This lot mainly cleans up `comparison between signed and unsigned' gcc
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83 /* Return true iff this is a non-common definition of a symbol. */
84 static boolean
85 is_global_symbol_definition (abfd, sym)
86 bfd * abfd;
87 Elf_Internal_Sym * sym;
88 {
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116 }
117
118
119 /* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122 static boolean
123 elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126 {
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
205 result = is_global_symbol_definition (abfd, & sym);
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213 }
214 \f
215
216 /* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241 static boolean
242 elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245 {
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
360
361 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
362 if (element == (bfd *) NULL)
363 goto error_return;
364
365 if (! bfd_check_format (element, bfd_object))
366 goto error_return;
367
368 /* Doublecheck that we have not included this object
369 already--it should be impossible, but there may be
370 something wrong with the archive. */
371 if (element->archive_pass != 0)
372 {
373 bfd_set_error (bfd_error_bad_value);
374 goto error_return;
375 }
376 element->archive_pass = 1;
377
378 undefs_tail = info->hash->undefs_tail;
379
380 if (! (*info->callbacks->add_archive_element) (info, element,
381 symdef->name))
382 goto error_return;
383 if (! elf_link_add_object_symbols (element, info))
384 goto error_return;
385
386 /* If there are any new undefined symbols, we need to make
387 another pass through the archive in order to see whether
388 they can be defined. FIXME: This isn't perfect, because
389 common symbols wind up on undefs_tail and because an
390 undefined symbol which is defined later on in this pass
391 does not require another pass. This isn't a bug, but it
392 does make the code less efficient than it could be. */
393 if (undefs_tail != info->hash->undefs_tail)
394 loop = true;
395
396 /* Look backward to mark all symbols from this object file
397 which we have already seen in this pass. */
398 mark = i;
399 do
400 {
401 included[mark] = true;
402 if (mark == 0)
403 break;
404 --mark;
405 }
406 while (symdefs[mark].file_offset == symdef->file_offset);
407
408 /* We mark subsequent symbols from this object file as we go
409 on through the loop. */
410 last = symdef->file_offset;
411 }
412 }
413 while (loop);
414
415 free (defined);
416 free (included);
417
418 return true;
419
420 error_return:
421 if (defined != (boolean *) NULL)
422 free (defined);
423 if (included != (boolean *) NULL)
424 free (included);
425 return false;
426 }
427
428 /* This function is called when we want to define a new symbol. It
429 handles the various cases which arise when we find a definition in
430 a dynamic object, or when there is already a definition in a
431 dynamic object. The new symbol is described by NAME, SYM, PSEC,
432 and PVALUE. We set SYM_HASH to the hash table entry. We set
433 OVERRIDE if the old symbol is overriding a new definition. We set
434 TYPE_CHANGE_OK if it is OK for the type to change. We set
435 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
436 change, we mean that we shouldn't warn if the type or size does
437 change. */
438
439 static boolean
440 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
441 override, type_change_ok, size_change_ok)
442 bfd *abfd;
443 struct bfd_link_info *info;
444 const char *name;
445 Elf_Internal_Sym *sym;
446 asection **psec;
447 bfd_vma *pvalue;
448 struct elf_link_hash_entry **sym_hash;
449 boolean *override;
450 boolean *type_change_ok;
451 boolean *size_change_ok;
452 {
453 asection *sec;
454 struct elf_link_hash_entry *h;
455 int bind;
456 bfd *oldbfd;
457 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
458
459 *override = false;
460
461 sec = *psec;
462 bind = ELF_ST_BIND (sym->st_info);
463
464 if (! bfd_is_und_section (sec))
465 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
466 else
467 h = ((struct elf_link_hash_entry *)
468 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
469 if (h == NULL)
470 return false;
471 *sym_hash = h;
472
473 /* This code is for coping with dynamic objects, and is only useful
474 if we are doing an ELF link. */
475 if (info->hash->creator != abfd->xvec)
476 return true;
477
478 /* For merging, we only care about real symbols. */
479
480 while (h->root.type == bfd_link_hash_indirect
481 || h->root.type == bfd_link_hash_warning)
482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
483
484 /* If we just created the symbol, mark it as being an ELF symbol.
485 Other than that, there is nothing to do--there is no merge issue
486 with a newly defined symbol--so we just return. */
487
488 if (h->root.type == bfd_link_hash_new)
489 {
490 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
491 return true;
492 }
493
494 /* OLDBFD is a BFD associated with the existing symbol. */
495
496 switch (h->root.type)
497 {
498 default:
499 oldbfd = NULL;
500 break;
501
502 case bfd_link_hash_undefined:
503 case bfd_link_hash_undefweak:
504 oldbfd = h->root.u.undef.abfd;
505 break;
506
507 case bfd_link_hash_defined:
508 case bfd_link_hash_defweak:
509 oldbfd = h->root.u.def.section->owner;
510 break;
511
512 case bfd_link_hash_common:
513 oldbfd = h->root.u.c.p->section->owner;
514 break;
515 }
516
517 /* In cases involving weak versioned symbols, we may wind up trying
518 to merge a symbol with itself. Catch that here, to avoid the
519 confusion that results if we try to override a symbol with
520 itself. The additional tests catch cases like
521 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
522 dynamic object, which we do want to handle here. */
523 if (abfd == oldbfd
524 && ((abfd->flags & DYNAMIC) == 0
525 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
526 return true;
527
528 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
529 respectively, is from a dynamic object. */
530
531 if ((abfd->flags & DYNAMIC) != 0)
532 newdyn = true;
533 else
534 newdyn = false;
535
536 if (oldbfd != NULL)
537 olddyn = (oldbfd->flags & DYNAMIC) != 0;
538 else
539 {
540 asection *hsec;
541
542 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
543 indices used by MIPS ELF. */
544 switch (h->root.type)
545 {
546 default:
547 hsec = NULL;
548 break;
549
550 case bfd_link_hash_defined:
551 case bfd_link_hash_defweak:
552 hsec = h->root.u.def.section;
553 break;
554
555 case bfd_link_hash_common:
556 hsec = h->root.u.c.p->section;
557 break;
558 }
559
560 if (hsec == NULL)
561 olddyn = false;
562 else
563 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
564 }
565
566 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
567 respectively, appear to be a definition rather than reference. */
568
569 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
570 newdef = false;
571 else
572 newdef = true;
573
574 if (h->root.type == bfd_link_hash_undefined
575 || h->root.type == bfd_link_hash_undefweak
576 || h->root.type == bfd_link_hash_common)
577 olddef = false;
578 else
579 olddef = true;
580
581 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
582 symbol, respectively, appears to be a common symbol in a dynamic
583 object. If a symbol appears in an uninitialized section, and is
584 not weak, and is not a function, then it may be a common symbol
585 which was resolved when the dynamic object was created. We want
586 to treat such symbols specially, because they raise special
587 considerations when setting the symbol size: if the symbol
588 appears as a common symbol in a regular object, and the size in
589 the regular object is larger, we must make sure that we use the
590 larger size. This problematic case can always be avoided in C,
591 but it must be handled correctly when using Fortran shared
592 libraries.
593
594 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
595 likewise for OLDDYNCOMMON and OLDDEF.
596
597 Note that this test is just a heuristic, and that it is quite
598 possible to have an uninitialized symbol in a shared object which
599 is really a definition, rather than a common symbol. This could
600 lead to some minor confusion when the symbol really is a common
601 symbol in some regular object. However, I think it will be
602 harmless. */
603
604 if (newdyn
605 && newdef
606 && (sec->flags & SEC_ALLOC) != 0
607 && (sec->flags & SEC_LOAD) == 0
608 && sym->st_size > 0
609 && bind != STB_WEAK
610 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
611 newdyncommon = true;
612 else
613 newdyncommon = false;
614
615 if (olddyn
616 && olddef
617 && h->root.type == bfd_link_hash_defined
618 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
619 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
620 && (h->root.u.def.section->flags & SEC_LOAD) == 0
621 && h->size > 0
622 && h->type != STT_FUNC)
623 olddyncommon = true;
624 else
625 olddyncommon = false;
626
627 /* It's OK to change the type if either the existing symbol or the
628 new symbol is weak. */
629
630 if (h->root.type == bfd_link_hash_defweak
631 || h->root.type == bfd_link_hash_undefweak
632 || bind == STB_WEAK)
633 *type_change_ok = true;
634
635 /* It's OK to change the size if either the existing symbol or the
636 new symbol is weak, or if the old symbol is undefined. */
637
638 if (*type_change_ok
639 || h->root.type == bfd_link_hash_undefined)
640 *size_change_ok = true;
641
642 /* If both the old and the new symbols look like common symbols in a
643 dynamic object, set the size of the symbol to the larger of the
644 two. */
645
646 if (olddyncommon
647 && newdyncommon
648 && sym->st_size != h->size)
649 {
650 /* Since we think we have two common symbols, issue a multiple
651 common warning if desired. Note that we only warn if the
652 size is different. If the size is the same, we simply let
653 the old symbol override the new one as normally happens with
654 symbols defined in dynamic objects. */
655
656 if (! ((*info->callbacks->multiple_common)
657 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
658 h->size, abfd, bfd_link_hash_common, sym->st_size)))
659 return false;
660
661 if (sym->st_size > h->size)
662 h->size = sym->st_size;
663
664 *size_change_ok = true;
665 }
666
667 /* If we are looking at a dynamic object, and we have found a
668 definition, we need to see if the symbol was already defined by
669 some other object. If so, we want to use the existing
670 definition, and we do not want to report a multiple symbol
671 definition error; we do this by clobbering *PSEC to be
672 bfd_und_section_ptr.
673
674 We treat a common symbol as a definition if the symbol in the
675 shared library is a function, since common symbols always
676 represent variables; this can cause confusion in principle, but
677 any such confusion would seem to indicate an erroneous program or
678 shared library. We also permit a common symbol in a regular
679 object to override a weak symbol in a shared object.
680
681 We prefer a non-weak definition in a shared library to a weak
682 definition in the executable. */
683
684 if (newdyn
685 && newdef
686 && (olddef
687 || (h->root.type == bfd_link_hash_common
688 && (bind == STB_WEAK
689 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
690 && (h->root.type != bfd_link_hash_defweak
691 || bind == STB_WEAK))
692 {
693 *override = true;
694 newdef = false;
695 newdyncommon = false;
696
697 *psec = sec = bfd_und_section_ptr;
698 *size_change_ok = true;
699
700 /* If we get here when the old symbol is a common symbol, then
701 we are explicitly letting it override a weak symbol or
702 function in a dynamic object, and we don't want to warn about
703 a type change. If the old symbol is a defined symbol, a type
704 change warning may still be appropriate. */
705
706 if (h->root.type == bfd_link_hash_common)
707 *type_change_ok = true;
708 }
709
710 /* Handle the special case of an old common symbol merging with a
711 new symbol which looks like a common symbol in a shared object.
712 We change *PSEC and *PVALUE to make the new symbol look like a
713 common symbol, and let _bfd_generic_link_add_one_symbol will do
714 the right thing. */
715
716 if (newdyncommon
717 && h->root.type == bfd_link_hash_common)
718 {
719 *override = true;
720 newdef = false;
721 newdyncommon = false;
722 *pvalue = sym->st_size;
723 *psec = sec = bfd_com_section_ptr;
724 *size_change_ok = true;
725 }
726
727 /* If the old symbol is from a dynamic object, and the new symbol is
728 a definition which is not from a dynamic object, then the new
729 symbol overrides the old symbol. Symbols from regular files
730 always take precedence over symbols from dynamic objects, even if
731 they are defined after the dynamic object in the link.
732
733 As above, we again permit a common symbol in a regular object to
734 override a definition in a shared object if the shared object
735 symbol is a function or is weak.
736
737 As above, we permit a non-weak definition in a shared object to
738 override a weak definition in a regular object. */
739
740 if (! newdyn
741 && (newdef
742 || (bfd_is_com_section (sec)
743 && (h->root.type == bfd_link_hash_defweak
744 || h->type == STT_FUNC)))
745 && olddyn
746 && olddef
747 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
748 && (bind != STB_WEAK
749 || h->root.type == bfd_link_hash_defweak))
750 {
751 /* Change the hash table entry to undefined, and let
752 _bfd_generic_link_add_one_symbol do the right thing with the
753 new definition. */
754
755 h->root.type = bfd_link_hash_undefined;
756 h->root.u.undef.abfd = h->root.u.def.section->owner;
757 *size_change_ok = true;
758
759 olddef = false;
760 olddyncommon = false;
761
762 /* We again permit a type change when a common symbol may be
763 overriding a function. */
764
765 if (bfd_is_com_section (sec))
766 *type_change_ok = true;
767
768 /* This union may have been set to be non-NULL when this symbol
769 was seen in a dynamic object. We must force the union to be
770 NULL, so that it is correct for a regular symbol. */
771
772 h->verinfo.vertree = NULL;
773
774 /* In this special case, if H is the target of an indirection,
775 we want the caller to frob with H rather than with the
776 indirect symbol. That will permit the caller to redefine the
777 target of the indirection, rather than the indirect symbol
778 itself. FIXME: This will break the -y option if we store a
779 symbol with a different name. */
780 *sym_hash = h;
781 }
782
783 /* Handle the special case of a new common symbol merging with an
784 old symbol that looks like it might be a common symbol defined in
785 a shared object. Note that we have already handled the case in
786 which a new common symbol should simply override the definition
787 in the shared library. */
788
789 if (! newdyn
790 && bfd_is_com_section (sec)
791 && olddyncommon)
792 {
793 /* It would be best if we could set the hash table entry to a
794 common symbol, but we don't know what to use for the section
795 or the alignment. */
796 if (! ((*info->callbacks->multiple_common)
797 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
798 h->size, abfd, bfd_link_hash_common, sym->st_size)))
799 return false;
800
801 /* If the predumed common symbol in the dynamic object is
802 larger, pretend that the new symbol has its size. */
803
804 if (h->size > *pvalue)
805 *pvalue = h->size;
806
807 /* FIXME: We no longer know the alignment required by the symbol
808 in the dynamic object, so we just wind up using the one from
809 the regular object. */
810
811 olddef = false;
812 olddyncommon = false;
813
814 h->root.type = bfd_link_hash_undefined;
815 h->root.u.undef.abfd = h->root.u.def.section->owner;
816
817 *size_change_ok = true;
818 *type_change_ok = true;
819
820 h->verinfo.vertree = NULL;
821 }
822
823 /* Handle the special case of a weak definition in a regular object
824 followed by a non-weak definition in a shared object. In this
825 case, we prefer the definition in the shared object. */
826 if (olddef
827 && h->root.type == bfd_link_hash_defweak
828 && newdef
829 && newdyn
830 && bind != STB_WEAK)
831 {
832 /* To make this work we have to frob the flags so that the rest
833 of the code does not think we are using the regular
834 definition. */
835 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
836 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
837 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
838 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
839 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
840 | ELF_LINK_HASH_DEF_DYNAMIC);
841
842 /* If H is the target of an indirection, we want the caller to
843 use H rather than the indirect symbol. Otherwise if we are
844 defining a new indirect symbol we will wind up attaching it
845 to the entry we are overriding. */
846 *sym_hash = h;
847 }
848
849 /* Handle the special case of a non-weak definition in a shared
850 object followed by a weak definition in a regular object. In
851 this case we prefer to definition in the shared object. To make
852 this work we have to tell the caller to not treat the new symbol
853 as a definition. */
854 if (olddef
855 && olddyn
856 && h->root.type != bfd_link_hash_defweak
857 && newdef
858 && ! newdyn
859 && bind == STB_WEAK)
860 *override = true;
861
862 return true;
863 }
864
865 /* Add symbols from an ELF object file to the linker hash table. */
866
867 static boolean
868 elf_link_add_object_symbols (abfd, info)
869 bfd *abfd;
870 struct bfd_link_info *info;
871 {
872 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
873 const Elf_Internal_Sym *,
874 const char **, flagword *,
875 asection **, bfd_vma *));
876 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
877 asection *, const Elf_Internal_Rela *));
878 boolean collect;
879 Elf_Internal_Shdr *hdr;
880 size_t symcount;
881 size_t extsymcount;
882 size_t extsymoff;
883 Elf_External_Sym *buf = NULL;
884 struct elf_link_hash_entry **sym_hash;
885 boolean dynamic;
886 bfd_byte *dynver = NULL;
887 Elf_External_Versym *extversym = NULL;
888 Elf_External_Versym *ever;
889 Elf_External_Dyn *dynbuf = NULL;
890 struct elf_link_hash_entry *weaks;
891 Elf_External_Sym *esym;
892 Elf_External_Sym *esymend;
893 struct elf_backend_data *bed;
894
895 bed = get_elf_backend_data (abfd);
896 add_symbol_hook = bed->elf_add_symbol_hook;
897 collect = bed->collect;
898
899 if ((abfd->flags & DYNAMIC) == 0)
900 dynamic = false;
901 else
902 {
903 dynamic = true;
904
905 /* You can't use -r against a dynamic object. Also, there's no
906 hope of using a dynamic object which does not exactly match
907 the format of the output file. */
908 if (info->relocateable || info->hash->creator != abfd->xvec)
909 {
910 bfd_set_error (bfd_error_invalid_operation);
911 goto error_return;
912 }
913 }
914
915 /* As a GNU extension, any input sections which are named
916 .gnu.warning.SYMBOL are treated as warning symbols for the given
917 symbol. This differs from .gnu.warning sections, which generate
918 warnings when they are included in an output file. */
919 if (! info->shared)
920 {
921 asection *s;
922
923 for (s = abfd->sections; s != NULL; s = s->next)
924 {
925 const char *name;
926
927 name = bfd_get_section_name (abfd, s);
928 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
929 {
930 char *msg;
931 bfd_size_type sz;
932
933 name += sizeof ".gnu.warning." - 1;
934
935 /* If this is a shared object, then look up the symbol
936 in the hash table. If it is there, and it is already
937 been defined, then we will not be using the entry
938 from this shared object, so we don't need to warn.
939 FIXME: If we see the definition in a regular object
940 later on, we will warn, but we shouldn't. The only
941 fix is to keep track of what warnings we are supposed
942 to emit, and then handle them all at the end of the
943 link. */
944 if (dynamic && abfd->xvec == info->hash->creator)
945 {
946 struct elf_link_hash_entry *h;
947
948 h = elf_link_hash_lookup (elf_hash_table (info), name,
949 false, false, true);
950
951 /* FIXME: What about bfd_link_hash_common? */
952 if (h != NULL
953 && (h->root.type == bfd_link_hash_defined
954 || h->root.type == bfd_link_hash_defweak))
955 {
956 /* We don't want to issue this warning. Clobber
957 the section size so that the warning does not
958 get copied into the output file. */
959 s->_raw_size = 0;
960 continue;
961 }
962 }
963
964 sz = bfd_section_size (abfd, s);
965 msg = (char *) bfd_alloc (abfd, sz + 1);
966 if (msg == NULL)
967 goto error_return;
968
969 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
970 goto error_return;
971
972 msg[sz] = '\0';
973
974 if (! (_bfd_generic_link_add_one_symbol
975 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
976 false, collect, (struct bfd_link_hash_entry **) NULL)))
977 goto error_return;
978
979 if (! info->relocateable)
980 {
981 /* Clobber the section size so that the warning does
982 not get copied into the output file. */
983 s->_raw_size = 0;
984 }
985 }
986 }
987 }
988
989 /* If this is a dynamic object, we always link against the .dynsym
990 symbol table, not the .symtab symbol table. The dynamic linker
991 will only see the .dynsym symbol table, so there is no reason to
992 look at .symtab for a dynamic object. */
993
994 if (! dynamic || elf_dynsymtab (abfd) == 0)
995 hdr = &elf_tdata (abfd)->symtab_hdr;
996 else
997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
998
999 if (dynamic)
1000 {
1001 /* Read in any version definitions. */
1002
1003 if (! _bfd_elf_slurp_version_tables (abfd))
1004 goto error_return;
1005
1006 /* Read in the symbol versions, but don't bother to convert them
1007 to internal format. */
1008 if (elf_dynversym (abfd) != 0)
1009 {
1010 Elf_Internal_Shdr *versymhdr;
1011
1012 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1013 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1014 if (extversym == NULL)
1015 goto error_return;
1016 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1017 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1018 != versymhdr->sh_size))
1019 goto error_return;
1020 }
1021 }
1022
1023 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1024
1025 /* The sh_info field of the symtab header tells us where the
1026 external symbols start. We don't care about the local symbols at
1027 this point. */
1028 if (elf_bad_symtab (abfd))
1029 {
1030 extsymcount = symcount;
1031 extsymoff = 0;
1032 }
1033 else
1034 {
1035 extsymcount = symcount - hdr->sh_info;
1036 extsymoff = hdr->sh_info;
1037 }
1038
1039 buf = ((Elf_External_Sym *)
1040 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1041 if (buf == NULL && extsymcount != 0)
1042 goto error_return;
1043
1044 /* We store a pointer to the hash table entry for each external
1045 symbol. */
1046 sym_hash = ((struct elf_link_hash_entry **)
1047 bfd_alloc (abfd,
1048 extsymcount * sizeof (struct elf_link_hash_entry *)));
1049 if (sym_hash == NULL)
1050 goto error_return;
1051 elf_sym_hashes (abfd) = sym_hash;
1052
1053 if (! dynamic)
1054 {
1055 /* If we are creating a shared library, create all the dynamic
1056 sections immediately. We need to attach them to something,
1057 so we attach them to this BFD, provided it is the right
1058 format. FIXME: If there are no input BFD's of the same
1059 format as the output, we can't make a shared library. */
1060 if (info->shared
1061 && ! elf_hash_table (info)->dynamic_sections_created
1062 && abfd->xvec == info->hash->creator)
1063 {
1064 if (! elf_link_create_dynamic_sections (abfd, info))
1065 goto error_return;
1066 }
1067 }
1068 else
1069 {
1070 asection *s;
1071 boolean add_needed;
1072 const char *name;
1073 bfd_size_type oldsize;
1074 bfd_size_type strindex;
1075
1076 /* Find the name to use in a DT_NEEDED entry that refers to this
1077 object. If the object has a DT_SONAME entry, we use it.
1078 Otherwise, if the generic linker stuck something in
1079 elf_dt_name, we use that. Otherwise, we just use the file
1080 name. If the generic linker put a null string into
1081 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1082 there is a DT_SONAME entry. */
1083 add_needed = true;
1084 name = bfd_get_filename (abfd);
1085 if (elf_dt_name (abfd) != NULL)
1086 {
1087 name = elf_dt_name (abfd);
1088 if (*name == '\0')
1089 add_needed = false;
1090 }
1091 s = bfd_get_section_by_name (abfd, ".dynamic");
1092 if (s != NULL)
1093 {
1094 Elf_External_Dyn *extdyn;
1095 Elf_External_Dyn *extdynend;
1096 int elfsec;
1097 unsigned long link;
1098
1099 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1100 if (dynbuf == NULL)
1101 goto error_return;
1102
1103 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1104 (file_ptr) 0, s->_raw_size))
1105 goto error_return;
1106
1107 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1108 if (elfsec == -1)
1109 goto error_return;
1110 link = elf_elfsections (abfd)[elfsec]->sh_link;
1111
1112 {
1113 /* The shared libraries distributed with hpux11 have a bogus
1114 sh_link field for the ".dynamic" section. This code detects
1115 when LINK refers to a section that is not a string table and
1116 tries to find the string table for the ".dynsym" section
1117 instead. */
1118 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1119 if (hdr->sh_type != SHT_STRTAB)
1120 {
1121 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1122 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1123 if (elfsec == -1)
1124 goto error_return;
1125 link = elf_elfsections (abfd)[elfsec]->sh_link;
1126 }
1127 }
1128
1129 extdyn = dynbuf;
1130 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1131 for (; extdyn < extdynend; extdyn++)
1132 {
1133 Elf_Internal_Dyn dyn;
1134
1135 elf_swap_dyn_in (abfd, extdyn, &dyn);
1136 if (dyn.d_tag == DT_SONAME)
1137 {
1138 name = bfd_elf_string_from_elf_section (abfd, link,
1139 dyn.d_un.d_val);
1140 if (name == NULL)
1141 goto error_return;
1142 }
1143 if (dyn.d_tag == DT_NEEDED)
1144 {
1145 struct bfd_link_needed_list *n, **pn;
1146 char *fnm, *anm;
1147
1148 n = ((struct bfd_link_needed_list *)
1149 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1150 fnm = bfd_elf_string_from_elf_section (abfd, link,
1151 dyn.d_un.d_val);
1152 if (n == NULL || fnm == NULL)
1153 goto error_return;
1154 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1155 if (anm == NULL)
1156 goto error_return;
1157 strcpy (anm, fnm);
1158 n->name = anm;
1159 n->by = abfd;
1160 n->next = NULL;
1161 for (pn = &elf_hash_table (info)->needed;
1162 *pn != NULL;
1163 pn = &(*pn)->next)
1164 ;
1165 *pn = n;
1166 }
1167 }
1168
1169 free (dynbuf);
1170 dynbuf = NULL;
1171 }
1172
1173 /* We do not want to include any of the sections in a dynamic
1174 object in the output file. We hack by simply clobbering the
1175 list of sections in the BFD. This could be handled more
1176 cleanly by, say, a new section flag; the existing
1177 SEC_NEVER_LOAD flag is not the one we want, because that one
1178 still implies that the section takes up space in the output
1179 file. */
1180 abfd->sections = NULL;
1181 abfd->section_count = 0;
1182
1183 /* If this is the first dynamic object found in the link, create
1184 the special sections required for dynamic linking. */
1185 if (! elf_hash_table (info)->dynamic_sections_created)
1186 {
1187 if (! elf_link_create_dynamic_sections (abfd, info))
1188 goto error_return;
1189 }
1190
1191 if (add_needed)
1192 {
1193 /* Add a DT_NEEDED entry for this dynamic object. */
1194 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1195 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1196 true, false);
1197 if (strindex == (bfd_size_type) -1)
1198 goto error_return;
1199
1200 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1201 {
1202 asection *sdyn;
1203 Elf_External_Dyn *dyncon, *dynconend;
1204
1205 /* The hash table size did not change, which means that
1206 the dynamic object name was already entered. If we
1207 have already included this dynamic object in the
1208 link, just ignore it. There is no reason to include
1209 a particular dynamic object more than once. */
1210 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1211 ".dynamic");
1212 BFD_ASSERT (sdyn != NULL);
1213
1214 dyncon = (Elf_External_Dyn *) sdyn->contents;
1215 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1216 sdyn->_raw_size);
1217 for (; dyncon < dynconend; dyncon++)
1218 {
1219 Elf_Internal_Dyn dyn;
1220
1221 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1222 &dyn);
1223 if (dyn.d_tag == DT_NEEDED
1224 && dyn.d_un.d_val == strindex)
1225 {
1226 if (buf != NULL)
1227 free (buf);
1228 if (extversym != NULL)
1229 free (extversym);
1230 return true;
1231 }
1232 }
1233 }
1234
1235 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1236 goto error_return;
1237 }
1238
1239 /* Save the SONAME, if there is one, because sometimes the
1240 linker emulation code will need to know it. */
1241 if (*name == '\0')
1242 name = bfd_get_filename (abfd);
1243 elf_dt_name (abfd) = name;
1244 }
1245
1246 if (bfd_seek (abfd,
1247 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1248 SEEK_SET) != 0
1249 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1250 != extsymcount * sizeof (Elf_External_Sym)))
1251 goto error_return;
1252
1253 weaks = NULL;
1254
1255 ever = extversym != NULL ? extversym + extsymoff : NULL;
1256 esymend = buf + extsymcount;
1257 for (esym = buf;
1258 esym < esymend;
1259 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1260 {
1261 Elf_Internal_Sym sym;
1262 int bind;
1263 bfd_vma value;
1264 asection *sec;
1265 flagword flags;
1266 const char *name;
1267 struct elf_link_hash_entry *h;
1268 boolean definition;
1269 boolean size_change_ok, type_change_ok;
1270 boolean new_weakdef;
1271 unsigned int old_alignment;
1272
1273 elf_swap_symbol_in (abfd, esym, &sym);
1274
1275 flags = BSF_NO_FLAGS;
1276 sec = NULL;
1277 value = sym.st_value;
1278 *sym_hash = NULL;
1279
1280 bind = ELF_ST_BIND (sym.st_info);
1281 if (bind == STB_LOCAL)
1282 {
1283 /* This should be impossible, since ELF requires that all
1284 global symbols follow all local symbols, and that sh_info
1285 point to the first global symbol. Unfortunatealy, Irix 5
1286 screws this up. */
1287 continue;
1288 }
1289 else if (bind == STB_GLOBAL)
1290 {
1291 if (sym.st_shndx != SHN_UNDEF
1292 && sym.st_shndx != SHN_COMMON)
1293 flags = BSF_GLOBAL;
1294 else
1295 flags = 0;
1296 }
1297 else if (bind == STB_WEAK)
1298 flags = BSF_WEAK;
1299 else
1300 {
1301 /* Leave it up to the processor backend. */
1302 }
1303
1304 if (sym.st_shndx == SHN_UNDEF)
1305 sec = bfd_und_section_ptr;
1306 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1307 {
1308 sec = section_from_elf_index (abfd, sym.st_shndx);
1309 if (sec == NULL)
1310 sec = bfd_abs_section_ptr;
1311 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1312 value -= sec->vma;
1313 }
1314 else if (sym.st_shndx == SHN_ABS)
1315 sec = bfd_abs_section_ptr;
1316 else if (sym.st_shndx == SHN_COMMON)
1317 {
1318 sec = bfd_com_section_ptr;
1319 /* What ELF calls the size we call the value. What ELF
1320 calls the value we call the alignment. */
1321 value = sym.st_size;
1322 }
1323 else
1324 {
1325 /* Leave it up to the processor backend. */
1326 }
1327
1328 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1329 if (name == (const char *) NULL)
1330 goto error_return;
1331
1332 if (add_symbol_hook)
1333 {
1334 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1335 &value))
1336 goto error_return;
1337
1338 /* The hook function sets the name to NULL if this symbol
1339 should be skipped for some reason. */
1340 if (name == (const char *) NULL)
1341 continue;
1342 }
1343
1344 /* Sanity check that all possibilities were handled. */
1345 if (sec == (asection *) NULL)
1346 {
1347 bfd_set_error (bfd_error_bad_value);
1348 goto error_return;
1349 }
1350
1351 if (bfd_is_und_section (sec)
1352 || bfd_is_com_section (sec))
1353 definition = false;
1354 else
1355 definition = true;
1356
1357 size_change_ok = false;
1358 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1359 old_alignment = 0;
1360 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1361 {
1362 Elf_Internal_Versym iver;
1363 unsigned int vernum = 0;
1364 boolean override;
1365
1366 if (ever != NULL)
1367 {
1368 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1369 vernum = iver.vs_vers & VERSYM_VERSION;
1370
1371 /* If this is a hidden symbol, or if it is not version
1372 1, we append the version name to the symbol name.
1373 However, we do not modify a non-hidden absolute
1374 symbol, because it might be the version symbol
1375 itself. FIXME: What if it isn't? */
1376 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1377 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1378 {
1379 const char *verstr;
1380 int namelen, newlen;
1381 char *newname, *p;
1382
1383 if (sym.st_shndx != SHN_UNDEF)
1384 {
1385 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1386 {
1387 (*_bfd_error_handler)
1388 (_("%s: %s: invalid version %u (max %d)"),
1389 bfd_get_filename (abfd), name, vernum,
1390 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1391 bfd_set_error (bfd_error_bad_value);
1392 goto error_return;
1393 }
1394 else if (vernum > 1)
1395 verstr =
1396 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1397 else
1398 verstr = "";
1399 }
1400 else
1401 {
1402 /* We cannot simply test for the number of
1403 entries in the VERNEED section since the
1404 numbers for the needed versions do not start
1405 at 0. */
1406 Elf_Internal_Verneed *t;
1407
1408 verstr = NULL;
1409 for (t = elf_tdata (abfd)->verref;
1410 t != NULL;
1411 t = t->vn_nextref)
1412 {
1413 Elf_Internal_Vernaux *a;
1414
1415 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1416 {
1417 if (a->vna_other == vernum)
1418 {
1419 verstr = a->vna_nodename;
1420 break;
1421 }
1422 }
1423 if (a != NULL)
1424 break;
1425 }
1426 if (verstr == NULL)
1427 {
1428 (*_bfd_error_handler)
1429 (_("%s: %s: invalid needed version %d"),
1430 bfd_get_filename (abfd), name, vernum);
1431 bfd_set_error (bfd_error_bad_value);
1432 goto error_return;
1433 }
1434 }
1435
1436 namelen = strlen (name);
1437 newlen = namelen + strlen (verstr) + 2;
1438 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1439 ++newlen;
1440
1441 newname = (char *) bfd_alloc (abfd, newlen);
1442 if (newname == NULL)
1443 goto error_return;
1444 strcpy (newname, name);
1445 p = newname + namelen;
1446 *p++ = ELF_VER_CHR;
1447 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1448 *p++ = ELF_VER_CHR;
1449 strcpy (p, verstr);
1450
1451 name = newname;
1452 }
1453 }
1454
1455 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1456 sym_hash, &override, &type_change_ok,
1457 &size_change_ok))
1458 goto error_return;
1459
1460 if (override)
1461 definition = false;
1462
1463 h = *sym_hash;
1464 while (h->root.type == bfd_link_hash_indirect
1465 || h->root.type == bfd_link_hash_warning)
1466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1467
1468 /* Remember the old alignment if this is a common symbol, so
1469 that we don't reduce the alignment later on. We can't
1470 check later, because _bfd_generic_link_add_one_symbol
1471 will set a default for the alignment which we want to
1472 override. */
1473 if (h->root.type == bfd_link_hash_common)
1474 old_alignment = h->root.u.c.p->alignment_power;
1475
1476 if (elf_tdata (abfd)->verdef != NULL
1477 && ! override
1478 && vernum > 1
1479 && definition)
1480 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1481 }
1482
1483 if (! (_bfd_generic_link_add_one_symbol
1484 (info, abfd, name, flags, sec, value, (const char *) NULL,
1485 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1486 goto error_return;
1487
1488 h = *sym_hash;
1489 while (h->root.type == bfd_link_hash_indirect
1490 || h->root.type == bfd_link_hash_warning)
1491 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1492 *sym_hash = h;
1493
1494 new_weakdef = false;
1495 if (dynamic
1496 && definition
1497 && (flags & BSF_WEAK) != 0
1498 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1499 && info->hash->creator->flavour == bfd_target_elf_flavour
1500 && h->weakdef == NULL)
1501 {
1502 /* Keep a list of all weak defined non function symbols from
1503 a dynamic object, using the weakdef field. Later in this
1504 function we will set the weakdef field to the correct
1505 value. We only put non-function symbols from dynamic
1506 objects on this list, because that happens to be the only
1507 time we need to know the normal symbol corresponding to a
1508 weak symbol, and the information is time consuming to
1509 figure out. If the weakdef field is not already NULL,
1510 then this symbol was already defined by some previous
1511 dynamic object, and we will be using that previous
1512 definition anyhow. */
1513
1514 h->weakdef = weaks;
1515 weaks = h;
1516 new_weakdef = true;
1517 }
1518
1519 /* Set the alignment of a common symbol. */
1520 if (sym.st_shndx == SHN_COMMON
1521 && h->root.type == bfd_link_hash_common)
1522 {
1523 unsigned int align;
1524
1525 align = bfd_log2 (sym.st_value);
1526 if (align > old_alignment)
1527 h->root.u.c.p->alignment_power = align;
1528 }
1529
1530 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1531 {
1532 int old_flags;
1533 boolean dynsym;
1534 int new_flag;
1535
1536 /* Remember the symbol size and type. */
1537 if (sym.st_size != 0
1538 && (definition || h->size == 0))
1539 {
1540 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1541 (*_bfd_error_handler)
1542 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1543 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1544 bfd_get_filename (abfd));
1545
1546 h->size = sym.st_size;
1547 }
1548
1549 /* If this is a common symbol, then we always want H->SIZE
1550 to be the size of the common symbol. The code just above
1551 won't fix the size if a common symbol becomes larger. We
1552 don't warn about a size change here, because that is
1553 covered by --warn-common. */
1554 if (h->root.type == bfd_link_hash_common)
1555 h->size = h->root.u.c.size;
1556
1557 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1558 && (definition || h->type == STT_NOTYPE))
1559 {
1560 if (h->type != STT_NOTYPE
1561 && h->type != ELF_ST_TYPE (sym.st_info)
1562 && ! type_change_ok)
1563 (*_bfd_error_handler)
1564 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1565 name, h->type, ELF_ST_TYPE (sym.st_info),
1566 bfd_get_filename (abfd));
1567
1568 h->type = ELF_ST_TYPE (sym.st_info);
1569 }
1570
1571 /* If st_other has a processor-specific meaning, specific code
1572 might be needed here. */
1573 if (sym.st_other != 0)
1574 {
1575 /* Combine visibilities, using the most constraining one. */
1576 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1577 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1578
1579 if (symvis && (hvis > symvis || hvis == 0))
1580 h->other = sym.st_other;
1581
1582 /* If neither has visibility, use the st_other of the
1583 definition. This is an arbitrary choice, since the
1584 other bits have no general meaning. */
1585 if (!symvis && !hvis
1586 && (definition || h->other == 0))
1587 h->other = sym.st_other;
1588 }
1589
1590 /* Set a flag in the hash table entry indicating the type of
1591 reference or definition we just found. Keep a count of
1592 the number of dynamic symbols we find. A dynamic symbol
1593 is one which is referenced or defined by both a regular
1594 object and a shared object. */
1595 old_flags = h->elf_link_hash_flags;
1596 dynsym = false;
1597 if (! dynamic)
1598 {
1599 if (! definition)
1600 {
1601 new_flag = ELF_LINK_HASH_REF_REGULAR;
1602 if (bind != STB_WEAK)
1603 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1604 }
1605 else
1606 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1607 if (info->shared
1608 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1609 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1610 dynsym = true;
1611 }
1612 else
1613 {
1614 if (! definition)
1615 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1616 else
1617 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1618 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1619 | ELF_LINK_HASH_REF_REGULAR)) != 0
1620 || (h->weakdef != NULL
1621 && ! new_weakdef
1622 && h->weakdef->dynindx != -1))
1623 dynsym = true;
1624 }
1625
1626 h->elf_link_hash_flags |= new_flag;
1627
1628 /* If this symbol has a version, and it is the default
1629 version, we create an indirect symbol from the default
1630 name to the fully decorated name. This will cause
1631 external references which do not specify a version to be
1632 bound to this version of the symbol. */
1633 if (definition)
1634 {
1635 char *p;
1636
1637 p = strchr (name, ELF_VER_CHR);
1638 if (p != NULL && p[1] == ELF_VER_CHR)
1639 {
1640 char *shortname;
1641 struct elf_link_hash_entry *hi;
1642 boolean override;
1643
1644 shortname = bfd_hash_allocate (&info->hash->table,
1645 p - name + 1);
1646 if (shortname == NULL)
1647 goto error_return;
1648 strncpy (shortname, name, p - name);
1649 shortname[p - name] = '\0';
1650
1651 /* We are going to create a new symbol. Merge it
1652 with any existing symbol with this name. For the
1653 purposes of the merge, act as though we were
1654 defining the symbol we just defined, although we
1655 actually going to define an indirect symbol. */
1656 type_change_ok = false;
1657 size_change_ok = false;
1658 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1659 &value, &hi, &override,
1660 &type_change_ok, &size_change_ok))
1661 goto error_return;
1662
1663 if (! override)
1664 {
1665 if (! (_bfd_generic_link_add_one_symbol
1666 (info, abfd, shortname, BSF_INDIRECT,
1667 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1668 collect, (struct bfd_link_hash_entry **) &hi)))
1669 goto error_return;
1670 }
1671 else
1672 {
1673 /* In this case the symbol named SHORTNAME is
1674 overriding the indirect symbol we want to
1675 add. We were planning on making SHORTNAME an
1676 indirect symbol referring to NAME. SHORTNAME
1677 is the name without a version. NAME is the
1678 fully versioned name, and it is the default
1679 version.
1680
1681 Overriding means that we already saw a
1682 definition for the symbol SHORTNAME in a
1683 regular object, and it is overriding the
1684 symbol defined in the dynamic object.
1685
1686 When this happens, we actually want to change
1687 NAME, the symbol we just added, to refer to
1688 SHORTNAME. This will cause references to
1689 NAME in the shared object to become
1690 references to SHORTNAME in the regular
1691 object. This is what we expect when we
1692 override a function in a shared object: that
1693 the references in the shared object will be
1694 mapped to the definition in the regular
1695 object. */
1696
1697 while (hi->root.type == bfd_link_hash_indirect
1698 || hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 h->root.type = bfd_link_hash_indirect;
1702 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1703 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1704 {
1705 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1706 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1707 if (hi->elf_link_hash_flags
1708 & (ELF_LINK_HASH_REF_REGULAR
1709 | ELF_LINK_HASH_DEF_REGULAR))
1710 {
1711 if (! _bfd_elf_link_record_dynamic_symbol (info,
1712 hi))
1713 goto error_return;
1714 }
1715 }
1716
1717 /* Now set HI to H, so that the following code
1718 will set the other fields correctly. */
1719 hi = h;
1720 }
1721
1722 /* If there is a duplicate definition somewhere,
1723 then HI may not point to an indirect symbol. We
1724 will have reported an error to the user in that
1725 case. */
1726
1727 if (hi->root.type == bfd_link_hash_indirect)
1728 {
1729 struct elf_link_hash_entry *ht;
1730
1731 /* If the symbol became indirect, then we assume
1732 that we have not seen a definition before. */
1733 BFD_ASSERT ((hi->elf_link_hash_flags
1734 & (ELF_LINK_HASH_DEF_DYNAMIC
1735 | ELF_LINK_HASH_DEF_REGULAR))
1736 == 0);
1737
1738 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1739 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1740
1741 /* See if the new flags lead us to realize that
1742 the symbol must be dynamic. */
1743 if (! dynsym)
1744 {
1745 if (! dynamic)
1746 {
1747 if (info->shared
1748 || ((hi->elf_link_hash_flags
1749 & ELF_LINK_HASH_REF_DYNAMIC)
1750 != 0))
1751 dynsym = true;
1752 }
1753 else
1754 {
1755 if ((hi->elf_link_hash_flags
1756 & ELF_LINK_HASH_REF_REGULAR) != 0)
1757 dynsym = true;
1758 }
1759 }
1760 }
1761
1762 /* We also need to define an indirection from the
1763 nondefault version of the symbol. */
1764
1765 shortname = bfd_hash_allocate (&info->hash->table,
1766 strlen (name));
1767 if (shortname == NULL)
1768 goto error_return;
1769 strncpy (shortname, name, p - name);
1770 strcpy (shortname + (p - name), p + 1);
1771
1772 /* Once again, merge with any existing symbol. */
1773 type_change_ok = false;
1774 size_change_ok = false;
1775 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1776 &value, &hi, &override,
1777 &type_change_ok, &size_change_ok))
1778 goto error_return;
1779
1780 if (override)
1781 {
1782 /* Here SHORTNAME is a versioned name, so we
1783 don't expect to see the type of override we
1784 do in the case above. */
1785 (*_bfd_error_handler)
1786 (_("%s: warning: unexpected redefinition of `%s'"),
1787 bfd_get_filename (abfd), shortname);
1788 }
1789 else
1790 {
1791 if (! (_bfd_generic_link_add_one_symbol
1792 (info, abfd, shortname, BSF_INDIRECT,
1793 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1794 collect, (struct bfd_link_hash_entry **) &hi)))
1795 goto error_return;
1796
1797 /* If there is a duplicate definition somewhere,
1798 then HI may not point to an indirect symbol.
1799 We will have reported an error to the user in
1800 that case. */
1801
1802 if (hi->root.type == bfd_link_hash_indirect)
1803 {
1804 /* If the symbol became indirect, then we
1805 assume that we have not seen a definition
1806 before. */
1807 BFD_ASSERT ((hi->elf_link_hash_flags
1808 & (ELF_LINK_HASH_DEF_DYNAMIC
1809 | ELF_LINK_HASH_DEF_REGULAR))
1810 == 0);
1811
1812 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1813
1814 /* See if the new flags lead us to realize
1815 that the symbol must be dynamic. */
1816 if (! dynsym)
1817 {
1818 if (! dynamic)
1819 {
1820 if (info->shared
1821 || ((hi->elf_link_hash_flags
1822 & ELF_LINK_HASH_REF_DYNAMIC)
1823 != 0))
1824 dynsym = true;
1825 }
1826 else
1827 {
1828 if ((hi->elf_link_hash_flags
1829 & ELF_LINK_HASH_REF_REGULAR) != 0)
1830 dynsym = true;
1831 }
1832 }
1833 }
1834 }
1835 }
1836 }
1837
1838 if (dynsym && h->dynindx == -1)
1839 {
1840 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1841 goto error_return;
1842 if (h->weakdef != NULL
1843 && ! new_weakdef
1844 && h->weakdef->dynindx == -1)
1845 {
1846 if (! _bfd_elf_link_record_dynamic_symbol (info,
1847 h->weakdef))
1848 goto error_return;
1849 }
1850 }
1851 }
1852 }
1853
1854 /* Now set the weakdefs field correctly for all the weak defined
1855 symbols we found. The only way to do this is to search all the
1856 symbols. Since we only need the information for non functions in
1857 dynamic objects, that's the only time we actually put anything on
1858 the list WEAKS. We need this information so that if a regular
1859 object refers to a symbol defined weakly in a dynamic object, the
1860 real symbol in the dynamic object is also put in the dynamic
1861 symbols; we also must arrange for both symbols to point to the
1862 same memory location. We could handle the general case of symbol
1863 aliasing, but a general symbol alias can only be generated in
1864 assembler code, handling it correctly would be very time
1865 consuming, and other ELF linkers don't handle general aliasing
1866 either. */
1867 while (weaks != NULL)
1868 {
1869 struct elf_link_hash_entry *hlook;
1870 asection *slook;
1871 bfd_vma vlook;
1872 struct elf_link_hash_entry **hpp;
1873 struct elf_link_hash_entry **hppend;
1874
1875 hlook = weaks;
1876 weaks = hlook->weakdef;
1877 hlook->weakdef = NULL;
1878
1879 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1880 || hlook->root.type == bfd_link_hash_defweak
1881 || hlook->root.type == bfd_link_hash_common
1882 || hlook->root.type == bfd_link_hash_indirect);
1883 slook = hlook->root.u.def.section;
1884 vlook = hlook->root.u.def.value;
1885
1886 hpp = elf_sym_hashes (abfd);
1887 hppend = hpp + extsymcount;
1888 for (; hpp < hppend; hpp++)
1889 {
1890 struct elf_link_hash_entry *h;
1891
1892 h = *hpp;
1893 if (h != NULL && h != hlook
1894 && h->root.type == bfd_link_hash_defined
1895 && h->root.u.def.section == slook
1896 && h->root.u.def.value == vlook)
1897 {
1898 hlook->weakdef = h;
1899
1900 /* If the weak definition is in the list of dynamic
1901 symbols, make sure the real definition is put there
1902 as well. */
1903 if (hlook->dynindx != -1
1904 && h->dynindx == -1)
1905 {
1906 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1907 goto error_return;
1908 }
1909
1910 /* If the real definition is in the list of dynamic
1911 symbols, make sure the weak definition is put there
1912 as well. If we don't do this, then the dynamic
1913 loader might not merge the entries for the real
1914 definition and the weak definition. */
1915 if (h->dynindx != -1
1916 && hlook->dynindx == -1)
1917 {
1918 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1919 goto error_return;
1920 }
1921
1922 break;
1923 }
1924 }
1925 }
1926
1927 if (buf != NULL)
1928 {
1929 free (buf);
1930 buf = NULL;
1931 }
1932
1933 if (extversym != NULL)
1934 {
1935 free (extversym);
1936 extversym = NULL;
1937 }
1938
1939 /* If this object is the same format as the output object, and it is
1940 not a shared library, then let the backend look through the
1941 relocs.
1942
1943 This is required to build global offset table entries and to
1944 arrange for dynamic relocs. It is not required for the
1945 particular common case of linking non PIC code, even when linking
1946 against shared libraries, but unfortunately there is no way of
1947 knowing whether an object file has been compiled PIC or not.
1948 Looking through the relocs is not particularly time consuming.
1949 The problem is that we must either (1) keep the relocs in memory,
1950 which causes the linker to require additional runtime memory or
1951 (2) read the relocs twice from the input file, which wastes time.
1952 This would be a good case for using mmap.
1953
1954 I have no idea how to handle linking PIC code into a file of a
1955 different format. It probably can't be done. */
1956 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1957 if (! dynamic
1958 && abfd->xvec == info->hash->creator
1959 && check_relocs != NULL)
1960 {
1961 asection *o;
1962
1963 for (o = abfd->sections; o != NULL; o = o->next)
1964 {
1965 Elf_Internal_Rela *internal_relocs;
1966 boolean ok;
1967
1968 if ((o->flags & SEC_RELOC) == 0
1969 || o->reloc_count == 0
1970 || ((info->strip == strip_all || info->strip == strip_debugger)
1971 && (o->flags & SEC_DEBUGGING) != 0)
1972 || bfd_is_abs_section (o->output_section))
1973 continue;
1974
1975 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1976 (abfd, o, (PTR) NULL,
1977 (Elf_Internal_Rela *) NULL,
1978 info->keep_memory));
1979 if (internal_relocs == NULL)
1980 goto error_return;
1981
1982 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1983
1984 if (! info->keep_memory)
1985 free (internal_relocs);
1986
1987 if (! ok)
1988 goto error_return;
1989 }
1990 }
1991
1992 /* If this is a non-traditional, non-relocateable link, try to
1993 optimize the handling of the .stab/.stabstr sections. */
1994 if (! dynamic
1995 && ! info->relocateable
1996 && ! info->traditional_format
1997 && info->hash->creator->flavour == bfd_target_elf_flavour
1998 && (info->strip != strip_all && info->strip != strip_debugger))
1999 {
2000 asection *stab, *stabstr;
2001
2002 stab = bfd_get_section_by_name (abfd, ".stab");
2003 if (stab != NULL)
2004 {
2005 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2006
2007 if (stabstr != NULL)
2008 {
2009 struct bfd_elf_section_data *secdata;
2010
2011 secdata = elf_section_data (stab);
2012 if (! _bfd_link_section_stabs (abfd,
2013 &elf_hash_table (info)->stab_info,
2014 stab, stabstr,
2015 &secdata->stab_info))
2016 goto error_return;
2017 }
2018 }
2019 }
2020
2021 return true;
2022
2023 error_return:
2024 if (buf != NULL)
2025 free (buf);
2026 if (dynbuf != NULL)
2027 free (dynbuf);
2028 if (dynver != NULL)
2029 free (dynver);
2030 if (extversym != NULL)
2031 free (extversym);
2032 return false;
2033 }
2034
2035 /* Create some sections which will be filled in with dynamic linking
2036 information. ABFD is an input file which requires dynamic sections
2037 to be created. The dynamic sections take up virtual memory space
2038 when the final executable is run, so we need to create them before
2039 addresses are assigned to the output sections. We work out the
2040 actual contents and size of these sections later. */
2041
2042 boolean
2043 elf_link_create_dynamic_sections (abfd, info)
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046 {
2047 flagword flags;
2048 register asection *s;
2049 struct elf_link_hash_entry *h;
2050 struct elf_backend_data *bed;
2051
2052 if (elf_hash_table (info)->dynamic_sections_created)
2053 return true;
2054
2055 /* Make sure that all dynamic sections use the same input BFD. */
2056 if (elf_hash_table (info)->dynobj == NULL)
2057 elf_hash_table (info)->dynobj = abfd;
2058 else
2059 abfd = elf_hash_table (info)->dynobj;
2060
2061 /* Note that we set the SEC_IN_MEMORY flag for all of these
2062 sections. */
2063 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2064 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2065
2066 /* A dynamically linked executable has a .interp section, but a
2067 shared library does not. */
2068 if (! info->shared)
2069 {
2070 s = bfd_make_section (abfd, ".interp");
2071 if (s == NULL
2072 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2073 return false;
2074 }
2075
2076 /* Create sections to hold version informations. These are removed
2077 if they are not needed. */
2078 s = bfd_make_section (abfd, ".gnu.version_d");
2079 if (s == NULL
2080 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2081 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2082 return false;
2083
2084 s = bfd_make_section (abfd, ".gnu.version");
2085 if (s == NULL
2086 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2087 || ! bfd_set_section_alignment (abfd, s, 1))
2088 return false;
2089
2090 s = bfd_make_section (abfd, ".gnu.version_r");
2091 if (s == NULL
2092 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2093 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2094 return false;
2095
2096 s = bfd_make_section (abfd, ".dynsym");
2097 if (s == NULL
2098 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2099 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2100 return false;
2101
2102 s = bfd_make_section (abfd, ".dynstr");
2103 if (s == NULL
2104 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2105 return false;
2106
2107 /* Create a strtab to hold the dynamic symbol names. */
2108 if (elf_hash_table (info)->dynstr == NULL)
2109 {
2110 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2111 if (elf_hash_table (info)->dynstr == NULL)
2112 return false;
2113 }
2114
2115 s = bfd_make_section (abfd, ".dynamic");
2116 if (s == NULL
2117 || ! bfd_set_section_flags (abfd, s, flags)
2118 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2119 return false;
2120
2121 /* The special symbol _DYNAMIC is always set to the start of the
2122 .dynamic section. This call occurs before we have processed the
2123 symbols for any dynamic object, so we don't have to worry about
2124 overriding a dynamic definition. We could set _DYNAMIC in a
2125 linker script, but we only want to define it if we are, in fact,
2126 creating a .dynamic section. We don't want to define it if there
2127 is no .dynamic section, since on some ELF platforms the start up
2128 code examines it to decide how to initialize the process. */
2129 h = NULL;
2130 if (! (_bfd_generic_link_add_one_symbol
2131 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2132 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2133 (struct bfd_link_hash_entry **) &h)))
2134 return false;
2135 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2136 h->type = STT_OBJECT;
2137
2138 if (info->shared
2139 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2140 return false;
2141
2142 bed = get_elf_backend_data (abfd);
2143
2144 s = bfd_make_section (abfd, ".hash");
2145 if (s == NULL
2146 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2147 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2148 return false;
2149 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2150
2151 /* Let the backend create the rest of the sections. This lets the
2152 backend set the right flags. The backend will normally create
2153 the .got and .plt sections. */
2154 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2155 return false;
2156
2157 elf_hash_table (info)->dynamic_sections_created = true;
2158
2159 return true;
2160 }
2161
2162 /* Add an entry to the .dynamic table. */
2163
2164 boolean
2165 elf_add_dynamic_entry (info, tag, val)
2166 struct bfd_link_info *info;
2167 bfd_vma tag;
2168 bfd_vma val;
2169 {
2170 Elf_Internal_Dyn dyn;
2171 bfd *dynobj;
2172 asection *s;
2173 size_t newsize;
2174 bfd_byte *newcontents;
2175
2176 dynobj = elf_hash_table (info)->dynobj;
2177
2178 s = bfd_get_section_by_name (dynobj, ".dynamic");
2179 BFD_ASSERT (s != NULL);
2180
2181 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2182 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2183 if (newcontents == NULL)
2184 return false;
2185
2186 dyn.d_tag = tag;
2187 dyn.d_un.d_val = val;
2188 elf_swap_dyn_out (dynobj, &dyn,
2189 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2190
2191 s->_raw_size = newsize;
2192 s->contents = newcontents;
2193
2194 return true;
2195 }
2196
2197 /* Record a new local dynamic symbol. */
2198
2199 boolean
2200 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2201 struct bfd_link_info *info;
2202 bfd *input_bfd;
2203 long input_indx;
2204 {
2205 struct elf_link_local_dynamic_entry *entry;
2206 struct elf_link_hash_table *eht;
2207 struct bfd_strtab_hash *dynstr;
2208 Elf_External_Sym esym;
2209 unsigned long dynstr_index;
2210 char *name;
2211
2212 /* See if the entry exists already. */
2213 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2214 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2215 return true;
2216
2217 entry = (struct elf_link_local_dynamic_entry *)
2218 bfd_alloc (input_bfd, sizeof (*entry));
2219 if (entry == NULL)
2220 return false;
2221
2222 /* Go find the symbol, so that we can find it's name. */
2223 if (bfd_seek (input_bfd,
2224 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2225 + input_indx * sizeof (Elf_External_Sym)),
2226 SEEK_SET) != 0
2227 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2228 != sizeof (Elf_External_Sym)))
2229 return false;
2230 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2231
2232 name = (bfd_elf_string_from_elf_section
2233 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2234 entry->isym.st_name));
2235
2236 dynstr = elf_hash_table (info)->dynstr;
2237 if (dynstr == NULL)
2238 {
2239 /* Create a strtab to hold the dynamic symbol names. */
2240 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2241 if (dynstr == NULL)
2242 return false;
2243 }
2244
2245 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2246 if (dynstr_index == (unsigned long) -1)
2247 return false;
2248 entry->isym.st_name = dynstr_index;
2249
2250 eht = elf_hash_table (info);
2251
2252 entry->next = eht->dynlocal;
2253 eht->dynlocal = entry;
2254 entry->input_bfd = input_bfd;
2255 entry->input_indx = input_indx;
2256 eht->dynsymcount++;
2257
2258 /* Whatever binding the symbol had before, it's now local. */
2259 entry->isym.st_info
2260 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2261
2262 /* The dynindx will be set at the end of size_dynamic_sections. */
2263
2264 return true;
2265 }
2266 \f
2267
2268 /* Read and swap the relocs from the section indicated by SHDR. This
2269 may be either a REL or a RELA section. The relocations are
2270 translated into RELA relocations and stored in INTERNAL_RELOCS,
2271 which should have already been allocated to contain enough space.
2272 The EXTERNAL_RELOCS are a buffer where the external form of the
2273 relocations should be stored.
2274
2275 Returns false if something goes wrong. */
2276
2277 static boolean
2278 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2279 internal_relocs)
2280 bfd *abfd;
2281 Elf_Internal_Shdr *shdr;
2282 PTR external_relocs;
2283 Elf_Internal_Rela *internal_relocs;
2284 {
2285 struct elf_backend_data *bed;
2286
2287 /* If there aren't any relocations, that's OK. */
2288 if (!shdr)
2289 return true;
2290
2291 /* Position ourselves at the start of the section. */
2292 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2293 return false;
2294
2295 /* Read the relocations. */
2296 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2297 != shdr->sh_size)
2298 return false;
2299
2300 bed = get_elf_backend_data (abfd);
2301
2302 /* Convert the external relocations to the internal format. */
2303 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2304 {
2305 Elf_External_Rel *erel;
2306 Elf_External_Rel *erelend;
2307 Elf_Internal_Rela *irela;
2308 Elf_Internal_Rel *irel;
2309
2310 erel = (Elf_External_Rel *) external_relocs;
2311 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2312 irela = internal_relocs;
2313 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2314 * sizeof (Elf_Internal_Rel)));
2315 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2316 {
2317 unsigned char i;
2318
2319 if (bed->s->swap_reloc_in)
2320 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2321 else
2322 elf_swap_reloc_in (abfd, erel, irel);
2323
2324 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2325 {
2326 irela[i].r_offset = irel[i].r_offset;
2327 irela[i].r_info = irel[i].r_info;
2328 irela[i].r_addend = 0;
2329 }
2330 }
2331 }
2332 else
2333 {
2334 Elf_External_Rela *erela;
2335 Elf_External_Rela *erelaend;
2336 Elf_Internal_Rela *irela;
2337
2338 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2339
2340 erela = (Elf_External_Rela *) external_relocs;
2341 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2342 irela = internal_relocs;
2343 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2344 {
2345 if (bed->s->swap_reloca_in)
2346 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2347 else
2348 elf_swap_reloca_in (abfd, erela, irela);
2349 }
2350 }
2351
2352 return true;
2353 }
2354
2355 /* Read and swap the relocs for a section O. They may have been
2356 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2357 not NULL, they are used as buffers to read into. They are known to
2358 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2359 the return value is allocated using either malloc or bfd_alloc,
2360 according to the KEEP_MEMORY argument. If O has two relocation
2361 sections (both REL and RELA relocations), then the REL_HDR
2362 relocations will appear first in INTERNAL_RELOCS, followed by the
2363 REL_HDR2 relocations. */
2364
2365 Elf_Internal_Rela *
2366 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2367 keep_memory)
2368 bfd *abfd;
2369 asection *o;
2370 PTR external_relocs;
2371 Elf_Internal_Rela *internal_relocs;
2372 boolean keep_memory;
2373 {
2374 Elf_Internal_Shdr *rel_hdr;
2375 PTR alloc1 = NULL;
2376 Elf_Internal_Rela *alloc2 = NULL;
2377 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2378
2379 if (elf_section_data (o)->relocs != NULL)
2380 return elf_section_data (o)->relocs;
2381
2382 if (o->reloc_count == 0)
2383 return NULL;
2384
2385 rel_hdr = &elf_section_data (o)->rel_hdr;
2386
2387 if (internal_relocs == NULL)
2388 {
2389 size_t size;
2390
2391 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2392 * sizeof (Elf_Internal_Rela));
2393 if (keep_memory)
2394 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2395 else
2396 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2397 if (internal_relocs == NULL)
2398 goto error_return;
2399 }
2400
2401 if (external_relocs == NULL)
2402 {
2403 size_t size = (size_t) rel_hdr->sh_size;
2404
2405 if (elf_section_data (o)->rel_hdr2)
2406 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2407 alloc1 = (PTR) bfd_malloc (size);
2408 if (alloc1 == NULL)
2409 goto error_return;
2410 external_relocs = alloc1;
2411 }
2412
2413 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2414 external_relocs,
2415 internal_relocs))
2416 goto error_return;
2417 if (!elf_link_read_relocs_from_section
2418 (abfd,
2419 elf_section_data (o)->rel_hdr2,
2420 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2421 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2422 * bed->s->int_rels_per_ext_rel)))
2423 goto error_return;
2424
2425 /* Cache the results for next time, if we can. */
2426 if (keep_memory)
2427 elf_section_data (o)->relocs = internal_relocs;
2428
2429 if (alloc1 != NULL)
2430 free (alloc1);
2431
2432 /* Don't free alloc2, since if it was allocated we are passing it
2433 back (under the name of internal_relocs). */
2434
2435 return internal_relocs;
2436
2437 error_return:
2438 if (alloc1 != NULL)
2439 free (alloc1);
2440 if (alloc2 != NULL)
2441 free (alloc2);
2442 return NULL;
2443 }
2444 \f
2445
2446 /* Record an assignment to a symbol made by a linker script. We need
2447 this in case some dynamic object refers to this symbol. */
2448
2449 /*ARGSUSED*/
2450 boolean
2451 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2452 bfd *output_bfd ATTRIBUTE_UNUSED;
2453 struct bfd_link_info *info;
2454 const char *name;
2455 boolean provide;
2456 {
2457 struct elf_link_hash_entry *h;
2458
2459 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2460 return true;
2461
2462 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2463 if (h == NULL)
2464 return false;
2465
2466 if (h->root.type == bfd_link_hash_new)
2467 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2468
2469 /* If this symbol is being provided by the linker script, and it is
2470 currently defined by a dynamic object, but not by a regular
2471 object, then mark it as undefined so that the generic linker will
2472 force the correct value. */
2473 if (provide
2474 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2475 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2476 h->root.type = bfd_link_hash_undefined;
2477
2478 /* If this symbol is not being provided by the linker script, and it is
2479 currently defined by a dynamic object, but not by a regular object,
2480 then clear out any version information because the symbol will not be
2481 associated with the dynamic object any more. */
2482 if (!provide
2483 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2484 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2485 h->verinfo.verdef = NULL;
2486
2487 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2488
2489 /* When possible, keep the original type of the symbol */
2490 if (h->type == STT_NOTYPE)
2491 h->type = STT_OBJECT;
2492
2493 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2494 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2495 || info->shared)
2496 && h->dynindx == -1)
2497 {
2498 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2499 return false;
2500
2501 /* If this is a weak defined symbol, and we know a corresponding
2502 real symbol from the same dynamic object, make sure the real
2503 symbol is also made into a dynamic symbol. */
2504 if (h->weakdef != NULL
2505 && h->weakdef->dynindx == -1)
2506 {
2507 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2508 return false;
2509 }
2510 }
2511
2512 return true;
2513 }
2514 \f
2515 /* This structure is used to pass information to
2516 elf_link_assign_sym_version. */
2517
2518 struct elf_assign_sym_version_info
2519 {
2520 /* Output BFD. */
2521 bfd *output_bfd;
2522 /* General link information. */
2523 struct bfd_link_info *info;
2524 /* Version tree. */
2525 struct bfd_elf_version_tree *verdefs;
2526 /* Whether we are exporting all dynamic symbols. */
2527 boolean export_dynamic;
2528 /* Whether we had a failure. */
2529 boolean failed;
2530 };
2531
2532 /* This structure is used to pass information to
2533 elf_link_find_version_dependencies. */
2534
2535 struct elf_find_verdep_info
2536 {
2537 /* Output BFD. */
2538 bfd *output_bfd;
2539 /* General link information. */
2540 struct bfd_link_info *info;
2541 /* The number of dependencies. */
2542 unsigned int vers;
2543 /* Whether we had a failure. */
2544 boolean failed;
2545 };
2546
2547 /* Array used to determine the number of hash table buckets to use
2548 based on the number of symbols there are. If there are fewer than
2549 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2550 fewer than 37 we use 17 buckets, and so forth. We never use more
2551 than 32771 buckets. */
2552
2553 static const size_t elf_buckets[] =
2554 {
2555 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2556 16411, 32771, 0
2557 };
2558
2559 /* Compute bucket count for hashing table. We do not use a static set
2560 of possible tables sizes anymore. Instead we determine for all
2561 possible reasonable sizes of the table the outcome (i.e., the
2562 number of collisions etc) and choose the best solution. The
2563 weighting functions are not too simple to allow the table to grow
2564 without bounds. Instead one of the weighting factors is the size.
2565 Therefore the result is always a good payoff between few collisions
2566 (= short chain lengths) and table size. */
2567 static size_t
2568 compute_bucket_count (info)
2569 struct bfd_link_info *info;
2570 {
2571 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2572 size_t best_size = 0;
2573 unsigned long int *hashcodes;
2574 unsigned long int *hashcodesp;
2575 unsigned long int i;
2576
2577 /* Compute the hash values for all exported symbols. At the same
2578 time store the values in an array so that we could use them for
2579 optimizations. */
2580 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2581 * sizeof (unsigned long int));
2582 if (hashcodes == NULL)
2583 return 0;
2584 hashcodesp = hashcodes;
2585
2586 /* Put all hash values in HASHCODES. */
2587 elf_link_hash_traverse (elf_hash_table (info),
2588 elf_collect_hash_codes, &hashcodesp);
2589
2590 /* We have a problem here. The following code to optimize the table
2591 size requires an integer type with more the 32 bits. If
2592 BFD_HOST_U_64_BIT is set we know about such a type. */
2593 #ifdef BFD_HOST_U_64_BIT
2594 if (info->optimize == true)
2595 {
2596 unsigned long int nsyms = hashcodesp - hashcodes;
2597 size_t minsize;
2598 size_t maxsize;
2599 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2600 unsigned long int *counts ;
2601
2602 /* Possible optimization parameters: if we have NSYMS symbols we say
2603 that the hashing table must at least have NSYMS/4 and at most
2604 2*NSYMS buckets. */
2605 minsize = nsyms / 4;
2606 if (minsize == 0)
2607 minsize = 1;
2608 best_size = maxsize = nsyms * 2;
2609
2610 /* Create array where we count the collisions in. We must use bfd_malloc
2611 since the size could be large. */
2612 counts = (unsigned long int *) bfd_malloc (maxsize
2613 * sizeof (unsigned long int));
2614 if (counts == NULL)
2615 {
2616 free (hashcodes);
2617 return 0;
2618 }
2619
2620 /* Compute the "optimal" size for the hash table. The criteria is a
2621 minimal chain length. The minor criteria is (of course) the size
2622 of the table. */
2623 for (i = minsize; i < maxsize; ++i)
2624 {
2625 /* Walk through the array of hashcodes and count the collisions. */
2626 BFD_HOST_U_64_BIT max;
2627 unsigned long int j;
2628 unsigned long int fact;
2629
2630 memset (counts, '\0', i * sizeof (unsigned long int));
2631
2632 /* Determine how often each hash bucket is used. */
2633 for (j = 0; j < nsyms; ++j)
2634 ++counts[hashcodes[j] % i];
2635
2636 /* For the weight function we need some information about the
2637 pagesize on the target. This is information need not be 100%
2638 accurate. Since this information is not available (so far) we
2639 define it here to a reasonable default value. If it is crucial
2640 to have a better value some day simply define this value. */
2641 # ifndef BFD_TARGET_PAGESIZE
2642 # define BFD_TARGET_PAGESIZE (4096)
2643 # endif
2644
2645 /* We in any case need 2 + NSYMS entries for the size values and
2646 the chains. */
2647 max = (2 + nsyms) * (ARCH_SIZE / 8);
2648
2649 # if 1
2650 /* Variant 1: optimize for short chains. We add the squares
2651 of all the chain lengths (which favous many small chain
2652 over a few long chains). */
2653 for (j = 0; j < i; ++j)
2654 max += counts[j] * counts[j];
2655
2656 /* This adds penalties for the overall size of the table. */
2657 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2658 max *= fact * fact;
2659 # else
2660 /* Variant 2: Optimize a lot more for small table. Here we
2661 also add squares of the size but we also add penalties for
2662 empty slots (the +1 term). */
2663 for (j = 0; j < i; ++j)
2664 max += (1 + counts[j]) * (1 + counts[j]);
2665
2666 /* The overall size of the table is considered, but not as
2667 strong as in variant 1, where it is squared. */
2668 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2669 max *= fact;
2670 # endif
2671
2672 /* Compare with current best results. */
2673 if (max < best_chlen)
2674 {
2675 best_chlen = max;
2676 best_size = i;
2677 }
2678 }
2679
2680 free (counts);
2681 }
2682 else
2683 #endif /* defined (BFD_HOST_U_64_BIT) */
2684 {
2685 /* This is the fallback solution if no 64bit type is available or if we
2686 are not supposed to spend much time on optimizations. We select the
2687 bucket count using a fixed set of numbers. */
2688 for (i = 0; elf_buckets[i] != 0; i++)
2689 {
2690 best_size = elf_buckets[i];
2691 if (dynsymcount < elf_buckets[i + 1])
2692 break;
2693 }
2694 }
2695
2696 /* Free the arrays we needed. */
2697 free (hashcodes);
2698
2699 return best_size;
2700 }
2701
2702 /* Set up the sizes and contents of the ELF dynamic sections. This is
2703 called by the ELF linker emulation before_allocation routine. We
2704 must set the sizes of the sections before the linker sets the
2705 addresses of the various sections. */
2706
2707 boolean
2708 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2709 export_dynamic, filter_shlib,
2710 auxiliary_filters, info, sinterpptr,
2711 verdefs)
2712 bfd *output_bfd;
2713 const char *soname;
2714 const char *rpath;
2715 boolean export_dynamic;
2716 const char *filter_shlib;
2717 const char * const *auxiliary_filters;
2718 struct bfd_link_info *info;
2719 asection **sinterpptr;
2720 struct bfd_elf_version_tree *verdefs;
2721 {
2722 bfd_size_type soname_indx;
2723 bfd *dynobj;
2724 struct elf_backend_data *bed;
2725 struct elf_assign_sym_version_info asvinfo;
2726
2727 *sinterpptr = NULL;
2728
2729 soname_indx = (bfd_size_type) -1;
2730
2731 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2732 return true;
2733
2734 /* The backend may have to create some sections regardless of whether
2735 we're dynamic or not. */
2736 bed = get_elf_backend_data (output_bfd);
2737 if (bed->elf_backend_always_size_sections
2738 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2739 return false;
2740
2741 dynobj = elf_hash_table (info)->dynobj;
2742
2743 /* If there were no dynamic objects in the link, there is nothing to
2744 do here. */
2745 if (dynobj == NULL)
2746 return true;
2747
2748 if (elf_hash_table (info)->dynamic_sections_created)
2749 {
2750 struct elf_info_failed eif;
2751 struct elf_link_hash_entry *h;
2752 bfd_size_type strsize;
2753
2754 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2755 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2756
2757 if (soname != NULL)
2758 {
2759 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2760 soname, true, true);
2761 if (soname_indx == (bfd_size_type) -1
2762 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2763 return false;
2764 }
2765
2766 if (info->symbolic)
2767 {
2768 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2769 return false;
2770 }
2771
2772 if (rpath != NULL)
2773 {
2774 bfd_size_type indx;
2775
2776 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2777 true, true);
2778 if (indx == (bfd_size_type) -1
2779 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2780 return false;
2781 }
2782
2783 if (filter_shlib != NULL)
2784 {
2785 bfd_size_type indx;
2786
2787 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2788 filter_shlib, true, true);
2789 if (indx == (bfd_size_type) -1
2790 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2791 return false;
2792 }
2793
2794 if (auxiliary_filters != NULL)
2795 {
2796 const char * const *p;
2797
2798 for (p = auxiliary_filters; *p != NULL; p++)
2799 {
2800 bfd_size_type indx;
2801
2802 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2803 *p, true, true);
2804 if (indx == (bfd_size_type) -1
2805 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2806 return false;
2807 }
2808 }
2809
2810 /* If we are supposed to export all symbols into the dynamic symbol
2811 table (this is not the normal case), then do so. */
2812 if (export_dynamic)
2813 {
2814 struct elf_info_failed eif;
2815
2816 eif.failed = false;
2817 eif.info = info;
2818 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2819 (PTR) &eif);
2820 if (eif.failed)
2821 return false;
2822 }
2823
2824 /* Attach all the symbols to their version information. */
2825 asvinfo.output_bfd = output_bfd;
2826 asvinfo.info = info;
2827 asvinfo.verdefs = verdefs;
2828 asvinfo.export_dynamic = export_dynamic;
2829 asvinfo.failed = false;
2830
2831 elf_link_hash_traverse (elf_hash_table (info),
2832 elf_link_assign_sym_version,
2833 (PTR) &asvinfo);
2834 if (asvinfo.failed)
2835 return false;
2836
2837 /* Find all symbols which were defined in a dynamic object and make
2838 the backend pick a reasonable value for them. */
2839 eif.failed = false;
2840 eif.info = info;
2841 elf_link_hash_traverse (elf_hash_table (info),
2842 elf_adjust_dynamic_symbol,
2843 (PTR) &eif);
2844 if (eif.failed)
2845 return false;
2846
2847 /* Add some entries to the .dynamic section. We fill in some of the
2848 values later, in elf_bfd_final_link, but we must add the entries
2849 now so that we know the final size of the .dynamic section. */
2850
2851 /* If there are initialization and/or finalization functions to
2852 call then add the corresponding DT_INIT/DT_FINI entries. */
2853 h = (info->init_function
2854 ? elf_link_hash_lookup (elf_hash_table (info),
2855 info->init_function, false,
2856 false, false)
2857 : NULL);
2858 if (h != NULL
2859 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2860 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2861 {
2862 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2863 return false;
2864 }
2865 h = (info->fini_function
2866 ? elf_link_hash_lookup (elf_hash_table (info),
2867 info->fini_function, false,
2868 false, false)
2869 : NULL);
2870 if (h != NULL
2871 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2872 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2873 {
2874 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2875 return false;
2876 }
2877
2878 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2879 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2880 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2881 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2882 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2883 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2884 sizeof (Elf_External_Sym)))
2885 return false;
2886 }
2887
2888 /* The backend must work out the sizes of all the other dynamic
2889 sections. */
2890 if (bed->elf_backend_size_dynamic_sections
2891 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2892 return false;
2893
2894 if (elf_hash_table (info)->dynamic_sections_created)
2895 {
2896 size_t dynsymcount;
2897 asection *s;
2898 size_t bucketcount = 0;
2899 Elf_Internal_Sym isym;
2900 size_t hash_entry_size;
2901
2902 /* Set up the version definition section. */
2903 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2904 BFD_ASSERT (s != NULL);
2905
2906 /* We may have created additional version definitions if we are
2907 just linking a regular application. */
2908 verdefs = asvinfo.verdefs;
2909
2910 if (verdefs == NULL)
2911 _bfd_strip_section_from_output (info, s);
2912 else
2913 {
2914 unsigned int cdefs;
2915 bfd_size_type size;
2916 struct bfd_elf_version_tree *t;
2917 bfd_byte *p;
2918 Elf_Internal_Verdef def;
2919 Elf_Internal_Verdaux defaux;
2920
2921 cdefs = 0;
2922 size = 0;
2923
2924 /* Make space for the base version. */
2925 size += sizeof (Elf_External_Verdef);
2926 size += sizeof (Elf_External_Verdaux);
2927 ++cdefs;
2928
2929 for (t = verdefs; t != NULL; t = t->next)
2930 {
2931 struct bfd_elf_version_deps *n;
2932
2933 size += sizeof (Elf_External_Verdef);
2934 size += sizeof (Elf_External_Verdaux);
2935 ++cdefs;
2936
2937 for (n = t->deps; n != NULL; n = n->next)
2938 size += sizeof (Elf_External_Verdaux);
2939 }
2940
2941 s->_raw_size = size;
2942 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2943 if (s->contents == NULL && s->_raw_size != 0)
2944 return false;
2945
2946 /* Fill in the version definition section. */
2947
2948 p = s->contents;
2949
2950 def.vd_version = VER_DEF_CURRENT;
2951 def.vd_flags = VER_FLG_BASE;
2952 def.vd_ndx = 1;
2953 def.vd_cnt = 1;
2954 def.vd_aux = sizeof (Elf_External_Verdef);
2955 def.vd_next = (sizeof (Elf_External_Verdef)
2956 + sizeof (Elf_External_Verdaux));
2957
2958 if (soname_indx != (bfd_size_type) -1)
2959 {
2960 def.vd_hash = bfd_elf_hash (soname);
2961 defaux.vda_name = soname_indx;
2962 }
2963 else
2964 {
2965 const char *name;
2966 bfd_size_type indx;
2967
2968 name = output_bfd->filename;
2969 def.vd_hash = bfd_elf_hash (name);
2970 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2971 name, true, false);
2972 if (indx == (bfd_size_type) -1)
2973 return false;
2974 defaux.vda_name = indx;
2975 }
2976 defaux.vda_next = 0;
2977
2978 _bfd_elf_swap_verdef_out (output_bfd, &def,
2979 (Elf_External_Verdef *)p);
2980 p += sizeof (Elf_External_Verdef);
2981 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2982 (Elf_External_Verdaux *) p);
2983 p += sizeof (Elf_External_Verdaux);
2984
2985 for (t = verdefs; t != NULL; t = t->next)
2986 {
2987 unsigned int cdeps;
2988 struct bfd_elf_version_deps *n;
2989 struct elf_link_hash_entry *h;
2990
2991 cdeps = 0;
2992 for (n = t->deps; n != NULL; n = n->next)
2993 ++cdeps;
2994
2995 /* Add a symbol representing this version. */
2996 h = NULL;
2997 if (! (_bfd_generic_link_add_one_symbol
2998 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2999 (bfd_vma) 0, (const char *) NULL, false,
3000 get_elf_backend_data (dynobj)->collect,
3001 (struct bfd_link_hash_entry **) &h)))
3002 return false;
3003 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3004 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3005 h->type = STT_OBJECT;
3006 h->verinfo.vertree = t;
3007
3008 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3009 return false;
3010
3011 def.vd_version = VER_DEF_CURRENT;
3012 def.vd_flags = 0;
3013 if (t->globals == NULL && t->locals == NULL && ! t->used)
3014 def.vd_flags |= VER_FLG_WEAK;
3015 def.vd_ndx = t->vernum + 1;
3016 def.vd_cnt = cdeps + 1;
3017 def.vd_hash = bfd_elf_hash (t->name);
3018 def.vd_aux = sizeof (Elf_External_Verdef);
3019 if (t->next != NULL)
3020 def.vd_next = (sizeof (Elf_External_Verdef)
3021 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3022 else
3023 def.vd_next = 0;
3024
3025 _bfd_elf_swap_verdef_out (output_bfd, &def,
3026 (Elf_External_Verdef *) p);
3027 p += sizeof (Elf_External_Verdef);
3028
3029 defaux.vda_name = h->dynstr_index;
3030 if (t->deps == NULL)
3031 defaux.vda_next = 0;
3032 else
3033 defaux.vda_next = sizeof (Elf_External_Verdaux);
3034 t->name_indx = defaux.vda_name;
3035
3036 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3037 (Elf_External_Verdaux *) p);
3038 p += sizeof (Elf_External_Verdaux);
3039
3040 for (n = t->deps; n != NULL; n = n->next)
3041 {
3042 if (n->version_needed == NULL)
3043 {
3044 /* This can happen if there was an error in the
3045 version script. */
3046 defaux.vda_name = 0;
3047 }
3048 else
3049 defaux.vda_name = n->version_needed->name_indx;
3050 if (n->next == NULL)
3051 defaux.vda_next = 0;
3052 else
3053 defaux.vda_next = sizeof (Elf_External_Verdaux);
3054
3055 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3056 (Elf_External_Verdaux *) p);
3057 p += sizeof (Elf_External_Verdaux);
3058 }
3059 }
3060
3061 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3062 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3063 return false;
3064
3065 elf_tdata (output_bfd)->cverdefs = cdefs;
3066 }
3067
3068 /* Work out the size of the version reference section. */
3069
3070 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3071 BFD_ASSERT (s != NULL);
3072 {
3073 struct elf_find_verdep_info sinfo;
3074
3075 sinfo.output_bfd = output_bfd;
3076 sinfo.info = info;
3077 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3078 if (sinfo.vers == 0)
3079 sinfo.vers = 1;
3080 sinfo.failed = false;
3081
3082 elf_link_hash_traverse (elf_hash_table (info),
3083 elf_link_find_version_dependencies,
3084 (PTR) &sinfo);
3085
3086 if (elf_tdata (output_bfd)->verref == NULL)
3087 _bfd_strip_section_from_output (info, s);
3088 else
3089 {
3090 Elf_Internal_Verneed *t;
3091 unsigned int size;
3092 unsigned int crefs;
3093 bfd_byte *p;
3094
3095 /* Build the version definition section. */
3096 size = 0;
3097 crefs = 0;
3098 for (t = elf_tdata (output_bfd)->verref;
3099 t != NULL;
3100 t = t->vn_nextref)
3101 {
3102 Elf_Internal_Vernaux *a;
3103
3104 size += sizeof (Elf_External_Verneed);
3105 ++crefs;
3106 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3107 size += sizeof (Elf_External_Vernaux);
3108 }
3109
3110 s->_raw_size = size;
3111 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3112 if (s->contents == NULL)
3113 return false;
3114
3115 p = s->contents;
3116 for (t = elf_tdata (output_bfd)->verref;
3117 t != NULL;
3118 t = t->vn_nextref)
3119 {
3120 unsigned int caux;
3121 Elf_Internal_Vernaux *a;
3122 bfd_size_type indx;
3123
3124 caux = 0;
3125 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3126 ++caux;
3127
3128 t->vn_version = VER_NEED_CURRENT;
3129 t->vn_cnt = caux;
3130 if (elf_dt_name (t->vn_bfd) != NULL)
3131 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3132 elf_dt_name (t->vn_bfd),
3133 true, false);
3134 else
3135 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3136 t->vn_bfd->filename, true, false);
3137 if (indx == (bfd_size_type) -1)
3138 return false;
3139 t->vn_file = indx;
3140 t->vn_aux = sizeof (Elf_External_Verneed);
3141 if (t->vn_nextref == NULL)
3142 t->vn_next = 0;
3143 else
3144 t->vn_next = (sizeof (Elf_External_Verneed)
3145 + caux * sizeof (Elf_External_Vernaux));
3146
3147 _bfd_elf_swap_verneed_out (output_bfd, t,
3148 (Elf_External_Verneed *) p);
3149 p += sizeof (Elf_External_Verneed);
3150
3151 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3152 {
3153 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3154 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3155 a->vna_nodename, true, false);
3156 if (indx == (bfd_size_type) -1)
3157 return false;
3158 a->vna_name = indx;
3159 if (a->vna_nextptr == NULL)
3160 a->vna_next = 0;
3161 else
3162 a->vna_next = sizeof (Elf_External_Vernaux);
3163
3164 _bfd_elf_swap_vernaux_out (output_bfd, a,
3165 (Elf_External_Vernaux *) p);
3166 p += sizeof (Elf_External_Vernaux);
3167 }
3168 }
3169
3170 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3171 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3172 return false;
3173
3174 elf_tdata (output_bfd)->cverrefs = crefs;
3175 }
3176 }
3177
3178 /* Assign dynsym indicies. In a shared library we generate a
3179 section symbol for each output section, which come first.
3180 Next come all of the back-end allocated local dynamic syms,
3181 followed by the rest of the global symbols. */
3182
3183 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3184
3185 /* Work out the size of the symbol version section. */
3186 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3187 BFD_ASSERT (s != NULL);
3188 if (dynsymcount == 0
3189 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3190 {
3191 _bfd_strip_section_from_output (info, s);
3192 /* The DYNSYMCOUNT might have changed if we were going to
3193 output a dynamic symbol table entry for S. */
3194 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3195 }
3196 else
3197 {
3198 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3199 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3200 if (s->contents == NULL)
3201 return false;
3202
3203 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3204 return false;
3205 }
3206
3207 /* Set the size of the .dynsym and .hash sections. We counted
3208 the number of dynamic symbols in elf_link_add_object_symbols.
3209 We will build the contents of .dynsym and .hash when we build
3210 the final symbol table, because until then we do not know the
3211 correct value to give the symbols. We built the .dynstr
3212 section as we went along in elf_link_add_object_symbols. */
3213 s = bfd_get_section_by_name (dynobj, ".dynsym");
3214 BFD_ASSERT (s != NULL);
3215 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3216 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3217 if (s->contents == NULL && s->_raw_size != 0)
3218 return false;
3219
3220 /* The first entry in .dynsym is a dummy symbol. */
3221 isym.st_value = 0;
3222 isym.st_size = 0;
3223 isym.st_name = 0;
3224 isym.st_info = 0;
3225 isym.st_other = 0;
3226 isym.st_shndx = 0;
3227 elf_swap_symbol_out (output_bfd, &isym,
3228 (PTR) (Elf_External_Sym *) s->contents);
3229
3230 /* Compute the size of the hashing table. As a side effect this
3231 computes the hash values for all the names we export. */
3232 bucketcount = compute_bucket_count (info);
3233
3234 s = bfd_get_section_by_name (dynobj, ".hash");
3235 BFD_ASSERT (s != NULL);
3236 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3237 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3238 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3239 if (s->contents == NULL)
3240 return false;
3241 memset (s->contents, 0, (size_t) s->_raw_size);
3242
3243 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3244 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3245 s->contents + hash_entry_size);
3246
3247 elf_hash_table (info)->bucketcount = bucketcount;
3248
3249 s = bfd_get_section_by_name (dynobj, ".dynstr");
3250 BFD_ASSERT (s != NULL);
3251 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3252
3253 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3254 return false;
3255 }
3256
3257 return true;
3258 }
3259 \f
3260 /* Fix up the flags for a symbol. This handles various cases which
3261 can only be fixed after all the input files are seen. This is
3262 currently called by both adjust_dynamic_symbol and
3263 assign_sym_version, which is unnecessary but perhaps more robust in
3264 the face of future changes. */
3265
3266 static boolean
3267 elf_fix_symbol_flags (h, eif)
3268 struct elf_link_hash_entry *h;
3269 struct elf_info_failed *eif;
3270 {
3271 /* If this symbol was mentioned in a non-ELF file, try to set
3272 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3273 permit a non-ELF file to correctly refer to a symbol defined in
3274 an ELF dynamic object. */
3275 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3276 {
3277 if (h->root.type != bfd_link_hash_defined
3278 && h->root.type != bfd_link_hash_defweak)
3279 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3280 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3281 else
3282 {
3283 if (h->root.u.def.section->owner != NULL
3284 && (bfd_get_flavour (h->root.u.def.section->owner)
3285 == bfd_target_elf_flavour))
3286 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3287 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3288 else
3289 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3290 }
3291
3292 if (h->dynindx == -1
3293 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3294 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3295 {
3296 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3297 {
3298 eif->failed = true;
3299 return false;
3300 }
3301 }
3302 }
3303 else
3304 {
3305 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3306 was first seen in a non-ELF file. Fortunately, if the symbol
3307 was first seen in an ELF file, we're probably OK unless the
3308 symbol was defined in a non-ELF file. Catch that case here.
3309 FIXME: We're still in trouble if the symbol was first seen in
3310 a dynamic object, and then later in a non-ELF regular object. */
3311 if ((h->root.type == bfd_link_hash_defined
3312 || h->root.type == bfd_link_hash_defweak)
3313 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3314 && (h->root.u.def.section->owner != NULL
3315 ? (bfd_get_flavour (h->root.u.def.section->owner)
3316 != bfd_target_elf_flavour)
3317 : (bfd_is_abs_section (h->root.u.def.section)
3318 && (h->elf_link_hash_flags
3319 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3320 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3321 }
3322
3323 /* If this is a final link, and the symbol was defined as a common
3324 symbol in a regular object file, and there was no definition in
3325 any dynamic object, then the linker will have allocated space for
3326 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3327 flag will not have been set. */
3328 if (h->root.type == bfd_link_hash_defined
3329 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3330 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3331 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3332 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3333 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3334
3335 /* If -Bsymbolic was used (which means to bind references to global
3336 symbols to the definition within the shared object), and this
3337 symbol was defined in a regular object, then it actually doesn't
3338 need a PLT entry. */
3339 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3340 && eif->info->shared
3341 && eif->info->symbolic
3342 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3343 {
3344 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3345 h->plt.offset = (bfd_vma) -1;
3346 }
3347
3348 /* If this is a weak defined symbol in a dynamic object, and we know
3349 the real definition in the dynamic object, copy interesting flags
3350 over to the real definition. */
3351 if (h->weakdef != NULL)
3352 {
3353 struct elf_link_hash_entry *weakdef;
3354
3355 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3356 || h->root.type == bfd_link_hash_defweak);
3357 weakdef = h->weakdef;
3358 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3359 || weakdef->root.type == bfd_link_hash_defweak);
3360 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3361
3362 /* If the real definition is defined by a regular object file,
3363 don't do anything special. See the longer description in
3364 elf_adjust_dynamic_symbol, below. */
3365 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3366 h->weakdef = NULL;
3367 else
3368 weakdef->elf_link_hash_flags |=
3369 (h->elf_link_hash_flags
3370 & (ELF_LINK_HASH_REF_REGULAR
3371 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3372 | ELF_LINK_NON_GOT_REF));
3373 }
3374
3375 return true;
3376 }
3377
3378 /* Make the backend pick a good value for a dynamic symbol. This is
3379 called via elf_link_hash_traverse, and also calls itself
3380 recursively. */
3381
3382 static boolean
3383 elf_adjust_dynamic_symbol (h, data)
3384 struct elf_link_hash_entry *h;
3385 PTR data;
3386 {
3387 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3388 bfd *dynobj;
3389 struct elf_backend_data *bed;
3390
3391 /* Ignore indirect symbols. These are added by the versioning code. */
3392 if (h->root.type == bfd_link_hash_indirect)
3393 return true;
3394
3395 /* Fix the symbol flags. */
3396 if (! elf_fix_symbol_flags (h, eif))
3397 return false;
3398
3399 /* If this symbol does not require a PLT entry, and it is not
3400 defined by a dynamic object, or is not referenced by a regular
3401 object, ignore it. We do have to handle a weak defined symbol,
3402 even if no regular object refers to it, if we decided to add it
3403 to the dynamic symbol table. FIXME: Do we normally need to worry
3404 about symbols which are defined by one dynamic object and
3405 referenced by another one? */
3406 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3407 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3408 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3409 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3410 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3411 {
3412 h->plt.offset = (bfd_vma) -1;
3413 return true;
3414 }
3415
3416 /* If we've already adjusted this symbol, don't do it again. This
3417 can happen via a recursive call. */
3418 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3419 return true;
3420
3421 /* Don't look at this symbol again. Note that we must set this
3422 after checking the above conditions, because we may look at a
3423 symbol once, decide not to do anything, and then get called
3424 recursively later after REF_REGULAR is set below. */
3425 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3426
3427 /* If this is a weak definition, and we know a real definition, and
3428 the real symbol is not itself defined by a regular object file,
3429 then get a good value for the real definition. We handle the
3430 real symbol first, for the convenience of the backend routine.
3431
3432 Note that there is a confusing case here. If the real definition
3433 is defined by a regular object file, we don't get the real symbol
3434 from the dynamic object, but we do get the weak symbol. If the
3435 processor backend uses a COPY reloc, then if some routine in the
3436 dynamic object changes the real symbol, we will not see that
3437 change in the corresponding weak symbol. This is the way other
3438 ELF linkers work as well, and seems to be a result of the shared
3439 library model.
3440
3441 I will clarify this issue. Most SVR4 shared libraries define the
3442 variable _timezone and define timezone as a weak synonym. The
3443 tzset call changes _timezone. If you write
3444 extern int timezone;
3445 int _timezone = 5;
3446 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3447 you might expect that, since timezone is a synonym for _timezone,
3448 the same number will print both times. However, if the processor
3449 backend uses a COPY reloc, then actually timezone will be copied
3450 into your process image, and, since you define _timezone
3451 yourself, _timezone will not. Thus timezone and _timezone will
3452 wind up at different memory locations. The tzset call will set
3453 _timezone, leaving timezone unchanged. */
3454
3455 if (h->weakdef != NULL)
3456 {
3457 /* If we get to this point, we know there is an implicit
3458 reference by a regular object file via the weak symbol H.
3459 FIXME: Is this really true? What if the traversal finds
3460 H->WEAKDEF before it finds H? */
3461 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3462
3463 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3464 return false;
3465 }
3466
3467 /* If a symbol has no type and no size and does not require a PLT
3468 entry, then we are probably about to do the wrong thing here: we
3469 are probably going to create a COPY reloc for an empty object.
3470 This case can arise when a shared object is built with assembly
3471 code, and the assembly code fails to set the symbol type. */
3472 if (h->size == 0
3473 && h->type == STT_NOTYPE
3474 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3475 (*_bfd_error_handler)
3476 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3477 h->root.root.string);
3478
3479 dynobj = elf_hash_table (eif->info)->dynobj;
3480 bed = get_elf_backend_data (dynobj);
3481 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3482 {
3483 eif->failed = true;
3484 return false;
3485 }
3486
3487 return true;
3488 }
3489 \f
3490 /* This routine is used to export all defined symbols into the dynamic
3491 symbol table. It is called via elf_link_hash_traverse. */
3492
3493 static boolean
3494 elf_export_symbol (h, data)
3495 struct elf_link_hash_entry *h;
3496 PTR data;
3497 {
3498 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3499
3500 /* Ignore indirect symbols. These are added by the versioning code. */
3501 if (h->root.type == bfd_link_hash_indirect)
3502 return true;
3503
3504 if (h->dynindx == -1
3505 && (h->elf_link_hash_flags
3506 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3507 {
3508 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3509 {
3510 eif->failed = true;
3511 return false;
3512 }
3513 }
3514
3515 return true;
3516 }
3517 \f
3518 /* Look through the symbols which are defined in other shared
3519 libraries and referenced here. Update the list of version
3520 dependencies. This will be put into the .gnu.version_r section.
3521 This function is called via elf_link_hash_traverse. */
3522
3523 static boolean
3524 elf_link_find_version_dependencies (h, data)
3525 struct elf_link_hash_entry *h;
3526 PTR data;
3527 {
3528 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3529 Elf_Internal_Verneed *t;
3530 Elf_Internal_Vernaux *a;
3531
3532 /* We only care about symbols defined in shared objects with version
3533 information. */
3534 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3535 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3536 || h->dynindx == -1
3537 || h->verinfo.verdef == NULL)
3538 return true;
3539
3540 /* See if we already know about this version. */
3541 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3542 {
3543 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3544 continue;
3545
3546 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3547 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3548 return true;
3549
3550 break;
3551 }
3552
3553 /* This is a new version. Add it to tree we are building. */
3554
3555 if (t == NULL)
3556 {
3557 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3558 if (t == NULL)
3559 {
3560 rinfo->failed = true;
3561 return false;
3562 }
3563
3564 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3565 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3566 elf_tdata (rinfo->output_bfd)->verref = t;
3567 }
3568
3569 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3570
3571 /* Note that we are copying a string pointer here, and testing it
3572 above. If bfd_elf_string_from_elf_section is ever changed to
3573 discard the string data when low in memory, this will have to be
3574 fixed. */
3575 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3576
3577 a->vna_flags = h->verinfo.verdef->vd_flags;
3578 a->vna_nextptr = t->vn_auxptr;
3579
3580 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3581 ++rinfo->vers;
3582
3583 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3584
3585 t->vn_auxptr = a;
3586
3587 return true;
3588 }
3589
3590 /* Figure out appropriate versions for all the symbols. We may not
3591 have the version number script until we have read all of the input
3592 files, so until that point we don't know which symbols should be
3593 local. This function is called via elf_link_hash_traverse. */
3594
3595 static boolean
3596 elf_link_assign_sym_version (h, data)
3597 struct elf_link_hash_entry *h;
3598 PTR data;
3599 {
3600 struct elf_assign_sym_version_info *sinfo =
3601 (struct elf_assign_sym_version_info *) data;
3602 struct bfd_link_info *info = sinfo->info;
3603 struct elf_backend_data *bed;
3604 struct elf_info_failed eif;
3605 char *p;
3606
3607 /* Fix the symbol flags. */
3608 eif.failed = false;
3609 eif.info = info;
3610 if (! elf_fix_symbol_flags (h, &eif))
3611 {
3612 if (eif.failed)
3613 sinfo->failed = true;
3614 return false;
3615 }
3616
3617 /* We only need version numbers for symbols defined in regular
3618 objects. */
3619 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3620 return true;
3621
3622 bed = get_elf_backend_data (sinfo->output_bfd);
3623 p = strchr (h->root.root.string, ELF_VER_CHR);
3624 if (p != NULL && h->verinfo.vertree == NULL)
3625 {
3626 struct bfd_elf_version_tree *t;
3627 boolean hidden;
3628
3629 hidden = true;
3630
3631 /* There are two consecutive ELF_VER_CHR characters if this is
3632 not a hidden symbol. */
3633 ++p;
3634 if (*p == ELF_VER_CHR)
3635 {
3636 hidden = false;
3637 ++p;
3638 }
3639
3640 /* If there is no version string, we can just return out. */
3641 if (*p == '\0')
3642 {
3643 if (hidden)
3644 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3645 return true;
3646 }
3647
3648 /* Look for the version. If we find it, it is no longer weak. */
3649 for (t = sinfo->verdefs; t != NULL; t = t->next)
3650 {
3651 if (strcmp (t->name, p) == 0)
3652 {
3653 int len;
3654 char *alc;
3655 struct bfd_elf_version_expr *d;
3656
3657 len = p - h->root.root.string;
3658 alc = bfd_alloc (sinfo->output_bfd, len);
3659 if (alc == NULL)
3660 return false;
3661 strncpy (alc, h->root.root.string, len - 1);
3662 alc[len - 1] = '\0';
3663 if (alc[len - 2] == ELF_VER_CHR)
3664 alc[len - 2] = '\0';
3665
3666 h->verinfo.vertree = t;
3667 t->used = true;
3668 d = NULL;
3669
3670 if (t->globals != NULL)
3671 {
3672 for (d = t->globals; d != NULL; d = d->next)
3673 if ((*d->match) (d, alc))
3674 break;
3675 }
3676
3677 /* See if there is anything to force this symbol to
3678 local scope. */
3679 if (d == NULL && t->locals != NULL)
3680 {
3681 for (d = t->locals; d != NULL; d = d->next)
3682 {
3683 if ((*d->match) (d, alc))
3684 {
3685 if (h->dynindx != -1
3686 && info->shared
3687 && ! sinfo->export_dynamic)
3688 {
3689 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3690 (*bed->elf_backend_hide_symbol) (h);
3691 /* FIXME: The name of the symbol has
3692 already been recorded in the dynamic
3693 string table section. */
3694 }
3695
3696 break;
3697 }
3698 }
3699 }
3700
3701 bfd_release (sinfo->output_bfd, alc);
3702 break;
3703 }
3704 }
3705
3706 /* If we are building an application, we need to create a
3707 version node for this version. */
3708 if (t == NULL && ! info->shared)
3709 {
3710 struct bfd_elf_version_tree **pp;
3711 int version_index;
3712
3713 /* If we aren't going to export this symbol, we don't need
3714 to worry about it. */
3715 if (h->dynindx == -1)
3716 return true;
3717
3718 t = ((struct bfd_elf_version_tree *)
3719 bfd_alloc (sinfo->output_bfd, sizeof *t));
3720 if (t == NULL)
3721 {
3722 sinfo->failed = true;
3723 return false;
3724 }
3725
3726 t->next = NULL;
3727 t->name = p;
3728 t->globals = NULL;
3729 t->locals = NULL;
3730 t->deps = NULL;
3731 t->name_indx = (unsigned int) -1;
3732 t->used = true;
3733
3734 version_index = 1;
3735 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3736 ++version_index;
3737 t->vernum = version_index;
3738
3739 *pp = t;
3740
3741 h->verinfo.vertree = t;
3742 }
3743 else if (t == NULL)
3744 {
3745 /* We could not find the version for a symbol when
3746 generating a shared archive. Return an error. */
3747 (*_bfd_error_handler)
3748 (_("%s: undefined versioned symbol name %s"),
3749 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3750 bfd_set_error (bfd_error_bad_value);
3751 sinfo->failed = true;
3752 return false;
3753 }
3754
3755 if (hidden)
3756 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3757 }
3758
3759 /* If we don't have a version for this symbol, see if we can find
3760 something. */
3761 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3762 {
3763 struct bfd_elf_version_tree *t;
3764 struct bfd_elf_version_tree *deflt;
3765 struct bfd_elf_version_expr *d;
3766
3767 /* See if can find what version this symbol is in. If the
3768 symbol is supposed to be local, then don't actually register
3769 it. */
3770 deflt = NULL;
3771 for (t = sinfo->verdefs; t != NULL; t = t->next)
3772 {
3773 if (t->globals != NULL)
3774 {
3775 for (d = t->globals; d != NULL; d = d->next)
3776 {
3777 if ((*d->match) (d, h->root.root.string))
3778 {
3779 h->verinfo.vertree = t;
3780 break;
3781 }
3782 }
3783
3784 if (d != NULL)
3785 break;
3786 }
3787
3788 if (t->locals != NULL)
3789 {
3790 for (d = t->locals; d != NULL; d = d->next)
3791 {
3792 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3793 deflt = t;
3794 else if ((*d->match) (d, h->root.root.string))
3795 {
3796 h->verinfo.vertree = t;
3797 if (h->dynindx != -1
3798 && info->shared
3799 && ! sinfo->export_dynamic)
3800 {
3801 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3802 (*bed->elf_backend_hide_symbol) (h);
3803 /* FIXME: The name of the symbol has already
3804 been recorded in the dynamic string table
3805 section. */
3806 }
3807 break;
3808 }
3809 }
3810
3811 if (d != NULL)
3812 break;
3813 }
3814 }
3815
3816 if (deflt != NULL && h->verinfo.vertree == NULL)
3817 {
3818 h->verinfo.vertree = deflt;
3819 if (h->dynindx != -1
3820 && info->shared
3821 && ! sinfo->export_dynamic)
3822 {
3823 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3824 (*bed->elf_backend_hide_symbol) (h);
3825 /* FIXME: The name of the symbol has already been
3826 recorded in the dynamic string table section. */
3827 }
3828 }
3829 }
3830
3831 return true;
3832 }
3833 \f
3834 /* Final phase of ELF linker. */
3835
3836 /* A structure we use to avoid passing large numbers of arguments. */
3837
3838 struct elf_final_link_info
3839 {
3840 /* General link information. */
3841 struct bfd_link_info *info;
3842 /* Output BFD. */
3843 bfd *output_bfd;
3844 /* Symbol string table. */
3845 struct bfd_strtab_hash *symstrtab;
3846 /* .dynsym section. */
3847 asection *dynsym_sec;
3848 /* .hash section. */
3849 asection *hash_sec;
3850 /* symbol version section (.gnu.version). */
3851 asection *symver_sec;
3852 /* Buffer large enough to hold contents of any section. */
3853 bfd_byte *contents;
3854 /* Buffer large enough to hold external relocs of any section. */
3855 PTR external_relocs;
3856 /* Buffer large enough to hold internal relocs of any section. */
3857 Elf_Internal_Rela *internal_relocs;
3858 /* Buffer large enough to hold external local symbols of any input
3859 BFD. */
3860 Elf_External_Sym *external_syms;
3861 /* Buffer large enough to hold internal local symbols of any input
3862 BFD. */
3863 Elf_Internal_Sym *internal_syms;
3864 /* Array large enough to hold a symbol index for each local symbol
3865 of any input BFD. */
3866 long *indices;
3867 /* Array large enough to hold a section pointer for each local
3868 symbol of any input BFD. */
3869 asection **sections;
3870 /* Buffer to hold swapped out symbols. */
3871 Elf_External_Sym *symbuf;
3872 /* Number of swapped out symbols in buffer. */
3873 size_t symbuf_count;
3874 /* Number of symbols which fit in symbuf. */
3875 size_t symbuf_size;
3876 };
3877
3878 static boolean elf_link_output_sym
3879 PARAMS ((struct elf_final_link_info *, const char *,
3880 Elf_Internal_Sym *, asection *));
3881 static boolean elf_link_flush_output_syms
3882 PARAMS ((struct elf_final_link_info *));
3883 static boolean elf_link_output_extsym
3884 PARAMS ((struct elf_link_hash_entry *, PTR));
3885 static boolean elf_link_input_bfd
3886 PARAMS ((struct elf_final_link_info *, bfd *));
3887 static boolean elf_reloc_link_order
3888 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3889 struct bfd_link_order *));
3890
3891 /* This struct is used to pass information to elf_link_output_extsym. */
3892
3893 struct elf_outext_info
3894 {
3895 boolean failed;
3896 boolean localsyms;
3897 struct elf_final_link_info *finfo;
3898 };
3899
3900 /* Compute the size of, and allocate space for, REL_HDR which is the
3901 section header for a section containing relocations for O. */
3902
3903 static boolean
3904 elf_link_size_reloc_section (abfd, rel_hdr, o)
3905 bfd *abfd;
3906 Elf_Internal_Shdr *rel_hdr;
3907 asection *o;
3908 {
3909 register struct elf_link_hash_entry **p, **pend;
3910 unsigned reloc_count;
3911
3912 /* Figure out how many relocations there will be. */
3913 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3914 reloc_count = elf_section_data (o)->rel_count;
3915 else
3916 reloc_count = elf_section_data (o)->rel_count2;
3917
3918 /* That allows us to calculate the size of the section. */
3919 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3920
3921 /* The contents field must last into write_object_contents, so we
3922 allocate it with bfd_alloc rather than malloc. */
3923 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3924 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3925 return false;
3926
3927 /* We only allocate one set of hash entries, so we only do it the
3928 first time we are called. */
3929 if (elf_section_data (o)->rel_hashes == NULL)
3930 {
3931 p = ((struct elf_link_hash_entry **)
3932 bfd_malloc (o->reloc_count
3933 * sizeof (struct elf_link_hash_entry *)));
3934 if (p == NULL && o->reloc_count != 0)
3935 return false;
3936
3937 elf_section_data (o)->rel_hashes = p;
3938 pend = p + o->reloc_count;
3939 for (; p < pend; p++)
3940 *p = NULL;
3941 }
3942
3943 return true;
3944 }
3945
3946 /* When performing a relocateable link, the input relocations are
3947 preserved. But, if they reference global symbols, the indices
3948 referenced must be updated. Update all the relocations in
3949 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3950
3951 static void
3952 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3953 bfd *abfd;
3954 Elf_Internal_Shdr *rel_hdr;
3955 unsigned int count;
3956 struct elf_link_hash_entry **rel_hash;
3957 {
3958 unsigned int i;
3959
3960 for (i = 0; i < count; i++, rel_hash++)
3961 {
3962 if (*rel_hash == NULL)
3963 continue;
3964
3965 BFD_ASSERT ((*rel_hash)->indx >= 0);
3966
3967 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3968 {
3969 Elf_External_Rel *erel;
3970 Elf_Internal_Rel irel;
3971
3972 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3973 elf_swap_reloc_in (abfd, erel, &irel);
3974 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3975 ELF_R_TYPE (irel.r_info));
3976 elf_swap_reloc_out (abfd, &irel, erel);
3977 }
3978 else
3979 {
3980 Elf_External_Rela *erela;
3981 Elf_Internal_Rela irela;
3982
3983 BFD_ASSERT (rel_hdr->sh_entsize
3984 == sizeof (Elf_External_Rela));
3985
3986 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3987 elf_swap_reloca_in (abfd, erela, &irela);
3988 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3989 ELF_R_TYPE (irela.r_info));
3990 elf_swap_reloca_out (abfd, &irela, erela);
3991 }
3992 }
3993 }
3994
3995 /* Do the final step of an ELF link. */
3996
3997 boolean
3998 elf_bfd_final_link (abfd, info)
3999 bfd *abfd;
4000 struct bfd_link_info *info;
4001 {
4002 boolean dynamic;
4003 bfd *dynobj;
4004 struct elf_final_link_info finfo;
4005 register asection *o;
4006 register struct bfd_link_order *p;
4007 register bfd *sub;
4008 size_t max_contents_size;
4009 size_t max_external_reloc_size;
4010 size_t max_internal_reloc_count;
4011 size_t max_sym_count;
4012 file_ptr off;
4013 Elf_Internal_Sym elfsym;
4014 unsigned int i;
4015 Elf_Internal_Shdr *symtab_hdr;
4016 Elf_Internal_Shdr *symstrtab_hdr;
4017 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4018 struct elf_outext_info eoinfo;
4019
4020 if (info->shared)
4021 abfd->flags |= DYNAMIC;
4022
4023 dynamic = elf_hash_table (info)->dynamic_sections_created;
4024 dynobj = elf_hash_table (info)->dynobj;
4025
4026 finfo.info = info;
4027 finfo.output_bfd = abfd;
4028 finfo.symstrtab = elf_stringtab_init ();
4029 if (finfo.symstrtab == NULL)
4030 return false;
4031
4032 if (! dynamic)
4033 {
4034 finfo.dynsym_sec = NULL;
4035 finfo.hash_sec = NULL;
4036 finfo.symver_sec = NULL;
4037 }
4038 else
4039 {
4040 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4041 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4042 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4043 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4044 /* Note that it is OK if symver_sec is NULL. */
4045 }
4046
4047 finfo.contents = NULL;
4048 finfo.external_relocs = NULL;
4049 finfo.internal_relocs = NULL;
4050 finfo.external_syms = NULL;
4051 finfo.internal_syms = NULL;
4052 finfo.indices = NULL;
4053 finfo.sections = NULL;
4054 finfo.symbuf = NULL;
4055 finfo.symbuf_count = 0;
4056
4057 /* Count up the number of relocations we will output for each output
4058 section, so that we know the sizes of the reloc sections. We
4059 also figure out some maximum sizes. */
4060 max_contents_size = 0;
4061 max_external_reloc_size = 0;
4062 max_internal_reloc_count = 0;
4063 max_sym_count = 0;
4064 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4065 {
4066 o->reloc_count = 0;
4067
4068 for (p = o->link_order_head; p != NULL; p = p->next)
4069 {
4070 if (p->type == bfd_section_reloc_link_order
4071 || p->type == bfd_symbol_reloc_link_order)
4072 ++o->reloc_count;
4073 else if (p->type == bfd_indirect_link_order)
4074 {
4075 asection *sec;
4076
4077 sec = p->u.indirect.section;
4078
4079 /* Mark all sections which are to be included in the
4080 link. This will normally be every section. We need
4081 to do this so that we can identify any sections which
4082 the linker has decided to not include. */
4083 sec->linker_mark = true;
4084
4085 if (info->relocateable)
4086 o->reloc_count += sec->reloc_count;
4087
4088 if (sec->_raw_size > max_contents_size)
4089 max_contents_size = sec->_raw_size;
4090 if (sec->_cooked_size > max_contents_size)
4091 max_contents_size = sec->_cooked_size;
4092
4093 /* We are interested in just local symbols, not all
4094 symbols. */
4095 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4096 && (sec->owner->flags & DYNAMIC) == 0)
4097 {
4098 size_t sym_count;
4099
4100 if (elf_bad_symtab (sec->owner))
4101 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4102 / sizeof (Elf_External_Sym));
4103 else
4104 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4105
4106 if (sym_count > max_sym_count)
4107 max_sym_count = sym_count;
4108
4109 if ((sec->flags & SEC_RELOC) != 0)
4110 {
4111 size_t ext_size;
4112
4113 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4114 if (ext_size > max_external_reloc_size)
4115 max_external_reloc_size = ext_size;
4116 if (sec->reloc_count > max_internal_reloc_count)
4117 max_internal_reloc_count = sec->reloc_count;
4118 }
4119 }
4120 }
4121 }
4122
4123 if (o->reloc_count > 0)
4124 o->flags |= SEC_RELOC;
4125 else
4126 {
4127 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4128 set it (this is probably a bug) and if it is set
4129 assign_section_numbers will create a reloc section. */
4130 o->flags &=~ SEC_RELOC;
4131 }
4132
4133 /* If the SEC_ALLOC flag is not set, force the section VMA to
4134 zero. This is done in elf_fake_sections as well, but forcing
4135 the VMA to 0 here will ensure that relocs against these
4136 sections are handled correctly. */
4137 if ((o->flags & SEC_ALLOC) == 0
4138 && ! o->user_set_vma)
4139 o->vma = 0;
4140 }
4141
4142 /* Figure out the file positions for everything but the symbol table
4143 and the relocs. We set symcount to force assign_section_numbers
4144 to create a symbol table. */
4145 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4146 BFD_ASSERT (! abfd->output_has_begun);
4147 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4148 goto error_return;
4149
4150 /* Figure out how many relocations we will have in each section.
4151 Just using RELOC_COUNT isn't good enough since that doesn't
4152 maintain a separate value for REL vs. RELA relocations. */
4153 if (info->relocateable)
4154 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4155 for (o = sub->sections; o != NULL; o = o->next)
4156 {
4157 asection *output_section;
4158
4159 if (! o->linker_mark)
4160 {
4161 /* This section was omitted from the link. */
4162 continue;
4163 }
4164
4165 output_section = o->output_section;
4166
4167 if (output_section != NULL
4168 && (o->flags & SEC_RELOC) != 0)
4169 {
4170 struct bfd_elf_section_data *esdi
4171 = elf_section_data (o);
4172 struct bfd_elf_section_data *esdo
4173 = elf_section_data (output_section);
4174 unsigned int *rel_count;
4175 unsigned int *rel_count2;
4176
4177 /* We must be careful to add the relocation froms the
4178 input section to the right output count. */
4179 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4180 {
4181 rel_count = &esdo->rel_count;
4182 rel_count2 = &esdo->rel_count2;
4183 }
4184 else
4185 {
4186 rel_count = &esdo->rel_count2;
4187 rel_count2 = &esdo->rel_count;
4188 }
4189
4190 *rel_count += (esdi->rel_hdr.sh_size
4191 / esdi->rel_hdr.sh_entsize);
4192 if (esdi->rel_hdr2)
4193 *rel_count2 += (esdi->rel_hdr2->sh_size
4194 / esdi->rel_hdr2->sh_entsize);
4195 }
4196 }
4197
4198 /* That created the reloc sections. Set their sizes, and assign
4199 them file positions, and allocate some buffers. */
4200 for (o = abfd->sections; o != NULL; o = o->next)
4201 {
4202 if ((o->flags & SEC_RELOC) != 0)
4203 {
4204 if (!elf_link_size_reloc_section (abfd,
4205 &elf_section_data (o)->rel_hdr,
4206 o))
4207 goto error_return;
4208
4209 if (elf_section_data (o)->rel_hdr2
4210 && !elf_link_size_reloc_section (abfd,
4211 elf_section_data (o)->rel_hdr2,
4212 o))
4213 goto error_return;
4214 }
4215
4216 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4217 to count upwards while actually outputting the relocations. */
4218 elf_section_data (o)->rel_count = 0;
4219 elf_section_data (o)->rel_count2 = 0;
4220 }
4221
4222 _bfd_elf_assign_file_positions_for_relocs (abfd);
4223
4224 /* We have now assigned file positions for all the sections except
4225 .symtab and .strtab. We start the .symtab section at the current
4226 file position, and write directly to it. We build the .strtab
4227 section in memory. */
4228 bfd_get_symcount (abfd) = 0;
4229 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4230 /* sh_name is set in prep_headers. */
4231 symtab_hdr->sh_type = SHT_SYMTAB;
4232 symtab_hdr->sh_flags = 0;
4233 symtab_hdr->sh_addr = 0;
4234 symtab_hdr->sh_size = 0;
4235 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4236 /* sh_link is set in assign_section_numbers. */
4237 /* sh_info is set below. */
4238 /* sh_offset is set just below. */
4239 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4240
4241 off = elf_tdata (abfd)->next_file_pos;
4242 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4243
4244 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4245 incorrect. We do not yet know the size of the .symtab section.
4246 We correct next_file_pos below, after we do know the size. */
4247
4248 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4249 continuously seeking to the right position in the file. */
4250 if (! info->keep_memory || max_sym_count < 20)
4251 finfo.symbuf_size = 20;
4252 else
4253 finfo.symbuf_size = max_sym_count;
4254 finfo.symbuf = ((Elf_External_Sym *)
4255 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4256 if (finfo.symbuf == NULL)
4257 goto error_return;
4258
4259 /* Start writing out the symbol table. The first symbol is always a
4260 dummy symbol. */
4261 if (info->strip != strip_all || info->relocateable)
4262 {
4263 elfsym.st_value = 0;
4264 elfsym.st_size = 0;
4265 elfsym.st_info = 0;
4266 elfsym.st_other = 0;
4267 elfsym.st_shndx = SHN_UNDEF;
4268 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4269 &elfsym, bfd_und_section_ptr))
4270 goto error_return;
4271 }
4272
4273 #if 0
4274 /* Some standard ELF linkers do this, but we don't because it causes
4275 bootstrap comparison failures. */
4276 /* Output a file symbol for the output file as the second symbol.
4277 We output this even if we are discarding local symbols, although
4278 I'm not sure if this is correct. */
4279 elfsym.st_value = 0;
4280 elfsym.st_size = 0;
4281 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4282 elfsym.st_other = 0;
4283 elfsym.st_shndx = SHN_ABS;
4284 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4285 &elfsym, bfd_abs_section_ptr))
4286 goto error_return;
4287 #endif
4288
4289 /* Output a symbol for each section. We output these even if we are
4290 discarding local symbols, since they are used for relocs. These
4291 symbols have no names. We store the index of each one in the
4292 index field of the section, so that we can find it again when
4293 outputting relocs. */
4294 if (info->strip != strip_all || info->relocateable)
4295 {
4296 elfsym.st_size = 0;
4297 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4298 elfsym.st_other = 0;
4299 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4300 {
4301 o = section_from_elf_index (abfd, i);
4302 if (o != NULL)
4303 o->target_index = bfd_get_symcount (abfd);
4304 elfsym.st_shndx = i;
4305 if (info->relocateable || o == NULL)
4306 elfsym.st_value = 0;
4307 else
4308 elfsym.st_value = o->vma;
4309 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4310 &elfsym, o))
4311 goto error_return;
4312 }
4313 }
4314
4315 /* Allocate some memory to hold information read in from the input
4316 files. */
4317 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4318 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4319 finfo.internal_relocs = ((Elf_Internal_Rela *)
4320 bfd_malloc (max_internal_reloc_count
4321 * sizeof (Elf_Internal_Rela)
4322 * bed->s->int_rels_per_ext_rel));
4323 finfo.external_syms = ((Elf_External_Sym *)
4324 bfd_malloc (max_sym_count
4325 * sizeof (Elf_External_Sym)));
4326 finfo.internal_syms = ((Elf_Internal_Sym *)
4327 bfd_malloc (max_sym_count
4328 * sizeof (Elf_Internal_Sym)));
4329 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4330 finfo.sections = ((asection **)
4331 bfd_malloc (max_sym_count * sizeof (asection *)));
4332 if ((finfo.contents == NULL && max_contents_size != 0)
4333 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4334 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4335 || (finfo.external_syms == NULL && max_sym_count != 0)
4336 || (finfo.internal_syms == NULL && max_sym_count != 0)
4337 || (finfo.indices == NULL && max_sym_count != 0)
4338 || (finfo.sections == NULL && max_sym_count != 0))
4339 goto error_return;
4340
4341 /* Since ELF permits relocations to be against local symbols, we
4342 must have the local symbols available when we do the relocations.
4343 Since we would rather only read the local symbols once, and we
4344 would rather not keep them in memory, we handle all the
4345 relocations for a single input file at the same time.
4346
4347 Unfortunately, there is no way to know the total number of local
4348 symbols until we have seen all of them, and the local symbol
4349 indices precede the global symbol indices. This means that when
4350 we are generating relocateable output, and we see a reloc against
4351 a global symbol, we can not know the symbol index until we have
4352 finished examining all the local symbols to see which ones we are
4353 going to output. To deal with this, we keep the relocations in
4354 memory, and don't output them until the end of the link. This is
4355 an unfortunate waste of memory, but I don't see a good way around
4356 it. Fortunately, it only happens when performing a relocateable
4357 link, which is not the common case. FIXME: If keep_memory is set
4358 we could write the relocs out and then read them again; I don't
4359 know how bad the memory loss will be. */
4360
4361 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4362 sub->output_has_begun = false;
4363 for (o = abfd->sections; o != NULL; o = o->next)
4364 {
4365 for (p = o->link_order_head; p != NULL; p = p->next)
4366 {
4367 if (p->type == bfd_indirect_link_order
4368 && (bfd_get_flavour (p->u.indirect.section->owner)
4369 == bfd_target_elf_flavour))
4370 {
4371 sub = p->u.indirect.section->owner;
4372 if (! sub->output_has_begun)
4373 {
4374 if (! elf_link_input_bfd (&finfo, sub))
4375 goto error_return;
4376 sub->output_has_begun = true;
4377 }
4378 }
4379 else if (p->type == bfd_section_reloc_link_order
4380 || p->type == bfd_symbol_reloc_link_order)
4381 {
4382 if (! elf_reloc_link_order (abfd, info, o, p))
4383 goto error_return;
4384 }
4385 else
4386 {
4387 if (! _bfd_default_link_order (abfd, info, o, p))
4388 goto error_return;
4389 }
4390 }
4391 }
4392
4393 /* That wrote out all the local symbols. Finish up the symbol table
4394 with the global symbols. */
4395
4396 if (info->strip != strip_all && info->shared)
4397 {
4398 /* Output any global symbols that got converted to local in a
4399 version script. We do this in a separate step since ELF
4400 requires all local symbols to appear prior to any global
4401 symbols. FIXME: We should only do this if some global
4402 symbols were, in fact, converted to become local. FIXME:
4403 Will this work correctly with the Irix 5 linker? */
4404 eoinfo.failed = false;
4405 eoinfo.finfo = &finfo;
4406 eoinfo.localsyms = true;
4407 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4408 (PTR) &eoinfo);
4409 if (eoinfo.failed)
4410 return false;
4411 }
4412
4413 /* The sh_info field records the index of the first non local symbol. */
4414 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4415
4416 if (dynamic)
4417 {
4418 Elf_Internal_Sym sym;
4419 Elf_External_Sym *dynsym =
4420 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4421 long last_local = 0;
4422
4423 /* Write out the section symbols for the output sections. */
4424 if (info->shared)
4425 {
4426 asection *s;
4427
4428 sym.st_size = 0;
4429 sym.st_name = 0;
4430 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4431 sym.st_other = 0;
4432
4433 for (s = abfd->sections; s != NULL; s = s->next)
4434 {
4435 int indx;
4436 indx = elf_section_data (s)->this_idx;
4437 BFD_ASSERT (indx > 0);
4438 sym.st_shndx = indx;
4439 sym.st_value = s->vma;
4440
4441 elf_swap_symbol_out (abfd, &sym,
4442 dynsym + elf_section_data (s)->dynindx);
4443 }
4444
4445 last_local = bfd_count_sections (abfd);
4446 }
4447
4448 /* Write out the local dynsyms. */
4449 if (elf_hash_table (info)->dynlocal)
4450 {
4451 struct elf_link_local_dynamic_entry *e;
4452 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4453 {
4454 asection *s;
4455
4456 sym.st_size = e->isym.st_size;
4457 sym.st_other = e->isym.st_other;
4458
4459 /* Copy the internal symbol as is.
4460 Note that we saved a word of storage and overwrote
4461 the original st_name with the dynstr_index. */
4462 sym = e->isym;
4463
4464 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4465 {
4466 s = bfd_section_from_elf_index (e->input_bfd,
4467 e->isym.st_shndx);
4468
4469 sym.st_shndx =
4470 elf_section_data (s->output_section)->this_idx;
4471 sym.st_value = (s->output_section->vma
4472 + s->output_offset
4473 + e->isym.st_value);
4474 }
4475
4476 if (last_local < e->dynindx)
4477 last_local = e->dynindx;
4478
4479 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4480 }
4481 }
4482
4483 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4484 last_local + 1;
4485 }
4486
4487 /* We get the global symbols from the hash table. */
4488 eoinfo.failed = false;
4489 eoinfo.localsyms = false;
4490 eoinfo.finfo = &finfo;
4491 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4492 (PTR) &eoinfo);
4493 if (eoinfo.failed)
4494 return false;
4495
4496 /* If backend needs to output some symbols not present in the hash
4497 table, do it now. */
4498 if (bed->elf_backend_output_arch_syms)
4499 {
4500 if (! (*bed->elf_backend_output_arch_syms)
4501 (abfd, info, (PTR) &finfo,
4502 (boolean (*) PARAMS ((PTR, const char *,
4503 Elf_Internal_Sym *, asection *)))
4504 elf_link_output_sym))
4505 return false;
4506 }
4507
4508 /* Flush all symbols to the file. */
4509 if (! elf_link_flush_output_syms (&finfo))
4510 return false;
4511
4512 /* Now we know the size of the symtab section. */
4513 off += symtab_hdr->sh_size;
4514
4515 /* Finish up and write out the symbol string table (.strtab)
4516 section. */
4517 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4518 /* sh_name was set in prep_headers. */
4519 symstrtab_hdr->sh_type = SHT_STRTAB;
4520 symstrtab_hdr->sh_flags = 0;
4521 symstrtab_hdr->sh_addr = 0;
4522 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4523 symstrtab_hdr->sh_entsize = 0;
4524 symstrtab_hdr->sh_link = 0;
4525 symstrtab_hdr->sh_info = 0;
4526 /* sh_offset is set just below. */
4527 symstrtab_hdr->sh_addralign = 1;
4528
4529 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4530 elf_tdata (abfd)->next_file_pos = off;
4531
4532 if (bfd_get_symcount (abfd) > 0)
4533 {
4534 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4535 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4536 return false;
4537 }
4538
4539 /* Adjust the relocs to have the correct symbol indices. */
4540 for (o = abfd->sections; o != NULL; o = o->next)
4541 {
4542 if ((o->flags & SEC_RELOC) == 0)
4543 continue;
4544
4545 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4546 elf_section_data (o)->rel_count,
4547 elf_section_data (o)->rel_hashes);
4548 if (elf_section_data (o)->rel_hdr2 != NULL)
4549 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4550 elf_section_data (o)->rel_count2,
4551 (elf_section_data (o)->rel_hashes
4552 + elf_section_data (o)->rel_count));
4553
4554 /* Set the reloc_count field to 0 to prevent write_relocs from
4555 trying to swap the relocs out itself. */
4556 o->reloc_count = 0;
4557 }
4558
4559 /* If we are linking against a dynamic object, or generating a
4560 shared library, finish up the dynamic linking information. */
4561 if (dynamic)
4562 {
4563 Elf_External_Dyn *dyncon, *dynconend;
4564
4565 /* Fix up .dynamic entries. */
4566 o = bfd_get_section_by_name (dynobj, ".dynamic");
4567 BFD_ASSERT (o != NULL);
4568
4569 dyncon = (Elf_External_Dyn *) o->contents;
4570 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4571 for (; dyncon < dynconend; dyncon++)
4572 {
4573 Elf_Internal_Dyn dyn;
4574 const char *name;
4575 unsigned int type;
4576
4577 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4578
4579 switch (dyn.d_tag)
4580 {
4581 default:
4582 break;
4583 case DT_INIT:
4584 name = info->init_function;
4585 goto get_sym;
4586 case DT_FINI:
4587 name = info->fini_function;
4588 get_sym:
4589 {
4590 struct elf_link_hash_entry *h;
4591
4592 h = elf_link_hash_lookup (elf_hash_table (info), name,
4593 false, false, true);
4594 if (h != NULL
4595 && (h->root.type == bfd_link_hash_defined
4596 || h->root.type == bfd_link_hash_defweak))
4597 {
4598 dyn.d_un.d_val = h->root.u.def.value;
4599 o = h->root.u.def.section;
4600 if (o->output_section != NULL)
4601 dyn.d_un.d_val += (o->output_section->vma
4602 + o->output_offset);
4603 else
4604 {
4605 /* The symbol is imported from another shared
4606 library and does not apply to this one. */
4607 dyn.d_un.d_val = 0;
4608 }
4609
4610 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4611 }
4612 }
4613 break;
4614
4615 case DT_HASH:
4616 name = ".hash";
4617 goto get_vma;
4618 case DT_STRTAB:
4619 name = ".dynstr";
4620 goto get_vma;
4621 case DT_SYMTAB:
4622 name = ".dynsym";
4623 goto get_vma;
4624 case DT_VERDEF:
4625 name = ".gnu.version_d";
4626 goto get_vma;
4627 case DT_VERNEED:
4628 name = ".gnu.version_r";
4629 goto get_vma;
4630 case DT_VERSYM:
4631 name = ".gnu.version";
4632 get_vma:
4633 o = bfd_get_section_by_name (abfd, name);
4634 BFD_ASSERT (o != NULL);
4635 dyn.d_un.d_ptr = o->vma;
4636 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4637 break;
4638
4639 case DT_REL:
4640 case DT_RELA:
4641 case DT_RELSZ:
4642 case DT_RELASZ:
4643 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4644 type = SHT_REL;
4645 else
4646 type = SHT_RELA;
4647 dyn.d_un.d_val = 0;
4648 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4649 {
4650 Elf_Internal_Shdr *hdr;
4651
4652 hdr = elf_elfsections (abfd)[i];
4653 if (hdr->sh_type == type
4654 && (hdr->sh_flags & SHF_ALLOC) != 0)
4655 {
4656 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4657 dyn.d_un.d_val += hdr->sh_size;
4658 else
4659 {
4660 if (dyn.d_un.d_val == 0
4661 || hdr->sh_addr < dyn.d_un.d_val)
4662 dyn.d_un.d_val = hdr->sh_addr;
4663 }
4664 }
4665 }
4666 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4667 break;
4668 }
4669 }
4670 }
4671
4672 /* If we have created any dynamic sections, then output them. */
4673 if (dynobj != NULL)
4674 {
4675 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4676 goto error_return;
4677
4678 for (o = dynobj->sections; o != NULL; o = o->next)
4679 {
4680 if ((o->flags & SEC_HAS_CONTENTS) == 0
4681 || o->_raw_size == 0)
4682 continue;
4683 if ((o->flags & SEC_LINKER_CREATED) == 0)
4684 {
4685 /* At this point, we are only interested in sections
4686 created by elf_link_create_dynamic_sections. */
4687 continue;
4688 }
4689 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4690 != SHT_STRTAB)
4691 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4692 {
4693 if (! bfd_set_section_contents (abfd, o->output_section,
4694 o->contents, o->output_offset,
4695 o->_raw_size))
4696 goto error_return;
4697 }
4698 else
4699 {
4700 file_ptr off;
4701
4702 /* The contents of the .dynstr section are actually in a
4703 stringtab. */
4704 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4705 if (bfd_seek (abfd, off, SEEK_SET) != 0
4706 || ! _bfd_stringtab_emit (abfd,
4707 elf_hash_table (info)->dynstr))
4708 goto error_return;
4709 }
4710 }
4711 }
4712
4713 /* If we have optimized stabs strings, output them. */
4714 if (elf_hash_table (info)->stab_info != NULL)
4715 {
4716 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4717 goto error_return;
4718 }
4719
4720 if (finfo.symstrtab != NULL)
4721 _bfd_stringtab_free (finfo.symstrtab);
4722 if (finfo.contents != NULL)
4723 free (finfo.contents);
4724 if (finfo.external_relocs != NULL)
4725 free (finfo.external_relocs);
4726 if (finfo.internal_relocs != NULL)
4727 free (finfo.internal_relocs);
4728 if (finfo.external_syms != NULL)
4729 free (finfo.external_syms);
4730 if (finfo.internal_syms != NULL)
4731 free (finfo.internal_syms);
4732 if (finfo.indices != NULL)
4733 free (finfo.indices);
4734 if (finfo.sections != NULL)
4735 free (finfo.sections);
4736 if (finfo.symbuf != NULL)
4737 free (finfo.symbuf);
4738 for (o = abfd->sections; o != NULL; o = o->next)
4739 {
4740 if ((o->flags & SEC_RELOC) != 0
4741 && elf_section_data (o)->rel_hashes != NULL)
4742 free (elf_section_data (o)->rel_hashes);
4743 }
4744
4745 elf_tdata (abfd)->linker = true;
4746
4747 return true;
4748
4749 error_return:
4750 if (finfo.symstrtab != NULL)
4751 _bfd_stringtab_free (finfo.symstrtab);
4752 if (finfo.contents != NULL)
4753 free (finfo.contents);
4754 if (finfo.external_relocs != NULL)
4755 free (finfo.external_relocs);
4756 if (finfo.internal_relocs != NULL)
4757 free (finfo.internal_relocs);
4758 if (finfo.external_syms != NULL)
4759 free (finfo.external_syms);
4760 if (finfo.internal_syms != NULL)
4761 free (finfo.internal_syms);
4762 if (finfo.indices != NULL)
4763 free (finfo.indices);
4764 if (finfo.sections != NULL)
4765 free (finfo.sections);
4766 if (finfo.symbuf != NULL)
4767 free (finfo.symbuf);
4768 for (o = abfd->sections; o != NULL; o = o->next)
4769 {
4770 if ((o->flags & SEC_RELOC) != 0
4771 && elf_section_data (o)->rel_hashes != NULL)
4772 free (elf_section_data (o)->rel_hashes);
4773 }
4774
4775 return false;
4776 }
4777
4778 /* Add a symbol to the output symbol table. */
4779
4780 static boolean
4781 elf_link_output_sym (finfo, name, elfsym, input_sec)
4782 struct elf_final_link_info *finfo;
4783 const char *name;
4784 Elf_Internal_Sym *elfsym;
4785 asection *input_sec;
4786 {
4787 boolean (*output_symbol_hook) PARAMS ((bfd *,
4788 struct bfd_link_info *info,
4789 const char *,
4790 Elf_Internal_Sym *,
4791 asection *));
4792
4793 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4794 elf_backend_link_output_symbol_hook;
4795 if (output_symbol_hook != NULL)
4796 {
4797 if (! ((*output_symbol_hook)
4798 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4799 return false;
4800 }
4801
4802 if (name == (const char *) NULL || *name == '\0')
4803 elfsym->st_name = 0;
4804 else if (input_sec->flags & SEC_EXCLUDE)
4805 elfsym->st_name = 0;
4806 else
4807 {
4808 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4809 name, true,
4810 false);
4811 if (elfsym->st_name == (unsigned long) -1)
4812 return false;
4813 }
4814
4815 if (finfo->symbuf_count >= finfo->symbuf_size)
4816 {
4817 if (! elf_link_flush_output_syms (finfo))
4818 return false;
4819 }
4820
4821 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4822 (PTR) (finfo->symbuf + finfo->symbuf_count));
4823 ++finfo->symbuf_count;
4824
4825 ++ bfd_get_symcount (finfo->output_bfd);
4826
4827 return true;
4828 }
4829
4830 /* Flush the output symbols to the file. */
4831
4832 static boolean
4833 elf_link_flush_output_syms (finfo)
4834 struct elf_final_link_info *finfo;
4835 {
4836 if (finfo->symbuf_count > 0)
4837 {
4838 Elf_Internal_Shdr *symtab;
4839
4840 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4841
4842 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4843 SEEK_SET) != 0
4844 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4845 sizeof (Elf_External_Sym), finfo->output_bfd)
4846 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4847 return false;
4848
4849 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4850
4851 finfo->symbuf_count = 0;
4852 }
4853
4854 return true;
4855 }
4856
4857 /* Add an external symbol to the symbol table. This is called from
4858 the hash table traversal routine. When generating a shared object,
4859 we go through the symbol table twice. The first time we output
4860 anything that might have been forced to local scope in a version
4861 script. The second time we output the symbols that are still
4862 global symbols. */
4863
4864 static boolean
4865 elf_link_output_extsym (h, data)
4866 struct elf_link_hash_entry *h;
4867 PTR data;
4868 {
4869 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4870 struct elf_final_link_info *finfo = eoinfo->finfo;
4871 boolean strip;
4872 Elf_Internal_Sym sym;
4873 asection *input_sec;
4874
4875 /* Decide whether to output this symbol in this pass. */
4876 if (eoinfo->localsyms)
4877 {
4878 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4879 return true;
4880 }
4881 else
4882 {
4883 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4884 return true;
4885 }
4886
4887 /* If we are not creating a shared library, and this symbol is
4888 referenced by a shared library but is not defined anywhere, then
4889 warn that it is undefined. If we do not do this, the runtime
4890 linker will complain that the symbol is undefined when the
4891 program is run. We don't have to worry about symbols that are
4892 referenced by regular files, because we will already have issued
4893 warnings for them. */
4894 if (! finfo->info->relocateable
4895 && ! (finfo->info->shared
4896 && !finfo->info->no_undefined)
4897 && h->root.type == bfd_link_hash_undefined
4898 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4899 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4900 {
4901 if (! ((*finfo->info->callbacks->undefined_symbol)
4902 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4903 (asection *) NULL, 0)))
4904 {
4905 eoinfo->failed = true;
4906 return false;
4907 }
4908 }
4909
4910 /* We don't want to output symbols that have never been mentioned by
4911 a regular file, or that we have been told to strip. However, if
4912 h->indx is set to -2, the symbol is used by a reloc and we must
4913 output it. */
4914 if (h->indx == -2)
4915 strip = false;
4916 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4917 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4918 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4919 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4920 strip = true;
4921 else if (finfo->info->strip == strip_all
4922 || (finfo->info->strip == strip_some
4923 && bfd_hash_lookup (finfo->info->keep_hash,
4924 h->root.root.string,
4925 false, false) == NULL))
4926 strip = true;
4927 else
4928 strip = false;
4929
4930 /* If we're stripping it, and it's not a dynamic symbol, there's
4931 nothing else to do. */
4932 if (strip && h->dynindx == -1)
4933 return true;
4934
4935 sym.st_value = 0;
4936 sym.st_size = h->size;
4937 sym.st_other = h->other;
4938 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4939 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4940 else if (h->root.type == bfd_link_hash_undefweak
4941 || h->root.type == bfd_link_hash_defweak)
4942 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4943 else
4944 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4945
4946 switch (h->root.type)
4947 {
4948 default:
4949 case bfd_link_hash_new:
4950 abort ();
4951 return false;
4952
4953 case bfd_link_hash_undefined:
4954 input_sec = bfd_und_section_ptr;
4955 sym.st_shndx = SHN_UNDEF;
4956 break;
4957
4958 case bfd_link_hash_undefweak:
4959 input_sec = bfd_und_section_ptr;
4960 sym.st_shndx = SHN_UNDEF;
4961 break;
4962
4963 case bfd_link_hash_defined:
4964 case bfd_link_hash_defweak:
4965 {
4966 input_sec = h->root.u.def.section;
4967 if (input_sec->output_section != NULL)
4968 {
4969 sym.st_shndx =
4970 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4971 input_sec->output_section);
4972 if (sym.st_shndx == (unsigned short) -1)
4973 {
4974 (*_bfd_error_handler)
4975 (_("%s: could not find output section %s for input section %s"),
4976 bfd_get_filename (finfo->output_bfd),
4977 input_sec->output_section->name,
4978 input_sec->name);
4979 eoinfo->failed = true;
4980 return false;
4981 }
4982
4983 /* ELF symbols in relocateable files are section relative,
4984 but in nonrelocateable files they are virtual
4985 addresses. */
4986 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4987 if (! finfo->info->relocateable)
4988 sym.st_value += input_sec->output_section->vma;
4989 }
4990 else
4991 {
4992 BFD_ASSERT (input_sec->owner == NULL
4993 || (input_sec->owner->flags & DYNAMIC) != 0);
4994 sym.st_shndx = SHN_UNDEF;
4995 input_sec = bfd_und_section_ptr;
4996 }
4997 }
4998 break;
4999
5000 case bfd_link_hash_common:
5001 input_sec = h->root.u.c.p->section;
5002 sym.st_shndx = SHN_COMMON;
5003 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5004 break;
5005
5006 case bfd_link_hash_indirect:
5007 /* These symbols are created by symbol versioning. They point
5008 to the decorated version of the name. For example, if the
5009 symbol foo@@GNU_1.2 is the default, which should be used when
5010 foo is used with no version, then we add an indirect symbol
5011 foo which points to foo@@GNU_1.2. We ignore these symbols,
5012 since the indirected symbol is already in the hash table. If
5013 the indirect symbol is non-ELF, fall through and output it. */
5014 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5015 return true;
5016
5017 /* Fall through. */
5018 case bfd_link_hash_warning:
5019 /* We can't represent these symbols in ELF, although a warning
5020 symbol may have come from a .gnu.warning.SYMBOL section. We
5021 just put the target symbol in the hash table. If the target
5022 symbol does not really exist, don't do anything. */
5023 if (h->root.u.i.link->type == bfd_link_hash_new)
5024 return true;
5025 return (elf_link_output_extsym
5026 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5027 }
5028
5029 /* Give the processor backend a chance to tweak the symbol value,
5030 and also to finish up anything that needs to be done for this
5031 symbol. */
5032 if ((h->dynindx != -1
5033 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5034 && elf_hash_table (finfo->info)->dynamic_sections_created)
5035 {
5036 struct elf_backend_data *bed;
5037
5038 bed = get_elf_backend_data (finfo->output_bfd);
5039 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5040 (finfo->output_bfd, finfo->info, h, &sym)))
5041 {
5042 eoinfo->failed = true;
5043 return false;
5044 }
5045 }
5046
5047 /* If we are marking the symbol as undefined, and there are no
5048 non-weak references to this symbol from a regular object, then
5049 mark the symbol as weak undefined; if there are non-weak
5050 references, mark the symbol as strong. We can't do this earlier,
5051 because it might not be marked as undefined until the
5052 finish_dynamic_symbol routine gets through with it. */
5053 if (sym.st_shndx == SHN_UNDEF
5054 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5055 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5056 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5057 {
5058 int bindtype;
5059
5060 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5061 bindtype = STB_GLOBAL;
5062 else
5063 bindtype = STB_WEAK;
5064 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5065 }
5066
5067 /* If this symbol should be put in the .dynsym section, then put it
5068 there now. We have already know the symbol index. We also fill
5069 in the entry in the .hash section. */
5070 if (h->dynindx != -1
5071 && elf_hash_table (finfo->info)->dynamic_sections_created)
5072 {
5073 size_t bucketcount;
5074 size_t bucket;
5075 size_t hash_entry_size;
5076 bfd_byte *bucketpos;
5077 bfd_vma chain;
5078
5079 sym.st_name = h->dynstr_index;
5080
5081 elf_swap_symbol_out (finfo->output_bfd, &sym,
5082 (PTR) (((Elf_External_Sym *)
5083 finfo->dynsym_sec->contents)
5084 + h->dynindx));
5085
5086 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5087 bucket = h->elf_hash_value % bucketcount;
5088 hash_entry_size
5089 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5090 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5091 + (bucket + 2) * hash_entry_size);
5092 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5093 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5094 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5095 ((bfd_byte *) finfo->hash_sec->contents
5096 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5097
5098 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5099 {
5100 Elf_Internal_Versym iversym;
5101
5102 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5103 {
5104 if (h->verinfo.verdef == NULL)
5105 iversym.vs_vers = 0;
5106 else
5107 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5108 }
5109 else
5110 {
5111 if (h->verinfo.vertree == NULL)
5112 iversym.vs_vers = 1;
5113 else
5114 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5115 }
5116
5117 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5118 iversym.vs_vers |= VERSYM_HIDDEN;
5119
5120 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5121 (((Elf_External_Versym *)
5122 finfo->symver_sec->contents)
5123 + h->dynindx));
5124 }
5125 }
5126
5127 /* If we're stripping it, then it was just a dynamic symbol, and
5128 there's nothing else to do. */
5129 if (strip)
5130 return true;
5131
5132 h->indx = bfd_get_symcount (finfo->output_bfd);
5133
5134 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5135 {
5136 eoinfo->failed = true;
5137 return false;
5138 }
5139
5140 return true;
5141 }
5142
5143 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5144 originated from the section given by INPUT_REL_HDR) to the
5145 OUTPUT_BFD. */
5146
5147 static void
5148 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5149 internal_relocs)
5150 bfd *output_bfd;
5151 asection *input_section;
5152 Elf_Internal_Shdr *input_rel_hdr;
5153 Elf_Internal_Rela *internal_relocs;
5154 {
5155 Elf_Internal_Rela *irela;
5156 Elf_Internal_Rela *irelaend;
5157 Elf_Internal_Shdr *output_rel_hdr;
5158 asection *output_section;
5159 unsigned int *rel_countp = NULL;
5160
5161 output_section = input_section->output_section;
5162 output_rel_hdr = NULL;
5163
5164 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5165 == input_rel_hdr->sh_entsize)
5166 {
5167 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5168 rel_countp = &elf_section_data (output_section)->rel_count;
5169 }
5170 else if (elf_section_data (output_section)->rel_hdr2
5171 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5172 == input_rel_hdr->sh_entsize))
5173 {
5174 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5175 rel_countp = &elf_section_data (output_section)->rel_count2;
5176 }
5177
5178 BFD_ASSERT (output_rel_hdr != NULL);
5179
5180 irela = internal_relocs;
5181 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5182 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5183 {
5184 Elf_External_Rel *erel;
5185
5186 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5187 for (; irela < irelaend; irela++, erel++)
5188 {
5189 Elf_Internal_Rel irel;
5190
5191 irel.r_offset = irela->r_offset;
5192 irel.r_info = irela->r_info;
5193 BFD_ASSERT (irela->r_addend == 0);
5194 elf_swap_reloc_out (output_bfd, &irel, erel);
5195 }
5196 }
5197 else
5198 {
5199 Elf_External_Rela *erela;
5200
5201 BFD_ASSERT (input_rel_hdr->sh_entsize
5202 == sizeof (Elf_External_Rela));
5203 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5204 for (; irela < irelaend; irela++, erela++)
5205 elf_swap_reloca_out (output_bfd, irela, erela);
5206 }
5207
5208 /* Bump the counter, so that we know where to add the next set of
5209 relocations. */
5210 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5211 }
5212
5213 /* Link an input file into the linker output file. This function
5214 handles all the sections and relocations of the input file at once.
5215 This is so that we only have to read the local symbols once, and
5216 don't have to keep them in memory. */
5217
5218 static boolean
5219 elf_link_input_bfd (finfo, input_bfd)
5220 struct elf_final_link_info *finfo;
5221 bfd *input_bfd;
5222 {
5223 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5224 bfd *, asection *, bfd_byte *,
5225 Elf_Internal_Rela *,
5226 Elf_Internal_Sym *, asection **));
5227 bfd *output_bfd;
5228 Elf_Internal_Shdr *symtab_hdr;
5229 size_t locsymcount;
5230 size_t extsymoff;
5231 Elf_External_Sym *external_syms;
5232 Elf_External_Sym *esym;
5233 Elf_External_Sym *esymend;
5234 Elf_Internal_Sym *isym;
5235 long *pindex;
5236 asection **ppsection;
5237 asection *o;
5238 struct elf_backend_data *bed;
5239
5240 output_bfd = finfo->output_bfd;
5241 bed = get_elf_backend_data (output_bfd);
5242 relocate_section = bed->elf_backend_relocate_section;
5243
5244 /* If this is a dynamic object, we don't want to do anything here:
5245 we don't want the local symbols, and we don't want the section
5246 contents. */
5247 if ((input_bfd->flags & DYNAMIC) != 0)
5248 return true;
5249
5250 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5251 if (elf_bad_symtab (input_bfd))
5252 {
5253 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5254 extsymoff = 0;
5255 }
5256 else
5257 {
5258 locsymcount = symtab_hdr->sh_info;
5259 extsymoff = symtab_hdr->sh_info;
5260 }
5261
5262 /* Read the local symbols. */
5263 if (symtab_hdr->contents != NULL)
5264 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5265 else if (locsymcount == 0)
5266 external_syms = NULL;
5267 else
5268 {
5269 external_syms = finfo->external_syms;
5270 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5271 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5272 locsymcount, input_bfd)
5273 != locsymcount * sizeof (Elf_External_Sym)))
5274 return false;
5275 }
5276
5277 /* Swap in the local symbols and write out the ones which we know
5278 are going into the output file. */
5279 esym = external_syms;
5280 esymend = esym + locsymcount;
5281 isym = finfo->internal_syms;
5282 pindex = finfo->indices;
5283 ppsection = finfo->sections;
5284 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5285 {
5286 asection *isec;
5287 const char *name;
5288 Elf_Internal_Sym osym;
5289
5290 elf_swap_symbol_in (input_bfd, esym, isym);
5291 *pindex = -1;
5292
5293 if (elf_bad_symtab (input_bfd))
5294 {
5295 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5296 {
5297 *ppsection = NULL;
5298 continue;
5299 }
5300 }
5301
5302 if (isym->st_shndx == SHN_UNDEF)
5303 isec = bfd_und_section_ptr;
5304 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5305 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5306 else if (isym->st_shndx == SHN_ABS)
5307 isec = bfd_abs_section_ptr;
5308 else if (isym->st_shndx == SHN_COMMON)
5309 isec = bfd_com_section_ptr;
5310 else
5311 {
5312 /* Who knows? */
5313 isec = NULL;
5314 }
5315
5316 *ppsection = isec;
5317
5318 /* Don't output the first, undefined, symbol. */
5319 if (esym == external_syms)
5320 continue;
5321
5322 /* If we are stripping all symbols, we don't want to output this
5323 one. */
5324 if (finfo->info->strip == strip_all)
5325 continue;
5326
5327 /* We never output section symbols. Instead, we use the section
5328 symbol of the corresponding section in the output file. */
5329 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5330 continue;
5331
5332 /* If we are discarding all local symbols, we don't want to
5333 output this one. If we are generating a relocateable output
5334 file, then some of the local symbols may be required by
5335 relocs; we output them below as we discover that they are
5336 needed. */
5337 if (finfo->info->discard == discard_all)
5338 continue;
5339
5340 /* If this symbol is defined in a section which we are
5341 discarding, we don't need to keep it, but note that
5342 linker_mark is only reliable for sections that have contents.
5343 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5344 as well as linker_mark. */
5345 if (isym->st_shndx > 0
5346 && isym->st_shndx < SHN_LORESERVE
5347 && isec != NULL
5348 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5349 || (! finfo->info->relocateable
5350 && (isec->flags & SEC_EXCLUDE) != 0)))
5351 continue;
5352
5353 /* Get the name of the symbol. */
5354 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5355 isym->st_name);
5356 if (name == NULL)
5357 return false;
5358
5359 /* See if we are discarding symbols with this name. */
5360 if ((finfo->info->strip == strip_some
5361 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5362 == NULL))
5363 || (finfo->info->discard == discard_l
5364 && bfd_is_local_label_name (input_bfd, name)))
5365 continue;
5366
5367 /* If we get here, we are going to output this symbol. */
5368
5369 osym = *isym;
5370
5371 /* Adjust the section index for the output file. */
5372 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5373 isec->output_section);
5374 if (osym.st_shndx == (unsigned short) -1)
5375 return false;
5376
5377 *pindex = bfd_get_symcount (output_bfd);
5378
5379 /* ELF symbols in relocateable files are section relative, but
5380 in executable files they are virtual addresses. Note that
5381 this code assumes that all ELF sections have an associated
5382 BFD section with a reasonable value for output_offset; below
5383 we assume that they also have a reasonable value for
5384 output_section. Any special sections must be set up to meet
5385 these requirements. */
5386 osym.st_value += isec->output_offset;
5387 if (! finfo->info->relocateable)
5388 osym.st_value += isec->output_section->vma;
5389
5390 if (! elf_link_output_sym (finfo, name, &osym, isec))
5391 return false;
5392 }
5393
5394 /* Relocate the contents of each section. */
5395 for (o = input_bfd->sections; o != NULL; o = o->next)
5396 {
5397 bfd_byte *contents;
5398
5399 if (! o->linker_mark)
5400 {
5401 /* This section was omitted from the link. */
5402 continue;
5403 }
5404
5405 if ((o->flags & SEC_HAS_CONTENTS) == 0
5406 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5407 continue;
5408
5409 if ((o->flags & SEC_LINKER_CREATED) != 0)
5410 {
5411 /* Section was created by elf_link_create_dynamic_sections
5412 or somesuch. */
5413 continue;
5414 }
5415
5416 /* Get the contents of the section. They have been cached by a
5417 relaxation routine. Note that o is a section in an input
5418 file, so the contents field will not have been set by any of
5419 the routines which work on output files. */
5420 if (elf_section_data (o)->this_hdr.contents != NULL)
5421 contents = elf_section_data (o)->this_hdr.contents;
5422 else
5423 {
5424 contents = finfo->contents;
5425 if (! bfd_get_section_contents (input_bfd, o, contents,
5426 (file_ptr) 0, o->_raw_size))
5427 return false;
5428 }
5429
5430 if ((o->flags & SEC_RELOC) != 0)
5431 {
5432 Elf_Internal_Rela *internal_relocs;
5433
5434 /* Get the swapped relocs. */
5435 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5436 (input_bfd, o, finfo->external_relocs,
5437 finfo->internal_relocs, false));
5438 if (internal_relocs == NULL
5439 && o->reloc_count > 0)
5440 return false;
5441
5442 /* Relocate the section by invoking a back end routine.
5443
5444 The back end routine is responsible for adjusting the
5445 section contents as necessary, and (if using Rela relocs
5446 and generating a relocateable output file) adjusting the
5447 reloc addend as necessary.
5448
5449 The back end routine does not have to worry about setting
5450 the reloc address or the reloc symbol index.
5451
5452 The back end routine is given a pointer to the swapped in
5453 internal symbols, and can access the hash table entries
5454 for the external symbols via elf_sym_hashes (input_bfd).
5455
5456 When generating relocateable output, the back end routine
5457 must handle STB_LOCAL/STT_SECTION symbols specially. The
5458 output symbol is going to be a section symbol
5459 corresponding to the output section, which will require
5460 the addend to be adjusted. */
5461
5462 if (! (*relocate_section) (output_bfd, finfo->info,
5463 input_bfd, o, contents,
5464 internal_relocs,
5465 finfo->internal_syms,
5466 finfo->sections))
5467 return false;
5468
5469 if (finfo->info->relocateable)
5470 {
5471 Elf_Internal_Rela *irela;
5472 Elf_Internal_Rela *irelaend;
5473 struct elf_link_hash_entry **rel_hash;
5474 Elf_Internal_Shdr *input_rel_hdr;
5475
5476 /* Adjust the reloc addresses and symbol indices. */
5477
5478 irela = internal_relocs;
5479 irelaend =
5480 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5481 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5482 + elf_section_data (o->output_section)->rel_count
5483 + elf_section_data (o->output_section)->rel_count2);
5484 for (; irela < irelaend; irela++, rel_hash++)
5485 {
5486 unsigned long r_symndx;
5487 Elf_Internal_Sym *isym;
5488 asection *sec;
5489
5490 irela->r_offset += o->output_offset;
5491
5492 r_symndx = ELF_R_SYM (irela->r_info);
5493
5494 if (r_symndx == 0)
5495 continue;
5496
5497 if (r_symndx >= locsymcount
5498 || (elf_bad_symtab (input_bfd)
5499 && finfo->sections[r_symndx] == NULL))
5500 {
5501 struct elf_link_hash_entry *rh;
5502 long indx;
5503
5504 /* This is a reloc against a global symbol. We
5505 have not yet output all the local symbols, so
5506 we do not know the symbol index of any global
5507 symbol. We set the rel_hash entry for this
5508 reloc to point to the global hash table entry
5509 for this symbol. The symbol index is then
5510 set at the end of elf_bfd_final_link. */
5511 indx = r_symndx - extsymoff;
5512 rh = elf_sym_hashes (input_bfd)[indx];
5513 while (rh->root.type == bfd_link_hash_indirect
5514 || rh->root.type == bfd_link_hash_warning)
5515 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5516
5517 /* Setting the index to -2 tells
5518 elf_link_output_extsym that this symbol is
5519 used by a reloc. */
5520 BFD_ASSERT (rh->indx < 0);
5521 rh->indx = -2;
5522
5523 *rel_hash = rh;
5524
5525 continue;
5526 }
5527
5528 /* This is a reloc against a local symbol. */
5529
5530 *rel_hash = NULL;
5531 isym = finfo->internal_syms + r_symndx;
5532 sec = finfo->sections[r_symndx];
5533 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5534 {
5535 /* I suppose the backend ought to fill in the
5536 section of any STT_SECTION symbol against a
5537 processor specific section. If we have
5538 discarded a section, the output_section will
5539 be the absolute section. */
5540 if (sec != NULL
5541 && (bfd_is_abs_section (sec)
5542 || (sec->output_section != NULL
5543 && bfd_is_abs_section (sec->output_section))))
5544 r_symndx = 0;
5545 else if (sec == NULL || sec->owner == NULL)
5546 {
5547 bfd_set_error (bfd_error_bad_value);
5548 return false;
5549 }
5550 else
5551 {
5552 r_symndx = sec->output_section->target_index;
5553 BFD_ASSERT (r_symndx != 0);
5554 }
5555 }
5556 else
5557 {
5558 if (finfo->indices[r_symndx] == -1)
5559 {
5560 unsigned long link;
5561 const char *name;
5562 asection *osec;
5563
5564 if (finfo->info->strip == strip_all)
5565 {
5566 /* You can't do ld -r -s. */
5567 bfd_set_error (bfd_error_invalid_operation);
5568 return false;
5569 }
5570
5571 /* This symbol was skipped earlier, but
5572 since it is needed by a reloc, we
5573 must output it now. */
5574 link = symtab_hdr->sh_link;
5575 name = bfd_elf_string_from_elf_section (input_bfd,
5576 link,
5577 isym->st_name);
5578 if (name == NULL)
5579 return false;
5580
5581 osec = sec->output_section;
5582 isym->st_shndx =
5583 _bfd_elf_section_from_bfd_section (output_bfd,
5584 osec);
5585 if (isym->st_shndx == (unsigned short) -1)
5586 return false;
5587
5588 isym->st_value += sec->output_offset;
5589 if (! finfo->info->relocateable)
5590 isym->st_value += osec->vma;
5591
5592 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5593
5594 if (! elf_link_output_sym (finfo, name, isym, sec))
5595 return false;
5596 }
5597
5598 r_symndx = finfo->indices[r_symndx];
5599 }
5600
5601 irela->r_info = ELF_R_INFO (r_symndx,
5602 ELF_R_TYPE (irela->r_info));
5603 }
5604
5605 /* Swap out the relocs. */
5606 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5607 elf_link_output_relocs (output_bfd, o,
5608 input_rel_hdr,
5609 internal_relocs);
5610 internal_relocs
5611 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5612 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5613 if (input_rel_hdr)
5614 elf_link_output_relocs (output_bfd, o,
5615 input_rel_hdr,
5616 internal_relocs);
5617 }
5618 }
5619
5620 /* Write out the modified section contents. */
5621 if (elf_section_data (o)->stab_info == NULL)
5622 {
5623 if (! (o->flags & SEC_EXCLUDE) &&
5624 ! bfd_set_section_contents (output_bfd, o->output_section,
5625 contents, o->output_offset,
5626 (o->_cooked_size != 0
5627 ? o->_cooked_size
5628 : o->_raw_size)))
5629 return false;
5630 }
5631 else
5632 {
5633 if (! (_bfd_write_section_stabs
5634 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5635 o, &elf_section_data (o)->stab_info, contents)))
5636 return false;
5637 }
5638 }
5639
5640 return true;
5641 }
5642
5643 /* Generate a reloc when linking an ELF file. This is a reloc
5644 requested by the linker, and does come from any input file. This
5645 is used to build constructor and destructor tables when linking
5646 with -Ur. */
5647
5648 static boolean
5649 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5650 bfd *output_bfd;
5651 struct bfd_link_info *info;
5652 asection *output_section;
5653 struct bfd_link_order *link_order;
5654 {
5655 reloc_howto_type *howto;
5656 long indx;
5657 bfd_vma offset;
5658 bfd_vma addend;
5659 struct elf_link_hash_entry **rel_hash_ptr;
5660 Elf_Internal_Shdr *rel_hdr;
5661
5662 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5663 if (howto == NULL)
5664 {
5665 bfd_set_error (bfd_error_bad_value);
5666 return false;
5667 }
5668
5669 addend = link_order->u.reloc.p->addend;
5670
5671 /* Figure out the symbol index. */
5672 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5673 + elf_section_data (output_section)->rel_count
5674 + elf_section_data (output_section)->rel_count2);
5675 if (link_order->type == bfd_section_reloc_link_order)
5676 {
5677 indx = link_order->u.reloc.p->u.section->target_index;
5678 BFD_ASSERT (indx != 0);
5679 *rel_hash_ptr = NULL;
5680 }
5681 else
5682 {
5683 struct elf_link_hash_entry *h;
5684
5685 /* Treat a reloc against a defined symbol as though it were
5686 actually against the section. */
5687 h = ((struct elf_link_hash_entry *)
5688 bfd_wrapped_link_hash_lookup (output_bfd, info,
5689 link_order->u.reloc.p->u.name,
5690 false, false, true));
5691 if (h != NULL
5692 && (h->root.type == bfd_link_hash_defined
5693 || h->root.type == bfd_link_hash_defweak))
5694 {
5695 asection *section;
5696
5697 section = h->root.u.def.section;
5698 indx = section->output_section->target_index;
5699 *rel_hash_ptr = NULL;
5700 /* It seems that we ought to add the symbol value to the
5701 addend here, but in practice it has already been added
5702 because it was passed to constructor_callback. */
5703 addend += section->output_section->vma + section->output_offset;
5704 }
5705 else if (h != NULL)
5706 {
5707 /* Setting the index to -2 tells elf_link_output_extsym that
5708 this symbol is used by a reloc. */
5709 h->indx = -2;
5710 *rel_hash_ptr = h;
5711 indx = 0;
5712 }
5713 else
5714 {
5715 if (! ((*info->callbacks->unattached_reloc)
5716 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5717 (asection *) NULL, (bfd_vma) 0)))
5718 return false;
5719 indx = 0;
5720 }
5721 }
5722
5723 /* If this is an inplace reloc, we must write the addend into the
5724 object file. */
5725 if (howto->partial_inplace && addend != 0)
5726 {
5727 bfd_size_type size;
5728 bfd_reloc_status_type rstat;
5729 bfd_byte *buf;
5730 boolean ok;
5731
5732 size = bfd_get_reloc_size (howto);
5733 buf = (bfd_byte *) bfd_zmalloc (size);
5734 if (buf == (bfd_byte *) NULL)
5735 return false;
5736 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5737 switch (rstat)
5738 {
5739 case bfd_reloc_ok:
5740 break;
5741 default:
5742 case bfd_reloc_outofrange:
5743 abort ();
5744 case bfd_reloc_overflow:
5745 if (! ((*info->callbacks->reloc_overflow)
5746 (info,
5747 (link_order->type == bfd_section_reloc_link_order
5748 ? bfd_section_name (output_bfd,
5749 link_order->u.reloc.p->u.section)
5750 : link_order->u.reloc.p->u.name),
5751 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5752 (bfd_vma) 0)))
5753 {
5754 free (buf);
5755 return false;
5756 }
5757 break;
5758 }
5759 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5760 (file_ptr) link_order->offset, size);
5761 free (buf);
5762 if (! ok)
5763 return false;
5764 }
5765
5766 /* The address of a reloc is relative to the section in a
5767 relocateable file, and is a virtual address in an executable
5768 file. */
5769 offset = link_order->offset;
5770 if (! info->relocateable)
5771 offset += output_section->vma;
5772
5773 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5774
5775 if (rel_hdr->sh_type == SHT_REL)
5776 {
5777 Elf_Internal_Rel irel;
5778 Elf_External_Rel *erel;
5779
5780 irel.r_offset = offset;
5781 irel.r_info = ELF_R_INFO (indx, howto->type);
5782 erel = ((Elf_External_Rel *) rel_hdr->contents
5783 + elf_section_data (output_section)->rel_count);
5784 elf_swap_reloc_out (output_bfd, &irel, erel);
5785 }
5786 else
5787 {
5788 Elf_Internal_Rela irela;
5789 Elf_External_Rela *erela;
5790
5791 irela.r_offset = offset;
5792 irela.r_info = ELF_R_INFO (indx, howto->type);
5793 irela.r_addend = addend;
5794 erela = ((Elf_External_Rela *) rel_hdr->contents
5795 + elf_section_data (output_section)->rel_count);
5796 elf_swap_reloca_out (output_bfd, &irela, erela);
5797 }
5798
5799 ++elf_section_data (output_section)->rel_count;
5800
5801 return true;
5802 }
5803
5804 \f
5805 /* Allocate a pointer to live in a linker created section. */
5806
5807 boolean
5808 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5809 bfd *abfd;
5810 struct bfd_link_info *info;
5811 elf_linker_section_t *lsect;
5812 struct elf_link_hash_entry *h;
5813 const Elf_Internal_Rela *rel;
5814 {
5815 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5816 elf_linker_section_pointers_t *linker_section_ptr;
5817 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5818
5819 BFD_ASSERT (lsect != NULL);
5820
5821 /* Is this a global symbol? */
5822 if (h != NULL)
5823 {
5824 /* Has this symbol already been allocated, if so, our work is done */
5825 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5826 rel->r_addend,
5827 lsect->which))
5828 return true;
5829
5830 ptr_linker_section_ptr = &h->linker_section_pointer;
5831 /* Make sure this symbol is output as a dynamic symbol. */
5832 if (h->dynindx == -1)
5833 {
5834 if (! elf_link_record_dynamic_symbol (info, h))
5835 return false;
5836 }
5837
5838 if (lsect->rel_section)
5839 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5840 }
5841
5842 else /* Allocation of a pointer to a local symbol */
5843 {
5844 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5845
5846 /* Allocate a table to hold the local symbols if first time */
5847 if (!ptr)
5848 {
5849 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5850 register unsigned int i;
5851
5852 ptr = (elf_linker_section_pointers_t **)
5853 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5854
5855 if (!ptr)
5856 return false;
5857
5858 elf_local_ptr_offsets (abfd) = ptr;
5859 for (i = 0; i < num_symbols; i++)
5860 ptr[i] = (elf_linker_section_pointers_t *)0;
5861 }
5862
5863 /* Has this symbol already been allocated, if so, our work is done */
5864 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5865 rel->r_addend,
5866 lsect->which))
5867 return true;
5868
5869 ptr_linker_section_ptr = &ptr[r_symndx];
5870
5871 if (info->shared)
5872 {
5873 /* If we are generating a shared object, we need to
5874 output a R_<xxx>_RELATIVE reloc so that the
5875 dynamic linker can adjust this GOT entry. */
5876 BFD_ASSERT (lsect->rel_section != NULL);
5877 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5878 }
5879 }
5880
5881 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5882 from internal memory. */
5883 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5884 linker_section_ptr = (elf_linker_section_pointers_t *)
5885 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5886
5887 if (!linker_section_ptr)
5888 return false;
5889
5890 linker_section_ptr->next = *ptr_linker_section_ptr;
5891 linker_section_ptr->addend = rel->r_addend;
5892 linker_section_ptr->which = lsect->which;
5893 linker_section_ptr->written_address_p = false;
5894 *ptr_linker_section_ptr = linker_section_ptr;
5895
5896 #if 0
5897 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5898 {
5899 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5900 lsect->hole_offset += ARCH_SIZE / 8;
5901 lsect->sym_offset += ARCH_SIZE / 8;
5902 if (lsect->sym_hash) /* Bump up symbol value if needed */
5903 {
5904 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5905 #ifdef DEBUG
5906 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5907 lsect->sym_hash->root.root.string,
5908 (long)ARCH_SIZE / 8,
5909 (long)lsect->sym_hash->root.u.def.value);
5910 #endif
5911 }
5912 }
5913 else
5914 #endif
5915 linker_section_ptr->offset = lsect->section->_raw_size;
5916
5917 lsect->section->_raw_size += ARCH_SIZE / 8;
5918
5919 #ifdef DEBUG
5920 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5921 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5922 #endif
5923
5924 return true;
5925 }
5926
5927 \f
5928 #if ARCH_SIZE==64
5929 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5930 #endif
5931 #if ARCH_SIZE==32
5932 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5933 #endif
5934
5935 /* Fill in the address for a pointer generated in alinker section. */
5936
5937 bfd_vma
5938 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5939 bfd *output_bfd;
5940 bfd *input_bfd;
5941 struct bfd_link_info *info;
5942 elf_linker_section_t *lsect;
5943 struct elf_link_hash_entry *h;
5944 bfd_vma relocation;
5945 const Elf_Internal_Rela *rel;
5946 int relative_reloc;
5947 {
5948 elf_linker_section_pointers_t *linker_section_ptr;
5949
5950 BFD_ASSERT (lsect != NULL);
5951
5952 if (h != NULL) /* global symbol */
5953 {
5954 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5955 rel->r_addend,
5956 lsect->which);
5957
5958 BFD_ASSERT (linker_section_ptr != NULL);
5959
5960 if (! elf_hash_table (info)->dynamic_sections_created
5961 || (info->shared
5962 && info->symbolic
5963 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5964 {
5965 /* This is actually a static link, or it is a
5966 -Bsymbolic link and the symbol is defined
5967 locally. We must initialize this entry in the
5968 global section.
5969
5970 When doing a dynamic link, we create a .rela.<xxx>
5971 relocation entry to initialize the value. This
5972 is done in the finish_dynamic_symbol routine. */
5973 if (!linker_section_ptr->written_address_p)
5974 {
5975 linker_section_ptr->written_address_p = true;
5976 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5977 lsect->section->contents + linker_section_ptr->offset);
5978 }
5979 }
5980 }
5981 else /* local symbol */
5982 {
5983 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5984 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5985 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5986 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5987 rel->r_addend,
5988 lsect->which);
5989
5990 BFD_ASSERT (linker_section_ptr != NULL);
5991
5992 /* Write out pointer if it hasn't been rewritten out before */
5993 if (!linker_section_ptr->written_address_p)
5994 {
5995 linker_section_ptr->written_address_p = true;
5996 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5997 lsect->section->contents + linker_section_ptr->offset);
5998
5999 if (info->shared)
6000 {
6001 asection *srel = lsect->rel_section;
6002 Elf_Internal_Rela outrel;
6003
6004 /* We need to generate a relative reloc for the dynamic linker. */
6005 if (!srel)
6006 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6007 lsect->rel_name);
6008
6009 BFD_ASSERT (srel != NULL);
6010
6011 outrel.r_offset = (lsect->section->output_section->vma
6012 + lsect->section->output_offset
6013 + linker_section_ptr->offset);
6014 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6015 outrel.r_addend = 0;
6016 elf_swap_reloca_out (output_bfd, &outrel,
6017 (((Elf_External_Rela *)
6018 lsect->section->contents)
6019 + elf_section_data (lsect->section)->rel_count));
6020 ++elf_section_data (lsect->section)->rel_count;
6021 }
6022 }
6023 }
6024
6025 relocation = (lsect->section->output_offset
6026 + linker_section_ptr->offset
6027 - lsect->hole_offset
6028 - lsect->sym_offset);
6029
6030 #ifdef DEBUG
6031 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6032 lsect->name, (long)relocation, (long)relocation);
6033 #endif
6034
6035 /* Subtract out the addend, because it will get added back in by the normal
6036 processing. */
6037 return relocation - linker_section_ptr->addend;
6038 }
6039 \f
6040 /* Garbage collect unused sections. */
6041
6042 static boolean elf_gc_mark
6043 PARAMS ((struct bfd_link_info *info, asection *sec,
6044 asection * (*gc_mark_hook)
6045 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6046 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6047
6048 static boolean elf_gc_sweep
6049 PARAMS ((struct bfd_link_info *info,
6050 boolean (*gc_sweep_hook)
6051 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6052 const Elf_Internal_Rela *relocs))));
6053
6054 static boolean elf_gc_sweep_symbol
6055 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6056
6057 static boolean elf_gc_allocate_got_offsets
6058 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6059
6060 static boolean elf_gc_propagate_vtable_entries_used
6061 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6062
6063 static boolean elf_gc_smash_unused_vtentry_relocs
6064 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6065
6066 /* The mark phase of garbage collection. For a given section, mark
6067 it, and all the sections which define symbols to which it refers. */
6068
6069 static boolean
6070 elf_gc_mark (info, sec, gc_mark_hook)
6071 struct bfd_link_info *info;
6072 asection *sec;
6073 asection * (*gc_mark_hook)
6074 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6075 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6076 {
6077 boolean ret = true;
6078
6079 sec->gc_mark = 1;
6080
6081 /* Look through the section relocs. */
6082
6083 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6084 {
6085 Elf_Internal_Rela *relstart, *rel, *relend;
6086 Elf_Internal_Shdr *symtab_hdr;
6087 struct elf_link_hash_entry **sym_hashes;
6088 size_t nlocsyms;
6089 size_t extsymoff;
6090 Elf_External_Sym *locsyms, *freesyms = NULL;
6091 bfd *input_bfd = sec->owner;
6092 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6093
6094 /* GCFIXME: how to arrange so that relocs and symbols are not
6095 reread continually? */
6096
6097 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6098 sym_hashes = elf_sym_hashes (input_bfd);
6099
6100 /* Read the local symbols. */
6101 if (elf_bad_symtab (input_bfd))
6102 {
6103 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6104 extsymoff = 0;
6105 }
6106 else
6107 extsymoff = nlocsyms = symtab_hdr->sh_info;
6108 if (symtab_hdr->contents)
6109 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6110 else if (nlocsyms == 0)
6111 locsyms = NULL;
6112 else
6113 {
6114 locsyms = freesyms =
6115 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6116 if (freesyms == NULL
6117 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6118 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6119 nlocsyms, input_bfd)
6120 != nlocsyms * sizeof (Elf_External_Sym)))
6121 {
6122 ret = false;
6123 goto out1;
6124 }
6125 }
6126
6127 /* Read the relocations. */
6128 relstart = (NAME(_bfd_elf,link_read_relocs)
6129 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6130 info->keep_memory));
6131 if (relstart == NULL)
6132 {
6133 ret = false;
6134 goto out1;
6135 }
6136 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6137
6138 for (rel = relstart; rel < relend; rel++)
6139 {
6140 unsigned long r_symndx;
6141 asection *rsec;
6142 struct elf_link_hash_entry *h;
6143 Elf_Internal_Sym s;
6144
6145 r_symndx = ELF_R_SYM (rel->r_info);
6146 if (r_symndx == 0)
6147 continue;
6148
6149 if (elf_bad_symtab (sec->owner))
6150 {
6151 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6152 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6153 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6154 else
6155 {
6156 h = sym_hashes[r_symndx - extsymoff];
6157 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6158 }
6159 }
6160 else if (r_symndx >= nlocsyms)
6161 {
6162 h = sym_hashes[r_symndx - extsymoff];
6163 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6164 }
6165 else
6166 {
6167 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6168 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6169 }
6170
6171 if (rsec && !rsec->gc_mark)
6172 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6173 {
6174 ret = false;
6175 goto out2;
6176 }
6177 }
6178
6179 out2:
6180 if (!info->keep_memory)
6181 free (relstart);
6182 out1:
6183 if (freesyms)
6184 free (freesyms);
6185 }
6186
6187 return ret;
6188 }
6189
6190 /* The sweep phase of garbage collection. Remove all garbage sections. */
6191
6192 static boolean
6193 elf_gc_sweep (info, gc_sweep_hook)
6194 struct bfd_link_info *info;
6195 boolean (*gc_sweep_hook)
6196 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6197 const Elf_Internal_Rela *relocs));
6198 {
6199 bfd *sub;
6200
6201 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6202 {
6203 asection *o;
6204
6205 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6206 continue;
6207
6208 for (o = sub->sections; o != NULL; o = o->next)
6209 {
6210 /* Keep special sections. Keep .debug sections. */
6211 if ((o->flags & SEC_LINKER_CREATED)
6212 || (o->flags & SEC_DEBUGGING))
6213 o->gc_mark = 1;
6214
6215 if (o->gc_mark)
6216 continue;
6217
6218 /* Skip sweeping sections already excluded. */
6219 if (o->flags & SEC_EXCLUDE)
6220 continue;
6221
6222 /* Since this is early in the link process, it is simple
6223 to remove a section from the output. */
6224 o->flags |= SEC_EXCLUDE;
6225
6226 /* But we also have to update some of the relocation
6227 info we collected before. */
6228 if (gc_sweep_hook
6229 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6230 {
6231 Elf_Internal_Rela *internal_relocs;
6232 boolean r;
6233
6234 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6235 (o->owner, o, NULL, NULL, info->keep_memory));
6236 if (internal_relocs == NULL)
6237 return false;
6238
6239 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6240
6241 if (!info->keep_memory)
6242 free (internal_relocs);
6243
6244 if (!r)
6245 return false;
6246 }
6247 }
6248 }
6249
6250 /* Remove the symbols that were in the swept sections from the dynamic
6251 symbol table. GCFIXME: Anyone know how to get them out of the
6252 static symbol table as well? */
6253 {
6254 int i = 0;
6255
6256 elf_link_hash_traverse (elf_hash_table (info),
6257 elf_gc_sweep_symbol,
6258 (PTR) &i);
6259
6260 elf_hash_table (info)->dynsymcount = i;
6261 }
6262
6263 return true;
6264 }
6265
6266 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6267
6268 static boolean
6269 elf_gc_sweep_symbol (h, idxptr)
6270 struct elf_link_hash_entry *h;
6271 PTR idxptr;
6272 {
6273 int *idx = (int *) idxptr;
6274
6275 if (h->dynindx != -1
6276 && ((h->root.type != bfd_link_hash_defined
6277 && h->root.type != bfd_link_hash_defweak)
6278 || h->root.u.def.section->gc_mark))
6279 h->dynindx = (*idx)++;
6280
6281 return true;
6282 }
6283
6284 /* Propogate collected vtable information. This is called through
6285 elf_link_hash_traverse. */
6286
6287 static boolean
6288 elf_gc_propagate_vtable_entries_used (h, okp)
6289 struct elf_link_hash_entry *h;
6290 PTR okp;
6291 {
6292 /* Those that are not vtables. */
6293 if (h->vtable_parent == NULL)
6294 return true;
6295
6296 /* Those vtables that do not have parents, we cannot merge. */
6297 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6298 return true;
6299
6300 /* If we've already been done, exit. */
6301 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6302 return true;
6303
6304 /* Make sure the parent's table is up to date. */
6305 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6306
6307 if (h->vtable_entries_used == NULL)
6308 {
6309 /* None of this table's entries were referenced. Re-use the
6310 parent's table. */
6311 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6312 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6313 }
6314 else
6315 {
6316 size_t n;
6317 boolean *cu, *pu;
6318
6319 /* Or the parent's entries into ours. */
6320 cu = h->vtable_entries_used;
6321 cu[-1] = true;
6322 pu = h->vtable_parent->vtable_entries_used;
6323 if (pu != NULL)
6324 {
6325 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6326 while (--n != 0)
6327 {
6328 if (*pu) *cu = true;
6329 pu++, cu++;
6330 }
6331 }
6332 }
6333
6334 return true;
6335 }
6336
6337 static boolean
6338 elf_gc_smash_unused_vtentry_relocs (h, okp)
6339 struct elf_link_hash_entry *h;
6340 PTR okp;
6341 {
6342 asection *sec;
6343 bfd_vma hstart, hend;
6344 Elf_Internal_Rela *relstart, *relend, *rel;
6345 struct elf_backend_data *bed;
6346
6347 /* Take care of both those symbols that do not describe vtables as
6348 well as those that are not loaded. */
6349 if (h->vtable_parent == NULL)
6350 return true;
6351
6352 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6353 || h->root.type == bfd_link_hash_defweak);
6354
6355 sec = h->root.u.def.section;
6356 hstart = h->root.u.def.value;
6357 hend = hstart + h->size;
6358
6359 relstart = (NAME(_bfd_elf,link_read_relocs)
6360 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6361 if (!relstart)
6362 return *(boolean *)okp = false;
6363 bed = get_elf_backend_data (sec->owner);
6364 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6365
6366 for (rel = relstart; rel < relend; ++rel)
6367 if (rel->r_offset >= hstart && rel->r_offset < hend)
6368 {
6369 /* If the entry is in use, do nothing. */
6370 if (h->vtable_entries_used
6371 && (rel->r_offset - hstart) < h->vtable_entries_size)
6372 {
6373 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6374 if (h->vtable_entries_used[entry])
6375 continue;
6376 }
6377 /* Otherwise, kill it. */
6378 rel->r_offset = rel->r_info = rel->r_addend = 0;
6379 }
6380
6381 return true;
6382 }
6383
6384 /* Do mark and sweep of unused sections. */
6385
6386 boolean
6387 elf_gc_sections (abfd, info)
6388 bfd *abfd;
6389 struct bfd_link_info *info;
6390 {
6391 boolean ok = true;
6392 bfd *sub;
6393 asection * (*gc_mark_hook)
6394 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6395 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6396
6397 if (!get_elf_backend_data (abfd)->can_gc_sections
6398 || info->relocateable
6399 || elf_hash_table (info)->dynamic_sections_created)
6400 return true;
6401
6402 /* Apply transitive closure to the vtable entry usage info. */
6403 elf_link_hash_traverse (elf_hash_table (info),
6404 elf_gc_propagate_vtable_entries_used,
6405 (PTR) &ok);
6406 if (!ok)
6407 return false;
6408
6409 /* Kill the vtable relocations that were not used. */
6410 elf_link_hash_traverse (elf_hash_table (info),
6411 elf_gc_smash_unused_vtentry_relocs,
6412 (PTR) &ok);
6413 if (!ok)
6414 return false;
6415
6416 /* Grovel through relocs to find out who stays ... */
6417
6418 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6419 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6420 {
6421 asection *o;
6422
6423 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6424 continue;
6425
6426 for (o = sub->sections; o != NULL; o = o->next)
6427 {
6428 if (o->flags & SEC_KEEP)
6429 if (!elf_gc_mark (info, o, gc_mark_hook))
6430 return false;
6431 }
6432 }
6433
6434 /* ... and mark SEC_EXCLUDE for those that go. */
6435 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6436 return false;
6437
6438 return true;
6439 }
6440 \f
6441 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6442
6443 boolean
6444 elf_gc_record_vtinherit (abfd, sec, h, offset)
6445 bfd *abfd;
6446 asection *sec;
6447 struct elf_link_hash_entry *h;
6448 bfd_vma offset;
6449 {
6450 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6451 struct elf_link_hash_entry **search, *child;
6452 bfd_size_type extsymcount;
6453
6454 /* The sh_info field of the symtab header tells us where the
6455 external symbols start. We don't care about the local symbols at
6456 this point. */
6457 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6458 if (!elf_bad_symtab (abfd))
6459 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6460
6461 sym_hashes = elf_sym_hashes (abfd);
6462 sym_hashes_end = sym_hashes + extsymcount;
6463
6464 /* Hunt down the child symbol, which is in this section at the same
6465 offset as the relocation. */
6466 for (search = sym_hashes; search != sym_hashes_end; ++search)
6467 {
6468 if ((child = *search) != NULL
6469 && (child->root.type == bfd_link_hash_defined
6470 || child->root.type == bfd_link_hash_defweak)
6471 && child->root.u.def.section == sec
6472 && child->root.u.def.value == offset)
6473 goto win;
6474 }
6475
6476 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6477 bfd_get_filename (abfd), sec->name,
6478 (unsigned long)offset);
6479 bfd_set_error (bfd_error_invalid_operation);
6480 return false;
6481
6482 win:
6483 if (!h)
6484 {
6485 /* This *should* only be the absolute section. It could potentially
6486 be that someone has defined a non-global vtable though, which
6487 would be bad. It isn't worth paging in the local symbols to be
6488 sure though; that case should simply be handled by the assembler. */
6489
6490 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6491 }
6492 else
6493 child->vtable_parent = h;
6494
6495 return true;
6496 }
6497
6498 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6499
6500 boolean
6501 elf_gc_record_vtentry (abfd, sec, h, addend)
6502 bfd *abfd ATTRIBUTE_UNUSED;
6503 asection *sec ATTRIBUTE_UNUSED;
6504 struct elf_link_hash_entry *h;
6505 bfd_vma addend;
6506 {
6507 if (addend >= h->vtable_entries_size)
6508 {
6509 size_t size, bytes;
6510 boolean *ptr = h->vtable_entries_used;
6511
6512 /* While the symbol is undefined, we have to be prepared to handle
6513 a zero size. */
6514 if (h->root.type == bfd_link_hash_undefined)
6515 size = addend;
6516 else
6517 {
6518 size = h->size;
6519 if (size < addend)
6520 {
6521 /* Oops! We've got a reference past the defined end of
6522 the table. This is probably a bug -- shall we warn? */
6523 size = addend;
6524 }
6525 }
6526
6527 /* Allocate one extra entry for use as a "done" flag for the
6528 consolidation pass. */
6529 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6530
6531 if (ptr)
6532 {
6533 ptr = bfd_realloc (ptr - 1, bytes);
6534
6535 if (ptr != NULL)
6536 {
6537 size_t oldbytes;
6538
6539 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6540 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6541 }
6542 }
6543 else
6544 ptr = bfd_zmalloc (bytes);
6545
6546 if (ptr == NULL)
6547 return false;
6548
6549 /* And arrange for that done flag to be at index -1. */
6550 h->vtable_entries_used = ptr + 1;
6551 h->vtable_entries_size = size;
6552 }
6553
6554 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6555
6556 return true;
6557 }
6558
6559 /* And an accompanying bit to work out final got entry offsets once
6560 we're done. Should be called from final_link. */
6561
6562 boolean
6563 elf_gc_common_finalize_got_offsets (abfd, info)
6564 bfd *abfd;
6565 struct bfd_link_info *info;
6566 {
6567 bfd *i;
6568 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6569 bfd_vma gotoff;
6570
6571 /* The GOT offset is relative to the .got section, but the GOT header is
6572 put into the .got.plt section, if the backend uses it. */
6573 if (bed->want_got_plt)
6574 gotoff = 0;
6575 else
6576 gotoff = bed->got_header_size;
6577
6578 /* Do the local .got entries first. */
6579 for (i = info->input_bfds; i; i = i->link_next)
6580 {
6581 bfd_signed_vma *local_got;
6582 bfd_size_type j, locsymcount;
6583 Elf_Internal_Shdr *symtab_hdr;
6584
6585 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6586 continue;
6587
6588 local_got = elf_local_got_refcounts (i);
6589 if (!local_got)
6590 continue;
6591
6592 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6593 if (elf_bad_symtab (i))
6594 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6595 else
6596 locsymcount = symtab_hdr->sh_info;
6597
6598 for (j = 0; j < locsymcount; ++j)
6599 {
6600 if (local_got[j] > 0)
6601 {
6602 local_got[j] = gotoff;
6603 gotoff += ARCH_SIZE / 8;
6604 }
6605 else
6606 local_got[j] = (bfd_vma) -1;
6607 }
6608 }
6609
6610 /* Then the global .got and .plt entries. */
6611 elf_link_hash_traverse (elf_hash_table (info),
6612 elf_gc_allocate_got_offsets,
6613 (PTR) &gotoff);
6614 return true;
6615 }
6616
6617 /* We need a special top-level link routine to convert got reference counts
6618 to real got offsets. */
6619
6620 static boolean
6621 elf_gc_allocate_got_offsets (h, offarg)
6622 struct elf_link_hash_entry *h;
6623 PTR offarg;
6624 {
6625 bfd_vma *off = (bfd_vma *) offarg;
6626
6627 if (h->got.refcount > 0)
6628 {
6629 h->got.offset = off[0];
6630 off[0] += ARCH_SIZE / 8;
6631 }
6632 else
6633 h->got.offset = (bfd_vma) -1;
6634
6635 return true;
6636 }
6637
6638 /* Many folk need no more in the way of final link than this, once
6639 got entry reference counting is enabled. */
6640
6641 boolean
6642 elf_gc_common_final_link (abfd, info)
6643 bfd *abfd;
6644 struct bfd_link_info *info;
6645 {
6646 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6647 return false;
6648
6649 /* Invoke the regular ELF backend linker to do all the work. */
6650 return elf_bfd_final_link (abfd, info);
6651 }
6652
6653 /* This function will be called though elf_link_hash_traverse to store
6654 all hash value of the exported symbols in an array. */
6655
6656 static boolean
6657 elf_collect_hash_codes (h, data)
6658 struct elf_link_hash_entry *h;
6659 PTR data;
6660 {
6661 unsigned long **valuep = (unsigned long **) data;
6662 const char *name;
6663 char *p;
6664 unsigned long ha;
6665 char *alc = NULL;
6666
6667 /* Ignore indirect symbols. These are added by the versioning code. */
6668 if (h->dynindx == -1)
6669 return true;
6670
6671 name = h->root.root.string;
6672 p = strchr (name, ELF_VER_CHR);
6673 if (p != NULL)
6674 {
6675 alc = bfd_malloc (p - name + 1);
6676 memcpy (alc, name, p - name);
6677 alc[p - name] = '\0';
6678 name = alc;
6679 }
6680
6681 /* Compute the hash value. */
6682 ha = bfd_elf_hash (name);
6683
6684 /* Store the found hash value in the array given as the argument. */
6685 *(*valuep)++ = ha;
6686
6687 /* And store it in the struct so that we can put it in the hash table
6688 later. */
6689 h->elf_hash_value = ha;
6690
6691 if (alc != NULL)
6692 free (alc);
6693
6694 return true;
6695 }
This page took 0.195269 seconds and 4 git commands to generate.