before. */
1173 if (h->ref_regular)
1174 {
1175 hi->root.type = h->root.type;
1176 h->root.type = bfd_link_hash_indirect;
1177 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1178
1179 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1180 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1181 {
1182 /* If the new symbol is hidden or internal, completely undo
1183 any dynamic link state. */
1184 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1185 h->forced_local = 0;
1186 h->ref_dynamic = 0;
1187 }
1188 else
1189 h->ref_dynamic = 1;
1190
1191 h->def_dynamic = 0;
1192 /* FIXME: Should we check type and size for protected symbol? */
1193 h->size = 0;
1194 h->type = 0;
1195
1196 h = hi;
1197 }
1198 else
1199 h = hi;
1200 }
1201
1202 /* If the old symbol was undefined before, then it will still be
1203 on the undefs list. If the new symbol is undefined or
1204 common, we can't make it bfd_link_hash_new here, because new
1205 undefined or common symbols will be added to the undefs list
1206 by _bfd_generic_link_add_one_symbol. Symbols may not be
1207 added twice to the undefs list. Also, if the new symbol is
1208 undefweak then we don't want to lose the strong undef. */
1209 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1210 {
1211 h->root.type = bfd_link_hash_undefined;
1212 h->root.u.undef.abfd = abfd;
1213 }
1214 else
1215 {
1216 h->root.type = bfd_link_hash_new;
1217 h->root.u.undef.abfd = NULL;
1218 }
1219
1220 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1221 {
1222 /* If the new symbol is hidden or internal, completely undo
1223 any dynamic link state. */
1224 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1225 h->forced_local = 0;
1226 h->ref_dynamic = 0;
1227 }
1228 else
1229 h->ref_dynamic = 1;
1230 h->def_dynamic = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1232 h->size = 0;
1233 h->type = 0;
1234 return TRUE;
1235 }
1236
1237 /* If a new weak symbol definition comes from a regular file and the
1238 old symbol comes from a dynamic library, we treat the new one as
1239 strong. Similarly, an old weak symbol definition from a regular
1240 file is treated as strong when the new symbol comes from a dynamic
1241 library. Further, an old weak symbol from a dynamic library is
1242 treated as strong if the new symbol is from a dynamic library.
1243 This reflects the way glibc's ld.so works.
1244
1245 Do this before setting *type_change_ok or *size_change_ok so that
1246 we warn properly when dynamic library symbols are overridden. */
1247
1248 if (newdef && !newdyn && olddyn)
1249 newweak = FALSE;
1250 if (olddef && newdyn)
1251 oldweak = FALSE;
1252
1253 /* Allow changes between different types of function symbol. */
1254 if (newfunc && oldfunc)
1255 *type_change_ok = TRUE;
1256
1257 /* It's OK to change the type if either the existing symbol or the
1258 new symbol is weak. A type change is also OK if the old symbol
1259 is undefined and the new symbol is defined. */
1260
1261 if (oldweak
1262 || newweak
1263 || (newdef
1264 && h->root.type == bfd_link_hash_undefined))
1265 *type_change_ok = TRUE;
1266
1267 /* It's OK to change the size if either the existing symbol or the
1268 new symbol is weak, or if the old symbol is undefined. */
1269
1270 if (*type_change_ok
1271 || h->root.type == bfd_link_hash_undefined)
1272 *size_change_ok = TRUE;
1273
1274 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1275 symbol, respectively, appears to be a common symbol in a dynamic
1276 object. If a symbol appears in an uninitialized section, and is
1277 not weak, and is not a function, then it may be a common symbol
1278 which was resolved when the dynamic object was created. We want
1279 to treat such symbols specially, because they raise special
1280 considerations when setting the symbol size: if the symbol
1281 appears as a common symbol in a regular object, and the size in
1282 the regular object is larger, we must make sure that we use the
1283 larger size. This problematic case can always be avoided in C,
1284 but it must be handled correctly when using Fortran shared
1285 libraries.
1286
1287 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1288 likewise for OLDDYNCOMMON and OLDDEF.
1289
1290 Note that this test is just a heuristic, and that it is quite
1291 possible to have an uninitialized symbol in a shared object which
1292 is really a definition, rather than a common symbol. This could
1293 lead to some minor confusion when the symbol really is a common
1294 symbol in some regular object. However, I think it will be
1295 harmless. */
1296
1297 if (newdyn
1298 && newdef
1299 && !newweak
1300 && (sec->flags & SEC_ALLOC) != 0
1301 && (sec->flags & SEC_LOAD) == 0
1302 && sym->st_size > 0
1303 && !newfunc)
1304 newdyncommon = TRUE;
1305 else
1306 newdyncommon = FALSE;
1307
1308 if (olddyn
1309 && olddef
1310 && h->root.type == bfd_link_hash_defined
1311 && h->def_dynamic
1312 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1313 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1314 && h->size > 0
1315 && !oldfunc)
1316 olddyncommon = TRUE;
1317 else
1318 olddyncommon = FALSE;
1319
1320 /* We now know everything about the old and new symbols. We ask the
1321 backend to check if we can merge them. */
1322 if (bed->merge_symbol != NULL)
1323 {
1324 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1325 return FALSE;
1326 sec = *psec;
1327 }
1328
1329 /* If both the old and the new symbols look like common symbols in a
1330 dynamic object, set the size of the symbol to the larger of the
1331 two. */
1332
1333 if (olddyncommon
1334 && newdyncommon
1335 && sym->st_size != h->size)
1336 {
1337 /* Since we think we have two common symbols, issue a multiple
1338 common warning if desired. Note that we only warn if the
1339 size is different. If the size is the same, we simply let
1340 the old symbol override the new one as normally happens with
1341 symbols defined in dynamic objects. */
1342
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1345 return FALSE;
1346
1347 if (sym->st_size > h->size)
1348 h->size = sym->st_size;
1349
1350 *size_change_ok = TRUE;
1351 }
1352
1353 /* If we are looking at a dynamic object, and we have found a
1354 definition, we need to see if the symbol was already defined by
1355 some other object. If so, we want to use the existing
1356 definition, and we do not want to report a multiple symbol
1357 definition error; we do this by clobbering *PSEC to be
1358 bfd_und_section_ptr.
1359
1360 We treat a common symbol as a definition if the symbol in the
1361 shared library is a function, since common symbols always
1362 represent variables; this can cause confusion in principle, but
1363 any such confusion would seem to indicate an erroneous program or
1364 shared library. We also permit a common symbol in a regular
1365 object to override a weak symbol in a shared object. */
1366
1367 if (newdyn
1368 && newdef
1369 && (olddef
1370 || (h->root.type == bfd_link_hash_common
1371 && (newweak || newfunc))))
1372 {
1373 *override = TRUE;
1374 newdef = FALSE;
1375 newdyncommon = FALSE;
1376
1377 *psec = sec = bfd_und_section_ptr;
1378 *size_change_ok = TRUE;
1379
1380 /* If we get here when the old symbol is a common symbol, then
1381 we are explicitly letting it override a weak symbol or
1382 function in a dynamic object, and we don't want to warn about
1383 a type change. If the old symbol is a defined symbol, a type
1384 change warning may still be appropriate. */
1385
1386 if (h->root.type == bfd_link_hash_common)
1387 *type_change_ok = TRUE;
1388 }
1389
1390 /* Handle the special case of an old common symbol merging with a
1391 new symbol which looks like a common symbol in a shared object.
1392 We change *PSEC and *PVALUE to make the new symbol look like a
1393 common symbol, and let _bfd_generic_link_add_one_symbol do the
1394 right thing. */
1395
1396 if (newdyncommon
1397 && h->root.type == bfd_link_hash_common)
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402 *pvalue = sym->st_size;
1403 *psec = sec = bed->common_section (oldsec);
1404 *size_change_ok = TRUE;
1405 }
1406
1407 /* Skip weak definitions of symbols that are already defined. */
1408 if (newdef && olddef && newweak)
1409 {
1410 /* Don't skip new non-IR weak syms. */
1411 if (!(oldbfd != NULL
1412 && (oldbfd->flags & BFD_PLUGIN) != 0
1413 && (abfd->flags & BFD_PLUGIN) == 0))
1414 {
1415 newdef = FALSE;
1416 *skip = TRUE;
1417 }
1418
1419 /* Merge st_other. If the symbol already has a dynamic index,
1420 but visibility says it should not be visible, turn it into a
1421 local symbol. */
1422 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1423 if (h->dynindx != -1)
1424 switch (ELF_ST_VISIBILITY (h->other))
1425 {
1426 case STV_INTERNAL:
1427 case STV_HIDDEN:
1428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1429 break;
1430 }
1431 }
1432
1433 /* If the old symbol is from a dynamic object, and the new symbol is
1434 a definition which is not from a dynamic object, then the new
1435 symbol overrides the old symbol. Symbols from regular files
1436 always take precedence over symbols from dynamic objects, even if
1437 they are defined after the dynamic object in the link.
1438
1439 As above, we again permit a common symbol in a regular object to
1440 override a definition in a shared object if the shared object
1441 symbol is a function or is weak. */
1442
1443 flip = NULL;
1444 if (!newdyn
1445 && (newdef
1446 || (bfd_is_com_section (sec)
1447 && (oldweak || oldfunc)))
1448 && olddyn
1449 && olddef
1450 && h->def_dynamic)
1451 {
1452 /* Change the hash table entry to undefined, and let
1453 _bfd_generic_link_add_one_symbol do the right thing with the
1454 new definition. */
1455
1456 h->root.type = bfd_link_hash_undefined;
1457 h->root.u.undef.abfd = h->root.u.def.section->owner;
1458 *size_change_ok = TRUE;
1459
1460 olddef = FALSE;
1461 olddyncommon = FALSE;
1462
1463 /* We again permit a type change when a common symbol may be
1464 overriding a function. */
1465
1466 if (bfd_is_com_section (sec))
1467 {
1468 if (oldfunc)
1469 {
1470 /* If a common symbol overrides a function, make sure
1471 that it isn't defined dynamically nor has type
1472 function. */
1473 h->def_dynamic = 0;
1474 h->type = STT_NOTYPE;
1475 }
1476 *type_change_ok = TRUE;
1477 }
1478
1479 if (hi->root.type == bfd_link_hash_indirect)
1480 flip = hi;
1481 else
1482 /* This union may have been set to be non-NULL when this symbol
1483 was seen in a dynamic object. We must force the union to be
1484 NULL, so that it is correct for a regular symbol. */
1485 h->verinfo.vertree = NULL;
1486 }
1487
1488 /* Handle the special case of a new common symbol merging with an
1489 old symbol that looks like it might be a common symbol defined in
1490 a shared object. Note that we have already handled the case in
1491 which a new common symbol should simply override the definition
1492 in the shared library. */
1493
1494 if (! newdyn
1495 && bfd_is_com_section (sec)
1496 && olddyncommon)
1497 {
1498 /* It would be best if we could set the hash table entry to a
1499 common symbol, but we don't know what to use for the section
1500 or the alignment. */
1501 if (! ((*info->callbacks->multiple_common)
1502 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1503 return FALSE;
1504
1505 /* If the presumed common symbol in the dynamic object is
1506 larger, pretend that the new symbol has its size. */
1507
1508 if (h->size > *pvalue)
1509 *pvalue = h->size;
1510
1511 /* We need to remember the alignment required by the symbol
1512 in the dynamic object. */
1513 BFD_ASSERT (pold_alignment);
1514 *pold_alignment = h->root.u.def.section->alignment_power;
1515
1516 olddef = FALSE;
1517 olddyncommon = FALSE;
1518
1519 h->root.type = bfd_link_hash_undefined;
1520 h->root.u.undef.abfd = h->root.u.def.section->owner;
1521
1522 *size_change_ok = TRUE;
1523 *type_change_ok = TRUE;
1524
1525 if (hi->root.type == bfd_link_hash_indirect)
1526 flip = hi;
1527 else
1528 h->verinfo.vertree = NULL;
1529 }
1530
1531 if (flip != NULL)
1532 {
1533 /* Handle the case where we had a versioned symbol in a dynamic
1534 library and now find a definition in a normal object. In this
1535 case, we make the versioned symbol point to the normal one. */
1536 flip->root.type = h->root.type;
1537 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1540 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1541 if (h->def_dynamic)
1542 {
1543 h->def_dynamic = 0;
1544 flip->ref_dynamic = 1;
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 /* This function is called to create an indirect symbol from the
1552 default for the symbol with the default version if needed. The
1553 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1554 set DYNSYM if the new indirect symbol is dynamic. */
1555
1556 static bfd_boolean
1557 _bfd_elf_add_default_symbol (bfd *abfd,
1558 struct bfd_link_info *info,
1559 struct elf_link_hash_entry *h,
1560 const char *name,
1561 Elf_Internal_Sym *sym,
1562 asection *sec,
1563 bfd_vma value,
1564 bfd **poldbfd,
1565 bfd_boolean *dynsym)
1566 {
1567 bfd_boolean type_change_ok;
1568 bfd_boolean size_change_ok;
1569 bfd_boolean skip;
1570 char *shortname;
1571 struct elf_link_hash_entry *hi;
1572 struct bfd_link_hash_entry *bh;
1573 const struct elf_backend_data *bed;
1574 bfd_boolean collect;
1575 bfd_boolean dynamic;
1576 bfd_boolean override;
1577 char *p;
1578 size_t len, shortlen;
1579 asection *tmp_sec;
1580
1581 /* If this symbol has a version, and it is the default version, we
1582 create an indirect symbol from the default name to the fully
1583 decorated name. This will cause external references which do not
1584 specify a version to be bound to this version of the symbol. */
1585 p = strchr (name, ELF_VER_CHR);
1586 if (p == NULL || p[1] != ELF_VER_CHR)
1587 return TRUE;
1588
1589 bed = get_elf_backend_data (abfd);
1590 collect = bed->collect;
1591 dynamic = (abfd->flags & DYNAMIC) != 0;
1592
1593 shortlen = p - name;
1594 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1595 if (shortname == NULL)
1596 return FALSE;
1597 memcpy (shortname, name, shortlen);
1598 shortname[shortlen] = '\0';
1599
1600 /* We are going to create a new symbol. Merge it with any existing
1601 symbol with this name. For the purposes of the merge, act as
1602 though we were defining the symbol we just defined, although we
1603 actually going to define an indirect symbol. */
1604 type_change_ok = FALSE;
1605 size_change_ok = FALSE;
1606 tmp_sec = sec;
1607 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1608 &hi, poldbfd, NULL, NULL, &skip, &override,
1609 &type_change_ok, &size_change_ok))
1610 return FALSE;
1611
1612 if (skip)
1613 goto nondefault;
1614
1615 if (! override)
1616 {
1617 bh = &hi->root;
1618 if (! (_bfd_generic_link_add_one_symbol
1619 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1620 0, name, FALSE, collect, &bh)))
1621 return FALSE;
1622 hi = (struct elf_link_hash_entry *) bh;
1623 }
1624 else
1625 {
1626 /* In this case the symbol named SHORTNAME is overriding the
1627 indirect symbol we want to add. We were planning on making
1628 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1629 is the name without a version. NAME is the fully versioned
1630 name, and it is the default version.
1631
1632 Overriding means that we already saw a definition for the
1633 symbol SHORTNAME in a regular object, and it is overriding
1634 the symbol defined in the dynamic object.
1635
1636 When this happens, we actually want to change NAME, the
1637 symbol we just added, to refer to SHORTNAME. This will cause
1638 references to NAME in the shared object to become references
1639 to SHORTNAME in the regular object. This is what we expect
1640 when we override a function in a shared object: that the
1641 references in the shared object will be mapped to the
1642 definition in the regular object. */
1643
1644 while (hi->root.type == bfd_link_hash_indirect
1645 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1650 if (h->def_dynamic)
1651 {
1652 h->def_dynamic = 0;
1653 hi->ref_dynamic = 1;
1654 if (hi->ref_regular
1655 || hi->def_regular)
1656 {
1657 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1658 return FALSE;
1659 }
1660 }
1661
1662 /* Now set HI to H, so that the following code will set the
1663 other fields correctly. */
1664 hi = h;
1665 }
1666
1667 /* Check if HI is a warning symbol. */
1668 if (hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 /* If there is a duplicate definition somewhere, then HI may not
1672 point to an indirect symbol. We will have reported an error to
1673 the user in that case. */
1674
1675 if (hi->root.type == bfd_link_hash_indirect)
1676 {
1677 struct elf_link_hash_entry *ht;
1678
1679 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1681
1682 /* A reference to the SHORTNAME symbol from a dynamic library
1683 will be satisfied by the versioned symbol at runtime. In
1684 effect, we have a reference to the versioned symbol. */
1685 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1686 hi->dynamic_def |= ht->dynamic_def;
1687
1688 /* See if the new flags lead us to realize that the symbol must
1689 be dynamic. */
1690 if (! *dynsym)
1691 {
1692 if (! dynamic)
1693 {
1694 if (! info->executable
1695 || hi->def_dynamic
1696 || hi->ref_dynamic)
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
1701 if (hi->ref_regular)
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706
1707 /* We also need to define an indirection from the nondefault version
1708 of the symbol. */
1709
1710 nondefault:
1711 len = strlen (name);
1712 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1713 if (shortname == NULL)
1714 return FALSE;
1715 memcpy (shortname, name, shortlen);
1716 memcpy (shortname + shortlen, p + 1, len - shortlen);
1717
1718 /* Once again, merge with any existing symbol. */
1719 type_change_ok = FALSE;
1720 size_change_ok = FALSE;
1721 tmp_sec = sec;
1722 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1723 &hi, poldbfd, NULL, NULL, &skip, &override,
1724 &type_change_ok, &size_change_ok))
1725 return FALSE;
1726
1727 if (skip)
1728 return TRUE;
1729
1730 if (override)
1731 {
1732 /* Here SHORTNAME is a versioned name, so we don't expect to see
1733 the type of override we do in the case above unless it is
1734 overridden by a versioned definition. */
1735 if (hi->root.type != bfd_link_hash_defined
1736 && hi->root.type != bfd_link_hash_defweak)
1737 (*_bfd_error_handler)
1738 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1739 abfd, shortname);
1740 }
1741 else
1742 {
1743 bh = &hi->root;
1744 if (! (_bfd_generic_link_add_one_symbol
1745 (info, abfd, shortname, BSF_INDIRECT,
1746 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1747 return FALSE;
1748 hi = (struct elf_link_hash_entry *) bh;
1749
1750 /* If there is a duplicate definition somewhere, then HI may not
1751 point to an indirect symbol. We will have reported an error
1752 to the user in that case. */
1753
1754 if (hi->root.type == bfd_link_hash_indirect)
1755 {
1756 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1757 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1758 hi->dynamic_def |= h->dynamic_def;
1759
1760 /* See if the new flags lead us to realize that the symbol
1761 must be dynamic. */
1762 if (! *dynsym)
1763 {
1764 if (! dynamic)
1765 {
1766 if (! info->executable
1767 || hi->ref_dynamic)
1768 *dynsym = TRUE;
1769 }
1770 else
1771 {
1772 if (hi->ref_regular)
1773 *dynsym = TRUE;
1774 }
1775 }
1776 }
1777 }
1778
1779 return TRUE;
1780 }
1781 \f
1782 /* This routine is used to export all defined symbols into the dynamic
1783 symbol table. It is called via elf_link_hash_traverse. */
1784
1785 static bfd_boolean
1786 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1787 {
1788 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1789
1790 /* Ignore indirect symbols. These are added by the versioning code. */
1791 if (h->root.type == bfd_link_hash_indirect)
1792 return TRUE;
1793
1794 /* Ignore this if we won't export it. */
1795 if (!eif->info->export_dynamic && !h->dynamic)
1796 return TRUE;
1797
1798 if (h->dynindx == -1
1799 && (h->def_regular || h->ref_regular)
1800 && ! bfd_hide_sym_by_version (eif->info->version_info,
1801 h->root.root.string))
1802 {
1803 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1804 {
1805 eif->failed = TRUE;
1806 return FALSE;
1807 }
1808 }
1809
1810 return TRUE;
1811 }
1812 \f
1813 /* Look through the symbols which are defined in other shared
1814 libraries and referenced here. Update the list of version
1815 dependencies. This will be put into the .gnu.version_r section.
1816 This function is called via elf_link_hash_traverse. */
1817
1818 static bfd_boolean
1819 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1820 void *data)
1821 {
1822 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1823 Elf_Internal_Verneed *t;
1824 Elf_Internal_Vernaux *a;
1825 bfd_size_type amt;
1826
1827 /* We only care about symbols defined in shared objects with version
1828 information. */
1829 if (!h->def_dynamic
1830 || h->def_regular
1831 || h->dynindx == -1
1832 || h->verinfo.verdef == NULL
1833 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1834 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1835 return TRUE;
1836
1837 /* See if we already know about this version. */
1838 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1839 t != NULL;
1840 t = t->vn_nextref)
1841 {
1842 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1843 continue;
1844
1845 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1846 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1847 return TRUE;
1848
1849 break;
1850 }
1851
1852 /* This is a new version. Add it to tree we are building. */
1853
1854 if (t == NULL)
1855 {
1856 amt = sizeof *t;
1857 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1858 if (t == NULL)
1859 {
1860 rinfo->failed = TRUE;
1861 return FALSE;
1862 }
1863
1864 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1865 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1866 elf_tdata (rinfo->info->output_bfd)->verref = t;
1867 }
1868
1869 amt = sizeof *a;
1870 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (a == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 /* Note that we are copying a string pointer here, and testing it
1878 above. If bfd_elf_string_from_elf_section is ever changed to
1879 discard the string data when low in memory, this will have to be
1880 fixed. */
1881 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1882
1883 a->vna_flags = h->verinfo.verdef->vd_flags;
1884 a->vna_nextptr = t->vn_auxptr;
1885
1886 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1887 ++rinfo->vers;
1888
1889 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1890
1891 t->vn_auxptr = a;
1892
1893 return TRUE;
1894 }
1895
1896 /* Figure out appropriate versions for all the symbols. We may not
1897 have the version number script until we have read all of the input
1898 files, so until that point we don't know which symbols should be
1899 local. This function is called via elf_link_hash_traverse. */
1900
1901 static bfd_boolean
1902 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1903 {
1904 struct elf_info_failed *sinfo;
1905 struct bfd_link_info *info;
1906 const struct elf_backend_data *bed;
1907 struct elf_info_failed eif;
1908 char *p;
1909 bfd_size_type amt;
1910
1911 sinfo = (struct elf_info_failed *) data;
1912 info = sinfo->info;
1913
1914 /* Fix the symbol flags. */
1915 eif.failed = FALSE;
1916 eif.info = info;
1917 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1918 {
1919 if (eif.failed)
1920 sinfo->failed = TRUE;
1921 return FALSE;
1922 }
1923
1924 /* We only need version numbers for symbols defined in regular
1925 objects. */
1926 if (!h->def_regular)
1927 return TRUE;
1928
1929 bed = get_elf_backend_data (info->output_bfd);
1930 p = strchr (h->root.root.string, ELF_VER_CHR);
1931 if (p != NULL && h->verinfo.vertree == NULL)
1932 {
1933 struct bfd_elf_version_tree *t;
1934 bfd_boolean hidden;
1935
1936 hidden = TRUE;
1937
1938 /* There are two consecutive ELF_VER_CHR characters if this is
1939 not a hidden symbol. */
1940 ++p;
1941 if (*p == ELF_VER_CHR)
1942 {
1943 hidden = FALSE;
1944 ++p;
1945 }
1946
1947 /* If there is no version string, we can just return out. */
1948 if (*p == '\0')
1949 {
1950 if (hidden)
1951 h->hidden = 1;
1952 return TRUE;
1953 }
1954
1955 /* Look for the version. If we find it, it is no longer weak. */
1956 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1957 {
1958 if (strcmp (t->name, p) == 0)
1959 {
1960 size_t len;
1961 char *alc;
1962 struct bfd_elf_version_expr *d;
1963
1964 len = p - h->root.root.string;
1965 alc = (char *) bfd_malloc (len);
1966 if (alc == NULL)
1967 {
1968 sinfo->failed = TRUE;
1969 return FALSE;
1970 }
1971 memcpy (alc, h->root.root.string, len - 1);
1972 alc[len - 1] = '\0';
1973 if (alc[len - 2] == ELF_VER_CHR)
1974 alc[len - 2] = '\0';
1975
1976 h->verinfo.vertree = t;
1977 t->used = TRUE;
1978 d = NULL;
1979
1980 if (t->globals.list != NULL)
1981 d = (*t->match) (&t->globals, NULL, alc);
1982
1983 /* See if there is anything to force this symbol to
1984 local scope. */
1985 if (d == NULL && t->locals.list != NULL)
1986 {
1987 d = (*t->match) (&t->locals, NULL, alc);
1988 if (d != NULL
1989 && h->dynindx != -1
1990 && ! info->export_dynamic)
1991 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1992 }
1993
1994 free (alc);
1995 break;
1996 }
1997 }
1998
1999 /* If we are building an application, we need to create a
2000 version node for this version. */
2001 if (t == NULL && info->executable)
2002 {
2003 struct bfd_elf_version_tree **pp;
2004 int version_index;
2005
2006 /* If we aren't going to export this symbol, we don't need
2007 to worry about it. */
2008 if (h->dynindx == -1)
2009 return TRUE;
2010
2011 amt = sizeof *t;
2012 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2013 if (t == NULL)
2014 {
2015 sinfo->failed = TRUE;
2016 return FALSE;
2017 }
2018
2019 t->name = p;
2020 t->name_indx = (unsigned int) -1;
2021 t->used = TRUE;
2022
2023 version_index = 1;
2024 /* Don't count anonymous version tag. */
2025 if (sinfo->info->version_info != NULL
2026 && sinfo->info->version_info->vernum == 0)
2027 version_index = 0;
2028 for (pp = &sinfo->info->version_info;
2029 *pp != NULL;
2030 pp = &(*pp)->next)
2031 ++version_index;
2032 t->vernum = version_index;
2033
2034 *pp = t;
2035
2036 h->verinfo.vertree = t;
2037 }
2038 else if (t == NULL)
2039 {
2040 /* We could not find the version for a symbol when
2041 generating a shared archive. Return an error. */
2042 (*_bfd_error_handler)
2043 (_("%B: version node not found for symbol %s"),
2044 info->output_bfd, h->root.root.string);
2045 bfd_set_error (bfd_error_bad_value);
2046 sinfo->failed = TRUE;
2047 return FALSE;
2048 }
2049
2050 if (hidden)
2051 h->hidden = 1;
2052 }
2053
2054 /* If we don't have a version for this symbol, see if we can find
2055 something. */
2056 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2057 {
2058 bfd_boolean hide;
2059
2060 h->verinfo.vertree
2061 = bfd_find_version_for_sym (sinfo->info->version_info,
2062 h->root.root.string, &hide);
2063 if (h->verinfo.vertree != NULL && hide)
2064 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 }
2066
2067 return TRUE;
2068 }
2069 \f
2070 /* Read and swap the relocs from the section indicated by SHDR. This
2071 may be either a REL or a RELA section. The relocations are
2072 translated into RELA relocations and stored in INTERNAL_RELOCS,
2073 which should have already been allocated to contain enough space.
2074 The EXTERNAL_RELOCS are a buffer where the external form of the
2075 relocations should be stored.
2076
2077 Returns FALSE if something goes wrong. */
2078
2079 static bfd_boolean
2080 elf_link_read_relocs_from_section (bfd *abfd,
2081 asection *sec,
2082 Elf_Internal_Shdr *shdr,
2083 void *external_relocs,
2084 Elf_Internal_Rela *internal_relocs)
2085 {
2086 const struct elf_backend_data *bed;
2087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2088 const bfd_byte *erela;
2089 const bfd_byte *erelaend;
2090 Elf_Internal_Rela *irela;
2091 Elf_Internal_Shdr *symtab_hdr;
2092 size_t nsyms;
2093
2094 /* Position ourselves at the start of the section. */
2095 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2096 return FALSE;
2097
2098 /* Read the relocations. */
2099 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2100 return FALSE;
2101
2102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2103 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2104
2105 bed = get_elf_backend_data (abfd);
2106
2107 /* Convert the external relocations to the internal format. */
2108 if (shdr->sh_entsize == bed->s->sizeof_rel)
2109 swap_in = bed->s->swap_reloc_in;
2110 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2111 swap_in = bed->s->swap_reloca_in;
2112 else
2113 {
2114 bfd_set_error (bfd_error_wrong_format);
2115 return FALSE;
2116 }
2117
2118 erela = (const bfd_byte *) external_relocs;
2119 erelaend = erela + shdr->sh_size;
2120 irela = internal_relocs;
2121 while (erela < erelaend)
2122 {
2123 bfd_vma r_symndx;
2124
2125 (*swap_in) (abfd, erela, irela);
2126 r_symndx = ELF32_R_SYM (irela->r_info);
2127 if (bed->s->arch_size == 64)
2128 r_symndx >>= 24;
2129 if (nsyms > 0)
2130 {
2131 if ((size_t) r_symndx >= nsyms)
2132 {
2133 (*_bfd_error_handler)
2134 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2135 " for offset 0x%lx in section `%A'"),
2136 abfd, sec,
2137 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2138 bfd_set_error (bfd_error_bad_value);
2139 return FALSE;
2140 }
2141 }
2142 else if (r_symndx != STN_UNDEF)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2146 " when the object file has no symbol table"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157 }
2158
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 RELA_HDR relocations. */
2168
2169 Elf_Internal_Rela *
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2175 {
2176 void *alloc1 = NULL;
2177 Elf_Internal_Rela *alloc2 = NULL;
2178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2179 struct bfd_elf_section_data *esdo = elf_section_data (o);
2180 Elf_Internal_Rela *internal_rela_relocs;
2181
2182 if (esdo->relocs != NULL)
2183 return esdo->relocs;
2184
2185 if (o->reloc_count == 0)
2186 return NULL;
2187
2188 if (internal_relocs == NULL)
2189 {
2190 bfd_size_type size;
2191
2192 size = o->reloc_count;
2193 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2194 if (keep_memory)
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2196 else
2197 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2198 if (internal_relocs == NULL)
2199 goto error_return;
2200 }
2201
2202 if (external_relocs == NULL)
2203 {
2204 bfd_size_type size = 0;
2205
2206 if (esdo->rel.hdr)
2207 size += esdo->rel.hdr->sh_size;
2208 if (esdo->rela.hdr)
2209 size += esdo->rela.hdr->sh_size;
2210
2211 alloc1 = bfd_malloc (size);
2212 if (alloc1 == NULL)
2213 goto error_return;
2214 external_relocs = alloc1;
2215 }
2216
2217 internal_rela_relocs = internal_relocs;
2218 if (esdo->rel.hdr)
2219 {
2220 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2221 external_relocs,
2222 internal_relocs))
2223 goto error_return;
2224 external_relocs = (((bfd_byte *) external_relocs)
2225 + esdo->rel.hdr->sh_size);
2226 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2227 * bed->s->int_rels_per_ext_rel);
2228 }
2229
2230 if (esdo->rela.hdr
2231 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2232 external_relocs,
2233 internal_rela_relocs)))
2234 goto error_return;
2235
2236 /* Cache the results for next time, if we can. */
2237 if (keep_memory)
2238 esdo->relocs = internal_relocs;
2239
2240 if (alloc1 != NULL)
2241 free (alloc1);
2242
2243 /* Don't free alloc2, since if it was allocated we are passing it
2244 back (under the name of internal_relocs). */
2245
2246 return internal_relocs;
2247
2248 error_return:
2249 if (alloc1 != NULL)
2250 free (alloc1);
2251 if (alloc2 != NULL)
2252 {
2253 if (keep_memory)
2254 bfd_release (abfd, alloc2);
2255 else
2256 free (alloc2);
2257 }
2258 return NULL;
2259 }
2260
2261 /* Compute the size of, and allocate space for, REL_HDR which is the
2262 section header for a section containing relocations for O. */
2263
2264 static bfd_boolean
2265 _bfd_elf_link_size_reloc_section (bfd *abfd,
2266 struct bfd_elf_section_reloc_data *reldata)
2267 {
2268 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2269
2270 /* That allows us to calculate the size of the section. */
2271 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2272
2273 /* The contents field must last into write_object_contents, so we
2274 allocate it with bfd_alloc rather than malloc. Also since we
2275 cannot be sure that the contents will actually be filled in,
2276 we zero the allocated space. */
2277 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2278 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2279 return FALSE;
2280
2281 if (reldata->hashes == NULL && reldata->count)
2282 {
2283 struct elf_link_hash_entry **p;
2284
2285 p = ((struct elf_link_hash_entry **)
2286 bfd_zmalloc (reldata->count * sizeof (*p)));
2287 if (p == NULL)
2288 return FALSE;
2289
2290 reldata->hashes = p;
2291 }
2292
2293 return TRUE;
2294 }
2295
2296 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2297 originated from the section given by INPUT_REL_HDR) to the
2298 OUTPUT_BFD. */
2299
2300 bfd_boolean
2301 _bfd_elf_link_output_relocs (bfd *output_bfd,
2302 asection *input_section,
2303 Elf_Internal_Shdr *input_rel_hdr,
2304 Elf_Internal_Rela *internal_relocs,
2305 struct elf_link_hash_entry **rel_hash
2306 ATTRIBUTE_UNUSED)
2307 {
2308 Elf_Internal_Rela *irela;
2309 Elf_Internal_Rela *irelaend;
2310 bfd_byte *erel;
2311 struct bfd_elf_section_reloc_data *output_reldata;
2312 asection *output_section;
2313 const struct elf_backend_data *bed;
2314 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2315 struct bfd_elf_section_data *esdo;
2316
2317 output_section = input_section->output_section;
2318
2319 bed = get_elf_backend_data (output_bfd);
2320 esdo = elf_section_data (output_section);
2321 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2322 {
2323 output_reldata = &esdo->rel;
2324 swap_out = bed->s->swap_reloc_out;
2325 }
2326 else if (esdo->rela.hdr
2327 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 {
2329 output_reldata = &esdo->rela;
2330 swap_out = bed->s->swap_reloca_out;
2331 }
2332 else
2333 {
2334 (*_bfd_error_handler)
2335 (_("%B: relocation size mismatch in %B section %A"),
2336 output_bfd, input_section->owner, input_section);
2337 bfd_set_error (bfd_error_wrong_format);
2338 return FALSE;
2339 }
2340
2341 erel = output_reldata->hdr->contents;
2342 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2343 irela = internal_relocs;
2344 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 while (irela < irelaend)
2347 {
2348 (*swap_out) (output_bfd, irela, erel);
2349 irela += bed->s->int_rels_per_ext_rel;
2350 erel += input_rel_hdr->sh_entsize;
2351 }
2352
2353 /* Bump the counter, so that we know where to add the next set of
2354 relocations. */
2355 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2356
2357 return TRUE;
2358 }
2359 \f
2360 /* Make weak undefined symbols in PIE dynamic. */
2361
2362 bfd_boolean
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2365 {
2366 if (info->pie
2367 && h->dynindx == -1
2368 && h->root.type == bfd_link_hash_undefweak)
2369 return bfd_elf_link_record_dynamic_symbol (info, h);
2370
2371 return TRUE;
2372 }
2373
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2379
2380 static bfd_boolean
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2382 struct elf_info_failed *eif)
2383 {
2384 const struct elf_backend_data *bed;
2385
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2390 if (h->non_elf)
2391 {
2392 while (h->root.type == bfd_link_hash_indirect)
2393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2394
2395 if (h->root.type != bfd_link_hash_defined
2396 && h->root.type != bfd_link_hash_defweak)
2397 {
2398 h->ref_regular = 1;
2399 h->ref_regular_nonweak = 1;
2400 }
2401 else
2402 {
2403 if (h->root.u.def.section->owner != NULL
2404 && (bfd_get_flavour (h->root.u.def.section->owner)
2405 == bfd_target_elf_flavour))
2406 {
2407 h->ref_regular = 1;
2408 h->ref_regular_nonweak = 1;
2409 }
2410 else
2411 h->def_regular = 1;
2412 }
2413
2414 if (h->dynindx == -1
2415 && (h->def_dynamic
2416 || h->ref_dynamic))
2417 {
2418 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2419 {
2420 eif->failed = TRUE;
2421 return FALSE;
2422 }
2423 }
2424 }
2425 else
2426 {
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h->root.type == bfd_link_hash_defined
2434 || h->root.type == bfd_link_hash_defweak)
2435 && !h->def_regular
2436 && (h->root.u.def.section->owner != NULL
2437 ? (bfd_get_flavour (h->root.u.def.section->owner)
2438 != bfd_target_elf_flavour)
2439 : (bfd_is_abs_section (h->root.u.def.section)
2440 && !h->def_dynamic)))
2441 h->def_regular = 1;
2442 }
2443
2444 /* Backend specific symbol fixup. */
2445 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2446 if (bed->elf_backend_fixup_symbol
2447 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2448 return FALSE;
2449
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h->root.type == bfd_link_hash_defined
2456 && !h->def_regular
2457 && h->ref_regular
2458 && !h->def_dynamic
2459 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2460 h->def_regular = 1;
2461
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2468 if (h->needs_plt
2469 && eif->info->shared
2470 && is_elf_hash_table (eif->info->hash)
2471 && (SYMBOLIC_BIND (eif->info, h)
2472 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2473 && h->def_regular)
2474 {
2475 bfd_boolean force_local;
2476
2477 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2479 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2480 }
2481
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2485 && h->root.type == bfd_link_hash_undefweak)
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2487
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h->u.weakdef != NULL)
2492 {
2493 /* If the real definition is defined by a regular object file,
2494 don't do anything special. See the longer description in
2495 _bfd_elf_adjust_dynamic_symbol, below. */
2496 if (h->u.weakdef->def_regular)
2497 h->u.weakdef = NULL;
2498 else
2499 {
2500 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2501
2502 while (h->root.type == bfd_link_hash_indirect)
2503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2504
2505 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2506 || h->root.type == bfd_link_hash_defweak);
2507 BFD_ASSERT (weakdef->def_dynamic);
2508 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2509 || weakdef->root.type == bfd_link_hash_defweak);
2510 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 }
2512 }
2513
2514 return TRUE;
2515 }
2516
2517 /* Make the backend pick a good value for a dynamic symbol. This is
2518 called via elf_link_hash_traverse, and also calls itself
2519 recursively. */
2520
2521 static bfd_boolean
2522 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2523 {
2524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2525 bfd *dynobj;
2526 const struct elf_backend_data *bed;
2527
2528 if (! is_elf_hash_table (eif->info->hash))
2529 return FALSE;
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && h->type != STT_GNU_IFUNC
2548 && (h->def_regular
2549 || !h->def_dynamic
2550 || (!h->ref_regular
2551 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2552 {
2553 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2554 return TRUE;
2555 }
2556
2557 /* If we've already adjusted this symbol, don't do it again. This
2558 can happen via a recursive call. */
2559 if (h->dynamic_adjusted)
2560 return TRUE;
2561
2562 /* Don't look at this symbol again. Note that we must set this
2563 after checking the above conditions, because we may look at a
2564 symbol once, decide not to do anything, and then get called
2565 recursively later after REF_REGULAR is set below. */
2566 h->dynamic_adjusted = 1;
2567
2568 /* If this is a weak definition, and we know a real definition, and
2569 the real symbol is not itself defined by a regular object file,
2570 then get a good value for the real definition. We handle the
2571 real symbol first, for the convenience of the backend routine.
2572
2573 Note that there is a confusing case here. If the real definition
2574 is defined by a regular object file, we don't get the real symbol
2575 from the dynamic object, but we do get the weak symbol. If the
2576 processor backend uses a COPY reloc, then if some routine in the
2577 dynamic object changes the real symbol, we will not see that
2578 change in the corresponding weak symbol. This is the way other
2579 ELF linkers work as well, and seems to be a result of the shared
2580 library model.
2581
2582 I will clarify this issue. Most SVR4 shared libraries define the
2583 variable _timezone and define timezone as a weak synonym. The
2584 tzset call changes _timezone. If you write
2585 extern int timezone;
2586 int _timezone = 5;
2587 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2588 you might expect that, since timezone is a synonym for _timezone,
2589 the same number will print both times. However, if the processor
2590 backend uses a COPY reloc, then actually timezone will be copied
2591 into your process image, and, since you define _timezone
2592 yourself, _timezone will not. Thus timezone and _timezone will
2593 wind up at different memory locations. The tzset call will set
2594 _timezone, leaving timezone unchanged. */
2595
2596 if (h->u.weakdef != NULL)
2597 {
2598 /* If we get to this point, there is an implicit reference to
2599 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2600 h->u.weakdef->ref_regular = 1;
2601
2602 /* Ensure that the backend adjust_dynamic_symbol function sees
2603 H->U.WEAKDEF before H by recursively calling ourselves. */
2604 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2605 return FALSE;
2606 }
2607
2608 /* If a symbol has no type and no size and does not require a PLT
2609 entry, then we are probably about to do the wrong thing here: we
2610 are probably going to create a COPY reloc for an empty object.
2611 This case can arise when a shared object is built with assembly
2612 code, and the assembly code fails to set the symbol type. */
2613 if (h->size == 0
2614 && h->type == STT_NOTYPE
2615 && !h->needs_plt)
2616 (*_bfd_error_handler)
2617 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2618 h->root.root.string);
2619
2620 dynobj = elf_hash_table (eif->info)->dynobj;
2621 bed = get_elf_backend_data (dynobj);
2622
2623 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2624 {
2625 eif->failed = TRUE;
2626 return FALSE;
2627 }
2628
2629 return TRUE;
2630 }
2631
2632 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2633 DYNBSS. */
2634
2635 bfd_boolean
2636 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2637 struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 /* No error if extern_protected_data is true. */
2677 if (h->protected_def
2678 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)
2679 info->callbacks->einfo
2680 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2681 h->root.root.string);
2682
2683 return TRUE;
2684 }
2685
2686 /* Adjust all external symbols pointing into SEC_MERGE sections
2687 to reflect the object merging within the sections. */
2688
2689 static bfd_boolean
2690 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2691 {
2692 asection *sec;
2693
2694 if ((h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2697 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2698 {
2699 bfd *output_bfd = (bfd *) data;
2700
2701 h->root.u.def.value =
2702 _bfd_merged_section_offset (output_bfd,
2703 &h->root.u.def.section,
2704 elf_section_data (sec)->sec_info,
2705 h->root.u.def.value);
2706 }
2707
2708 return TRUE;
2709 }
2710
2711 /* Returns false if the symbol referred to by H should be considered
2712 to resolve local to the current module, and true if it should be
2713 considered to bind dynamically. */
2714
2715 bfd_boolean
2716 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2717 struct bfd_link_info *info,
2718 bfd_boolean not_local_protected)
2719 {
2720 bfd_boolean binding_stays_local_p;
2721 const struct elf_backend_data *bed;
2722 struct elf_link_hash_table *hash_table;
2723
2724 if (h == NULL)
2725 return FALSE;
2726
2727 while (h->root.type == bfd_link_hash_indirect
2728 || h->root.type == bfd_link_hash_warning)
2729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2730
2731 /* If it was forced local, then clearly it's not dynamic. */
2732 if (h->dynindx == -1)
2733 return FALSE;
2734 if (h->forced_local)
2735 return FALSE;
2736
2737 /* Identify the cases where name binding rules say that a
2738 visible symbol resolves locally. */
2739 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2740
2741 switch (ELF_ST_VISIBILITY (h->other))
2742 {
2743 case STV_INTERNAL:
2744 case STV_HIDDEN:
2745 return FALSE;
2746
2747 case STV_PROTECTED:
2748 hash_table = elf_hash_table (info);
2749 if (!is_elf_hash_table (hash_table))
2750 return FALSE;
2751
2752 bed = get_elf_backend_data (hash_table->dynobj);
2753
2754 /* Proper resolution for function pointer equality may require
2755 that these symbols perhaps be resolved dynamically, even though
2756 we should be resolving them to the current module. */
2757 if (!not_local_protected || !bed->is_function_type (h->type))
2758 binding_stays_local_p = TRUE;
2759 break;
2760
2761 default:
2762 break;
2763 }
2764
2765 /* If it isn't defined locally, then clearly it's dynamic. */
2766 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2767 return TRUE;
2768
2769 /* Otherwise, the symbol is dynamic if binding rules don't tell
2770 us that it remains local. */
2771 return !binding_stays_local_p;
2772 }
2773
2774 /* Return true if the symbol referred to by H should be considered
2775 to resolve local to the current module, and false otherwise. Differs
2776 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2777 undefined symbols. The two functions are virtually identical except
2778 for the place where forced_local and dynindx == -1 are tested. If
2779 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2780 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2781 the symbol is local only for defined symbols.
2782 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2783 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2784 treatment of undefined weak symbols. For those that do not make
2785 undefined weak symbols dynamic, both functions may return false. */
2786
2787 bfd_boolean
2788 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2789 struct bfd_link_info *info,
2790 bfd_boolean local_protected)
2791 {
2792 const struct elf_backend_data *bed;
2793 struct elf_link_hash_table *hash_table;
2794
2795 /* If it's a local sym, of course we resolve locally. */
2796 if (h == NULL)
2797 return TRUE;
2798
2799 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2800 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2801 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2802 return TRUE;
2803
2804 /* Common symbols that become definitions don't get the DEF_REGULAR
2805 flag set, so test it first, and don't bail out. */
2806 if (ELF_COMMON_DEF_P (h))
2807 /* Do nothing. */;
2808 /* If we don't have a definition in a regular file, then we can't
2809 resolve locally. The sym is either undefined or dynamic. */
2810 else if (!h->def_regular)
2811 return FALSE;
2812
2813 /* Forced local symbols resolve locally. */
2814 if (h->forced_local)
2815 return TRUE;
2816
2817 /* As do non-dynamic symbols. */
2818 if (h->dynindx == -1)
2819 return TRUE;
2820
2821 /* At this point, we know the symbol is defined and dynamic. In an
2822 executable it must resolve locally, likewise when building symbolic
2823 shared libraries. */
2824 if (info->executable || SYMBOLIC_BIND (info, h))
2825 return TRUE;
2826
2827 /* Now deal with defined dynamic symbols in shared libraries. Ones
2828 with default visibility might not resolve locally. */
2829 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2830 return FALSE;
2831
2832 hash_table = elf_hash_table (info);
2833 if (!is_elf_hash_table (hash_table))
2834 return TRUE;
2835
2836 bed = get_elf_backend_data (hash_table->dynobj);
2837
2838 /* If extern_protected_data is false, STV_PROTECTED non-function
2839 symbols are local. */
2840 if (!bed->extern_protected_data && !bed->is_function_type (h->type))
2841 return TRUE;
2842
2843 /* Function pointer equality tests may require that STV_PROTECTED
2844 symbols be treated as dynamic symbols. If the address of a
2845 function not defined in an executable is set to that function's
2846 plt entry in the executable, then the address of the function in
2847 a shared library must also be the plt entry in the executable. */
2848 return local_protected;
2849 }
2850
2851 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2852 aligned. Returns the first TLS output section. */
2853
2854 struct bfd_section *
2855 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2856 {
2857 struct bfd_section *sec, *tls;
2858 unsigned int align = 0;
2859
2860 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2861 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2862 break;
2863 tls = sec;
2864
2865 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2866 if (sec->alignment_power > align)
2867 align = sec->alignment_power;
2868
2869 elf_hash_table (info)->tls_sec = tls;
2870
2871 /* Ensure the alignment of the first section is the largest alignment,
2872 so that the tls segment starts aligned. */
2873 if (tls != NULL)
2874 tls->alignment_power = align;
2875
2876 return tls;
2877 }
2878
2879 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2880 static bfd_boolean
2881 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2882 Elf_Internal_Sym *sym)
2883 {
2884 const struct elf_backend_data *bed;
2885
2886 /* Local symbols do not count, but target specific ones might. */
2887 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2888 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2889 return FALSE;
2890
2891 bed = get_elf_backend_data (abfd);
2892 /* Function symbols do not count. */
2893 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2894 return FALSE;
2895
2896 /* If the section is undefined, then so is the symbol. */
2897 if (sym->st_shndx == SHN_UNDEF)
2898 return FALSE;
2899
2900 /* If the symbol is defined in the common section, then
2901 it is a common definition and so does not count. */
2902 if (bed->common_definition (sym))
2903 return FALSE;
2904
2905 /* If the symbol is in a target specific section then we
2906 must rely upon the backend to tell us what it is. */
2907 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2908 /* FIXME - this function is not coded yet:
2909
2910 return _bfd_is_global_symbol_definition (abfd, sym);
2911
2912 Instead for now assume that the definition is not global,
2913 Even if this is wrong, at least the linker will behave
2914 in the same way that it used to do. */
2915 return FALSE;
2916
2917 return TRUE;
2918 }
2919
2920 /* Search the symbol table of the archive element of the archive ABFD
2921 whose archive map contains a mention of SYMDEF, and determine if
2922 the symbol is defined in this element. */
2923 static bfd_boolean
2924 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2925 {
2926 Elf_Internal_Shdr * hdr;
2927 bfd_size_type symcount;
2928 bfd_size_type extsymcount;
2929 bfd_size_type extsymoff;
2930 Elf_Internal_Sym *isymbuf;
2931 Elf_Internal_Sym *isym;
2932 Elf_Internal_Sym *isymend;
2933 bfd_boolean result;
2934
2935 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2936 if (abfd == NULL)
2937 return FALSE;
2938
2939 if (! bfd_check_format (abfd, bfd_object))
2940 return FALSE;
2941
2942 /* Select the appropriate symbol table. */
2943 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2944 hdr = &elf_tdata (abfd)->symtab_hdr;
2945 else
2946 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2947
2948 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2949
2950 /* The sh_info field of the symtab header tells us where the
2951 external symbols start. We don't care about the local symbols. */
2952 if (elf_bad_symtab (abfd))
2953 {
2954 extsymcount = symcount;
2955 extsymoff = 0;
2956 }
2957 else
2958 {
2959 extsymcount = symcount - hdr->sh_info;
2960 extsymoff = hdr->sh_info;
2961 }
2962
2963 if (extsymcount == 0)
2964 return FALSE;
2965
2966 /* Read in the symbol table. */
2967 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2968 NULL, NULL, NULL);
2969 if (isymbuf == NULL)
2970 return FALSE;
2971
2972 /* Scan the symbol table looking for SYMDEF. */
2973 result = FALSE;
2974 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2975 {
2976 const char *name;
2977
2978 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2979 isym->st_name);
2980 if (name == NULL)
2981 break;
2982
2983 if (strcmp (name, symdef->name) == 0)
2984 {
2985 result = is_global_data_symbol_definition (abfd, isym);
2986 break;
2987 }
2988 }
2989
2990 free (isymbuf);
2991
2992 return result;
2993 }
2994 \f
2995 /* Add an entry to the .dynamic table. */
2996
2997 bfd_boolean
2998 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2999 bfd_vma tag,
3000 bfd_vma val)
3001 {
3002 struct elf_link_hash_table *hash_table;
3003 const struct elf_backend_data *bed;
3004 asection *s;
3005 bfd_size_type newsize;
3006 bfd_byte *newcontents;
3007 Elf_Internal_Dyn dyn;
3008
3009 hash_table = elf_hash_table (info);
3010 if (! is_elf_hash_table (hash_table))
3011 return FALSE;
3012
3013 bed = get_elf_backend_data (hash_table->dynobj);
3014 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3015 BFD_ASSERT (s != NULL);
3016
3017 newsize = s->size + bed->s->sizeof_dyn;
3018 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3019 if (newcontents == NULL)
3020 return FALSE;
3021
3022 dyn.d_tag = tag;
3023 dyn.d_un.d_val = val;
3024 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3025
3026 s->size = newsize;
3027 s->contents = newcontents;
3028
3029 return TRUE;
3030 }
3031
3032 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3033 otherwise just check whether one already exists. Returns -1 on error,
3034 1 if a DT_NEEDED tag already exists, and 0 on success. */
3035
3036 static int
3037 elf_add_dt_needed_tag (bfd *abfd,
3038 struct bfd_link_info *info,
3039 const char *soname,
3040 bfd_boolean do_it)
3041 {
3042 struct elf_link_hash_table *hash_table;
3043 bfd_size_type strindex;
3044
3045 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3046 return -1;
3047
3048 hash_table = elf_hash_table (info);
3049 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3050 if (strindex == (bfd_size_type) -1)
3051 return -1;
3052
3053 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3054 {
3055 asection *sdyn;
3056 const struct elf_backend_data *bed;
3057 bfd_byte *extdyn;
3058
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3061 if (sdyn != NULL)
3062 for (extdyn = sdyn->contents;
3063 extdyn < sdyn->contents + sdyn->size;
3064 extdyn += bed->s->sizeof_dyn)
3065 {
3066 Elf_Internal_Dyn dyn;
3067
3068 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3069 if (dyn.d_tag == DT_NEEDED
3070 && dyn.d_un.d_val == strindex)
3071 {
3072 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3073 return 1;
3074 }
3075 }
3076 }
3077
3078 if (do_it)
3079 {
3080 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3081 return -1;
3082
3083 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3084 return -1;
3085 }
3086 else
3087 /* We were just checking for existence of the tag. */
3088 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3089
3090 return 0;
3091 }
3092
3093 static bfd_boolean
3094 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3095 {
3096 for (; needed != NULL; needed = needed->next)
3097 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3098 && strcmp (soname, needed->name) == 0)
3099 return TRUE;
3100
3101 return FALSE;
3102 }
3103
3104 /* Sort symbol by value, section, and size. */
3105 static int
3106 elf_sort_symbol (const void *arg1, const void *arg2)
3107 {
3108 const struct elf_link_hash_entry *h1;
3109 const struct elf_link_hash_entry *h2;
3110 bfd_signed_vma vdiff;
3111
3112 h1 = *(const struct elf_link_hash_entry **) arg1;
3113 h2 = *(const struct elf_link_hash_entry **) arg2;
3114 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3115 if (vdiff != 0)
3116 return vdiff > 0 ? 1 : -1;
3117 else
3118 {
3119 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3120 if (sdiff != 0)
3121 return sdiff > 0 ? 1 : -1;
3122 }
3123 vdiff = h1->size - h2->size;
3124 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3125 }
3126
3127 /* This function is used to adjust offsets into .dynstr for
3128 dynamic symbols. This is called via elf_link_hash_traverse. */
3129
3130 static bfd_boolean
3131 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3132 {
3133 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3134
3135 if (h->dynindx != -1)
3136 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3137 return TRUE;
3138 }
3139
3140 /* Assign string offsets in .dynstr, update all structures referencing
3141 them. */
3142
3143 static bfd_boolean
3144 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3145 {
3146 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3147 struct elf_link_local_dynamic_entry *entry;
3148 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3149 bfd *dynobj = hash_table->dynobj;
3150 asection *sdyn;
3151 bfd_size_type size;
3152 const struct elf_backend_data *bed;
3153 bfd_byte *extdyn;
3154
3155 _bfd_elf_strtab_finalize (dynstr);
3156 size = _bfd_elf_strtab_size (dynstr);
3157
3158 bed = get_elf_backend_data (dynobj);
3159 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3160 BFD_ASSERT (sdyn != NULL);
3161
3162 /* Update all .dynamic entries referencing .dynstr strings. */
3163 for (extdyn = sdyn->contents;
3164 extdyn < sdyn->contents + sdyn->size;
3165 extdyn += bed->s->sizeof_dyn)
3166 {
3167 Elf_Internal_Dyn dyn;
3168
3169 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3170 switch (dyn.d_tag)
3171 {
3172 case DT_STRSZ:
3173 dyn.d_un.d_val = size;
3174 break;
3175 case DT_NEEDED:
3176 case DT_SONAME:
3177 case DT_RPATH:
3178 case DT_RUNPATH:
3179 case DT_FILTER:
3180 case DT_AUXILIARY:
3181 case DT_AUDIT:
3182 case DT_DEPAUDIT:
3183 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3184 break;
3185 default:
3186 continue;
3187 }
3188 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3189 }
3190
3191 /* Now update local dynamic symbols. */
3192 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3193 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3194 entry->isym.st_name);
3195
3196 /* And the rest of dynamic symbols. */
3197 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3198
3199 /* Adjust version definitions. */
3200 if (elf_tdata (output_bfd)->cverdefs)
3201 {
3202 asection *s;
3203 bfd_byte *p;
3204 bfd_size_type i;
3205 Elf_Internal_Verdef def;
3206 Elf_Internal_Verdaux defaux;
3207
3208 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3209 p = s->contents;
3210 do
3211 {
3212 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3213 &def);
3214 p += sizeof (Elf_External_Verdef);
3215 if (def.vd_aux != sizeof (Elf_External_Verdef))
3216 continue;
3217 for (i = 0; i < def.vd_cnt; ++i)
3218 {
3219 _bfd_elf_swap_verdaux_in (output_bfd,
3220 (Elf_External_Verdaux *) p, &defaux);
3221 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3222 defaux.vda_name);
3223 _bfd_elf_swap_verdaux_out (output_bfd,
3224 &defaux, (Elf_External_Verdaux *) p);
3225 p += sizeof (Elf_External_Verdaux);
3226 }
3227 }
3228 while (def.vd_next);
3229 }
3230
3231 /* Adjust version references. */
3232 if (elf_tdata (output_bfd)->verref)
3233 {
3234 asection *s;
3235 bfd_byte *p;
3236 bfd_size_type i;
3237 Elf_Internal_Verneed need;
3238 Elf_Internal_Vernaux needaux;
3239
3240 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3241 p = s->contents;
3242 do
3243 {
3244 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3245 &need);
3246 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3247 _bfd_elf_swap_verneed_out (output_bfd, &need,
3248 (Elf_External_Verneed *) p);
3249 p += sizeof (Elf_External_Verneed);
3250 for (i = 0; i < need.vn_cnt; ++i)
3251 {
3252 _bfd_elf_swap_vernaux_in (output_bfd,
3253 (Elf_External_Vernaux *) p, &needaux);
3254 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3255 needaux.vna_name);
3256 _bfd_elf_swap_vernaux_out (output_bfd,
3257 &needaux,
3258 (Elf_External_Vernaux *) p);
3259 p += sizeof (Elf_External_Vernaux);
3260 }
3261 }
3262 while (need.vn_next);
3263 }
3264
3265 return TRUE;
3266 }
3267 \f
3268 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3269 The default is to only match when the INPUT and OUTPUT are exactly
3270 the same target. */
3271
3272 bfd_boolean
3273 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3274 const bfd_target *output)
3275 {
3276 return input == output;
3277 }
3278
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 This version is used when different targets for the same architecture
3281 are virtually identical. */
3282
3283 bfd_boolean
3284 _bfd_elf_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 const struct elf_backend_data *obed, *ibed;
3288
3289 if (input == output)
3290 return TRUE;
3291
3292 ibed = xvec_get_elf_backend_data (input);
3293 obed = xvec_get_elf_backend_data (output);
3294
3295 if (ibed->arch != obed->arch)
3296 return FALSE;
3297
3298 /* If both backends are using this function, deem them compatible. */
3299 return ibed->relocs_compatible == obed->relocs_compatible;
3300 }
3301
3302 /* Make a special call to the linker "notice" function to tell it that
3303 we are about to handle an as-needed lib, or have finished
3304 processing the lib. */
3305
3306 bfd_boolean
3307 _bfd_elf_notice_as_needed (bfd *ibfd,
3308 struct bfd_link_info *info,
3309 enum notice_asneeded_action act)
3310 {
3311 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3312 }
3313
3314 /* Add symbols from an ELF object file to the linker hash table. */
3315
3316 static bfd_boolean
3317 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3318 {
3319 Elf_Internal_Ehdr *ehdr;
3320 Elf_Internal_Shdr *hdr;
3321 bfd_size_type symcount;
3322 bfd_size_type extsymcount;
3323 bfd_size_type extsymoff;
3324 struct elf_link_hash_entry **sym_hash;
3325 bfd_boolean dynamic;
3326 Elf_External_Versym *extversym = NULL;
3327 Elf_External_Versym *ever;
3328 struct elf_link_hash_entry *weaks;
3329 struct elf_link_hash_entry **nondeflt_vers = NULL;
3330 bfd_size_type nondeflt_vers_cnt = 0;
3331 Elf_Internal_Sym *isymbuf = NULL;
3332 Elf_Internal_Sym *isym;
3333 Elf_Internal_Sym *isymend;
3334 const struct elf_backend_data *bed;
3335 bfd_boolean add_needed;
3336 struct elf_link_hash_table *htab;
3337 bfd_size_type amt;
3338 void *alloc_mark = NULL;
3339 struct bfd_hash_entry **old_table = NULL;
3340 unsigned int old_size = 0;
3341 unsigned int old_count = 0;
3342 void *old_tab = NULL;
3343 void *old_ent;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3348 size_t tabsize = 0;
3349 asection *s;
3350 bfd_boolean just_syms;
3351
3352 htab = elf_hash_table (info);
3353 bed = get_elf_backend_data (abfd);
3354
3355 if ((abfd->flags & DYNAMIC) == 0)
3356 dynamic = FALSE;
3357 else
3358 {
3359 dynamic = TRUE;
3360
3361 /* You can't use -r against a dynamic object. Also, there's no
3362 hope of using a dynamic object which does not exactly match
3363 the format of the output file. */
3364 if (info->relocatable
3365 || !is_elf_hash_table (htab)
3366 || info->output_bfd->xvec != abfd->xvec)
3367 {
3368 if (info->relocatable)
3369 bfd_set_error (bfd_error_invalid_operation);
3370 else
3371 bfd_set_error (bfd_error_wrong_format);
3372 goto error_return;
3373 }
3374 }
3375
3376 ehdr = elf_elfheader (abfd);
3377 if (info->warn_alternate_em
3378 && bed->elf_machine_code != ehdr->e_machine
3379 && ((bed->elf_machine_alt1 != 0
3380 && ehdr->e_machine == bed->elf_machine_alt1)
3381 || (bed->elf_machine_alt2 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt2)))
3383 info->callbacks->einfo
3384 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3385 ehdr->e_machine, abfd, bed->elf_machine_code);
3386
3387 /* As a GNU extension, any input sections which are named
3388 .gnu.warning.SYMBOL are treated as warning symbols for the given
3389 symbol. This differs from .gnu.warning sections, which generate
3390 warnings when they are included in an output file. */
3391 /* PR 12761: Also generate this warning when building shared libraries. */
3392 for (s = abfd->sections; s != NULL; s = s->next)
3393 {
3394 const char *name;
3395
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3398 {
3399 char *msg;
3400 bfd_size_type sz;
3401
3402 name += sizeof ".gnu.warning." - 1;
3403
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3412 link. */
3413 if (dynamic)
3414 {
3415 struct elf_link_hash_entry *h;
3416
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3418
3419 /* FIXME: What about bfd_link_hash_common? */
3420 if (h != NULL
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3423 continue;
3424 }
3425
3426 sz = s->size;
3427 msg = (char *) bfd_alloc (abfd, sz + 1);
3428 if (msg == NULL)
3429 goto error_return;
3430
3431 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3432 goto error_return;
3433
3434 msg[sz] = '\0';
3435
3436 if (! (_bfd_generic_link_add_one_symbol
3437 (info, abfd, name, BSF_WARNING, s, 0, msg,
3438 FALSE, bed->collect, NULL)))
3439 goto error_return;
3440
3441 if (!info->relocatable && info->executable)
3442 {
3443 /* Clobber the section size so that the warning does
3444 not get copied into the output file. */
3445 s->size = 0;
3446
3447 /* Also set SEC_EXCLUDE, so that symbols defined in
3448 the warning section don't get copied to the output. */
3449 s->flags |= SEC_EXCLUDE;
3450 }
3451 }
3452 }
3453
3454 just_syms = ((s = abfd->sections) != NULL
3455 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3456
3457 add_needed = TRUE;
3458 if (! dynamic)
3459 {
3460 /* If we are creating a shared library, create all the dynamic
3461 sections immediately. We need to attach them to something,
3462 so we attach them to this BFD, provided it is the right
3463 format and is not from ld --just-symbols. FIXME: If there
3464 are no input BFD's of the same format as the output, we can't
3465 make a shared library. */
3466 if (!just_syms
3467 && info->shared
3468 && is_elf_hash_table (htab)
3469 && info->output_bfd->xvec == abfd->xvec
3470 && !htab->dynamic_sections_created)
3471 {
3472 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3473 goto error_return;
3474 }
3475 }
3476 else if (!is_elf_hash_table (htab))
3477 goto error_return;
3478 else
3479 {
3480 const char *soname = NULL;
3481 char *audit = NULL;
3482 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3483 int ret;
3484
3485 /* ld --just-symbols and dynamic objects don't mix very well.
3486 ld shouldn't allow it. */
3487 if (just_syms)
3488 abort ();
3489
3490 /* If this dynamic lib was specified on the command line with
3491 --as-needed in effect, then we don't want to add a DT_NEEDED
3492 tag unless the lib is actually used. Similary for libs brought
3493 in by another lib's DT_NEEDED. When --no-add-needed is used
3494 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3495 any dynamic library in DT_NEEDED tags in the dynamic lib at
3496 all. */
3497 add_needed = (elf_dyn_lib_class (abfd)
3498 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3499 | DYN_NO_NEEDED)) == 0;
3500
3501 s = bfd_get_section_by_name (abfd, ".dynamic");
3502 if (s != NULL)
3503 {
3504 bfd_byte *dynbuf;
3505 bfd_byte *extdyn;
3506 unsigned int elfsec;
3507 unsigned long shlink;
3508
3509 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3510 {
3511 error_free_dyn:
3512 free (dynbuf);
3513 goto error_return;
3514 }
3515
3516 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3517 if (elfsec == SHN_BAD)
3518 goto error_free_dyn;
3519 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3520
3521 for (extdyn = dynbuf;
3522 extdyn < dynbuf + s->size;
3523 extdyn += bed->s->sizeof_dyn)
3524 {
3525 Elf_Internal_Dyn dyn;
3526
3527 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3528 if (dyn.d_tag == DT_SONAME)
3529 {
3530 unsigned int tagv = dyn.d_un.d_val;
3531 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3532 if (soname == NULL)
3533 goto error_free_dyn;
3534 }
3535 if (dyn.d_tag == DT_NEEDED)
3536 {
3537 struct bfd_link_needed_list *n, **pn;
3538 char *fnm, *anm;
3539 unsigned int tagv = dyn.d_un.d_val;
3540
3541 amt = sizeof (struct bfd_link_needed_list);
3542 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3543 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3544 if (n == NULL || fnm == NULL)
3545 goto error_free_dyn;
3546 amt = strlen (fnm) + 1;
3547 anm = (char *) bfd_alloc (abfd, amt);
3548 if (anm == NULL)
3549 goto error_free_dyn;
3550 memcpy (anm, fnm, amt);
3551 n->name = anm;
3552 n->by = abfd;
3553 n->next = NULL;
3554 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3555 ;
3556 *pn = n;
3557 }
3558 if (dyn.d_tag == DT_RUNPATH)
3559 {
3560 struct bfd_link_needed_list *n, **pn;
3561 char *fnm, *anm;
3562 unsigned int tagv = dyn.d_un.d_val;
3563
3564 amt = sizeof (struct bfd_link_needed_list);
3565 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3566 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3567 if (n == NULL || fnm == NULL)
3568 goto error_free_dyn;
3569 amt = strlen (fnm) + 1;
3570 anm = (char *) bfd_alloc (abfd, amt);
3571 if (anm == NULL)
3572 goto error_free_dyn;
3573 memcpy (anm, fnm, amt);
3574 n->name = anm;
3575 n->by = abfd;
3576 n->next = NULL;
3577 for (pn = & runpath;
3578 *pn != NULL;
3579 pn = &(*pn)->next)
3580 ;
3581 *pn = n;
3582 }
3583 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3584 if (!runpath && dyn.d_tag == DT_RPATH)
3585 {
3586 struct bfd_link_needed_list *n, **pn;
3587 char *fnm, *anm;
3588 unsigned int tagv = dyn.d_un.d_val;
3589
3590 amt = sizeof (struct bfd_link_needed_list);
3591 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3592 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3593 if (n == NULL || fnm == NULL)
3594 goto error_free_dyn;
3595 amt = strlen (fnm) + 1;
3596 anm = (char *) bfd_alloc (abfd, amt);
3597 if (anm == NULL)
3598 goto error_free_dyn;
3599 memcpy (anm, fnm, amt);
3600 n->name = anm;
3601 n->by = abfd;
3602 n->next = NULL;
3603 for (pn = & rpath;
3604 *pn != NULL;
3605 pn = &(*pn)->next)
3606 ;
3607 *pn = n;
3608 }
3609 if (dyn.d_tag == DT_AUDIT)
3610 {
3611 unsigned int tagv = dyn.d_un.d_val;
3612 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3613 }
3614 }
3615
3616 free (dynbuf);
3617 }
3618
3619 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3620 frees all more recently bfd_alloc'd blocks as well. */
3621 if (runpath)
3622 rpath = runpath;
3623
3624 if (rpath)
3625 {
3626 struct bfd_link_needed_list **pn;
3627 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3628 ;
3629 *pn = rpath;
3630 }
3631
3632 /* We do not want to include any of the sections in a dynamic
3633 object in the output file. We hack by simply clobbering the
3634 list of sections in the BFD. This could be handled more
3635 cleanly by, say, a new section flag; the existing
3636 SEC_NEVER_LOAD flag is not the one we want, because that one
3637 still implies that the section takes up space in the output
3638 file. */
3639 bfd_section_list_clear (abfd);
3640
3641 /* Find the name to use in a DT_NEEDED entry that refers to this
3642 object. If the object has a DT_SONAME entry, we use it.
3643 Otherwise, if the generic linker stuck something in
3644 elf_dt_name, we use that. Otherwise, we just use the file
3645 name. */
3646 if (soname == NULL || *soname == '\0')
3647 {
3648 soname = elf_dt_name (abfd);
3649 if (soname == NULL || *soname == '\0')
3650 soname = bfd_get_filename (abfd);
3651 }
3652
3653 /* Save the SONAME because sometimes the linker emulation code
3654 will need to know it. */
3655 elf_dt_name (abfd) = soname;
3656
3657 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3658 if (ret < 0)
3659 goto error_return;
3660
3661 /* If we have already included this dynamic object in the
3662 link, just ignore it. There is no reason to include a
3663 particular dynamic object more than once. */
3664 if (ret > 0)
3665 return TRUE;
3666
3667 /* Save the DT_AUDIT entry for the linker emulation code. */
3668 elf_dt_audit (abfd) = audit;
3669 }
3670
3671 /* If this is a dynamic object, we always link against the .dynsym
3672 symbol table, not the .symtab symbol table. The dynamic linker
3673 will only see the .dynsym symbol table, so there is no reason to
3674 look at .symtab for a dynamic object. */
3675
3676 if (! dynamic || elf_dynsymtab (abfd) == 0)
3677 hdr = &elf_tdata (abfd)->symtab_hdr;
3678 else
3679 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3680
3681 symcount = hdr->sh_size / bed->s->sizeof_sym;
3682
3683 /* The sh_info field of the symtab header tells us where the
3684 external symbols start. We don't care about the local symbols at
3685 this point. */
3686 if (elf_bad_symtab (abfd))
3687 {
3688 extsymcount = symcount;
3689 extsymoff = 0;
3690 }
3691 else
3692 {
3693 extsymcount = symcount - hdr->sh_info;
3694 extsymoff = hdr->sh_info;
3695 }
3696
3697 sym_hash = elf_sym_hashes (abfd);
3698 if (extsymcount != 0)
3699 {
3700 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3701 NULL, NULL, NULL);
3702 if (isymbuf == NULL)
3703 goto error_return;
3704
3705 if (sym_hash == NULL)
3706 {
3707 /* We store a pointer to the hash table entry for each
3708 external symbol. */
3709 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3710 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3711 if (sym_hash == NULL)
3712 goto error_free_sym;
3713 elf_sym_hashes (abfd) = sym_hash;
3714 }
3715 }
3716
3717 if (dynamic)
3718 {
3719 /* Read in any version definitions. */
3720 if (!_bfd_elf_slurp_version_tables (abfd,
3721 info->default_imported_symver))
3722 goto error_free_sym;
3723
3724 /* Read in the symbol versions, but don't bother to convert them
3725 to internal format. */
3726 if (elf_dynversym (abfd) != 0)
3727 {
3728 Elf_Internal_Shdr *versymhdr;
3729
3730 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3731 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3732 if (extversym == NULL)
3733 goto error_free_sym;
3734 amt = versymhdr->sh_size;
3735 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3736 || bfd_bread (extversym, amt, abfd) != amt)
3737 goto error_free_vers;
3738 }
3739 }
3740
3741 /* If we are loading an as-needed shared lib, save the symbol table
3742 state before we start adding symbols. If the lib turns out
3743 to be unneeded, restore the state. */
3744 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3745 {
3746 unsigned int i;
3747 size_t entsize;
3748
3749 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3750 {
3751 struct bfd_hash_entry *p;
3752 struct elf_link_hash_entry *h;
3753
3754 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3755 {
3756 h = (struct elf_link_hash_entry *) p;
3757 entsize += htab->root.table.entsize;
3758 if (h->root.type == bfd_link_hash_warning)
3759 entsize += htab->root.table.entsize;
3760 }
3761 }
3762
3763 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3764 old_tab = bfd_malloc (tabsize + entsize);
3765 if (old_tab == NULL)
3766 goto error_free_vers;
3767
3768 /* Remember the current objalloc pointer, so that all mem for
3769 symbols added can later be reclaimed. */
3770 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3771 if (alloc_mark == NULL)
3772 goto error_free_vers;
3773
3774 /* Make a special call to the linker "notice" function to
3775 tell it that we are about to handle an as-needed lib. */
3776 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3777 goto error_free_vers;
3778
3779 /* Clone the symbol table. Remember some pointers into the
3780 symbol table, and dynamic symbol count. */
3781 old_ent = (char *) old_tab + tabsize;
3782 memcpy (old_tab, htab->root.table.table, tabsize);
3783 old_undefs = htab->root.undefs;
3784 old_undefs_tail = htab->root.undefs_tail;
3785 old_table = htab->root.table.table;
3786 old_size = htab->root.table.size;
3787 old_count = htab->root.table.count;
3788 old_dynsymcount = htab->dynsymcount;
3789 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3790
3791 for (i = 0; i < htab->root.table.size; i++)
3792 {
3793 struct bfd_hash_entry *p;
3794 struct elf_link_hash_entry *h;
3795
3796 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3797 {
3798 memcpy (old_ent, p, htab->root.table.entsize);
3799 old_ent = (char *) old_ent + htab->root.table.entsize;
3800 h = (struct elf_link_hash_entry *) p;
3801 if (h->root.type == bfd_link_hash_warning)
3802 {
3803 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 }
3806 }
3807 }
3808 }
3809
3810 weaks = NULL;
3811 ever = extversym != NULL ? extversym + extsymoff : NULL;
3812 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3813 isym < isymend;
3814 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3815 {
3816 int bind;
3817 bfd_vma value;
3818 asection *sec, *new_sec;
3819 flagword flags;
3820 const char *name;
3821 struct elf_link_hash_entry *h;
3822 struct elf_link_hash_entry *hi;
3823 bfd_boolean definition;
3824 bfd_boolean size_change_ok;
3825 bfd_boolean type_change_ok;
3826 bfd_boolean new_weakdef;
3827 bfd_boolean new_weak;
3828 bfd_boolean old_weak;
3829 bfd_boolean override;
3830 bfd_boolean common;
3831 unsigned int old_alignment;
3832 bfd *old_bfd;
3833
3834 override = FALSE;
3835
3836 flags = BSF_NO_FLAGS;
3837 sec = NULL;
3838 value = isym->st_value;
3839 common = bed->common_definition (isym);
3840
3841 bind = ELF_ST_BIND (isym->st_info);
3842 switch (bind)
3843 {
3844 case STB_LOCAL:
3845 /* This should be impossible, since ELF requires that all
3846 global symbols follow all local symbols, and that sh_info
3847 point to the first global symbol. Unfortunately, Irix 5
3848 screws this up. */
3849 continue;
3850
3851 case STB_GLOBAL:
3852 if (isym->st_shndx != SHN_UNDEF && !common)
3853 flags = BSF_GLOBAL;
3854 break;
3855
3856 case STB_WEAK:
3857 flags = BSF_WEAK;
3858 break;
3859
3860 case STB_GNU_UNIQUE:
3861 flags = BSF_GNU_UNIQUE;
3862 break;
3863
3864 default:
3865 /* Leave it up to the processor backend. */
3866 break;
3867 }
3868
3869 if (isym->st_shndx == SHN_UNDEF)
3870 sec = bfd_und_section_ptr;
3871 else if (isym->st_shndx == SHN_ABS)
3872 sec = bfd_abs_section_ptr;
3873 else if (isym->st_shndx == SHN_COMMON)
3874 {
3875 sec = bfd_com_section_ptr;
3876 /* What ELF calls the size we call the value. What ELF
3877 calls the value we call the alignment. */
3878 value = isym->st_size;
3879 }
3880 else
3881 {
3882 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3883 if (sec == NULL)
3884 sec = bfd_abs_section_ptr;
3885 else if (discarded_section (sec))
3886 {
3887 /* Symbols from discarded section are undefined. We keep
3888 its visibility. */
3889 sec = bfd_und_section_ptr;
3890 isym->st_shndx = SHN_UNDEF;
3891 }
3892 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3893 value -= sec->vma;
3894 }
3895
3896 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3897 isym->st_name);
3898 if (name == NULL)
3899 goto error_free_vers;
3900
3901 if (isym->st_shndx == SHN_COMMON
3902 && (abfd->flags & BFD_PLUGIN) != 0)
3903 {
3904 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3905
3906 if (xc == NULL)
3907 {
3908 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3909 | SEC_EXCLUDE);
3910 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3911 if (xc == NULL)
3912 goto error_free_vers;
3913 }
3914 sec = xc;
3915 }
3916 else if (isym->st_shndx == SHN_COMMON
3917 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3918 && !info->relocatable)
3919 {
3920 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3921
3922 if (tcomm == NULL)
3923 {
3924 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3925 | SEC_LINKER_CREATED);
3926 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3927 if (tcomm == NULL)
3928 goto error_free_vers;
3929 }
3930 sec = tcomm;
3931 }
3932 else if (bed->elf_add_symbol_hook)
3933 {
3934 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3935 &sec, &value))
3936 goto error_free_vers;
3937
3938 /* The hook function sets the name to NULL if this symbol
3939 should be skipped for some reason. */
3940 if (name == NULL)
3941 continue;
3942 }
3943
3944 /* Sanity check that all possibilities were handled. */
3945 if (sec == NULL)
3946 {
3947 bfd_set_error (bfd_error_bad_value);
3948 goto error_free_vers;
3949 }
3950
3951 /* Silently discard TLS symbols from --just-syms. There's
3952 no way to combine a static TLS block with a new TLS block
3953 for this executable. */
3954 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3955 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3956 continue;
3957
3958 if (bfd_is_und_section (sec)
3959 || bfd_is_com_section (sec))
3960 definition = FALSE;
3961 else
3962 definition = TRUE;
3963
3964 size_change_ok = FALSE;
3965 type_change_ok = bed->type_change_ok;
3966 old_weak = FALSE;
3967 old_alignment = 0;
3968 old_bfd = NULL;
3969 new_sec = sec;
3970
3971 if (is_elf_hash_table (htab))
3972 {
3973 Elf_Internal_Versym iver;
3974 unsigned int vernum = 0;
3975 bfd_boolean skip;
3976
3977 if (ever == NULL)
3978 {
3979 if (info->default_imported_symver)
3980 /* Use the default symbol version created earlier. */
3981 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3982 else
3983 iver.vs_vers = 0;
3984 }
3985 else
3986 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3987
3988 vernum = iver.vs_vers & VERSYM_VERSION;
3989
3990 /* If this is a hidden symbol, or if it is not version
3991 1, we append the version name to the symbol name.
3992 However, we do not modify a non-hidden absolute symbol
3993 if it is not a function, because it might be the version
3994 symbol itself. FIXME: What if it isn't? */
3995 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3996 || (vernum > 1
3997 && (!bfd_is_abs_section (sec)
3998 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3999 {
4000 const char *verstr;
4001 size_t namelen, verlen, newlen;
4002 char *newname, *p;
4003
4004 if (isym->st_shndx != SHN_UNDEF)
4005 {
4006 if (vernum > elf_tdata (abfd)->cverdefs)
4007 verstr = NULL;
4008 else if (vernum > 1)
4009 verstr =
4010 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4011 else
4012 verstr = "";
4013
4014 if (verstr == NULL)
4015 {
4016 (*_bfd_error_handler)
4017 (_("%B: %s: invalid version %u (max %d)"),
4018 abfd, name, vernum,
4019 elf_tdata (abfd)->cverdefs);
4020 bfd_set_error (bfd_error_bad_value);
4021 goto error_free_vers;
4022 }
4023 }
4024 else
4025 {
4026 /* We cannot simply test for the number of
4027 entries in the VERNEED section since the
4028 numbers for the needed versions do not start
4029 at 0. */
4030 Elf_Internal_Verneed *t;
4031
4032 verstr = NULL;
4033 for (t = elf_tdata (abfd)->verref;
4034 t != NULL;
4035 t = t->vn_nextref)
4036 {
4037 Elf_Internal_Vernaux *a;
4038
4039 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4040 {
4041 if (a->vna_other == vernum)
4042 {
4043 verstr = a->vna_nodename;
4044 break;
4045 }
4046 }
4047 if (a != NULL)
4048 break;
4049 }
4050 if (verstr == NULL)
4051 {
4052 (*_bfd_error_handler)
4053 (_("%B: %s: invalid needed version %d"),
4054 abfd, name, vernum);
4055 bfd_set_error (bfd_error_bad_value);
4056 goto error_free_vers;
4057 }
4058 }
4059
4060 namelen = strlen (name);
4061 verlen = strlen (verstr);
4062 newlen = namelen + verlen + 2;
4063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4064 && isym->st_shndx != SHN_UNDEF)
4065 ++newlen;
4066
4067 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4068 if (newname == NULL)
4069 goto error_free_vers;
4070 memcpy (newname, name, namelen);
4071 p = newname + namelen;
4072 *p++ = ELF_VER_CHR;
4073 /* If this is a defined non-hidden version symbol,
4074 we add another @ to the name. This indicates the
4075 default version of the symbol. */
4076 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4077 && isym->st_shndx != SHN_UNDEF)
4078 *p++ = ELF_VER_CHR;
4079 memcpy (p, verstr, verlen + 1);
4080
4081 name = newname;
4082 }
4083
4084 /* If this symbol has default visibility and the user has
4085 requested we not re-export it, then mark it as hidden. */
4086 if (definition
4087 && !dynamic
4088 && abfd->no_export
4089 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4090 isym->st_other = (STV_HIDDEN
4091 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4092
4093 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4094 sym_hash, &old_bfd, &old_weak,
4095 &old_alignment, &skip, &override,
4096 &type_change_ok, &size_change_ok))
4097 goto error_free_vers;
4098
4099 if (skip)
4100 continue;
4101
4102 if (override)
4103 definition = FALSE;
4104
4105 h = *sym_hash;
4106 while (h->root.type == bfd_link_hash_indirect
4107 || h->root.type == bfd_link_hash_warning)
4108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4109
4110 if (elf_tdata (abfd)->verdef != NULL
4111 && vernum > 1
4112 && definition)
4113 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4114 }
4115
4116 if (! (_bfd_generic_link_add_one_symbol
4117 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4118 (struct bfd_link_hash_entry **) sym_hash)))
4119 goto error_free_vers;
4120
4121 h = *sym_hash;
4122 /* We need to make sure that indirect symbol dynamic flags are
4123 updated. */
4124 hi = h;
4125 while (h->root.type == bfd_link_hash_indirect
4126 || h->root.type == bfd_link_hash_warning)
4127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128
4129 *sym_hash = h;
4130
4131 new_weak = (flags & BSF_WEAK) != 0;
4132 new_weakdef = FALSE;
4133 if (dynamic
4134 && definition
4135 && new_weak
4136 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4137 && is_elf_hash_table (htab)
4138 && h->u.weakdef == NULL)
4139 {
4140 /* Keep a list of all weak defined non function symbols from
4141 a dynamic object, using the weakdef field. Later in this
4142 function we will set the weakdef field to the correct
4143 value. We only put non-function symbols from dynamic
4144 objects on this list, because that happens to be the only
4145 time we need to know the normal symbol corresponding to a
4146 weak symbol, and the information is time consuming to
4147 figure out. If the weakdef field is not already NULL,
4148 then this symbol was already defined by some previous
4149 dynamic object, and we will be using that previous
4150 definition anyhow. */
4151
4152 h->u.weakdef = weaks;
4153 weaks = h;
4154 new_weakdef = TRUE;
4155 }
4156
4157 /* Set the alignment of a common symbol. */
4158 if ((common || bfd_is_com_section (sec))
4159 && h->root.type == bfd_link_hash_common)
4160 {
4161 unsigned int align;
4162
4163 if (common)
4164 align = bfd_log2 (isym->st_value);
4165 else
4166 {
4167 /* The new symbol is a common symbol in a shared object.
4168 We need to get the alignment from the section. */
4169 align = new_sec->alignment_power;
4170 }
4171 if (align > old_alignment)
4172 h->root.u.c.p->alignment_power = align;
4173 else
4174 h->root.u.c.p->alignment_power = old_alignment;
4175 }
4176
4177 if (is_elf_hash_table (htab))
4178 {
4179 /* Set a flag in the hash table entry indicating the type of
4180 reference or definition we just found. A dynamic symbol
4181 is one which is referenced or defined by both a regular
4182 object and a shared object. */
4183 bfd_boolean dynsym = FALSE;
4184
4185 /* Plugin symbols aren't normal. Don't set def_regular or
4186 ref_regular for them, or make them dynamic. */
4187 if ((abfd->flags & BFD_PLUGIN) != 0)
4188 ;
4189 else if (! dynamic)
4190 {
4191 if (! definition)
4192 {
4193 h->ref_regular = 1;
4194 if (bind != STB_WEAK)
4195 h->ref_regular_nonweak = 1;
4196 }
4197 else
4198 {
4199 h->def_regular = 1;
4200 if (h->def_dynamic)
4201 {
4202 h->def_dynamic = 0;
4203 h->ref_dynamic = 1;
4204 }
4205 }
4206
4207 /* If the indirect symbol has been forced local, don't
4208 make the real symbol dynamic. */
4209 if ((h == hi || !hi->forced_local)
4210 && (! info->executable
4211 || h->def_dynamic
4212 || h->ref_dynamic))
4213 dynsym = TRUE;
4214 }
4215 else
4216 {
4217 if (! definition)
4218 {
4219 h->ref_dynamic = 1;
4220 hi->ref_dynamic = 1;
4221 }
4222 else
4223 {
4224 h->def_dynamic = 1;
4225 hi->def_dynamic = 1;
4226 }
4227
4228 /* If the indirect symbol has been forced local, don't
4229 make the real symbol dynamic. */
4230 if ((h == hi || !hi->forced_local)
4231 && (h->def_regular
4232 || h->ref_regular
4233 || (h->u.weakdef != NULL
4234 && ! new_weakdef
4235 && h->u.weakdef->dynindx != -1)))
4236 dynsym = TRUE;
4237 }
4238
4239 /* Check to see if we need to add an indirect symbol for
4240 the default name. */
4241 if (definition
4242 || (!override && h->root.type == bfd_link_hash_common))
4243 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4244 sec, value, &old_bfd, &dynsym))
4245 goto error_free_vers;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4262 || h->root.type == bfd_link_hash_defweak);
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B is"
4294 " greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if (isym->st_size != 0
4308 && isym->st_shndx != SHN_UNDEF
4309 && (definition || h->size == 0))
4310 {
4311 if (h->size != 0
4312 && h->size != isym->st_size
4313 && ! size_change_ok)
4314 (*_bfd_error_handler)
4315 (_("Warning: size of symbol `%s' changed"
4316 " from %lu in %B to %lu in %B"),
4317 old_bfd, abfd,
4318 name, (unsigned long) h->size,
4319 (unsigned long) isym->st_size);
4320
4321 h->size = isym->st_size;
4322 }
4323
4324 /* If this is a common symbol, then we always want H->SIZE
4325 to be the size of the common symbol. The code just above
4326 won't fix the size if a common symbol becomes larger. We
4327 don't warn about a size change here, because that is
4328 covered by --warn-common. Allow changes between different
4329 function types. */
4330 if (h->root.type == bfd_link_hash_common)
4331 h->size = h->root.u.c.size;
4332
4333 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4334 && ((definition && !new_weak)
4335 || (old_weak && h->root.type == bfd_link_hash_common)
4336 || h->type == STT_NOTYPE))
4337 {
4338 unsigned int type = ELF_ST_TYPE (isym->st_info);
4339
4340 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4341 symbol. */
4342 if (type == STT_GNU_IFUNC
4343 && (abfd->flags & DYNAMIC) != 0)
4344 type = STT_FUNC;
4345
4346 if (h->type != type)
4347 {
4348 if (h->type != STT_NOTYPE && ! type_change_ok)
4349 (*_bfd_error_handler)
4350 (_("Warning: type of symbol `%s' changed"
4351 " from %d to %d in %B"),
4352 abfd, name, h->type, type);
4353
4354 h->type = type;
4355 }
4356 }
4357
4358 /* Merge st_other field. */
4359 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4360
4361 /* We don't want to make debug symbol dynamic. */
4362 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4363 dynsym = FALSE;
4364
4365 /* Nor should we make plugin symbols dynamic. */
4366 if ((abfd->flags & BFD_PLUGIN) != 0)
4367 dynsym = FALSE;
4368
4369 if (definition)
4370 {
4371 h->target_internal = isym->st_target_internal;
4372 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4373 }
4374
4375 if (definition && !dynamic)
4376 {
4377 char *p = strchr (name, ELF_VER_CHR);
4378 if (p != NULL && p[1] != ELF_VER_CHR)
4379 {
4380 /* Queue non-default versions so that .symver x, x@FOO
4381 aliases can be checked. */
4382 if (!nondeflt_vers)
4383 {
4384 amt = ((isymend - isym + 1)
4385 * sizeof (struct elf_link_hash_entry *));
4386 nondeflt_vers
4387 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4388 if (!nondeflt_vers)
4389 goto error_free_vers;
4390 }
4391 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 }
4393 }
4394
4395 if (dynsym && h->dynindx == -1)
4396 {
4397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4398 goto error_free_vers;
4399 if (h->u.weakdef != NULL
4400 && ! new_weakdef
4401 && h->u.weakdef->dynindx == -1)
4402 {
4403 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4404 goto error_free_vers;
4405 }
4406 }
4407 else if (dynsym && h->dynindx != -1)
4408 /* If the symbol already has a dynamic index, but
4409 visibility says it should not be visible, turn it into
4410 a local symbol. */
4411 switch (ELF_ST_VISIBILITY (h->other))
4412 {
4413 case STV_INTERNAL:
4414 case STV_HIDDEN:
4415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4416 dynsym = FALSE;
4417 break;
4418 }
4419
4420 /* Don't add DT_NEEDED for references from the dummy bfd. */
4421 if (!add_needed
4422 && definition
4423 && ((dynsym
4424 && h->ref_regular_nonweak
4425 && (old_bfd == NULL
4426 || (old_bfd->flags & BFD_PLUGIN) == 0))
4427 || (h->ref_dynamic_nonweak
4428 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4429 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4430 {
4431 int ret;
4432 const char *soname = elf_dt_name (abfd);
4433
4434 info->callbacks->minfo ("%!", soname, old_bfd,
4435 h->root.root.string);
4436
4437 /* A symbol from a library loaded via DT_NEEDED of some
4438 other library is referenced by a regular object.
4439 Add a DT_NEEDED entry for it. Issue an error if
4440 --no-add-needed is used and the reference was not
4441 a weak one. */
4442 if (old_bfd != NULL
4443 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4444 {
4445 (*_bfd_error_handler)
4446 (_("%B: undefined reference to symbol '%s'"),
4447 old_bfd, name);
4448 bfd_set_error (bfd_error_missing_dso);
4449 goto error_free_vers;
4450 }
4451
4452 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4453 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4454
4455 add_needed = TRUE;
4456 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4457 if (ret < 0)
4458 goto error_free_vers;
4459
4460 BFD_ASSERT (ret == 0);
4461 }
4462 }
4463 }
4464
4465 if (extversym != NULL)
4466 {
4467 free (extversym);
4468 extversym = NULL;
4469 }
4470
4471 if (isymbuf != NULL)
4472 {
4473 free (isymbuf);
4474 isymbuf = NULL;
4475 }
4476
4477 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4478 {
4479 unsigned int i;
4480
4481 /* Restore the symbol table. */
4482 old_ent = (char *) old_tab + tabsize;
4483 memset (elf_sym_hashes (abfd), 0,
4484 extsymcount * sizeof (struct elf_link_hash_entry *));
4485 htab->root.table.table = old_table;
4486 htab->root.table.size = old_size;
4487 htab->root.table.count = old_count;
4488 memcpy (htab->root.table.table, old_tab, tabsize);
4489 htab->root.undefs = old_undefs;
4490 htab->root.undefs_tail = old_undefs_tail;
4491 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4492 for (i = 0; i < htab->root.table.size; i++)
4493 {
4494 struct bfd_hash_entry *p;
4495 struct elf_link_hash_entry *h;
4496 bfd_size_type size;
4497 unsigned int alignment_power;
4498
4499 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4500 {
4501 h = (struct elf_link_hash_entry *) p;
4502 if (h->root.type == bfd_link_hash_warning)
4503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4504 if (h->dynindx >= old_dynsymcount
4505 && h->dynstr_index < old_dynstr_size)
4506 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4507
4508 /* Preserve the maximum alignment and size for common
4509 symbols even if this dynamic lib isn't on DT_NEEDED
4510 since it can still be loaded at run time by another
4511 dynamic lib. */
4512 if (h->root.type == bfd_link_hash_common)
4513 {
4514 size = h->root.u.c.size;
4515 alignment_power = h->root.u.c.p->alignment_power;
4516 }
4517 else
4518 {
4519 size = 0;
4520 alignment_power = 0;
4521 }
4522 memcpy (p, old_ent, htab->root.table.entsize);
4523 old_ent = (char *) old_ent + htab->root.table.entsize;
4524 h = (struct elf_link_hash_entry *) p;
4525 if (h->root.type == bfd_link_hash_warning)
4526 {
4527 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4530 }
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 if (size > h->root.u.c.size)
4534 h->root.u.c.size = size;
4535 if (alignment_power > h->root.u.c.p->alignment_power)
4536 h->root.u.c.p->alignment_power = alignment_power;
4537 }
4538 }
4539 }
4540
4541 /* Make a special call to the linker "notice" function to
4542 tell it that symbols added for crefs may need to be removed. */
4543 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4544 goto error_free_vers;
4545
4546 free (old_tab);
4547 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4548 alloc_mark);
4549 if (nondeflt_vers != NULL)
4550 free (nondeflt_vers);
4551 return TRUE;
4552 }
4553
4554 if (old_tab != NULL)
4555 {
4556 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4557 goto error_free_vers;
4558 free (old_tab);
4559 old_tab = NULL;
4560 }
4561
4562 /* Now that all the symbols from this input file are created, handle
4563 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4564 if (nondeflt_vers != NULL)
4565 {
4566 bfd_size_type cnt, symidx;
4567
4568 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4569 {
4570 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4571 char *shortname, *p;
4572
4573 p = strchr (h->root.root.string, ELF_VER_CHR);
4574 if (p == NULL
4575 || (h->root.type != bfd_link_hash_defined
4576 && h->root.type != bfd_link_hash_defweak))
4577 continue;
4578
4579 amt = p - h->root.root.string;
4580 shortname = (char *) bfd_malloc (amt + 1);
4581 if (!shortname)
4582 goto error_free_vers;
4583 memcpy (shortname, h->root.root.string, amt);
4584 shortname[amt] = '\0';
4585
4586 hi = (struct elf_link_hash_entry *)
4587 bfd_link_hash_lookup (&htab->root, shortname,
4588 FALSE, FALSE, FALSE);
4589 if (hi != NULL
4590 && hi->root.type == h->root.type
4591 && hi->root.u.def.value == h->root.u.def.value
4592 && hi->root.u.def.section == h->root.u.def.section)
4593 {
4594 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4595 hi->root.type = bfd_link_hash_indirect;
4596 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4597 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4598 sym_hash = elf_sym_hashes (abfd);
4599 if (sym_hash)
4600 for (symidx = 0; symidx < extsymcount; ++symidx)
4601 if (sym_hash[symidx] == hi)
4602 {
4603 sym_hash[symidx] = h;
4604 break;
4605 }
4606 }
4607 free (shortname);
4608 }
4609 free (nondeflt_vers);
4610 nondeflt_vers = NULL;
4611 }
4612
4613 /* Now set the weakdefs field correctly for all the weak defined
4614 symbols we found. The only way to do this is to search all the
4615 symbols. Since we only need the information for non functions in
4616 dynamic objects, that's the only time we actually put anything on
4617 the list WEAKS. We need this information so that if a regular
4618 object refers to a symbol defined weakly in a dynamic object, the
4619 real symbol in the dynamic object is also put in the dynamic
4620 symbols; we also must arrange for both symbols to point to the
4621 same memory location. We could handle the general case of symbol
4622 aliasing, but a general symbol alias can only be generated in
4623 assembler code, handling it correctly would be very time
4624 consuming, and other ELF linkers don't handle general aliasing
4625 either. */
4626 if (weaks != NULL)
4627 {
4628 struct elf_link_hash_entry **hpp;
4629 struct elf_link_hash_entry **hppend;
4630 struct elf_link_hash_entry **sorted_sym_hash;
4631 struct elf_link_hash_entry *h;
4632 size_t sym_count;
4633
4634 /* Since we have to search the whole symbol list for each weak
4635 defined symbol, search time for N weak defined symbols will be
4636 O(N^2). Binary search will cut it down to O(NlogN). */
4637 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4638 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4639 if (sorted_sym_hash == NULL)
4640 goto error_return;
4641 sym_hash = sorted_sym_hash;
4642 hpp = elf_sym_hashes (abfd);
4643 hppend = hpp + extsymcount;
4644 sym_count = 0;
4645 for (; hpp < hppend; hpp++)
4646 {
4647 h = *hpp;
4648 if (h != NULL
4649 && h->root.type == bfd_link_hash_defined
4650 && !bed->is_function_type (h->type))
4651 {
4652 *sym_hash = h;
4653 sym_hash++;
4654 sym_count++;
4655 }
4656 }
4657
4658 qsort (sorted_sym_hash, sym_count,
4659 sizeof (struct elf_link_hash_entry *),
4660 elf_sort_symbol);
4661
4662 while (weaks != NULL)
4663 {
4664 struct elf_link_hash_entry *hlook;
4665 asection *slook;
4666 bfd_vma vlook;
4667 size_t i, j, idx = 0;
4668
4669 hlook = weaks;
4670 weaks = hlook->u.weakdef;
4671 hlook->u.weakdef = NULL;
4672
4673 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4674 || hlook->root.type == bfd_link_hash_defweak
4675 || hlook->root.type == bfd_link_hash_common
4676 || hlook->root.type == bfd_link_hash_indirect);
4677 slook = hlook->root.u.def.section;
4678 vlook = hlook->root.u.def.value;
4679
4680 i = 0;
4681 j = sym_count;
4682 while (i != j)
4683 {
4684 bfd_signed_vma vdiff;
4685 idx = (i + j) / 2;
4686 h = sorted_sym_hash[idx];
4687 vdiff = vlook - h->root.u.def.value;
4688 if (vdiff < 0)
4689 j = idx;
4690 else if (vdiff > 0)
4691 i = idx + 1;
4692 else
4693 {
4694 long sdiff = slook->id - h->root.u.def.section->id;
4695 if (sdiff < 0)
4696 j = idx;
4697 else if (sdiff > 0)
4698 i = idx + 1;
4699 else
4700 break;
4701 }
4702 }
4703
4704 /* We didn't find a value/section match. */
4705 if (i == j)
4706 continue;
4707
4708 /* With multiple aliases, or when the weak symbol is already
4709 strongly defined, we have multiple matching symbols and
4710 the binary search above may land on any of them. Step
4711 one past the matching symbol(s). */
4712 while (++idx != j)
4713 {
4714 h = sorted_sym_hash[idx];
4715 if (h->root.u.def.section != slook
4716 || h->root.u.def.value != vlook)
4717 break;
4718 }
4719
4720 /* Now look back over the aliases. Since we sorted by size
4721 as well as value and section, we'll choose the one with
4722 the largest size. */
4723 while (idx-- != i)
4724 {
4725 h = sorted_sym_hash[idx];
4726
4727 /* Stop if value or section doesn't match. */
4728 if (h->root.u.def.section != slook
4729 || h->root.u.def.value != vlook)
4730 break;
4731 else if (h != hlook)
4732 {
4733 hlook->u.weakdef = h;
4734
4735 /* If the weak definition is in the list of dynamic
4736 symbols, make sure the real definition is put
4737 there as well. */
4738 if (hlook->dynindx != -1 && h->dynindx == -1)
4739 {
4740 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4741 {
4742 err_free_sym_hash:
4743 free (sorted_sym_hash);
4744 goto error_return;
4745 }
4746 }
4747
4748 /* If the real definition is in the list of dynamic
4749 symbols, make sure the weak definition is put
4750 there as well. If we don't do this, then the
4751 dynamic loader might not merge the entries for the
4752 real definition and the weak definition. */
4753 if (h->dynindx != -1 && hlook->dynindx == -1)
4754 {
4755 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4756 goto err_free_sym_hash;
4757 }
4758 break;
4759 }
4760 }
4761 }
4762
4763 free (sorted_sym_hash);
4764 }
4765
4766 if (bed->check_directives
4767 && !(*bed->check_directives) (abfd, info))
4768 return FALSE;
4769
4770 /* If this object is the same format as the output object, and it is
4771 not a shared library, then let the backend look through the
4772 relocs.
4773
4774 This is required to build global offset table entries and to
4775 arrange for dynamic relocs. It is not required for the
4776 particular common case of linking non PIC code, even when linking
4777 against shared libraries, but unfortunately there is no way of
4778 knowing whether an object file has been compiled PIC or not.
4779 Looking through the relocs is not particularly time consuming.
4780 The problem is that we must either (1) keep the relocs in memory,
4781 which causes the linker to require additional runtime memory or
4782 (2) read the relocs twice from the input file, which wastes time.
4783 This would be a good case for using mmap.
4784
4785 I have no idea how to handle linking PIC code into a file of a
4786 different format. It probably can't be done. */
4787 if (! dynamic
4788 && is_elf_hash_table (htab)
4789 && bed->check_relocs != NULL
4790 && elf_object_id (abfd) == elf_hash_table_id (htab)
4791 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4792 {
4793 asection *o;
4794
4795 for (o = abfd->sections; o != NULL; o = o->next)
4796 {
4797 Elf_Internal_Rela *internal_relocs;
4798 bfd_boolean ok;
4799
4800 if ((o->flags & SEC_RELOC) == 0
4801 || o->reloc_count == 0
4802 || ((info->strip == strip_all || info->strip == strip_debugger)
4803 && (o->flags & SEC_DEBUGGING) != 0)
4804 || bfd_is_abs_section (o->output_section))
4805 continue;
4806
4807 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4808 info->keep_memory);
4809 if (internal_relocs == NULL)
4810 goto error_return;
4811
4812 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4813
4814 if (elf_section_data (o)->relocs != internal_relocs)
4815 free (internal_relocs);
4816
4817 if (! ok)
4818 goto error_return;
4819 }
4820 }
4821
4822 /* If this is a non-traditional link, try to optimize the handling
4823 of the .stab/.stabstr sections. */
4824 if (! dynamic
4825 && ! info->traditional_format
4826 && is_elf_hash_table (htab)
4827 && (info->strip != strip_all && info->strip != strip_debugger))
4828 {
4829 asection *stabstr;
4830
4831 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4832 if (stabstr != NULL)
4833 {
4834 bfd_size_type string_offset = 0;
4835 asection *stab;
4836
4837 for (stab = abfd->sections; stab; stab = stab->next)
4838 if (CONST_STRNEQ (stab->name, ".stab")
4839 && (!stab->name[5] ||
4840 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4841 && (stab->flags & SEC_MERGE) == 0
4842 && !bfd_is_abs_section (stab->output_section))
4843 {
4844 struct bfd_elf_section_data *secdata;
4845
4846 secdata = elf_section_data (stab);
4847 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4848 stabstr, &secdata->sec_info,
4849 &string_offset))
4850 goto error_return;
4851 if (secdata->sec_info)
4852 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4853 }
4854 }
4855 }
4856
4857 if (is_elf_hash_table (htab) && add_needed)
4858 {
4859 /* Add this bfd to the loaded list. */
4860 struct elf_link_loaded_list *n;
4861
4862 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4863 if (n == NULL)
4864 goto error_return;
4865 n->abfd = abfd;
4866 n->next = htab->loaded;
4867 htab->loaded = n;
4868 }
4869
4870 return TRUE;
4871
4872 error_free_vers:
4873 if (old_tab != NULL)
4874 free (old_tab);
4875 if (nondeflt_vers != NULL)
4876 free (nondeflt_vers);
4877 if (extversym != NULL)
4878 free (extversym);
4879 error_free_sym:
4880 if (isymbuf != NULL)
4881 free (isymbuf);
4882 error_return:
4883 return FALSE;
4884 }
4885
4886 /* Return the linker hash table entry of a symbol that might be
4887 satisfied by an archive symbol. Return -1 on error. */
4888
4889 struct elf_link_hash_entry *
4890 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4891 struct bfd_link_info *info,
4892 const char *name)
4893 {
4894 struct elf_link_hash_entry *h;
4895 char *p, *copy;
4896 size_t len, first;
4897
4898 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4899 if (h != NULL)
4900 return h;
4901
4902 /* If this is a default version (the name contains @@), look up the
4903 symbol again with only one `@' as well as without the version.
4904 The effect is that references to the symbol with and without the
4905 version will be matched by the default symbol in the archive. */
4906
4907 p = strchr (name, ELF_VER_CHR);
4908 if (p == NULL || p[1] != ELF_VER_CHR)
4909 return h;
4910
4911 /* First check with only one `@'. */
4912 len = strlen (name);
4913 copy = (char *) bfd_alloc (abfd, len);
4914 if (copy == NULL)
4915 return (struct elf_link_hash_entry *) 0 - 1;
4916
4917 first = p - name + 1;
4918 memcpy (copy, name, first);
4919 memcpy (copy + first, name + first + 1, len - first);
4920
4921 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4922 if (h == NULL)
4923 {
4924 /* We also need to check references to the symbol without the
4925 version. */
4926 copy[first - 1] = '\0';
4927 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4928 FALSE, FALSE, TRUE);
4929 }
4930
4931 bfd_release (abfd, copy);
4932 return h;
4933 }
4934
4935 /* Add symbols from an ELF archive file to the linker hash table. We
4936 don't use _bfd_generic_link_add_archive_symbols because we need to
4937 handle versioned symbols.
4938
4939 Fortunately, ELF archive handling is simpler than that done by
4940 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4941 oddities. In ELF, if we find a symbol in the archive map, and the
4942 symbol is currently undefined, we know that we must pull in that
4943 object file.
4944
4945 Unfortunately, we do have to make multiple passes over the symbol
4946 table until nothing further is resolved. */
4947
4948 static bfd_boolean
4949 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4950 {
4951 symindex c;
4952 unsigned char *included = NULL;
4953 carsym *symdefs;
4954 bfd_boolean loop;
4955 bfd_size_type amt;
4956 const struct elf_backend_data *bed;
4957 struct elf_link_hash_entry * (*archive_symbol_lookup)
4958 (bfd *, struct bfd_link_info *, const char *);
4959
4960 if (! bfd_has_map (abfd))
4961 {
4962 /* An empty archive is a special case. */
4963 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4964 return TRUE;
4965 bfd_set_error (bfd_error_no_armap);
4966 return FALSE;
4967 }
4968
4969 /* Keep track of all symbols we know to be already defined, and all
4970 files we know to be already included. This is to speed up the
4971 second and subsequent passes. */
4972 c = bfd_ardata (abfd)->symdef_count;
4973 if (c == 0)
4974 return TRUE;
4975 amt = c;
4976 amt *= sizeof (*included);
4977 included = (unsigned char *) bfd_zmalloc (amt);
4978 if (included == NULL)
4979 return FALSE;
4980
4981 symdefs = bfd_ardata (abfd)->symdefs;
4982 bed = get_elf_backend_data (abfd);
4983 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4984
4985 do
4986 {
4987 file_ptr last;
4988 symindex i;
4989 carsym *symdef;
4990 carsym *symdefend;
4991
4992 loop = FALSE;
4993 last = -1;
4994
4995 symdef = symdefs;
4996 symdefend = symdef + c;
4997 for (i = 0; symdef < symdefend; symdef++, i++)
4998 {
4999 struct elf_link_hash_entry *h;
5000 bfd *element;
5001 struct bfd_link_hash_entry *undefs_tail;
5002 symindex mark;
5003
5004 if (included[i])
5005 continue;
5006 if (symdef->file_offset == last)
5007 {
5008 included[i] = TRUE;
5009 continue;
5010 }
5011
5012 h = archive_symbol_lookup (abfd, info, symdef->name);
5013 if (h == (struct elf_link_hash_entry *) 0 - 1)
5014 goto error_return;
5015
5016 if (h == NULL)
5017 continue;
5018
5019 if (h->root.type == bfd_link_hash_common)
5020 {
5021 /* We currently have a common symbol. The archive map contains
5022 a reference to this symbol, so we may want to include it. We
5023 only want to include it however, if this archive element
5024 contains a definition of the symbol, not just another common
5025 declaration of it.
5026
5027 Unfortunately some archivers (including GNU ar) will put
5028 declarations of common symbols into their archive maps, as
5029 well as real definitions, so we cannot just go by the archive
5030 map alone. Instead we must read in the element's symbol
5031 table and check that to see what kind of symbol definition
5032 this is. */
5033 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5034 continue;
5035 }
5036 else if (h->root.type != bfd_link_hash_undefined)
5037 {
5038 if (h->root.type != bfd_link_hash_undefweak)
5039 /* Symbol must be defined. Don't check it again. */
5040 included[i] = TRUE;
5041 continue;
5042 }
5043
5044 /* We need to include this archive member. */
5045 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5046 if (element == NULL)
5047 goto error_return;
5048
5049 if (! bfd_check_format (element, bfd_object))
5050 goto error_return;
5051
5052 undefs_tail = info->hash->undefs_tail;
5053
5054 if (!(*info->callbacks
5055 ->add_archive_element) (info, element, symdef->name, &element))
5056 goto error_return;
5057 if (!bfd_link_add_symbols (element, info))
5058 goto error_return;
5059
5060 /* If there are any new undefined symbols, we need to make
5061 another pass through the archive in order to see whether
5062 they can be defined. FIXME: This isn't perfect, because
5063 common symbols wind up on undefs_tail and because an
5064 undefined symbol which is defined later on in this pass
5065 does not require another pass. This isn't a bug, but it
5066 does make the code less efficient than it could be. */
5067 if (undefs_tail != info->hash->undefs_tail)
5068 loop = TRUE;
5069
5070 /* Look backward to mark all symbols from this object file
5071 which we have already seen in this pass. */
5072 mark = i;
5073 do
5074 {
5075 included[mark] = TRUE;
5076 if (mark == 0)
5077 break;
5078 --mark;
5079 }
5080 while (symdefs[mark].file_offset == symdef->file_offset);
5081
5082 /* We mark subsequent symbols from this object file as we go
5083 on through the loop. */
5084 last = symdef->file_offset;
5085 }
5086 }
5087 while (loop);
5088
5089 free (included);
5090
5091 return TRUE;
5092
5093 error_return:
5094 if (included != NULL)
5095 free (included);
5096 return FALSE;
5097 }
5098
5099 /* Given an ELF BFD, add symbols to the global hash table as
5100 appropriate. */
5101
5102 bfd_boolean
5103 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5104 {
5105 switch (bfd_get_format (abfd))
5106 {
5107 case bfd_object:
5108 return elf_link_add_object_symbols (abfd, info);
5109 case bfd_archive:
5110 return elf_link_add_archive_symbols (abfd, info);
5111 default:
5112 bfd_set_error (bfd_error_wrong_format);
5113 return FALSE;
5114 }
5115 }
5116 \f
5117 struct hash_codes_info
5118 {
5119 unsigned long *hashcodes;
5120 bfd_boolean error;
5121 };
5122
5123 /* This function will be called though elf_link_hash_traverse to store
5124 all hash value of the exported symbols in an array. */
5125
5126 static bfd_boolean
5127 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5128 {
5129 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5130 const char *name;
5131 char *p;
5132 unsigned long ha;
5133 char *alc = NULL;
5134
5135 /* Ignore indirect symbols. These are added by the versioning code. */
5136 if (h->dynindx == -1)
5137 return TRUE;
5138
5139 name = h->root.root.string;
5140 p = strchr (name, ELF_VER_CHR);
5141 if (p != NULL)
5142 {
5143 alc = (char *) bfd_malloc (p - name + 1);
5144 if (alc == NULL)
5145 {
5146 inf->error = TRUE;
5147 return FALSE;
5148 }
5149 memcpy (alc, name, p - name);
5150 alc[p - name] = '\0';
5151 name = alc;
5152 }
5153
5154 /* Compute the hash value. */
5155 ha = bfd_elf_hash (name);
5156
5157 /* Store the found hash value in the array given as the argument. */
5158 *(inf->hashcodes)++ = ha;
5159
5160 /* And store it in the struct so that we can put it in the hash table
5161 later. */
5162 h->u.elf_hash_value = ha;
5163
5164 if (alc != NULL)
5165 free (alc);
5166
5167 return TRUE;
5168 }
5169
5170 struct collect_gnu_hash_codes
5171 {
5172 bfd *output_bfd;
5173 const struct elf_backend_data *bed;
5174 unsigned long int nsyms;
5175 unsigned long int maskbits;
5176 unsigned long int *hashcodes;
5177 unsigned long int *hashval;
5178 unsigned long int *indx;
5179 unsigned long int *counts;
5180 bfd_vma *bitmask;
5181 bfd_byte *contents;
5182 long int min_dynindx;
5183 unsigned long int bucketcount;
5184 unsigned long int symindx;
5185 long int local_indx;
5186 long int shift1, shift2;
5187 unsigned long int mask;
5188 bfd_boolean error;
5189 };
5190
5191 /* This function will be called though elf_link_hash_traverse to store
5192 all hash value of the exported symbols in an array. */
5193
5194 static bfd_boolean
5195 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5196 {
5197 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5198 const char *name;
5199 char *p;
5200 unsigned long ha;
5201 char *alc = NULL;
5202
5203 /* Ignore indirect symbols. These are added by the versioning code. */
5204 if (h->dynindx == -1)
5205 return TRUE;
5206
5207 /* Ignore also local symbols and undefined symbols. */
5208 if (! (*s->bed->elf_hash_symbol) (h))
5209 return TRUE;
5210
5211 name = h->root.root.string;
5212 p = strchr (name, ELF_VER_CHR);
5213 if (p != NULL)
5214 {
5215 alc = (char *) bfd_malloc (p - name + 1);
5216 if (alc == NULL)
5217 {
5218 s->error = TRUE;
5219 return FALSE;
5220 }
5221 memcpy (alc, name, p - name);
5222 alc[p - name] = '\0';
5223 name = alc;
5224 }
5225
5226 /* Compute the hash value. */
5227 ha = bfd_elf_gnu_hash (name);
5228
5229 /* Store the found hash value in the array for compute_bucket_count,
5230 and also for .dynsym reordering purposes. */
5231 s->hashcodes[s->nsyms] = ha;
5232 s->hashval[h->dynindx] = ha;
5233 ++s->nsyms;
5234 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5235 s->min_dynindx = h->dynindx;
5236
5237 if (alc != NULL)
5238 free (alc);
5239
5240 return TRUE;
5241 }
5242
5243 /* This function will be called though elf_link_hash_traverse to do
5244 final dynaminc symbol renumbering. */
5245
5246 static bfd_boolean
5247 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5248 {
5249 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5250 unsigned long int bucket;
5251 unsigned long int val;
5252
5253 /* Ignore indirect symbols. */
5254 if (h->dynindx == -1)
5255 return TRUE;
5256
5257 /* Ignore also local symbols and undefined symbols. */
5258 if (! (*s->bed->elf_hash_symbol) (h))
5259 {
5260 if (h->dynindx >= s->min_dynindx)
5261 h->dynindx = s->local_indx++;
5262 return TRUE;
5263 }
5264
5265 bucket = s->hashval[h->dynindx] % s->bucketcount;
5266 val = (s->hashval[h->dynindx] >> s->shift1)
5267 & ((s->maskbits >> s->shift1) - 1);
5268 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5269 s->bitmask[val]
5270 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5271 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5272 if (s->counts[bucket] == 1)
5273 /* Last element terminates the chain. */
5274 val |= 1;
5275 bfd_put_32 (s->output_bfd, val,
5276 s->contents + (s->indx[bucket] - s->symindx) * 4);
5277 --s->counts[bucket];
5278 h->dynindx = s->indx[bucket]++;
5279 return TRUE;
5280 }
5281
5282 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5283
5284 bfd_boolean
5285 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5286 {
5287 return !(h->forced_local
5288 || h->root.type == bfd_link_hash_undefined
5289 || h->root.type == bfd_link_hash_undefweak
5290 || ((h->root.type == bfd_link_hash_defined
5291 || h->root.type == bfd_link_hash_defweak)
5292 && h->root.u.def.section->output_section == NULL));
5293 }
5294
5295 /* Array used to determine the number of hash table buckets to use
5296 based on the number of symbols there are. If there are fewer than
5297 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5298 fewer than 37 we use 17 buckets, and so forth. We never use more
5299 than 32771 buckets. */
5300
5301 static const size_t elf_buckets[] =
5302 {
5303 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5304 16411, 32771, 0
5305 };
5306
5307 /* Compute bucket count for hashing table. We do not use a static set
5308 of possible tables sizes anymore. Instead we determine for all
5309 possible reasonable sizes of the table the outcome (i.e., the
5310 number of collisions etc) and choose the best solution. The
5311 weighting functions are not too simple to allow the table to grow
5312 without bounds. Instead one of the weighting factors is the size.
5313 Therefore the result is always a good payoff between few collisions
5314 (= short chain lengths) and table size. */
5315 static size_t
5316 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5317 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5318 unsigned long int nsyms,
5319 int gnu_hash)
5320 {
5321 size_t best_size = 0;
5322 unsigned long int i;
5323
5324 /* We have a problem here. The following code to optimize the table
5325 size requires an integer type with more the 32 bits. If
5326 BFD_HOST_U_64_BIT is set we know about such a type. */
5327 #ifdef BFD_HOST_U_64_BIT
5328 if (info->optimize)
5329 {
5330 size_t minsize;
5331 size_t maxsize;
5332 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5333 bfd *dynobj = elf_hash_table (info)->dynobj;
5334 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5335 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5336 unsigned long int *counts;
5337 bfd_size_type amt;
5338 unsigned int no_improvement_count = 0;
5339
5340 /* Possible optimization parameters: if we have NSYMS symbols we say
5341 that the hashing table must at least have NSYMS/4 and at most
5342 2*NSYMS buckets. */
5343 minsize = nsyms / 4;
5344 if (minsize == 0)
5345 minsize = 1;
5346 best_size = maxsize = nsyms * 2;
5347 if (gnu_hash)
5348 {
5349 if (minsize < 2)
5350 minsize = 2;
5351 if ((best_size & 31) == 0)
5352 ++best_size;
5353 }
5354
5355 /* Create array where we count the collisions in. We must use bfd_malloc
5356 since the size could be large. */
5357 amt = maxsize;
5358 amt *= sizeof (unsigned long int);
5359 counts = (unsigned long int *) bfd_malloc (amt);
5360 if (counts == NULL)
5361 return 0;
5362
5363 /* Compute the "optimal" size for the hash table. The criteria is a
5364 minimal chain length. The minor criteria is (of course) the size
5365 of the table. */
5366 for (i = minsize; i < maxsize; ++i)
5367 {
5368 /* Walk through the array of hashcodes and count the collisions. */
5369 BFD_HOST_U_64_BIT max;
5370 unsigned long int j;
5371 unsigned long int fact;
5372
5373 if (gnu_hash && (i & 31) == 0)
5374 continue;
5375
5376 memset (counts, '\0', i * sizeof (unsigned long int));
5377
5378 /* Determine how often each hash bucket is used. */
5379 for (j = 0; j < nsyms; ++j)
5380 ++counts[hashcodes[j] % i];
5381
5382 /* For the weight function we need some information about the
5383 pagesize on the target. This is information need not be 100%
5384 accurate. Since this information is not available (so far) we
5385 define it here to a reasonable default value. If it is crucial
5386 to have a better value some day simply define this value. */
5387 # ifndef BFD_TARGET_PAGESIZE
5388 # define BFD_TARGET_PAGESIZE (4096)
5389 # endif
5390
5391 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5392 and the chains. */
5393 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5394
5395 # if 1
5396 /* Variant 1: optimize for short chains. We add the squares
5397 of all the chain lengths (which favors many small chain
5398 over a few long chains). */
5399 for (j = 0; j < i; ++j)
5400 max += counts[j] * counts[j];
5401
5402 /* This adds penalties for the overall size of the table. */
5403 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5404 max *= fact * fact;
5405 # else
5406 /* Variant 2: Optimize a lot more for small table. Here we
5407 also add squares of the size but we also add penalties for
5408 empty slots (the +1 term). */
5409 for (j = 0; j < i; ++j)
5410 max += (1 + counts[j]) * (1 + counts[j]);
5411
5412 /* The overall size of the table is considered, but not as
5413 strong as in variant 1, where it is squared. */
5414 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5415 max *= fact;
5416 # endif
5417
5418 /* Compare with current best results. */
5419 if (max < best_chlen)
5420 {
5421 best_chlen = max;
5422 best_size = i;
5423 no_improvement_count = 0;
5424 }
5425 /* PR 11843: Avoid futile long searches for the best bucket size
5426 when there are a large number of symbols. */
5427 else if (++no_improvement_count == 100)
5428 break;
5429 }
5430
5431 free (counts);
5432 }
5433 else
5434 #endif /* defined (BFD_HOST_U_64_BIT) */
5435 {
5436 /* This is the fallback solution if no 64bit type is available or if we
5437 are not supposed to spend much time on optimizations. We select the
5438 bucket count using a fixed set of numbers. */
5439 for (i = 0; elf_buckets[i] != 0; i++)
5440 {
5441 best_size = elf_buckets[i];
5442 if (nsyms < elf_buckets[i + 1])
5443 break;
5444 }
5445 if (gnu_hash && best_size < 2)
5446 best_size = 2;
5447 }
5448
5449 return best_size;
5450 }
5451
5452 /* Size any SHT_GROUP section for ld -r. */
5453
5454 bfd_boolean
5455 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5456 {
5457 bfd *ibfd;
5458
5459 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5460 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5461 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5462 return FALSE;
5463 return TRUE;
5464 }
5465
5466 /* Set a default stack segment size. The value in INFO wins. If it
5467 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5468 undefined it is initialized. */
5469
5470 bfd_boolean
5471 bfd_elf_stack_segment_size (bfd *output_bfd,
5472 struct bfd_link_info *info,
5473 const char *legacy_symbol,
5474 bfd_vma default_size)
5475 {
5476 struct elf_link_hash_entry *h = NULL;
5477
5478 /* Look for legacy symbol. */
5479 if (legacy_symbol)
5480 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5481 FALSE, FALSE, FALSE);
5482 if (h && (h->root.type == bfd_link_hash_defined
5483 || h->root.type == bfd_link_hash_defweak)
5484 && h->def_regular
5485 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5486 {
5487 /* The symbol has no type if specified on the command line. */
5488 h->type = STT_OBJECT;
5489 if (info->stacksize)
5490 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5491 output_bfd, legacy_symbol);
5492 else if (h->root.u.def.section != bfd_abs_section_ptr)
5493 (*_bfd_error_handler) (_("%B: %s not absolute"),
5494 output_bfd, legacy_symbol);
5495 else
5496 info->stacksize = h->root.u.def.value;
5497 }
5498
5499 if (!info->stacksize)
5500 /* If the user didn't set a size, or explicitly inhibit the
5501 size, set it now. */
5502 info->stacksize = default_size;
5503
5504 /* Provide the legacy symbol, if it is referenced. */
5505 if (h && (h->root.type == bfd_link_hash_undefined
5506 || h->root.type == bfd_link_hash_undefweak))
5507 {
5508 struct bfd_link_hash_entry *bh = NULL;
5509
5510 if (!(_bfd_generic_link_add_one_symbol
5511 (info, output_bfd, legacy_symbol,
5512 BSF_GLOBAL, bfd_abs_section_ptr,
5513 info->stacksize >= 0 ? info->stacksize : 0,
5514 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5515 return FALSE;
5516
5517 h = (struct elf_link_hash_entry *) bh;
5518 h->def_regular = 1;
5519 h->type = STT_OBJECT;
5520 }
5521
5522 return TRUE;
5523 }
5524
5525 /* Set up the sizes and contents of the ELF dynamic sections. This is
5526 called by the ELF linker emulation before_allocation routine. We
5527 must set the sizes of the sections before the linker sets the
5528 addresses of the various sections. */
5529
5530 bfd_boolean
5531 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5532 const char *soname,
5533 const char *rpath,
5534 const char *filter_shlib,
5535 const char *audit,
5536 const char *depaudit,
5537 const char * const *auxiliary_filters,
5538 struct bfd_link_info *info,
5539 asection **sinterpptr)
5540 {
5541 bfd_size_type soname_indx;
5542 bfd *dynobj;
5543 const struct elf_backend_data *bed;
5544 struct elf_info_failed asvinfo;
5545
5546 *sinterpptr = NULL;
5547
5548 soname_indx = (bfd_size_type) -1;
5549
5550 if (!is_elf_hash_table (info->hash))
5551 return TRUE;
5552
5553 bed = get_elf_backend_data (output_bfd);
5554
5555 /* Any syms created from now on start with -1 in
5556 got.refcount/offset and plt.refcount/offset. */
5557 elf_hash_table (info)->init_got_refcount
5558 = elf_hash_table (info)->init_got_offset;
5559 elf_hash_table (info)->init_plt_refcount
5560 = elf_hash_table (info)->init_plt_offset;
5561
5562 if (info->relocatable
5563 && !_bfd_elf_size_group_sections (info))
5564 return FALSE;
5565
5566 /* The backend may have to create some sections regardless of whether
5567 we're dynamic or not. */
5568 if (bed->elf_backend_always_size_sections
5569 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5570 return FALSE;
5571
5572 /* Determine any GNU_STACK segment requirements, after the backend
5573 has had a chance to set a default segment size. */
5574 if (info->execstack)
5575 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5576 else if (info->noexecstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W;
5578 else
5579 {
5580 bfd *inputobj;
5581 asection *notesec = NULL;
5582 int exec = 0;
5583
5584 for (inputobj = info->input_bfds;
5585 inputobj;
5586 inputobj = inputobj->link.next)
5587 {
5588 asection *s;
5589
5590 if (inputobj->flags
5591 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5592 continue;
5593 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5594 if (s)
5595 {
5596 if (s->flags & SEC_CODE)
5597 exec = PF_X;
5598 notesec = s;
5599 }
5600 else if (bed->default_execstack)
5601 exec = PF_X;
5602 }
5603 if (notesec || info->stacksize > 0)
5604 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5605 if (notesec && exec && info->relocatable
5606 && notesec->output_section != bfd_abs_section_ptr)
5607 notesec->output_section->flags |= SEC_CODE;
5608 }
5609
5610 dynobj = elf_hash_table (info)->dynobj;
5611
5612 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5613 {
5614 struct elf_info_failed eif;
5615 struct elf_link_hash_entry *h;
5616 asection *dynstr;
5617 struct bfd_elf_version_tree *t;
5618 struct bfd_elf_version_expr *d;
5619 asection *s;
5620 bfd_boolean all_defined;
5621
5622 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5623 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5624
5625 if (soname != NULL)
5626 {
5627 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5628 soname, TRUE);
5629 if (soname_indx == (bfd_size_type) -1
5630 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5631 return FALSE;
5632 }
5633
5634 if (info->symbolic)
5635 {
5636 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5637 return FALSE;
5638 info->flags |= DF_SYMBOLIC;
5639 }
5640
5641 if (rpath != NULL)
5642 {
5643 bfd_size_type indx;
5644 bfd_vma tag;
5645
5646 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5647 TRUE);
5648 if (indx == (bfd_size_type) -1)
5649 return FALSE;
5650
5651 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5652 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5653 return FALSE;
5654 }
5655
5656 if (filter_shlib != NULL)
5657 {
5658 bfd_size_type indx;
5659
5660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5661 filter_shlib, TRUE);
5662 if (indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5664 return FALSE;
5665 }
5666
5667 if (auxiliary_filters != NULL)
5668 {
5669 const char * const *p;
5670
5671 for (p = auxiliary_filters; *p != NULL; p++)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5676 *p, TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5679 return FALSE;
5680 }
5681 }
5682
5683 if (audit != NULL)
5684 {
5685 bfd_size_type indx;
5686
5687 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5688 TRUE);
5689 if (indx == (bfd_size_type) -1
5690 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5691 return FALSE;
5692 }
5693
5694 if (depaudit != NULL)
5695 {
5696 bfd_size_type indx;
5697
5698 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5699 TRUE);
5700 if (indx == (bfd_size_type) -1
5701 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5702 return FALSE;
5703 }
5704
5705 eif.info = info;
5706 eif.failed = FALSE;
5707
5708 /* If we are supposed to export all symbols into the dynamic symbol
5709 table (this is not the normal case), then do so. */
5710 if (info->export_dynamic
5711 || (info->executable && info->dynamic))
5712 {
5713 elf_link_hash_traverse (elf_hash_table (info),
5714 _bfd_elf_export_symbol,
5715 &eif);
5716 if (eif.failed)
5717 return FALSE;
5718 }
5719
5720 /* Make all global versions with definition. */
5721 for (t = info->version_info; t != NULL; t = t->next)
5722 for (d = t->globals.list; d != NULL; d = d->next)
5723 if (!d->symver && d->literal)
5724 {
5725 const char *verstr, *name;
5726 size_t namelen, verlen, newlen;
5727 char *newname, *p, leading_char;
5728 struct elf_link_hash_entry *newh;
5729
5730 leading_char = bfd_get_symbol_leading_char (output_bfd);
5731 name = d->pattern;
5732 namelen = strlen (name) + (leading_char != '\0');
5733 verstr = t->name;
5734 verlen = strlen (verstr);
5735 newlen = namelen + verlen + 3;
5736
5737 newname = (char *) bfd_malloc (newlen);
5738 if (newname == NULL)
5739 return FALSE;
5740 newname[0] = leading_char;
5741 memcpy (newname + (leading_char != '\0'), name, namelen);
5742
5743 /* Check the hidden versioned definition. */
5744 p = newname + namelen;
5745 *p++ = ELF_VER_CHR;
5746 memcpy (p, verstr, verlen + 1);
5747 newh = elf_link_hash_lookup (elf_hash_table (info),
5748 newname, FALSE, FALSE,
5749 FALSE);
5750 if (newh == NULL
5751 || (newh->root.type != bfd_link_hash_defined
5752 && newh->root.type != bfd_link_hash_defweak))
5753 {
5754 /* Check the default versioned definition. */
5755 *p++ = ELF_VER_CHR;
5756 memcpy (p, verstr, verlen + 1);
5757 newh = elf_link_hash_lookup (elf_hash_table (info),
5758 newname, FALSE, FALSE,
5759 FALSE);
5760 }
5761 free (newname);
5762
5763 /* Mark this version if there is a definition and it is
5764 not defined in a shared object. */
5765 if (newh != NULL
5766 && !newh->def_dynamic
5767 && (newh->root.type == bfd_link_hash_defined
5768 || newh->root.type == bfd_link_hash_defweak))
5769 d->symver = 1;
5770 }
5771
5772 /* Attach all the symbols to their version information. */
5773 asvinfo.info = info;
5774 asvinfo.failed = FALSE;
5775
5776 elf_link_hash_traverse (elf_hash_table (info),
5777 _bfd_elf_link_assign_sym_version,
5778 &asvinfo);
5779 if (asvinfo.failed)
5780 return FALSE;
5781
5782 if (!info->allow_undefined_version)
5783 {
5784 /* Check if all global versions have a definition. */
5785 all_defined = TRUE;
5786 for (t = info->version_info; t != NULL; t = t->next)
5787 for (d = t->globals.list; d != NULL; d = d->next)
5788 if (d->literal && !d->symver && !d->script)
5789 {
5790 (*_bfd_error_handler)
5791 (_("%s: undefined version: %s"),
5792 d->pattern, t->name);
5793 all_defined = FALSE;
5794 }
5795
5796 if (!all_defined)
5797 {
5798 bfd_set_error (bfd_error_bad_value);
5799 return FALSE;
5800 }
5801 }
5802
5803 /* Find all symbols which were defined in a dynamic object and make
5804 the backend pick a reasonable value for them. */
5805 elf_link_hash_traverse (elf_hash_table (info),
5806 _bfd_elf_adjust_dynamic_symbol,
5807 &eif);
5808 if (eif.failed)
5809 return FALSE;
5810
5811 /* Add some entries to the .dynamic section. We fill in some of the
5812 values later, in bfd_elf_final_link, but we must add the entries
5813 now so that we know the final size of the .dynamic section. */
5814
5815 /* If there are initialization and/or finalization functions to
5816 call then add the corresponding DT_INIT/DT_FINI entries. */
5817 h = (info->init_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->init_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5825 {
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5827 return FALSE;
5828 }
5829 h = (info->fini_function
5830 ? elf_link_hash_lookup (elf_hash_table (info),
5831 info->fini_function, FALSE,
5832 FALSE, FALSE)
5833 : NULL);
5834 if (h != NULL
5835 && (h->ref_regular
5836 || h->def_regular))
5837 {
5838 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5839 return FALSE;
5840 }
5841
5842 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5843 if (s != NULL && s->linker_has_input)
5844 {
5845 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5846 if (! info->executable)
5847 {
5848 bfd *sub;
5849 asection *o;
5850
5851 for (sub = info->input_bfds; sub != NULL;
5852 sub = sub->link.next)
5853 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5854 for (o = sub->sections; o != NULL; o = o->next)
5855 if (elf_section_data (o)->this_hdr.sh_type
5856 == SHT_PREINIT_ARRAY)
5857 {
5858 (*_bfd_error_handler)
5859 (_("%B: .preinit_array section is not allowed in DSO"),
5860 sub);
5861 break;
5862 }
5863
5864 bfd_set_error (bfd_error_nonrepresentable_section);
5865 return FALSE;
5866 }
5867
5868 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5869 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5870 return FALSE;
5871 }
5872 s = bfd_get_section_by_name (output_bfd, ".init_array");
5873 if (s != NULL && s->linker_has_input)
5874 {
5875 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5876 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5877 return FALSE;
5878 }
5879 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5880 if (s != NULL && s->linker_has_input)
5881 {
5882 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5883 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5884 return FALSE;
5885 }
5886
5887 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5888 /* If .dynstr is excluded from the link, we don't want any of
5889 these tags. Strictly, we should be checking each section
5890 individually; This quick check covers for the case where
5891 someone does a /DISCARD/ : { *(*) }. */
5892 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5893 {
5894 bfd_size_type strsize;
5895
5896 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5897 if ((info->emit_hash
5898 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5899 || (info->emit_gnu_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5901 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5902 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5905 bed->s->sizeof_sym))
5906 return FALSE;
5907 }
5908 }
5909
5910 /* The backend must work out the sizes of all the other dynamic
5911 sections. */
5912 if (dynobj != NULL
5913 && bed->elf_backend_size_dynamic_sections != NULL
5914 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5915 return FALSE;
5916
5917 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5918 return FALSE;
5919
5920 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5921 {
5922 unsigned long section_sym_count;
5923 struct bfd_elf_version_tree *verdefs;
5924 asection *s;
5925
5926 /* Set up the version definition section. */
5927 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5928 BFD_ASSERT (s != NULL);
5929
5930 /* We may have created additional version definitions if we are
5931 just linking a regular application. */
5932 verdefs = info->version_info;
5933
5934 /* Skip anonymous version tag. */
5935 if (verdefs != NULL && verdefs->vernum == 0)
5936 verdefs = verdefs->next;
5937
5938 if (verdefs == NULL && !info->create_default_symver)
5939 s->flags |= SEC_EXCLUDE;
5940 else
5941 {
5942 unsigned int cdefs;
5943 bfd_size_type size;
5944 struct bfd_elf_version_tree *t;
5945 bfd_byte *p;
5946 Elf_Internal_Verdef def;
5947 Elf_Internal_Verdaux defaux;
5948 struct bfd_link_hash_entry *bh;
5949 struct elf_link_hash_entry *h;
5950 const char *name;
5951
5952 cdefs = 0;
5953 size = 0;
5954
5955 /* Make space for the base version. */
5956 size += sizeof (Elf_External_Verdef);
5957 size += sizeof (Elf_External_Verdaux);
5958 ++cdefs;
5959
5960 /* Make space for the default version. */
5961 if (info->create_default_symver)
5962 {
5963 size += sizeof (Elf_External_Verdef);
5964 ++cdefs;
5965 }
5966
5967 for (t = verdefs; t != NULL; t = t->next)
5968 {
5969 struct bfd_elf_version_deps *n;
5970
5971 /* Don't emit base version twice. */
5972 if (t->vernum == 0)
5973 continue;
5974
5975 size += sizeof (Elf_External_Verdef);
5976 size += sizeof (Elf_External_Verdaux);
5977 ++cdefs;
5978
5979 for (n = t->deps; n != NULL; n = n->next)
5980 size += sizeof (Elf_External_Verdaux);
5981 }
5982
5983 s->size = size;
5984 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5985 if (s->contents == NULL && s->size != 0)
5986 return FALSE;
5987
5988 /* Fill in the version definition section. */
5989
5990 p = s->contents;
5991
5992 def.vd_version = VER_DEF_CURRENT;
5993 def.vd_flags = VER_FLG_BASE;
5994 def.vd_ndx = 1;
5995 def.vd_cnt = 1;
5996 if (info->create_default_symver)
5997 {
5998 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5999 def.vd_next = sizeof (Elf_External_Verdef);
6000 }
6001 else
6002 {
6003 def.vd_aux = sizeof (Elf_External_Verdef);
6004 def.vd_next = (sizeof (Elf_External_Verdef)
6005 + sizeof (Elf_External_Verdaux));
6006 }
6007
6008 if (soname_indx != (bfd_size_type) -1)
6009 {
6010 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6011 soname_indx);
6012 def.vd_hash = bfd_elf_hash (soname);
6013 defaux.vda_name = soname_indx;
6014 name = soname;
6015 }
6016 else
6017 {
6018 bfd_size_type indx;
6019
6020 name = lbasename (output_bfd->filename);
6021 def.vd_hash = bfd_elf_hash (name);
6022 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6023 name, FALSE);
6024 if (indx == (bfd_size_type) -1)
6025 return FALSE;
6026 defaux.vda_name = indx;
6027 }
6028 defaux.vda_next = 0;
6029
6030 _bfd_elf_swap_verdef_out (output_bfd, &def,
6031 (Elf_External_Verdef *) p);
6032 p += sizeof (Elf_External_Verdef);
6033 if (info->create_default_symver)
6034 {
6035 /* Add a symbol representing this version. */
6036 bh = NULL;
6037 if (! (_bfd_generic_link_add_one_symbol
6038 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6039 0, NULL, FALSE,
6040 get_elf_backend_data (dynobj)->collect, &bh)))
6041 return FALSE;
6042 h = (struct elf_link_hash_entry *) bh;
6043 h->non_elf = 0;
6044 h->def_regular = 1;
6045 h->type = STT_OBJECT;
6046 h->verinfo.vertree = NULL;
6047
6048 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6049 return FALSE;
6050
6051 /* Create a duplicate of the base version with the same
6052 aux block, but different flags. */
6053 def.vd_flags = 0;
6054 def.vd_ndx = 2;
6055 def.vd_aux = sizeof (Elf_External_Verdef);
6056 if (verdefs)
6057 def.vd_next = (sizeof (Elf_External_Verdef)
6058 + sizeof (Elf_External_Verdaux));
6059 else
6060 def.vd_next = 0;
6061 _bfd_elf_swap_verdef_out (output_bfd, &def,
6062 (Elf_External_Verdef *) p);
6063 p += sizeof (Elf_External_Verdef);
6064 }
6065 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6066 (Elf_External_Verdaux *) p);
6067 p += sizeof (Elf_External_Verdaux);
6068
6069 for (t = verdefs; t != NULL; t = t->next)
6070 {
6071 unsigned int cdeps;
6072 struct bfd_elf_version_deps *n;
6073
6074 /* Don't emit the base version twice. */
6075 if (t->vernum == 0)
6076 continue;
6077
6078 cdeps = 0;
6079 for (n = t->deps; n != NULL; n = n->next)
6080 ++cdeps;
6081
6082 /* Add a symbol representing this version. */
6083 bh = NULL;
6084 if (! (_bfd_generic_link_add_one_symbol
6085 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6086 0, NULL, FALSE,
6087 get_elf_backend_data (dynobj)->collect, &bh)))
6088 return FALSE;
6089 h = (struct elf_link_hash_entry *) bh;
6090 h->non_elf = 0;
6091 h->def_regular = 1;
6092 h->type = STT_OBJECT;
6093 h->verinfo.vertree = t;
6094
6095 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6096 return FALSE;
6097
6098 def.vd_version = VER_DEF_CURRENT;
6099 def.vd_flags = 0;
6100 if (t->globals.list == NULL
6101 && t->locals.list == NULL
6102 && ! t->used)
6103 def.vd_flags |= VER_FLG_WEAK;
6104 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6105 def.vd_cnt = cdeps + 1;
6106 def.vd_hash = bfd_elf_hash (t->name);
6107 def.vd_aux = sizeof (Elf_External_Verdef);
6108 def.vd_next = 0;
6109
6110 /* If a basever node is next, it *must* be the last node in
6111 the chain, otherwise Verdef construction breaks. */
6112 if (t->next != NULL && t->next->vernum == 0)
6113 BFD_ASSERT (t->next->next == NULL);
6114
6115 if (t->next != NULL && t->next->vernum != 0)
6116 def.vd_next = (sizeof (Elf_External_Verdef)
6117 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6118
6119 _bfd_elf_swap_verdef_out (output_bfd, &def,
6120 (Elf_External_Verdef *) p);
6121 p += sizeof (Elf_External_Verdef);
6122
6123 defaux.vda_name = h->dynstr_index;
6124 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6125 h->dynstr_index);
6126 defaux.vda_next = 0;
6127 if (t->deps != NULL)
6128 defaux.vda_next = sizeof (Elf_External_Verdaux);
6129 t->name_indx = defaux.vda_name;
6130
6131 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6132 (Elf_External_Verdaux *) p);
6133 p += sizeof (Elf_External_Verdaux);
6134
6135 for (n = t->deps; n != NULL; n = n->next)
6136 {
6137 if (n->version_needed == NULL)
6138 {
6139 /* This can happen if there was an error in the
6140 version script. */
6141 defaux.vda_name = 0;
6142 }
6143 else
6144 {
6145 defaux.vda_name = n->version_needed->name_indx;
6146 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6147 defaux.vda_name);
6148 }
6149 if (n->next == NULL)
6150 defaux.vda_next = 0;
6151 else
6152 defaux.vda_next = sizeof (Elf_External_Verdaux);
6153
6154 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6155 (Elf_External_Verdaux *) p);
6156 p += sizeof (Elf_External_Verdaux);
6157 }
6158 }
6159
6160 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6161 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6162 return FALSE;
6163
6164 elf_tdata (output_bfd)->cverdefs = cdefs;
6165 }
6166
6167 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6168 {
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6170 return FALSE;
6171 }
6172 else if (info->flags & DF_BIND_NOW)
6173 {
6174 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6175 return FALSE;
6176 }
6177
6178 if (info->flags_1)
6179 {
6180 if (info->executable)
6181 info->flags_1 &= ~ (DF_1_INITFIRST
6182 | DF_1_NODELETE
6183 | DF_1_NOOPEN);
6184 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6185 return FALSE;
6186 }
6187
6188 /* Work out the size of the version reference section. */
6189
6190 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6191 BFD_ASSERT (s != NULL);
6192 {
6193 struct elf_find_verdep_info sinfo;
6194
6195 sinfo.info = info;
6196 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6197 if (sinfo.vers == 0)
6198 sinfo.vers = 1;
6199 sinfo.failed = FALSE;
6200
6201 elf_link_hash_traverse (elf_hash_table (info),
6202 _bfd_elf_link_find_version_dependencies,
6203 &sinfo);
6204 if (sinfo.failed)
6205 return FALSE;
6206
6207 if (elf_tdata (output_bfd)->verref == NULL)
6208 s->flags |= SEC_EXCLUDE;
6209 else
6210 {
6211 Elf_Internal_Verneed *t;
6212 unsigned int size;
6213 unsigned int crefs;
6214 bfd_byte *p;
6215
6216 /* Build the version dependency section. */
6217 size = 0;
6218 crefs = 0;
6219 for (t = elf_tdata (output_bfd)->verref;
6220 t != NULL;
6221 t = t->vn_nextref)
6222 {
6223 Elf_Internal_Vernaux *a;
6224
6225 size += sizeof (Elf_External_Verneed);
6226 ++crefs;
6227 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6228 size += sizeof (Elf_External_Vernaux);
6229 }
6230
6231 s->size = size;
6232 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6233 if (s->contents == NULL)
6234 return FALSE;
6235
6236 p = s->contents;
6237 for (t = elf_tdata (output_bfd)->verref;
6238 t != NULL;
6239 t = t->vn_nextref)
6240 {
6241 unsigned int caux;
6242 Elf_Internal_Vernaux *a;
6243 bfd_size_type indx;
6244
6245 caux = 0;
6246 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6247 ++caux;
6248
6249 t->vn_version = VER_NEED_CURRENT;
6250 t->vn_cnt = caux;
6251 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6252 elf_dt_name (t->vn_bfd) != NULL
6253 ? elf_dt_name (t->vn_bfd)
6254 : lbasename (t->vn_bfd->filename),
6255 FALSE);
6256 if (indx == (bfd_size_type) -1)
6257 return FALSE;
6258 t->vn_file = indx;
6259 t->vn_aux = sizeof (Elf_External_Verneed);
6260 if (t->vn_nextref == NULL)
6261 t->vn_next = 0;
6262 else
6263 t->vn_next = (sizeof (Elf_External_Verneed)
6264 + caux * sizeof (Elf_External_Vernaux));
6265
6266 _bfd_elf_swap_verneed_out (output_bfd, t,
6267 (Elf_External_Verneed *) p);
6268 p += sizeof (Elf_External_Verneed);
6269
6270 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6271 {
6272 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6273 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6274 a->vna_nodename, FALSE);
6275 if (indx == (bfd_size_type) -1)
6276 return FALSE;
6277 a->vna_name = indx;
6278 if (a->vna_nextptr == NULL)
6279 a->vna_next = 0;
6280 else
6281 a->vna_next = sizeof (Elf_External_Vernaux);
6282
6283 _bfd_elf_swap_vernaux_out (output_bfd, a,
6284 (Elf_External_Vernaux *) p);
6285 p += sizeof (Elf_External_Vernaux);
6286 }
6287 }
6288
6289 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6290 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6291 return FALSE;
6292
6293 elf_tdata (output_bfd)->cverrefs = crefs;
6294 }
6295 }
6296
6297 if ((elf_tdata (output_bfd)->cverrefs == 0
6298 && elf_tdata (output_bfd)->cverdefs == 0)
6299 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6300 &section_sym_count) == 0)
6301 {
6302 s = bfd_get_linker_section (dynobj, ".gnu.version");
6303 s->flags |= SEC_EXCLUDE;
6304 }
6305 }
6306 return TRUE;
6307 }
6308
6309 /* Find the first non-excluded output section. We'll use its
6310 section symbol for some emitted relocs. */
6311 void
6312 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6313 {
6314 asection *s;
6315
6316 for (s = output_bfd->sections; s != NULL; s = s->next)
6317 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6318 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6319 {
6320 elf_hash_table (info)->text_index_section = s;
6321 break;
6322 }
6323 }
6324
6325 /* Find two non-excluded output sections, one for code, one for data.
6326 We'll use their section symbols for some emitted relocs. */
6327 void
6328 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6329 {
6330 asection *s;
6331
6332 /* Data first, since setting text_index_section changes
6333 _bfd_elf_link_omit_section_dynsym. */
6334 for (s = output_bfd->sections; s != NULL; s = s->next)
6335 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6336 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6337 {
6338 elf_hash_table (info)->data_index_section = s;
6339 break;
6340 }
6341
6342 for (s = output_bfd->sections; s != NULL; s = s->next)
6343 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6344 == (SEC_ALLOC | SEC_READONLY))
6345 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346 {
6347 elf_hash_table (info)->text_index_section = s;
6348 break;
6349 }
6350
6351 if (elf_hash_table (info)->text_index_section == NULL)
6352 elf_hash_table (info)->text_index_section
6353 = elf_hash_table (info)->data_index_section;
6354 }
6355
6356 bfd_boolean
6357 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6358 {
6359 const struct elf_backend_data *bed;
6360
6361 if (!is_elf_hash_table (info->hash))
6362 return TRUE;
6363
6364 bed = get_elf_backend_data (output_bfd);
6365 (*bed->elf_backend_init_index_section) (output_bfd, info);
6366
6367 if (elf_hash_table (info)->dynamic_sections_created)
6368 {
6369 bfd *dynobj;
6370 asection *s;
6371 bfd_size_type dynsymcount;
6372 unsigned long section_sym_count;
6373 unsigned int dtagcount;
6374
6375 dynobj = elf_hash_table (info)->dynobj;
6376
6377 /* Assign dynsym indicies. In a shared library we generate a
6378 section symbol for each output section, which come first.
6379 Next come all of the back-end allocated local dynamic syms,
6380 followed by the rest of the global symbols. */
6381
6382 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6383 &section_sym_count);
6384
6385 /* Work out the size of the symbol version section. */
6386 s = bfd_get_linker_section (dynobj, ".gnu.version");
6387 BFD_ASSERT (s != NULL);
6388 if (dynsymcount != 0
6389 && (s->flags & SEC_EXCLUDE) == 0)
6390 {
6391 s->size = dynsymcount * sizeof (Elf_External_Versym);
6392 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6393 if (s->contents == NULL)
6394 return FALSE;
6395
6396 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6397 return FALSE;
6398 }
6399
6400 /* Set the size of the .dynsym and .hash sections. We counted
6401 the number of dynamic symbols in elf_link_add_object_symbols.
6402 We will build the contents of .dynsym and .hash when we build
6403 the final symbol table, because until then we do not know the
6404 correct value to give the symbols. We built the .dynstr
6405 section as we went along in elf_link_add_object_symbols. */
6406 s = bfd_get_linker_section (dynobj, ".dynsym");
6407 BFD_ASSERT (s != NULL);
6408 s->size = dynsymcount * bed->s->sizeof_sym;
6409
6410 if (dynsymcount != 0)
6411 {
6412 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6413 if (s->contents == NULL)
6414 return FALSE;
6415
6416 /* The first entry in .dynsym is a dummy symbol.
6417 Clear all the section syms, in case we don't output them all. */
6418 ++section_sym_count;
6419 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6420 }
6421
6422 elf_hash_table (info)->bucketcount = 0;
6423
6424 /* Compute the size of the hashing table. As a side effect this
6425 computes the hash values for all the names we export. */
6426 if (info->emit_hash)
6427 {
6428 unsigned long int *hashcodes;
6429 struct hash_codes_info hashinf;
6430 bfd_size_type amt;
6431 unsigned long int nsyms;
6432 size_t bucketcount;
6433 size_t hash_entry_size;
6434
6435 /* Compute the hash values for all exported symbols. At the same
6436 time store the values in an array so that we could use them for
6437 optimizations. */
6438 amt = dynsymcount * sizeof (unsigned long int);
6439 hashcodes = (unsigned long int *) bfd_malloc (amt);
6440 if (hashcodes == NULL)
6441 return FALSE;
6442 hashinf.hashcodes = hashcodes;
6443 hashinf.error = FALSE;
6444
6445 /* Put all hash values in HASHCODES. */
6446 elf_link_hash_traverse (elf_hash_table (info),
6447 elf_collect_hash_codes, &hashinf);
6448 if (hashinf.error)
6449 {
6450 free (hashcodes);
6451 return FALSE;
6452 }
6453
6454 nsyms = hashinf.hashcodes - hashcodes;
6455 bucketcount
6456 = compute_bucket_count (info, hashcodes, nsyms, 0);
6457 free (hashcodes);
6458
6459 if (bucketcount == 0)
6460 return FALSE;
6461
6462 elf_hash_table (info)->bucketcount = bucketcount;
6463
6464 s = bfd_get_linker_section (dynobj, ".hash");
6465 BFD_ASSERT (s != NULL);
6466 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6467 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6468 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6469 if (s->contents == NULL)
6470 return FALSE;
6471
6472 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6473 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6474 s->contents + hash_entry_size);
6475 }
6476
6477 if (info->emit_gnu_hash)
6478 {
6479 size_t i, cnt;
6480 unsigned char *contents;
6481 struct collect_gnu_hash_codes cinfo;
6482 bfd_size_type amt;
6483 size_t bucketcount;
6484
6485 memset (&cinfo, 0, sizeof (cinfo));
6486
6487 /* Compute the hash values for all exported symbols. At the same
6488 time store the values in an array so that we could use them for
6489 optimizations. */
6490 amt = dynsymcount * 2 * sizeof (unsigned long int);
6491 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6492 if (cinfo.hashcodes == NULL)
6493 return FALSE;
6494
6495 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6496 cinfo.min_dynindx = -1;
6497 cinfo.output_bfd = output_bfd;
6498 cinfo.bed = bed;
6499
6500 /* Put all hash values in HASHCODES. */
6501 elf_link_hash_traverse (elf_hash_table (info),
6502 elf_collect_gnu_hash_codes, &cinfo);
6503 if (cinfo.error)
6504 {
6505 free (cinfo.hashcodes);
6506 return FALSE;
6507 }
6508
6509 bucketcount
6510 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6511
6512 if (bucketcount == 0)
6513 {
6514 free (cinfo.hashcodes);
6515 return FALSE;
6516 }
6517
6518 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6519 BFD_ASSERT (s != NULL);
6520
6521 if (cinfo.nsyms == 0)
6522 {
6523 /* Empty .gnu.hash section is special. */
6524 BFD_ASSERT (cinfo.min_dynindx == -1);
6525 free (cinfo.hashcodes);
6526 s->size = 5 * 4 + bed->s->arch_size / 8;
6527 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6528 if (contents == NULL)
6529 return FALSE;
6530 s->contents = contents;
6531 /* 1 empty bucket. */
6532 bfd_put_32 (output_bfd, 1, contents);
6533 /* SYMIDX above the special symbol 0. */
6534 bfd_put_32 (output_bfd, 1, contents + 4);
6535 /* Just one word for bitmask. */
6536 bfd_put_32 (output_bfd, 1, contents + 8);
6537 /* Only hash fn bloom filter. */
6538 bfd_put_32 (output_bfd, 0, contents + 12);
6539 /* No hashes are valid - empty bitmask. */
6540 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6541 /* No hashes in the only bucket. */
6542 bfd_put_32 (output_bfd, 0,
6543 contents + 16 + bed->s->arch_size / 8);
6544 }
6545 else
6546 {
6547 unsigned long int maskwords, maskbitslog2, x;
6548 BFD_ASSERT (cinfo.min_dynindx != -1);
6549
6550 x = cinfo.nsyms;
6551 maskbitslog2 = 1;
6552 while ((x >>= 1) != 0)
6553 ++maskbitslog2;
6554 if (maskbitslog2 < 3)
6555 maskbitslog2 = 5;
6556 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6557 maskbitslog2 = maskbitslog2 + 3;
6558 else
6559 maskbitslog2 = maskbitslog2 + 2;
6560 if (bed->s->arch_size == 64)
6561 {
6562 if (maskbitslog2 == 5)
6563 maskbitslog2 = 6;
6564 cinfo.shift1 = 6;
6565 }
6566 else
6567 cinfo.shift1 = 5;
6568 cinfo.mask = (1 << cinfo.shift1) - 1;
6569 cinfo.shift2 = maskbitslog2;
6570 cinfo.maskbits = 1 << maskbitslog2;
6571 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6572 amt = bucketcount * sizeof (unsigned long int) * 2;
6573 amt += maskwords * sizeof (bfd_vma);
6574 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6575 if (cinfo.bitmask == NULL)
6576 {
6577 free (cinfo.hashcodes);
6578 return FALSE;
6579 }
6580
6581 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6582 cinfo.indx = cinfo.counts + bucketcount;
6583 cinfo.symindx = dynsymcount - cinfo.nsyms;
6584 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6585
6586 /* Determine how often each hash bucket is used. */
6587 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6588 for (i = 0; i < cinfo.nsyms; ++i)
6589 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6590
6591 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6592 if (cinfo.counts[i] != 0)
6593 {
6594 cinfo.indx[i] = cnt;
6595 cnt += cinfo.counts[i];
6596 }
6597 BFD_ASSERT (cnt == dynsymcount);
6598 cinfo.bucketcount = bucketcount;
6599 cinfo.local_indx = cinfo.min_dynindx;
6600
6601 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6602 s->size += cinfo.maskbits / 8;
6603 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6604 if (contents == NULL)
6605 {
6606 free (cinfo.bitmask);
6607 free (cinfo.hashcodes);
6608 return FALSE;
6609 }
6610
6611 s->contents = contents;
6612 bfd_put_32 (output_bfd, bucketcount, contents);
6613 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6614 bfd_put_32 (output_bfd, maskwords, contents + 8);
6615 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6616 contents += 16 + cinfo.maskbits / 8;
6617
6618 for (i = 0; i < bucketcount; ++i)
6619 {
6620 if (cinfo.counts[i] == 0)
6621 bfd_put_32 (output_bfd, 0, contents);
6622 else
6623 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6624 contents += 4;
6625 }
6626
6627 cinfo.contents = contents;
6628
6629 /* Renumber dynamic symbols, populate .gnu.hash section. */
6630 elf_link_hash_traverse (elf_hash_table (info),
6631 elf_renumber_gnu_hash_syms, &cinfo);
6632
6633 contents = s->contents + 16;
6634 for (i = 0; i < maskwords; ++i)
6635 {
6636 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6637 contents);
6638 contents += bed->s->arch_size / 8;
6639 }
6640
6641 free (cinfo.bitmask);
6642 free (cinfo.hashcodes);
6643 }
6644 }
6645
6646 s = bfd_get_linker_section (dynobj, ".dynstr");
6647 BFD_ASSERT (s != NULL);
6648
6649 elf_finalize_dynstr (output_bfd, info);
6650
6651 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6652
6653 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6654 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6655 return FALSE;
6656 }
6657
6658 return TRUE;
6659 }
6660 \f
6661 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6662
6663 static void
6664 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6665 asection *sec)
6666 {
6667 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6668 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6669 }
6670
6671 /* Finish SHF_MERGE section merging. */
6672
6673 bfd_boolean
6674 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6675 {
6676 bfd *ibfd;
6677 asection *sec;
6678
6679 if (!is_elf_hash_table (info->hash))
6680 return FALSE;
6681
6682 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6683 if ((ibfd->flags & DYNAMIC) == 0)
6684 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6685 if ((sec->flags & SEC_MERGE) != 0
6686 && !bfd_is_abs_section (sec->output_section))
6687 {
6688 struct bfd_elf_section_data *secdata;
6689
6690 secdata = elf_section_data (sec);
6691 if (! _bfd_add_merge_section (abfd,
6692 &elf_hash_table (info)->merge_info,
6693 sec, &secdata->sec_info))
6694 return FALSE;
6695 else if (secdata->sec_info)
6696 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6697 }
6698
6699 if (elf_hash_table (info)->merge_info != NULL)
6700 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6701 merge_sections_remove_hook);
6702 return TRUE;
6703 }
6704
6705 /* Create an entry in an ELF linker hash table. */
6706
6707 struct bfd_hash_entry *
6708 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6709 struct bfd_hash_table *table,
6710 const char *string)
6711 {
6712 /* Allocate the structure if it has not already been allocated by a
6713 subclass. */
6714 if (entry == NULL)
6715 {
6716 entry = (struct bfd_hash_entry *)
6717 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6718 if (entry == NULL)
6719 return entry;
6720 }
6721
6722 /* Call the allocation method of the superclass. */
6723 entry = _bfd_link_hash_newfunc (entry, table, string);
6724 if (entry != NULL)
6725 {
6726 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6727 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6728
6729 /* Set local fields. */
6730 ret->indx = -1;
6731 ret->dynindx = -1;
6732 ret->got = htab->init_got_refcount;
6733 ret->plt = htab->init_plt_refcount;
6734 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6735 - offsetof (struct elf_link_hash_entry, size)));
6736 /* Assume that we have been called by a non-ELF symbol reader.
6737 This flag is then reset by the code which reads an ELF input
6738 file. This ensures that a symbol created by a non-ELF symbol
6739 reader will have the flag set correctly. */
6740 ret->non_elf = 1;
6741 }
6742
6743 return entry;
6744 }
6745
6746 /* Copy data from an indirect symbol to its direct symbol, hiding the
6747 old indirect symbol. Also used for copying flags to a weakdef. */
6748
6749 void
6750 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6751 struct elf_link_hash_entry *dir,
6752 struct elf_link_hash_entry *ind)
6753 {
6754 struct elf_link_hash_table *htab;
6755
6756 /* Copy down any references that we may have already seen to the
6757 symbol which just became indirect. */
6758
6759 dir->ref_dynamic |= ind->ref_dynamic;
6760 dir->ref_regular |= ind->ref_regular;
6761 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6762 dir->non_got_ref |= ind->non_got_ref;
6763 dir->needs_plt |= ind->needs_plt;
6764 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6765
6766 if (ind->root.type != bfd_link_hash_indirect)
6767 return;
6768
6769 /* Copy over the global and procedure linkage table refcount entries.
6770 These may have been already set up by a check_relocs routine. */
6771 htab = elf_hash_table (info);
6772 if (ind->got.refcount > htab->init_got_refcount.refcount)
6773 {
6774 if (dir->got.refcount < 0)
6775 dir->got.refcount = 0;
6776 dir->got.refcount += ind->got.refcount;
6777 ind->got.refcount = htab->init_got_refcount.refcount;
6778 }
6779
6780 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6781 {
6782 if (dir->plt.refcount < 0)
6783 dir->plt.refcount = 0;
6784 dir->plt.refcount += ind->plt.refcount;
6785 ind->plt.refcount = htab->init_plt_refcount.refcount;
6786 }
6787
6788 if (ind->dynindx != -1)
6789 {
6790 if (dir->dynindx != -1)
6791 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6792 dir->dynindx = ind->dynindx;
6793 dir->dynstr_index = ind->dynstr_index;
6794 ind->dynindx = -1;
6795 ind->dynstr_index = 0;
6796 }
6797 }
6798
6799 void
6800 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6801 struct elf_link_hash_entry *h,
6802 bfd_boolean force_local)
6803 {
6804 /* STT_GNU_IFUNC symbol must go through PLT. */
6805 if (h->type != STT_GNU_IFUNC)
6806 {
6807 h->plt = elf_hash_table (info)->init_plt_offset;
6808 h->needs_plt = 0;
6809 }
6810 if (force_local)
6811 {
6812 h->forced_local = 1;
6813 if (h->dynindx != -1)
6814 {
6815 h->dynindx = -1;
6816 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6817 h->dynstr_index);
6818 }
6819 }
6820 }
6821
6822 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6823 caller. */
6824
6825 bfd_boolean
6826 _bfd_elf_link_hash_table_init
6827 (struct elf_link_hash_table *table,
6828 bfd *abfd,
6829 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6830 struct bfd_hash_table *,
6831 const char *),
6832 unsigned int entsize,
6833 enum elf_target_id target_id)
6834 {
6835 bfd_boolean ret;
6836 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6837
6838 table->init_got_refcount.refcount = can_refcount - 1;
6839 table->init_plt_refcount.refcount = can_refcount - 1;
6840 table->init_got_offset.offset = -(bfd_vma) 1;
6841 table->init_plt_offset.offset = -(bfd_vma) 1;
6842 /* The first dynamic symbol is a dummy. */
6843 table->dynsymcount = 1;
6844
6845 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6846
6847 table->root.type = bfd_link_elf_hash_table;
6848 table->hash_table_id = target_id;
6849
6850 return ret;
6851 }
6852
6853 /* Create an ELF linker hash table. */
6854
6855 struct bfd_link_hash_table *
6856 _bfd_elf_link_hash_table_create (bfd *abfd)
6857 {
6858 struct elf_link_hash_table *ret;
6859 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6860
6861 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6862 if (ret == NULL)
6863 return NULL;
6864
6865 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6866 sizeof (struct elf_link_hash_entry),
6867 GENERIC_ELF_DATA))
6868 {
6869 free (ret);
6870 return NULL;
6871 }
6872 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6873
6874 return &ret->root;
6875 }
6876
6877 /* Destroy an ELF linker hash table. */
6878
6879 void
6880 _bfd_elf_link_hash_table_free (bfd *obfd)
6881 {
6882 struct elf_link_hash_table *htab;
6883
6884 htab = (struct elf_link_hash_table *) obfd->link.hash;
6885 if (htab->dynstr != NULL)
6886 _bfd_elf_strtab_free (htab->dynstr);
6887 _bfd_merge_sections_free (htab->merge_info);
6888 _bfd_generic_link_hash_table_free (obfd);
6889 }
6890
6891 /* This is a hook for the ELF emulation code in the generic linker to
6892 tell the backend linker what file name to use for the DT_NEEDED
6893 entry for a dynamic object. */
6894
6895 void
6896 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6897 {
6898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6899 && bfd_get_format (abfd) == bfd_object)
6900 elf_dt_name (abfd) = name;
6901 }
6902
6903 int
6904 bfd_elf_get_dyn_lib_class (bfd *abfd)
6905 {
6906 int lib_class;
6907 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6908 && bfd_get_format (abfd) == bfd_object)
6909 lib_class = elf_dyn_lib_class (abfd);
6910 else
6911 lib_class = 0;
6912 return lib_class;
6913 }
6914
6915 void
6916 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6917 {
6918 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6919 && bfd_get_format (abfd) == bfd_object)
6920 elf_dyn_lib_class (abfd) = lib_class;
6921 }
6922
6923 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6924 the linker ELF emulation code. */
6925
6926 struct bfd_link_needed_list *
6927 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6928 struct bfd_link_info *info)
6929 {
6930 if (! is_elf_hash_table (info->hash))
6931 return NULL;
6932 return elf_hash_table (info)->needed;
6933 }
6934
6935 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6936 hook for the linker ELF emulation code. */
6937
6938 struct bfd_link_needed_list *
6939 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6940 struct bfd_link_info *info)
6941 {
6942 if (! is_elf_hash_table (info->hash))
6943 return NULL;
6944 return elf_hash_table (info)->runpath;
6945 }
6946
6947 /* Get the name actually used for a dynamic object for a link. This
6948 is the SONAME entry if there is one. Otherwise, it is the string
6949 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6950
6951 const char *
6952 bfd_elf_get_dt_soname (bfd *abfd)
6953 {
6954 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6955 && bfd_get_format (abfd) == bfd_object)
6956 return elf_dt_name (abfd);
6957 return NULL;
6958 }
6959
6960 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6961 the ELF linker emulation code. */
6962
6963 bfd_boolean
6964 bfd_elf_get_bfd_needed_list (bfd *abfd,
6965 struct bfd_link_needed_list **pneeded)
6966 {
6967 asection *s;
6968 bfd_byte *dynbuf = NULL;
6969 unsigned int elfsec;
6970 unsigned long shlink;
6971 bfd_byte *extdyn, *extdynend;
6972 size_t extdynsize;
6973 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6974
6975 *pneeded = NULL;
6976
6977 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6978 || bfd_get_format (abfd) != bfd_object)
6979 return TRUE;
6980
6981 s = bfd_get_section_by_name (abfd, ".dynamic");
6982 if (s == NULL || s->size == 0)
6983 return TRUE;
6984
6985 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6986 goto error_return;
6987
6988 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6989 if (elfsec == SHN_BAD)
6990 goto error_return;
6991
6992 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6993
6994 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6995 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6996
6997 extdyn = dynbuf;
6998 extdynend = extdyn + s->size;
6999 for (; extdyn < extdynend; extdyn += extdynsize)
7000 {
7001 Elf_Internal_Dyn dyn;
7002
7003 (*swap_dyn_in) (abfd, extdyn, &dyn);
7004
7005 if (dyn.d_tag == DT_NULL)
7006 break;
7007
7008 if (dyn.d_tag == DT_NEEDED)
7009 {
7010 const char *string;
7011 struct bfd_link_needed_list *l;
7012 unsigned int tagv = dyn.d_un.d_val;
7013 bfd_size_type amt;
7014
7015 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7016 if (string == NULL)
7017 goto error_return;
7018
7019 amt = sizeof *l;
7020 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7021 if (l == NULL)
7022 goto error_return;
7023
7024 l->by = abfd;
7025 l->name = string;
7026 l->next = *pneeded;
7027 *pneeded = l;
7028 }
7029 }
7030
7031 free (dynbuf);
7032
7033 return TRUE;
7034
7035 error_return:
7036 if (dynbuf != NULL)
7037 free (dynbuf);
7038 return FALSE;
7039 }
7040
7041 struct elf_symbuf_symbol
7042 {
7043 unsigned long st_name; /* Symbol name, index in string tbl */
7044 unsigned char st_info; /* Type and binding attributes */
7045 unsigned char st_other; /* Visibilty, and target specific */
7046 };
7047
7048 struct elf_symbuf_head
7049 {
7050 struct elf_symbuf_symbol *ssym;
7051 bfd_size_type count;
7052 unsigned int st_shndx;
7053 };
7054
7055 struct elf_symbol
7056 {
7057 union
7058 {
7059 Elf_Internal_Sym *isym;
7060 struct elf_symbuf_symbol *ssym;
7061 } u;
7062 const char *name;
7063 };
7064
7065 /* Sort references to symbols by ascending section number. */
7066
7067 static int
7068 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7069 {
7070 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7071 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7072
7073 return s1->st_shndx - s2->st_shndx;
7074 }
7075
7076 static int
7077 elf_sym_name_compare (const void *arg1, const void *arg2)
7078 {
7079 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7080 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7081 return strcmp (s1->name, s2->name);
7082 }
7083
7084 static struct elf_symbuf_head *
7085 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7086 {
7087 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7088 struct elf_symbuf_symbol *ssym;
7089 struct elf_symbuf_head *ssymbuf, *ssymhead;
7090 bfd_size_type i, shndx_count, total_size;
7091
7092 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7093 if (indbuf == NULL)
7094 return NULL;
7095
7096 for (ind = indbuf, i = 0; i < symcount; i++)
7097 if (isymbuf[i].st_shndx != SHN_UNDEF)
7098 *ind++ = &isymbuf[i];
7099 indbufend = ind;
7100
7101 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7102 elf_sort_elf_symbol);
7103
7104 shndx_count = 0;
7105 if (indbufend > indbuf)
7106 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7107 if (ind[0]->st_shndx != ind[1]->st_shndx)
7108 shndx_count++;
7109
7110 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7111 + (indbufend - indbuf) * sizeof (*ssym));
7112 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7113 if (ssymbuf == NULL)
7114 {
7115 free (indbuf);
7116 return NULL;
7117 }
7118
7119 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7120 ssymbuf->ssym = NULL;
7121 ssymbuf->count = shndx_count;
7122 ssymbuf->st_shndx = 0;
7123 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7124 {
7125 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7126 {
7127 ssymhead++;
7128 ssymhead->ssym = ssym;
7129 ssymhead->count = 0;
7130 ssymhead->st_shndx = (*ind)->st_shndx;
7131 }
7132 ssym->st_name = (*ind)->st_name;
7133 ssym->st_info = (*ind)->st_info;
7134 ssym->st_other = (*ind)->st_other;
7135 ssymhead->count++;
7136 }
7137 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7138 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7139 == total_size));
7140
7141 free (indbuf);
7142 return ssymbuf;
7143 }
7144
7145 /* Check if 2 sections define the same set of local and global
7146 symbols. */
7147
7148 static bfd_boolean
7149 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7150 struct bfd_link_info *info)
7151 {
7152 bfd *bfd1, *bfd2;
7153 const struct elf_backend_data *bed1, *bed2;
7154 Elf_Internal_Shdr *hdr1, *hdr2;
7155 bfd_size_type symcount1, symcount2;
7156 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7157 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7158 Elf_Internal_Sym *isym, *isymend;
7159 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7160 bfd_size_type count1, count2, i;
7161 unsigned int shndx1, shndx2;
7162 bfd_boolean result;
7163
7164 bfd1 = sec1->owner;
7165 bfd2 = sec2->owner;
7166
7167 /* Both sections have to be in ELF. */
7168 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7169 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7170 return FALSE;
7171
7172 if (elf_section_type (sec1) != elf_section_type (sec2))
7173 return FALSE;
7174
7175 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7176 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7177 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7178 return FALSE;
7179
7180 bed1 = get_elf_backend_data (bfd1);
7181 bed2 = get_elf_backend_data (bfd2);
7182 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7183 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7184 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7185 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7186
7187 if (symcount1 == 0 || symcount2 == 0)
7188 return FALSE;
7189
7190 result = FALSE;
7191 isymbuf1 = NULL;
7192 isymbuf2 = NULL;
7193 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7194 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7195
7196 if (ssymbuf1 == NULL)
7197 {
7198 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7199 NULL, NULL, NULL);
7200 if (isymbuf1 == NULL)
7201 goto done;
7202
7203 if (!info->reduce_memory_overheads)
7204 elf_tdata (bfd1)->symbuf = ssymbuf1
7205 = elf_create_symbuf (symcount1, isymbuf1);
7206 }
7207
7208 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7209 {
7210 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7211 NULL, NULL, NULL);
7212 if (isymbuf2 == NULL)
7213 goto done;
7214
7215 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7216 elf_tdata (bfd2)->symbuf = ssymbuf2
7217 = elf_create_symbuf (symcount2, isymbuf2);
7218 }
7219
7220 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7221 {
7222 /* Optimized faster version. */
7223 bfd_size_type lo, hi, mid;
7224 struct elf_symbol *symp;
7225 struct elf_symbuf_symbol *ssym, *ssymend;
7226
7227 lo = 0;
7228 hi = ssymbuf1->count;
7229 ssymbuf1++;
7230 count1 = 0;
7231 while (lo < hi)
7232 {
7233 mid = (lo + hi) / 2;
7234 if (shndx1 < ssymbuf1[mid].st_shndx)
7235 hi = mid;
7236 else if (shndx1 > ssymbuf1[mid].st_shndx)
7237 lo = mid + 1;
7238 else
7239 {
7240 count1 = ssymbuf1[mid].count;
7241 ssymbuf1 += mid;
7242 break;
7243 }
7244 }
7245
7246 lo = 0;
7247 hi = ssymbuf2->count;
7248 ssymbuf2++;
7249 count2 = 0;
7250 while (lo < hi)
7251 {
7252 mid = (lo + hi) / 2;
7253 if (shndx2 < ssymbuf2[mid].st_shndx)
7254 hi = mid;
7255 else if (shndx2 > ssymbuf2[mid].st_shndx)
7256 lo = mid + 1;
7257 else
7258 {
7259 count2 = ssymbuf2[mid].count;
7260 ssymbuf2 += mid;
7261 break;
7262 }
7263 }
7264
7265 if (count1 == 0 || count2 == 0 || count1 != count2)
7266 goto done;
7267
7268 symtable1
7269 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7270 symtable2
7271 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7272 if (symtable1 == NULL || symtable2 == NULL)
7273 goto done;
7274
7275 symp = symtable1;
7276 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7277 ssym < ssymend; ssym++, symp++)
7278 {
7279 symp->u.ssym = ssym;
7280 symp->name = bfd_elf_string_from_elf_section (bfd1,
7281 hdr1->sh_link,
7282 ssym->st_name);
7283 }
7284
7285 symp = symtable2;
7286 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7287 ssym < ssymend; ssym++, symp++)
7288 {
7289 symp->u.ssym = ssym;
7290 symp->name = bfd_elf_string_from_elf_section (bfd2,
7291 hdr2->sh_link,
7292 ssym->st_name);
7293 }
7294
7295 /* Sort symbol by name. */
7296 qsort (symtable1, count1, sizeof (struct elf_symbol),
7297 elf_sym_name_compare);
7298 qsort (symtable2, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300
7301 for (i = 0; i < count1; i++)
7302 /* Two symbols must have the same binding, type and name. */
7303 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7304 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7305 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7306 goto done;
7307
7308 result = TRUE;
7309 goto done;
7310 }
7311
7312 symtable1 = (struct elf_symbol *)
7313 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7314 symtable2 = (struct elf_symbol *)
7315 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7316 if (symtable1 == NULL || symtable2 == NULL)
7317 goto done;
7318
7319 /* Count definitions in the section. */
7320 count1 = 0;
7321 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7322 if (isym->st_shndx == shndx1)
7323 symtable1[count1++].u.isym = isym;
7324
7325 count2 = 0;
7326 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7327 if (isym->st_shndx == shndx2)
7328 symtable2[count2++].u.isym = isym;
7329
7330 if (count1 == 0 || count2 == 0 || count1 != count2)
7331 goto done;
7332
7333 for (i = 0; i < count1; i++)
7334 symtable1[i].name
7335 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7336 symtable1[i].u.isym->st_name);
7337
7338 for (i = 0; i < count2; i++)
7339 symtable2[i].name
7340 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7341 symtable2[i].u.isym->st_name);
7342
7343 /* Sort symbol by name. */
7344 qsort (symtable1, count1, sizeof (struct elf_symbol),
7345 elf_sym_name_compare);
7346 qsort (symtable2, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348
7349 for (i = 0; i < count1; i++)
7350 /* Two symbols must have the same binding, type and name. */
7351 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7352 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7353 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7354 goto done;
7355
7356 result = TRUE;
7357
7358 done:
7359 if (symtable1)
7360 free (symtable1);
7361 if (symtable2)
7362 free (symtable2);
7363 if (isymbuf1)
7364 free (isymbuf1);
7365 if (isymbuf2)
7366 free (isymbuf2);
7367
7368 return result;
7369 }
7370
7371 /* Return TRUE if 2 section types are compatible. */
7372
7373 bfd_boolean
7374 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7375 bfd *bbfd, const asection *bsec)
7376 {
7377 if (asec == NULL
7378 || bsec == NULL
7379 || abfd->xvec->flavour != bfd_target_elf_flavour
7380 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7381 return TRUE;
7382
7383 return elf_section_type (asec) == elf_section_type (bsec);
7384 }
7385 \f
7386 /* Final phase of ELF linker. */
7387
7388 /* A structure we use to avoid passing large numbers of arguments. */
7389
7390 struct elf_final_link_info
7391 {
7392 /* General link information. */
7393 struct bfd_link_info *info;
7394 /* Output BFD. */
7395 bfd *output_bfd;
7396 /* Symbol string table. */
7397 struct bfd_strtab_hash *symstrtab;
7398 /* .dynsym section. */
7399 asection *dynsym_sec;
7400 /* .hash section. */
7401 asection *hash_sec;
7402 /* symbol version section (.gnu.version). */
7403 asection *symver_sec;
7404 /* Buffer large enough to hold contents of any section. */
7405 bfd_byte *contents;
7406 /* Buffer large enough to hold external relocs of any section. */
7407 void *external_relocs;
7408 /* Buffer large enough to hold internal relocs of any section. */
7409 Elf_Internal_Rela *internal_relocs;
7410 /* Buffer large enough to hold external local symbols of any input
7411 BFD. */
7412 bfd_byte *external_syms;
7413 /* And a buffer for symbol section indices. */
7414 Elf_External_Sym_Shndx *locsym_shndx;
7415 /* Buffer large enough to hold internal local symbols of any input
7416 BFD. */
7417 Elf_Internal_Sym *internal_syms;
7418 /* Array large enough to hold a symbol index for each local symbol
7419 of any input BFD. */
7420 long *indices;
7421 /* Array large enough to hold a section pointer for each local
7422 symbol of any input BFD. */
7423 asection **sections;
7424 /* Buffer to hold swapped out symbols. */
7425 bfd_byte *symbuf;
7426 /* And one for symbol section indices. */
7427 Elf_External_Sym_Shndx *symshndxbuf;
7428 /* Number of swapped out symbols in buffer. */
7429 size_t symbuf_count;
7430 /* Number of symbols which fit in symbuf. */
7431 size_t symbuf_size;
7432 /* And same for symshndxbuf. */
7433 size_t shndxbuf_size;
7434 /* Number of STT_FILE syms seen. */
7435 size_t filesym_count;
7436 };
7437
7438 /* This struct is used to pass information to elf_link_output_extsym. */
7439
7440 struct elf_outext_info
7441 {
7442 bfd_boolean failed;
7443 bfd_boolean localsyms;
7444 bfd_boolean file_sym_done;
7445 struct elf_final_link_info *flinfo;
7446 };
7447
7448
7449 /* Support for evaluating a complex relocation.
7450
7451 Complex relocations are generalized, self-describing relocations. The
7452 implementation of them consists of two parts: complex symbols, and the
7453 relocations themselves.
7454
7455 The relocations are use a reserved elf-wide relocation type code (R_RELC
7456 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7457 information (start bit, end bit, word width, etc) into the addend. This
7458 information is extracted from CGEN-generated operand tables within gas.
7459
7460 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7461 internal) representing prefix-notation expressions, including but not
7462 limited to those sorts of expressions normally encoded as addends in the
7463 addend field. The symbol mangling format is:
7464
7465 <node> := <literal>
7466 | <unary-operator> ':' <node>
7467 | <binary-operator> ':' <node> ':' <node>
7468 ;
7469
7470 <literal> := 's' <digits=N> ':' <N character symbol name>
7471 | 'S' <digits=N> ':' <N character section name>
7472 | '#' <hexdigits>
7473 ;
7474
7475 <binary-operator> := as in C
7476 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7477
7478 static void
7479 set_symbol_value (bfd *bfd_with_globals,
7480 Elf_Internal_Sym *isymbuf,
7481 size_t locsymcount,
7482 size_t symidx,
7483 bfd_vma val)
7484 {
7485 struct elf_link_hash_entry **sym_hashes;
7486 struct elf_link_hash_entry *h;
7487 size_t extsymoff = locsymcount;
7488
7489 if (symidx < locsymcount)
7490 {
7491 Elf_Internal_Sym *sym;
7492
7493 sym = isymbuf + symidx;
7494 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7495 {
7496 /* It is a local symbol: move it to the
7497 "absolute" section and give it a value. */
7498 sym->st_shndx = SHN_ABS;
7499 sym->st_value = val;
7500 return;
7501 }
7502 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7503 extsymoff = 0;
7504 }
7505
7506 /* It is a global symbol: set its link type
7507 to "defined" and give it a value. */
7508
7509 sym_hashes = elf_sym_hashes (bfd_with_globals);
7510 h = sym_hashes [symidx - extsymoff];
7511 while (h->root.type == bfd_link_hash_indirect
7512 || h->root.type == bfd_link_hash_warning)
7513 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7514 h->root.type = bfd_link_hash_defined;
7515 h->root.u.def.value = val;
7516 h->root.u.def.section = bfd_abs_section_ptr;
7517 }
7518
7519 static bfd_boolean
7520 resolve_symbol (const char *name,
7521 bfd *input_bfd,
7522 struct elf_final_link_info *flinfo,
7523 bfd_vma *result,
7524 Elf_Internal_Sym *isymbuf,
7525 size_t locsymcount)
7526 {
7527 Elf_Internal_Sym *sym;
7528 struct bfd_link_hash_entry *global_entry;
7529 const char *candidate = NULL;
7530 Elf_Internal_Shdr *symtab_hdr;
7531 size_t i;
7532
7533 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7534
7535 for (i = 0; i < locsymcount; ++ i)
7536 {
7537 sym = isymbuf + i;
7538
7539 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7540 continue;
7541
7542 candidate = bfd_elf_string_from_elf_section (input_bfd,
7543 symtab_hdr->sh_link,
7544 sym->st_name);
7545 #ifdef DEBUG
7546 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7547 name, candidate, (unsigned long) sym->st_value);
7548 #endif
7549 if (candidate && strcmp (candidate, name) == 0)
7550 {
7551 asection *sec = flinfo->sections [i];
7552
7553 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7554 *result += sec->output_offset + sec->output_section->vma;
7555 #ifdef DEBUG
7556 printf ("Found symbol with value %8.8lx\n",
7557 (unsigned long) *result);
7558 #endif
7559 return TRUE;
7560 }
7561 }
7562
7563 /* Hmm, haven't found it yet. perhaps it is a global. */
7564 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7565 FALSE, FALSE, TRUE);
7566 if (!global_entry)
7567 return FALSE;
7568
7569 if (global_entry->type == bfd_link_hash_defined
7570 || global_entry->type == bfd_link_hash_defweak)
7571 {
7572 *result = (global_entry->u.def.value
7573 + global_entry->u.def.section->output_section->vma
7574 + global_entry->u.def.section->output_offset);
7575 #ifdef DEBUG
7576 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7577 global_entry->root.string, (unsigned long) *result);
7578 #endif
7579 return TRUE;
7580 }
7581
7582 return FALSE;
7583 }
7584
7585 static bfd_boolean
7586 resolve_section (const char *name,
7587 asection *sections,
7588 bfd_vma *result)
7589 {
7590 asection *curr;
7591 unsigned int len;
7592
7593 for (curr = sections; curr; curr = curr->next)
7594 if (strcmp (curr->name, name) == 0)
7595 {
7596 *result = curr->vma;
7597 return TRUE;
7598 }
7599
7600 /* Hmm. still haven't found it. try pseudo-section names. */
7601 for (curr = sections; curr; curr = curr->next)
7602 {
7603 len = strlen (curr->name);
7604 if (len > strlen (name))
7605 continue;
7606
7607 if (strncmp (curr->name, name, len) == 0)
7608 {
7609 if (strncmp (".end", name + len, 4) == 0)
7610 {
7611 *result = curr->vma + curr->size;
7612 return TRUE;
7613 }
7614
7615 /* Insert more pseudo-section names here, if you like. */
7616 }
7617 }
7618
7619 return FALSE;
7620 }
7621
7622 static void
7623 undefined_reference (const char *reftype, const char *name)
7624 {
7625 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7626 reftype, name);
7627 }
7628
7629 static bfd_boolean
7630 eval_symbol (bfd_vma *result,
7631 const char **symp,
7632 bfd *input_bfd,
7633 struct elf_final_link_info *flinfo,
7634 bfd_vma dot,
7635 Elf_Internal_Sym *isymbuf,
7636 size_t locsymcount,
7637 int signed_p)
7638 {
7639 size_t len;
7640 size_t symlen;
7641 bfd_vma a;
7642 bfd_vma b;
7643 char symbuf[4096];
7644 const char *sym = *symp;
7645 const char *symend;
7646 bfd_boolean symbol_is_section = FALSE;
7647
7648 len = strlen (sym);
7649 symend = sym + len;
7650
7651 if (len < 1 || len > sizeof (symbuf))
7652 {
7653 bfd_set_error (bfd_error_invalid_operation);
7654 return FALSE;
7655 }
7656
7657 switch (* sym)
7658 {
7659 case '.':
7660 *result = dot;
7661 *symp = sym + 1;
7662 return TRUE;
7663
7664 case '#':
7665 ++sym;
7666 *result = strtoul (sym, (char **) symp, 16);
7667 return TRUE;
7668
7669 case 'S':
7670 symbol_is_section = TRUE;
7671 case 's':
7672 ++sym;
7673 symlen = strtol (sym, (char **) symp, 10);
7674 sym = *symp + 1; /* Skip the trailing ':'. */
7675
7676 if (symend < sym || symlen + 1 > sizeof (symbuf))
7677 {
7678 bfd_set_error (bfd_error_invalid_operation);
7679 return FALSE;
7680 }
7681
7682 memcpy (symbuf, sym, symlen);
7683 symbuf[symlen] = '\0';
7684 *symp = sym + symlen;
7685
7686 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7687 the symbol as a section, or vice-versa. so we're pretty liberal in our
7688 interpretation here; section means "try section first", not "must be a
7689 section", and likewise with symbol. */
7690
7691 if (symbol_is_section)
7692 {
7693 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7694 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7695 isymbuf, locsymcount))
7696 {
7697 undefined_reference ("section", symbuf);
7698 return FALSE;
7699 }
7700 }
7701 else
7702 {
7703 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7704 isymbuf, locsymcount)
7705 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7706 result))
7707 {
7708 undefined_reference ("symbol", symbuf);
7709 return FALSE;
7710 }
7711 }
7712
7713 return TRUE;
7714
7715 /* All that remains are operators. */
7716
7717 #define UNARY_OP(op) \
7718 if (strncmp (sym, #op, strlen (#op)) == 0) \
7719 { \
7720 sym += strlen (#op); \
7721 if (*sym == ':') \
7722 ++sym; \
7723 *symp = sym; \
7724 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7725 isymbuf, locsymcount, signed_p)) \
7726 return FALSE; \
7727 if (signed_p) \
7728 *result = op ((bfd_signed_vma) a); \
7729 else \
7730 *result = op a; \
7731 return TRUE; \
7732 }
7733
7734 #define BINARY_OP(op) \
7735 if (strncmp (sym, #op, strlen (#op)) == 0) \
7736 { \
7737 sym += strlen (#op); \
7738 if (*sym == ':') \
7739 ++sym; \
7740 *symp = sym; \
7741 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7742 isymbuf, locsymcount, signed_p)) \
7743 return FALSE; \
7744 ++*symp; \
7745 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7746 isymbuf, locsymcount, signed_p)) \
7747 return FALSE; \
7748 if (signed_p) \
7749 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7750 else \
7751 *result = a op b; \
7752 return TRUE; \
7753 }
7754
7755 default:
7756 UNARY_OP (0-);
7757 BINARY_OP (<<);
7758 BINARY_OP (>>);
7759 BINARY_OP (==);
7760 BINARY_OP (!=);
7761 BINARY_OP (<=);
7762 BINARY_OP (>=);
7763 BINARY_OP (&&);
7764 BINARY_OP (||);
7765 UNARY_OP (~);
7766 UNARY_OP (!);
7767 BINARY_OP (*);
7768 BINARY_OP (/);
7769 BINARY_OP (%);
7770 BINARY_OP (^);
7771 BINARY_OP (|);
7772 BINARY_OP (&);
7773 BINARY_OP (+);
7774 BINARY_OP (-);
7775 BINARY_OP (<);
7776 BINARY_OP (>);
7777 #undef UNARY_OP
7778 #undef BINARY_OP
7779 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7780 bfd_set_error (bfd_error_invalid_operation);
7781 return FALSE;
7782 }
7783 }
7784
7785 static void
7786 put_value (bfd_vma size,
7787 unsigned long chunksz,
7788 bfd *input_bfd,
7789 bfd_vma x,
7790 bfd_byte *location)
7791 {
7792 location += (size - chunksz);
7793
7794 for (; size; size -= chunksz, location -= chunksz)
7795 {
7796 switch (chunksz)
7797 {
7798 case 1:
7799 bfd_put_8 (input_bfd, x, location);
7800 x >>= 8;
7801 break;
7802 case 2:
7803 bfd_put_16 (input_bfd, x, location);
7804 x >>= 16;
7805 break;
7806 case 4:
7807 bfd_put_32 (input_bfd, x, location);
7808 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7809 x >>= 16;
7810 x >>= 16;
7811 break;
7812 #ifdef BFD64
7813 case 8:
7814 bfd_put_64 (input_bfd, x, location);
7815 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7816 x >>= 32;
7817 x >>= 32;
7818 break;
7819 #endif
7820 default:
7821 abort ();
7822 break;
7823 }
7824 }
7825 }
7826
7827 static bfd_vma
7828 get_value (bfd_vma size,
7829 unsigned long chunksz,
7830 bfd *input_bfd,
7831 bfd_byte *location)
7832 {
7833 int shift;
7834 bfd_vma x = 0;
7835
7836 /* Sanity checks. */
7837 BFD_ASSERT (chunksz <= sizeof (x)
7838 && size >= chunksz
7839 && chunksz != 0
7840 && (size % chunksz) == 0
7841 && input_bfd != NULL
7842 && location != NULL);
7843
7844 if (chunksz == sizeof (x))
7845 {
7846 BFD_ASSERT (size == chunksz);
7847
7848 /* Make sure that we do not perform an undefined shift operation.
7849 We know that size == chunksz so there will only be one iteration
7850 of the loop below. */
7851 shift = 0;
7852 }
7853 else
7854 shift = 8 * chunksz;
7855
7856 for (; size; size -= chunksz, location += chunksz)
7857 {
7858 switch (chunksz)
7859 {
7860 case 1:
7861 x = (x << shift) | bfd_get_8 (input_bfd, location);
7862 break;
7863 case 2:
7864 x = (x << shift) | bfd_get_16 (input_bfd, location);
7865 break;
7866 case 4:
7867 x = (x << shift) | bfd_get_32 (input_bfd, location);
7868 break;
7869 #ifdef BFD64
7870 case 8:
7871 x = (x << shift) | bfd_get_64 (input_bfd, location);
7872 break;
7873 #endif
7874 default:
7875 abort ();
7876 }
7877 }
7878 return x;
7879 }
7880
7881 static void
7882 decode_complex_addend (unsigned long *start, /* in bits */
7883 unsigned long *oplen, /* in bits */
7884 unsigned long *len, /* in bits */
7885 unsigned long *wordsz, /* in bytes */
7886 unsigned long *chunksz, /* in bytes */
7887 unsigned long *lsb0_p,
7888 unsigned long *signed_p,
7889 unsigned long *trunc_p,
7890 unsigned long encoded)
7891 {
7892 * start = encoded & 0x3F;
7893 * len = (encoded >> 6) & 0x3F;
7894 * oplen = (encoded >> 12) & 0x3F;
7895 * wordsz = (encoded >> 18) & 0xF;
7896 * chunksz = (encoded >> 22) & 0xF;
7897 * lsb0_p = (encoded >> 27) & 1;
7898 * signed_p = (encoded >> 28) & 1;
7899 * trunc_p = (encoded >> 29) & 1;
7900 }
7901
7902 bfd_reloc_status_type
7903 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7904 asection *input_section ATTRIBUTE_UNUSED,
7905 bfd_byte *contents,
7906 Elf_Internal_Rela *rel,
7907 bfd_vma relocation)
7908 {
7909 bfd_vma shift, x, mask;
7910 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7911 bfd_reloc_status_type r;
7912
7913 /* Perform this reloc, since it is complex.
7914 (this is not to say that it necessarily refers to a complex
7915 symbol; merely that it is a self-describing CGEN based reloc.
7916 i.e. the addend has the complete reloc information (bit start, end,
7917 word size, etc) encoded within it.). */
7918
7919 decode_complex_addend (&start, &oplen, &len, &wordsz,
7920 &chunksz, &lsb0_p, &signed_p,
7921 &trunc_p, rel->r_addend);
7922
7923 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7924
7925 if (lsb0_p)
7926 shift = (start + 1) - len;
7927 else
7928 shift = (8 * wordsz) - (start + len);
7929
7930 /* FIXME: octets_per_byte. */
7931 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7932
7933 #ifdef DEBUG
7934 printf ("Doing complex reloc: "
7935 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7936 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7937 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7938 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7939 oplen, (unsigned long) x, (unsigned long) mask,
7940 (unsigned long) relocation);
7941 #endif
7942
7943 r = bfd_reloc_ok;
7944 if (! trunc_p)
7945 /* Now do an overflow check. */
7946 r = bfd_check_overflow ((signed_p
7947 ? complain_overflow_signed
7948 : complain_overflow_unsigned),
7949 len, 0, (8 * wordsz),
7950 relocation);
7951
7952 /* Do the deed. */
7953 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7954
7955 #ifdef DEBUG
7956 printf (" relocation: %8.8lx\n"
7957 " shifted mask: %8.8lx\n"
7958 " shifted/masked reloc: %8.8lx\n"
7959 " result: %8.8lx\n",
7960 (unsigned long) relocation, (unsigned long) (mask << shift),
7961 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7962 #endif
7963 /* FIXME: octets_per_byte. */
7964 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7965 return r;
7966 }
7967
7968 /* qsort comparison functions sorting external relocs by r_offset. */
7969
7970 static int
7971 cmp_ext32l_r_offset (const void *p, const void *q)
7972 {
7973 union aligned32
7974 {
7975 uint32_t v;
7976 unsigned char c[4];
7977 };
7978 const union aligned32 *a
7979 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7980 const union aligned32 *b
7981 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7982
7983 uint32_t aval = ( (uint32_t) a->c[0]
7984 | (uint32_t) a->c[1] << 8
7985 | (uint32_t) a->c[2] << 16
7986 | (uint32_t) a->c[3] << 24);
7987 uint32_t bval = ( (uint32_t) b->c[0]
7988 | (uint32_t) b->c[1] << 8
7989 | (uint32_t) b->c[2] << 16
7990 | (uint32_t) b->c[3] << 24);
7991 if (aval < bval)
7992 return -1;
7993 else if (aval > bval)
7994 return 1;
7995 return 0;
7996 }
7997
7998 static int
7999 cmp_ext32b_r_offset (const void *p, const void *q)
8000 {
8001 union aligned32
8002 {
8003 uint32_t v;
8004 unsigned char c[4];
8005 };
8006 const union aligned32 *a
8007 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8008 const union aligned32 *b
8009 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8010
8011 uint32_t aval = ( (uint32_t) a->c[0] << 24
8012 | (uint32_t) a->c[1] << 16
8013 | (uint32_t) a->c[2] << 8
8014 | (uint32_t) a->c[3]);
8015 uint32_t bval = ( (uint32_t) b->c[0] << 24
8016 | (uint32_t) b->c[1] << 16
8017 | (uint32_t) b->c[2] << 8
8018 | (uint32_t) b->c[3]);
8019 if (aval < bval)
8020 return -1;
8021 else if (aval > bval)
8022 return 1;
8023 return 0;
8024 }
8025
8026 #ifdef BFD_HOST_64_BIT
8027 static int
8028 cmp_ext64l_r_offset (const void *p, const void *q)
8029 {
8030 union aligned64
8031 {
8032 uint64_t v;
8033 unsigned char c[8];
8034 };
8035 const union aligned64 *a
8036 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8037 const union aligned64 *b
8038 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8039
8040 uint64_t aval = ( (uint64_t) a->c[0]
8041 | (uint64_t) a->c[1] << 8
8042 | (uint64_t) a->c[2] << 16
8043 | (uint64_t) a->c[3] << 24
8044 | (uint64_t) a->c[4] << 32
8045 | (uint64_t) a->c[5] << 40
8046 | (uint64_t) a->c[6] << 48
8047 | (uint64_t) a->c[7] << 56);
8048 uint64_t bval = ( (uint64_t) b->c[0]
8049 | (uint64_t) b->c[1] << 8
8050 | (uint64_t) b->c[2] << 16
8051 | (uint64_t) b->c[3] << 24
8052 | (uint64_t) b->c[4] << 32
8053 | (uint64_t) b->c[5] << 40
8054 | (uint64_t) b->c[6] << 48
8055 | (uint64_t) b->c[7] << 56);
8056 if (aval < bval)
8057 return -1;
8058 else if (aval > bval)
8059 return 1;
8060 return 0;
8061 }
8062
8063 static int
8064 cmp_ext64b_r_offset (const void *p, const void *q)
8065 {
8066 union aligned64
8067 {
8068 uint64_t v;
8069 unsigned char c[8];
8070 };
8071 const union aligned64 *a
8072 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8073 const union aligned64 *b
8074 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8075
8076 uint64_t aval = ( (uint64_t) a->c[0] << 56
8077 | (uint64_t) a->c[1] << 48
8078 | (uint64_t) a->c[2] << 40
8079 | (uint64_t) a->c[3] << 32
8080 | (uint64_t) a->c[4] << 24
8081 | (uint64_t) a->c[5] << 16
8082 | (uint64_t) a->c[6] << 8
8083 | (uint64_t) a->c[7]);
8084 uint64_t bval = ( (uint64_t) b->c[0] << 56
8085 | (uint64_t) b->c[1] << 48
8086 | (uint64_t) b->c[2] << 40
8087 | (uint64_t) b->c[3] << 32
8088 | (uint64_t) b->c[4] << 24
8089 | (uint64_t) b->c[5] << 16
8090 | (uint64_t) b->c[6] << 8
8091 | (uint64_t) b->c[7]);
8092 if (aval < bval)
8093 return -1;
8094 else if (aval > bval)
8095 return 1;
8096 return 0;
8097 }
8098 #endif
8099
8100 /* When performing a relocatable link, the input relocations are
8101 preserved. But, if they reference global symbols, the indices
8102 referenced must be updated. Update all the relocations found in
8103 RELDATA. */
8104
8105 static void
8106 elf_link_adjust_relocs (bfd *abfd,
8107 struct bfd_elf_section_reloc_data *reldata,
8108 bfd_boolean sort)
8109 {
8110 unsigned int i;
8111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8112 bfd_byte *erela;
8113 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8114 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8115 bfd_vma r_type_mask;
8116 int r_sym_shift;
8117 unsigned int count = reldata->count;
8118 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8119
8120 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8121 {
8122 swap_in = bed->s->swap_reloc_in;
8123 swap_out = bed->s->swap_reloc_out;
8124 }
8125 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8126 {
8127 swap_in = bed->s->swap_reloca_in;
8128 swap_out = bed->s->swap_reloca_out;
8129 }
8130 else
8131 abort ();
8132
8133 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8134 abort ();
8135
8136 if (bed->s->arch_size == 32)
8137 {
8138 r_type_mask = 0xff;
8139 r_sym_shift = 8;
8140 }
8141 else
8142 {
8143 r_type_mask = 0xffffffff;
8144 r_sym_shift = 32;
8145 }
8146
8147 erela = reldata->hdr->contents;
8148 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8149 {
8150 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8151 unsigned int j;
8152
8153 if (*rel_hash == NULL)
8154 continue;
8155
8156 BFD_ASSERT ((*rel_hash)->indx >= 0);
8157
8158 (*swap_in) (abfd, erela, irela);
8159 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8160 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8161 | (irela[j].r_info & r_type_mask));
8162 (*swap_out) (abfd, irela, erela);
8163 }
8164
8165 if (sort)
8166 {
8167 int (*compare) (const void *, const void *);
8168
8169 if (bed->s->arch_size == 32)
8170 {
8171 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8172 compare = cmp_ext32l_r_offset;
8173 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8174 compare = cmp_ext32b_r_offset;
8175 else
8176 abort ();
8177 }
8178 else
8179 {
8180 #ifdef BFD_HOST_64_BIT
8181 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8182 compare = cmp_ext64l_r_offset;
8183 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8184 compare = cmp_ext64b_r_offset;
8185 else
8186 #endif
8187 abort ();
8188 }
8189 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8190 free (reldata->hashes);
8191 reldata->hashes = NULL;
8192 }
8193 }
8194
8195 struct elf_link_sort_rela
8196 {
8197 union {
8198 bfd_vma offset;
8199 bfd_vma sym_mask;
8200 } u;
8201 enum elf_reloc_type_class type;
8202 /* We use this as an array of size int_rels_per_ext_rel. */
8203 Elf_Internal_Rela rela[1];
8204 };
8205
8206 static int
8207 elf_link_sort_cmp1 (const void *A, const void *B)
8208 {
8209 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8210 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8211 int relativea, relativeb;
8212
8213 relativea = a->type == reloc_class_relative;
8214 relativeb = b->type == reloc_class_relative;
8215
8216 if (relativea < relativeb)
8217 return 1;
8218 if (relativea > relativeb)
8219 return -1;
8220 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8221 return -1;
8222 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8223 return 1;
8224 if (a->rela->r_offset < b->rela->r_offset)
8225 return -1;
8226 if (a->rela->r_offset > b->rela->r_offset)
8227 return 1;
8228 return 0;
8229 }
8230
8231 static int
8232 elf_link_sort_cmp2 (const void *A, const void *B)
8233 {
8234 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8235 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8236
8237 if (a->type < b->type)
8238 return -1;
8239 if (a->type > b->type)
8240 return 1;
8241 if (a->u.offset < b->u.offset)
8242 return -1;
8243 if (a->u.offset > b->u.offset)
8244 return 1;
8245 if (a->rela->r_offset < b->rela->r_offset)
8246 return -1;
8247 if (a->rela->r_offset > b->rela->r_offset)
8248 return 1;
8249 return 0;
8250 }
8251
8252 static size_t
8253 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8254 {
8255 asection *dynamic_relocs;
8256 asection *rela_dyn;
8257 asection *rel_dyn;
8258 bfd_size_type count, size;
8259 size_t i, ret, sort_elt, ext_size;
8260 bfd_byte *sort, *s_non_relative, *p;
8261 struct elf_link_sort_rela *sq;
8262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8263 int i2e = bed->s->int_rels_per_ext_rel;
8264 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8265 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8266 struct bfd_link_order *lo;
8267 bfd_vma r_sym_mask;
8268 bfd_boolean use_rela;
8269
8270 /* Find a dynamic reloc section. */
8271 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8272 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8273 if (rela_dyn != NULL && rela_dyn->size > 0
8274 && rel_dyn != NULL && rel_dyn->size > 0)
8275 {
8276 bfd_boolean use_rela_initialised = FALSE;
8277
8278 /* This is just here to stop gcc from complaining.
8279 It's initialization checking code is not perfect. */
8280 use_rela = TRUE;
8281
8282 /* Both sections are present. Examine the sizes
8283 of the indirect sections to help us choose. */
8284 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8285 if (lo->type == bfd_indirect_link_order)
8286 {
8287 asection *o = lo->u.indirect.section;
8288
8289 if ((o->size % bed->s->sizeof_rela) == 0)
8290 {
8291 if ((o->size % bed->s->sizeof_rel) == 0)
8292 /* Section size is divisible by both rel and rela sizes.
8293 It is of no help to us. */
8294 ;
8295 else
8296 {
8297 /* Section size is only divisible by rela. */
8298 if (use_rela_initialised && (use_rela == FALSE))
8299 {
8300 _bfd_error_handler
8301 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8302 bfd_set_error (bfd_error_invalid_operation);
8303 return 0;
8304 }
8305 else
8306 {
8307 use_rela = TRUE;
8308 use_rela_initialised = TRUE;
8309 }
8310 }
8311 }
8312 else if ((o->size % bed->s->sizeof_rel) == 0)
8313 {
8314 /* Section size is only divisible by rel. */
8315 if (use_rela_initialised && (use_rela == TRUE))
8316 {
8317 _bfd_error_handler
8318 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8319 bfd_set_error (bfd_error_invalid_operation);
8320 return 0;
8321 }
8322 else
8323 {
8324 use_rela = FALSE;
8325 use_rela_initialised = TRUE;
8326 }
8327 }
8328 else
8329 {
8330 /* The section size is not divisible by either - something is wrong. */
8331 _bfd_error_handler
8332 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8333 bfd_set_error (bfd_error_invalid_operation);
8334 return 0;
8335 }
8336 }
8337
8338 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8339 if (lo->type == bfd_indirect_link_order)
8340 {
8341 asection *o = lo->u.indirect.section;
8342
8343 if ((o->size % bed->s->sizeof_rela) == 0)
8344 {
8345 if ((o->size % bed->s->sizeof_rel) == 0)
8346 /* Section size is divisible by both rel and rela sizes.
8347 It is of no help to us. */
8348 ;
8349 else
8350 {
8351 /* Section size is only divisible by rela. */
8352 if (use_rela_initialised && (use_rela == FALSE))
8353 {
8354 _bfd_error_handler
8355 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8356 bfd_set_error (bfd_error_invalid_operation);
8357 return 0;
8358 }
8359 else
8360 {
8361 use_rela = TRUE;
8362 use_rela_initialised = TRUE;
8363 }
8364 }
8365 }
8366 else if ((o->size % bed->s->sizeof_rel) == 0)
8367 {
8368 /* Section size is only divisible by rel. */
8369 if (use_rela_initialised && (use_rela == TRUE))
8370 {
8371 _bfd_error_handler
8372 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8373 bfd_set_error (bfd_error_invalid_operation);
8374 return 0;
8375 }
8376 else
8377 {
8378 use_rela = FALSE;
8379 use_rela_initialised = TRUE;
8380 }
8381 }
8382 else
8383 {
8384 /* The section size is not divisible by either - something is wrong. */
8385 _bfd_error_handler
8386 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8387 bfd_set_error (bfd_error_invalid_operation);
8388 return 0;
8389 }
8390 }
8391
8392 if (! use_rela_initialised)
8393 /* Make a guess. */
8394 use_rela = TRUE;
8395 }
8396 else if (rela_dyn != NULL && rela_dyn->size > 0)
8397 use_rela = TRUE;
8398 else if (rel_dyn != NULL && rel_dyn->size > 0)
8399 use_rela = FALSE;
8400 else
8401 return 0;
8402
8403 if (use_rela)
8404 {
8405 dynamic_relocs = rela_dyn;
8406 ext_size = bed->s->sizeof_rela;
8407 swap_in = bed->s->swap_reloca_in;
8408 swap_out = bed->s->swap_reloca_out;
8409 }
8410 else
8411 {
8412 dynamic_relocs = rel_dyn;
8413 ext_size = bed->s->sizeof_rel;
8414 swap_in = bed->s->swap_reloc_in;
8415 swap_out = bed->s->swap_reloc_out;
8416 }
8417
8418 size = 0;
8419 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8420 if (lo->type == bfd_indirect_link_order)
8421 size += lo->u.indirect.section->size;
8422
8423 if (size != dynamic_relocs->size)
8424 return 0;
8425
8426 sort_elt = (sizeof (struct elf_link_sort_rela)
8427 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8428
8429 count = dynamic_relocs->size / ext_size;
8430 if (count == 0)
8431 return 0;
8432 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8433
8434 if (sort == NULL)
8435 {
8436 (*info->callbacks->warning)
8437 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8438 return 0;
8439 }
8440
8441 if (bed->s->arch_size == 32)
8442 r_sym_mask = ~(bfd_vma) 0xff;
8443 else
8444 r_sym_mask = ~(bfd_vma) 0xffffffff;
8445
8446 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8447 if (lo->type == bfd_indirect_link_order)
8448 {
8449 bfd_byte *erel, *erelend;
8450 asection *o = lo->u.indirect.section;
8451
8452 if (o->contents == NULL && o->size != 0)
8453 {
8454 /* This is a reloc section that is being handled as a normal
8455 section. See bfd_section_from_shdr. We can't combine
8456 relocs in this case. */
8457 free (sort);
8458 return 0;
8459 }
8460 erel = o->contents;
8461 erelend = o->contents + o->size;
8462 /* FIXME: octets_per_byte. */
8463 p = sort + o->output_offset / ext_size * sort_elt;
8464
8465 while (erel < erelend)
8466 {
8467 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8468
8469 (*swap_in) (abfd, erel, s->rela);
8470 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8471 s->u.sym_mask = r_sym_mask;
8472 p += sort_elt;
8473 erel += ext_size;
8474 }
8475 }
8476
8477 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8478
8479 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8480 {
8481 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8482 if (s->type != reloc_class_relative)
8483 break;
8484 }
8485 ret = i;
8486 s_non_relative = p;
8487
8488 sq = (struct elf_link_sort_rela *) s_non_relative;
8489 for (; i < count; i++, p += sort_elt)
8490 {
8491 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8492 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8493 sq = sp;
8494 sp->u.offset = sq->rela->r_offset;
8495 }
8496
8497 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8498
8499 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8500 if (lo->type == bfd_indirect_link_order)
8501 {
8502 bfd_byte *erel, *erelend;
8503 asection *o = lo->u.indirect.section;
8504
8505 erel = o->contents;
8506 erelend = o->contents + o->size;
8507 /* FIXME: octets_per_byte. */
8508 p = sort + o->output_offset / ext_size * sort_elt;
8509 while (erel < erelend)
8510 {
8511 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8512 (*swap_out) (abfd, s->rela, erel);
8513 p += sort_elt;
8514 erel += ext_size;
8515 }
8516 }
8517
8518 free (sort);
8519 *psec = dynamic_relocs;
8520 return ret;
8521 }
8522
8523 /* Flush the output symbols to the file. */
8524
8525 static bfd_boolean
8526 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8527 const struct elf_backend_data *bed)
8528 {
8529 if (flinfo->symbuf_count > 0)
8530 {
8531 Elf_Internal_Shdr *hdr;
8532 file_ptr pos;
8533 bfd_size_type amt;
8534
8535 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8536 pos = hdr->sh_offset + hdr->sh_size;
8537 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8538 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8539 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8540 return FALSE;
8541
8542 hdr->sh_size += amt;
8543 flinfo->symbuf_count = 0;
8544 }
8545
8546 return TRUE;
8547 }
8548
8549 /* Add a symbol to the output symbol table. */
8550
8551 static int
8552 elf_link_output_sym (struct elf_final_link_info *flinfo,
8553 const char *name,
8554 Elf_Internal_Sym *elfsym,
8555 asection *input_sec,
8556 struct elf_link_hash_entry *h)
8557 {
8558 bfd_byte *dest;
8559 Elf_External_Sym_Shndx *destshndx;
8560 int (*output_symbol_hook)
8561 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8562 struct elf_link_hash_entry *);
8563 const struct elf_backend_data *bed;
8564
8565 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8566
8567 bed = get_elf_backend_data (flinfo->output_bfd);
8568 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8569 if (output_symbol_hook != NULL)
8570 {
8571 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8572 if (ret != 1)
8573 return ret;
8574 }
8575
8576 if (name == NULL || *name == '\0')
8577 elfsym->st_name = 0;
8578 else if (input_sec->flags & SEC_EXCLUDE)
8579 elfsym->st_name = 0;
8580 else
8581 {
8582 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8583 name, TRUE, FALSE);
8584 if (elfsym->st_name == (unsigned long) -1)
8585 return 0;
8586 }
8587
8588 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8589 {
8590 if (! elf_link_flush_output_syms (flinfo, bed))
8591 return 0;
8592 }
8593
8594 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8595 destshndx = flinfo->symshndxbuf;
8596 if (destshndx != NULL)
8597 {
8598 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8599 {
8600 bfd_size_type amt;
8601
8602 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8603 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8604 amt * 2);
8605 if (destshndx == NULL)
8606 return 0;
8607 flinfo->symshndxbuf = destshndx;
8608 memset ((char *) destshndx + amt, 0, amt);
8609 flinfo->shndxbuf_size *= 2;
8610 }
8611 destshndx += bfd_get_symcount (flinfo->output_bfd);
8612 }
8613
8614 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8615 flinfo->symbuf_count += 1;
8616 bfd_get_symcount (flinfo->output_bfd) += 1;
8617
8618 return 1;
8619 }
8620
8621 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8622
8623 static bfd_boolean
8624 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8625 {
8626 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8627 && sym->st_shndx < SHN_LORESERVE)
8628 {
8629 /* The gABI doesn't support dynamic symbols in output sections
8630 beyond 64k. */
8631 (*_bfd_error_handler)
8632 (_("%B: Too many sections: %d (>= %d)"),
8633 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8634 bfd_set_error (bfd_error_nonrepresentable_section);
8635 return FALSE;
8636 }
8637 return TRUE;
8638 }
8639
8640 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8641 allowing an unsatisfied unversioned symbol in the DSO to match a
8642 versioned symbol that would normally require an explicit version.
8643 We also handle the case that a DSO references a hidden symbol
8644 which may be satisfied by a versioned symbol in another DSO. */
8645
8646 static bfd_boolean
8647 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8648 const struct elf_backend_data *bed,
8649 struct elf_link_hash_entry *h)
8650 {
8651 bfd *abfd;
8652 struct elf_link_loaded_list *loaded;
8653
8654 if (!is_elf_hash_table (info->hash))
8655 return FALSE;
8656
8657 /* Check indirect symbol. */
8658 while (h->root.type == bfd_link_hash_indirect)
8659 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8660
8661 switch (h->root.type)
8662 {
8663 default:
8664 abfd = NULL;
8665 break;
8666
8667 case bfd_link_hash_undefined:
8668 case bfd_link_hash_undefweak:
8669 abfd = h->root.u.undef.abfd;
8670 if ((abfd->flags & DYNAMIC) == 0
8671 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8672 return FALSE;
8673 break;
8674
8675 case bfd_link_hash_defined:
8676 case bfd_link_hash_defweak:
8677 abfd = h->root.u.def.section->owner;
8678 break;
8679
8680 case bfd_link_hash_common:
8681 abfd = h->root.u.c.p->section->owner;
8682 break;
8683 }
8684 BFD_ASSERT (abfd != NULL);
8685
8686 for (loaded = elf_hash_table (info)->loaded;
8687 loaded != NULL;
8688 loaded = loaded->next)
8689 {
8690 bfd *input;
8691 Elf_Internal_Shdr *hdr;
8692 bfd_size_type symcount;
8693 bfd_size_type extsymcount;
8694 bfd_size_type extsymoff;
8695 Elf_Internal_Shdr *versymhdr;
8696 Elf_Internal_Sym *isym;
8697 Elf_Internal_Sym *isymend;
8698 Elf_Internal_Sym *isymbuf;
8699 Elf_External_Versym *ever;
8700 Elf_External_Versym *extversym;
8701
8702 input = loaded->abfd;
8703
8704 /* We check each DSO for a possible hidden versioned definition. */
8705 if (input == abfd
8706 || (input->flags & DYNAMIC) == 0
8707 || elf_dynversym (input) == 0)
8708 continue;
8709
8710 hdr = &elf_tdata (input)->dynsymtab_hdr;
8711
8712 symcount = hdr->sh_size / bed->s->sizeof_sym;
8713 if (elf_bad_symtab (input))
8714 {
8715 extsymcount = symcount;
8716 extsymoff = 0;
8717 }
8718 else
8719 {
8720 extsymcount = symcount - hdr->sh_info;
8721 extsymoff = hdr->sh_info;
8722 }
8723
8724 if (extsymcount == 0)
8725 continue;
8726
8727 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8728 NULL, NULL, NULL);
8729 if (isymbuf == NULL)
8730 return FALSE;
8731
8732 /* Read in any version definitions. */
8733 versymhdr = &elf_tdata (input)->dynversym_hdr;
8734 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8735 if (extversym == NULL)
8736 goto error_ret;
8737
8738 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8739 || (bfd_bread (extversym, versymhdr->sh_size, input)
8740 != versymhdr->sh_size))
8741 {
8742 free (extversym);
8743 error_ret:
8744 free (isymbuf);
8745 return FALSE;
8746 }
8747
8748 ever = extversym + extsymoff;
8749 isymend = isymbuf + extsymcount;
8750 for (isym = isymbuf; isym < isymend; isym++, ever++)
8751 {
8752 const char *name;
8753 Elf_Internal_Versym iver;
8754 unsigned short version_index;
8755
8756 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8757 || isym->st_shndx == SHN_UNDEF)
8758 continue;
8759
8760 name = bfd_elf_string_from_elf_section (input,
8761 hdr->sh_link,
8762 isym->st_name);
8763 if (strcmp (name, h->root.root.string) != 0)
8764 continue;
8765
8766 _bfd_elf_swap_versym_in (input, ever, &iver);
8767
8768 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8769 && !(h->def_regular
8770 && h->forced_local))
8771 {
8772 /* If we have a non-hidden versioned sym, then it should
8773 have provided a definition for the undefined sym unless
8774 it is defined in a non-shared object and forced local.
8775 */
8776 abort ();
8777 }
8778
8779 version_index = iver.vs_vers & VERSYM_VERSION;
8780 if (version_index == 1 || version_index == 2)
8781 {
8782 /* This is the base or first version. We can use it. */
8783 free (extversym);
8784 free (isymbuf);
8785 return TRUE;
8786 }
8787 }
8788
8789 free (extversym);
8790 free (isymbuf);
8791 }
8792
8793 return FALSE;
8794 }
8795
8796 /* Add an external symbol to the symbol table. This is called from
8797 the hash table traversal routine. When generating a shared object,
8798 we go through the symbol table twice. The first time we output
8799 anything that might have been forced to local scope in a version
8800 script. The second time we output the symbols that are still
8801 global symbols. */
8802
8803 static bfd_boolean
8804 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8805 {
8806 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8807 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8808 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8809 bfd_boolean strip;
8810 Elf_Internal_Sym sym;
8811 asection *input_sec;
8812 const struct elf_backend_data *bed;
8813 long indx;
8814 int ret;
8815
8816 if (h->root.type == bfd_link_hash_warning)
8817 {
8818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8819 if (h->root.type == bfd_link_hash_new)
8820 return TRUE;
8821 }
8822
8823 /* Decide whether to output this symbol in this pass. */
8824 if (eoinfo->localsyms)
8825 {
8826 if (!h->forced_local)
8827 return TRUE;
8828 }
8829 else
8830 {
8831 if (h->forced_local)
8832 return TRUE;
8833 }
8834
8835 bed = get_elf_backend_data (flinfo->output_bfd);
8836
8837 if (h->root.type == bfd_link_hash_undefined)
8838 {
8839 /* If we have an undefined symbol reference here then it must have
8840 come from a shared library that is being linked in. (Undefined
8841 references in regular files have already been handled unless
8842 they are in unreferenced sections which are removed by garbage
8843 collection). */
8844 bfd_boolean ignore_undef = FALSE;
8845
8846 /* Some symbols may be special in that the fact that they're
8847 undefined can be safely ignored - let backend determine that. */
8848 if (bed->elf_backend_ignore_undef_symbol)
8849 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8850
8851 /* If we are reporting errors for this situation then do so now. */
8852 if (!ignore_undef
8853 && h->ref_dynamic
8854 && (!h->ref_regular || flinfo->info->gc_sections)
8855 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8856 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8857 {
8858 if (!(flinfo->info->callbacks->undefined_symbol
8859 (flinfo->info, h->root.root.string,
8860 h->ref_regular ? NULL : h->root.u.undef.abfd,
8861 NULL, 0,
8862 (flinfo->info->unresolved_syms_in_shared_libs
8863 == RM_GENERATE_ERROR))))
8864 {
8865 bfd_set_error (bfd_error_bad_value);
8866 eoinfo->failed = TRUE;
8867 return FALSE;
8868 }
8869 }
8870 }
8871
8872 /* We should also warn if a forced local symbol is referenced from
8873 shared libraries. */
8874 if (!flinfo->info->relocatable
8875 && flinfo->info->executable
8876 && h->forced_local
8877 && h->ref_dynamic
8878 && h->def_regular
8879 && !h->dynamic_def
8880 && h->ref_dynamic_nonweak
8881 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8882 {
8883 bfd *def_bfd;
8884 const char *msg;
8885 struct elf_link_hash_entry *hi = h;
8886
8887 /* Check indirect symbol. */
8888 while (hi->root.type == bfd_link_hash_indirect)
8889 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8890
8891 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8892 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8893 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8894 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8895 else
8896 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8897 def_bfd = flinfo->output_bfd;
8898 if (hi->root.u.def.section != bfd_abs_section_ptr)
8899 def_bfd = hi->root.u.def.section->owner;
8900 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8901 h->root.root.string);
8902 bfd_set_error (bfd_error_bad_value);
8903 eoinfo->failed = TRUE;
8904 return FALSE;
8905 }
8906
8907 /* We don't want to output symbols that have never been mentioned by
8908 a regular file, or that we have been told to strip. However, if
8909 h->indx is set to -2, the symbol is used by a reloc and we must
8910 output it. */
8911 strip = FALSE;
8912 if (h->indx == -2)
8913 ;
8914 else if ((h->def_dynamic
8915 || h->ref_dynamic
8916 || h->root.type == bfd_link_hash_new)
8917 && !h->def_regular
8918 && !h->ref_regular)
8919 strip = TRUE;
8920 else if (flinfo->info->strip == strip_all)
8921 strip = TRUE;
8922 else if (flinfo->info->strip == strip_some
8923 && bfd_hash_lookup (flinfo->info->keep_hash,
8924 h->root.root.string, FALSE, FALSE) == NULL)
8925 strip = TRUE;
8926 else if ((h->root.type == bfd_link_hash_defined
8927 || h->root.type == bfd_link_hash_defweak)
8928 && ((flinfo->info->strip_discarded
8929 && discarded_section (h->root.u.def.section))
8930 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8931 && h->root.u.def.section->owner != NULL
8932 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8933 strip = TRUE;
8934 else if ((h->root.type == bfd_link_hash_undefined
8935 || h->root.type == bfd_link_hash_undefweak)
8936 && h->root.u.undef.abfd != NULL
8937 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8938 strip = TRUE;
8939
8940 /* If we're stripping it, and it's not a dynamic symbol, there's
8941 nothing else to do. However, if it is a forced local symbol or
8942 an ifunc symbol we need to give the backend finish_dynamic_symbol
8943 function a chance to make it dynamic. */
8944 if (strip
8945 && h->dynindx == -1
8946 && h->type != STT_GNU_IFUNC
8947 && !h->forced_local)
8948 return TRUE;
8949
8950 sym.st_value = 0;
8951 sym.st_size = h->size;
8952 sym.st_other = h->other;
8953 if (h->forced_local)
8954 {
8955 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8956 /* Turn off visibility on local symbol. */
8957 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8958 }
8959 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8960 else if (h->unique_global && h->def_regular)
8961 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8962 else if (h->root.type == bfd_link_hash_undefweak
8963 || h->root.type == bfd_link_hash_defweak)
8964 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8965 else
8966 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8967 sym.st_target_internal = h->target_internal;
8968
8969 switch (h->root.type)
8970 {
8971 default:
8972 case bfd_link_hash_new:
8973 case bfd_link_hash_warning:
8974 abort ();
8975 return FALSE;
8976
8977 case bfd_link_hash_undefined:
8978 case bfd_link_hash_undefweak:
8979 input_sec = bfd_und_section_ptr;
8980 sym.st_shndx = SHN_UNDEF;
8981 break;
8982
8983 case bfd_link_hash_defined:
8984 case bfd_link_hash_defweak:
8985 {
8986 input_sec = h->root.u.def.section;
8987 if (input_sec->output_section != NULL)
8988 {
8989 sym.st_shndx =
8990 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8991 input_sec->output_section);
8992 if (sym.st_shndx == SHN_BAD)
8993 {
8994 (*_bfd_error_handler)
8995 (_("%B: could not find output section %A for input section %A"),
8996 flinfo->output_bfd, input_sec->output_section, input_sec);
8997 bfd_set_error (bfd_error_nonrepresentable_section);
8998 eoinfo->failed = TRUE;
8999 return FALSE;
9000 }
9001
9002 /* ELF symbols in relocatable files are section relative,
9003 but in nonrelocatable files they are virtual
9004 addresses. */
9005 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9006 if (!flinfo->info->relocatable)
9007 {
9008 sym.st_value += input_sec->output_section->vma;
9009 if (h->type == STT_TLS)
9010 {
9011 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9012 if (tls_sec != NULL)
9013 sym.st_value -= tls_sec->vma;
9014 }
9015 }
9016 }
9017 else
9018 {
9019 BFD_ASSERT (input_sec->owner == NULL
9020 || (input_sec->owner->flags & DYNAMIC) != 0);
9021 sym.st_shndx = SHN_UNDEF;
9022 input_sec = bfd_und_section_ptr;
9023 }
9024 }
9025 break;
9026
9027 case bfd_link_hash_common:
9028 input_sec = h->root.u.c.p->section;
9029 sym.st_shndx = bed->common_section_index (input_sec);
9030 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9031 break;
9032
9033 case bfd_link_hash_indirect:
9034 /* These symbols are created by symbol versioning. They point
9035 to the decorated version of the name. For example, if the
9036 symbol foo@@GNU_1.2 is the default, which should be used when
9037 foo is used with no version, then we add an indirect symbol
9038 foo which points to foo@@GNU_1.2. We ignore these symbols,
9039 since the indirected symbol is already in the hash table. */
9040 return TRUE;
9041 }
9042
9043 /* Give the processor backend a chance to tweak the symbol value,
9044 and also to finish up anything that needs to be done for this
9045 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9046 forced local syms when non-shared is due to a historical quirk.
9047 STT_GNU_IFUNC symbol must go through PLT. */
9048 if ((h->type == STT_GNU_IFUNC
9049 && h->def_regular
9050 && !flinfo->info->relocatable)
9051 || ((h->dynindx != -1
9052 || h->forced_local)
9053 && ((flinfo->info->shared
9054 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9055 || h->root.type != bfd_link_hash_undefweak))
9056 || !h->forced_local)
9057 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9058 {
9059 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9060 (flinfo->output_bfd, flinfo->info, h, &sym)))
9061 {
9062 eoinfo->failed = TRUE;
9063 return FALSE;
9064 }
9065 }
9066
9067 /* If we are marking the symbol as undefined, and there are no
9068 non-weak references to this symbol from a regular object, then
9069 mark the symbol as weak undefined; if there are non-weak
9070 references, mark the symbol as strong. We can't do this earlier,
9071 because it might not be marked as undefined until the
9072 finish_dynamic_symbol routine gets through with it. */
9073 if (sym.st_shndx == SHN_UNDEF
9074 && h->ref_regular
9075 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9076 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9077 {
9078 int bindtype;
9079 unsigned int type = ELF_ST_TYPE (sym.st_info);
9080
9081 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9082 if (type == STT_GNU_IFUNC)
9083 type = STT_FUNC;
9084
9085 if (h->ref_regular_nonweak)
9086 bindtype = STB_GLOBAL;
9087 else
9088 bindtype = STB_WEAK;
9089 sym.st_info = ELF_ST_INFO (bindtype, type);
9090 }
9091
9092 /* If this is a symbol defined in a dynamic library, don't use the
9093 symbol size from the dynamic library. Relinking an executable
9094 against a new library may introduce gratuitous changes in the
9095 executable's symbols if we keep the size. */
9096 if (sym.st_shndx == SHN_UNDEF
9097 && !h->def_regular
9098 && h->def_dynamic)
9099 sym.st_size = 0;
9100
9101 /* If a non-weak symbol with non-default visibility is not defined
9102 locally, it is a fatal error. */
9103 if (!flinfo->info->relocatable
9104 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9105 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9106 && h->root.type == bfd_link_hash_undefined
9107 && !h->def_regular)
9108 {
9109 const char *msg;
9110
9111 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9112 msg = _("%B: protected symbol `%s' isn't defined");
9113 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9114 msg = _("%B: internal symbol `%s' isn't defined");
9115 else
9116 msg = _("%B: hidden symbol `%s' isn't defined");
9117 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9118 bfd_set_error (bfd_error_bad_value);
9119 eoinfo->failed = TRUE;
9120 return FALSE;
9121 }
9122
9123 /* If this symbol should be put in the .dynsym section, then put it
9124 there now. We already know the symbol index. We also fill in
9125 the entry in the .hash section. */
9126 if (flinfo->dynsym_sec != NULL
9127 && h->dynindx != -1
9128 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9129 {
9130 bfd_byte *esym;
9131
9132 /* Since there is no version information in the dynamic string,
9133 if there is no version info in symbol version section, we will
9134 have a run-time problem. */
9135 if (h->verinfo.verdef == NULL)
9136 {
9137 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9138
9139 if (p && p [1] != '\0')
9140 {
9141 (*_bfd_error_handler)
9142 (_("%B: No symbol version section for versioned symbol `%s'"),
9143 flinfo->output_bfd, h->root.root.string);
9144 eoinfo->failed = TRUE;
9145 return FALSE;
9146 }
9147 }
9148
9149 sym.st_name = h->dynstr_index;
9150 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9151 if (!check_dynsym (flinfo->output_bfd, &sym))
9152 {
9153 eoinfo->failed = TRUE;
9154 return FALSE;
9155 }
9156 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9157
9158 if (flinfo->hash_sec != NULL)
9159 {
9160 size_t hash_entry_size;
9161 bfd_byte *bucketpos;
9162 bfd_vma chain;
9163 size_t bucketcount;
9164 size_t bucket;
9165
9166 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9167 bucket = h->u.elf_hash_value % bucketcount;
9168
9169 hash_entry_size
9170 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9171 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9172 + (bucket + 2) * hash_entry_size);
9173 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9174 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9175 bucketpos);
9176 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9177 ((bfd_byte *) flinfo->hash_sec->contents
9178 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9179 }
9180
9181 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9182 {
9183 Elf_Internal_Versym iversym;
9184 Elf_External_Versym *eversym;
9185
9186 if (!h->def_regular)
9187 {
9188 if (h->verinfo.verdef == NULL
9189 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9190 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9191 iversym.vs_vers = 0;
9192 else
9193 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9194 }
9195 else
9196 {
9197 if (h->verinfo.vertree == NULL)
9198 iversym.vs_vers = 1;
9199 else
9200 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9201 if (flinfo->info->create_default_symver)
9202 iversym.vs_vers++;
9203 }
9204
9205 if (h->hidden)
9206 iversym.vs_vers |= VERSYM_HIDDEN;
9207
9208 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9209 eversym += h->dynindx;
9210 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9211 }
9212 }
9213
9214 /* If the symbol is undefined, and we didn't output it to .dynsym,
9215 strip it from .symtab too. Obviously we can't do this for
9216 relocatable output or when needed for --emit-relocs. */
9217 else if (input_sec == bfd_und_section_ptr
9218 && h->indx != -2
9219 && !flinfo->info->relocatable)
9220 return TRUE;
9221 /* Also strip others that we couldn't earlier due to dynamic symbol
9222 processing. */
9223 if (strip)
9224 return TRUE;
9225 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9226 return TRUE;
9227
9228 /* Output a FILE symbol so that following locals are not associated
9229 with the wrong input file. We need one for forced local symbols
9230 if we've seen more than one FILE symbol or when we have exactly
9231 one FILE symbol but global symbols are present in a file other
9232 than the one with the FILE symbol. We also need one if linker
9233 defined symbols are present. In practice these conditions are
9234 always met, so just emit the FILE symbol unconditionally. */
9235 if (eoinfo->localsyms
9236 && !eoinfo->file_sym_done
9237 && eoinfo->flinfo->filesym_count != 0)
9238 {
9239 Elf_Internal_Sym fsym;
9240
9241 memset (&fsym, 0, sizeof (fsym));
9242 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9243 fsym.st_shndx = SHN_ABS;
9244 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9245 bfd_und_section_ptr, NULL))
9246 return FALSE;
9247
9248 eoinfo->file_sym_done = TRUE;
9249 }
9250
9251 indx = bfd_get_symcount (flinfo->output_bfd);
9252 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9253 if (ret == 0)
9254 {
9255 eoinfo->failed = TRUE;
9256 return FALSE;
9257 }
9258 else if (ret == 1)
9259 h->indx = indx;
9260 else if (h->indx == -2)
9261 abort();
9262
9263 return TRUE;
9264 }
9265
9266 /* Return TRUE if special handling is done for relocs in SEC against
9267 symbols defined in discarded sections. */
9268
9269 static bfd_boolean
9270 elf_section_ignore_discarded_relocs (asection *sec)
9271 {
9272 const struct elf_backend_data *bed;
9273
9274 switch (sec->sec_info_type)
9275 {
9276 case SEC_INFO_TYPE_STABS:
9277 case SEC_INFO_TYPE_EH_FRAME:
9278 return TRUE;
9279 default:
9280 break;
9281 }
9282
9283 bed = get_elf_backend_data (sec->owner);
9284 if (bed->elf_backend_ignore_discarded_relocs != NULL
9285 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9286 return TRUE;
9287
9288 return FALSE;
9289 }
9290
9291 /* Return a mask saying how ld should treat relocations in SEC against
9292 symbols defined in discarded sections. If this function returns
9293 COMPLAIN set, ld will issue a warning message. If this function
9294 returns PRETEND set, and the discarded section was link-once and the
9295 same size as the kept link-once section, ld will pretend that the
9296 symbol was actually defined in the kept section. Otherwise ld will
9297 zero the reloc (at least that is the intent, but some cooperation by
9298 the target dependent code is needed, particularly for REL targets). */
9299
9300 unsigned int
9301 _bfd_elf_default_action_discarded (asection *sec)
9302 {
9303 if (sec->flags & SEC_DEBUGGING)
9304 return PRETEND;
9305
9306 if (strcmp (".eh_frame", sec->name) == 0)
9307 return 0;
9308
9309 if (strcmp (".gcc_except_table", sec->name) == 0)
9310 return 0;
9311
9312 return COMPLAIN | PRETEND;
9313 }
9314
9315 /* Find a match between a section and a member of a section group. */
9316
9317 static asection *
9318 match_group_member (asection *sec, asection *group,
9319 struct bfd_link_info *info)
9320 {
9321 asection *first = elf_next_in_group (group);
9322 asection *s = first;
9323
9324 while (s != NULL)
9325 {
9326 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9327 return s;
9328
9329 s = elf_next_in_group (s);
9330 if (s == first)
9331 break;
9332 }
9333
9334 return NULL;
9335 }
9336
9337 /* Check if the kept section of a discarded section SEC can be used
9338 to replace it. Return the replacement if it is OK. Otherwise return
9339 NULL. */
9340
9341 asection *
9342 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9343 {
9344 asection *kept;
9345
9346 kept = sec->kept_section;
9347 if (kept != NULL)
9348 {
9349 if ((kept->flags & SEC_GROUP) != 0)
9350 kept = match_group_member (sec, kept, info);
9351 if (kept != NULL
9352 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9353 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9354 kept = NULL;
9355 sec->kept_section = kept;
9356 }
9357 return kept;
9358 }
9359
9360 /* Link an input file into the linker output file. This function
9361 handles all the sections and relocations of the input file at once.
9362 This is so that we only have to read the local symbols once, and
9363 don't have to keep them in memory. */
9364
9365 static bfd_boolean
9366 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9367 {
9368 int (*relocate_section)
9369 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9370 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9371 bfd *output_bfd;
9372 Elf_Internal_Shdr *symtab_hdr;
9373 size_t locsymcount;
9374 size_t extsymoff;
9375 Elf_Internal_Sym *isymbuf;
9376 Elf_Internal_Sym *isym;
9377 Elf_Internal_Sym *isymend;
9378 long *pindex;
9379 asection **ppsection;
9380 asection *o;
9381 const struct elf_backend_data *bed;
9382 struct elf_link_hash_entry **sym_hashes;
9383 bfd_size_type address_size;
9384 bfd_vma r_type_mask;
9385 int r_sym_shift;
9386 bfd_boolean have_file_sym = FALSE;
9387
9388 output_bfd = flinfo->output_bfd;
9389 bed = get_elf_backend_data (output_bfd);
9390 relocate_section = bed->elf_backend_relocate_section;
9391
9392 /* If this is a dynamic object, we don't want to do anything here:
9393 we don't want the local symbols, and we don't want the section
9394 contents. */
9395 if ((input_bfd->flags & DYNAMIC) != 0)
9396 return TRUE;
9397
9398 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9399 if (elf_bad_symtab (input_bfd))
9400 {
9401 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9402 extsymoff = 0;
9403 }
9404 else
9405 {
9406 locsymcount = symtab_hdr->sh_info;
9407 extsymoff = symtab_hdr->sh_info;
9408 }
9409
9410 /* Read the local symbols. */
9411 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9412 if (isymbuf == NULL && locsymcount != 0)
9413 {
9414 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9415 flinfo->internal_syms,
9416 flinfo->external_syms,
9417 flinfo->locsym_shndx);
9418 if (isymbuf == NULL)
9419 return FALSE;
9420 }
9421
9422 /* Find local symbol sections and adjust values of symbols in
9423 SEC_MERGE sections. Write out those local symbols we know are
9424 going into the output file. */
9425 isymend = isymbuf + locsymcount;
9426 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9427 isym < isymend;
9428 isym++, pindex++, ppsection++)
9429 {
9430 asection *isec;
9431 const char *name;
9432 Elf_Internal_Sym osym;
9433 long indx;
9434 int ret;
9435
9436 *pindex = -1;
9437
9438 if (elf_bad_symtab (input_bfd))
9439 {
9440 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9441 {
9442 *ppsection = NULL;
9443 continue;
9444 }
9445 }
9446
9447 if (isym->st_shndx == SHN_UNDEF)
9448 isec = bfd_und_section_ptr;
9449 else if (isym->st_shndx == SHN_ABS)
9450 isec = bfd_abs_section_ptr;
9451 else if (isym->st_shndx == SHN_COMMON)
9452 isec = bfd_com_section_ptr;
9453 else
9454 {
9455 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9456 if (isec == NULL)
9457 {
9458 /* Don't attempt to output symbols with st_shnx in the
9459 reserved range other than SHN_ABS and SHN_COMMON. */
9460 *ppsection = NULL;
9461 continue;
9462 }
9463 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9464 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9465 isym->st_value =
9466 _bfd_merged_section_offset (output_bfd, &isec,
9467 elf_section_data (isec)->sec_info,
9468 isym->st_value);
9469 }
9470
9471 *ppsection = isec;
9472
9473 /* Don't output the first, undefined, symbol. In fact, don't
9474 output any undefined local symbol. */
9475 if (isec == bfd_und_section_ptr)
9476 continue;
9477
9478 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9479 {
9480 /* We never output section symbols. Instead, we use the
9481 section symbol of the corresponding section in the output
9482 file. */
9483 continue;
9484 }
9485
9486 /* If we are stripping all symbols, we don't want to output this
9487 one. */
9488 if (flinfo->info->strip == strip_all)
9489 continue;
9490
9491 /* If we are discarding all local symbols, we don't want to
9492 output this one. If we are generating a relocatable output
9493 file, then some of the local symbols may be required by
9494 relocs; we output them below as we discover that they are
9495 needed. */
9496 if (flinfo->info->discard == discard_all)
9497 continue;
9498
9499 /* If this symbol is defined in a section which we are
9500 discarding, we don't need to keep it. */
9501 if (isym->st_shndx != SHN_UNDEF
9502 && isym->st_shndx < SHN_LORESERVE
9503 && bfd_section_removed_from_list (output_bfd,
9504 isec->output_section))
9505 continue;
9506
9507 /* Get the name of the symbol. */
9508 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9509 isym->st_name);
9510 if (name == NULL)
9511 return FALSE;
9512
9513 /* See if we are discarding symbols with this name. */
9514 if ((flinfo->info->strip == strip_some
9515 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9516 == NULL))
9517 || (((flinfo->info->discard == discard_sec_merge
9518 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9519 || flinfo->info->discard == discard_l)
9520 && bfd_is_local_label_name (input_bfd, name)))
9521 continue;
9522
9523 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9524 {
9525 if (input_bfd->lto_output)
9526 /* -flto puts a temp file name here. This means builds
9527 are not reproducible. Discard the symbol. */
9528 continue;
9529 have_file_sym = TRUE;
9530 flinfo->filesym_count += 1;
9531 }
9532 if (!have_file_sym)
9533 {
9534 /* In the absence of debug info, bfd_find_nearest_line uses
9535 FILE symbols to determine the source file for local
9536 function symbols. Provide a FILE symbol here if input
9537 files lack such, so that their symbols won't be
9538 associated with a previous input file. It's not the
9539 source file, but the best we can do. */
9540 have_file_sym = TRUE;
9541 flinfo->filesym_count += 1;
9542 memset (&osym, 0, sizeof (osym));
9543 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9544 osym.st_shndx = SHN_ABS;
9545 if (!elf_link_output_sym (flinfo,
9546 (input_bfd->lto_output ? NULL
9547 : input_bfd->filename),
9548 &osym, bfd_abs_section_ptr, NULL))
9549 return FALSE;
9550 }
9551
9552 osym = *isym;
9553
9554 /* Adjust the section index for the output file. */
9555 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9556 isec->output_section);
9557 if (osym.st_shndx == SHN_BAD)
9558 return FALSE;
9559
9560 /* ELF symbols in relocatable files are section relative, but
9561 in executable files they are virtual addresses. Note that
9562 this code assumes that all ELF sections have an associated
9563 BFD section with a reasonable value for output_offset; below
9564 we assume that they also have a reasonable value for
9565 output_section. Any special sections must be set up to meet
9566 these requirements. */
9567 osym.st_value += isec->output_offset;
9568 if (!flinfo->info->relocatable)
9569 {
9570 osym.st_value += isec->output_section->vma;
9571 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9572 {
9573 /* STT_TLS symbols are relative to PT_TLS segment base. */
9574 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9575 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9576 }
9577 }
9578
9579 indx = bfd_get_symcount (output_bfd);
9580 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9581 if (ret == 0)
9582 return FALSE;
9583 else if (ret == 1)
9584 *pindex = indx;
9585 }
9586
9587 if (bed->s->arch_size == 32)
9588 {
9589 r_type_mask = 0xff;
9590 r_sym_shift = 8;
9591 address_size = 4;
9592 }
9593 else
9594 {
9595 r_type_mask = 0xffffffff;
9596 r_sym_shift = 32;
9597 address_size = 8;
9598 }
9599
9600 /* Relocate the contents of each section. */
9601 sym_hashes = elf_sym_hashes (input_bfd);
9602 for (o = input_bfd->sections; o != NULL; o = o->next)
9603 {
9604 bfd_byte *contents;
9605
9606 if (! o->linker_mark)
9607 {
9608 /* This section was omitted from the link. */
9609 continue;
9610 }
9611
9612 if (flinfo->info->relocatable
9613 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9614 {
9615 /* Deal with the group signature symbol. */
9616 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9617 unsigned long symndx = sec_data->this_hdr.sh_info;
9618 asection *osec = o->output_section;
9619
9620 if (symndx >= locsymcount
9621 || (elf_bad_symtab (input_bfd)
9622 && flinfo->sections[symndx] == NULL))
9623 {
9624 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9625 while (h->root.type == bfd_link_hash_indirect
9626 || h->root.type == bfd_link_hash_warning)
9627 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9628 /* Arrange for symbol to be output. */
9629 h->indx = -2;
9630 elf_section_data (osec)->this_hdr.sh_info = -2;
9631 }
9632 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9633 {
9634 /* We'll use the output section target_index. */
9635 asection *sec = flinfo->sections[symndx]->output_section;
9636 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9637 }
9638 else
9639 {
9640 if (flinfo->indices[symndx] == -1)
9641 {
9642 /* Otherwise output the local symbol now. */
9643 Elf_Internal_Sym sym = isymbuf[symndx];
9644 asection *sec = flinfo->sections[symndx]->output_section;
9645 const char *name;
9646 long indx;
9647 int ret;
9648
9649 name = bfd_elf_string_from_elf_section (input_bfd,
9650 symtab_hdr->sh_link,
9651 sym.st_name);
9652 if (name == NULL)
9653 return FALSE;
9654
9655 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9656 sec);
9657 if (sym.st_shndx == SHN_BAD)
9658 return FALSE;
9659
9660 sym.st_value += o->output_offset;
9661
9662 indx = bfd_get_symcount (output_bfd);
9663 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9664 if (ret == 0)
9665 return FALSE;
9666 else if (ret == 1)
9667 flinfo->indices[symndx] = indx;
9668 else
9669 abort ();
9670 }
9671 elf_section_data (osec)->this_hdr.sh_info
9672 = flinfo->indices[symndx];
9673 }
9674 }
9675
9676 if ((o->flags & SEC_HAS_CONTENTS) == 0
9677 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9678 continue;
9679
9680 if ((o->flags & SEC_LINKER_CREATED) != 0)
9681 {
9682 /* Section was created by _bfd_elf_link_create_dynamic_sections
9683 or somesuch. */
9684 continue;
9685 }
9686
9687 /* Get the contents of the section. They have been cached by a
9688 relaxation routine. Note that o is a section in an input
9689 file, so the contents field will not have been set by any of
9690 the routines which work on output files. */
9691 if (elf_section_data (o)->this_hdr.contents != NULL)
9692 {
9693 contents = elf_section_data (o)->this_hdr.contents;
9694 if (bed->caches_rawsize
9695 && o->rawsize != 0
9696 && o->rawsize < o->size)
9697 {
9698 memcpy (flinfo->contents, contents, o->rawsize);
9699 contents = flinfo->contents;
9700 }
9701 }
9702 else
9703 {
9704 contents = flinfo->contents;
9705 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9706 return FALSE;
9707 }
9708
9709 if ((o->flags & SEC_RELOC) != 0)
9710 {
9711 Elf_Internal_Rela *internal_relocs;
9712 Elf_Internal_Rela *rel, *relend;
9713 int action_discarded;
9714 int ret;
9715
9716 /* Get the swapped relocs. */
9717 internal_relocs
9718 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9719 flinfo->internal_relocs, FALSE);
9720 if (internal_relocs == NULL
9721 && o->reloc_count > 0)
9722 return FALSE;
9723
9724 /* We need to reverse-copy input .ctors/.dtors sections if
9725 they are placed in .init_array/.finit_array for output. */
9726 if (o->size > address_size
9727 && ((strncmp (o->name, ".ctors", 6) == 0
9728 && strcmp (o->output_section->name,
9729 ".init_array") == 0)
9730 || (strncmp (o->name, ".dtors", 6) == 0
9731 && strcmp (o->output_section->name,
9732 ".fini_array") == 0))
9733 && (o->name[6] == 0 || o->name[6] == '.'))
9734 {
9735 if (o->size != o->reloc_count * address_size)
9736 {
9737 (*_bfd_error_handler)
9738 (_("error: %B: size of section %A is not "
9739 "multiple of address size"),
9740 input_bfd, o);
9741 bfd_set_error (bfd_error_on_input);
9742 return FALSE;
9743 }
9744 o->flags |= SEC_ELF_REVERSE_COPY;
9745 }
9746
9747 action_discarded = -1;
9748 if (!elf_section_ignore_discarded_relocs (o))
9749 action_discarded = (*bed->action_discarded) (o);
9750
9751 /* Run through the relocs evaluating complex reloc symbols and
9752 looking for relocs against symbols from discarded sections
9753 or section symbols from removed link-once sections.
9754 Complain about relocs against discarded sections. Zero
9755 relocs against removed link-once sections. */
9756
9757 rel = internal_relocs;
9758 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9759 for ( ; rel < relend; rel++)
9760 {
9761 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9762 unsigned int s_type;
9763 asection **ps, *sec;
9764 struct elf_link_hash_entry *h = NULL;
9765 const char *sym_name;
9766
9767 if (r_symndx == STN_UNDEF)
9768 continue;
9769
9770 if (r_symndx >= locsymcount
9771 || (elf_bad_symtab (input_bfd)
9772 && flinfo->sections[r_symndx] == NULL))
9773 {
9774 h = sym_hashes[r_symndx - extsymoff];
9775
9776 /* Badly formatted input files can contain relocs that
9777 reference non-existant symbols. Check here so that
9778 we do not seg fault. */
9779 if (h == NULL)
9780 {
9781 char buffer [32];
9782
9783 sprintf_vma (buffer, rel->r_info);
9784 (*_bfd_error_handler)
9785 (_("error: %B contains a reloc (0x%s) for section %A "
9786 "that references a non-existent global symbol"),
9787 input_bfd, o, buffer);
9788 bfd_set_error (bfd_error_bad_value);
9789 return FALSE;
9790 }
9791
9792 while (h->root.type == bfd_link_hash_indirect
9793 || h->root.type == bfd_link_hash_warning)
9794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9795
9796 s_type = h->type;
9797
9798 /* If a plugin symbol is referenced from a non-IR file,
9799 mark the symbol as undefined. Note that the
9800 linker may attach linker created dynamic sections
9801 to the plugin bfd. Symbols defined in linker
9802 created sections are not plugin symbols. */
9803 if (h->root.non_ir_ref
9804 && (h->root.type == bfd_link_hash_defined
9805 || h->root.type == bfd_link_hash_defweak)
9806 && (h->root.u.def.section->flags
9807 & SEC_LINKER_CREATED) == 0
9808 && h->root.u.def.section->owner != NULL
9809 && (h->root.u.def.section->owner->flags
9810 & BFD_PLUGIN) != 0)
9811 {
9812 h->root.type = bfd_link_hash_undefined;
9813 h->root.u.undef.abfd = h->root.u.def.section->owner;
9814 }
9815
9816 ps = NULL;
9817 if (h->root.type == bfd_link_hash_defined
9818 || h->root.type == bfd_link_hash_defweak)
9819 ps = &h->root.u.def.section;
9820
9821 sym_name = h->root.root.string;
9822 }
9823 else
9824 {
9825 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9826
9827 s_type = ELF_ST_TYPE (sym->st_info);
9828 ps = &flinfo->sections[r_symndx];
9829 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9830 sym, *ps);
9831 }
9832
9833 if ((s_type == STT_RELC || s_type == STT_SRELC)
9834 && !flinfo->info->relocatable)
9835 {
9836 bfd_vma val;
9837 bfd_vma dot = (rel->r_offset
9838 + o->output_offset + o->output_section->vma);
9839 #ifdef DEBUG
9840 printf ("Encountered a complex symbol!");
9841 printf (" (input_bfd %s, section %s, reloc %ld\n",
9842 input_bfd->filename, o->name,
9843 (long) (rel - internal_relocs));
9844 printf (" symbol: idx %8.8lx, name %s\n",
9845 r_symndx, sym_name);
9846 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9847 (unsigned long) rel->r_info,
9848 (unsigned long) rel->r_offset);
9849 #endif
9850 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9851 isymbuf, locsymcount, s_type == STT_SRELC))
9852 return FALSE;
9853
9854 /* Symbol evaluated OK. Update to absolute value. */
9855 set_symbol_value (input_bfd, isymbuf, locsymcount,
9856 r_symndx, val);
9857 continue;
9858 }
9859
9860 if (action_discarded != -1 && ps != NULL)
9861 {
9862 /* Complain if the definition comes from a
9863 discarded section. */
9864 if ((sec = *ps) != NULL && discarded_section (sec))
9865 {
9866 BFD_ASSERT (r_symndx != STN_UNDEF);
9867 if (action_discarded & COMPLAIN)
9868 (*flinfo->info->callbacks->einfo)
9869 (_("%X`%s' referenced in section `%A' of %B: "
9870 "defined in discarded section `%A' of %B\n"),
9871 sym_name, o, input_bfd, sec, sec->owner);
9872
9873 /* Try to do the best we can to support buggy old
9874 versions of gcc. Pretend that the symbol is
9875 really defined in the kept linkonce section.
9876 FIXME: This is quite broken. Modifying the
9877 symbol here means we will be changing all later
9878 uses of the symbol, not just in this section. */
9879 if (action_discarded & PRETEND)
9880 {
9881 asection *kept;
9882
9883 kept = _bfd_elf_check_kept_section (sec,
9884 flinfo->info);
9885 if (kept != NULL)
9886 {
9887 *ps = kept;
9888 continue;
9889 }
9890 }
9891 }
9892 }
9893 }
9894
9895 /* Relocate the section by invoking a back end routine.
9896
9897 The back end routine is responsible for adjusting the
9898 section contents as necessary, and (if using Rela relocs
9899 and generating a relocatable output file) adjusting the
9900 reloc addend as necessary.
9901
9902 The back end routine does not have to worry about setting
9903 the reloc address or the reloc symbol index.
9904
9905 The back end routine is given a pointer to the swapped in
9906 internal symbols, and can access the hash table entries
9907 for the external symbols via elf_sym_hashes (input_bfd).
9908
9909 When generating relocatable output, the back end routine
9910 must handle STB_LOCAL/STT_SECTION symbols specially. The
9911 output symbol is going to be a section symbol
9912 corresponding to the output section, which will require
9913 the addend to be adjusted. */
9914
9915 ret = (*relocate_section) (output_bfd, flinfo->info,
9916 input_bfd, o, contents,
9917 internal_relocs,
9918 isymbuf,
9919 flinfo->sections);
9920 if (!ret)
9921 return FALSE;
9922
9923 if (ret == 2
9924 || flinfo->info->relocatable
9925 || flinfo->info->emitrelocations)
9926 {
9927 Elf_Internal_Rela *irela;
9928 Elf_Internal_Rela *irelaend, *irelamid;
9929 bfd_vma last_offset;
9930 struct elf_link_hash_entry **rel_hash;
9931 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9932 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9933 unsigned int next_erel;
9934 bfd_boolean rela_normal;
9935 struct bfd_elf_section_data *esdi, *esdo;
9936
9937 esdi = elf_section_data (o);
9938 esdo = elf_section_data (o->output_section);
9939 rela_normal = FALSE;
9940
9941 /* Adjust the reloc addresses and symbol indices. */
9942
9943 irela = internal_relocs;
9944 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9945 rel_hash = esdo->rel.hashes + esdo->rel.count;
9946 /* We start processing the REL relocs, if any. When we reach
9947 IRELAMID in the loop, we switch to the RELA relocs. */
9948 irelamid = irela;
9949 if (esdi->rel.hdr != NULL)
9950 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9951 * bed->s->int_rels_per_ext_rel);
9952 rel_hash_list = rel_hash;
9953 rela_hash_list = NULL;
9954 last_offset = o->output_offset;
9955 if (!flinfo->info->relocatable)
9956 last_offset += o->output_section->vma;
9957 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9958 {
9959 unsigned long r_symndx;
9960 asection *sec;
9961 Elf_Internal_Sym sym;
9962
9963 if (next_erel == bed->s->int_rels_per_ext_rel)
9964 {
9965 rel_hash++;
9966 next_erel = 0;
9967 }
9968
9969 if (irela == irelamid)
9970 {
9971 rel_hash = esdo->rela.hashes + esdo->rela.count;
9972 rela_hash_list = rel_hash;
9973 rela_normal = bed->rela_normal;
9974 }
9975
9976 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9977 flinfo->info, o,
9978 irela->r_offset);
9979 if (irela->r_offset >= (bfd_vma) -2)
9980 {
9981 /* This is a reloc for a deleted entry or somesuch.
9982 Turn it into an R_*_NONE reloc, at the same
9983 offset as the last reloc. elf_eh_frame.c and
9984 bfd_elf_discard_info rely on reloc offsets
9985 being ordered. */
9986 irela->r_offset = last_offset;
9987 irela->r_info = 0;
9988 irela->r_addend = 0;
9989 continue;
9990 }
9991
9992 irela->r_offset += o->output_offset;
9993
9994 /* Relocs in an executable have to be virtual addresses. */
9995 if (!flinfo->info->relocatable)
9996 irela->r_offset += o->output_section->vma;
9997
9998 last_offset = irela->r_offset;
9999
10000 r_symndx = irela->r_info >> r_sym_shift;
10001 if (r_symndx == STN_UNDEF)
10002 continue;
10003
10004 if (r_symndx >= locsymcount
10005 || (elf_bad_symtab (input_bfd)
10006 && flinfo->sections[r_symndx] == NULL))
10007 {
10008 struct elf_link_hash_entry *rh;
10009 unsigned long indx;
10010
10011 /* This is a reloc against a global symbol. We
10012 have not yet output all the local symbols, so
10013 we do not know the symbol index of any global
10014 symbol. We set the rel_hash entry for this
10015 reloc to point to the global hash table entry
10016 for this symbol. The symbol index is then
10017 set at the end of bfd_elf_final_link. */
10018 indx = r_symndx - extsymoff;
10019 rh = elf_sym_hashes (input_bfd)[indx];
10020 while (rh->root.type == bfd_link_hash_indirect
10021 || rh->root.type == bfd_link_hash_warning)
10022 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10023
10024 /* Setting the index to -2 tells
10025 elf_link_output_extsym that this symbol is
10026 used by a reloc. */
10027 BFD_ASSERT (rh->indx < 0);
10028 rh->indx = -2;
10029
10030 *rel_hash = rh;
10031
10032 continue;
10033 }
10034
10035 /* This is a reloc against a local symbol. */
10036
10037 *rel_hash = NULL;
10038 sym = isymbuf[r_symndx];
10039 sec = flinfo->sections[r_symndx];
10040 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10041 {
10042 /* I suppose the backend ought to fill in the
10043 section of any STT_SECTION symbol against a
10044 processor specific section. */
10045 r_symndx = STN_UNDEF;
10046 if (bfd_is_abs_section (sec))
10047 ;
10048 else if (sec == NULL || sec->owner == NULL)
10049 {
10050 bfd_set_error (bfd_error_bad_value);
10051 return FALSE;
10052 }
10053 else
10054 {
10055 asection *osec = sec->output_section;
10056
10057 /* If we have discarded a section, the output
10058 section will be the absolute section. In
10059 case of discarded SEC_MERGE sections, use
10060 the kept section. relocate_section should
10061 have already handled discarded linkonce
10062 sections. */
10063 if (bfd_is_abs_section (osec)
10064 && sec->kept_section != NULL
10065 && sec->kept_section->output_section != NULL)
10066 {
10067 osec = sec->kept_section->output_section;
10068 irela->r_addend -= osec->vma;
10069 }
10070
10071 if (!bfd_is_abs_section (osec))
10072 {
10073 r_symndx = osec->target_index;
10074 if (r_symndx == STN_UNDEF)
10075 {
10076 irela->r_addend += osec->vma;
10077 osec = _bfd_nearby_section (output_bfd, osec,
10078 osec->vma);
10079 irela->r_addend -= osec->vma;
10080 r_symndx = osec->target_index;
10081 }
10082 }
10083 }
10084
10085 /* Adjust the addend according to where the
10086 section winds up in the output section. */
10087 if (rela_normal)
10088 irela->r_addend += sec->output_offset;
10089 }
10090 else
10091 {
10092 if (flinfo->indices[r_symndx] == -1)
10093 {
10094 unsigned long shlink;
10095 const char *name;
10096 asection *osec;
10097 long indx;
10098
10099 if (flinfo->info->strip == strip_all)
10100 {
10101 /* You can't do ld -r -s. */
10102 bfd_set_error (bfd_error_invalid_operation);
10103 return FALSE;
10104 }
10105
10106 /* This symbol was skipped earlier, but
10107 since it is needed by a reloc, we
10108 must output it now. */
10109 shlink = symtab_hdr->sh_link;
10110 name = (bfd_elf_string_from_elf_section
10111 (input_bfd, shlink, sym.st_name));
10112 if (name == NULL)
10113 return FALSE;
10114
10115 osec = sec->output_section;
10116 sym.st_shndx =
10117 _bfd_elf_section_from_bfd_section (output_bfd,
10118 osec);
10119 if (sym.st_shndx == SHN_BAD)
10120 return FALSE;
10121
10122 sym.st_value += sec->output_offset;
10123 if (!flinfo->info->relocatable)
10124 {
10125 sym.st_value += osec->vma;
10126 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10127 {
10128 /* STT_TLS symbols are relative to PT_TLS
10129 segment base. */
10130 BFD_ASSERT (elf_hash_table (flinfo->info)
10131 ->tls_sec != NULL);
10132 sym.st_value -= (elf_hash_table (flinfo->info)
10133 ->tls_sec->vma);
10134 }
10135 }
10136
10137 indx = bfd_get_symcount (output_bfd);
10138 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10139 NULL);
10140 if (ret == 0)
10141 return FALSE;
10142 else if (ret == 1)
10143 flinfo->indices[r_symndx] = indx;
10144 else
10145 abort ();
10146 }
10147
10148 r_symndx = flinfo->indices[r_symndx];
10149 }
10150
10151 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10152 | (irela->r_info & r_type_mask));
10153 }
10154
10155 /* Swap out the relocs. */
10156 input_rel_hdr = esdi->rel.hdr;
10157 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10158 {
10159 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10160 input_rel_hdr,
10161 internal_relocs,
10162 rel_hash_list))
10163 return FALSE;
10164 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10165 * bed->s->int_rels_per_ext_rel);
10166 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10167 }
10168
10169 input_rela_hdr = esdi->rela.hdr;
10170 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10171 {
10172 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10173 input_rela_hdr,
10174 internal_relocs,
10175 rela_hash_list))
10176 return FALSE;
10177 }
10178 }
10179 }
10180
10181 /* Write out the modified section contents. */
10182 if (bed->elf_backend_write_section
10183 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10184 contents))
10185 {
10186 /* Section written out. */
10187 }
10188 else switch (o->sec_info_type)
10189 {
10190 case SEC_INFO_TYPE_STABS:
10191 if (! (_bfd_write_section_stabs
10192 (output_bfd,
10193 &elf_hash_table (flinfo->info)->stab_info,
10194 o, &elf_section_data (o)->sec_info, contents)))
10195 return FALSE;
10196 break;
10197 case SEC_INFO_TYPE_MERGE:
10198 if (! _bfd_write_merged_section (output_bfd, o,
10199 elf_section_data (o)->sec_info))
10200 return FALSE;
10201 break;
10202 case SEC_INFO_TYPE_EH_FRAME:
10203 {
10204 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10205 o, contents))
10206 return FALSE;
10207 }
10208 break;
10209 default:
10210 {
10211 /* FIXME: octets_per_byte. */
10212 if (! (o->flags & SEC_EXCLUDE))
10213 {
10214 file_ptr offset = (file_ptr) o->output_offset;
10215 bfd_size_type todo = o->size;
10216 if ((o->flags & SEC_ELF_REVERSE_COPY))
10217 {
10218 /* Reverse-copy input section to output. */
10219 do
10220 {
10221 todo -= address_size;
10222 if (! bfd_set_section_contents (output_bfd,
10223 o->output_section,
10224 contents + todo,
10225 offset,
10226 address_size))
10227 return FALSE;
10228 if (todo == 0)
10229 break;
10230 offset += address_size;
10231 }
10232 while (1);
10233 }
10234 else if (! bfd_set_section_contents (output_bfd,
10235 o->output_section,
10236 contents,
10237 offset, todo))
10238 return FALSE;
10239 }
10240 }
10241 break;
10242 }
10243 }
10244
10245 return TRUE;
10246 }
10247
10248 /* Generate a reloc when linking an ELF file. This is a reloc
10249 requested by the linker, and does not come from any input file. This
10250 is used to build constructor and destructor tables when linking
10251 with -Ur. */
10252
10253 static bfd_boolean
10254 elf_reloc_link_order (bfd *output_bfd,
10255 struct bfd_link_info *info,
10256 asection *output_section,
10257 struct bfd_link_order *link_order)
10258 {
10259 reloc_howto_type *howto;
10260 long indx;
10261 bfd_vma offset;
10262 bfd_vma addend;
10263 struct bfd_elf_section_reloc_data *reldata;
10264 struct elf_link_hash_entry **rel_hash_ptr;
10265 Elf_Internal_Shdr *rel_hdr;
10266 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10267 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10268 bfd_byte *erel;
10269 unsigned int i;
10270 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10271
10272 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10273 if (howto == NULL)
10274 {
10275 bfd_set_error (bfd_error_bad_value);
10276 return FALSE;
10277 }
10278
10279 addend = link_order->u.reloc.p->addend;
10280
10281 if (esdo->rel.hdr)
10282 reldata = &esdo->rel;
10283 else if (esdo->rela.hdr)
10284 reldata = &esdo->rela;
10285 else
10286 {
10287 reldata = NULL;
10288 BFD_ASSERT (0);
10289 }
10290
10291 /* Figure out the symbol index. */
10292 rel_hash_ptr = reldata->hashes + reldata->count;
10293 if (link_order->type == bfd_section_reloc_link_order)
10294 {
10295 indx = link_order->u.reloc.p->u.section->target_index;
10296 BFD_ASSERT (indx != 0);
10297 *rel_hash_ptr = NULL;
10298 }
10299 else
10300 {
10301 struct elf_link_hash_entry *h;
10302
10303 /* Treat a reloc against a defined symbol as though it were
10304 actually against the section. */
10305 h = ((struct elf_link_hash_entry *)
10306 bfd_wrapped_link_hash_lookup (output_bfd, info,
10307 link_order->u.reloc.p->u.name,
10308 FALSE, FALSE, TRUE));
10309 if (h != NULL
10310 && (h->root.type == bfd_link_hash_defined
10311 || h->root.type == bfd_link_hash_defweak))
10312 {
10313 asection *section;
10314
10315 section = h->root.u.def.section;
10316 indx = section->output_section->target_index;
10317 *rel_hash_ptr = NULL;
10318 /* It seems that we ought to add the symbol value to the
10319 addend here, but in practice it has already been added
10320 because it was passed to constructor_callback. */
10321 addend += section->output_section->vma + section->output_offset;
10322 }
10323 else if (h != NULL)
10324 {
10325 /* Setting the index to -2 tells elf_link_output_extsym that
10326 this symbol is used by a reloc. */
10327 h->indx = -2;
10328 *rel_hash_ptr = h;
10329 indx = 0;
10330 }
10331 else
10332 {
10333 if (! ((*info->callbacks->unattached_reloc)
10334 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10335 return FALSE;
10336 indx = 0;
10337 }
10338 }
10339
10340 /* If this is an inplace reloc, we must write the addend into the
10341 object file. */
10342 if (howto->partial_inplace && addend != 0)
10343 {
10344 bfd_size_type size;
10345 bfd_reloc_status_type rstat;
10346 bfd_byte *buf;
10347 bfd_boolean ok;
10348 const char *sym_name;
10349
10350 size = (bfd_size_type) bfd_get_reloc_size (howto);
10351 buf = (bfd_byte *) bfd_zmalloc (size);
10352 if (buf == NULL && size != 0)
10353 return FALSE;
10354 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10355 switch (rstat)
10356 {
10357 case bfd_reloc_ok:
10358 break;
10359
10360 default:
10361 case bfd_reloc_outofrange:
10362 abort ();
10363
10364 case bfd_reloc_overflow:
10365 if (link_order->type == bfd_section_reloc_link_order)
10366 sym_name = bfd_section_name (output_bfd,
10367 link_order->u.reloc.p->u.section);
10368 else
10369 sym_name = link_order->u.reloc.p->u.name;
10370 if (! ((*info->callbacks->reloc_overflow)
10371 (info, NULL, sym_name, howto->name, addend, NULL,
10372 NULL, (bfd_vma) 0)))
10373 {
10374 free (buf);
10375 return FALSE;
10376 }
10377 break;
10378 }
10379 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10380 link_order->offset, size);
10381 free (buf);
10382 if (! ok)
10383 return FALSE;
10384 }
10385
10386 /* The address of a reloc is relative to the section in a
10387 relocatable file, and is a virtual address in an executable
10388 file. */
10389 offset = link_order->offset;
10390 if (! info->relocatable)
10391 offset += output_section->vma;
10392
10393 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10394 {
10395 irel[i].r_offset = offset;
10396 irel[i].r_info = 0;
10397 irel[i].r_addend = 0;
10398 }
10399 if (bed->s->arch_size == 32)
10400 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10401 else
10402 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10403
10404 rel_hdr = reldata->hdr;
10405 erel = rel_hdr->contents;
10406 if (rel_hdr->sh_type == SHT_REL)
10407 {
10408 erel += reldata->count * bed->s->sizeof_rel;
10409 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10410 }
10411 else
10412 {
10413 irel[0].r_addend = addend;
10414 erel += reldata->count * bed->s->sizeof_rela;
10415 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10416 }
10417
10418 ++reldata->count;
10419
10420 return TRUE;
10421 }
10422
10423
10424 /* Get the output vma of the section pointed to by the sh_link field. */
10425
10426 static bfd_vma
10427 elf_get_linked_section_vma (struct bfd_link_order *p)
10428 {
10429 Elf_Internal_Shdr **elf_shdrp;
10430 asection *s;
10431 int elfsec;
10432
10433 s = p->u.indirect.section;
10434 elf_shdrp = elf_elfsections (s->owner);
10435 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10436 elfsec = elf_shdrp[elfsec]->sh_link;
10437 /* PR 290:
10438 The Intel C compiler generates SHT_IA_64_UNWIND with
10439 SHF_LINK_ORDER. But it doesn't set the sh_link or
10440 sh_info fields. Hence we could get the situation
10441 where elfsec is 0. */
10442 if (elfsec == 0)
10443 {
10444 const struct elf_backend_data *bed
10445 = get_elf_backend_data (s->owner);
10446 if (bed->link_order_error_handler)
10447 bed->link_order_error_handler
10448 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10449 return 0;
10450 }
10451 else
10452 {
10453 s = elf_shdrp[elfsec]->bfd_section;
10454 return s->output_section->vma + s->output_offset;
10455 }
10456 }
10457
10458
10459 /* Compare two sections based on the locations of the sections they are
10460 linked to. Used by elf_fixup_link_order. */
10461
10462 static int
10463 compare_link_order (const void * a, const void * b)
10464 {
10465 bfd_vma apos;
10466 bfd_vma bpos;
10467
10468 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10469 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10470 if (apos < bpos)
10471 return -1;
10472 return apos > bpos;
10473 }
10474
10475
10476 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10477 order as their linked sections. Returns false if this could not be done
10478 because an output section includes both ordered and unordered
10479 sections. Ideally we'd do this in the linker proper. */
10480
10481 static bfd_boolean
10482 elf_fixup_link_order (bfd *abfd, asection *o)
10483 {
10484 int seen_linkorder;
10485 int seen_other;
10486 int n;
10487 struct bfd_link_order *p;
10488 bfd *sub;
10489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10490 unsigned elfsec;
10491 struct bfd_link_order **sections;
10492 asection *s, *other_sec, *linkorder_sec;
10493 bfd_vma offset;
10494
10495 other_sec = NULL;
10496 linkorder_sec = NULL;
10497 seen_other = 0;
10498 seen_linkorder = 0;
10499 for (p = o->map_head.link_order; p != NULL; p = p->next)
10500 {
10501 if (p->type == bfd_indirect_link_order)
10502 {
10503 s = p->u.indirect.section;
10504 sub = s->owner;
10505 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10506 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10507 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10508 && elfsec < elf_numsections (sub)
10509 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10510 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10511 {
10512 seen_linkorder++;
10513 linkorder_sec = s;
10514 }
10515 else
10516 {
10517 seen_other++;
10518 other_sec = s;
10519 }
10520 }
10521 else
10522 seen_other++;
10523
10524 if (seen_other && seen_linkorder)
10525 {
10526 if (other_sec && linkorder_sec)
10527 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10528 o, linkorder_sec,
10529 linkorder_sec->owner, other_sec,
10530 other_sec->owner);
10531 else
10532 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10533 o);
10534 bfd_set_error (bfd_error_bad_value);
10535 return FALSE;
10536 }
10537 }
10538
10539 if (!seen_linkorder)
10540 return TRUE;
10541
10542 sections = (struct bfd_link_order **)
10543 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10544 if (sections == NULL)
10545 return FALSE;
10546 seen_linkorder = 0;
10547
10548 for (p = o->map_head.link_order; p != NULL; p = p->next)
10549 {
10550 sections[seen_linkorder++] = p;
10551 }
10552 /* Sort the input sections in the order of their linked section. */
10553 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10554 compare_link_order);
10555
10556 /* Change the offsets of the sections. */
10557 offset = 0;
10558 for (n = 0; n < seen_linkorder; n++)
10559 {
10560 s = sections[n]->u.indirect.section;
10561 offset &= ~(bfd_vma) 0 << s->alignment_power;
10562 s->output_offset = offset;
10563 sections[n]->offset = offset;
10564 /* FIXME: octets_per_byte. */
10565 offset += sections[n]->size;
10566 }
10567
10568 free (sections);
10569 return TRUE;
10570 }
10571
10572 static void
10573 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10574 {
10575 asection *o;
10576
10577 if (flinfo->symstrtab != NULL)
10578 _bfd_stringtab_free (flinfo->symstrtab);
10579 if (flinfo->contents != NULL)
10580 free (flinfo->contents);
10581 if (flinfo->external_relocs != NULL)
10582 free (flinfo->external_relocs);
10583 if (flinfo->internal_relocs != NULL)
10584 free (flinfo->internal_relocs);
10585 if (flinfo->external_syms != NULL)
10586 free (flinfo->external_syms);
10587 if (flinfo->locsym_shndx != NULL)
10588 free (flinfo->locsym_shndx);
10589 if (flinfo->internal_syms != NULL)
10590 free (flinfo->internal_syms);
10591 if (flinfo->indices != NULL)
10592 free (flinfo->indices);
10593 if (flinfo->sections != NULL)
10594 free (flinfo->sections);
10595 if (flinfo->symbuf != NULL)
10596 free (flinfo->symbuf);
10597 if (flinfo->symshndxbuf != NULL)
10598 free (flinfo->symshndxbuf);
10599 for (o = obfd->sections; o != NULL; o = o->next)
10600 {
10601 struct bfd_elf_section_data *esdo = elf_section_data (o);
10602 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10603 free (esdo->rel.hashes);
10604 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10605 free (esdo->rela.hashes);
10606 }
10607 }
10608
10609 /* Do the final step of an ELF link. */
10610
10611 bfd_boolean
10612 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10613 {
10614 bfd_boolean dynamic;
10615 bfd_boolean emit_relocs;
10616 bfd *dynobj;
10617 struct elf_final_link_info flinfo;
10618 asection *o;
10619 struct bfd_link_order *p;
10620 bfd *sub;
10621 bfd_size_type max_contents_size;
10622 bfd_size_type max_external_reloc_size;
10623 bfd_size_type max_internal_reloc_count;
10624 bfd_size_type max_sym_count;
10625 bfd_size_type max_sym_shndx_count;
10626 Elf_Internal_Sym elfsym;
10627 unsigned int i;
10628 Elf_Internal_Shdr *symtab_hdr;
10629 Elf_Internal_Shdr *symtab_shndx_hdr;
10630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10631 struct elf_outext_info eoinfo;
10632 bfd_boolean merged;
10633 size_t relativecount = 0;
10634 asection *reldyn = 0;
10635 bfd_size_type amt;
10636 asection *attr_section = NULL;
10637 bfd_vma attr_size = 0;
10638 const char *std_attrs_section;
10639
10640 if (! is_elf_hash_table (info->hash))
10641 return FALSE;
10642
10643 if (info->shared)
10644 abfd->flags |= DYNAMIC;
10645
10646 dynamic = elf_hash_table (info)->dynamic_sections_created;
10647 dynobj = elf_hash_table (info)->dynobj;
10648
10649 emit_relocs = (info->relocatable
10650 || info->emitrelocations);
10651
10652 flinfo.info = info;
10653 flinfo.output_bfd = abfd;
10654 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10655 if (flinfo.symstrtab == NULL)
10656 return FALSE;
10657
10658 if (! dynamic)
10659 {
10660 flinfo.dynsym_sec = NULL;
10661 flinfo.hash_sec = NULL;
10662 flinfo.symver_sec = NULL;
10663 }
10664 else
10665 {
10666 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10667 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10668 /* Note that dynsym_sec can be NULL (on VMS). */
10669 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10670 /* Note that it is OK if symver_sec is NULL. */
10671 }
10672
10673 flinfo.contents = NULL;
10674 flinfo.external_relocs = NULL;
10675 flinfo.internal_relocs = NULL;
10676 flinfo.external_syms = NULL;
10677 flinfo.locsym_shndx = NULL;
10678 flinfo.internal_syms = NULL;
10679 flinfo.indices = NULL;
10680 flinfo.sections = NULL;
10681 flinfo.symbuf = NULL;
10682 flinfo.symshndxbuf = NULL;
10683 flinfo.symbuf_count = 0;
10684 flinfo.shndxbuf_size = 0;
10685 flinfo.filesym_count = 0;
10686
10687 /* The object attributes have been merged. Remove the input
10688 sections from the link, and set the contents of the output
10689 secton. */
10690 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10691 for (o = abfd->sections; o != NULL; o = o->next)
10692 {
10693 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10694 || strcmp (o->name, ".gnu.attributes") == 0)
10695 {
10696 for (p = o->map_head.link_order; p != NULL; p = p->next)
10697 {
10698 asection *input_section;
10699
10700 if (p->type != bfd_indirect_link_order)
10701 continue;
10702 input_section = p->u.indirect.section;
10703 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10704 elf_link_input_bfd ignores this section. */
10705 input_section->flags &= ~SEC_HAS_CONTENTS;
10706 }
10707
10708 attr_size = bfd_elf_obj_attr_size (abfd);
10709 if (attr_size)
10710 {
10711 bfd_set_section_size (abfd, o, attr_size);
10712 attr_section = o;
10713 /* Skip this section later on. */
10714 o->map_head.link_order = NULL;
10715 }
10716 else
10717 o->flags |= SEC_EXCLUDE;
10718 }
10719 }
10720
10721 /* Count up the number of relocations we will output for each output
10722 section, so that we know the sizes of the reloc sections. We
10723 also figure out some maximum sizes. */
10724 max_contents_size = 0;
10725 max_external_reloc_size = 0;
10726 max_internal_reloc_count = 0;
10727 max_sym_count = 0;
10728 max_sym_shndx_count = 0;
10729 merged = FALSE;
10730 for (o = abfd->sections; o != NULL; o = o->next)
10731 {
10732 struct bfd_elf_section_data *esdo = elf_section_data (o);
10733 o->reloc_count = 0;
10734
10735 for (p = o->map_head.link_order; p != NULL; p = p->next)
10736 {
10737 unsigned int reloc_count = 0;
10738 struct bfd_elf_section_data *esdi = NULL;
10739
10740 if (p->type == bfd_section_reloc_link_order
10741 || p->type == bfd_symbol_reloc_link_order)
10742 reloc_count = 1;
10743 else if (p->type == bfd_indirect_link_order)
10744 {
10745 asection *sec;
10746
10747 sec = p->u.indirect.section;
10748 esdi = elf_section_data (sec);
10749
10750 /* Mark all sections which are to be included in the
10751 link. This will normally be every section. We need
10752 to do this so that we can identify any sections which
10753 the linker has decided to not include. */
10754 sec->linker_mark = TRUE;
10755
10756 if (sec->flags & SEC_MERGE)
10757 merged = TRUE;
10758
10759 if (esdo->this_hdr.sh_type == SHT_REL
10760 || esdo->this_hdr.sh_type == SHT_RELA)
10761 /* Some backends use reloc_count in relocation sections
10762 to count particular types of relocs. Of course,
10763 reloc sections themselves can't have relocations. */
10764 reloc_count = 0;
10765 else if (info->relocatable || info->emitrelocations)
10766 reloc_count = sec->reloc_count;
10767 else if (bed->elf_backend_count_relocs)
10768 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10769
10770 if (sec->rawsize > max_contents_size)
10771 max_contents_size = sec->rawsize;
10772 if (sec->size > max_contents_size)
10773 max_contents_size = sec->size;
10774
10775 /* We are interested in just local symbols, not all
10776 symbols. */
10777 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10778 && (sec->owner->flags & DYNAMIC) == 0)
10779 {
10780 size_t sym_count;
10781
10782 if (elf_bad_symtab (sec->owner))
10783 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10784 / bed->s->sizeof_sym);
10785 else
10786 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10787
10788 if (sym_count > max_sym_count)
10789 max_sym_count = sym_count;
10790
10791 if (sym_count > max_sym_shndx_count
10792 && elf_symtab_shndx (sec->owner) != 0)
10793 max_sym_shndx_count = sym_count;
10794
10795 if ((sec->flags & SEC_RELOC) != 0)
10796 {
10797 size_t ext_size = 0;
10798
10799 if (esdi->rel.hdr != NULL)
10800 ext_size = esdi->rel.hdr->sh_size;
10801 if (esdi->rela.hdr != NULL)
10802 ext_size += esdi->rela.hdr->sh_size;
10803
10804 if (ext_size > max_external_reloc_size)
10805 max_external_reloc_size = ext_size;
10806 if (sec->reloc_count > max_internal_reloc_count)
10807 max_internal_reloc_count = sec->reloc_count;
10808 }
10809 }
10810 }
10811
10812 if (reloc_count == 0)
10813 continue;
10814
10815 o->reloc_count += reloc_count;
10816
10817 if (p->type == bfd_indirect_link_order
10818 && (info->relocatable || info->emitrelocations))
10819 {
10820 if (esdi->rel.hdr)
10821 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10822 if (esdi->rela.hdr)
10823 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10824 }
10825 else
10826 {
10827 if (o->use_rela_p)
10828 esdo->rela.count += reloc_count;
10829 else
10830 esdo->rel.count += reloc_count;
10831 }
10832 }
10833
10834 if (o->reloc_count > 0)
10835 o->flags |= SEC_RELOC;
10836 else
10837 {
10838 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10839 set it (this is probably a bug) and if it is set
10840 assign_section_numbers will create a reloc section. */
10841 o->flags &=~ SEC_RELOC;
10842 }
10843
10844 /* If the SEC_ALLOC flag is not set, force the section VMA to
10845 zero. This is done in elf_fake_sections as well, but forcing
10846 the VMA to 0 here will ensure that relocs against these
10847 sections are handled correctly. */
10848 if ((o->flags & SEC_ALLOC) == 0
10849 && ! o->user_set_vma)
10850 o->vma = 0;
10851 }
10852
10853 if (! info->relocatable && merged)
10854 elf_link_hash_traverse (elf_hash_table (info),
10855 _bfd_elf_link_sec_merge_syms, abfd);
10856
10857 /* Figure out the file positions for everything but the symbol table
10858 and the relocs. We set symcount to force assign_section_numbers
10859 to create a symbol table. */
10860 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10861 BFD_ASSERT (! abfd->output_has_begun);
10862 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10863 goto error_return;
10864
10865 /* Set sizes, and assign file positions for reloc sections. */
10866 for (o = abfd->sections; o != NULL; o = o->next)
10867 {
10868 struct bfd_elf_section_data *esdo = elf_section_data (o);
10869 if ((o->flags & SEC_RELOC) != 0)
10870 {
10871 if (esdo->rel.hdr
10872 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10873 goto error_return;
10874
10875 if (esdo->rela.hdr
10876 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10877 goto error_return;
10878 }
10879
10880 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10881 to count upwards while actually outputting the relocations. */
10882 esdo->rel.count = 0;
10883 esdo->rela.count = 0;
10884 }
10885
10886 /* We have now assigned file positions for all the sections except
10887 .symtab, .strtab, and non-loaded reloc sections. We start the
10888 .symtab section at the current file position, and write directly
10889 to it. We build the .strtab section in memory. */
10890 bfd_get_symcount (abfd) = 0;
10891 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10892 /* sh_name is set in prep_headers. */
10893 symtab_hdr->sh_type = SHT_SYMTAB;
10894 /* sh_flags, sh_addr and sh_size all start off zero. */
10895 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10896 /* sh_link is set in assign_section_numbers. */
10897 /* sh_info is set below. */
10898 /* sh_offset is set just below. */
10899 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10900
10901 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10902 continuously seeking to the right position in the file. */
10903 if (! info->keep_memory || max_sym_count < 20)
10904 flinfo.symbuf_size = 20;
10905 else
10906 flinfo.symbuf_size = max_sym_count;
10907 amt = flinfo.symbuf_size;
10908 amt *= bed->s->sizeof_sym;
10909 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10910 if (flinfo.symbuf == NULL)
10911 goto error_return;
10912 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10913 {
10914 /* Wild guess at number of output symbols. realloc'd as needed. */
10915 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10916 flinfo.shndxbuf_size = amt;
10917 amt *= sizeof (Elf_External_Sym_Shndx);
10918 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10919 if (flinfo.symshndxbuf == NULL)
10920 goto error_return;
10921 }
10922
10923 if (info->strip != strip_all || emit_relocs)
10924 {
10925 file_ptr off = elf_next_file_pos (abfd);
10926
10927 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10928
10929 /* Note that at this point elf_next_file_pos (abfd) is
10930 incorrect. We do not yet know the size of the .symtab section.
10931 We correct next_file_pos below, after we do know the size. */
10932
10933 /* Start writing out the symbol table. The first symbol is always a
10934 dummy symbol. */
10935 elfsym.st_value = 0;
10936 elfsym.st_size = 0;
10937 elfsym.st_info = 0;
10938 elfsym.st_other = 0;
10939 elfsym.st_shndx = SHN_UNDEF;
10940 elfsym.st_target_internal = 0;
10941 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10942 NULL) != 1)
10943 goto error_return;
10944
10945 /* Output a symbol for each section. We output these even if we are
10946 discarding local symbols, since they are used for relocs. These
10947 symbols have no names. We store the index of each one in the
10948 index field of the section, so that we can find it again when
10949 outputting relocs. */
10950
10951 elfsym.st_size = 0;
10952 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10953 elfsym.st_other = 0;
10954 elfsym.st_value = 0;
10955 elfsym.st_target_internal = 0;
10956 for (i = 1; i < elf_numsections (abfd); i++)
10957 {
10958 o = bfd_section_from_elf_index (abfd, i);
10959 if (o != NULL)
10960 {
10961 o->target_index = bfd_get_symcount (abfd);
10962 elfsym.st_shndx = i;
10963 if (!info->relocatable)
10964 elfsym.st_value = o->vma;
10965 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10966 goto error_return;
10967 }
10968 }
10969 }
10970
10971 /* Allocate some memory to hold information read in from the input
10972 files. */
10973 if (max_contents_size != 0)
10974 {
10975 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10976 if (flinfo.contents == NULL)
10977 goto error_return;
10978 }
10979
10980 if (max_external_reloc_size != 0)
10981 {
10982 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10983 if (flinfo.external_relocs == NULL)
10984 goto error_return;
10985 }
10986
10987 if (max_internal_reloc_count != 0)
10988 {
10989 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10990 amt *= sizeof (Elf_Internal_Rela);
10991 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10992 if (flinfo.internal_relocs == NULL)
10993 goto error_return;
10994 }
10995
10996 if (max_sym_count != 0)
10997 {
10998 amt = max_sym_count * bed->s->sizeof_sym;
10999 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11000 if (flinfo.external_syms == NULL)
11001 goto error_return;
11002
11003 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11004 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11005 if (flinfo.internal_syms == NULL)
11006 goto error_return;
11007
11008 amt = max_sym_count * sizeof (long);
11009 flinfo.indices = (long int *) bfd_malloc (amt);
11010 if (flinfo.indices == NULL)
11011 goto error_return;
11012
11013 amt = max_sym_count * sizeof (asection *);
11014 flinfo.sections = (asection **) bfd_malloc (amt);
11015 if (flinfo.sections == NULL)
11016 goto error_return;
11017 }
11018
11019 if (max_sym_shndx_count != 0)
11020 {
11021 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11022 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11023 if (flinfo.locsym_shndx == NULL)
11024 goto error_return;
11025 }
11026
11027 if (elf_hash_table (info)->tls_sec)
11028 {
11029 bfd_vma base, end = 0;
11030 asection *sec;
11031
11032 for (sec = elf_hash_table (info)->tls_sec;
11033 sec && (sec->flags & SEC_THREAD_LOCAL);
11034 sec = sec->next)
11035 {
11036 bfd_size_type size = sec->size;
11037
11038 if (size == 0
11039 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11040 {
11041 struct bfd_link_order *ord = sec->map_tail.link_order;
11042
11043 if (ord != NULL)
11044 size = ord->offset + ord->size;
11045 }
11046 end = sec->vma + size;
11047 }
11048 base = elf_hash_table (info)->tls_sec->vma;
11049 /* Only align end of TLS section if static TLS doesn't have special
11050 alignment requirements. */
11051 if (bed->static_tls_alignment == 1)
11052 end = align_power (end,
11053 elf_hash_table (info)->tls_sec->alignment_power);
11054 elf_hash_table (info)->tls_size = end - base;
11055 }
11056
11057 /* Reorder SHF_LINK_ORDER sections. */
11058 for (o = abfd->sections; o != NULL; o = o->next)
11059 {
11060 if (!elf_fixup_link_order (abfd, o))
11061 return FALSE;
11062 }
11063
11064 /* Since ELF permits relocations to be against local symbols, we
11065 must have the local symbols available when we do the relocations.
11066 Since we would rather only read the local symbols once, and we
11067 would rather not keep them in memory, we handle all the
11068 relocations for a single input file at the same time.
11069
11070 Unfortunately, there is no way to know the total number of local
11071 symbols until we have seen all of them, and the local symbol
11072 indices precede the global symbol indices. This means that when
11073 we are generating relocatable output, and we see a reloc against
11074 a global symbol, we can not know the symbol index until we have
11075 finished examining all the local symbols to see which ones we are
11076 going to output. To deal with this, we keep the relocations in
11077 memory, and don't output them until the end of the link. This is
11078 an unfortunate waste of memory, but I don't see a good way around
11079 it. Fortunately, it only happens when performing a relocatable
11080 link, which is not the common case. FIXME: If keep_memory is set
11081 we could write the relocs out and then read them again; I don't
11082 know how bad the memory loss will be. */
11083
11084 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11085 sub->output_has_begun = FALSE;
11086 for (o = abfd->sections; o != NULL; o = o->next)
11087 {
11088 for (p = o->map_head.link_order; p != NULL; p = p->next)
11089 {
11090 if (p->type == bfd_indirect_link_order
11091 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11092 == bfd_target_elf_flavour)
11093 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11094 {
11095 if (! sub->output_has_begun)
11096 {
11097 if (! elf_link_input_bfd (&flinfo, sub))
11098 goto error_return;
11099 sub->output_has_begun = TRUE;
11100 }
11101 }
11102 else if (p->type == bfd_section_reloc_link_order
11103 || p->type == bfd_symbol_reloc_link_order)
11104 {
11105 if (! elf_reloc_link_order (abfd, info, o, p))
11106 goto error_return;
11107 }
11108 else
11109 {
11110 if (! _bfd_default_link_order (abfd, info, o, p))
11111 {
11112 if (p->type == bfd_indirect_link_order
11113 && (bfd_get_flavour (sub)
11114 == bfd_target_elf_flavour)
11115 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11116 != bed->s->elfclass))
11117 {
11118 const char *iclass, *oclass;
11119
11120 if (bed->s->elfclass == ELFCLASS64)
11121 {
11122 iclass = "ELFCLASS32";
11123 oclass = "ELFCLASS64";
11124 }
11125 else
11126 {
11127 iclass = "ELFCLASS64";
11128 oclass = "ELFCLASS32";
11129 }
11130
11131 bfd_set_error (bfd_error_wrong_format);
11132 (*_bfd_error_handler)
11133 (_("%B: file class %s incompatible with %s"),
11134 sub, iclass, oclass);
11135 }
11136
11137 goto error_return;
11138 }
11139 }
11140 }
11141 }
11142
11143 /* Free symbol buffer if needed. */
11144 if (!info->reduce_memory_overheads)
11145 {
11146 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11147 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11148 && elf_tdata (sub)->symbuf)
11149 {
11150 free (elf_tdata (sub)->symbuf);
11151 elf_tdata (sub)->symbuf = NULL;
11152 }
11153 }
11154
11155 /* Output any global symbols that got converted to local in a
11156 version script or due to symbol visibility. We do this in a
11157 separate step since ELF requires all local symbols to appear
11158 prior to any global symbols. FIXME: We should only do this if
11159 some global symbols were, in fact, converted to become local.
11160 FIXME: Will this work correctly with the Irix 5 linker? */
11161 eoinfo.failed = FALSE;
11162 eoinfo.flinfo = &flinfo;
11163 eoinfo.localsyms = TRUE;
11164 eoinfo.file_sym_done = FALSE;
11165 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11166 if (eoinfo.failed)
11167 return FALSE;
11168
11169 /* If backend needs to output some local symbols not present in the hash
11170 table, do it now. */
11171 if (bed->elf_backend_output_arch_local_syms
11172 && (info->strip != strip_all || emit_relocs))
11173 {
11174 typedef int (*out_sym_func)
11175 (void *, const char *, Elf_Internal_Sym *, asection *,
11176 struct elf_link_hash_entry *);
11177
11178 if (! ((*bed->elf_backend_output_arch_local_syms)
11179 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11180 return FALSE;
11181 }
11182
11183 /* That wrote out all the local symbols. Finish up the symbol table
11184 with the global symbols. Even if we want to strip everything we
11185 can, we still need to deal with those global symbols that got
11186 converted to local in a version script. */
11187
11188 /* The sh_info field records the index of the first non local symbol. */
11189 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11190
11191 if (dynamic
11192 && flinfo.dynsym_sec != NULL
11193 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11194 {
11195 Elf_Internal_Sym sym;
11196 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11197 long last_local = 0;
11198
11199 /* Write out the section symbols for the output sections. */
11200 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11201 {
11202 asection *s;
11203
11204 sym.st_size = 0;
11205 sym.st_name = 0;
11206 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11207 sym.st_other = 0;
11208 sym.st_target_internal = 0;
11209
11210 for (s = abfd->sections; s != NULL; s = s->next)
11211 {
11212 int indx;
11213 bfd_byte *dest;
11214 long dynindx;
11215
11216 dynindx = elf_section_data (s)->dynindx;
11217 if (dynindx <= 0)
11218 continue;
11219 indx = elf_section_data (s)->this_idx;
11220 BFD_ASSERT (indx > 0);
11221 sym.st_shndx = indx;
11222 if (! check_dynsym (abfd, &sym))
11223 return FALSE;
11224 sym.st_value = s->vma;
11225 dest = dynsym + dynindx * bed->s->sizeof_sym;
11226 if (last_local < dynindx)
11227 last_local = dynindx;
11228 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11229 }
11230 }
11231
11232 /* Write out the local dynsyms. */
11233 if (elf_hash_table (info)->dynlocal)
11234 {
11235 struct elf_link_local_dynamic_entry *e;
11236 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11237 {
11238 asection *s;
11239 bfd_byte *dest;
11240
11241 /* Copy the internal symbol and turn off visibility.
11242 Note that we saved a word of storage and overwrote
11243 the original st_name with the dynstr_index. */
11244 sym = e->isym;
11245 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11246
11247 s = bfd_section_from_elf_index (e->input_bfd,
11248 e->isym.st_shndx);
11249 if (s != NULL)
11250 {
11251 sym.st_shndx =
11252 elf_section_data (s->output_section)->this_idx;
11253 if (! check_dynsym (abfd, &sym))
11254 return FALSE;
11255 sym.st_value = (s->output_section->vma
11256 + s->output_offset
11257 + e->isym.st_value);
11258 }
11259
11260 if (last_local < e->dynindx)
11261 last_local = e->dynindx;
11262
11263 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11264 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11265 }
11266 }
11267
11268 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11269 last_local + 1;
11270 }
11271
11272 /* We get the global symbols from the hash table. */
11273 eoinfo.failed = FALSE;
11274 eoinfo.localsyms = FALSE;
11275 eoinfo.flinfo = &flinfo;
11276 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11277 if (eoinfo.failed)
11278 return FALSE;
11279
11280 /* If backend needs to output some symbols not present in the hash
11281 table, do it now. */
11282 if (bed->elf_backend_output_arch_syms
11283 && (info->strip != strip_all || emit_relocs))
11284 {
11285 typedef int (*out_sym_func)
11286 (void *, const char *, Elf_Internal_Sym *, asection *,
11287 struct elf_link_hash_entry *);
11288
11289 if (! ((*bed->elf_backend_output_arch_syms)
11290 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11291 return FALSE;
11292 }
11293
11294 /* Flush all symbols to the file. */
11295 if (! elf_link_flush_output_syms (&flinfo, bed))
11296 return FALSE;
11297
11298 /* Now we know the size of the symtab section. */
11299 if (bfd_get_symcount (abfd) > 0)
11300 {
11301 /* Finish up and write out the symbol string table (.strtab)
11302 section. */
11303 Elf_Internal_Shdr *symstrtab_hdr;
11304 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11305
11306 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11307 if (symtab_shndx_hdr->sh_name != 0)
11308 {
11309 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11310 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11311 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11312 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11313 symtab_shndx_hdr->sh_size = amt;
11314
11315 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11316 off, TRUE);
11317
11318 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11319 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11320 return FALSE;
11321 }
11322
11323 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11324 /* sh_name was set in prep_headers. */
11325 symstrtab_hdr->sh_type = SHT_STRTAB;
11326 symstrtab_hdr->sh_flags = 0;
11327 symstrtab_hdr->sh_addr = 0;
11328 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11329 symstrtab_hdr->sh_entsize = 0;
11330 symstrtab_hdr->sh_link = 0;
11331 symstrtab_hdr->sh_info = 0;
11332 /* sh_offset is set just below. */
11333 symstrtab_hdr->sh_addralign = 1;
11334
11335 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11336 off, TRUE);
11337 elf_next_file_pos (abfd) = off;
11338
11339 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11340 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11341 return FALSE;
11342 }
11343
11344 /* Adjust the relocs to have the correct symbol indices. */
11345 for (o = abfd->sections; o != NULL; o = o->next)
11346 {
11347 struct bfd_elf_section_data *esdo = elf_section_data (o);
11348 bfd_boolean sort;
11349 if ((o->flags & SEC_RELOC) == 0)
11350 continue;
11351
11352 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11353 if (esdo->rel.hdr != NULL)
11354 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11355 if (esdo->rela.hdr != NULL)
11356 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11357
11358 /* Set the reloc_count field to 0 to prevent write_relocs from
11359 trying to swap the relocs out itself. */
11360 o->reloc_count = 0;
11361 }
11362
11363 if (dynamic && info->combreloc && dynobj != NULL)
11364 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11365
11366 /* If we are linking against a dynamic object, or generating a
11367 shared library, finish up the dynamic linking information. */
11368 if (dynamic)
11369 {
11370 bfd_byte *dyncon, *dynconend;
11371
11372 /* Fix up .dynamic entries. */
11373 o = bfd_get_linker_section (dynobj, ".dynamic");
11374 BFD_ASSERT (o != NULL);
11375
11376 dyncon = o->contents;
11377 dynconend = o->contents + o->size;
11378 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11379 {
11380 Elf_Internal_Dyn dyn;
11381 const char *name;
11382 unsigned int type;
11383
11384 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11385
11386 switch (dyn.d_tag)
11387 {
11388 default:
11389 continue;
11390 case DT_NULL:
11391 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11392 {
11393 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11394 {
11395 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11396 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11397 default: continue;
11398 }
11399 dyn.d_un.d_val = relativecount;
11400 relativecount = 0;
11401 break;
11402 }
11403 continue;
11404
11405 case DT_INIT:
11406 name = info->init_function;
11407 goto get_sym;
11408 case DT_FINI:
11409 name = info->fini_function;
11410 get_sym:
11411 {
11412 struct elf_link_hash_entry *h;
11413
11414 h = elf_link_hash_lookup (elf_hash_table (info), name,
11415 FALSE, FALSE, TRUE);
11416 if (h != NULL
11417 && (h->root.type == bfd_link_hash_defined
11418 || h->root.type == bfd_link_hash_defweak))
11419 {
11420 dyn.d_un.d_ptr = h->root.u.def.value;
11421 o = h->root.u.def.section;
11422 if (o->output_section != NULL)
11423 dyn.d_un.d_ptr += (o->output_section->vma
11424 + o->output_offset);
11425 else
11426 {
11427 /* The symbol is imported from another shared
11428 library and does not apply to this one. */
11429 dyn.d_un.d_ptr = 0;
11430 }
11431 break;
11432 }
11433 }
11434 continue;
11435
11436 case DT_PREINIT_ARRAYSZ:
11437 name = ".preinit_array";
11438 goto get_size;
11439 case DT_INIT_ARRAYSZ:
11440 name = ".init_array";
11441 goto get_size;
11442 case DT_FINI_ARRAYSZ:
11443 name = ".fini_array";
11444 get_size:
11445 o = bfd_get_section_by_name (abfd, name);
11446 if (o == NULL)
11447 {
11448 (*_bfd_error_handler)
11449 (_("%B: could not find output section %s"), abfd, name);
11450 goto error_return;
11451 }
11452 if (o->size == 0)
11453 (*_bfd_error_handler)
11454 (_("warning: %s section has zero size"), name);
11455 dyn.d_un.d_val = o->size;
11456 break;
11457
11458 case DT_PREINIT_ARRAY:
11459 name = ".preinit_array";
11460 goto get_vma;
11461 case DT_INIT_ARRAY:
11462 name = ".init_array";
11463 goto get_vma;
11464 case DT_FINI_ARRAY:
11465 name = ".fini_array";
11466 goto get_vma;
11467
11468 case DT_HASH:
11469 name = ".hash";
11470 goto get_vma;
11471 case DT_GNU_HASH:
11472 name = ".gnu.hash";
11473 goto get_vma;
11474 case DT_STRTAB:
11475 name = ".dynstr";
11476 goto get_vma;
11477 case DT_SYMTAB:
11478 name = ".dynsym";
11479 goto get_vma;
11480 case DT_VERDEF:
11481 name = ".gnu.version_d";
11482 goto get_vma;
11483 case DT_VERNEED:
11484 name = ".gnu.version_r";
11485 goto get_vma;
11486 case DT_VERSYM:
11487 name = ".gnu.version";
11488 get_vma:
11489 o = bfd_get_section_by_name (abfd, name);
11490 if (o == NULL)
11491 {
11492 (*_bfd_error_handler)
11493 (_("%B: could not find output section %s"), abfd, name);
11494 goto error_return;
11495 }
11496 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11497 {
11498 (*_bfd_error_handler)
11499 (_("warning: section '%s' is being made into a note"), name);
11500 bfd_set_error (bfd_error_nonrepresentable_section);
11501 goto error_return;
11502 }
11503 dyn.d_un.d_ptr = o->vma;
11504 break;
11505
11506 case DT_REL:
11507 case DT_RELA:
11508 case DT_RELSZ:
11509 case DT_RELASZ:
11510 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11511 type = SHT_REL;
11512 else
11513 type = SHT_RELA;
11514 dyn.d_un.d_val = 0;
11515 dyn.d_un.d_ptr = 0;
11516 for (i = 1; i < elf_numsections (abfd); i++)
11517 {
11518 Elf_Internal_Shdr *hdr;
11519
11520 hdr = elf_elfsections (abfd)[i];
11521 if (hdr->sh_type == type
11522 && (hdr->sh_flags & SHF_ALLOC) != 0)
11523 {
11524 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11525 dyn.d_un.d_val += hdr->sh_size;
11526 else
11527 {
11528 if (dyn.d_un.d_ptr == 0
11529 || hdr->sh_addr < dyn.d_un.d_ptr)
11530 dyn.d_un.d_ptr = hdr->sh_addr;
11531 }
11532 }
11533 }
11534 break;
11535 }
11536 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11537 }
11538 }
11539
11540 /* If we have created any dynamic sections, then output them. */
11541 if (dynobj != NULL)
11542 {
11543 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11544 goto error_return;
11545
11546 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11547 if (((info->warn_shared_textrel && info->shared)
11548 || info->error_textrel)
11549 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11550 {
11551 bfd_byte *dyncon, *dynconend;
11552
11553 dyncon = o->contents;
11554 dynconend = o->contents + o->size;
11555 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11556 {
11557 Elf_Internal_Dyn dyn;
11558
11559 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11560
11561 if (dyn.d_tag == DT_TEXTREL)
11562 {
11563 if (info->error_textrel)
11564 info->callbacks->einfo
11565 (_("%P%X: read-only segment has dynamic relocations.\n"));
11566 else
11567 info->callbacks->einfo
11568 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11569 break;
11570 }
11571 }
11572 }
11573
11574 for (o = dynobj->sections; o != NULL; o = o->next)
11575 {
11576 if ((o->flags & SEC_HAS_CONTENTS) == 0
11577 || o->size == 0
11578 || o->output_section == bfd_abs_section_ptr)
11579 continue;
11580 if ((o->flags & SEC_LINKER_CREATED) == 0)
11581 {
11582 /* At this point, we are only interested in sections
11583 created by _bfd_elf_link_create_dynamic_sections. */
11584 continue;
11585 }
11586 if (elf_hash_table (info)->stab_info.stabstr == o)
11587 continue;
11588 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11589 continue;
11590 if (strcmp (o->name, ".dynstr") != 0)
11591 {
11592 /* FIXME: octets_per_byte. */
11593 if (! bfd_set_section_contents (abfd, o->output_section,
11594 o->contents,
11595 (file_ptr) o->output_offset,
11596 o->size))
11597 goto error_return;
11598 }
11599 else
11600 {
11601 /* The contents of the .dynstr section are actually in a
11602 stringtab. */
11603 file_ptr off;
11604
11605 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11606 if (bfd_seek (abfd, off, SEEK_SET) != 0
11607 || ! _bfd_elf_strtab_emit (abfd,
11608 elf_hash_table (info)->dynstr))
11609 goto error_return;
11610 }
11611 }
11612 }
11613
11614 if (info->relocatable)
11615 {
11616 bfd_boolean failed = FALSE;
11617
11618 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11619 if (failed)
11620 goto error_return;
11621 }
11622
11623 /* If we have optimized stabs strings, output them. */
11624 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11625 {
11626 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11627 goto error_return;
11628 }
11629
11630 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11631 goto error_return;
11632
11633 elf_final_link_free (abfd, &flinfo);
11634
11635 elf_linker (abfd) = TRUE;
11636
11637 if (attr_section)
11638 {
11639 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11640 if (contents == NULL)
11641 return FALSE; /* Bail out and fail. */
11642 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11643 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11644 free (contents);
11645 }
11646
11647 return TRUE;
11648
11649 error_return:
11650 elf_final_link_free (abfd, &flinfo);
11651 return FALSE;
11652 }
11653 \f
11654 /* Initialize COOKIE for input bfd ABFD. */
11655
11656 static bfd_boolean
11657 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11658 struct bfd_link_info *info, bfd *abfd)
11659 {
11660 Elf_Internal_Shdr *symtab_hdr;
11661 const struct elf_backend_data *bed;
11662
11663 bed = get_elf_backend_data (abfd);
11664 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11665
11666 cookie->abfd = abfd;
11667 cookie->sym_hashes = elf_sym_hashes (abfd);
11668 cookie->bad_symtab = elf_bad_symtab (abfd);
11669 if (cookie->bad_symtab)
11670 {
11671 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11672 cookie->extsymoff = 0;
11673 }
11674 else
11675 {
11676 cookie->locsymcount = symtab_hdr->sh_info;
11677 cookie->extsymoff = symtab_hdr->sh_info;
11678 }
11679
11680 if (bed->s->arch_size == 32)
11681 cookie->r_sym_shift = 8;
11682 else
11683 cookie->r_sym_shift = 32;
11684
11685 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11686 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11687 {
11688 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11689 cookie->locsymcount, 0,
11690 NULL, NULL, NULL);
11691 if (cookie->locsyms == NULL)
11692 {
11693 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11694 return FALSE;
11695 }
11696 if (info->keep_memory)
11697 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11698 }
11699 return TRUE;
11700 }
11701
11702 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11703
11704 static void
11705 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11706 {
11707 Elf_Internal_Shdr *symtab_hdr;
11708
11709 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11710 if (cookie->locsyms != NULL
11711 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11712 free (cookie->locsyms);
11713 }
11714
11715 /* Initialize the relocation information in COOKIE for input section SEC
11716 of input bfd ABFD. */
11717
11718 static bfd_boolean
11719 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11720 struct bfd_link_info *info, bfd *abfd,
11721 asection *sec)
11722 {
11723 const struct elf_backend_data *bed;
11724
11725 if (sec->reloc_count == 0)
11726 {
11727 cookie->rels = NULL;
11728 cookie->relend = NULL;
11729 }
11730 else
11731 {
11732 bed = get_elf_backend_data (abfd);
11733
11734 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11735 info->keep_memory);
11736 if (cookie->rels == NULL)
11737 return FALSE;
11738 cookie->rel = cookie->rels;
11739 cookie->relend = (cookie->rels
11740 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11741 }
11742 cookie->rel = cookie->rels;
11743 return TRUE;
11744 }
11745
11746 /* Free the memory allocated by init_reloc_cookie_rels,
11747 if appropriate. */
11748
11749 static void
11750 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11751 asection *sec)
11752 {
11753 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11754 free (cookie->rels);
11755 }
11756
11757 /* Initialize the whole of COOKIE for input section SEC. */
11758
11759 static bfd_boolean
11760 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11761 struct bfd_link_info *info,
11762 asection *sec)
11763 {
11764 if (!init_reloc_cookie (cookie, info, sec->owner))
11765 goto error1;
11766 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11767 goto error2;
11768 return TRUE;
11769
11770 error2:
11771 fini_reloc_cookie (cookie, sec->owner);
11772 error1:
11773 return FALSE;
11774 }
11775
11776 /* Free the memory allocated by init_reloc_cookie_for_section,
11777 if appropriate. */
11778
11779 static void
11780 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11781 asection *sec)
11782 {
11783 fini_reloc_cookie_rels (cookie, sec);
11784 fini_reloc_cookie (cookie, sec->owner);
11785 }
11786 \f
11787 /* Garbage collect unused sections. */
11788
11789 /* Default gc_mark_hook. */
11790
11791 asection *
11792 _bfd_elf_gc_mark_hook (asection *sec,
11793 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11794 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11795 struct elf_link_hash_entry *h,
11796 Elf_Internal_Sym *sym)
11797 {
11798 const char *sec_name;
11799
11800 if (h != NULL)
11801 {
11802 switch (h->root.type)
11803 {
11804 case bfd_link_hash_defined:
11805 case bfd_link_hash_defweak:
11806 return h->root.u.def.section;
11807
11808 case bfd_link_hash_common:
11809 return h->root.u.c.p->section;
11810
11811 case bfd_link_hash_undefined:
11812 case bfd_link_hash_undefweak:
11813 /* To work around a glibc bug, keep all XXX input sections
11814 when there is an as yet undefined reference to __start_XXX
11815 or __stop_XXX symbols. The linker will later define such
11816 symbols for orphan input sections that have a name
11817 representable as a C identifier. */
11818 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11819 sec_name = h->root.root.string + 8;
11820 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11821 sec_name = h->root.root.string + 7;
11822 else
11823 sec_name = NULL;
11824
11825 if (sec_name && *sec_name != '\0')
11826 {
11827 bfd *i;
11828
11829 for (i = info->input_bfds; i; i = i->link.next)
11830 {
11831 sec = bfd_get_section_by_name (i, sec_name);
11832 if (sec)
11833 sec->flags |= SEC_KEEP;
11834 }
11835 }
11836 break;
11837
11838 default:
11839 break;
11840 }
11841 }
11842 else
11843 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11844
11845 return NULL;
11846 }
11847
11848 /* COOKIE->rel describes a relocation against section SEC, which is
11849 a section we've decided to keep. Return the section that contains
11850 the relocation symbol, or NULL if no section contains it. */
11851
11852 asection *
11853 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11854 elf_gc_mark_hook_fn gc_mark_hook,
11855 struct elf_reloc_cookie *cookie)
11856 {
11857 unsigned long r_symndx;
11858 struct elf_link_hash_entry *h;
11859
11860 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11861 if (r_symndx == STN_UNDEF)
11862 return NULL;
11863
11864 if (r_symndx >= cookie->locsymcount
11865 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11866 {
11867 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11868 if (h == NULL)
11869 {
11870 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11871 sec->owner);
11872 return NULL;
11873 }
11874 while (h->root.type == bfd_link_hash_indirect
11875 || h->root.type == bfd_link_hash_warning)
11876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11877 h->mark = 1;
11878 /* If this symbol is weak and there is a non-weak definition, we
11879 keep the non-weak definition because many backends put
11880 dynamic reloc info on the non-weak definition for code
11881 handling copy relocs. */
11882 if (h->u.weakdef != NULL)
11883 h->u.weakdef->mark = 1;
11884 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11885 }
11886
11887 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11888 &cookie->locsyms[r_symndx]);
11889 }
11890
11891 /* COOKIE->rel describes a relocation against section SEC, which is
11892 a section we've decided to keep. Mark the section that contains
11893 the relocation symbol. */
11894
11895 bfd_boolean
11896 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11897 asection *sec,
11898 elf_gc_mark_hook_fn gc_mark_hook,
11899 struct elf_reloc_cookie *cookie)
11900 {
11901 asection *rsec;
11902
11903 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11904 if (rsec && !rsec->gc_mark)
11905 {
11906 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11907 || (rsec->owner->flags & DYNAMIC) != 0)
11908 rsec->gc_mark = 1;
11909 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11910 return FALSE;
11911 }
11912 return TRUE;
11913 }
11914
11915 /* The mark phase of garbage collection. For a given section, mark
11916 it and any sections in this section's group, and all the sections
11917 which define symbols to which it refers. */
11918
11919 bfd_boolean
11920 _bfd_elf_gc_mark (struct bfd_link_info *info,
11921 asection *sec,
11922 elf_gc_mark_hook_fn gc_mark_hook)
11923 {
11924 bfd_boolean ret;
11925 asection *group_sec, *eh_frame;
11926
11927 sec->gc_mark = 1;
11928
11929 /* Mark all the sections in the group. */
11930 group_sec = elf_section_data (sec)->next_in_group;
11931 if (group_sec && !group_sec->gc_mark)
11932 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11933 return FALSE;
11934
11935 /* Look through the section relocs. */
11936 ret = TRUE;
11937 eh_frame = elf_eh_frame_section (sec->owner);
11938 if ((sec->flags & SEC_RELOC) != 0
11939 && sec->reloc_count > 0
11940 && sec != eh_frame)
11941 {
11942 struct elf_reloc_cookie cookie;
11943
11944 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11945 ret = FALSE;
11946 else
11947 {
11948 for (; cookie.rel < cookie.relend; cookie.rel++)
11949 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11950 {
11951 ret = FALSE;
11952 break;
11953 }
11954 fini_reloc_cookie_for_section (&cookie, sec);
11955 }
11956 }
11957
11958 if (ret && eh_frame && elf_fde_list (sec))
11959 {
11960 struct elf_reloc_cookie cookie;
11961
11962 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11963 ret = FALSE;
11964 else
11965 {
11966 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11967 gc_mark_hook, &cookie))
11968 ret = FALSE;
11969 fini_reloc_cookie_for_section (&cookie, eh_frame);
11970 }
11971 }
11972
11973 return ret;
11974 }
11975
11976 /* Scan and mark sections in a special or debug section group. */
11977
11978 static void
11979 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11980 {
11981 /* Point to first section of section group. */
11982 asection *ssec;
11983 /* Used to iterate the section group. */
11984 asection *msec;
11985
11986 bfd_boolean is_special_grp = TRUE;
11987 bfd_boolean is_debug_grp = TRUE;
11988
11989 /* First scan to see if group contains any section other than debug
11990 and special section. */
11991 ssec = msec = elf_next_in_group (grp);
11992 do
11993 {
11994 if ((msec->flags & SEC_DEBUGGING) == 0)
11995 is_debug_grp = FALSE;
11996
11997 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11998 is_special_grp = FALSE;
11999
12000 msec = elf_next_in_group (msec);
12001 }
12002 while (msec != ssec);
12003
12004 /* If this is a pure debug section group or pure special section group,
12005 keep all sections in this group. */
12006 if (is_debug_grp || is_special_grp)
12007 {
12008 do
12009 {
12010 msec->gc_mark = 1;
12011 msec = elf_next_in_group (msec);
12012 }
12013 while (msec != ssec);
12014 }
12015 }
12016
12017 /* Keep debug and special sections. */
12018
12019 bfd_boolean
12020 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12021 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12022 {
12023 bfd *ibfd;
12024
12025 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12026 {
12027 asection *isec;
12028 bfd_boolean some_kept;
12029 bfd_boolean debug_frag_seen;
12030
12031 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12032 continue;
12033
12034 /* Ensure all linker created sections are kept,
12035 see if any other section is already marked,
12036 and note if we have any fragmented debug sections. */
12037 debug_frag_seen = some_kept = FALSE;
12038 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12039 {
12040 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12041 isec->gc_mark = 1;
12042 else if (isec->gc_mark)
12043 some_kept = TRUE;
12044
12045 if (debug_frag_seen == FALSE
12046 && (isec->flags & SEC_DEBUGGING)
12047 && CONST_STRNEQ (isec->name, ".debug_line."))
12048 debug_frag_seen = TRUE;
12049 }
12050
12051 /* If no section in this file will be kept, then we can
12052 toss out the debug and special sections. */
12053 if (!some_kept)
12054 continue;
12055
12056 /* Keep debug and special sections like .comment when they are
12057 not part of a group. Also keep section groups that contain
12058 just debug sections or special sections. */
12059 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12060 {
12061 if ((isec->flags & SEC_GROUP) != 0)
12062 _bfd_elf_gc_mark_debug_special_section_group (isec);
12063 else if (((isec->flags & SEC_DEBUGGING) != 0
12064 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12065 && elf_next_in_group (isec) == NULL)
12066 isec->gc_mark = 1;
12067 }
12068
12069 if (! debug_frag_seen)
12070 continue;
12071
12072 /* Look for CODE sections which are going to be discarded,
12073 and find and discard any fragmented debug sections which
12074 are associated with that code section. */
12075 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12076 if ((isec->flags & SEC_CODE) != 0
12077 && isec->gc_mark == 0)
12078 {
12079 unsigned int ilen;
12080 asection *dsec;
12081
12082 ilen = strlen (isec->name);
12083
12084 /* Association is determined by the name of the debug section
12085 containing the name of the code section as a suffix. For
12086 example .debug_line.text.foo is a debug section associated
12087 with .text.foo. */
12088 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12089 {
12090 unsigned int dlen;
12091
12092 if (dsec->gc_mark == 0
12093 || (dsec->flags & SEC_DEBUGGING) == 0)
12094 continue;
12095
12096 dlen = strlen (dsec->name);
12097
12098 if (dlen > ilen
12099 && strncmp (dsec->name + (dlen - ilen),
12100 isec->name, ilen) == 0)
12101 {
12102 dsec->gc_mark = 0;
12103 }
12104 }
12105 }
12106 }
12107 return TRUE;
12108 }
12109
12110 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12111
12112 struct elf_gc_sweep_symbol_info
12113 {
12114 struct bfd_link_info *info;
12115 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12116 bfd_boolean);
12117 };
12118
12119 static bfd_boolean
12120 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12121 {
12122 if (!h->mark
12123 && (((h->root.type == bfd_link_hash_defined
12124 || h->root.type == bfd_link_hash_defweak)
12125 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12126 && h->root.u.def.section->gc_mark))
12127 || h->root.type == bfd_link_hash_undefined
12128 || h->root.type == bfd_link_hash_undefweak))
12129 {
12130 struct elf_gc_sweep_symbol_info *inf;
12131
12132 inf = (struct elf_gc_sweep_symbol_info *) data;
12133 (*inf->hide_symbol) (inf->info, h, TRUE);
12134 h->def_regular = 0;
12135 h->ref_regular = 0;
12136 h->ref_regular_nonweak = 0;
12137 }
12138
12139 return TRUE;
12140 }
12141
12142 /* The sweep phase of garbage collection. Remove all garbage sections. */
12143
12144 typedef bfd_boolean (*gc_sweep_hook_fn)
12145 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12146
12147 static bfd_boolean
12148 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12149 {
12150 bfd *sub;
12151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12152 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12153 unsigned long section_sym_count;
12154 struct elf_gc_sweep_symbol_info sweep_info;
12155
12156 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12157 {
12158 asection *o;
12159
12160 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12161 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12162 continue;
12163
12164 for (o = sub->sections; o != NULL; o = o->next)
12165 {
12166 /* When any section in a section group is kept, we keep all
12167 sections in the section group. If the first member of
12168 the section group is excluded, we will also exclude the
12169 group section. */
12170 if (o->flags & SEC_GROUP)
12171 {
12172 asection *first = elf_next_in_group (o);
12173 o->gc_mark = first->gc_mark;
12174 }
12175
12176 if (o->gc_mark)
12177 continue;
12178
12179 /* Skip sweeping sections already excluded. */
12180 if (o->flags & SEC_EXCLUDE)
12181 continue;
12182
12183 /* Since this is early in the link process, it is simple
12184 to remove a section from the output. */
12185 o->flags |= SEC_EXCLUDE;
12186
12187 if (info->print_gc_sections && o->size != 0)
12188 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12189
12190 /* But we also have to update some of the relocation
12191 info we collected before. */
12192 if (gc_sweep_hook
12193 && (o->flags & SEC_RELOC) != 0
12194 && o->reloc_count != 0
12195 && !((info->strip == strip_all || info->strip == strip_debugger)
12196 && (o->flags & SEC_DEBUGGING) != 0)
12197 && !bfd_is_abs_section (o->output_section))
12198 {
12199 Elf_Internal_Rela *internal_relocs;
12200 bfd_boolean r;
12201
12202 internal_relocs
12203 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12204 info->keep_memory);
12205 if (internal_relocs == NULL)
12206 return FALSE;
12207
12208 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12209
12210 if (elf_section_data (o)->relocs != internal_relocs)
12211 free (internal_relocs);
12212
12213 if (!r)
12214 return FALSE;
12215 }
12216 }
12217 }
12218
12219 /* Remove the symbols that were in the swept sections from the dynamic
12220 symbol table. GCFIXME: Anyone know how to get them out of the
12221 static symbol table as well? */
12222 sweep_info.info = info;
12223 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12224 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12225 &sweep_info);
12226
12227 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12228 return TRUE;
12229 }
12230
12231 /* Propagate collected vtable information. This is called through
12232 elf_link_hash_traverse. */
12233
12234 static bfd_boolean
12235 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12236 {
12237 /* Those that are not vtables. */
12238 if (h->vtable == NULL || h->vtable->parent == NULL)
12239 return TRUE;
12240
12241 /* Those vtables that do not have parents, we cannot merge. */
12242 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12243 return TRUE;
12244
12245 /* If we've already been done, exit. */
12246 if (h->vtable->used && h->vtable->used[-1])
12247 return TRUE;
12248
12249 /* Make sure the parent's table is up to date. */
12250 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12251
12252 if (h->vtable->used == NULL)
12253 {
12254 /* None of this table's entries were referenced. Re-use the
12255 parent's table. */
12256 h->vtable->used = h->vtable->parent->vtable->used;
12257 h->vtable->size = h->vtable->parent->vtable->size;
12258 }
12259 else
12260 {
12261 size_t n;
12262 bfd_boolean *cu, *pu;
12263
12264 /* Or the parent's entries into ours. */
12265 cu = h->vtable->used;
12266 cu[-1] = TRUE;
12267 pu = h->vtable->parent->vtable->used;
12268 if (pu != NULL)
12269 {
12270 const struct elf_backend_data *bed;
12271 unsigned int log_file_align;
12272
12273 bed = get_elf_backend_data (h->root.u.def.section->owner);
12274 log_file_align = bed->s->log_file_align;
12275 n = h->vtable->parent->vtable->size >> log_file_align;
12276 while (n--)
12277 {
12278 if (*pu)
12279 *cu = TRUE;
12280 pu++;
12281 cu++;
12282 }
12283 }
12284 }
12285
12286 return TRUE;
12287 }
12288
12289 static bfd_boolean
12290 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12291 {
12292 asection *sec;
12293 bfd_vma hstart, hend;
12294 Elf_Internal_Rela *relstart, *relend, *rel;
12295 const struct elf_backend_data *bed;
12296 unsigned int log_file_align;
12297
12298 /* Take care of both those symbols that do not describe vtables as
12299 well as those that are not loaded. */
12300 if (h->vtable == NULL || h->vtable->parent == NULL)
12301 return TRUE;
12302
12303 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12304 || h->root.type == bfd_link_hash_defweak);
12305
12306 sec = h->root.u.def.section;
12307 hstart = h->root.u.def.value;
12308 hend = hstart + h->size;
12309
12310 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12311 if (!relstart)
12312 return *(bfd_boolean *) okp = FALSE;
12313 bed = get_elf_backend_data (sec->owner);
12314 log_file_align = bed->s->log_file_align;
12315
12316 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12317
12318 for (rel = relstart; rel < relend; ++rel)
12319 if (rel->r_offset >= hstart && rel->r_offset < hend)
12320 {
12321 /* If the entry is in use, do nothing. */
12322 if (h->vtable->used
12323 && (rel->r_offset - hstart) < h->vtable->size)
12324 {
12325 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12326 if (h->vtable->used[entry])
12327 continue;
12328 }
12329 /* Otherwise, kill it. */
12330 rel->r_offset = rel->r_info = rel->r_addend = 0;
12331 }
12332
12333 return TRUE;
12334 }
12335
12336 /* Mark sections containing dynamically referenced symbols. When
12337 building shared libraries, we must assume that any visible symbol is
12338 referenced. */
12339
12340 bfd_boolean
12341 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12342 {
12343 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12344 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12345
12346 if ((h->root.type == bfd_link_hash_defined
12347 || h->root.type == bfd_link_hash_defweak)
12348 && (h->ref_dynamic
12349 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12350 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12351 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12352 && (!info->executable
12353 || info->export_dynamic
12354 || (h->dynamic
12355 && d != NULL
12356 && (*d->match) (&d->head, NULL, h->root.root.string)))
12357 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12358 || !bfd_hide_sym_by_version (info->version_info,
12359 h->root.root.string)))))
12360 h->root.u.def.section->flags |= SEC_KEEP;
12361
12362 return TRUE;
12363 }
12364
12365 /* Keep all sections containing symbols undefined on the command-line,
12366 and the section containing the entry symbol. */
12367
12368 void
12369 _bfd_elf_gc_keep (struct bfd_link_info *info)
12370 {
12371 struct bfd_sym_chain *sym;
12372
12373 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12374 {
12375 struct elf_link_hash_entry *h;
12376
12377 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12378 FALSE, FALSE, FALSE);
12379
12380 if (h != NULL
12381 && (h->root.type == bfd_link_hash_defined
12382 || h->root.type == bfd_link_hash_defweak)
12383 && !bfd_is_abs_section (h->root.u.def.section))
12384 h->root.u.def.section->flags |= SEC_KEEP;
12385 }
12386 }
12387
12388 /* Do mark and sweep of unused sections. */
12389
12390 bfd_boolean
12391 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12392 {
12393 bfd_boolean ok = TRUE;
12394 bfd *sub;
12395 elf_gc_mark_hook_fn gc_mark_hook;
12396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12397 struct elf_link_hash_table *htab;
12398
12399 if (!bed->can_gc_sections
12400 || !is_elf_hash_table (info->hash))
12401 {
12402 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12403 return TRUE;
12404 }
12405
12406 bed->gc_keep (info);
12407 htab = elf_hash_table (info);
12408
12409 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12410 at the .eh_frame section if we can mark the FDEs individually. */
12411 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12412 {
12413 asection *sec;
12414 struct elf_reloc_cookie cookie;
12415
12416 sec = bfd_get_section_by_name (sub, ".eh_frame");
12417 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12418 {
12419 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12420 if (elf_section_data (sec)->sec_info
12421 && (sec->flags & SEC_LINKER_CREATED) == 0)
12422 elf_eh_frame_section (sub) = sec;
12423 fini_reloc_cookie_for_section (&cookie, sec);
12424 sec = bfd_get_next_section_by_name (sec);
12425 }
12426 }
12427
12428 /* Apply transitive closure to the vtable entry usage info. */
12429 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12430 if (!ok)
12431 return FALSE;
12432
12433 /* Kill the vtable relocations that were not used. */
12434 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12435 if (!ok)
12436 return FALSE;
12437
12438 /* Mark dynamically referenced symbols. */
12439 if (htab->dynamic_sections_created)
12440 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12441
12442 /* Grovel through relocs to find out who stays ... */
12443 gc_mark_hook = bed->gc_mark_hook;
12444 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12445 {
12446 asection *o;
12447
12448 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12449 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12450 continue;
12451
12452 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12453 Also treat note sections as a root, if the section is not part
12454 of a group. */
12455 for (o = sub->sections; o != NULL; o = o->next)
12456 if (!o->gc_mark
12457 && (o->flags & SEC_EXCLUDE) == 0
12458 && ((o->flags & SEC_KEEP) != 0
12459 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12460 && elf_next_in_group (o) == NULL )))
12461 {
12462 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12463 return FALSE;
12464 }
12465 }
12466
12467 /* Allow the backend to mark additional target specific sections. */
12468 bed->gc_mark_extra_sections (info, gc_mark_hook);
12469
12470 /* ... and mark SEC_EXCLUDE for those that go. */
12471 return elf_gc_sweep (abfd, info);
12472 }
12473 \f
12474 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12475
12476 bfd_boolean
12477 bfd_elf_gc_record_vtinherit (bfd *abfd,
12478 asection *sec,
12479 struct elf_link_hash_entry *h,
12480 bfd_vma offset)
12481 {
12482 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12483 struct elf_link_hash_entry **search, *child;
12484 bfd_size_type extsymcount;
12485 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12486
12487 /* The sh_info field of the symtab header tells us where the
12488 external symbols start. We don't care about the local symbols at
12489 this point. */
12490 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12491 if (!elf_bad_symtab (abfd))
12492 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12493
12494 sym_hashes = elf_sym_hashes (abfd);
12495 sym_hashes_end = sym_hashes + extsymcount;
12496
12497 /* Hunt down the child symbol, which is in this section at the same
12498 offset as the relocation. */
12499 for (search = sym_hashes; search != sym_hashes_end; ++search)
12500 {
12501 if ((child = *search) != NULL
12502 && (child->root.type == bfd_link_hash_defined
12503 || child->root.type == bfd_link_hash_defweak)
12504 && child->root.u.def.section == sec
12505 && child->root.u.def.value == offset)
12506 goto win;
12507 }
12508
12509 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12510 abfd, sec, (unsigned long) offset);
12511 bfd_set_error (bfd_error_invalid_operation);
12512 return FALSE;
12513
12514 win:
12515 if (!child->vtable)
12516 {
12517 child->vtable = ((struct elf_link_virtual_table_entry *)
12518 bfd_zalloc (abfd, sizeof (*child->vtable)));
12519 if (!child->vtable)
12520 return FALSE;
12521 }
12522 if (!h)
12523 {
12524 /* This *should* only be the absolute section. It could potentially
12525 be that someone has defined a non-global vtable though, which
12526 would be bad. It isn't worth paging in the local symbols to be
12527 sure though; that case should simply be handled by the assembler. */
12528
12529 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12530 }
12531 else
12532 child->vtable->parent = h;
12533
12534 return TRUE;
12535 }
12536
12537 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12538
12539 bfd_boolean
12540 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12541 asection *sec ATTRIBUTE_UNUSED,
12542 struct elf_link_hash_entry *h,
12543 bfd_vma addend)
12544 {
12545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12546 unsigned int log_file_align = bed->s->log_file_align;
12547
12548 if (!h->vtable)
12549 {
12550 h->vtable = ((struct elf_link_virtual_table_entry *)
12551 bfd_zalloc (abfd, sizeof (*h->vtable)));
12552 if (!h->vtable)
12553 return FALSE;
12554 }
12555
12556 if (addend >= h->vtable->size)
12557 {
12558 size_t size, bytes, file_align;
12559 bfd_boolean *ptr = h->vtable->used;
12560
12561 /* While the symbol is undefined, we have to be prepared to handle
12562 a zero size. */
12563 file_align = 1 << log_file_align;
12564 if (h->root.type == bfd_link_hash_undefined)
12565 size = addend + file_align;
12566 else
12567 {
12568 size = h->size;
12569 if (addend >= size)
12570 {
12571 /* Oops! We've got a reference past the defined end of
12572 the table. This is probably a bug -- shall we warn? */
12573 size = addend + file_align;
12574 }
12575 }
12576 size = (size + file_align - 1) & -file_align;
12577
12578 /* Allocate one extra entry for use as a "done" flag for the
12579 consolidation pass. */
12580 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12581
12582 if (ptr)
12583 {
12584 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12585
12586 if (ptr != NULL)
12587 {
12588 size_t oldbytes;
12589
12590 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12591 * sizeof (bfd_boolean));
12592 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12593 }
12594 }
12595 else
12596 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12597
12598 if (ptr == NULL)
12599 return FALSE;
12600
12601 /* And arrange for that done flag to be at index -1. */
12602 h->vtable->used = ptr + 1;
12603 h->vtable->size = size;
12604 }
12605
12606 h->vtable->used[addend >> log_file_align] = TRUE;
12607
12608 return TRUE;
12609 }
12610
12611 /* Map an ELF section header flag to its corresponding string. */
12612 typedef struct
12613 {
12614 char *flag_name;
12615 flagword flag_value;
12616 } elf_flags_to_name_table;
12617
12618 static elf_flags_to_name_table elf_flags_to_names [] =
12619 {
12620 { "SHF_WRITE", SHF_WRITE },
12621 { "SHF_ALLOC", SHF_ALLOC },
12622 { "SHF_EXECINSTR", SHF_EXECINSTR },
12623 { "SHF_MERGE", SHF_MERGE },
12624 { "SHF_STRINGS", SHF_STRINGS },
12625 { "SHF_INFO_LINK", SHF_INFO_LINK},
12626 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12627 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12628 { "SHF_GROUP", SHF_GROUP },
12629 { "SHF_TLS", SHF_TLS },
12630 { "SHF_MASKOS", SHF_MASKOS },
12631 { "SHF_EXCLUDE", SHF_EXCLUDE },
12632 };
12633
12634 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12635 bfd_boolean
12636 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12637 struct flag_info *flaginfo,
12638 asection *section)
12639 {
12640 const bfd_vma sh_flags = elf_section_flags (section);
12641
12642 if (!flaginfo->flags_initialized)
12643 {
12644 bfd *obfd = info->output_bfd;
12645 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12646 struct flag_info_list *tf = flaginfo->flag_list;
12647 int with_hex = 0;
12648 int without_hex = 0;
12649
12650 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12651 {
12652 unsigned i;
12653 flagword (*lookup) (char *);
12654
12655 lookup = bed->elf_backend_lookup_section_flags_hook;
12656 if (lookup != NULL)
12657 {
12658 flagword hexval = (*lookup) ((char *) tf->name);
12659
12660 if (hexval != 0)
12661 {
12662 if (tf->with == with_flags)
12663 with_hex |= hexval;
12664 else if (tf->with == without_flags)
12665 without_hex |= hexval;
12666 tf->valid = TRUE;
12667 continue;
12668 }
12669 }
12670 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12671 {
12672 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12673 {
12674 if (tf->with == with_flags)
12675 with_hex |= elf_flags_to_names[i].flag_value;
12676 else if (tf->with == without_flags)
12677 without_hex |= elf_flags_to_names[i].flag_value;
12678 tf->valid = TRUE;
12679 break;
12680 }
12681 }
12682 if (!tf->valid)
12683 {
12684 info->callbacks->einfo
12685 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12686 return FALSE;
12687 }
12688 }
12689 flaginfo->flags_initialized = TRUE;
12690 flaginfo->only_with_flags |= with_hex;
12691 flaginfo->not_with_flags |= without_hex;
12692 }
12693
12694 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12695 return FALSE;
12696
12697 if ((flaginfo->not_with_flags & sh_flags) != 0)
12698 return FALSE;
12699
12700 return TRUE;
12701 }
12702
12703 struct alloc_got_off_arg {
12704 bfd_vma gotoff;
12705 struct bfd_link_info *info;
12706 };
12707
12708 /* We need a special top-level link routine to convert got reference counts
12709 to real got offsets. */
12710
12711 static bfd_boolean
12712 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12713 {
12714 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12715 bfd *obfd = gofarg->info->output_bfd;
12716 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12717
12718 if (h->got.refcount > 0)
12719 {
12720 h->got.offset = gofarg->gotoff;
12721 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12722 }
12723 else
12724 h->got.offset = (bfd_vma) -1;
12725
12726 return TRUE;
12727 }
12728
12729 /* And an accompanying bit to work out final got entry offsets once
12730 we're done. Should be called from final_link. */
12731
12732 bfd_boolean
12733 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12734 struct bfd_link_info *info)
12735 {
12736 bfd *i;
12737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12738 bfd_vma gotoff;
12739 struct alloc_got_off_arg gofarg;
12740
12741 BFD_ASSERT (abfd == info->output_bfd);
12742
12743 if (! is_elf_hash_table (info->hash))
12744 return FALSE;
12745
12746 /* The GOT offset is relative to the .got section, but the GOT header is
12747 put into the .got.plt section, if the backend uses it. */
12748 if (bed->want_got_plt)
12749 gotoff = 0;
12750 else
12751 gotoff = bed->got_header_size;
12752
12753 /* Do the local .got entries first. */
12754 for (i = info->input_bfds; i; i = i->link.next)
12755 {
12756 bfd_signed_vma *local_got;
12757 bfd_size_type j, locsymcount;
12758 Elf_Internal_Shdr *symtab_hdr;
12759
12760 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12761 continue;
12762
12763 local_got = elf_local_got_refcounts (i);
12764 if (!local_got)
12765 continue;
12766
12767 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12768 if (elf_bad_symtab (i))
12769 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12770 else
12771 locsymcount = symtab_hdr->sh_info;
12772
12773 for (j = 0; j < locsymcount; ++j)
12774 {
12775 if (local_got[j] > 0)
12776 {
12777 local_got[j] = gotoff;
12778 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12779 }
12780 else
12781 local_got[j] = (bfd_vma) -1;
12782 }
12783 }
12784
12785 /* Then the global .got entries. .plt refcounts are handled by
12786 adjust_dynamic_symbol */
12787 gofarg.gotoff = gotoff;
12788 gofarg.info = info;
12789 elf_link_hash_traverse (elf_hash_table (info),
12790 elf_gc_allocate_got_offsets,
12791 &gofarg);
12792 return TRUE;
12793 }
12794
12795 /* Many folk need no more in the way of final link than this, once
12796 got entry reference counting is enabled. */
12797
12798 bfd_boolean
12799 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12800 {
12801 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12802 return FALSE;
12803
12804 /* Invoke the regular ELF backend linker to do all the work. */
12805 return bfd_elf_final_link (abfd, info);
12806 }
12807
12808 bfd_boolean
12809 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12810 {
12811 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12812
12813 if (rcookie->bad_symtab)
12814 rcookie->rel = rcookie->rels;
12815
12816 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12817 {
12818 unsigned long r_symndx;
12819
12820 if (! rcookie->bad_symtab)
12821 if (rcookie->rel->r_offset > offset)
12822 return FALSE;
12823 if (rcookie->rel->r_offset != offset)
12824 continue;
12825
12826 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12827 if (r_symndx == STN_UNDEF)
12828 return TRUE;
12829
12830 if (r_symndx >= rcookie->locsymcount
12831 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12832 {
12833 struct elf_link_hash_entry *h;
12834
12835 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12836
12837 while (h->root.type == bfd_link_hash_indirect
12838 || h->root.type == bfd_link_hash_warning)
12839 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12840
12841 if ((h->root.type == bfd_link_hash_defined
12842 || h->root.type == bfd_link_hash_defweak)
12843 && (h->root.u.def.section->owner != rcookie->abfd
12844 || h->root.u.def.section->kept_section != NULL
12845 || discarded_section (h->root.u.def.section)))
12846 return TRUE;
12847 }
12848 else
12849 {
12850 /* It's not a relocation against a global symbol,
12851 but it could be a relocation against a local
12852 symbol for a discarded section. */
12853 asection *isec;
12854 Elf_Internal_Sym *isym;
12855
12856 /* Need to: get the symbol; get the section. */
12857 isym = &rcookie->locsyms[r_symndx];
12858 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12859 if (isec != NULL
12860 && (isec->kept_section != NULL
12861 || discarded_section (isec)))
12862 return TRUE;
12863 }
12864 return FALSE;
12865 }
12866 return FALSE;
12867 }
12868
12869 /* Discard unneeded references to discarded sections.
12870 Returns -1 on error, 1 if any section's size was changed, 0 if
12871 nothing changed. This function assumes that the relocations are in
12872 sorted order, which is true for all known assemblers. */
12873
12874 int
12875 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12876 {
12877 struct elf_reloc_cookie cookie;
12878 asection *o;
12879 bfd *abfd;
12880 int changed = 0;
12881
12882 if (info->traditional_format
12883 || !is_elf_hash_table (info->hash))
12884 return 0;
12885
12886 o = bfd_get_section_by_name (output_bfd, ".stab");
12887 if (o != NULL)
12888 {
12889 asection *i;
12890
12891 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12892 {
12893 if (i->size == 0
12894 || i->reloc_count == 0
12895 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12896 continue;
12897
12898 abfd = i->owner;
12899 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12900 continue;
12901
12902 if (!init_reloc_cookie_for_section (&cookie, info, i))
12903 return -1;
12904
12905 if (_bfd_discard_section_stabs (abfd, i,
12906 elf_section_data (i)->sec_info,
12907 bfd_elf_reloc_symbol_deleted_p,
12908 &cookie))
12909 changed = 1;
12910
12911 fini_reloc_cookie_for_section (&cookie, i);
12912 }
12913 }
12914
12915 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12916 if (o != NULL)
12917 {
12918 asection *i;
12919
12920 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12921 {
12922 if (i->size == 0)
12923 continue;
12924
12925 abfd = i->owner;
12926 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12927 continue;
12928
12929 if (!init_reloc_cookie_for_section (&cookie, info, i))
12930 return -1;
12931
12932 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12933 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12934 bfd_elf_reloc_symbol_deleted_p,
12935 &cookie))
12936 changed = 1;
12937
12938 fini_reloc_cookie_for_section (&cookie, i);
12939 }
12940 }
12941
12942 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12943 {
12944 const struct elf_backend_data *bed;
12945
12946 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12947 continue;
12948
12949 bed = get_elf_backend_data (abfd);
12950
12951 if (bed->elf_backend_discard_info != NULL)
12952 {
12953 if (!init_reloc_cookie (&cookie, info, abfd))
12954 return -1;
12955
12956 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12957 changed = 1;
12958
12959 fini_reloc_cookie (&cookie, abfd);
12960 }
12961 }
12962
12963 if (info->eh_frame_hdr
12964 && !info->relocatable
12965 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12966 changed = 1;
12967
12968 return changed;
12969 }
12970
12971 bfd_boolean
12972 _bfd_elf_section_already_linked (bfd *abfd,
12973 asection *sec,
12974 struct bfd_link_info *info)
12975 {
12976 flagword flags;
12977 const char *name, *key;
12978 struct bfd_section_already_linked *l;
12979 struct bfd_section_already_linked_hash_entry *already_linked_list;
12980
12981 if (sec->output_section == bfd_abs_section_ptr)
12982 return FALSE;
12983
12984 flags = sec->flags;
12985
12986 /* Return if it isn't a linkonce section. A comdat group section
12987 also has SEC_LINK_ONCE set. */
12988 if ((flags & SEC_LINK_ONCE) == 0)
12989 return FALSE;
12990
12991 /* Don't put group member sections on our list of already linked
12992 sections. They are handled as a group via their group section. */
12993 if (elf_sec_group (sec) != NULL)
12994 return FALSE;
12995
12996 /* For a SHT_GROUP section, use the group signature as the key. */
12997 name = sec->name;
12998 if ((flags & SEC_GROUP) != 0
12999 && elf_next_in_group (sec) != NULL
13000 && elf_group_name (elf_next_in_group (sec)) != NULL)
13001 key = elf_group_name (elf_next_in_group (sec));
13002 else
13003 {
13004 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13005 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13006 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13007 key++;
13008 else
13009 /* Must be a user linkonce section that doesn't follow gcc's
13010 naming convention. In this case we won't be matching
13011 single member groups. */
13012 key = name;
13013 }
13014
13015 already_linked_list = bfd_section_already_linked_table_lookup (key);
13016
13017 for (l = already_linked_list->entry; l != NULL; l = l->next)
13018 {
13019 /* We may have 2 different types of sections on the list: group
13020 sections with a signature of <key> (<key> is some string),
13021 and linkonce sections named .gnu.linkonce.<type>.<key>.
13022 Match like sections. LTO plugin sections are an exception.
13023 They are always named .gnu.linkonce.t.<key> and match either
13024 type of section. */
13025 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13026 && ((flags & SEC_GROUP) != 0
13027 || strcmp (name, l->sec->name) == 0))
13028 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13029 {
13030 /* The section has already been linked. See if we should
13031 issue a warning. */
13032 if (!_bfd_handle_already_linked (sec, l, info))
13033 return FALSE;
13034
13035 if (flags & SEC_GROUP)
13036 {
13037 asection *first = elf_next_in_group (sec);
13038 asection *s = first;
13039
13040 while (s != NULL)
13041 {
13042 s->output_section = bfd_abs_section_ptr;
13043 /* Record which group discards it. */
13044 s->kept_section = l->sec;
13045 s = elf_next_in_group (s);
13046 /* These lists are circular. */
13047 if (s == first)
13048 break;
13049 }
13050 }
13051
13052 return TRUE;
13053 }
13054 }
13055
13056 /* A single member comdat group section may be discarded by a
13057 linkonce section and vice versa. */
13058 if ((flags & SEC_GROUP) != 0)
13059 {
13060 asection *first = elf_next_in_group (sec);
13061
13062 if (first != NULL && elf_next_in_group (first) == first)
13063 /* Check this single member group against linkonce sections. */
13064 for (l = already_linked_list->entry; l != NULL; l = l->next)
13065 if ((l->sec->flags & SEC_GROUP) == 0
13066 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13067 {
13068 first->output_section = bfd_abs_section_ptr;
13069 first->kept_section = l->sec;
13070 sec->output_section = bfd_abs_section_ptr;
13071 break;
13072 }
13073 }
13074 else
13075 /* Check this linkonce section against single member groups. */
13076 for (l = already_linked_list->entry; l != NULL; l = l->next)
13077 if (l->sec->flags & SEC_GROUP)
13078 {
13079 asection *first = elf_next_in_group (l->sec);
13080
13081 if (first != NULL
13082 && elf_next_in_group (first) == first
13083 && bfd_elf_match_symbols_in_sections (first, sec, info))
13084 {
13085 sec->output_section = bfd_abs_section_ptr;
13086 sec->kept_section = first;
13087 break;
13088 }
13089 }
13090
13091 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13092 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13093 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13094 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13095 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13096 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13097 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13098 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13099 The reverse order cannot happen as there is never a bfd with only the
13100 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13101 matter as here were are looking only for cross-bfd sections. */
13102
13103 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13104 for (l = already_linked_list->entry; l != NULL; l = l->next)
13105 if ((l->sec->flags & SEC_GROUP) == 0
13106 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13107 {
13108 if (abfd != l->sec->owner)
13109 sec->output_section = bfd_abs_section_ptr;
13110 break;
13111 }
13112
13113 /* This is the first section with this name. Record it. */
13114 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13115 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13116 return sec->output_section == bfd_abs_section_ptr;
13117 }
13118
13119 bfd_boolean
13120 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13121 {
13122 return sym->st_shndx == SHN_COMMON;
13123 }
13124
13125 unsigned int
13126 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13127 {
13128 return SHN_COMMON;
13129 }
13130
13131 asection *
13132 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13133 {
13134 return bfd_com_section_ptr;
13135 }
13136
13137 bfd_vma
13138 _bfd_elf_default_got_elt_size (bfd *abfd,
13139 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13140 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13141 bfd *ibfd ATTRIBUTE_UNUSED,
13142 unsigned long symndx ATTRIBUTE_UNUSED)
13143 {
13144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13145 return bed->s->arch_size / 8;
13146 }
13147
13148 /* Routines to support the creation of dynamic relocs. */
13149
13150 /* Returns the name of the dynamic reloc section associated with SEC. */
13151
13152 static const char *
13153 get_dynamic_reloc_section_name (bfd * abfd,
13154 asection * sec,
13155 bfd_boolean is_rela)
13156 {
13157 char *name;
13158 const char *old_name = bfd_get_section_name (NULL, sec);
13159 const char *prefix = is_rela ? ".rela" : ".rel";
13160
13161 if (old_name == NULL)
13162 return NULL;
13163
13164 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13165 sprintf (name, "%s%s", prefix, old_name);
13166
13167 return name;
13168 }
13169
13170 /* Returns the dynamic reloc section associated with SEC.
13171 If necessary compute the name of the dynamic reloc section based
13172 on SEC's name (looked up in ABFD's string table) and the setting
13173 of IS_RELA. */
13174
13175 asection *
13176 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13177 asection * sec,
13178 bfd_boolean is_rela)
13179 {
13180 asection * reloc_sec = elf_section_data (sec)->sreloc;
13181
13182 if (reloc_sec == NULL)
13183 {
13184 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13185
13186 if (name != NULL)
13187 {
13188 reloc_sec = bfd_get_linker_section (abfd, name);
13189
13190 if (reloc_sec != NULL)
13191 elf_section_data (sec)->sreloc = reloc_sec;
13192 }
13193 }
13194
13195 return reloc_sec;
13196 }
13197
13198 /* Returns the dynamic reloc section associated with SEC. If the
13199 section does not exist it is created and attached to the DYNOBJ
13200 bfd and stored in the SRELOC field of SEC's elf_section_data
13201 structure.
13202
13203 ALIGNMENT is the alignment for the newly created section and
13204 IS_RELA defines whether the name should be .rela.<SEC's name>
13205 or .rel.<SEC's name>. The section name is looked up in the
13206 string table associated with ABFD. */
13207
13208 asection *
13209 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13210 bfd *dynobj,
13211 unsigned int alignment,
13212 bfd *abfd,
13213 bfd_boolean is_rela)
13214 {
13215 asection * reloc_sec = elf_section_data (sec)->sreloc;
13216
13217 if (reloc_sec == NULL)
13218 {
13219 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13220
13221 if (name == NULL)
13222 return NULL;
13223
13224 reloc_sec = bfd_get_linker_section (dynobj, name);
13225
13226 if (reloc_sec == NULL)
13227 {
13228 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13229 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13230 if ((sec->flags & SEC_ALLOC) != 0)
13231 flags |= SEC_ALLOC | SEC_LOAD;
13232
13233 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13234 if (reloc_sec != NULL)
13235 {
13236 /* _bfd_elf_get_sec_type_attr chooses a section type by
13237 name. Override as it may be wrong, eg. for a user
13238 section named "auto" we'll get ".relauto" which is
13239 seen to be a .rela section. */
13240 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13241 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13242 reloc_sec = NULL;
13243 }
13244 }
13245
13246 elf_section_data (sec)->sreloc = reloc_sec;
13247 }
13248
13249 return reloc_sec;
13250 }
13251
13252 /* Copy the ELF symbol type and other attributes for a linker script
13253 assignment from HSRC to HDEST. Generally this should be treated as
13254 if we found a strong non-dynamic definition for HDEST (except that
13255 ld ignores multiple definition errors). */
13256 void
13257 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13258 struct bfd_link_hash_entry *hdest,
13259 struct bfd_link_hash_entry *hsrc)
13260 {
13261 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13262 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13263 Elf_Internal_Sym isym;
13264
13265 ehdest->type = ehsrc->type;
13266 ehdest->target_internal = ehsrc->target_internal;
13267
13268 isym.st_other = ehsrc->other;
13269 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13270 }
13271
13272 /* Append a RELA relocation REL to section S in BFD. */
13273
13274 void
13275 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13276 {
13277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13278 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13279 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13280 bed->s->swap_reloca_out (abfd, rel, loc);
13281 }
13282
13283 /* Append a REL relocation REL to section S in BFD. */
13284
13285 void
13286 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13287 {
13288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13289 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13290 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13291 bed->s->swap_reloc_out (abfd, rel, loc);
13292 }
This page took 0.429542 seconds and 5 git commands to generate.