Fix ld --just-symbols
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static void elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
83
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
86
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91 {
92 switch (bfd_get_format (abfd))
93 {
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
101 }
102 }
103 \f
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
109 {
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
114
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
118
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
122
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
127
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
132
133 return _bfd_is_global_symbol_definition (abfd, sym);
134
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
139
140 return true;
141 }
142
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
150 {
151 Elf_Internal_Shdr * hdr;
152 Elf_Internal_Shdr * shndx_hdr;
153 Elf_External_Sym * esym;
154 Elf_External_Sym * esymend;
155 Elf_External_Sym * buf = NULL;
156 Elf_External_Sym_Shndx * shndx_buf = NULL;
157 Elf_External_Sym_Shndx * shndx;
158 bfd_size_type symcount;
159 bfd_size_type extsymcount;
160 bfd_size_type extsymoff;
161 boolean result = false;
162 file_ptr pos;
163 bfd_size_type amt;
164
165 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
166 if (abfd == (bfd *) NULL)
167 return false;
168
169 if (! bfd_check_format (abfd, bfd_object))
170 return false;
171
172 /* If we have already included the element containing this symbol in the
173 link then we do not need to include it again. Just claim that any symbol
174 it contains is not a definition, so that our caller will not decide to
175 (re)include this element. */
176 if (abfd->archive_pass)
177 return false;
178
179 /* Select the appropriate symbol table. */
180 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
181 {
182 hdr = &elf_tdata (abfd)->symtab_hdr;
183 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
184 }
185 else
186 {
187 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
188 shndx_hdr = NULL;
189 }
190
191 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
192
193 /* The sh_info field of the symtab header tells us where the
194 external symbols start. We don't care about the local symbols. */
195 if (elf_bad_symtab (abfd))
196 {
197 extsymcount = symcount;
198 extsymoff = 0;
199 }
200 else
201 {
202 extsymcount = symcount - hdr->sh_info;
203 extsymoff = hdr->sh_info;
204 }
205
206 amt = extsymcount * sizeof (Elf_External_Sym);
207 buf = (Elf_External_Sym *) bfd_malloc (amt);
208 if (buf == NULL && extsymcount != 0)
209 return false;
210
211 /* Read in the symbol table.
212 FIXME: This ought to be cached somewhere. */
213 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
214 if (bfd_seek (abfd, pos, SEEK_SET) != 0
215 || bfd_bread ((PTR) buf, amt, abfd) != amt)
216 goto error_exit;
217
218 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
219 {
220 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
221 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
222 if (shndx_buf == NULL && extsymcount != 0)
223 goto error_exit;
224
225 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
226 if (bfd_seek (abfd, pos, SEEK_SET) != 0
227 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
228 goto error_exit;
229 }
230
231 /* Scan the symbol table looking for SYMDEF. */
232 esymend = buf + extsymcount;
233 for (esym = buf, shndx = shndx_buf;
234 esym < esymend;
235 esym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
236 {
237 Elf_Internal_Sym sym;
238 const char * name;
239
240 elf_swap_symbol_in (abfd, esym, shndx, &sym);
241
242 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
243 if (name == (const char *) NULL)
244 break;
245
246 if (strcmp (name, symdef->name) == 0)
247 {
248 result = is_global_data_symbol_definition (abfd, & sym);
249 break;
250 }
251 }
252
253 error_exit:
254 if (shndx_buf != NULL)
255 free (shndx_buf);
256 if (buf != NULL)
257 free (buf);
258
259 return result;
260 }
261 \f
262 /* Add symbols from an ELF archive file to the linker hash table. We
263 don't use _bfd_generic_link_add_archive_symbols because of a
264 problem which arises on UnixWare. The UnixWare libc.so is an
265 archive which includes an entry libc.so.1 which defines a bunch of
266 symbols. The libc.so archive also includes a number of other
267 object files, which also define symbols, some of which are the same
268 as those defined in libc.so.1. Correct linking requires that we
269 consider each object file in turn, and include it if it defines any
270 symbols we need. _bfd_generic_link_add_archive_symbols does not do
271 this; it looks through the list of undefined symbols, and includes
272 any object file which defines them. When this algorithm is used on
273 UnixWare, it winds up pulling in libc.so.1 early and defining a
274 bunch of symbols. This means that some of the other objects in the
275 archive are not included in the link, which is incorrect since they
276 precede libc.so.1 in the archive.
277
278 Fortunately, ELF archive handling is simpler than that done by
279 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
280 oddities. In ELF, if we find a symbol in the archive map, and the
281 symbol is currently undefined, we know that we must pull in that
282 object file.
283
284 Unfortunately, we do have to make multiple passes over the symbol
285 table until nothing further is resolved. */
286
287 static boolean
288 elf_link_add_archive_symbols (abfd, info)
289 bfd *abfd;
290 struct bfd_link_info *info;
291 {
292 symindex c;
293 boolean *defined = NULL;
294 boolean *included = NULL;
295 carsym *symdefs;
296 boolean loop;
297 bfd_size_type amt;
298
299 if (! bfd_has_map (abfd))
300 {
301 /* An empty archive is a special case. */
302 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
303 return true;
304 bfd_set_error (bfd_error_no_armap);
305 return false;
306 }
307
308 /* Keep track of all symbols we know to be already defined, and all
309 files we know to be already included. This is to speed up the
310 second and subsequent passes. */
311 c = bfd_ardata (abfd)->symdef_count;
312 if (c == 0)
313 return true;
314 amt = c;
315 amt *= sizeof (boolean);
316 defined = (boolean *) bfd_malloc (amt);
317 included = (boolean *) bfd_malloc (amt);
318 if (defined == (boolean *) NULL || included == (boolean *) NULL)
319 goto error_return;
320 memset (defined, 0, (size_t) amt);
321 memset (included, 0, (size_t) amt);
322
323 symdefs = bfd_ardata (abfd)->symdefs;
324
325 do
326 {
327 file_ptr last;
328 symindex i;
329 carsym *symdef;
330 carsym *symdefend;
331
332 loop = false;
333 last = -1;
334
335 symdef = symdefs;
336 symdefend = symdef + c;
337 for (i = 0; symdef < symdefend; symdef++, i++)
338 {
339 struct elf_link_hash_entry *h;
340 bfd *element;
341 struct bfd_link_hash_entry *undefs_tail;
342 symindex mark;
343
344 if (defined[i] || included[i])
345 continue;
346 if (symdef->file_offset == last)
347 {
348 included[i] = true;
349 continue;
350 }
351
352 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
353 false, false, false);
354
355 if (h == NULL)
356 {
357 char *p, *copy;
358
359 /* If this is a default version (the name contains @@),
360 look up the symbol again without the version. The
361 effect is that references to the symbol without the
362 version will be matched by the default symbol in the
363 archive. */
364
365 p = strchr (symdef->name, ELF_VER_CHR);
366 if (p == NULL || p[1] != ELF_VER_CHR)
367 continue;
368
369 copy = bfd_alloc (abfd, (bfd_size_type) (p - symdef->name + 1));
370 if (copy == NULL)
371 goto error_return;
372 memcpy (copy, symdef->name, (size_t) (p - symdef->name));
373 copy[p - symdef->name] = '\0';
374
375 h = elf_link_hash_lookup (elf_hash_table (info), copy,
376 false, false, false);
377
378 bfd_release (abfd, copy);
379 }
380
381 if (h == NULL)
382 continue;
383
384 if (h->root.type == bfd_link_hash_common)
385 {
386 /* We currently have a common symbol. The archive map contains
387 a reference to this symbol, so we may want to include it. We
388 only want to include it however, if this archive element
389 contains a definition of the symbol, not just another common
390 declaration of it.
391
392 Unfortunately some archivers (including GNU ar) will put
393 declarations of common symbols into their archive maps, as
394 well as real definitions, so we cannot just go by the archive
395 map alone. Instead we must read in the element's symbol
396 table and check that to see what kind of symbol definition
397 this is. */
398 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
399 continue;
400 }
401 else if (h->root.type != bfd_link_hash_undefined)
402 {
403 if (h->root.type != bfd_link_hash_undefweak)
404 defined[i] = true;
405 continue;
406 }
407
408 /* We need to include this archive member. */
409 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
410 if (element == (bfd *) NULL)
411 goto error_return;
412
413 if (! bfd_check_format (element, bfd_object))
414 goto error_return;
415
416 /* Doublecheck that we have not included this object
417 already--it should be impossible, but there may be
418 something wrong with the archive. */
419 if (element->archive_pass != 0)
420 {
421 bfd_set_error (bfd_error_bad_value);
422 goto error_return;
423 }
424 element->archive_pass = 1;
425
426 undefs_tail = info->hash->undefs_tail;
427
428 if (! (*info->callbacks->add_archive_element) (info, element,
429 symdef->name))
430 goto error_return;
431 if (! elf_link_add_object_symbols (element, info))
432 goto error_return;
433
434 /* If there are any new undefined symbols, we need to make
435 another pass through the archive in order to see whether
436 they can be defined. FIXME: This isn't perfect, because
437 common symbols wind up on undefs_tail and because an
438 undefined symbol which is defined later on in this pass
439 does not require another pass. This isn't a bug, but it
440 does make the code less efficient than it could be. */
441 if (undefs_tail != info->hash->undefs_tail)
442 loop = true;
443
444 /* Look backward to mark all symbols from this object file
445 which we have already seen in this pass. */
446 mark = i;
447 do
448 {
449 included[mark] = true;
450 if (mark == 0)
451 break;
452 --mark;
453 }
454 while (symdefs[mark].file_offset == symdef->file_offset);
455
456 /* We mark subsequent symbols from this object file as we go
457 on through the loop. */
458 last = symdef->file_offset;
459 }
460 }
461 while (loop);
462
463 free (defined);
464 free (included);
465
466 return true;
467
468 error_return:
469 if (defined != (boolean *) NULL)
470 free (defined);
471 if (included != (boolean *) NULL)
472 free (included);
473 return false;
474 }
475
476 /* This function is called when we want to define a new symbol. It
477 handles the various cases which arise when we find a definition in
478 a dynamic object, or when there is already a definition in a
479 dynamic object. The new symbol is described by NAME, SYM, PSEC,
480 and PVALUE. We set SYM_HASH to the hash table entry. We set
481 OVERRIDE if the old symbol is overriding a new definition. We set
482 TYPE_CHANGE_OK if it is OK for the type to change. We set
483 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
484 change, we mean that we shouldn't warn if the type or size does
485 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
486 a shared object. */
487
488 static boolean
489 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
490 override, type_change_ok, size_change_ok, dt_needed)
491 bfd *abfd;
492 struct bfd_link_info *info;
493 const char *name;
494 Elf_Internal_Sym *sym;
495 asection **psec;
496 bfd_vma *pvalue;
497 struct elf_link_hash_entry **sym_hash;
498 boolean *override;
499 boolean *type_change_ok;
500 boolean *size_change_ok;
501 boolean dt_needed;
502 {
503 asection *sec;
504 struct elf_link_hash_entry *h;
505 int bind;
506 bfd *oldbfd;
507 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
508
509 *override = false;
510
511 sec = *psec;
512 bind = ELF_ST_BIND (sym->st_info);
513
514 if (! bfd_is_und_section (sec))
515 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
516 else
517 h = ((struct elf_link_hash_entry *)
518 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
519 if (h == NULL)
520 return false;
521 *sym_hash = h;
522
523 /* This code is for coping with dynamic objects, and is only useful
524 if we are doing an ELF link. */
525 if (info->hash->creator != abfd->xvec)
526 return true;
527
528 /* For merging, we only care about real symbols. */
529
530 while (h->root.type == bfd_link_hash_indirect
531 || h->root.type == bfd_link_hash_warning)
532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
533
534 /* If we just created the symbol, mark it as being an ELF symbol.
535 Other than that, there is nothing to do--there is no merge issue
536 with a newly defined symbol--so we just return. */
537
538 if (h->root.type == bfd_link_hash_new)
539 {
540 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
541 return true;
542 }
543
544 /* OLDBFD is a BFD associated with the existing symbol. */
545
546 switch (h->root.type)
547 {
548 default:
549 oldbfd = NULL;
550 break;
551
552 case bfd_link_hash_undefined:
553 case bfd_link_hash_undefweak:
554 oldbfd = h->root.u.undef.abfd;
555 break;
556
557 case bfd_link_hash_defined:
558 case bfd_link_hash_defweak:
559 oldbfd = h->root.u.def.section->owner;
560 break;
561
562 case bfd_link_hash_common:
563 oldbfd = h->root.u.c.p->section->owner;
564 break;
565 }
566
567 /* In cases involving weak versioned symbols, we may wind up trying
568 to merge a symbol with itself. Catch that here, to avoid the
569 confusion that results if we try to override a symbol with
570 itself. The additional tests catch cases like
571 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
572 dynamic object, which we do want to handle here. */
573 if (abfd == oldbfd
574 && ((abfd->flags & DYNAMIC) == 0
575 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
576 return true;
577
578 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
579 respectively, is from a dynamic object. */
580
581 if ((abfd->flags & DYNAMIC) != 0)
582 newdyn = true;
583 else
584 newdyn = false;
585
586 if (oldbfd != NULL)
587 olddyn = (oldbfd->flags & DYNAMIC) != 0;
588 else
589 {
590 asection *hsec;
591
592 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
593 indices used by MIPS ELF. */
594 switch (h->root.type)
595 {
596 default:
597 hsec = NULL;
598 break;
599
600 case bfd_link_hash_defined:
601 case bfd_link_hash_defweak:
602 hsec = h->root.u.def.section;
603 break;
604
605 case bfd_link_hash_common:
606 hsec = h->root.u.c.p->section;
607 break;
608 }
609
610 if (hsec == NULL)
611 olddyn = false;
612 else
613 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
614 }
615
616 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
617 respectively, appear to be a definition rather than reference. */
618
619 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
620 newdef = false;
621 else
622 newdef = true;
623
624 if (h->root.type == bfd_link_hash_undefined
625 || h->root.type == bfd_link_hash_undefweak
626 || h->root.type == bfd_link_hash_common)
627 olddef = false;
628 else
629 olddef = true;
630
631 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
632 symbol, respectively, appears to be a common symbol in a dynamic
633 object. If a symbol appears in an uninitialized section, and is
634 not weak, and is not a function, then it may be a common symbol
635 which was resolved when the dynamic object was created. We want
636 to treat such symbols specially, because they raise special
637 considerations when setting the symbol size: if the symbol
638 appears as a common symbol in a regular object, and the size in
639 the regular object is larger, we must make sure that we use the
640 larger size. This problematic case can always be avoided in C,
641 but it must be handled correctly when using Fortran shared
642 libraries.
643
644 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
645 likewise for OLDDYNCOMMON and OLDDEF.
646
647 Note that this test is just a heuristic, and that it is quite
648 possible to have an uninitialized symbol in a shared object which
649 is really a definition, rather than a common symbol. This could
650 lead to some minor confusion when the symbol really is a common
651 symbol in some regular object. However, I think it will be
652 harmless. */
653
654 if (newdyn
655 && newdef
656 && (sec->flags & SEC_ALLOC) != 0
657 && (sec->flags & SEC_LOAD) == 0
658 && sym->st_size > 0
659 && bind != STB_WEAK
660 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
661 newdyncommon = true;
662 else
663 newdyncommon = false;
664
665 if (olddyn
666 && olddef
667 && h->root.type == bfd_link_hash_defined
668 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
669 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
670 && (h->root.u.def.section->flags & SEC_LOAD) == 0
671 && h->size > 0
672 && h->type != STT_FUNC)
673 olddyncommon = true;
674 else
675 olddyncommon = false;
676
677 /* It's OK to change the type if either the existing symbol or the
678 new symbol is weak unless it comes from a DT_NEEDED entry of
679 a shared object, in which case, the DT_NEEDED entry may not be
680 required at the run time. */
681
682 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
683 || h->root.type == bfd_link_hash_undefweak
684 || bind == STB_WEAK)
685 *type_change_ok = true;
686
687 /* It's OK to change the size if either the existing symbol or the
688 new symbol is weak, or if the old symbol is undefined. */
689
690 if (*type_change_ok
691 || h->root.type == bfd_link_hash_undefined)
692 *size_change_ok = true;
693
694 /* If both the old and the new symbols look like common symbols in a
695 dynamic object, set the size of the symbol to the larger of the
696 two. */
697
698 if (olddyncommon
699 && newdyncommon
700 && sym->st_size != h->size)
701 {
702 /* Since we think we have two common symbols, issue a multiple
703 common warning if desired. Note that we only warn if the
704 size is different. If the size is the same, we simply let
705 the old symbol override the new one as normally happens with
706 symbols defined in dynamic objects. */
707
708 if (! ((*info->callbacks->multiple_common)
709 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
710 h->size, abfd, bfd_link_hash_common, sym->st_size)))
711 return false;
712
713 if (sym->st_size > h->size)
714 h->size = sym->st_size;
715
716 *size_change_ok = true;
717 }
718
719 /* If we are looking at a dynamic object, and we have found a
720 definition, we need to see if the symbol was already defined by
721 some other object. If so, we want to use the existing
722 definition, and we do not want to report a multiple symbol
723 definition error; we do this by clobbering *PSEC to be
724 bfd_und_section_ptr.
725
726 We treat a common symbol as a definition if the symbol in the
727 shared library is a function, since common symbols always
728 represent variables; this can cause confusion in principle, but
729 any such confusion would seem to indicate an erroneous program or
730 shared library. We also permit a common symbol in a regular
731 object to override a weak symbol in a shared object.
732
733 We prefer a non-weak definition in a shared library to a weak
734 definition in the executable unless it comes from a DT_NEEDED
735 entry of a shared object, in which case, the DT_NEEDED entry
736 may not be required at the run time. */
737
738 if (newdyn
739 && newdef
740 && (olddef
741 || (h->root.type == bfd_link_hash_common
742 && (bind == STB_WEAK
743 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
744 && (h->root.type != bfd_link_hash_defweak
745 || dt_needed
746 || bind == STB_WEAK))
747 {
748 *override = true;
749 newdef = false;
750 newdyncommon = false;
751
752 *psec = sec = bfd_und_section_ptr;
753 *size_change_ok = true;
754
755 /* If we get here when the old symbol is a common symbol, then
756 we are explicitly letting it override a weak symbol or
757 function in a dynamic object, and we don't want to warn about
758 a type change. If the old symbol is a defined symbol, a type
759 change warning may still be appropriate. */
760
761 if (h->root.type == bfd_link_hash_common)
762 *type_change_ok = true;
763 }
764
765 /* Handle the special case of an old common symbol merging with a
766 new symbol which looks like a common symbol in a shared object.
767 We change *PSEC and *PVALUE to make the new symbol look like a
768 common symbol, and let _bfd_generic_link_add_one_symbol will do
769 the right thing. */
770
771 if (newdyncommon
772 && h->root.type == bfd_link_hash_common)
773 {
774 *override = true;
775 newdef = false;
776 newdyncommon = false;
777 *pvalue = sym->st_size;
778 *psec = sec = bfd_com_section_ptr;
779 *size_change_ok = true;
780 }
781
782 /* If the old symbol is from a dynamic object, and the new symbol is
783 a definition which is not from a dynamic object, then the new
784 symbol overrides the old symbol. Symbols from regular files
785 always take precedence over symbols from dynamic objects, even if
786 they are defined after the dynamic object in the link.
787
788 As above, we again permit a common symbol in a regular object to
789 override a definition in a shared object if the shared object
790 symbol is a function or is weak.
791
792 As above, we permit a non-weak definition in a shared object to
793 override a weak definition in a regular object. */
794
795 if (! newdyn
796 && (newdef
797 || (bfd_is_com_section (sec)
798 && (h->root.type == bfd_link_hash_defweak
799 || h->type == STT_FUNC)))
800 && olddyn
801 && olddef
802 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
803 && (bind != STB_WEAK
804 || h->root.type == bfd_link_hash_defweak))
805 {
806 /* Change the hash table entry to undefined, and let
807 _bfd_generic_link_add_one_symbol do the right thing with the
808 new definition. */
809
810 h->root.type = bfd_link_hash_undefined;
811 h->root.u.undef.abfd = h->root.u.def.section->owner;
812 *size_change_ok = true;
813
814 olddef = false;
815 olddyncommon = false;
816
817 /* We again permit a type change when a common symbol may be
818 overriding a function. */
819
820 if (bfd_is_com_section (sec))
821 *type_change_ok = true;
822
823 /* This union may have been set to be non-NULL when this symbol
824 was seen in a dynamic object. We must force the union to be
825 NULL, so that it is correct for a regular symbol. */
826
827 h->verinfo.vertree = NULL;
828
829 /* In this special case, if H is the target of an indirection,
830 we want the caller to frob with H rather than with the
831 indirect symbol. That will permit the caller to redefine the
832 target of the indirection, rather than the indirect symbol
833 itself. FIXME: This will break the -y option if we store a
834 symbol with a different name. */
835 *sym_hash = h;
836 }
837
838 /* Handle the special case of a new common symbol merging with an
839 old symbol that looks like it might be a common symbol defined in
840 a shared object. Note that we have already handled the case in
841 which a new common symbol should simply override the definition
842 in the shared library. */
843
844 if (! newdyn
845 && bfd_is_com_section (sec)
846 && olddyncommon)
847 {
848 /* It would be best if we could set the hash table entry to a
849 common symbol, but we don't know what to use for the section
850 or the alignment. */
851 if (! ((*info->callbacks->multiple_common)
852 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
853 h->size, abfd, bfd_link_hash_common, sym->st_size)))
854 return false;
855
856 /* If the predumed common symbol in the dynamic object is
857 larger, pretend that the new symbol has its size. */
858
859 if (h->size > *pvalue)
860 *pvalue = h->size;
861
862 /* FIXME: We no longer know the alignment required by the symbol
863 in the dynamic object, so we just wind up using the one from
864 the regular object. */
865
866 olddef = false;
867 olddyncommon = false;
868
869 h->root.type = bfd_link_hash_undefined;
870 h->root.u.undef.abfd = h->root.u.def.section->owner;
871
872 *size_change_ok = true;
873 *type_change_ok = true;
874
875 h->verinfo.vertree = NULL;
876 }
877
878 /* Handle the special case of a weak definition in a regular object
879 followed by a non-weak definition in a shared object. In this
880 case, we prefer the definition in the shared object unless it
881 comes from a DT_NEEDED entry of a shared object, in which case,
882 the DT_NEEDED entry may not be required at the run time. */
883 if (olddef
884 && ! dt_needed
885 && h->root.type == bfd_link_hash_defweak
886 && newdef
887 && newdyn
888 && bind != STB_WEAK)
889 {
890 /* To make this work we have to frob the flags so that the rest
891 of the code does not think we are using the regular
892 definition. */
893 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
894 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
895 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
896 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
897 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
898 | ELF_LINK_HASH_DEF_DYNAMIC);
899
900 /* If H is the target of an indirection, we want the caller to
901 use H rather than the indirect symbol. Otherwise if we are
902 defining a new indirect symbol we will wind up attaching it
903 to the entry we are overriding. */
904 *sym_hash = h;
905 }
906
907 /* Handle the special case of a non-weak definition in a shared
908 object followed by a weak definition in a regular object. In
909 this case we prefer to definition in the shared object. To make
910 this work we have to tell the caller to not treat the new symbol
911 as a definition. */
912 if (olddef
913 && olddyn
914 && h->root.type != bfd_link_hash_defweak
915 && newdef
916 && ! newdyn
917 && bind == STB_WEAK)
918 *override = true;
919
920 return true;
921 }
922
923 /* This function is called to create an indirect symbol from the
924 default for the symbol with the default version if needed. The
925 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
926 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
927 indicates if it comes from a DT_NEEDED entry of a shared object. */
928
929 static boolean
930 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
931 dynsym, override, dt_needed)
932 bfd *abfd;
933 struct bfd_link_info *info;
934 struct elf_link_hash_entry *h;
935 const char *name;
936 Elf_Internal_Sym *sym;
937 asection **sec;
938 bfd_vma *value;
939 boolean *dynsym;
940 boolean override;
941 boolean dt_needed;
942 {
943 boolean type_change_ok;
944 boolean size_change_ok;
945 char *shortname;
946 struct elf_link_hash_entry *hi;
947 struct elf_backend_data *bed;
948 boolean collect;
949 boolean dynamic;
950 char *p;
951
952 /* If this symbol has a version, and it is the default version, we
953 create an indirect symbol from the default name to the fully
954 decorated name. This will cause external references which do not
955 specify a version to be bound to this version of the symbol. */
956 p = strchr (name, ELF_VER_CHR);
957 if (p == NULL || p[1] != ELF_VER_CHR)
958 return true;
959
960 if (override)
961 {
962 /* We are overridden by an old defition. We need to check if we
963 need to crreate the indirect symbol from the default name. */
964 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
965 false, false);
966 BFD_ASSERT (hi != NULL);
967 if (hi == h)
968 return true;
969 while (hi->root.type == bfd_link_hash_indirect
970 || hi->root.type == bfd_link_hash_warning)
971 {
972 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
973 if (hi == h)
974 return true;
975 }
976 }
977
978 bed = get_elf_backend_data (abfd);
979 collect = bed->collect;
980 dynamic = (abfd->flags & DYNAMIC) != 0;
981
982 shortname = bfd_hash_allocate (&info->hash->table,
983 (size_t) (p - name + 1));
984 if (shortname == NULL)
985 return false;
986 strncpy (shortname, name, (size_t) (p - name));
987 shortname [p - name] = '\0';
988
989 /* We are going to create a new symbol. Merge it with any existing
990 symbol with this name. For the purposes of the merge, act as
991 though we were defining the symbol we just defined, although we
992 actually going to define an indirect symbol. */
993 type_change_ok = false;
994 size_change_ok = false;
995 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
996 &hi, &override, &type_change_ok,
997 &size_change_ok, dt_needed))
998 return false;
999
1000 if (! override)
1001 {
1002 if (! (_bfd_generic_link_add_one_symbol
1003 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1004 (bfd_vma) 0, name, false, collect,
1005 (struct bfd_link_hash_entry **) &hi)))
1006 return false;
1007 }
1008 else
1009 {
1010 /* In this case the symbol named SHORTNAME is overriding the
1011 indirect symbol we want to add. We were planning on making
1012 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1013 is the name without a version. NAME is the fully versioned
1014 name, and it is the default version.
1015
1016 Overriding means that we already saw a definition for the
1017 symbol SHORTNAME in a regular object, and it is overriding
1018 the symbol defined in the dynamic object.
1019
1020 When this happens, we actually want to change NAME, the
1021 symbol we just added, to refer to SHORTNAME. This will cause
1022 references to NAME in the shared object to become references
1023 to SHORTNAME in the regular object. This is what we expect
1024 when we override a function in a shared object: that the
1025 references in the shared object will be mapped to the
1026 definition in the regular object. */
1027
1028 while (hi->root.type == bfd_link_hash_indirect
1029 || hi->root.type == bfd_link_hash_warning)
1030 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1031
1032 h->root.type = bfd_link_hash_indirect;
1033 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1034 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1035 {
1036 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1037 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1038 if (hi->elf_link_hash_flags
1039 & (ELF_LINK_HASH_REF_REGULAR
1040 | ELF_LINK_HASH_DEF_REGULAR))
1041 {
1042 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1043 return false;
1044 }
1045 }
1046
1047 /* Now set HI to H, so that the following code will set the
1048 other fields correctly. */
1049 hi = h;
1050 }
1051
1052 /* If there is a duplicate definition somewhere, then HI may not
1053 point to an indirect symbol. We will have reported an error to
1054 the user in that case. */
1055
1056 if (hi->root.type == bfd_link_hash_indirect)
1057 {
1058 struct elf_link_hash_entry *ht;
1059
1060 /* If the symbol became indirect, then we assume that we have
1061 not seen a definition before. */
1062 BFD_ASSERT ((hi->elf_link_hash_flags
1063 & (ELF_LINK_HASH_DEF_DYNAMIC
1064 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1065
1066 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1067 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1068
1069 /* See if the new flags lead us to realize that the symbol must
1070 be dynamic. */
1071 if (! *dynsym)
1072 {
1073 if (! dynamic)
1074 {
1075 if (info->shared
1076 || ((hi->elf_link_hash_flags
1077 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1078 *dynsym = true;
1079 }
1080 else
1081 {
1082 if ((hi->elf_link_hash_flags
1083 & ELF_LINK_HASH_REF_REGULAR) != 0)
1084 *dynsym = true;
1085 }
1086 }
1087 }
1088
1089 /* We also need to define an indirection from the nondefault version
1090 of the symbol. */
1091
1092 shortname = bfd_hash_allocate (&info->hash->table, strlen (name));
1093 if (shortname == NULL)
1094 return false;
1095 strncpy (shortname, name, (size_t) (p - name));
1096 strcpy (shortname + (p - name), p + 1);
1097
1098 /* Once again, merge with any existing symbol. */
1099 type_change_ok = false;
1100 size_change_ok = false;
1101 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1102 &hi, &override, &type_change_ok,
1103 &size_change_ok, dt_needed))
1104 return false;
1105
1106 if (override)
1107 {
1108 /* Here SHORTNAME is a versioned name, so we don't expect to see
1109 the type of override we do in the case above. */
1110 (*_bfd_error_handler)
1111 (_("%s: warning: unexpected redefinition of `%s'"),
1112 bfd_archive_filename (abfd), shortname);
1113 }
1114 else
1115 {
1116 if (! (_bfd_generic_link_add_one_symbol
1117 (info, abfd, shortname, BSF_INDIRECT,
1118 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1119 collect, (struct bfd_link_hash_entry **) &hi)))
1120 return false;
1121
1122 /* If there is a duplicate definition somewhere, then HI may not
1123 point to an indirect symbol. We will have reported an error
1124 to the user in that case. */
1125
1126 if (hi->root.type == bfd_link_hash_indirect)
1127 {
1128 /* If the symbol became indirect, then we assume that we have
1129 not seen a definition before. */
1130 BFD_ASSERT ((hi->elf_link_hash_flags
1131 & (ELF_LINK_HASH_DEF_DYNAMIC
1132 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1133
1134 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1135
1136 /* See if the new flags lead us to realize that the symbol
1137 must be dynamic. */
1138 if (! *dynsym)
1139 {
1140 if (! dynamic)
1141 {
1142 if (info->shared
1143 || ((hi->elf_link_hash_flags
1144 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1145 *dynsym = true;
1146 }
1147 else
1148 {
1149 if ((hi->elf_link_hash_flags
1150 & ELF_LINK_HASH_REF_REGULAR) != 0)
1151 *dynsym = true;
1152 }
1153 }
1154 }
1155 }
1156
1157 return true;
1158 }
1159
1160 /* Add symbols from an ELF object file to the linker hash table. */
1161
1162 static boolean
1163 elf_link_add_object_symbols (abfd, info)
1164 bfd *abfd;
1165 struct bfd_link_info *info;
1166 {
1167 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1168 const Elf_Internal_Sym *,
1169 const char **, flagword *,
1170 asection **, bfd_vma *));
1171 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1172 asection *, const Elf_Internal_Rela *));
1173 boolean collect;
1174 Elf_Internal_Shdr *hdr;
1175 Elf_Internal_Shdr *shndx_hdr;
1176 bfd_size_type symcount;
1177 bfd_size_type extsymcount;
1178 bfd_size_type extsymoff;
1179 Elf_External_Sym *buf = NULL;
1180 Elf_External_Sym_Shndx *shndx_buf = NULL;
1181 Elf_External_Sym_Shndx *shndx;
1182 struct elf_link_hash_entry **sym_hash;
1183 boolean dynamic;
1184 Elf_External_Versym *extversym = NULL;
1185 Elf_External_Versym *ever;
1186 Elf_External_Dyn *dynbuf = NULL;
1187 struct elf_link_hash_entry *weaks;
1188 Elf_External_Sym *esym;
1189 Elf_External_Sym *esymend;
1190 struct elf_backend_data *bed;
1191 boolean dt_needed;
1192 struct elf_link_hash_table * hash_table;
1193 file_ptr pos;
1194 bfd_size_type amt;
1195
1196 hash_table = elf_hash_table (info);
1197
1198 bed = get_elf_backend_data (abfd);
1199 add_symbol_hook = bed->elf_add_symbol_hook;
1200 collect = bed->collect;
1201
1202 if ((abfd->flags & DYNAMIC) == 0)
1203 dynamic = false;
1204 else
1205 {
1206 dynamic = true;
1207
1208 /* You can't use -r against a dynamic object. Also, there's no
1209 hope of using a dynamic object which does not exactly match
1210 the format of the output file. */
1211 if (info->relocateable || info->hash->creator != abfd->xvec)
1212 {
1213 bfd_set_error (bfd_error_invalid_operation);
1214 goto error_return;
1215 }
1216 }
1217
1218 /* As a GNU extension, any input sections which are named
1219 .gnu.warning.SYMBOL are treated as warning symbols for the given
1220 symbol. This differs from .gnu.warning sections, which generate
1221 warnings when they are included in an output file. */
1222 if (! info->shared)
1223 {
1224 asection *s;
1225
1226 for (s = abfd->sections; s != NULL; s = s->next)
1227 {
1228 const char *name;
1229
1230 name = bfd_get_section_name (abfd, s);
1231 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1232 {
1233 char *msg;
1234 bfd_size_type sz;
1235
1236 name += sizeof ".gnu.warning." - 1;
1237
1238 /* If this is a shared object, then look up the symbol
1239 in the hash table. If it is there, and it is already
1240 been defined, then we will not be using the entry
1241 from this shared object, so we don't need to warn.
1242 FIXME: If we see the definition in a regular object
1243 later on, we will warn, but we shouldn't. The only
1244 fix is to keep track of what warnings we are supposed
1245 to emit, and then handle them all at the end of the
1246 link. */
1247 if (dynamic && abfd->xvec == info->hash->creator)
1248 {
1249 struct elf_link_hash_entry *h;
1250
1251 h = elf_link_hash_lookup (hash_table, name,
1252 false, false, true);
1253
1254 /* FIXME: What about bfd_link_hash_common? */
1255 if (h != NULL
1256 && (h->root.type == bfd_link_hash_defined
1257 || h->root.type == bfd_link_hash_defweak))
1258 {
1259 /* We don't want to issue this warning. Clobber
1260 the section size so that the warning does not
1261 get copied into the output file. */
1262 s->_raw_size = 0;
1263 continue;
1264 }
1265 }
1266
1267 sz = bfd_section_size (abfd, s);
1268 msg = (char *) bfd_alloc (abfd, sz + 1);
1269 if (msg == NULL)
1270 goto error_return;
1271
1272 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1273 goto error_return;
1274
1275 msg[sz] = '\0';
1276
1277 if (! (_bfd_generic_link_add_one_symbol
1278 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1279 false, collect, (struct bfd_link_hash_entry **) NULL)))
1280 goto error_return;
1281
1282 if (! info->relocateable)
1283 {
1284 /* Clobber the section size so that the warning does
1285 not get copied into the output file. */
1286 s->_raw_size = 0;
1287 }
1288 }
1289 }
1290 }
1291
1292 /* If this is a dynamic object, we always link against the .dynsym
1293 symbol table, not the .symtab symbol table. The dynamic linker
1294 will only see the .dynsym symbol table, so there is no reason to
1295 look at .symtab for a dynamic object. */
1296
1297 if (! dynamic || elf_dynsymtab (abfd) == 0)
1298 {
1299 hdr = &elf_tdata (abfd)->symtab_hdr;
1300 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1301 }
1302 else
1303 {
1304 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1305 shndx_hdr = NULL;
1306 }
1307
1308 if (dynamic)
1309 {
1310 /* Read in any version definitions. */
1311
1312 if (! _bfd_elf_slurp_version_tables (abfd))
1313 goto error_return;
1314
1315 /* Read in the symbol versions, but don't bother to convert them
1316 to internal format. */
1317 if (elf_dynversym (abfd) != 0)
1318 {
1319 Elf_Internal_Shdr *versymhdr;
1320
1321 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1322 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1323 if (extversym == NULL)
1324 goto error_return;
1325 amt = versymhdr->sh_size;
1326 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1327 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1328 goto error_return;
1329 }
1330 }
1331
1332 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1333
1334 /* The sh_info field of the symtab header tells us where the
1335 external symbols start. We don't care about the local symbols at
1336 this point. */
1337 if (elf_bad_symtab (abfd))
1338 {
1339 extsymcount = symcount;
1340 extsymoff = 0;
1341 }
1342 else
1343 {
1344 extsymcount = symcount - hdr->sh_info;
1345 extsymoff = hdr->sh_info;
1346 }
1347
1348 amt = extsymcount * sizeof (Elf_External_Sym);
1349 buf = (Elf_External_Sym *) bfd_malloc (amt);
1350 if (buf == NULL && extsymcount != 0)
1351 goto error_return;
1352
1353 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1354 {
1355 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1356 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
1357 if (shndx_buf == NULL && extsymcount != 0)
1358 goto error_return;
1359 }
1360
1361 /* We store a pointer to the hash table entry for each external
1362 symbol. */
1363 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1364 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1365 if (sym_hash == NULL)
1366 goto error_return;
1367 elf_sym_hashes (abfd) = sym_hash;
1368
1369 dt_needed = false;
1370
1371 if (! dynamic)
1372 {
1373 /* If we are creating a shared library, create all the dynamic
1374 sections immediately. We need to attach them to something,
1375 so we attach them to this BFD, provided it is the right
1376 format. FIXME: If there are no input BFD's of the same
1377 format as the output, we can't make a shared library. */
1378 if (info->shared
1379 && is_elf_hash_table (info)
1380 && ! hash_table->dynamic_sections_created
1381 && abfd->xvec == info->hash->creator)
1382 {
1383 if (! elf_link_create_dynamic_sections (abfd, info))
1384 goto error_return;
1385 }
1386 }
1387 else if (! is_elf_hash_table (info))
1388 goto error_return;
1389 else
1390 {
1391 asection *s;
1392 boolean add_needed;
1393 const char *name;
1394 bfd_size_type oldsize;
1395 bfd_size_type strindex;
1396
1397 /* Find the name to use in a DT_NEEDED entry that refers to this
1398 object. If the object has a DT_SONAME entry, we use it.
1399 Otherwise, if the generic linker stuck something in
1400 elf_dt_name, we use that. Otherwise, we just use the file
1401 name. If the generic linker put a null string into
1402 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1403 there is a DT_SONAME entry. */
1404 add_needed = true;
1405 name = bfd_get_filename (abfd);
1406 if (elf_dt_name (abfd) != NULL)
1407 {
1408 name = elf_dt_name (abfd);
1409 if (*name == '\0')
1410 {
1411 if (elf_dt_soname (abfd) != NULL)
1412 dt_needed = true;
1413
1414 add_needed = false;
1415 }
1416 }
1417 s = bfd_get_section_by_name (abfd, ".dynamic");
1418 if (s != NULL)
1419 {
1420 Elf_External_Dyn *extdyn;
1421 Elf_External_Dyn *extdynend;
1422 int elfsec;
1423 unsigned long shlink;
1424 int rpath;
1425 int runpath;
1426
1427 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1428 if (dynbuf == NULL)
1429 goto error_return;
1430
1431 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1432 (file_ptr) 0, s->_raw_size))
1433 goto error_return;
1434
1435 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1436 if (elfsec == -1)
1437 goto error_return;
1438 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1439
1440 {
1441 /* The shared libraries distributed with hpux11 have a bogus
1442 sh_link field for the ".dynamic" section. This code detects
1443 when SHLINK refers to a section that is not a string table
1444 and tries to find the string table for the ".dynsym" section
1445 instead. */
1446 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink];
1447 if (shdr->sh_type != SHT_STRTAB)
1448 {
1449 asection *ds = bfd_get_section_by_name (abfd, ".dynsym");
1450 int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds);
1451 if (elfdsec == -1)
1452 goto error_return;
1453 shlink = elf_elfsections (abfd)[elfdsec]->sh_link;
1454 }
1455 }
1456
1457 extdyn = dynbuf;
1458 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1459 rpath = 0;
1460 runpath = 0;
1461 for (; extdyn < extdynend; extdyn++)
1462 {
1463 Elf_Internal_Dyn dyn;
1464
1465 elf_swap_dyn_in (abfd, extdyn, &dyn);
1466 if (dyn.d_tag == DT_SONAME)
1467 {
1468 unsigned int tagv = dyn.d_un.d_val;
1469 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1470 if (name == NULL)
1471 goto error_return;
1472 }
1473 if (dyn.d_tag == DT_NEEDED)
1474 {
1475 struct bfd_link_needed_list *n, **pn;
1476 char *fnm, *anm;
1477 unsigned int tagv = dyn.d_un.d_val;
1478
1479 amt = sizeof (struct bfd_link_needed_list);
1480 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1481 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1482 if (n == NULL || fnm == NULL)
1483 goto error_return;
1484 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1485 if (anm == NULL)
1486 goto error_return;
1487 strcpy (anm, fnm);
1488 n->name = anm;
1489 n->by = abfd;
1490 n->next = NULL;
1491 for (pn = & hash_table->needed;
1492 *pn != NULL;
1493 pn = &(*pn)->next)
1494 ;
1495 *pn = n;
1496 }
1497 if (dyn.d_tag == DT_RUNPATH)
1498 {
1499 struct bfd_link_needed_list *n, **pn;
1500 char *fnm, *anm;
1501 unsigned int tagv = dyn.d_un.d_val;
1502
1503 /* When we see DT_RPATH before DT_RUNPATH, we have
1504 to clear runpath. Do _NOT_ bfd_release, as that
1505 frees all more recently bfd_alloc'd blocks as
1506 well. */
1507 if (rpath && hash_table->runpath)
1508 hash_table->runpath = NULL;
1509
1510 amt = sizeof (struct bfd_link_needed_list);
1511 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1512 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1513 if (n == NULL || fnm == NULL)
1514 goto error_return;
1515 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1516 if (anm == NULL)
1517 goto error_return;
1518 strcpy (anm, fnm);
1519 n->name = anm;
1520 n->by = abfd;
1521 n->next = NULL;
1522 for (pn = & hash_table->runpath;
1523 *pn != NULL;
1524 pn = &(*pn)->next)
1525 ;
1526 *pn = n;
1527 runpath = 1;
1528 rpath = 0;
1529 }
1530 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1531 if (!runpath && dyn.d_tag == DT_RPATH)
1532 {
1533 struct bfd_link_needed_list *n, **pn;
1534 char *fnm, *anm;
1535 unsigned int tagv = dyn.d_un.d_val;
1536
1537 amt = sizeof (struct bfd_link_needed_list);
1538 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1539 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1540 if (n == NULL || fnm == NULL)
1541 goto error_return;
1542 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1543 if (anm == NULL)
1544 goto error_return;
1545 strcpy (anm, fnm);
1546 n->name = anm;
1547 n->by = abfd;
1548 n->next = NULL;
1549 for (pn = & hash_table->runpath;
1550 *pn != NULL;
1551 pn = &(*pn)->next)
1552 ;
1553 *pn = n;
1554 rpath = 1;
1555 }
1556 }
1557
1558 free (dynbuf);
1559 dynbuf = NULL;
1560 }
1561
1562 /* We do not want to include any of the sections in a dynamic
1563 object in the output file. We hack by simply clobbering the
1564 list of sections in the BFD. This could be handled more
1565 cleanly by, say, a new section flag; the existing
1566 SEC_NEVER_LOAD flag is not the one we want, because that one
1567 still implies that the section takes up space in the output
1568 file. */
1569 bfd_section_list_clear (abfd);
1570
1571 /* If this is the first dynamic object found in the link, create
1572 the special sections required for dynamic linking. */
1573 if (! hash_table->dynamic_sections_created)
1574 if (! elf_link_create_dynamic_sections (abfd, info))
1575 goto error_return;
1576
1577 if (add_needed)
1578 {
1579 /* Add a DT_NEEDED entry for this dynamic object. */
1580 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1581 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1582 if (strindex == (bfd_size_type) -1)
1583 goto error_return;
1584
1585 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1586 {
1587 asection *sdyn;
1588 Elf_External_Dyn *dyncon, *dynconend;
1589
1590 /* The hash table size did not change, which means that
1591 the dynamic object name was already entered. If we
1592 have already included this dynamic object in the
1593 link, just ignore it. There is no reason to include
1594 a particular dynamic object more than once. */
1595 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1596 BFD_ASSERT (sdyn != NULL);
1597
1598 dyncon = (Elf_External_Dyn *) sdyn->contents;
1599 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1600 sdyn->_raw_size);
1601 for (; dyncon < dynconend; dyncon++)
1602 {
1603 Elf_Internal_Dyn dyn;
1604
1605 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1606 if (dyn.d_tag == DT_NEEDED
1607 && dyn.d_un.d_val == strindex)
1608 {
1609 if (buf != NULL)
1610 free (buf);
1611 if (extversym != NULL)
1612 free (extversym);
1613 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1614 return true;
1615 }
1616 }
1617 }
1618
1619 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1620 goto error_return;
1621 }
1622
1623 /* Save the SONAME, if there is one, because sometimes the
1624 linker emulation code will need to know it. */
1625 if (*name == '\0')
1626 name = basename (bfd_get_filename (abfd));
1627 elf_dt_name (abfd) = name;
1628 }
1629
1630 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
1631 amt = extsymcount * sizeof (Elf_External_Sym);
1632 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1633 || bfd_bread ((PTR) buf, amt, abfd) != amt)
1634 goto error_return;
1635
1636 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1637 {
1638 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1639 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
1640 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1641 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
1642 goto error_return;
1643 }
1644
1645 weaks = NULL;
1646
1647 ever = extversym != NULL ? extversym + extsymoff : NULL;
1648 esymend = buf + extsymcount;
1649 for (esym = buf, shndx = shndx_buf;
1650 esym < esymend;
1651 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL),
1652 shndx = (shndx != NULL ? shndx + 1 : NULL))
1653 {
1654 Elf_Internal_Sym sym;
1655 int bind;
1656 bfd_vma value;
1657 asection *sec;
1658 flagword flags;
1659 const char *name;
1660 struct elf_link_hash_entry *h;
1661 boolean definition;
1662 boolean size_change_ok, type_change_ok;
1663 boolean new_weakdef;
1664 unsigned int old_alignment;
1665 boolean override;
1666
1667 override = false;
1668
1669 elf_swap_symbol_in (abfd, esym, shndx, &sym);
1670
1671 flags = BSF_NO_FLAGS;
1672 sec = NULL;
1673 value = sym.st_value;
1674 *sym_hash = NULL;
1675
1676 bind = ELF_ST_BIND (sym.st_info);
1677 if (bind == STB_LOCAL)
1678 {
1679 /* This should be impossible, since ELF requires that all
1680 global symbols follow all local symbols, and that sh_info
1681 point to the first global symbol. Unfortunatealy, Irix 5
1682 screws this up. */
1683 continue;
1684 }
1685 else if (bind == STB_GLOBAL)
1686 {
1687 if (sym.st_shndx != SHN_UNDEF
1688 && sym.st_shndx != SHN_COMMON)
1689 flags = BSF_GLOBAL;
1690 }
1691 else if (bind == STB_WEAK)
1692 flags = BSF_WEAK;
1693 else
1694 {
1695 /* Leave it up to the processor backend. */
1696 }
1697
1698 if (sym.st_shndx == SHN_UNDEF)
1699 sec = bfd_und_section_ptr;
1700 else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE)
1701 {
1702 sec = section_from_elf_index (abfd, sym.st_shndx);
1703 if (sec == NULL)
1704 sec = bfd_abs_section_ptr;
1705 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1706 value -= sec->vma;
1707 }
1708 else if (sym.st_shndx == SHN_ABS)
1709 sec = bfd_abs_section_ptr;
1710 else if (sym.st_shndx == SHN_COMMON)
1711 {
1712 sec = bfd_com_section_ptr;
1713 /* What ELF calls the size we call the value. What ELF
1714 calls the value we call the alignment. */
1715 value = sym.st_size;
1716 }
1717 else
1718 {
1719 /* Leave it up to the processor backend. */
1720 }
1721
1722 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1723 if (name == (const char *) NULL)
1724 goto error_return;
1725
1726 if (add_symbol_hook)
1727 {
1728 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1729 &value))
1730 goto error_return;
1731
1732 /* The hook function sets the name to NULL if this symbol
1733 should be skipped for some reason. */
1734 if (name == (const char *) NULL)
1735 continue;
1736 }
1737
1738 /* Sanity check that all possibilities were handled. */
1739 if (sec == (asection *) NULL)
1740 {
1741 bfd_set_error (bfd_error_bad_value);
1742 goto error_return;
1743 }
1744
1745 if (bfd_is_und_section (sec)
1746 || bfd_is_com_section (sec))
1747 definition = false;
1748 else
1749 definition = true;
1750
1751 size_change_ok = false;
1752 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1753 old_alignment = 0;
1754 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1755 {
1756 Elf_Internal_Versym iver;
1757 unsigned int vernum = 0;
1758
1759 if (ever != NULL)
1760 {
1761 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1762 vernum = iver.vs_vers & VERSYM_VERSION;
1763
1764 /* If this is a hidden symbol, or if it is not version
1765 1, we append the version name to the symbol name.
1766 However, we do not modify a non-hidden absolute
1767 symbol, because it might be the version symbol
1768 itself. FIXME: What if it isn't? */
1769 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1770 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1771 {
1772 const char *verstr;
1773 unsigned int namelen;
1774 bfd_size_type newlen;
1775 char *newname, *p;
1776
1777 if (sym.st_shndx != SHN_UNDEF)
1778 {
1779 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1780 {
1781 (*_bfd_error_handler)
1782 (_("%s: %s: invalid version %u (max %d)"),
1783 bfd_archive_filename (abfd), name, vernum,
1784 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1785 bfd_set_error (bfd_error_bad_value);
1786 goto error_return;
1787 }
1788 else if (vernum > 1)
1789 verstr =
1790 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1791 else
1792 verstr = "";
1793 }
1794 else
1795 {
1796 /* We cannot simply test for the number of
1797 entries in the VERNEED section since the
1798 numbers for the needed versions do not start
1799 at 0. */
1800 Elf_Internal_Verneed *t;
1801
1802 verstr = NULL;
1803 for (t = elf_tdata (abfd)->verref;
1804 t != NULL;
1805 t = t->vn_nextref)
1806 {
1807 Elf_Internal_Vernaux *a;
1808
1809 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1810 {
1811 if (a->vna_other == vernum)
1812 {
1813 verstr = a->vna_nodename;
1814 break;
1815 }
1816 }
1817 if (a != NULL)
1818 break;
1819 }
1820 if (verstr == NULL)
1821 {
1822 (*_bfd_error_handler)
1823 (_("%s: %s: invalid needed version %d"),
1824 bfd_archive_filename (abfd), name, vernum);
1825 bfd_set_error (bfd_error_bad_value);
1826 goto error_return;
1827 }
1828 }
1829
1830 namelen = strlen (name);
1831 newlen = namelen + strlen (verstr) + 2;
1832 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1833 ++newlen;
1834
1835 newname = (char *) bfd_alloc (abfd, newlen);
1836 if (newname == NULL)
1837 goto error_return;
1838 strcpy (newname, name);
1839 p = newname + namelen;
1840 *p++ = ELF_VER_CHR;
1841 /* If this is a defined non-hidden version symbol,
1842 we add another @ to the name. This indicates the
1843 default version of the symbol. */
1844 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1845 && sym.st_shndx != SHN_UNDEF)
1846 *p++ = ELF_VER_CHR;
1847 strcpy (p, verstr);
1848
1849 name = newname;
1850 }
1851 }
1852
1853 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1854 sym_hash, &override, &type_change_ok,
1855 &size_change_ok, dt_needed))
1856 goto error_return;
1857
1858 if (override)
1859 definition = false;
1860
1861 h = *sym_hash;
1862 while (h->root.type == bfd_link_hash_indirect
1863 || h->root.type == bfd_link_hash_warning)
1864 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1865
1866 /* Remember the old alignment if this is a common symbol, so
1867 that we don't reduce the alignment later on. We can't
1868 check later, because _bfd_generic_link_add_one_symbol
1869 will set a default for the alignment which we want to
1870 override. */
1871 if (h->root.type == bfd_link_hash_common)
1872 old_alignment = h->root.u.c.p->alignment_power;
1873
1874 if (elf_tdata (abfd)->verdef != NULL
1875 && ! override
1876 && vernum > 1
1877 && definition)
1878 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1879 }
1880
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, name, flags, sec, value, (const char *) NULL,
1883 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1884 goto error_return;
1885
1886 h = *sym_hash;
1887 while (h->root.type == bfd_link_hash_indirect
1888 || h->root.type == bfd_link_hash_warning)
1889 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1890 *sym_hash = h;
1891
1892 new_weakdef = false;
1893 if (dynamic
1894 && definition
1895 && (flags & BSF_WEAK) != 0
1896 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1897 && info->hash->creator->flavour == bfd_target_elf_flavour
1898 && h->weakdef == NULL)
1899 {
1900 /* Keep a list of all weak defined non function symbols from
1901 a dynamic object, using the weakdef field. Later in this
1902 function we will set the weakdef field to the correct
1903 value. We only put non-function symbols from dynamic
1904 objects on this list, because that happens to be the only
1905 time we need to know the normal symbol corresponding to a
1906 weak symbol, and the information is time consuming to
1907 figure out. If the weakdef field is not already NULL,
1908 then this symbol was already defined by some previous
1909 dynamic object, and we will be using that previous
1910 definition anyhow. */
1911
1912 h->weakdef = weaks;
1913 weaks = h;
1914 new_weakdef = true;
1915 }
1916
1917 /* Set the alignment of a common symbol. */
1918 if (sym.st_shndx == SHN_COMMON
1919 && h->root.type == bfd_link_hash_common)
1920 {
1921 unsigned int align;
1922
1923 align = bfd_log2 (sym.st_value);
1924 if (align > old_alignment
1925 /* Permit an alignment power of zero if an alignment of one
1926 is specified and no other alignments have been specified. */
1927 || (sym.st_value == 1 && old_alignment == 0))
1928 h->root.u.c.p->alignment_power = align;
1929 }
1930
1931 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1932 {
1933 int old_flags;
1934 boolean dynsym;
1935 int new_flag;
1936
1937 /* Remember the symbol size and type. */
1938 if (sym.st_size != 0
1939 && (definition || h->size == 0))
1940 {
1941 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1942 (*_bfd_error_handler)
1943 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1944 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1945 bfd_archive_filename (abfd));
1946
1947 h->size = sym.st_size;
1948 }
1949
1950 /* If this is a common symbol, then we always want H->SIZE
1951 to be the size of the common symbol. The code just above
1952 won't fix the size if a common symbol becomes larger. We
1953 don't warn about a size change here, because that is
1954 covered by --warn-common. */
1955 if (h->root.type == bfd_link_hash_common)
1956 h->size = h->root.u.c.size;
1957
1958 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1959 && (definition || h->type == STT_NOTYPE))
1960 {
1961 if (h->type != STT_NOTYPE
1962 && h->type != ELF_ST_TYPE (sym.st_info)
1963 && ! type_change_ok)
1964 (*_bfd_error_handler)
1965 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1966 name, h->type, ELF_ST_TYPE (sym.st_info),
1967 bfd_archive_filename (abfd));
1968
1969 h->type = ELF_ST_TYPE (sym.st_info);
1970 }
1971
1972 /* If st_other has a processor-specific meaning, specific code
1973 might be needed here. */
1974 if (sym.st_other != 0)
1975 {
1976 /* Combine visibilities, using the most constraining one. */
1977 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1978 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1979
1980 if (symvis && (hvis > symvis || hvis == 0))
1981 h->other = sym.st_other;
1982
1983 /* If neither has visibility, use the st_other of the
1984 definition. This is an arbitrary choice, since the
1985 other bits have no general meaning. */
1986 if (!symvis && !hvis
1987 && (definition || h->other == 0))
1988 h->other = sym.st_other;
1989 }
1990
1991 /* Set a flag in the hash table entry indicating the type of
1992 reference or definition we just found. Keep a count of
1993 the number of dynamic symbols we find. A dynamic symbol
1994 is one which is referenced or defined by both a regular
1995 object and a shared object. */
1996 old_flags = h->elf_link_hash_flags;
1997 dynsym = false;
1998 if (! dynamic)
1999 {
2000 if (! definition)
2001 {
2002 new_flag = ELF_LINK_HASH_REF_REGULAR;
2003 if (bind != STB_WEAK)
2004 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
2005 }
2006 else
2007 new_flag = ELF_LINK_HASH_DEF_REGULAR;
2008 if (info->shared
2009 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2010 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
2011 dynsym = true;
2012 }
2013 else
2014 {
2015 if (! definition)
2016 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
2017 else
2018 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
2019 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
2020 | ELF_LINK_HASH_REF_REGULAR)) != 0
2021 || (h->weakdef != NULL
2022 && ! new_weakdef
2023 && h->weakdef->dynindx != -1))
2024 dynsym = true;
2025 }
2026
2027 h->elf_link_hash_flags |= new_flag;
2028
2029 /* Check to see if we need to add an indirect symbol for
2030 the default name. */
2031 if (definition || h->root.type == bfd_link_hash_common)
2032 if (! elf_add_default_symbol (abfd, info, h, name, &sym,
2033 &sec, &value, &dynsym,
2034 override, dt_needed))
2035 goto error_return;
2036
2037 if (dynsym && h->dynindx == -1)
2038 {
2039 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2040 goto error_return;
2041 if (h->weakdef != NULL
2042 && ! new_weakdef
2043 && h->weakdef->dynindx == -1)
2044 {
2045 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2046 goto error_return;
2047 }
2048 }
2049 else if (dynsym && h->dynindx != -1)
2050 /* If the symbol already has a dynamic index, but
2051 visibility says it should not be visible, turn it into
2052 a local symbol. */
2053 switch (ELF_ST_VISIBILITY (h->other))
2054 {
2055 case STV_INTERNAL:
2056 case STV_HIDDEN:
2057 (*bed->elf_backend_hide_symbol) (info, h, true);
2058 break;
2059 }
2060
2061 if (dt_needed && definition
2062 && (h->elf_link_hash_flags
2063 & ELF_LINK_HASH_REF_REGULAR) != 0)
2064 {
2065 bfd_size_type oldsize;
2066 bfd_size_type strindex;
2067
2068 if (! is_elf_hash_table (info))
2069 goto error_return;
2070
2071 /* The symbol from a DT_NEEDED object is referenced from
2072 the regular object to create a dynamic executable. We
2073 have to make sure there is a DT_NEEDED entry for it. */
2074
2075 dt_needed = false;
2076 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2077 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2078 elf_dt_soname (abfd), false);
2079 if (strindex == (bfd_size_type) -1)
2080 goto error_return;
2081
2082 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2083 {
2084 asection *sdyn;
2085 Elf_External_Dyn *dyncon, *dynconend;
2086
2087 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2088 ".dynamic");
2089 BFD_ASSERT (sdyn != NULL);
2090
2091 dyncon = (Elf_External_Dyn *) sdyn->contents;
2092 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2093 sdyn->_raw_size);
2094 for (; dyncon < dynconend; dyncon++)
2095 {
2096 Elf_Internal_Dyn dyn;
2097
2098 elf_swap_dyn_in (hash_table->dynobj,
2099 dyncon, &dyn);
2100 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2101 dyn.d_un.d_val != strindex);
2102 }
2103 }
2104
2105 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2106 goto error_return;
2107 }
2108 }
2109 }
2110
2111 /* Now set the weakdefs field correctly for all the weak defined
2112 symbols we found. The only way to do this is to search all the
2113 symbols. Since we only need the information for non functions in
2114 dynamic objects, that's the only time we actually put anything on
2115 the list WEAKS. We need this information so that if a regular
2116 object refers to a symbol defined weakly in a dynamic object, the
2117 real symbol in the dynamic object is also put in the dynamic
2118 symbols; we also must arrange for both symbols to point to the
2119 same memory location. We could handle the general case of symbol
2120 aliasing, but a general symbol alias can only be generated in
2121 assembler code, handling it correctly would be very time
2122 consuming, and other ELF linkers don't handle general aliasing
2123 either. */
2124 while (weaks != NULL)
2125 {
2126 struct elf_link_hash_entry *hlook;
2127 asection *slook;
2128 bfd_vma vlook;
2129 struct elf_link_hash_entry **hpp;
2130 struct elf_link_hash_entry **hppend;
2131
2132 hlook = weaks;
2133 weaks = hlook->weakdef;
2134 hlook->weakdef = NULL;
2135
2136 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2137 || hlook->root.type == bfd_link_hash_defweak
2138 || hlook->root.type == bfd_link_hash_common
2139 || hlook->root.type == bfd_link_hash_indirect);
2140 slook = hlook->root.u.def.section;
2141 vlook = hlook->root.u.def.value;
2142
2143 hpp = elf_sym_hashes (abfd);
2144 hppend = hpp + extsymcount;
2145 for (; hpp < hppend; hpp++)
2146 {
2147 struct elf_link_hash_entry *h;
2148
2149 h = *hpp;
2150 if (h != NULL && h != hlook
2151 && h->root.type == bfd_link_hash_defined
2152 && h->root.u.def.section == slook
2153 && h->root.u.def.value == vlook)
2154 {
2155 hlook->weakdef = h;
2156
2157 /* If the weak definition is in the list of dynamic
2158 symbols, make sure the real definition is put there
2159 as well. */
2160 if (hlook->dynindx != -1
2161 && h->dynindx == -1)
2162 {
2163 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2164 goto error_return;
2165 }
2166
2167 /* If the real definition is in the list of dynamic
2168 symbols, make sure the weak definition is put there
2169 as well. If we don't do this, then the dynamic
2170 loader might not merge the entries for the real
2171 definition and the weak definition. */
2172 if (h->dynindx != -1
2173 && hlook->dynindx == -1)
2174 {
2175 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2176 goto error_return;
2177 }
2178
2179 break;
2180 }
2181 }
2182 }
2183
2184 if (buf != NULL)
2185 {
2186 free (buf);
2187 buf = NULL;
2188 }
2189
2190 if (extversym != NULL)
2191 {
2192 free (extversym);
2193 extversym = NULL;
2194 }
2195
2196 /* If this object is the same format as the output object, and it is
2197 not a shared library, then let the backend look through the
2198 relocs.
2199
2200 This is required to build global offset table entries and to
2201 arrange for dynamic relocs. It is not required for the
2202 particular common case of linking non PIC code, even when linking
2203 against shared libraries, but unfortunately there is no way of
2204 knowing whether an object file has been compiled PIC or not.
2205 Looking through the relocs is not particularly time consuming.
2206 The problem is that we must either (1) keep the relocs in memory,
2207 which causes the linker to require additional runtime memory or
2208 (2) read the relocs twice from the input file, which wastes time.
2209 This would be a good case for using mmap.
2210
2211 I have no idea how to handle linking PIC code into a file of a
2212 different format. It probably can't be done. */
2213 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2214 if (! dynamic
2215 && abfd->xvec == info->hash->creator
2216 && check_relocs != NULL)
2217 {
2218 asection *o;
2219
2220 for (o = abfd->sections; o != NULL; o = o->next)
2221 {
2222 Elf_Internal_Rela *internal_relocs;
2223 boolean ok;
2224
2225 if ((o->flags & SEC_RELOC) == 0
2226 || o->reloc_count == 0
2227 || ((info->strip == strip_all || info->strip == strip_debugger)
2228 && (o->flags & SEC_DEBUGGING) != 0)
2229 || bfd_is_abs_section (o->output_section))
2230 continue;
2231
2232 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2233 (abfd, o, (PTR) NULL,
2234 (Elf_Internal_Rela *) NULL,
2235 info->keep_memory));
2236 if (internal_relocs == NULL)
2237 goto error_return;
2238
2239 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2240
2241 if (! info->keep_memory)
2242 free (internal_relocs);
2243
2244 if (! ok)
2245 goto error_return;
2246 }
2247 }
2248
2249 /* If this is a non-traditional, non-relocateable link, try to
2250 optimize the handling of the .stab/.stabstr sections. */
2251 if (! dynamic
2252 && ! info->relocateable
2253 && ! info->traditional_format
2254 && info->hash->creator->flavour == bfd_target_elf_flavour
2255 && is_elf_hash_table (info)
2256 && (info->strip != strip_all && info->strip != strip_debugger))
2257 {
2258 asection *stab, *stabstr;
2259
2260 stab = bfd_get_section_by_name (abfd, ".stab");
2261 if (stab != NULL
2262 && (stab->flags & SEC_MERGE) == 0
2263 && !bfd_is_abs_section (stab->output_section))
2264 {
2265 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2266
2267 if (stabstr != NULL)
2268 {
2269 struct bfd_elf_section_data *secdata;
2270
2271 secdata = elf_section_data (stab);
2272 if (! _bfd_link_section_stabs (abfd,
2273 & hash_table->stab_info,
2274 stab, stabstr,
2275 &secdata->sec_info))
2276 goto error_return;
2277 if (secdata->sec_info)
2278 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2279 }
2280 }
2281 }
2282
2283 if (! info->relocateable && ! dynamic
2284 && is_elf_hash_table (info))
2285 {
2286 asection *s;
2287
2288 for (s = abfd->sections; s != NULL; s = s->next)
2289 if ((s->flags & SEC_MERGE) != 0
2290 && !bfd_is_abs_section (s->output_section))
2291 {
2292 struct bfd_elf_section_data *secdata;
2293
2294 secdata = elf_section_data (s);
2295 if (! _bfd_merge_section (abfd,
2296 & hash_table->merge_info,
2297 s, &secdata->sec_info))
2298 goto error_return;
2299 else if (secdata->sec_info)
2300 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2301 }
2302 }
2303
2304 return true;
2305
2306 error_return:
2307 if (buf != NULL)
2308 free (buf);
2309 if (dynbuf != NULL)
2310 free (dynbuf);
2311 if (extversym != NULL)
2312 free (extversym);
2313 return false;
2314 }
2315
2316 /* Create some sections which will be filled in with dynamic linking
2317 information. ABFD is an input file which requires dynamic sections
2318 to be created. The dynamic sections take up virtual memory space
2319 when the final executable is run, so we need to create them before
2320 addresses are assigned to the output sections. We work out the
2321 actual contents and size of these sections later. */
2322
2323 boolean
2324 elf_link_create_dynamic_sections (abfd, info)
2325 bfd *abfd;
2326 struct bfd_link_info *info;
2327 {
2328 flagword flags;
2329 register asection *s;
2330 struct elf_link_hash_entry *h;
2331 struct elf_backend_data *bed;
2332
2333 if (! is_elf_hash_table (info))
2334 return false;
2335
2336 if (elf_hash_table (info)->dynamic_sections_created)
2337 return true;
2338
2339 /* Make sure that all dynamic sections use the same input BFD. */
2340 if (elf_hash_table (info)->dynobj == NULL)
2341 elf_hash_table (info)->dynobj = abfd;
2342 else
2343 abfd = elf_hash_table (info)->dynobj;
2344
2345 /* Note that we set the SEC_IN_MEMORY flag for all of these
2346 sections. */
2347 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2348 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2349
2350 /* A dynamically linked executable has a .interp section, but a
2351 shared library does not. */
2352 if (! info->shared)
2353 {
2354 s = bfd_make_section (abfd, ".interp");
2355 if (s == NULL
2356 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2357 return false;
2358 }
2359
2360 if (! info->traditional_format
2361 && info->hash->creator->flavour == bfd_target_elf_flavour)
2362 {
2363 s = bfd_make_section (abfd, ".eh_frame_hdr");
2364 if (s == NULL
2365 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2366 || ! bfd_set_section_alignment (abfd, s, 2))
2367 return false;
2368 }
2369
2370 /* Create sections to hold version informations. These are removed
2371 if they are not needed. */
2372 s = bfd_make_section (abfd, ".gnu.version_d");
2373 if (s == NULL
2374 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2375 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2376 return false;
2377
2378 s = bfd_make_section (abfd, ".gnu.version");
2379 if (s == NULL
2380 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2381 || ! bfd_set_section_alignment (abfd, s, 1))
2382 return false;
2383
2384 s = bfd_make_section (abfd, ".gnu.version_r");
2385 if (s == NULL
2386 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2387 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2388 return false;
2389
2390 s = bfd_make_section (abfd, ".dynsym");
2391 if (s == NULL
2392 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2393 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2394 return false;
2395
2396 s = bfd_make_section (abfd, ".dynstr");
2397 if (s == NULL
2398 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2399 return false;
2400
2401 /* Create a strtab to hold the dynamic symbol names. */
2402 if (elf_hash_table (info)->dynstr == NULL)
2403 {
2404 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2405 if (elf_hash_table (info)->dynstr == NULL)
2406 return false;
2407 }
2408
2409 s = bfd_make_section (abfd, ".dynamic");
2410 if (s == NULL
2411 || ! bfd_set_section_flags (abfd, s, flags)
2412 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2413 return false;
2414
2415 /* The special symbol _DYNAMIC is always set to the start of the
2416 .dynamic section. This call occurs before we have processed the
2417 symbols for any dynamic object, so we don't have to worry about
2418 overriding a dynamic definition. We could set _DYNAMIC in a
2419 linker script, but we only want to define it if we are, in fact,
2420 creating a .dynamic section. We don't want to define it if there
2421 is no .dynamic section, since on some ELF platforms the start up
2422 code examines it to decide how to initialize the process. */
2423 h = NULL;
2424 if (! (_bfd_generic_link_add_one_symbol
2425 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2426 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2427 (struct bfd_link_hash_entry **) &h)))
2428 return false;
2429 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2430 h->type = STT_OBJECT;
2431
2432 if (info->shared
2433 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2434 return false;
2435
2436 bed = get_elf_backend_data (abfd);
2437
2438 s = bfd_make_section (abfd, ".hash");
2439 if (s == NULL
2440 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2441 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2442 return false;
2443 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2444
2445 /* Let the backend create the rest of the sections. This lets the
2446 backend set the right flags. The backend will normally create
2447 the .got and .plt sections. */
2448 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2449 return false;
2450
2451 elf_hash_table (info)->dynamic_sections_created = true;
2452
2453 return true;
2454 }
2455
2456 /* Add an entry to the .dynamic table. */
2457
2458 boolean
2459 elf_add_dynamic_entry (info, tag, val)
2460 struct bfd_link_info *info;
2461 bfd_vma tag;
2462 bfd_vma val;
2463 {
2464 Elf_Internal_Dyn dyn;
2465 bfd *dynobj;
2466 asection *s;
2467 bfd_size_type newsize;
2468 bfd_byte *newcontents;
2469
2470 if (! is_elf_hash_table (info))
2471 return false;
2472
2473 dynobj = elf_hash_table (info)->dynobj;
2474
2475 s = bfd_get_section_by_name (dynobj, ".dynamic");
2476 BFD_ASSERT (s != NULL);
2477
2478 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2479 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2480 if (newcontents == NULL)
2481 return false;
2482
2483 dyn.d_tag = tag;
2484 dyn.d_un.d_val = val;
2485 elf_swap_dyn_out (dynobj, &dyn,
2486 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2487
2488 s->_raw_size = newsize;
2489 s->contents = newcontents;
2490
2491 return true;
2492 }
2493
2494 /* Record a new local dynamic symbol. */
2495
2496 boolean
2497 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2498 struct bfd_link_info *info;
2499 bfd *input_bfd;
2500 long input_indx;
2501 {
2502 struct elf_link_local_dynamic_entry *entry;
2503 struct elf_link_hash_table *eht;
2504 struct elf_strtab_hash *dynstr;
2505 Elf_External_Sym esym;
2506 Elf_External_Sym_Shndx eshndx;
2507 Elf_External_Sym_Shndx *shndx;
2508 unsigned long dynstr_index;
2509 char *name;
2510 file_ptr pos;
2511 bfd_size_type amt;
2512
2513 if (! is_elf_hash_table (info))
2514 return false;
2515
2516 /* See if the entry exists already. */
2517 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2518 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2519 return true;
2520
2521 entry = (struct elf_link_local_dynamic_entry *)
2522 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2523 if (entry == NULL)
2524 return false;
2525
2526 /* Go find the symbol, so that we can find it's name. */
2527 amt = sizeof (Elf_External_Sym);
2528 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2529 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2530 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2531 return false;
2532 shndx = NULL;
2533 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2534 {
2535 amt = sizeof (Elf_External_Sym_Shndx);
2536 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2537 pos += input_indx * amt;
2538 shndx = &eshndx;
2539 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2540 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2541 return false;
2542 }
2543 elf_swap_symbol_in (input_bfd, &esym, shndx, &entry->isym);
2544
2545 name = (bfd_elf_string_from_elf_section
2546 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2547 entry->isym.st_name));
2548
2549 dynstr = elf_hash_table (info)->dynstr;
2550 if (dynstr == NULL)
2551 {
2552 /* Create a strtab to hold the dynamic symbol names. */
2553 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2554 if (dynstr == NULL)
2555 return false;
2556 }
2557
2558 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2559 if (dynstr_index == (unsigned long) -1)
2560 return false;
2561 entry->isym.st_name = dynstr_index;
2562
2563 eht = elf_hash_table (info);
2564
2565 entry->next = eht->dynlocal;
2566 eht->dynlocal = entry;
2567 entry->input_bfd = input_bfd;
2568 entry->input_indx = input_indx;
2569 eht->dynsymcount++;
2570
2571 /* Whatever binding the symbol had before, it's now local. */
2572 entry->isym.st_info
2573 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2574
2575 /* The dynindx will be set at the end of size_dynamic_sections. */
2576
2577 return true;
2578 }
2579 \f
2580 /* Read and swap the relocs from the section indicated by SHDR. This
2581 may be either a REL or a RELA section. The relocations are
2582 translated into RELA relocations and stored in INTERNAL_RELOCS,
2583 which should have already been allocated to contain enough space.
2584 The EXTERNAL_RELOCS are a buffer where the external form of the
2585 relocations should be stored.
2586
2587 Returns false if something goes wrong. */
2588
2589 static boolean
2590 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2591 internal_relocs)
2592 bfd *abfd;
2593 Elf_Internal_Shdr *shdr;
2594 PTR external_relocs;
2595 Elf_Internal_Rela *internal_relocs;
2596 {
2597 struct elf_backend_data *bed;
2598 bfd_size_type amt;
2599
2600 /* If there aren't any relocations, that's OK. */
2601 if (!shdr)
2602 return true;
2603
2604 /* Position ourselves at the start of the section. */
2605 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2606 return false;
2607
2608 /* Read the relocations. */
2609 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2610 return false;
2611
2612 bed = get_elf_backend_data (abfd);
2613
2614 /* Convert the external relocations to the internal format. */
2615 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2616 {
2617 Elf_External_Rel *erel;
2618 Elf_External_Rel *erelend;
2619 Elf_Internal_Rela *irela;
2620 Elf_Internal_Rel *irel;
2621
2622 erel = (Elf_External_Rel *) external_relocs;
2623 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2624 irela = internal_relocs;
2625 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2626 irel = bfd_alloc (abfd, amt);
2627 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2628 {
2629 unsigned int i;
2630
2631 if (bed->s->swap_reloc_in)
2632 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2633 else
2634 elf_swap_reloc_in (abfd, erel, irel);
2635
2636 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2637 {
2638 irela[i].r_offset = irel[i].r_offset;
2639 irela[i].r_info = irel[i].r_info;
2640 irela[i].r_addend = 0;
2641 }
2642 }
2643 }
2644 else
2645 {
2646 Elf_External_Rela *erela;
2647 Elf_External_Rela *erelaend;
2648 Elf_Internal_Rela *irela;
2649
2650 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2651
2652 erela = (Elf_External_Rela *) external_relocs;
2653 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2654 irela = internal_relocs;
2655 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2656 {
2657 if (bed->s->swap_reloca_in)
2658 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2659 else
2660 elf_swap_reloca_in (abfd, erela, irela);
2661 }
2662 }
2663
2664 return true;
2665 }
2666
2667 /* Read and swap the relocs for a section O. They may have been
2668 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2669 not NULL, they are used as buffers to read into. They are known to
2670 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2671 the return value is allocated using either malloc or bfd_alloc,
2672 according to the KEEP_MEMORY argument. If O has two relocation
2673 sections (both REL and RELA relocations), then the REL_HDR
2674 relocations will appear first in INTERNAL_RELOCS, followed by the
2675 REL_HDR2 relocations. */
2676
2677 Elf_Internal_Rela *
2678 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2679 keep_memory)
2680 bfd *abfd;
2681 asection *o;
2682 PTR external_relocs;
2683 Elf_Internal_Rela *internal_relocs;
2684 boolean keep_memory;
2685 {
2686 Elf_Internal_Shdr *rel_hdr;
2687 PTR alloc1 = NULL;
2688 Elf_Internal_Rela *alloc2 = NULL;
2689 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2690
2691 if (elf_section_data (o)->relocs != NULL)
2692 return elf_section_data (o)->relocs;
2693
2694 if (o->reloc_count == 0)
2695 return NULL;
2696
2697 rel_hdr = &elf_section_data (o)->rel_hdr;
2698
2699 if (internal_relocs == NULL)
2700 {
2701 bfd_size_type size;
2702
2703 size = o->reloc_count;
2704 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2705 if (keep_memory)
2706 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2707 else
2708 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2709 if (internal_relocs == NULL)
2710 goto error_return;
2711 }
2712
2713 if (external_relocs == NULL)
2714 {
2715 bfd_size_type size = rel_hdr->sh_size;
2716
2717 if (elf_section_data (o)->rel_hdr2)
2718 size += elf_section_data (o)->rel_hdr2->sh_size;
2719 alloc1 = (PTR) bfd_malloc (size);
2720 if (alloc1 == NULL)
2721 goto error_return;
2722 external_relocs = alloc1;
2723 }
2724
2725 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2726 external_relocs,
2727 internal_relocs))
2728 goto error_return;
2729 if (!elf_link_read_relocs_from_section
2730 (abfd,
2731 elf_section_data (o)->rel_hdr2,
2732 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2733 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2734 * bed->s->int_rels_per_ext_rel)))
2735 goto error_return;
2736
2737 /* Cache the results for next time, if we can. */
2738 if (keep_memory)
2739 elf_section_data (o)->relocs = internal_relocs;
2740
2741 if (alloc1 != NULL)
2742 free (alloc1);
2743
2744 /* Don't free alloc2, since if it was allocated we are passing it
2745 back (under the name of internal_relocs). */
2746
2747 return internal_relocs;
2748
2749 error_return:
2750 if (alloc1 != NULL)
2751 free (alloc1);
2752 if (alloc2 != NULL)
2753 free (alloc2);
2754 return NULL;
2755 }
2756 \f
2757 /* Record an assignment to a symbol made by a linker script. We need
2758 this in case some dynamic object refers to this symbol. */
2759
2760 boolean
2761 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2762 bfd *output_bfd ATTRIBUTE_UNUSED;
2763 struct bfd_link_info *info;
2764 const char *name;
2765 boolean provide;
2766 {
2767 struct elf_link_hash_entry *h;
2768
2769 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2770 return true;
2771
2772 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2773 if (h == NULL)
2774 return false;
2775
2776 if (h->root.type == bfd_link_hash_new)
2777 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2778
2779 /* If this symbol is being provided by the linker script, and it is
2780 currently defined by a dynamic object, but not by a regular
2781 object, then mark it as undefined so that the generic linker will
2782 force the correct value. */
2783 if (provide
2784 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2785 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2786 h->root.type = bfd_link_hash_undefined;
2787
2788 /* If this symbol is not being provided by the linker script, and it is
2789 currently defined by a dynamic object, but not by a regular object,
2790 then clear out any version information because the symbol will not be
2791 associated with the dynamic object any more. */
2792 if (!provide
2793 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2794 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2795 h->verinfo.verdef = NULL;
2796
2797 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2798
2799 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2800 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2801 || info->shared)
2802 && h->dynindx == -1)
2803 {
2804 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2805 return false;
2806
2807 /* If this is a weak defined symbol, and we know a corresponding
2808 real symbol from the same dynamic object, make sure the real
2809 symbol is also made into a dynamic symbol. */
2810 if (h->weakdef != NULL
2811 && h->weakdef->dynindx == -1)
2812 {
2813 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2814 return false;
2815 }
2816 }
2817
2818 return true;
2819 }
2820 \f
2821 /* This structure is used to pass information to
2822 elf_link_assign_sym_version. */
2823
2824 struct elf_assign_sym_version_info
2825 {
2826 /* Output BFD. */
2827 bfd *output_bfd;
2828 /* General link information. */
2829 struct bfd_link_info *info;
2830 /* Version tree. */
2831 struct bfd_elf_version_tree *verdefs;
2832 /* Whether we had a failure. */
2833 boolean failed;
2834 };
2835
2836 /* This structure is used to pass information to
2837 elf_link_find_version_dependencies. */
2838
2839 struct elf_find_verdep_info
2840 {
2841 /* Output BFD. */
2842 bfd *output_bfd;
2843 /* General link information. */
2844 struct bfd_link_info *info;
2845 /* The number of dependencies. */
2846 unsigned int vers;
2847 /* Whether we had a failure. */
2848 boolean failed;
2849 };
2850
2851 /* Array used to determine the number of hash table buckets to use
2852 based on the number of symbols there are. If there are fewer than
2853 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2854 fewer than 37 we use 17 buckets, and so forth. We never use more
2855 than 32771 buckets. */
2856
2857 static const size_t elf_buckets[] =
2858 {
2859 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2860 16411, 32771, 0
2861 };
2862
2863 /* Compute bucket count for hashing table. We do not use a static set
2864 of possible tables sizes anymore. Instead we determine for all
2865 possible reasonable sizes of the table the outcome (i.e., the
2866 number of collisions etc) and choose the best solution. The
2867 weighting functions are not too simple to allow the table to grow
2868 without bounds. Instead one of the weighting factors is the size.
2869 Therefore the result is always a good payoff between few collisions
2870 (= short chain lengths) and table size. */
2871 static size_t
2872 compute_bucket_count (info)
2873 struct bfd_link_info *info;
2874 {
2875 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2876 size_t best_size = 0;
2877 unsigned long int *hashcodes;
2878 unsigned long int *hashcodesp;
2879 unsigned long int i;
2880 bfd_size_type amt;
2881
2882 /* Compute the hash values for all exported symbols. At the same
2883 time store the values in an array so that we could use them for
2884 optimizations. */
2885 amt = dynsymcount;
2886 amt *= sizeof (unsigned long int);
2887 hashcodes = (unsigned long int *) bfd_malloc (amt);
2888 if (hashcodes == NULL)
2889 return 0;
2890 hashcodesp = hashcodes;
2891
2892 /* Put all hash values in HASHCODES. */
2893 elf_link_hash_traverse (elf_hash_table (info),
2894 elf_collect_hash_codes, &hashcodesp);
2895
2896 /* We have a problem here. The following code to optimize the table
2897 size requires an integer type with more the 32 bits. If
2898 BFD_HOST_U_64_BIT is set we know about such a type. */
2899 #ifdef BFD_HOST_U_64_BIT
2900 if (info->optimize == true)
2901 {
2902 unsigned long int nsyms = hashcodesp - hashcodes;
2903 size_t minsize;
2904 size_t maxsize;
2905 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2906 unsigned long int *counts ;
2907
2908 /* Possible optimization parameters: if we have NSYMS symbols we say
2909 that the hashing table must at least have NSYMS/4 and at most
2910 2*NSYMS buckets. */
2911 minsize = nsyms / 4;
2912 if (minsize == 0)
2913 minsize = 1;
2914 best_size = maxsize = nsyms * 2;
2915
2916 /* Create array where we count the collisions in. We must use bfd_malloc
2917 since the size could be large. */
2918 amt = maxsize;
2919 amt *= sizeof (unsigned long int);
2920 counts = (unsigned long int *) bfd_malloc (amt);
2921 if (counts == NULL)
2922 {
2923 free (hashcodes);
2924 return 0;
2925 }
2926
2927 /* Compute the "optimal" size for the hash table. The criteria is a
2928 minimal chain length. The minor criteria is (of course) the size
2929 of the table. */
2930 for (i = minsize; i < maxsize; ++i)
2931 {
2932 /* Walk through the array of hashcodes and count the collisions. */
2933 BFD_HOST_U_64_BIT max;
2934 unsigned long int j;
2935 unsigned long int fact;
2936
2937 memset (counts, '\0', i * sizeof (unsigned long int));
2938
2939 /* Determine how often each hash bucket is used. */
2940 for (j = 0; j < nsyms; ++j)
2941 ++counts[hashcodes[j] % i];
2942
2943 /* For the weight function we need some information about the
2944 pagesize on the target. This is information need not be 100%
2945 accurate. Since this information is not available (so far) we
2946 define it here to a reasonable default value. If it is crucial
2947 to have a better value some day simply define this value. */
2948 # ifndef BFD_TARGET_PAGESIZE
2949 # define BFD_TARGET_PAGESIZE (4096)
2950 # endif
2951
2952 /* We in any case need 2 + NSYMS entries for the size values and
2953 the chains. */
2954 max = (2 + nsyms) * (ARCH_SIZE / 8);
2955
2956 # if 1
2957 /* Variant 1: optimize for short chains. We add the squares
2958 of all the chain lengths (which favous many small chain
2959 over a few long chains). */
2960 for (j = 0; j < i; ++j)
2961 max += counts[j] * counts[j];
2962
2963 /* This adds penalties for the overall size of the table. */
2964 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2965 max *= fact * fact;
2966 # else
2967 /* Variant 2: Optimize a lot more for small table. Here we
2968 also add squares of the size but we also add penalties for
2969 empty slots (the +1 term). */
2970 for (j = 0; j < i; ++j)
2971 max += (1 + counts[j]) * (1 + counts[j]);
2972
2973 /* The overall size of the table is considered, but not as
2974 strong as in variant 1, where it is squared. */
2975 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2976 max *= fact;
2977 # endif
2978
2979 /* Compare with current best results. */
2980 if (max < best_chlen)
2981 {
2982 best_chlen = max;
2983 best_size = i;
2984 }
2985 }
2986
2987 free (counts);
2988 }
2989 else
2990 #endif /* defined (BFD_HOST_U_64_BIT) */
2991 {
2992 /* This is the fallback solution if no 64bit type is available or if we
2993 are not supposed to spend much time on optimizations. We select the
2994 bucket count using a fixed set of numbers. */
2995 for (i = 0; elf_buckets[i] != 0; i++)
2996 {
2997 best_size = elf_buckets[i];
2998 if (dynsymcount < elf_buckets[i + 1])
2999 break;
3000 }
3001 }
3002
3003 /* Free the arrays we needed. */
3004 free (hashcodes);
3005
3006 return best_size;
3007 }
3008
3009 /* Set up the sizes and contents of the ELF dynamic sections. This is
3010 called by the ELF linker emulation before_allocation routine. We
3011 must set the sizes of the sections before the linker sets the
3012 addresses of the various sections. */
3013
3014 boolean
3015 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
3016 filter_shlib,
3017 auxiliary_filters, info, sinterpptr,
3018 verdefs)
3019 bfd *output_bfd;
3020 const char *soname;
3021 const char *rpath;
3022 const char *filter_shlib;
3023 const char * const *auxiliary_filters;
3024 struct bfd_link_info *info;
3025 asection **sinterpptr;
3026 struct bfd_elf_version_tree *verdefs;
3027 {
3028 bfd_size_type soname_indx;
3029 bfd *dynobj;
3030 struct elf_backend_data *bed;
3031 struct elf_assign_sym_version_info asvinfo;
3032
3033 *sinterpptr = NULL;
3034
3035 soname_indx = (bfd_size_type) -1;
3036
3037 if (info->hash->creator->flavour != bfd_target_elf_flavour)
3038 return true;
3039
3040 if (! is_elf_hash_table (info))
3041 return false;
3042
3043 /* Any syms created from now on start with -1 in
3044 got.refcount/offset and plt.refcount/offset. */
3045 elf_hash_table (info)->init_refcount = -1;
3046
3047 /* The backend may have to create some sections regardless of whether
3048 we're dynamic or not. */
3049 bed = get_elf_backend_data (output_bfd);
3050 if (bed->elf_backend_always_size_sections
3051 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3052 return false;
3053
3054 dynobj = elf_hash_table (info)->dynobj;
3055
3056 /* If there were no dynamic objects in the link, there is nothing to
3057 do here. */
3058 if (dynobj == NULL)
3059 return true;
3060
3061 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3062 return false;
3063
3064 if (elf_hash_table (info)->dynamic_sections_created)
3065 {
3066 struct elf_info_failed eif;
3067 struct elf_link_hash_entry *h;
3068 asection *dynstr;
3069
3070 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3071 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3072
3073 if (soname != NULL)
3074 {
3075 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3076 soname, true);
3077 if (soname_indx == (bfd_size_type) -1
3078 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3079 soname_indx))
3080 return false;
3081 }
3082
3083 if (info->symbolic)
3084 {
3085 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3086 (bfd_vma) 0))
3087 return false;
3088 info->flags |= DF_SYMBOLIC;
3089 }
3090
3091 if (rpath != NULL)
3092 {
3093 bfd_size_type indx;
3094
3095 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3096 true);
3097 if (info->new_dtags)
3098 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3099 if (indx == (bfd_size_type) -1
3100 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3101 || (info->new_dtags
3102 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3103 indx)))
3104 return false;
3105 }
3106
3107 if (filter_shlib != NULL)
3108 {
3109 bfd_size_type indx;
3110
3111 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3112 filter_shlib, true);
3113 if (indx == (bfd_size_type) -1
3114 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3115 return false;
3116 }
3117
3118 if (auxiliary_filters != NULL)
3119 {
3120 const char * const *p;
3121
3122 for (p = auxiliary_filters; *p != NULL; p++)
3123 {
3124 bfd_size_type indx;
3125
3126 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3127 *p, true);
3128 if (indx == (bfd_size_type) -1
3129 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3130 indx))
3131 return false;
3132 }
3133 }
3134
3135 eif.info = info;
3136 eif.verdefs = verdefs;
3137 eif.failed = false;
3138
3139 /* If we are supposed to export all symbols into the dynamic symbol
3140 table (this is not the normal case), then do so. */
3141 if (info->export_dynamic)
3142 {
3143 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3144 (PTR) &eif);
3145 if (eif.failed)
3146 return false;
3147 }
3148
3149 /* Attach all the symbols to their version information. */
3150 asvinfo.output_bfd = output_bfd;
3151 asvinfo.info = info;
3152 asvinfo.verdefs = verdefs;
3153 asvinfo.failed = false;
3154
3155 elf_link_hash_traverse (elf_hash_table (info),
3156 elf_link_assign_sym_version,
3157 (PTR) &asvinfo);
3158 if (asvinfo.failed)
3159 return false;
3160
3161 /* Find all symbols which were defined in a dynamic object and make
3162 the backend pick a reasonable value for them. */
3163 elf_link_hash_traverse (elf_hash_table (info),
3164 elf_adjust_dynamic_symbol,
3165 (PTR) &eif);
3166 if (eif.failed)
3167 return false;
3168
3169 /* Add some entries to the .dynamic section. We fill in some of the
3170 values later, in elf_bfd_final_link, but we must add the entries
3171 now so that we know the final size of the .dynamic section. */
3172
3173 /* If there are initialization and/or finalization functions to
3174 call then add the corresponding DT_INIT/DT_FINI entries. */
3175 h = (info->init_function
3176 ? elf_link_hash_lookup (elf_hash_table (info),
3177 info->init_function, false,
3178 false, false)
3179 : NULL);
3180 if (h != NULL
3181 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3182 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3183 {
3184 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3185 return false;
3186 }
3187 h = (info->fini_function
3188 ? elf_link_hash_lookup (elf_hash_table (info),
3189 info->fini_function, false,
3190 false, false)
3191 : NULL);
3192 if (h != NULL
3193 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3194 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3195 {
3196 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3197 return false;
3198 }
3199
3200 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3201 {
3202 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3203 if (info->shared)
3204 {
3205 bfd *sub;
3206 asection *o;
3207
3208 for (sub = info->input_bfds; sub != NULL;
3209 sub = sub->link_next)
3210 for (o = sub->sections; o != NULL; o = o->next)
3211 if (elf_section_data (o)->this_hdr.sh_type
3212 == SHT_PREINIT_ARRAY)
3213 {
3214 (*_bfd_error_handler)
3215 (_("%s: .preinit_array section is not allowed in DSO"),
3216 bfd_archive_filename (sub));
3217 break;
3218 }
3219
3220 bfd_set_error (bfd_error_nonrepresentable_section);
3221 return false;
3222 }
3223
3224 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3225 (bfd_vma) 0)
3226 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3227 (bfd_vma) 0))
3228 return false;
3229 }
3230 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3231 {
3232 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3233 (bfd_vma) 0)
3234 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3235 (bfd_vma) 0))
3236 return false;
3237 }
3238 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3239 {
3240 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3241 (bfd_vma) 0)
3242 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3243 (bfd_vma) 0))
3244 return false;
3245 }
3246
3247 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3248 /* If .dynstr is excluded from the link, we don't want any of
3249 these tags. Strictly, we should be checking each section
3250 individually; This quick check covers for the case where
3251 someone does a /DISCARD/ : { *(*) }. */
3252 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3253 {
3254 bfd_size_type strsize;
3255
3256 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3257 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3258 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3259 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3260 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3261 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3262 (bfd_vma) sizeof (Elf_External_Sym)))
3263 return false;
3264 }
3265 }
3266
3267 /* The backend must work out the sizes of all the other dynamic
3268 sections. */
3269 if (bed->elf_backend_size_dynamic_sections
3270 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3271 return false;
3272
3273 if (elf_hash_table (info)->dynamic_sections_created)
3274 {
3275 bfd_size_type dynsymcount;
3276 asection *s;
3277 size_t bucketcount = 0;
3278 size_t hash_entry_size;
3279 unsigned int dtagcount;
3280
3281 /* Set up the version definition section. */
3282 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3283 BFD_ASSERT (s != NULL);
3284
3285 /* We may have created additional version definitions if we are
3286 just linking a regular application. */
3287 verdefs = asvinfo.verdefs;
3288
3289 /* Skip anonymous version tag. */
3290 if (verdefs != NULL && verdefs->vernum == 0)
3291 verdefs = verdefs->next;
3292
3293 if (verdefs == NULL)
3294 _bfd_strip_section_from_output (info, s);
3295 else
3296 {
3297 unsigned int cdefs;
3298 bfd_size_type size;
3299 struct bfd_elf_version_tree *t;
3300 bfd_byte *p;
3301 Elf_Internal_Verdef def;
3302 Elf_Internal_Verdaux defaux;
3303
3304 cdefs = 0;
3305 size = 0;
3306
3307 /* Make space for the base version. */
3308 size += sizeof (Elf_External_Verdef);
3309 size += sizeof (Elf_External_Verdaux);
3310 ++cdefs;
3311
3312 for (t = verdefs; t != NULL; t = t->next)
3313 {
3314 struct bfd_elf_version_deps *n;
3315
3316 size += sizeof (Elf_External_Verdef);
3317 size += sizeof (Elf_External_Verdaux);
3318 ++cdefs;
3319
3320 for (n = t->deps; n != NULL; n = n->next)
3321 size += sizeof (Elf_External_Verdaux);
3322 }
3323
3324 s->_raw_size = size;
3325 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3326 if (s->contents == NULL && s->_raw_size != 0)
3327 return false;
3328
3329 /* Fill in the version definition section. */
3330
3331 p = s->contents;
3332
3333 def.vd_version = VER_DEF_CURRENT;
3334 def.vd_flags = VER_FLG_BASE;
3335 def.vd_ndx = 1;
3336 def.vd_cnt = 1;
3337 def.vd_aux = sizeof (Elf_External_Verdef);
3338 def.vd_next = (sizeof (Elf_External_Verdef)
3339 + sizeof (Elf_External_Verdaux));
3340
3341 if (soname_indx != (bfd_size_type) -1)
3342 {
3343 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3344 soname_indx);
3345 def.vd_hash = bfd_elf_hash (soname);
3346 defaux.vda_name = soname_indx;
3347 }
3348 else
3349 {
3350 const char *name;
3351 bfd_size_type indx;
3352
3353 name = basename (output_bfd->filename);
3354 def.vd_hash = bfd_elf_hash (name);
3355 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3356 name, false);
3357 if (indx == (bfd_size_type) -1)
3358 return false;
3359 defaux.vda_name = indx;
3360 }
3361 defaux.vda_next = 0;
3362
3363 _bfd_elf_swap_verdef_out (output_bfd, &def,
3364 (Elf_External_Verdef *) p);
3365 p += sizeof (Elf_External_Verdef);
3366 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3367 (Elf_External_Verdaux *) p);
3368 p += sizeof (Elf_External_Verdaux);
3369
3370 for (t = verdefs; t != NULL; t = t->next)
3371 {
3372 unsigned int cdeps;
3373 struct bfd_elf_version_deps *n;
3374 struct elf_link_hash_entry *h;
3375
3376 cdeps = 0;
3377 for (n = t->deps; n != NULL; n = n->next)
3378 ++cdeps;
3379
3380 /* Add a symbol representing this version. */
3381 h = NULL;
3382 if (! (_bfd_generic_link_add_one_symbol
3383 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3384 (bfd_vma) 0, (const char *) NULL, false,
3385 get_elf_backend_data (dynobj)->collect,
3386 (struct bfd_link_hash_entry **) &h)))
3387 return false;
3388 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3389 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3390 h->type = STT_OBJECT;
3391 h->verinfo.vertree = t;
3392
3393 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3394 return false;
3395
3396 def.vd_version = VER_DEF_CURRENT;
3397 def.vd_flags = 0;
3398 if (t->globals == NULL && t->locals == NULL && ! t->used)
3399 def.vd_flags |= VER_FLG_WEAK;
3400 def.vd_ndx = t->vernum + 1;
3401 def.vd_cnt = cdeps + 1;
3402 def.vd_hash = bfd_elf_hash (t->name);
3403 def.vd_aux = sizeof (Elf_External_Verdef);
3404 if (t->next != NULL)
3405 def.vd_next = (sizeof (Elf_External_Verdef)
3406 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3407 else
3408 def.vd_next = 0;
3409
3410 _bfd_elf_swap_verdef_out (output_bfd, &def,
3411 (Elf_External_Verdef *) p);
3412 p += sizeof (Elf_External_Verdef);
3413
3414 defaux.vda_name = h->dynstr_index;
3415 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3416 h->dynstr_index);
3417 if (t->deps == NULL)
3418 defaux.vda_next = 0;
3419 else
3420 defaux.vda_next = sizeof (Elf_External_Verdaux);
3421 t->name_indx = defaux.vda_name;
3422
3423 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3424 (Elf_External_Verdaux *) p);
3425 p += sizeof (Elf_External_Verdaux);
3426
3427 for (n = t->deps; n != NULL; n = n->next)
3428 {
3429 if (n->version_needed == NULL)
3430 {
3431 /* This can happen if there was an error in the
3432 version script. */
3433 defaux.vda_name = 0;
3434 }
3435 else
3436 {
3437 defaux.vda_name = n->version_needed->name_indx;
3438 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3439 defaux.vda_name);
3440 }
3441 if (n->next == NULL)
3442 defaux.vda_next = 0;
3443 else
3444 defaux.vda_next = sizeof (Elf_External_Verdaux);
3445
3446 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3447 (Elf_External_Verdaux *) p);
3448 p += sizeof (Elf_External_Verdaux);
3449 }
3450 }
3451
3452 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3453 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3454 (bfd_vma) cdefs))
3455 return false;
3456
3457 elf_tdata (output_bfd)->cverdefs = cdefs;
3458 }
3459
3460 if (info->new_dtags && info->flags)
3461 {
3462 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3463 return false;
3464 }
3465
3466 if (info->flags_1)
3467 {
3468 if (! info->shared)
3469 info->flags_1 &= ~ (DF_1_INITFIRST
3470 | DF_1_NODELETE
3471 | DF_1_NOOPEN);
3472 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3473 info->flags_1))
3474 return false;
3475 }
3476
3477 /* Work out the size of the version reference section. */
3478
3479 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3480 BFD_ASSERT (s != NULL);
3481 {
3482 struct elf_find_verdep_info sinfo;
3483
3484 sinfo.output_bfd = output_bfd;
3485 sinfo.info = info;
3486 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3487 if (sinfo.vers == 0)
3488 sinfo.vers = 1;
3489 sinfo.failed = false;
3490
3491 elf_link_hash_traverse (elf_hash_table (info),
3492 elf_link_find_version_dependencies,
3493 (PTR) &sinfo);
3494
3495 if (elf_tdata (output_bfd)->verref == NULL)
3496 _bfd_strip_section_from_output (info, s);
3497 else
3498 {
3499 Elf_Internal_Verneed *t;
3500 unsigned int size;
3501 unsigned int crefs;
3502 bfd_byte *p;
3503
3504 /* Build the version definition section. */
3505 size = 0;
3506 crefs = 0;
3507 for (t = elf_tdata (output_bfd)->verref;
3508 t != NULL;
3509 t = t->vn_nextref)
3510 {
3511 Elf_Internal_Vernaux *a;
3512
3513 size += sizeof (Elf_External_Verneed);
3514 ++crefs;
3515 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3516 size += sizeof (Elf_External_Vernaux);
3517 }
3518
3519 s->_raw_size = size;
3520 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3521 if (s->contents == NULL)
3522 return false;
3523
3524 p = s->contents;
3525 for (t = elf_tdata (output_bfd)->verref;
3526 t != NULL;
3527 t = t->vn_nextref)
3528 {
3529 unsigned int caux;
3530 Elf_Internal_Vernaux *a;
3531 bfd_size_type indx;
3532
3533 caux = 0;
3534 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3535 ++caux;
3536
3537 t->vn_version = VER_NEED_CURRENT;
3538 t->vn_cnt = caux;
3539 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3540 elf_dt_name (t->vn_bfd) != NULL
3541 ? elf_dt_name (t->vn_bfd)
3542 : basename (t->vn_bfd->filename),
3543 false);
3544 if (indx == (bfd_size_type) -1)
3545 return false;
3546 t->vn_file = indx;
3547 t->vn_aux = sizeof (Elf_External_Verneed);
3548 if (t->vn_nextref == NULL)
3549 t->vn_next = 0;
3550 else
3551 t->vn_next = (sizeof (Elf_External_Verneed)
3552 + caux * sizeof (Elf_External_Vernaux));
3553
3554 _bfd_elf_swap_verneed_out (output_bfd, t,
3555 (Elf_External_Verneed *) p);
3556 p += sizeof (Elf_External_Verneed);
3557
3558 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3559 {
3560 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3561 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3562 a->vna_nodename, false);
3563 if (indx == (bfd_size_type) -1)
3564 return false;
3565 a->vna_name = indx;
3566 if (a->vna_nextptr == NULL)
3567 a->vna_next = 0;
3568 else
3569 a->vna_next = sizeof (Elf_External_Vernaux);
3570
3571 _bfd_elf_swap_vernaux_out (output_bfd, a,
3572 (Elf_External_Vernaux *) p);
3573 p += sizeof (Elf_External_Vernaux);
3574 }
3575 }
3576
3577 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3578 (bfd_vma) 0)
3579 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3580 (bfd_vma) crefs))
3581 return false;
3582
3583 elf_tdata (output_bfd)->cverrefs = crefs;
3584 }
3585 }
3586
3587 /* Assign dynsym indicies. In a shared library we generate a
3588 section symbol for each output section, which come first.
3589 Next come all of the back-end allocated local dynamic syms,
3590 followed by the rest of the global symbols. */
3591
3592 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3593
3594 /* Work out the size of the symbol version section. */
3595 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3596 BFD_ASSERT (s != NULL);
3597 if (dynsymcount == 0
3598 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3599 {
3600 _bfd_strip_section_from_output (info, s);
3601 /* The DYNSYMCOUNT might have changed if we were going to
3602 output a dynamic symbol table entry for S. */
3603 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3604 }
3605 else
3606 {
3607 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3608 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3609 if (s->contents == NULL)
3610 return false;
3611
3612 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3613 return false;
3614 }
3615
3616 /* Set the size of the .dynsym and .hash sections. We counted
3617 the number of dynamic symbols in elf_link_add_object_symbols.
3618 We will build the contents of .dynsym and .hash when we build
3619 the final symbol table, because until then we do not know the
3620 correct value to give the symbols. We built the .dynstr
3621 section as we went along in elf_link_add_object_symbols. */
3622 s = bfd_get_section_by_name (dynobj, ".dynsym");
3623 BFD_ASSERT (s != NULL);
3624 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3625 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3626 if (s->contents == NULL && s->_raw_size != 0)
3627 return false;
3628
3629 if (dynsymcount != 0)
3630 {
3631 Elf_Internal_Sym isym;
3632
3633 /* The first entry in .dynsym is a dummy symbol. */
3634 isym.st_value = 0;
3635 isym.st_size = 0;
3636 isym.st_name = 0;
3637 isym.st_info = 0;
3638 isym.st_other = 0;
3639 isym.st_shndx = 0;
3640 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3641 }
3642
3643 /* Compute the size of the hashing table. As a side effect this
3644 computes the hash values for all the names we export. */
3645 bucketcount = compute_bucket_count (info);
3646
3647 s = bfd_get_section_by_name (dynobj, ".hash");
3648 BFD_ASSERT (s != NULL);
3649 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3650 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3651 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3652 if (s->contents == NULL)
3653 return false;
3654 memset (s->contents, 0, (size_t) s->_raw_size);
3655
3656 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3657 s->contents);
3658 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3659 s->contents + hash_entry_size);
3660
3661 elf_hash_table (info)->bucketcount = bucketcount;
3662
3663 s = bfd_get_section_by_name (dynobj, ".dynstr");
3664 BFD_ASSERT (s != NULL);
3665
3666 elf_finalize_dynstr (output_bfd, info);
3667
3668 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3669
3670 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3671 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3672 return false;
3673 }
3674
3675 return true;
3676 }
3677 \f
3678 /* This function is used to adjust offsets into .dynstr for
3679 dynamic symbols. This is called via elf_link_hash_traverse. */
3680
3681 static boolean elf_adjust_dynstr_offsets
3682 PARAMS ((struct elf_link_hash_entry *, PTR));
3683
3684 static boolean
3685 elf_adjust_dynstr_offsets (h, data)
3686 struct elf_link_hash_entry *h;
3687 PTR data;
3688 {
3689 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3690
3691 if (h->root.type == bfd_link_hash_warning)
3692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3693
3694 if (h->dynindx != -1)
3695 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3696 return true;
3697 }
3698
3699 /* Assign string offsets in .dynstr, update all structures referencing
3700 them. */
3701
3702 static boolean
3703 elf_finalize_dynstr (output_bfd, info)
3704 bfd *output_bfd;
3705 struct bfd_link_info *info;
3706 {
3707 struct elf_link_local_dynamic_entry *entry;
3708 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3709 bfd *dynobj = elf_hash_table (info)->dynobj;
3710 asection *sdyn;
3711 bfd_size_type size;
3712 Elf_External_Dyn *dyncon, *dynconend;
3713
3714 _bfd_elf_strtab_finalize (dynstr);
3715 size = _bfd_elf_strtab_size (dynstr);
3716
3717 /* Update all .dynamic entries referencing .dynstr strings. */
3718 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3719 BFD_ASSERT (sdyn != NULL);
3720
3721 dyncon = (Elf_External_Dyn *) sdyn->contents;
3722 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3723 sdyn->_raw_size);
3724 for (; dyncon < dynconend; dyncon++)
3725 {
3726 Elf_Internal_Dyn dyn;
3727
3728 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3729 switch (dyn.d_tag)
3730 {
3731 case DT_STRSZ:
3732 dyn.d_un.d_val = size;
3733 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3734 break;
3735 case DT_NEEDED:
3736 case DT_SONAME:
3737 case DT_RPATH:
3738 case DT_RUNPATH:
3739 case DT_FILTER:
3740 case DT_AUXILIARY:
3741 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3742 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3743 break;
3744 default:
3745 break;
3746 }
3747 }
3748
3749 /* Now update local dynamic symbols. */
3750 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3751 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3752 entry->isym.st_name);
3753
3754 /* And the rest of dynamic symbols. */
3755 elf_link_hash_traverse (elf_hash_table (info),
3756 elf_adjust_dynstr_offsets, dynstr);
3757
3758 /* Adjust version definitions. */
3759 if (elf_tdata (output_bfd)->cverdefs)
3760 {
3761 asection *s;
3762 bfd_byte *p;
3763 bfd_size_type i;
3764 Elf_Internal_Verdef def;
3765 Elf_Internal_Verdaux defaux;
3766
3767 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3768 p = (bfd_byte *) s->contents;
3769 do
3770 {
3771 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3772 &def);
3773 p += sizeof (Elf_External_Verdef);
3774 for (i = 0; i < def.vd_cnt; ++i)
3775 {
3776 _bfd_elf_swap_verdaux_in (output_bfd,
3777 (Elf_External_Verdaux *) p, &defaux);
3778 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3779 defaux.vda_name);
3780 _bfd_elf_swap_verdaux_out (output_bfd,
3781 &defaux, (Elf_External_Verdaux *) p);
3782 p += sizeof (Elf_External_Verdaux);
3783 }
3784 }
3785 while (def.vd_next);
3786 }
3787
3788 /* Adjust version references. */
3789 if (elf_tdata (output_bfd)->verref)
3790 {
3791 asection *s;
3792 bfd_byte *p;
3793 bfd_size_type i;
3794 Elf_Internal_Verneed need;
3795 Elf_Internal_Vernaux needaux;
3796
3797 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3798 p = (bfd_byte *) s->contents;
3799 do
3800 {
3801 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3802 &need);
3803 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3804 _bfd_elf_swap_verneed_out (output_bfd, &need,
3805 (Elf_External_Verneed *) p);
3806 p += sizeof (Elf_External_Verneed);
3807 for (i = 0; i < need.vn_cnt; ++i)
3808 {
3809 _bfd_elf_swap_vernaux_in (output_bfd,
3810 (Elf_External_Vernaux *) p, &needaux);
3811 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3812 needaux.vna_name);
3813 _bfd_elf_swap_vernaux_out (output_bfd,
3814 &needaux,
3815 (Elf_External_Vernaux *) p);
3816 p += sizeof (Elf_External_Vernaux);
3817 }
3818 }
3819 while (need.vn_next);
3820 }
3821
3822 return true;
3823 }
3824
3825 /* Fix up the flags for a symbol. This handles various cases which
3826 can only be fixed after all the input files are seen. This is
3827 currently called by both adjust_dynamic_symbol and
3828 assign_sym_version, which is unnecessary but perhaps more robust in
3829 the face of future changes. */
3830
3831 static boolean
3832 elf_fix_symbol_flags (h, eif)
3833 struct elf_link_hash_entry *h;
3834 struct elf_info_failed *eif;
3835 {
3836 /* If this symbol was mentioned in a non-ELF file, try to set
3837 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3838 permit a non-ELF file to correctly refer to a symbol defined in
3839 an ELF dynamic object. */
3840 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3841 {
3842 while (h->root.type == bfd_link_hash_indirect)
3843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3844
3845 if (h->root.type != bfd_link_hash_defined
3846 && h->root.type != bfd_link_hash_defweak)
3847 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3848 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3849 else
3850 {
3851 if (h->root.u.def.section->owner != NULL
3852 && (bfd_get_flavour (h->root.u.def.section->owner)
3853 == bfd_target_elf_flavour))
3854 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3855 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3856 else
3857 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3858 }
3859
3860 if (h->dynindx == -1
3861 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3862 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3863 {
3864 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3865 {
3866 eif->failed = true;
3867 return false;
3868 }
3869 }
3870 }
3871 else
3872 {
3873 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3874 was first seen in a non-ELF file. Fortunately, if the symbol
3875 was first seen in an ELF file, we're probably OK unless the
3876 symbol was defined in a non-ELF file. Catch that case here.
3877 FIXME: We're still in trouble if the symbol was first seen in
3878 a dynamic object, and then later in a non-ELF regular object. */
3879 if ((h->root.type == bfd_link_hash_defined
3880 || h->root.type == bfd_link_hash_defweak)
3881 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3882 && (h->root.u.def.section->owner != NULL
3883 ? (bfd_get_flavour (h->root.u.def.section->owner)
3884 != bfd_target_elf_flavour)
3885 : (bfd_is_abs_section (h->root.u.def.section)
3886 && (h->elf_link_hash_flags
3887 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3888 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3889 }
3890
3891 /* If this is a final link, and the symbol was defined as a common
3892 symbol in a regular object file, and there was no definition in
3893 any dynamic object, then the linker will have allocated space for
3894 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3895 flag will not have been set. */
3896 if (h->root.type == bfd_link_hash_defined
3897 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3898 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3899 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3900 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3901 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3902
3903 /* If -Bsymbolic was used (which means to bind references to global
3904 symbols to the definition within the shared object), and this
3905 symbol was defined in a regular object, then it actually doesn't
3906 need a PLT entry, and we can accomplish that by forcing it local.
3907 Likewise, if the symbol has hidden or internal visibility.
3908 FIXME: It might be that we also do not need a PLT for other
3909 non-hidden visibilities, but we would have to tell that to the
3910 backend specifically; we can't just clear PLT-related data here. */
3911 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3912 && eif->info->shared
3913 && is_elf_hash_table (eif->info)
3914 && (eif->info->symbolic
3915 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3916 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3917 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3918 {
3919 struct elf_backend_data *bed;
3920 boolean force_local;
3921
3922 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3923
3924 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3925 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3926 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3927 }
3928
3929 /* If this is a weak defined symbol in a dynamic object, and we know
3930 the real definition in the dynamic object, copy interesting flags
3931 over to the real definition. */
3932 if (h->weakdef != NULL)
3933 {
3934 struct elf_link_hash_entry *weakdef;
3935
3936 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3937 || h->root.type == bfd_link_hash_defweak);
3938 weakdef = h->weakdef;
3939 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3940 || weakdef->root.type == bfd_link_hash_defweak);
3941 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3942
3943 /* If the real definition is defined by a regular object file,
3944 don't do anything special. See the longer description in
3945 elf_adjust_dynamic_symbol, below. */
3946 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3947 h->weakdef = NULL;
3948 else
3949 {
3950 struct elf_backend_data *bed;
3951
3952 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3953 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
3954 }
3955 }
3956
3957 return true;
3958 }
3959
3960 /* Make the backend pick a good value for a dynamic symbol. This is
3961 called via elf_link_hash_traverse, and also calls itself
3962 recursively. */
3963
3964 static boolean
3965 elf_adjust_dynamic_symbol (h, data)
3966 struct elf_link_hash_entry *h;
3967 PTR data;
3968 {
3969 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3970 bfd *dynobj;
3971 struct elf_backend_data *bed;
3972
3973 if (h->root.type == bfd_link_hash_warning)
3974 {
3975 h->plt.offset = (bfd_vma) -1;
3976 h->got.offset = (bfd_vma) -1;
3977
3978 /* When warning symbols are created, they **replace** the "real"
3979 entry in the hash table, thus we never get to see the real
3980 symbol in a hash traversal. So look at it now. */
3981 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3982 }
3983
3984 /* Ignore indirect symbols. These are added by the versioning code. */
3985 if (h->root.type == bfd_link_hash_indirect)
3986 return true;
3987
3988 if (! is_elf_hash_table (eif->info))
3989 return false;
3990
3991 /* Fix the symbol flags. */
3992 if (! elf_fix_symbol_flags (h, eif))
3993 return false;
3994
3995 /* If this symbol does not require a PLT entry, and it is not
3996 defined by a dynamic object, or is not referenced by a regular
3997 object, ignore it. We do have to handle a weak defined symbol,
3998 even if no regular object refers to it, if we decided to add it
3999 to the dynamic symbol table. FIXME: Do we normally need to worry
4000 about symbols which are defined by one dynamic object and
4001 referenced by another one? */
4002 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
4003 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4004 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4005 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
4006 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
4007 {
4008 h->plt.offset = (bfd_vma) -1;
4009 return true;
4010 }
4011
4012 /* If we've already adjusted this symbol, don't do it again. This
4013 can happen via a recursive call. */
4014 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
4015 return true;
4016
4017 /* Don't look at this symbol again. Note that we must set this
4018 after checking the above conditions, because we may look at a
4019 symbol once, decide not to do anything, and then get called
4020 recursively later after REF_REGULAR is set below. */
4021 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
4022
4023 /* If this is a weak definition, and we know a real definition, and
4024 the real symbol is not itself defined by a regular object file,
4025 then get a good value for the real definition. We handle the
4026 real symbol first, for the convenience of the backend routine.
4027
4028 Note that there is a confusing case here. If the real definition
4029 is defined by a regular object file, we don't get the real symbol
4030 from the dynamic object, but we do get the weak symbol. If the
4031 processor backend uses a COPY reloc, then if some routine in the
4032 dynamic object changes the real symbol, we will not see that
4033 change in the corresponding weak symbol. This is the way other
4034 ELF linkers work as well, and seems to be a result of the shared
4035 library model.
4036
4037 I will clarify this issue. Most SVR4 shared libraries define the
4038 variable _timezone and define timezone as a weak synonym. The
4039 tzset call changes _timezone. If you write
4040 extern int timezone;
4041 int _timezone = 5;
4042 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4043 you might expect that, since timezone is a synonym for _timezone,
4044 the same number will print both times. However, if the processor
4045 backend uses a COPY reloc, then actually timezone will be copied
4046 into your process image, and, since you define _timezone
4047 yourself, _timezone will not. Thus timezone and _timezone will
4048 wind up at different memory locations. The tzset call will set
4049 _timezone, leaving timezone unchanged. */
4050
4051 if (h->weakdef != NULL)
4052 {
4053 /* If we get to this point, we know there is an implicit
4054 reference by a regular object file via the weak symbol H.
4055 FIXME: Is this really true? What if the traversal finds
4056 H->WEAKDEF before it finds H? */
4057 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4058
4059 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4060 return false;
4061 }
4062
4063 /* If a symbol has no type and no size and does not require a PLT
4064 entry, then we are probably about to do the wrong thing here: we
4065 are probably going to create a COPY reloc for an empty object.
4066 This case can arise when a shared object is built with assembly
4067 code, and the assembly code fails to set the symbol type. */
4068 if (h->size == 0
4069 && h->type == STT_NOTYPE
4070 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4071 (*_bfd_error_handler)
4072 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4073 h->root.root.string);
4074
4075 dynobj = elf_hash_table (eif->info)->dynobj;
4076 bed = get_elf_backend_data (dynobj);
4077 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4078 {
4079 eif->failed = true;
4080 return false;
4081 }
4082
4083 return true;
4084 }
4085 \f
4086 /* This routine is used to export all defined symbols into the dynamic
4087 symbol table. It is called via elf_link_hash_traverse. */
4088
4089 static boolean
4090 elf_export_symbol (h, data)
4091 struct elf_link_hash_entry *h;
4092 PTR data;
4093 {
4094 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4095
4096 /* Ignore indirect symbols. These are added by the versioning code. */
4097 if (h->root.type == bfd_link_hash_indirect)
4098 return true;
4099
4100 if (h->root.type == bfd_link_hash_warning)
4101 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4102
4103 if (h->dynindx == -1
4104 && (h->elf_link_hash_flags
4105 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4106 {
4107 struct bfd_elf_version_tree *t;
4108 struct bfd_elf_version_expr *d;
4109
4110 for (t = eif->verdefs; t != NULL; t = t->next)
4111 {
4112 if (t->globals != NULL)
4113 {
4114 for (d = t->globals; d != NULL; d = d->next)
4115 {
4116 if ((*d->match) (d, h->root.root.string))
4117 goto doit;
4118 }
4119 }
4120
4121 if (t->locals != NULL)
4122 {
4123 for (d = t->locals ; d != NULL; d = d->next)
4124 {
4125 if ((*d->match) (d, h->root.root.string))
4126 return true;
4127 }
4128 }
4129 }
4130
4131 if (!eif->verdefs)
4132 {
4133 doit:
4134 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4135 {
4136 eif->failed = true;
4137 return false;
4138 }
4139 }
4140 }
4141
4142 return true;
4143 }
4144 \f
4145 /* Look through the symbols which are defined in other shared
4146 libraries and referenced here. Update the list of version
4147 dependencies. This will be put into the .gnu.version_r section.
4148 This function is called via elf_link_hash_traverse. */
4149
4150 static boolean
4151 elf_link_find_version_dependencies (h, data)
4152 struct elf_link_hash_entry *h;
4153 PTR data;
4154 {
4155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4156 Elf_Internal_Verneed *t;
4157 Elf_Internal_Vernaux *a;
4158 bfd_size_type amt;
4159
4160 if (h->root.type == bfd_link_hash_warning)
4161 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4162
4163 /* We only care about symbols defined in shared objects with version
4164 information. */
4165 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4166 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4167 || h->dynindx == -1
4168 || h->verinfo.verdef == NULL)
4169 return true;
4170
4171 /* See if we already know about this version. */
4172 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4173 {
4174 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4175 continue;
4176
4177 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4178 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4179 return true;
4180
4181 break;
4182 }
4183
4184 /* This is a new version. Add it to tree we are building. */
4185
4186 if (t == NULL)
4187 {
4188 amt = sizeof *t;
4189 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4190 if (t == NULL)
4191 {
4192 rinfo->failed = true;
4193 return false;
4194 }
4195
4196 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4197 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4198 elf_tdata (rinfo->output_bfd)->verref = t;
4199 }
4200
4201 amt = sizeof *a;
4202 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4203
4204 /* Note that we are copying a string pointer here, and testing it
4205 above. If bfd_elf_string_from_elf_section is ever changed to
4206 discard the string data when low in memory, this will have to be
4207 fixed. */
4208 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4209
4210 a->vna_flags = h->verinfo.verdef->vd_flags;
4211 a->vna_nextptr = t->vn_auxptr;
4212
4213 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4214 ++rinfo->vers;
4215
4216 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4217
4218 t->vn_auxptr = a;
4219
4220 return true;
4221 }
4222
4223 /* Figure out appropriate versions for all the symbols. We may not
4224 have the version number script until we have read all of the input
4225 files, so until that point we don't know which symbols should be
4226 local. This function is called via elf_link_hash_traverse. */
4227
4228 static boolean
4229 elf_link_assign_sym_version (h, data)
4230 struct elf_link_hash_entry *h;
4231 PTR data;
4232 {
4233 struct elf_assign_sym_version_info *sinfo;
4234 struct bfd_link_info *info;
4235 struct elf_backend_data *bed;
4236 struct elf_info_failed eif;
4237 char *p;
4238 bfd_size_type amt;
4239
4240 sinfo = (struct elf_assign_sym_version_info *) data;
4241 info = sinfo->info;
4242
4243 if (h->root.type == bfd_link_hash_warning)
4244 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4245
4246 /* Fix the symbol flags. */
4247 eif.failed = false;
4248 eif.info = info;
4249 if (! elf_fix_symbol_flags (h, &eif))
4250 {
4251 if (eif.failed)
4252 sinfo->failed = true;
4253 return false;
4254 }
4255
4256 /* We only need version numbers for symbols defined in regular
4257 objects. */
4258 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4259 return true;
4260
4261 bed = get_elf_backend_data (sinfo->output_bfd);
4262 p = strchr (h->root.root.string, ELF_VER_CHR);
4263 if (p != NULL && h->verinfo.vertree == NULL)
4264 {
4265 struct bfd_elf_version_tree *t;
4266 boolean hidden;
4267
4268 hidden = true;
4269
4270 /* There are two consecutive ELF_VER_CHR characters if this is
4271 not a hidden symbol. */
4272 ++p;
4273 if (*p == ELF_VER_CHR)
4274 {
4275 hidden = false;
4276 ++p;
4277 }
4278
4279 /* If there is no version string, we can just return out. */
4280 if (*p == '\0')
4281 {
4282 if (hidden)
4283 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4284 return true;
4285 }
4286
4287 /* Look for the version. If we find it, it is no longer weak. */
4288 for (t = sinfo->verdefs; t != NULL; t = t->next)
4289 {
4290 if (strcmp (t->name, p) == 0)
4291 {
4292 size_t len;
4293 char *alc;
4294 struct bfd_elf_version_expr *d;
4295
4296 len = p - h->root.root.string;
4297 alc = bfd_malloc ((bfd_size_type) len);
4298 if (alc == NULL)
4299 return false;
4300 strncpy (alc, h->root.root.string, len - 1);
4301 alc[len - 1] = '\0';
4302 if (alc[len - 2] == ELF_VER_CHR)
4303 alc[len - 2] = '\0';
4304
4305 h->verinfo.vertree = t;
4306 t->used = true;
4307 d = NULL;
4308
4309 if (t->globals != NULL)
4310 {
4311 for (d = t->globals; d != NULL; d = d->next)
4312 if ((*d->match) (d, alc))
4313 break;
4314 }
4315
4316 /* See if there is anything to force this symbol to
4317 local scope. */
4318 if (d == NULL && t->locals != NULL)
4319 {
4320 for (d = t->locals; d != NULL; d = d->next)
4321 {
4322 if ((*d->match) (d, alc))
4323 {
4324 if (h->dynindx != -1
4325 && info->shared
4326 && ! info->export_dynamic)
4327 {
4328 (*bed->elf_backend_hide_symbol) (info, h, true);
4329 }
4330
4331 break;
4332 }
4333 }
4334 }
4335
4336 free (alc);
4337 break;
4338 }
4339 }
4340
4341 /* If we are building an application, we need to create a
4342 version node for this version. */
4343 if (t == NULL && ! info->shared)
4344 {
4345 struct bfd_elf_version_tree **pp;
4346 int version_index;
4347
4348 /* If we aren't going to export this symbol, we don't need
4349 to worry about it. */
4350 if (h->dynindx == -1)
4351 return true;
4352
4353 amt = sizeof *t;
4354 t = ((struct bfd_elf_version_tree *)
4355 bfd_alloc (sinfo->output_bfd, amt));
4356 if (t == NULL)
4357 {
4358 sinfo->failed = true;
4359 return false;
4360 }
4361
4362 t->next = NULL;
4363 t->name = p;
4364 t->globals = NULL;
4365 t->locals = NULL;
4366 t->deps = NULL;
4367 t->name_indx = (unsigned int) -1;
4368 t->used = true;
4369
4370 version_index = 1;
4371 /* Don't count anonymous version tag. */
4372 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4373 version_index = 0;
4374 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4375 ++version_index;
4376 t->vernum = version_index;
4377
4378 *pp = t;
4379
4380 h->verinfo.vertree = t;
4381 }
4382 else if (t == NULL)
4383 {
4384 /* We could not find the version for a symbol when
4385 generating a shared archive. Return an error. */
4386 (*_bfd_error_handler)
4387 (_("%s: undefined versioned symbol name %s"),
4388 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4389 bfd_set_error (bfd_error_bad_value);
4390 sinfo->failed = true;
4391 return false;
4392 }
4393
4394 if (hidden)
4395 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4396 }
4397
4398 /* If we don't have a version for this symbol, see if we can find
4399 something. */
4400 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4401 {
4402 struct bfd_elf_version_tree *t;
4403 struct bfd_elf_version_tree *deflt;
4404 struct bfd_elf_version_expr *d;
4405
4406 /* See if can find what version this symbol is in. If the
4407 symbol is supposed to be local, then don't actually register
4408 it. */
4409 deflt = NULL;
4410 for (t = sinfo->verdefs; t != NULL; t = t->next)
4411 {
4412 if (t->globals != NULL)
4413 {
4414 for (d = t->globals; d != NULL; d = d->next)
4415 {
4416 if ((*d->match) (d, h->root.root.string))
4417 {
4418 h->verinfo.vertree = t;
4419 break;
4420 }
4421 }
4422
4423 if (d != NULL)
4424 break;
4425 }
4426
4427 if (t->locals != NULL)
4428 {
4429 for (d = t->locals; d != NULL; d = d->next)
4430 {
4431 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4432 deflt = t;
4433 else if ((*d->match) (d, h->root.root.string))
4434 {
4435 h->verinfo.vertree = t;
4436 if (h->dynindx != -1
4437 && info->shared
4438 && ! info->export_dynamic)
4439 {
4440 (*bed->elf_backend_hide_symbol) (info, h, true);
4441 }
4442 break;
4443 }
4444 }
4445
4446 if (d != NULL)
4447 break;
4448 }
4449 }
4450
4451 if (deflt != NULL && h->verinfo.vertree == NULL)
4452 {
4453 h->verinfo.vertree = deflt;
4454 if (h->dynindx != -1
4455 && info->shared
4456 && ! info->export_dynamic)
4457 {
4458 (*bed->elf_backend_hide_symbol) (info, h, true);
4459 }
4460 }
4461 }
4462
4463 return true;
4464 }
4465 \f
4466 /* Final phase of ELF linker. */
4467
4468 /* A structure we use to avoid passing large numbers of arguments. */
4469
4470 struct elf_final_link_info
4471 {
4472 /* General link information. */
4473 struct bfd_link_info *info;
4474 /* Output BFD. */
4475 bfd *output_bfd;
4476 /* Symbol string table. */
4477 struct bfd_strtab_hash *symstrtab;
4478 /* .dynsym section. */
4479 asection *dynsym_sec;
4480 /* .hash section. */
4481 asection *hash_sec;
4482 /* symbol version section (.gnu.version). */
4483 asection *symver_sec;
4484 /* Buffer large enough to hold contents of any section. */
4485 bfd_byte *contents;
4486 /* Buffer large enough to hold external relocs of any section. */
4487 PTR external_relocs;
4488 /* Buffer large enough to hold internal relocs of any section. */
4489 Elf_Internal_Rela *internal_relocs;
4490 /* Buffer large enough to hold external local symbols of any input
4491 BFD. */
4492 Elf_External_Sym *external_syms;
4493 /* And a buffer for symbol section indices. */
4494 Elf_External_Sym_Shndx *locsym_shndx;
4495 /* Buffer large enough to hold internal local symbols of any input
4496 BFD. */
4497 Elf_Internal_Sym *internal_syms;
4498 /* Array large enough to hold a symbol index for each local symbol
4499 of any input BFD. */
4500 long *indices;
4501 /* Array large enough to hold a section pointer for each local
4502 symbol of any input BFD. */
4503 asection **sections;
4504 /* Buffer to hold swapped out symbols. */
4505 Elf_External_Sym *symbuf;
4506 /* And one for symbol section indices. */
4507 Elf_External_Sym_Shndx *symshndxbuf;
4508 /* Number of swapped out symbols in buffer. */
4509 size_t symbuf_count;
4510 /* Number of symbols which fit in symbuf. */
4511 size_t symbuf_size;
4512 };
4513
4514 static boolean elf_link_output_sym
4515 PARAMS ((struct elf_final_link_info *, const char *,
4516 Elf_Internal_Sym *, asection *));
4517 static boolean elf_link_flush_output_syms
4518 PARAMS ((struct elf_final_link_info *));
4519 static boolean elf_link_output_extsym
4520 PARAMS ((struct elf_link_hash_entry *, PTR));
4521 static boolean elf_link_sec_merge_syms
4522 PARAMS ((struct elf_link_hash_entry *, PTR));
4523 static boolean elf_link_input_bfd
4524 PARAMS ((struct elf_final_link_info *, bfd *));
4525 static boolean elf_reloc_link_order
4526 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4527 struct bfd_link_order *));
4528
4529 /* This struct is used to pass information to elf_link_output_extsym. */
4530
4531 struct elf_outext_info
4532 {
4533 boolean failed;
4534 boolean localsyms;
4535 struct elf_final_link_info *finfo;
4536 };
4537
4538 /* Compute the size of, and allocate space for, REL_HDR which is the
4539 section header for a section containing relocations for O. */
4540
4541 static boolean
4542 elf_link_size_reloc_section (abfd, rel_hdr, o)
4543 bfd *abfd;
4544 Elf_Internal_Shdr *rel_hdr;
4545 asection *o;
4546 {
4547 bfd_size_type reloc_count;
4548 bfd_size_type num_rel_hashes;
4549
4550 /* Figure out how many relocations there will be. */
4551 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4552 reloc_count = elf_section_data (o)->rel_count;
4553 else
4554 reloc_count = elf_section_data (o)->rel_count2;
4555
4556 num_rel_hashes = o->reloc_count;
4557 if (num_rel_hashes < reloc_count)
4558 num_rel_hashes = reloc_count;
4559
4560 /* That allows us to calculate the size of the section. */
4561 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4562
4563 /* The contents field must last into write_object_contents, so we
4564 allocate it with bfd_alloc rather than malloc. Also since we
4565 cannot be sure that the contents will actually be filled in,
4566 we zero the allocated space. */
4567 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4568 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4569 return false;
4570
4571 /* We only allocate one set of hash entries, so we only do it the
4572 first time we are called. */
4573 if (elf_section_data (o)->rel_hashes == NULL
4574 && num_rel_hashes)
4575 {
4576 struct elf_link_hash_entry **p;
4577
4578 p = ((struct elf_link_hash_entry **)
4579 bfd_zmalloc (num_rel_hashes
4580 * sizeof (struct elf_link_hash_entry *)));
4581 if (p == NULL)
4582 return false;
4583
4584 elf_section_data (o)->rel_hashes = p;
4585 }
4586
4587 return true;
4588 }
4589
4590 /* When performing a relocateable link, the input relocations are
4591 preserved. But, if they reference global symbols, the indices
4592 referenced must be updated. Update all the relocations in
4593 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4594
4595 static void
4596 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4597 bfd *abfd;
4598 Elf_Internal_Shdr *rel_hdr;
4599 unsigned int count;
4600 struct elf_link_hash_entry **rel_hash;
4601 {
4602 unsigned int i;
4603 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4604 Elf_Internal_Rel *irel;
4605 Elf_Internal_Rela *irela;
4606 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4607
4608 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4609 if (irel == NULL)
4610 {
4611 (*_bfd_error_handler) (_("Error: out of memory"));
4612 abort ();
4613 }
4614
4615 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4616 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4617 if (irela == NULL)
4618 {
4619 (*_bfd_error_handler) (_("Error: out of memory"));
4620 abort ();
4621 }
4622
4623 for (i = 0; i < count; i++, rel_hash++)
4624 {
4625 if (*rel_hash == NULL)
4626 continue;
4627
4628 BFD_ASSERT ((*rel_hash)->indx >= 0);
4629
4630 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4631 {
4632 Elf_External_Rel *erel;
4633 unsigned int j;
4634
4635 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4636 if (bed->s->swap_reloc_in)
4637 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4638 else
4639 elf_swap_reloc_in (abfd, erel, irel);
4640
4641 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4642 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4643 ELF_R_TYPE (irel[j].r_info));
4644
4645 if (bed->s->swap_reloc_out)
4646 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4647 else
4648 elf_swap_reloc_out (abfd, irel, erel);
4649 }
4650 else
4651 {
4652 Elf_External_Rela *erela;
4653 unsigned int j;
4654
4655 BFD_ASSERT (rel_hdr->sh_entsize
4656 == sizeof (Elf_External_Rela));
4657
4658 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4659 if (bed->s->swap_reloca_in)
4660 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4661 else
4662 elf_swap_reloca_in (abfd, erela, irela);
4663
4664 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4665 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4666 ELF_R_TYPE (irela[j].r_info));
4667
4668 if (bed->s->swap_reloca_out)
4669 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4670 else
4671 elf_swap_reloca_out (abfd, irela, erela);
4672 }
4673 }
4674
4675 free (irel);
4676 free (irela);
4677 }
4678
4679 struct elf_link_sort_rela {
4680 bfd_vma offset;
4681 enum elf_reloc_type_class type;
4682 union {
4683 Elf_Internal_Rel rel;
4684 Elf_Internal_Rela rela;
4685 } u;
4686 };
4687
4688 static int
4689 elf_link_sort_cmp1 (A, B)
4690 const PTR A;
4691 const PTR B;
4692 {
4693 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4694 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4695 int relativea, relativeb;
4696
4697 relativea = a->type == reloc_class_relative;
4698 relativeb = b->type == reloc_class_relative;
4699
4700 if (relativea < relativeb)
4701 return 1;
4702 if (relativea > relativeb)
4703 return -1;
4704 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4705 return -1;
4706 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4707 return 1;
4708 if (a->u.rel.r_offset < b->u.rel.r_offset)
4709 return -1;
4710 if (a->u.rel.r_offset > b->u.rel.r_offset)
4711 return 1;
4712 return 0;
4713 }
4714
4715 static int
4716 elf_link_sort_cmp2 (A, B)
4717 const PTR A;
4718 const PTR B;
4719 {
4720 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4721 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4722 int copya, copyb;
4723
4724 if (a->offset < b->offset)
4725 return -1;
4726 if (a->offset > b->offset)
4727 return 1;
4728 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4729 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4730 if (copya < copyb)
4731 return -1;
4732 if (copya > copyb)
4733 return 1;
4734 if (a->u.rel.r_offset < b->u.rel.r_offset)
4735 return -1;
4736 if (a->u.rel.r_offset > b->u.rel.r_offset)
4737 return 1;
4738 return 0;
4739 }
4740
4741 static size_t
4742 elf_link_sort_relocs (abfd, info, psec)
4743 bfd *abfd;
4744 struct bfd_link_info *info;
4745 asection **psec;
4746 {
4747 bfd *dynobj = elf_hash_table (info)->dynobj;
4748 asection *reldyn, *o;
4749 boolean rel = false;
4750 bfd_size_type count, size;
4751 size_t i, j, ret;
4752 struct elf_link_sort_rela *rela;
4753 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4754
4755 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4756 if (reldyn == NULL || reldyn->_raw_size == 0)
4757 {
4758 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4759 if (reldyn == NULL || reldyn->_raw_size == 0)
4760 return 0;
4761 rel = true;
4762 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4763 }
4764 else
4765 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4766
4767 size = 0;
4768 for (o = dynobj->sections; o != NULL; o = o->next)
4769 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4770 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4771 && o->output_section == reldyn)
4772 size += o->_raw_size;
4773
4774 if (size != reldyn->_raw_size)
4775 return 0;
4776
4777 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4778 if (rela == NULL)
4779 {
4780 (*info->callbacks->warning)
4781 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4782 (bfd_vma) 0);
4783 return 0;
4784 }
4785
4786 for (o = dynobj->sections; o != NULL; o = o->next)
4787 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4788 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4789 && o->output_section == reldyn)
4790 {
4791 if (rel)
4792 {
4793 Elf_External_Rel *erel, *erelend;
4794 struct elf_link_sort_rela *s;
4795
4796 erel = (Elf_External_Rel *) o->contents;
4797 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4798 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4799 for (; erel < erelend; erel++, s++)
4800 {
4801 if (bed->s->swap_reloc_in)
4802 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4803 else
4804 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4805
4806 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4807 }
4808 }
4809 else
4810 {
4811 Elf_External_Rela *erela, *erelaend;
4812 struct elf_link_sort_rela *s;
4813
4814 erela = (Elf_External_Rela *) o->contents;
4815 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4816 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4817 for (; erela < erelaend; erela++, s++)
4818 {
4819 if (bed->s->swap_reloca_in)
4820 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4821 &s->u.rela);
4822 else
4823 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4824
4825 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4826 }
4827 }
4828 }
4829
4830 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4831 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4832 ;
4833 for (i = ret, j = ret; i < count; i++)
4834 {
4835 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4836 j = i;
4837 rela[i].offset = rela[j].u.rel.r_offset;
4838 }
4839 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4840
4841 for (o = dynobj->sections; o != NULL; o = o->next)
4842 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4843 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4844 && o->output_section == reldyn)
4845 {
4846 if (rel)
4847 {
4848 Elf_External_Rel *erel, *erelend;
4849 struct elf_link_sort_rela *s;
4850
4851 erel = (Elf_External_Rel *) o->contents;
4852 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4853 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4854 for (; erel < erelend; erel++, s++)
4855 {
4856 if (bed->s->swap_reloc_out)
4857 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4858 (bfd_byte *) erel);
4859 else
4860 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4861 }
4862 }
4863 else
4864 {
4865 Elf_External_Rela *erela, *erelaend;
4866 struct elf_link_sort_rela *s;
4867
4868 erela = (Elf_External_Rela *) o->contents;
4869 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4870 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4871 for (; erela < erelaend; erela++, s++)
4872 {
4873 if (bed->s->swap_reloca_out)
4874 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4875 (bfd_byte *) erela);
4876 else
4877 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4878 }
4879 }
4880 }
4881
4882 free (rela);
4883 *psec = reldyn;
4884 return ret;
4885 }
4886
4887 /* Do the final step of an ELF link. */
4888
4889 boolean
4890 elf_bfd_final_link (abfd, info)
4891 bfd *abfd;
4892 struct bfd_link_info *info;
4893 {
4894 boolean dynamic;
4895 boolean emit_relocs;
4896 bfd *dynobj;
4897 struct elf_final_link_info finfo;
4898 register asection *o;
4899 register struct bfd_link_order *p;
4900 register bfd *sub;
4901 bfd_size_type max_contents_size;
4902 bfd_size_type max_external_reloc_size;
4903 bfd_size_type max_internal_reloc_count;
4904 bfd_size_type max_sym_count;
4905 bfd_size_type max_sym_shndx_count;
4906 file_ptr off;
4907 Elf_Internal_Sym elfsym;
4908 unsigned int i;
4909 Elf_Internal_Shdr *symtab_hdr;
4910 Elf_Internal_Shdr *symstrtab_hdr;
4911 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4912 struct elf_outext_info eoinfo;
4913 boolean merged;
4914 size_t relativecount = 0;
4915 asection *reldyn = 0;
4916 bfd_size_type amt;
4917
4918 if (! is_elf_hash_table (info))
4919 return false;
4920
4921 if (info->shared)
4922 abfd->flags |= DYNAMIC;
4923
4924 dynamic = elf_hash_table (info)->dynamic_sections_created;
4925 dynobj = elf_hash_table (info)->dynobj;
4926
4927 emit_relocs = (info->relocateable
4928 || info->emitrelocations
4929 || bed->elf_backend_emit_relocs);
4930
4931 finfo.info = info;
4932 finfo.output_bfd = abfd;
4933 finfo.symstrtab = elf_stringtab_init ();
4934 if (finfo.symstrtab == NULL)
4935 return false;
4936
4937 if (! dynamic)
4938 {
4939 finfo.dynsym_sec = NULL;
4940 finfo.hash_sec = NULL;
4941 finfo.symver_sec = NULL;
4942 }
4943 else
4944 {
4945 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4946 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4947 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4948 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4949 /* Note that it is OK if symver_sec is NULL. */
4950 }
4951
4952 finfo.contents = NULL;
4953 finfo.external_relocs = NULL;
4954 finfo.internal_relocs = NULL;
4955 finfo.external_syms = NULL;
4956 finfo.locsym_shndx = NULL;
4957 finfo.internal_syms = NULL;
4958 finfo.indices = NULL;
4959 finfo.sections = NULL;
4960 finfo.symbuf = NULL;
4961 finfo.symshndxbuf = NULL;
4962 finfo.symbuf_count = 0;
4963
4964 /* Count up the number of relocations we will output for each output
4965 section, so that we know the sizes of the reloc sections. We
4966 also figure out some maximum sizes. */
4967 max_contents_size = 0;
4968 max_external_reloc_size = 0;
4969 max_internal_reloc_count = 0;
4970 max_sym_count = 0;
4971 max_sym_shndx_count = 0;
4972 merged = false;
4973 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4974 {
4975 o->reloc_count = 0;
4976
4977 for (p = o->link_order_head; p != NULL; p = p->next)
4978 {
4979 if (p->type == bfd_section_reloc_link_order
4980 || p->type == bfd_symbol_reloc_link_order)
4981 ++o->reloc_count;
4982 else if (p->type == bfd_indirect_link_order)
4983 {
4984 asection *sec;
4985
4986 sec = p->u.indirect.section;
4987
4988 /* Mark all sections which are to be included in the
4989 link. This will normally be every section. We need
4990 to do this so that we can identify any sections which
4991 the linker has decided to not include. */
4992 sec->linker_mark = true;
4993
4994 if (sec->flags & SEC_MERGE)
4995 merged = true;
4996
4997 if (info->relocateable || info->emitrelocations)
4998 o->reloc_count += sec->reloc_count;
4999 else if (bed->elf_backend_count_relocs)
5000 {
5001 Elf_Internal_Rela * relocs;
5002
5003 relocs = (NAME(_bfd_elf,link_read_relocs)
5004 (abfd, sec, (PTR) NULL,
5005 (Elf_Internal_Rela *) NULL, info->keep_memory));
5006
5007 o->reloc_count
5008 += (*bed->elf_backend_count_relocs) (sec, relocs);
5009
5010 if (!info->keep_memory)
5011 free (relocs);
5012 }
5013
5014 if (sec->_raw_size > max_contents_size)
5015 max_contents_size = sec->_raw_size;
5016 if (sec->_cooked_size > max_contents_size)
5017 max_contents_size = sec->_cooked_size;
5018
5019 /* We are interested in just local symbols, not all
5020 symbols. */
5021 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5022 && (sec->owner->flags & DYNAMIC) == 0)
5023 {
5024 size_t sym_count;
5025
5026 if (elf_bad_symtab (sec->owner))
5027 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5028 / sizeof (Elf_External_Sym));
5029 else
5030 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5031
5032 if (sym_count > max_sym_count)
5033 max_sym_count = sym_count;
5034
5035 if (sym_count > max_sym_shndx_count
5036 && elf_symtab_shndx (sec->owner) != 0)
5037 max_sym_shndx_count = sym_count;
5038
5039 if ((sec->flags & SEC_RELOC) != 0)
5040 {
5041 size_t ext_size;
5042
5043 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5044 if (ext_size > max_external_reloc_size)
5045 max_external_reloc_size = ext_size;
5046 if (sec->reloc_count > max_internal_reloc_count)
5047 max_internal_reloc_count = sec->reloc_count;
5048 }
5049 }
5050 }
5051 }
5052
5053 if (o->reloc_count > 0)
5054 o->flags |= SEC_RELOC;
5055 else
5056 {
5057 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5058 set it (this is probably a bug) and if it is set
5059 assign_section_numbers will create a reloc section. */
5060 o->flags &=~ SEC_RELOC;
5061 }
5062
5063 /* If the SEC_ALLOC flag is not set, force the section VMA to
5064 zero. This is done in elf_fake_sections as well, but forcing
5065 the VMA to 0 here will ensure that relocs against these
5066 sections are handled correctly. */
5067 if ((o->flags & SEC_ALLOC) == 0
5068 && ! o->user_set_vma)
5069 o->vma = 0;
5070 }
5071
5072 if (! info->relocateable && merged)
5073 elf_link_hash_traverse (elf_hash_table (info),
5074 elf_link_sec_merge_syms, (PTR) abfd);
5075
5076 /* Figure out the file positions for everything but the symbol table
5077 and the relocs. We set symcount to force assign_section_numbers
5078 to create a symbol table. */
5079 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5080 BFD_ASSERT (! abfd->output_has_begun);
5081 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5082 goto error_return;
5083
5084 /* Figure out how many relocations we will have in each section.
5085 Just using RELOC_COUNT isn't good enough since that doesn't
5086 maintain a separate value for REL vs. RELA relocations. */
5087 if (emit_relocs)
5088 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5089 for (o = sub->sections; o != NULL; o = o->next)
5090 {
5091 asection *output_section;
5092
5093 if (! o->linker_mark)
5094 {
5095 /* This section was omitted from the link. */
5096 continue;
5097 }
5098
5099 output_section = o->output_section;
5100
5101 if (output_section != NULL
5102 && (o->flags & SEC_RELOC) != 0)
5103 {
5104 struct bfd_elf_section_data *esdi
5105 = elf_section_data (o);
5106 struct bfd_elf_section_data *esdo
5107 = elf_section_data (output_section);
5108 unsigned int *rel_count;
5109 unsigned int *rel_count2;
5110 bfd_size_type entsize;
5111 bfd_size_type entsize2;
5112
5113 /* We must be careful to add the relocations from the
5114 input section to the right output count. */
5115 entsize = esdi->rel_hdr.sh_entsize;
5116 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5117 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5118 || entsize == sizeof (Elf_External_Rela))
5119 && entsize2 != entsize
5120 && (entsize2 == 0
5121 || entsize2 == sizeof (Elf_External_Rel)
5122 || entsize2 == sizeof (Elf_External_Rela)));
5123 if (entsize == esdo->rel_hdr.sh_entsize)
5124 {
5125 rel_count = &esdo->rel_count;
5126 rel_count2 = &esdo->rel_count2;
5127 }
5128 else
5129 {
5130 rel_count = &esdo->rel_count2;
5131 rel_count2 = &esdo->rel_count;
5132 }
5133
5134 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5135 if (esdi->rel_hdr2)
5136 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5137 output_section->flags |= SEC_RELOC;
5138 }
5139 }
5140
5141 /* That created the reloc sections. Set their sizes, and assign
5142 them file positions, and allocate some buffers. */
5143 for (o = abfd->sections; o != NULL; o = o->next)
5144 {
5145 if ((o->flags & SEC_RELOC) != 0)
5146 {
5147 if (!elf_link_size_reloc_section (abfd,
5148 &elf_section_data (o)->rel_hdr,
5149 o))
5150 goto error_return;
5151
5152 if (elf_section_data (o)->rel_hdr2
5153 && !elf_link_size_reloc_section (abfd,
5154 elf_section_data (o)->rel_hdr2,
5155 o))
5156 goto error_return;
5157 }
5158
5159 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5160 to count upwards while actually outputting the relocations. */
5161 elf_section_data (o)->rel_count = 0;
5162 elf_section_data (o)->rel_count2 = 0;
5163 }
5164
5165 _bfd_elf_assign_file_positions_for_relocs (abfd);
5166
5167 /* We have now assigned file positions for all the sections except
5168 .symtab and .strtab. We start the .symtab section at the current
5169 file position, and write directly to it. We build the .strtab
5170 section in memory. */
5171 bfd_get_symcount (abfd) = 0;
5172 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5173 /* sh_name is set in prep_headers. */
5174 symtab_hdr->sh_type = SHT_SYMTAB;
5175 symtab_hdr->sh_flags = 0;
5176 symtab_hdr->sh_addr = 0;
5177 symtab_hdr->sh_size = 0;
5178 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5179 /* sh_link is set in assign_section_numbers. */
5180 /* sh_info is set below. */
5181 /* sh_offset is set just below. */
5182 symtab_hdr->sh_addralign = bed->s->file_align;
5183
5184 off = elf_tdata (abfd)->next_file_pos;
5185 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5186
5187 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5188 incorrect. We do not yet know the size of the .symtab section.
5189 We correct next_file_pos below, after we do know the size. */
5190
5191 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5192 continuously seeking to the right position in the file. */
5193 if (! info->keep_memory || max_sym_count < 20)
5194 finfo.symbuf_size = 20;
5195 else
5196 finfo.symbuf_size = max_sym_count;
5197 amt = finfo.symbuf_size;
5198 amt *= sizeof (Elf_External_Sym);
5199 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5200 if (finfo.symbuf == NULL)
5201 goto error_return;
5202 if (elf_numsections (abfd) > SHN_LORESERVE)
5203 {
5204 amt = finfo.symbuf_size;
5205 amt *= sizeof (Elf_External_Sym_Shndx);
5206 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5207 if (finfo.symshndxbuf == NULL)
5208 goto error_return;
5209 }
5210
5211 /* Start writing out the symbol table. The first symbol is always a
5212 dummy symbol. */
5213 if (info->strip != strip_all
5214 || emit_relocs)
5215 {
5216 elfsym.st_value = 0;
5217 elfsym.st_size = 0;
5218 elfsym.st_info = 0;
5219 elfsym.st_other = 0;
5220 elfsym.st_shndx = SHN_UNDEF;
5221 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5222 &elfsym, bfd_und_section_ptr))
5223 goto error_return;
5224 }
5225
5226 #if 0
5227 /* Some standard ELF linkers do this, but we don't because it causes
5228 bootstrap comparison failures. */
5229 /* Output a file symbol for the output file as the second symbol.
5230 We output this even if we are discarding local symbols, although
5231 I'm not sure if this is correct. */
5232 elfsym.st_value = 0;
5233 elfsym.st_size = 0;
5234 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5235 elfsym.st_other = 0;
5236 elfsym.st_shndx = SHN_ABS;
5237 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5238 &elfsym, bfd_abs_section_ptr))
5239 goto error_return;
5240 #endif
5241
5242 /* Output a symbol for each section. We output these even if we are
5243 discarding local symbols, since they are used for relocs. These
5244 symbols have no names. We store the index of each one in the
5245 index field of the section, so that we can find it again when
5246 outputting relocs. */
5247 if (info->strip != strip_all
5248 || emit_relocs)
5249 {
5250 elfsym.st_size = 0;
5251 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5252 elfsym.st_other = 0;
5253 for (i = 1; i < elf_numsections (abfd); i++)
5254 {
5255 o = section_from_elf_index (abfd, i);
5256 if (o != NULL)
5257 o->target_index = bfd_get_symcount (abfd);
5258 elfsym.st_shndx = i;
5259 if (info->relocateable || o == NULL)
5260 elfsym.st_value = 0;
5261 else
5262 elfsym.st_value = o->vma;
5263 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5264 &elfsym, o))
5265 goto error_return;
5266 if (i == SHN_LORESERVE)
5267 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5268 }
5269 }
5270
5271 /* Allocate some memory to hold information read in from the input
5272 files. */
5273 if (max_contents_size != 0)
5274 {
5275 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5276 if (finfo.contents == NULL)
5277 goto error_return;
5278 }
5279
5280 if (max_external_reloc_size != 0)
5281 {
5282 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5283 if (finfo.external_relocs == NULL)
5284 goto error_return;
5285 }
5286
5287 if (max_internal_reloc_count != 0)
5288 {
5289 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5290 amt *= sizeof (Elf_Internal_Rela);
5291 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5292 if (finfo.internal_relocs == NULL)
5293 goto error_return;
5294 }
5295
5296 if (max_sym_count != 0)
5297 {
5298 amt = max_sym_count * sizeof (Elf_External_Sym);
5299 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5300 if (finfo.external_syms == NULL)
5301 goto error_return;
5302
5303 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5304 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5305 if (finfo.internal_syms == NULL)
5306 goto error_return;
5307
5308 amt = max_sym_count * sizeof (long);
5309 finfo.indices = (long *) bfd_malloc (amt);
5310 if (finfo.indices == NULL)
5311 goto error_return;
5312
5313 amt = max_sym_count * sizeof (asection *);
5314 finfo.sections = (asection **) bfd_malloc (amt);
5315 if (finfo.sections == NULL)
5316 goto error_return;
5317 }
5318
5319 if (max_sym_shndx_count != 0)
5320 {
5321 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5322 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5323 if (finfo.locsym_shndx == NULL)
5324 goto error_return;
5325 }
5326
5327 /* Since ELF permits relocations to be against local symbols, we
5328 must have the local symbols available when we do the relocations.
5329 Since we would rather only read the local symbols once, and we
5330 would rather not keep them in memory, we handle all the
5331 relocations for a single input file at the same time.
5332
5333 Unfortunately, there is no way to know the total number of local
5334 symbols until we have seen all of them, and the local symbol
5335 indices precede the global symbol indices. This means that when
5336 we are generating relocateable output, and we see a reloc against
5337 a global symbol, we can not know the symbol index until we have
5338 finished examining all the local symbols to see which ones we are
5339 going to output. To deal with this, we keep the relocations in
5340 memory, and don't output them until the end of the link. This is
5341 an unfortunate waste of memory, but I don't see a good way around
5342 it. Fortunately, it only happens when performing a relocateable
5343 link, which is not the common case. FIXME: If keep_memory is set
5344 we could write the relocs out and then read them again; I don't
5345 know how bad the memory loss will be. */
5346
5347 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5348 sub->output_has_begun = false;
5349 for (o = abfd->sections; o != NULL; o = o->next)
5350 {
5351 for (p = o->link_order_head; p != NULL; p = p->next)
5352 {
5353 if (p->type == bfd_indirect_link_order
5354 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5355 == bfd_target_elf_flavour)
5356 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5357 {
5358 if (! sub->output_has_begun)
5359 {
5360 if (! elf_link_input_bfd (&finfo, sub))
5361 goto error_return;
5362 sub->output_has_begun = true;
5363 }
5364 }
5365 else if (p->type == bfd_section_reloc_link_order
5366 || p->type == bfd_symbol_reloc_link_order)
5367 {
5368 if (! elf_reloc_link_order (abfd, info, o, p))
5369 goto error_return;
5370 }
5371 else
5372 {
5373 if (! _bfd_default_link_order (abfd, info, o, p))
5374 goto error_return;
5375 }
5376 }
5377 }
5378
5379 /* Output any global symbols that got converted to local in a
5380 version script or due to symbol visibility. We do this in a
5381 separate step since ELF requires all local symbols to appear
5382 prior to any global symbols. FIXME: We should only do this if
5383 some global symbols were, in fact, converted to become local.
5384 FIXME: Will this work correctly with the Irix 5 linker? */
5385 eoinfo.failed = false;
5386 eoinfo.finfo = &finfo;
5387 eoinfo.localsyms = true;
5388 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5389 (PTR) &eoinfo);
5390 if (eoinfo.failed)
5391 return false;
5392
5393 /* That wrote out all the local symbols. Finish up the symbol table
5394 with the global symbols. Even if we want to strip everything we
5395 can, we still need to deal with those global symbols that got
5396 converted to local in a version script. */
5397
5398 /* The sh_info field records the index of the first non local symbol. */
5399 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5400
5401 if (dynamic
5402 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5403 {
5404 Elf_Internal_Sym sym;
5405 Elf_External_Sym *dynsym =
5406 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5407 long last_local = 0;
5408
5409 /* Write out the section symbols for the output sections. */
5410 if (info->shared)
5411 {
5412 asection *s;
5413
5414 sym.st_size = 0;
5415 sym.st_name = 0;
5416 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5417 sym.st_other = 0;
5418
5419 for (s = abfd->sections; s != NULL; s = s->next)
5420 {
5421 int indx;
5422 Elf_External_Sym *dest;
5423
5424 indx = elf_section_data (s)->this_idx;
5425 BFD_ASSERT (indx > 0);
5426 sym.st_shndx = indx;
5427 sym.st_value = s->vma;
5428 dest = dynsym + elf_section_data (s)->dynindx;
5429 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5430 }
5431
5432 last_local = bfd_count_sections (abfd);
5433 }
5434
5435 /* Write out the local dynsyms. */
5436 if (elf_hash_table (info)->dynlocal)
5437 {
5438 struct elf_link_local_dynamic_entry *e;
5439 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5440 {
5441 asection *s;
5442 Elf_External_Sym *dest;
5443
5444 sym.st_size = e->isym.st_size;
5445 sym.st_other = e->isym.st_other;
5446
5447 /* Copy the internal symbol as is.
5448 Note that we saved a word of storage and overwrote
5449 the original st_name with the dynstr_index. */
5450 sym = e->isym;
5451
5452 if (e->isym.st_shndx != SHN_UNDEF
5453 && (e->isym.st_shndx < SHN_LORESERVE
5454 || e->isym.st_shndx > SHN_HIRESERVE))
5455 {
5456 s = bfd_section_from_elf_index (e->input_bfd,
5457 e->isym.st_shndx);
5458
5459 sym.st_shndx =
5460 elf_section_data (s->output_section)->this_idx;
5461 sym.st_value = (s->output_section->vma
5462 + s->output_offset
5463 + e->isym.st_value);
5464 }
5465
5466 if (last_local < e->dynindx)
5467 last_local = e->dynindx;
5468
5469 dest = dynsym + e->dynindx;
5470 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5471 }
5472 }
5473
5474 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5475 last_local + 1;
5476 }
5477
5478 /* We get the global symbols from the hash table. */
5479 eoinfo.failed = false;
5480 eoinfo.localsyms = false;
5481 eoinfo.finfo = &finfo;
5482 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5483 (PTR) &eoinfo);
5484 if (eoinfo.failed)
5485 return false;
5486
5487 /* If backend needs to output some symbols not present in the hash
5488 table, do it now. */
5489 if (bed->elf_backend_output_arch_syms)
5490 {
5491 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5492 Elf_Internal_Sym *,
5493 asection *));
5494
5495 if (! ((*bed->elf_backend_output_arch_syms)
5496 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5497 return false;
5498 }
5499
5500 /* Flush all symbols to the file. */
5501 if (! elf_link_flush_output_syms (&finfo))
5502 return false;
5503
5504 /* Now we know the size of the symtab section. */
5505 off += symtab_hdr->sh_size;
5506
5507 /* Finish up and write out the symbol string table (.strtab)
5508 section. */
5509 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5510 /* sh_name was set in prep_headers. */
5511 symstrtab_hdr->sh_type = SHT_STRTAB;
5512 symstrtab_hdr->sh_flags = 0;
5513 symstrtab_hdr->sh_addr = 0;
5514 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5515 symstrtab_hdr->sh_entsize = 0;
5516 symstrtab_hdr->sh_link = 0;
5517 symstrtab_hdr->sh_info = 0;
5518 /* sh_offset is set just below. */
5519 symstrtab_hdr->sh_addralign = 1;
5520
5521 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5522 elf_tdata (abfd)->next_file_pos = off;
5523
5524 if (bfd_get_symcount (abfd) > 0)
5525 {
5526 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5527 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5528 return false;
5529 }
5530
5531 /* Adjust the relocs to have the correct symbol indices. */
5532 for (o = abfd->sections; o != NULL; o = o->next)
5533 {
5534 if ((o->flags & SEC_RELOC) == 0)
5535 continue;
5536
5537 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5538 elf_section_data (o)->rel_count,
5539 elf_section_data (o)->rel_hashes);
5540 if (elf_section_data (o)->rel_hdr2 != NULL)
5541 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5542 elf_section_data (o)->rel_count2,
5543 (elf_section_data (o)->rel_hashes
5544 + elf_section_data (o)->rel_count));
5545
5546 /* Set the reloc_count field to 0 to prevent write_relocs from
5547 trying to swap the relocs out itself. */
5548 o->reloc_count = 0;
5549 }
5550
5551 if (dynamic && info->combreloc && dynobj != NULL)
5552 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5553
5554 /* If we are linking against a dynamic object, or generating a
5555 shared library, finish up the dynamic linking information. */
5556 if (dynamic)
5557 {
5558 Elf_External_Dyn *dyncon, *dynconend;
5559
5560 /* Fix up .dynamic entries. */
5561 o = bfd_get_section_by_name (dynobj, ".dynamic");
5562 BFD_ASSERT (o != NULL);
5563
5564 dyncon = (Elf_External_Dyn *) o->contents;
5565 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5566 for (; dyncon < dynconend; dyncon++)
5567 {
5568 Elf_Internal_Dyn dyn;
5569 const char *name;
5570 unsigned int type;
5571
5572 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5573
5574 switch (dyn.d_tag)
5575 {
5576 default:
5577 break;
5578 case DT_NULL:
5579 if (relativecount > 0 && dyncon + 1 < dynconend)
5580 {
5581 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5582 {
5583 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5584 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5585 default: break;
5586 }
5587 if (dyn.d_tag != DT_NULL)
5588 {
5589 dyn.d_un.d_val = relativecount;
5590 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5591 relativecount = 0;
5592 }
5593 }
5594 break;
5595 case DT_INIT:
5596 name = info->init_function;
5597 goto get_sym;
5598 case DT_FINI:
5599 name = info->fini_function;
5600 get_sym:
5601 {
5602 struct elf_link_hash_entry *h;
5603
5604 h = elf_link_hash_lookup (elf_hash_table (info), name,
5605 false, false, true);
5606 if (h != NULL
5607 && (h->root.type == bfd_link_hash_defined
5608 || h->root.type == bfd_link_hash_defweak))
5609 {
5610 dyn.d_un.d_val = h->root.u.def.value;
5611 o = h->root.u.def.section;
5612 if (o->output_section != NULL)
5613 dyn.d_un.d_val += (o->output_section->vma
5614 + o->output_offset);
5615 else
5616 {
5617 /* The symbol is imported from another shared
5618 library and does not apply to this one. */
5619 dyn.d_un.d_val = 0;
5620 }
5621
5622 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5623 }
5624 }
5625 break;
5626
5627 case DT_PREINIT_ARRAYSZ:
5628 name = ".preinit_array";
5629 goto get_size;
5630 case DT_INIT_ARRAYSZ:
5631 name = ".init_array";
5632 goto get_size;
5633 case DT_FINI_ARRAYSZ:
5634 name = ".fini_array";
5635 get_size:
5636 o = bfd_get_section_by_name (abfd, name);
5637 BFD_ASSERT (o != NULL);
5638 if (o->_raw_size == 0)
5639 (*_bfd_error_handler)
5640 (_("warning: %s section has zero size"), name);
5641 dyn.d_un.d_val = o->_raw_size;
5642 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5643 break;
5644
5645 case DT_PREINIT_ARRAY:
5646 name = ".preinit_array";
5647 goto get_vma;
5648 case DT_INIT_ARRAY:
5649 name = ".init_array";
5650 goto get_vma;
5651 case DT_FINI_ARRAY:
5652 name = ".fini_array";
5653 goto get_vma;
5654
5655 case DT_HASH:
5656 name = ".hash";
5657 goto get_vma;
5658 case DT_STRTAB:
5659 name = ".dynstr";
5660 goto get_vma;
5661 case DT_SYMTAB:
5662 name = ".dynsym";
5663 goto get_vma;
5664 case DT_VERDEF:
5665 name = ".gnu.version_d";
5666 goto get_vma;
5667 case DT_VERNEED:
5668 name = ".gnu.version_r";
5669 goto get_vma;
5670 case DT_VERSYM:
5671 name = ".gnu.version";
5672 get_vma:
5673 o = bfd_get_section_by_name (abfd, name);
5674 BFD_ASSERT (o != NULL);
5675 dyn.d_un.d_ptr = o->vma;
5676 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5677 break;
5678
5679 case DT_REL:
5680 case DT_RELA:
5681 case DT_RELSZ:
5682 case DT_RELASZ:
5683 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5684 type = SHT_REL;
5685 else
5686 type = SHT_RELA;
5687 dyn.d_un.d_val = 0;
5688 for (i = 1; i < elf_numsections (abfd); i++)
5689 {
5690 Elf_Internal_Shdr *hdr;
5691
5692 hdr = elf_elfsections (abfd)[i];
5693 if (hdr->sh_type == type
5694 && (hdr->sh_flags & SHF_ALLOC) != 0)
5695 {
5696 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5697 dyn.d_un.d_val += hdr->sh_size;
5698 else
5699 {
5700 if (dyn.d_un.d_val == 0
5701 || hdr->sh_addr < dyn.d_un.d_val)
5702 dyn.d_un.d_val = hdr->sh_addr;
5703 }
5704 }
5705 }
5706 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5707 break;
5708 }
5709 }
5710 }
5711
5712 /* If we have created any dynamic sections, then output them. */
5713 if (dynobj != NULL)
5714 {
5715 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5716 goto error_return;
5717
5718 for (o = dynobj->sections; o != NULL; o = o->next)
5719 {
5720 if ((o->flags & SEC_HAS_CONTENTS) == 0
5721 || o->_raw_size == 0
5722 || o->output_section == bfd_abs_section_ptr)
5723 continue;
5724 if ((o->flags & SEC_LINKER_CREATED) == 0)
5725 {
5726 /* At this point, we are only interested in sections
5727 created by elf_link_create_dynamic_sections. */
5728 continue;
5729 }
5730 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5731 != SHT_STRTAB)
5732 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5733 {
5734 if (! bfd_set_section_contents (abfd, o->output_section,
5735 o->contents,
5736 (file_ptr) o->output_offset,
5737 o->_raw_size))
5738 goto error_return;
5739 }
5740 else
5741 {
5742 /* The contents of the .dynstr section are actually in a
5743 stringtab. */
5744 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5745 if (bfd_seek (abfd, off, SEEK_SET) != 0
5746 || ! _bfd_elf_strtab_emit (abfd,
5747 elf_hash_table (info)->dynstr))
5748 goto error_return;
5749 }
5750 }
5751 }
5752
5753 /* If we have optimized stabs strings, output them. */
5754 if (elf_hash_table (info)->stab_info != NULL)
5755 {
5756 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5757 goto error_return;
5758 }
5759
5760 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5761 {
5762 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5763 ".eh_frame_hdr");
5764 if (o
5765 && (elf_section_data (o)->sec_info_type
5766 == ELF_INFO_TYPE_EH_FRAME_HDR))
5767 {
5768 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5769 goto error_return;
5770 }
5771 }
5772
5773 if (finfo.symstrtab != NULL)
5774 _bfd_stringtab_free (finfo.symstrtab);
5775 if (finfo.contents != NULL)
5776 free (finfo.contents);
5777 if (finfo.external_relocs != NULL)
5778 free (finfo.external_relocs);
5779 if (finfo.internal_relocs != NULL)
5780 free (finfo.internal_relocs);
5781 if (finfo.external_syms != NULL)
5782 free (finfo.external_syms);
5783 if (finfo.locsym_shndx != NULL)
5784 free (finfo.locsym_shndx);
5785 if (finfo.internal_syms != NULL)
5786 free (finfo.internal_syms);
5787 if (finfo.indices != NULL)
5788 free (finfo.indices);
5789 if (finfo.sections != NULL)
5790 free (finfo.sections);
5791 if (finfo.symbuf != NULL)
5792 free (finfo.symbuf);
5793 if (finfo.symshndxbuf != NULL)
5794 free (finfo.symbuf);
5795 for (o = abfd->sections; o != NULL; o = o->next)
5796 {
5797 if ((o->flags & SEC_RELOC) != 0
5798 && elf_section_data (o)->rel_hashes != NULL)
5799 free (elf_section_data (o)->rel_hashes);
5800 }
5801
5802 elf_tdata (abfd)->linker = true;
5803
5804 return true;
5805
5806 error_return:
5807 if (finfo.symstrtab != NULL)
5808 _bfd_stringtab_free (finfo.symstrtab);
5809 if (finfo.contents != NULL)
5810 free (finfo.contents);
5811 if (finfo.external_relocs != NULL)
5812 free (finfo.external_relocs);
5813 if (finfo.internal_relocs != NULL)
5814 free (finfo.internal_relocs);
5815 if (finfo.external_syms != NULL)
5816 free (finfo.external_syms);
5817 if (finfo.locsym_shndx != NULL)
5818 free (finfo.locsym_shndx);
5819 if (finfo.internal_syms != NULL)
5820 free (finfo.internal_syms);
5821 if (finfo.indices != NULL)
5822 free (finfo.indices);
5823 if (finfo.sections != NULL)
5824 free (finfo.sections);
5825 if (finfo.symbuf != NULL)
5826 free (finfo.symbuf);
5827 if (finfo.symshndxbuf != NULL)
5828 free (finfo.symbuf);
5829 for (o = abfd->sections; o != NULL; o = o->next)
5830 {
5831 if ((o->flags & SEC_RELOC) != 0
5832 && elf_section_data (o)->rel_hashes != NULL)
5833 free (elf_section_data (o)->rel_hashes);
5834 }
5835
5836 return false;
5837 }
5838
5839 /* Add a symbol to the output symbol table. */
5840
5841 static boolean
5842 elf_link_output_sym (finfo, name, elfsym, input_sec)
5843 struct elf_final_link_info *finfo;
5844 const char *name;
5845 Elf_Internal_Sym *elfsym;
5846 asection *input_sec;
5847 {
5848 Elf_External_Sym *dest;
5849 Elf_External_Sym_Shndx *destshndx;
5850
5851 boolean (*output_symbol_hook) PARAMS ((bfd *,
5852 struct bfd_link_info *info,
5853 const char *,
5854 Elf_Internal_Sym *,
5855 asection *));
5856
5857 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5858 elf_backend_link_output_symbol_hook;
5859 if (output_symbol_hook != NULL)
5860 {
5861 if (! ((*output_symbol_hook)
5862 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5863 return false;
5864 }
5865
5866 if (name == (const char *) NULL || *name == '\0')
5867 elfsym->st_name = 0;
5868 else if (input_sec->flags & SEC_EXCLUDE)
5869 elfsym->st_name = 0;
5870 else
5871 {
5872 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5873 name, true, false);
5874 if (elfsym->st_name == (unsigned long) -1)
5875 return false;
5876 }
5877
5878 if (finfo->symbuf_count >= finfo->symbuf_size)
5879 {
5880 if (! elf_link_flush_output_syms (finfo))
5881 return false;
5882 }
5883
5884 dest = finfo->symbuf + finfo->symbuf_count;
5885 destshndx = finfo->symshndxbuf;
5886 if (destshndx != NULL)
5887 destshndx += finfo->symbuf_count;
5888 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5889 ++finfo->symbuf_count;
5890
5891 ++ bfd_get_symcount (finfo->output_bfd);
5892
5893 return true;
5894 }
5895
5896 /* Flush the output symbols to the file. */
5897
5898 static boolean
5899 elf_link_flush_output_syms (finfo)
5900 struct elf_final_link_info *finfo;
5901 {
5902 if (finfo->symbuf_count > 0)
5903 {
5904 Elf_Internal_Shdr *hdr;
5905 file_ptr pos;
5906 bfd_size_type amt;
5907
5908 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5909 pos = hdr->sh_offset + hdr->sh_size;
5910 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5911 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5912 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5913 return false;
5914
5915 hdr->sh_size += amt;
5916
5917 if (finfo->symshndxbuf != NULL)
5918 {
5919 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5920 pos = hdr->sh_offset + hdr->sh_size;
5921 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5922 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5923 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5924 != amt))
5925 return false;
5926
5927 hdr->sh_size += amt;
5928 }
5929
5930 finfo->symbuf_count = 0;
5931 }
5932
5933 return true;
5934 }
5935
5936 /* Adjust all external symbols pointing into SEC_MERGE sections
5937 to reflect the object merging within the sections. */
5938
5939 static boolean
5940 elf_link_sec_merge_syms (h, data)
5941 struct elf_link_hash_entry *h;
5942 PTR data;
5943 {
5944 asection *sec;
5945
5946 if (h->root.type == bfd_link_hash_warning)
5947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5948
5949 if ((h->root.type == bfd_link_hash_defined
5950 || h->root.type == bfd_link_hash_defweak)
5951 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5952 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5953 {
5954 bfd *output_bfd = (bfd *) data;
5955
5956 h->root.u.def.value =
5957 _bfd_merged_section_offset (output_bfd,
5958 &h->root.u.def.section,
5959 elf_section_data (sec)->sec_info,
5960 h->root.u.def.value, (bfd_vma) 0);
5961 }
5962
5963 return true;
5964 }
5965
5966 /* Add an external symbol to the symbol table. This is called from
5967 the hash table traversal routine. When generating a shared object,
5968 we go through the symbol table twice. The first time we output
5969 anything that might have been forced to local scope in a version
5970 script. The second time we output the symbols that are still
5971 global symbols. */
5972
5973 static boolean
5974 elf_link_output_extsym (h, data)
5975 struct elf_link_hash_entry *h;
5976 PTR data;
5977 {
5978 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5979 struct elf_final_link_info *finfo = eoinfo->finfo;
5980 boolean strip;
5981 Elf_Internal_Sym sym;
5982 asection *input_sec;
5983
5984 if (h->root.type == bfd_link_hash_warning)
5985 {
5986 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5987 if (h->root.type == bfd_link_hash_new)
5988 return true;
5989 }
5990
5991 /* Decide whether to output this symbol in this pass. */
5992 if (eoinfo->localsyms)
5993 {
5994 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5995 return true;
5996 }
5997 else
5998 {
5999 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6000 return true;
6001 }
6002
6003 /* If we are not creating a shared library, and this symbol is
6004 referenced by a shared library but is not defined anywhere, then
6005 warn that it is undefined. If we do not do this, the runtime
6006 linker will complain that the symbol is undefined when the
6007 program is run. We don't have to worry about symbols that are
6008 referenced by regular files, because we will already have issued
6009 warnings for them. */
6010 if (! finfo->info->relocateable
6011 && ! finfo->info->allow_shlib_undefined
6012 && ! finfo->info->shared
6013 && h->root.type == bfd_link_hash_undefined
6014 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6015 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6016 {
6017 if (! ((*finfo->info->callbacks->undefined_symbol)
6018 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6019 (asection *) NULL, (bfd_vma) 0, true)))
6020 {
6021 eoinfo->failed = true;
6022 return false;
6023 }
6024 }
6025
6026 /* We don't want to output symbols that have never been mentioned by
6027 a regular file, or that we have been told to strip. However, if
6028 h->indx is set to -2, the symbol is used by a reloc and we must
6029 output it. */
6030 if (h->indx == -2)
6031 strip = false;
6032 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6033 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6034 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6035 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6036 strip = true;
6037 else if (finfo->info->strip == strip_all
6038 || (finfo->info->strip == strip_some
6039 && bfd_hash_lookup (finfo->info->keep_hash,
6040 h->root.root.string,
6041 false, false) == NULL))
6042 strip = true;
6043 else
6044 strip = false;
6045
6046 /* If we're stripping it, and it's not a dynamic symbol, there's
6047 nothing else to do unless it is a forced local symbol. */
6048 if (strip
6049 && h->dynindx == -1
6050 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6051 return true;
6052
6053 sym.st_value = 0;
6054 sym.st_size = h->size;
6055 sym.st_other = h->other;
6056 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6057 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6058 else if (h->root.type == bfd_link_hash_undefweak
6059 || h->root.type == bfd_link_hash_defweak)
6060 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6061 else
6062 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6063
6064 switch (h->root.type)
6065 {
6066 default:
6067 case bfd_link_hash_new:
6068 case bfd_link_hash_warning:
6069 abort ();
6070 return false;
6071
6072 case bfd_link_hash_undefined:
6073 case bfd_link_hash_undefweak:
6074 input_sec = bfd_und_section_ptr;
6075 sym.st_shndx = SHN_UNDEF;
6076 break;
6077
6078 case bfd_link_hash_defined:
6079 case bfd_link_hash_defweak:
6080 {
6081 input_sec = h->root.u.def.section;
6082 if (input_sec->output_section != NULL)
6083 {
6084 sym.st_shndx =
6085 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6086 input_sec->output_section);
6087 if (sym.st_shndx == SHN_BAD)
6088 {
6089 (*_bfd_error_handler)
6090 (_("%s: could not find output section %s for input section %s"),
6091 bfd_get_filename (finfo->output_bfd),
6092 input_sec->output_section->name,
6093 input_sec->name);
6094 eoinfo->failed = true;
6095 return false;
6096 }
6097
6098 /* ELF symbols in relocateable files are section relative,
6099 but in nonrelocateable files they are virtual
6100 addresses. */
6101 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6102 if (! finfo->info->relocateable)
6103 sym.st_value += input_sec->output_section->vma;
6104 }
6105 else
6106 {
6107 BFD_ASSERT (input_sec->owner == NULL
6108 || (input_sec->owner->flags & DYNAMIC) != 0);
6109 sym.st_shndx = SHN_UNDEF;
6110 input_sec = bfd_und_section_ptr;
6111 }
6112 }
6113 break;
6114
6115 case bfd_link_hash_common:
6116 input_sec = h->root.u.c.p->section;
6117 sym.st_shndx = SHN_COMMON;
6118 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6119 break;
6120
6121 case bfd_link_hash_indirect:
6122 /* These symbols are created by symbol versioning. They point
6123 to the decorated version of the name. For example, if the
6124 symbol foo@@GNU_1.2 is the default, which should be used when
6125 foo is used with no version, then we add an indirect symbol
6126 foo which points to foo@@GNU_1.2. We ignore these symbols,
6127 since the indirected symbol is already in the hash table. */
6128 return true;
6129 }
6130
6131 /* Give the processor backend a chance to tweak the symbol value,
6132 and also to finish up anything that needs to be done for this
6133 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6134 forced local syms when non-shared is due to a historical quirk. */
6135 if ((h->dynindx != -1
6136 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6137 && (finfo->info->shared
6138 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6139 && elf_hash_table (finfo->info)->dynamic_sections_created)
6140 {
6141 struct elf_backend_data *bed;
6142
6143 bed = get_elf_backend_data (finfo->output_bfd);
6144 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6145 (finfo->output_bfd, finfo->info, h, &sym)))
6146 {
6147 eoinfo->failed = true;
6148 return false;
6149 }
6150 }
6151
6152 /* If we are marking the symbol as undefined, and there are no
6153 non-weak references to this symbol from a regular object, then
6154 mark the symbol as weak undefined; if there are non-weak
6155 references, mark the symbol as strong. We can't do this earlier,
6156 because it might not be marked as undefined until the
6157 finish_dynamic_symbol routine gets through with it. */
6158 if (sym.st_shndx == SHN_UNDEF
6159 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6160 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6161 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6162 {
6163 int bindtype;
6164
6165 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6166 bindtype = STB_GLOBAL;
6167 else
6168 bindtype = STB_WEAK;
6169 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6170 }
6171
6172 /* If a symbol is not defined locally, we clear the visibility
6173 field. */
6174 if (! finfo->info->relocateable
6175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6176 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6177
6178 /* If this symbol should be put in the .dynsym section, then put it
6179 there now. We have already know the symbol index. We also fill
6180 in the entry in the .hash section. */
6181 if (h->dynindx != -1
6182 && elf_hash_table (finfo->info)->dynamic_sections_created)
6183 {
6184 size_t bucketcount;
6185 size_t bucket;
6186 size_t hash_entry_size;
6187 bfd_byte *bucketpos;
6188 bfd_vma chain;
6189 Elf_External_Sym *esym;
6190
6191 sym.st_name = h->dynstr_index;
6192 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6193 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6194
6195 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6196 bucket = h->elf_hash_value % bucketcount;
6197 hash_entry_size
6198 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6199 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6200 + (bucket + 2) * hash_entry_size);
6201 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6202 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6203 bucketpos);
6204 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6205 ((bfd_byte *) finfo->hash_sec->contents
6206 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6207
6208 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6209 {
6210 Elf_Internal_Versym iversym;
6211 Elf_External_Versym *eversym;
6212
6213 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6214 {
6215 if (h->verinfo.verdef == NULL)
6216 iversym.vs_vers = 0;
6217 else
6218 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6219 }
6220 else
6221 {
6222 if (h->verinfo.vertree == NULL)
6223 iversym.vs_vers = 1;
6224 else
6225 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6226 }
6227
6228 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6229 iversym.vs_vers |= VERSYM_HIDDEN;
6230
6231 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6232 eversym += h->dynindx;
6233 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6234 }
6235 }
6236
6237 /* If we're stripping it, then it was just a dynamic symbol, and
6238 there's nothing else to do. */
6239 if (strip)
6240 return true;
6241
6242 h->indx = bfd_get_symcount (finfo->output_bfd);
6243
6244 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6245 {
6246 eoinfo->failed = true;
6247 return false;
6248 }
6249
6250 return true;
6251 }
6252
6253 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6254 originated from the section given by INPUT_REL_HDR) to the
6255 OUTPUT_BFD. */
6256
6257 static void
6258 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6259 internal_relocs)
6260 bfd *output_bfd;
6261 asection *input_section;
6262 Elf_Internal_Shdr *input_rel_hdr;
6263 Elf_Internal_Rela *internal_relocs;
6264 {
6265 Elf_Internal_Rela *irela;
6266 Elf_Internal_Rela *irelaend;
6267 Elf_Internal_Shdr *output_rel_hdr;
6268 asection *output_section;
6269 unsigned int *rel_countp = NULL;
6270 struct elf_backend_data *bed;
6271 bfd_size_type amt;
6272
6273 output_section = input_section->output_section;
6274 output_rel_hdr = NULL;
6275
6276 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6277 == input_rel_hdr->sh_entsize)
6278 {
6279 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6280 rel_countp = &elf_section_data (output_section)->rel_count;
6281 }
6282 else if (elf_section_data (output_section)->rel_hdr2
6283 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6284 == input_rel_hdr->sh_entsize))
6285 {
6286 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6287 rel_countp = &elf_section_data (output_section)->rel_count2;
6288 }
6289
6290 BFD_ASSERT (output_rel_hdr != NULL);
6291
6292 bed = get_elf_backend_data (output_bfd);
6293 irela = internal_relocs;
6294 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6295 * bed->s->int_rels_per_ext_rel;
6296
6297 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6298 {
6299 Elf_External_Rel *erel;
6300 Elf_Internal_Rel *irel;
6301
6302 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6303 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6304 if (irel == NULL)
6305 {
6306 (*_bfd_error_handler) (_("Error: out of memory"));
6307 abort ();
6308 }
6309
6310 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6311 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6312 {
6313 unsigned int i;
6314
6315 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6316 {
6317 irel[i].r_offset = irela[i].r_offset;
6318 irel[i].r_info = irela[i].r_info;
6319 BFD_ASSERT (irela[i].r_addend == 0);
6320 }
6321
6322 if (bed->s->swap_reloc_out)
6323 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6324 else
6325 elf_swap_reloc_out (output_bfd, irel, erel);
6326 }
6327
6328 free (irel);
6329 }
6330 else
6331 {
6332 Elf_External_Rela *erela;
6333
6334 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6335
6336 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6337 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6338 if (bed->s->swap_reloca_out)
6339 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6340 else
6341 elf_swap_reloca_out (output_bfd, irela, erela);
6342 }
6343
6344 /* Bump the counter, so that we know where to add the next set of
6345 relocations. */
6346 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6347 }
6348
6349 /* Link an input file into the linker output file. This function
6350 handles all the sections and relocations of the input file at once.
6351 This is so that we only have to read the local symbols once, and
6352 don't have to keep them in memory. */
6353
6354 static boolean
6355 elf_link_input_bfd (finfo, input_bfd)
6356 struct elf_final_link_info *finfo;
6357 bfd *input_bfd;
6358 {
6359 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6360 bfd *, asection *, bfd_byte *,
6361 Elf_Internal_Rela *,
6362 Elf_Internal_Sym *, asection **));
6363 bfd *output_bfd;
6364 Elf_Internal_Shdr *symtab_hdr;
6365 Elf_Internal_Shdr *shndx_hdr;
6366 size_t locsymcount;
6367 size_t extsymoff;
6368 Elf_External_Sym *external_syms;
6369 Elf_External_Sym *esym;
6370 Elf_External_Sym *esymend;
6371 Elf_External_Sym_Shndx *shndx_buf;
6372 Elf_External_Sym_Shndx *shndx;
6373 Elf_Internal_Sym *isym;
6374 long *pindex;
6375 asection **ppsection;
6376 asection *o;
6377 struct elf_backend_data *bed;
6378 boolean emit_relocs;
6379 struct elf_link_hash_entry **sym_hashes;
6380
6381 output_bfd = finfo->output_bfd;
6382 bed = get_elf_backend_data (output_bfd);
6383 relocate_section = bed->elf_backend_relocate_section;
6384
6385 /* If this is a dynamic object, we don't want to do anything here:
6386 we don't want the local symbols, and we don't want the section
6387 contents. */
6388 if ((input_bfd->flags & DYNAMIC) != 0)
6389 return true;
6390
6391 emit_relocs = (finfo->info->relocateable
6392 || finfo->info->emitrelocations
6393 || bed->elf_backend_emit_relocs);
6394
6395 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6396 if (elf_bad_symtab (input_bfd))
6397 {
6398 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6399 extsymoff = 0;
6400 }
6401 else
6402 {
6403 locsymcount = symtab_hdr->sh_info;
6404 extsymoff = symtab_hdr->sh_info;
6405 }
6406
6407 /* Read the local symbols. */
6408 if (symtab_hdr->contents != NULL)
6409 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
6410 else if (locsymcount == 0)
6411 external_syms = NULL;
6412 else
6413 {
6414 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym);
6415 external_syms = finfo->external_syms;
6416 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6417 || bfd_bread (external_syms, amt, input_bfd) != amt)
6418 return false;
6419 }
6420
6421 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
6422 shndx_buf = NULL;
6423 if (shndx_hdr->sh_size != 0 && locsymcount != 0)
6424 {
6425 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx);
6426 shndx_buf = finfo->locsym_shndx;
6427 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
6428 || bfd_bread (shndx_buf, amt, input_bfd) != amt)
6429 return false;
6430 }
6431
6432 /* Swap in the local symbols and write out the ones which we know
6433 are going into the output file. */
6434 for (esym = external_syms, esymend = esym + locsymcount,
6435 isym = finfo->internal_syms, pindex = finfo->indices,
6436 ppsection = finfo->sections, shndx = shndx_buf;
6437 esym < esymend;
6438 esym++, isym++, pindex++, ppsection++,
6439 shndx = (shndx != NULL ? shndx + 1 : NULL))
6440 {
6441 asection *isec;
6442 const char *name;
6443 Elf_Internal_Sym osym;
6444
6445 elf_swap_symbol_in (input_bfd, esym, shndx, isym);
6446 *pindex = -1;
6447
6448 if (elf_bad_symtab (input_bfd))
6449 {
6450 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6451 {
6452 *ppsection = NULL;
6453 continue;
6454 }
6455 }
6456
6457 if (isym->st_shndx == SHN_UNDEF)
6458 isec = bfd_und_section_ptr;
6459 else if (isym->st_shndx < SHN_LORESERVE
6460 || isym->st_shndx > SHN_HIRESERVE)
6461 {
6462 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6463 if (isec
6464 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6465 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6466 isym->st_value =
6467 _bfd_merged_section_offset (output_bfd, &isec,
6468 elf_section_data (isec)->sec_info,
6469 isym->st_value, (bfd_vma) 0);
6470 }
6471 else if (isym->st_shndx == SHN_ABS)
6472 isec = bfd_abs_section_ptr;
6473 else if (isym->st_shndx == SHN_COMMON)
6474 isec = bfd_com_section_ptr;
6475 else
6476 {
6477 /* Who knows? */
6478 isec = NULL;
6479 }
6480
6481 *ppsection = isec;
6482
6483 /* Don't output the first, undefined, symbol. */
6484 if (esym == external_syms)
6485 continue;
6486
6487 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6488 {
6489 /* We never output section symbols. Instead, we use the
6490 section symbol of the corresponding section in the output
6491 file. */
6492 continue;
6493 }
6494
6495 /* If we are stripping all symbols, we don't want to output this
6496 one. */
6497 if (finfo->info->strip == strip_all)
6498 continue;
6499
6500 /* If we are discarding all local symbols, we don't want to
6501 output this one. If we are generating a relocateable output
6502 file, then some of the local symbols may be required by
6503 relocs; we output them below as we discover that they are
6504 needed. */
6505 if (finfo->info->discard == discard_all)
6506 continue;
6507
6508 /* If this symbol is defined in a section which we are
6509 discarding, we don't need to keep it, but note that
6510 linker_mark is only reliable for sections that have contents.
6511 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6512 as well as linker_mark. */
6513 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6514 && isec != NULL
6515 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6516 || (! finfo->info->relocateable
6517 && (isec->flags & SEC_EXCLUDE) != 0)))
6518 continue;
6519
6520 /* Get the name of the symbol. */
6521 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6522 isym->st_name);
6523 if (name == NULL)
6524 return false;
6525
6526 /* See if we are discarding symbols with this name. */
6527 if ((finfo->info->strip == strip_some
6528 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6529 == NULL))
6530 || (((finfo->info->discard == discard_sec_merge
6531 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6532 || finfo->info->discard == discard_l)
6533 && bfd_is_local_label_name (input_bfd, name)))
6534 continue;
6535
6536 /* If we get here, we are going to output this symbol. */
6537
6538 osym = *isym;
6539
6540 /* Adjust the section index for the output file. */
6541 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6542 isec->output_section);
6543 if (osym.st_shndx == SHN_BAD)
6544 return false;
6545
6546 *pindex = bfd_get_symcount (output_bfd);
6547
6548 /* ELF symbols in relocateable files are section relative, but
6549 in executable files they are virtual addresses. Note that
6550 this code assumes that all ELF sections have an associated
6551 BFD section with a reasonable value for output_offset; below
6552 we assume that they also have a reasonable value for
6553 output_section. Any special sections must be set up to meet
6554 these requirements. */
6555 osym.st_value += isec->output_offset;
6556 if (! finfo->info->relocateable)
6557 osym.st_value += isec->output_section->vma;
6558
6559 if (! elf_link_output_sym (finfo, name, &osym, isec))
6560 return false;
6561 }
6562
6563 /* Relocate the contents of each section. */
6564 sym_hashes = elf_sym_hashes (input_bfd);
6565 for (o = input_bfd->sections; o != NULL; o = o->next)
6566 {
6567 bfd_byte *contents;
6568
6569 if (! o->linker_mark)
6570 {
6571 /* This section was omitted from the link. */
6572 continue;
6573 }
6574
6575 if ((o->flags & SEC_HAS_CONTENTS) == 0
6576 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6577 continue;
6578
6579 if ((o->flags & SEC_LINKER_CREATED) != 0)
6580 {
6581 /* Section was created by elf_link_create_dynamic_sections
6582 or somesuch. */
6583 continue;
6584 }
6585
6586 /* Get the contents of the section. They have been cached by a
6587 relaxation routine. Note that o is a section in an input
6588 file, so the contents field will not have been set by any of
6589 the routines which work on output files. */
6590 if (elf_section_data (o)->this_hdr.contents != NULL)
6591 contents = elf_section_data (o)->this_hdr.contents;
6592 else
6593 {
6594 contents = finfo->contents;
6595 if (! bfd_get_section_contents (input_bfd, o, contents,
6596 (file_ptr) 0, o->_raw_size))
6597 return false;
6598 }
6599
6600 if ((o->flags & SEC_RELOC) != 0)
6601 {
6602 Elf_Internal_Rela *internal_relocs;
6603
6604 /* Get the swapped relocs. */
6605 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6606 (input_bfd, o, finfo->external_relocs,
6607 finfo->internal_relocs, false));
6608 if (internal_relocs == NULL
6609 && o->reloc_count > 0)
6610 return false;
6611
6612 /* Run through the relocs looking for any against symbols
6613 from discarded sections and section symbols from
6614 removed link-once sections. Complain about relocs
6615 against discarded sections. Zero relocs against removed
6616 link-once sections. We should really complain if
6617 anything in the final link tries to use it, but
6618 DWARF-based exception handling might have an entry in
6619 .eh_frame to describe a routine in the linkonce section,
6620 and it turns out to be hard to remove the .eh_frame
6621 entry too. FIXME. */
6622 if (!finfo->info->relocateable
6623 && !elf_section_ignore_discarded_relocs (o))
6624 {
6625 Elf_Internal_Rela *rel, *relend;
6626
6627 rel = internal_relocs;
6628 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6629 for ( ; rel < relend; rel++)
6630 {
6631 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6632
6633 if (r_symndx >= locsymcount
6634 || (elf_bad_symtab (input_bfd)
6635 && finfo->sections[r_symndx] == NULL))
6636 {
6637 struct elf_link_hash_entry *h;
6638
6639 h = sym_hashes[r_symndx - extsymoff];
6640 while (h->root.type == bfd_link_hash_indirect
6641 || h->root.type == bfd_link_hash_warning)
6642 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6643
6644 /* Complain if the definition comes from a
6645 discarded section. */
6646 if ((h->root.type == bfd_link_hash_defined
6647 || h->root.type == bfd_link_hash_defweak)
6648 && elf_discarded_section (h->root.u.def.section))
6649 {
6650 #if BFD_VERSION_DATE < 20031005
6651 if ((o->flags & SEC_DEBUGGING) != 0)
6652 {
6653 #if BFD_VERSION_DATE > 20021005
6654 (*finfo->info->callbacks->warning)
6655 (finfo->info,
6656 _("warning: relocation against removed section; zeroing"),
6657 NULL, input_bfd, o, rel->r_offset);
6658 #endif
6659 BFD_ASSERT (r_symndx != 0);
6660 memset (rel, 0, sizeof (*rel));
6661 }
6662 else
6663 #endif
6664 {
6665 if (! ((*finfo->info->callbacks->undefined_symbol)
6666 (finfo->info, h->root.root.string,
6667 input_bfd, o, rel->r_offset,
6668 true)))
6669 return false;
6670 }
6671 }
6672 }
6673 else
6674 {
6675 asection *sec = finfo->sections[r_symndx];
6676
6677 if (sec != NULL && elf_discarded_section (sec))
6678 {
6679 #if BFD_VERSION_DATE < 20031005
6680 if ((o->flags & SEC_DEBUGGING) != 0
6681 || (sec->flags & SEC_LINK_ONCE) != 0)
6682 {
6683 #if BFD_VERSION_DATE > 20021005
6684 (*finfo->info->callbacks->warning)
6685 (finfo->info,
6686 _("warning: relocation against removed section"),
6687 NULL, input_bfd, o, rel->r_offset);
6688 #endif
6689 BFD_ASSERT (r_symndx != 0);
6690 rel->r_info
6691 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6692 rel->r_addend = 0;
6693 }
6694 else
6695 #endif
6696 {
6697 boolean ok;
6698 const char *msg
6699 = _("local symbols in discarded section %s");
6700 bfd_size_type amt
6701 = strlen (sec->name) + strlen (msg) - 1;
6702 char *buf = (char *) bfd_malloc (amt);
6703
6704 if (buf != NULL)
6705 sprintf (buf, msg, sec->name);
6706 else
6707 buf = (char *) sec->name;
6708 ok = (*finfo->info->callbacks
6709 ->undefined_symbol) (finfo->info, buf,
6710 input_bfd, o,
6711 rel->r_offset,
6712 true);
6713 if (buf != sec->name)
6714 free (buf);
6715 if (!ok)
6716 return false;
6717 }
6718 }
6719 }
6720 }
6721 }
6722
6723 /* Relocate the section by invoking a back end routine.
6724
6725 The back end routine is responsible for adjusting the
6726 section contents as necessary, and (if using Rela relocs
6727 and generating a relocateable output file) adjusting the
6728 reloc addend as necessary.
6729
6730 The back end routine does not have to worry about setting
6731 the reloc address or the reloc symbol index.
6732
6733 The back end routine is given a pointer to the swapped in
6734 internal symbols, and can access the hash table entries
6735 for the external symbols via elf_sym_hashes (input_bfd).
6736
6737 When generating relocateable output, the back end routine
6738 must handle STB_LOCAL/STT_SECTION symbols specially. The
6739 output symbol is going to be a section symbol
6740 corresponding to the output section, which will require
6741 the addend to be adjusted. */
6742
6743 if (! (*relocate_section) (output_bfd, finfo->info,
6744 input_bfd, o, contents,
6745 internal_relocs,
6746 finfo->internal_syms,
6747 finfo->sections))
6748 return false;
6749
6750 if (emit_relocs)
6751 {
6752 Elf_Internal_Rela *irela;
6753 Elf_Internal_Rela *irelaend;
6754 struct elf_link_hash_entry **rel_hash;
6755 Elf_Internal_Shdr *input_rel_hdr;
6756 unsigned int next_erel;
6757 void (*reloc_emitter) PARAMS ((bfd *, asection *,
6758 Elf_Internal_Shdr *,
6759 Elf_Internal_Rela *));
6760 boolean rela_normal;
6761
6762 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6763 rela_normal = (bed->rela_normal
6764 && (input_rel_hdr->sh_entsize
6765 == sizeof (Elf_External_Rela)));
6766
6767 /* Adjust the reloc addresses and symbol indices. */
6768
6769 irela = internal_relocs;
6770 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6771 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6772 + elf_section_data (o->output_section)->rel_count
6773 + elf_section_data (o->output_section)->rel_count2);
6774 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6775 {
6776 unsigned long r_symndx;
6777 asection *sec;
6778
6779 if (next_erel == bed->s->int_rels_per_ext_rel)
6780 {
6781 rel_hash++;
6782 next_erel = 0;
6783 }
6784
6785 irela->r_offset += o->output_offset;
6786
6787 /* Relocs in an executable have to be virtual addresses. */
6788 if (!finfo->info->relocateable)
6789 irela->r_offset += o->output_section->vma;
6790
6791 r_symndx = ELF_R_SYM (irela->r_info);
6792
6793 if (r_symndx == 0)
6794 continue;
6795
6796 if (r_symndx >= locsymcount
6797 || (elf_bad_symtab (input_bfd)
6798 && finfo->sections[r_symndx] == NULL))
6799 {
6800 struct elf_link_hash_entry *rh;
6801 unsigned long indx;
6802
6803 /* This is a reloc against a global symbol. We
6804 have not yet output all the local symbols, so
6805 we do not know the symbol index of any global
6806 symbol. We set the rel_hash entry for this
6807 reloc to point to the global hash table entry
6808 for this symbol. The symbol index is then
6809 set at the end of elf_bfd_final_link. */
6810 indx = r_symndx - extsymoff;
6811 rh = elf_sym_hashes (input_bfd)[indx];
6812 while (rh->root.type == bfd_link_hash_indirect
6813 || rh->root.type == bfd_link_hash_warning)
6814 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6815
6816 /* Setting the index to -2 tells
6817 elf_link_output_extsym that this symbol is
6818 used by a reloc. */
6819 BFD_ASSERT (rh->indx < 0);
6820 rh->indx = -2;
6821
6822 *rel_hash = rh;
6823
6824 continue;
6825 }
6826
6827 /* This is a reloc against a local symbol. */
6828
6829 *rel_hash = NULL;
6830 isym = finfo->internal_syms + r_symndx;
6831 sec = finfo->sections[r_symndx];
6832 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6833 {
6834 /* I suppose the backend ought to fill in the
6835 section of any STT_SECTION symbol against a
6836 processor specific section. If we have
6837 discarded a section, the output_section will
6838 be the absolute section. */
6839 if (bfd_is_abs_section (sec)
6840 || (sec != NULL
6841 && bfd_is_abs_section (sec->output_section)))
6842 r_symndx = 0;
6843 else if (sec == NULL || sec->owner == NULL)
6844 {
6845 bfd_set_error (bfd_error_bad_value);
6846 return false;
6847 }
6848 else
6849 {
6850 r_symndx = sec->output_section->target_index;
6851 BFD_ASSERT (r_symndx != 0);
6852 }
6853
6854 /* Adjust the addend according to where the
6855 section winds up in the output section. */
6856 if (rela_normal)
6857 irela->r_addend += sec->output_offset;
6858 }
6859 else
6860 {
6861 if (finfo->indices[r_symndx] == -1)
6862 {
6863 unsigned long shlink;
6864 const char *name;
6865 asection *osec;
6866
6867 if (finfo->info->strip == strip_all)
6868 {
6869 /* You can't do ld -r -s. */
6870 bfd_set_error (bfd_error_invalid_operation);
6871 return false;
6872 }
6873
6874 /* This symbol was skipped earlier, but
6875 since it is needed by a reloc, we
6876 must output it now. */
6877 shlink = symtab_hdr->sh_link;
6878 name = (bfd_elf_string_from_elf_section
6879 (input_bfd, shlink, isym->st_name));
6880 if (name == NULL)
6881 return false;
6882
6883 osec = sec->output_section;
6884 isym->st_shndx =
6885 _bfd_elf_section_from_bfd_section (output_bfd,
6886 osec);
6887 if (isym->st_shndx == SHN_BAD)
6888 return false;
6889
6890 isym->st_value += sec->output_offset;
6891 if (! finfo->info->relocateable)
6892 isym->st_value += osec->vma;
6893
6894 finfo->indices[r_symndx]
6895 = bfd_get_symcount (output_bfd);
6896
6897 if (! elf_link_output_sym (finfo, name, isym, sec))
6898 return false;
6899 }
6900
6901 r_symndx = finfo->indices[r_symndx];
6902 }
6903
6904 irela->r_info = ELF_R_INFO (r_symndx,
6905 ELF_R_TYPE (irela->r_info));
6906 }
6907
6908 /* Swap out the relocs. */
6909 if (bed->elf_backend_emit_relocs
6910 && !(finfo->info->relocateable
6911 || finfo->info->emitrelocations))
6912 reloc_emitter = bed->elf_backend_emit_relocs;
6913 else
6914 reloc_emitter = elf_link_output_relocs;
6915
6916 (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs);
6917
6918 input_rel_hdr = elf_section_data (o)->rel_hdr2;
6919 if (input_rel_hdr)
6920 {
6921 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6922 * bed->s->int_rels_per_ext_rel);
6923 (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6924 internal_relocs);
6925 }
6926
6927 }
6928 }
6929
6930 /* Write out the modified section contents. */
6931 if (bed->elf_backend_write_section
6932 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6933 {
6934 /* Section written out. */
6935 }
6936 else switch (elf_section_data (o)->sec_info_type)
6937 {
6938 case ELF_INFO_TYPE_STABS:
6939 if (! (_bfd_write_section_stabs
6940 (output_bfd,
6941 &elf_hash_table (finfo->info)->stab_info,
6942 o, &elf_section_data (o)->sec_info, contents)))
6943 return false;
6944 break;
6945 case ELF_INFO_TYPE_MERGE:
6946 if (! (_bfd_write_merged_section
6947 (output_bfd, o, elf_section_data (o)->sec_info)))
6948 return false;
6949 break;
6950 case ELF_INFO_TYPE_EH_FRAME:
6951 {
6952 asection *ehdrsec;
6953
6954 ehdrsec
6955 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
6956 ".eh_frame_hdr");
6957 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
6958 contents)))
6959 return false;
6960 }
6961 break;
6962 default:
6963 {
6964 bfd_size_type sec_size;
6965
6966 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
6967 if (! (o->flags & SEC_EXCLUDE)
6968 && ! bfd_set_section_contents (output_bfd, o->output_section,
6969 contents,
6970 (file_ptr) o->output_offset,
6971 sec_size))
6972 return false;
6973 }
6974 break;
6975 }
6976 }
6977
6978 return true;
6979 }
6980
6981 /* Generate a reloc when linking an ELF file. This is a reloc
6982 requested by the linker, and does come from any input file. This
6983 is used to build constructor and destructor tables when linking
6984 with -Ur. */
6985
6986 static boolean
6987 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6988 bfd *output_bfd;
6989 struct bfd_link_info *info;
6990 asection *output_section;
6991 struct bfd_link_order *link_order;
6992 {
6993 reloc_howto_type *howto;
6994 long indx;
6995 bfd_vma offset;
6996 bfd_vma addend;
6997 struct elf_link_hash_entry **rel_hash_ptr;
6998 Elf_Internal_Shdr *rel_hdr;
6999 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7000
7001 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7002 if (howto == NULL)
7003 {
7004 bfd_set_error (bfd_error_bad_value);
7005 return false;
7006 }
7007
7008 addend = link_order->u.reloc.p->addend;
7009
7010 /* Figure out the symbol index. */
7011 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7012 + elf_section_data (output_section)->rel_count
7013 + elf_section_data (output_section)->rel_count2);
7014 if (link_order->type == bfd_section_reloc_link_order)
7015 {
7016 indx = link_order->u.reloc.p->u.section->target_index;
7017 BFD_ASSERT (indx != 0);
7018 *rel_hash_ptr = NULL;
7019 }
7020 else
7021 {
7022 struct elf_link_hash_entry *h;
7023
7024 /* Treat a reloc against a defined symbol as though it were
7025 actually against the section. */
7026 h = ((struct elf_link_hash_entry *)
7027 bfd_wrapped_link_hash_lookup (output_bfd, info,
7028 link_order->u.reloc.p->u.name,
7029 false, false, true));
7030 if (h != NULL
7031 && (h->root.type == bfd_link_hash_defined
7032 || h->root.type == bfd_link_hash_defweak))
7033 {
7034 asection *section;
7035
7036 section = h->root.u.def.section;
7037 indx = section->output_section->target_index;
7038 *rel_hash_ptr = NULL;
7039 /* It seems that we ought to add the symbol value to the
7040 addend here, but in practice it has already been added
7041 because it was passed to constructor_callback. */
7042 addend += section->output_section->vma + section->output_offset;
7043 }
7044 else if (h != NULL)
7045 {
7046 /* Setting the index to -2 tells elf_link_output_extsym that
7047 this symbol is used by a reloc. */
7048 h->indx = -2;
7049 *rel_hash_ptr = h;
7050 indx = 0;
7051 }
7052 else
7053 {
7054 if (! ((*info->callbacks->unattached_reloc)
7055 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7056 (asection *) NULL, (bfd_vma) 0)))
7057 return false;
7058 indx = 0;
7059 }
7060 }
7061
7062 /* If this is an inplace reloc, we must write the addend into the
7063 object file. */
7064 if (howto->partial_inplace && addend != 0)
7065 {
7066 bfd_size_type size;
7067 bfd_reloc_status_type rstat;
7068 bfd_byte *buf;
7069 boolean ok;
7070 const char *sym_name;
7071
7072 size = bfd_get_reloc_size (howto);
7073 buf = (bfd_byte *) bfd_zmalloc (size);
7074 if (buf == (bfd_byte *) NULL)
7075 return false;
7076 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7077 switch (rstat)
7078 {
7079 case bfd_reloc_ok:
7080 break;
7081
7082 default:
7083 case bfd_reloc_outofrange:
7084 abort ();
7085
7086 case bfd_reloc_overflow:
7087 if (link_order->type == bfd_section_reloc_link_order)
7088 sym_name = bfd_section_name (output_bfd,
7089 link_order->u.reloc.p->u.section);
7090 else
7091 sym_name = link_order->u.reloc.p->u.name;
7092 if (! ((*info->callbacks->reloc_overflow)
7093 (info, sym_name, howto->name, addend,
7094 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7095 {
7096 free (buf);
7097 return false;
7098 }
7099 break;
7100 }
7101 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7102 (file_ptr) link_order->offset, size);
7103 free (buf);
7104 if (! ok)
7105 return false;
7106 }
7107
7108 /* The address of a reloc is relative to the section in a
7109 relocateable file, and is a virtual address in an executable
7110 file. */
7111 offset = link_order->offset;
7112 if (! info->relocateable)
7113 offset += output_section->vma;
7114
7115 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7116
7117 if (rel_hdr->sh_type == SHT_REL)
7118 {
7119 bfd_size_type size;
7120 Elf_Internal_Rel *irel;
7121 Elf_External_Rel *erel;
7122 unsigned int i;
7123
7124 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7125 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7126 if (irel == NULL)
7127 return false;
7128
7129 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7130 irel[i].r_offset = offset;
7131 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7132
7133 erel = ((Elf_External_Rel *) rel_hdr->contents
7134 + elf_section_data (output_section)->rel_count);
7135
7136 if (bed->s->swap_reloc_out)
7137 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7138 else
7139 elf_swap_reloc_out (output_bfd, irel, erel);
7140
7141 free (irel);
7142 }
7143 else
7144 {
7145 bfd_size_type size;
7146 Elf_Internal_Rela *irela;
7147 Elf_External_Rela *erela;
7148 unsigned int i;
7149
7150 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7151 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7152 if (irela == NULL)
7153 return false;
7154
7155 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7156 irela[i].r_offset = offset;
7157 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7158 irela[0].r_addend = addend;
7159
7160 erela = ((Elf_External_Rela *) rel_hdr->contents
7161 + elf_section_data (output_section)->rel_count);
7162
7163 if (bed->s->swap_reloca_out)
7164 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7165 else
7166 elf_swap_reloca_out (output_bfd, irela, erela);
7167 }
7168
7169 ++elf_section_data (output_section)->rel_count;
7170
7171 return true;
7172 }
7173 \f
7174 /* Allocate a pointer to live in a linker created section. */
7175
7176 boolean
7177 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7178 bfd *abfd;
7179 struct bfd_link_info *info;
7180 elf_linker_section_t *lsect;
7181 struct elf_link_hash_entry *h;
7182 const Elf_Internal_Rela *rel;
7183 {
7184 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7185 elf_linker_section_pointers_t *linker_section_ptr;
7186 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7187 bfd_size_type amt;
7188
7189 BFD_ASSERT (lsect != NULL);
7190
7191 /* Is this a global symbol? */
7192 if (h != NULL)
7193 {
7194 /* Has this symbol already been allocated? If so, our work is done. */
7195 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7196 rel->r_addend,
7197 lsect->which))
7198 return true;
7199
7200 ptr_linker_section_ptr = &h->linker_section_pointer;
7201 /* Make sure this symbol is output as a dynamic symbol. */
7202 if (h->dynindx == -1)
7203 {
7204 if (! elf_link_record_dynamic_symbol (info, h))
7205 return false;
7206 }
7207
7208 if (lsect->rel_section)
7209 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7210 }
7211 else
7212 {
7213 /* Allocation of a pointer to a local symbol. */
7214 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7215
7216 /* Allocate a table to hold the local symbols if first time. */
7217 if (!ptr)
7218 {
7219 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7220 register unsigned int i;
7221
7222 amt = num_symbols;
7223 amt *= sizeof (elf_linker_section_pointers_t *);
7224 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7225
7226 if (!ptr)
7227 return false;
7228
7229 elf_local_ptr_offsets (abfd) = ptr;
7230 for (i = 0; i < num_symbols; i++)
7231 ptr[i] = (elf_linker_section_pointers_t *) 0;
7232 }
7233
7234 /* Has this symbol already been allocated? If so, our work is done. */
7235 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7236 rel->r_addend,
7237 lsect->which))
7238 return true;
7239
7240 ptr_linker_section_ptr = &ptr[r_symndx];
7241
7242 if (info->shared)
7243 {
7244 /* If we are generating a shared object, we need to
7245 output a R_<xxx>_RELATIVE reloc so that the
7246 dynamic linker can adjust this GOT entry. */
7247 BFD_ASSERT (lsect->rel_section != NULL);
7248 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7249 }
7250 }
7251
7252 /* Allocate space for a pointer in the linker section, and allocate
7253 a new pointer record from internal memory. */
7254 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7255 amt = sizeof (elf_linker_section_pointers_t);
7256 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7257
7258 if (!linker_section_ptr)
7259 return false;
7260
7261 linker_section_ptr->next = *ptr_linker_section_ptr;
7262 linker_section_ptr->addend = rel->r_addend;
7263 linker_section_ptr->which = lsect->which;
7264 linker_section_ptr->written_address_p = false;
7265 *ptr_linker_section_ptr = linker_section_ptr;
7266
7267 #if 0
7268 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7269 {
7270 linker_section_ptr->offset = (lsect->section->_raw_size
7271 - lsect->hole_size + (ARCH_SIZE / 8));
7272 lsect->hole_offset += ARCH_SIZE / 8;
7273 lsect->sym_offset += ARCH_SIZE / 8;
7274 if (lsect->sym_hash)
7275 {
7276 /* Bump up symbol value if needed. */
7277 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7278 #ifdef DEBUG
7279 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7280 lsect->sym_hash->root.root.string,
7281 (long) ARCH_SIZE / 8,
7282 (long) lsect->sym_hash->root.u.def.value);
7283 #endif
7284 }
7285 }
7286 else
7287 #endif
7288 linker_section_ptr->offset = lsect->section->_raw_size;
7289
7290 lsect->section->_raw_size += ARCH_SIZE / 8;
7291
7292 #ifdef DEBUG
7293 fprintf (stderr,
7294 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7295 lsect->name, (long) linker_section_ptr->offset,
7296 (long) lsect->section->_raw_size);
7297 #endif
7298
7299 return true;
7300 }
7301 \f
7302 #if ARCH_SIZE==64
7303 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7304 #endif
7305 #if ARCH_SIZE==32
7306 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7307 #endif
7308
7309 /* Fill in the address for a pointer generated in a linker section. */
7310
7311 bfd_vma
7312 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7313 relocation, rel, relative_reloc)
7314 bfd *output_bfd;
7315 bfd *input_bfd;
7316 struct bfd_link_info *info;
7317 elf_linker_section_t *lsect;
7318 struct elf_link_hash_entry *h;
7319 bfd_vma relocation;
7320 const Elf_Internal_Rela *rel;
7321 int relative_reloc;
7322 {
7323 elf_linker_section_pointers_t *linker_section_ptr;
7324
7325 BFD_ASSERT (lsect != NULL);
7326
7327 if (h != NULL)
7328 {
7329 /* Handle global symbol. */
7330 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7331 (h->linker_section_pointer,
7332 rel->r_addend,
7333 lsect->which));
7334
7335 BFD_ASSERT (linker_section_ptr != NULL);
7336
7337 if (! elf_hash_table (info)->dynamic_sections_created
7338 || (info->shared
7339 && info->symbolic
7340 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7341 {
7342 /* This is actually a static link, or it is a
7343 -Bsymbolic link and the symbol is defined
7344 locally. We must initialize this entry in the
7345 global section.
7346
7347 When doing a dynamic link, we create a .rela.<xxx>
7348 relocation entry to initialize the value. This
7349 is done in the finish_dynamic_symbol routine. */
7350 if (!linker_section_ptr->written_address_p)
7351 {
7352 linker_section_ptr->written_address_p = true;
7353 bfd_put_ptr (output_bfd,
7354 relocation + linker_section_ptr->addend,
7355 (lsect->section->contents
7356 + linker_section_ptr->offset));
7357 }
7358 }
7359 }
7360 else
7361 {
7362 /* Handle local symbol. */
7363 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7364 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7365 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7366 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7367 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7368 rel->r_addend,
7369 lsect->which));
7370
7371 BFD_ASSERT (linker_section_ptr != NULL);
7372
7373 /* Write out pointer if it hasn't been rewritten out before. */
7374 if (!linker_section_ptr->written_address_p)
7375 {
7376 linker_section_ptr->written_address_p = true;
7377 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7378 lsect->section->contents + linker_section_ptr->offset);
7379
7380 if (info->shared)
7381 {
7382 asection *srel = lsect->rel_section;
7383 Elf_Internal_Rela *outrel;
7384 Elf_External_Rela *erel;
7385 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7386 unsigned int i;
7387 bfd_size_type amt;
7388
7389 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7390 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7391 if (outrel == NULL)
7392 {
7393 (*_bfd_error_handler) (_("Error: out of memory"));
7394 return 0;
7395 }
7396
7397 /* We need to generate a relative reloc for the dynamic
7398 linker. */
7399 if (!srel)
7400 {
7401 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7402 lsect->rel_name);
7403 lsect->rel_section = srel;
7404 }
7405
7406 BFD_ASSERT (srel != NULL);
7407
7408 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7409 outrel[i].r_offset = (lsect->section->output_section->vma
7410 + lsect->section->output_offset
7411 + linker_section_ptr->offset);
7412 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7413 outrel[0].r_addend = 0;
7414 erel = (Elf_External_Rela *) lsect->section->contents;
7415 erel += elf_section_data (lsect->section)->rel_count;
7416 elf_swap_reloca_out (output_bfd, outrel, erel);
7417 ++elf_section_data (lsect->section)->rel_count;
7418
7419 free (outrel);
7420 }
7421 }
7422 }
7423
7424 relocation = (lsect->section->output_offset
7425 + linker_section_ptr->offset
7426 - lsect->hole_offset
7427 - lsect->sym_offset);
7428
7429 #ifdef DEBUG
7430 fprintf (stderr,
7431 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7432 lsect->name, (long) relocation, (long) relocation);
7433 #endif
7434
7435 /* Subtract out the addend, because it will get added back in by the normal
7436 processing. */
7437 return relocation - linker_section_ptr->addend;
7438 }
7439 \f
7440 /* Garbage collect unused sections. */
7441
7442 static boolean elf_gc_mark
7443 PARAMS ((struct bfd_link_info *info, asection *sec,
7444 asection * (*gc_mark_hook)
7445 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7446 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7447
7448 static boolean elf_gc_sweep
7449 PARAMS ((struct bfd_link_info *info,
7450 boolean (*gc_sweep_hook)
7451 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7452 const Elf_Internal_Rela *relocs))));
7453
7454 static boolean elf_gc_sweep_symbol
7455 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7456
7457 static boolean elf_gc_allocate_got_offsets
7458 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7459
7460 static boolean elf_gc_propagate_vtable_entries_used
7461 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7462
7463 static boolean elf_gc_smash_unused_vtentry_relocs
7464 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7465
7466 /* The mark phase of garbage collection. For a given section, mark
7467 it and any sections in this section's group, and all the sections
7468 which define symbols to which it refers. */
7469
7470 static boolean
7471 elf_gc_mark (info, sec, gc_mark_hook)
7472 struct bfd_link_info *info;
7473 asection *sec;
7474 asection * (*gc_mark_hook)
7475 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7476 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7477 {
7478 boolean ret;
7479 asection *group_sec;
7480
7481 sec->gc_mark = 1;
7482
7483 /* Mark all the sections in the group. */
7484 group_sec = elf_section_data (sec)->next_in_group;
7485 if (group_sec && !group_sec->gc_mark)
7486 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7487 return false;
7488
7489 /* Look through the section relocs. */
7490 ret = true;
7491 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7492 {
7493 Elf_Internal_Rela *relstart, *rel, *relend;
7494 Elf_Internal_Shdr *symtab_hdr;
7495 Elf_Internal_Shdr *shndx_hdr;
7496 struct elf_link_hash_entry **sym_hashes;
7497 size_t nlocsyms;
7498 size_t extsymoff;
7499 Elf_External_Sym *locsyms, *freesyms = NULL;
7500 Elf_External_Sym_Shndx *locsym_shndx;
7501 bfd *input_bfd = sec->owner;
7502 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7503
7504 /* GCFIXME: how to arrange so that relocs and symbols are not
7505 reread continually? */
7506
7507 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7508 sym_hashes = elf_sym_hashes (input_bfd);
7509
7510 /* Read the local symbols. */
7511 if (elf_bad_symtab (input_bfd))
7512 {
7513 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7514 extsymoff = 0;
7515 }
7516 else
7517 extsymoff = nlocsyms = symtab_hdr->sh_info;
7518
7519 if (symtab_hdr->contents)
7520 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
7521 else if (nlocsyms == 0)
7522 locsyms = NULL;
7523 else
7524 {
7525 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym);
7526 locsyms = freesyms = bfd_malloc (amt);
7527 if (freesyms == NULL
7528 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
7529 || bfd_bread (locsyms, amt, input_bfd) != amt)
7530 {
7531 ret = false;
7532 goto out1;
7533 }
7534 }
7535
7536 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
7537 locsym_shndx = NULL;
7538 if (shndx_hdr->sh_size != 0 && nlocsyms != 0)
7539 {
7540 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx);
7541 locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
7542 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
7543 || bfd_bread (locsym_shndx, amt, input_bfd) != amt)
7544 return false;
7545 }
7546
7547 /* Read the relocations. */
7548 relstart = (NAME(_bfd_elf,link_read_relocs)
7549 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
7550 info->keep_memory));
7551 if (relstart == NULL)
7552 {
7553 ret = false;
7554 goto out1;
7555 }
7556 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7557
7558 for (rel = relstart; rel < relend; rel++)
7559 {
7560 unsigned long r_symndx;
7561 asection *rsec;
7562 struct elf_link_hash_entry *h;
7563 Elf_Internal_Sym s;
7564
7565 r_symndx = ELF_R_SYM (rel->r_info);
7566 if (r_symndx == 0)
7567 continue;
7568
7569 if (elf_bad_symtab (sec->owner))
7570 {
7571 elf_swap_symbol_in (input_bfd,
7572 locsyms + r_symndx,
7573 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7574 &s);
7575 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
7576 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7577 else
7578 {
7579 h = sym_hashes[r_symndx - extsymoff];
7580 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7581 }
7582 }
7583 else if (r_symndx >= nlocsyms)
7584 {
7585 h = sym_hashes[r_symndx - extsymoff];
7586 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7587 }
7588 else
7589 {
7590 elf_swap_symbol_in (input_bfd,
7591 locsyms + r_symndx,
7592 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7593 &s);
7594 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7595 }
7596
7597 if (rsec && !rsec->gc_mark)
7598 {
7599 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7600 rsec->gc_mark = 1;
7601 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7602 {
7603 ret = false;
7604 goto out2;
7605 }
7606 }
7607 }
7608
7609 out2:
7610 if (!info->keep_memory)
7611 free (relstart);
7612 out1:
7613 if (freesyms)
7614 free (freesyms);
7615 }
7616
7617 return ret;
7618 }
7619
7620 /* The sweep phase of garbage collection. Remove all garbage sections. */
7621
7622 static boolean
7623 elf_gc_sweep (info, gc_sweep_hook)
7624 struct bfd_link_info *info;
7625 boolean (*gc_sweep_hook)
7626 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7627 const Elf_Internal_Rela *relocs));
7628 {
7629 bfd *sub;
7630
7631 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7632 {
7633 asection *o;
7634
7635 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7636 continue;
7637
7638 for (o = sub->sections; o != NULL; o = o->next)
7639 {
7640 /* Keep special sections. Keep .debug sections. */
7641 if ((o->flags & SEC_LINKER_CREATED)
7642 || (o->flags & SEC_DEBUGGING))
7643 o->gc_mark = 1;
7644
7645 if (o->gc_mark)
7646 continue;
7647
7648 /* Skip sweeping sections already excluded. */
7649 if (o->flags & SEC_EXCLUDE)
7650 continue;
7651
7652 /* Since this is early in the link process, it is simple
7653 to remove a section from the output. */
7654 o->flags |= SEC_EXCLUDE;
7655
7656 /* But we also have to update some of the relocation
7657 info we collected before. */
7658 if (gc_sweep_hook
7659 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7660 {
7661 Elf_Internal_Rela *internal_relocs;
7662 boolean r;
7663
7664 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7665 (o->owner, o, NULL, NULL, info->keep_memory));
7666 if (internal_relocs == NULL)
7667 return false;
7668
7669 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7670
7671 if (!info->keep_memory)
7672 free (internal_relocs);
7673
7674 if (!r)
7675 return false;
7676 }
7677 }
7678 }
7679
7680 /* Remove the symbols that were in the swept sections from the dynamic
7681 symbol table. GCFIXME: Anyone know how to get them out of the
7682 static symbol table as well? */
7683 {
7684 int i = 0;
7685
7686 elf_link_hash_traverse (elf_hash_table (info),
7687 elf_gc_sweep_symbol,
7688 (PTR) &i);
7689
7690 elf_hash_table (info)->dynsymcount = i;
7691 }
7692
7693 return true;
7694 }
7695
7696 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7697
7698 static boolean
7699 elf_gc_sweep_symbol (h, idxptr)
7700 struct elf_link_hash_entry *h;
7701 PTR idxptr;
7702 {
7703 int *idx = (int *) idxptr;
7704
7705 if (h->root.type == bfd_link_hash_warning)
7706 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7707
7708 if (h->dynindx != -1
7709 && ((h->root.type != bfd_link_hash_defined
7710 && h->root.type != bfd_link_hash_defweak)
7711 || h->root.u.def.section->gc_mark))
7712 h->dynindx = (*idx)++;
7713
7714 return true;
7715 }
7716
7717 /* Propogate collected vtable information. This is called through
7718 elf_link_hash_traverse. */
7719
7720 static boolean
7721 elf_gc_propagate_vtable_entries_used (h, okp)
7722 struct elf_link_hash_entry *h;
7723 PTR okp;
7724 {
7725 if (h->root.type == bfd_link_hash_warning)
7726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7727
7728 /* Those that are not vtables. */
7729 if (h->vtable_parent == NULL)
7730 return true;
7731
7732 /* Those vtables that do not have parents, we cannot merge. */
7733 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7734 return true;
7735
7736 /* If we've already been done, exit. */
7737 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7738 return true;
7739
7740 /* Make sure the parent's table is up to date. */
7741 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7742
7743 if (h->vtable_entries_used == NULL)
7744 {
7745 /* None of this table's entries were referenced. Re-use the
7746 parent's table. */
7747 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7748 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7749 }
7750 else
7751 {
7752 size_t n;
7753 boolean *cu, *pu;
7754
7755 /* Or the parent's entries into ours. */
7756 cu = h->vtable_entries_used;
7757 cu[-1] = true;
7758 pu = h->vtable_parent->vtable_entries_used;
7759 if (pu != NULL)
7760 {
7761 asection *sec = h->root.u.def.section;
7762 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7763 int file_align = bed->s->file_align;
7764
7765 n = h->vtable_parent->vtable_entries_size / file_align;
7766 while (n--)
7767 {
7768 if (*pu)
7769 *cu = true;
7770 pu++;
7771 cu++;
7772 }
7773 }
7774 }
7775
7776 return true;
7777 }
7778
7779 static boolean
7780 elf_gc_smash_unused_vtentry_relocs (h, okp)
7781 struct elf_link_hash_entry *h;
7782 PTR okp;
7783 {
7784 asection *sec;
7785 bfd_vma hstart, hend;
7786 Elf_Internal_Rela *relstart, *relend, *rel;
7787 struct elf_backend_data *bed;
7788 int file_align;
7789
7790 if (h->root.type == bfd_link_hash_warning)
7791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7792
7793 /* Take care of both those symbols that do not describe vtables as
7794 well as those that are not loaded. */
7795 if (h->vtable_parent == NULL)
7796 return true;
7797
7798 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7799 || h->root.type == bfd_link_hash_defweak);
7800
7801 sec = h->root.u.def.section;
7802 hstart = h->root.u.def.value;
7803 hend = hstart + h->size;
7804
7805 relstart = (NAME(_bfd_elf,link_read_relocs)
7806 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7807 if (!relstart)
7808 return *(boolean *) okp = false;
7809 bed = get_elf_backend_data (sec->owner);
7810 file_align = bed->s->file_align;
7811
7812 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7813
7814 for (rel = relstart; rel < relend; ++rel)
7815 if (rel->r_offset >= hstart && rel->r_offset < hend)
7816 {
7817 /* If the entry is in use, do nothing. */
7818 if (h->vtable_entries_used
7819 && (rel->r_offset - hstart) < h->vtable_entries_size)
7820 {
7821 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7822 if (h->vtable_entries_used[entry])
7823 continue;
7824 }
7825 /* Otherwise, kill it. */
7826 rel->r_offset = rel->r_info = rel->r_addend = 0;
7827 }
7828
7829 return true;
7830 }
7831
7832 /* Do mark and sweep of unused sections. */
7833
7834 boolean
7835 elf_gc_sections (abfd, info)
7836 bfd *abfd;
7837 struct bfd_link_info *info;
7838 {
7839 boolean ok = true;
7840 bfd *sub;
7841 asection * (*gc_mark_hook)
7842 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7843 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7844
7845 if (!get_elf_backend_data (abfd)->can_gc_sections
7846 || info->relocateable || info->emitrelocations
7847 || elf_hash_table (info)->dynamic_sections_created)
7848 return true;
7849
7850 /* Apply transitive closure to the vtable entry usage info. */
7851 elf_link_hash_traverse (elf_hash_table (info),
7852 elf_gc_propagate_vtable_entries_used,
7853 (PTR) &ok);
7854 if (!ok)
7855 return false;
7856
7857 /* Kill the vtable relocations that were not used. */
7858 elf_link_hash_traverse (elf_hash_table (info),
7859 elf_gc_smash_unused_vtentry_relocs,
7860 (PTR) &ok);
7861 if (!ok)
7862 return false;
7863
7864 /* Grovel through relocs to find out who stays ... */
7865
7866 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7867 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7868 {
7869 asection *o;
7870
7871 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7872 continue;
7873
7874 for (o = sub->sections; o != NULL; o = o->next)
7875 {
7876 if (o->flags & SEC_KEEP)
7877 if (!elf_gc_mark (info, o, gc_mark_hook))
7878 return false;
7879 }
7880 }
7881
7882 /* ... and mark SEC_EXCLUDE for those that go. */
7883 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
7884 return false;
7885
7886 return true;
7887 }
7888 \f
7889 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7890
7891 boolean
7892 elf_gc_record_vtinherit (abfd, sec, h, offset)
7893 bfd *abfd;
7894 asection *sec;
7895 struct elf_link_hash_entry *h;
7896 bfd_vma offset;
7897 {
7898 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
7899 struct elf_link_hash_entry **search, *child;
7900 bfd_size_type extsymcount;
7901
7902 /* The sh_info field of the symtab header tells us where the
7903 external symbols start. We don't care about the local symbols at
7904 this point. */
7905 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
7906 if (!elf_bad_symtab (abfd))
7907 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
7908
7909 sym_hashes = elf_sym_hashes (abfd);
7910 sym_hashes_end = sym_hashes + extsymcount;
7911
7912 /* Hunt down the child symbol, which is in this section at the same
7913 offset as the relocation. */
7914 for (search = sym_hashes; search != sym_hashes_end; ++search)
7915 {
7916 if ((child = *search) != NULL
7917 && (child->root.type == bfd_link_hash_defined
7918 || child->root.type == bfd_link_hash_defweak)
7919 && child->root.u.def.section == sec
7920 && child->root.u.def.value == offset)
7921 goto win;
7922 }
7923
7924 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
7925 bfd_archive_filename (abfd), sec->name,
7926 (unsigned long) offset);
7927 bfd_set_error (bfd_error_invalid_operation);
7928 return false;
7929
7930 win:
7931 if (!h)
7932 {
7933 /* This *should* only be the absolute section. It could potentially
7934 be that someone has defined a non-global vtable though, which
7935 would be bad. It isn't worth paging in the local symbols to be
7936 sure though; that case should simply be handled by the assembler. */
7937
7938 child->vtable_parent = (struct elf_link_hash_entry *) -1;
7939 }
7940 else
7941 child->vtable_parent = h;
7942
7943 return true;
7944 }
7945
7946 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7947
7948 boolean
7949 elf_gc_record_vtentry (abfd, sec, h, addend)
7950 bfd *abfd ATTRIBUTE_UNUSED;
7951 asection *sec ATTRIBUTE_UNUSED;
7952 struct elf_link_hash_entry *h;
7953 bfd_vma addend;
7954 {
7955 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7956 int file_align = bed->s->file_align;
7957
7958 if (addend >= h->vtable_entries_size)
7959 {
7960 size_t size, bytes;
7961 boolean *ptr = h->vtable_entries_used;
7962
7963 /* While the symbol is undefined, we have to be prepared to handle
7964 a zero size. */
7965 if (h->root.type == bfd_link_hash_undefined)
7966 size = addend;
7967 else
7968 {
7969 size = h->size;
7970 if (size < addend)
7971 {
7972 /* Oops! We've got a reference past the defined end of
7973 the table. This is probably a bug -- shall we warn? */
7974 size = addend;
7975 }
7976 }
7977
7978 /* Allocate one extra entry for use as a "done" flag for the
7979 consolidation pass. */
7980 bytes = (size / file_align + 1) * sizeof (boolean);
7981
7982 if (ptr)
7983 {
7984 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
7985
7986 if (ptr != NULL)
7987 {
7988 size_t oldbytes;
7989
7990 oldbytes = ((h->vtable_entries_size / file_align + 1)
7991 * sizeof (boolean));
7992 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
7993 }
7994 }
7995 else
7996 ptr = bfd_zmalloc ((bfd_size_type) bytes);
7997
7998 if (ptr == NULL)
7999 return false;
8000
8001 /* And arrange for that done flag to be at index -1. */
8002 h->vtable_entries_used = ptr + 1;
8003 h->vtable_entries_size = size;
8004 }
8005
8006 h->vtable_entries_used[addend / file_align] = true;
8007
8008 return true;
8009 }
8010
8011 /* And an accompanying bit to work out final got entry offsets once
8012 we're done. Should be called from final_link. */
8013
8014 boolean
8015 elf_gc_common_finalize_got_offsets (abfd, info)
8016 bfd *abfd;
8017 struct bfd_link_info *info;
8018 {
8019 bfd *i;
8020 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8021 bfd_vma gotoff;
8022
8023 /* The GOT offset is relative to the .got section, but the GOT header is
8024 put into the .got.plt section, if the backend uses it. */
8025 if (bed->want_got_plt)
8026 gotoff = 0;
8027 else
8028 gotoff = bed->got_header_size;
8029
8030 /* Do the local .got entries first. */
8031 for (i = info->input_bfds; i; i = i->link_next)
8032 {
8033 bfd_signed_vma *local_got;
8034 bfd_size_type j, locsymcount;
8035 Elf_Internal_Shdr *symtab_hdr;
8036
8037 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8038 continue;
8039
8040 local_got = elf_local_got_refcounts (i);
8041 if (!local_got)
8042 continue;
8043
8044 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8045 if (elf_bad_symtab (i))
8046 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8047 else
8048 locsymcount = symtab_hdr->sh_info;
8049
8050 for (j = 0; j < locsymcount; ++j)
8051 {
8052 if (local_got[j] > 0)
8053 {
8054 local_got[j] = gotoff;
8055 gotoff += ARCH_SIZE / 8;
8056 }
8057 else
8058 local_got[j] = (bfd_vma) -1;
8059 }
8060 }
8061
8062 /* Then the global .got entries. .plt refcounts are handled by
8063 adjust_dynamic_symbol */
8064 elf_link_hash_traverse (elf_hash_table (info),
8065 elf_gc_allocate_got_offsets,
8066 (PTR) &gotoff);
8067 return true;
8068 }
8069
8070 /* We need a special top-level link routine to convert got reference counts
8071 to real got offsets. */
8072
8073 static boolean
8074 elf_gc_allocate_got_offsets (h, offarg)
8075 struct elf_link_hash_entry *h;
8076 PTR offarg;
8077 {
8078 bfd_vma *off = (bfd_vma *) offarg;
8079
8080 if (h->root.type == bfd_link_hash_warning)
8081 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8082
8083 if (h->got.refcount > 0)
8084 {
8085 h->got.offset = off[0];
8086 off[0] += ARCH_SIZE / 8;
8087 }
8088 else
8089 h->got.offset = (bfd_vma) -1;
8090
8091 return true;
8092 }
8093
8094 /* Many folk need no more in the way of final link than this, once
8095 got entry reference counting is enabled. */
8096
8097 boolean
8098 elf_gc_common_final_link (abfd, info)
8099 bfd *abfd;
8100 struct bfd_link_info *info;
8101 {
8102 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8103 return false;
8104
8105 /* Invoke the regular ELF backend linker to do all the work. */
8106 return elf_bfd_final_link (abfd, info);
8107 }
8108
8109 /* This function will be called though elf_link_hash_traverse to store
8110 all hash value of the exported symbols in an array. */
8111
8112 static boolean
8113 elf_collect_hash_codes (h, data)
8114 struct elf_link_hash_entry *h;
8115 PTR data;
8116 {
8117 unsigned long **valuep = (unsigned long **) data;
8118 const char *name;
8119 char *p;
8120 unsigned long ha;
8121 char *alc = NULL;
8122
8123 if (h->root.type == bfd_link_hash_warning)
8124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8125
8126 /* Ignore indirect symbols. These are added by the versioning code. */
8127 if (h->dynindx == -1)
8128 return true;
8129
8130 name = h->root.root.string;
8131 p = strchr (name, ELF_VER_CHR);
8132 if (p != NULL)
8133 {
8134 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8135 memcpy (alc, name, (size_t) (p - name));
8136 alc[p - name] = '\0';
8137 name = alc;
8138 }
8139
8140 /* Compute the hash value. */
8141 ha = bfd_elf_hash (name);
8142
8143 /* Store the found hash value in the array given as the argument. */
8144 *(*valuep)++ = ha;
8145
8146 /* And store it in the struct so that we can put it in the hash table
8147 later. */
8148 h->elf_hash_value = ha;
8149
8150 if (alc != NULL)
8151 free (alc);
8152
8153 return true;
8154 }
8155
8156 boolean
8157 elf_reloc_symbol_deleted_p (offset, cookie)
8158 bfd_vma offset;
8159 PTR cookie;
8160 {
8161 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8162
8163 if (rcookie->bad_symtab)
8164 rcookie->rel = rcookie->rels;
8165
8166 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8167 {
8168 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8169 Elf_Internal_Sym isym;
8170
8171 if (! rcookie->bad_symtab)
8172 if (rcookie->rel->r_offset > offset)
8173 return false;
8174 if (rcookie->rel->r_offset != offset)
8175 continue;
8176
8177 if (rcookie->locsyms && r_symndx < rcookie->locsymcount)
8178 {
8179 Elf_External_Sym *lsym;
8180 Elf_External_Sym_Shndx *lshndx;
8181
8182 lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx;
8183 lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx;
8184 if (lshndx != NULL)
8185 lshndx += r_symndx;
8186 elf_swap_symbol_in (rcookie->abfd, lsym, lshndx, &isym);
8187 }
8188
8189 if (r_symndx >= rcookie->locsymcount
8190 || (rcookie->locsyms
8191 && ELF_ST_BIND (isym.st_info) != STB_LOCAL))
8192 {
8193 struct elf_link_hash_entry *h;
8194
8195 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8196
8197 while (h->root.type == bfd_link_hash_indirect
8198 || h->root.type == bfd_link_hash_warning)
8199 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8200
8201 if ((h->root.type == bfd_link_hash_defined
8202 || h->root.type == bfd_link_hash_defweak)
8203 && elf_discarded_section (h->root.u.def.section))
8204 return true;
8205 else
8206 return false;
8207 }
8208 else if (rcookie->locsyms)
8209 {
8210 /* It's not a relocation against a global symbol,
8211 but it could be a relocation against a local
8212 symbol for a discarded section. */
8213 asection *isec;
8214
8215 /* Need to: get the symbol; get the section. */
8216 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
8217 {
8218 isec = section_from_elf_index (rcookie->abfd, isym.st_shndx);
8219 if (isec != NULL && elf_discarded_section (isec))
8220 return true;
8221 }
8222 }
8223 return false;
8224 }
8225 return false;
8226 }
8227
8228 /* Discard unneeded references to discarded sections.
8229 Returns true if any section's size was changed. */
8230 /* This function assumes that the relocations are in sorted order,
8231 which is true for all known assemblers. */
8232
8233 boolean
8234 elf_bfd_discard_info (output_bfd, info)
8235 bfd *output_bfd;
8236 struct bfd_link_info *info;
8237 {
8238 struct elf_reloc_cookie cookie;
8239 asection *stab, *eh, *ehdr;
8240 Elf_Internal_Shdr *symtab_hdr;
8241 Elf_Internal_Shdr *shndx_hdr;
8242 Elf_External_Sym *freesyms;
8243 struct elf_backend_data *bed;
8244 bfd *abfd;
8245 boolean ret = false;
8246 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8247
8248 if (info->relocateable
8249 || info->traditional_format
8250 || info->hash->creator->flavour != bfd_target_elf_flavour
8251 || ! is_elf_hash_table (info))
8252 return false;
8253
8254 ehdr = NULL;
8255 if (elf_hash_table (info)->dynobj != NULL)
8256 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8257 ".eh_frame_hdr");
8258
8259 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8260 {
8261 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8262 continue;
8263
8264 bed = get_elf_backend_data (abfd);
8265
8266 if ((abfd->flags & DYNAMIC) != 0)
8267 continue;
8268
8269 eh = NULL;
8270 if (ehdr)
8271 {
8272 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8273 if (eh && (eh->_raw_size == 0
8274 || bfd_is_abs_section (eh->output_section)))
8275 eh = NULL;
8276 }
8277
8278 stab = NULL;
8279 if (!strip)
8280 {
8281 stab = bfd_get_section_by_name (abfd, ".stab");
8282 if (stab && (stab->_raw_size == 0
8283 || bfd_is_abs_section (stab->output_section)))
8284 stab = NULL;
8285 }
8286 if ((! stab
8287 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8288 && ! eh
8289 && (strip || ! bed->elf_backend_discard_info))
8290 continue;
8291
8292 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8293 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8294
8295 cookie.abfd = abfd;
8296 cookie.sym_hashes = elf_sym_hashes (abfd);
8297 cookie.bad_symtab = elf_bad_symtab (abfd);
8298 if (cookie.bad_symtab)
8299 {
8300 cookie.locsymcount =
8301 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8302 cookie.extsymoff = 0;
8303 }
8304 else
8305 {
8306 cookie.locsymcount = symtab_hdr->sh_info;
8307 cookie.extsymoff = symtab_hdr->sh_info;
8308 }
8309
8310 freesyms = NULL;
8311 if (symtab_hdr->contents)
8312 cookie.locsyms = (void *) symtab_hdr->contents;
8313 else if (cookie.locsymcount == 0)
8314 cookie.locsyms = NULL;
8315 else
8316 {
8317 bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym);
8318 cookie.locsyms = bfd_malloc (amt);
8319 if (cookie.locsyms == NULL)
8320 return false;
8321 freesyms = cookie.locsyms;
8322 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
8323 || bfd_bread (cookie.locsyms, amt, abfd) != amt)
8324 {
8325 error_ret_free_loc:
8326 free (cookie.locsyms);
8327 return false;
8328 }
8329 }
8330
8331 cookie.locsym_shndx = NULL;
8332 if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0)
8333 {
8334 bfd_size_type amt;
8335 amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx);
8336 cookie.locsym_shndx = bfd_malloc (amt);
8337 if (cookie.locsym_shndx == NULL)
8338 goto error_ret_free_loc;
8339 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
8340 || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt)
8341 {
8342 free (cookie.locsym_shndx);
8343 goto error_ret_free_loc;
8344 }
8345 }
8346
8347 if (stab)
8348 {
8349 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8350 (abfd, stab, (PTR) NULL,
8351 (Elf_Internal_Rela *) NULL,
8352 info->keep_memory));
8353 if (cookie.rels)
8354 {
8355 cookie.rel = cookie.rels;
8356 cookie.relend =
8357 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8358 if (_bfd_discard_section_stabs (abfd, stab,
8359 elf_section_data (stab)->sec_info,
8360 elf_reloc_symbol_deleted_p,
8361 &cookie))
8362 ret = true;
8363 if (! info->keep_memory)
8364 free (cookie.rels);
8365 }
8366 }
8367
8368 if (eh)
8369 {
8370 cookie.rels = NULL;
8371 cookie.rel = NULL;
8372 cookie.relend = NULL;
8373 if (eh->reloc_count)
8374 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8375 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8376 info->keep_memory));
8377 if (cookie.rels)
8378 {
8379 cookie.rel = cookie.rels;
8380 cookie.relend =
8381 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8382 }
8383 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8384 elf_reloc_symbol_deleted_p,
8385 &cookie))
8386 ret = true;
8387 if (! info->keep_memory)
8388 free (cookie.rels);
8389 }
8390
8391 if (bed->elf_backend_discard_info)
8392 {
8393 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8394 ret = true;
8395 }
8396
8397 if (cookie.locsym_shndx != NULL)
8398 free (cookie.locsym_shndx);
8399
8400 if (freesyms != NULL)
8401 free (freesyms);
8402 }
8403
8404 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8405 ret = true;
8406 return ret;
8407 }
8408
8409 static boolean
8410 elf_section_ignore_discarded_relocs (sec)
8411 asection *sec;
8412 {
8413 struct elf_backend_data *bed;
8414
8415 switch (elf_section_data (sec)->sec_info_type)
8416 {
8417 case ELF_INFO_TYPE_STABS:
8418 case ELF_INFO_TYPE_EH_FRAME:
8419 return true;
8420 default:
8421 break;
8422 }
8423
8424 bed = get_elf_backend_data (sec->owner);
8425 if (bed->elf_backend_ignore_discarded_relocs != NULL
8426 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8427 return true;
8428
8429 return false;
8430 }
This page took 0.225053 seconds and 4 git commands to generate.