Add new command line option "--no-omagic" which undoes the effects of -N.
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
83
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
86
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91 {
92 switch (bfd_get_format (abfd))
93 {
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
101 }
102 }
103 \f
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
109 {
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
114
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
118
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
122
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
127
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
132
133 return _bfd_is_global_symbol_definition (abfd, sym);
134
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
139
140 return true;
141 }
142
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
150 {
151 Elf_Internal_Shdr * hdr;
152 bfd_size_type symcount;
153 bfd_size_type extsymcount;
154 bfd_size_type extsymoff;
155 Elf_Internal_Sym *isymbuf;
156 Elf_Internal_Sym *isym;
157 Elf_Internal_Sym *isymend;
158 boolean result;
159
160 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
161 if (abfd == (bfd *) NULL)
162 return false;
163
164 if (! bfd_check_format (abfd, bfd_object))
165 return false;
166
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd->archive_pass)
172 return false;
173
174 /* Select the appropriate symbol table. */
175 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
176 hdr = &elf_tdata (abfd)->symtab_hdr;
177 else
178 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
179
180 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
181
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd))
185 {
186 extsymcount = symcount;
187 extsymoff = 0;
188 }
189 else
190 {
191 extsymcount = symcount - hdr->sh_info;
192 extsymoff = hdr->sh_info;
193 }
194
195 if (extsymcount == 0)
196 return false;
197
198 /* Read in the symbol table. */
199 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
200 NULL, NULL, NULL);
201 if (isymbuf == NULL)
202 return false;
203
204 /* Scan the symbol table looking for SYMDEF. */
205 result = false;
206 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
207 {
208 const char *name;
209
210 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
211 isym->st_name);
212 if (name == (const char *) NULL)
213 break;
214
215 if (strcmp (name, symdef->name) == 0)
216 {
217 result = is_global_data_symbol_definition (abfd, isym);
218 break;
219 }
220 }
221
222 free (isymbuf);
223
224 return result;
225 }
226 \f
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
242
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
247 object file.
248
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
251
252 static boolean
253 elf_link_add_archive_symbols (abfd, info)
254 bfd *abfd;
255 struct bfd_link_info *info;
256 {
257 symindex c;
258 boolean *defined = NULL;
259 boolean *included = NULL;
260 carsym *symdefs;
261 boolean loop;
262 bfd_size_type amt;
263
264 if (! bfd_has_map (abfd))
265 {
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
268 return true;
269 bfd_set_error (bfd_error_no_armap);
270 return false;
271 }
272
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c = bfd_ardata (abfd)->symdef_count;
277 if (c == 0)
278 return true;
279 amt = c;
280 amt *= sizeof (boolean);
281 defined = (boolean *) bfd_zmalloc (amt);
282 included = (boolean *) bfd_zmalloc (amt);
283 if (defined == (boolean *) NULL || included == (boolean *) NULL)
284 goto error_return;
285
286 symdefs = bfd_ardata (abfd)->symdefs;
287
288 do
289 {
290 file_ptr last;
291 symindex i;
292 carsym *symdef;
293 carsym *symdefend;
294
295 loop = false;
296 last = -1;
297
298 symdef = symdefs;
299 symdefend = symdef + c;
300 for (i = 0; symdef < symdefend; symdef++, i++)
301 {
302 struct elf_link_hash_entry *h;
303 bfd *element;
304 struct bfd_link_hash_entry *undefs_tail;
305 symindex mark;
306
307 if (defined[i] || included[i])
308 continue;
309 if (symdef->file_offset == last)
310 {
311 included[i] = true;
312 continue;
313 }
314
315 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
316 false, false, false);
317
318 if (h == NULL)
319 {
320 char *p, *copy;
321 size_t len, first;
322
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
328
329 p = strchr (symdef->name, ELF_VER_CHR);
330 if (p == NULL || p[1] != ELF_VER_CHR)
331 continue;
332
333 /* First check with only one `@'. */
334 len = strlen (symdef->name);
335 copy = bfd_alloc (abfd, (bfd_size_type) len);
336 if (copy == NULL)
337 goto error_return;
338 first = p - symdef->name + 1;
339 memcpy (copy, symdef->name, first);
340 memcpy (copy + first, symdef->name + first + 1, len - first);
341
342 h = elf_link_hash_lookup (elf_hash_table (info), copy,
343 false, false, false);
344
345 if (h == NULL)
346 {
347 /* We also need to check references to the symbol
348 without the version. */
349
350 copy[first - 1] = '\0';
351 h = elf_link_hash_lookup (elf_hash_table (info),
352 copy, false, false, false);
353 }
354
355 bfd_release (abfd, copy);
356 }
357
358 if (h == NULL)
359 continue;
360
361 if (h->root.type == bfd_link_hash_common)
362 {
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
367 declaration of it.
368
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
374 this is. */
375 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
376 continue;
377 }
378 else if (h->root.type != bfd_link_hash_undefined)
379 {
380 if (h->root.type != bfd_link_hash_undefweak)
381 defined[i] = true;
382 continue;
383 }
384
385 /* We need to include this archive member. */
386 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
387 if (element == (bfd *) NULL)
388 goto error_return;
389
390 if (! bfd_check_format (element, bfd_object))
391 goto error_return;
392
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element->archive_pass != 0)
397 {
398 bfd_set_error (bfd_error_bad_value);
399 goto error_return;
400 }
401 element->archive_pass = 1;
402
403 undefs_tail = info->hash->undefs_tail;
404
405 if (! (*info->callbacks->add_archive_element) (info, element,
406 symdef->name))
407 goto error_return;
408 if (! elf_link_add_object_symbols (element, info))
409 goto error_return;
410
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail != info->hash->undefs_tail)
419 loop = true;
420
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
423 mark = i;
424 do
425 {
426 included[mark] = true;
427 if (mark == 0)
428 break;
429 --mark;
430 }
431 while (symdefs[mark].file_offset == symdef->file_offset);
432
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last = symdef->file_offset;
436 }
437 }
438 while (loop);
439
440 free (defined);
441 free (included);
442
443 return true;
444
445 error_return:
446 if (defined != (boolean *) NULL)
447 free (defined);
448 if (included != (boolean *) NULL)
449 free (included);
450 return false;
451 }
452
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
463 a shared object. */
464
465 static boolean
466 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
467 override, type_change_ok, size_change_ok, dt_needed)
468 bfd *abfd;
469 struct bfd_link_info *info;
470 const char *name;
471 Elf_Internal_Sym *sym;
472 asection **psec;
473 bfd_vma *pvalue;
474 struct elf_link_hash_entry **sym_hash;
475 boolean *override;
476 boolean *type_change_ok;
477 boolean *size_change_ok;
478 boolean dt_needed;
479 {
480 asection *sec;
481 struct elf_link_hash_entry *h;
482 int bind;
483 bfd *oldbfd;
484 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
485
486 *override = false;
487
488 sec = *psec;
489 bind = ELF_ST_BIND (sym->st_info);
490
491 if (! bfd_is_und_section (sec))
492 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
493 else
494 h = ((struct elf_link_hash_entry *)
495 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
496 if (h == NULL)
497 return false;
498 *sym_hash = h;
499
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info->hash->creator != abfd->xvec)
503 return true;
504
505 /* For merging, we only care about real symbols. */
506
507 while (h->root.type == bfd_link_hash_indirect
508 || h->root.type == bfd_link_hash_warning)
509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
510
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
514
515 if (h->root.type == bfd_link_hash_new)
516 {
517 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
518 return true;
519 }
520
521 /* OLDBFD is a BFD associated with the existing symbol. */
522
523 switch (h->root.type)
524 {
525 default:
526 oldbfd = NULL;
527 break;
528
529 case bfd_link_hash_undefined:
530 case bfd_link_hash_undefweak:
531 oldbfd = h->root.u.undef.abfd;
532 break;
533
534 case bfd_link_hash_defined:
535 case bfd_link_hash_defweak:
536 oldbfd = h->root.u.def.section->owner;
537 break;
538
539 case bfd_link_hash_common:
540 oldbfd = h->root.u.c.p->section->owner;
541 break;
542 }
543
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
550 if (abfd == oldbfd
551 && ((abfd->flags & DYNAMIC) == 0
552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
553 return true;
554
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
557
558 if ((abfd->flags & DYNAMIC) != 0)
559 newdyn = true;
560 else
561 newdyn = false;
562
563 if (oldbfd != NULL)
564 olddyn = (oldbfd->flags & DYNAMIC) != 0;
565 else
566 {
567 asection *hsec;
568
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h->root.type)
572 {
573 default:
574 hsec = NULL;
575 break;
576
577 case bfd_link_hash_defined:
578 case bfd_link_hash_defweak:
579 hsec = h->root.u.def.section;
580 break;
581
582 case bfd_link_hash_common:
583 hsec = h->root.u.c.p->section;
584 break;
585 }
586
587 if (hsec == NULL)
588 olddyn = false;
589 else
590 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
591 }
592
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
595
596 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
597 newdef = false;
598 else
599 newdef = true;
600
601 if (h->root.type == bfd_link_hash_undefined
602 || h->root.type == bfd_link_hash_undefweak
603 || h->root.type == bfd_link_hash_common)
604 olddef = false;
605 else
606 olddef = true;
607
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
619 libraries.
620
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
623
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
629 harmless. */
630
631 if (newdyn
632 && newdef
633 && (sec->flags & SEC_ALLOC) != 0
634 && (sec->flags & SEC_LOAD) == 0
635 && sym->st_size > 0
636 && bind != STB_WEAK
637 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
638 newdyncommon = true;
639 else
640 newdyncommon = false;
641
642 if (olddyn
643 && olddef
644 && h->root.type == bfd_link_hash_defined
645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
646 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
647 && (h->root.u.def.section->flags & SEC_LOAD) == 0
648 && h->size > 0
649 && h->type != STT_FUNC)
650 olddyncommon = true;
651 else
652 olddyncommon = false;
653
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
658
659 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
660 || h->root.type == bfd_link_hash_undefweak
661 || bind == STB_WEAK)
662 *type_change_ok = true;
663
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
666
667 if (*type_change_ok
668 || h->root.type == bfd_link_hash_undefined)
669 *size_change_ok = true;
670
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
673 two. */
674
675 if (olddyncommon
676 && newdyncommon
677 && sym->st_size != h->size)
678 {
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
684
685 if (! ((*info->callbacks->multiple_common)
686 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
687 h->size, abfd, bfd_link_hash_common, sym->st_size)))
688 return false;
689
690 if (sym->st_size > h->size)
691 h->size = sym->st_size;
692
693 *size_change_ok = true;
694 }
695
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
701 bfd_und_section_ptr.
702
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
709
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
714
715 if (newdyn
716 && newdef
717 && (olddef
718 || (h->root.type == bfd_link_hash_common
719 && (bind == STB_WEAK
720 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
721 && (h->root.type != bfd_link_hash_defweak
722 || dt_needed
723 || bind == STB_WEAK))
724 {
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
728
729 *psec = sec = bfd_und_section_ptr;
730 *size_change_ok = true;
731
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
737
738 if (h->root.type == bfd_link_hash_common)
739 *type_change_ok = true;
740 }
741
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
746 the right thing. */
747
748 if (newdyncommon
749 && h->root.type == bfd_link_hash_common)
750 {
751 *override = true;
752 newdef = false;
753 newdyncommon = false;
754 *pvalue = sym->st_size;
755 *psec = sec = bfd_com_section_ptr;
756 *size_change_ok = true;
757 }
758
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
764
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
768
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
771
772 if (! newdyn
773 && (newdef
774 || (bfd_is_com_section (sec)
775 && (h->root.type == bfd_link_hash_defweak
776 || h->type == STT_FUNC)))
777 && olddyn
778 && olddef
779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (bind != STB_WEAK
781 || h->root.type == bfd_link_hash_defweak))
782 {
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
785 new definition. */
786
787 h->root.type = bfd_link_hash_undefined;
788 h->root.u.undef.abfd = h->root.u.def.section->owner;
789 *size_change_ok = true;
790
791 olddef = false;
792 olddyncommon = false;
793
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
796
797 if (bfd_is_com_section (sec))
798 *type_change_ok = true;
799
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
803
804 h->verinfo.vertree = NULL;
805
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
812 *sym_hash = h;
813 }
814
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
820
821 if (! newdyn
822 && bfd_is_com_section (sec)
823 && olddyncommon)
824 {
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
827 or the alignment. */
828 if (! ((*info->callbacks->multiple_common)
829 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
830 h->size, abfd, bfd_link_hash_common, sym->st_size)))
831 return false;
832
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
835
836 if (h->size > *pvalue)
837 *pvalue = h->size;
838
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
842
843 olddef = false;
844 olddyncommon = false;
845
846 h->root.type = bfd_link_hash_undefined;
847 h->root.u.undef.abfd = h->root.u.def.section->owner;
848
849 *size_change_ok = true;
850 *type_change_ok = true;
851
852 h->verinfo.vertree = NULL;
853 }
854
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
860 if (olddef
861 && ! dt_needed
862 && h->root.type == bfd_link_hash_defweak
863 && newdef
864 && newdyn
865 && bind != STB_WEAK)
866 {
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
869 definition. */
870 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
871 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
872 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
874 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC);
876
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
881 *sym_hash = h;
882 }
883
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
888 as a definition. */
889 if (olddef
890 && olddyn
891 && h->root.type != bfd_link_hash_defweak
892 && newdef
893 && ! newdyn
894 && bind == STB_WEAK)
895 *override = true;
896
897 return true;
898 }
899
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
905
906 static boolean
907 elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
908 dynsym, override, dt_needed)
909 bfd *abfd;
910 struct bfd_link_info *info;
911 struct elf_link_hash_entry *h;
912 const char *name;
913 Elf_Internal_Sym *sym;
914 asection **psec;
915 bfd_vma *value;
916 boolean *dynsym;
917 boolean override;
918 boolean dt_needed;
919 {
920 boolean type_change_ok;
921 boolean size_change_ok;
922 char *shortname;
923 struct elf_link_hash_entry *hi;
924 struct bfd_link_hash_entry *bh;
925 struct elf_backend_data *bed;
926 boolean collect;
927 boolean dynamic;
928 char *p;
929 size_t len, shortlen;
930 asection *sec;
931
932 /* If this symbol has a version, and it is the default version, we
933 create an indirect symbol from the default name to the fully
934 decorated name. This will cause external references which do not
935 specify a version to be bound to this version of the symbol. */
936 p = strchr (name, ELF_VER_CHR);
937 if (p == NULL || p[1] != ELF_VER_CHR)
938 return true;
939
940 if (override)
941 {
942 /* We are overridden by an old defition. We need to check if we
943 need to create the indirect symbol from the default name. */
944 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
945 false, false);
946 BFD_ASSERT (hi != NULL);
947 if (hi == h)
948 return true;
949 while (hi->root.type == bfd_link_hash_indirect
950 || hi->root.type == bfd_link_hash_warning)
951 {
952 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
953 if (hi == h)
954 return true;
955 }
956 }
957
958 bed = get_elf_backend_data (abfd);
959 collect = bed->collect;
960 dynamic = (abfd->flags & DYNAMIC) != 0;
961
962 shortlen = p - name;
963 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
964 if (shortname == NULL)
965 return false;
966 memcpy (shortname, name, shortlen);
967 shortname[shortlen] = '\0';
968
969 /* We are going to create a new symbol. Merge it with any existing
970 symbol with this name. For the purposes of the merge, act as
971 though we were defining the symbol we just defined, although we
972 actually going to define an indirect symbol. */
973 type_change_ok = false;
974 size_change_ok = false;
975 sec = *psec;
976 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
977 &hi, &override, &type_change_ok,
978 &size_change_ok, dt_needed))
979 return false;
980
981 if (! override)
982 {
983 bh = &hi->root;
984 if (! (_bfd_generic_link_add_one_symbol
985 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
986 (bfd_vma) 0, name, false, collect, &bh)))
987 return false;
988 hi = (struct elf_link_hash_entry *) bh;
989 }
990 else
991 {
992 /* In this case the symbol named SHORTNAME is overriding the
993 indirect symbol we want to add. We were planning on making
994 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
995 is the name without a version. NAME is the fully versioned
996 name, and it is the default version.
997
998 Overriding means that we already saw a definition for the
999 symbol SHORTNAME in a regular object, and it is overriding
1000 the symbol defined in the dynamic object.
1001
1002 When this happens, we actually want to change NAME, the
1003 symbol we just added, to refer to SHORTNAME. This will cause
1004 references to NAME in the shared object to become references
1005 to SHORTNAME in the regular object. This is what we expect
1006 when we override a function in a shared object: that the
1007 references in the shared object will be mapped to the
1008 definition in the regular object. */
1009
1010 while (hi->root.type == bfd_link_hash_indirect
1011 || hi->root.type == bfd_link_hash_warning)
1012 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1013
1014 h->root.type = bfd_link_hash_indirect;
1015 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1016 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1017 {
1018 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1019 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1020 if (hi->elf_link_hash_flags
1021 & (ELF_LINK_HASH_REF_REGULAR
1022 | ELF_LINK_HASH_DEF_REGULAR))
1023 {
1024 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1025 return false;
1026 }
1027 }
1028
1029 /* Now set HI to H, so that the following code will set the
1030 other fields correctly. */
1031 hi = h;
1032 }
1033
1034 /* If there is a duplicate definition somewhere, then HI may not
1035 point to an indirect symbol. We will have reported an error to
1036 the user in that case. */
1037
1038 if (hi->root.type == bfd_link_hash_indirect)
1039 {
1040 struct elf_link_hash_entry *ht;
1041
1042 /* If the symbol became indirect, then we assume that we have
1043 not seen a definition before. */
1044 BFD_ASSERT ((hi->elf_link_hash_flags
1045 & (ELF_LINK_HASH_DEF_DYNAMIC
1046 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1047
1048 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1049 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1050
1051 /* See if the new flags lead us to realize that the symbol must
1052 be dynamic. */
1053 if (! *dynsym)
1054 {
1055 if (! dynamic)
1056 {
1057 if (info->shared
1058 || ((hi->elf_link_hash_flags
1059 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1060 *dynsym = true;
1061 }
1062 else
1063 {
1064 if ((hi->elf_link_hash_flags
1065 & ELF_LINK_HASH_REF_REGULAR) != 0)
1066 *dynsym = true;
1067 }
1068 }
1069 }
1070
1071 /* We also need to define an indirection from the nondefault version
1072 of the symbol. */
1073
1074 len = strlen (name);
1075 shortname = bfd_hash_allocate (&info->hash->table, len);
1076 if (shortname == NULL)
1077 return false;
1078 memcpy (shortname, name, shortlen);
1079 memcpy (shortname + shortlen, p + 1, len - shortlen);
1080
1081 /* Once again, merge with any existing symbol. */
1082 type_change_ok = false;
1083 size_change_ok = false;
1084 sec = *psec;
1085 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1086 &hi, &override, &type_change_ok,
1087 &size_change_ok, dt_needed))
1088 return false;
1089
1090 if (override)
1091 {
1092 /* Here SHORTNAME is a versioned name, so we don't expect to see
1093 the type of override we do in the case above unless it is
1094 overridden by a versioned definiton. */
1095 if (hi->root.type != bfd_link_hash_defined
1096 && hi->root.type != bfd_link_hash_defweak)
1097 (*_bfd_error_handler)
1098 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1099 bfd_archive_filename (abfd), shortname);
1100 }
1101 else
1102 {
1103 bh = &hi->root;
1104 if (! (_bfd_generic_link_add_one_symbol
1105 (info, abfd, shortname, BSF_INDIRECT,
1106 bfd_ind_section_ptr, (bfd_vma) 0, name, false, collect, &bh)))
1107 return false;
1108 hi = (struct elf_link_hash_entry *) bh;
1109
1110 /* If there is a duplicate definition somewhere, then HI may not
1111 point to an indirect symbol. We will have reported an error
1112 to the user in that case. */
1113
1114 if (hi->root.type == bfd_link_hash_indirect)
1115 {
1116 /* If the symbol became indirect, then we assume that we have
1117 not seen a definition before. */
1118 BFD_ASSERT ((hi->elf_link_hash_flags
1119 & (ELF_LINK_HASH_DEF_DYNAMIC
1120 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1121
1122 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1123
1124 /* See if the new flags lead us to realize that the symbol
1125 must be dynamic. */
1126 if (! *dynsym)
1127 {
1128 if (! dynamic)
1129 {
1130 if (info->shared
1131 || ((hi->elf_link_hash_flags
1132 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1133 *dynsym = true;
1134 }
1135 else
1136 {
1137 if ((hi->elf_link_hash_flags
1138 & ELF_LINK_HASH_REF_REGULAR) != 0)
1139 *dynsym = true;
1140 }
1141 }
1142 }
1143 }
1144
1145 return true;
1146 }
1147
1148 /* Add symbols from an ELF object file to the linker hash table. */
1149
1150 static boolean
1151 elf_link_add_object_symbols (abfd, info)
1152 bfd *abfd;
1153 struct bfd_link_info *info;
1154 {
1155 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1156 const Elf_Internal_Sym *,
1157 const char **, flagword *,
1158 asection **, bfd_vma *));
1159 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1160 asection *, const Elf_Internal_Rela *));
1161 boolean collect;
1162 Elf_Internal_Shdr *hdr;
1163 bfd_size_type symcount;
1164 bfd_size_type extsymcount;
1165 bfd_size_type extsymoff;
1166 struct elf_link_hash_entry **sym_hash;
1167 boolean dynamic;
1168 Elf_External_Versym *extversym = NULL;
1169 Elf_External_Versym *ever;
1170 struct elf_link_hash_entry *weaks;
1171 Elf_Internal_Sym *isymbuf = NULL;
1172 Elf_Internal_Sym *isym;
1173 Elf_Internal_Sym *isymend;
1174 struct elf_backend_data *bed;
1175 boolean dt_needed;
1176 struct elf_link_hash_table * hash_table;
1177 bfd_size_type amt;
1178
1179 hash_table = elf_hash_table (info);
1180
1181 bed = get_elf_backend_data (abfd);
1182 add_symbol_hook = bed->elf_add_symbol_hook;
1183 collect = bed->collect;
1184
1185 if ((abfd->flags & DYNAMIC) == 0)
1186 dynamic = false;
1187 else
1188 {
1189 dynamic = true;
1190
1191 /* You can't use -r against a dynamic object. Also, there's no
1192 hope of using a dynamic object which does not exactly match
1193 the format of the output file. */
1194 if (info->relocateable || info->hash->creator != abfd->xvec)
1195 {
1196 bfd_set_error (bfd_error_invalid_operation);
1197 goto error_return;
1198 }
1199 }
1200
1201 /* As a GNU extension, any input sections which are named
1202 .gnu.warning.SYMBOL are treated as warning symbols for the given
1203 symbol. This differs from .gnu.warning sections, which generate
1204 warnings when they are included in an output file. */
1205 if (! info->shared)
1206 {
1207 asection *s;
1208
1209 for (s = abfd->sections; s != NULL; s = s->next)
1210 {
1211 const char *name;
1212
1213 name = bfd_get_section_name (abfd, s);
1214 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1215 {
1216 char *msg;
1217 bfd_size_type sz;
1218
1219 name += sizeof ".gnu.warning." - 1;
1220
1221 /* If this is a shared object, then look up the symbol
1222 in the hash table. If it is there, and it is already
1223 been defined, then we will not be using the entry
1224 from this shared object, so we don't need to warn.
1225 FIXME: If we see the definition in a regular object
1226 later on, we will warn, but we shouldn't. The only
1227 fix is to keep track of what warnings we are supposed
1228 to emit, and then handle them all at the end of the
1229 link. */
1230 if (dynamic && abfd->xvec == info->hash->creator)
1231 {
1232 struct elf_link_hash_entry *h;
1233
1234 h = elf_link_hash_lookup (hash_table, name,
1235 false, false, true);
1236
1237 /* FIXME: What about bfd_link_hash_common? */
1238 if (h != NULL
1239 && (h->root.type == bfd_link_hash_defined
1240 || h->root.type == bfd_link_hash_defweak))
1241 {
1242 /* We don't want to issue this warning. Clobber
1243 the section size so that the warning does not
1244 get copied into the output file. */
1245 s->_raw_size = 0;
1246 continue;
1247 }
1248 }
1249
1250 sz = bfd_section_size (abfd, s);
1251 msg = (char *) bfd_alloc (abfd, sz + 1);
1252 if (msg == NULL)
1253 goto error_return;
1254
1255 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1256 goto error_return;
1257
1258 msg[sz] = '\0';
1259
1260 if (! (_bfd_generic_link_add_one_symbol
1261 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1262 false, collect, (struct bfd_link_hash_entry **) NULL)))
1263 goto error_return;
1264
1265 if (! info->relocateable)
1266 {
1267 /* Clobber the section size so that the warning does
1268 not get copied into the output file. */
1269 s->_raw_size = 0;
1270 }
1271 }
1272 }
1273 }
1274
1275 dt_needed = false;
1276 if (! dynamic)
1277 {
1278 /* If we are creating a shared library, create all the dynamic
1279 sections immediately. We need to attach them to something,
1280 so we attach them to this BFD, provided it is the right
1281 format. FIXME: If there are no input BFD's of the same
1282 format as the output, we can't make a shared library. */
1283 if (info->shared
1284 && is_elf_hash_table (info)
1285 && ! hash_table->dynamic_sections_created
1286 && abfd->xvec == info->hash->creator)
1287 {
1288 if (! elf_link_create_dynamic_sections (abfd, info))
1289 goto error_return;
1290 }
1291 }
1292 else if (! is_elf_hash_table (info))
1293 goto error_return;
1294 else
1295 {
1296 asection *s;
1297 boolean add_needed;
1298 const char *name;
1299 bfd_size_type oldsize;
1300 bfd_size_type strindex;
1301 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
1302
1303 /* ld --just-symbols and dynamic objects don't mix very well.
1304 Test for --just-symbols by looking at info set up by
1305 _bfd_elf_link_just_syms. */
1306 if ((s = abfd->sections) != NULL
1307 && elf_section_data (s)->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
1308 goto error_return;
1309
1310 /* Find the name to use in a DT_NEEDED entry that refers to this
1311 object. If the object has a DT_SONAME entry, we use it.
1312 Otherwise, if the generic linker stuck something in
1313 elf_dt_name, we use that. Otherwise, we just use the file
1314 name. If the generic linker put a null string into
1315 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1316 there is a DT_SONAME entry. */
1317 add_needed = true;
1318 name = bfd_get_filename (abfd);
1319 if (elf_dt_name (abfd) != NULL)
1320 {
1321 name = elf_dt_name (abfd);
1322 if (*name == '\0')
1323 {
1324 if (elf_dt_soname (abfd) != NULL)
1325 dt_needed = true;
1326
1327 add_needed = false;
1328 }
1329 }
1330 s = bfd_get_section_by_name (abfd, ".dynamic");
1331 if (s != NULL)
1332 {
1333 Elf_External_Dyn *dynbuf = NULL;
1334 Elf_External_Dyn *extdyn;
1335 Elf_External_Dyn *extdynend;
1336 int elfsec;
1337 unsigned long shlink;
1338
1339 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1340 if (dynbuf == NULL)
1341 goto error_return;
1342
1343 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1344 (file_ptr) 0, s->_raw_size))
1345 goto error_free_dyn;
1346
1347 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1348 if (elfsec == -1)
1349 goto error_free_dyn;
1350 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1351
1352 extdyn = dynbuf;
1353 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1354 for (; extdyn < extdynend; extdyn++)
1355 {
1356 Elf_Internal_Dyn dyn;
1357
1358 elf_swap_dyn_in (abfd, extdyn, &dyn);
1359 if (dyn.d_tag == DT_SONAME)
1360 {
1361 unsigned int tagv = dyn.d_un.d_val;
1362 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1363 if (name == NULL)
1364 goto error_free_dyn;
1365 }
1366 if (dyn.d_tag == DT_NEEDED)
1367 {
1368 struct bfd_link_needed_list *n, **pn;
1369 char *fnm, *anm;
1370 unsigned int tagv = dyn.d_un.d_val;
1371
1372 amt = sizeof (struct bfd_link_needed_list);
1373 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1374 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1375 if (n == NULL || fnm == NULL)
1376 goto error_free_dyn;
1377 amt = strlen (fnm) + 1;
1378 anm = bfd_alloc (abfd, amt);
1379 if (anm == NULL)
1380 goto error_free_dyn;
1381 memcpy (anm, fnm, (size_t) amt);
1382 n->name = anm;
1383 n->by = abfd;
1384 n->next = NULL;
1385 for (pn = & hash_table->needed;
1386 *pn != NULL;
1387 pn = &(*pn)->next)
1388 ;
1389 *pn = n;
1390 }
1391 if (dyn.d_tag == DT_RUNPATH)
1392 {
1393 struct bfd_link_needed_list *n, **pn;
1394 char *fnm, *anm;
1395 unsigned int tagv = dyn.d_un.d_val;
1396
1397 amt = sizeof (struct bfd_link_needed_list);
1398 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1399 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1400 if (n == NULL || fnm == NULL)
1401 goto error_free_dyn;
1402 amt = strlen (fnm) + 1;
1403 anm = bfd_alloc (abfd, amt);
1404 if (anm == NULL)
1405 goto error_free_dyn;
1406 memcpy (anm, fnm, (size_t) amt);
1407 n->name = anm;
1408 n->by = abfd;
1409 n->next = NULL;
1410 for (pn = & runpath;
1411 *pn != NULL;
1412 pn = &(*pn)->next)
1413 ;
1414 *pn = n;
1415 }
1416 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1417 if (!runpath && dyn.d_tag == DT_RPATH)
1418 {
1419 struct bfd_link_needed_list *n, **pn;
1420 char *fnm, *anm;
1421 unsigned int tagv = dyn.d_un.d_val;
1422
1423 amt = sizeof (struct bfd_link_needed_list);
1424 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1425 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1426 if (n == NULL || fnm == NULL)
1427 goto error_free_dyn;
1428 amt = strlen (fnm) + 1;
1429 anm = bfd_alloc (abfd, amt);
1430 if (anm == NULL)
1431 {
1432 error_free_dyn:
1433 free (dynbuf);
1434 goto error_return;
1435 }
1436 memcpy (anm, fnm, (size_t) amt);
1437 n->name = anm;
1438 n->by = abfd;
1439 n->next = NULL;
1440 for (pn = & rpath;
1441 *pn != NULL;
1442 pn = &(*pn)->next)
1443 ;
1444 *pn = n;
1445 }
1446 }
1447
1448 free (dynbuf);
1449 }
1450
1451 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
1452 frees all more recently bfd_alloc'd blocks as well. */
1453 if (runpath)
1454 rpath = runpath;
1455
1456 if (rpath)
1457 {
1458 struct bfd_link_needed_list **pn;
1459 for (pn = & hash_table->runpath;
1460 *pn != NULL;
1461 pn = &(*pn)->next)
1462 ;
1463 *pn = rpath;
1464 }
1465
1466 /* We do not want to include any of the sections in a dynamic
1467 object in the output file. We hack by simply clobbering the
1468 list of sections in the BFD. This could be handled more
1469 cleanly by, say, a new section flag; the existing
1470 SEC_NEVER_LOAD flag is not the one we want, because that one
1471 still implies that the section takes up space in the output
1472 file. */
1473 bfd_section_list_clear (abfd);
1474
1475 /* If this is the first dynamic object found in the link, create
1476 the special sections required for dynamic linking. */
1477 if (! hash_table->dynamic_sections_created)
1478 if (! elf_link_create_dynamic_sections (abfd, info))
1479 goto error_return;
1480
1481 if (add_needed)
1482 {
1483 /* Add a DT_NEEDED entry for this dynamic object. */
1484 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1485 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1486 if (strindex == (bfd_size_type) -1)
1487 goto error_return;
1488
1489 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1490 {
1491 asection *sdyn;
1492 Elf_External_Dyn *dyncon, *dynconend;
1493
1494 /* The hash table size did not change, which means that
1495 the dynamic object name was already entered. If we
1496 have already included this dynamic object in the
1497 link, just ignore it. There is no reason to include
1498 a particular dynamic object more than once. */
1499 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1500 BFD_ASSERT (sdyn != NULL);
1501
1502 dyncon = (Elf_External_Dyn *) sdyn->contents;
1503 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1504 sdyn->_raw_size);
1505 for (; dyncon < dynconend; dyncon++)
1506 {
1507 Elf_Internal_Dyn dyn;
1508
1509 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1510 if (dyn.d_tag == DT_NEEDED
1511 && dyn.d_un.d_val == strindex)
1512 {
1513 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1514 return true;
1515 }
1516 }
1517 }
1518
1519 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1520 goto error_return;
1521 }
1522
1523 /* Save the SONAME, if there is one, because sometimes the
1524 linker emulation code will need to know it. */
1525 if (*name == '\0')
1526 name = basename (bfd_get_filename (abfd));
1527 elf_dt_name (abfd) = name;
1528 }
1529
1530 /* If this is a dynamic object, we always link against the .dynsym
1531 symbol table, not the .symtab symbol table. The dynamic linker
1532 will only see the .dynsym symbol table, so there is no reason to
1533 look at .symtab for a dynamic object. */
1534
1535 if (! dynamic || elf_dynsymtab (abfd) == 0)
1536 hdr = &elf_tdata (abfd)->symtab_hdr;
1537 else
1538 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1539
1540 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1541
1542 /* The sh_info field of the symtab header tells us where the
1543 external symbols start. We don't care about the local symbols at
1544 this point. */
1545 if (elf_bad_symtab (abfd))
1546 {
1547 extsymcount = symcount;
1548 extsymoff = 0;
1549 }
1550 else
1551 {
1552 extsymcount = symcount - hdr->sh_info;
1553 extsymoff = hdr->sh_info;
1554 }
1555
1556 sym_hash = NULL;
1557 if (extsymcount != 0)
1558 {
1559 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
1560 NULL, NULL, NULL);
1561 if (isymbuf == NULL)
1562 goto error_return;
1563
1564 /* We store a pointer to the hash table entry for each external
1565 symbol. */
1566 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1567 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1568 if (sym_hash == NULL)
1569 goto error_free_sym;
1570 elf_sym_hashes (abfd) = sym_hash;
1571 }
1572
1573 if (dynamic)
1574 {
1575 /* Read in any version definitions. */
1576 if (! _bfd_elf_slurp_version_tables (abfd))
1577 goto error_free_sym;
1578
1579 /* Read in the symbol versions, but don't bother to convert them
1580 to internal format. */
1581 if (elf_dynversym (abfd) != 0)
1582 {
1583 Elf_Internal_Shdr *versymhdr;
1584
1585 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1586 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1587 if (extversym == NULL)
1588 goto error_free_sym;
1589 amt = versymhdr->sh_size;
1590 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1591 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1592 goto error_free_vers;
1593 }
1594 }
1595
1596 weaks = NULL;
1597
1598 ever = extversym != NULL ? extversym + extsymoff : NULL;
1599 for (isym = isymbuf, isymend = isymbuf + extsymcount;
1600 isym < isymend;
1601 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1602 {
1603 int bind;
1604 bfd_vma value;
1605 asection *sec;
1606 flagword flags;
1607 const char *name;
1608 struct elf_link_hash_entry *h;
1609 boolean definition;
1610 boolean size_change_ok, type_change_ok;
1611 boolean new_weakdef;
1612 unsigned int old_alignment;
1613 boolean override;
1614
1615 override = false;
1616
1617 flags = BSF_NO_FLAGS;
1618 sec = NULL;
1619 value = isym->st_value;
1620 *sym_hash = NULL;
1621
1622 bind = ELF_ST_BIND (isym->st_info);
1623 if (bind == STB_LOCAL)
1624 {
1625 /* This should be impossible, since ELF requires that all
1626 global symbols follow all local symbols, and that sh_info
1627 point to the first global symbol. Unfortunatealy, Irix 5
1628 screws this up. */
1629 continue;
1630 }
1631 else if (bind == STB_GLOBAL)
1632 {
1633 if (isym->st_shndx != SHN_UNDEF
1634 && isym->st_shndx != SHN_COMMON)
1635 flags = BSF_GLOBAL;
1636 }
1637 else if (bind == STB_WEAK)
1638 flags = BSF_WEAK;
1639 else
1640 {
1641 /* Leave it up to the processor backend. */
1642 }
1643
1644 if (isym->st_shndx == SHN_UNDEF)
1645 sec = bfd_und_section_ptr;
1646 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
1647 {
1648 sec = section_from_elf_index (abfd, isym->st_shndx);
1649 if (sec == NULL)
1650 sec = bfd_abs_section_ptr;
1651 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1652 value -= sec->vma;
1653 }
1654 else if (isym->st_shndx == SHN_ABS)
1655 sec = bfd_abs_section_ptr;
1656 else if (isym->st_shndx == SHN_COMMON)
1657 {
1658 sec = bfd_com_section_ptr;
1659 /* What ELF calls the size we call the value. What ELF
1660 calls the value we call the alignment. */
1661 value = isym->st_size;
1662 }
1663 else
1664 {
1665 /* Leave it up to the processor backend. */
1666 }
1667
1668 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
1669 isym->st_name);
1670 if (name == (const char *) NULL)
1671 goto error_free_vers;
1672
1673 if (isym->st_shndx == SHN_COMMON
1674 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
1675 {
1676 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1677
1678 if (tcomm == NULL)
1679 {
1680 tcomm = bfd_make_section (abfd, ".tcommon");
1681 if (tcomm == NULL
1682 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1683 | SEC_IS_COMMON
1684 | SEC_LINKER_CREATED
1685 | SEC_THREAD_LOCAL)))
1686 goto error_free_vers;
1687 }
1688 sec = tcomm;
1689 }
1690 else if (add_symbol_hook)
1691 {
1692 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
1693 &value))
1694 goto error_free_vers;
1695
1696 /* The hook function sets the name to NULL if this symbol
1697 should be skipped for some reason. */
1698 if (name == (const char *) NULL)
1699 continue;
1700 }
1701
1702 /* Sanity check that all possibilities were handled. */
1703 if (sec == (asection *) NULL)
1704 {
1705 bfd_set_error (bfd_error_bad_value);
1706 goto error_free_vers;
1707 }
1708
1709 if (bfd_is_und_section (sec)
1710 || bfd_is_com_section (sec))
1711 definition = false;
1712 else
1713 definition = true;
1714
1715 size_change_ok = false;
1716 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1717 old_alignment = 0;
1718 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1719 {
1720 Elf_Internal_Versym iver;
1721 unsigned int vernum = 0;
1722
1723 if (ever != NULL)
1724 {
1725 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1726 vernum = iver.vs_vers & VERSYM_VERSION;
1727
1728 /* If this is a hidden symbol, or if it is not version
1729 1, we append the version name to the symbol name.
1730 However, we do not modify a non-hidden absolute
1731 symbol, because it might be the version symbol
1732 itself. FIXME: What if it isn't? */
1733 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1734 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1735 {
1736 const char *verstr;
1737 size_t namelen, verlen, newlen;
1738 char *newname, *p;
1739
1740 if (isym->st_shndx != SHN_UNDEF)
1741 {
1742 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1743 {
1744 (*_bfd_error_handler)
1745 (_("%s: %s: invalid version %u (max %d)"),
1746 bfd_archive_filename (abfd), name, vernum,
1747 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1748 bfd_set_error (bfd_error_bad_value);
1749 goto error_free_vers;
1750 }
1751 else if (vernum > 1)
1752 verstr =
1753 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1754 else
1755 verstr = "";
1756 }
1757 else
1758 {
1759 /* We cannot simply test for the number of
1760 entries in the VERNEED section since the
1761 numbers for the needed versions do not start
1762 at 0. */
1763 Elf_Internal_Verneed *t;
1764
1765 verstr = NULL;
1766 for (t = elf_tdata (abfd)->verref;
1767 t != NULL;
1768 t = t->vn_nextref)
1769 {
1770 Elf_Internal_Vernaux *a;
1771
1772 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1773 {
1774 if (a->vna_other == vernum)
1775 {
1776 verstr = a->vna_nodename;
1777 break;
1778 }
1779 }
1780 if (a != NULL)
1781 break;
1782 }
1783 if (verstr == NULL)
1784 {
1785 (*_bfd_error_handler)
1786 (_("%s: %s: invalid needed version %d"),
1787 bfd_archive_filename (abfd), name, vernum);
1788 bfd_set_error (bfd_error_bad_value);
1789 goto error_free_vers;
1790 }
1791 }
1792
1793 namelen = strlen (name);
1794 verlen = strlen (verstr);
1795 newlen = namelen + verlen + 2;
1796 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1797 && isym->st_shndx != SHN_UNDEF)
1798 ++newlen;
1799
1800 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1801 if (newname == NULL)
1802 goto error_free_vers;
1803 memcpy (newname, name, namelen);
1804 p = newname + namelen;
1805 *p++ = ELF_VER_CHR;
1806 /* If this is a defined non-hidden version symbol,
1807 we add another @ to the name. This indicates the
1808 default version of the symbol. */
1809 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1810 && isym->st_shndx != SHN_UNDEF)
1811 *p++ = ELF_VER_CHR;
1812 memcpy (p, verstr, verlen + 1);
1813
1814 name = newname;
1815 }
1816 }
1817
1818 if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
1819 sym_hash, &override, &type_change_ok,
1820 &size_change_ok, dt_needed))
1821 goto error_free_vers;
1822
1823 if (override)
1824 definition = false;
1825
1826 h = *sym_hash;
1827 while (h->root.type == bfd_link_hash_indirect
1828 || h->root.type == bfd_link_hash_warning)
1829 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1830
1831 /* Remember the old alignment if this is a common symbol, so
1832 that we don't reduce the alignment later on. We can't
1833 check later, because _bfd_generic_link_add_one_symbol
1834 will set a default for the alignment which we want to
1835 override. */
1836 if (h->root.type == bfd_link_hash_common)
1837 old_alignment = h->root.u.c.p->alignment_power;
1838
1839 if (elf_tdata (abfd)->verdef != NULL
1840 && ! override
1841 && vernum > 1
1842 && definition)
1843 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1844 }
1845
1846 if (! (_bfd_generic_link_add_one_symbol
1847 (info, abfd, name, flags, sec, value, (const char *) NULL,
1848 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1849 goto error_free_vers;
1850
1851 h = *sym_hash;
1852 while (h->root.type == bfd_link_hash_indirect
1853 || h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855 *sym_hash = h;
1856
1857 new_weakdef = false;
1858 if (dynamic
1859 && definition
1860 && (flags & BSF_WEAK) != 0
1861 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
1862 && info->hash->creator->flavour == bfd_target_elf_flavour
1863 && h->weakdef == NULL)
1864 {
1865 /* Keep a list of all weak defined non function symbols from
1866 a dynamic object, using the weakdef field. Later in this
1867 function we will set the weakdef field to the correct
1868 value. We only put non-function symbols from dynamic
1869 objects on this list, because that happens to be the only
1870 time we need to know the normal symbol corresponding to a
1871 weak symbol, and the information is time consuming to
1872 figure out. If the weakdef field is not already NULL,
1873 then this symbol was already defined by some previous
1874 dynamic object, and we will be using that previous
1875 definition anyhow. */
1876
1877 h->weakdef = weaks;
1878 weaks = h;
1879 new_weakdef = true;
1880 }
1881
1882 /* Set the alignment of a common symbol. */
1883 if (isym->st_shndx == SHN_COMMON
1884 && h->root.type == bfd_link_hash_common)
1885 {
1886 unsigned int align;
1887
1888 align = bfd_log2 (isym->st_value);
1889 if (align > old_alignment
1890 /* Permit an alignment power of zero if an alignment of one
1891 is specified and no other alignments have been specified. */
1892 || (isym->st_value == 1 && old_alignment == 0))
1893 h->root.u.c.p->alignment_power = align;
1894 }
1895
1896 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1897 {
1898 int old_flags;
1899 boolean dynsym;
1900 int new_flag;
1901
1902 /* Remember the symbol size and type. */
1903 if (isym->st_size != 0
1904 && (definition || h->size == 0))
1905 {
1906 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
1907 (*_bfd_error_handler)
1908 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1909 name, (unsigned long) h->size,
1910 (unsigned long) isym->st_size, bfd_archive_filename (abfd));
1911
1912 h->size = isym->st_size;
1913 }
1914
1915 /* If this is a common symbol, then we always want H->SIZE
1916 to be the size of the common symbol. The code just above
1917 won't fix the size if a common symbol becomes larger. We
1918 don't warn about a size change here, because that is
1919 covered by --warn-common. */
1920 if (h->root.type == bfd_link_hash_common)
1921 h->size = h->root.u.c.size;
1922
1923 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
1924 && (definition || h->type == STT_NOTYPE))
1925 {
1926 if (h->type != STT_NOTYPE
1927 && h->type != ELF_ST_TYPE (isym->st_info)
1928 && ! type_change_ok)
1929 (*_bfd_error_handler)
1930 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1931 name, h->type, ELF_ST_TYPE (isym->st_info),
1932 bfd_archive_filename (abfd));
1933
1934 h->type = ELF_ST_TYPE (isym->st_info);
1935 }
1936
1937 /* If st_other has a processor-specific meaning, specific code
1938 might be needed here. */
1939 if (isym->st_other != 0)
1940 {
1941 /* Combine visibilities, using the most constraining one. */
1942 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1943 unsigned char symvis = ELF_ST_VISIBILITY (isym->st_other);
1944
1945 if (symvis && (hvis > symvis || hvis == 0))
1946 h->other = isym->st_other;
1947
1948 /* If neither has visibility, use the st_other of the
1949 definition. This is an arbitrary choice, since the
1950 other bits have no general meaning. */
1951 if (!symvis && !hvis
1952 && (definition || h->other == 0))
1953 h->other = isym->st_other;
1954 }
1955
1956 /* Set a flag in the hash table entry indicating the type of
1957 reference or definition we just found. Keep a count of
1958 the number of dynamic symbols we find. A dynamic symbol
1959 is one which is referenced or defined by both a regular
1960 object and a shared object. */
1961 old_flags = h->elf_link_hash_flags;
1962 dynsym = false;
1963 if (! dynamic)
1964 {
1965 if (! definition)
1966 {
1967 new_flag = ELF_LINK_HASH_REF_REGULAR;
1968 if (bind != STB_WEAK)
1969 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1970 }
1971 else
1972 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1973 if (info->shared
1974 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1975 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1976 dynsym = true;
1977 }
1978 else
1979 {
1980 if (! definition)
1981 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1982 else
1983 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1984 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1985 | ELF_LINK_HASH_REF_REGULAR)) != 0
1986 || (h->weakdef != NULL
1987 && ! new_weakdef
1988 && h->weakdef->dynindx != -1))
1989 dynsym = true;
1990 }
1991
1992 h->elf_link_hash_flags |= new_flag;
1993
1994 /* Check to see if we need to add an indirect symbol for
1995 the default name. */
1996 if (definition || h->root.type == bfd_link_hash_common)
1997 if (! elf_add_default_symbol (abfd, info, h, name, isym,
1998 &sec, &value, &dynsym,
1999 override, dt_needed))
2000 goto error_free_vers;
2001
2002 if (dynsym && h->dynindx == -1)
2003 {
2004 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2005 goto error_free_vers;
2006 if (h->weakdef != NULL
2007 && ! new_weakdef
2008 && h->weakdef->dynindx == -1)
2009 {
2010 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2011 goto error_free_vers;
2012 }
2013 }
2014 else if (dynsym && h->dynindx != -1)
2015 /* If the symbol already has a dynamic index, but
2016 visibility says it should not be visible, turn it into
2017 a local symbol. */
2018 switch (ELF_ST_VISIBILITY (h->other))
2019 {
2020 case STV_INTERNAL:
2021 case STV_HIDDEN:
2022 (*bed->elf_backend_hide_symbol) (info, h, true);
2023 break;
2024 }
2025
2026 if (dt_needed && definition
2027 && (h->elf_link_hash_flags
2028 & ELF_LINK_HASH_REF_REGULAR) != 0)
2029 {
2030 bfd_size_type oldsize;
2031 bfd_size_type strindex;
2032
2033 if (! is_elf_hash_table (info))
2034 goto error_free_vers;
2035
2036 /* The symbol from a DT_NEEDED object is referenced from
2037 the regular object to create a dynamic executable. We
2038 have to make sure there is a DT_NEEDED entry for it. */
2039
2040 dt_needed = false;
2041 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2042 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2043 elf_dt_soname (abfd), false);
2044 if (strindex == (bfd_size_type) -1)
2045 goto error_free_vers;
2046
2047 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2048 {
2049 asection *sdyn;
2050 Elf_External_Dyn *dyncon, *dynconend;
2051
2052 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2053 ".dynamic");
2054 BFD_ASSERT (sdyn != NULL);
2055
2056 dyncon = (Elf_External_Dyn *) sdyn->contents;
2057 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2058 sdyn->_raw_size);
2059 for (; dyncon < dynconend; dyncon++)
2060 {
2061 Elf_Internal_Dyn dyn;
2062
2063 elf_swap_dyn_in (hash_table->dynobj,
2064 dyncon, &dyn);
2065 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2066 dyn.d_un.d_val != strindex);
2067 }
2068 }
2069
2070 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2071 goto error_free_vers;
2072 }
2073 }
2074 }
2075
2076 if (extversym != NULL)
2077 {
2078 free (extversym);
2079 extversym = NULL;
2080 }
2081
2082 if (isymbuf != NULL)
2083 free (isymbuf);
2084 isymbuf = NULL;
2085
2086 /* Now set the weakdefs field correctly for all the weak defined
2087 symbols we found. The only way to do this is to search all the
2088 symbols. Since we only need the information for non functions in
2089 dynamic objects, that's the only time we actually put anything on
2090 the list WEAKS. We need this information so that if a regular
2091 object refers to a symbol defined weakly in a dynamic object, the
2092 real symbol in the dynamic object is also put in the dynamic
2093 symbols; we also must arrange for both symbols to point to the
2094 same memory location. We could handle the general case of symbol
2095 aliasing, but a general symbol alias can only be generated in
2096 assembler code, handling it correctly would be very time
2097 consuming, and other ELF linkers don't handle general aliasing
2098 either. */
2099 while (weaks != NULL)
2100 {
2101 struct elf_link_hash_entry *hlook;
2102 asection *slook;
2103 bfd_vma vlook;
2104 struct elf_link_hash_entry **hpp;
2105 struct elf_link_hash_entry **hppend;
2106
2107 hlook = weaks;
2108 weaks = hlook->weakdef;
2109 hlook->weakdef = NULL;
2110
2111 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2112 || hlook->root.type == bfd_link_hash_defweak
2113 || hlook->root.type == bfd_link_hash_common
2114 || hlook->root.type == bfd_link_hash_indirect);
2115 slook = hlook->root.u.def.section;
2116 vlook = hlook->root.u.def.value;
2117
2118 hpp = elf_sym_hashes (abfd);
2119 hppend = hpp + extsymcount;
2120 for (; hpp < hppend; hpp++)
2121 {
2122 struct elf_link_hash_entry *h;
2123
2124 h = *hpp;
2125 if (h != NULL && h != hlook
2126 && h->root.type == bfd_link_hash_defined
2127 && h->root.u.def.section == slook
2128 && h->root.u.def.value == vlook)
2129 {
2130 hlook->weakdef = h;
2131
2132 /* If the weak definition is in the list of dynamic
2133 symbols, make sure the real definition is put there
2134 as well. */
2135 if (hlook->dynindx != -1
2136 && h->dynindx == -1)
2137 {
2138 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2139 goto error_return;
2140 }
2141
2142 /* If the real definition is in the list of dynamic
2143 symbols, make sure the weak definition is put there
2144 as well. If we don't do this, then the dynamic
2145 loader might not merge the entries for the real
2146 definition and the weak definition. */
2147 if (h->dynindx != -1
2148 && hlook->dynindx == -1)
2149 {
2150 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2151 goto error_return;
2152 }
2153 break;
2154 }
2155 }
2156 }
2157
2158 /* If this object is the same format as the output object, and it is
2159 not a shared library, then let the backend look through the
2160 relocs.
2161
2162 This is required to build global offset table entries and to
2163 arrange for dynamic relocs. It is not required for the
2164 particular common case of linking non PIC code, even when linking
2165 against shared libraries, but unfortunately there is no way of
2166 knowing whether an object file has been compiled PIC or not.
2167 Looking through the relocs is not particularly time consuming.
2168 The problem is that we must either (1) keep the relocs in memory,
2169 which causes the linker to require additional runtime memory or
2170 (2) read the relocs twice from the input file, which wastes time.
2171 This would be a good case for using mmap.
2172
2173 I have no idea how to handle linking PIC code into a file of a
2174 different format. It probably can't be done. */
2175 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2176 if (! dynamic
2177 && abfd->xvec == info->hash->creator
2178 && check_relocs != NULL)
2179 {
2180 asection *o;
2181
2182 for (o = abfd->sections; o != NULL; o = o->next)
2183 {
2184 Elf_Internal_Rela *internal_relocs;
2185 boolean ok;
2186
2187 if ((o->flags & SEC_RELOC) == 0
2188 || o->reloc_count == 0
2189 || ((info->strip == strip_all || info->strip == strip_debugger)
2190 && (o->flags & SEC_DEBUGGING) != 0)
2191 || bfd_is_abs_section (o->output_section))
2192 continue;
2193
2194 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2195 (abfd, o, (PTR) NULL,
2196 (Elf_Internal_Rela *) NULL,
2197 info->keep_memory));
2198 if (internal_relocs == NULL)
2199 goto error_return;
2200
2201 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2202
2203 if (elf_section_data (o)->relocs != internal_relocs)
2204 free (internal_relocs);
2205
2206 if (! ok)
2207 goto error_return;
2208 }
2209 }
2210
2211 /* If this is a non-traditional, non-relocateable link, try to
2212 optimize the handling of the .stab/.stabstr sections. */
2213 if (! dynamic
2214 && ! info->relocateable
2215 && ! info->traditional_format
2216 && info->hash->creator->flavour == bfd_target_elf_flavour
2217 && is_elf_hash_table (info)
2218 && (info->strip != strip_all && info->strip != strip_debugger))
2219 {
2220 asection *stab, *stabstr;
2221
2222 stab = bfd_get_section_by_name (abfd, ".stab");
2223 if (stab != NULL
2224 && (stab->flags & SEC_MERGE) == 0
2225 && !bfd_is_abs_section (stab->output_section))
2226 {
2227 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2228
2229 if (stabstr != NULL)
2230 {
2231 struct bfd_elf_section_data *secdata;
2232
2233 secdata = elf_section_data (stab);
2234 if (! _bfd_link_section_stabs (abfd,
2235 & hash_table->stab_info,
2236 stab, stabstr,
2237 &secdata->sec_info))
2238 goto error_return;
2239 if (secdata->sec_info)
2240 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2241 }
2242 }
2243 }
2244
2245 if (! info->relocateable && ! dynamic
2246 && is_elf_hash_table (info))
2247 {
2248 asection *s;
2249
2250 for (s = abfd->sections; s != NULL; s = s->next)
2251 if ((s->flags & SEC_MERGE) != 0
2252 && !bfd_is_abs_section (s->output_section))
2253 {
2254 struct bfd_elf_section_data *secdata;
2255
2256 secdata = elf_section_data (s);
2257 if (! _bfd_merge_section (abfd,
2258 & hash_table->merge_info,
2259 s, &secdata->sec_info))
2260 goto error_return;
2261 else if (secdata->sec_info)
2262 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2263 }
2264 }
2265
2266 if (is_elf_hash_table (info))
2267 {
2268 /* Add this bfd to the loaded list. */
2269 struct elf_link_loaded_list *n;
2270
2271 n = ((struct elf_link_loaded_list *)
2272 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2273 if (n == NULL)
2274 goto error_return;
2275 n->abfd = abfd;
2276 n->next = hash_table->loaded;
2277 hash_table->loaded = n;
2278 }
2279
2280 return true;
2281
2282 error_free_vers:
2283 if (extversym != NULL)
2284 free (extversym);
2285 error_free_sym:
2286 if (isymbuf != NULL)
2287 free (isymbuf);
2288 error_return:
2289 return false;
2290 }
2291
2292 /* Create some sections which will be filled in with dynamic linking
2293 information. ABFD is an input file which requires dynamic sections
2294 to be created. The dynamic sections take up virtual memory space
2295 when the final executable is run, so we need to create them before
2296 addresses are assigned to the output sections. We work out the
2297 actual contents and size of these sections later. */
2298
2299 boolean
2300 elf_link_create_dynamic_sections (abfd, info)
2301 bfd *abfd;
2302 struct bfd_link_info *info;
2303 {
2304 flagword flags;
2305 register asection *s;
2306 struct elf_link_hash_entry *h;
2307 struct bfd_link_hash_entry *bh;
2308 struct elf_backend_data *bed;
2309
2310 if (! is_elf_hash_table (info))
2311 return false;
2312
2313 if (elf_hash_table (info)->dynamic_sections_created)
2314 return true;
2315
2316 /* Make sure that all dynamic sections use the same input BFD. */
2317 if (elf_hash_table (info)->dynobj == NULL)
2318 elf_hash_table (info)->dynobj = abfd;
2319 else
2320 abfd = elf_hash_table (info)->dynobj;
2321
2322 /* Note that we set the SEC_IN_MEMORY flag for all of these
2323 sections. */
2324 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2325 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2326
2327 /* A dynamically linked executable has a .interp section, but a
2328 shared library does not. */
2329 if (! info->shared)
2330 {
2331 s = bfd_make_section (abfd, ".interp");
2332 if (s == NULL
2333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2334 return false;
2335 }
2336
2337 if (! info->traditional_format
2338 && info->hash->creator->flavour == bfd_target_elf_flavour)
2339 {
2340 s = bfd_make_section (abfd, ".eh_frame_hdr");
2341 if (s == NULL
2342 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2343 || ! bfd_set_section_alignment (abfd, s, 2))
2344 return false;
2345 }
2346
2347 /* Create sections to hold version informations. These are removed
2348 if they are not needed. */
2349 s = bfd_make_section (abfd, ".gnu.version_d");
2350 if (s == NULL
2351 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2352 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2353 return false;
2354
2355 s = bfd_make_section (abfd, ".gnu.version");
2356 if (s == NULL
2357 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2358 || ! bfd_set_section_alignment (abfd, s, 1))
2359 return false;
2360
2361 s = bfd_make_section (abfd, ".gnu.version_r");
2362 if (s == NULL
2363 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2364 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2365 return false;
2366
2367 s = bfd_make_section (abfd, ".dynsym");
2368 if (s == NULL
2369 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2370 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2371 return false;
2372
2373 s = bfd_make_section (abfd, ".dynstr");
2374 if (s == NULL
2375 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2376 return false;
2377
2378 /* Create a strtab to hold the dynamic symbol names. */
2379 if (elf_hash_table (info)->dynstr == NULL)
2380 {
2381 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2382 if (elf_hash_table (info)->dynstr == NULL)
2383 return false;
2384 }
2385
2386 s = bfd_make_section (abfd, ".dynamic");
2387 if (s == NULL
2388 || ! bfd_set_section_flags (abfd, s, flags)
2389 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2390 return false;
2391
2392 /* The special symbol _DYNAMIC is always set to the start of the
2393 .dynamic section. This call occurs before we have processed the
2394 symbols for any dynamic object, so we don't have to worry about
2395 overriding a dynamic definition. We could set _DYNAMIC in a
2396 linker script, but we only want to define it if we are, in fact,
2397 creating a .dynamic section. We don't want to define it if there
2398 is no .dynamic section, since on some ELF platforms the start up
2399 code examines it to decide how to initialize the process. */
2400 bh = NULL;
2401 if (! (_bfd_generic_link_add_one_symbol
2402 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2403 (const char *) 0, false, get_elf_backend_data (abfd)->collect, &bh)))
2404 return false;
2405 h = (struct elf_link_hash_entry *) bh;
2406 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2407 h->type = STT_OBJECT;
2408
2409 if (info->shared
2410 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2411 return false;
2412
2413 bed = get_elf_backend_data (abfd);
2414
2415 s = bfd_make_section (abfd, ".hash");
2416 if (s == NULL
2417 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2418 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2419 return false;
2420 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2421
2422 /* Let the backend create the rest of the sections. This lets the
2423 backend set the right flags. The backend will normally create
2424 the .got and .plt sections. */
2425 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2426 return false;
2427
2428 elf_hash_table (info)->dynamic_sections_created = true;
2429
2430 return true;
2431 }
2432
2433 /* Add an entry to the .dynamic table. */
2434
2435 boolean
2436 elf_add_dynamic_entry (info, tag, val)
2437 struct bfd_link_info *info;
2438 bfd_vma tag;
2439 bfd_vma val;
2440 {
2441 Elf_Internal_Dyn dyn;
2442 bfd *dynobj;
2443 asection *s;
2444 bfd_size_type newsize;
2445 bfd_byte *newcontents;
2446
2447 if (! is_elf_hash_table (info))
2448 return false;
2449
2450 dynobj = elf_hash_table (info)->dynobj;
2451
2452 s = bfd_get_section_by_name (dynobj, ".dynamic");
2453 BFD_ASSERT (s != NULL);
2454
2455 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2456 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2457 if (newcontents == NULL)
2458 return false;
2459
2460 dyn.d_tag = tag;
2461 dyn.d_un.d_val = val;
2462 elf_swap_dyn_out (dynobj, &dyn,
2463 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2464
2465 s->_raw_size = newsize;
2466 s->contents = newcontents;
2467
2468 return true;
2469 }
2470 \f
2471 /* Read and swap the relocs from the section indicated by SHDR. This
2472 may be either a REL or a RELA section. The relocations are
2473 translated into RELA relocations and stored in INTERNAL_RELOCS,
2474 which should have already been allocated to contain enough space.
2475 The EXTERNAL_RELOCS are a buffer where the external form of the
2476 relocations should be stored.
2477
2478 Returns false if something goes wrong. */
2479
2480 static boolean
2481 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2482 internal_relocs)
2483 bfd *abfd;
2484 Elf_Internal_Shdr *shdr;
2485 PTR external_relocs;
2486 Elf_Internal_Rela *internal_relocs;
2487 {
2488 struct elf_backend_data *bed;
2489 bfd_size_type amt;
2490
2491 /* If there aren't any relocations, that's OK. */
2492 if (!shdr)
2493 return true;
2494
2495 /* Position ourselves at the start of the section. */
2496 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2497 return false;
2498
2499 /* Read the relocations. */
2500 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2501 return false;
2502
2503 bed = get_elf_backend_data (abfd);
2504
2505 /* Convert the external relocations to the internal format. */
2506 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2507 {
2508 Elf_External_Rel *erel;
2509 Elf_External_Rel *erelend;
2510 Elf_Internal_Rela *irela;
2511 Elf_Internal_Rel *irel;
2512
2513 erel = (Elf_External_Rel *) external_relocs;
2514 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2515 irela = internal_relocs;
2516 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2517 irel = bfd_alloc (abfd, amt);
2518 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2519 {
2520 unsigned int i;
2521
2522 if (bed->s->swap_reloc_in)
2523 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2524 else
2525 elf_swap_reloc_in (abfd, erel, irel);
2526
2527 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2528 {
2529 irela[i].r_offset = irel[i].r_offset;
2530 irela[i].r_info = irel[i].r_info;
2531 irela[i].r_addend = 0;
2532 }
2533 }
2534 }
2535 else
2536 {
2537 Elf_External_Rela *erela;
2538 Elf_External_Rela *erelaend;
2539 Elf_Internal_Rela *irela;
2540
2541 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2542
2543 erela = (Elf_External_Rela *) external_relocs;
2544 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2545 irela = internal_relocs;
2546 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2547 {
2548 if (bed->s->swap_reloca_in)
2549 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2550 else
2551 elf_swap_reloca_in (abfd, erela, irela);
2552 }
2553 }
2554
2555 return true;
2556 }
2557
2558 /* Read and swap the relocs for a section O. They may have been
2559 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2560 not NULL, they are used as buffers to read into. They are known to
2561 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2562 the return value is allocated using either malloc or bfd_alloc,
2563 according to the KEEP_MEMORY argument. If O has two relocation
2564 sections (both REL and RELA relocations), then the REL_HDR
2565 relocations will appear first in INTERNAL_RELOCS, followed by the
2566 REL_HDR2 relocations. */
2567
2568 Elf_Internal_Rela *
2569 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2570 keep_memory)
2571 bfd *abfd;
2572 asection *o;
2573 PTR external_relocs;
2574 Elf_Internal_Rela *internal_relocs;
2575 boolean keep_memory;
2576 {
2577 Elf_Internal_Shdr *rel_hdr;
2578 PTR alloc1 = NULL;
2579 Elf_Internal_Rela *alloc2 = NULL;
2580 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2581
2582 if (elf_section_data (o)->relocs != NULL)
2583 return elf_section_data (o)->relocs;
2584
2585 if (o->reloc_count == 0)
2586 return NULL;
2587
2588 rel_hdr = &elf_section_data (o)->rel_hdr;
2589
2590 if (internal_relocs == NULL)
2591 {
2592 bfd_size_type size;
2593
2594 size = o->reloc_count;
2595 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2596 if (keep_memory)
2597 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2598 else
2599 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2600 if (internal_relocs == NULL)
2601 goto error_return;
2602 }
2603
2604 if (external_relocs == NULL)
2605 {
2606 bfd_size_type size = rel_hdr->sh_size;
2607
2608 if (elf_section_data (o)->rel_hdr2)
2609 size += elf_section_data (o)->rel_hdr2->sh_size;
2610 alloc1 = (PTR) bfd_malloc (size);
2611 if (alloc1 == NULL)
2612 goto error_return;
2613 external_relocs = alloc1;
2614 }
2615
2616 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2617 external_relocs,
2618 internal_relocs))
2619 goto error_return;
2620 if (!elf_link_read_relocs_from_section
2621 (abfd,
2622 elf_section_data (o)->rel_hdr2,
2623 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2624 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2625 * bed->s->int_rels_per_ext_rel)))
2626 goto error_return;
2627
2628 /* Cache the results for next time, if we can. */
2629 if (keep_memory)
2630 elf_section_data (o)->relocs = internal_relocs;
2631
2632 if (alloc1 != NULL)
2633 free (alloc1);
2634
2635 /* Don't free alloc2, since if it was allocated we are passing it
2636 back (under the name of internal_relocs). */
2637
2638 return internal_relocs;
2639
2640 error_return:
2641 if (alloc1 != NULL)
2642 free (alloc1);
2643 if (alloc2 != NULL)
2644 free (alloc2);
2645 return NULL;
2646 }
2647 \f
2648 /* Record an assignment to a symbol made by a linker script. We need
2649 this in case some dynamic object refers to this symbol. */
2650
2651 boolean
2652 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2653 bfd *output_bfd ATTRIBUTE_UNUSED;
2654 struct bfd_link_info *info;
2655 const char *name;
2656 boolean provide;
2657 {
2658 struct elf_link_hash_entry *h;
2659
2660 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2661 return true;
2662
2663 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2664 if (h == NULL)
2665 return false;
2666
2667 if (h->root.type == bfd_link_hash_new)
2668 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2669
2670 /* If this symbol is being provided by the linker script, and it is
2671 currently defined by a dynamic object, but not by a regular
2672 object, then mark it as undefined so that the generic linker will
2673 force the correct value. */
2674 if (provide
2675 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2676 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2677 h->root.type = bfd_link_hash_undefined;
2678
2679 /* If this symbol is not being provided by the linker script, and it is
2680 currently defined by a dynamic object, but not by a regular object,
2681 then clear out any version information because the symbol will not be
2682 associated with the dynamic object any more. */
2683 if (!provide
2684 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2685 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2686 h->verinfo.verdef = NULL;
2687
2688 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2689
2690 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2691 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2692 || info->shared)
2693 && h->dynindx == -1)
2694 {
2695 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2696 return false;
2697
2698 /* If this is a weak defined symbol, and we know a corresponding
2699 real symbol from the same dynamic object, make sure the real
2700 symbol is also made into a dynamic symbol. */
2701 if (h->weakdef != NULL
2702 && h->weakdef->dynindx == -1)
2703 {
2704 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2705 return false;
2706 }
2707 }
2708
2709 return true;
2710 }
2711 \f
2712 /* This structure is used to pass information to
2713 elf_link_assign_sym_version. */
2714
2715 struct elf_assign_sym_version_info
2716 {
2717 /* Output BFD. */
2718 bfd *output_bfd;
2719 /* General link information. */
2720 struct bfd_link_info *info;
2721 /* Version tree. */
2722 struct bfd_elf_version_tree *verdefs;
2723 /* Whether we had a failure. */
2724 boolean failed;
2725 };
2726
2727 /* This structure is used to pass information to
2728 elf_link_find_version_dependencies. */
2729
2730 struct elf_find_verdep_info
2731 {
2732 /* Output BFD. */
2733 bfd *output_bfd;
2734 /* General link information. */
2735 struct bfd_link_info *info;
2736 /* The number of dependencies. */
2737 unsigned int vers;
2738 /* Whether we had a failure. */
2739 boolean failed;
2740 };
2741
2742 /* Array used to determine the number of hash table buckets to use
2743 based on the number of symbols there are. If there are fewer than
2744 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2745 fewer than 37 we use 17 buckets, and so forth. We never use more
2746 than 32771 buckets. */
2747
2748 static const size_t elf_buckets[] =
2749 {
2750 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2751 16411, 32771, 0
2752 };
2753
2754 /* Compute bucket count for hashing table. We do not use a static set
2755 of possible tables sizes anymore. Instead we determine for all
2756 possible reasonable sizes of the table the outcome (i.e., the
2757 number of collisions etc) and choose the best solution. The
2758 weighting functions are not too simple to allow the table to grow
2759 without bounds. Instead one of the weighting factors is the size.
2760 Therefore the result is always a good payoff between few collisions
2761 (= short chain lengths) and table size. */
2762 static size_t
2763 compute_bucket_count (info)
2764 struct bfd_link_info *info;
2765 {
2766 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2767 size_t best_size = 0;
2768 unsigned long int *hashcodes;
2769 unsigned long int *hashcodesp;
2770 unsigned long int i;
2771 bfd_size_type amt;
2772
2773 /* Compute the hash values for all exported symbols. At the same
2774 time store the values in an array so that we could use them for
2775 optimizations. */
2776 amt = dynsymcount;
2777 amt *= sizeof (unsigned long int);
2778 hashcodes = (unsigned long int *) bfd_malloc (amt);
2779 if (hashcodes == NULL)
2780 return 0;
2781 hashcodesp = hashcodes;
2782
2783 /* Put all hash values in HASHCODES. */
2784 elf_link_hash_traverse (elf_hash_table (info),
2785 elf_collect_hash_codes, &hashcodesp);
2786
2787 /* We have a problem here. The following code to optimize the table
2788 size requires an integer type with more the 32 bits. If
2789 BFD_HOST_U_64_BIT is set we know about such a type. */
2790 #ifdef BFD_HOST_U_64_BIT
2791 if (info->optimize)
2792 {
2793 unsigned long int nsyms = hashcodesp - hashcodes;
2794 size_t minsize;
2795 size_t maxsize;
2796 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2797 unsigned long int *counts ;
2798
2799 /* Possible optimization parameters: if we have NSYMS symbols we say
2800 that the hashing table must at least have NSYMS/4 and at most
2801 2*NSYMS buckets. */
2802 minsize = nsyms / 4;
2803 if (minsize == 0)
2804 minsize = 1;
2805 best_size = maxsize = nsyms * 2;
2806
2807 /* Create array where we count the collisions in. We must use bfd_malloc
2808 since the size could be large. */
2809 amt = maxsize;
2810 amt *= sizeof (unsigned long int);
2811 counts = (unsigned long int *) bfd_malloc (amt);
2812 if (counts == NULL)
2813 {
2814 free (hashcodes);
2815 return 0;
2816 }
2817
2818 /* Compute the "optimal" size for the hash table. The criteria is a
2819 minimal chain length. The minor criteria is (of course) the size
2820 of the table. */
2821 for (i = minsize; i < maxsize; ++i)
2822 {
2823 /* Walk through the array of hashcodes and count the collisions. */
2824 BFD_HOST_U_64_BIT max;
2825 unsigned long int j;
2826 unsigned long int fact;
2827
2828 memset (counts, '\0', i * sizeof (unsigned long int));
2829
2830 /* Determine how often each hash bucket is used. */
2831 for (j = 0; j < nsyms; ++j)
2832 ++counts[hashcodes[j] % i];
2833
2834 /* For the weight function we need some information about the
2835 pagesize on the target. This is information need not be 100%
2836 accurate. Since this information is not available (so far) we
2837 define it here to a reasonable default value. If it is crucial
2838 to have a better value some day simply define this value. */
2839 # ifndef BFD_TARGET_PAGESIZE
2840 # define BFD_TARGET_PAGESIZE (4096)
2841 # endif
2842
2843 /* We in any case need 2 + NSYMS entries for the size values and
2844 the chains. */
2845 max = (2 + nsyms) * (ARCH_SIZE / 8);
2846
2847 # if 1
2848 /* Variant 1: optimize for short chains. We add the squares
2849 of all the chain lengths (which favous many small chain
2850 over a few long chains). */
2851 for (j = 0; j < i; ++j)
2852 max += counts[j] * counts[j];
2853
2854 /* This adds penalties for the overall size of the table. */
2855 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2856 max *= fact * fact;
2857 # else
2858 /* Variant 2: Optimize a lot more for small table. Here we
2859 also add squares of the size but we also add penalties for
2860 empty slots (the +1 term). */
2861 for (j = 0; j < i; ++j)
2862 max += (1 + counts[j]) * (1 + counts[j]);
2863
2864 /* The overall size of the table is considered, but not as
2865 strong as in variant 1, where it is squared. */
2866 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2867 max *= fact;
2868 # endif
2869
2870 /* Compare with current best results. */
2871 if (max < best_chlen)
2872 {
2873 best_chlen = max;
2874 best_size = i;
2875 }
2876 }
2877
2878 free (counts);
2879 }
2880 else
2881 #endif /* defined (BFD_HOST_U_64_BIT) */
2882 {
2883 /* This is the fallback solution if no 64bit type is available or if we
2884 are not supposed to spend much time on optimizations. We select the
2885 bucket count using a fixed set of numbers. */
2886 for (i = 0; elf_buckets[i] != 0; i++)
2887 {
2888 best_size = elf_buckets[i];
2889 if (dynsymcount < elf_buckets[i + 1])
2890 break;
2891 }
2892 }
2893
2894 /* Free the arrays we needed. */
2895 free (hashcodes);
2896
2897 return best_size;
2898 }
2899
2900 /* Set up the sizes and contents of the ELF dynamic sections. This is
2901 called by the ELF linker emulation before_allocation routine. We
2902 must set the sizes of the sections before the linker sets the
2903 addresses of the various sections. */
2904
2905 boolean
2906 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2907 filter_shlib,
2908 auxiliary_filters, info, sinterpptr,
2909 verdefs)
2910 bfd *output_bfd;
2911 const char *soname;
2912 const char *rpath;
2913 const char *filter_shlib;
2914 const char * const *auxiliary_filters;
2915 struct bfd_link_info *info;
2916 asection **sinterpptr;
2917 struct bfd_elf_version_tree *verdefs;
2918 {
2919 bfd_size_type soname_indx;
2920 bfd *dynobj;
2921 struct elf_backend_data *bed;
2922 struct elf_assign_sym_version_info asvinfo;
2923
2924 *sinterpptr = NULL;
2925
2926 soname_indx = (bfd_size_type) -1;
2927
2928 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2929 return true;
2930
2931 if (! is_elf_hash_table (info))
2932 return true;
2933
2934 /* Any syms created from now on start with -1 in
2935 got.refcount/offset and plt.refcount/offset. */
2936 elf_hash_table (info)->init_refcount = -1;
2937
2938 /* The backend may have to create some sections regardless of whether
2939 we're dynamic or not. */
2940 bed = get_elf_backend_data (output_bfd);
2941 if (bed->elf_backend_always_size_sections
2942 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2943 return false;
2944
2945 dynobj = elf_hash_table (info)->dynobj;
2946
2947 /* If there were no dynamic objects in the link, there is nothing to
2948 do here. */
2949 if (dynobj == NULL)
2950 return true;
2951
2952 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
2953 return false;
2954
2955 if (elf_hash_table (info)->dynamic_sections_created)
2956 {
2957 struct elf_info_failed eif;
2958 struct elf_link_hash_entry *h;
2959 asection *dynstr;
2960 struct bfd_elf_version_tree *t;
2961 struct bfd_elf_version_expr *d;
2962 boolean all_defined;
2963
2964 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2965 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2966
2967 if (soname != NULL)
2968 {
2969 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2970 soname, true);
2971 if (soname_indx == (bfd_size_type) -1
2972 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
2973 soname_indx))
2974 return false;
2975 }
2976
2977 if (info->symbolic)
2978 {
2979 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
2980 (bfd_vma) 0))
2981 return false;
2982 info->flags |= DF_SYMBOLIC;
2983 }
2984
2985 if (rpath != NULL)
2986 {
2987 bfd_size_type indx;
2988
2989 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
2990 true);
2991 if (info->new_dtags)
2992 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
2993 if (indx == (bfd_size_type) -1
2994 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
2995 || (info->new_dtags
2996 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
2997 indx)))
2998 return false;
2999 }
3000
3001 if (filter_shlib != NULL)
3002 {
3003 bfd_size_type indx;
3004
3005 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3006 filter_shlib, true);
3007 if (indx == (bfd_size_type) -1
3008 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3009 return false;
3010 }
3011
3012 if (auxiliary_filters != NULL)
3013 {
3014 const char * const *p;
3015
3016 for (p = auxiliary_filters; *p != NULL; p++)
3017 {
3018 bfd_size_type indx;
3019
3020 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3021 *p, true);
3022 if (indx == (bfd_size_type) -1
3023 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3024 indx))
3025 return false;
3026 }
3027 }
3028
3029 eif.info = info;
3030 eif.verdefs = verdefs;
3031 eif.failed = false;
3032
3033 /* If we are supposed to export all symbols into the dynamic symbol
3034 table (this is not the normal case), then do so. */
3035 if (info->export_dynamic)
3036 {
3037 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3038 (PTR) &eif);
3039 if (eif.failed)
3040 return false;
3041 }
3042
3043 /* Make all global versions with definiton. */
3044 for (t = verdefs; t != NULL; t = t->next)
3045 for (d = t->globals; d != NULL; d = d->next)
3046 if (!d->symver && strchr (d->pattern, '*') == NULL)
3047 {
3048 const char *verstr, *name;
3049 size_t namelen, verlen, newlen;
3050 char *newname, *p;
3051 struct elf_link_hash_entry *newh;
3052
3053 name = d->pattern;
3054 namelen = strlen (name);
3055 verstr = t->name;
3056 verlen = strlen (verstr);
3057 newlen = namelen + verlen + 3;
3058
3059 newname = (char *) bfd_malloc ((bfd_size_type) newlen);
3060 if (newname == NULL)
3061 return false;
3062 memcpy (newname, name, namelen);
3063
3064 /* Check the hidden versioned definition. */
3065 p = newname + namelen;
3066 *p++ = ELF_VER_CHR;
3067 memcpy (p, verstr, verlen + 1);
3068 newh = elf_link_hash_lookup (elf_hash_table (info),
3069 newname, false, false,
3070 false);
3071 if (newh == NULL
3072 || (newh->root.type != bfd_link_hash_defined
3073 && newh->root.type != bfd_link_hash_defweak))
3074 {
3075 /* Check the default versioned definition. */
3076 *p++ = ELF_VER_CHR;
3077 memcpy (p, verstr, verlen + 1);
3078 newh = elf_link_hash_lookup (elf_hash_table (info),
3079 newname, false, false,
3080 false);
3081 }
3082 free (newname);
3083
3084 /* Mark this version if there is a definition and it is
3085 not defined in a shared object. */
3086 if (newh != NULL
3087 && ((newh->elf_link_hash_flags
3088 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3089 && (newh->root.type == bfd_link_hash_defined
3090 || newh->root.type == bfd_link_hash_defweak))
3091 d->symver = 1;
3092 }
3093
3094 /* Attach all the symbols to their version information. */
3095 asvinfo.output_bfd = output_bfd;
3096 asvinfo.info = info;
3097 asvinfo.verdefs = verdefs;
3098 asvinfo.failed = false;
3099
3100 elf_link_hash_traverse (elf_hash_table (info),
3101 elf_link_assign_sym_version,
3102 (PTR) &asvinfo);
3103 if (asvinfo.failed)
3104 return false;
3105
3106 if (!info->allow_undefined_version)
3107 {
3108 /* Check if all global versions have a definiton. */
3109 all_defined = true;
3110 for (t = verdefs; t != NULL; t = t->next)
3111 for (d = t->globals; d != NULL; d = d->next)
3112 if (!d->symver && !d->script
3113 && strchr (d->pattern, '*') == NULL)
3114 {
3115 (*_bfd_error_handler)
3116 (_("%s: undefined version: %s"),
3117 d->pattern, t->name);
3118 all_defined = false;
3119 }
3120
3121 if (!all_defined)
3122 {
3123 bfd_set_error (bfd_error_bad_value);
3124 return false;
3125 }
3126 }
3127
3128 /* Find all symbols which were defined in a dynamic object and make
3129 the backend pick a reasonable value for them. */
3130 elf_link_hash_traverse (elf_hash_table (info),
3131 elf_adjust_dynamic_symbol,
3132 (PTR) &eif);
3133 if (eif.failed)
3134 return false;
3135
3136 /* Add some entries to the .dynamic section. We fill in some of the
3137 values later, in elf_bfd_final_link, but we must add the entries
3138 now so that we know the final size of the .dynamic section. */
3139
3140 /* If there are initialization and/or finalization functions to
3141 call then add the corresponding DT_INIT/DT_FINI entries. */
3142 h = (info->init_function
3143 ? elf_link_hash_lookup (elf_hash_table (info),
3144 info->init_function, false,
3145 false, false)
3146 : NULL);
3147 if (h != NULL
3148 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3149 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3150 {
3151 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3152 return false;
3153 }
3154 h = (info->fini_function
3155 ? elf_link_hash_lookup (elf_hash_table (info),
3156 info->fini_function, false,
3157 false, false)
3158 : NULL);
3159 if (h != NULL
3160 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3161 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3162 {
3163 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3164 return false;
3165 }
3166
3167 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3168 {
3169 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3170 if (info->shared)
3171 {
3172 bfd *sub;
3173 asection *o;
3174
3175 for (sub = info->input_bfds; sub != NULL;
3176 sub = sub->link_next)
3177 for (o = sub->sections; o != NULL; o = o->next)
3178 if (elf_section_data (o)->this_hdr.sh_type
3179 == SHT_PREINIT_ARRAY)
3180 {
3181 (*_bfd_error_handler)
3182 (_("%s: .preinit_array section is not allowed in DSO"),
3183 bfd_archive_filename (sub));
3184 break;
3185 }
3186
3187 bfd_set_error (bfd_error_nonrepresentable_section);
3188 return false;
3189 }
3190
3191 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3192 (bfd_vma) 0)
3193 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3194 (bfd_vma) 0))
3195 return false;
3196 }
3197 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3198 {
3199 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3200 (bfd_vma) 0)
3201 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3202 (bfd_vma) 0))
3203 return false;
3204 }
3205 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3206 {
3207 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3208 (bfd_vma) 0)
3209 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3210 (bfd_vma) 0))
3211 return false;
3212 }
3213
3214 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3215 /* If .dynstr is excluded from the link, we don't want any of
3216 these tags. Strictly, we should be checking each section
3217 individually; This quick check covers for the case where
3218 someone does a /DISCARD/ : { *(*) }. */
3219 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3220 {
3221 bfd_size_type strsize;
3222
3223 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3224 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3225 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3226 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3227 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3228 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3229 (bfd_vma) sizeof (Elf_External_Sym)))
3230 return false;
3231 }
3232 }
3233
3234 /* The backend must work out the sizes of all the other dynamic
3235 sections. */
3236 if (bed->elf_backend_size_dynamic_sections
3237 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3238 return false;
3239
3240 if (elf_hash_table (info)->dynamic_sections_created)
3241 {
3242 bfd_size_type dynsymcount;
3243 asection *s;
3244 size_t bucketcount = 0;
3245 size_t hash_entry_size;
3246 unsigned int dtagcount;
3247
3248 /* Set up the version definition section. */
3249 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3250 BFD_ASSERT (s != NULL);
3251
3252 /* We may have created additional version definitions if we are
3253 just linking a regular application. */
3254 verdefs = asvinfo.verdefs;
3255
3256 /* Skip anonymous version tag. */
3257 if (verdefs != NULL && verdefs->vernum == 0)
3258 verdefs = verdefs->next;
3259
3260 if (verdefs == NULL)
3261 _bfd_strip_section_from_output (info, s);
3262 else
3263 {
3264 unsigned int cdefs;
3265 bfd_size_type size;
3266 struct bfd_elf_version_tree *t;
3267 bfd_byte *p;
3268 Elf_Internal_Verdef def;
3269 Elf_Internal_Verdaux defaux;
3270
3271 cdefs = 0;
3272 size = 0;
3273
3274 /* Make space for the base version. */
3275 size += sizeof (Elf_External_Verdef);
3276 size += sizeof (Elf_External_Verdaux);
3277 ++cdefs;
3278
3279 for (t = verdefs; t != NULL; t = t->next)
3280 {
3281 struct bfd_elf_version_deps *n;
3282
3283 size += sizeof (Elf_External_Verdef);
3284 size += sizeof (Elf_External_Verdaux);
3285 ++cdefs;
3286
3287 for (n = t->deps; n != NULL; n = n->next)
3288 size += sizeof (Elf_External_Verdaux);
3289 }
3290
3291 s->_raw_size = size;
3292 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3293 if (s->contents == NULL && s->_raw_size != 0)
3294 return false;
3295
3296 /* Fill in the version definition section. */
3297
3298 p = s->contents;
3299
3300 def.vd_version = VER_DEF_CURRENT;
3301 def.vd_flags = VER_FLG_BASE;
3302 def.vd_ndx = 1;
3303 def.vd_cnt = 1;
3304 def.vd_aux = sizeof (Elf_External_Verdef);
3305 def.vd_next = (sizeof (Elf_External_Verdef)
3306 + sizeof (Elf_External_Verdaux));
3307
3308 if (soname_indx != (bfd_size_type) -1)
3309 {
3310 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3311 soname_indx);
3312 def.vd_hash = bfd_elf_hash (soname);
3313 defaux.vda_name = soname_indx;
3314 }
3315 else
3316 {
3317 const char *name;
3318 bfd_size_type indx;
3319
3320 name = basename (output_bfd->filename);
3321 def.vd_hash = bfd_elf_hash (name);
3322 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3323 name, false);
3324 if (indx == (bfd_size_type) -1)
3325 return false;
3326 defaux.vda_name = indx;
3327 }
3328 defaux.vda_next = 0;
3329
3330 _bfd_elf_swap_verdef_out (output_bfd, &def,
3331 (Elf_External_Verdef *) p);
3332 p += sizeof (Elf_External_Verdef);
3333 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3334 (Elf_External_Verdaux *) p);
3335 p += sizeof (Elf_External_Verdaux);
3336
3337 for (t = verdefs; t != NULL; t = t->next)
3338 {
3339 unsigned int cdeps;
3340 struct bfd_elf_version_deps *n;
3341 struct elf_link_hash_entry *h;
3342 struct bfd_link_hash_entry *bh;
3343
3344 cdeps = 0;
3345 for (n = t->deps; n != NULL; n = n->next)
3346 ++cdeps;
3347
3348 /* Add a symbol representing this version. */
3349 bh = NULL;
3350 if (! (_bfd_generic_link_add_one_symbol
3351 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3352 (bfd_vma) 0, (const char *) NULL, false,
3353 get_elf_backend_data (dynobj)->collect, &bh)))
3354 return false;
3355 h = (struct elf_link_hash_entry *) bh;
3356 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3357 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3358 h->type = STT_OBJECT;
3359 h->verinfo.vertree = t;
3360
3361 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3362 return false;
3363
3364 def.vd_version = VER_DEF_CURRENT;
3365 def.vd_flags = 0;
3366 if (t->globals == NULL && t->locals == NULL && ! t->used)
3367 def.vd_flags |= VER_FLG_WEAK;
3368 def.vd_ndx = t->vernum + 1;
3369 def.vd_cnt = cdeps + 1;
3370 def.vd_hash = bfd_elf_hash (t->name);
3371 def.vd_aux = sizeof (Elf_External_Verdef);
3372 if (t->next != NULL)
3373 def.vd_next = (sizeof (Elf_External_Verdef)
3374 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3375 else
3376 def.vd_next = 0;
3377
3378 _bfd_elf_swap_verdef_out (output_bfd, &def,
3379 (Elf_External_Verdef *) p);
3380 p += sizeof (Elf_External_Verdef);
3381
3382 defaux.vda_name = h->dynstr_index;
3383 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3384 h->dynstr_index);
3385 if (t->deps == NULL)
3386 defaux.vda_next = 0;
3387 else
3388 defaux.vda_next = sizeof (Elf_External_Verdaux);
3389 t->name_indx = defaux.vda_name;
3390
3391 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3392 (Elf_External_Verdaux *) p);
3393 p += sizeof (Elf_External_Verdaux);
3394
3395 for (n = t->deps; n != NULL; n = n->next)
3396 {
3397 if (n->version_needed == NULL)
3398 {
3399 /* This can happen if there was an error in the
3400 version script. */
3401 defaux.vda_name = 0;
3402 }
3403 else
3404 {
3405 defaux.vda_name = n->version_needed->name_indx;
3406 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3407 defaux.vda_name);
3408 }
3409 if (n->next == NULL)
3410 defaux.vda_next = 0;
3411 else
3412 defaux.vda_next = sizeof (Elf_External_Verdaux);
3413
3414 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3415 (Elf_External_Verdaux *) p);
3416 p += sizeof (Elf_External_Verdaux);
3417 }
3418 }
3419
3420 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3421 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3422 (bfd_vma) cdefs))
3423 return false;
3424
3425 elf_tdata (output_bfd)->cverdefs = cdefs;
3426 }
3427
3428 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3429 {
3430 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3431 return false;
3432 }
3433
3434 if (info->flags_1)
3435 {
3436 if (! info->shared)
3437 info->flags_1 &= ~ (DF_1_INITFIRST
3438 | DF_1_NODELETE
3439 | DF_1_NOOPEN);
3440 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3441 info->flags_1))
3442 return false;
3443 }
3444
3445 /* Work out the size of the version reference section. */
3446
3447 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3448 BFD_ASSERT (s != NULL);
3449 {
3450 struct elf_find_verdep_info sinfo;
3451
3452 sinfo.output_bfd = output_bfd;
3453 sinfo.info = info;
3454 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3455 if (sinfo.vers == 0)
3456 sinfo.vers = 1;
3457 sinfo.failed = false;
3458
3459 elf_link_hash_traverse (elf_hash_table (info),
3460 elf_link_find_version_dependencies,
3461 (PTR) &sinfo);
3462
3463 if (elf_tdata (output_bfd)->verref == NULL)
3464 _bfd_strip_section_from_output (info, s);
3465 else
3466 {
3467 Elf_Internal_Verneed *t;
3468 unsigned int size;
3469 unsigned int crefs;
3470 bfd_byte *p;
3471
3472 /* Build the version definition section. */
3473 size = 0;
3474 crefs = 0;
3475 for (t = elf_tdata (output_bfd)->verref;
3476 t != NULL;
3477 t = t->vn_nextref)
3478 {
3479 Elf_Internal_Vernaux *a;
3480
3481 size += sizeof (Elf_External_Verneed);
3482 ++crefs;
3483 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3484 size += sizeof (Elf_External_Vernaux);
3485 }
3486
3487 s->_raw_size = size;
3488 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3489 if (s->contents == NULL)
3490 return false;
3491
3492 p = s->contents;
3493 for (t = elf_tdata (output_bfd)->verref;
3494 t != NULL;
3495 t = t->vn_nextref)
3496 {
3497 unsigned int caux;
3498 Elf_Internal_Vernaux *a;
3499 bfd_size_type indx;
3500
3501 caux = 0;
3502 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3503 ++caux;
3504
3505 t->vn_version = VER_NEED_CURRENT;
3506 t->vn_cnt = caux;
3507 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3508 elf_dt_name (t->vn_bfd) != NULL
3509 ? elf_dt_name (t->vn_bfd)
3510 : basename (t->vn_bfd->filename),
3511 false);
3512 if (indx == (bfd_size_type) -1)
3513 return false;
3514 t->vn_file = indx;
3515 t->vn_aux = sizeof (Elf_External_Verneed);
3516 if (t->vn_nextref == NULL)
3517 t->vn_next = 0;
3518 else
3519 t->vn_next = (sizeof (Elf_External_Verneed)
3520 + caux * sizeof (Elf_External_Vernaux));
3521
3522 _bfd_elf_swap_verneed_out (output_bfd, t,
3523 (Elf_External_Verneed *) p);
3524 p += sizeof (Elf_External_Verneed);
3525
3526 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3527 {
3528 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3529 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3530 a->vna_nodename, false);
3531 if (indx == (bfd_size_type) -1)
3532 return false;
3533 a->vna_name = indx;
3534 if (a->vna_nextptr == NULL)
3535 a->vna_next = 0;
3536 else
3537 a->vna_next = sizeof (Elf_External_Vernaux);
3538
3539 _bfd_elf_swap_vernaux_out (output_bfd, a,
3540 (Elf_External_Vernaux *) p);
3541 p += sizeof (Elf_External_Vernaux);
3542 }
3543 }
3544
3545 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3546 (bfd_vma) 0)
3547 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3548 (bfd_vma) crefs))
3549 return false;
3550
3551 elf_tdata (output_bfd)->cverrefs = crefs;
3552 }
3553 }
3554
3555 /* Assign dynsym indicies. In a shared library we generate a
3556 section symbol for each output section, which come first.
3557 Next come all of the back-end allocated local dynamic syms,
3558 followed by the rest of the global symbols. */
3559
3560 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3561
3562 /* Work out the size of the symbol version section. */
3563 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3564 BFD_ASSERT (s != NULL);
3565 if (dynsymcount == 0
3566 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3567 {
3568 _bfd_strip_section_from_output (info, s);
3569 /* The DYNSYMCOUNT might have changed if we were going to
3570 output a dynamic symbol table entry for S. */
3571 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3572 }
3573 else
3574 {
3575 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3576 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3577 if (s->contents == NULL)
3578 return false;
3579
3580 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3581 return false;
3582 }
3583
3584 /* Set the size of the .dynsym and .hash sections. We counted
3585 the number of dynamic symbols in elf_link_add_object_symbols.
3586 We will build the contents of .dynsym and .hash when we build
3587 the final symbol table, because until then we do not know the
3588 correct value to give the symbols. We built the .dynstr
3589 section as we went along in elf_link_add_object_symbols. */
3590 s = bfd_get_section_by_name (dynobj, ".dynsym");
3591 BFD_ASSERT (s != NULL);
3592 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3593 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3594 if (s->contents == NULL && s->_raw_size != 0)
3595 return false;
3596
3597 if (dynsymcount != 0)
3598 {
3599 Elf_Internal_Sym isym;
3600
3601 /* The first entry in .dynsym is a dummy symbol. */
3602 isym.st_value = 0;
3603 isym.st_size = 0;
3604 isym.st_name = 0;
3605 isym.st_info = 0;
3606 isym.st_other = 0;
3607 isym.st_shndx = 0;
3608 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3609 }
3610
3611 /* Compute the size of the hashing table. As a side effect this
3612 computes the hash values for all the names we export. */
3613 bucketcount = compute_bucket_count (info);
3614
3615 s = bfd_get_section_by_name (dynobj, ".hash");
3616 BFD_ASSERT (s != NULL);
3617 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3618 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3619 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3620 if (s->contents == NULL)
3621 return false;
3622
3623 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3624 s->contents);
3625 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3626 s->contents + hash_entry_size);
3627
3628 elf_hash_table (info)->bucketcount = bucketcount;
3629
3630 s = bfd_get_section_by_name (dynobj, ".dynstr");
3631 BFD_ASSERT (s != NULL);
3632
3633 elf_finalize_dynstr (output_bfd, info);
3634
3635 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3636
3637 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3638 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3639 return false;
3640 }
3641
3642 return true;
3643 }
3644 \f
3645 /* This function is used to adjust offsets into .dynstr for
3646 dynamic symbols. This is called via elf_link_hash_traverse. */
3647
3648 static boolean elf_adjust_dynstr_offsets
3649 PARAMS ((struct elf_link_hash_entry *, PTR));
3650
3651 static boolean
3652 elf_adjust_dynstr_offsets (h, data)
3653 struct elf_link_hash_entry *h;
3654 PTR data;
3655 {
3656 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3657
3658 if (h->root.type == bfd_link_hash_warning)
3659 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3660
3661 if (h->dynindx != -1)
3662 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3663 return true;
3664 }
3665
3666 /* Assign string offsets in .dynstr, update all structures referencing
3667 them. */
3668
3669 static boolean
3670 elf_finalize_dynstr (output_bfd, info)
3671 bfd *output_bfd;
3672 struct bfd_link_info *info;
3673 {
3674 struct elf_link_local_dynamic_entry *entry;
3675 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3676 bfd *dynobj = elf_hash_table (info)->dynobj;
3677 asection *sdyn;
3678 bfd_size_type size;
3679 Elf_External_Dyn *dyncon, *dynconend;
3680
3681 _bfd_elf_strtab_finalize (dynstr);
3682 size = _bfd_elf_strtab_size (dynstr);
3683
3684 /* Update all .dynamic entries referencing .dynstr strings. */
3685 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3686 BFD_ASSERT (sdyn != NULL);
3687
3688 dyncon = (Elf_External_Dyn *) sdyn->contents;
3689 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3690 sdyn->_raw_size);
3691 for (; dyncon < dynconend; dyncon++)
3692 {
3693 Elf_Internal_Dyn dyn;
3694
3695 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3696 switch (dyn.d_tag)
3697 {
3698 case DT_STRSZ:
3699 dyn.d_un.d_val = size;
3700 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3701 break;
3702 case DT_NEEDED:
3703 case DT_SONAME:
3704 case DT_RPATH:
3705 case DT_RUNPATH:
3706 case DT_FILTER:
3707 case DT_AUXILIARY:
3708 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3709 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3710 break;
3711 default:
3712 break;
3713 }
3714 }
3715
3716 /* Now update local dynamic symbols. */
3717 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3718 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3719 entry->isym.st_name);
3720
3721 /* And the rest of dynamic symbols. */
3722 elf_link_hash_traverse (elf_hash_table (info),
3723 elf_adjust_dynstr_offsets, dynstr);
3724
3725 /* Adjust version definitions. */
3726 if (elf_tdata (output_bfd)->cverdefs)
3727 {
3728 asection *s;
3729 bfd_byte *p;
3730 bfd_size_type i;
3731 Elf_Internal_Verdef def;
3732 Elf_Internal_Verdaux defaux;
3733
3734 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3735 p = (bfd_byte *) s->contents;
3736 do
3737 {
3738 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3739 &def);
3740 p += sizeof (Elf_External_Verdef);
3741 for (i = 0; i < def.vd_cnt; ++i)
3742 {
3743 _bfd_elf_swap_verdaux_in (output_bfd,
3744 (Elf_External_Verdaux *) p, &defaux);
3745 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3746 defaux.vda_name);
3747 _bfd_elf_swap_verdaux_out (output_bfd,
3748 &defaux, (Elf_External_Verdaux *) p);
3749 p += sizeof (Elf_External_Verdaux);
3750 }
3751 }
3752 while (def.vd_next);
3753 }
3754
3755 /* Adjust version references. */
3756 if (elf_tdata (output_bfd)->verref)
3757 {
3758 asection *s;
3759 bfd_byte *p;
3760 bfd_size_type i;
3761 Elf_Internal_Verneed need;
3762 Elf_Internal_Vernaux needaux;
3763
3764 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3765 p = (bfd_byte *) s->contents;
3766 do
3767 {
3768 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3769 &need);
3770 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3771 _bfd_elf_swap_verneed_out (output_bfd, &need,
3772 (Elf_External_Verneed *) p);
3773 p += sizeof (Elf_External_Verneed);
3774 for (i = 0; i < need.vn_cnt; ++i)
3775 {
3776 _bfd_elf_swap_vernaux_in (output_bfd,
3777 (Elf_External_Vernaux *) p, &needaux);
3778 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3779 needaux.vna_name);
3780 _bfd_elf_swap_vernaux_out (output_bfd,
3781 &needaux,
3782 (Elf_External_Vernaux *) p);
3783 p += sizeof (Elf_External_Vernaux);
3784 }
3785 }
3786 while (need.vn_next);
3787 }
3788
3789 return true;
3790 }
3791
3792 /* Fix up the flags for a symbol. This handles various cases which
3793 can only be fixed after all the input files are seen. This is
3794 currently called by both adjust_dynamic_symbol and
3795 assign_sym_version, which is unnecessary but perhaps more robust in
3796 the face of future changes. */
3797
3798 static boolean
3799 elf_fix_symbol_flags (h, eif)
3800 struct elf_link_hash_entry *h;
3801 struct elf_info_failed *eif;
3802 {
3803 /* If this symbol was mentioned in a non-ELF file, try to set
3804 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3805 permit a non-ELF file to correctly refer to a symbol defined in
3806 an ELF dynamic object. */
3807 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3808 {
3809 while (h->root.type == bfd_link_hash_indirect)
3810 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3811
3812 if (h->root.type != bfd_link_hash_defined
3813 && h->root.type != bfd_link_hash_defweak)
3814 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3815 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3816 else
3817 {
3818 if (h->root.u.def.section->owner != NULL
3819 && (bfd_get_flavour (h->root.u.def.section->owner)
3820 == bfd_target_elf_flavour))
3821 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3822 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3823 else
3824 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3825 }
3826
3827 if (h->dynindx == -1
3828 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3829 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3830 {
3831 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3832 {
3833 eif->failed = true;
3834 return false;
3835 }
3836 }
3837 }
3838 else
3839 {
3840 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3841 was first seen in a non-ELF file. Fortunately, if the symbol
3842 was first seen in an ELF file, we're probably OK unless the
3843 symbol was defined in a non-ELF file. Catch that case here.
3844 FIXME: We're still in trouble if the symbol was first seen in
3845 a dynamic object, and then later in a non-ELF regular object. */
3846 if ((h->root.type == bfd_link_hash_defined
3847 || h->root.type == bfd_link_hash_defweak)
3848 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3849 && (h->root.u.def.section->owner != NULL
3850 ? (bfd_get_flavour (h->root.u.def.section->owner)
3851 != bfd_target_elf_flavour)
3852 : (bfd_is_abs_section (h->root.u.def.section)
3853 && (h->elf_link_hash_flags
3854 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3855 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3856 }
3857
3858 /* If this is a final link, and the symbol was defined as a common
3859 symbol in a regular object file, and there was no definition in
3860 any dynamic object, then the linker will have allocated space for
3861 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3862 flag will not have been set. */
3863 if (h->root.type == bfd_link_hash_defined
3864 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3865 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3866 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3867 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3868 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3869
3870 /* If -Bsymbolic was used (which means to bind references to global
3871 symbols to the definition within the shared object), and this
3872 symbol was defined in a regular object, then it actually doesn't
3873 need a PLT entry, and we can accomplish that by forcing it local.
3874 Likewise, if the symbol has hidden or internal visibility.
3875 FIXME: It might be that we also do not need a PLT for other
3876 non-hidden visibilities, but we would have to tell that to the
3877 backend specifically; we can't just clear PLT-related data here. */
3878 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3879 && eif->info->shared
3880 && is_elf_hash_table (eif->info)
3881 && (eif->info->symbolic
3882 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3883 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3884 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3885 {
3886 struct elf_backend_data *bed;
3887 boolean force_local;
3888
3889 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3890
3891 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3892 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3893 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3894 }
3895
3896 /* If this is a weak defined symbol in a dynamic object, and we know
3897 the real definition in the dynamic object, copy interesting flags
3898 over to the real definition. */
3899 if (h->weakdef != NULL)
3900 {
3901 struct elf_link_hash_entry *weakdef;
3902
3903 weakdef = h->weakdef;
3904 if (h->root.type == bfd_link_hash_indirect)
3905 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3906
3907 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3908 || h->root.type == bfd_link_hash_defweak);
3909 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3910 || weakdef->root.type == bfd_link_hash_defweak);
3911 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3912
3913 /* If the real definition is defined by a regular object file,
3914 don't do anything special. See the longer description in
3915 elf_adjust_dynamic_symbol, below. */
3916 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3917 h->weakdef = NULL;
3918 else
3919 {
3920 struct elf_backend_data *bed;
3921
3922 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3923 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
3924 }
3925 }
3926
3927 return true;
3928 }
3929
3930 /* Make the backend pick a good value for a dynamic symbol. This is
3931 called via elf_link_hash_traverse, and also calls itself
3932 recursively. */
3933
3934 static boolean
3935 elf_adjust_dynamic_symbol (h, data)
3936 struct elf_link_hash_entry *h;
3937 PTR data;
3938 {
3939 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3940 bfd *dynobj;
3941 struct elf_backend_data *bed;
3942
3943 if (h->root.type == bfd_link_hash_warning)
3944 {
3945 h->plt.offset = (bfd_vma) -1;
3946 h->got.offset = (bfd_vma) -1;
3947
3948 /* When warning symbols are created, they **replace** the "real"
3949 entry in the hash table, thus we never get to see the real
3950 symbol in a hash traversal. So look at it now. */
3951 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3952 }
3953
3954 /* Ignore indirect symbols. These are added by the versioning code. */
3955 if (h->root.type == bfd_link_hash_indirect)
3956 return true;
3957
3958 if (! is_elf_hash_table (eif->info))
3959 return false;
3960
3961 /* Fix the symbol flags. */
3962 if (! elf_fix_symbol_flags (h, eif))
3963 return false;
3964
3965 /* If this symbol does not require a PLT entry, and it is not
3966 defined by a dynamic object, or is not referenced by a regular
3967 object, ignore it. We do have to handle a weak defined symbol,
3968 even if no regular object refers to it, if we decided to add it
3969 to the dynamic symbol table. FIXME: Do we normally need to worry
3970 about symbols which are defined by one dynamic object and
3971 referenced by another one? */
3972 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3973 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3974 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3975 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3976 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3977 {
3978 h->plt.offset = (bfd_vma) -1;
3979 return true;
3980 }
3981
3982 /* If we've already adjusted this symbol, don't do it again. This
3983 can happen via a recursive call. */
3984 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3985 return true;
3986
3987 /* Don't look at this symbol again. Note that we must set this
3988 after checking the above conditions, because we may look at a
3989 symbol once, decide not to do anything, and then get called
3990 recursively later after REF_REGULAR is set below. */
3991 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3992
3993 /* If this is a weak definition, and we know a real definition, and
3994 the real symbol is not itself defined by a regular object file,
3995 then get a good value for the real definition. We handle the
3996 real symbol first, for the convenience of the backend routine.
3997
3998 Note that there is a confusing case here. If the real definition
3999 is defined by a regular object file, we don't get the real symbol
4000 from the dynamic object, but we do get the weak symbol. If the
4001 processor backend uses a COPY reloc, then if some routine in the
4002 dynamic object changes the real symbol, we will not see that
4003 change in the corresponding weak symbol. This is the way other
4004 ELF linkers work as well, and seems to be a result of the shared
4005 library model.
4006
4007 I will clarify this issue. Most SVR4 shared libraries define the
4008 variable _timezone and define timezone as a weak synonym. The
4009 tzset call changes _timezone. If you write
4010 extern int timezone;
4011 int _timezone = 5;
4012 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4013 you might expect that, since timezone is a synonym for _timezone,
4014 the same number will print both times. However, if the processor
4015 backend uses a COPY reloc, then actually timezone will be copied
4016 into your process image, and, since you define _timezone
4017 yourself, _timezone will not. Thus timezone and _timezone will
4018 wind up at different memory locations. The tzset call will set
4019 _timezone, leaving timezone unchanged. */
4020
4021 if (h->weakdef != NULL)
4022 {
4023 /* If we get to this point, we know there is an implicit
4024 reference by a regular object file via the weak symbol H.
4025 FIXME: Is this really true? What if the traversal finds
4026 H->WEAKDEF before it finds H? */
4027 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4028
4029 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4030 return false;
4031 }
4032
4033 /* If a symbol has no type and no size and does not require a PLT
4034 entry, then we are probably about to do the wrong thing here: we
4035 are probably going to create a COPY reloc for an empty object.
4036 This case can arise when a shared object is built with assembly
4037 code, and the assembly code fails to set the symbol type. */
4038 if (h->size == 0
4039 && h->type == STT_NOTYPE
4040 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4041 (*_bfd_error_handler)
4042 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4043 h->root.root.string);
4044
4045 dynobj = elf_hash_table (eif->info)->dynobj;
4046 bed = get_elf_backend_data (dynobj);
4047 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4048 {
4049 eif->failed = true;
4050 return false;
4051 }
4052
4053 return true;
4054 }
4055 \f
4056 /* This routine is used to export all defined symbols into the dynamic
4057 symbol table. It is called via elf_link_hash_traverse. */
4058
4059 static boolean
4060 elf_export_symbol (h, data)
4061 struct elf_link_hash_entry *h;
4062 PTR data;
4063 {
4064 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4065
4066 /* Ignore indirect symbols. These are added by the versioning code. */
4067 if (h->root.type == bfd_link_hash_indirect)
4068 return true;
4069
4070 if (h->root.type == bfd_link_hash_warning)
4071 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4072
4073 if (h->dynindx == -1
4074 && (h->elf_link_hash_flags
4075 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4076 {
4077 struct bfd_elf_version_tree *t;
4078 struct bfd_elf_version_expr *d;
4079
4080 for (t = eif->verdefs; t != NULL; t = t->next)
4081 {
4082 if (t->globals != NULL)
4083 {
4084 for (d = t->globals; d != NULL; d = d->next)
4085 {
4086 if ((*d->match) (d, h->root.root.string))
4087 goto doit;
4088 }
4089 }
4090
4091 if (t->locals != NULL)
4092 {
4093 for (d = t->locals ; d != NULL; d = d->next)
4094 {
4095 if ((*d->match) (d, h->root.root.string))
4096 return true;
4097 }
4098 }
4099 }
4100
4101 if (!eif->verdefs)
4102 {
4103 doit:
4104 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4105 {
4106 eif->failed = true;
4107 return false;
4108 }
4109 }
4110 }
4111
4112 return true;
4113 }
4114 \f
4115 /* Look through the symbols which are defined in other shared
4116 libraries and referenced here. Update the list of version
4117 dependencies. This will be put into the .gnu.version_r section.
4118 This function is called via elf_link_hash_traverse. */
4119
4120 static boolean
4121 elf_link_find_version_dependencies (h, data)
4122 struct elf_link_hash_entry *h;
4123 PTR data;
4124 {
4125 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4126 Elf_Internal_Verneed *t;
4127 Elf_Internal_Vernaux *a;
4128 bfd_size_type amt;
4129
4130 if (h->root.type == bfd_link_hash_warning)
4131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4132
4133 /* We only care about symbols defined in shared objects with version
4134 information. */
4135 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4136 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4137 || h->dynindx == -1
4138 || h->verinfo.verdef == NULL)
4139 return true;
4140
4141 /* See if we already know about this version. */
4142 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4143 {
4144 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4145 continue;
4146
4147 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4148 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4149 return true;
4150
4151 break;
4152 }
4153
4154 /* This is a new version. Add it to tree we are building. */
4155
4156 if (t == NULL)
4157 {
4158 amt = sizeof *t;
4159 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4160 if (t == NULL)
4161 {
4162 rinfo->failed = true;
4163 return false;
4164 }
4165
4166 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4167 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4168 elf_tdata (rinfo->output_bfd)->verref = t;
4169 }
4170
4171 amt = sizeof *a;
4172 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4173
4174 /* Note that we are copying a string pointer here, and testing it
4175 above. If bfd_elf_string_from_elf_section is ever changed to
4176 discard the string data when low in memory, this will have to be
4177 fixed. */
4178 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4179
4180 a->vna_flags = h->verinfo.verdef->vd_flags;
4181 a->vna_nextptr = t->vn_auxptr;
4182
4183 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4184 ++rinfo->vers;
4185
4186 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4187
4188 t->vn_auxptr = a;
4189
4190 return true;
4191 }
4192
4193 /* Figure out appropriate versions for all the symbols. We may not
4194 have the version number script until we have read all of the input
4195 files, so until that point we don't know which symbols should be
4196 local. This function is called via elf_link_hash_traverse. */
4197
4198 static boolean
4199 elf_link_assign_sym_version (h, data)
4200 struct elf_link_hash_entry *h;
4201 PTR data;
4202 {
4203 struct elf_assign_sym_version_info *sinfo;
4204 struct bfd_link_info *info;
4205 struct elf_backend_data *bed;
4206 struct elf_info_failed eif;
4207 char *p;
4208 bfd_size_type amt;
4209
4210 sinfo = (struct elf_assign_sym_version_info *) data;
4211 info = sinfo->info;
4212
4213 if (h->root.type == bfd_link_hash_warning)
4214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4215
4216 /* Fix the symbol flags. */
4217 eif.failed = false;
4218 eif.info = info;
4219 if (! elf_fix_symbol_flags (h, &eif))
4220 {
4221 if (eif.failed)
4222 sinfo->failed = true;
4223 return false;
4224 }
4225
4226 /* We only need version numbers for symbols defined in regular
4227 objects. */
4228 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4229 return true;
4230
4231 bed = get_elf_backend_data (sinfo->output_bfd);
4232 p = strchr (h->root.root.string, ELF_VER_CHR);
4233 if (p != NULL && h->verinfo.vertree == NULL)
4234 {
4235 struct bfd_elf_version_tree *t;
4236 boolean hidden;
4237
4238 hidden = true;
4239
4240 /* There are two consecutive ELF_VER_CHR characters if this is
4241 not a hidden symbol. */
4242 ++p;
4243 if (*p == ELF_VER_CHR)
4244 {
4245 hidden = false;
4246 ++p;
4247 }
4248
4249 /* If there is no version string, we can just return out. */
4250 if (*p == '\0')
4251 {
4252 if (hidden)
4253 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4254 return true;
4255 }
4256
4257 /* Look for the version. If we find it, it is no longer weak. */
4258 for (t = sinfo->verdefs; t != NULL; t = t->next)
4259 {
4260 if (strcmp (t->name, p) == 0)
4261 {
4262 size_t len;
4263 char *alc;
4264 struct bfd_elf_version_expr *d;
4265
4266 len = p - h->root.root.string;
4267 alc = bfd_malloc ((bfd_size_type) len);
4268 if (alc == NULL)
4269 return false;
4270 memcpy (alc, h->root.root.string, len - 1);
4271 alc[len - 1] = '\0';
4272 if (alc[len - 2] == ELF_VER_CHR)
4273 alc[len - 2] = '\0';
4274
4275 h->verinfo.vertree = t;
4276 t->used = true;
4277 d = NULL;
4278
4279 if (t->globals != NULL)
4280 {
4281 for (d = t->globals; d != NULL; d = d->next)
4282 if ((*d->match) (d, alc))
4283 break;
4284 }
4285
4286 /* See if there is anything to force this symbol to
4287 local scope. */
4288 if (d == NULL && t->locals != NULL)
4289 {
4290 for (d = t->locals; d != NULL; d = d->next)
4291 {
4292 if ((*d->match) (d, alc))
4293 {
4294 if (h->dynindx != -1
4295 && info->shared
4296 && ! info->export_dynamic)
4297 {
4298 (*bed->elf_backend_hide_symbol) (info, h, true);
4299 }
4300
4301 break;
4302 }
4303 }
4304 }
4305
4306 free (alc);
4307 break;
4308 }
4309 }
4310
4311 /* If we are building an application, we need to create a
4312 version node for this version. */
4313 if (t == NULL && ! info->shared)
4314 {
4315 struct bfd_elf_version_tree **pp;
4316 int version_index;
4317
4318 /* If we aren't going to export this symbol, we don't need
4319 to worry about it. */
4320 if (h->dynindx == -1)
4321 return true;
4322
4323 amt = sizeof *t;
4324 t = ((struct bfd_elf_version_tree *)
4325 bfd_alloc (sinfo->output_bfd, amt));
4326 if (t == NULL)
4327 {
4328 sinfo->failed = true;
4329 return false;
4330 }
4331
4332 t->next = NULL;
4333 t->name = p;
4334 t->globals = NULL;
4335 t->locals = NULL;
4336 t->deps = NULL;
4337 t->name_indx = (unsigned int) -1;
4338 t->used = true;
4339
4340 version_index = 1;
4341 /* Don't count anonymous version tag. */
4342 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4343 version_index = 0;
4344 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4345 ++version_index;
4346 t->vernum = version_index;
4347
4348 *pp = t;
4349
4350 h->verinfo.vertree = t;
4351 }
4352 else if (t == NULL)
4353 {
4354 /* We could not find the version for a symbol when
4355 generating a shared archive. Return an error. */
4356 (*_bfd_error_handler)
4357 (_("%s: undefined versioned symbol name %s"),
4358 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4359 bfd_set_error (bfd_error_bad_value);
4360 sinfo->failed = true;
4361 return false;
4362 }
4363
4364 if (hidden)
4365 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4366 }
4367
4368 /* If we don't have a version for this symbol, see if we can find
4369 something. */
4370 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4371 {
4372 struct bfd_elf_version_tree *t;
4373 struct bfd_elf_version_tree *local_ver;
4374 struct bfd_elf_version_expr *d;
4375
4376 /* See if can find what version this symbol is in. If the
4377 symbol is supposed to be local, then don't actually register
4378 it. */
4379 local_ver = NULL;
4380 for (t = sinfo->verdefs; t != NULL; t = t->next)
4381 {
4382 if (t->globals != NULL)
4383 {
4384 boolean matched;
4385
4386 matched = false;
4387 for (d = t->globals; d != NULL; d = d->next)
4388 {
4389 if ((*d->match) (d, h->root.root.string))
4390 {
4391 if (d->symver)
4392 matched = true;
4393 else
4394 {
4395 /* There is a version without definition. Make
4396 the symbol the default definition for this
4397 version. */
4398 h->verinfo.vertree = t;
4399 local_ver = NULL;
4400 d->script = 1;
4401 break;
4402 }
4403 }
4404 }
4405
4406 if (d != NULL)
4407 break;
4408 else if (matched)
4409 /* There is no undefined version for this symbol. Hide the
4410 default one. */
4411 (*bed->elf_backend_hide_symbol) (info, h, true);
4412 }
4413
4414 if (t->locals != NULL)
4415 {
4416 for (d = t->locals; d != NULL; d = d->next)
4417 {
4418 /* If the match is "*", keep looking for a more
4419 explicit, perhaps even global, match. */
4420 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4421 local_ver = t;
4422 else if ((*d->match) (d, h->root.root.string))
4423 {
4424 local_ver = t;
4425 break;
4426 }
4427 }
4428
4429 if (d != NULL)
4430 break;
4431 }
4432 }
4433
4434 if (local_ver != NULL)
4435 {
4436 h->verinfo.vertree = local_ver;
4437 if (h->dynindx != -1
4438 && info->shared
4439 && ! info->export_dynamic)
4440 {
4441 (*bed->elf_backend_hide_symbol) (info, h, true);
4442 }
4443 }
4444 }
4445
4446 return true;
4447 }
4448 \f
4449 /* Final phase of ELF linker. */
4450
4451 /* A structure we use to avoid passing large numbers of arguments. */
4452
4453 struct elf_final_link_info
4454 {
4455 /* General link information. */
4456 struct bfd_link_info *info;
4457 /* Output BFD. */
4458 bfd *output_bfd;
4459 /* Symbol string table. */
4460 struct bfd_strtab_hash *symstrtab;
4461 /* .dynsym section. */
4462 asection *dynsym_sec;
4463 /* .hash section. */
4464 asection *hash_sec;
4465 /* symbol version section (.gnu.version). */
4466 asection *symver_sec;
4467 /* first SHF_TLS section (if any). */
4468 asection *first_tls_sec;
4469 /* Buffer large enough to hold contents of any section. */
4470 bfd_byte *contents;
4471 /* Buffer large enough to hold external relocs of any section. */
4472 PTR external_relocs;
4473 /* Buffer large enough to hold internal relocs of any section. */
4474 Elf_Internal_Rela *internal_relocs;
4475 /* Buffer large enough to hold external local symbols of any input
4476 BFD. */
4477 Elf_External_Sym *external_syms;
4478 /* And a buffer for symbol section indices. */
4479 Elf_External_Sym_Shndx *locsym_shndx;
4480 /* Buffer large enough to hold internal local symbols of any input
4481 BFD. */
4482 Elf_Internal_Sym *internal_syms;
4483 /* Array large enough to hold a symbol index for each local symbol
4484 of any input BFD. */
4485 long *indices;
4486 /* Array large enough to hold a section pointer for each local
4487 symbol of any input BFD. */
4488 asection **sections;
4489 /* Buffer to hold swapped out symbols. */
4490 Elf_External_Sym *symbuf;
4491 /* And one for symbol section indices. */
4492 Elf_External_Sym_Shndx *symshndxbuf;
4493 /* Number of swapped out symbols in buffer. */
4494 size_t symbuf_count;
4495 /* Number of symbols which fit in symbuf. */
4496 size_t symbuf_size;
4497 };
4498
4499 static boolean elf_link_output_sym
4500 PARAMS ((struct elf_final_link_info *, const char *,
4501 Elf_Internal_Sym *, asection *));
4502 static boolean elf_link_flush_output_syms
4503 PARAMS ((struct elf_final_link_info *));
4504 static boolean elf_link_output_extsym
4505 PARAMS ((struct elf_link_hash_entry *, PTR));
4506 static boolean elf_link_sec_merge_syms
4507 PARAMS ((struct elf_link_hash_entry *, PTR));
4508 static boolean elf_link_check_versioned_symbol
4509 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4510 static boolean elf_link_input_bfd
4511 PARAMS ((struct elf_final_link_info *, bfd *));
4512 static boolean elf_reloc_link_order
4513 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4514 struct bfd_link_order *));
4515
4516 /* This struct is used to pass information to elf_link_output_extsym. */
4517
4518 struct elf_outext_info
4519 {
4520 boolean failed;
4521 boolean localsyms;
4522 struct elf_final_link_info *finfo;
4523 };
4524
4525 /* Compute the size of, and allocate space for, REL_HDR which is the
4526 section header for a section containing relocations for O. */
4527
4528 static boolean
4529 elf_link_size_reloc_section (abfd, rel_hdr, o)
4530 bfd *abfd;
4531 Elf_Internal_Shdr *rel_hdr;
4532 asection *o;
4533 {
4534 bfd_size_type reloc_count;
4535 bfd_size_type num_rel_hashes;
4536
4537 /* Figure out how many relocations there will be. */
4538 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4539 reloc_count = elf_section_data (o)->rel_count;
4540 else
4541 reloc_count = elf_section_data (o)->rel_count2;
4542
4543 num_rel_hashes = o->reloc_count;
4544 if (num_rel_hashes < reloc_count)
4545 num_rel_hashes = reloc_count;
4546
4547 /* That allows us to calculate the size of the section. */
4548 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4549
4550 /* The contents field must last into write_object_contents, so we
4551 allocate it with bfd_alloc rather than malloc. Also since we
4552 cannot be sure that the contents will actually be filled in,
4553 we zero the allocated space. */
4554 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4555 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4556 return false;
4557
4558 /* We only allocate one set of hash entries, so we only do it the
4559 first time we are called. */
4560 if (elf_section_data (o)->rel_hashes == NULL
4561 && num_rel_hashes)
4562 {
4563 struct elf_link_hash_entry **p;
4564
4565 p = ((struct elf_link_hash_entry **)
4566 bfd_zmalloc (num_rel_hashes
4567 * sizeof (struct elf_link_hash_entry *)));
4568 if (p == NULL)
4569 return false;
4570
4571 elf_section_data (o)->rel_hashes = p;
4572 }
4573
4574 return true;
4575 }
4576
4577 /* When performing a relocateable link, the input relocations are
4578 preserved. But, if they reference global symbols, the indices
4579 referenced must be updated. Update all the relocations in
4580 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4581
4582 static void
4583 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4584 bfd *abfd;
4585 Elf_Internal_Shdr *rel_hdr;
4586 unsigned int count;
4587 struct elf_link_hash_entry **rel_hash;
4588 {
4589 unsigned int i;
4590 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4591 Elf_Internal_Rel *irel;
4592 Elf_Internal_Rela *irela;
4593 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4594
4595 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4596 if (irel == NULL)
4597 {
4598 (*_bfd_error_handler) (_("Error: out of memory"));
4599 abort ();
4600 }
4601
4602 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4603 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4604 if (irela == NULL)
4605 {
4606 (*_bfd_error_handler) (_("Error: out of memory"));
4607 abort ();
4608 }
4609
4610 for (i = 0; i < count; i++, rel_hash++)
4611 {
4612 if (*rel_hash == NULL)
4613 continue;
4614
4615 BFD_ASSERT ((*rel_hash)->indx >= 0);
4616
4617 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4618 {
4619 Elf_External_Rel *erel;
4620 unsigned int j;
4621
4622 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4623 if (bed->s->swap_reloc_in)
4624 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4625 else
4626 elf_swap_reloc_in (abfd, erel, irel);
4627
4628 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4629 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4630 ELF_R_TYPE (irel[j].r_info));
4631
4632 if (bed->s->swap_reloc_out)
4633 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4634 else
4635 elf_swap_reloc_out (abfd, irel, erel);
4636 }
4637 else
4638 {
4639 Elf_External_Rela *erela;
4640 unsigned int j;
4641
4642 BFD_ASSERT (rel_hdr->sh_entsize
4643 == sizeof (Elf_External_Rela));
4644
4645 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4646 if (bed->s->swap_reloca_in)
4647 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4648 else
4649 elf_swap_reloca_in (abfd, erela, irela);
4650
4651 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4652 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4653 ELF_R_TYPE (irela[j].r_info));
4654
4655 if (bed->s->swap_reloca_out)
4656 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4657 else
4658 elf_swap_reloca_out (abfd, irela, erela);
4659 }
4660 }
4661
4662 free (irel);
4663 free (irela);
4664 }
4665
4666 struct elf_link_sort_rela
4667 {
4668 bfd_vma offset;
4669 enum elf_reloc_type_class type;
4670 union
4671 {
4672 /* We use these as arrays of size int_rels_per_ext_rel. */
4673 Elf_Internal_Rel rel[1];
4674 Elf_Internal_Rela rela[1];
4675 } u;
4676 };
4677
4678 static int
4679 elf_link_sort_cmp1 (A, B)
4680 const PTR A;
4681 const PTR B;
4682 {
4683 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4684 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4685 int relativea, relativeb;
4686
4687 relativea = a->type == reloc_class_relative;
4688 relativeb = b->type == reloc_class_relative;
4689
4690 if (relativea < relativeb)
4691 return 1;
4692 if (relativea > relativeb)
4693 return -1;
4694 if (ELF_R_SYM (a->u.rel->r_info) < ELF_R_SYM (b->u.rel->r_info))
4695 return -1;
4696 if (ELF_R_SYM (a->u.rel->r_info) > ELF_R_SYM (b->u.rel->r_info))
4697 return 1;
4698 if (a->u.rel->r_offset < b->u.rel->r_offset)
4699 return -1;
4700 if (a->u.rel->r_offset > b->u.rel->r_offset)
4701 return 1;
4702 return 0;
4703 }
4704
4705 static int
4706 elf_link_sort_cmp2 (A, B)
4707 const PTR A;
4708 const PTR B;
4709 {
4710 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4711 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4712 int copya, copyb;
4713
4714 if (a->offset < b->offset)
4715 return -1;
4716 if (a->offset > b->offset)
4717 return 1;
4718 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4719 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4720 if (copya < copyb)
4721 return -1;
4722 if (copya > copyb)
4723 return 1;
4724 if (a->u.rel->r_offset < b->u.rel->r_offset)
4725 return -1;
4726 if (a->u.rel->r_offset > b->u.rel->r_offset)
4727 return 1;
4728 return 0;
4729 }
4730
4731 static size_t
4732 elf_link_sort_relocs (abfd, info, psec)
4733 bfd *abfd;
4734 struct bfd_link_info *info;
4735 asection **psec;
4736 {
4737 bfd *dynobj = elf_hash_table (info)->dynobj;
4738 asection *reldyn, *o;
4739 boolean rel = false;
4740 bfd_size_type count, size;
4741 size_t i, j, ret;
4742 struct elf_link_sort_rela *rela;
4743 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4744 int i2e = bed->s->int_rels_per_ext_rel;
4745
4746 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4747 if (reldyn == NULL || reldyn->_raw_size == 0)
4748 {
4749 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4750 if (reldyn == NULL || reldyn->_raw_size == 0)
4751 return 0;
4752 rel = true;
4753 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4754 }
4755 else
4756 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4757
4758 size = 0;
4759 for (o = dynobj->sections; o != NULL; o = o->next)
4760 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4761 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4762 && o->output_section == reldyn)
4763 size += o->_raw_size;
4764
4765 if (size != reldyn->_raw_size)
4766 return 0;
4767
4768 /* We waste some memory here when N = i2e is greater than 1, since
4769 we allocate space for N * sizeof (*rela) where sizeof (*rela) +
4770 (N - 1) * sizeof (Elf_Internal_Rel/Rela) would do. Also, we use
4771 rela[k] only when k is a multiple of N, and then we index the
4772 array within the union, such that rela[k].u.rel[i], i < N, is the
4773 (i+1)th internal relocation corresponding to the (k/N)th external
4774 relocation. This is done such that the relocation swap-in and
4775 swap-out functions can gen pointers to arrays of internal
4776 relocations that form a single external relocation.
4777
4778 If C permitted arrays of structures with dynamic sizes, we could
4779 do better, but trying to avoid wasting space at the end of the
4780 chunk from rela[k] to rela[k+N-1] would require us to allocate a
4781 separate array of pointers and since most ports have N == 1, this
4782 would be more wasteful. */
4783 rela = (struct elf_link_sort_rela *) bfd_zmalloc
4784 (sizeof (*rela) * count * i2e);
4785 if (rela == NULL)
4786 {
4787 (*info->callbacks->warning)
4788 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4789 (bfd_vma) 0);
4790 return 0;
4791 }
4792
4793 for (o = dynobj->sections; o != NULL; o = o->next)
4794 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4795 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4796 && o->output_section == reldyn)
4797 {
4798 if (rel)
4799 {
4800 Elf_External_Rel *erel, *erelend;
4801 struct elf_link_sort_rela *s;
4802
4803 erel = (Elf_External_Rel *) o->contents;
4804 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4805 s = rela + (o->output_offset / sizeof (Elf_External_Rel) * i2e);
4806 for (; erel < erelend; erel++, s += i2e)
4807 {
4808 if (bed->s->swap_reloc_in)
4809 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel,
4810 s->u.rel);
4811 else
4812 elf_swap_reloc_in (abfd, erel, s->u.rel);
4813
4814 s->type = (*bed->elf_backend_reloc_type_class) (s->u.rela);
4815 }
4816 }
4817 else
4818 {
4819 Elf_External_Rela *erela, *erelaend;
4820 struct elf_link_sort_rela *s;
4821
4822 erela = (Elf_External_Rela *) o->contents;
4823 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4824 s = rela + (o->output_offset / sizeof (Elf_External_Rela) * i2e);
4825 for (; erela < erelaend; erela++, s += i2e)
4826 {
4827 if (bed->s->swap_reloca_in)
4828 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4829 s->u.rela);
4830 else
4831 elf_swap_reloca_in (dynobj, erela, s->u.rela);
4832
4833 s->type = (*bed->elf_backend_reloc_type_class) (s->u.rela);
4834 }
4835 }
4836 }
4837
4838 qsort (rela, (size_t) count, sizeof (*rela) * i2e, elf_link_sort_cmp1);
4839 for (ret = 0; ret < count * i2e && rela[ret].type == reloc_class_relative;
4840 ret += i2e)
4841 ;
4842 for (i = ret, j = ret; i < count * i2e; i += i2e)
4843 {
4844 if (ELF_R_SYM (rela[i].u.rel->r_info)
4845 != ELF_R_SYM (rela[j].u.rel->r_info))
4846 j = i;
4847 rela[i].offset = rela[j].u.rel->r_offset;
4848 }
4849 ret /= i2e;
4850 qsort (rela + ret, (size_t) count - ret,
4851 sizeof (*rela) * i2e, elf_link_sort_cmp2);
4852
4853 for (o = dynobj->sections; o != NULL; o = o->next)
4854 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4855 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4856 && o->output_section == reldyn)
4857 {
4858 if (rel)
4859 {
4860 Elf_External_Rel *erel, *erelend;
4861 struct elf_link_sort_rela *s;
4862
4863 erel = (Elf_External_Rel *) o->contents;
4864 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4865 s = rela + (o->output_offset / sizeof (Elf_External_Rel) * i2e);
4866 for (; erel < erelend; erel++, s += i2e)
4867 {
4868 if (bed->s->swap_reloc_out)
4869 (*bed->s->swap_reloc_out) (abfd, s->u.rel,
4870 (bfd_byte *) erel);
4871 else
4872 elf_swap_reloc_out (abfd, s->u.rel, erel);
4873 }
4874 }
4875 else
4876 {
4877 Elf_External_Rela *erela, *erelaend;
4878 struct elf_link_sort_rela *s;
4879
4880 erela = (Elf_External_Rela *) o->contents;
4881 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4882 s = rela + (o->output_offset / sizeof (Elf_External_Rela) * i2e);
4883 for (; erela < erelaend; erela++, s += i2e)
4884 {
4885 if (bed->s->swap_reloca_out)
4886 (*bed->s->swap_reloca_out) (dynobj, s->u.rela,
4887 (bfd_byte *) erela);
4888 else
4889 elf_swap_reloca_out (dynobj, s->u.rela, erela);
4890 }
4891 }
4892 }
4893
4894 free (rela);
4895 *psec = reldyn;
4896 return ret;
4897 }
4898
4899 /* Do the final step of an ELF link. */
4900
4901 boolean
4902 elf_bfd_final_link (abfd, info)
4903 bfd *abfd;
4904 struct bfd_link_info *info;
4905 {
4906 boolean dynamic;
4907 boolean emit_relocs;
4908 bfd *dynobj;
4909 struct elf_final_link_info finfo;
4910 register asection *o;
4911 register struct bfd_link_order *p;
4912 register bfd *sub;
4913 bfd_size_type max_contents_size;
4914 bfd_size_type max_external_reloc_size;
4915 bfd_size_type max_internal_reloc_count;
4916 bfd_size_type max_sym_count;
4917 bfd_size_type max_sym_shndx_count;
4918 file_ptr off;
4919 Elf_Internal_Sym elfsym;
4920 unsigned int i;
4921 Elf_Internal_Shdr *symtab_hdr;
4922 Elf_Internal_Shdr *symstrtab_hdr;
4923 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4924 struct elf_outext_info eoinfo;
4925 boolean merged;
4926 size_t relativecount = 0;
4927 asection *reldyn = 0;
4928 bfd_size_type amt;
4929
4930 if (! is_elf_hash_table (info))
4931 return false;
4932
4933 if (info->shared)
4934 abfd->flags |= DYNAMIC;
4935
4936 dynamic = elf_hash_table (info)->dynamic_sections_created;
4937 dynobj = elf_hash_table (info)->dynobj;
4938
4939 emit_relocs = (info->relocateable
4940 || info->emitrelocations
4941 || bed->elf_backend_emit_relocs);
4942
4943 finfo.info = info;
4944 finfo.output_bfd = abfd;
4945 finfo.symstrtab = elf_stringtab_init ();
4946 if (finfo.symstrtab == NULL)
4947 return false;
4948
4949 if (! dynamic)
4950 {
4951 finfo.dynsym_sec = NULL;
4952 finfo.hash_sec = NULL;
4953 finfo.symver_sec = NULL;
4954 }
4955 else
4956 {
4957 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4958 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4959 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4960 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4961 /* Note that it is OK if symver_sec is NULL. */
4962 }
4963
4964 finfo.contents = NULL;
4965 finfo.external_relocs = NULL;
4966 finfo.internal_relocs = NULL;
4967 finfo.external_syms = NULL;
4968 finfo.locsym_shndx = NULL;
4969 finfo.internal_syms = NULL;
4970 finfo.indices = NULL;
4971 finfo.sections = NULL;
4972 finfo.symbuf = NULL;
4973 finfo.symshndxbuf = NULL;
4974 finfo.symbuf_count = 0;
4975 finfo.first_tls_sec = NULL;
4976 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4977 if ((o->flags & SEC_THREAD_LOCAL) != 0
4978 && (o->flags & SEC_LOAD) != 0)
4979 {
4980 finfo.first_tls_sec = o;
4981 break;
4982 }
4983
4984 /* Count up the number of relocations we will output for each output
4985 section, so that we know the sizes of the reloc sections. We
4986 also figure out some maximum sizes. */
4987 max_contents_size = 0;
4988 max_external_reloc_size = 0;
4989 max_internal_reloc_count = 0;
4990 max_sym_count = 0;
4991 max_sym_shndx_count = 0;
4992 merged = false;
4993 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4994 {
4995 o->reloc_count = 0;
4996
4997 for (p = o->link_order_head; p != NULL; p = p->next)
4998 {
4999 if (p->type == bfd_section_reloc_link_order
5000 || p->type == bfd_symbol_reloc_link_order)
5001 ++o->reloc_count;
5002 else if (p->type == bfd_indirect_link_order)
5003 {
5004 asection *sec;
5005
5006 sec = p->u.indirect.section;
5007
5008 /* Mark all sections which are to be included in the
5009 link. This will normally be every section. We need
5010 to do this so that we can identify any sections which
5011 the linker has decided to not include. */
5012 sec->linker_mark = true;
5013
5014 if (sec->flags & SEC_MERGE)
5015 merged = true;
5016
5017 if (info->relocateable || info->emitrelocations)
5018 o->reloc_count += sec->reloc_count;
5019 else if (bed->elf_backend_count_relocs)
5020 {
5021 Elf_Internal_Rela * relocs;
5022
5023 relocs = (NAME(_bfd_elf,link_read_relocs)
5024 (abfd, sec, (PTR) NULL,
5025 (Elf_Internal_Rela *) NULL, info->keep_memory));
5026
5027 o->reloc_count
5028 += (*bed->elf_backend_count_relocs) (sec, relocs);
5029
5030 if (elf_section_data (o)->relocs != relocs)
5031 free (relocs);
5032 }
5033
5034 if (sec->_raw_size > max_contents_size)
5035 max_contents_size = sec->_raw_size;
5036 if (sec->_cooked_size > max_contents_size)
5037 max_contents_size = sec->_cooked_size;
5038
5039 /* We are interested in just local symbols, not all
5040 symbols. */
5041 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5042 && (sec->owner->flags & DYNAMIC) == 0)
5043 {
5044 size_t sym_count;
5045
5046 if (elf_bad_symtab (sec->owner))
5047 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5048 / sizeof (Elf_External_Sym));
5049 else
5050 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5051
5052 if (sym_count > max_sym_count)
5053 max_sym_count = sym_count;
5054
5055 if (sym_count > max_sym_shndx_count
5056 && elf_symtab_shndx (sec->owner) != 0)
5057 max_sym_shndx_count = sym_count;
5058
5059 if ((sec->flags & SEC_RELOC) != 0)
5060 {
5061 size_t ext_size;
5062
5063 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5064 if (ext_size > max_external_reloc_size)
5065 max_external_reloc_size = ext_size;
5066 if (sec->reloc_count > max_internal_reloc_count)
5067 max_internal_reloc_count = sec->reloc_count;
5068 }
5069 }
5070 }
5071 }
5072
5073 if (o->reloc_count > 0)
5074 o->flags |= SEC_RELOC;
5075 else
5076 {
5077 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5078 set it (this is probably a bug) and if it is set
5079 assign_section_numbers will create a reloc section. */
5080 o->flags &=~ SEC_RELOC;
5081 }
5082
5083 /* If the SEC_ALLOC flag is not set, force the section VMA to
5084 zero. This is done in elf_fake_sections as well, but forcing
5085 the VMA to 0 here will ensure that relocs against these
5086 sections are handled correctly. */
5087 if ((o->flags & SEC_ALLOC) == 0
5088 && ! o->user_set_vma)
5089 o->vma = 0;
5090 }
5091
5092 if (! info->relocateable && merged)
5093 elf_link_hash_traverse (elf_hash_table (info),
5094 elf_link_sec_merge_syms, (PTR) abfd);
5095
5096 /* Figure out the file positions for everything but the symbol table
5097 and the relocs. We set symcount to force assign_section_numbers
5098 to create a symbol table. */
5099 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5100 BFD_ASSERT (! abfd->output_has_begun);
5101 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5102 goto error_return;
5103
5104 /* Figure out how many relocations we will have in each section.
5105 Just using RELOC_COUNT isn't good enough since that doesn't
5106 maintain a separate value for REL vs. RELA relocations. */
5107 if (emit_relocs)
5108 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5109 for (o = sub->sections; o != NULL; o = o->next)
5110 {
5111 asection *output_section;
5112
5113 if (! o->linker_mark)
5114 {
5115 /* This section was omitted from the link. */
5116 continue;
5117 }
5118
5119 output_section = o->output_section;
5120
5121 if (output_section != NULL
5122 && (o->flags & SEC_RELOC) != 0)
5123 {
5124 struct bfd_elf_section_data *esdi
5125 = elf_section_data (o);
5126 struct bfd_elf_section_data *esdo
5127 = elf_section_data (output_section);
5128 unsigned int *rel_count;
5129 unsigned int *rel_count2;
5130 bfd_size_type entsize;
5131 bfd_size_type entsize2;
5132
5133 /* We must be careful to add the relocations from the
5134 input section to the right output count. */
5135 entsize = esdi->rel_hdr.sh_entsize;
5136 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5137 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5138 || entsize == sizeof (Elf_External_Rela))
5139 && entsize2 != entsize
5140 && (entsize2 == 0
5141 || entsize2 == sizeof (Elf_External_Rel)
5142 || entsize2 == sizeof (Elf_External_Rela)));
5143 if (entsize == esdo->rel_hdr.sh_entsize)
5144 {
5145 rel_count = &esdo->rel_count;
5146 rel_count2 = &esdo->rel_count2;
5147 }
5148 else
5149 {
5150 rel_count = &esdo->rel_count2;
5151 rel_count2 = &esdo->rel_count;
5152 }
5153
5154 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5155 if (esdi->rel_hdr2)
5156 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5157 output_section->flags |= SEC_RELOC;
5158 }
5159 }
5160
5161 /* That created the reloc sections. Set their sizes, and assign
5162 them file positions, and allocate some buffers. */
5163 for (o = abfd->sections; o != NULL; o = o->next)
5164 {
5165 if ((o->flags & SEC_RELOC) != 0)
5166 {
5167 if (!elf_link_size_reloc_section (abfd,
5168 &elf_section_data (o)->rel_hdr,
5169 o))
5170 goto error_return;
5171
5172 if (elf_section_data (o)->rel_hdr2
5173 && !elf_link_size_reloc_section (abfd,
5174 elf_section_data (o)->rel_hdr2,
5175 o))
5176 goto error_return;
5177 }
5178
5179 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5180 to count upwards while actually outputting the relocations. */
5181 elf_section_data (o)->rel_count = 0;
5182 elf_section_data (o)->rel_count2 = 0;
5183 }
5184
5185 _bfd_elf_assign_file_positions_for_relocs (abfd);
5186
5187 /* We have now assigned file positions for all the sections except
5188 .symtab and .strtab. We start the .symtab section at the current
5189 file position, and write directly to it. We build the .strtab
5190 section in memory. */
5191 bfd_get_symcount (abfd) = 0;
5192 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5193 /* sh_name is set in prep_headers. */
5194 symtab_hdr->sh_type = SHT_SYMTAB;
5195 symtab_hdr->sh_flags = 0;
5196 symtab_hdr->sh_addr = 0;
5197 symtab_hdr->sh_size = 0;
5198 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5199 /* sh_link is set in assign_section_numbers. */
5200 /* sh_info is set below. */
5201 /* sh_offset is set just below. */
5202 symtab_hdr->sh_addralign = bed->s->file_align;
5203
5204 off = elf_tdata (abfd)->next_file_pos;
5205 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5206
5207 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5208 incorrect. We do not yet know the size of the .symtab section.
5209 We correct next_file_pos below, after we do know the size. */
5210
5211 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5212 continuously seeking to the right position in the file. */
5213 if (! info->keep_memory || max_sym_count < 20)
5214 finfo.symbuf_size = 20;
5215 else
5216 finfo.symbuf_size = max_sym_count;
5217 amt = finfo.symbuf_size;
5218 amt *= sizeof (Elf_External_Sym);
5219 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5220 if (finfo.symbuf == NULL)
5221 goto error_return;
5222 if (elf_numsections (abfd) > SHN_LORESERVE)
5223 {
5224 amt = finfo.symbuf_size;
5225 amt *= sizeof (Elf_External_Sym_Shndx);
5226 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5227 if (finfo.symshndxbuf == NULL)
5228 goto error_return;
5229 }
5230
5231 /* Start writing out the symbol table. The first symbol is always a
5232 dummy symbol. */
5233 if (info->strip != strip_all
5234 || emit_relocs)
5235 {
5236 elfsym.st_value = 0;
5237 elfsym.st_size = 0;
5238 elfsym.st_info = 0;
5239 elfsym.st_other = 0;
5240 elfsym.st_shndx = SHN_UNDEF;
5241 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5242 &elfsym, bfd_und_section_ptr))
5243 goto error_return;
5244 }
5245
5246 #if 0
5247 /* Some standard ELF linkers do this, but we don't because it causes
5248 bootstrap comparison failures. */
5249 /* Output a file symbol for the output file as the second symbol.
5250 We output this even if we are discarding local symbols, although
5251 I'm not sure if this is correct. */
5252 elfsym.st_value = 0;
5253 elfsym.st_size = 0;
5254 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5255 elfsym.st_other = 0;
5256 elfsym.st_shndx = SHN_ABS;
5257 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5258 &elfsym, bfd_abs_section_ptr))
5259 goto error_return;
5260 #endif
5261
5262 /* Output a symbol for each section. We output these even if we are
5263 discarding local symbols, since they are used for relocs. These
5264 symbols have no names. We store the index of each one in the
5265 index field of the section, so that we can find it again when
5266 outputting relocs. */
5267 if (info->strip != strip_all
5268 || emit_relocs)
5269 {
5270 elfsym.st_size = 0;
5271 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5272 elfsym.st_other = 0;
5273 for (i = 1; i < elf_numsections (abfd); i++)
5274 {
5275 o = section_from_elf_index (abfd, i);
5276 if (o != NULL)
5277 o->target_index = bfd_get_symcount (abfd);
5278 elfsym.st_shndx = i;
5279 if (info->relocateable || o == NULL)
5280 elfsym.st_value = 0;
5281 else
5282 elfsym.st_value = o->vma;
5283 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5284 &elfsym, o))
5285 goto error_return;
5286 if (i == SHN_LORESERVE)
5287 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5288 }
5289 }
5290
5291 /* Allocate some memory to hold information read in from the input
5292 files. */
5293 if (max_contents_size != 0)
5294 {
5295 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5296 if (finfo.contents == NULL)
5297 goto error_return;
5298 }
5299
5300 if (max_external_reloc_size != 0)
5301 {
5302 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5303 if (finfo.external_relocs == NULL)
5304 goto error_return;
5305 }
5306
5307 if (max_internal_reloc_count != 0)
5308 {
5309 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5310 amt *= sizeof (Elf_Internal_Rela);
5311 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5312 if (finfo.internal_relocs == NULL)
5313 goto error_return;
5314 }
5315
5316 if (max_sym_count != 0)
5317 {
5318 amt = max_sym_count * sizeof (Elf_External_Sym);
5319 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5320 if (finfo.external_syms == NULL)
5321 goto error_return;
5322
5323 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5324 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5325 if (finfo.internal_syms == NULL)
5326 goto error_return;
5327
5328 amt = max_sym_count * sizeof (long);
5329 finfo.indices = (long *) bfd_malloc (amt);
5330 if (finfo.indices == NULL)
5331 goto error_return;
5332
5333 amt = max_sym_count * sizeof (asection *);
5334 finfo.sections = (asection **) bfd_malloc (amt);
5335 if (finfo.sections == NULL)
5336 goto error_return;
5337 }
5338
5339 if (max_sym_shndx_count != 0)
5340 {
5341 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5342 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5343 if (finfo.locsym_shndx == NULL)
5344 goto error_return;
5345 }
5346
5347 if (finfo.first_tls_sec)
5348 {
5349 unsigned int align = 0;
5350 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5351 asection *sec;
5352
5353 for (sec = finfo.first_tls_sec;
5354 sec && (sec->flags & SEC_THREAD_LOCAL);
5355 sec = sec->next)
5356 {
5357 bfd_vma size = sec->_raw_size;
5358
5359 if (bfd_get_section_alignment (abfd, sec) > align)
5360 align = bfd_get_section_alignment (abfd, sec);
5361 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5362 {
5363 struct bfd_link_order *o;
5364
5365 size = 0;
5366 for (o = sec->link_order_head; o != NULL; o = o->next)
5367 if (size < o->offset + o->size)
5368 size = o->offset + o->size;
5369 }
5370 end = sec->vma + size;
5371 }
5372 elf_hash_table (info)->tls_segment
5373 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5374 if (elf_hash_table (info)->tls_segment == NULL)
5375 goto error_return;
5376 elf_hash_table (info)->tls_segment->start = base;
5377 elf_hash_table (info)->tls_segment->size = end - base;
5378 elf_hash_table (info)->tls_segment->align = align;
5379 }
5380
5381 /* Since ELF permits relocations to be against local symbols, we
5382 must have the local symbols available when we do the relocations.
5383 Since we would rather only read the local symbols once, and we
5384 would rather not keep them in memory, we handle all the
5385 relocations for a single input file at the same time.
5386
5387 Unfortunately, there is no way to know the total number of local
5388 symbols until we have seen all of them, and the local symbol
5389 indices precede the global symbol indices. This means that when
5390 we are generating relocateable output, and we see a reloc against
5391 a global symbol, we can not know the symbol index until we have
5392 finished examining all the local symbols to see which ones we are
5393 going to output. To deal with this, we keep the relocations in
5394 memory, and don't output them until the end of the link. This is
5395 an unfortunate waste of memory, but I don't see a good way around
5396 it. Fortunately, it only happens when performing a relocateable
5397 link, which is not the common case. FIXME: If keep_memory is set
5398 we could write the relocs out and then read them again; I don't
5399 know how bad the memory loss will be. */
5400
5401 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5402 sub->output_has_begun = false;
5403 for (o = abfd->sections; o != NULL; o = o->next)
5404 {
5405 for (p = o->link_order_head; p != NULL; p = p->next)
5406 {
5407 if (p->type == bfd_indirect_link_order
5408 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5409 == bfd_target_elf_flavour)
5410 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5411 {
5412 if (! sub->output_has_begun)
5413 {
5414 if (! elf_link_input_bfd (&finfo, sub))
5415 goto error_return;
5416 sub->output_has_begun = true;
5417 }
5418 }
5419 else if (p->type == bfd_section_reloc_link_order
5420 || p->type == bfd_symbol_reloc_link_order)
5421 {
5422 if (! elf_reloc_link_order (abfd, info, o, p))
5423 goto error_return;
5424 }
5425 else
5426 {
5427 if (! _bfd_default_link_order (abfd, info, o, p))
5428 goto error_return;
5429 }
5430 }
5431 }
5432
5433 /* Output any global symbols that got converted to local in a
5434 version script or due to symbol visibility. We do this in a
5435 separate step since ELF requires all local symbols to appear
5436 prior to any global symbols. FIXME: We should only do this if
5437 some global symbols were, in fact, converted to become local.
5438 FIXME: Will this work correctly with the Irix 5 linker? */
5439 eoinfo.failed = false;
5440 eoinfo.finfo = &finfo;
5441 eoinfo.localsyms = true;
5442 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5443 (PTR) &eoinfo);
5444 if (eoinfo.failed)
5445 return false;
5446
5447 /* That wrote out all the local symbols. Finish up the symbol table
5448 with the global symbols. Even if we want to strip everything we
5449 can, we still need to deal with those global symbols that got
5450 converted to local in a version script. */
5451
5452 /* The sh_info field records the index of the first non local symbol. */
5453 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5454
5455 if (dynamic
5456 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5457 {
5458 Elf_Internal_Sym sym;
5459 Elf_External_Sym *dynsym =
5460 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5461 long last_local = 0;
5462
5463 /* Write out the section symbols for the output sections. */
5464 if (info->shared)
5465 {
5466 asection *s;
5467
5468 sym.st_size = 0;
5469 sym.st_name = 0;
5470 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5471 sym.st_other = 0;
5472
5473 for (s = abfd->sections; s != NULL; s = s->next)
5474 {
5475 int indx;
5476 Elf_External_Sym *dest;
5477
5478 indx = elf_section_data (s)->this_idx;
5479 BFD_ASSERT (indx > 0);
5480 sym.st_shndx = indx;
5481 sym.st_value = s->vma;
5482 dest = dynsym + elf_section_data (s)->dynindx;
5483 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5484 }
5485
5486 last_local = bfd_count_sections (abfd);
5487 }
5488
5489 /* Write out the local dynsyms. */
5490 if (elf_hash_table (info)->dynlocal)
5491 {
5492 struct elf_link_local_dynamic_entry *e;
5493 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5494 {
5495 asection *s;
5496 Elf_External_Sym *dest;
5497
5498 sym.st_size = e->isym.st_size;
5499 sym.st_other = e->isym.st_other;
5500
5501 /* Copy the internal symbol as is.
5502 Note that we saved a word of storage and overwrote
5503 the original st_name with the dynstr_index. */
5504 sym = e->isym;
5505
5506 if (e->isym.st_shndx != SHN_UNDEF
5507 && (e->isym.st_shndx < SHN_LORESERVE
5508 || e->isym.st_shndx > SHN_HIRESERVE))
5509 {
5510 s = bfd_section_from_elf_index (e->input_bfd,
5511 e->isym.st_shndx);
5512
5513 sym.st_shndx =
5514 elf_section_data (s->output_section)->this_idx;
5515 sym.st_value = (s->output_section->vma
5516 + s->output_offset
5517 + e->isym.st_value);
5518 }
5519
5520 if (last_local < e->dynindx)
5521 last_local = e->dynindx;
5522
5523 dest = dynsym + e->dynindx;
5524 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5525 }
5526 }
5527
5528 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5529 last_local + 1;
5530 }
5531
5532 /* We get the global symbols from the hash table. */
5533 eoinfo.failed = false;
5534 eoinfo.localsyms = false;
5535 eoinfo.finfo = &finfo;
5536 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5537 (PTR) &eoinfo);
5538 if (eoinfo.failed)
5539 return false;
5540
5541 /* If backend needs to output some symbols not present in the hash
5542 table, do it now. */
5543 if (bed->elf_backend_output_arch_syms)
5544 {
5545 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5546 Elf_Internal_Sym *,
5547 asection *));
5548
5549 if (! ((*bed->elf_backend_output_arch_syms)
5550 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5551 return false;
5552 }
5553
5554 /* Flush all symbols to the file. */
5555 if (! elf_link_flush_output_syms (&finfo))
5556 return false;
5557
5558 /* Now we know the size of the symtab section. */
5559 off += symtab_hdr->sh_size;
5560
5561 /* Finish up and write out the symbol string table (.strtab)
5562 section. */
5563 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5564 /* sh_name was set in prep_headers. */
5565 symstrtab_hdr->sh_type = SHT_STRTAB;
5566 symstrtab_hdr->sh_flags = 0;
5567 symstrtab_hdr->sh_addr = 0;
5568 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5569 symstrtab_hdr->sh_entsize = 0;
5570 symstrtab_hdr->sh_link = 0;
5571 symstrtab_hdr->sh_info = 0;
5572 /* sh_offset is set just below. */
5573 symstrtab_hdr->sh_addralign = 1;
5574
5575 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5576 elf_tdata (abfd)->next_file_pos = off;
5577
5578 if (bfd_get_symcount (abfd) > 0)
5579 {
5580 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5581 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5582 return false;
5583 }
5584
5585 /* Adjust the relocs to have the correct symbol indices. */
5586 for (o = abfd->sections; o != NULL; o = o->next)
5587 {
5588 if ((o->flags & SEC_RELOC) == 0)
5589 continue;
5590
5591 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5592 elf_section_data (o)->rel_count,
5593 elf_section_data (o)->rel_hashes);
5594 if (elf_section_data (o)->rel_hdr2 != NULL)
5595 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5596 elf_section_data (o)->rel_count2,
5597 (elf_section_data (o)->rel_hashes
5598 + elf_section_data (o)->rel_count));
5599
5600 /* Set the reloc_count field to 0 to prevent write_relocs from
5601 trying to swap the relocs out itself. */
5602 o->reloc_count = 0;
5603 }
5604
5605 if (dynamic && info->combreloc && dynobj != NULL)
5606 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5607
5608 /* If we are linking against a dynamic object, or generating a
5609 shared library, finish up the dynamic linking information. */
5610 if (dynamic)
5611 {
5612 Elf_External_Dyn *dyncon, *dynconend;
5613
5614 /* Fix up .dynamic entries. */
5615 o = bfd_get_section_by_name (dynobj, ".dynamic");
5616 BFD_ASSERT (o != NULL);
5617
5618 dyncon = (Elf_External_Dyn *) o->contents;
5619 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5620 for (; dyncon < dynconend; dyncon++)
5621 {
5622 Elf_Internal_Dyn dyn;
5623 const char *name;
5624 unsigned int type;
5625
5626 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5627
5628 switch (dyn.d_tag)
5629 {
5630 default:
5631 break;
5632 case DT_NULL:
5633 if (relativecount > 0 && dyncon + 1 < dynconend)
5634 {
5635 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5636 {
5637 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5638 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5639 default: break;
5640 }
5641 if (dyn.d_tag != DT_NULL)
5642 {
5643 dyn.d_un.d_val = relativecount;
5644 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5645 relativecount = 0;
5646 }
5647 }
5648 break;
5649 case DT_INIT:
5650 name = info->init_function;
5651 goto get_sym;
5652 case DT_FINI:
5653 name = info->fini_function;
5654 get_sym:
5655 {
5656 struct elf_link_hash_entry *h;
5657
5658 h = elf_link_hash_lookup (elf_hash_table (info), name,
5659 false, false, true);
5660 if (h != NULL
5661 && (h->root.type == bfd_link_hash_defined
5662 || h->root.type == bfd_link_hash_defweak))
5663 {
5664 dyn.d_un.d_val = h->root.u.def.value;
5665 o = h->root.u.def.section;
5666 if (o->output_section != NULL)
5667 dyn.d_un.d_val += (o->output_section->vma
5668 + o->output_offset);
5669 else
5670 {
5671 /* The symbol is imported from another shared
5672 library and does not apply to this one. */
5673 dyn.d_un.d_val = 0;
5674 }
5675
5676 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5677 }
5678 }
5679 break;
5680
5681 case DT_PREINIT_ARRAYSZ:
5682 name = ".preinit_array";
5683 goto get_size;
5684 case DT_INIT_ARRAYSZ:
5685 name = ".init_array";
5686 goto get_size;
5687 case DT_FINI_ARRAYSZ:
5688 name = ".fini_array";
5689 get_size:
5690 o = bfd_get_section_by_name (abfd, name);
5691 if (o == NULL)
5692 {
5693 (*_bfd_error_handler)
5694 (_("%s: could not find output section %s"),
5695 bfd_get_filename (abfd), name);
5696 goto error_return;
5697 }
5698 if (o->_raw_size == 0)
5699 (*_bfd_error_handler)
5700 (_("warning: %s section has zero size"), name);
5701 dyn.d_un.d_val = o->_raw_size;
5702 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5703 break;
5704
5705 case DT_PREINIT_ARRAY:
5706 name = ".preinit_array";
5707 goto get_vma;
5708 case DT_INIT_ARRAY:
5709 name = ".init_array";
5710 goto get_vma;
5711 case DT_FINI_ARRAY:
5712 name = ".fini_array";
5713 goto get_vma;
5714
5715 case DT_HASH:
5716 name = ".hash";
5717 goto get_vma;
5718 case DT_STRTAB:
5719 name = ".dynstr";
5720 goto get_vma;
5721 case DT_SYMTAB:
5722 name = ".dynsym";
5723 goto get_vma;
5724 case DT_VERDEF:
5725 name = ".gnu.version_d";
5726 goto get_vma;
5727 case DT_VERNEED:
5728 name = ".gnu.version_r";
5729 goto get_vma;
5730 case DT_VERSYM:
5731 name = ".gnu.version";
5732 get_vma:
5733 o = bfd_get_section_by_name (abfd, name);
5734 if (o == NULL)
5735 {
5736 (*_bfd_error_handler)
5737 (_("%s: could not find output section %s"),
5738 bfd_get_filename (abfd), name);
5739 goto error_return;
5740 }
5741 dyn.d_un.d_ptr = o->vma;
5742 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5743 break;
5744
5745 case DT_REL:
5746 case DT_RELA:
5747 case DT_RELSZ:
5748 case DT_RELASZ:
5749 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5750 type = SHT_REL;
5751 else
5752 type = SHT_RELA;
5753 dyn.d_un.d_val = 0;
5754 for (i = 1; i < elf_numsections (abfd); i++)
5755 {
5756 Elf_Internal_Shdr *hdr;
5757
5758 hdr = elf_elfsections (abfd)[i];
5759 if (hdr->sh_type == type
5760 && (hdr->sh_flags & SHF_ALLOC) != 0)
5761 {
5762 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5763 dyn.d_un.d_val += hdr->sh_size;
5764 else
5765 {
5766 if (dyn.d_un.d_val == 0
5767 || hdr->sh_addr < dyn.d_un.d_val)
5768 dyn.d_un.d_val = hdr->sh_addr;
5769 }
5770 }
5771 }
5772 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5773 break;
5774 }
5775 }
5776 }
5777
5778 /* If we have created any dynamic sections, then output them. */
5779 if (dynobj != NULL)
5780 {
5781 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5782 goto error_return;
5783
5784 for (o = dynobj->sections; o != NULL; o = o->next)
5785 {
5786 if ((o->flags & SEC_HAS_CONTENTS) == 0
5787 || o->_raw_size == 0
5788 || o->output_section == bfd_abs_section_ptr)
5789 continue;
5790 if ((o->flags & SEC_LINKER_CREATED) == 0)
5791 {
5792 /* At this point, we are only interested in sections
5793 created by elf_link_create_dynamic_sections. */
5794 continue;
5795 }
5796 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5797 != SHT_STRTAB)
5798 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5799 {
5800 if (! bfd_set_section_contents (abfd, o->output_section,
5801 o->contents,
5802 (file_ptr) o->output_offset,
5803 o->_raw_size))
5804 goto error_return;
5805 }
5806 else
5807 {
5808 /* The contents of the .dynstr section are actually in a
5809 stringtab. */
5810 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5811 if (bfd_seek (abfd, off, SEEK_SET) != 0
5812 || ! _bfd_elf_strtab_emit (abfd,
5813 elf_hash_table (info)->dynstr))
5814 goto error_return;
5815 }
5816 }
5817 }
5818
5819 if (info->relocateable)
5820 {
5821 boolean failed = false;
5822
5823 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5824 if (failed)
5825 goto error_return;
5826 }
5827
5828 /* If we have optimized stabs strings, output them. */
5829 if (elf_hash_table (info)->stab_info != NULL)
5830 {
5831 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5832 goto error_return;
5833 }
5834
5835 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5836 {
5837 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5838 ".eh_frame_hdr");
5839 if (o
5840 && (elf_section_data (o)->sec_info_type
5841 == ELF_INFO_TYPE_EH_FRAME_HDR))
5842 {
5843 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5844 goto error_return;
5845 }
5846 }
5847
5848 if (finfo.symstrtab != NULL)
5849 _bfd_stringtab_free (finfo.symstrtab);
5850 if (finfo.contents != NULL)
5851 free (finfo.contents);
5852 if (finfo.external_relocs != NULL)
5853 free (finfo.external_relocs);
5854 if (finfo.internal_relocs != NULL)
5855 free (finfo.internal_relocs);
5856 if (finfo.external_syms != NULL)
5857 free (finfo.external_syms);
5858 if (finfo.locsym_shndx != NULL)
5859 free (finfo.locsym_shndx);
5860 if (finfo.internal_syms != NULL)
5861 free (finfo.internal_syms);
5862 if (finfo.indices != NULL)
5863 free (finfo.indices);
5864 if (finfo.sections != NULL)
5865 free (finfo.sections);
5866 if (finfo.symbuf != NULL)
5867 free (finfo.symbuf);
5868 if (finfo.symshndxbuf != NULL)
5869 free (finfo.symbuf);
5870 for (o = abfd->sections; o != NULL; o = o->next)
5871 {
5872 if ((o->flags & SEC_RELOC) != 0
5873 && elf_section_data (o)->rel_hashes != NULL)
5874 free (elf_section_data (o)->rel_hashes);
5875 }
5876
5877 elf_tdata (abfd)->linker = true;
5878
5879 return true;
5880
5881 error_return:
5882 if (finfo.symstrtab != NULL)
5883 _bfd_stringtab_free (finfo.symstrtab);
5884 if (finfo.contents != NULL)
5885 free (finfo.contents);
5886 if (finfo.external_relocs != NULL)
5887 free (finfo.external_relocs);
5888 if (finfo.internal_relocs != NULL)
5889 free (finfo.internal_relocs);
5890 if (finfo.external_syms != NULL)
5891 free (finfo.external_syms);
5892 if (finfo.locsym_shndx != NULL)
5893 free (finfo.locsym_shndx);
5894 if (finfo.internal_syms != NULL)
5895 free (finfo.internal_syms);
5896 if (finfo.indices != NULL)
5897 free (finfo.indices);
5898 if (finfo.sections != NULL)
5899 free (finfo.sections);
5900 if (finfo.symbuf != NULL)
5901 free (finfo.symbuf);
5902 if (finfo.symshndxbuf != NULL)
5903 free (finfo.symbuf);
5904 for (o = abfd->sections; o != NULL; o = o->next)
5905 {
5906 if ((o->flags & SEC_RELOC) != 0
5907 && elf_section_data (o)->rel_hashes != NULL)
5908 free (elf_section_data (o)->rel_hashes);
5909 }
5910
5911 return false;
5912 }
5913
5914 /* Add a symbol to the output symbol table. */
5915
5916 static boolean
5917 elf_link_output_sym (finfo, name, elfsym, input_sec)
5918 struct elf_final_link_info *finfo;
5919 const char *name;
5920 Elf_Internal_Sym *elfsym;
5921 asection *input_sec;
5922 {
5923 Elf_External_Sym *dest;
5924 Elf_External_Sym_Shndx *destshndx;
5925
5926 boolean (*output_symbol_hook) PARAMS ((bfd *,
5927 struct bfd_link_info *info,
5928 const char *,
5929 Elf_Internal_Sym *,
5930 asection *));
5931
5932 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5933 elf_backend_link_output_symbol_hook;
5934 if (output_symbol_hook != NULL)
5935 {
5936 if (! ((*output_symbol_hook)
5937 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5938 return false;
5939 }
5940
5941 if (name == (const char *) NULL || *name == '\0')
5942 elfsym->st_name = 0;
5943 else if (input_sec->flags & SEC_EXCLUDE)
5944 elfsym->st_name = 0;
5945 else
5946 {
5947 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5948 name, true, false);
5949 if (elfsym->st_name == (unsigned long) -1)
5950 return false;
5951 }
5952
5953 if (finfo->symbuf_count >= finfo->symbuf_size)
5954 {
5955 if (! elf_link_flush_output_syms (finfo))
5956 return false;
5957 }
5958
5959 dest = finfo->symbuf + finfo->symbuf_count;
5960 destshndx = finfo->symshndxbuf;
5961 if (destshndx != NULL)
5962 destshndx += finfo->symbuf_count;
5963 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5964 ++finfo->symbuf_count;
5965
5966 ++ bfd_get_symcount (finfo->output_bfd);
5967
5968 return true;
5969 }
5970
5971 /* Flush the output symbols to the file. */
5972
5973 static boolean
5974 elf_link_flush_output_syms (finfo)
5975 struct elf_final_link_info *finfo;
5976 {
5977 if (finfo->symbuf_count > 0)
5978 {
5979 Elf_Internal_Shdr *hdr;
5980 file_ptr pos;
5981 bfd_size_type amt;
5982
5983 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5984 pos = hdr->sh_offset + hdr->sh_size;
5985 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5986 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5987 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5988 return false;
5989
5990 hdr->sh_size += amt;
5991
5992 if (finfo->symshndxbuf != NULL)
5993 {
5994 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5995 pos = hdr->sh_offset + hdr->sh_size;
5996 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5997 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5998 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5999 != amt))
6000 return false;
6001
6002 hdr->sh_size += amt;
6003 }
6004
6005 finfo->symbuf_count = 0;
6006 }
6007
6008 return true;
6009 }
6010
6011 /* Adjust all external symbols pointing into SEC_MERGE sections
6012 to reflect the object merging within the sections. */
6013
6014 static boolean
6015 elf_link_sec_merge_syms (h, data)
6016 struct elf_link_hash_entry *h;
6017 PTR data;
6018 {
6019 asection *sec;
6020
6021 if (h->root.type == bfd_link_hash_warning)
6022 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6023
6024 if ((h->root.type == bfd_link_hash_defined
6025 || h->root.type == bfd_link_hash_defweak)
6026 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
6027 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
6028 {
6029 bfd *output_bfd = (bfd *) data;
6030
6031 h->root.u.def.value =
6032 _bfd_merged_section_offset (output_bfd,
6033 &h->root.u.def.section,
6034 elf_section_data (sec)->sec_info,
6035 h->root.u.def.value, (bfd_vma) 0);
6036 }
6037
6038 return true;
6039 }
6040
6041 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6042 allowing an unsatisfied unversioned symbol in the DSO to match a
6043 versioned symbol that would normally require an explicit version. */
6044
6045 static boolean
6046 elf_link_check_versioned_symbol (info, h)
6047 struct bfd_link_info *info;
6048 struct elf_link_hash_entry *h;
6049 {
6050 bfd *undef_bfd = h->root.u.undef.abfd;
6051 struct elf_link_loaded_list *loaded;
6052
6053 if ((undef_bfd->flags & DYNAMIC) == 0
6054 || info->hash->creator->flavour != bfd_target_elf_flavour
6055 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
6056 return false;
6057
6058 for (loaded = elf_hash_table (info)->loaded;
6059 loaded != NULL;
6060 loaded = loaded->next)
6061 {
6062 bfd *input;
6063 Elf_Internal_Shdr *hdr;
6064 bfd_size_type symcount;
6065 bfd_size_type extsymcount;
6066 bfd_size_type extsymoff;
6067 Elf_Internal_Shdr *versymhdr;
6068 Elf_Internal_Sym *isym;
6069 Elf_Internal_Sym *isymend;
6070 Elf_Internal_Sym *isymbuf;
6071 Elf_External_Versym *ever;
6072 Elf_External_Versym *extversym;
6073
6074 input = loaded->abfd;
6075
6076 /* We check each DSO for a possible hidden versioned definition. */
6077 if (input == undef_bfd
6078 || (input->flags & DYNAMIC) == 0
6079 || elf_dynversym (input) == 0)
6080 continue;
6081
6082 hdr = &elf_tdata (input)->dynsymtab_hdr;
6083
6084 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
6085 if (elf_bad_symtab (input))
6086 {
6087 extsymcount = symcount;
6088 extsymoff = 0;
6089 }
6090 else
6091 {
6092 extsymcount = symcount - hdr->sh_info;
6093 extsymoff = hdr->sh_info;
6094 }
6095
6096 if (extsymcount == 0)
6097 continue;
6098
6099 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6100 NULL, NULL, NULL);
6101 if (isymbuf == NULL)
6102 return false;
6103
6104 /* Read in any version definitions. */
6105 versymhdr = &elf_tdata (input)->dynversym_hdr;
6106 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
6107 if (extversym == NULL)
6108 goto error_ret;
6109
6110 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6111 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6112 != versymhdr->sh_size))
6113 {
6114 free (extversym);
6115 error_ret:
6116 free (isymbuf);
6117 return false;
6118 }
6119
6120 ever = extversym + extsymoff;
6121 isymend = isymbuf + extsymcount;
6122 for (isym = isymbuf; isym < isymend; isym++, ever++)
6123 {
6124 const char *name;
6125 Elf_Internal_Versym iver;
6126
6127 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6128 || isym->st_shndx == SHN_UNDEF)
6129 continue;
6130
6131 name = bfd_elf_string_from_elf_section (input,
6132 hdr->sh_link,
6133 isym->st_name);
6134 if (strcmp (name, h->root.root.string) != 0)
6135 continue;
6136
6137 _bfd_elf_swap_versym_in (input, ever, &iver);
6138
6139 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6140 {
6141 /* If we have a non-hidden versioned sym, then it should
6142 have provided a definition for the undefined sym. */
6143 abort ();
6144 }
6145
6146 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6147 {
6148 /* This is the oldest (default) sym. We can use it. */
6149 free (extversym);
6150 free (isymbuf);
6151 return true;
6152 }
6153 }
6154
6155 free (extversym);
6156 free (isymbuf);
6157 }
6158
6159 return false;
6160 }
6161
6162 /* Add an external symbol to the symbol table. This is called from
6163 the hash table traversal routine. When generating a shared object,
6164 we go through the symbol table twice. The first time we output
6165 anything that might have been forced to local scope in a version
6166 script. The second time we output the symbols that are still
6167 global symbols. */
6168
6169 static boolean
6170 elf_link_output_extsym (h, data)
6171 struct elf_link_hash_entry *h;
6172 PTR data;
6173 {
6174 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6175 struct elf_final_link_info *finfo = eoinfo->finfo;
6176 boolean strip;
6177 Elf_Internal_Sym sym;
6178 asection *input_sec;
6179
6180 if (h->root.type == bfd_link_hash_warning)
6181 {
6182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6183 if (h->root.type == bfd_link_hash_new)
6184 return true;
6185 }
6186
6187 /* Decide whether to output this symbol in this pass. */
6188 if (eoinfo->localsyms)
6189 {
6190 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6191 return true;
6192 }
6193 else
6194 {
6195 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6196 return true;
6197 }
6198
6199 /* If we are not creating a shared library, and this symbol is
6200 referenced by a shared library but is not defined anywhere, then
6201 warn that it is undefined. If we do not do this, the runtime
6202 linker will complain that the symbol is undefined when the
6203 program is run. We don't have to worry about symbols that are
6204 referenced by regular files, because we will already have issued
6205 warnings for them. */
6206 if (! finfo->info->relocateable
6207 && ! finfo->info->allow_shlib_undefined
6208 && ! finfo->info->shared
6209 && h->root.type == bfd_link_hash_undefined
6210 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6211 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6212 && ! elf_link_check_versioned_symbol (finfo->info, h))
6213 {
6214 if (! ((*finfo->info->callbacks->undefined_symbol)
6215 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6216 (asection *) NULL, (bfd_vma) 0, true)))
6217 {
6218 eoinfo->failed = true;
6219 return false;
6220 }
6221 }
6222
6223 /* We don't want to output symbols that have never been mentioned by
6224 a regular file, or that we have been told to strip. However, if
6225 h->indx is set to -2, the symbol is used by a reloc and we must
6226 output it. */
6227 if (h->indx == -2)
6228 strip = false;
6229 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6230 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6231 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6232 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6233 strip = true;
6234 else if (finfo->info->strip == strip_all
6235 || (finfo->info->strip == strip_some
6236 && bfd_hash_lookup (finfo->info->keep_hash,
6237 h->root.root.string,
6238 false, false) == NULL))
6239 strip = true;
6240 else
6241 strip = false;
6242
6243 /* If we're stripping it, and it's not a dynamic symbol, there's
6244 nothing else to do unless it is a forced local symbol. */
6245 if (strip
6246 && h->dynindx == -1
6247 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6248 return true;
6249
6250 sym.st_value = 0;
6251 sym.st_size = h->size;
6252 sym.st_other = h->other;
6253 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6254 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6255 else if (h->root.type == bfd_link_hash_undefweak
6256 || h->root.type == bfd_link_hash_defweak)
6257 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6258 else
6259 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6260
6261 switch (h->root.type)
6262 {
6263 default:
6264 case bfd_link_hash_new:
6265 case bfd_link_hash_warning:
6266 abort ();
6267 return false;
6268
6269 case bfd_link_hash_undefined:
6270 case bfd_link_hash_undefweak:
6271 input_sec = bfd_und_section_ptr;
6272 sym.st_shndx = SHN_UNDEF;
6273 break;
6274
6275 case bfd_link_hash_defined:
6276 case bfd_link_hash_defweak:
6277 {
6278 input_sec = h->root.u.def.section;
6279 if (input_sec->output_section != NULL)
6280 {
6281 sym.st_shndx =
6282 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6283 input_sec->output_section);
6284 if (sym.st_shndx == SHN_BAD)
6285 {
6286 (*_bfd_error_handler)
6287 (_("%s: could not find output section %s for input section %s"),
6288 bfd_get_filename (finfo->output_bfd),
6289 input_sec->output_section->name,
6290 input_sec->name);
6291 eoinfo->failed = true;
6292 return false;
6293 }
6294
6295 /* ELF symbols in relocateable files are section relative,
6296 but in nonrelocateable files they are virtual
6297 addresses. */
6298 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6299 if (! finfo->info->relocateable)
6300 {
6301 sym.st_value += input_sec->output_section->vma;
6302 if (h->type == STT_TLS)
6303 {
6304 /* STT_TLS symbols are relative to PT_TLS segment
6305 base. */
6306 BFD_ASSERT (finfo->first_tls_sec != NULL);
6307 sym.st_value -= finfo->first_tls_sec->vma;
6308 }
6309 }
6310 }
6311 else
6312 {
6313 BFD_ASSERT (input_sec->owner == NULL
6314 || (input_sec->owner->flags & DYNAMIC) != 0);
6315 sym.st_shndx = SHN_UNDEF;
6316 input_sec = bfd_und_section_ptr;
6317 }
6318 }
6319 break;
6320
6321 case bfd_link_hash_common:
6322 input_sec = h->root.u.c.p->section;
6323 sym.st_shndx = SHN_COMMON;
6324 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6325 break;
6326
6327 case bfd_link_hash_indirect:
6328 /* These symbols are created by symbol versioning. They point
6329 to the decorated version of the name. For example, if the
6330 symbol foo@@GNU_1.2 is the default, which should be used when
6331 foo is used with no version, then we add an indirect symbol
6332 foo which points to foo@@GNU_1.2. We ignore these symbols,
6333 since the indirected symbol is already in the hash table. */
6334 return true;
6335 }
6336
6337 /* Give the processor backend a chance to tweak the symbol value,
6338 and also to finish up anything that needs to be done for this
6339 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6340 forced local syms when non-shared is due to a historical quirk. */
6341 if ((h->dynindx != -1
6342 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6343 && (finfo->info->shared
6344 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6345 && elf_hash_table (finfo->info)->dynamic_sections_created)
6346 {
6347 struct elf_backend_data *bed;
6348
6349 bed = get_elf_backend_data (finfo->output_bfd);
6350 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6351 (finfo->output_bfd, finfo->info, h, &sym)))
6352 {
6353 eoinfo->failed = true;
6354 return false;
6355 }
6356 }
6357
6358 /* If we are marking the symbol as undefined, and there are no
6359 non-weak references to this symbol from a regular object, then
6360 mark the symbol as weak undefined; if there are non-weak
6361 references, mark the symbol as strong. We can't do this earlier,
6362 because it might not be marked as undefined until the
6363 finish_dynamic_symbol routine gets through with it. */
6364 if (sym.st_shndx == SHN_UNDEF
6365 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6366 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6367 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6368 {
6369 int bindtype;
6370
6371 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6372 bindtype = STB_GLOBAL;
6373 else
6374 bindtype = STB_WEAK;
6375 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6376 }
6377
6378 /* If a symbol is not defined locally, we clear the visibility
6379 field. */
6380 if (! finfo->info->relocateable
6381 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6382 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6383
6384 /* If this symbol should be put in the .dynsym section, then put it
6385 there now. We already know the symbol index. We also fill in
6386 the entry in the .hash section. */
6387 if (h->dynindx != -1
6388 && elf_hash_table (finfo->info)->dynamic_sections_created)
6389 {
6390 size_t bucketcount;
6391 size_t bucket;
6392 size_t hash_entry_size;
6393 bfd_byte *bucketpos;
6394 bfd_vma chain;
6395 Elf_External_Sym *esym;
6396
6397 sym.st_name = h->dynstr_index;
6398 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6399 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6400
6401 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6402 bucket = h->elf_hash_value % bucketcount;
6403 hash_entry_size
6404 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6405 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6406 + (bucket + 2) * hash_entry_size);
6407 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6408 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6409 bucketpos);
6410 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6411 ((bfd_byte *) finfo->hash_sec->contents
6412 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6413
6414 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6415 {
6416 Elf_Internal_Versym iversym;
6417 Elf_External_Versym *eversym;
6418
6419 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6420 {
6421 if (h->verinfo.verdef == NULL)
6422 iversym.vs_vers = 0;
6423 else
6424 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6425 }
6426 else
6427 {
6428 if (h->verinfo.vertree == NULL)
6429 iversym.vs_vers = 1;
6430 else
6431 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6432 }
6433
6434 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6435 iversym.vs_vers |= VERSYM_HIDDEN;
6436
6437 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6438 eversym += h->dynindx;
6439 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6440 }
6441 }
6442
6443 /* If we're stripping it, then it was just a dynamic symbol, and
6444 there's nothing else to do. */
6445 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6446 return true;
6447
6448 h->indx = bfd_get_symcount (finfo->output_bfd);
6449
6450 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6451 {
6452 eoinfo->failed = true;
6453 return false;
6454 }
6455
6456 return true;
6457 }
6458
6459 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6460 originated from the section given by INPUT_REL_HDR) to the
6461 OUTPUT_BFD. */
6462
6463 static boolean
6464 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6465 internal_relocs)
6466 bfd *output_bfd;
6467 asection *input_section;
6468 Elf_Internal_Shdr *input_rel_hdr;
6469 Elf_Internal_Rela *internal_relocs;
6470 {
6471 Elf_Internal_Rela *irela;
6472 Elf_Internal_Rela *irelaend;
6473 Elf_Internal_Shdr *output_rel_hdr;
6474 asection *output_section;
6475 unsigned int *rel_countp = NULL;
6476 struct elf_backend_data *bed;
6477 bfd_size_type amt;
6478
6479 output_section = input_section->output_section;
6480 output_rel_hdr = NULL;
6481
6482 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6483 == input_rel_hdr->sh_entsize)
6484 {
6485 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6486 rel_countp = &elf_section_data (output_section)->rel_count;
6487 }
6488 else if (elf_section_data (output_section)->rel_hdr2
6489 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6490 == input_rel_hdr->sh_entsize))
6491 {
6492 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6493 rel_countp = &elf_section_data (output_section)->rel_count2;
6494 }
6495 else
6496 {
6497 (*_bfd_error_handler)
6498 (_("%s: relocation size mismatch in %s section %s"),
6499 bfd_get_filename (output_bfd),
6500 bfd_archive_filename (input_section->owner),
6501 input_section->name);
6502 bfd_set_error (bfd_error_wrong_object_format);
6503 return false;
6504 }
6505
6506 bed = get_elf_backend_data (output_bfd);
6507 irela = internal_relocs;
6508 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
6509 * bed->s->int_rels_per_ext_rel);
6510
6511 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6512 {
6513 Elf_External_Rel *erel;
6514 Elf_Internal_Rel *irel;
6515
6516 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6517 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6518 if (irel == NULL)
6519 {
6520 (*_bfd_error_handler) (_("Error: out of memory"));
6521 abort ();
6522 }
6523
6524 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6525 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6526 {
6527 unsigned int i;
6528
6529 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6530 {
6531 irel[i].r_offset = irela[i].r_offset;
6532 irel[i].r_info = irela[i].r_info;
6533 BFD_ASSERT (irela[i].r_addend == 0);
6534 }
6535
6536 if (bed->s->swap_reloc_out)
6537 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6538 else
6539 elf_swap_reloc_out (output_bfd, irel, erel);
6540 }
6541
6542 free (irel);
6543 }
6544 else
6545 {
6546 Elf_External_Rela *erela;
6547
6548 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6549
6550 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6551 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6552 if (bed->s->swap_reloca_out)
6553 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6554 else
6555 elf_swap_reloca_out (output_bfd, irela, erela);
6556 }
6557
6558 /* Bump the counter, so that we know where to add the next set of
6559 relocations. */
6560 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6561
6562 return true;
6563 }
6564
6565 /* Link an input file into the linker output file. This function
6566 handles all the sections and relocations of the input file at once.
6567 This is so that we only have to read the local symbols once, and
6568 don't have to keep them in memory. */
6569
6570 static boolean
6571 elf_link_input_bfd (finfo, input_bfd)
6572 struct elf_final_link_info *finfo;
6573 bfd *input_bfd;
6574 {
6575 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6576 bfd *, asection *, bfd_byte *,
6577 Elf_Internal_Rela *,
6578 Elf_Internal_Sym *, asection **));
6579 bfd *output_bfd;
6580 Elf_Internal_Shdr *symtab_hdr;
6581 size_t locsymcount;
6582 size_t extsymoff;
6583 Elf_Internal_Sym *isymbuf;
6584 Elf_Internal_Sym *isym;
6585 Elf_Internal_Sym *isymend;
6586 long *pindex;
6587 asection **ppsection;
6588 asection *o;
6589 struct elf_backend_data *bed;
6590 boolean emit_relocs;
6591 struct elf_link_hash_entry **sym_hashes;
6592
6593 output_bfd = finfo->output_bfd;
6594 bed = get_elf_backend_data (output_bfd);
6595 relocate_section = bed->elf_backend_relocate_section;
6596
6597 /* If this is a dynamic object, we don't want to do anything here:
6598 we don't want the local symbols, and we don't want the section
6599 contents. */
6600 if ((input_bfd->flags & DYNAMIC) != 0)
6601 return true;
6602
6603 emit_relocs = (finfo->info->relocateable
6604 || finfo->info->emitrelocations
6605 || bed->elf_backend_emit_relocs);
6606
6607 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6608 if (elf_bad_symtab (input_bfd))
6609 {
6610 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6611 extsymoff = 0;
6612 }
6613 else
6614 {
6615 locsymcount = symtab_hdr->sh_info;
6616 extsymoff = symtab_hdr->sh_info;
6617 }
6618
6619 /* Read the local symbols. */
6620 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6621 if (isymbuf == NULL && locsymcount != 0)
6622 {
6623 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6624 finfo->internal_syms,
6625 finfo->external_syms,
6626 finfo->locsym_shndx);
6627 if (isymbuf == NULL)
6628 return false;
6629 }
6630
6631 /* Find local symbol sections and adjust values of symbols in
6632 SEC_MERGE sections. Write out those local symbols we know are
6633 going into the output file. */
6634 isymend = isymbuf + locsymcount;
6635 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6636 isym < isymend;
6637 isym++, pindex++, ppsection++)
6638 {
6639 asection *isec;
6640 const char *name;
6641 Elf_Internal_Sym osym;
6642
6643 *pindex = -1;
6644
6645 if (elf_bad_symtab (input_bfd))
6646 {
6647 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6648 {
6649 *ppsection = NULL;
6650 continue;
6651 }
6652 }
6653
6654 if (isym->st_shndx == SHN_UNDEF)
6655 isec = bfd_und_section_ptr;
6656 else if (isym->st_shndx < SHN_LORESERVE
6657 || isym->st_shndx > SHN_HIRESERVE)
6658 {
6659 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6660 if (isec
6661 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6662 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6663 isym->st_value =
6664 _bfd_merged_section_offset (output_bfd, &isec,
6665 elf_section_data (isec)->sec_info,
6666 isym->st_value, (bfd_vma) 0);
6667 }
6668 else if (isym->st_shndx == SHN_ABS)
6669 isec = bfd_abs_section_ptr;
6670 else if (isym->st_shndx == SHN_COMMON)
6671 isec = bfd_com_section_ptr;
6672 else
6673 {
6674 /* Who knows? */
6675 isec = NULL;
6676 }
6677
6678 *ppsection = isec;
6679
6680 /* Don't output the first, undefined, symbol. */
6681 if (ppsection == finfo->sections)
6682 continue;
6683
6684 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6685 {
6686 /* We never output section symbols. Instead, we use the
6687 section symbol of the corresponding section in the output
6688 file. */
6689 continue;
6690 }
6691
6692 /* If we are stripping all symbols, we don't want to output this
6693 one. */
6694 if (finfo->info->strip == strip_all)
6695 continue;
6696
6697 /* If we are discarding all local symbols, we don't want to
6698 output this one. If we are generating a relocateable output
6699 file, then some of the local symbols may be required by
6700 relocs; we output them below as we discover that they are
6701 needed. */
6702 if (finfo->info->discard == discard_all)
6703 continue;
6704
6705 /* If this symbol is defined in a section which we are
6706 discarding, we don't need to keep it, but note that
6707 linker_mark is only reliable for sections that have contents.
6708 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6709 as well as linker_mark. */
6710 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6711 && isec != NULL
6712 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6713 || (! finfo->info->relocateable
6714 && (isec->flags & SEC_EXCLUDE) != 0)))
6715 continue;
6716
6717 /* Get the name of the symbol. */
6718 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6719 isym->st_name);
6720 if (name == NULL)
6721 return false;
6722
6723 /* See if we are discarding symbols with this name. */
6724 if ((finfo->info->strip == strip_some
6725 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6726 == NULL))
6727 || (((finfo->info->discard == discard_sec_merge
6728 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6729 || finfo->info->discard == discard_l)
6730 && bfd_is_local_label_name (input_bfd, name)))
6731 continue;
6732
6733 /* If we get here, we are going to output this symbol. */
6734
6735 osym = *isym;
6736
6737 /* Adjust the section index for the output file. */
6738 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6739 isec->output_section);
6740 if (osym.st_shndx == SHN_BAD)
6741 return false;
6742
6743 *pindex = bfd_get_symcount (output_bfd);
6744
6745 /* ELF symbols in relocateable files are section relative, but
6746 in executable files they are virtual addresses. Note that
6747 this code assumes that all ELF sections have an associated
6748 BFD section with a reasonable value for output_offset; below
6749 we assume that they also have a reasonable value for
6750 output_section. Any special sections must be set up to meet
6751 these requirements. */
6752 osym.st_value += isec->output_offset;
6753 if (! finfo->info->relocateable)
6754 {
6755 osym.st_value += isec->output_section->vma;
6756 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6757 {
6758 /* STT_TLS symbols are relative to PT_TLS segment base. */
6759 BFD_ASSERT (finfo->first_tls_sec != NULL);
6760 osym.st_value -= finfo->first_tls_sec->vma;
6761 }
6762 }
6763
6764 if (! elf_link_output_sym (finfo, name, &osym, isec))
6765 return false;
6766 }
6767
6768 /* Relocate the contents of each section. */
6769 sym_hashes = elf_sym_hashes (input_bfd);
6770 for (o = input_bfd->sections; o != NULL; o = o->next)
6771 {
6772 bfd_byte *contents;
6773
6774 if (! o->linker_mark)
6775 {
6776 /* This section was omitted from the link. */
6777 continue;
6778 }
6779
6780 if ((o->flags & SEC_HAS_CONTENTS) == 0
6781 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6782 continue;
6783
6784 if ((o->flags & SEC_LINKER_CREATED) != 0)
6785 {
6786 /* Section was created by elf_link_create_dynamic_sections
6787 or somesuch. */
6788 continue;
6789 }
6790
6791 /* Get the contents of the section. They have been cached by a
6792 relaxation routine. Note that o is a section in an input
6793 file, so the contents field will not have been set by any of
6794 the routines which work on output files. */
6795 if (elf_section_data (o)->this_hdr.contents != NULL)
6796 contents = elf_section_data (o)->this_hdr.contents;
6797 else
6798 {
6799 contents = finfo->contents;
6800 if (! bfd_get_section_contents (input_bfd, o, contents,
6801 (file_ptr) 0, o->_raw_size))
6802 return false;
6803 }
6804
6805 if ((o->flags & SEC_RELOC) != 0)
6806 {
6807 Elf_Internal_Rela *internal_relocs;
6808
6809 /* Get the swapped relocs. */
6810 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6811 (input_bfd, o, finfo->external_relocs,
6812 finfo->internal_relocs, false));
6813 if (internal_relocs == NULL
6814 && o->reloc_count > 0)
6815 return false;
6816
6817 /* Run through the relocs looking for any against symbols
6818 from discarded sections and section symbols from
6819 removed link-once sections. Complain about relocs
6820 against discarded sections. Zero relocs against removed
6821 link-once sections. We should really complain if
6822 anything in the final link tries to use it, but
6823 DWARF-based exception handling might have an entry in
6824 .eh_frame to describe a routine in the linkonce section,
6825 and it turns out to be hard to remove the .eh_frame
6826 entry too. FIXME. */
6827 if (!finfo->info->relocateable
6828 && !elf_section_ignore_discarded_relocs (o))
6829 {
6830 Elf_Internal_Rela *rel, *relend;
6831
6832 rel = internal_relocs;
6833 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6834 for ( ; rel < relend; rel++)
6835 {
6836 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6837
6838 if (r_symndx >= locsymcount
6839 || (elf_bad_symtab (input_bfd)
6840 && finfo->sections[r_symndx] == NULL))
6841 {
6842 struct elf_link_hash_entry *h;
6843
6844 h = sym_hashes[r_symndx - extsymoff];
6845 while (h->root.type == bfd_link_hash_indirect
6846 || h->root.type == bfd_link_hash_warning)
6847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6848
6849 /* Complain if the definition comes from a
6850 discarded section. */
6851 if ((h->root.type == bfd_link_hash_defined
6852 || h->root.type == bfd_link_hash_defweak)
6853 && elf_discarded_section (h->root.u.def.section))
6854 {
6855 if ((o->flags & SEC_DEBUGGING) != 0)
6856 {
6857 BFD_ASSERT (r_symndx != 0);
6858 memset (rel, 0, sizeof (*rel));
6859 }
6860 else
6861 {
6862 if (! ((*finfo->info->callbacks->undefined_symbol)
6863 (finfo->info, h->root.root.string,
6864 input_bfd, o, rel->r_offset,
6865 true)))
6866 return false;
6867 }
6868 }
6869 }
6870 else
6871 {
6872 asection *sec = finfo->sections[r_symndx];
6873
6874 if (sec != NULL && elf_discarded_section (sec))
6875 {
6876 if ((o->flags & SEC_DEBUGGING) != 0
6877 || (sec->flags & SEC_LINK_ONCE) != 0)
6878 {
6879 BFD_ASSERT (r_symndx != 0);
6880 rel->r_info
6881 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6882 rel->r_addend = 0;
6883 }
6884 else
6885 {
6886 boolean ok;
6887 const char *msg
6888 = _("local symbols in discarded section %s");
6889 bfd_size_type amt
6890 = strlen (sec->name) + strlen (msg) - 1;
6891 char *buf = (char *) bfd_malloc (amt);
6892
6893 if (buf != NULL)
6894 sprintf (buf, msg, sec->name);
6895 else
6896 buf = (char *) sec->name;
6897 ok = (*finfo->info->callbacks
6898 ->undefined_symbol) (finfo->info, buf,
6899 input_bfd, o,
6900 rel->r_offset,
6901 true);
6902 if (buf != sec->name)
6903 free (buf);
6904 if (!ok)
6905 return false;
6906 }
6907 }
6908 }
6909 }
6910 }
6911
6912 /* Relocate the section by invoking a back end routine.
6913
6914 The back end routine is responsible for adjusting the
6915 section contents as necessary, and (if using Rela relocs
6916 and generating a relocateable output file) adjusting the
6917 reloc addend as necessary.
6918
6919 The back end routine does not have to worry about setting
6920 the reloc address or the reloc symbol index.
6921
6922 The back end routine is given a pointer to the swapped in
6923 internal symbols, and can access the hash table entries
6924 for the external symbols via elf_sym_hashes (input_bfd).
6925
6926 When generating relocateable output, the back end routine
6927 must handle STB_LOCAL/STT_SECTION symbols specially. The
6928 output symbol is going to be a section symbol
6929 corresponding to the output section, which will require
6930 the addend to be adjusted. */
6931
6932 if (! (*relocate_section) (output_bfd, finfo->info,
6933 input_bfd, o, contents,
6934 internal_relocs,
6935 isymbuf,
6936 finfo->sections))
6937 return false;
6938
6939 if (emit_relocs)
6940 {
6941 Elf_Internal_Rela *irela;
6942 Elf_Internal_Rela *irelaend;
6943 struct elf_link_hash_entry **rel_hash;
6944 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6945 unsigned int next_erel;
6946 boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
6947 Elf_Internal_Shdr *,
6948 Elf_Internal_Rela *));
6949 boolean rela_normal;
6950
6951 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6952 rela_normal = (bed->rela_normal
6953 && (input_rel_hdr->sh_entsize
6954 == sizeof (Elf_External_Rela)));
6955
6956 /* Adjust the reloc addresses and symbol indices. */
6957
6958 irela = internal_relocs;
6959 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6960 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6961 + elf_section_data (o->output_section)->rel_count
6962 + elf_section_data (o->output_section)->rel_count2);
6963 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6964 {
6965 unsigned long r_symndx;
6966 asection *sec;
6967 Elf_Internal_Sym sym;
6968
6969 if (next_erel == bed->s->int_rels_per_ext_rel)
6970 {
6971 rel_hash++;
6972 next_erel = 0;
6973 }
6974
6975 irela->r_offset += o->output_offset;
6976
6977 /* Relocs in an executable have to be virtual addresses. */
6978 if (!finfo->info->relocateable)
6979 irela->r_offset += o->output_section->vma;
6980
6981 r_symndx = ELF_R_SYM (irela->r_info);
6982
6983 if (r_symndx == 0)
6984 continue;
6985
6986 if (r_symndx >= locsymcount
6987 || (elf_bad_symtab (input_bfd)
6988 && finfo->sections[r_symndx] == NULL))
6989 {
6990 struct elf_link_hash_entry *rh;
6991 unsigned long indx;
6992
6993 /* This is a reloc against a global symbol. We
6994 have not yet output all the local symbols, so
6995 we do not know the symbol index of any global
6996 symbol. We set the rel_hash entry for this
6997 reloc to point to the global hash table entry
6998 for this symbol. The symbol index is then
6999 set at the end of elf_bfd_final_link. */
7000 indx = r_symndx - extsymoff;
7001 rh = elf_sym_hashes (input_bfd)[indx];
7002 while (rh->root.type == bfd_link_hash_indirect
7003 || rh->root.type == bfd_link_hash_warning)
7004 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7005
7006 /* Setting the index to -2 tells
7007 elf_link_output_extsym that this symbol is
7008 used by a reloc. */
7009 BFD_ASSERT (rh->indx < 0);
7010 rh->indx = -2;
7011
7012 *rel_hash = rh;
7013
7014 continue;
7015 }
7016
7017 /* This is a reloc against a local symbol. */
7018
7019 *rel_hash = NULL;
7020 sym = isymbuf[r_symndx];
7021 sec = finfo->sections[r_symndx];
7022 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7023 {
7024 /* I suppose the backend ought to fill in the
7025 section of any STT_SECTION symbol against a
7026 processor specific section. If we have
7027 discarded a section, the output_section will
7028 be the absolute section. */
7029 if (bfd_is_abs_section (sec)
7030 || (sec != NULL
7031 && bfd_is_abs_section (sec->output_section)))
7032 r_symndx = 0;
7033 else if (sec == NULL || sec->owner == NULL)
7034 {
7035 bfd_set_error (bfd_error_bad_value);
7036 return false;
7037 }
7038 else
7039 {
7040 r_symndx = sec->output_section->target_index;
7041 BFD_ASSERT (r_symndx != 0);
7042 }
7043
7044 /* Adjust the addend according to where the
7045 section winds up in the output section. */
7046 if (rela_normal)
7047 irela->r_addend += sec->output_offset;
7048 }
7049 else
7050 {
7051 if (finfo->indices[r_symndx] == -1)
7052 {
7053 unsigned long shlink;
7054 const char *name;
7055 asection *osec;
7056
7057 if (finfo->info->strip == strip_all)
7058 {
7059 /* You can't do ld -r -s. */
7060 bfd_set_error (bfd_error_invalid_operation);
7061 return false;
7062 }
7063
7064 /* This symbol was skipped earlier, but
7065 since it is needed by a reloc, we
7066 must output it now. */
7067 shlink = symtab_hdr->sh_link;
7068 name = (bfd_elf_string_from_elf_section
7069 (input_bfd, shlink, sym.st_name));
7070 if (name == NULL)
7071 return false;
7072
7073 osec = sec->output_section;
7074 sym.st_shndx =
7075 _bfd_elf_section_from_bfd_section (output_bfd,
7076 osec);
7077 if (sym.st_shndx == SHN_BAD)
7078 return false;
7079
7080 sym.st_value += sec->output_offset;
7081 if (! finfo->info->relocateable)
7082 {
7083 sym.st_value += osec->vma;
7084 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7085 {
7086 /* STT_TLS symbols are relative to PT_TLS
7087 segment base. */
7088 BFD_ASSERT (finfo->first_tls_sec != NULL);
7089 sym.st_value -= finfo->first_tls_sec->vma;
7090 }
7091 }
7092
7093 finfo->indices[r_symndx]
7094 = bfd_get_symcount (output_bfd);
7095
7096 if (! elf_link_output_sym (finfo, name, &sym, sec))
7097 return false;
7098 }
7099
7100 r_symndx = finfo->indices[r_symndx];
7101 }
7102
7103 irela->r_info = ELF_R_INFO (r_symndx,
7104 ELF_R_TYPE (irela->r_info));
7105 }
7106
7107 /* Swap out the relocs. */
7108 if (bed->elf_backend_emit_relocs
7109 && !(finfo->info->relocateable
7110 || finfo->info->emitrelocations))
7111 reloc_emitter = bed->elf_backend_emit_relocs;
7112 else
7113 reloc_emitter = elf_link_output_relocs;
7114
7115 if (input_rel_hdr->sh_size != 0
7116 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7117 internal_relocs))
7118 return false;
7119
7120 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7121 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7122 {
7123 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7124 * bed->s->int_rels_per_ext_rel);
7125 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7126 internal_relocs))
7127 return false;
7128 }
7129 }
7130 }
7131
7132 /* Write out the modified section contents. */
7133 if (bed->elf_backend_write_section
7134 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7135 {
7136 /* Section written out. */
7137 }
7138 else switch (elf_section_data (o)->sec_info_type)
7139 {
7140 case ELF_INFO_TYPE_STABS:
7141 if (! (_bfd_write_section_stabs
7142 (output_bfd,
7143 &elf_hash_table (finfo->info)->stab_info,
7144 o, &elf_section_data (o)->sec_info, contents)))
7145 return false;
7146 break;
7147 case ELF_INFO_TYPE_MERGE:
7148 if (! (_bfd_write_merged_section
7149 (output_bfd, o, elf_section_data (o)->sec_info)))
7150 return false;
7151 break;
7152 case ELF_INFO_TYPE_EH_FRAME:
7153 {
7154 asection *ehdrsec;
7155
7156 ehdrsec
7157 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
7158 ".eh_frame_hdr");
7159 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
7160 contents)))
7161 return false;
7162 }
7163 break;
7164 default:
7165 {
7166 bfd_size_type sec_size;
7167
7168 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7169 if (! (o->flags & SEC_EXCLUDE)
7170 && ! bfd_set_section_contents (output_bfd, o->output_section,
7171 contents,
7172 (file_ptr) o->output_offset,
7173 sec_size))
7174 return false;
7175 }
7176 break;
7177 }
7178 }
7179
7180 return true;
7181 }
7182
7183 /* Generate a reloc when linking an ELF file. This is a reloc
7184 requested by the linker, and does come from any input file. This
7185 is used to build constructor and destructor tables when linking
7186 with -Ur. */
7187
7188 static boolean
7189 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7190 bfd *output_bfd;
7191 struct bfd_link_info *info;
7192 asection *output_section;
7193 struct bfd_link_order *link_order;
7194 {
7195 reloc_howto_type *howto;
7196 long indx;
7197 bfd_vma offset;
7198 bfd_vma addend;
7199 struct elf_link_hash_entry **rel_hash_ptr;
7200 Elf_Internal_Shdr *rel_hdr;
7201 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7202
7203 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7204 if (howto == NULL)
7205 {
7206 bfd_set_error (bfd_error_bad_value);
7207 return false;
7208 }
7209
7210 addend = link_order->u.reloc.p->addend;
7211
7212 /* Figure out the symbol index. */
7213 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7214 + elf_section_data (output_section)->rel_count
7215 + elf_section_data (output_section)->rel_count2);
7216 if (link_order->type == bfd_section_reloc_link_order)
7217 {
7218 indx = link_order->u.reloc.p->u.section->target_index;
7219 BFD_ASSERT (indx != 0);
7220 *rel_hash_ptr = NULL;
7221 }
7222 else
7223 {
7224 struct elf_link_hash_entry *h;
7225
7226 /* Treat a reloc against a defined symbol as though it were
7227 actually against the section. */
7228 h = ((struct elf_link_hash_entry *)
7229 bfd_wrapped_link_hash_lookup (output_bfd, info,
7230 link_order->u.reloc.p->u.name,
7231 false, false, true));
7232 if (h != NULL
7233 && (h->root.type == bfd_link_hash_defined
7234 || h->root.type == bfd_link_hash_defweak))
7235 {
7236 asection *section;
7237
7238 section = h->root.u.def.section;
7239 indx = section->output_section->target_index;
7240 *rel_hash_ptr = NULL;
7241 /* It seems that we ought to add the symbol value to the
7242 addend here, but in practice it has already been added
7243 because it was passed to constructor_callback. */
7244 addend += section->output_section->vma + section->output_offset;
7245 }
7246 else if (h != NULL)
7247 {
7248 /* Setting the index to -2 tells elf_link_output_extsym that
7249 this symbol is used by a reloc. */
7250 h->indx = -2;
7251 *rel_hash_ptr = h;
7252 indx = 0;
7253 }
7254 else
7255 {
7256 if (! ((*info->callbacks->unattached_reloc)
7257 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7258 (asection *) NULL, (bfd_vma) 0)))
7259 return false;
7260 indx = 0;
7261 }
7262 }
7263
7264 /* If this is an inplace reloc, we must write the addend into the
7265 object file. */
7266 if (howto->partial_inplace && addend != 0)
7267 {
7268 bfd_size_type size;
7269 bfd_reloc_status_type rstat;
7270 bfd_byte *buf;
7271 boolean ok;
7272 const char *sym_name;
7273
7274 size = bfd_get_reloc_size (howto);
7275 buf = (bfd_byte *) bfd_zmalloc (size);
7276 if (buf == (bfd_byte *) NULL)
7277 return false;
7278 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7279 switch (rstat)
7280 {
7281 case bfd_reloc_ok:
7282 break;
7283
7284 default:
7285 case bfd_reloc_outofrange:
7286 abort ();
7287
7288 case bfd_reloc_overflow:
7289 if (link_order->type == bfd_section_reloc_link_order)
7290 sym_name = bfd_section_name (output_bfd,
7291 link_order->u.reloc.p->u.section);
7292 else
7293 sym_name = link_order->u.reloc.p->u.name;
7294 if (! ((*info->callbacks->reloc_overflow)
7295 (info, sym_name, howto->name, addend,
7296 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7297 {
7298 free (buf);
7299 return false;
7300 }
7301 break;
7302 }
7303 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7304 (file_ptr) link_order->offset, size);
7305 free (buf);
7306 if (! ok)
7307 return false;
7308 }
7309
7310 /* The address of a reloc is relative to the section in a
7311 relocateable file, and is a virtual address in an executable
7312 file. */
7313 offset = link_order->offset;
7314 if (! info->relocateable)
7315 offset += output_section->vma;
7316
7317 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7318
7319 if (rel_hdr->sh_type == SHT_REL)
7320 {
7321 bfd_size_type size;
7322 Elf_Internal_Rel *irel;
7323 Elf_External_Rel *erel;
7324 unsigned int i;
7325
7326 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7327 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7328 if (irel == NULL)
7329 return false;
7330
7331 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7332 irel[i].r_offset = offset;
7333 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7334
7335 erel = ((Elf_External_Rel *) rel_hdr->contents
7336 + elf_section_data (output_section)->rel_count);
7337
7338 if (bed->s->swap_reloc_out)
7339 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7340 else
7341 elf_swap_reloc_out (output_bfd, irel, erel);
7342
7343 free (irel);
7344 }
7345 else
7346 {
7347 bfd_size_type size;
7348 Elf_Internal_Rela *irela;
7349 Elf_External_Rela *erela;
7350 unsigned int i;
7351
7352 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7353 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7354 if (irela == NULL)
7355 return false;
7356
7357 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7358 irela[i].r_offset = offset;
7359 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7360 irela[0].r_addend = addend;
7361
7362 erela = ((Elf_External_Rela *) rel_hdr->contents
7363 + elf_section_data (output_section)->rel_count);
7364
7365 if (bed->s->swap_reloca_out)
7366 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7367 else
7368 elf_swap_reloca_out (output_bfd, irela, erela);
7369 }
7370
7371 ++elf_section_data (output_section)->rel_count;
7372
7373 return true;
7374 }
7375 \f
7376 /* Allocate a pointer to live in a linker created section. */
7377
7378 boolean
7379 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7380 bfd *abfd;
7381 struct bfd_link_info *info;
7382 elf_linker_section_t *lsect;
7383 struct elf_link_hash_entry *h;
7384 const Elf_Internal_Rela *rel;
7385 {
7386 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7387 elf_linker_section_pointers_t *linker_section_ptr;
7388 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7389 bfd_size_type amt;
7390
7391 BFD_ASSERT (lsect != NULL);
7392
7393 /* Is this a global symbol? */
7394 if (h != NULL)
7395 {
7396 /* Has this symbol already been allocated? If so, our work is done. */
7397 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7398 rel->r_addend,
7399 lsect->which))
7400 return true;
7401
7402 ptr_linker_section_ptr = &h->linker_section_pointer;
7403 /* Make sure this symbol is output as a dynamic symbol. */
7404 if (h->dynindx == -1)
7405 {
7406 if (! elf_link_record_dynamic_symbol (info, h))
7407 return false;
7408 }
7409
7410 if (lsect->rel_section)
7411 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7412 }
7413 else
7414 {
7415 /* Allocation of a pointer to a local symbol. */
7416 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7417
7418 /* Allocate a table to hold the local symbols if first time. */
7419 if (!ptr)
7420 {
7421 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7422 register unsigned int i;
7423
7424 amt = num_symbols;
7425 amt *= sizeof (elf_linker_section_pointers_t *);
7426 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7427
7428 if (!ptr)
7429 return false;
7430
7431 elf_local_ptr_offsets (abfd) = ptr;
7432 for (i = 0; i < num_symbols; i++)
7433 ptr[i] = (elf_linker_section_pointers_t *) 0;
7434 }
7435
7436 /* Has this symbol already been allocated? If so, our work is done. */
7437 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7438 rel->r_addend,
7439 lsect->which))
7440 return true;
7441
7442 ptr_linker_section_ptr = &ptr[r_symndx];
7443
7444 if (info->shared)
7445 {
7446 /* If we are generating a shared object, we need to
7447 output a R_<xxx>_RELATIVE reloc so that the
7448 dynamic linker can adjust this GOT entry. */
7449 BFD_ASSERT (lsect->rel_section != NULL);
7450 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7451 }
7452 }
7453
7454 /* Allocate space for a pointer in the linker section, and allocate
7455 a new pointer record from internal memory. */
7456 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7457 amt = sizeof (elf_linker_section_pointers_t);
7458 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7459
7460 if (!linker_section_ptr)
7461 return false;
7462
7463 linker_section_ptr->next = *ptr_linker_section_ptr;
7464 linker_section_ptr->addend = rel->r_addend;
7465 linker_section_ptr->which = lsect->which;
7466 linker_section_ptr->written_address_p = false;
7467 *ptr_linker_section_ptr = linker_section_ptr;
7468
7469 #if 0
7470 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7471 {
7472 linker_section_ptr->offset = (lsect->section->_raw_size
7473 - lsect->hole_size + (ARCH_SIZE / 8));
7474 lsect->hole_offset += ARCH_SIZE / 8;
7475 lsect->sym_offset += ARCH_SIZE / 8;
7476 if (lsect->sym_hash)
7477 {
7478 /* Bump up symbol value if needed. */
7479 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7480 #ifdef DEBUG
7481 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7482 lsect->sym_hash->root.root.string,
7483 (long) ARCH_SIZE / 8,
7484 (long) lsect->sym_hash->root.u.def.value);
7485 #endif
7486 }
7487 }
7488 else
7489 #endif
7490 linker_section_ptr->offset = lsect->section->_raw_size;
7491
7492 lsect->section->_raw_size += ARCH_SIZE / 8;
7493
7494 #ifdef DEBUG
7495 fprintf (stderr,
7496 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7497 lsect->name, (long) linker_section_ptr->offset,
7498 (long) lsect->section->_raw_size);
7499 #endif
7500
7501 return true;
7502 }
7503 \f
7504 #if ARCH_SIZE==64
7505 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7506 #endif
7507 #if ARCH_SIZE==32
7508 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7509 #endif
7510
7511 /* Fill in the address for a pointer generated in a linker section. */
7512
7513 bfd_vma
7514 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7515 relocation, rel, relative_reloc)
7516 bfd *output_bfd;
7517 bfd *input_bfd;
7518 struct bfd_link_info *info;
7519 elf_linker_section_t *lsect;
7520 struct elf_link_hash_entry *h;
7521 bfd_vma relocation;
7522 const Elf_Internal_Rela *rel;
7523 int relative_reloc;
7524 {
7525 elf_linker_section_pointers_t *linker_section_ptr;
7526
7527 BFD_ASSERT (lsect != NULL);
7528
7529 if (h != NULL)
7530 {
7531 /* Handle global symbol. */
7532 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7533 (h->linker_section_pointer,
7534 rel->r_addend,
7535 lsect->which));
7536
7537 BFD_ASSERT (linker_section_ptr != NULL);
7538
7539 if (! elf_hash_table (info)->dynamic_sections_created
7540 || (info->shared
7541 && info->symbolic
7542 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7543 {
7544 /* This is actually a static link, or it is a
7545 -Bsymbolic link and the symbol is defined
7546 locally. We must initialize this entry in the
7547 global section.
7548
7549 When doing a dynamic link, we create a .rela.<xxx>
7550 relocation entry to initialize the value. This
7551 is done in the finish_dynamic_symbol routine. */
7552 if (!linker_section_ptr->written_address_p)
7553 {
7554 linker_section_ptr->written_address_p = true;
7555 bfd_put_ptr (output_bfd,
7556 relocation + linker_section_ptr->addend,
7557 (lsect->section->contents
7558 + linker_section_ptr->offset));
7559 }
7560 }
7561 }
7562 else
7563 {
7564 /* Handle local symbol. */
7565 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7566 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7567 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7568 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7569 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7570 rel->r_addend,
7571 lsect->which));
7572
7573 BFD_ASSERT (linker_section_ptr != NULL);
7574
7575 /* Write out pointer if it hasn't been rewritten out before. */
7576 if (!linker_section_ptr->written_address_p)
7577 {
7578 linker_section_ptr->written_address_p = true;
7579 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7580 lsect->section->contents + linker_section_ptr->offset);
7581
7582 if (info->shared)
7583 {
7584 asection *srel = lsect->rel_section;
7585 Elf_Internal_Rela *outrel;
7586 Elf_External_Rela *erel;
7587 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7588 unsigned int i;
7589 bfd_size_type amt;
7590
7591 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7592 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7593 if (outrel == NULL)
7594 {
7595 (*_bfd_error_handler) (_("Error: out of memory"));
7596 return 0;
7597 }
7598
7599 /* We need to generate a relative reloc for the dynamic
7600 linker. */
7601 if (!srel)
7602 {
7603 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7604 lsect->rel_name);
7605 lsect->rel_section = srel;
7606 }
7607
7608 BFD_ASSERT (srel != NULL);
7609
7610 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7611 outrel[i].r_offset = (lsect->section->output_section->vma
7612 + lsect->section->output_offset
7613 + linker_section_ptr->offset);
7614 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7615 outrel[0].r_addend = 0;
7616 erel = (Elf_External_Rela *) lsect->section->contents;
7617 erel += elf_section_data (lsect->section)->rel_count;
7618 elf_swap_reloca_out (output_bfd, outrel, erel);
7619 ++elf_section_data (lsect->section)->rel_count;
7620
7621 free (outrel);
7622 }
7623 }
7624 }
7625
7626 relocation = (lsect->section->output_offset
7627 + linker_section_ptr->offset
7628 - lsect->hole_offset
7629 - lsect->sym_offset);
7630
7631 #ifdef DEBUG
7632 fprintf (stderr,
7633 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7634 lsect->name, (long) relocation, (long) relocation);
7635 #endif
7636
7637 /* Subtract out the addend, because it will get added back in by the normal
7638 processing. */
7639 return relocation - linker_section_ptr->addend;
7640 }
7641 \f
7642 /* Garbage collect unused sections. */
7643
7644 static boolean elf_gc_mark
7645 PARAMS ((struct bfd_link_info *, asection *,
7646 asection * (*) (asection *, struct bfd_link_info *,
7647 Elf_Internal_Rela *, struct elf_link_hash_entry *,
7648 Elf_Internal_Sym *)));
7649
7650 static boolean elf_gc_sweep
7651 PARAMS ((struct bfd_link_info *,
7652 boolean (*) (bfd *, struct bfd_link_info *, asection *,
7653 const Elf_Internal_Rela *)));
7654
7655 static boolean elf_gc_sweep_symbol
7656 PARAMS ((struct elf_link_hash_entry *, PTR));
7657
7658 static boolean elf_gc_allocate_got_offsets
7659 PARAMS ((struct elf_link_hash_entry *, PTR));
7660
7661 static boolean elf_gc_propagate_vtable_entries_used
7662 PARAMS ((struct elf_link_hash_entry *, PTR));
7663
7664 static boolean elf_gc_smash_unused_vtentry_relocs
7665 PARAMS ((struct elf_link_hash_entry *, PTR));
7666
7667 /* The mark phase of garbage collection. For a given section, mark
7668 it and any sections in this section's group, and all the sections
7669 which define symbols to which it refers. */
7670
7671 static boolean
7672 elf_gc_mark (info, sec, gc_mark_hook)
7673 struct bfd_link_info *info;
7674 asection *sec;
7675 asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
7676 Elf_Internal_Rela *,
7677 struct elf_link_hash_entry *,
7678 Elf_Internal_Sym *));
7679 {
7680 boolean ret;
7681 asection *group_sec;
7682
7683 sec->gc_mark = 1;
7684
7685 /* Mark all the sections in the group. */
7686 group_sec = elf_section_data (sec)->next_in_group;
7687 if (group_sec && !group_sec->gc_mark)
7688 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7689 return false;
7690
7691 /* Look through the section relocs. */
7692 ret = true;
7693 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7694 {
7695 Elf_Internal_Rela *relstart, *rel, *relend;
7696 Elf_Internal_Shdr *symtab_hdr;
7697 struct elf_link_hash_entry **sym_hashes;
7698 size_t nlocsyms;
7699 size_t extsymoff;
7700 bfd *input_bfd = sec->owner;
7701 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7702 Elf_Internal_Sym *isym = NULL;
7703
7704 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7705 sym_hashes = elf_sym_hashes (input_bfd);
7706
7707 /* Read the local symbols. */
7708 if (elf_bad_symtab (input_bfd))
7709 {
7710 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7711 extsymoff = 0;
7712 }
7713 else
7714 extsymoff = nlocsyms = symtab_hdr->sh_info;
7715
7716 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
7717 if (isym == NULL && nlocsyms != 0)
7718 {
7719 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
7720 NULL, NULL, NULL);
7721 if (isym == NULL)
7722 return false;
7723 }
7724
7725 /* Read the relocations. */
7726 relstart = (NAME(_bfd_elf,link_read_relocs)
7727 (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
7728 info->keep_memory));
7729 if (relstart == NULL)
7730 {
7731 ret = false;
7732 goto out1;
7733 }
7734 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7735
7736 for (rel = relstart; rel < relend; rel++)
7737 {
7738 unsigned long r_symndx;
7739 asection *rsec;
7740 struct elf_link_hash_entry *h;
7741
7742 r_symndx = ELF_R_SYM (rel->r_info);
7743 if (r_symndx == 0)
7744 continue;
7745
7746 if (r_symndx >= nlocsyms
7747 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
7748 {
7749 h = sym_hashes[r_symndx - extsymoff];
7750 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
7751 }
7752 else
7753 {
7754 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
7755 }
7756
7757 if (rsec && !rsec->gc_mark)
7758 {
7759 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7760 rsec->gc_mark = 1;
7761 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7762 {
7763 ret = false;
7764 goto out2;
7765 }
7766 }
7767 }
7768
7769 out2:
7770 if (elf_section_data (sec)->relocs != relstart)
7771 free (relstart);
7772 out1:
7773 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
7774 {
7775 if (! info->keep_memory)
7776 free (isym);
7777 else
7778 symtab_hdr->contents = (unsigned char *) isym;
7779 }
7780 }
7781
7782 return ret;
7783 }
7784
7785 /* The sweep phase of garbage collection. Remove all garbage sections. */
7786
7787 static boolean
7788 elf_gc_sweep (info, gc_sweep_hook)
7789 struct bfd_link_info *info;
7790 boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
7791 asection *, const Elf_Internal_Rela *));
7792 {
7793 bfd *sub;
7794
7795 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7796 {
7797 asection *o;
7798
7799 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7800 continue;
7801
7802 for (o = sub->sections; o != NULL; o = o->next)
7803 {
7804 /* Keep special sections. Keep .debug sections. */
7805 if ((o->flags & SEC_LINKER_CREATED)
7806 || (o->flags & SEC_DEBUGGING))
7807 o->gc_mark = 1;
7808
7809 if (o->gc_mark)
7810 continue;
7811
7812 /* Skip sweeping sections already excluded. */
7813 if (o->flags & SEC_EXCLUDE)
7814 continue;
7815
7816 /* Since this is early in the link process, it is simple
7817 to remove a section from the output. */
7818 o->flags |= SEC_EXCLUDE;
7819
7820 /* But we also have to update some of the relocation
7821 info we collected before. */
7822 if (gc_sweep_hook
7823 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7824 {
7825 Elf_Internal_Rela *internal_relocs;
7826 boolean r;
7827
7828 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7829 (o->owner, o, NULL, NULL, info->keep_memory));
7830 if (internal_relocs == NULL)
7831 return false;
7832
7833 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7834
7835 if (elf_section_data (o)->relocs != internal_relocs)
7836 free (internal_relocs);
7837
7838 if (!r)
7839 return false;
7840 }
7841 }
7842 }
7843
7844 /* Remove the symbols that were in the swept sections from the dynamic
7845 symbol table. GCFIXME: Anyone know how to get them out of the
7846 static symbol table as well? */
7847 {
7848 int i = 0;
7849
7850 elf_link_hash_traverse (elf_hash_table (info),
7851 elf_gc_sweep_symbol,
7852 (PTR) &i);
7853
7854 elf_hash_table (info)->dynsymcount = i;
7855 }
7856
7857 return true;
7858 }
7859
7860 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7861
7862 static boolean
7863 elf_gc_sweep_symbol (h, idxptr)
7864 struct elf_link_hash_entry *h;
7865 PTR idxptr;
7866 {
7867 int *idx = (int *) idxptr;
7868
7869 if (h->root.type == bfd_link_hash_warning)
7870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7871
7872 if (h->dynindx != -1
7873 && ((h->root.type != bfd_link_hash_defined
7874 && h->root.type != bfd_link_hash_defweak)
7875 || h->root.u.def.section->gc_mark))
7876 h->dynindx = (*idx)++;
7877
7878 return true;
7879 }
7880
7881 /* Propogate collected vtable information. This is called through
7882 elf_link_hash_traverse. */
7883
7884 static boolean
7885 elf_gc_propagate_vtable_entries_used (h, okp)
7886 struct elf_link_hash_entry *h;
7887 PTR okp;
7888 {
7889 if (h->root.type == bfd_link_hash_warning)
7890 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7891
7892 /* Those that are not vtables. */
7893 if (h->vtable_parent == NULL)
7894 return true;
7895
7896 /* Those vtables that do not have parents, we cannot merge. */
7897 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7898 return true;
7899
7900 /* If we've already been done, exit. */
7901 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7902 return true;
7903
7904 /* Make sure the parent's table is up to date. */
7905 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7906
7907 if (h->vtable_entries_used == NULL)
7908 {
7909 /* None of this table's entries were referenced. Re-use the
7910 parent's table. */
7911 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7912 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7913 }
7914 else
7915 {
7916 size_t n;
7917 boolean *cu, *pu;
7918
7919 /* Or the parent's entries into ours. */
7920 cu = h->vtable_entries_used;
7921 cu[-1] = true;
7922 pu = h->vtable_parent->vtable_entries_used;
7923 if (pu != NULL)
7924 {
7925 asection *sec = h->root.u.def.section;
7926 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7927 int file_align = bed->s->file_align;
7928
7929 n = h->vtable_parent->vtable_entries_size / file_align;
7930 while (n--)
7931 {
7932 if (*pu)
7933 *cu = true;
7934 pu++;
7935 cu++;
7936 }
7937 }
7938 }
7939
7940 return true;
7941 }
7942
7943 static boolean
7944 elf_gc_smash_unused_vtentry_relocs (h, okp)
7945 struct elf_link_hash_entry *h;
7946 PTR okp;
7947 {
7948 asection *sec;
7949 bfd_vma hstart, hend;
7950 Elf_Internal_Rela *relstart, *relend, *rel;
7951 struct elf_backend_data *bed;
7952 int file_align;
7953
7954 if (h->root.type == bfd_link_hash_warning)
7955 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7956
7957 /* Take care of both those symbols that do not describe vtables as
7958 well as those that are not loaded. */
7959 if (h->vtable_parent == NULL)
7960 return true;
7961
7962 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7963 || h->root.type == bfd_link_hash_defweak);
7964
7965 sec = h->root.u.def.section;
7966 hstart = h->root.u.def.value;
7967 hend = hstart + h->size;
7968
7969 relstart = (NAME(_bfd_elf,link_read_relocs)
7970 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7971 if (!relstart)
7972 return *(boolean *) okp = false;
7973 bed = get_elf_backend_data (sec->owner);
7974 file_align = bed->s->file_align;
7975
7976 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7977
7978 for (rel = relstart; rel < relend; ++rel)
7979 if (rel->r_offset >= hstart && rel->r_offset < hend)
7980 {
7981 /* If the entry is in use, do nothing. */
7982 if (h->vtable_entries_used
7983 && (rel->r_offset - hstart) < h->vtable_entries_size)
7984 {
7985 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7986 if (h->vtable_entries_used[entry])
7987 continue;
7988 }
7989 /* Otherwise, kill it. */
7990 rel->r_offset = rel->r_info = rel->r_addend = 0;
7991 }
7992
7993 return true;
7994 }
7995
7996 /* Do mark and sweep of unused sections. */
7997
7998 boolean
7999 elf_gc_sections (abfd, info)
8000 bfd *abfd;
8001 struct bfd_link_info *info;
8002 {
8003 boolean ok = true;
8004 bfd *sub;
8005 asection * (*gc_mark_hook)
8006 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8007 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
8008
8009 if (!get_elf_backend_data (abfd)->can_gc_sections
8010 || info->relocateable || info->emitrelocations
8011 || elf_hash_table (info)->dynamic_sections_created)
8012 return true;
8013
8014 /* Apply transitive closure to the vtable entry usage info. */
8015 elf_link_hash_traverse (elf_hash_table (info),
8016 elf_gc_propagate_vtable_entries_used,
8017 (PTR) &ok);
8018 if (!ok)
8019 return false;
8020
8021 /* Kill the vtable relocations that were not used. */
8022 elf_link_hash_traverse (elf_hash_table (info),
8023 elf_gc_smash_unused_vtentry_relocs,
8024 (PTR) &ok);
8025 if (!ok)
8026 return false;
8027
8028 /* Grovel through relocs to find out who stays ... */
8029
8030 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8031 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8032 {
8033 asection *o;
8034
8035 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8036 continue;
8037
8038 for (o = sub->sections; o != NULL; o = o->next)
8039 {
8040 if (o->flags & SEC_KEEP)
8041 if (!elf_gc_mark (info, o, gc_mark_hook))
8042 return false;
8043 }
8044 }
8045
8046 /* ... and mark SEC_EXCLUDE for those that go. */
8047 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8048 return false;
8049
8050 return true;
8051 }
8052 \f
8053 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8054
8055 boolean
8056 elf_gc_record_vtinherit (abfd, sec, h, offset)
8057 bfd *abfd;
8058 asection *sec;
8059 struct elf_link_hash_entry *h;
8060 bfd_vma offset;
8061 {
8062 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8063 struct elf_link_hash_entry **search, *child;
8064 bfd_size_type extsymcount;
8065
8066 /* The sh_info field of the symtab header tells us where the
8067 external symbols start. We don't care about the local symbols at
8068 this point. */
8069 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
8070 if (!elf_bad_symtab (abfd))
8071 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8072
8073 sym_hashes = elf_sym_hashes (abfd);
8074 sym_hashes_end = sym_hashes + extsymcount;
8075
8076 /* Hunt down the child symbol, which is in this section at the same
8077 offset as the relocation. */
8078 for (search = sym_hashes; search != sym_hashes_end; ++search)
8079 {
8080 if ((child = *search) != NULL
8081 && (child->root.type == bfd_link_hash_defined
8082 || child->root.type == bfd_link_hash_defweak)
8083 && child->root.u.def.section == sec
8084 && child->root.u.def.value == offset)
8085 goto win;
8086 }
8087
8088 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8089 bfd_archive_filename (abfd), sec->name,
8090 (unsigned long) offset);
8091 bfd_set_error (bfd_error_invalid_operation);
8092 return false;
8093
8094 win:
8095 if (!h)
8096 {
8097 /* This *should* only be the absolute section. It could potentially
8098 be that someone has defined a non-global vtable though, which
8099 would be bad. It isn't worth paging in the local symbols to be
8100 sure though; that case should simply be handled by the assembler. */
8101
8102 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8103 }
8104 else
8105 child->vtable_parent = h;
8106
8107 return true;
8108 }
8109
8110 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8111
8112 boolean
8113 elf_gc_record_vtentry (abfd, sec, h, addend)
8114 bfd *abfd ATTRIBUTE_UNUSED;
8115 asection *sec ATTRIBUTE_UNUSED;
8116 struct elf_link_hash_entry *h;
8117 bfd_vma addend;
8118 {
8119 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8120 int file_align = bed->s->file_align;
8121
8122 if (addend >= h->vtable_entries_size)
8123 {
8124 size_t size, bytes;
8125 boolean *ptr = h->vtable_entries_used;
8126
8127 /* While the symbol is undefined, we have to be prepared to handle
8128 a zero size. */
8129 if (h->root.type == bfd_link_hash_undefined)
8130 size = addend;
8131 else
8132 {
8133 size = h->size;
8134 if (size < addend)
8135 {
8136 /* Oops! We've got a reference past the defined end of
8137 the table. This is probably a bug -- shall we warn? */
8138 size = addend;
8139 }
8140 }
8141
8142 /* Allocate one extra entry for use as a "done" flag for the
8143 consolidation pass. */
8144 bytes = (size / file_align + 1) * sizeof (boolean);
8145
8146 if (ptr)
8147 {
8148 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
8149
8150 if (ptr != NULL)
8151 {
8152 size_t oldbytes;
8153
8154 oldbytes = ((h->vtable_entries_size / file_align + 1)
8155 * sizeof (boolean));
8156 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8157 }
8158 }
8159 else
8160 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8161
8162 if (ptr == NULL)
8163 return false;
8164
8165 /* And arrange for that done flag to be at index -1. */
8166 h->vtable_entries_used = ptr + 1;
8167 h->vtable_entries_size = size;
8168 }
8169
8170 h->vtable_entries_used[addend / file_align] = true;
8171
8172 return true;
8173 }
8174
8175 /* And an accompanying bit to work out final got entry offsets once
8176 we're done. Should be called from final_link. */
8177
8178 boolean
8179 elf_gc_common_finalize_got_offsets (abfd, info)
8180 bfd *abfd;
8181 struct bfd_link_info *info;
8182 {
8183 bfd *i;
8184 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8185 bfd_vma gotoff;
8186
8187 /* The GOT offset is relative to the .got section, but the GOT header is
8188 put into the .got.plt section, if the backend uses it. */
8189 if (bed->want_got_plt)
8190 gotoff = 0;
8191 else
8192 gotoff = bed->got_header_size;
8193
8194 /* Do the local .got entries first. */
8195 for (i = info->input_bfds; i; i = i->link_next)
8196 {
8197 bfd_signed_vma *local_got;
8198 bfd_size_type j, locsymcount;
8199 Elf_Internal_Shdr *symtab_hdr;
8200
8201 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8202 continue;
8203
8204 local_got = elf_local_got_refcounts (i);
8205 if (!local_got)
8206 continue;
8207
8208 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8209 if (elf_bad_symtab (i))
8210 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8211 else
8212 locsymcount = symtab_hdr->sh_info;
8213
8214 for (j = 0; j < locsymcount; ++j)
8215 {
8216 if (local_got[j] > 0)
8217 {
8218 local_got[j] = gotoff;
8219 gotoff += ARCH_SIZE / 8;
8220 }
8221 else
8222 local_got[j] = (bfd_vma) -1;
8223 }
8224 }
8225
8226 /* Then the global .got entries. .plt refcounts are handled by
8227 adjust_dynamic_symbol */
8228 elf_link_hash_traverse (elf_hash_table (info),
8229 elf_gc_allocate_got_offsets,
8230 (PTR) &gotoff);
8231 return true;
8232 }
8233
8234 /* We need a special top-level link routine to convert got reference counts
8235 to real got offsets. */
8236
8237 static boolean
8238 elf_gc_allocate_got_offsets (h, offarg)
8239 struct elf_link_hash_entry *h;
8240 PTR offarg;
8241 {
8242 bfd_vma *off = (bfd_vma *) offarg;
8243
8244 if (h->root.type == bfd_link_hash_warning)
8245 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8246
8247 if (h->got.refcount > 0)
8248 {
8249 h->got.offset = off[0];
8250 off[0] += ARCH_SIZE / 8;
8251 }
8252 else
8253 h->got.offset = (bfd_vma) -1;
8254
8255 return true;
8256 }
8257
8258 /* Many folk need no more in the way of final link than this, once
8259 got entry reference counting is enabled. */
8260
8261 boolean
8262 elf_gc_common_final_link (abfd, info)
8263 bfd *abfd;
8264 struct bfd_link_info *info;
8265 {
8266 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8267 return false;
8268
8269 /* Invoke the regular ELF backend linker to do all the work. */
8270 return elf_bfd_final_link (abfd, info);
8271 }
8272
8273 /* This function will be called though elf_link_hash_traverse to store
8274 all hash value of the exported symbols in an array. */
8275
8276 static boolean
8277 elf_collect_hash_codes (h, data)
8278 struct elf_link_hash_entry *h;
8279 PTR data;
8280 {
8281 unsigned long **valuep = (unsigned long **) data;
8282 const char *name;
8283 char *p;
8284 unsigned long ha;
8285 char *alc = NULL;
8286
8287 if (h->root.type == bfd_link_hash_warning)
8288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8289
8290 /* Ignore indirect symbols. These are added by the versioning code. */
8291 if (h->dynindx == -1)
8292 return true;
8293
8294 name = h->root.root.string;
8295 p = strchr (name, ELF_VER_CHR);
8296 if (p != NULL)
8297 {
8298 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8299 memcpy (alc, name, (size_t) (p - name));
8300 alc[p - name] = '\0';
8301 name = alc;
8302 }
8303
8304 /* Compute the hash value. */
8305 ha = bfd_elf_hash (name);
8306
8307 /* Store the found hash value in the array given as the argument. */
8308 *(*valuep)++ = ha;
8309
8310 /* And store it in the struct so that we can put it in the hash table
8311 later. */
8312 h->elf_hash_value = ha;
8313
8314 if (alc != NULL)
8315 free (alc);
8316
8317 return true;
8318 }
8319
8320 boolean
8321 elf_reloc_symbol_deleted_p (offset, cookie)
8322 bfd_vma offset;
8323 PTR cookie;
8324 {
8325 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8326
8327 if (rcookie->bad_symtab)
8328 rcookie->rel = rcookie->rels;
8329
8330 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8331 {
8332 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8333
8334 if (! rcookie->bad_symtab)
8335 if (rcookie->rel->r_offset > offset)
8336 return false;
8337 if (rcookie->rel->r_offset != offset)
8338 continue;
8339
8340 if (r_symndx >= rcookie->locsymcount
8341 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8342 {
8343 struct elf_link_hash_entry *h;
8344
8345 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8346
8347 while (h->root.type == bfd_link_hash_indirect
8348 || h->root.type == bfd_link_hash_warning)
8349 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8350
8351 if ((h->root.type == bfd_link_hash_defined
8352 || h->root.type == bfd_link_hash_defweak)
8353 && elf_discarded_section (h->root.u.def.section))
8354 return true;
8355 else
8356 return false;
8357 }
8358 else
8359 {
8360 /* It's not a relocation against a global symbol,
8361 but it could be a relocation against a local
8362 symbol for a discarded section. */
8363 asection *isec;
8364 Elf_Internal_Sym *isym;
8365
8366 /* Need to: get the symbol; get the section. */
8367 isym = &rcookie->locsyms[r_symndx];
8368 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8369 {
8370 isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
8371 if (isec != NULL && elf_discarded_section (isec))
8372 return true;
8373 }
8374 }
8375 return false;
8376 }
8377 return false;
8378 }
8379
8380 /* Discard unneeded references to discarded sections.
8381 Returns true if any section's size was changed. */
8382 /* This function assumes that the relocations are in sorted order,
8383 which is true for all known assemblers. */
8384
8385 boolean
8386 elf_bfd_discard_info (output_bfd, info)
8387 bfd *output_bfd;
8388 struct bfd_link_info *info;
8389 {
8390 struct elf_reloc_cookie cookie;
8391 asection *stab, *eh, *ehdr;
8392 Elf_Internal_Shdr *symtab_hdr;
8393 struct elf_backend_data *bed;
8394 bfd *abfd;
8395 boolean ret = false;
8396 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8397
8398 if (info->relocateable
8399 || info->traditional_format
8400 || info->hash->creator->flavour != bfd_target_elf_flavour
8401 || ! is_elf_hash_table (info))
8402 return false;
8403
8404 ehdr = NULL;
8405 if (elf_hash_table (info)->dynobj != NULL)
8406 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8407 ".eh_frame_hdr");
8408
8409 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8410 {
8411 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8412 continue;
8413
8414 bed = get_elf_backend_data (abfd);
8415
8416 if ((abfd->flags & DYNAMIC) != 0)
8417 continue;
8418
8419 eh = NULL;
8420 if (ehdr)
8421 {
8422 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8423 if (eh && (eh->_raw_size == 0
8424 || bfd_is_abs_section (eh->output_section)))
8425 eh = NULL;
8426 }
8427
8428 stab = NULL;
8429 if (!strip)
8430 {
8431 stab = bfd_get_section_by_name (abfd, ".stab");
8432 if (stab && (stab->_raw_size == 0
8433 || bfd_is_abs_section (stab->output_section)))
8434 stab = NULL;
8435 }
8436 if ((! stab
8437 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8438 && ! eh
8439 && (strip || ! bed->elf_backend_discard_info))
8440 continue;
8441
8442 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8443 cookie.abfd = abfd;
8444 cookie.sym_hashes = elf_sym_hashes (abfd);
8445 cookie.bad_symtab = elf_bad_symtab (abfd);
8446 if (cookie.bad_symtab)
8447 {
8448 cookie.locsymcount =
8449 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8450 cookie.extsymoff = 0;
8451 }
8452 else
8453 {
8454 cookie.locsymcount = symtab_hdr->sh_info;
8455 cookie.extsymoff = symtab_hdr->sh_info;
8456 }
8457
8458 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8459 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8460 {
8461 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8462 cookie.locsymcount, 0,
8463 NULL, NULL, NULL);
8464 if (cookie.locsyms == NULL)
8465 return false;
8466 }
8467
8468 if (stab)
8469 {
8470 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8471 (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8472 info->keep_memory));
8473 if (cookie.rels)
8474 {
8475 cookie.rel = cookie.rels;
8476 cookie.relend =
8477 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8478 if (_bfd_discard_section_stabs (abfd, stab,
8479 elf_section_data (stab)->sec_info,
8480 elf_reloc_symbol_deleted_p,
8481 &cookie))
8482 ret = true;
8483 if (elf_section_data (stab)->relocs != cookie.rels)
8484 free (cookie.rels);
8485 }
8486 }
8487
8488 if (eh)
8489 {
8490 cookie.rels = NULL;
8491 cookie.rel = NULL;
8492 cookie.relend = NULL;
8493 if (eh->reloc_count)
8494 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8495 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8496 info->keep_memory));
8497 if (cookie.rels)
8498 {
8499 cookie.rel = cookie.rels;
8500 cookie.relend =
8501 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8502 }
8503 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8504 elf_reloc_symbol_deleted_p,
8505 &cookie))
8506 {
8507 /* Relocs have been edited. Ensure edited version is
8508 used later in relocate_section. */
8509 elf_section_data (eh)->relocs = cookie.rels;
8510 ret = true;
8511 }
8512 if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
8513 free (cookie.rels);
8514 }
8515
8516 if (bed->elf_backend_discard_info)
8517 {
8518 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8519 ret = true;
8520 }
8521
8522 if (cookie.locsyms != NULL
8523 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8524 {
8525 if (! info->keep_memory)
8526 free (cookie.locsyms);
8527 else
8528 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8529 }
8530 }
8531
8532 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8533 ret = true;
8534 return ret;
8535 }
8536
8537 static boolean
8538 elf_section_ignore_discarded_relocs (sec)
8539 asection *sec;
8540 {
8541 struct elf_backend_data *bed;
8542
8543 switch (elf_section_data (sec)->sec_info_type)
8544 {
8545 case ELF_INFO_TYPE_STABS:
8546 case ELF_INFO_TYPE_EH_FRAME:
8547 return true;
8548 default:
8549 break;
8550 }
8551
8552 bed = get_elf_backend_data (sec->owner);
8553 if (bed->elf_backend_ignore_discarded_relocs != NULL
8554 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8555 return true;
8556
8557 return false;
8558 }
This page took 0.383247 seconds and 4 git commands to generate.