3e8551f9a38a37f064a4360528fbf50510b0142f
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry *, PTR));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info *));
70 static void elf_link_output_relocs
71 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
76 struct elf_link_hash_entry **));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd *, struct bfd_link_info *, asection **));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection *));
85
86 /* Given an ELF BFD, add symbols to the global hash table as
87 appropriate. */
88
89 boolean
90 elf_bfd_link_add_symbols (abfd, info)
91 bfd *abfd;
92 struct bfd_link_info *info;
93 {
94 switch (bfd_get_format (abfd))
95 {
96 case bfd_object:
97 return elf_link_add_object_symbols (abfd, info);
98 case bfd_archive:
99 return elf_link_add_archive_symbols (abfd, info);
100 default:
101 bfd_set_error (bfd_error_wrong_format);
102 return false;
103 }
104 }
105 \f
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
107 static boolean
108 is_global_data_symbol_definition (abfd, sym)
109 bfd * abfd ATTRIBUTE_UNUSED;
110 Elf_Internal_Sym * sym;
111 {
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
114 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
115 return false;
116
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
119 return false;
120
121 /* If the section is undefined, then so is the symbol. */
122 if (sym->st_shndx == SHN_UNDEF)
123 return false;
124
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym->st_shndx == SHN_COMMON)
128 return false;
129
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
133 /* FIXME - this function is not coded yet:
134
135 return _bfd_is_global_symbol_definition (abfd, sym);
136
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
140 return false;
141
142 return true;
143 }
144
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
148 static boolean
149 elf_link_is_defined_archive_symbol (abfd, symdef)
150 bfd * abfd;
151 carsym * symdef;
152 {
153 Elf_Internal_Shdr * hdr;
154 Elf_Internal_Shdr * shndx_hdr;
155 Elf_External_Sym * esym;
156 Elf_External_Sym * esymend;
157 Elf_External_Sym * buf = NULL;
158 Elf_External_Sym_Shndx * shndx_buf = NULL;
159 Elf_External_Sym_Shndx * shndx;
160 bfd_size_type symcount;
161 bfd_size_type extsymcount;
162 bfd_size_type extsymoff;
163 boolean result = false;
164 file_ptr pos;
165 bfd_size_type amt;
166
167 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
168 if (abfd == (bfd *) NULL)
169 return false;
170
171 if (! bfd_check_format (abfd, bfd_object))
172 return false;
173
174 /* If we have already included the element containing this symbol in the
175 link then we do not need to include it again. Just claim that any symbol
176 it contains is not a definition, so that our caller will not decide to
177 (re)include this element. */
178 if (abfd->archive_pass)
179 return false;
180
181 /* Select the appropriate symbol table. */
182 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
183 {
184 hdr = &elf_tdata (abfd)->symtab_hdr;
185 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
186 }
187 else
188 {
189 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
190 shndx_hdr = NULL;
191 }
192
193 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
194
195 /* The sh_info field of the symtab header tells us where the
196 external symbols start. We don't care about the local symbols. */
197 if (elf_bad_symtab (abfd))
198 {
199 extsymcount = symcount;
200 extsymoff = 0;
201 }
202 else
203 {
204 extsymcount = symcount - hdr->sh_info;
205 extsymoff = hdr->sh_info;
206 }
207
208 amt = extsymcount * sizeof (Elf_External_Sym);
209 buf = (Elf_External_Sym *) bfd_malloc (amt);
210 if (buf == NULL && extsymcount != 0)
211 return false;
212
213 /* Read in the symbol table.
214 FIXME: This ought to be cached somewhere. */
215 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
216 if (bfd_seek (abfd, pos, SEEK_SET) != 0
217 || bfd_bread ((PTR) buf, amt, abfd) != amt)
218 goto error_exit;
219
220 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
221 {
222 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
223 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
224 if (shndx_buf == NULL && extsymcount != 0)
225 goto error_exit;
226
227 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
228 if (bfd_seek (abfd, pos, SEEK_SET) != 0
229 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
230 goto error_exit;
231 }
232
233 /* Scan the symbol table looking for SYMDEF. */
234 esymend = buf + extsymcount;
235 for (esym = buf, shndx = shndx_buf;
236 esym < esymend;
237 esym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
238 {
239 Elf_Internal_Sym sym;
240 const char * name;
241
242 elf_swap_symbol_in (abfd, esym, shndx, &sym);
243
244 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
245 if (name == (const char *) NULL)
246 break;
247
248 if (strcmp (name, symdef->name) == 0)
249 {
250 result = is_global_data_symbol_definition (abfd, & sym);
251 break;
252 }
253 }
254
255 error_exit:
256 if (shndx_buf != NULL)
257 free (shndx_buf);
258 if (buf != NULL)
259 free (buf);
260
261 return result;
262 }
263 \f
264 /* Add symbols from an ELF archive file to the linker hash table. We
265 don't use _bfd_generic_link_add_archive_symbols because of a
266 problem which arises on UnixWare. The UnixWare libc.so is an
267 archive which includes an entry libc.so.1 which defines a bunch of
268 symbols. The libc.so archive also includes a number of other
269 object files, which also define symbols, some of which are the same
270 as those defined in libc.so.1. Correct linking requires that we
271 consider each object file in turn, and include it if it defines any
272 symbols we need. _bfd_generic_link_add_archive_symbols does not do
273 this; it looks through the list of undefined symbols, and includes
274 any object file which defines them. When this algorithm is used on
275 UnixWare, it winds up pulling in libc.so.1 early and defining a
276 bunch of symbols. This means that some of the other objects in the
277 archive are not included in the link, which is incorrect since they
278 precede libc.so.1 in the archive.
279
280 Fortunately, ELF archive handling is simpler than that done by
281 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
282 oddities. In ELF, if we find a symbol in the archive map, and the
283 symbol is currently undefined, we know that we must pull in that
284 object file.
285
286 Unfortunately, we do have to make multiple passes over the symbol
287 table until nothing further is resolved. */
288
289 static boolean
290 elf_link_add_archive_symbols (abfd, info)
291 bfd *abfd;
292 struct bfd_link_info *info;
293 {
294 symindex c;
295 boolean *defined = NULL;
296 boolean *included = NULL;
297 carsym *symdefs;
298 boolean loop;
299 bfd_size_type amt;
300
301 if (! bfd_has_map (abfd))
302 {
303 /* An empty archive is a special case. */
304 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
305 return true;
306 bfd_set_error (bfd_error_no_armap);
307 return false;
308 }
309
310 /* Keep track of all symbols we know to be already defined, and all
311 files we know to be already included. This is to speed up the
312 second and subsequent passes. */
313 c = bfd_ardata (abfd)->symdef_count;
314 if (c == 0)
315 return true;
316 amt = c;
317 amt *= sizeof (boolean);
318 defined = (boolean *) bfd_malloc (amt);
319 included = (boolean *) bfd_malloc (amt);
320 if (defined == (boolean *) NULL || included == (boolean *) NULL)
321 goto error_return;
322 memset (defined, 0, (size_t) amt);
323 memset (included, 0, (size_t) amt);
324
325 symdefs = bfd_ardata (abfd)->symdefs;
326
327 do
328 {
329 file_ptr last;
330 symindex i;
331 carsym *symdef;
332 carsym *symdefend;
333
334 loop = false;
335 last = -1;
336
337 symdef = symdefs;
338 symdefend = symdef + c;
339 for (i = 0; symdef < symdefend; symdef++, i++)
340 {
341 struct elf_link_hash_entry *h;
342 bfd *element;
343 struct bfd_link_hash_entry *undefs_tail;
344 symindex mark;
345
346 if (defined[i] || included[i])
347 continue;
348 if (symdef->file_offset == last)
349 {
350 included[i] = true;
351 continue;
352 }
353
354 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
355 false, false, false);
356
357 if (h == NULL)
358 {
359 char *p, *copy;
360
361 /* If this is a default version (the name contains @@),
362 look up the symbol again without the version. The
363 effect is that references to the symbol without the
364 version will be matched by the default symbol in the
365 archive. */
366
367 p = strchr (symdef->name, ELF_VER_CHR);
368 if (p == NULL || p[1] != ELF_VER_CHR)
369 continue;
370
371 copy = bfd_alloc (abfd, (bfd_size_type) (p - symdef->name + 1));
372 if (copy == NULL)
373 goto error_return;
374 memcpy (copy, symdef->name, (size_t) (p - symdef->name));
375 copy[p - symdef->name] = '\0';
376
377 h = elf_link_hash_lookup (elf_hash_table (info), copy,
378 false, false, false);
379
380 bfd_release (abfd, copy);
381 }
382
383 if (h == NULL)
384 continue;
385
386 if (h->root.type == bfd_link_hash_common)
387 {
388 /* We currently have a common symbol. The archive map contains
389 a reference to this symbol, so we may want to include it. We
390 only want to include it however, if this archive element
391 contains a definition of the symbol, not just another common
392 declaration of it.
393
394 Unfortunately some archivers (including GNU ar) will put
395 declarations of common symbols into their archive maps, as
396 well as real definitions, so we cannot just go by the archive
397 map alone. Instead we must read in the element's symbol
398 table and check that to see what kind of symbol definition
399 this is. */
400 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
401 continue;
402 }
403 else if (h->root.type != bfd_link_hash_undefined)
404 {
405 if (h->root.type != bfd_link_hash_undefweak)
406 defined[i] = true;
407 continue;
408 }
409
410 /* We need to include this archive member. */
411 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
412 if (element == (bfd *) NULL)
413 goto error_return;
414
415 if (! bfd_check_format (element, bfd_object))
416 goto error_return;
417
418 /* Doublecheck that we have not included this object
419 already--it should be impossible, but there may be
420 something wrong with the archive. */
421 if (element->archive_pass != 0)
422 {
423 bfd_set_error (bfd_error_bad_value);
424 goto error_return;
425 }
426 element->archive_pass = 1;
427
428 undefs_tail = info->hash->undefs_tail;
429
430 if (! (*info->callbacks->add_archive_element) (info, element,
431 symdef->name))
432 goto error_return;
433 if (! elf_link_add_object_symbols (element, info))
434 goto error_return;
435
436 /* If there are any new undefined symbols, we need to make
437 another pass through the archive in order to see whether
438 they can be defined. FIXME: This isn't perfect, because
439 common symbols wind up on undefs_tail and because an
440 undefined symbol which is defined later on in this pass
441 does not require another pass. This isn't a bug, but it
442 does make the code less efficient than it could be. */
443 if (undefs_tail != info->hash->undefs_tail)
444 loop = true;
445
446 /* Look backward to mark all symbols from this object file
447 which we have already seen in this pass. */
448 mark = i;
449 do
450 {
451 included[mark] = true;
452 if (mark == 0)
453 break;
454 --mark;
455 }
456 while (symdefs[mark].file_offset == symdef->file_offset);
457
458 /* We mark subsequent symbols from this object file as we go
459 on through the loop. */
460 last = symdef->file_offset;
461 }
462 }
463 while (loop);
464
465 free (defined);
466 free (included);
467
468 return true;
469
470 error_return:
471 if (defined != (boolean *) NULL)
472 free (defined);
473 if (included != (boolean *) NULL)
474 free (included);
475 return false;
476 }
477
478 /* This function is called when we want to define a new symbol. It
479 handles the various cases which arise when we find a definition in
480 a dynamic object, or when there is already a definition in a
481 dynamic object. The new symbol is described by NAME, SYM, PSEC,
482 and PVALUE. We set SYM_HASH to the hash table entry. We set
483 OVERRIDE if the old symbol is overriding a new definition. We set
484 TYPE_CHANGE_OK if it is OK for the type to change. We set
485 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
486 change, we mean that we shouldn't warn if the type or size does
487 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
488 a shared object. */
489
490 static boolean
491 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
492 override, type_change_ok, size_change_ok, dt_needed)
493 bfd *abfd;
494 struct bfd_link_info *info;
495 const char *name;
496 Elf_Internal_Sym *sym;
497 asection **psec;
498 bfd_vma *pvalue;
499 struct elf_link_hash_entry **sym_hash;
500 boolean *override;
501 boolean *type_change_ok;
502 boolean *size_change_ok;
503 boolean dt_needed;
504 {
505 asection *sec;
506 struct elf_link_hash_entry *h;
507 int bind;
508 bfd *oldbfd;
509 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
510
511 *override = false;
512
513 sec = *psec;
514 bind = ELF_ST_BIND (sym->st_info);
515
516 if (! bfd_is_und_section (sec))
517 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
518 else
519 h = ((struct elf_link_hash_entry *)
520 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
521 if (h == NULL)
522 return false;
523 *sym_hash = h;
524
525 /* This code is for coping with dynamic objects, and is only useful
526 if we are doing an ELF link. */
527 if (info->hash->creator != abfd->xvec)
528 return true;
529
530 /* For merging, we only care about real symbols. */
531
532 while (h->root.type == bfd_link_hash_indirect
533 || h->root.type == bfd_link_hash_warning)
534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
535
536 /* If we just created the symbol, mark it as being an ELF symbol.
537 Other than that, there is nothing to do--there is no merge issue
538 with a newly defined symbol--so we just return. */
539
540 if (h->root.type == bfd_link_hash_new)
541 {
542 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
543 return true;
544 }
545
546 /* OLDBFD is a BFD associated with the existing symbol. */
547
548 switch (h->root.type)
549 {
550 default:
551 oldbfd = NULL;
552 break;
553
554 case bfd_link_hash_undefined:
555 case bfd_link_hash_undefweak:
556 oldbfd = h->root.u.undef.abfd;
557 break;
558
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 oldbfd = h->root.u.def.section->owner;
562 break;
563
564 case bfd_link_hash_common:
565 oldbfd = h->root.u.c.p->section->owner;
566 break;
567 }
568
569 /* In cases involving weak versioned symbols, we may wind up trying
570 to merge a symbol with itself. Catch that here, to avoid the
571 confusion that results if we try to override a symbol with
572 itself. The additional tests catch cases like
573 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
574 dynamic object, which we do want to handle here. */
575 if (abfd == oldbfd
576 && ((abfd->flags & DYNAMIC) == 0
577 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
578 return true;
579
580 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
581 respectively, is from a dynamic object. */
582
583 if ((abfd->flags & DYNAMIC) != 0)
584 newdyn = true;
585 else
586 newdyn = false;
587
588 if (oldbfd != NULL)
589 olddyn = (oldbfd->flags & DYNAMIC) != 0;
590 else
591 {
592 asection *hsec;
593
594 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
595 indices used by MIPS ELF. */
596 switch (h->root.type)
597 {
598 default:
599 hsec = NULL;
600 break;
601
602 case bfd_link_hash_defined:
603 case bfd_link_hash_defweak:
604 hsec = h->root.u.def.section;
605 break;
606
607 case bfd_link_hash_common:
608 hsec = h->root.u.c.p->section;
609 break;
610 }
611
612 if (hsec == NULL)
613 olddyn = false;
614 else
615 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
616 }
617
618 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
619 respectively, appear to be a definition rather than reference. */
620
621 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
622 newdef = false;
623 else
624 newdef = true;
625
626 if (h->root.type == bfd_link_hash_undefined
627 || h->root.type == bfd_link_hash_undefweak
628 || h->root.type == bfd_link_hash_common)
629 olddef = false;
630 else
631 olddef = true;
632
633 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
634 symbol, respectively, appears to be a common symbol in a dynamic
635 object. If a symbol appears in an uninitialized section, and is
636 not weak, and is not a function, then it may be a common symbol
637 which was resolved when the dynamic object was created. We want
638 to treat such symbols specially, because they raise special
639 considerations when setting the symbol size: if the symbol
640 appears as a common symbol in a regular object, and the size in
641 the regular object is larger, we must make sure that we use the
642 larger size. This problematic case can always be avoided in C,
643 but it must be handled correctly when using Fortran shared
644 libraries.
645
646 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
647 likewise for OLDDYNCOMMON and OLDDEF.
648
649 Note that this test is just a heuristic, and that it is quite
650 possible to have an uninitialized symbol in a shared object which
651 is really a definition, rather than a common symbol. This could
652 lead to some minor confusion when the symbol really is a common
653 symbol in some regular object. However, I think it will be
654 harmless. */
655
656 if (newdyn
657 && newdef
658 && (sec->flags & SEC_ALLOC) != 0
659 && (sec->flags & SEC_LOAD) == 0
660 && sym->st_size > 0
661 && bind != STB_WEAK
662 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
663 newdyncommon = true;
664 else
665 newdyncommon = false;
666
667 if (olddyn
668 && olddef
669 && h->root.type == bfd_link_hash_defined
670 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
671 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
672 && (h->root.u.def.section->flags & SEC_LOAD) == 0
673 && h->size > 0
674 && h->type != STT_FUNC)
675 olddyncommon = true;
676 else
677 olddyncommon = false;
678
679 /* It's OK to change the type if either the existing symbol or the
680 new symbol is weak unless it comes from a DT_NEEDED entry of
681 a shared object, in which case, the DT_NEEDED entry may not be
682 required at the run time. */
683
684 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
685 || h->root.type == bfd_link_hash_undefweak
686 || bind == STB_WEAK)
687 *type_change_ok = true;
688
689 /* It's OK to change the size if either the existing symbol or the
690 new symbol is weak, or if the old symbol is undefined. */
691
692 if (*type_change_ok
693 || h->root.type == bfd_link_hash_undefined)
694 *size_change_ok = true;
695
696 /* If both the old and the new symbols look like common symbols in a
697 dynamic object, set the size of the symbol to the larger of the
698 two. */
699
700 if (olddyncommon
701 && newdyncommon
702 && sym->st_size != h->size)
703 {
704 /* Since we think we have two common symbols, issue a multiple
705 common warning if desired. Note that we only warn if the
706 size is different. If the size is the same, we simply let
707 the old symbol override the new one as normally happens with
708 symbols defined in dynamic objects. */
709
710 if (! ((*info->callbacks->multiple_common)
711 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
712 h->size, abfd, bfd_link_hash_common, sym->st_size)))
713 return false;
714
715 if (sym->st_size > h->size)
716 h->size = sym->st_size;
717
718 *size_change_ok = true;
719 }
720
721 /* If we are looking at a dynamic object, and we have found a
722 definition, we need to see if the symbol was already defined by
723 some other object. If so, we want to use the existing
724 definition, and we do not want to report a multiple symbol
725 definition error; we do this by clobbering *PSEC to be
726 bfd_und_section_ptr.
727
728 We treat a common symbol as a definition if the symbol in the
729 shared library is a function, since common symbols always
730 represent variables; this can cause confusion in principle, but
731 any such confusion would seem to indicate an erroneous program or
732 shared library. We also permit a common symbol in a regular
733 object to override a weak symbol in a shared object.
734
735 We prefer a non-weak definition in a shared library to a weak
736 definition in the executable unless it comes from a DT_NEEDED
737 entry of a shared object, in which case, the DT_NEEDED entry
738 may not be required at the run time. */
739
740 if (newdyn
741 && newdef
742 && (olddef
743 || (h->root.type == bfd_link_hash_common
744 && (bind == STB_WEAK
745 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
746 && (h->root.type != bfd_link_hash_defweak
747 || dt_needed
748 || bind == STB_WEAK))
749 {
750 *override = true;
751 newdef = false;
752 newdyncommon = false;
753
754 *psec = sec = bfd_und_section_ptr;
755 *size_change_ok = true;
756
757 /* If we get here when the old symbol is a common symbol, then
758 we are explicitly letting it override a weak symbol or
759 function in a dynamic object, and we don't want to warn about
760 a type change. If the old symbol is a defined symbol, a type
761 change warning may still be appropriate. */
762
763 if (h->root.type == bfd_link_hash_common)
764 *type_change_ok = true;
765 }
766
767 /* Handle the special case of an old common symbol merging with a
768 new symbol which looks like a common symbol in a shared object.
769 We change *PSEC and *PVALUE to make the new symbol look like a
770 common symbol, and let _bfd_generic_link_add_one_symbol will do
771 the right thing. */
772
773 if (newdyncommon
774 && h->root.type == bfd_link_hash_common)
775 {
776 *override = true;
777 newdef = false;
778 newdyncommon = false;
779 *pvalue = sym->st_size;
780 *psec = sec = bfd_com_section_ptr;
781 *size_change_ok = true;
782 }
783
784 /* If the old symbol is from a dynamic object, and the new symbol is
785 a definition which is not from a dynamic object, then the new
786 symbol overrides the old symbol. Symbols from regular files
787 always take precedence over symbols from dynamic objects, even if
788 they are defined after the dynamic object in the link.
789
790 As above, we again permit a common symbol in a regular object to
791 override a definition in a shared object if the shared object
792 symbol is a function or is weak.
793
794 As above, we permit a non-weak definition in a shared object to
795 override a weak definition in a regular object. */
796
797 if (! newdyn
798 && (newdef
799 || (bfd_is_com_section (sec)
800 && (h->root.type == bfd_link_hash_defweak
801 || h->type == STT_FUNC)))
802 && olddyn
803 && olddef
804 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
805 && (bind != STB_WEAK
806 || h->root.type == bfd_link_hash_defweak))
807 {
808 /* Change the hash table entry to undefined, and let
809 _bfd_generic_link_add_one_symbol do the right thing with the
810 new definition. */
811
812 h->root.type = bfd_link_hash_undefined;
813 h->root.u.undef.abfd = h->root.u.def.section->owner;
814 *size_change_ok = true;
815
816 olddef = false;
817 olddyncommon = false;
818
819 /* We again permit a type change when a common symbol may be
820 overriding a function. */
821
822 if (bfd_is_com_section (sec))
823 *type_change_ok = true;
824
825 /* This union may have been set to be non-NULL when this symbol
826 was seen in a dynamic object. We must force the union to be
827 NULL, so that it is correct for a regular symbol. */
828
829 h->verinfo.vertree = NULL;
830
831 /* In this special case, if H is the target of an indirection,
832 we want the caller to frob with H rather than with the
833 indirect symbol. That will permit the caller to redefine the
834 target of the indirection, rather than the indirect symbol
835 itself. FIXME: This will break the -y option if we store a
836 symbol with a different name. */
837 *sym_hash = h;
838 }
839
840 /* Handle the special case of a new common symbol merging with an
841 old symbol that looks like it might be a common symbol defined in
842 a shared object. Note that we have already handled the case in
843 which a new common symbol should simply override the definition
844 in the shared library. */
845
846 if (! newdyn
847 && bfd_is_com_section (sec)
848 && olddyncommon)
849 {
850 /* It would be best if we could set the hash table entry to a
851 common symbol, but we don't know what to use for the section
852 or the alignment. */
853 if (! ((*info->callbacks->multiple_common)
854 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
855 h->size, abfd, bfd_link_hash_common, sym->st_size)))
856 return false;
857
858 /* If the predumed common symbol in the dynamic object is
859 larger, pretend that the new symbol has its size. */
860
861 if (h->size > *pvalue)
862 *pvalue = h->size;
863
864 /* FIXME: We no longer know the alignment required by the symbol
865 in the dynamic object, so we just wind up using the one from
866 the regular object. */
867
868 olddef = false;
869 olddyncommon = false;
870
871 h->root.type = bfd_link_hash_undefined;
872 h->root.u.undef.abfd = h->root.u.def.section->owner;
873
874 *size_change_ok = true;
875 *type_change_ok = true;
876
877 h->verinfo.vertree = NULL;
878 }
879
880 /* Handle the special case of a weak definition in a regular object
881 followed by a non-weak definition in a shared object. In this
882 case, we prefer the definition in the shared object unless it
883 comes from a DT_NEEDED entry of a shared object, in which case,
884 the DT_NEEDED entry may not be required at the run time. */
885 if (olddef
886 && ! dt_needed
887 && h->root.type == bfd_link_hash_defweak
888 && newdef
889 && newdyn
890 && bind != STB_WEAK)
891 {
892 /* To make this work we have to frob the flags so that the rest
893 of the code does not think we are using the regular
894 definition. */
895 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
896 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
897 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
898 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
899 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
900 | ELF_LINK_HASH_DEF_DYNAMIC);
901
902 /* If H is the target of an indirection, we want the caller to
903 use H rather than the indirect symbol. Otherwise if we are
904 defining a new indirect symbol we will wind up attaching it
905 to the entry we are overriding. */
906 *sym_hash = h;
907 }
908
909 /* Handle the special case of a non-weak definition in a shared
910 object followed by a weak definition in a regular object. In
911 this case we prefer to definition in the shared object. To make
912 this work we have to tell the caller to not treat the new symbol
913 as a definition. */
914 if (olddef
915 && olddyn
916 && h->root.type != bfd_link_hash_defweak
917 && newdef
918 && ! newdyn
919 && bind == STB_WEAK)
920 *override = true;
921
922 return true;
923 }
924
925 /* This function is called to create an indirect symbol from the
926 default for the symbol with the default version if needed. The
927 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
928 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
929 indicates if it comes from a DT_NEEDED entry of a shared object. */
930
931 static boolean
932 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
933 dynsym, override, dt_needed)
934 bfd *abfd;
935 struct bfd_link_info *info;
936 struct elf_link_hash_entry *h;
937 const char *name;
938 Elf_Internal_Sym *sym;
939 asection **sec;
940 bfd_vma *value;
941 boolean *dynsym;
942 boolean override;
943 boolean dt_needed;
944 {
945 boolean type_change_ok;
946 boolean size_change_ok;
947 char *shortname;
948 struct elf_link_hash_entry *hi;
949 struct elf_backend_data *bed;
950 boolean collect;
951 boolean dynamic;
952 char *p;
953
954 /* If this symbol has a version, and it is the default version, we
955 create an indirect symbol from the default name to the fully
956 decorated name. This will cause external references which do not
957 specify a version to be bound to this version of the symbol. */
958 p = strchr (name, ELF_VER_CHR);
959 if (p == NULL || p[1] != ELF_VER_CHR)
960 return true;
961
962 if (override)
963 {
964 /* We are overridden by an old defition. We need to check if we
965 need to crreate the indirect symbol from the default name. */
966 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
967 false, false);
968 BFD_ASSERT (hi != NULL);
969 if (hi == h)
970 return true;
971 while (hi->root.type == bfd_link_hash_indirect
972 || hi->root.type == bfd_link_hash_warning)
973 {
974 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
975 if (hi == h)
976 return true;
977 }
978 }
979
980 bed = get_elf_backend_data (abfd);
981 collect = bed->collect;
982 dynamic = (abfd->flags & DYNAMIC) != 0;
983
984 shortname = bfd_hash_allocate (&info->hash->table,
985 (size_t) (p - name + 1));
986 if (shortname == NULL)
987 return false;
988 strncpy (shortname, name, (size_t) (p - name));
989 shortname [p - name] = '\0';
990
991 /* We are going to create a new symbol. Merge it with any existing
992 symbol with this name. For the purposes of the merge, act as
993 though we were defining the symbol we just defined, although we
994 actually going to define an indirect symbol. */
995 type_change_ok = false;
996 size_change_ok = false;
997 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
998 &hi, &override, &type_change_ok,
999 &size_change_ok, dt_needed))
1000 return false;
1001
1002 if (! override)
1003 {
1004 if (! (_bfd_generic_link_add_one_symbol
1005 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1006 (bfd_vma) 0, name, false, collect,
1007 (struct bfd_link_hash_entry **) &hi)))
1008 return false;
1009 }
1010 else
1011 {
1012 /* In this case the symbol named SHORTNAME is overriding the
1013 indirect symbol we want to add. We were planning on making
1014 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1015 is the name without a version. NAME is the fully versioned
1016 name, and it is the default version.
1017
1018 Overriding means that we already saw a definition for the
1019 symbol SHORTNAME in a regular object, and it is overriding
1020 the symbol defined in the dynamic object.
1021
1022 When this happens, we actually want to change NAME, the
1023 symbol we just added, to refer to SHORTNAME. This will cause
1024 references to NAME in the shared object to become references
1025 to SHORTNAME in the regular object. This is what we expect
1026 when we override a function in a shared object: that the
1027 references in the shared object will be mapped to the
1028 definition in the regular object. */
1029
1030 while (hi->root.type == bfd_link_hash_indirect
1031 || hi->root.type == bfd_link_hash_warning)
1032 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1033
1034 h->root.type = bfd_link_hash_indirect;
1035 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1036 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1037 {
1038 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1039 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1040 if (hi->elf_link_hash_flags
1041 & (ELF_LINK_HASH_REF_REGULAR
1042 | ELF_LINK_HASH_DEF_REGULAR))
1043 {
1044 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1045 return false;
1046 }
1047 }
1048
1049 /* Now set HI to H, so that the following code will set the
1050 other fields correctly. */
1051 hi = h;
1052 }
1053
1054 /* If there is a duplicate definition somewhere, then HI may not
1055 point to an indirect symbol. We will have reported an error to
1056 the user in that case. */
1057
1058 if (hi->root.type == bfd_link_hash_indirect)
1059 {
1060 struct elf_link_hash_entry *ht;
1061
1062 /* If the symbol became indirect, then we assume that we have
1063 not seen a definition before. */
1064 BFD_ASSERT ((hi->elf_link_hash_flags
1065 & (ELF_LINK_HASH_DEF_DYNAMIC
1066 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1067
1068 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1069 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1070
1071 /* See if the new flags lead us to realize that the symbol must
1072 be dynamic. */
1073 if (! *dynsym)
1074 {
1075 if (! dynamic)
1076 {
1077 if (info->shared
1078 || ((hi->elf_link_hash_flags
1079 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1080 *dynsym = true;
1081 }
1082 else
1083 {
1084 if ((hi->elf_link_hash_flags
1085 & ELF_LINK_HASH_REF_REGULAR) != 0)
1086 *dynsym = true;
1087 }
1088 }
1089 }
1090
1091 /* We also need to define an indirection from the nondefault version
1092 of the symbol. */
1093
1094 shortname = bfd_hash_allocate (&info->hash->table, strlen (name));
1095 if (shortname == NULL)
1096 return false;
1097 strncpy (shortname, name, (size_t) (p - name));
1098 strcpy (shortname + (p - name), p + 1);
1099
1100 /* Once again, merge with any existing symbol. */
1101 type_change_ok = false;
1102 size_change_ok = false;
1103 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1104 &hi, &override, &type_change_ok,
1105 &size_change_ok, dt_needed))
1106 return false;
1107
1108 if (override)
1109 {
1110 /* Here SHORTNAME is a versioned name, so we don't expect to see
1111 the type of override we do in the case above. */
1112 (*_bfd_error_handler)
1113 (_("%s: warning: unexpected redefinition of `%s'"),
1114 bfd_archive_filename (abfd), shortname);
1115 }
1116 else
1117 {
1118 if (! (_bfd_generic_link_add_one_symbol
1119 (info, abfd, shortname, BSF_INDIRECT,
1120 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1121 collect, (struct bfd_link_hash_entry **) &hi)))
1122 return false;
1123
1124 /* If there is a duplicate definition somewhere, then HI may not
1125 point to an indirect symbol. We will have reported an error
1126 to the user in that case. */
1127
1128 if (hi->root.type == bfd_link_hash_indirect)
1129 {
1130 /* If the symbol became indirect, then we assume that we have
1131 not seen a definition before. */
1132 BFD_ASSERT ((hi->elf_link_hash_flags
1133 & (ELF_LINK_HASH_DEF_DYNAMIC
1134 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1135
1136 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1137
1138 /* See if the new flags lead us to realize that the symbol
1139 must be dynamic. */
1140 if (! *dynsym)
1141 {
1142 if (! dynamic)
1143 {
1144 if (info->shared
1145 || ((hi->elf_link_hash_flags
1146 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1147 *dynsym = true;
1148 }
1149 else
1150 {
1151 if ((hi->elf_link_hash_flags
1152 & ELF_LINK_HASH_REF_REGULAR) != 0)
1153 *dynsym = true;
1154 }
1155 }
1156 }
1157 }
1158
1159 return true;
1160 }
1161
1162 /* Add symbols from an ELF object file to the linker hash table. */
1163
1164 static boolean
1165 elf_link_add_object_symbols (abfd, info)
1166 bfd *abfd;
1167 struct bfd_link_info *info;
1168 {
1169 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1170 const Elf_Internal_Sym *,
1171 const char **, flagword *,
1172 asection **, bfd_vma *));
1173 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1174 asection *, const Elf_Internal_Rela *));
1175 boolean collect;
1176 Elf_Internal_Shdr *hdr;
1177 Elf_Internal_Shdr *shndx_hdr;
1178 bfd_size_type symcount;
1179 bfd_size_type extsymcount;
1180 bfd_size_type extsymoff;
1181 Elf_External_Sym *buf = NULL;
1182 Elf_External_Sym_Shndx *shndx_buf = NULL;
1183 Elf_External_Sym_Shndx *shndx;
1184 struct elf_link_hash_entry **sym_hash;
1185 boolean dynamic;
1186 Elf_External_Versym *extversym = NULL;
1187 Elf_External_Versym *ever;
1188 Elf_External_Dyn *dynbuf = NULL;
1189 struct elf_link_hash_entry *weaks;
1190 Elf_External_Sym *esym;
1191 Elf_External_Sym *esymend;
1192 struct elf_backend_data *bed;
1193 boolean dt_needed;
1194 struct elf_link_hash_table * hash_table;
1195 file_ptr pos;
1196 bfd_size_type amt;
1197
1198 hash_table = elf_hash_table (info);
1199
1200 bed = get_elf_backend_data (abfd);
1201 add_symbol_hook = bed->elf_add_symbol_hook;
1202 collect = bed->collect;
1203
1204 if ((abfd->flags & DYNAMIC) == 0)
1205 dynamic = false;
1206 else
1207 {
1208 dynamic = true;
1209
1210 /* You can't use -r against a dynamic object. Also, there's no
1211 hope of using a dynamic object which does not exactly match
1212 the format of the output file. */
1213 if (info->relocateable || info->hash->creator != abfd->xvec)
1214 {
1215 bfd_set_error (bfd_error_invalid_operation);
1216 goto error_return;
1217 }
1218 }
1219
1220 /* As a GNU extension, any input sections which are named
1221 .gnu.warning.SYMBOL are treated as warning symbols for the given
1222 symbol. This differs from .gnu.warning sections, which generate
1223 warnings when they are included in an output file. */
1224 if (! info->shared)
1225 {
1226 asection *s;
1227
1228 for (s = abfd->sections; s != NULL; s = s->next)
1229 {
1230 const char *name;
1231
1232 name = bfd_get_section_name (abfd, s);
1233 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1234 {
1235 char *msg;
1236 bfd_size_type sz;
1237
1238 name += sizeof ".gnu.warning." - 1;
1239
1240 /* If this is a shared object, then look up the symbol
1241 in the hash table. If it is there, and it is already
1242 been defined, then we will not be using the entry
1243 from this shared object, so we don't need to warn.
1244 FIXME: If we see the definition in a regular object
1245 later on, we will warn, but we shouldn't. The only
1246 fix is to keep track of what warnings we are supposed
1247 to emit, and then handle them all at the end of the
1248 link. */
1249 if (dynamic && abfd->xvec == info->hash->creator)
1250 {
1251 struct elf_link_hash_entry *h;
1252
1253 h = elf_link_hash_lookup (hash_table, name,
1254 false, false, true);
1255
1256 /* FIXME: What about bfd_link_hash_common? */
1257 if (h != NULL
1258 && (h->root.type == bfd_link_hash_defined
1259 || h->root.type == bfd_link_hash_defweak))
1260 {
1261 /* We don't want to issue this warning. Clobber
1262 the section size so that the warning does not
1263 get copied into the output file. */
1264 s->_raw_size = 0;
1265 continue;
1266 }
1267 }
1268
1269 sz = bfd_section_size (abfd, s);
1270 msg = (char *) bfd_alloc (abfd, sz + 1);
1271 if (msg == NULL)
1272 goto error_return;
1273
1274 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1275 goto error_return;
1276
1277 msg[sz] = '\0';
1278
1279 if (! (_bfd_generic_link_add_one_symbol
1280 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1281 false, collect, (struct bfd_link_hash_entry **) NULL)))
1282 goto error_return;
1283
1284 if (! info->relocateable)
1285 {
1286 /* Clobber the section size so that the warning does
1287 not get copied into the output file. */
1288 s->_raw_size = 0;
1289 }
1290 }
1291 }
1292 }
1293
1294 /* If this is a dynamic object, we always link against the .dynsym
1295 symbol table, not the .symtab symbol table. The dynamic linker
1296 will only see the .dynsym symbol table, so there is no reason to
1297 look at .symtab for a dynamic object. */
1298
1299 if (! dynamic || elf_dynsymtab (abfd) == 0)
1300 {
1301 hdr = &elf_tdata (abfd)->symtab_hdr;
1302 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1303 }
1304 else
1305 {
1306 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1307 shndx_hdr = NULL;
1308 }
1309
1310 if (dynamic)
1311 {
1312 /* Read in any version definitions. */
1313
1314 if (! _bfd_elf_slurp_version_tables (abfd))
1315 goto error_return;
1316
1317 /* Read in the symbol versions, but don't bother to convert them
1318 to internal format. */
1319 if (elf_dynversym (abfd) != 0)
1320 {
1321 Elf_Internal_Shdr *versymhdr;
1322
1323 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1324 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1325 if (extversym == NULL)
1326 goto error_return;
1327 amt = versymhdr->sh_size;
1328 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1329 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1330 goto error_return;
1331 }
1332 }
1333
1334 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1335
1336 /* The sh_info field of the symtab header tells us where the
1337 external symbols start. We don't care about the local symbols at
1338 this point. */
1339 if (elf_bad_symtab (abfd))
1340 {
1341 extsymcount = symcount;
1342 extsymoff = 0;
1343 }
1344 else
1345 {
1346 extsymcount = symcount - hdr->sh_info;
1347 extsymoff = hdr->sh_info;
1348 }
1349
1350 amt = extsymcount * sizeof (Elf_External_Sym);
1351 buf = (Elf_External_Sym *) bfd_malloc (amt);
1352 if (buf == NULL && extsymcount != 0)
1353 goto error_return;
1354
1355 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1356 {
1357 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1358 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
1359 if (shndx_buf == NULL && extsymcount != 0)
1360 goto error_return;
1361 }
1362
1363 /* We store a pointer to the hash table entry for each external
1364 symbol. */
1365 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1366 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1367 if (sym_hash == NULL)
1368 goto error_return;
1369 elf_sym_hashes (abfd) = sym_hash;
1370
1371 dt_needed = false;
1372
1373 if (! dynamic)
1374 {
1375 /* If we are creating a shared library, create all the dynamic
1376 sections immediately. We need to attach them to something,
1377 so we attach them to this BFD, provided it is the right
1378 format. FIXME: If there are no input BFD's of the same
1379 format as the output, we can't make a shared library. */
1380 if (info->shared
1381 && is_elf_hash_table (info)
1382 && ! hash_table->dynamic_sections_created
1383 && abfd->xvec == info->hash->creator)
1384 {
1385 if (! elf_link_create_dynamic_sections (abfd, info))
1386 goto error_return;
1387 }
1388 }
1389 else if (! is_elf_hash_table (info))
1390 goto error_return;
1391 else
1392 {
1393 asection *s;
1394 boolean add_needed;
1395 const char *name;
1396 bfd_size_type oldsize;
1397 bfd_size_type strindex;
1398
1399 /* Find the name to use in a DT_NEEDED entry that refers to this
1400 object. If the object has a DT_SONAME entry, we use it.
1401 Otherwise, if the generic linker stuck something in
1402 elf_dt_name, we use that. Otherwise, we just use the file
1403 name. If the generic linker put a null string into
1404 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1405 there is a DT_SONAME entry. */
1406 add_needed = true;
1407 name = bfd_get_filename (abfd);
1408 if (elf_dt_name (abfd) != NULL)
1409 {
1410 name = elf_dt_name (abfd);
1411 if (*name == '\0')
1412 {
1413 if (elf_dt_soname (abfd) != NULL)
1414 dt_needed = true;
1415
1416 add_needed = false;
1417 }
1418 }
1419 s = bfd_get_section_by_name (abfd, ".dynamic");
1420 if (s != NULL)
1421 {
1422 Elf_External_Dyn *extdyn;
1423 Elf_External_Dyn *extdynend;
1424 int elfsec;
1425 unsigned long shlink;
1426 int rpath;
1427 int runpath;
1428
1429 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1430 if (dynbuf == NULL)
1431 goto error_return;
1432
1433 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1434 (file_ptr) 0, s->_raw_size))
1435 goto error_return;
1436
1437 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1438 if (elfsec == -1)
1439 goto error_return;
1440 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1441
1442 {
1443 /* The shared libraries distributed with hpux11 have a bogus
1444 sh_link field for the ".dynamic" section. This code detects
1445 when SHLINK refers to a section that is not a string table
1446 and tries to find the string table for the ".dynsym" section
1447 instead. */
1448 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink];
1449 if (shdr->sh_type != SHT_STRTAB)
1450 {
1451 asection *ds = bfd_get_section_by_name (abfd, ".dynsym");
1452 int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds);
1453 if (elfdsec == -1)
1454 goto error_return;
1455 shlink = elf_elfsections (abfd)[elfdsec]->sh_link;
1456 }
1457 }
1458
1459 extdyn = dynbuf;
1460 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1461 rpath = 0;
1462 runpath = 0;
1463 for (; extdyn < extdynend; extdyn++)
1464 {
1465 Elf_Internal_Dyn dyn;
1466
1467 elf_swap_dyn_in (abfd, extdyn, &dyn);
1468 if (dyn.d_tag == DT_SONAME)
1469 {
1470 unsigned int tagv = dyn.d_un.d_val;
1471 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1472 if (name == NULL)
1473 goto error_return;
1474 }
1475 if (dyn.d_tag == DT_NEEDED)
1476 {
1477 struct bfd_link_needed_list *n, **pn;
1478 char *fnm, *anm;
1479 unsigned int tagv = dyn.d_un.d_val;
1480
1481 amt = sizeof (struct bfd_link_needed_list);
1482 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1483 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1484 if (n == NULL || fnm == NULL)
1485 goto error_return;
1486 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1487 if (anm == NULL)
1488 goto error_return;
1489 strcpy (anm, fnm);
1490 n->name = anm;
1491 n->by = abfd;
1492 n->next = NULL;
1493 for (pn = & hash_table->needed;
1494 *pn != NULL;
1495 pn = &(*pn)->next)
1496 ;
1497 *pn = n;
1498 }
1499 if (dyn.d_tag == DT_RUNPATH)
1500 {
1501 struct bfd_link_needed_list *n, **pn;
1502 char *fnm, *anm;
1503 unsigned int tagv = dyn.d_un.d_val;
1504
1505 /* When we see DT_RPATH before DT_RUNPATH, we have
1506 to clear runpath. Do _NOT_ bfd_release, as that
1507 frees all more recently bfd_alloc'd blocks as
1508 well. */
1509 if (rpath && hash_table->runpath)
1510 hash_table->runpath = NULL;
1511
1512 amt = sizeof (struct bfd_link_needed_list);
1513 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1514 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1515 if (n == NULL || fnm == NULL)
1516 goto error_return;
1517 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1518 if (anm == NULL)
1519 goto error_return;
1520 strcpy (anm, fnm);
1521 n->name = anm;
1522 n->by = abfd;
1523 n->next = NULL;
1524 for (pn = & hash_table->runpath;
1525 *pn != NULL;
1526 pn = &(*pn)->next)
1527 ;
1528 *pn = n;
1529 runpath = 1;
1530 rpath = 0;
1531 }
1532 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1533 if (!runpath && dyn.d_tag == DT_RPATH)
1534 {
1535 struct bfd_link_needed_list *n, **pn;
1536 char *fnm, *anm;
1537 unsigned int tagv = dyn.d_un.d_val;
1538
1539 amt = sizeof (struct bfd_link_needed_list);
1540 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1541 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1542 if (n == NULL || fnm == NULL)
1543 goto error_return;
1544 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1545 if (anm == NULL)
1546 goto error_return;
1547 strcpy (anm, fnm);
1548 n->name = anm;
1549 n->by = abfd;
1550 n->next = NULL;
1551 for (pn = & hash_table->runpath;
1552 *pn != NULL;
1553 pn = &(*pn)->next)
1554 ;
1555 *pn = n;
1556 rpath = 1;
1557 }
1558 }
1559
1560 free (dynbuf);
1561 dynbuf = NULL;
1562 }
1563
1564 /* We do not want to include any of the sections in a dynamic
1565 object in the output file. We hack by simply clobbering the
1566 list of sections in the BFD. This could be handled more
1567 cleanly by, say, a new section flag; the existing
1568 SEC_NEVER_LOAD flag is not the one we want, because that one
1569 still implies that the section takes up space in the output
1570 file. */
1571 bfd_section_list_clear (abfd);
1572
1573 /* If this is the first dynamic object found in the link, create
1574 the special sections required for dynamic linking. */
1575 if (! hash_table->dynamic_sections_created)
1576 if (! elf_link_create_dynamic_sections (abfd, info))
1577 goto error_return;
1578
1579 if (add_needed)
1580 {
1581 /* Add a DT_NEEDED entry for this dynamic object. */
1582 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1583 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1584 if (strindex == (bfd_size_type) -1)
1585 goto error_return;
1586
1587 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1588 {
1589 asection *sdyn;
1590 Elf_External_Dyn *dyncon, *dynconend;
1591
1592 /* The hash table size did not change, which means that
1593 the dynamic object name was already entered. If we
1594 have already included this dynamic object in the
1595 link, just ignore it. There is no reason to include
1596 a particular dynamic object more than once. */
1597 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1598 BFD_ASSERT (sdyn != NULL);
1599
1600 dyncon = (Elf_External_Dyn *) sdyn->contents;
1601 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1602 sdyn->_raw_size);
1603 for (; dyncon < dynconend; dyncon++)
1604 {
1605 Elf_Internal_Dyn dyn;
1606
1607 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1608 if (dyn.d_tag == DT_NEEDED
1609 && dyn.d_un.d_val == strindex)
1610 {
1611 if (buf != NULL)
1612 free (buf);
1613 if (extversym != NULL)
1614 free (extversym);
1615 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1616 return true;
1617 }
1618 }
1619 }
1620
1621 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1622 goto error_return;
1623 }
1624
1625 /* Save the SONAME, if there is one, because sometimes the
1626 linker emulation code will need to know it. */
1627 if (*name == '\0')
1628 name = basename (bfd_get_filename (abfd));
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
1633 amt = extsymcount * sizeof (Elf_External_Sym);
1634 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1635 || bfd_bread ((PTR) buf, amt, abfd) != amt)
1636 goto error_return;
1637
1638 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1639 {
1640 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1641 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
1642 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1643 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
1644 goto error_return;
1645 }
1646
1647 weaks = NULL;
1648
1649 ever = extversym != NULL ? extversym + extsymoff : NULL;
1650 esymend = buf + extsymcount;
1651 for (esym = buf, shndx = shndx_buf;
1652 esym < esymend;
1653 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL),
1654 shndx = (shndx != NULL ? shndx + 1 : NULL))
1655 {
1656 Elf_Internal_Sym sym;
1657 int bind;
1658 bfd_vma value;
1659 asection *sec;
1660 flagword flags;
1661 const char *name;
1662 struct elf_link_hash_entry *h;
1663 boolean definition;
1664 boolean size_change_ok, type_change_ok;
1665 boolean new_weakdef;
1666 unsigned int old_alignment;
1667 boolean override;
1668
1669 override = false;
1670
1671 elf_swap_symbol_in (abfd, esym, shndx, &sym);
1672
1673 flags = BSF_NO_FLAGS;
1674 sec = NULL;
1675 value = sym.st_value;
1676 *sym_hash = NULL;
1677
1678 bind = ELF_ST_BIND (sym.st_info);
1679 if (bind == STB_LOCAL)
1680 {
1681 /* This should be impossible, since ELF requires that all
1682 global symbols follow all local symbols, and that sh_info
1683 point to the first global symbol. Unfortunatealy, Irix 5
1684 screws this up. */
1685 continue;
1686 }
1687 else if (bind == STB_GLOBAL)
1688 {
1689 if (sym.st_shndx != SHN_UNDEF
1690 && sym.st_shndx != SHN_COMMON)
1691 flags = BSF_GLOBAL;
1692 }
1693 else if (bind == STB_WEAK)
1694 flags = BSF_WEAK;
1695 else
1696 {
1697 /* Leave it up to the processor backend. */
1698 }
1699
1700 if (sym.st_shndx == SHN_UNDEF)
1701 sec = bfd_und_section_ptr;
1702 else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE)
1703 {
1704 sec = section_from_elf_index (abfd, sym.st_shndx);
1705 if (sec == NULL)
1706 sec = bfd_abs_section_ptr;
1707 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1708 value -= sec->vma;
1709 }
1710 else if (sym.st_shndx == SHN_ABS)
1711 sec = bfd_abs_section_ptr;
1712 else if (sym.st_shndx == SHN_COMMON)
1713 {
1714 sec = bfd_com_section_ptr;
1715 /* What ELF calls the size we call the value. What ELF
1716 calls the value we call the alignment. */
1717 value = sym.st_size;
1718 }
1719 else
1720 {
1721 /* Leave it up to the processor backend. */
1722 }
1723
1724 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1725 if (name == (const char *) NULL)
1726 goto error_return;
1727
1728 if (add_symbol_hook)
1729 {
1730 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1731 &value))
1732 goto error_return;
1733
1734 /* The hook function sets the name to NULL if this symbol
1735 should be skipped for some reason. */
1736 if (name == (const char *) NULL)
1737 continue;
1738 }
1739
1740 /* Sanity check that all possibilities were handled. */
1741 if (sec == (asection *) NULL)
1742 {
1743 bfd_set_error (bfd_error_bad_value);
1744 goto error_return;
1745 }
1746
1747 if (bfd_is_und_section (sec)
1748 || bfd_is_com_section (sec))
1749 definition = false;
1750 else
1751 definition = true;
1752
1753 size_change_ok = false;
1754 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1755 old_alignment = 0;
1756 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1757 {
1758 Elf_Internal_Versym iver;
1759 unsigned int vernum = 0;
1760
1761 if (ever != NULL)
1762 {
1763 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1764 vernum = iver.vs_vers & VERSYM_VERSION;
1765
1766 /* If this is a hidden symbol, or if it is not version
1767 1, we append the version name to the symbol name.
1768 However, we do not modify a non-hidden absolute
1769 symbol, because it might be the version symbol
1770 itself. FIXME: What if it isn't? */
1771 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1772 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1773 {
1774 const char *verstr;
1775 unsigned int namelen;
1776 bfd_size_type newlen;
1777 char *newname, *p;
1778
1779 if (sym.st_shndx != SHN_UNDEF)
1780 {
1781 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1782 {
1783 (*_bfd_error_handler)
1784 (_("%s: %s: invalid version %u (max %d)"),
1785 bfd_archive_filename (abfd), name, vernum,
1786 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1787 bfd_set_error (bfd_error_bad_value);
1788 goto error_return;
1789 }
1790 else if (vernum > 1)
1791 verstr =
1792 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1793 else
1794 verstr = "";
1795 }
1796 else
1797 {
1798 /* We cannot simply test for the number of
1799 entries in the VERNEED section since the
1800 numbers for the needed versions do not start
1801 at 0. */
1802 Elf_Internal_Verneed *t;
1803
1804 verstr = NULL;
1805 for (t = elf_tdata (abfd)->verref;
1806 t != NULL;
1807 t = t->vn_nextref)
1808 {
1809 Elf_Internal_Vernaux *a;
1810
1811 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1812 {
1813 if (a->vna_other == vernum)
1814 {
1815 verstr = a->vna_nodename;
1816 break;
1817 }
1818 }
1819 if (a != NULL)
1820 break;
1821 }
1822 if (verstr == NULL)
1823 {
1824 (*_bfd_error_handler)
1825 (_("%s: %s: invalid needed version %d"),
1826 bfd_archive_filename (abfd), name, vernum);
1827 bfd_set_error (bfd_error_bad_value);
1828 goto error_return;
1829 }
1830 }
1831
1832 namelen = strlen (name);
1833 newlen = namelen + strlen (verstr) + 2;
1834 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1835 ++newlen;
1836
1837 newname = (char *) bfd_alloc (abfd, newlen);
1838 if (newname == NULL)
1839 goto error_return;
1840 strcpy (newname, name);
1841 p = newname + namelen;
1842 *p++ = ELF_VER_CHR;
1843 /* If this is a defined non-hidden version symbol,
1844 we add another @ to the name. This indicates the
1845 default version of the symbol. */
1846 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1847 && sym.st_shndx != SHN_UNDEF)
1848 *p++ = ELF_VER_CHR;
1849 strcpy (p, verstr);
1850
1851 name = newname;
1852 }
1853 }
1854
1855 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1856 sym_hash, &override, &type_change_ok,
1857 &size_change_ok, dt_needed))
1858 goto error_return;
1859
1860 if (override)
1861 definition = false;
1862
1863 h = *sym_hash;
1864 while (h->root.type == bfd_link_hash_indirect
1865 || h->root.type == bfd_link_hash_warning)
1866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1867
1868 /* Remember the old alignment if this is a common symbol, so
1869 that we don't reduce the alignment later on. We can't
1870 check later, because _bfd_generic_link_add_one_symbol
1871 will set a default for the alignment which we want to
1872 override. */
1873 if (h->root.type == bfd_link_hash_common)
1874 old_alignment = h->root.u.c.p->alignment_power;
1875
1876 if (elf_tdata (abfd)->verdef != NULL
1877 && ! override
1878 && vernum > 1
1879 && definition)
1880 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1881 }
1882
1883 if (! (_bfd_generic_link_add_one_symbol
1884 (info, abfd, name, flags, sec, value, (const char *) NULL,
1885 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1886 goto error_return;
1887
1888 h = *sym_hash;
1889 while (h->root.type == bfd_link_hash_indirect
1890 || h->root.type == bfd_link_hash_warning)
1891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1892 *sym_hash = h;
1893
1894 new_weakdef = false;
1895 if (dynamic
1896 && definition
1897 && (flags & BSF_WEAK) != 0
1898 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1899 && info->hash->creator->flavour == bfd_target_elf_flavour
1900 && h->weakdef == NULL)
1901 {
1902 /* Keep a list of all weak defined non function symbols from
1903 a dynamic object, using the weakdef field. Later in this
1904 function we will set the weakdef field to the correct
1905 value. We only put non-function symbols from dynamic
1906 objects on this list, because that happens to be the only
1907 time we need to know the normal symbol corresponding to a
1908 weak symbol, and the information is time consuming to
1909 figure out. If the weakdef field is not already NULL,
1910 then this symbol was already defined by some previous
1911 dynamic object, and we will be using that previous
1912 definition anyhow. */
1913
1914 h->weakdef = weaks;
1915 weaks = h;
1916 new_weakdef = true;
1917 }
1918
1919 /* Set the alignment of a common symbol. */
1920 if (sym.st_shndx == SHN_COMMON
1921 && h->root.type == bfd_link_hash_common)
1922 {
1923 unsigned int align;
1924
1925 align = bfd_log2 (sym.st_value);
1926 if (align > old_alignment
1927 /* Permit an alignment power of zero if an alignment of one
1928 is specified and no other alignments have been specified. */
1929 || (sym.st_value == 1 && old_alignment == 0))
1930 h->root.u.c.p->alignment_power = align;
1931 }
1932
1933 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1934 {
1935 int old_flags;
1936 boolean dynsym;
1937 int new_flag;
1938
1939 /* Remember the symbol size and type. */
1940 if (sym.st_size != 0
1941 && (definition || h->size == 0))
1942 {
1943 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1944 (*_bfd_error_handler)
1945 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1946 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1947 bfd_archive_filename (abfd));
1948
1949 h->size = sym.st_size;
1950 }
1951
1952 /* If this is a common symbol, then we always want H->SIZE
1953 to be the size of the common symbol. The code just above
1954 won't fix the size if a common symbol becomes larger. We
1955 don't warn about a size change here, because that is
1956 covered by --warn-common. */
1957 if (h->root.type == bfd_link_hash_common)
1958 h->size = h->root.u.c.size;
1959
1960 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1961 && (definition || h->type == STT_NOTYPE))
1962 {
1963 if (h->type != STT_NOTYPE
1964 && h->type != ELF_ST_TYPE (sym.st_info)
1965 && ! type_change_ok)
1966 (*_bfd_error_handler)
1967 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1968 name, h->type, ELF_ST_TYPE (sym.st_info),
1969 bfd_archive_filename (abfd));
1970
1971 h->type = ELF_ST_TYPE (sym.st_info);
1972 }
1973
1974 /* If st_other has a processor-specific meaning, specific code
1975 might be needed here. */
1976 if (sym.st_other != 0)
1977 {
1978 /* Combine visibilities, using the most constraining one. */
1979 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1980 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1981
1982 if (symvis && (hvis > symvis || hvis == 0))
1983 h->other = sym.st_other;
1984
1985 /* If neither has visibility, use the st_other of the
1986 definition. This is an arbitrary choice, since the
1987 other bits have no general meaning. */
1988 if (!symvis && !hvis
1989 && (definition || h->other == 0))
1990 h->other = sym.st_other;
1991 }
1992
1993 /* Set a flag in the hash table entry indicating the type of
1994 reference or definition we just found. Keep a count of
1995 the number of dynamic symbols we find. A dynamic symbol
1996 is one which is referenced or defined by both a regular
1997 object and a shared object. */
1998 old_flags = h->elf_link_hash_flags;
1999 dynsym = false;
2000 if (! dynamic)
2001 {
2002 if (! definition)
2003 {
2004 new_flag = ELF_LINK_HASH_REF_REGULAR;
2005 if (bind != STB_WEAK)
2006 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
2007 }
2008 else
2009 new_flag = ELF_LINK_HASH_DEF_REGULAR;
2010 if (info->shared
2011 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2012 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
2013 dynsym = true;
2014 }
2015 else
2016 {
2017 if (! definition)
2018 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
2019 else
2020 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
2021 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
2022 | ELF_LINK_HASH_REF_REGULAR)) != 0
2023 || (h->weakdef != NULL
2024 && ! new_weakdef
2025 && h->weakdef->dynindx != -1))
2026 dynsym = true;
2027 }
2028
2029 h->elf_link_hash_flags |= new_flag;
2030
2031 /* Check to see if we need to add an indirect symbol for
2032 the default name. */
2033 if (definition || h->root.type == bfd_link_hash_common)
2034 if (! elf_add_default_symbol (abfd, info, h, name, &sym,
2035 &sec, &value, &dynsym,
2036 override, dt_needed))
2037 goto error_return;
2038
2039 if (dynsym && h->dynindx == -1)
2040 {
2041 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2042 goto error_return;
2043 if (h->weakdef != NULL
2044 && ! new_weakdef
2045 && h->weakdef->dynindx == -1)
2046 {
2047 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2048 goto error_return;
2049 }
2050 }
2051 else if (dynsym && h->dynindx != -1)
2052 /* If the symbol already has a dynamic index, but
2053 visibility says it should not be visible, turn it into
2054 a local symbol. */
2055 switch (ELF_ST_VISIBILITY (h->other))
2056 {
2057 case STV_INTERNAL:
2058 case STV_HIDDEN:
2059 (*bed->elf_backend_hide_symbol) (info, h, true);
2060 break;
2061 }
2062
2063 if (dt_needed && definition
2064 && (h->elf_link_hash_flags
2065 & ELF_LINK_HASH_REF_REGULAR) != 0)
2066 {
2067 bfd_size_type oldsize;
2068 bfd_size_type strindex;
2069
2070 if (! is_elf_hash_table (info))
2071 goto error_return;
2072
2073 /* The symbol from a DT_NEEDED object is referenced from
2074 the regular object to create a dynamic executable. We
2075 have to make sure there is a DT_NEEDED entry for it. */
2076
2077 dt_needed = false;
2078 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2079 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2080 elf_dt_soname (abfd), false);
2081 if (strindex == (bfd_size_type) -1)
2082 goto error_return;
2083
2084 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2085 {
2086 asection *sdyn;
2087 Elf_External_Dyn *dyncon, *dynconend;
2088
2089 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2090 ".dynamic");
2091 BFD_ASSERT (sdyn != NULL);
2092
2093 dyncon = (Elf_External_Dyn *) sdyn->contents;
2094 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2095 sdyn->_raw_size);
2096 for (; dyncon < dynconend; dyncon++)
2097 {
2098 Elf_Internal_Dyn dyn;
2099
2100 elf_swap_dyn_in (hash_table->dynobj,
2101 dyncon, &dyn);
2102 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2103 dyn.d_un.d_val != strindex);
2104 }
2105 }
2106
2107 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2108 goto error_return;
2109 }
2110 }
2111 }
2112
2113 /* Now set the weakdefs field correctly for all the weak defined
2114 symbols we found. The only way to do this is to search all the
2115 symbols. Since we only need the information for non functions in
2116 dynamic objects, that's the only time we actually put anything on
2117 the list WEAKS. We need this information so that if a regular
2118 object refers to a symbol defined weakly in a dynamic object, the
2119 real symbol in the dynamic object is also put in the dynamic
2120 symbols; we also must arrange for both symbols to point to the
2121 same memory location. We could handle the general case of symbol
2122 aliasing, but a general symbol alias can only be generated in
2123 assembler code, handling it correctly would be very time
2124 consuming, and other ELF linkers don't handle general aliasing
2125 either. */
2126 while (weaks != NULL)
2127 {
2128 struct elf_link_hash_entry *hlook;
2129 asection *slook;
2130 bfd_vma vlook;
2131 struct elf_link_hash_entry **hpp;
2132 struct elf_link_hash_entry **hppend;
2133
2134 hlook = weaks;
2135 weaks = hlook->weakdef;
2136 hlook->weakdef = NULL;
2137
2138 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2139 || hlook->root.type == bfd_link_hash_defweak
2140 || hlook->root.type == bfd_link_hash_common
2141 || hlook->root.type == bfd_link_hash_indirect);
2142 slook = hlook->root.u.def.section;
2143 vlook = hlook->root.u.def.value;
2144
2145 hpp = elf_sym_hashes (abfd);
2146 hppend = hpp + extsymcount;
2147 for (; hpp < hppend; hpp++)
2148 {
2149 struct elf_link_hash_entry *h;
2150
2151 h = *hpp;
2152 if (h != NULL && h != hlook
2153 && h->root.type == bfd_link_hash_defined
2154 && h->root.u.def.section == slook
2155 && h->root.u.def.value == vlook)
2156 {
2157 hlook->weakdef = h;
2158
2159 /* If the weak definition is in the list of dynamic
2160 symbols, make sure the real definition is put there
2161 as well. */
2162 if (hlook->dynindx != -1
2163 && h->dynindx == -1)
2164 {
2165 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2166 goto error_return;
2167 }
2168
2169 /* If the real definition is in the list of dynamic
2170 symbols, make sure the weak definition is put there
2171 as well. If we don't do this, then the dynamic
2172 loader might not merge the entries for the real
2173 definition and the weak definition. */
2174 if (h->dynindx != -1
2175 && hlook->dynindx == -1)
2176 {
2177 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2178 goto error_return;
2179 }
2180
2181 break;
2182 }
2183 }
2184 }
2185
2186 if (buf != NULL)
2187 {
2188 free (buf);
2189 buf = NULL;
2190 }
2191
2192 if (extversym != NULL)
2193 {
2194 free (extversym);
2195 extversym = NULL;
2196 }
2197
2198 /* If this object is the same format as the output object, and it is
2199 not a shared library, then let the backend look through the
2200 relocs.
2201
2202 This is required to build global offset table entries and to
2203 arrange for dynamic relocs. It is not required for the
2204 particular common case of linking non PIC code, even when linking
2205 against shared libraries, but unfortunately there is no way of
2206 knowing whether an object file has been compiled PIC or not.
2207 Looking through the relocs is not particularly time consuming.
2208 The problem is that we must either (1) keep the relocs in memory,
2209 which causes the linker to require additional runtime memory or
2210 (2) read the relocs twice from the input file, which wastes time.
2211 This would be a good case for using mmap.
2212
2213 I have no idea how to handle linking PIC code into a file of a
2214 different format. It probably can't be done. */
2215 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2216 if (! dynamic
2217 && abfd->xvec == info->hash->creator
2218 && check_relocs != NULL)
2219 {
2220 asection *o;
2221
2222 for (o = abfd->sections; o != NULL; o = o->next)
2223 {
2224 Elf_Internal_Rela *internal_relocs;
2225 boolean ok;
2226
2227 if ((o->flags & SEC_RELOC) == 0
2228 || o->reloc_count == 0
2229 || ((info->strip == strip_all || info->strip == strip_debugger)
2230 && (o->flags & SEC_DEBUGGING) != 0)
2231 || bfd_is_abs_section (o->output_section))
2232 continue;
2233
2234 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2235 (abfd, o, (PTR) NULL,
2236 (Elf_Internal_Rela *) NULL,
2237 info->keep_memory));
2238 if (internal_relocs == NULL)
2239 goto error_return;
2240
2241 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2242
2243 if (! info->keep_memory)
2244 free (internal_relocs);
2245
2246 if (! ok)
2247 goto error_return;
2248 }
2249 }
2250
2251 /* If this is a non-traditional, non-relocateable link, try to
2252 optimize the handling of the .stab/.stabstr sections. */
2253 if (! dynamic
2254 && ! info->relocateable
2255 && ! info->traditional_format
2256 && info->hash->creator->flavour == bfd_target_elf_flavour
2257 && is_elf_hash_table (info)
2258 && (info->strip != strip_all && info->strip != strip_debugger))
2259 {
2260 asection *stab, *stabstr;
2261
2262 stab = bfd_get_section_by_name (abfd, ".stab");
2263 if (stab != NULL && !(stab->flags & SEC_MERGE))
2264 {
2265 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2266
2267 if (stabstr != NULL)
2268 {
2269 struct bfd_elf_section_data *secdata;
2270
2271 secdata = elf_section_data (stab);
2272 if (! _bfd_link_section_stabs (abfd,
2273 & hash_table->stab_info,
2274 stab, stabstr,
2275 &secdata->sec_info))
2276 goto error_return;
2277 if (secdata->sec_info)
2278 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2279 }
2280 }
2281 }
2282
2283 if (! info->relocateable && ! dynamic
2284 && is_elf_hash_table (info))
2285 {
2286 asection *s;
2287
2288 for (s = abfd->sections; s != NULL; s = s->next)
2289 if (s->flags & SEC_MERGE)
2290 {
2291 struct bfd_elf_section_data *secdata;
2292
2293 secdata = elf_section_data (s);
2294 if (! _bfd_merge_section (abfd,
2295 & hash_table->merge_info,
2296 s, &secdata->sec_info))
2297 goto error_return;
2298 else if (secdata->sec_info)
2299 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2300 }
2301 }
2302
2303 return true;
2304
2305 error_return:
2306 if (buf != NULL)
2307 free (buf);
2308 if (dynbuf != NULL)
2309 free (dynbuf);
2310 if (extversym != NULL)
2311 free (extversym);
2312 return false;
2313 }
2314
2315 /* Create some sections which will be filled in with dynamic linking
2316 information. ABFD is an input file which requires dynamic sections
2317 to be created. The dynamic sections take up virtual memory space
2318 when the final executable is run, so we need to create them before
2319 addresses are assigned to the output sections. We work out the
2320 actual contents and size of these sections later. */
2321
2322 boolean
2323 elf_link_create_dynamic_sections (abfd, info)
2324 bfd *abfd;
2325 struct bfd_link_info *info;
2326 {
2327 flagword flags;
2328 register asection *s;
2329 struct elf_link_hash_entry *h;
2330 struct elf_backend_data *bed;
2331
2332 if (! is_elf_hash_table (info))
2333 return false;
2334
2335 if (elf_hash_table (info)->dynamic_sections_created)
2336 return true;
2337
2338 /* Make sure that all dynamic sections use the same input BFD. */
2339 if (elf_hash_table (info)->dynobj == NULL)
2340 elf_hash_table (info)->dynobj = abfd;
2341 else
2342 abfd = elf_hash_table (info)->dynobj;
2343
2344 /* Note that we set the SEC_IN_MEMORY flag for all of these
2345 sections. */
2346 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2347 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2348
2349 /* A dynamically linked executable has a .interp section, but a
2350 shared library does not. */
2351 if (! info->shared)
2352 {
2353 s = bfd_make_section (abfd, ".interp");
2354 if (s == NULL
2355 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2356 return false;
2357 }
2358
2359 if (! info->traditional_format
2360 && info->hash->creator->flavour == bfd_target_elf_flavour)
2361 {
2362 s = bfd_make_section (abfd, ".eh_frame_hdr");
2363 if (s == NULL
2364 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2365 || ! bfd_set_section_alignment (abfd, s, 2))
2366 return false;
2367 }
2368
2369 /* Create sections to hold version informations. These are removed
2370 if they are not needed. */
2371 s = bfd_make_section (abfd, ".gnu.version_d");
2372 if (s == NULL
2373 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2374 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2375 return false;
2376
2377 s = bfd_make_section (abfd, ".gnu.version");
2378 if (s == NULL
2379 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2380 || ! bfd_set_section_alignment (abfd, s, 1))
2381 return false;
2382
2383 s = bfd_make_section (abfd, ".gnu.version_r");
2384 if (s == NULL
2385 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2386 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2387 return false;
2388
2389 s = bfd_make_section (abfd, ".dynsym");
2390 if (s == NULL
2391 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2392 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2393 return false;
2394
2395 s = bfd_make_section (abfd, ".dynstr");
2396 if (s == NULL
2397 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2398 return false;
2399
2400 /* Create a strtab to hold the dynamic symbol names. */
2401 if (elf_hash_table (info)->dynstr == NULL)
2402 {
2403 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2404 if (elf_hash_table (info)->dynstr == NULL)
2405 return false;
2406 }
2407
2408 s = bfd_make_section (abfd, ".dynamic");
2409 if (s == NULL
2410 || ! bfd_set_section_flags (abfd, s, flags)
2411 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2412 return false;
2413
2414 /* The special symbol _DYNAMIC is always set to the start of the
2415 .dynamic section. This call occurs before we have processed the
2416 symbols for any dynamic object, so we don't have to worry about
2417 overriding a dynamic definition. We could set _DYNAMIC in a
2418 linker script, but we only want to define it if we are, in fact,
2419 creating a .dynamic section. We don't want to define it if there
2420 is no .dynamic section, since on some ELF platforms the start up
2421 code examines it to decide how to initialize the process. */
2422 h = NULL;
2423 if (! (_bfd_generic_link_add_one_symbol
2424 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2425 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2426 (struct bfd_link_hash_entry **) &h)))
2427 return false;
2428 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2429 h->type = STT_OBJECT;
2430
2431 if (info->shared
2432 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2433 return false;
2434
2435 bed = get_elf_backend_data (abfd);
2436
2437 s = bfd_make_section (abfd, ".hash");
2438 if (s == NULL
2439 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2440 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2441 return false;
2442 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2443
2444 /* Let the backend create the rest of the sections. This lets the
2445 backend set the right flags. The backend will normally create
2446 the .got and .plt sections. */
2447 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2448 return false;
2449
2450 elf_hash_table (info)->dynamic_sections_created = true;
2451
2452 return true;
2453 }
2454
2455 /* Add an entry to the .dynamic table. */
2456
2457 boolean
2458 elf_add_dynamic_entry (info, tag, val)
2459 struct bfd_link_info *info;
2460 bfd_vma tag;
2461 bfd_vma val;
2462 {
2463 Elf_Internal_Dyn dyn;
2464 bfd *dynobj;
2465 asection *s;
2466 bfd_size_type newsize;
2467 bfd_byte *newcontents;
2468
2469 if (! is_elf_hash_table (info))
2470 return false;
2471
2472 dynobj = elf_hash_table (info)->dynobj;
2473
2474 s = bfd_get_section_by_name (dynobj, ".dynamic");
2475 BFD_ASSERT (s != NULL);
2476
2477 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2478 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2479 if (newcontents == NULL)
2480 return false;
2481
2482 dyn.d_tag = tag;
2483 dyn.d_un.d_val = val;
2484 elf_swap_dyn_out (dynobj, &dyn,
2485 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2486
2487 s->_raw_size = newsize;
2488 s->contents = newcontents;
2489
2490 return true;
2491 }
2492
2493 /* Record a new local dynamic symbol. */
2494
2495 boolean
2496 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2497 struct bfd_link_info *info;
2498 bfd *input_bfd;
2499 long input_indx;
2500 {
2501 struct elf_link_local_dynamic_entry *entry;
2502 struct elf_link_hash_table *eht;
2503 struct elf_strtab_hash *dynstr;
2504 Elf_External_Sym esym;
2505 Elf_External_Sym_Shndx eshndx;
2506 Elf_External_Sym_Shndx *shndx;
2507 unsigned long dynstr_index;
2508 char *name;
2509 file_ptr pos;
2510 bfd_size_type amt;
2511
2512 if (! is_elf_hash_table (info))
2513 return false;
2514
2515 /* See if the entry exists already. */
2516 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2517 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2518 return true;
2519
2520 entry = (struct elf_link_local_dynamic_entry *)
2521 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2522 if (entry == NULL)
2523 return false;
2524
2525 /* Go find the symbol, so that we can find it's name. */
2526 amt = sizeof (Elf_External_Sym);
2527 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2528 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2529 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2530 return false;
2531 shndx = NULL;
2532 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2533 {
2534 amt = sizeof (Elf_External_Sym_Shndx);
2535 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2536 pos += input_indx * amt;
2537 shndx = &eshndx;
2538 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2539 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2540 return false;
2541 }
2542 elf_swap_symbol_in (input_bfd, &esym, shndx, &entry->isym);
2543
2544 name = (bfd_elf_string_from_elf_section
2545 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2546 entry->isym.st_name));
2547
2548 dynstr = elf_hash_table (info)->dynstr;
2549 if (dynstr == NULL)
2550 {
2551 /* Create a strtab to hold the dynamic symbol names. */
2552 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2553 if (dynstr == NULL)
2554 return false;
2555 }
2556
2557 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2558 if (dynstr_index == (unsigned long) -1)
2559 return false;
2560 entry->isym.st_name = dynstr_index;
2561
2562 eht = elf_hash_table (info);
2563
2564 entry->next = eht->dynlocal;
2565 eht->dynlocal = entry;
2566 entry->input_bfd = input_bfd;
2567 entry->input_indx = input_indx;
2568 eht->dynsymcount++;
2569
2570 /* Whatever binding the symbol had before, it's now local. */
2571 entry->isym.st_info
2572 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2573
2574 /* The dynindx will be set at the end of size_dynamic_sections. */
2575
2576 return true;
2577 }
2578 \f
2579 /* Read and swap the relocs from the section indicated by SHDR. This
2580 may be either a REL or a RELA section. The relocations are
2581 translated into RELA relocations and stored in INTERNAL_RELOCS,
2582 which should have already been allocated to contain enough space.
2583 The EXTERNAL_RELOCS are a buffer where the external form of the
2584 relocations should be stored.
2585
2586 Returns false if something goes wrong. */
2587
2588 static boolean
2589 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2590 internal_relocs)
2591 bfd *abfd;
2592 Elf_Internal_Shdr *shdr;
2593 PTR external_relocs;
2594 Elf_Internal_Rela *internal_relocs;
2595 {
2596 struct elf_backend_data *bed;
2597 bfd_size_type amt;
2598
2599 /* If there aren't any relocations, that's OK. */
2600 if (!shdr)
2601 return true;
2602
2603 /* Position ourselves at the start of the section. */
2604 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2605 return false;
2606
2607 /* Read the relocations. */
2608 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2609 return false;
2610
2611 bed = get_elf_backend_data (abfd);
2612
2613 /* Convert the external relocations to the internal format. */
2614 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2615 {
2616 Elf_External_Rel *erel;
2617 Elf_External_Rel *erelend;
2618 Elf_Internal_Rela *irela;
2619 Elf_Internal_Rel *irel;
2620
2621 erel = (Elf_External_Rel *) external_relocs;
2622 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2623 irela = internal_relocs;
2624 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2625 irel = bfd_alloc (abfd, amt);
2626 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2627 {
2628 unsigned int i;
2629
2630 if (bed->s->swap_reloc_in)
2631 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2632 else
2633 elf_swap_reloc_in (abfd, erel, irel);
2634
2635 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2636 {
2637 irela[i].r_offset = irel[i].r_offset;
2638 irela[i].r_info = irel[i].r_info;
2639 irela[i].r_addend = 0;
2640 }
2641 }
2642 }
2643 else
2644 {
2645 Elf_External_Rela *erela;
2646 Elf_External_Rela *erelaend;
2647 Elf_Internal_Rela *irela;
2648
2649 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2650
2651 erela = (Elf_External_Rela *) external_relocs;
2652 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2653 irela = internal_relocs;
2654 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2655 {
2656 if (bed->s->swap_reloca_in)
2657 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2658 else
2659 elf_swap_reloca_in (abfd, erela, irela);
2660 }
2661 }
2662
2663 return true;
2664 }
2665
2666 /* Read and swap the relocs for a section O. They may have been
2667 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2668 not NULL, they are used as buffers to read into. They are known to
2669 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2670 the return value is allocated using either malloc or bfd_alloc,
2671 according to the KEEP_MEMORY argument. If O has two relocation
2672 sections (both REL and RELA relocations), then the REL_HDR
2673 relocations will appear first in INTERNAL_RELOCS, followed by the
2674 REL_HDR2 relocations. */
2675
2676 Elf_Internal_Rela *
2677 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2678 keep_memory)
2679 bfd *abfd;
2680 asection *o;
2681 PTR external_relocs;
2682 Elf_Internal_Rela *internal_relocs;
2683 boolean keep_memory;
2684 {
2685 Elf_Internal_Shdr *rel_hdr;
2686 PTR alloc1 = NULL;
2687 Elf_Internal_Rela *alloc2 = NULL;
2688 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2689
2690 if (elf_section_data (o)->relocs != NULL)
2691 return elf_section_data (o)->relocs;
2692
2693 if (o->reloc_count == 0)
2694 return NULL;
2695
2696 rel_hdr = &elf_section_data (o)->rel_hdr;
2697
2698 if (internal_relocs == NULL)
2699 {
2700 bfd_size_type size;
2701
2702 size = o->reloc_count;
2703 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2704 if (keep_memory)
2705 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2706 else
2707 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2708 if (internal_relocs == NULL)
2709 goto error_return;
2710 }
2711
2712 if (external_relocs == NULL)
2713 {
2714 bfd_size_type size = rel_hdr->sh_size;
2715
2716 if (elf_section_data (o)->rel_hdr2)
2717 size += elf_section_data (o)->rel_hdr2->sh_size;
2718 alloc1 = (PTR) bfd_malloc (size);
2719 if (alloc1 == NULL)
2720 goto error_return;
2721 external_relocs = alloc1;
2722 }
2723
2724 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2725 external_relocs,
2726 internal_relocs))
2727 goto error_return;
2728 if (!elf_link_read_relocs_from_section
2729 (abfd,
2730 elf_section_data (o)->rel_hdr2,
2731 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2732 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2733 * bed->s->int_rels_per_ext_rel)))
2734 goto error_return;
2735
2736 /* Cache the results for next time, if we can. */
2737 if (keep_memory)
2738 elf_section_data (o)->relocs = internal_relocs;
2739
2740 if (alloc1 != NULL)
2741 free (alloc1);
2742
2743 /* Don't free alloc2, since if it was allocated we are passing it
2744 back (under the name of internal_relocs). */
2745
2746 return internal_relocs;
2747
2748 error_return:
2749 if (alloc1 != NULL)
2750 free (alloc1);
2751 if (alloc2 != NULL)
2752 free (alloc2);
2753 return NULL;
2754 }
2755 \f
2756 /* Record an assignment to a symbol made by a linker script. We need
2757 this in case some dynamic object refers to this symbol. */
2758
2759 boolean
2760 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2761 bfd *output_bfd ATTRIBUTE_UNUSED;
2762 struct bfd_link_info *info;
2763 const char *name;
2764 boolean provide;
2765 {
2766 struct elf_link_hash_entry *h;
2767
2768 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2769 return true;
2770
2771 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2772 if (h == NULL)
2773 return false;
2774
2775 if (h->root.type == bfd_link_hash_new)
2776 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2777
2778 /* If this symbol is being provided by the linker script, and it is
2779 currently defined by a dynamic object, but not by a regular
2780 object, then mark it as undefined so that the generic linker will
2781 force the correct value. */
2782 if (provide
2783 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2784 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2785 h->root.type = bfd_link_hash_undefined;
2786
2787 /* If this symbol is not being provided by the linker script, and it is
2788 currently defined by a dynamic object, but not by a regular object,
2789 then clear out any version information because the symbol will not be
2790 associated with the dynamic object any more. */
2791 if (!provide
2792 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2793 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2794 h->verinfo.verdef = NULL;
2795
2796 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2797
2798 /* When possible, keep the original type of the symbol. */
2799 if (h->type == STT_NOTYPE)
2800 h->type = STT_OBJECT;
2801
2802 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2803 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2804 || info->shared)
2805 && h->dynindx == -1)
2806 {
2807 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2808 return false;
2809
2810 /* If this is a weak defined symbol, and we know a corresponding
2811 real symbol from the same dynamic object, make sure the real
2812 symbol is also made into a dynamic symbol. */
2813 if (h->weakdef != NULL
2814 && h->weakdef->dynindx == -1)
2815 {
2816 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2817 return false;
2818 }
2819 }
2820
2821 return true;
2822 }
2823 \f
2824 /* This structure is used to pass information to
2825 elf_link_assign_sym_version. */
2826
2827 struct elf_assign_sym_version_info
2828 {
2829 /* Output BFD. */
2830 bfd *output_bfd;
2831 /* General link information. */
2832 struct bfd_link_info *info;
2833 /* Version tree. */
2834 struct bfd_elf_version_tree *verdefs;
2835 /* Whether we had a failure. */
2836 boolean failed;
2837 };
2838
2839 /* This structure is used to pass information to
2840 elf_link_find_version_dependencies. */
2841
2842 struct elf_find_verdep_info
2843 {
2844 /* Output BFD. */
2845 bfd *output_bfd;
2846 /* General link information. */
2847 struct bfd_link_info *info;
2848 /* The number of dependencies. */
2849 unsigned int vers;
2850 /* Whether we had a failure. */
2851 boolean failed;
2852 };
2853
2854 /* Array used to determine the number of hash table buckets to use
2855 based on the number of symbols there are. If there are fewer than
2856 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2857 fewer than 37 we use 17 buckets, and so forth. We never use more
2858 than 32771 buckets. */
2859
2860 static const size_t elf_buckets[] =
2861 {
2862 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2863 16411, 32771, 0
2864 };
2865
2866 /* Compute bucket count for hashing table. We do not use a static set
2867 of possible tables sizes anymore. Instead we determine for all
2868 possible reasonable sizes of the table the outcome (i.e., the
2869 number of collisions etc) and choose the best solution. The
2870 weighting functions are not too simple to allow the table to grow
2871 without bounds. Instead one of the weighting factors is the size.
2872 Therefore the result is always a good payoff between few collisions
2873 (= short chain lengths) and table size. */
2874 static size_t
2875 compute_bucket_count (info)
2876 struct bfd_link_info *info;
2877 {
2878 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2879 size_t best_size = 0;
2880 unsigned long int *hashcodes;
2881 unsigned long int *hashcodesp;
2882 unsigned long int i;
2883 bfd_size_type amt;
2884
2885 /* Compute the hash values for all exported symbols. At the same
2886 time store the values in an array so that we could use them for
2887 optimizations. */
2888 amt = dynsymcount;
2889 amt *= sizeof (unsigned long int);
2890 hashcodes = (unsigned long int *) bfd_malloc (amt);
2891 if (hashcodes == NULL)
2892 return 0;
2893 hashcodesp = hashcodes;
2894
2895 /* Put all hash values in HASHCODES. */
2896 elf_link_hash_traverse (elf_hash_table (info),
2897 elf_collect_hash_codes, &hashcodesp);
2898
2899 /* We have a problem here. The following code to optimize the table
2900 size requires an integer type with more the 32 bits. If
2901 BFD_HOST_U_64_BIT is set we know about such a type. */
2902 #ifdef BFD_HOST_U_64_BIT
2903 if (info->optimize == true)
2904 {
2905 unsigned long int nsyms = hashcodesp - hashcodes;
2906 size_t minsize;
2907 size_t maxsize;
2908 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2909 unsigned long int *counts ;
2910
2911 /* Possible optimization parameters: if we have NSYMS symbols we say
2912 that the hashing table must at least have NSYMS/4 and at most
2913 2*NSYMS buckets. */
2914 minsize = nsyms / 4;
2915 if (minsize == 0)
2916 minsize = 1;
2917 best_size = maxsize = nsyms * 2;
2918
2919 /* Create array where we count the collisions in. We must use bfd_malloc
2920 since the size could be large. */
2921 amt = maxsize;
2922 amt *= sizeof (unsigned long int);
2923 counts = (unsigned long int *) bfd_malloc (amt);
2924 if (counts == NULL)
2925 {
2926 free (hashcodes);
2927 return 0;
2928 }
2929
2930 /* Compute the "optimal" size for the hash table. The criteria is a
2931 minimal chain length. The minor criteria is (of course) the size
2932 of the table. */
2933 for (i = minsize; i < maxsize; ++i)
2934 {
2935 /* Walk through the array of hashcodes and count the collisions. */
2936 BFD_HOST_U_64_BIT max;
2937 unsigned long int j;
2938 unsigned long int fact;
2939
2940 memset (counts, '\0', i * sizeof (unsigned long int));
2941
2942 /* Determine how often each hash bucket is used. */
2943 for (j = 0; j < nsyms; ++j)
2944 ++counts[hashcodes[j] % i];
2945
2946 /* For the weight function we need some information about the
2947 pagesize on the target. This is information need not be 100%
2948 accurate. Since this information is not available (so far) we
2949 define it here to a reasonable default value. If it is crucial
2950 to have a better value some day simply define this value. */
2951 # ifndef BFD_TARGET_PAGESIZE
2952 # define BFD_TARGET_PAGESIZE (4096)
2953 # endif
2954
2955 /* We in any case need 2 + NSYMS entries for the size values and
2956 the chains. */
2957 max = (2 + nsyms) * (ARCH_SIZE / 8);
2958
2959 # if 1
2960 /* Variant 1: optimize for short chains. We add the squares
2961 of all the chain lengths (which favous many small chain
2962 over a few long chains). */
2963 for (j = 0; j < i; ++j)
2964 max += counts[j] * counts[j];
2965
2966 /* This adds penalties for the overall size of the table. */
2967 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2968 max *= fact * fact;
2969 # else
2970 /* Variant 2: Optimize a lot more for small table. Here we
2971 also add squares of the size but we also add penalties for
2972 empty slots (the +1 term). */
2973 for (j = 0; j < i; ++j)
2974 max += (1 + counts[j]) * (1 + counts[j]);
2975
2976 /* The overall size of the table is considered, but not as
2977 strong as in variant 1, where it is squared. */
2978 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2979 max *= fact;
2980 # endif
2981
2982 /* Compare with current best results. */
2983 if (max < best_chlen)
2984 {
2985 best_chlen = max;
2986 best_size = i;
2987 }
2988 }
2989
2990 free (counts);
2991 }
2992 else
2993 #endif /* defined (BFD_HOST_U_64_BIT) */
2994 {
2995 /* This is the fallback solution if no 64bit type is available or if we
2996 are not supposed to spend much time on optimizations. We select the
2997 bucket count using a fixed set of numbers. */
2998 for (i = 0; elf_buckets[i] != 0; i++)
2999 {
3000 best_size = elf_buckets[i];
3001 if (dynsymcount < elf_buckets[i + 1])
3002 break;
3003 }
3004 }
3005
3006 /* Free the arrays we needed. */
3007 free (hashcodes);
3008
3009 return best_size;
3010 }
3011
3012 /* Set up the sizes and contents of the ELF dynamic sections. This is
3013 called by the ELF linker emulation before_allocation routine. We
3014 must set the sizes of the sections before the linker sets the
3015 addresses of the various sections. */
3016
3017 boolean
3018 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
3019 filter_shlib,
3020 auxiliary_filters, info, sinterpptr,
3021 verdefs)
3022 bfd *output_bfd;
3023 const char *soname;
3024 const char *rpath;
3025 const char *filter_shlib;
3026 const char * const *auxiliary_filters;
3027 struct bfd_link_info *info;
3028 asection **sinterpptr;
3029 struct bfd_elf_version_tree *verdefs;
3030 {
3031 bfd_size_type soname_indx;
3032 bfd *dynobj;
3033 struct elf_backend_data *bed;
3034 struct elf_assign_sym_version_info asvinfo;
3035
3036 *sinterpptr = NULL;
3037
3038 soname_indx = (bfd_size_type) -1;
3039
3040 if (info->hash->creator->flavour != bfd_target_elf_flavour)
3041 return true;
3042
3043 if (! is_elf_hash_table (info))
3044 return false;
3045
3046 /* Any syms created from now on start with -1 in
3047 got.refcount/offset and plt.refcount/offset. */
3048 elf_hash_table (info)->init_refcount = -1;
3049
3050 /* The backend may have to create some sections regardless of whether
3051 we're dynamic or not. */
3052 bed = get_elf_backend_data (output_bfd);
3053 if (bed->elf_backend_always_size_sections
3054 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3055 return false;
3056
3057 dynobj = elf_hash_table (info)->dynobj;
3058
3059 /* If there were no dynamic objects in the link, there is nothing to
3060 do here. */
3061 if (dynobj == NULL)
3062 return true;
3063
3064 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3065 return false;
3066
3067 if (elf_hash_table (info)->dynamic_sections_created)
3068 {
3069 struct elf_info_failed eif;
3070 struct elf_link_hash_entry *h;
3071 asection *dynstr;
3072
3073 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3074 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3075
3076 if (soname != NULL)
3077 {
3078 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3079 soname, true);
3080 if (soname_indx == (bfd_size_type) -1
3081 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3082 soname_indx))
3083 return false;
3084 }
3085
3086 if (info->symbolic)
3087 {
3088 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3089 (bfd_vma) 0))
3090 return false;
3091 info->flags |= DF_SYMBOLIC;
3092 }
3093
3094 if (rpath != NULL)
3095 {
3096 bfd_size_type indx;
3097
3098 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3099 true);
3100 if (info->new_dtags)
3101 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3102 if (indx == (bfd_size_type) -1
3103 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3104 || (info->new_dtags
3105 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3106 indx)))
3107 return false;
3108 }
3109
3110 if (filter_shlib != NULL)
3111 {
3112 bfd_size_type indx;
3113
3114 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3115 filter_shlib, true);
3116 if (indx == (bfd_size_type) -1
3117 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3118 return false;
3119 }
3120
3121 if (auxiliary_filters != NULL)
3122 {
3123 const char * const *p;
3124
3125 for (p = auxiliary_filters; *p != NULL; p++)
3126 {
3127 bfd_size_type indx;
3128
3129 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3130 *p, true);
3131 if (indx == (bfd_size_type) -1
3132 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3133 indx))
3134 return false;
3135 }
3136 }
3137
3138 eif.info = info;
3139 eif.verdefs = verdefs;
3140 eif.failed = false;
3141
3142 /* If we are supposed to export all symbols into the dynamic symbol
3143 table (this is not the normal case), then do so. */
3144 if (info->export_dynamic)
3145 {
3146 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3147 (PTR) &eif);
3148 if (eif.failed)
3149 return false;
3150 }
3151
3152 /* Attach all the symbols to their version information. */
3153 asvinfo.output_bfd = output_bfd;
3154 asvinfo.info = info;
3155 asvinfo.verdefs = verdefs;
3156 asvinfo.failed = false;
3157
3158 elf_link_hash_traverse (elf_hash_table (info),
3159 elf_link_assign_sym_version,
3160 (PTR) &asvinfo);
3161 if (asvinfo.failed)
3162 return false;
3163
3164 /* Find all symbols which were defined in a dynamic object and make
3165 the backend pick a reasonable value for them. */
3166 elf_link_hash_traverse (elf_hash_table (info),
3167 elf_adjust_dynamic_symbol,
3168 (PTR) &eif);
3169 if (eif.failed)
3170 return false;
3171
3172 /* Add some entries to the .dynamic section. We fill in some of the
3173 values later, in elf_bfd_final_link, but we must add the entries
3174 now so that we know the final size of the .dynamic section. */
3175
3176 /* If there are initialization and/or finalization functions to
3177 call then add the corresponding DT_INIT/DT_FINI entries. */
3178 h = (info->init_function
3179 ? elf_link_hash_lookup (elf_hash_table (info),
3180 info->init_function, false,
3181 false, false)
3182 : NULL);
3183 if (h != NULL
3184 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3185 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3186 {
3187 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3188 return false;
3189 }
3190 h = (info->fini_function
3191 ? elf_link_hash_lookup (elf_hash_table (info),
3192 info->fini_function, false,
3193 false, false)
3194 : NULL);
3195 if (h != NULL
3196 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3197 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3198 {
3199 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3200 return false;
3201 }
3202
3203 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3204 {
3205 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3206 if (info->shared)
3207 {
3208 bfd *sub;
3209 asection *o;
3210
3211 for (sub = info->input_bfds; sub != NULL;
3212 sub = sub->link_next)
3213 for (o = sub->sections; o != NULL; o = o->next)
3214 if (elf_section_data (o)->this_hdr.sh_type
3215 == SHT_PREINIT_ARRAY)
3216 {
3217 (*_bfd_error_handler)
3218 (_("%s: .preinit_array section is not allowed in DSO"),
3219 bfd_archive_filename (sub));
3220 break;
3221 }
3222
3223 return false;
3224 }
3225
3226 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3227 (bfd_vma) 0)
3228 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3229 (bfd_vma) 0))
3230 return false;
3231 }
3232 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3233 {
3234 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3235 (bfd_vma) 0)
3236 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3237 (bfd_vma) 0))
3238 return false;
3239 }
3240 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3241 {
3242 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3243 (bfd_vma) 0)
3244 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3245 (bfd_vma) 0))
3246 return false;
3247 }
3248
3249 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3250 /* If .dynstr is excluded from the link, we don't want any of
3251 these tags. Strictly, we should be checking each section
3252 individually; This quick check covers for the case where
3253 someone does a /DISCARD/ : { *(*) }. */
3254 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3255 {
3256 bfd_size_type strsize;
3257
3258 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3259 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3260 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3261 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3262 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3263 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3264 (bfd_vma) sizeof (Elf_External_Sym)))
3265 return false;
3266 }
3267 }
3268
3269 /* The backend must work out the sizes of all the other dynamic
3270 sections. */
3271 if (bed->elf_backend_size_dynamic_sections
3272 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3273 return false;
3274
3275 if (elf_hash_table (info)->dynamic_sections_created)
3276 {
3277 bfd_size_type dynsymcount;
3278 asection *s;
3279 size_t bucketcount = 0;
3280 size_t hash_entry_size;
3281 unsigned int dtagcount;
3282
3283 /* Set up the version definition section. */
3284 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3285 BFD_ASSERT (s != NULL);
3286
3287 /* We may have created additional version definitions if we are
3288 just linking a regular application. */
3289 verdefs = asvinfo.verdefs;
3290
3291 /* Skip anonymous version tag. */
3292 if (verdefs != NULL && verdefs->vernum == 0)
3293 verdefs = verdefs->next;
3294
3295 if (verdefs == NULL)
3296 _bfd_strip_section_from_output (info, s);
3297 else
3298 {
3299 unsigned int cdefs;
3300 bfd_size_type size;
3301 struct bfd_elf_version_tree *t;
3302 bfd_byte *p;
3303 Elf_Internal_Verdef def;
3304 Elf_Internal_Verdaux defaux;
3305
3306 cdefs = 0;
3307 size = 0;
3308
3309 /* Make space for the base version. */
3310 size += sizeof (Elf_External_Verdef);
3311 size += sizeof (Elf_External_Verdaux);
3312 ++cdefs;
3313
3314 for (t = verdefs; t != NULL; t = t->next)
3315 {
3316 struct bfd_elf_version_deps *n;
3317
3318 size += sizeof (Elf_External_Verdef);
3319 size += sizeof (Elf_External_Verdaux);
3320 ++cdefs;
3321
3322 for (n = t->deps; n != NULL; n = n->next)
3323 size += sizeof (Elf_External_Verdaux);
3324 }
3325
3326 s->_raw_size = size;
3327 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3328 if (s->contents == NULL && s->_raw_size != 0)
3329 return false;
3330
3331 /* Fill in the version definition section. */
3332
3333 p = s->contents;
3334
3335 def.vd_version = VER_DEF_CURRENT;
3336 def.vd_flags = VER_FLG_BASE;
3337 def.vd_ndx = 1;
3338 def.vd_cnt = 1;
3339 def.vd_aux = sizeof (Elf_External_Verdef);
3340 def.vd_next = (sizeof (Elf_External_Verdef)
3341 + sizeof (Elf_External_Verdaux));
3342
3343 if (soname_indx != (bfd_size_type) -1)
3344 {
3345 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3346 soname_indx);
3347 def.vd_hash = bfd_elf_hash (soname);
3348 defaux.vda_name = soname_indx;
3349 }
3350 else
3351 {
3352 const char *name;
3353 bfd_size_type indx;
3354
3355 name = basename (output_bfd->filename);
3356 def.vd_hash = bfd_elf_hash (name);
3357 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3358 name, false);
3359 if (indx == (bfd_size_type) -1)
3360 return false;
3361 defaux.vda_name = indx;
3362 }
3363 defaux.vda_next = 0;
3364
3365 _bfd_elf_swap_verdef_out (output_bfd, &def,
3366 (Elf_External_Verdef *) p);
3367 p += sizeof (Elf_External_Verdef);
3368 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3369 (Elf_External_Verdaux *) p);
3370 p += sizeof (Elf_External_Verdaux);
3371
3372 for (t = verdefs; t != NULL; t = t->next)
3373 {
3374 unsigned int cdeps;
3375 struct bfd_elf_version_deps *n;
3376 struct elf_link_hash_entry *h;
3377
3378 cdeps = 0;
3379 for (n = t->deps; n != NULL; n = n->next)
3380 ++cdeps;
3381
3382 /* Add a symbol representing this version. */
3383 h = NULL;
3384 if (! (_bfd_generic_link_add_one_symbol
3385 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3386 (bfd_vma) 0, (const char *) NULL, false,
3387 get_elf_backend_data (dynobj)->collect,
3388 (struct bfd_link_hash_entry **) &h)))
3389 return false;
3390 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3391 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3392 h->type = STT_OBJECT;
3393 h->verinfo.vertree = t;
3394
3395 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3396 return false;
3397
3398 def.vd_version = VER_DEF_CURRENT;
3399 def.vd_flags = 0;
3400 if (t->globals == NULL && t->locals == NULL && ! t->used)
3401 def.vd_flags |= VER_FLG_WEAK;
3402 def.vd_ndx = t->vernum + 1;
3403 def.vd_cnt = cdeps + 1;
3404 def.vd_hash = bfd_elf_hash (t->name);
3405 def.vd_aux = sizeof (Elf_External_Verdef);
3406 if (t->next != NULL)
3407 def.vd_next = (sizeof (Elf_External_Verdef)
3408 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3409 else
3410 def.vd_next = 0;
3411
3412 _bfd_elf_swap_verdef_out (output_bfd, &def,
3413 (Elf_External_Verdef *) p);
3414 p += sizeof (Elf_External_Verdef);
3415
3416 defaux.vda_name = h->dynstr_index;
3417 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3418 h->dynstr_index);
3419 if (t->deps == NULL)
3420 defaux.vda_next = 0;
3421 else
3422 defaux.vda_next = sizeof (Elf_External_Verdaux);
3423 t->name_indx = defaux.vda_name;
3424
3425 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3426 (Elf_External_Verdaux *) p);
3427 p += sizeof (Elf_External_Verdaux);
3428
3429 for (n = t->deps; n != NULL; n = n->next)
3430 {
3431 if (n->version_needed == NULL)
3432 {
3433 /* This can happen if there was an error in the
3434 version script. */
3435 defaux.vda_name = 0;
3436 }
3437 else
3438 {
3439 defaux.vda_name = n->version_needed->name_indx;
3440 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3441 defaux.vda_name);
3442 }
3443 if (n->next == NULL)
3444 defaux.vda_next = 0;
3445 else
3446 defaux.vda_next = sizeof (Elf_External_Verdaux);
3447
3448 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3449 (Elf_External_Verdaux *) p);
3450 p += sizeof (Elf_External_Verdaux);
3451 }
3452 }
3453
3454 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3455 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3456 (bfd_vma) cdefs))
3457 return false;
3458
3459 elf_tdata (output_bfd)->cverdefs = cdefs;
3460 }
3461
3462 if (info->new_dtags && info->flags)
3463 {
3464 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3465 return false;
3466 }
3467
3468 if (info->flags_1)
3469 {
3470 if (! info->shared)
3471 info->flags_1 &= ~ (DF_1_INITFIRST
3472 | DF_1_NODELETE
3473 | DF_1_NOOPEN);
3474 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3475 info->flags_1))
3476 return false;
3477 }
3478
3479 /* Work out the size of the version reference section. */
3480
3481 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3482 BFD_ASSERT (s != NULL);
3483 {
3484 struct elf_find_verdep_info sinfo;
3485
3486 sinfo.output_bfd = output_bfd;
3487 sinfo.info = info;
3488 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3489 if (sinfo.vers == 0)
3490 sinfo.vers = 1;
3491 sinfo.failed = false;
3492
3493 elf_link_hash_traverse (elf_hash_table (info),
3494 elf_link_find_version_dependencies,
3495 (PTR) &sinfo);
3496
3497 if (elf_tdata (output_bfd)->verref == NULL)
3498 _bfd_strip_section_from_output (info, s);
3499 else
3500 {
3501 Elf_Internal_Verneed *t;
3502 unsigned int size;
3503 unsigned int crefs;
3504 bfd_byte *p;
3505
3506 /* Build the version definition section. */
3507 size = 0;
3508 crefs = 0;
3509 for (t = elf_tdata (output_bfd)->verref;
3510 t != NULL;
3511 t = t->vn_nextref)
3512 {
3513 Elf_Internal_Vernaux *a;
3514
3515 size += sizeof (Elf_External_Verneed);
3516 ++crefs;
3517 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3518 size += sizeof (Elf_External_Vernaux);
3519 }
3520
3521 s->_raw_size = size;
3522 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3523 if (s->contents == NULL)
3524 return false;
3525
3526 p = s->contents;
3527 for (t = elf_tdata (output_bfd)->verref;
3528 t != NULL;
3529 t = t->vn_nextref)
3530 {
3531 unsigned int caux;
3532 Elf_Internal_Vernaux *a;
3533 bfd_size_type indx;
3534
3535 caux = 0;
3536 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3537 ++caux;
3538
3539 t->vn_version = VER_NEED_CURRENT;
3540 t->vn_cnt = caux;
3541 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3542 elf_dt_name (t->vn_bfd) != NULL
3543 ? elf_dt_name (t->vn_bfd)
3544 : basename (t->vn_bfd->filename),
3545 false);
3546 if (indx == (bfd_size_type) -1)
3547 return false;
3548 t->vn_file = indx;
3549 t->vn_aux = sizeof (Elf_External_Verneed);
3550 if (t->vn_nextref == NULL)
3551 t->vn_next = 0;
3552 else
3553 t->vn_next = (sizeof (Elf_External_Verneed)
3554 + caux * sizeof (Elf_External_Vernaux));
3555
3556 _bfd_elf_swap_verneed_out (output_bfd, t,
3557 (Elf_External_Verneed *) p);
3558 p += sizeof (Elf_External_Verneed);
3559
3560 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3561 {
3562 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3563 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3564 a->vna_nodename, false);
3565 if (indx == (bfd_size_type) -1)
3566 return false;
3567 a->vna_name = indx;
3568 if (a->vna_nextptr == NULL)
3569 a->vna_next = 0;
3570 else
3571 a->vna_next = sizeof (Elf_External_Vernaux);
3572
3573 _bfd_elf_swap_vernaux_out (output_bfd, a,
3574 (Elf_External_Vernaux *) p);
3575 p += sizeof (Elf_External_Vernaux);
3576 }
3577 }
3578
3579 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3580 (bfd_vma) 0)
3581 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3582 (bfd_vma) crefs))
3583 return false;
3584
3585 elf_tdata (output_bfd)->cverrefs = crefs;
3586 }
3587 }
3588
3589 /* Assign dynsym indicies. In a shared library we generate a
3590 section symbol for each output section, which come first.
3591 Next come all of the back-end allocated local dynamic syms,
3592 followed by the rest of the global symbols. */
3593
3594 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3595
3596 /* Work out the size of the symbol version section. */
3597 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3598 BFD_ASSERT (s != NULL);
3599 if (dynsymcount == 0
3600 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3601 {
3602 _bfd_strip_section_from_output (info, s);
3603 /* The DYNSYMCOUNT might have changed if we were going to
3604 output a dynamic symbol table entry for S. */
3605 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3606 }
3607 else
3608 {
3609 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3610 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3611 if (s->contents == NULL)
3612 return false;
3613
3614 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3615 return false;
3616 }
3617
3618 /* Set the size of the .dynsym and .hash sections. We counted
3619 the number of dynamic symbols in elf_link_add_object_symbols.
3620 We will build the contents of .dynsym and .hash when we build
3621 the final symbol table, because until then we do not know the
3622 correct value to give the symbols. We built the .dynstr
3623 section as we went along in elf_link_add_object_symbols. */
3624 s = bfd_get_section_by_name (dynobj, ".dynsym");
3625 BFD_ASSERT (s != NULL);
3626 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3627 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3628 if (s->contents == NULL && s->_raw_size != 0)
3629 return false;
3630
3631 if (dynsymcount != 0)
3632 {
3633 Elf_Internal_Sym isym;
3634
3635 /* The first entry in .dynsym is a dummy symbol. */
3636 isym.st_value = 0;
3637 isym.st_size = 0;
3638 isym.st_name = 0;
3639 isym.st_info = 0;
3640 isym.st_other = 0;
3641 isym.st_shndx = 0;
3642 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3643 }
3644
3645 /* Compute the size of the hashing table. As a side effect this
3646 computes the hash values for all the names we export. */
3647 bucketcount = compute_bucket_count (info);
3648
3649 s = bfd_get_section_by_name (dynobj, ".hash");
3650 BFD_ASSERT (s != NULL);
3651 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3652 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3653 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3654 if (s->contents == NULL)
3655 return false;
3656 memset (s->contents, 0, (size_t) s->_raw_size);
3657
3658 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3659 s->contents);
3660 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3661 s->contents + hash_entry_size);
3662
3663 elf_hash_table (info)->bucketcount = bucketcount;
3664
3665 s = bfd_get_section_by_name (dynobj, ".dynstr");
3666 BFD_ASSERT (s != NULL);
3667
3668 elf_finalize_dynstr (output_bfd, info);
3669
3670 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3671
3672 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3673 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3674 return false;
3675 }
3676
3677 return true;
3678 }
3679 \f
3680 /* This function is used to adjust offsets into .dynstr for
3681 dynamic symbols. This is called via elf_link_hash_traverse. */
3682
3683 static boolean elf_adjust_dynstr_offsets
3684 PARAMS ((struct elf_link_hash_entry *, PTR));
3685
3686 static boolean
3687 elf_adjust_dynstr_offsets (h, data)
3688 struct elf_link_hash_entry *h;
3689 PTR data;
3690 {
3691 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3692
3693 if (h->dynindx != -1)
3694 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3695 return true;
3696 }
3697
3698 /* Assign string offsets in .dynstr, update all structures referencing
3699 them. */
3700
3701 static boolean
3702 elf_finalize_dynstr (output_bfd, info)
3703 bfd *output_bfd;
3704 struct bfd_link_info *info;
3705 {
3706 struct elf_link_local_dynamic_entry *entry;
3707 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3708 bfd *dynobj = elf_hash_table (info)->dynobj;
3709 asection *sdyn;
3710 bfd_size_type size;
3711 Elf_External_Dyn *dyncon, *dynconend;
3712
3713 _bfd_elf_strtab_finalize (dynstr);
3714 size = _bfd_elf_strtab_size (dynstr);
3715
3716 /* Update all .dynamic entries referencing .dynstr strings. */
3717 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3718 BFD_ASSERT (sdyn != NULL);
3719
3720 dyncon = (Elf_External_Dyn *) sdyn->contents;
3721 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3722 sdyn->_raw_size);
3723 for (; dyncon < dynconend; dyncon++)
3724 {
3725 Elf_Internal_Dyn dyn;
3726
3727 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3728 switch (dyn.d_tag)
3729 {
3730 case DT_STRSZ:
3731 dyn.d_un.d_val = size;
3732 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3733 break;
3734 case DT_NEEDED:
3735 case DT_SONAME:
3736 case DT_RPATH:
3737 case DT_RUNPATH:
3738 case DT_FILTER:
3739 case DT_AUXILIARY:
3740 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3741 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3742 break;
3743 default:
3744 break;
3745 }
3746 }
3747
3748 /* Now update local dynamic symbols. */
3749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3750 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3751 entry->isym.st_name);
3752
3753 /* And the rest of dynamic symbols. */
3754 elf_link_hash_traverse (elf_hash_table (info),
3755 elf_adjust_dynstr_offsets, dynstr);
3756
3757 /* Adjust version definitions. */
3758 if (elf_tdata (output_bfd)->cverdefs)
3759 {
3760 asection *s;
3761 bfd_byte *p;
3762 bfd_size_type i;
3763 Elf_Internal_Verdef def;
3764 Elf_Internal_Verdaux defaux;
3765
3766 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3767 p = (bfd_byte *) s->contents;
3768 do
3769 {
3770 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3771 &def);
3772 p += sizeof (Elf_External_Verdef);
3773 for (i = 0; i < def.vd_cnt; ++i)
3774 {
3775 _bfd_elf_swap_verdaux_in (output_bfd,
3776 (Elf_External_Verdaux *) p, &defaux);
3777 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3778 defaux.vda_name);
3779 _bfd_elf_swap_verdaux_out (output_bfd,
3780 &defaux, (Elf_External_Verdaux *) p);
3781 p += sizeof (Elf_External_Verdaux);
3782 }
3783 }
3784 while (def.vd_next);
3785 }
3786
3787 /* Adjust version references. */
3788 if (elf_tdata (output_bfd)->verref)
3789 {
3790 asection *s;
3791 bfd_byte *p;
3792 bfd_size_type i;
3793 Elf_Internal_Verneed need;
3794 Elf_Internal_Vernaux needaux;
3795
3796 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3797 p = (bfd_byte *) s->contents;
3798 do
3799 {
3800 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3801 &need);
3802 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3803 _bfd_elf_swap_verneed_out (output_bfd, &need,
3804 (Elf_External_Verneed *) p);
3805 p += sizeof (Elf_External_Verneed);
3806 for (i = 0; i < need.vn_cnt; ++i)
3807 {
3808 _bfd_elf_swap_vernaux_in (output_bfd,
3809 (Elf_External_Vernaux *) p, &needaux);
3810 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3811 needaux.vna_name);
3812 _bfd_elf_swap_vernaux_out (output_bfd,
3813 &needaux,
3814 (Elf_External_Vernaux *) p);
3815 p += sizeof (Elf_External_Vernaux);
3816 }
3817 }
3818 while (need.vn_next);
3819 }
3820
3821 return true;
3822 }
3823
3824 /* Fix up the flags for a symbol. This handles various cases which
3825 can only be fixed after all the input files are seen. This is
3826 currently called by both adjust_dynamic_symbol and
3827 assign_sym_version, which is unnecessary but perhaps more robust in
3828 the face of future changes. */
3829
3830 static boolean
3831 elf_fix_symbol_flags (h, eif)
3832 struct elf_link_hash_entry *h;
3833 struct elf_info_failed *eif;
3834 {
3835 /* If this symbol was mentioned in a non-ELF file, try to set
3836 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3837 permit a non-ELF file to correctly refer to a symbol defined in
3838 an ELF dynamic object. */
3839 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3840 {
3841 while (h->root.type == bfd_link_hash_indirect)
3842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3843
3844 if (h->root.type != bfd_link_hash_defined
3845 && h->root.type != bfd_link_hash_defweak)
3846 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3847 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3848 else
3849 {
3850 if (h->root.u.def.section->owner != NULL
3851 && (bfd_get_flavour (h->root.u.def.section->owner)
3852 == bfd_target_elf_flavour))
3853 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3854 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3855 else
3856 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3857 }
3858
3859 if (h->dynindx == -1
3860 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3861 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3862 {
3863 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3864 {
3865 eif->failed = true;
3866 return false;
3867 }
3868 }
3869 }
3870 else
3871 {
3872 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3873 was first seen in a non-ELF file. Fortunately, if the symbol
3874 was first seen in an ELF file, we're probably OK unless the
3875 symbol was defined in a non-ELF file. Catch that case here.
3876 FIXME: We're still in trouble if the symbol was first seen in
3877 a dynamic object, and then later in a non-ELF regular object. */
3878 if ((h->root.type == bfd_link_hash_defined
3879 || h->root.type == bfd_link_hash_defweak)
3880 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3881 && (h->root.u.def.section->owner != NULL
3882 ? (bfd_get_flavour (h->root.u.def.section->owner)
3883 != bfd_target_elf_flavour)
3884 : (bfd_is_abs_section (h->root.u.def.section)
3885 && (h->elf_link_hash_flags
3886 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3887 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3888 }
3889
3890 /* If this is a final link, and the symbol was defined as a common
3891 symbol in a regular object file, and there was no definition in
3892 any dynamic object, then the linker will have allocated space for
3893 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3894 flag will not have been set. */
3895 if (h->root.type == bfd_link_hash_defined
3896 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3897 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3898 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3899 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3900 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3901
3902 /* If -Bsymbolic was used (which means to bind references to global
3903 symbols to the definition within the shared object), and this
3904 symbol was defined in a regular object, then it actually doesn't
3905 need a PLT entry, and we can accomplish that by forcing it local.
3906 Likewise, if the symbol has hidden or internal visibility.
3907 FIXME: It might be that we also do not need a PLT for other
3908 non-hidden visibilities, but we would have to tell that to the
3909 backend specifically; we can't just clear PLT-related data here. */
3910 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3911 && eif->info->shared
3912 && is_elf_hash_table (eif->info)
3913 && (eif->info->symbolic
3914 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3915 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3916 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3917 {
3918 struct elf_backend_data *bed;
3919 boolean force_local;
3920
3921 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3922
3923 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3924 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3925 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3926 }
3927
3928 /* If this is a weak defined symbol in a dynamic object, and we know
3929 the real definition in the dynamic object, copy interesting flags
3930 over to the real definition. */
3931 if (h->weakdef != NULL)
3932 {
3933 struct elf_link_hash_entry *weakdef;
3934
3935 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3936 || h->root.type == bfd_link_hash_defweak);
3937 weakdef = h->weakdef;
3938 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3939 || weakdef->root.type == bfd_link_hash_defweak);
3940 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3941
3942 /* If the real definition is defined by a regular object file,
3943 don't do anything special. See the longer description in
3944 elf_adjust_dynamic_symbol, below. */
3945 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3946 h->weakdef = NULL;
3947 else
3948 {
3949 struct elf_backend_data *bed;
3950
3951 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3952 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
3953 }
3954 }
3955
3956 return true;
3957 }
3958
3959 /* Make the backend pick a good value for a dynamic symbol. This is
3960 called via elf_link_hash_traverse, and also calls itself
3961 recursively. */
3962
3963 static boolean
3964 elf_adjust_dynamic_symbol (h, data)
3965 struct elf_link_hash_entry *h;
3966 PTR data;
3967 {
3968 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3969 bfd *dynobj;
3970 struct elf_backend_data *bed;
3971
3972 /* Ignore indirect symbols. These are added by the versioning code. */
3973 if (h->root.type == bfd_link_hash_indirect)
3974 return true;
3975
3976 if (! is_elf_hash_table (eif->info))
3977 return false;
3978
3979 /* Fix the symbol flags. */
3980 if (! elf_fix_symbol_flags (h, eif))
3981 return false;
3982
3983 /* If this symbol does not require a PLT entry, and it is not
3984 defined by a dynamic object, or is not referenced by a regular
3985 object, ignore it. We do have to handle a weak defined symbol,
3986 even if no regular object refers to it, if we decided to add it
3987 to the dynamic symbol table. FIXME: Do we normally need to worry
3988 about symbols which are defined by one dynamic object and
3989 referenced by another one? */
3990 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3991 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3992 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3993 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3994 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3995 {
3996 h->plt.offset = (bfd_vma) -1;
3997 return true;
3998 }
3999
4000 /* If we've already adjusted this symbol, don't do it again. This
4001 can happen via a recursive call. */
4002 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
4003 return true;
4004
4005 /* Don't look at this symbol again. Note that we must set this
4006 after checking the above conditions, because we may look at a
4007 symbol once, decide not to do anything, and then get called
4008 recursively later after REF_REGULAR is set below. */
4009 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
4010
4011 /* If this is a weak definition, and we know a real definition, and
4012 the real symbol is not itself defined by a regular object file,
4013 then get a good value for the real definition. We handle the
4014 real symbol first, for the convenience of the backend routine.
4015
4016 Note that there is a confusing case here. If the real definition
4017 is defined by a regular object file, we don't get the real symbol
4018 from the dynamic object, but we do get the weak symbol. If the
4019 processor backend uses a COPY reloc, then if some routine in the
4020 dynamic object changes the real symbol, we will not see that
4021 change in the corresponding weak symbol. This is the way other
4022 ELF linkers work as well, and seems to be a result of the shared
4023 library model.
4024
4025 I will clarify this issue. Most SVR4 shared libraries define the
4026 variable _timezone and define timezone as a weak synonym. The
4027 tzset call changes _timezone. If you write
4028 extern int timezone;
4029 int _timezone = 5;
4030 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4031 you might expect that, since timezone is a synonym for _timezone,
4032 the same number will print both times. However, if the processor
4033 backend uses a COPY reloc, then actually timezone will be copied
4034 into your process image, and, since you define _timezone
4035 yourself, _timezone will not. Thus timezone and _timezone will
4036 wind up at different memory locations. The tzset call will set
4037 _timezone, leaving timezone unchanged. */
4038
4039 if (h->weakdef != NULL)
4040 {
4041 /* If we get to this point, we know there is an implicit
4042 reference by a regular object file via the weak symbol H.
4043 FIXME: Is this really true? What if the traversal finds
4044 H->WEAKDEF before it finds H? */
4045 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4046
4047 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4048 return false;
4049 }
4050
4051 /* If a symbol has no type and no size and does not require a PLT
4052 entry, then we are probably about to do the wrong thing here: we
4053 are probably going to create a COPY reloc for an empty object.
4054 This case can arise when a shared object is built with assembly
4055 code, and the assembly code fails to set the symbol type. */
4056 if (h->size == 0
4057 && h->type == STT_NOTYPE
4058 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4059 (*_bfd_error_handler)
4060 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4061 h->root.root.string);
4062
4063 dynobj = elf_hash_table (eif->info)->dynobj;
4064 bed = get_elf_backend_data (dynobj);
4065 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4066 {
4067 eif->failed = true;
4068 return false;
4069 }
4070
4071 return true;
4072 }
4073 \f
4074 /* This routine is used to export all defined symbols into the dynamic
4075 symbol table. It is called via elf_link_hash_traverse. */
4076
4077 static boolean
4078 elf_export_symbol (h, data)
4079 struct elf_link_hash_entry *h;
4080 PTR data;
4081 {
4082 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4083
4084 /* Ignore indirect symbols. These are added by the versioning code. */
4085 if (h->root.type == bfd_link_hash_indirect)
4086 return true;
4087
4088 if (h->dynindx == -1
4089 && (h->elf_link_hash_flags
4090 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4091 {
4092 struct bfd_elf_version_tree *t;
4093 struct bfd_elf_version_expr *d;
4094
4095 for (t = eif->verdefs; t != NULL; t = t->next)
4096 {
4097 if (t->globals != NULL)
4098 {
4099 for (d = t->globals; d != NULL; d = d->next)
4100 {
4101 if ((*d->match) (d, h->root.root.string))
4102 goto doit;
4103 }
4104 }
4105
4106 if (t->locals != NULL)
4107 {
4108 for (d = t->locals ; d != NULL; d = d->next)
4109 {
4110 if ((*d->match) (d, h->root.root.string))
4111 return true;
4112 }
4113 }
4114 }
4115
4116 if (!eif->verdefs)
4117 {
4118 doit:
4119 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4120 {
4121 eif->failed = true;
4122 return false;
4123 }
4124 }
4125 }
4126
4127 return true;
4128 }
4129 \f
4130 /* Look through the symbols which are defined in other shared
4131 libraries and referenced here. Update the list of version
4132 dependencies. This will be put into the .gnu.version_r section.
4133 This function is called via elf_link_hash_traverse. */
4134
4135 static boolean
4136 elf_link_find_version_dependencies (h, data)
4137 struct elf_link_hash_entry *h;
4138 PTR data;
4139 {
4140 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4141 Elf_Internal_Verneed *t;
4142 Elf_Internal_Vernaux *a;
4143 bfd_size_type amt;
4144
4145 /* We only care about symbols defined in shared objects with version
4146 information. */
4147 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4148 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4149 || h->dynindx == -1
4150 || h->verinfo.verdef == NULL)
4151 return true;
4152
4153 /* See if we already know about this version. */
4154 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4155 {
4156 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4157 continue;
4158
4159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4160 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4161 return true;
4162
4163 break;
4164 }
4165
4166 /* This is a new version. Add it to tree we are building. */
4167
4168 if (t == NULL)
4169 {
4170 amt = sizeof *t;
4171 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4172 if (t == NULL)
4173 {
4174 rinfo->failed = true;
4175 return false;
4176 }
4177
4178 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4179 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4180 elf_tdata (rinfo->output_bfd)->verref = t;
4181 }
4182
4183 amt = sizeof *a;
4184 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4185
4186 /* Note that we are copying a string pointer here, and testing it
4187 above. If bfd_elf_string_from_elf_section is ever changed to
4188 discard the string data when low in memory, this will have to be
4189 fixed. */
4190 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4191
4192 a->vna_flags = h->verinfo.verdef->vd_flags;
4193 a->vna_nextptr = t->vn_auxptr;
4194
4195 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4196 ++rinfo->vers;
4197
4198 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4199
4200 t->vn_auxptr = a;
4201
4202 return true;
4203 }
4204
4205 /* Figure out appropriate versions for all the symbols. We may not
4206 have the version number script until we have read all of the input
4207 files, so until that point we don't know which symbols should be
4208 local. This function is called via elf_link_hash_traverse. */
4209
4210 static boolean
4211 elf_link_assign_sym_version (h, data)
4212 struct elf_link_hash_entry *h;
4213 PTR data;
4214 {
4215 struct elf_assign_sym_version_info *sinfo;
4216 struct bfd_link_info *info;
4217 struct elf_backend_data *bed;
4218 struct elf_info_failed eif;
4219 char *p;
4220 bfd_size_type amt;
4221
4222 sinfo = (struct elf_assign_sym_version_info *) data;
4223 info = sinfo->info;
4224
4225 /* Fix the symbol flags. */
4226 eif.failed = false;
4227 eif.info = info;
4228 if (! elf_fix_symbol_flags (h, &eif))
4229 {
4230 if (eif.failed)
4231 sinfo->failed = true;
4232 return false;
4233 }
4234
4235 /* We only need version numbers for symbols defined in regular
4236 objects. */
4237 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4238 return true;
4239
4240 bed = get_elf_backend_data (sinfo->output_bfd);
4241 p = strchr (h->root.root.string, ELF_VER_CHR);
4242 if (p != NULL && h->verinfo.vertree == NULL)
4243 {
4244 struct bfd_elf_version_tree *t;
4245 boolean hidden;
4246
4247 hidden = true;
4248
4249 /* There are two consecutive ELF_VER_CHR characters if this is
4250 not a hidden symbol. */
4251 ++p;
4252 if (*p == ELF_VER_CHR)
4253 {
4254 hidden = false;
4255 ++p;
4256 }
4257
4258 /* If there is no version string, we can just return out. */
4259 if (*p == '\0')
4260 {
4261 if (hidden)
4262 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4263 return true;
4264 }
4265
4266 /* Look for the version. If we find it, it is no longer weak. */
4267 for (t = sinfo->verdefs; t != NULL; t = t->next)
4268 {
4269 if (strcmp (t->name, p) == 0)
4270 {
4271 size_t len;
4272 char *alc;
4273 struct bfd_elf_version_expr *d;
4274
4275 len = p - h->root.root.string;
4276 alc = bfd_malloc ((bfd_size_type) len);
4277 if (alc == NULL)
4278 return false;
4279 strncpy (alc, h->root.root.string, len - 1);
4280 alc[len - 1] = '\0';
4281 if (alc[len - 2] == ELF_VER_CHR)
4282 alc[len - 2] = '\0';
4283
4284 h->verinfo.vertree = t;
4285 t->used = true;
4286 d = NULL;
4287
4288 if (t->globals != NULL)
4289 {
4290 for (d = t->globals; d != NULL; d = d->next)
4291 if ((*d->match) (d, alc))
4292 break;
4293 }
4294
4295 /* See if there is anything to force this symbol to
4296 local scope. */
4297 if (d == NULL && t->locals != NULL)
4298 {
4299 for (d = t->locals; d != NULL; d = d->next)
4300 {
4301 if ((*d->match) (d, alc))
4302 {
4303 if (h->dynindx != -1
4304 && info->shared
4305 && ! info->export_dynamic)
4306 {
4307 (*bed->elf_backend_hide_symbol) (info, h, true);
4308 }
4309
4310 break;
4311 }
4312 }
4313 }
4314
4315 free (alc);
4316 break;
4317 }
4318 }
4319
4320 /* If we are building an application, we need to create a
4321 version node for this version. */
4322 if (t == NULL && ! info->shared)
4323 {
4324 struct bfd_elf_version_tree **pp;
4325 int version_index;
4326
4327 /* If we aren't going to export this symbol, we don't need
4328 to worry about it. */
4329 if (h->dynindx == -1)
4330 return true;
4331
4332 amt = sizeof *t;
4333 t = ((struct bfd_elf_version_tree *)
4334 bfd_alloc (sinfo->output_bfd, amt));
4335 if (t == NULL)
4336 {
4337 sinfo->failed = true;
4338 return false;
4339 }
4340
4341 t->next = NULL;
4342 t->name = p;
4343 t->globals = NULL;
4344 t->locals = NULL;
4345 t->deps = NULL;
4346 t->name_indx = (unsigned int) -1;
4347 t->used = true;
4348
4349 version_index = 1;
4350 /* Don't count anonymous version tag. */
4351 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4352 version_index = 0;
4353 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4354 ++version_index;
4355 t->vernum = version_index;
4356
4357 *pp = t;
4358
4359 h->verinfo.vertree = t;
4360 }
4361 else if (t == NULL)
4362 {
4363 /* We could not find the version for a symbol when
4364 generating a shared archive. Return an error. */
4365 (*_bfd_error_handler)
4366 (_("%s: undefined versioned symbol name %s"),
4367 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4368 bfd_set_error (bfd_error_bad_value);
4369 sinfo->failed = true;
4370 return false;
4371 }
4372
4373 if (hidden)
4374 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4375 }
4376
4377 /* If we don't have a version for this symbol, see if we can find
4378 something. */
4379 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4380 {
4381 struct bfd_elf_version_tree *t;
4382 struct bfd_elf_version_tree *deflt;
4383 struct bfd_elf_version_expr *d;
4384
4385 /* See if can find what version this symbol is in. If the
4386 symbol is supposed to be local, then don't actually register
4387 it. */
4388 deflt = NULL;
4389 for (t = sinfo->verdefs; t != NULL; t = t->next)
4390 {
4391 if (t->globals != NULL)
4392 {
4393 for (d = t->globals; d != NULL; d = d->next)
4394 {
4395 if ((*d->match) (d, h->root.root.string))
4396 {
4397 h->verinfo.vertree = t;
4398 break;
4399 }
4400 }
4401
4402 if (d != NULL)
4403 break;
4404 }
4405
4406 if (t->locals != NULL)
4407 {
4408 for (d = t->locals; d != NULL; d = d->next)
4409 {
4410 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4411 deflt = t;
4412 else if ((*d->match) (d, h->root.root.string))
4413 {
4414 h->verinfo.vertree = t;
4415 if (h->dynindx != -1
4416 && info->shared
4417 && ! info->export_dynamic)
4418 {
4419 (*bed->elf_backend_hide_symbol) (info, h, true);
4420 }
4421 break;
4422 }
4423 }
4424
4425 if (d != NULL)
4426 break;
4427 }
4428 }
4429
4430 if (deflt != NULL && h->verinfo.vertree == NULL)
4431 {
4432 h->verinfo.vertree = deflt;
4433 if (h->dynindx != -1
4434 && info->shared
4435 && ! info->export_dynamic)
4436 {
4437 (*bed->elf_backend_hide_symbol) (info, h, true);
4438 }
4439 }
4440 }
4441
4442 return true;
4443 }
4444 \f
4445 /* Final phase of ELF linker. */
4446
4447 /* A structure we use to avoid passing large numbers of arguments. */
4448
4449 struct elf_final_link_info
4450 {
4451 /* General link information. */
4452 struct bfd_link_info *info;
4453 /* Output BFD. */
4454 bfd *output_bfd;
4455 /* Symbol string table. */
4456 struct bfd_strtab_hash *symstrtab;
4457 /* .dynsym section. */
4458 asection *dynsym_sec;
4459 /* .hash section. */
4460 asection *hash_sec;
4461 /* symbol version section (.gnu.version). */
4462 asection *symver_sec;
4463 /* Buffer large enough to hold contents of any section. */
4464 bfd_byte *contents;
4465 /* Buffer large enough to hold external relocs of any section. */
4466 PTR external_relocs;
4467 /* Buffer large enough to hold internal relocs of any section. */
4468 Elf_Internal_Rela *internal_relocs;
4469 /* Buffer large enough to hold external local symbols of any input
4470 BFD. */
4471 Elf_External_Sym *external_syms;
4472 /* And a buffer for symbol section indices. */
4473 Elf_External_Sym_Shndx *locsym_shndx;
4474 /* Buffer large enough to hold internal local symbols of any input
4475 BFD. */
4476 Elf_Internal_Sym *internal_syms;
4477 /* Array large enough to hold a symbol index for each local symbol
4478 of any input BFD. */
4479 long *indices;
4480 /* Array large enough to hold a section pointer for each local
4481 symbol of any input BFD. */
4482 asection **sections;
4483 /* Buffer to hold swapped out symbols. */
4484 Elf_External_Sym *symbuf;
4485 /* And one for symbol section indices. */
4486 Elf_External_Sym_Shndx *symshndxbuf;
4487 /* Number of swapped out symbols in buffer. */
4488 size_t symbuf_count;
4489 /* Number of symbols which fit in symbuf. */
4490 size_t symbuf_size;
4491 };
4492
4493 static boolean elf_link_output_sym
4494 PARAMS ((struct elf_final_link_info *, const char *,
4495 Elf_Internal_Sym *, asection *));
4496 static boolean elf_link_flush_output_syms
4497 PARAMS ((struct elf_final_link_info *));
4498 static boolean elf_link_output_extsym
4499 PARAMS ((struct elf_link_hash_entry *, PTR));
4500 static boolean elf_link_sec_merge_syms
4501 PARAMS ((struct elf_link_hash_entry *, PTR));
4502 static boolean elf_link_input_bfd
4503 PARAMS ((struct elf_final_link_info *, bfd *));
4504 static boolean elf_reloc_link_order
4505 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4506 struct bfd_link_order *));
4507
4508 /* This struct is used to pass information to elf_link_output_extsym. */
4509
4510 struct elf_outext_info
4511 {
4512 boolean failed;
4513 boolean localsyms;
4514 struct elf_final_link_info *finfo;
4515 };
4516
4517 /* Compute the size of, and allocate space for, REL_HDR which is the
4518 section header for a section containing relocations for O. */
4519
4520 static boolean
4521 elf_link_size_reloc_section (abfd, rel_hdr, o)
4522 bfd *abfd;
4523 Elf_Internal_Shdr *rel_hdr;
4524 asection *o;
4525 {
4526 bfd_size_type reloc_count;
4527 bfd_size_type num_rel_hashes;
4528
4529 /* Figure out how many relocations there will be. */
4530 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4531 reloc_count = elf_section_data (o)->rel_count;
4532 else
4533 reloc_count = elf_section_data (o)->rel_count2;
4534
4535 num_rel_hashes = o->reloc_count;
4536 if (num_rel_hashes < reloc_count)
4537 num_rel_hashes = reloc_count;
4538
4539 /* That allows us to calculate the size of the section. */
4540 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4541
4542 /* The contents field must last into write_object_contents, so we
4543 allocate it with bfd_alloc rather than malloc. Also since we
4544 cannot be sure that the contents will actually be filled in,
4545 we zero the allocated space. */
4546 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4547 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4548 return false;
4549
4550 /* We only allocate one set of hash entries, so we only do it the
4551 first time we are called. */
4552 if (elf_section_data (o)->rel_hashes == NULL
4553 && num_rel_hashes)
4554 {
4555 struct elf_link_hash_entry **p;
4556
4557 p = ((struct elf_link_hash_entry **)
4558 bfd_zmalloc (num_rel_hashes
4559 * sizeof (struct elf_link_hash_entry *)));
4560 if (p == NULL)
4561 return false;
4562
4563 elf_section_data (o)->rel_hashes = p;
4564 }
4565
4566 return true;
4567 }
4568
4569 /* When performing a relocateable link, the input relocations are
4570 preserved. But, if they reference global symbols, the indices
4571 referenced must be updated. Update all the relocations in
4572 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4573
4574 static void
4575 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4576 bfd *abfd;
4577 Elf_Internal_Shdr *rel_hdr;
4578 unsigned int count;
4579 struct elf_link_hash_entry **rel_hash;
4580 {
4581 unsigned int i;
4582 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4583 Elf_Internal_Rel *irel;
4584 Elf_Internal_Rela *irela;
4585 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4586
4587 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4588 if (irel == NULL)
4589 {
4590 (*_bfd_error_handler) (_("Error: out of memory"));
4591 abort ();
4592 }
4593
4594 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4595 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4596 if (irela == NULL)
4597 {
4598 (*_bfd_error_handler) (_("Error: out of memory"));
4599 abort ();
4600 }
4601
4602 for (i = 0; i < count; i++, rel_hash++)
4603 {
4604 if (*rel_hash == NULL)
4605 continue;
4606
4607 BFD_ASSERT ((*rel_hash)->indx >= 0);
4608
4609 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4610 {
4611 Elf_External_Rel *erel;
4612 unsigned int j;
4613
4614 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4615 if (bed->s->swap_reloc_in)
4616 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4617 else
4618 elf_swap_reloc_in (abfd, erel, irel);
4619
4620 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4621 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4622 ELF_R_TYPE (irel[j].r_info));
4623
4624 if (bed->s->swap_reloc_out)
4625 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4626 else
4627 elf_swap_reloc_out (abfd, irel, erel);
4628 }
4629 else
4630 {
4631 Elf_External_Rela *erela;
4632 unsigned int j;
4633
4634 BFD_ASSERT (rel_hdr->sh_entsize
4635 == sizeof (Elf_External_Rela));
4636
4637 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4638 if (bed->s->swap_reloca_in)
4639 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4640 else
4641 elf_swap_reloca_in (abfd, erela, irela);
4642
4643 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4644 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4645 ELF_R_TYPE (irela[j].r_info));
4646
4647 if (bed->s->swap_reloca_out)
4648 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4649 else
4650 elf_swap_reloca_out (abfd, irela, erela);
4651 }
4652 }
4653
4654 free (irel);
4655 free (irela);
4656 }
4657
4658 struct elf_link_sort_rela {
4659 bfd_vma offset;
4660 enum elf_reloc_type_class type;
4661 union {
4662 Elf_Internal_Rel rel;
4663 Elf_Internal_Rela rela;
4664 } u;
4665 };
4666
4667 static int
4668 elf_link_sort_cmp1 (A, B)
4669 const PTR A;
4670 const PTR B;
4671 {
4672 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4673 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4674 int relativea, relativeb;
4675
4676 relativea = a->type == reloc_class_relative;
4677 relativeb = b->type == reloc_class_relative;
4678
4679 if (relativea < relativeb)
4680 return 1;
4681 if (relativea > relativeb)
4682 return -1;
4683 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4684 return -1;
4685 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4686 return 1;
4687 if (a->u.rel.r_offset < b->u.rel.r_offset)
4688 return -1;
4689 if (a->u.rel.r_offset > b->u.rel.r_offset)
4690 return 1;
4691 return 0;
4692 }
4693
4694 static int
4695 elf_link_sort_cmp2 (A, B)
4696 const PTR A;
4697 const PTR B;
4698 {
4699 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4700 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4701 int copya, copyb;
4702
4703 if (a->offset < b->offset)
4704 return -1;
4705 if (a->offset > b->offset)
4706 return 1;
4707 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4708 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4709 if (copya < copyb)
4710 return -1;
4711 if (copya > copyb)
4712 return 1;
4713 if (a->u.rel.r_offset < b->u.rel.r_offset)
4714 return -1;
4715 if (a->u.rel.r_offset > b->u.rel.r_offset)
4716 return 1;
4717 return 0;
4718 }
4719
4720 static size_t
4721 elf_link_sort_relocs (abfd, info, psec)
4722 bfd *abfd;
4723 struct bfd_link_info *info;
4724 asection **psec;
4725 {
4726 bfd *dynobj = elf_hash_table (info)->dynobj;
4727 asection *reldyn, *o;
4728 boolean rel = false;
4729 bfd_size_type count, size;
4730 size_t i, j, ret;
4731 struct elf_link_sort_rela *rela;
4732 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4733
4734 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4735 if (reldyn == NULL || reldyn->_raw_size == 0)
4736 {
4737 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4738 if (reldyn == NULL || reldyn->_raw_size == 0)
4739 return 0;
4740 rel = true;
4741 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4742 }
4743 else
4744 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4745
4746 size = 0;
4747 for (o = dynobj->sections; o != NULL; o = o->next)
4748 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4749 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4750 && o->output_section == reldyn)
4751 size += o->_raw_size;
4752
4753 if (size != reldyn->_raw_size)
4754 return 0;
4755
4756 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4757 if (rela == NULL)
4758 {
4759 (*info->callbacks->warning)
4760 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4761 (bfd_vma) 0);
4762 return 0;
4763 }
4764
4765 for (o = dynobj->sections; o != NULL; o = o->next)
4766 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4767 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4768 && o->output_section == reldyn)
4769 {
4770 if (rel)
4771 {
4772 Elf_External_Rel *erel, *erelend;
4773 struct elf_link_sort_rela *s;
4774
4775 erel = (Elf_External_Rel *) o->contents;
4776 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4777 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4778 for (; erel < erelend; erel++, s++)
4779 {
4780 if (bed->s->swap_reloc_in)
4781 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4782 else
4783 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4784
4785 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4786 }
4787 }
4788 else
4789 {
4790 Elf_External_Rela *erela, *erelaend;
4791 struct elf_link_sort_rela *s;
4792
4793 erela = (Elf_External_Rela *) o->contents;
4794 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4795 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4796 for (; erela < erelaend; erela++, s++)
4797 {
4798 if (bed->s->swap_reloca_in)
4799 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4800 &s->u.rela);
4801 else
4802 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4803
4804 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4805 }
4806 }
4807 }
4808
4809 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4810 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4811 ;
4812 for (i = ret, j = ret; i < count; i++)
4813 {
4814 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4815 j = i;
4816 rela[i].offset = rela[j].u.rel.r_offset;
4817 }
4818 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4819
4820 for (o = dynobj->sections; o != NULL; o = o->next)
4821 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4822 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4823 && o->output_section == reldyn)
4824 {
4825 if (rel)
4826 {
4827 Elf_External_Rel *erel, *erelend;
4828 struct elf_link_sort_rela *s;
4829
4830 erel = (Elf_External_Rel *) o->contents;
4831 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4832 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4833 for (; erel < erelend; erel++, s++)
4834 {
4835 if (bed->s->swap_reloc_out)
4836 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4837 (bfd_byte *) erel);
4838 else
4839 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4840 }
4841 }
4842 else
4843 {
4844 Elf_External_Rela *erela, *erelaend;
4845 struct elf_link_sort_rela *s;
4846
4847 erela = (Elf_External_Rela *) o->contents;
4848 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4849 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4850 for (; erela < erelaend; erela++, s++)
4851 {
4852 if (bed->s->swap_reloca_out)
4853 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4854 (bfd_byte *) erela);
4855 else
4856 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4857 }
4858 }
4859 }
4860
4861 free (rela);
4862 *psec = reldyn;
4863 return ret;
4864 }
4865
4866 /* Do the final step of an ELF link. */
4867
4868 boolean
4869 elf_bfd_final_link (abfd, info)
4870 bfd *abfd;
4871 struct bfd_link_info *info;
4872 {
4873 boolean dynamic;
4874 boolean emit_relocs;
4875 bfd *dynobj;
4876 struct elf_final_link_info finfo;
4877 register asection *o;
4878 register struct bfd_link_order *p;
4879 register bfd *sub;
4880 bfd_size_type max_contents_size;
4881 bfd_size_type max_external_reloc_size;
4882 bfd_size_type max_internal_reloc_count;
4883 bfd_size_type max_sym_count;
4884 bfd_size_type max_sym_shndx_count;
4885 file_ptr off;
4886 Elf_Internal_Sym elfsym;
4887 unsigned int i;
4888 Elf_Internal_Shdr *symtab_hdr;
4889 Elf_Internal_Shdr *symstrtab_hdr;
4890 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4891 struct elf_outext_info eoinfo;
4892 boolean merged;
4893 size_t relativecount = 0;
4894 asection *reldyn = 0;
4895 bfd_size_type amt;
4896
4897 if (! is_elf_hash_table (info))
4898 return false;
4899
4900 if (info->shared)
4901 abfd->flags |= DYNAMIC;
4902
4903 dynamic = elf_hash_table (info)->dynamic_sections_created;
4904 dynobj = elf_hash_table (info)->dynobj;
4905
4906 emit_relocs = (info->relocateable
4907 || info->emitrelocations
4908 || bed->elf_backend_emit_relocs);
4909
4910 finfo.info = info;
4911 finfo.output_bfd = abfd;
4912 finfo.symstrtab = elf_stringtab_init ();
4913 if (finfo.symstrtab == NULL)
4914 return false;
4915
4916 if (! dynamic)
4917 {
4918 finfo.dynsym_sec = NULL;
4919 finfo.hash_sec = NULL;
4920 finfo.symver_sec = NULL;
4921 }
4922 else
4923 {
4924 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4925 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4926 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4927 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4928 /* Note that it is OK if symver_sec is NULL. */
4929 }
4930
4931 finfo.contents = NULL;
4932 finfo.external_relocs = NULL;
4933 finfo.internal_relocs = NULL;
4934 finfo.external_syms = NULL;
4935 finfo.locsym_shndx = NULL;
4936 finfo.internal_syms = NULL;
4937 finfo.indices = NULL;
4938 finfo.sections = NULL;
4939 finfo.symbuf = NULL;
4940 finfo.symshndxbuf = NULL;
4941 finfo.symbuf_count = 0;
4942
4943 /* Count up the number of relocations we will output for each output
4944 section, so that we know the sizes of the reloc sections. We
4945 also figure out some maximum sizes. */
4946 max_contents_size = 0;
4947 max_external_reloc_size = 0;
4948 max_internal_reloc_count = 0;
4949 max_sym_count = 0;
4950 max_sym_shndx_count = 0;
4951 merged = false;
4952 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4953 {
4954 o->reloc_count = 0;
4955
4956 for (p = o->link_order_head; p != NULL; p = p->next)
4957 {
4958 if (p->type == bfd_section_reloc_link_order
4959 || p->type == bfd_symbol_reloc_link_order)
4960 ++o->reloc_count;
4961 else if (p->type == bfd_indirect_link_order)
4962 {
4963 asection *sec;
4964
4965 sec = p->u.indirect.section;
4966
4967 /* Mark all sections which are to be included in the
4968 link. This will normally be every section. We need
4969 to do this so that we can identify any sections which
4970 the linker has decided to not include. */
4971 sec->linker_mark = true;
4972
4973 if (sec->flags & SEC_MERGE)
4974 merged = true;
4975
4976 if (info->relocateable || info->emitrelocations)
4977 o->reloc_count += sec->reloc_count;
4978 else if (bed->elf_backend_count_relocs)
4979 {
4980 Elf_Internal_Rela * relocs;
4981
4982 relocs = (NAME(_bfd_elf,link_read_relocs)
4983 (abfd, sec, (PTR) NULL,
4984 (Elf_Internal_Rela *) NULL, info->keep_memory));
4985
4986 o->reloc_count
4987 += (*bed->elf_backend_count_relocs) (sec, relocs);
4988
4989 if (!info->keep_memory)
4990 free (relocs);
4991 }
4992
4993 if (sec->_raw_size > max_contents_size)
4994 max_contents_size = sec->_raw_size;
4995 if (sec->_cooked_size > max_contents_size)
4996 max_contents_size = sec->_cooked_size;
4997
4998 /* We are interested in just local symbols, not all
4999 symbols. */
5000 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5001 && (sec->owner->flags & DYNAMIC) == 0)
5002 {
5003 size_t sym_count;
5004
5005 if (elf_bad_symtab (sec->owner))
5006 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5007 / sizeof (Elf_External_Sym));
5008 else
5009 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5010
5011 if (sym_count > max_sym_count)
5012 max_sym_count = sym_count;
5013
5014 if (sym_count > max_sym_shndx_count
5015 && elf_symtab_shndx (sec->owner) != 0)
5016 max_sym_shndx_count = sym_count;
5017
5018 if ((sec->flags & SEC_RELOC) != 0)
5019 {
5020 size_t ext_size;
5021
5022 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5023 if (ext_size > max_external_reloc_size)
5024 max_external_reloc_size = ext_size;
5025 if (sec->reloc_count > max_internal_reloc_count)
5026 max_internal_reloc_count = sec->reloc_count;
5027 }
5028 }
5029 }
5030 }
5031
5032 if (o->reloc_count > 0)
5033 o->flags |= SEC_RELOC;
5034 else
5035 {
5036 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5037 set it (this is probably a bug) and if it is set
5038 assign_section_numbers will create a reloc section. */
5039 o->flags &=~ SEC_RELOC;
5040 }
5041
5042 /* If the SEC_ALLOC flag is not set, force the section VMA to
5043 zero. This is done in elf_fake_sections as well, but forcing
5044 the VMA to 0 here will ensure that relocs against these
5045 sections are handled correctly. */
5046 if ((o->flags & SEC_ALLOC) == 0
5047 && ! o->user_set_vma)
5048 o->vma = 0;
5049 }
5050
5051 if (! info->relocateable && merged)
5052 elf_link_hash_traverse (elf_hash_table (info),
5053 elf_link_sec_merge_syms, (PTR) abfd);
5054
5055 /* Figure out the file positions for everything but the symbol table
5056 and the relocs. We set symcount to force assign_section_numbers
5057 to create a symbol table. */
5058 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5059 BFD_ASSERT (! abfd->output_has_begun);
5060 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5061 goto error_return;
5062
5063 /* Figure out how many relocations we will have in each section.
5064 Just using RELOC_COUNT isn't good enough since that doesn't
5065 maintain a separate value for REL vs. RELA relocations. */
5066 if (emit_relocs)
5067 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5068 for (o = sub->sections; o != NULL; o = o->next)
5069 {
5070 asection *output_section;
5071
5072 if (! o->linker_mark)
5073 {
5074 /* This section was omitted from the link. */
5075 continue;
5076 }
5077
5078 output_section = o->output_section;
5079
5080 if (output_section != NULL
5081 && (o->flags & SEC_RELOC) != 0)
5082 {
5083 struct bfd_elf_section_data *esdi
5084 = elf_section_data (o);
5085 struct bfd_elf_section_data *esdo
5086 = elf_section_data (output_section);
5087 unsigned int *rel_count;
5088 unsigned int *rel_count2;
5089
5090 /* We must be careful to add the relocation froms the
5091 input section to the right output count. */
5092 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
5093 {
5094 rel_count = &esdo->rel_count;
5095 rel_count2 = &esdo->rel_count2;
5096 }
5097 else
5098 {
5099 rel_count = &esdo->rel_count2;
5100 rel_count2 = &esdo->rel_count;
5101 }
5102
5103 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5104 if (esdi->rel_hdr2)
5105 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5106 output_section->flags |= SEC_RELOC;
5107 }
5108 }
5109
5110 /* That created the reloc sections. Set their sizes, and assign
5111 them file positions, and allocate some buffers. */
5112 for (o = abfd->sections; o != NULL; o = o->next)
5113 {
5114 if ((o->flags & SEC_RELOC) != 0)
5115 {
5116 if (!elf_link_size_reloc_section (abfd,
5117 &elf_section_data (o)->rel_hdr,
5118 o))
5119 goto error_return;
5120
5121 if (elf_section_data (o)->rel_hdr2
5122 && !elf_link_size_reloc_section (abfd,
5123 elf_section_data (o)->rel_hdr2,
5124 o))
5125 goto error_return;
5126 }
5127
5128 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5129 to count upwards while actually outputting the relocations. */
5130 elf_section_data (o)->rel_count = 0;
5131 elf_section_data (o)->rel_count2 = 0;
5132 }
5133
5134 _bfd_elf_assign_file_positions_for_relocs (abfd);
5135
5136 /* We have now assigned file positions for all the sections except
5137 .symtab and .strtab. We start the .symtab section at the current
5138 file position, and write directly to it. We build the .strtab
5139 section in memory. */
5140 bfd_get_symcount (abfd) = 0;
5141 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5142 /* sh_name is set in prep_headers. */
5143 symtab_hdr->sh_type = SHT_SYMTAB;
5144 symtab_hdr->sh_flags = 0;
5145 symtab_hdr->sh_addr = 0;
5146 symtab_hdr->sh_size = 0;
5147 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5148 /* sh_link is set in assign_section_numbers. */
5149 /* sh_info is set below. */
5150 /* sh_offset is set just below. */
5151 symtab_hdr->sh_addralign = bed->s->file_align;
5152
5153 off = elf_tdata (abfd)->next_file_pos;
5154 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5155
5156 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5157 incorrect. We do not yet know the size of the .symtab section.
5158 We correct next_file_pos below, after we do know the size. */
5159
5160 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5161 continuously seeking to the right position in the file. */
5162 if (! info->keep_memory || max_sym_count < 20)
5163 finfo.symbuf_size = 20;
5164 else
5165 finfo.symbuf_size = max_sym_count;
5166 amt = finfo.symbuf_size;
5167 amt *= sizeof (Elf_External_Sym);
5168 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5169 if (finfo.symbuf == NULL)
5170 goto error_return;
5171 if (elf_numsections (abfd) > SHN_LORESERVE)
5172 {
5173 amt = finfo.symbuf_size;
5174 amt *= sizeof (Elf_External_Sym_Shndx);
5175 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5176 if (finfo.symshndxbuf == NULL)
5177 goto error_return;
5178 }
5179
5180 /* Start writing out the symbol table. The first symbol is always a
5181 dummy symbol. */
5182 if (info->strip != strip_all
5183 || emit_relocs)
5184 {
5185 elfsym.st_value = 0;
5186 elfsym.st_size = 0;
5187 elfsym.st_info = 0;
5188 elfsym.st_other = 0;
5189 elfsym.st_shndx = SHN_UNDEF;
5190 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5191 &elfsym, bfd_und_section_ptr))
5192 goto error_return;
5193 }
5194
5195 #if 0
5196 /* Some standard ELF linkers do this, but we don't because it causes
5197 bootstrap comparison failures. */
5198 /* Output a file symbol for the output file as the second symbol.
5199 We output this even if we are discarding local symbols, although
5200 I'm not sure if this is correct. */
5201 elfsym.st_value = 0;
5202 elfsym.st_size = 0;
5203 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5204 elfsym.st_other = 0;
5205 elfsym.st_shndx = SHN_ABS;
5206 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5207 &elfsym, bfd_abs_section_ptr))
5208 goto error_return;
5209 #endif
5210
5211 /* Output a symbol for each section. We output these even if we are
5212 discarding local symbols, since they are used for relocs. These
5213 symbols have no names. We store the index of each one in the
5214 index field of the section, so that we can find it again when
5215 outputting relocs. */
5216 if (info->strip != strip_all
5217 || emit_relocs)
5218 {
5219 elfsym.st_size = 0;
5220 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5221 elfsym.st_other = 0;
5222 for (i = 1; i < elf_numsections (abfd); i++)
5223 {
5224 o = section_from_elf_index (abfd, i);
5225 if (o != NULL)
5226 o->target_index = bfd_get_symcount (abfd);
5227 elfsym.st_shndx = i;
5228 if (info->relocateable || o == NULL)
5229 elfsym.st_value = 0;
5230 else
5231 elfsym.st_value = o->vma;
5232 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5233 &elfsym, o))
5234 goto error_return;
5235 if (i == SHN_LORESERVE)
5236 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5237 }
5238 }
5239
5240 /* Allocate some memory to hold information read in from the input
5241 files. */
5242 if (max_contents_size != 0)
5243 {
5244 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5245 if (finfo.contents == NULL)
5246 goto error_return;
5247 }
5248
5249 if (max_external_reloc_size != 0)
5250 {
5251 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5252 if (finfo.external_relocs == NULL)
5253 goto error_return;
5254 }
5255
5256 if (max_internal_reloc_count != 0)
5257 {
5258 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5259 amt *= sizeof (Elf_Internal_Rela);
5260 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5261 if (finfo.internal_relocs == NULL)
5262 goto error_return;
5263 }
5264
5265 if (max_sym_count != 0)
5266 {
5267 amt = max_sym_count * sizeof (Elf_External_Sym);
5268 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5269 if (finfo.external_syms == NULL)
5270 goto error_return;
5271
5272 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5273 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5274 if (finfo.internal_syms == NULL)
5275 goto error_return;
5276
5277 amt = max_sym_count * sizeof (long);
5278 finfo.indices = (long *) bfd_malloc (amt);
5279 if (finfo.indices == NULL)
5280 goto error_return;
5281
5282 amt = max_sym_count * sizeof (asection *);
5283 finfo.sections = (asection **) bfd_malloc (amt);
5284 if (finfo.sections == NULL)
5285 goto error_return;
5286 }
5287
5288 if (max_sym_shndx_count != 0)
5289 {
5290 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5291 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5292 if (finfo.locsym_shndx == NULL)
5293 goto error_return;
5294 }
5295
5296 /* Since ELF permits relocations to be against local symbols, we
5297 must have the local symbols available when we do the relocations.
5298 Since we would rather only read the local symbols once, and we
5299 would rather not keep them in memory, we handle all the
5300 relocations for a single input file at the same time.
5301
5302 Unfortunately, there is no way to know the total number of local
5303 symbols until we have seen all of them, and the local symbol
5304 indices precede the global symbol indices. This means that when
5305 we are generating relocateable output, and we see a reloc against
5306 a global symbol, we can not know the symbol index until we have
5307 finished examining all the local symbols to see which ones we are
5308 going to output. To deal with this, we keep the relocations in
5309 memory, and don't output them until the end of the link. This is
5310 an unfortunate waste of memory, but I don't see a good way around
5311 it. Fortunately, it only happens when performing a relocateable
5312 link, which is not the common case. FIXME: If keep_memory is set
5313 we could write the relocs out and then read them again; I don't
5314 know how bad the memory loss will be. */
5315
5316 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5317 sub->output_has_begun = false;
5318 for (o = abfd->sections; o != NULL; o = o->next)
5319 {
5320 for (p = o->link_order_head; p != NULL; p = p->next)
5321 {
5322 if (p->type == bfd_indirect_link_order
5323 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5324 == bfd_target_elf_flavour)
5325 && (sub->arch_info->bits_per_word
5326 == abfd->arch_info->bits_per_word))
5327 {
5328 if (! sub->output_has_begun)
5329 {
5330 if (! elf_link_input_bfd (&finfo, sub))
5331 goto error_return;
5332 sub->output_has_begun = true;
5333 }
5334 }
5335 else if (p->type == bfd_section_reloc_link_order
5336 || p->type == bfd_symbol_reloc_link_order)
5337 {
5338 if (! elf_reloc_link_order (abfd, info, o, p))
5339 goto error_return;
5340 }
5341 else
5342 {
5343 if (! _bfd_default_link_order (abfd, info, o, p))
5344 goto error_return;
5345 }
5346 }
5347 }
5348
5349 /* Output any global symbols that got converted to local in a
5350 version script or due to symbol visibility. We do this in a
5351 separate step since ELF requires all local symbols to appear
5352 prior to any global symbols. FIXME: We should only do this if
5353 some global symbols were, in fact, converted to become local.
5354 FIXME: Will this work correctly with the Irix 5 linker? */
5355 eoinfo.failed = false;
5356 eoinfo.finfo = &finfo;
5357 eoinfo.localsyms = true;
5358 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5359 (PTR) &eoinfo);
5360 if (eoinfo.failed)
5361 return false;
5362
5363 /* That wrote out all the local symbols. Finish up the symbol table
5364 with the global symbols. Even if we want to strip everything we
5365 can, we still need to deal with those global symbols that got
5366 converted to local in a version script. */
5367
5368 /* The sh_info field records the index of the first non local symbol. */
5369 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5370
5371 if (dynamic
5372 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5373 {
5374 Elf_Internal_Sym sym;
5375 Elf_External_Sym *dynsym =
5376 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5377 long last_local = 0;
5378
5379 /* Write out the section symbols for the output sections. */
5380 if (info->shared)
5381 {
5382 asection *s;
5383
5384 sym.st_size = 0;
5385 sym.st_name = 0;
5386 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5387 sym.st_other = 0;
5388
5389 for (s = abfd->sections; s != NULL; s = s->next)
5390 {
5391 int indx;
5392 Elf_External_Sym *dest;
5393
5394 indx = elf_section_data (s)->this_idx;
5395 BFD_ASSERT (indx > 0);
5396 sym.st_shndx = indx;
5397 sym.st_value = s->vma;
5398 dest = dynsym + elf_section_data (s)->dynindx;
5399 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5400 }
5401
5402 last_local = bfd_count_sections (abfd);
5403 }
5404
5405 /* Write out the local dynsyms. */
5406 if (elf_hash_table (info)->dynlocal)
5407 {
5408 struct elf_link_local_dynamic_entry *e;
5409 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5410 {
5411 asection *s;
5412 Elf_External_Sym *dest;
5413
5414 sym.st_size = e->isym.st_size;
5415 sym.st_other = e->isym.st_other;
5416
5417 /* Copy the internal symbol as is.
5418 Note that we saved a word of storage and overwrote
5419 the original st_name with the dynstr_index. */
5420 sym = e->isym;
5421
5422 if (e->isym.st_shndx != SHN_UNDEF
5423 && (e->isym.st_shndx < SHN_LORESERVE
5424 || e->isym.st_shndx > SHN_HIRESERVE))
5425 {
5426 s = bfd_section_from_elf_index (e->input_bfd,
5427 e->isym.st_shndx);
5428
5429 sym.st_shndx =
5430 elf_section_data (s->output_section)->this_idx;
5431 sym.st_value = (s->output_section->vma
5432 + s->output_offset
5433 + e->isym.st_value);
5434 }
5435
5436 if (last_local < e->dynindx)
5437 last_local = e->dynindx;
5438
5439 dest = dynsym + e->dynindx;
5440 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5441 }
5442 }
5443
5444 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5445 last_local + 1;
5446 }
5447
5448 /* We get the global symbols from the hash table. */
5449 eoinfo.failed = false;
5450 eoinfo.localsyms = false;
5451 eoinfo.finfo = &finfo;
5452 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5453 (PTR) &eoinfo);
5454 if (eoinfo.failed)
5455 return false;
5456
5457 /* If backend needs to output some symbols not present in the hash
5458 table, do it now. */
5459 if (bed->elf_backend_output_arch_syms)
5460 {
5461 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5462 Elf_Internal_Sym *,
5463 asection *));
5464
5465 if (! ((*bed->elf_backend_output_arch_syms)
5466 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5467 return false;
5468 }
5469
5470 /* Flush all symbols to the file. */
5471 if (! elf_link_flush_output_syms (&finfo))
5472 return false;
5473
5474 /* Now we know the size of the symtab section. */
5475 off += symtab_hdr->sh_size;
5476
5477 /* Finish up and write out the symbol string table (.strtab)
5478 section. */
5479 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5480 /* sh_name was set in prep_headers. */
5481 symstrtab_hdr->sh_type = SHT_STRTAB;
5482 symstrtab_hdr->sh_flags = 0;
5483 symstrtab_hdr->sh_addr = 0;
5484 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5485 symstrtab_hdr->sh_entsize = 0;
5486 symstrtab_hdr->sh_link = 0;
5487 symstrtab_hdr->sh_info = 0;
5488 /* sh_offset is set just below. */
5489 symstrtab_hdr->sh_addralign = 1;
5490
5491 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5492 elf_tdata (abfd)->next_file_pos = off;
5493
5494 if (bfd_get_symcount (abfd) > 0)
5495 {
5496 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5497 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5498 return false;
5499 }
5500
5501 /* Adjust the relocs to have the correct symbol indices. */
5502 for (o = abfd->sections; o != NULL; o = o->next)
5503 {
5504 if ((o->flags & SEC_RELOC) == 0)
5505 continue;
5506
5507 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5508 elf_section_data (o)->rel_count,
5509 elf_section_data (o)->rel_hashes);
5510 if (elf_section_data (o)->rel_hdr2 != NULL)
5511 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5512 elf_section_data (o)->rel_count2,
5513 (elf_section_data (o)->rel_hashes
5514 + elf_section_data (o)->rel_count));
5515
5516 /* Set the reloc_count field to 0 to prevent write_relocs from
5517 trying to swap the relocs out itself. */
5518 o->reloc_count = 0;
5519 }
5520
5521 if (dynamic && info->combreloc && dynobj != NULL)
5522 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5523
5524 /* If we are linking against a dynamic object, or generating a
5525 shared library, finish up the dynamic linking information. */
5526 if (dynamic)
5527 {
5528 Elf_External_Dyn *dyncon, *dynconend;
5529
5530 /* Fix up .dynamic entries. */
5531 o = bfd_get_section_by_name (dynobj, ".dynamic");
5532 BFD_ASSERT (o != NULL);
5533
5534 dyncon = (Elf_External_Dyn *) o->contents;
5535 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5536 for (; dyncon < dynconend; dyncon++)
5537 {
5538 Elf_Internal_Dyn dyn;
5539 const char *name;
5540 unsigned int type;
5541
5542 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5543
5544 switch (dyn.d_tag)
5545 {
5546 default:
5547 break;
5548 case DT_NULL:
5549 if (relativecount > 0 && dyncon + 1 < dynconend)
5550 {
5551 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5552 {
5553 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5554 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5555 default: break;
5556 }
5557 if (dyn.d_tag != DT_NULL)
5558 {
5559 dyn.d_un.d_val = relativecount;
5560 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5561 relativecount = 0;
5562 }
5563 }
5564 break;
5565 case DT_INIT:
5566 name = info->init_function;
5567 goto get_sym;
5568 case DT_FINI:
5569 name = info->fini_function;
5570 get_sym:
5571 {
5572 struct elf_link_hash_entry *h;
5573
5574 h = elf_link_hash_lookup (elf_hash_table (info), name,
5575 false, false, true);
5576 if (h != NULL
5577 && (h->root.type == bfd_link_hash_defined
5578 || h->root.type == bfd_link_hash_defweak))
5579 {
5580 dyn.d_un.d_val = h->root.u.def.value;
5581 o = h->root.u.def.section;
5582 if (o->output_section != NULL)
5583 dyn.d_un.d_val += (o->output_section->vma
5584 + o->output_offset);
5585 else
5586 {
5587 /* The symbol is imported from another shared
5588 library and does not apply to this one. */
5589 dyn.d_un.d_val = 0;
5590 }
5591
5592 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5593 }
5594 }
5595 break;
5596
5597 case DT_PREINIT_ARRAYSZ:
5598 name = ".preinit_array";
5599 goto get_size;
5600 case DT_INIT_ARRAYSZ:
5601 name = ".init_array";
5602 goto get_size;
5603 case DT_FINI_ARRAYSZ:
5604 name = ".fini_array";
5605 get_size:
5606 o = bfd_get_section_by_name (abfd, name);
5607 BFD_ASSERT (o != NULL);
5608 if (o->_raw_size == 0)
5609 (*_bfd_error_handler)
5610 (_("warning: %s section has zero size"), name);
5611 dyn.d_un.d_val = o->_raw_size;
5612 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5613 break;
5614
5615 case DT_PREINIT_ARRAY:
5616 name = ".preinit_array";
5617 goto get_vma;
5618 case DT_INIT_ARRAY:
5619 name = ".init_array";
5620 goto get_vma;
5621 case DT_FINI_ARRAY:
5622 name = ".fini_array";
5623 goto get_vma;
5624
5625 case DT_HASH:
5626 name = ".hash";
5627 goto get_vma;
5628 case DT_STRTAB:
5629 name = ".dynstr";
5630 goto get_vma;
5631 case DT_SYMTAB:
5632 name = ".dynsym";
5633 goto get_vma;
5634 case DT_VERDEF:
5635 name = ".gnu.version_d";
5636 goto get_vma;
5637 case DT_VERNEED:
5638 name = ".gnu.version_r";
5639 goto get_vma;
5640 case DT_VERSYM:
5641 name = ".gnu.version";
5642 get_vma:
5643 o = bfd_get_section_by_name (abfd, name);
5644 BFD_ASSERT (o != NULL);
5645 dyn.d_un.d_ptr = o->vma;
5646 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5647 break;
5648
5649 case DT_REL:
5650 case DT_RELA:
5651 case DT_RELSZ:
5652 case DT_RELASZ:
5653 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5654 type = SHT_REL;
5655 else
5656 type = SHT_RELA;
5657 dyn.d_un.d_val = 0;
5658 for (i = 1; i < elf_numsections (abfd); i++)
5659 {
5660 Elf_Internal_Shdr *hdr;
5661
5662 hdr = elf_elfsections (abfd)[i];
5663 if (hdr->sh_type == type
5664 && (hdr->sh_flags & SHF_ALLOC) != 0)
5665 {
5666 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5667 dyn.d_un.d_val += hdr->sh_size;
5668 else
5669 {
5670 if (dyn.d_un.d_val == 0
5671 || hdr->sh_addr < dyn.d_un.d_val)
5672 dyn.d_un.d_val = hdr->sh_addr;
5673 }
5674 }
5675 }
5676 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5677 break;
5678 }
5679 }
5680 }
5681
5682 /* If we have created any dynamic sections, then output them. */
5683 if (dynobj != NULL)
5684 {
5685 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5686 goto error_return;
5687
5688 for (o = dynobj->sections; o != NULL; o = o->next)
5689 {
5690 if ((o->flags & SEC_HAS_CONTENTS) == 0
5691 || o->_raw_size == 0
5692 || o->output_section == bfd_abs_section_ptr)
5693 continue;
5694 if ((o->flags & SEC_LINKER_CREATED) == 0)
5695 {
5696 /* At this point, we are only interested in sections
5697 created by elf_link_create_dynamic_sections. */
5698 continue;
5699 }
5700 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5701 != SHT_STRTAB)
5702 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5703 {
5704 if (! bfd_set_section_contents (abfd, o->output_section,
5705 o->contents,
5706 (file_ptr) o->output_offset,
5707 o->_raw_size))
5708 goto error_return;
5709 }
5710 else
5711 {
5712 /* The contents of the .dynstr section are actually in a
5713 stringtab. */
5714 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5715 if (bfd_seek (abfd, off, SEEK_SET) != 0
5716 || ! _bfd_elf_strtab_emit (abfd,
5717 elf_hash_table (info)->dynstr))
5718 goto error_return;
5719 }
5720 }
5721 }
5722
5723 /* If we have optimized stabs strings, output them. */
5724 if (elf_hash_table (info)->stab_info != NULL)
5725 {
5726 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5727 goto error_return;
5728 }
5729
5730 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5731 {
5732 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5733 ".eh_frame_hdr");
5734 if (o
5735 && (elf_section_data (o)->sec_info_type
5736 == ELF_INFO_TYPE_EH_FRAME_HDR))
5737 {
5738 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5739 goto error_return;
5740 }
5741 }
5742
5743 if (finfo.symstrtab != NULL)
5744 _bfd_stringtab_free (finfo.symstrtab);
5745 if (finfo.contents != NULL)
5746 free (finfo.contents);
5747 if (finfo.external_relocs != NULL)
5748 free (finfo.external_relocs);
5749 if (finfo.internal_relocs != NULL)
5750 free (finfo.internal_relocs);
5751 if (finfo.external_syms != NULL)
5752 free (finfo.external_syms);
5753 if (finfo.locsym_shndx != NULL)
5754 free (finfo.locsym_shndx);
5755 if (finfo.internal_syms != NULL)
5756 free (finfo.internal_syms);
5757 if (finfo.indices != NULL)
5758 free (finfo.indices);
5759 if (finfo.sections != NULL)
5760 free (finfo.sections);
5761 if (finfo.symbuf != NULL)
5762 free (finfo.symbuf);
5763 if (finfo.symshndxbuf != NULL)
5764 free (finfo.symbuf);
5765 for (o = abfd->sections; o != NULL; o = o->next)
5766 {
5767 if ((o->flags & SEC_RELOC) != 0
5768 && elf_section_data (o)->rel_hashes != NULL)
5769 free (elf_section_data (o)->rel_hashes);
5770 }
5771
5772 elf_tdata (abfd)->linker = true;
5773
5774 return true;
5775
5776 error_return:
5777 if (finfo.symstrtab != NULL)
5778 _bfd_stringtab_free (finfo.symstrtab);
5779 if (finfo.contents != NULL)
5780 free (finfo.contents);
5781 if (finfo.external_relocs != NULL)
5782 free (finfo.external_relocs);
5783 if (finfo.internal_relocs != NULL)
5784 free (finfo.internal_relocs);
5785 if (finfo.external_syms != NULL)
5786 free (finfo.external_syms);
5787 if (finfo.locsym_shndx != NULL)
5788 free (finfo.locsym_shndx);
5789 if (finfo.internal_syms != NULL)
5790 free (finfo.internal_syms);
5791 if (finfo.indices != NULL)
5792 free (finfo.indices);
5793 if (finfo.sections != NULL)
5794 free (finfo.sections);
5795 if (finfo.symbuf != NULL)
5796 free (finfo.symbuf);
5797 if (finfo.symshndxbuf != NULL)
5798 free (finfo.symbuf);
5799 for (o = abfd->sections; o != NULL; o = o->next)
5800 {
5801 if ((o->flags & SEC_RELOC) != 0
5802 && elf_section_data (o)->rel_hashes != NULL)
5803 free (elf_section_data (o)->rel_hashes);
5804 }
5805
5806 return false;
5807 }
5808
5809 /* Add a symbol to the output symbol table. */
5810
5811 static boolean
5812 elf_link_output_sym (finfo, name, elfsym, input_sec)
5813 struct elf_final_link_info *finfo;
5814 const char *name;
5815 Elf_Internal_Sym *elfsym;
5816 asection *input_sec;
5817 {
5818 Elf_External_Sym *dest;
5819 Elf_External_Sym_Shndx *destshndx;
5820
5821 boolean (*output_symbol_hook) PARAMS ((bfd *,
5822 struct bfd_link_info *info,
5823 const char *,
5824 Elf_Internal_Sym *,
5825 asection *));
5826
5827 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5828 elf_backend_link_output_symbol_hook;
5829 if (output_symbol_hook != NULL)
5830 {
5831 if (! ((*output_symbol_hook)
5832 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5833 return false;
5834 }
5835
5836 if (name == (const char *) NULL || *name == '\0')
5837 elfsym->st_name = 0;
5838 else if (input_sec->flags & SEC_EXCLUDE)
5839 elfsym->st_name = 0;
5840 else
5841 {
5842 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5843 name, true, false);
5844 if (elfsym->st_name == (unsigned long) -1)
5845 return false;
5846 }
5847
5848 if (finfo->symbuf_count >= finfo->symbuf_size)
5849 {
5850 if (! elf_link_flush_output_syms (finfo))
5851 return false;
5852 }
5853
5854 dest = finfo->symbuf + finfo->symbuf_count;
5855 destshndx = finfo->symshndxbuf;
5856 if (destshndx != NULL)
5857 destshndx += finfo->symbuf_count;
5858 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5859 ++finfo->symbuf_count;
5860
5861 ++ bfd_get_symcount (finfo->output_bfd);
5862
5863 return true;
5864 }
5865
5866 /* Flush the output symbols to the file. */
5867
5868 static boolean
5869 elf_link_flush_output_syms (finfo)
5870 struct elf_final_link_info *finfo;
5871 {
5872 if (finfo->symbuf_count > 0)
5873 {
5874 Elf_Internal_Shdr *hdr;
5875 file_ptr pos;
5876 bfd_size_type amt;
5877
5878 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5879 pos = hdr->sh_offset + hdr->sh_size;
5880 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5881 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5882 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5883 return false;
5884
5885 hdr->sh_size += amt;
5886
5887 if (finfo->symshndxbuf != NULL)
5888 {
5889 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5890 pos = hdr->sh_offset + hdr->sh_size;
5891 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5892 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5893 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5894 != amt))
5895 return false;
5896
5897 hdr->sh_size += amt;
5898 }
5899
5900 finfo->symbuf_count = 0;
5901 }
5902
5903 return true;
5904 }
5905
5906 /* Adjust all external symbols pointing into SEC_MERGE sections
5907 to reflect the object merging within the sections. */
5908
5909 static boolean
5910 elf_link_sec_merge_syms (h, data)
5911 struct elf_link_hash_entry *h;
5912 PTR data;
5913 {
5914 asection *sec;
5915
5916 if ((h->root.type == bfd_link_hash_defined
5917 || h->root.type == bfd_link_hash_defweak)
5918 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5919 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5920 {
5921 bfd *output_bfd = (bfd *) data;
5922
5923 h->root.u.def.value =
5924 _bfd_merged_section_offset (output_bfd,
5925 &h->root.u.def.section,
5926 elf_section_data (sec)->sec_info,
5927 h->root.u.def.value, (bfd_vma) 0);
5928 }
5929
5930 return true;
5931 }
5932
5933 /* Add an external symbol to the symbol table. This is called from
5934 the hash table traversal routine. When generating a shared object,
5935 we go through the symbol table twice. The first time we output
5936 anything that might have been forced to local scope in a version
5937 script. The second time we output the symbols that are still
5938 global symbols. */
5939
5940 static boolean
5941 elf_link_output_extsym (h, data)
5942 struct elf_link_hash_entry *h;
5943 PTR data;
5944 {
5945 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5946 struct elf_final_link_info *finfo = eoinfo->finfo;
5947 boolean strip;
5948 Elf_Internal_Sym sym;
5949 asection *input_sec;
5950
5951 /* Decide whether to output this symbol in this pass. */
5952 if (eoinfo->localsyms)
5953 {
5954 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5955 return true;
5956 }
5957 else
5958 {
5959 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5960 return true;
5961 }
5962
5963 /* If we are not creating a shared library, and this symbol is
5964 referenced by a shared library but is not defined anywhere, then
5965 warn that it is undefined. If we do not do this, the runtime
5966 linker will complain that the symbol is undefined when the
5967 program is run. We don't have to worry about symbols that are
5968 referenced by regular files, because we will already have issued
5969 warnings for them. */
5970 if (! finfo->info->relocateable
5971 && ! finfo->info->allow_shlib_undefined
5972 && ! finfo->info->shared
5973 && h->root.type == bfd_link_hash_undefined
5974 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5975 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5976 {
5977 if (! ((*finfo->info->callbacks->undefined_symbol)
5978 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5979 (asection *) NULL, (bfd_vma) 0, true)))
5980 {
5981 eoinfo->failed = true;
5982 return false;
5983 }
5984 }
5985
5986 /* We don't want to output symbols that have never been mentioned by
5987 a regular file, or that we have been told to strip. However, if
5988 h->indx is set to -2, the symbol is used by a reloc and we must
5989 output it. */
5990 if (h->indx == -2)
5991 strip = false;
5992 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5993 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5994 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5995 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5996 strip = true;
5997 else if (finfo->info->strip == strip_all
5998 || (finfo->info->strip == strip_some
5999 && bfd_hash_lookup (finfo->info->keep_hash,
6000 h->root.root.string,
6001 false, false) == NULL))
6002 strip = true;
6003 else
6004 strip = false;
6005
6006 /* If we're stripping it, and it's not a dynamic symbol, there's
6007 nothing else to do unless it is a forced local symbol. */
6008 if (strip
6009 && h->dynindx == -1
6010 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6011 return true;
6012
6013 sym.st_value = 0;
6014 sym.st_size = h->size;
6015 sym.st_other = h->other;
6016 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6017 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6018 else if (h->root.type == bfd_link_hash_undefweak
6019 || h->root.type == bfd_link_hash_defweak)
6020 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6021 else
6022 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6023
6024 switch (h->root.type)
6025 {
6026 default:
6027 case bfd_link_hash_new:
6028 abort ();
6029 return false;
6030
6031 case bfd_link_hash_undefined:
6032 case bfd_link_hash_undefweak:
6033 input_sec = bfd_und_section_ptr;
6034 sym.st_shndx = SHN_UNDEF;
6035 break;
6036
6037 case bfd_link_hash_defined:
6038 case bfd_link_hash_defweak:
6039 {
6040 input_sec = h->root.u.def.section;
6041 if (input_sec->output_section != NULL)
6042 {
6043 sym.st_shndx =
6044 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6045 input_sec->output_section);
6046 if (sym.st_shndx == SHN_BAD)
6047 {
6048 (*_bfd_error_handler)
6049 (_("%s: could not find output section %s for input section %s"),
6050 bfd_get_filename (finfo->output_bfd),
6051 input_sec->output_section->name,
6052 input_sec->name);
6053 eoinfo->failed = true;
6054 return false;
6055 }
6056
6057 /* ELF symbols in relocateable files are section relative,
6058 but in nonrelocateable files they are virtual
6059 addresses. */
6060 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6061 if (! finfo->info->relocateable)
6062 sym.st_value += input_sec->output_section->vma;
6063 }
6064 else
6065 {
6066 BFD_ASSERT (input_sec->owner == NULL
6067 || (input_sec->owner->flags & DYNAMIC) != 0);
6068 sym.st_shndx = SHN_UNDEF;
6069 input_sec = bfd_und_section_ptr;
6070 }
6071 }
6072 break;
6073
6074 case bfd_link_hash_common:
6075 input_sec = h->root.u.c.p->section;
6076 sym.st_shndx = SHN_COMMON;
6077 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6078 break;
6079
6080 case bfd_link_hash_indirect:
6081 /* These symbols are created by symbol versioning. They point
6082 to the decorated version of the name. For example, if the
6083 symbol foo@@GNU_1.2 is the default, which should be used when
6084 foo is used with no version, then we add an indirect symbol
6085 foo which points to foo@@GNU_1.2. We ignore these symbols,
6086 since the indirected symbol is already in the hash table. */
6087 return true;
6088
6089 case bfd_link_hash_warning:
6090 /* We can't represent these symbols in ELF, although a warning
6091 symbol may have come from a .gnu.warning.SYMBOL section. We
6092 just put the target symbol in the hash table. If the target
6093 symbol does not really exist, don't do anything. */
6094 if (h->root.u.i.link->type == bfd_link_hash_new)
6095 return true;
6096 return (elf_link_output_extsym
6097 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
6098 }
6099
6100 /* Give the processor backend a chance to tweak the symbol value,
6101 and also to finish up anything that needs to be done for this
6102 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6103 forced local syms when non-shared is due to a historical quirk. */
6104 if ((h->dynindx != -1
6105 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6106 && (finfo->info->shared
6107 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6108 && elf_hash_table (finfo->info)->dynamic_sections_created)
6109 {
6110 struct elf_backend_data *bed;
6111
6112 bed = get_elf_backend_data (finfo->output_bfd);
6113 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6114 (finfo->output_bfd, finfo->info, h, &sym)))
6115 {
6116 eoinfo->failed = true;
6117 return false;
6118 }
6119 }
6120
6121 /* If we are marking the symbol as undefined, and there are no
6122 non-weak references to this symbol from a regular object, then
6123 mark the symbol as weak undefined; if there are non-weak
6124 references, mark the symbol as strong. We can't do this earlier,
6125 because it might not be marked as undefined until the
6126 finish_dynamic_symbol routine gets through with it. */
6127 if (sym.st_shndx == SHN_UNDEF
6128 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6129 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6130 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6131 {
6132 int bindtype;
6133
6134 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6135 bindtype = STB_GLOBAL;
6136 else
6137 bindtype = STB_WEAK;
6138 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6139 }
6140
6141 /* If a symbol is not defined locally, we clear the visibility
6142 field. */
6143 if (! finfo->info->relocateable
6144 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6145 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6146
6147 /* If this symbol should be put in the .dynsym section, then put it
6148 there now. We have already know the symbol index. We also fill
6149 in the entry in the .hash section. */
6150 if (h->dynindx != -1
6151 && elf_hash_table (finfo->info)->dynamic_sections_created)
6152 {
6153 size_t bucketcount;
6154 size_t bucket;
6155 size_t hash_entry_size;
6156 bfd_byte *bucketpos;
6157 bfd_vma chain;
6158 Elf_External_Sym *esym;
6159
6160 sym.st_name = h->dynstr_index;
6161 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6162 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6163
6164 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6165 bucket = h->elf_hash_value % bucketcount;
6166 hash_entry_size
6167 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6168 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6169 + (bucket + 2) * hash_entry_size);
6170 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6171 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6172 bucketpos);
6173 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6174 ((bfd_byte *) finfo->hash_sec->contents
6175 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6176
6177 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6178 {
6179 Elf_Internal_Versym iversym;
6180 Elf_External_Versym *eversym;
6181
6182 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6183 {
6184 if (h->verinfo.verdef == NULL)
6185 iversym.vs_vers = 0;
6186 else
6187 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6188 }
6189 else
6190 {
6191 if (h->verinfo.vertree == NULL)
6192 iversym.vs_vers = 1;
6193 else
6194 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6195 }
6196
6197 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6198 iversym.vs_vers |= VERSYM_HIDDEN;
6199
6200 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6201 eversym += h->dynindx;
6202 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6203 }
6204 }
6205
6206 /* If we're stripping it, then it was just a dynamic symbol, and
6207 there's nothing else to do. */
6208 if (strip)
6209 return true;
6210
6211 h->indx = bfd_get_symcount (finfo->output_bfd);
6212
6213 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6214 {
6215 eoinfo->failed = true;
6216 return false;
6217 }
6218
6219 return true;
6220 }
6221
6222 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6223 originated from the section given by INPUT_REL_HDR) to the
6224 OUTPUT_BFD. */
6225
6226 static void
6227 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6228 internal_relocs)
6229 bfd *output_bfd;
6230 asection *input_section;
6231 Elf_Internal_Shdr *input_rel_hdr;
6232 Elf_Internal_Rela *internal_relocs;
6233 {
6234 Elf_Internal_Rela *irela;
6235 Elf_Internal_Rela *irelaend;
6236 Elf_Internal_Shdr *output_rel_hdr;
6237 asection *output_section;
6238 unsigned int *rel_countp = NULL;
6239 struct elf_backend_data *bed;
6240 bfd_size_type amt;
6241
6242 output_section = input_section->output_section;
6243 output_rel_hdr = NULL;
6244
6245 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6246 == input_rel_hdr->sh_entsize)
6247 {
6248 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6249 rel_countp = &elf_section_data (output_section)->rel_count;
6250 }
6251 else if (elf_section_data (output_section)->rel_hdr2
6252 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6253 == input_rel_hdr->sh_entsize))
6254 {
6255 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6256 rel_countp = &elf_section_data (output_section)->rel_count2;
6257 }
6258
6259 BFD_ASSERT (output_rel_hdr != NULL);
6260
6261 bed = get_elf_backend_data (output_bfd);
6262 irela = internal_relocs;
6263 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6264 * bed->s->int_rels_per_ext_rel;
6265
6266 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6267 {
6268 Elf_External_Rel *erel;
6269 Elf_Internal_Rel *irel;
6270
6271 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6272 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6273 if (irel == NULL)
6274 {
6275 (*_bfd_error_handler) (_("Error: out of memory"));
6276 abort ();
6277 }
6278
6279 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6280 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6281 {
6282 unsigned int i;
6283
6284 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6285 {
6286 irel[i].r_offset = irela[i].r_offset;
6287 irel[i].r_info = irela[i].r_info;
6288 BFD_ASSERT (irela[i].r_addend == 0);
6289 }
6290
6291 if (bed->s->swap_reloc_out)
6292 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6293 else
6294 elf_swap_reloc_out (output_bfd, irel, erel);
6295 }
6296
6297 free (irel);
6298 }
6299 else
6300 {
6301 Elf_External_Rela *erela;
6302
6303 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6304
6305 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6306 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6307 if (bed->s->swap_reloca_out)
6308 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6309 else
6310 elf_swap_reloca_out (output_bfd, irela, erela);
6311 }
6312
6313 /* Bump the counter, so that we know where to add the next set of
6314 relocations. */
6315 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6316 }
6317
6318 /* Link an input file into the linker output file. This function
6319 handles all the sections and relocations of the input file at once.
6320 This is so that we only have to read the local symbols once, and
6321 don't have to keep them in memory. */
6322
6323 static boolean
6324 elf_link_input_bfd (finfo, input_bfd)
6325 struct elf_final_link_info *finfo;
6326 bfd *input_bfd;
6327 {
6328 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6329 bfd *, asection *, bfd_byte *,
6330 Elf_Internal_Rela *,
6331 Elf_Internal_Sym *, asection **));
6332 bfd *output_bfd;
6333 Elf_Internal_Shdr *symtab_hdr;
6334 Elf_Internal_Shdr *shndx_hdr;
6335 size_t locsymcount;
6336 size_t extsymoff;
6337 Elf_External_Sym *external_syms;
6338 Elf_External_Sym *esym;
6339 Elf_External_Sym *esymend;
6340 Elf_External_Sym_Shndx *shndx_buf;
6341 Elf_External_Sym_Shndx *shndx;
6342 Elf_Internal_Sym *isym;
6343 long *pindex;
6344 asection **ppsection;
6345 asection *o;
6346 struct elf_backend_data *bed;
6347 boolean emit_relocs;
6348 struct elf_link_hash_entry **sym_hashes;
6349
6350 output_bfd = finfo->output_bfd;
6351 bed = get_elf_backend_data (output_bfd);
6352 relocate_section = bed->elf_backend_relocate_section;
6353
6354 /* If this is a dynamic object, we don't want to do anything here:
6355 we don't want the local symbols, and we don't want the section
6356 contents. */
6357 if ((input_bfd->flags & DYNAMIC) != 0)
6358 return true;
6359
6360 emit_relocs = (finfo->info->relocateable
6361 || finfo->info->emitrelocations
6362 || bed->elf_backend_emit_relocs);
6363
6364 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6365 if (elf_bad_symtab (input_bfd))
6366 {
6367 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6368 extsymoff = 0;
6369 }
6370 else
6371 {
6372 locsymcount = symtab_hdr->sh_info;
6373 extsymoff = symtab_hdr->sh_info;
6374 }
6375
6376 /* Read the local symbols. */
6377 if (symtab_hdr->contents != NULL)
6378 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
6379 else if (locsymcount == 0)
6380 external_syms = NULL;
6381 else
6382 {
6383 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym);
6384 external_syms = finfo->external_syms;
6385 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6386 || bfd_bread (external_syms, amt, input_bfd) != amt)
6387 return false;
6388 }
6389
6390 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
6391 shndx_buf = NULL;
6392 if (shndx_hdr->sh_size != 0 && locsymcount != 0)
6393 {
6394 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx);
6395 shndx_buf = finfo->locsym_shndx;
6396 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
6397 || bfd_bread (shndx_buf, amt, input_bfd) != amt)
6398 return false;
6399 }
6400
6401 /* Swap in the local symbols and write out the ones which we know
6402 are going into the output file. */
6403 for (esym = external_syms, esymend = esym + locsymcount,
6404 isym = finfo->internal_syms, pindex = finfo->indices,
6405 ppsection = finfo->sections, shndx = shndx_buf;
6406 esym < esymend;
6407 esym++, isym++, pindex++, ppsection++,
6408 shndx = (shndx != NULL ? shndx + 1 : NULL))
6409 {
6410 asection *isec;
6411 const char *name;
6412 Elf_Internal_Sym osym;
6413
6414 elf_swap_symbol_in (input_bfd, esym, shndx, isym);
6415 *pindex = -1;
6416
6417 if (elf_bad_symtab (input_bfd))
6418 {
6419 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6420 {
6421 *ppsection = NULL;
6422 continue;
6423 }
6424 }
6425
6426 if (isym->st_shndx == SHN_UNDEF)
6427 isec = bfd_und_section_ptr;
6428 else if (isym->st_shndx < SHN_LORESERVE
6429 || isym->st_shndx > SHN_HIRESERVE)
6430 {
6431 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6432 if (isec
6433 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6434 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6435 isym->st_value =
6436 _bfd_merged_section_offset (output_bfd, &isec,
6437 elf_section_data (isec)->sec_info,
6438 isym->st_value, (bfd_vma) 0);
6439 }
6440 else if (isym->st_shndx == SHN_ABS)
6441 isec = bfd_abs_section_ptr;
6442 else if (isym->st_shndx == SHN_COMMON)
6443 isec = bfd_com_section_ptr;
6444 else
6445 {
6446 /* Who knows? */
6447 isec = NULL;
6448 }
6449
6450 *ppsection = isec;
6451
6452 /* Don't output the first, undefined, symbol. */
6453 if (esym == external_syms)
6454 continue;
6455
6456 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6457 {
6458 /* We never output section symbols. Instead, we use the
6459 section symbol of the corresponding section in the output
6460 file. */
6461 continue;
6462 }
6463
6464 /* If we are stripping all symbols, we don't want to output this
6465 one. */
6466 if (finfo->info->strip == strip_all)
6467 continue;
6468
6469 /* If we are discarding all local symbols, we don't want to
6470 output this one. If we are generating a relocateable output
6471 file, then some of the local symbols may be required by
6472 relocs; we output them below as we discover that they are
6473 needed. */
6474 if (finfo->info->discard == discard_all)
6475 continue;
6476
6477 /* If this symbol is defined in a section which we are
6478 discarding, we don't need to keep it, but note that
6479 linker_mark is only reliable for sections that have contents.
6480 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6481 as well as linker_mark. */
6482 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6483 && isec != NULL
6484 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6485 || (! finfo->info->relocateable
6486 && (isec->flags & SEC_EXCLUDE) != 0)))
6487 continue;
6488
6489 /* Get the name of the symbol. */
6490 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6491 isym->st_name);
6492 if (name == NULL)
6493 return false;
6494
6495 /* See if we are discarding symbols with this name. */
6496 if ((finfo->info->strip == strip_some
6497 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6498 == NULL))
6499 || (((finfo->info->discard == discard_sec_merge
6500 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6501 || finfo->info->discard == discard_l)
6502 && bfd_is_local_label_name (input_bfd, name)))
6503 continue;
6504
6505 /* If we get here, we are going to output this symbol. */
6506
6507 osym = *isym;
6508
6509 /* Adjust the section index for the output file. */
6510 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6511 isec->output_section);
6512 if (osym.st_shndx == SHN_BAD)
6513 return false;
6514
6515 *pindex = bfd_get_symcount (output_bfd);
6516
6517 /* ELF symbols in relocateable files are section relative, but
6518 in executable files they are virtual addresses. Note that
6519 this code assumes that all ELF sections have an associated
6520 BFD section with a reasonable value for output_offset; below
6521 we assume that they also have a reasonable value for
6522 output_section. Any special sections must be set up to meet
6523 these requirements. */
6524 osym.st_value += isec->output_offset;
6525 if (! finfo->info->relocateable)
6526 osym.st_value += isec->output_section->vma;
6527
6528 if (! elf_link_output_sym (finfo, name, &osym, isec))
6529 return false;
6530 }
6531
6532 /* Relocate the contents of each section. */
6533 sym_hashes = elf_sym_hashes (input_bfd);
6534 for (o = input_bfd->sections; o != NULL; o = o->next)
6535 {
6536 bfd_byte *contents;
6537
6538 if (! o->linker_mark)
6539 {
6540 /* This section was omitted from the link. */
6541 continue;
6542 }
6543
6544 if ((o->flags & SEC_HAS_CONTENTS) == 0
6545 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6546 continue;
6547
6548 if ((o->flags & SEC_LINKER_CREATED) != 0)
6549 {
6550 /* Section was created by elf_link_create_dynamic_sections
6551 or somesuch. */
6552 continue;
6553 }
6554
6555 /* Get the contents of the section. They have been cached by a
6556 relaxation routine. Note that o is a section in an input
6557 file, so the contents field will not have been set by any of
6558 the routines which work on output files. */
6559 if (elf_section_data (o)->this_hdr.contents != NULL)
6560 contents = elf_section_data (o)->this_hdr.contents;
6561 else
6562 {
6563 contents = finfo->contents;
6564 if (! bfd_get_section_contents (input_bfd, o, contents,
6565 (file_ptr) 0, o->_raw_size))
6566 return false;
6567 }
6568
6569 if ((o->flags & SEC_RELOC) != 0)
6570 {
6571 Elf_Internal_Rela *internal_relocs;
6572
6573 /* Get the swapped relocs. */
6574 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6575 (input_bfd, o, finfo->external_relocs,
6576 finfo->internal_relocs, false));
6577 if (internal_relocs == NULL
6578 && o->reloc_count > 0)
6579 return false;
6580
6581 /* Run through the relocs looking for any against symbols
6582 from discarded sections and section symbols from
6583 removed link-once sections. Complain about relocs
6584 against discarded sections. Zero relocs against removed
6585 link-once sections. We should really complain if
6586 anything in the final link tries to use it, but
6587 DWARF-based exception handling might have an entry in
6588 .eh_frame to describe a routine in the linkonce section,
6589 and it turns out to be hard to remove the .eh_frame
6590 entry too. FIXME. */
6591 if (!finfo->info->relocateable
6592 && !elf_section_ignore_discarded_relocs (o))
6593 {
6594 Elf_Internal_Rela *rel, *relend;
6595
6596 rel = internal_relocs;
6597 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6598 for ( ; rel < relend; rel++)
6599 {
6600 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6601
6602 if (r_symndx >= locsymcount
6603 || (elf_bad_symtab (input_bfd)
6604 && finfo->sections[r_symndx] == NULL))
6605 {
6606 struct elf_link_hash_entry *h;
6607
6608 h = sym_hashes[r_symndx - extsymoff];
6609 while (h->root.type == bfd_link_hash_indirect
6610 || h->root.type == bfd_link_hash_warning)
6611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6612
6613 /* Complain if the definition comes from a
6614 discarded section. */
6615 if ((h->root.type == bfd_link_hash_defined
6616 || h->root.type == bfd_link_hash_defweak)
6617 && elf_discarded_section (h->root.u.def.section))
6618 {
6619 #if BFD_VERSION_DATE < 20031005
6620 if ((o->flags & SEC_DEBUGGING) != 0)
6621 {
6622 #if BFD_VERSION_DATE > 20021005
6623 (*finfo->info->callbacks->warning)
6624 (finfo->info,
6625 _("warning: relocation against removed section; zeroing"),
6626 NULL, input_bfd, o, rel->r_offset);
6627 #endif
6628 BFD_ASSERT (r_symndx != 0);
6629 memset (rel, 0, sizeof (*rel));
6630 }
6631 else
6632 #endif
6633 {
6634 if (! ((*finfo->info->callbacks->undefined_symbol)
6635 (finfo->info, h->root.root.string,
6636 input_bfd, o, rel->r_offset,
6637 true)))
6638 return false;
6639 }
6640 }
6641 }
6642 else
6643 {
6644 asection *sec = finfo->sections[r_symndx];
6645
6646 if (sec != NULL && elf_discarded_section (sec))
6647 {
6648 #if BFD_VERSION_DATE < 20031005
6649 if ((o->flags & SEC_DEBUGGING) != 0
6650 || (sec->flags & SEC_LINK_ONCE) != 0)
6651 {
6652 #if BFD_VERSION_DATE > 20021005
6653 (*finfo->info->callbacks->warning)
6654 (finfo->info,
6655 _("warning: relocation against removed section"),
6656 NULL, input_bfd, o, rel->r_offset);
6657 #endif
6658 BFD_ASSERT (r_symndx != 0);
6659 rel->r_info
6660 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6661 rel->r_addend = 0;
6662 }
6663 else
6664 #endif
6665 {
6666 boolean ok;
6667 const char *msg
6668 = _("local symbols in discarded section %s");
6669 bfd_size_type amt
6670 = strlen (sec->name) + strlen (msg) - 1;
6671 char *buf = (char *) bfd_malloc (amt);
6672
6673 if (buf != NULL)
6674 sprintf (buf, msg, sec->name);
6675 else
6676 buf = (char *) sec->name;
6677 ok = (*finfo->info->callbacks
6678 ->undefined_symbol) (finfo->info, buf,
6679 input_bfd, o,
6680 rel->r_offset,
6681 true);
6682 if (buf != sec->name)
6683 free (buf);
6684 if (!ok)
6685 return false;
6686 }
6687 }
6688 }
6689 }
6690 }
6691
6692 /* Relocate the section by invoking a back end routine.
6693
6694 The back end routine is responsible for adjusting the
6695 section contents as necessary, and (if using Rela relocs
6696 and generating a relocateable output file) adjusting the
6697 reloc addend as necessary.
6698
6699 The back end routine does not have to worry about setting
6700 the reloc address or the reloc symbol index.
6701
6702 The back end routine is given a pointer to the swapped in
6703 internal symbols, and can access the hash table entries
6704 for the external symbols via elf_sym_hashes (input_bfd).
6705
6706 When generating relocateable output, the back end routine
6707 must handle STB_LOCAL/STT_SECTION symbols specially. The
6708 output symbol is going to be a section symbol
6709 corresponding to the output section, which will require
6710 the addend to be adjusted. */
6711
6712 if (! (*relocate_section) (output_bfd, finfo->info,
6713 input_bfd, o, contents,
6714 internal_relocs,
6715 finfo->internal_syms,
6716 finfo->sections))
6717 return false;
6718
6719 if (emit_relocs)
6720 {
6721 Elf_Internal_Rela *irela;
6722 Elf_Internal_Rela *irelaend;
6723 struct elf_link_hash_entry **rel_hash;
6724 Elf_Internal_Shdr *input_rel_hdr;
6725 unsigned int next_erel;
6726 void (*reloc_emitter) PARAMS ((bfd *, asection *,
6727 Elf_Internal_Shdr *,
6728 Elf_Internal_Rela *));
6729
6730 /* Adjust the reloc addresses and symbol indices. */
6731
6732 irela = internal_relocs;
6733 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6734 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6735 + elf_section_data (o->output_section)->rel_count
6736 + elf_section_data (o->output_section)->rel_count2);
6737 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6738 {
6739 unsigned long r_symndx;
6740 asection *sec;
6741
6742 if (next_erel == bed->s->int_rels_per_ext_rel)
6743 {
6744 rel_hash++;
6745 next_erel = 0;
6746 }
6747
6748 irela->r_offset += o->output_offset;
6749
6750 /* Relocs in an executable have to be virtual addresses. */
6751 if (finfo->info->emitrelocations)
6752 irela->r_offset += o->output_section->vma;
6753
6754 r_symndx = ELF_R_SYM (irela->r_info);
6755
6756 if (r_symndx == 0)
6757 continue;
6758
6759 if (r_symndx >= locsymcount
6760 || (elf_bad_symtab (input_bfd)
6761 && finfo->sections[r_symndx] == NULL))
6762 {
6763 struct elf_link_hash_entry *rh;
6764 unsigned long indx;
6765
6766 /* This is a reloc against a global symbol. We
6767 have not yet output all the local symbols, so
6768 we do not know the symbol index of any global
6769 symbol. We set the rel_hash entry for this
6770 reloc to point to the global hash table entry
6771 for this symbol. The symbol index is then
6772 set at the end of elf_bfd_final_link. */
6773 indx = r_symndx - extsymoff;
6774 rh = elf_sym_hashes (input_bfd)[indx];
6775 while (rh->root.type == bfd_link_hash_indirect
6776 || rh->root.type == bfd_link_hash_warning)
6777 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6778
6779 /* Setting the index to -2 tells
6780 elf_link_output_extsym that this symbol is
6781 used by a reloc. */
6782 BFD_ASSERT (rh->indx < 0);
6783 rh->indx = -2;
6784
6785 *rel_hash = rh;
6786
6787 continue;
6788 }
6789
6790 /* This is a reloc against a local symbol. */
6791
6792 *rel_hash = NULL;
6793 isym = finfo->internal_syms + r_symndx;
6794 sec = finfo->sections[r_symndx];
6795 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6796 {
6797 /* I suppose the backend ought to fill in the
6798 section of any STT_SECTION symbol against a
6799 processor specific section. If we have
6800 discarded a section, the output_section will
6801 be the absolute section. */
6802 if (sec != NULL
6803 && (bfd_is_abs_section (sec)
6804 || (sec->output_section != NULL
6805 && bfd_is_abs_section (sec->output_section))))
6806 r_symndx = 0;
6807 else if (sec == NULL || sec->owner == NULL)
6808 {
6809 bfd_set_error (bfd_error_bad_value);
6810 return false;
6811 }
6812 else
6813 {
6814 r_symndx = sec->output_section->target_index;
6815 BFD_ASSERT (r_symndx != 0);
6816 }
6817 }
6818 else
6819 {
6820 if (finfo->indices[r_symndx] == -1)
6821 {
6822 unsigned long shlink;
6823 const char *name;
6824 asection *osec;
6825
6826 if (finfo->info->strip == strip_all)
6827 {
6828 /* You can't do ld -r -s. */
6829 bfd_set_error (bfd_error_invalid_operation);
6830 return false;
6831 }
6832
6833 /* This symbol was skipped earlier, but
6834 since it is needed by a reloc, we
6835 must output it now. */
6836 shlink = symtab_hdr->sh_link;
6837 name = (bfd_elf_string_from_elf_section
6838 (input_bfd, shlink, isym->st_name));
6839 if (name == NULL)
6840 return false;
6841
6842 osec = sec->output_section;
6843 isym->st_shndx =
6844 _bfd_elf_section_from_bfd_section (output_bfd,
6845 osec);
6846 if (isym->st_shndx == SHN_BAD)
6847 return false;
6848
6849 isym->st_value += sec->output_offset;
6850 if (! finfo->info->relocateable)
6851 isym->st_value += osec->vma;
6852
6853 finfo->indices[r_symndx]
6854 = bfd_get_symcount (output_bfd);
6855
6856 if (! elf_link_output_sym (finfo, name, isym, sec))
6857 return false;
6858 }
6859
6860 r_symndx = finfo->indices[r_symndx];
6861 }
6862
6863 irela->r_info = ELF_R_INFO (r_symndx,
6864 ELF_R_TYPE (irela->r_info));
6865 }
6866
6867 /* Swap out the relocs. */
6868 if (bed->elf_backend_emit_relocs
6869 && !(finfo->info->relocateable
6870 || finfo->info->emitrelocations))
6871 reloc_emitter = bed->elf_backend_emit_relocs;
6872 else
6873 reloc_emitter = elf_link_output_relocs;
6874
6875 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6876 (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs);
6877
6878 input_rel_hdr = elf_section_data (o)->rel_hdr2;
6879 if (input_rel_hdr)
6880 {
6881 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6882 * bed->s->int_rels_per_ext_rel);
6883 reloc_emitter (output_bfd, o, input_rel_hdr, internal_relocs);
6884 }
6885
6886 }
6887 }
6888
6889 /* Write out the modified section contents. */
6890 if (bed->elf_backend_write_section
6891 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6892 {
6893 /* Section written out. */
6894 }
6895 else switch (elf_section_data (o)->sec_info_type)
6896 {
6897 case ELF_INFO_TYPE_STABS:
6898 if (! (_bfd_write_section_stabs
6899 (output_bfd,
6900 &elf_hash_table (finfo->info)->stab_info,
6901 o, &elf_section_data (o)->sec_info, contents)))
6902 return false;
6903 break;
6904 case ELF_INFO_TYPE_MERGE:
6905 if (! (_bfd_write_merged_section
6906 (output_bfd, o, elf_section_data (o)->sec_info)))
6907 return false;
6908 break;
6909 case ELF_INFO_TYPE_EH_FRAME:
6910 {
6911 asection *ehdrsec;
6912
6913 ehdrsec
6914 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
6915 ".eh_frame_hdr");
6916 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
6917 contents)))
6918 return false;
6919 }
6920 break;
6921 default:
6922 {
6923 bfd_size_type sec_size;
6924
6925 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
6926 if (! (o->flags & SEC_EXCLUDE)
6927 && ! bfd_set_section_contents (output_bfd, o->output_section,
6928 contents,
6929 (file_ptr) o->output_offset,
6930 sec_size))
6931 return false;
6932 }
6933 break;
6934 }
6935 }
6936
6937 return true;
6938 }
6939
6940 /* Generate a reloc when linking an ELF file. This is a reloc
6941 requested by the linker, and does come from any input file. This
6942 is used to build constructor and destructor tables when linking
6943 with -Ur. */
6944
6945 static boolean
6946 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6947 bfd *output_bfd;
6948 struct bfd_link_info *info;
6949 asection *output_section;
6950 struct bfd_link_order *link_order;
6951 {
6952 reloc_howto_type *howto;
6953 long indx;
6954 bfd_vma offset;
6955 bfd_vma addend;
6956 struct elf_link_hash_entry **rel_hash_ptr;
6957 Elf_Internal_Shdr *rel_hdr;
6958 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6959
6960 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6961 if (howto == NULL)
6962 {
6963 bfd_set_error (bfd_error_bad_value);
6964 return false;
6965 }
6966
6967 addend = link_order->u.reloc.p->addend;
6968
6969 /* Figure out the symbol index. */
6970 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6971 + elf_section_data (output_section)->rel_count
6972 + elf_section_data (output_section)->rel_count2);
6973 if (link_order->type == bfd_section_reloc_link_order)
6974 {
6975 indx = link_order->u.reloc.p->u.section->target_index;
6976 BFD_ASSERT (indx != 0);
6977 *rel_hash_ptr = NULL;
6978 }
6979 else
6980 {
6981 struct elf_link_hash_entry *h;
6982
6983 /* Treat a reloc against a defined symbol as though it were
6984 actually against the section. */
6985 h = ((struct elf_link_hash_entry *)
6986 bfd_wrapped_link_hash_lookup (output_bfd, info,
6987 link_order->u.reloc.p->u.name,
6988 false, false, true));
6989 if (h != NULL
6990 && (h->root.type == bfd_link_hash_defined
6991 || h->root.type == bfd_link_hash_defweak))
6992 {
6993 asection *section;
6994
6995 section = h->root.u.def.section;
6996 indx = section->output_section->target_index;
6997 *rel_hash_ptr = NULL;
6998 /* It seems that we ought to add the symbol value to the
6999 addend here, but in practice it has already been added
7000 because it was passed to constructor_callback. */
7001 addend += section->output_section->vma + section->output_offset;
7002 }
7003 else if (h != NULL)
7004 {
7005 /* Setting the index to -2 tells elf_link_output_extsym that
7006 this symbol is used by a reloc. */
7007 h->indx = -2;
7008 *rel_hash_ptr = h;
7009 indx = 0;
7010 }
7011 else
7012 {
7013 if (! ((*info->callbacks->unattached_reloc)
7014 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7015 (asection *) NULL, (bfd_vma) 0)))
7016 return false;
7017 indx = 0;
7018 }
7019 }
7020
7021 /* If this is an inplace reloc, we must write the addend into the
7022 object file. */
7023 if (howto->partial_inplace && addend != 0)
7024 {
7025 bfd_size_type size;
7026 bfd_reloc_status_type rstat;
7027 bfd_byte *buf;
7028 boolean ok;
7029 const char *sym_name;
7030
7031 size = bfd_get_reloc_size (howto);
7032 buf = (bfd_byte *) bfd_zmalloc (size);
7033 if (buf == (bfd_byte *) NULL)
7034 return false;
7035 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7036 switch (rstat)
7037 {
7038 case bfd_reloc_ok:
7039 break;
7040
7041 default:
7042 case bfd_reloc_outofrange:
7043 abort ();
7044
7045 case bfd_reloc_overflow:
7046 if (link_order->type == bfd_section_reloc_link_order)
7047 sym_name = bfd_section_name (output_bfd,
7048 link_order->u.reloc.p->u.section);
7049 else
7050 sym_name = link_order->u.reloc.p->u.name;
7051 if (! ((*info->callbacks->reloc_overflow)
7052 (info, sym_name, howto->name, addend,
7053 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7054 {
7055 free (buf);
7056 return false;
7057 }
7058 break;
7059 }
7060 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7061 (file_ptr) link_order->offset, size);
7062 free (buf);
7063 if (! ok)
7064 return false;
7065 }
7066
7067 /* The address of a reloc is relative to the section in a
7068 relocateable file, and is a virtual address in an executable
7069 file. */
7070 offset = link_order->offset;
7071 if (! info->relocateable)
7072 offset += output_section->vma;
7073
7074 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7075
7076 if (rel_hdr->sh_type == SHT_REL)
7077 {
7078 bfd_size_type size;
7079 Elf_Internal_Rel *irel;
7080 Elf_External_Rel *erel;
7081 unsigned int i;
7082
7083 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7084 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7085 if (irel == NULL)
7086 return false;
7087
7088 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7089 irel[i].r_offset = offset;
7090 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7091
7092 erel = ((Elf_External_Rel *) rel_hdr->contents
7093 + elf_section_data (output_section)->rel_count);
7094
7095 if (bed->s->swap_reloc_out)
7096 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7097 else
7098 elf_swap_reloc_out (output_bfd, irel, erel);
7099
7100 free (irel);
7101 }
7102 else
7103 {
7104 bfd_size_type size;
7105 Elf_Internal_Rela *irela;
7106 Elf_External_Rela *erela;
7107 unsigned int i;
7108
7109 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7110 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7111 if (irela == NULL)
7112 return false;
7113
7114 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7115 irela[i].r_offset = offset;
7116 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7117 irela[0].r_addend = addend;
7118
7119 erela = ((Elf_External_Rela *) rel_hdr->contents
7120 + elf_section_data (output_section)->rel_count);
7121
7122 if (bed->s->swap_reloca_out)
7123 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7124 else
7125 elf_swap_reloca_out (output_bfd, irela, erela);
7126 }
7127
7128 ++elf_section_data (output_section)->rel_count;
7129
7130 return true;
7131 }
7132 \f
7133 /* Allocate a pointer to live in a linker created section. */
7134
7135 boolean
7136 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7137 bfd *abfd;
7138 struct bfd_link_info *info;
7139 elf_linker_section_t *lsect;
7140 struct elf_link_hash_entry *h;
7141 const Elf_Internal_Rela *rel;
7142 {
7143 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7144 elf_linker_section_pointers_t *linker_section_ptr;
7145 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7146 bfd_size_type amt;
7147
7148 BFD_ASSERT (lsect != NULL);
7149
7150 /* Is this a global symbol? */
7151 if (h != NULL)
7152 {
7153 /* Has this symbol already been allocated? If so, our work is done. */
7154 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7155 rel->r_addend,
7156 lsect->which))
7157 return true;
7158
7159 ptr_linker_section_ptr = &h->linker_section_pointer;
7160 /* Make sure this symbol is output as a dynamic symbol. */
7161 if (h->dynindx == -1)
7162 {
7163 if (! elf_link_record_dynamic_symbol (info, h))
7164 return false;
7165 }
7166
7167 if (lsect->rel_section)
7168 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7169 }
7170 else
7171 {
7172 /* Allocation of a pointer to a local symbol. */
7173 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7174
7175 /* Allocate a table to hold the local symbols if first time. */
7176 if (!ptr)
7177 {
7178 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7179 register unsigned int i;
7180
7181 amt = num_symbols;
7182 amt *= sizeof (elf_linker_section_pointers_t *);
7183 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7184
7185 if (!ptr)
7186 return false;
7187
7188 elf_local_ptr_offsets (abfd) = ptr;
7189 for (i = 0; i < num_symbols; i++)
7190 ptr[i] = (elf_linker_section_pointers_t *) 0;
7191 }
7192
7193 /* Has this symbol already been allocated? If so, our work is done. */
7194 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7195 rel->r_addend,
7196 lsect->which))
7197 return true;
7198
7199 ptr_linker_section_ptr = &ptr[r_symndx];
7200
7201 if (info->shared)
7202 {
7203 /* If we are generating a shared object, we need to
7204 output a R_<xxx>_RELATIVE reloc so that the
7205 dynamic linker can adjust this GOT entry. */
7206 BFD_ASSERT (lsect->rel_section != NULL);
7207 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7208 }
7209 }
7210
7211 /* Allocate space for a pointer in the linker section, and allocate
7212 a new pointer record from internal memory. */
7213 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7214 amt = sizeof (elf_linker_section_pointers_t);
7215 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7216
7217 if (!linker_section_ptr)
7218 return false;
7219
7220 linker_section_ptr->next = *ptr_linker_section_ptr;
7221 linker_section_ptr->addend = rel->r_addend;
7222 linker_section_ptr->which = lsect->which;
7223 linker_section_ptr->written_address_p = false;
7224 *ptr_linker_section_ptr = linker_section_ptr;
7225
7226 #if 0
7227 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7228 {
7229 linker_section_ptr->offset = (lsect->section->_raw_size
7230 - lsect->hole_size + (ARCH_SIZE / 8));
7231 lsect->hole_offset += ARCH_SIZE / 8;
7232 lsect->sym_offset += ARCH_SIZE / 8;
7233 if (lsect->sym_hash)
7234 {
7235 /* Bump up symbol value if needed. */
7236 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7237 #ifdef DEBUG
7238 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7239 lsect->sym_hash->root.root.string,
7240 (long) ARCH_SIZE / 8,
7241 (long) lsect->sym_hash->root.u.def.value);
7242 #endif
7243 }
7244 }
7245 else
7246 #endif
7247 linker_section_ptr->offset = lsect->section->_raw_size;
7248
7249 lsect->section->_raw_size += ARCH_SIZE / 8;
7250
7251 #ifdef DEBUG
7252 fprintf (stderr,
7253 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7254 lsect->name, (long) linker_section_ptr->offset,
7255 (long) lsect->section->_raw_size);
7256 #endif
7257
7258 return true;
7259 }
7260 \f
7261 #if ARCH_SIZE==64
7262 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7263 #endif
7264 #if ARCH_SIZE==32
7265 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7266 #endif
7267
7268 /* Fill in the address for a pointer generated in a linker section. */
7269
7270 bfd_vma
7271 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7272 relocation, rel, relative_reloc)
7273 bfd *output_bfd;
7274 bfd *input_bfd;
7275 struct bfd_link_info *info;
7276 elf_linker_section_t *lsect;
7277 struct elf_link_hash_entry *h;
7278 bfd_vma relocation;
7279 const Elf_Internal_Rela *rel;
7280 int relative_reloc;
7281 {
7282 elf_linker_section_pointers_t *linker_section_ptr;
7283
7284 BFD_ASSERT (lsect != NULL);
7285
7286 if (h != NULL)
7287 {
7288 /* Handle global symbol. */
7289 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7290 (h->linker_section_pointer,
7291 rel->r_addend,
7292 lsect->which));
7293
7294 BFD_ASSERT (linker_section_ptr != NULL);
7295
7296 if (! elf_hash_table (info)->dynamic_sections_created
7297 || (info->shared
7298 && info->symbolic
7299 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7300 {
7301 /* This is actually a static link, or it is a
7302 -Bsymbolic link and the symbol is defined
7303 locally. We must initialize this entry in the
7304 global section.
7305
7306 When doing a dynamic link, we create a .rela.<xxx>
7307 relocation entry to initialize the value. This
7308 is done in the finish_dynamic_symbol routine. */
7309 if (!linker_section_ptr->written_address_p)
7310 {
7311 linker_section_ptr->written_address_p = true;
7312 bfd_put_ptr (output_bfd,
7313 relocation + linker_section_ptr->addend,
7314 (lsect->section->contents
7315 + linker_section_ptr->offset));
7316 }
7317 }
7318 }
7319 else
7320 {
7321 /* Handle local symbol. */
7322 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7323 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7324 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7325 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7326 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7327 rel->r_addend,
7328 lsect->which));
7329
7330 BFD_ASSERT (linker_section_ptr != NULL);
7331
7332 /* Write out pointer if it hasn't been rewritten out before. */
7333 if (!linker_section_ptr->written_address_p)
7334 {
7335 linker_section_ptr->written_address_p = true;
7336 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7337 lsect->section->contents + linker_section_ptr->offset);
7338
7339 if (info->shared)
7340 {
7341 asection *srel = lsect->rel_section;
7342 Elf_Internal_Rela *outrel;
7343 Elf_External_Rela *erel;
7344 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7345 unsigned int i;
7346 bfd_size_type amt;
7347
7348 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7349 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7350 if (outrel == NULL)
7351 {
7352 (*_bfd_error_handler) (_("Error: out of memory"));
7353 return 0;
7354 }
7355
7356 /* We need to generate a relative reloc for the dynamic
7357 linker. */
7358 if (!srel)
7359 {
7360 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7361 lsect->rel_name);
7362 lsect->rel_section = srel;
7363 }
7364
7365 BFD_ASSERT (srel != NULL);
7366
7367 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7368 outrel[i].r_offset = (lsect->section->output_section->vma
7369 + lsect->section->output_offset
7370 + linker_section_ptr->offset);
7371 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7372 outrel[0].r_addend = 0;
7373 erel = (Elf_External_Rela *) lsect->section->contents;
7374 erel += elf_section_data (lsect->section)->rel_count;
7375 elf_swap_reloca_out (output_bfd, outrel, erel);
7376 ++elf_section_data (lsect->section)->rel_count;
7377
7378 free (outrel);
7379 }
7380 }
7381 }
7382
7383 relocation = (lsect->section->output_offset
7384 + linker_section_ptr->offset
7385 - lsect->hole_offset
7386 - lsect->sym_offset);
7387
7388 #ifdef DEBUG
7389 fprintf (stderr,
7390 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7391 lsect->name, (long) relocation, (long) relocation);
7392 #endif
7393
7394 /* Subtract out the addend, because it will get added back in by the normal
7395 processing. */
7396 return relocation - linker_section_ptr->addend;
7397 }
7398 \f
7399 /* Garbage collect unused sections. */
7400
7401 static boolean elf_gc_mark
7402 PARAMS ((struct bfd_link_info *info, asection *sec,
7403 asection * (*gc_mark_hook)
7404 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7405 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7406
7407 static boolean elf_gc_sweep
7408 PARAMS ((struct bfd_link_info *info,
7409 boolean (*gc_sweep_hook)
7410 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7411 const Elf_Internal_Rela *relocs))));
7412
7413 static boolean elf_gc_sweep_symbol
7414 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7415
7416 static boolean elf_gc_allocate_got_offsets
7417 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7418
7419 static boolean elf_gc_propagate_vtable_entries_used
7420 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7421
7422 static boolean elf_gc_smash_unused_vtentry_relocs
7423 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7424
7425 /* The mark phase of garbage collection. For a given section, mark
7426 it and any sections in this section's group, and all the sections
7427 which define symbols to which it refers. */
7428
7429 static boolean
7430 elf_gc_mark (info, sec, gc_mark_hook)
7431 struct bfd_link_info *info;
7432 asection *sec;
7433 asection * (*gc_mark_hook)
7434 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7435 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7436 {
7437 boolean ret;
7438 asection *group_sec;
7439
7440 sec->gc_mark = 1;
7441
7442 /* Mark all the sections in the group. */
7443 group_sec = elf_section_data (sec)->next_in_group;
7444 if (group_sec && !group_sec->gc_mark)
7445 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7446 return false;
7447
7448 /* Look through the section relocs. */
7449 ret = true;
7450 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7451 {
7452 Elf_Internal_Rela *relstart, *rel, *relend;
7453 Elf_Internal_Shdr *symtab_hdr;
7454 Elf_Internal_Shdr *shndx_hdr;
7455 struct elf_link_hash_entry **sym_hashes;
7456 size_t nlocsyms;
7457 size_t extsymoff;
7458 Elf_External_Sym *locsyms, *freesyms = NULL;
7459 Elf_External_Sym_Shndx *locsym_shndx;
7460 bfd *input_bfd = sec->owner;
7461 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7462
7463 /* GCFIXME: how to arrange so that relocs and symbols are not
7464 reread continually? */
7465
7466 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7467 sym_hashes = elf_sym_hashes (input_bfd);
7468
7469 /* Read the local symbols. */
7470 if (elf_bad_symtab (input_bfd))
7471 {
7472 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7473 extsymoff = 0;
7474 }
7475 else
7476 extsymoff = nlocsyms = symtab_hdr->sh_info;
7477
7478 if (symtab_hdr->contents)
7479 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
7480 else if (nlocsyms == 0)
7481 locsyms = NULL;
7482 else
7483 {
7484 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym);
7485 locsyms = freesyms = bfd_malloc (amt);
7486 if (freesyms == NULL
7487 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
7488 || bfd_bread (locsyms, amt, input_bfd) != amt)
7489 {
7490 ret = false;
7491 goto out1;
7492 }
7493 }
7494
7495 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
7496 locsym_shndx = NULL;
7497 if (shndx_hdr->sh_size != 0 && nlocsyms != 0)
7498 {
7499 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx);
7500 locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
7501 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
7502 || bfd_bread (locsym_shndx, amt, input_bfd) != amt)
7503 return false;
7504 }
7505
7506 /* Read the relocations. */
7507 relstart = (NAME(_bfd_elf,link_read_relocs)
7508 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
7509 info->keep_memory));
7510 if (relstart == NULL)
7511 {
7512 ret = false;
7513 goto out1;
7514 }
7515 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7516
7517 for (rel = relstart; rel < relend; rel++)
7518 {
7519 unsigned long r_symndx;
7520 asection *rsec;
7521 struct elf_link_hash_entry *h;
7522 Elf_Internal_Sym s;
7523
7524 r_symndx = ELF_R_SYM (rel->r_info);
7525 if (r_symndx == 0)
7526 continue;
7527
7528 if (elf_bad_symtab (sec->owner))
7529 {
7530 elf_swap_symbol_in (input_bfd,
7531 locsyms + r_symndx,
7532 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7533 &s);
7534 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
7535 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7536 else
7537 {
7538 h = sym_hashes[r_symndx - extsymoff];
7539 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7540 }
7541 }
7542 else if (r_symndx >= nlocsyms)
7543 {
7544 h = sym_hashes[r_symndx - extsymoff];
7545 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7546 }
7547 else
7548 {
7549 elf_swap_symbol_in (input_bfd,
7550 locsyms + r_symndx,
7551 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7552 &s);
7553 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7554 }
7555
7556 if (rsec && !rsec->gc_mark)
7557 if (!elf_gc_mark (info, rsec, gc_mark_hook))
7558 {
7559 ret = false;
7560 goto out2;
7561 }
7562 }
7563
7564 out2:
7565 if (!info->keep_memory)
7566 free (relstart);
7567 out1:
7568 if (freesyms)
7569 free (freesyms);
7570 }
7571
7572 return ret;
7573 }
7574
7575 /* The sweep phase of garbage collection. Remove all garbage sections. */
7576
7577 static boolean
7578 elf_gc_sweep (info, gc_sweep_hook)
7579 struct bfd_link_info *info;
7580 boolean (*gc_sweep_hook)
7581 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7582 const Elf_Internal_Rela *relocs));
7583 {
7584 bfd *sub;
7585
7586 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7587 {
7588 asection *o;
7589
7590 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7591 continue;
7592
7593 for (o = sub->sections; o != NULL; o = o->next)
7594 {
7595 /* Keep special sections. Keep .debug sections. */
7596 if ((o->flags & SEC_LINKER_CREATED)
7597 || (o->flags & SEC_DEBUGGING))
7598 o->gc_mark = 1;
7599
7600 if (o->gc_mark)
7601 continue;
7602
7603 /* Skip sweeping sections already excluded. */
7604 if (o->flags & SEC_EXCLUDE)
7605 continue;
7606
7607 /* Since this is early in the link process, it is simple
7608 to remove a section from the output. */
7609 o->flags |= SEC_EXCLUDE;
7610
7611 /* But we also have to update some of the relocation
7612 info we collected before. */
7613 if (gc_sweep_hook
7614 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7615 {
7616 Elf_Internal_Rela *internal_relocs;
7617 boolean r;
7618
7619 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7620 (o->owner, o, NULL, NULL, info->keep_memory));
7621 if (internal_relocs == NULL)
7622 return false;
7623
7624 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7625
7626 if (!info->keep_memory)
7627 free (internal_relocs);
7628
7629 if (!r)
7630 return false;
7631 }
7632 }
7633 }
7634
7635 /* Remove the symbols that were in the swept sections from the dynamic
7636 symbol table. GCFIXME: Anyone know how to get them out of the
7637 static symbol table as well? */
7638 {
7639 int i = 0;
7640
7641 elf_link_hash_traverse (elf_hash_table (info),
7642 elf_gc_sweep_symbol,
7643 (PTR) &i);
7644
7645 elf_hash_table (info)->dynsymcount = i;
7646 }
7647
7648 return true;
7649 }
7650
7651 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7652
7653 static boolean
7654 elf_gc_sweep_symbol (h, idxptr)
7655 struct elf_link_hash_entry *h;
7656 PTR idxptr;
7657 {
7658 int *idx = (int *) idxptr;
7659
7660 if (h->dynindx != -1
7661 && ((h->root.type != bfd_link_hash_defined
7662 && h->root.type != bfd_link_hash_defweak)
7663 || h->root.u.def.section->gc_mark))
7664 h->dynindx = (*idx)++;
7665
7666 return true;
7667 }
7668
7669 /* Propogate collected vtable information. This is called through
7670 elf_link_hash_traverse. */
7671
7672 static boolean
7673 elf_gc_propagate_vtable_entries_used (h, okp)
7674 struct elf_link_hash_entry *h;
7675 PTR okp;
7676 {
7677 /* Those that are not vtables. */
7678 if (h->vtable_parent == NULL)
7679 return true;
7680
7681 /* Those vtables that do not have parents, we cannot merge. */
7682 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7683 return true;
7684
7685 /* If we've already been done, exit. */
7686 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7687 return true;
7688
7689 /* Make sure the parent's table is up to date. */
7690 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7691
7692 if (h->vtable_entries_used == NULL)
7693 {
7694 /* None of this table's entries were referenced. Re-use the
7695 parent's table. */
7696 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7697 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7698 }
7699 else
7700 {
7701 size_t n;
7702 boolean *cu, *pu;
7703
7704 /* Or the parent's entries into ours. */
7705 cu = h->vtable_entries_used;
7706 cu[-1] = true;
7707 pu = h->vtable_parent->vtable_entries_used;
7708 if (pu != NULL)
7709 {
7710 asection *sec = h->root.u.def.section;
7711 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7712 int file_align = bed->s->file_align;
7713
7714 n = h->vtable_parent->vtable_entries_size / file_align;
7715 while (n--)
7716 {
7717 if (*pu)
7718 *cu = true;
7719 pu++;
7720 cu++;
7721 }
7722 }
7723 }
7724
7725 return true;
7726 }
7727
7728 static boolean
7729 elf_gc_smash_unused_vtentry_relocs (h, okp)
7730 struct elf_link_hash_entry *h;
7731 PTR okp;
7732 {
7733 asection *sec;
7734 bfd_vma hstart, hend;
7735 Elf_Internal_Rela *relstart, *relend, *rel;
7736 struct elf_backend_data *bed;
7737 int file_align;
7738
7739 /* Take care of both those symbols that do not describe vtables as
7740 well as those that are not loaded. */
7741 if (h->vtable_parent == NULL)
7742 return true;
7743
7744 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7745 || h->root.type == bfd_link_hash_defweak);
7746
7747 sec = h->root.u.def.section;
7748 hstart = h->root.u.def.value;
7749 hend = hstart + h->size;
7750
7751 relstart = (NAME(_bfd_elf,link_read_relocs)
7752 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7753 if (!relstart)
7754 return *(boolean *) okp = false;
7755 bed = get_elf_backend_data (sec->owner);
7756 file_align = bed->s->file_align;
7757
7758 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7759
7760 for (rel = relstart; rel < relend; ++rel)
7761 if (rel->r_offset >= hstart && rel->r_offset < hend)
7762 {
7763 /* If the entry is in use, do nothing. */
7764 if (h->vtable_entries_used
7765 && (rel->r_offset - hstart) < h->vtable_entries_size)
7766 {
7767 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7768 if (h->vtable_entries_used[entry])
7769 continue;
7770 }
7771 /* Otherwise, kill it. */
7772 rel->r_offset = rel->r_info = rel->r_addend = 0;
7773 }
7774
7775 return true;
7776 }
7777
7778 /* Do mark and sweep of unused sections. */
7779
7780 boolean
7781 elf_gc_sections (abfd, info)
7782 bfd *abfd;
7783 struct bfd_link_info *info;
7784 {
7785 boolean ok = true;
7786 bfd *sub;
7787 asection * (*gc_mark_hook)
7788 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7789 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7790
7791 if (!get_elf_backend_data (abfd)->can_gc_sections
7792 || info->relocateable || info->emitrelocations
7793 || elf_hash_table (info)->dynamic_sections_created)
7794 return true;
7795
7796 /* Apply transitive closure to the vtable entry usage info. */
7797 elf_link_hash_traverse (elf_hash_table (info),
7798 elf_gc_propagate_vtable_entries_used,
7799 (PTR) &ok);
7800 if (!ok)
7801 return false;
7802
7803 /* Kill the vtable relocations that were not used. */
7804 elf_link_hash_traverse (elf_hash_table (info),
7805 elf_gc_smash_unused_vtentry_relocs,
7806 (PTR) &ok);
7807 if (!ok)
7808 return false;
7809
7810 /* Grovel through relocs to find out who stays ... */
7811
7812 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7813 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7814 {
7815 asection *o;
7816
7817 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7818 continue;
7819
7820 for (o = sub->sections; o != NULL; o = o->next)
7821 {
7822 if (o->flags & SEC_KEEP)
7823 if (!elf_gc_mark (info, o, gc_mark_hook))
7824 return false;
7825 }
7826 }
7827
7828 /* ... and mark SEC_EXCLUDE for those that go. */
7829 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
7830 return false;
7831
7832 return true;
7833 }
7834 \f
7835 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7836
7837 boolean
7838 elf_gc_record_vtinherit (abfd, sec, h, offset)
7839 bfd *abfd;
7840 asection *sec;
7841 struct elf_link_hash_entry *h;
7842 bfd_vma offset;
7843 {
7844 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
7845 struct elf_link_hash_entry **search, *child;
7846 bfd_size_type extsymcount;
7847
7848 /* The sh_info field of the symtab header tells us where the
7849 external symbols start. We don't care about the local symbols at
7850 this point. */
7851 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
7852 if (!elf_bad_symtab (abfd))
7853 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
7854
7855 sym_hashes = elf_sym_hashes (abfd);
7856 sym_hashes_end = sym_hashes + extsymcount;
7857
7858 /* Hunt down the child symbol, which is in this section at the same
7859 offset as the relocation. */
7860 for (search = sym_hashes; search != sym_hashes_end; ++search)
7861 {
7862 if ((child = *search) != NULL
7863 && (child->root.type == bfd_link_hash_defined
7864 || child->root.type == bfd_link_hash_defweak)
7865 && child->root.u.def.section == sec
7866 && child->root.u.def.value == offset)
7867 goto win;
7868 }
7869
7870 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
7871 bfd_archive_filename (abfd), sec->name,
7872 (unsigned long) offset);
7873 bfd_set_error (bfd_error_invalid_operation);
7874 return false;
7875
7876 win:
7877 if (!h)
7878 {
7879 /* This *should* only be the absolute section. It could potentially
7880 be that someone has defined a non-global vtable though, which
7881 would be bad. It isn't worth paging in the local symbols to be
7882 sure though; that case should simply be handled by the assembler. */
7883
7884 child->vtable_parent = (struct elf_link_hash_entry *) -1;
7885 }
7886 else
7887 child->vtable_parent = h;
7888
7889 return true;
7890 }
7891
7892 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7893
7894 boolean
7895 elf_gc_record_vtentry (abfd, sec, h, addend)
7896 bfd *abfd ATTRIBUTE_UNUSED;
7897 asection *sec ATTRIBUTE_UNUSED;
7898 struct elf_link_hash_entry *h;
7899 bfd_vma addend;
7900 {
7901 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7902 int file_align = bed->s->file_align;
7903
7904 if (addend >= h->vtable_entries_size)
7905 {
7906 size_t size, bytes;
7907 boolean *ptr = h->vtable_entries_used;
7908
7909 /* While the symbol is undefined, we have to be prepared to handle
7910 a zero size. */
7911 if (h->root.type == bfd_link_hash_undefined)
7912 size = addend;
7913 else
7914 {
7915 size = h->size;
7916 if (size < addend)
7917 {
7918 /* Oops! We've got a reference past the defined end of
7919 the table. This is probably a bug -- shall we warn? */
7920 size = addend;
7921 }
7922 }
7923
7924 /* Allocate one extra entry for use as a "done" flag for the
7925 consolidation pass. */
7926 bytes = (size / file_align + 1) * sizeof (boolean);
7927
7928 if (ptr)
7929 {
7930 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
7931
7932 if (ptr != NULL)
7933 {
7934 size_t oldbytes;
7935
7936 oldbytes = ((h->vtable_entries_size / file_align + 1)
7937 * sizeof (boolean));
7938 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
7939 }
7940 }
7941 else
7942 ptr = bfd_zmalloc ((bfd_size_type) bytes);
7943
7944 if (ptr == NULL)
7945 return false;
7946
7947 /* And arrange for that done flag to be at index -1. */
7948 h->vtable_entries_used = ptr + 1;
7949 h->vtable_entries_size = size;
7950 }
7951
7952 h->vtable_entries_used[addend / file_align] = true;
7953
7954 return true;
7955 }
7956
7957 /* And an accompanying bit to work out final got entry offsets once
7958 we're done. Should be called from final_link. */
7959
7960 boolean
7961 elf_gc_common_finalize_got_offsets (abfd, info)
7962 bfd *abfd;
7963 struct bfd_link_info *info;
7964 {
7965 bfd *i;
7966 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7967 bfd_vma gotoff;
7968
7969 /* The GOT offset is relative to the .got section, but the GOT header is
7970 put into the .got.plt section, if the backend uses it. */
7971 if (bed->want_got_plt)
7972 gotoff = 0;
7973 else
7974 gotoff = bed->got_header_size;
7975
7976 /* Do the local .got entries first. */
7977 for (i = info->input_bfds; i; i = i->link_next)
7978 {
7979 bfd_signed_vma *local_got;
7980 bfd_size_type j, locsymcount;
7981 Elf_Internal_Shdr *symtab_hdr;
7982
7983 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
7984 continue;
7985
7986 local_got = elf_local_got_refcounts (i);
7987 if (!local_got)
7988 continue;
7989
7990 symtab_hdr = &elf_tdata (i)->symtab_hdr;
7991 if (elf_bad_symtab (i))
7992 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7993 else
7994 locsymcount = symtab_hdr->sh_info;
7995
7996 for (j = 0; j < locsymcount; ++j)
7997 {
7998 if (local_got[j] > 0)
7999 {
8000 local_got[j] = gotoff;
8001 gotoff += ARCH_SIZE / 8;
8002 }
8003 else
8004 local_got[j] = (bfd_vma) -1;
8005 }
8006 }
8007
8008 /* Then the global .got entries. .plt refcounts are handled by
8009 adjust_dynamic_symbol */
8010 elf_link_hash_traverse (elf_hash_table (info),
8011 elf_gc_allocate_got_offsets,
8012 (PTR) &gotoff);
8013 return true;
8014 }
8015
8016 /* We need a special top-level link routine to convert got reference counts
8017 to real got offsets. */
8018
8019 static boolean
8020 elf_gc_allocate_got_offsets (h, offarg)
8021 struct elf_link_hash_entry *h;
8022 PTR offarg;
8023 {
8024 bfd_vma *off = (bfd_vma *) offarg;
8025
8026 if (h->got.refcount > 0)
8027 {
8028 h->got.offset = off[0];
8029 off[0] += ARCH_SIZE / 8;
8030 }
8031 else
8032 h->got.offset = (bfd_vma) -1;
8033
8034 return true;
8035 }
8036
8037 /* Many folk need no more in the way of final link than this, once
8038 got entry reference counting is enabled. */
8039
8040 boolean
8041 elf_gc_common_final_link (abfd, info)
8042 bfd *abfd;
8043 struct bfd_link_info *info;
8044 {
8045 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8046 return false;
8047
8048 /* Invoke the regular ELF backend linker to do all the work. */
8049 return elf_bfd_final_link (abfd, info);
8050 }
8051
8052 /* This function will be called though elf_link_hash_traverse to store
8053 all hash value of the exported symbols in an array. */
8054
8055 static boolean
8056 elf_collect_hash_codes (h, data)
8057 struct elf_link_hash_entry *h;
8058 PTR data;
8059 {
8060 unsigned long **valuep = (unsigned long **) data;
8061 const char *name;
8062 char *p;
8063 unsigned long ha;
8064 char *alc = NULL;
8065
8066 /* Ignore indirect symbols. These are added by the versioning code. */
8067 if (h->dynindx == -1)
8068 return true;
8069
8070 name = h->root.root.string;
8071 p = strchr (name, ELF_VER_CHR);
8072 if (p != NULL)
8073 {
8074 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8075 memcpy (alc, name, (size_t) (p - name));
8076 alc[p - name] = '\0';
8077 name = alc;
8078 }
8079
8080 /* Compute the hash value. */
8081 ha = bfd_elf_hash (name);
8082
8083 /* Store the found hash value in the array given as the argument. */
8084 *(*valuep)++ = ha;
8085
8086 /* And store it in the struct so that we can put it in the hash table
8087 later. */
8088 h->elf_hash_value = ha;
8089
8090 if (alc != NULL)
8091 free (alc);
8092
8093 return true;
8094 }
8095
8096 boolean
8097 elf_reloc_symbol_deleted_p (offset, cookie)
8098 bfd_vma offset;
8099 PTR cookie;
8100 {
8101 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8102
8103 if (rcookie->bad_symtab)
8104 rcookie->rel = rcookie->rels;
8105
8106 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8107 {
8108 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8109 Elf_Internal_Sym isym;
8110
8111 if (! rcookie->bad_symtab)
8112 if (rcookie->rel->r_offset > offset)
8113 return false;
8114 if (rcookie->rel->r_offset != offset)
8115 continue;
8116
8117 if (rcookie->locsyms && r_symndx < rcookie->locsymcount)
8118 {
8119 Elf_External_Sym *lsym;
8120 Elf_External_Sym_Shndx *lshndx;
8121
8122 lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx;
8123 lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx;
8124 if (lshndx != NULL)
8125 lshndx += r_symndx;
8126 elf_swap_symbol_in (rcookie->abfd, lsym, lshndx, &isym);
8127 }
8128
8129 if (r_symndx >= rcookie->locsymcount
8130 || (rcookie->locsyms
8131 && ELF_ST_BIND (isym.st_info) != STB_LOCAL))
8132 {
8133 struct elf_link_hash_entry *h;
8134
8135 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8136
8137 while (h->root.type == bfd_link_hash_indirect
8138 || h->root.type == bfd_link_hash_warning)
8139 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8140
8141 if ((h->root.type == bfd_link_hash_defined
8142 || h->root.type == bfd_link_hash_defweak)
8143 && elf_discarded_section (h->root.u.def.section))
8144 return true;
8145 else
8146 return false;
8147 }
8148 else if (rcookie->locsyms)
8149 {
8150 /* It's not a relocation against a global symbol,
8151 but it could be a relocation against a local
8152 symbol for a discarded section. */
8153 asection *isec;
8154
8155 /* Need to: get the symbol; get the section. */
8156 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
8157 {
8158 isec = section_from_elf_index (rcookie->abfd, isym.st_shndx);
8159 if (isec != NULL && elf_discarded_section (isec))
8160 return true;
8161 }
8162 }
8163 return false;
8164 }
8165 return false;
8166 }
8167
8168 /* Discard unneeded references to discarded sections.
8169 Returns true if any section's size was changed. */
8170 /* This function assumes that the relocations are in sorted order,
8171 which is true for all known assemblers. */
8172
8173 boolean
8174 elf_bfd_discard_info (output_bfd, info)
8175 bfd *output_bfd;
8176 struct bfd_link_info *info;
8177 {
8178 struct elf_reloc_cookie cookie;
8179 asection *stab, *eh, *ehdr;
8180 Elf_Internal_Shdr *symtab_hdr;
8181 Elf_Internal_Shdr *shndx_hdr;
8182 Elf_External_Sym *freesyms;
8183 struct elf_backend_data *bed;
8184 bfd *abfd;
8185 boolean ret = false;
8186 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8187
8188 if (info->relocateable
8189 || info->traditional_format
8190 || info->hash->creator->flavour != bfd_target_elf_flavour
8191 || ! is_elf_hash_table (info))
8192 return false;
8193
8194 ehdr = NULL;
8195 if (elf_hash_table (info)->dynobj != NULL)
8196 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8197 ".eh_frame_hdr");
8198
8199 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8200 {
8201 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8202 continue;
8203
8204 bed = get_elf_backend_data (abfd);
8205
8206 if ((abfd->flags & DYNAMIC) != 0)
8207 continue;
8208
8209 eh = NULL;
8210 if (ehdr)
8211 {
8212 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8213 if (eh && eh->_raw_size == 0)
8214 eh = NULL;
8215 }
8216
8217 stab = strip ? NULL : bfd_get_section_by_name (abfd, ".stab");
8218 if ((! stab
8219 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8220 && ! eh
8221 && (strip || ! bed->elf_backend_discard_info))
8222 continue;
8223
8224 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8225 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8226
8227 cookie.abfd = abfd;
8228 cookie.sym_hashes = elf_sym_hashes (abfd);
8229 cookie.bad_symtab = elf_bad_symtab (abfd);
8230 if (cookie.bad_symtab)
8231 {
8232 cookie.locsymcount =
8233 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8234 cookie.extsymoff = 0;
8235 }
8236 else
8237 {
8238 cookie.locsymcount = symtab_hdr->sh_info;
8239 cookie.extsymoff = symtab_hdr->sh_info;
8240 }
8241
8242 freesyms = NULL;
8243 if (symtab_hdr->contents)
8244 cookie.locsyms = (void *) symtab_hdr->contents;
8245 else if (cookie.locsymcount == 0)
8246 cookie.locsyms = NULL;
8247 else
8248 {
8249 bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym);
8250 cookie.locsyms = bfd_malloc (amt);
8251 if (cookie.locsyms == NULL)
8252 return false;
8253 freesyms = cookie.locsyms;
8254 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
8255 || bfd_bread (cookie.locsyms, amt, abfd) != amt)
8256 {
8257 error_ret_free_loc:
8258 free (cookie.locsyms);
8259 return false;
8260 }
8261 }
8262
8263 cookie.locsym_shndx = NULL;
8264 if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0)
8265 {
8266 bfd_size_type amt;
8267 amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx);
8268 cookie.locsym_shndx = bfd_malloc (amt);
8269 if (cookie.locsym_shndx == NULL)
8270 goto error_ret_free_loc;
8271 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
8272 || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt)
8273 {
8274 free (cookie.locsym_shndx);
8275 goto error_ret_free_loc;
8276 }
8277 }
8278
8279 if (stab)
8280 {
8281 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8282 (abfd, stab, (PTR) NULL,
8283 (Elf_Internal_Rela *) NULL,
8284 info->keep_memory));
8285 if (cookie.rels)
8286 {
8287 cookie.rel = cookie.rels;
8288 cookie.relend =
8289 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8290 if (_bfd_discard_section_stabs (abfd, stab,
8291 elf_section_data (stab)->sec_info,
8292 elf_reloc_symbol_deleted_p,
8293 &cookie))
8294 ret = true;
8295 if (! info->keep_memory)
8296 free (cookie.rels);
8297 }
8298 }
8299
8300 if (eh)
8301 {
8302 cookie.rels = NULL;
8303 cookie.rel = NULL;
8304 cookie.relend = NULL;
8305 if (eh->reloc_count)
8306 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8307 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8308 info->keep_memory));
8309 if (cookie.rels)
8310 {
8311 cookie.rel = cookie.rels;
8312 cookie.relend =
8313 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8314 }
8315 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8316 elf_reloc_symbol_deleted_p,
8317 &cookie))
8318 ret = true;
8319 if (! info->keep_memory)
8320 free (cookie.rels);
8321 }
8322
8323 if (bed->elf_backend_discard_info)
8324 {
8325 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8326 ret = true;
8327 }
8328
8329 if (cookie.locsym_shndx != NULL)
8330 free (cookie.locsym_shndx);
8331
8332 if (freesyms != NULL)
8333 free (freesyms);
8334 }
8335
8336 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8337 ret = true;
8338 return ret;
8339 }
8340
8341 static boolean
8342 elf_section_ignore_discarded_relocs (sec)
8343 asection *sec;
8344 {
8345 struct elf_backend_data *bed;
8346
8347 switch (elf_section_data (sec)->sec_info_type)
8348 {
8349 case ELF_INFO_TYPE_STABS:
8350 case ELF_INFO_TYPE_EH_FRAME:
8351 return true;
8352 default:
8353 break;
8354 }
8355
8356 bed = get_elf_backend_data (sec->owner);
8357 if (bed->elf_backend_ignore_discarded_relocs != NULL
8358 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8359 return true;
8360
8361 return false;
8362 }
This page took 0.199531 seconds and 4 git commands to generate.