Update copyright notices
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 };
31
32 static boolean elf_link_add_object_symbols
33 PARAMS ((bfd *, struct bfd_link_info *));
34 static boolean elf_link_add_archive_symbols
35 PARAMS ((bfd *, struct bfd_link_info *));
36 static boolean elf_merge_symbol
37 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
38 asection **, bfd_vma *, struct elf_link_hash_entry **,
39 boolean *, boolean *, boolean *, boolean));
40 static boolean elf_export_symbol
41 PARAMS ((struct elf_link_hash_entry *, PTR));
42 static boolean elf_fix_symbol_flags
43 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
44 static boolean elf_adjust_dynamic_symbol
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46 static boolean elf_link_find_version_dependencies
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_link_find_version_dependencies
49 PARAMS ((struct elf_link_hash_entry *, PTR));
50 static boolean elf_link_assign_sym_version
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_collect_hash_codes
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_link_read_relocs_from_section
55 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
56 static void elf_link_output_relocs
57 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
58 static boolean elf_link_size_reloc_section
59 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
60 static void elf_link_adjust_relocs
61 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
62 struct elf_link_hash_entry **));
63
64 /* Given an ELF BFD, add symbols to the global hash table as
65 appropriate. */
66
67 boolean
68 elf_bfd_link_add_symbols (abfd, info)
69 bfd *abfd;
70 struct bfd_link_info *info;
71 {
72 switch (bfd_get_format (abfd))
73 {
74 case bfd_object:
75 return elf_link_add_object_symbols (abfd, info);
76 case bfd_archive:
77 return elf_link_add_archive_symbols (abfd, info);
78 default:
79 bfd_set_error (bfd_error_wrong_format);
80 return false;
81 }
82 }
83 \f
84 /* Return true iff this is a non-common, definition of a non-function symbol. */
85 static boolean
86 is_global_data_symbol_definition (abfd, sym)
87 bfd * abfd ATTRIBUTE_UNUSED;
88 Elf_Internal_Sym * sym;
89 {
90 /* Local symbols do not count, but target specific ones might. */
91 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
92 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
93 return false;
94
95 /* Function symbols do not count. */
96 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
97 return false;
98
99 /* If the section is undefined, then so is the symbol. */
100 if (sym->st_shndx == SHN_UNDEF)
101 return false;
102
103 /* If the symbol is defined in the common section, then
104 it is a common definition and so does not count. */
105 if (sym->st_shndx == SHN_COMMON)
106 return false;
107
108 /* If the symbol is in a target specific section then we
109 must rely upon the backend to tell us what it is. */
110 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
111 /* FIXME - this function is not coded yet:
112
113 return _bfd_is_global_symbol_definition (abfd, sym);
114
115 Instead for now assume that the definition is not global,
116 Even if this is wrong, at least the linker will behave
117 in the same way that it used to do. */
118 return false;
119
120 return true;
121 }
122
123 /* Search the symbol table of the archive element of the archive ABFD
124 whoes archive map contains a mention of SYMDEF, and determine if
125 the symbol is defined in this element. */
126 static boolean
127 elf_link_is_defined_archive_symbol (abfd, symdef)
128 bfd * abfd;
129 carsym * symdef;
130 {
131 Elf_Internal_Shdr * hdr;
132 Elf_External_Sym * esym;
133 Elf_External_Sym * esymend;
134 Elf_External_Sym * buf = NULL;
135 size_t symcount;
136 size_t extsymcount;
137 size_t extsymoff;
138 boolean result = false;
139
140 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
141 if (abfd == (bfd *) NULL)
142 return false;
143
144 if (! bfd_check_format (abfd, bfd_object))
145 return false;
146
147 /* If we have already included the element containing this symbol in the
148 link then we do not need to include it again. Just claim that any symbol
149 it contains is not a definition, so that our caller will not decide to
150 (re)include this element. */
151 if (abfd->archive_pass)
152 return false;
153
154 /* Select the appropriate symbol table. */
155 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
156 hdr = &elf_tdata (abfd)->symtab_hdr;
157 else
158 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
159
160 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
161
162 /* The sh_info field of the symtab header tells us where the
163 external symbols start. We don't care about the local symbols. */
164 if (elf_bad_symtab (abfd))
165 {
166 extsymcount = symcount;
167 extsymoff = 0;
168 }
169 else
170 {
171 extsymcount = symcount - hdr->sh_info;
172 extsymoff = hdr->sh_info;
173 }
174
175 buf = ((Elf_External_Sym *)
176 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
177 if (buf == NULL && extsymcount != 0)
178 return false;
179
180 /* Read in the symbol table.
181 FIXME: This ought to be cached somewhere. */
182 if (bfd_seek (abfd,
183 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
184 SEEK_SET) != 0
185 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
186 != extsymcount * sizeof (Elf_External_Sym)))
187 {
188 free (buf);
189 return false;
190 }
191
192 /* Scan the symbol table looking for SYMDEF. */
193 esymend = buf + extsymcount;
194 for (esym = buf;
195 esym < esymend;
196 esym++)
197 {
198 Elf_Internal_Sym sym;
199 const char * name;
200
201 elf_swap_symbol_in (abfd, esym, & sym);
202
203 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
204 if (name == (const char *) NULL)
205 break;
206
207 if (strcmp (name, symdef->name) == 0)
208 {
209 result = is_global_data_symbol_definition (abfd, & sym);
210 break;
211 }
212 }
213
214 free (buf);
215
216 return result;
217 }
218 \f
219 /* Add symbols from an ELF archive file to the linker hash table. We
220 don't use _bfd_generic_link_add_archive_symbols because of a
221 problem which arises on UnixWare. The UnixWare libc.so is an
222 archive which includes an entry libc.so.1 which defines a bunch of
223 symbols. The libc.so archive also includes a number of other
224 object files, which also define symbols, some of which are the same
225 as those defined in libc.so.1. Correct linking requires that we
226 consider each object file in turn, and include it if it defines any
227 symbols we need. _bfd_generic_link_add_archive_symbols does not do
228 this; it looks through the list of undefined symbols, and includes
229 any object file which defines them. When this algorithm is used on
230 UnixWare, it winds up pulling in libc.so.1 early and defining a
231 bunch of symbols. This means that some of the other objects in the
232 archive are not included in the link, which is incorrect since they
233 precede libc.so.1 in the archive.
234
235 Fortunately, ELF archive handling is simpler than that done by
236 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
237 oddities. In ELF, if we find a symbol in the archive map, and the
238 symbol is currently undefined, we know that we must pull in that
239 object file.
240
241 Unfortunately, we do have to make multiple passes over the symbol
242 table until nothing further is resolved. */
243
244 static boolean
245 elf_link_add_archive_symbols (abfd, info)
246 bfd *abfd;
247 struct bfd_link_info *info;
248 {
249 symindex c;
250 boolean *defined = NULL;
251 boolean *included = NULL;
252 carsym *symdefs;
253 boolean loop;
254
255 if (! bfd_has_map (abfd))
256 {
257 /* An empty archive is a special case. */
258 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
259 return true;
260 bfd_set_error (bfd_error_no_armap);
261 return false;
262 }
263
264 /* Keep track of all symbols we know to be already defined, and all
265 files we know to be already included. This is to speed up the
266 second and subsequent passes. */
267 c = bfd_ardata (abfd)->symdef_count;
268 if (c == 0)
269 return true;
270 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
271 included = (boolean *) bfd_malloc (c * sizeof (boolean));
272 if (defined == (boolean *) NULL || included == (boolean *) NULL)
273 goto error_return;
274 memset (defined, 0, c * sizeof (boolean));
275 memset (included, 0, c * sizeof (boolean));
276
277 symdefs = bfd_ardata (abfd)->symdefs;
278
279 do
280 {
281 file_ptr last;
282 symindex i;
283 carsym *symdef;
284 carsym *symdefend;
285
286 loop = false;
287 last = -1;
288
289 symdef = symdefs;
290 symdefend = symdef + c;
291 for (i = 0; symdef < symdefend; symdef++, i++)
292 {
293 struct elf_link_hash_entry *h;
294 bfd *element;
295 struct bfd_link_hash_entry *undefs_tail;
296 symindex mark;
297
298 if (defined[i] || included[i])
299 continue;
300 if (symdef->file_offset == last)
301 {
302 included[i] = true;
303 continue;
304 }
305
306 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
307 false, false, false);
308
309 if (h == NULL)
310 {
311 char *p, *copy;
312
313 /* If this is a default version (the name contains @@),
314 look up the symbol again without the version. The
315 effect is that references to the symbol without the
316 version will be matched by the default symbol in the
317 archive. */
318
319 p = strchr (symdef->name, ELF_VER_CHR);
320 if (p == NULL || p[1] != ELF_VER_CHR)
321 continue;
322
323 copy = bfd_alloc (abfd, p - symdef->name + 1);
324 if (copy == NULL)
325 goto error_return;
326 memcpy (copy, symdef->name, p - symdef->name);
327 copy[p - symdef->name] = '\0';
328
329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
330 false, false, false);
331
332 bfd_release (abfd, copy);
333 }
334
335 if (h == NULL)
336 continue;
337
338 if (h->root.type == bfd_link_hash_common)
339 {
340 /* We currently have a common symbol. The archive map contains
341 a reference to this symbol, so we may want to include it. We
342 only want to include it however, if this archive element
343 contains a definition of the symbol, not just another common
344 declaration of it.
345
346 Unfortunately some archivers (including GNU ar) will put
347 declarations of common symbols into their archive maps, as
348 well as real definitions, so we cannot just go by the archive
349 map alone. Instead we must read in the element's symbol
350 table and check that to see what kind of symbol definition
351 this is. */
352 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
353 continue;
354 }
355 else if (h->root.type != bfd_link_hash_undefined)
356 {
357 if (h->root.type != bfd_link_hash_undefweak)
358 defined[i] = true;
359 continue;
360 }
361
362 /* We need to include this archive member. */
363 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
364 if (element == (bfd *) NULL)
365 goto error_return;
366
367 if (! bfd_check_format (element, bfd_object))
368 goto error_return;
369
370 /* Doublecheck that we have not included this object
371 already--it should be impossible, but there may be
372 something wrong with the archive. */
373 if (element->archive_pass != 0)
374 {
375 bfd_set_error (bfd_error_bad_value);
376 goto error_return;
377 }
378 element->archive_pass = 1;
379
380 undefs_tail = info->hash->undefs_tail;
381
382 if (! (*info->callbacks->add_archive_element) (info, element,
383 symdef->name))
384 goto error_return;
385 if (! elf_link_add_object_symbols (element, info))
386 goto error_return;
387
388 /* If there are any new undefined symbols, we need to make
389 another pass through the archive in order to see whether
390 they can be defined. FIXME: This isn't perfect, because
391 common symbols wind up on undefs_tail and because an
392 undefined symbol which is defined later on in this pass
393 does not require another pass. This isn't a bug, but it
394 does make the code less efficient than it could be. */
395 if (undefs_tail != info->hash->undefs_tail)
396 loop = true;
397
398 /* Look backward to mark all symbols from this object file
399 which we have already seen in this pass. */
400 mark = i;
401 do
402 {
403 included[mark] = true;
404 if (mark == 0)
405 break;
406 --mark;
407 }
408 while (symdefs[mark].file_offset == symdef->file_offset);
409
410 /* We mark subsequent symbols from this object file as we go
411 on through the loop. */
412 last = symdef->file_offset;
413 }
414 }
415 while (loop);
416
417 free (defined);
418 free (included);
419
420 return true;
421
422 error_return:
423 if (defined != (boolean *) NULL)
424 free (defined);
425 if (included != (boolean *) NULL)
426 free (included);
427 return false;
428 }
429
430 /* This function is called when we want to define a new symbol. It
431 handles the various cases which arise when we find a definition in
432 a dynamic object, or when there is already a definition in a
433 dynamic object. The new symbol is described by NAME, SYM, PSEC,
434 and PVALUE. We set SYM_HASH to the hash table entry. We set
435 OVERRIDE if the old symbol is overriding a new definition. We set
436 TYPE_CHANGE_OK if it is OK for the type to change. We set
437 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
438 change, we mean that we shouldn't warn if the type or size does
439 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
440 a shared object. */
441
442 static boolean
443 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
444 override, type_change_ok, size_change_ok, dt_needed)
445 bfd *abfd;
446 struct bfd_link_info *info;
447 const char *name;
448 Elf_Internal_Sym *sym;
449 asection **psec;
450 bfd_vma *pvalue;
451 struct elf_link_hash_entry **sym_hash;
452 boolean *override;
453 boolean *type_change_ok;
454 boolean *size_change_ok;
455 boolean dt_needed;
456 {
457 asection *sec;
458 struct elf_link_hash_entry *h;
459 int bind;
460 bfd *oldbfd;
461 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
462
463 *override = false;
464
465 sec = *psec;
466 bind = ELF_ST_BIND (sym->st_info);
467
468 if (! bfd_is_und_section (sec))
469 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
470 else
471 h = ((struct elf_link_hash_entry *)
472 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
473 if (h == NULL)
474 return false;
475 *sym_hash = h;
476
477 /* This code is for coping with dynamic objects, and is only useful
478 if we are doing an ELF link. */
479 if (info->hash->creator != abfd->xvec)
480 return true;
481
482 /* For merging, we only care about real symbols. */
483
484 while (h->root.type == bfd_link_hash_indirect
485 || h->root.type == bfd_link_hash_warning)
486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
487
488 /* If we just created the symbol, mark it as being an ELF symbol.
489 Other than that, there is nothing to do--there is no merge issue
490 with a newly defined symbol--so we just return. */
491
492 if (h->root.type == bfd_link_hash_new)
493 {
494 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
495 return true;
496 }
497
498 /* OLDBFD is a BFD associated with the existing symbol. */
499
500 switch (h->root.type)
501 {
502 default:
503 oldbfd = NULL;
504 break;
505
506 case bfd_link_hash_undefined:
507 case bfd_link_hash_undefweak:
508 oldbfd = h->root.u.undef.abfd;
509 break;
510
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 oldbfd = h->root.u.def.section->owner;
514 break;
515
516 case bfd_link_hash_common:
517 oldbfd = h->root.u.c.p->section->owner;
518 break;
519 }
520
521 /* In cases involving weak versioned symbols, we may wind up trying
522 to merge a symbol with itself. Catch that here, to avoid the
523 confusion that results if we try to override a symbol with
524 itself. The additional tests catch cases like
525 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
526 dynamic object, which we do want to handle here. */
527 if (abfd == oldbfd
528 && ((abfd->flags & DYNAMIC) == 0
529 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
530 return true;
531
532 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
533 respectively, is from a dynamic object. */
534
535 if ((abfd->flags & DYNAMIC) != 0)
536 newdyn = true;
537 else
538 newdyn = false;
539
540 if (oldbfd != NULL)
541 olddyn = (oldbfd->flags & DYNAMIC) != 0;
542 else
543 {
544 asection *hsec;
545
546 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
547 indices used by MIPS ELF. */
548 switch (h->root.type)
549 {
550 default:
551 hsec = NULL;
552 break;
553
554 case bfd_link_hash_defined:
555 case bfd_link_hash_defweak:
556 hsec = h->root.u.def.section;
557 break;
558
559 case bfd_link_hash_common:
560 hsec = h->root.u.c.p->section;
561 break;
562 }
563
564 if (hsec == NULL)
565 olddyn = false;
566 else
567 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
568 }
569
570 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
571 respectively, appear to be a definition rather than reference. */
572
573 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
574 newdef = false;
575 else
576 newdef = true;
577
578 if (h->root.type == bfd_link_hash_undefined
579 || h->root.type == bfd_link_hash_undefweak
580 || h->root.type == bfd_link_hash_common)
581 olddef = false;
582 else
583 olddef = true;
584
585 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
586 symbol, respectively, appears to be a common symbol in a dynamic
587 object. If a symbol appears in an uninitialized section, and is
588 not weak, and is not a function, then it may be a common symbol
589 which was resolved when the dynamic object was created. We want
590 to treat such symbols specially, because they raise special
591 considerations when setting the symbol size: if the symbol
592 appears as a common symbol in a regular object, and the size in
593 the regular object is larger, we must make sure that we use the
594 larger size. This problematic case can always be avoided in C,
595 but it must be handled correctly when using Fortran shared
596 libraries.
597
598 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
599 likewise for OLDDYNCOMMON and OLDDEF.
600
601 Note that this test is just a heuristic, and that it is quite
602 possible to have an uninitialized symbol in a shared object which
603 is really a definition, rather than a common symbol. This could
604 lead to some minor confusion when the symbol really is a common
605 symbol in some regular object. However, I think it will be
606 harmless. */
607
608 if (newdyn
609 && newdef
610 && (sec->flags & SEC_ALLOC) != 0
611 && (sec->flags & SEC_LOAD) == 0
612 && sym->st_size > 0
613 && bind != STB_WEAK
614 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
615 newdyncommon = true;
616 else
617 newdyncommon = false;
618
619 if (olddyn
620 && olddef
621 && h->root.type == bfd_link_hash_defined
622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
623 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
624 && (h->root.u.def.section->flags & SEC_LOAD) == 0
625 && h->size > 0
626 && h->type != STT_FUNC)
627 olddyncommon = true;
628 else
629 olddyncommon = false;
630
631 /* It's OK to change the type if either the existing symbol or the
632 new symbol is weak unless it comes from a DT_NEEDED entry of
633 a shared object, in which case, the DT_NEEDED entry may not be
634 required at the run time. */
635
636 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
637 || h->root.type == bfd_link_hash_undefweak
638 || bind == STB_WEAK)
639 *type_change_ok = true;
640
641 /* It's OK to change the size if either the existing symbol or the
642 new symbol is weak, or if the old symbol is undefined. */
643
644 if (*type_change_ok
645 || h->root.type == bfd_link_hash_undefined)
646 *size_change_ok = true;
647
648 /* If both the old and the new symbols look like common symbols in a
649 dynamic object, set the size of the symbol to the larger of the
650 two. */
651
652 if (olddyncommon
653 && newdyncommon
654 && sym->st_size != h->size)
655 {
656 /* Since we think we have two common symbols, issue a multiple
657 common warning if desired. Note that we only warn if the
658 size is different. If the size is the same, we simply let
659 the old symbol override the new one as normally happens with
660 symbols defined in dynamic objects. */
661
662 if (! ((*info->callbacks->multiple_common)
663 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
664 h->size, abfd, bfd_link_hash_common, sym->st_size)))
665 return false;
666
667 if (sym->st_size > h->size)
668 h->size = sym->st_size;
669
670 *size_change_ok = true;
671 }
672
673 /* If we are looking at a dynamic object, and we have found a
674 definition, we need to see if the symbol was already defined by
675 some other object. If so, we want to use the existing
676 definition, and we do not want to report a multiple symbol
677 definition error; we do this by clobbering *PSEC to be
678 bfd_und_section_ptr.
679
680 We treat a common symbol as a definition if the symbol in the
681 shared library is a function, since common symbols always
682 represent variables; this can cause confusion in principle, but
683 any such confusion would seem to indicate an erroneous program or
684 shared library. We also permit a common symbol in a regular
685 object to override a weak symbol in a shared object.
686
687 We prefer a non-weak definition in a shared library to a weak
688 definition in the executable unless it comes from a DT_NEEDED
689 entry of a shared object, in which case, the DT_NEEDED entry
690 may not be required at the run time. */
691
692 if (newdyn
693 && newdef
694 && (olddef
695 || (h->root.type == bfd_link_hash_common
696 && (bind == STB_WEAK
697 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
698 && (h->root.type != bfd_link_hash_defweak
699 || dt_needed
700 || bind == STB_WEAK))
701 {
702 *override = true;
703 newdef = false;
704 newdyncommon = false;
705
706 *psec = sec = bfd_und_section_ptr;
707 *size_change_ok = true;
708
709 /* If we get here when the old symbol is a common symbol, then
710 we are explicitly letting it override a weak symbol or
711 function in a dynamic object, and we don't want to warn about
712 a type change. If the old symbol is a defined symbol, a type
713 change warning may still be appropriate. */
714
715 if (h->root.type == bfd_link_hash_common)
716 *type_change_ok = true;
717 }
718
719 /* Handle the special case of an old common symbol merging with a
720 new symbol which looks like a common symbol in a shared object.
721 We change *PSEC and *PVALUE to make the new symbol look like a
722 common symbol, and let _bfd_generic_link_add_one_symbol will do
723 the right thing. */
724
725 if (newdyncommon
726 && h->root.type == bfd_link_hash_common)
727 {
728 *override = true;
729 newdef = false;
730 newdyncommon = false;
731 *pvalue = sym->st_size;
732 *psec = sec = bfd_com_section_ptr;
733 *size_change_ok = true;
734 }
735
736 /* If the old symbol is from a dynamic object, and the new symbol is
737 a definition which is not from a dynamic object, then the new
738 symbol overrides the old symbol. Symbols from regular files
739 always take precedence over symbols from dynamic objects, even if
740 they are defined after the dynamic object in the link.
741
742 As above, we again permit a common symbol in a regular object to
743 override a definition in a shared object if the shared object
744 symbol is a function or is weak.
745
746 As above, we permit a non-weak definition in a shared object to
747 override a weak definition in a regular object. */
748
749 if (! newdyn
750 && (newdef
751 || (bfd_is_com_section (sec)
752 && (h->root.type == bfd_link_hash_defweak
753 || h->type == STT_FUNC)))
754 && olddyn
755 && olddef
756 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
757 && (bind != STB_WEAK
758 || h->root.type == bfd_link_hash_defweak))
759 {
760 /* Change the hash table entry to undefined, and let
761 _bfd_generic_link_add_one_symbol do the right thing with the
762 new definition. */
763
764 h->root.type = bfd_link_hash_undefined;
765 h->root.u.undef.abfd = h->root.u.def.section->owner;
766 *size_change_ok = true;
767
768 olddef = false;
769 olddyncommon = false;
770
771 /* We again permit a type change when a common symbol may be
772 overriding a function. */
773
774 if (bfd_is_com_section (sec))
775 *type_change_ok = true;
776
777 /* This union may have been set to be non-NULL when this symbol
778 was seen in a dynamic object. We must force the union to be
779 NULL, so that it is correct for a regular symbol. */
780
781 h->verinfo.vertree = NULL;
782
783 /* In this special case, if H is the target of an indirection,
784 we want the caller to frob with H rather than with the
785 indirect symbol. That will permit the caller to redefine the
786 target of the indirection, rather than the indirect symbol
787 itself. FIXME: This will break the -y option if we store a
788 symbol with a different name. */
789 *sym_hash = h;
790 }
791
792 /* Handle the special case of a new common symbol merging with an
793 old symbol that looks like it might be a common symbol defined in
794 a shared object. Note that we have already handled the case in
795 which a new common symbol should simply override the definition
796 in the shared library. */
797
798 if (! newdyn
799 && bfd_is_com_section (sec)
800 && olddyncommon)
801 {
802 /* It would be best if we could set the hash table entry to a
803 common symbol, but we don't know what to use for the section
804 or the alignment. */
805 if (! ((*info->callbacks->multiple_common)
806 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
807 h->size, abfd, bfd_link_hash_common, sym->st_size)))
808 return false;
809
810 /* If the predumed common symbol in the dynamic object is
811 larger, pretend that the new symbol has its size. */
812
813 if (h->size > *pvalue)
814 *pvalue = h->size;
815
816 /* FIXME: We no longer know the alignment required by the symbol
817 in the dynamic object, so we just wind up using the one from
818 the regular object. */
819
820 olddef = false;
821 olddyncommon = false;
822
823 h->root.type = bfd_link_hash_undefined;
824 h->root.u.undef.abfd = h->root.u.def.section->owner;
825
826 *size_change_ok = true;
827 *type_change_ok = true;
828
829 h->verinfo.vertree = NULL;
830 }
831
832 /* Handle the special case of a weak definition in a regular object
833 followed by a non-weak definition in a shared object. In this
834 case, we prefer the definition in the shared object unless it
835 comes from a DT_NEEDED entry of a shared object, in which case,
836 the DT_NEEDED entry may not be required at the run time. */
837 if (olddef
838 && ! dt_needed
839 && h->root.type == bfd_link_hash_defweak
840 && newdef
841 && newdyn
842 && bind != STB_WEAK)
843 {
844 /* To make this work we have to frob the flags so that the rest
845 of the code does not think we are using the regular
846 definition. */
847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
848 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
849 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
850 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
851 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
852 | ELF_LINK_HASH_DEF_DYNAMIC);
853
854 /* If H is the target of an indirection, we want the caller to
855 use H rather than the indirect symbol. Otherwise if we are
856 defining a new indirect symbol we will wind up attaching it
857 to the entry we are overriding. */
858 *sym_hash = h;
859 }
860
861 /* Handle the special case of a non-weak definition in a shared
862 object followed by a weak definition in a regular object. In
863 this case we prefer to definition in the shared object. To make
864 this work we have to tell the caller to not treat the new symbol
865 as a definition. */
866 if (olddef
867 && olddyn
868 && h->root.type != bfd_link_hash_defweak
869 && newdef
870 && ! newdyn
871 && bind == STB_WEAK)
872 *override = true;
873
874 return true;
875 }
876
877 /* Add symbols from an ELF object file to the linker hash table. */
878
879 static boolean
880 elf_link_add_object_symbols (abfd, info)
881 bfd *abfd;
882 struct bfd_link_info *info;
883 {
884 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
885 const Elf_Internal_Sym *,
886 const char **, flagword *,
887 asection **, bfd_vma *));
888 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
889 asection *, const Elf_Internal_Rela *));
890 boolean collect;
891 Elf_Internal_Shdr *hdr;
892 size_t symcount;
893 size_t extsymcount;
894 size_t extsymoff;
895 Elf_External_Sym *buf = NULL;
896 struct elf_link_hash_entry **sym_hash;
897 boolean dynamic;
898 bfd_byte *dynver = NULL;
899 Elf_External_Versym *extversym = NULL;
900 Elf_External_Versym *ever;
901 Elf_External_Dyn *dynbuf = NULL;
902 struct elf_link_hash_entry *weaks;
903 Elf_External_Sym *esym;
904 Elf_External_Sym *esymend;
905 struct elf_backend_data *bed;
906 boolean dt_needed;
907
908 bed = get_elf_backend_data (abfd);
909 add_symbol_hook = bed->elf_add_symbol_hook;
910 collect = bed->collect;
911
912 if ((abfd->flags & DYNAMIC) == 0)
913 dynamic = false;
914 else
915 {
916 dynamic = true;
917
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info->relocateable || info->hash->creator != abfd->xvec)
922 {
923 bfd_set_error (bfd_error_invalid_operation);
924 goto error_return;
925 }
926 }
927
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
932 if (! info->shared)
933 {
934 asection *s;
935
936 for (s = abfd->sections; s != NULL; s = s->next)
937 {
938 const char *name;
939
940 name = bfd_get_section_name (abfd, s);
941 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
942 {
943 char *msg;
944 bfd_size_type sz;
945
946 name += sizeof ".gnu.warning." - 1;
947
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
956 link. */
957 if (dynamic && abfd->xvec == info->hash->creator)
958 {
959 struct elf_link_hash_entry *h;
960
961 h = elf_link_hash_lookup (elf_hash_table (info), name,
962 false, false, true);
963
964 /* FIXME: What about bfd_link_hash_common? */
965 if (h != NULL
966 && (h->root.type == bfd_link_hash_defined
967 || h->root.type == bfd_link_hash_defweak))
968 {
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
972 s->_raw_size = 0;
973 continue;
974 }
975 }
976
977 sz = bfd_section_size (abfd, s);
978 msg = (char *) bfd_alloc (abfd, sz + 1);
979 if (msg == NULL)
980 goto error_return;
981
982 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
983 goto error_return;
984
985 msg[sz] = '\0';
986
987 if (! (_bfd_generic_link_add_one_symbol
988 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989 false, collect, (struct bfd_link_hash_entry **) NULL)))
990 goto error_return;
991
992 if (! info->relocateable)
993 {
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
996 s->_raw_size = 0;
997 }
998 }
999 }
1000 }
1001
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1006
1007 if (! dynamic || elf_dynsymtab (abfd) == 0)
1008 hdr = &elf_tdata (abfd)->symtab_hdr;
1009 else
1010 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1011
1012 if (dynamic)
1013 {
1014 /* Read in any version definitions. */
1015
1016 if (! _bfd_elf_slurp_version_tables (abfd))
1017 goto error_return;
1018
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd) != 0)
1022 {
1023 Elf_Internal_Shdr *versymhdr;
1024
1025 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1027 if (extversym == NULL)
1028 goto error_return;
1029 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031 != versymhdr->sh_size))
1032 goto error_return;
1033 }
1034 }
1035
1036 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1037
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1040 this point. */
1041 if (elf_bad_symtab (abfd))
1042 {
1043 extsymcount = symcount;
1044 extsymoff = 0;
1045 }
1046 else
1047 {
1048 extsymcount = symcount - hdr->sh_info;
1049 extsymoff = hdr->sh_info;
1050 }
1051
1052 buf = ((Elf_External_Sym *)
1053 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054 if (buf == NULL && extsymcount != 0)
1055 goto error_return;
1056
1057 /* We store a pointer to the hash table entry for each external
1058 symbol. */
1059 sym_hash = ((struct elf_link_hash_entry **)
1060 bfd_alloc (abfd,
1061 extsymcount * sizeof (struct elf_link_hash_entry *)));
1062 if (sym_hash == NULL)
1063 goto error_return;
1064 elf_sym_hashes (abfd) = sym_hash;
1065
1066 dt_needed = false;
1067
1068 if (! dynamic)
1069 {
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1075 if (info->shared
1076 && ! elf_hash_table (info)->dynamic_sections_created
1077 && abfd->xvec == info->hash->creator)
1078 {
1079 if (! elf_link_create_dynamic_sections (abfd, info))
1080 goto error_return;
1081 }
1082 }
1083 else
1084 {
1085 asection *s;
1086 boolean add_needed;
1087 const char *name;
1088 bfd_size_type oldsize;
1089 bfd_size_type strindex;
1090
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1098 add_needed = true;
1099 name = bfd_get_filename (abfd);
1100 if (elf_dt_name (abfd) != NULL)
1101 {
1102 name = elf_dt_name (abfd);
1103 if (*name == '\0')
1104 {
1105 if (elf_dt_soname (abfd) != NULL)
1106 dt_needed = true;
1107
1108 add_needed = false;
1109 }
1110 }
1111 s = bfd_get_section_by_name (abfd, ".dynamic");
1112 if (s != NULL)
1113 {
1114 Elf_External_Dyn *extdyn;
1115 Elf_External_Dyn *extdynend;
1116 int elfsec;
1117 unsigned long link;
1118 int rpath;
1119 int runpath;
1120
1121 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1122 if (dynbuf == NULL)
1123 goto error_return;
1124
1125 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126 (file_ptr) 0, s->_raw_size))
1127 goto error_return;
1128
1129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130 if (elfsec == -1)
1131 goto error_return;
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1133
1134 {
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1139 instead. */
1140 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141 if (hdr->sh_type != SHT_STRTAB)
1142 {
1143 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1145 if (elfsec == -1)
1146 goto error_return;
1147 link = elf_elfsections (abfd)[elfsec]->sh_link;
1148 }
1149 }
1150
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1153 rpath = 0;
1154 runpath = 0;
1155 for (; extdyn < extdynend; extdyn++)
1156 {
1157 Elf_Internal_Dyn dyn;
1158
1159 elf_swap_dyn_in (abfd, extdyn, &dyn);
1160 if (dyn.d_tag == DT_SONAME)
1161 {
1162 name = bfd_elf_string_from_elf_section (abfd, link,
1163 dyn.d_un.d_val);
1164 if (name == NULL)
1165 goto error_return;
1166 }
1167 if (dyn.d_tag == DT_NEEDED)
1168 {
1169 struct bfd_link_needed_list *n, **pn;
1170 char *fnm, *anm;
1171
1172 n = ((struct bfd_link_needed_list *)
1173 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174 fnm = bfd_elf_string_from_elf_section (abfd, link,
1175 dyn.d_un.d_val);
1176 if (n == NULL || fnm == NULL)
1177 goto error_return;
1178 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1179 if (anm == NULL)
1180 goto error_return;
1181 strcpy (anm, fnm);
1182 n->name = anm;
1183 n->by = abfd;
1184 n->next = NULL;
1185 for (pn = &elf_hash_table (info)->needed;
1186 *pn != NULL;
1187 pn = &(*pn)->next)
1188 ;
1189 *pn = n;
1190 }
1191 if (dyn.d_tag == DT_RUNPATH)
1192 {
1193 struct bfd_link_needed_list *n, **pn;
1194 char *fnm, *anm;
1195
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1199 well. */
1200 if (rpath && elf_hash_table (info)->runpath)
1201 elf_hash_table (info)->runpath = NULL;
1202
1203 n = ((struct bfd_link_needed_list *)
1204 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205 fnm = bfd_elf_string_from_elf_section (abfd, link,
1206 dyn.d_un.d_val);
1207 if (n == NULL || fnm == NULL)
1208 goto error_return;
1209 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1210 if (anm == NULL)
1211 goto error_return;
1212 strcpy (anm, fnm);
1213 n->name = anm;
1214 n->by = abfd;
1215 n->next = NULL;
1216 for (pn = &elf_hash_table (info)->runpath;
1217 *pn != NULL;
1218 pn = &(*pn)->next)
1219 ;
1220 *pn = n;
1221 runpath = 1;
1222 rpath = 0;
1223 }
1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1225 if (!runpath && dyn.d_tag == DT_RPATH)
1226 {
1227 struct bfd_link_needed_list *n, **pn;
1228 char *fnm, *anm;
1229
1230 n = ((struct bfd_link_needed_list *)
1231 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232 fnm = bfd_elf_string_from_elf_section (abfd, link,
1233 dyn.d_un.d_val);
1234 if (n == NULL || fnm == NULL)
1235 goto error_return;
1236 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1237 if (anm == NULL)
1238 goto error_return;
1239 strcpy (anm, fnm);
1240 n->name = anm;
1241 n->by = abfd;
1242 n->next = NULL;
1243 for (pn = &elf_hash_table (info)->runpath;
1244 *pn != NULL;
1245 pn = &(*pn)->next)
1246 ;
1247 *pn = n;
1248 rpath = 1;
1249 }
1250 }
1251
1252 free (dynbuf);
1253 dynbuf = NULL;
1254 }
1255
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1262 file. */
1263 abfd->sections = NULL;
1264 abfd->section_count = 0;
1265
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info)->dynamic_sections_created)
1269 {
1270 if (! elf_link_create_dynamic_sections (abfd, info))
1271 goto error_return;
1272 }
1273
1274 if (add_needed)
1275 {
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1279 true, false);
1280 if (strindex == (bfd_size_type) -1)
1281 goto error_return;
1282
1283 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1284 {
1285 asection *sdyn;
1286 Elf_External_Dyn *dyncon, *dynconend;
1287
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1294 ".dynamic");
1295 BFD_ASSERT (sdyn != NULL);
1296
1297 dyncon = (Elf_External_Dyn *) sdyn->contents;
1298 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1299 sdyn->_raw_size);
1300 for (; dyncon < dynconend; dyncon++)
1301 {
1302 Elf_Internal_Dyn dyn;
1303
1304 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1305 &dyn);
1306 if (dyn.d_tag == DT_NEEDED
1307 && dyn.d_un.d_val == strindex)
1308 {
1309 if (buf != NULL)
1310 free (buf);
1311 if (extversym != NULL)
1312 free (extversym);
1313 return true;
1314 }
1315 }
1316 }
1317
1318 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1319 goto error_return;
1320 }
1321
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1324 if (*name == '\0')
1325 name = bfd_get_filename (abfd);
1326 elf_dt_name (abfd) = name;
1327 }
1328
1329 if (bfd_seek (abfd,
1330 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1331 SEEK_SET) != 0
1332 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333 != extsymcount * sizeof (Elf_External_Sym)))
1334 goto error_return;
1335
1336 weaks = NULL;
1337
1338 ever = extversym != NULL ? extversym + extsymoff : NULL;
1339 esymend = buf + extsymcount;
1340 for (esym = buf;
1341 esym < esymend;
1342 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1343 {
1344 Elf_Internal_Sym sym;
1345 int bind;
1346 bfd_vma value;
1347 asection *sec;
1348 flagword flags;
1349 const char *name;
1350 struct elf_link_hash_entry *h;
1351 boolean definition;
1352 boolean size_change_ok, type_change_ok;
1353 boolean new_weakdef;
1354 unsigned int old_alignment;
1355
1356 elf_swap_symbol_in (abfd, esym, &sym);
1357
1358 flags = BSF_NO_FLAGS;
1359 sec = NULL;
1360 value = sym.st_value;
1361 *sym_hash = NULL;
1362
1363 bind = ELF_ST_BIND (sym.st_info);
1364 if (bind == STB_LOCAL)
1365 {
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1369 screws this up. */
1370 continue;
1371 }
1372 else if (bind == STB_GLOBAL)
1373 {
1374 if (sym.st_shndx != SHN_UNDEF
1375 && sym.st_shndx != SHN_COMMON)
1376 flags = BSF_GLOBAL;
1377 }
1378 else if (bind == STB_WEAK)
1379 flags = BSF_WEAK;
1380 else
1381 {
1382 /* Leave it up to the processor backend. */
1383 }
1384
1385 if (sym.st_shndx == SHN_UNDEF)
1386 sec = bfd_und_section_ptr;
1387 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1388 {
1389 sec = section_from_elf_index (abfd, sym.st_shndx);
1390 if (sec == NULL)
1391 sec = bfd_abs_section_ptr;
1392 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1393 value -= sec->vma;
1394 }
1395 else if (sym.st_shndx == SHN_ABS)
1396 sec = bfd_abs_section_ptr;
1397 else if (sym.st_shndx == SHN_COMMON)
1398 {
1399 sec = bfd_com_section_ptr;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value = sym.st_size;
1403 }
1404 else
1405 {
1406 /* Leave it up to the processor backend. */
1407 }
1408
1409 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410 if (name == (const char *) NULL)
1411 goto error_return;
1412
1413 if (add_symbol_hook)
1414 {
1415 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1416 &value))
1417 goto error_return;
1418
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name == (const char *) NULL)
1422 continue;
1423 }
1424
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec == (asection *) NULL)
1427 {
1428 bfd_set_error (bfd_error_bad_value);
1429 goto error_return;
1430 }
1431
1432 if (bfd_is_und_section (sec)
1433 || bfd_is_com_section (sec))
1434 definition = false;
1435 else
1436 definition = true;
1437
1438 size_change_ok = false;
1439 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1440 old_alignment = 0;
1441 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1442 {
1443 Elf_Internal_Versym iver;
1444 unsigned int vernum = 0;
1445 boolean override;
1446
1447 if (ever != NULL)
1448 {
1449 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450 vernum = iver.vs_vers & VERSYM_VERSION;
1451
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1459 {
1460 const char *verstr;
1461 int namelen, newlen;
1462 char *newname, *p;
1463
1464 if (sym.st_shndx != SHN_UNDEF)
1465 {
1466 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1467 {
1468 (*_bfd_error_handler)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd), name, vernum,
1471 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472 bfd_set_error (bfd_error_bad_value);
1473 goto error_return;
1474 }
1475 else if (vernum > 1)
1476 verstr =
1477 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1478 else
1479 verstr = "";
1480 }
1481 else
1482 {
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1486 at 0. */
1487 Elf_Internal_Verneed *t;
1488
1489 verstr = NULL;
1490 for (t = elf_tdata (abfd)->verref;
1491 t != NULL;
1492 t = t->vn_nextref)
1493 {
1494 Elf_Internal_Vernaux *a;
1495
1496 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1497 {
1498 if (a->vna_other == vernum)
1499 {
1500 verstr = a->vna_nodename;
1501 break;
1502 }
1503 }
1504 if (a != NULL)
1505 break;
1506 }
1507 if (verstr == NULL)
1508 {
1509 (*_bfd_error_handler)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd), name, vernum);
1512 bfd_set_error (bfd_error_bad_value);
1513 goto error_return;
1514 }
1515 }
1516
1517 namelen = strlen (name);
1518 newlen = namelen + strlen (verstr) + 2;
1519 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1520 ++newlen;
1521
1522 newname = (char *) bfd_alloc (abfd, newlen);
1523 if (newname == NULL)
1524 goto error_return;
1525 strcpy (newname, name);
1526 p = newname + namelen;
1527 *p++ = ELF_VER_CHR;
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532 && sym.st_shndx != SHN_UNDEF)
1533 *p++ = ELF_VER_CHR;
1534 strcpy (p, verstr);
1535
1536 name = newname;
1537 }
1538 }
1539
1540 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541 sym_hash, &override, &type_change_ok,
1542 &size_change_ok, dt_needed))
1543 goto error_return;
1544
1545 if (override)
1546 definition = false;
1547
1548 h = *sym_hash;
1549 while (h->root.type == bfd_link_hash_indirect
1550 || h->root.type == bfd_link_hash_warning)
1551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1552
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1557 override. */
1558 if (h->root.type == bfd_link_hash_common)
1559 old_alignment = h->root.u.c.p->alignment_power;
1560
1561 if (elf_tdata (abfd)->verdef != NULL
1562 && ! override
1563 && vernum > 1
1564 && definition)
1565 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1566 }
1567
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info, abfd, name, flags, sec, value, (const char *) NULL,
1570 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1571 goto error_return;
1572
1573 h = *sym_hash;
1574 while (h->root.type == bfd_link_hash_indirect
1575 || h->root.type == bfd_link_hash_warning)
1576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1577 *sym_hash = h;
1578
1579 new_weakdef = false;
1580 if (dynamic
1581 && definition
1582 && (flags & BSF_WEAK) != 0
1583 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584 && info->hash->creator->flavour == bfd_target_elf_flavour
1585 && h->weakdef == NULL)
1586 {
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1598
1599 h->weakdef = weaks;
1600 weaks = h;
1601 new_weakdef = true;
1602 }
1603
1604 /* Set the alignment of a common symbol. */
1605 if (sym.st_shndx == SHN_COMMON
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 unsigned int align;
1609
1610 align = bfd_log2 (sym.st_value);
1611 if (align > old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym.st_value == 1 && old_alignment == 0))
1615 h->root.u.c.p->alignment_power = align;
1616 }
1617
1618 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1619 {
1620 int old_flags;
1621 boolean dynsym;
1622 int new_flag;
1623
1624 /* Remember the symbol size and type. */
1625 if (sym.st_size != 0
1626 && (definition || h->size == 0))
1627 {
1628 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629 (*_bfd_error_handler)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632 bfd_get_filename (abfd));
1633
1634 h->size = sym.st_size;
1635 }
1636
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h->root.type == bfd_link_hash_common)
1643 h->size = h->root.u.c.size;
1644
1645 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646 && (definition || h->type == STT_NOTYPE))
1647 {
1648 if (h->type != STT_NOTYPE
1649 && h->type != ELF_ST_TYPE (sym.st_info)
1650 && ! type_change_ok)
1651 (*_bfd_error_handler)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name, h->type, ELF_ST_TYPE (sym.st_info),
1654 bfd_get_filename (abfd));
1655
1656 h->type = ELF_ST_TYPE (sym.st_info);
1657 }
1658
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym.st_other != 0)
1662 {
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1665 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1666
1667 if (symvis && (hvis > symvis || hvis == 0))
1668 h->other = sym.st_other;
1669
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis && !hvis
1674 && (definition || h->other == 0))
1675 h->other = sym.st_other;
1676 }
1677
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags = h->elf_link_hash_flags;
1684 dynsym = false;
1685 if (! dynamic)
1686 {
1687 if (! definition)
1688 {
1689 new_flag = ELF_LINK_HASH_REF_REGULAR;
1690 if (bind != STB_WEAK)
1691 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1692 }
1693 else
1694 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1695 if (info->shared
1696 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1698 dynsym = true;
1699 }
1700 else
1701 {
1702 if (! definition)
1703 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1704 else
1705 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR)) != 0
1708 || (h->weakdef != NULL
1709 && ! new_weakdef
1710 && h->weakdef->dynindx != -1))
1711 dynsym = true;
1712 }
1713
1714 h->elf_link_hash_flags |= new_flag;
1715
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
1721 if (definition || h->root.type == bfd_link_hash_common)
1722 {
1723 char *p;
1724
1725 p = strchr (name, ELF_VER_CHR);
1726 if (p != NULL && p[1] == ELF_VER_CHR)
1727 {
1728 char *shortname;
1729 struct elf_link_hash_entry *hi;
1730 boolean override;
1731
1732 shortname = bfd_hash_allocate (&info->hash->table,
1733 p - name + 1);
1734 if (shortname == NULL)
1735 goto error_return;
1736 strncpy (shortname, name, p - name);
1737 shortname[p - name] = '\0';
1738
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok = false;
1745 size_change_ok = false;
1746 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747 &value, &hi, &override,
1748 &type_change_ok,
1749 &size_change_ok, dt_needed))
1750 goto error_return;
1751
1752 if (! override)
1753 {
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info, abfd, shortname, BSF_INDIRECT,
1756 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757 collect, (struct bfd_link_hash_entry **) &hi)))
1758 goto error_return;
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1768 version.
1769
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1774
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1784 object. */
1785
1786 while (hi->root.type == bfd_link_hash_indirect
1787 || hi->root.type == bfd_link_hash_warning)
1788 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1789
1790 h->root.type = bfd_link_hash_indirect;
1791 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1793 {
1794 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796 if (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR))
1799 {
1800 if (! _bfd_elf_link_record_dynamic_symbol (info,
1801 hi))
1802 goto error_return;
1803 }
1804 }
1805
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1808 hi = h;
1809 }
1810
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1814 case. */
1815
1816 if (hi->root.type == bfd_link_hash_indirect)
1817 {
1818 struct elf_link_hash_entry *ht;
1819
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR))
1825 == 0);
1826
1827 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1828 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1829
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1832 if (! dynsym)
1833 {
1834 if (! dynamic)
1835 {
1836 if (info->shared
1837 || ((hi->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC)
1839 != 0))
1840 dynsym = true;
1841 }
1842 else
1843 {
1844 if ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR) != 0)
1846 dynsym = true;
1847 }
1848 }
1849 }
1850
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1853
1854 shortname = bfd_hash_allocate (&info->hash->table,
1855 strlen (name));
1856 if (shortname == NULL)
1857 goto error_return;
1858 strncpy (shortname, name, p - name);
1859 strcpy (shortname + (p - name), p + 1);
1860
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = false;
1863 size_change_ok = false;
1864 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865 &value, &hi, &override,
1866 &type_change_ok,
1867 &size_change_ok, dt_needed))
1868 goto error_return;
1869
1870 if (override)
1871 {
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd), shortname);
1878 }
1879 else
1880 {
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, shortname, BSF_INDIRECT,
1883 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884 collect, (struct bfd_link_hash_entry **) &hi)))
1885 goto error_return;
1886
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1890 that case. */
1891
1892 if (hi->root.type == bfd_link_hash_indirect)
1893 {
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1896 before. */
1897 BFD_ASSERT ((hi->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR))
1900 == 0);
1901
1902 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1903
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1906 if (! dynsym)
1907 {
1908 if (! dynamic)
1909 {
1910 if (info->shared
1911 || ((hi->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC)
1913 != 0))
1914 dynsym = true;
1915 }
1916 else
1917 {
1918 if ((hi->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR) != 0)
1920 dynsym = true;
1921 }
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 if (dynsym && h->dynindx == -1)
1929 {
1930 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1931 goto error_return;
1932 if (h->weakdef != NULL
1933 && ! new_weakdef
1934 && h->weakdef->dynindx == -1)
1935 {
1936 if (! _bfd_elf_link_record_dynamic_symbol (info,
1937 h->weakdef))
1938 goto error_return;
1939 }
1940 }
1941 else if (dynsym && h->dynindx != -1)
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1944 a local symbol. */
1945 switch (ELF_ST_VISIBILITY (h->other))
1946 {
1947 case STV_INTERNAL:
1948 case STV_HIDDEN:
1949 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1950 (*bed->elf_backend_hide_symbol) (info, h);
1951 break;
1952 }
1953
1954 if (dt_needed && definition
1955 && (h->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR) != 0)
1957 {
1958 bfd_size_type oldsize;
1959 bfd_size_type strindex;
1960
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
1963 have to make sure there is a DT_NEEDED entry for it. */
1964
1965 dt_needed = false;
1966 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968 elf_dt_soname (abfd),
1969 true, false);
1970 if (strindex == (bfd_size_type) -1)
1971 goto error_return;
1972
1973 if (oldsize
1974 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1975 {
1976 asection *sdyn;
1977 Elf_External_Dyn *dyncon, *dynconend;
1978
1979 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1980 ".dynamic");
1981 BFD_ASSERT (sdyn != NULL);
1982
1983 dyncon = (Elf_External_Dyn *) sdyn->contents;
1984 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1985 sdyn->_raw_size);
1986 for (; dyncon < dynconend; dyncon++)
1987 {
1988 Elf_Internal_Dyn dyn;
1989
1990 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1991 dyncon, &dyn);
1992 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993 dyn.d_un.d_val != strindex);
1994 }
1995 }
1996
1997 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1998 goto error_return;
1999 }
2000 }
2001 }
2002
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2015 either. */
2016 while (weaks != NULL)
2017 {
2018 struct elf_link_hash_entry *hlook;
2019 asection *slook;
2020 bfd_vma vlook;
2021 struct elf_link_hash_entry **hpp;
2022 struct elf_link_hash_entry **hppend;
2023
2024 hlook = weaks;
2025 weaks = hlook->weakdef;
2026 hlook->weakdef = NULL;
2027
2028 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029 || hlook->root.type == bfd_link_hash_defweak
2030 || hlook->root.type == bfd_link_hash_common
2031 || hlook->root.type == bfd_link_hash_indirect);
2032 slook = hlook->root.u.def.section;
2033 vlook = hlook->root.u.def.value;
2034
2035 hpp = elf_sym_hashes (abfd);
2036 hppend = hpp + extsymcount;
2037 for (; hpp < hppend; hpp++)
2038 {
2039 struct elf_link_hash_entry *h;
2040
2041 h = *hpp;
2042 if (h != NULL && h != hlook
2043 && h->root.type == bfd_link_hash_defined
2044 && h->root.u.def.section == slook
2045 && h->root.u.def.value == vlook)
2046 {
2047 hlook->weakdef = h;
2048
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2051 as well. */
2052 if (hlook->dynindx != -1
2053 && h->dynindx == -1)
2054 {
2055 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2056 goto error_return;
2057 }
2058
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h->dynindx != -1
2065 && hlook->dynindx == -1)
2066 {
2067 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2068 goto error_return;
2069 }
2070
2071 break;
2072 }
2073 }
2074 }
2075
2076 if (buf != NULL)
2077 {
2078 free (buf);
2079 buf = NULL;
2080 }
2081
2082 if (extversym != NULL)
2083 {
2084 free (extversym);
2085 extversym = NULL;
2086 }
2087
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2090 relocs.
2091
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2102
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2106 if (! dynamic
2107 && abfd->xvec == info->hash->creator
2108 && check_relocs != NULL)
2109 {
2110 asection *o;
2111
2112 for (o = abfd->sections; o != NULL; o = o->next)
2113 {
2114 Elf_Internal_Rela *internal_relocs;
2115 boolean ok;
2116
2117 if ((o->flags & SEC_RELOC) == 0
2118 || o->reloc_count == 0
2119 || ((info->strip == strip_all || info->strip == strip_debugger)
2120 && (o->flags & SEC_DEBUGGING) != 0)
2121 || bfd_is_abs_section (o->output_section))
2122 continue;
2123
2124 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125 (abfd, o, (PTR) NULL,
2126 (Elf_Internal_Rela *) NULL,
2127 info->keep_memory));
2128 if (internal_relocs == NULL)
2129 goto error_return;
2130
2131 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2132
2133 if (! info->keep_memory)
2134 free (internal_relocs);
2135
2136 if (! ok)
2137 goto error_return;
2138 }
2139 }
2140
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2143 if (! dynamic
2144 && ! info->relocateable
2145 && ! info->traditional_format
2146 && info->hash->creator->flavour == bfd_target_elf_flavour
2147 && (info->strip != strip_all && info->strip != strip_debugger))
2148 {
2149 asection *stab, *stabstr;
2150
2151 stab = bfd_get_section_by_name (abfd, ".stab");
2152 if (stab != NULL)
2153 {
2154 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2155
2156 if (stabstr != NULL)
2157 {
2158 struct bfd_elf_section_data *secdata;
2159
2160 secdata = elf_section_data (stab);
2161 if (! _bfd_link_section_stabs (abfd,
2162 &elf_hash_table (info)->stab_info,
2163 stab, stabstr,
2164 &secdata->stab_info))
2165 goto error_return;
2166 }
2167 }
2168 }
2169
2170 return true;
2171
2172 error_return:
2173 if (buf != NULL)
2174 free (buf);
2175 if (dynbuf != NULL)
2176 free (dynbuf);
2177 if (dynver != NULL)
2178 free (dynver);
2179 if (extversym != NULL)
2180 free (extversym);
2181 return false;
2182 }
2183
2184 /* Create some sections which will be filled in with dynamic linking
2185 information. ABFD is an input file which requires dynamic sections
2186 to be created. The dynamic sections take up virtual memory space
2187 when the final executable is run, so we need to create them before
2188 addresses are assigned to the output sections. We work out the
2189 actual contents and size of these sections later. */
2190
2191 boolean
2192 elf_link_create_dynamic_sections (abfd, info)
2193 bfd *abfd;
2194 struct bfd_link_info *info;
2195 {
2196 flagword flags;
2197 register asection *s;
2198 struct elf_link_hash_entry *h;
2199 struct elf_backend_data *bed;
2200
2201 if (elf_hash_table (info)->dynamic_sections_created)
2202 return true;
2203
2204 /* Make sure that all dynamic sections use the same input BFD. */
2205 if (elf_hash_table (info)->dynobj == NULL)
2206 elf_hash_table (info)->dynobj = abfd;
2207 else
2208 abfd = elf_hash_table (info)->dynobj;
2209
2210 /* Note that we set the SEC_IN_MEMORY flag for all of these
2211 sections. */
2212 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2213 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2214
2215 /* A dynamically linked executable has a .interp section, but a
2216 shared library does not. */
2217 if (! info->shared)
2218 {
2219 s = bfd_make_section (abfd, ".interp");
2220 if (s == NULL
2221 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2222 return false;
2223 }
2224
2225 /* Create sections to hold version informations. These are removed
2226 if they are not needed. */
2227 s = bfd_make_section (abfd, ".gnu.version_d");
2228 if (s == NULL
2229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2230 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2231 return false;
2232
2233 s = bfd_make_section (abfd, ".gnu.version");
2234 if (s == NULL
2235 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2236 || ! bfd_set_section_alignment (abfd, s, 1))
2237 return false;
2238
2239 s = bfd_make_section (abfd, ".gnu.version_r");
2240 if (s == NULL
2241 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2242 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2243 return false;
2244
2245 s = bfd_make_section (abfd, ".dynsym");
2246 if (s == NULL
2247 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2248 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2249 return false;
2250
2251 s = bfd_make_section (abfd, ".dynstr");
2252 if (s == NULL
2253 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2254 return false;
2255
2256 /* Create a strtab to hold the dynamic symbol names. */
2257 if (elf_hash_table (info)->dynstr == NULL)
2258 {
2259 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2260 if (elf_hash_table (info)->dynstr == NULL)
2261 return false;
2262 }
2263
2264 s = bfd_make_section (abfd, ".dynamic");
2265 if (s == NULL
2266 || ! bfd_set_section_flags (abfd, s, flags)
2267 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2268 return false;
2269
2270 /* The special symbol _DYNAMIC is always set to the start of the
2271 .dynamic section. This call occurs before we have processed the
2272 symbols for any dynamic object, so we don't have to worry about
2273 overriding a dynamic definition. We could set _DYNAMIC in a
2274 linker script, but we only want to define it if we are, in fact,
2275 creating a .dynamic section. We don't want to define it if there
2276 is no .dynamic section, since on some ELF platforms the start up
2277 code examines it to decide how to initialize the process. */
2278 h = NULL;
2279 if (! (_bfd_generic_link_add_one_symbol
2280 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2281 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2282 (struct bfd_link_hash_entry **) &h)))
2283 return false;
2284 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2285 h->type = STT_OBJECT;
2286
2287 if (info->shared
2288 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2289 return false;
2290
2291 bed = get_elf_backend_data (abfd);
2292
2293 s = bfd_make_section (abfd, ".hash");
2294 if (s == NULL
2295 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2296 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2297 return false;
2298 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2299
2300 /* Let the backend create the rest of the sections. This lets the
2301 backend set the right flags. The backend will normally create
2302 the .got and .plt sections. */
2303 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2304 return false;
2305
2306 elf_hash_table (info)->dynamic_sections_created = true;
2307
2308 return true;
2309 }
2310
2311 /* Add an entry to the .dynamic table. */
2312
2313 boolean
2314 elf_add_dynamic_entry (info, tag, val)
2315 struct bfd_link_info *info;
2316 bfd_vma tag;
2317 bfd_vma val;
2318 {
2319 Elf_Internal_Dyn dyn;
2320 bfd *dynobj;
2321 asection *s;
2322 size_t newsize;
2323 bfd_byte *newcontents;
2324
2325 dynobj = elf_hash_table (info)->dynobj;
2326
2327 s = bfd_get_section_by_name (dynobj, ".dynamic");
2328 BFD_ASSERT (s != NULL);
2329
2330 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2331 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2332 if (newcontents == NULL)
2333 return false;
2334
2335 dyn.d_tag = tag;
2336 dyn.d_un.d_val = val;
2337 elf_swap_dyn_out (dynobj, &dyn,
2338 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2339
2340 s->_raw_size = newsize;
2341 s->contents = newcontents;
2342
2343 return true;
2344 }
2345
2346 /* Record a new local dynamic symbol. */
2347
2348 boolean
2349 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2350 struct bfd_link_info *info;
2351 bfd *input_bfd;
2352 long input_indx;
2353 {
2354 struct elf_link_local_dynamic_entry *entry;
2355 struct elf_link_hash_table *eht;
2356 struct bfd_strtab_hash *dynstr;
2357 Elf_External_Sym esym;
2358 unsigned long dynstr_index;
2359 char *name;
2360
2361 /* See if the entry exists already. */
2362 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2363 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2364 return true;
2365
2366 entry = (struct elf_link_local_dynamic_entry *)
2367 bfd_alloc (input_bfd, sizeof (*entry));
2368 if (entry == NULL)
2369 return false;
2370
2371 /* Go find the symbol, so that we can find it's name. */
2372 if (bfd_seek (input_bfd,
2373 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2374 + input_indx * sizeof (Elf_External_Sym)),
2375 SEEK_SET) != 0
2376 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2377 != sizeof (Elf_External_Sym)))
2378 return false;
2379 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2380
2381 name = (bfd_elf_string_from_elf_section
2382 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2383 entry->isym.st_name));
2384
2385 dynstr = elf_hash_table (info)->dynstr;
2386 if (dynstr == NULL)
2387 {
2388 /* Create a strtab to hold the dynamic symbol names. */
2389 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2390 if (dynstr == NULL)
2391 return false;
2392 }
2393
2394 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2395 if (dynstr_index == (unsigned long) -1)
2396 return false;
2397 entry->isym.st_name = dynstr_index;
2398
2399 eht = elf_hash_table (info);
2400
2401 entry->next = eht->dynlocal;
2402 eht->dynlocal = entry;
2403 entry->input_bfd = input_bfd;
2404 entry->input_indx = input_indx;
2405 eht->dynsymcount++;
2406
2407 /* Whatever binding the symbol had before, it's now local. */
2408 entry->isym.st_info
2409 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2410
2411 /* The dynindx will be set at the end of size_dynamic_sections. */
2412
2413 return true;
2414 }
2415 \f
2416 /* Read and swap the relocs from the section indicated by SHDR. This
2417 may be either a REL or a RELA section. The relocations are
2418 translated into RELA relocations and stored in INTERNAL_RELOCS,
2419 which should have already been allocated to contain enough space.
2420 The EXTERNAL_RELOCS are a buffer where the external form of the
2421 relocations should be stored.
2422
2423 Returns false if something goes wrong. */
2424
2425 static boolean
2426 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2427 internal_relocs)
2428 bfd *abfd;
2429 Elf_Internal_Shdr *shdr;
2430 PTR external_relocs;
2431 Elf_Internal_Rela *internal_relocs;
2432 {
2433 struct elf_backend_data *bed;
2434
2435 /* If there aren't any relocations, that's OK. */
2436 if (!shdr)
2437 return true;
2438
2439 /* Position ourselves at the start of the section. */
2440 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2441 return false;
2442
2443 /* Read the relocations. */
2444 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2445 != shdr->sh_size)
2446 return false;
2447
2448 bed = get_elf_backend_data (abfd);
2449
2450 /* Convert the external relocations to the internal format. */
2451 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2452 {
2453 Elf_External_Rel *erel;
2454 Elf_External_Rel *erelend;
2455 Elf_Internal_Rela *irela;
2456 Elf_Internal_Rel *irel;
2457
2458 erel = (Elf_External_Rel *) external_relocs;
2459 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2460 irela = internal_relocs;
2461 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2462 * sizeof (Elf_Internal_Rel)));
2463 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2464 {
2465 unsigned char i;
2466
2467 if (bed->s->swap_reloc_in)
2468 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2469 else
2470 elf_swap_reloc_in (abfd, erel, irel);
2471
2472 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2473 {
2474 irela[i].r_offset = irel[i].r_offset;
2475 irela[i].r_info = irel[i].r_info;
2476 irela[i].r_addend = 0;
2477 }
2478 }
2479 }
2480 else
2481 {
2482 Elf_External_Rela *erela;
2483 Elf_External_Rela *erelaend;
2484 Elf_Internal_Rela *irela;
2485
2486 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2487
2488 erela = (Elf_External_Rela *) external_relocs;
2489 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2490 irela = internal_relocs;
2491 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2492 {
2493 if (bed->s->swap_reloca_in)
2494 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2495 else
2496 elf_swap_reloca_in (abfd, erela, irela);
2497 }
2498 }
2499
2500 return true;
2501 }
2502
2503 /* Read and swap the relocs for a section O. They may have been
2504 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2505 not NULL, they are used as buffers to read into. They are known to
2506 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2507 the return value is allocated using either malloc or bfd_alloc,
2508 according to the KEEP_MEMORY argument. If O has two relocation
2509 sections (both REL and RELA relocations), then the REL_HDR
2510 relocations will appear first in INTERNAL_RELOCS, followed by the
2511 REL_HDR2 relocations. */
2512
2513 Elf_Internal_Rela *
2514 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2515 keep_memory)
2516 bfd *abfd;
2517 asection *o;
2518 PTR external_relocs;
2519 Elf_Internal_Rela *internal_relocs;
2520 boolean keep_memory;
2521 {
2522 Elf_Internal_Shdr *rel_hdr;
2523 PTR alloc1 = NULL;
2524 Elf_Internal_Rela *alloc2 = NULL;
2525 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2526
2527 if (elf_section_data (o)->relocs != NULL)
2528 return elf_section_data (o)->relocs;
2529
2530 if (o->reloc_count == 0)
2531 return NULL;
2532
2533 rel_hdr = &elf_section_data (o)->rel_hdr;
2534
2535 if (internal_relocs == NULL)
2536 {
2537 size_t size;
2538
2539 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2540 * sizeof (Elf_Internal_Rela));
2541 if (keep_memory)
2542 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2543 else
2544 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2545 if (internal_relocs == NULL)
2546 goto error_return;
2547 }
2548
2549 if (external_relocs == NULL)
2550 {
2551 size_t size = (size_t) rel_hdr->sh_size;
2552
2553 if (elf_section_data (o)->rel_hdr2)
2554 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2555 alloc1 = (PTR) bfd_malloc (size);
2556 if (alloc1 == NULL)
2557 goto error_return;
2558 external_relocs = alloc1;
2559 }
2560
2561 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2562 external_relocs,
2563 internal_relocs))
2564 goto error_return;
2565 if (!elf_link_read_relocs_from_section
2566 (abfd,
2567 elf_section_data (o)->rel_hdr2,
2568 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2569 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2570 * bed->s->int_rels_per_ext_rel)))
2571 goto error_return;
2572
2573 /* Cache the results for next time, if we can. */
2574 if (keep_memory)
2575 elf_section_data (o)->relocs = internal_relocs;
2576
2577 if (alloc1 != NULL)
2578 free (alloc1);
2579
2580 /* Don't free alloc2, since if it was allocated we are passing it
2581 back (under the name of internal_relocs). */
2582
2583 return internal_relocs;
2584
2585 error_return:
2586 if (alloc1 != NULL)
2587 free (alloc1);
2588 if (alloc2 != NULL)
2589 free (alloc2);
2590 return NULL;
2591 }
2592 \f
2593 /* Record an assignment to a symbol made by a linker script. We need
2594 this in case some dynamic object refers to this symbol. */
2595
2596 /*ARGSUSED*/
2597 boolean
2598 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2599 bfd *output_bfd ATTRIBUTE_UNUSED;
2600 struct bfd_link_info *info;
2601 const char *name;
2602 boolean provide;
2603 {
2604 struct elf_link_hash_entry *h;
2605
2606 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2607 return true;
2608
2609 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2610 if (h == NULL)
2611 return false;
2612
2613 if (h->root.type == bfd_link_hash_new)
2614 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2615
2616 /* If this symbol is being provided by the linker script, and it is
2617 currently defined by a dynamic object, but not by a regular
2618 object, then mark it as undefined so that the generic linker will
2619 force the correct value. */
2620 if (provide
2621 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2623 h->root.type = bfd_link_hash_undefined;
2624
2625 /* If this symbol is not being provided by the linker script, and it is
2626 currently defined by a dynamic object, but not by a regular object,
2627 then clear out any version information because the symbol will not be
2628 associated with the dynamic object any more. */
2629 if (!provide
2630 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2632 h->verinfo.verdef = NULL;
2633
2634 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2635
2636 /* When possible, keep the original type of the symbol */
2637 if (h->type == STT_NOTYPE)
2638 h->type = STT_OBJECT;
2639
2640 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2641 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2642 || info->shared)
2643 && h->dynindx == -1)
2644 {
2645 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2646 return false;
2647
2648 /* If this is a weak defined symbol, and we know a corresponding
2649 real symbol from the same dynamic object, make sure the real
2650 symbol is also made into a dynamic symbol. */
2651 if (h->weakdef != NULL
2652 && h->weakdef->dynindx == -1)
2653 {
2654 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2655 return false;
2656 }
2657 }
2658
2659 return true;
2660 }
2661 \f
2662 /* This structure is used to pass information to
2663 elf_link_assign_sym_version. */
2664
2665 struct elf_assign_sym_version_info
2666 {
2667 /* Output BFD. */
2668 bfd *output_bfd;
2669 /* General link information. */
2670 struct bfd_link_info *info;
2671 /* Version tree. */
2672 struct bfd_elf_version_tree *verdefs;
2673 /* Whether we are exporting all dynamic symbols. */
2674 boolean export_dynamic;
2675 /* Whether we had a failure. */
2676 boolean failed;
2677 };
2678
2679 /* This structure is used to pass information to
2680 elf_link_find_version_dependencies. */
2681
2682 struct elf_find_verdep_info
2683 {
2684 /* Output BFD. */
2685 bfd *output_bfd;
2686 /* General link information. */
2687 struct bfd_link_info *info;
2688 /* The number of dependencies. */
2689 unsigned int vers;
2690 /* Whether we had a failure. */
2691 boolean failed;
2692 };
2693
2694 /* Array used to determine the number of hash table buckets to use
2695 based on the number of symbols there are. If there are fewer than
2696 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2697 fewer than 37 we use 17 buckets, and so forth. We never use more
2698 than 32771 buckets. */
2699
2700 static const size_t elf_buckets[] =
2701 {
2702 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2703 16411, 32771, 0
2704 };
2705
2706 /* Compute bucket count for hashing table. We do not use a static set
2707 of possible tables sizes anymore. Instead we determine for all
2708 possible reasonable sizes of the table the outcome (i.e., the
2709 number of collisions etc) and choose the best solution. The
2710 weighting functions are not too simple to allow the table to grow
2711 without bounds. Instead one of the weighting factors is the size.
2712 Therefore the result is always a good payoff between few collisions
2713 (= short chain lengths) and table size. */
2714 static size_t
2715 compute_bucket_count (info)
2716 struct bfd_link_info *info;
2717 {
2718 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2719 size_t best_size = 0;
2720 unsigned long int *hashcodes;
2721 unsigned long int *hashcodesp;
2722 unsigned long int i;
2723
2724 /* Compute the hash values for all exported symbols. At the same
2725 time store the values in an array so that we could use them for
2726 optimizations. */
2727 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2728 * sizeof (unsigned long int));
2729 if (hashcodes == NULL)
2730 return 0;
2731 hashcodesp = hashcodes;
2732
2733 /* Put all hash values in HASHCODES. */
2734 elf_link_hash_traverse (elf_hash_table (info),
2735 elf_collect_hash_codes, &hashcodesp);
2736
2737 /* We have a problem here. The following code to optimize the table
2738 size requires an integer type with more the 32 bits. If
2739 BFD_HOST_U_64_BIT is set we know about such a type. */
2740 #ifdef BFD_HOST_U_64_BIT
2741 if (info->optimize == true)
2742 {
2743 unsigned long int nsyms = hashcodesp - hashcodes;
2744 size_t minsize;
2745 size_t maxsize;
2746 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2747 unsigned long int *counts ;
2748
2749 /* Possible optimization parameters: if we have NSYMS symbols we say
2750 that the hashing table must at least have NSYMS/4 and at most
2751 2*NSYMS buckets. */
2752 minsize = nsyms / 4;
2753 if (minsize == 0)
2754 minsize = 1;
2755 best_size = maxsize = nsyms * 2;
2756
2757 /* Create array where we count the collisions in. We must use bfd_malloc
2758 since the size could be large. */
2759 counts = (unsigned long int *) bfd_malloc (maxsize
2760 * sizeof (unsigned long int));
2761 if (counts == NULL)
2762 {
2763 free (hashcodes);
2764 return 0;
2765 }
2766
2767 /* Compute the "optimal" size for the hash table. The criteria is a
2768 minimal chain length. The minor criteria is (of course) the size
2769 of the table. */
2770 for (i = minsize; i < maxsize; ++i)
2771 {
2772 /* Walk through the array of hashcodes and count the collisions. */
2773 BFD_HOST_U_64_BIT max;
2774 unsigned long int j;
2775 unsigned long int fact;
2776
2777 memset (counts, '\0', i * sizeof (unsigned long int));
2778
2779 /* Determine how often each hash bucket is used. */
2780 for (j = 0; j < nsyms; ++j)
2781 ++counts[hashcodes[j] % i];
2782
2783 /* For the weight function we need some information about the
2784 pagesize on the target. This is information need not be 100%
2785 accurate. Since this information is not available (so far) we
2786 define it here to a reasonable default value. If it is crucial
2787 to have a better value some day simply define this value. */
2788 # ifndef BFD_TARGET_PAGESIZE
2789 # define BFD_TARGET_PAGESIZE (4096)
2790 # endif
2791
2792 /* We in any case need 2 + NSYMS entries for the size values and
2793 the chains. */
2794 max = (2 + nsyms) * (ARCH_SIZE / 8);
2795
2796 # if 1
2797 /* Variant 1: optimize for short chains. We add the squares
2798 of all the chain lengths (which favous many small chain
2799 over a few long chains). */
2800 for (j = 0; j < i; ++j)
2801 max += counts[j] * counts[j];
2802
2803 /* This adds penalties for the overall size of the table. */
2804 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2805 max *= fact * fact;
2806 # else
2807 /* Variant 2: Optimize a lot more for small table. Here we
2808 also add squares of the size but we also add penalties for
2809 empty slots (the +1 term). */
2810 for (j = 0; j < i; ++j)
2811 max += (1 + counts[j]) * (1 + counts[j]);
2812
2813 /* The overall size of the table is considered, but not as
2814 strong as in variant 1, where it is squared. */
2815 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2816 max *= fact;
2817 # endif
2818
2819 /* Compare with current best results. */
2820 if (max < best_chlen)
2821 {
2822 best_chlen = max;
2823 best_size = i;
2824 }
2825 }
2826
2827 free (counts);
2828 }
2829 else
2830 #endif /* defined (BFD_HOST_U_64_BIT) */
2831 {
2832 /* This is the fallback solution if no 64bit type is available or if we
2833 are not supposed to spend much time on optimizations. We select the
2834 bucket count using a fixed set of numbers. */
2835 for (i = 0; elf_buckets[i] != 0; i++)
2836 {
2837 best_size = elf_buckets[i];
2838 if (dynsymcount < elf_buckets[i + 1])
2839 break;
2840 }
2841 }
2842
2843 /* Free the arrays we needed. */
2844 free (hashcodes);
2845
2846 return best_size;
2847 }
2848
2849 /* Set up the sizes and contents of the ELF dynamic sections. This is
2850 called by the ELF linker emulation before_allocation routine. We
2851 must set the sizes of the sections before the linker sets the
2852 addresses of the various sections. */
2853
2854 boolean
2855 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2856 export_dynamic, filter_shlib,
2857 auxiliary_filters, info, sinterpptr,
2858 verdefs)
2859 bfd *output_bfd;
2860 const char *soname;
2861 const char *rpath;
2862 boolean export_dynamic;
2863 const char *filter_shlib;
2864 const char * const *auxiliary_filters;
2865 struct bfd_link_info *info;
2866 asection **sinterpptr;
2867 struct bfd_elf_version_tree *verdefs;
2868 {
2869 bfd_size_type soname_indx;
2870 bfd *dynobj;
2871 struct elf_backend_data *bed;
2872 struct elf_assign_sym_version_info asvinfo;
2873
2874 *sinterpptr = NULL;
2875
2876 soname_indx = (bfd_size_type) -1;
2877
2878 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2879 return true;
2880
2881 /* The backend may have to create some sections regardless of whether
2882 we're dynamic or not. */
2883 bed = get_elf_backend_data (output_bfd);
2884 if (bed->elf_backend_always_size_sections
2885 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2886 return false;
2887
2888 dynobj = elf_hash_table (info)->dynobj;
2889
2890 /* If there were no dynamic objects in the link, there is nothing to
2891 do here. */
2892 if (dynobj == NULL)
2893 return true;
2894
2895 if (elf_hash_table (info)->dynamic_sections_created)
2896 {
2897 struct elf_info_failed eif;
2898 struct elf_link_hash_entry *h;
2899 asection *dynstr;
2900
2901 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2902 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2903
2904 if (soname != NULL)
2905 {
2906 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2907 soname, true, true);
2908 if (soname_indx == (bfd_size_type) -1
2909 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2910 return false;
2911 }
2912
2913 if (info->symbolic)
2914 {
2915 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2916 return false;
2917 info->flags |= DF_SYMBOLIC;
2918 }
2919
2920 if (rpath != NULL)
2921 {
2922 bfd_size_type indx;
2923
2924 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2925 true, true);
2926 if (indx == (bfd_size_type) -1
2927 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2928 || (info->new_dtags
2929 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2930 return false;
2931 }
2932
2933 if (filter_shlib != NULL)
2934 {
2935 bfd_size_type indx;
2936
2937 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2938 filter_shlib, true, true);
2939 if (indx == (bfd_size_type) -1
2940 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2941 return false;
2942 }
2943
2944 if (auxiliary_filters != NULL)
2945 {
2946 const char * const *p;
2947
2948 for (p = auxiliary_filters; *p != NULL; p++)
2949 {
2950 bfd_size_type indx;
2951
2952 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2953 *p, true, true);
2954 if (indx == (bfd_size_type) -1
2955 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2956 return false;
2957 }
2958 }
2959
2960 /* If we are supposed to export all symbols into the dynamic symbol
2961 table (this is not the normal case), then do so. */
2962 if (export_dynamic)
2963 {
2964 struct elf_info_failed eif;
2965
2966 eif.failed = false;
2967 eif.info = info;
2968 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2969 (PTR) &eif);
2970 if (eif.failed)
2971 return false;
2972 }
2973
2974 /* Attach all the symbols to their version information. */
2975 asvinfo.output_bfd = output_bfd;
2976 asvinfo.info = info;
2977 asvinfo.verdefs = verdefs;
2978 asvinfo.export_dynamic = export_dynamic;
2979 asvinfo.failed = false;
2980
2981 elf_link_hash_traverse (elf_hash_table (info),
2982 elf_link_assign_sym_version,
2983 (PTR) &asvinfo);
2984 if (asvinfo.failed)
2985 return false;
2986
2987 /* Find all symbols which were defined in a dynamic object and make
2988 the backend pick a reasonable value for them. */
2989 eif.failed = false;
2990 eif.info = info;
2991 elf_link_hash_traverse (elf_hash_table (info),
2992 elf_adjust_dynamic_symbol,
2993 (PTR) &eif);
2994 if (eif.failed)
2995 return false;
2996
2997 /* Add some entries to the .dynamic section. We fill in some of the
2998 values later, in elf_bfd_final_link, but we must add the entries
2999 now so that we know the final size of the .dynamic section. */
3000
3001 /* If there are initialization and/or finalization functions to
3002 call then add the corresponding DT_INIT/DT_FINI entries. */
3003 h = (info->init_function
3004 ? elf_link_hash_lookup (elf_hash_table (info),
3005 info->init_function, false,
3006 false, false)
3007 : NULL);
3008 if (h != NULL
3009 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3010 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3011 {
3012 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3013 return false;
3014 }
3015 h = (info->fini_function
3016 ? elf_link_hash_lookup (elf_hash_table (info),
3017 info->fini_function, false,
3018 false, false)
3019 : NULL);
3020 if (h != NULL
3021 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3022 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3023 {
3024 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3025 return false;
3026 }
3027
3028 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3029 /* If .dynstr is excluded from the link, we don't want any of
3030 these tags. Strictly, we should be checking each section
3031 individually; This quick check covers for the case where
3032 someone does a /DISCARD/ : { *(*) }. */
3033 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3034 {
3035 bfd_size_type strsize;
3036
3037 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3038 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3039 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3040 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3041 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3042 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3043 sizeof (Elf_External_Sym)))
3044 return false;
3045 }
3046 }
3047
3048 /* The backend must work out the sizes of all the other dynamic
3049 sections. */
3050 if (bed->elf_backend_size_dynamic_sections
3051 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3052 return false;
3053
3054 if (elf_hash_table (info)->dynamic_sections_created)
3055 {
3056 size_t dynsymcount;
3057 asection *s;
3058 size_t bucketcount = 0;
3059 size_t hash_entry_size;
3060
3061 /* Set up the version definition section. */
3062 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3063 BFD_ASSERT (s != NULL);
3064
3065 /* We may have created additional version definitions if we are
3066 just linking a regular application. */
3067 verdefs = asvinfo.verdefs;
3068
3069 if (verdefs == NULL)
3070 _bfd_strip_section_from_output (info, s);
3071 else
3072 {
3073 unsigned int cdefs;
3074 bfd_size_type size;
3075 struct bfd_elf_version_tree *t;
3076 bfd_byte *p;
3077 Elf_Internal_Verdef def;
3078 Elf_Internal_Verdaux defaux;
3079
3080 cdefs = 0;
3081 size = 0;
3082
3083 /* Make space for the base version. */
3084 size += sizeof (Elf_External_Verdef);
3085 size += sizeof (Elf_External_Verdaux);
3086 ++cdefs;
3087
3088 for (t = verdefs; t != NULL; t = t->next)
3089 {
3090 struct bfd_elf_version_deps *n;
3091
3092 size += sizeof (Elf_External_Verdef);
3093 size += sizeof (Elf_External_Verdaux);
3094 ++cdefs;
3095
3096 for (n = t->deps; n != NULL; n = n->next)
3097 size += sizeof (Elf_External_Verdaux);
3098 }
3099
3100 s->_raw_size = size;
3101 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3102 if (s->contents == NULL && s->_raw_size != 0)
3103 return false;
3104
3105 /* Fill in the version definition section. */
3106
3107 p = s->contents;
3108
3109 def.vd_version = VER_DEF_CURRENT;
3110 def.vd_flags = VER_FLG_BASE;
3111 def.vd_ndx = 1;
3112 def.vd_cnt = 1;
3113 def.vd_aux = sizeof (Elf_External_Verdef);
3114 def.vd_next = (sizeof (Elf_External_Verdef)
3115 + sizeof (Elf_External_Verdaux));
3116
3117 if (soname_indx != (bfd_size_type) -1)
3118 {
3119 def.vd_hash = bfd_elf_hash (soname);
3120 defaux.vda_name = soname_indx;
3121 }
3122 else
3123 {
3124 const char *name;
3125 bfd_size_type indx;
3126
3127 name = output_bfd->filename;
3128 def.vd_hash = bfd_elf_hash (name);
3129 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3130 name, true, false);
3131 if (indx == (bfd_size_type) -1)
3132 return false;
3133 defaux.vda_name = indx;
3134 }
3135 defaux.vda_next = 0;
3136
3137 _bfd_elf_swap_verdef_out (output_bfd, &def,
3138 (Elf_External_Verdef *)p);
3139 p += sizeof (Elf_External_Verdef);
3140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3141 (Elf_External_Verdaux *) p);
3142 p += sizeof (Elf_External_Verdaux);
3143
3144 for (t = verdefs; t != NULL; t = t->next)
3145 {
3146 unsigned int cdeps;
3147 struct bfd_elf_version_deps *n;
3148 struct elf_link_hash_entry *h;
3149
3150 cdeps = 0;
3151 for (n = t->deps; n != NULL; n = n->next)
3152 ++cdeps;
3153
3154 /* Add a symbol representing this version. */
3155 h = NULL;
3156 if (! (_bfd_generic_link_add_one_symbol
3157 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3158 (bfd_vma) 0, (const char *) NULL, false,
3159 get_elf_backend_data (dynobj)->collect,
3160 (struct bfd_link_hash_entry **) &h)))
3161 return false;
3162 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3163 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3164 h->type = STT_OBJECT;
3165 h->verinfo.vertree = t;
3166
3167 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3168 return false;
3169
3170 def.vd_version = VER_DEF_CURRENT;
3171 def.vd_flags = 0;
3172 if (t->globals == NULL && t->locals == NULL && ! t->used)
3173 def.vd_flags |= VER_FLG_WEAK;
3174 def.vd_ndx = t->vernum + 1;
3175 def.vd_cnt = cdeps + 1;
3176 def.vd_hash = bfd_elf_hash (t->name);
3177 def.vd_aux = sizeof (Elf_External_Verdef);
3178 if (t->next != NULL)
3179 def.vd_next = (sizeof (Elf_External_Verdef)
3180 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3181 else
3182 def.vd_next = 0;
3183
3184 _bfd_elf_swap_verdef_out (output_bfd, &def,
3185 (Elf_External_Verdef *) p);
3186 p += sizeof (Elf_External_Verdef);
3187
3188 defaux.vda_name = h->dynstr_index;
3189 if (t->deps == NULL)
3190 defaux.vda_next = 0;
3191 else
3192 defaux.vda_next = sizeof (Elf_External_Verdaux);
3193 t->name_indx = defaux.vda_name;
3194
3195 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3196 (Elf_External_Verdaux *) p);
3197 p += sizeof (Elf_External_Verdaux);
3198
3199 for (n = t->deps; n != NULL; n = n->next)
3200 {
3201 if (n->version_needed == NULL)
3202 {
3203 /* This can happen if there was an error in the
3204 version script. */
3205 defaux.vda_name = 0;
3206 }
3207 else
3208 defaux.vda_name = n->version_needed->name_indx;
3209 if (n->next == NULL)
3210 defaux.vda_next = 0;
3211 else
3212 defaux.vda_next = sizeof (Elf_External_Verdaux);
3213
3214 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3215 (Elf_External_Verdaux *) p);
3216 p += sizeof (Elf_External_Verdaux);
3217 }
3218 }
3219
3220 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3221 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3222 return false;
3223
3224 elf_tdata (output_bfd)->cverdefs = cdefs;
3225 }
3226
3227 if (info->new_dtags && info->flags)
3228 {
3229 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3230 return false;
3231 }
3232
3233 if (info->flags_1)
3234 {
3235 if (! info->shared)
3236 info->flags_1 &= ~ (DF_1_INITFIRST
3237 | DF_1_NODELETE
3238 | DF_1_NOOPEN);
3239 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3240 return false;
3241 }
3242
3243 /* Work out the size of the version reference section. */
3244
3245 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3246 BFD_ASSERT (s != NULL);
3247 {
3248 struct elf_find_verdep_info sinfo;
3249
3250 sinfo.output_bfd = output_bfd;
3251 sinfo.info = info;
3252 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3253 if (sinfo.vers == 0)
3254 sinfo.vers = 1;
3255 sinfo.failed = false;
3256
3257 elf_link_hash_traverse (elf_hash_table (info),
3258 elf_link_find_version_dependencies,
3259 (PTR) &sinfo);
3260
3261 if (elf_tdata (output_bfd)->verref == NULL)
3262 _bfd_strip_section_from_output (info, s);
3263 else
3264 {
3265 Elf_Internal_Verneed *t;
3266 unsigned int size;
3267 unsigned int crefs;
3268 bfd_byte *p;
3269
3270 /* Build the version definition section. */
3271 size = 0;
3272 crefs = 0;
3273 for (t = elf_tdata (output_bfd)->verref;
3274 t != NULL;
3275 t = t->vn_nextref)
3276 {
3277 Elf_Internal_Vernaux *a;
3278
3279 size += sizeof (Elf_External_Verneed);
3280 ++crefs;
3281 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3282 size += sizeof (Elf_External_Vernaux);
3283 }
3284
3285 s->_raw_size = size;
3286 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3287 if (s->contents == NULL)
3288 return false;
3289
3290 p = s->contents;
3291 for (t = elf_tdata (output_bfd)->verref;
3292 t != NULL;
3293 t = t->vn_nextref)
3294 {
3295 unsigned int caux;
3296 Elf_Internal_Vernaux *a;
3297 bfd_size_type indx;
3298
3299 caux = 0;
3300 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3301 ++caux;
3302
3303 t->vn_version = VER_NEED_CURRENT;
3304 t->vn_cnt = caux;
3305 if (elf_dt_name (t->vn_bfd) != NULL)
3306 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3307 elf_dt_name (t->vn_bfd),
3308 true, false);
3309 else
3310 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3311 t->vn_bfd->filename, true, false);
3312 if (indx == (bfd_size_type) -1)
3313 return false;
3314 t->vn_file = indx;
3315 t->vn_aux = sizeof (Elf_External_Verneed);
3316 if (t->vn_nextref == NULL)
3317 t->vn_next = 0;
3318 else
3319 t->vn_next = (sizeof (Elf_External_Verneed)
3320 + caux * sizeof (Elf_External_Vernaux));
3321
3322 _bfd_elf_swap_verneed_out (output_bfd, t,
3323 (Elf_External_Verneed *) p);
3324 p += sizeof (Elf_External_Verneed);
3325
3326 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3327 {
3328 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3329 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3330 a->vna_nodename, true, false);
3331 if (indx == (bfd_size_type) -1)
3332 return false;
3333 a->vna_name = indx;
3334 if (a->vna_nextptr == NULL)
3335 a->vna_next = 0;
3336 else
3337 a->vna_next = sizeof (Elf_External_Vernaux);
3338
3339 _bfd_elf_swap_vernaux_out (output_bfd, a,
3340 (Elf_External_Vernaux *) p);
3341 p += sizeof (Elf_External_Vernaux);
3342 }
3343 }
3344
3345 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3346 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3347 return false;
3348
3349 elf_tdata (output_bfd)->cverrefs = crefs;
3350 }
3351 }
3352
3353 /* Assign dynsym indicies. In a shared library we generate a
3354 section symbol for each output section, which come first.
3355 Next come all of the back-end allocated local dynamic syms,
3356 followed by the rest of the global symbols. */
3357
3358 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3359
3360 /* Work out the size of the symbol version section. */
3361 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3362 BFD_ASSERT (s != NULL);
3363 if (dynsymcount == 0
3364 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3365 {
3366 _bfd_strip_section_from_output (info, s);
3367 /* The DYNSYMCOUNT might have changed if we were going to
3368 output a dynamic symbol table entry for S. */
3369 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3370 }
3371 else
3372 {
3373 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3374 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3375 if (s->contents == NULL)
3376 return false;
3377
3378 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3379 return false;
3380 }
3381
3382 /* Set the size of the .dynsym and .hash sections. We counted
3383 the number of dynamic symbols in elf_link_add_object_symbols.
3384 We will build the contents of .dynsym and .hash when we build
3385 the final symbol table, because until then we do not know the
3386 correct value to give the symbols. We built the .dynstr
3387 section as we went along in elf_link_add_object_symbols. */
3388 s = bfd_get_section_by_name (dynobj, ".dynsym");
3389 BFD_ASSERT (s != NULL);
3390 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3391 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3392 if (s->contents == NULL && s->_raw_size != 0)
3393 return false;
3394
3395 if (dynsymcount != 0)
3396 {
3397 Elf_Internal_Sym isym;
3398
3399 /* The first entry in .dynsym is a dummy symbol. */
3400 isym.st_value = 0;
3401 isym.st_size = 0;
3402 isym.st_name = 0;
3403 isym.st_info = 0;
3404 isym.st_other = 0;
3405 isym.st_shndx = 0;
3406 elf_swap_symbol_out (output_bfd, &isym,
3407 (PTR) (Elf_External_Sym *) s->contents);
3408 }
3409
3410 /* Compute the size of the hashing table. As a side effect this
3411 computes the hash values for all the names we export. */
3412 bucketcount = compute_bucket_count (info);
3413
3414 s = bfd_get_section_by_name (dynobj, ".hash");
3415 BFD_ASSERT (s != NULL);
3416 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3417 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3418 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3419 if (s->contents == NULL)
3420 return false;
3421 memset (s->contents, 0, (size_t) s->_raw_size);
3422
3423 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3424 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3425 s->contents + hash_entry_size);
3426
3427 elf_hash_table (info)->bucketcount = bucketcount;
3428
3429 s = bfd_get_section_by_name (dynobj, ".dynstr");
3430 BFD_ASSERT (s != NULL);
3431 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3432
3433 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3434 return false;
3435 }
3436
3437 return true;
3438 }
3439 \f
3440 /* Fix up the flags for a symbol. This handles various cases which
3441 can only be fixed after all the input files are seen. This is
3442 currently called by both adjust_dynamic_symbol and
3443 assign_sym_version, which is unnecessary but perhaps more robust in
3444 the face of future changes. */
3445
3446 static boolean
3447 elf_fix_symbol_flags (h, eif)
3448 struct elf_link_hash_entry *h;
3449 struct elf_info_failed *eif;
3450 {
3451 /* If this symbol was mentioned in a non-ELF file, try to set
3452 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3453 permit a non-ELF file to correctly refer to a symbol defined in
3454 an ELF dynamic object. */
3455 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3456 {
3457 while (h->root.type == bfd_link_hash_indirect)
3458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3459
3460 if (h->root.type != bfd_link_hash_defined
3461 && h->root.type != bfd_link_hash_defweak)
3462 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3463 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3464 else
3465 {
3466 if (h->root.u.def.section->owner != NULL
3467 && (bfd_get_flavour (h->root.u.def.section->owner)
3468 == bfd_target_elf_flavour))
3469 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3470 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3471 else
3472 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3473 }
3474
3475 if (h->dynindx == -1
3476 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3477 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3478 {
3479 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3480 {
3481 eif->failed = true;
3482 return false;
3483 }
3484 }
3485 }
3486 else
3487 {
3488 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3489 was first seen in a non-ELF file. Fortunately, if the symbol
3490 was first seen in an ELF file, we're probably OK unless the
3491 symbol was defined in a non-ELF file. Catch that case here.
3492 FIXME: We're still in trouble if the symbol was first seen in
3493 a dynamic object, and then later in a non-ELF regular object. */
3494 if ((h->root.type == bfd_link_hash_defined
3495 || h->root.type == bfd_link_hash_defweak)
3496 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3497 && (h->root.u.def.section->owner != NULL
3498 ? (bfd_get_flavour (h->root.u.def.section->owner)
3499 != bfd_target_elf_flavour)
3500 : (bfd_is_abs_section (h->root.u.def.section)
3501 && (h->elf_link_hash_flags
3502 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3503 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3504 }
3505
3506 /* If this is a final link, and the symbol was defined as a common
3507 symbol in a regular object file, and there was no definition in
3508 any dynamic object, then the linker will have allocated space for
3509 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3510 flag will not have been set. */
3511 if (h->root.type == bfd_link_hash_defined
3512 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3513 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3514 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3515 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3516 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3517
3518 /* If -Bsymbolic was used (which means to bind references to global
3519 symbols to the definition within the shared object), and this
3520 symbol was defined in a regular object, then it actually doesn't
3521 need a PLT entry. Likewise, if the symbol has any kind of
3522 visibility (internal, hidden, or protected), it doesn't need a
3523 PLT. */
3524 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3525 && eif->info->shared
3526 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
3527 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3528 {
3529 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3530 h->plt.offset = (bfd_vma) -1;
3531 }
3532
3533 /* If this is a weak defined symbol in a dynamic object, and we know
3534 the real definition in the dynamic object, copy interesting flags
3535 over to the real definition. */
3536 if (h->weakdef != NULL)
3537 {
3538 struct elf_link_hash_entry *weakdef;
3539
3540 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3541 || h->root.type == bfd_link_hash_defweak);
3542 weakdef = h->weakdef;
3543 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3544 || weakdef->root.type == bfd_link_hash_defweak);
3545 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3546
3547 /* If the real definition is defined by a regular object file,
3548 don't do anything special. See the longer description in
3549 elf_adjust_dynamic_symbol, below. */
3550 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3551 h->weakdef = NULL;
3552 else
3553 weakdef->elf_link_hash_flags |=
3554 (h->elf_link_hash_flags
3555 & (ELF_LINK_HASH_REF_REGULAR
3556 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3557 | ELF_LINK_NON_GOT_REF));
3558 }
3559
3560 return true;
3561 }
3562
3563 /* Make the backend pick a good value for a dynamic symbol. This is
3564 called via elf_link_hash_traverse, and also calls itself
3565 recursively. */
3566
3567 static boolean
3568 elf_adjust_dynamic_symbol (h, data)
3569 struct elf_link_hash_entry *h;
3570 PTR data;
3571 {
3572 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3573 bfd *dynobj;
3574 struct elf_backend_data *bed;
3575
3576 /* Ignore indirect symbols. These are added by the versioning code. */
3577 if (h->root.type == bfd_link_hash_indirect)
3578 return true;
3579
3580 /* Fix the symbol flags. */
3581 if (! elf_fix_symbol_flags (h, eif))
3582 return false;
3583
3584 /* If this symbol does not require a PLT entry, and it is not
3585 defined by a dynamic object, or is not referenced by a regular
3586 object, ignore it. We do have to handle a weak defined symbol,
3587 even if no regular object refers to it, if we decided to add it
3588 to the dynamic symbol table. FIXME: Do we normally need to worry
3589 about symbols which are defined by one dynamic object and
3590 referenced by another one? */
3591 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3592 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3593 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3594 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3595 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3596 {
3597 h->plt.offset = (bfd_vma) -1;
3598 return true;
3599 }
3600
3601 /* If we've already adjusted this symbol, don't do it again. This
3602 can happen via a recursive call. */
3603 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3604 return true;
3605
3606 /* Don't look at this symbol again. Note that we must set this
3607 after checking the above conditions, because we may look at a
3608 symbol once, decide not to do anything, and then get called
3609 recursively later after REF_REGULAR is set below. */
3610 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3611
3612 /* If this is a weak definition, and we know a real definition, and
3613 the real symbol is not itself defined by a regular object file,
3614 then get a good value for the real definition. We handle the
3615 real symbol first, for the convenience of the backend routine.
3616
3617 Note that there is a confusing case here. If the real definition
3618 is defined by a regular object file, we don't get the real symbol
3619 from the dynamic object, but we do get the weak symbol. If the
3620 processor backend uses a COPY reloc, then if some routine in the
3621 dynamic object changes the real symbol, we will not see that
3622 change in the corresponding weak symbol. This is the way other
3623 ELF linkers work as well, and seems to be a result of the shared
3624 library model.
3625
3626 I will clarify this issue. Most SVR4 shared libraries define the
3627 variable _timezone and define timezone as a weak synonym. The
3628 tzset call changes _timezone. If you write
3629 extern int timezone;
3630 int _timezone = 5;
3631 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3632 you might expect that, since timezone is a synonym for _timezone,
3633 the same number will print both times. However, if the processor
3634 backend uses a COPY reloc, then actually timezone will be copied
3635 into your process image, and, since you define _timezone
3636 yourself, _timezone will not. Thus timezone and _timezone will
3637 wind up at different memory locations. The tzset call will set
3638 _timezone, leaving timezone unchanged. */
3639
3640 if (h->weakdef != NULL)
3641 {
3642 /* If we get to this point, we know there is an implicit
3643 reference by a regular object file via the weak symbol H.
3644 FIXME: Is this really true? What if the traversal finds
3645 H->WEAKDEF before it finds H? */
3646 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3647
3648 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3649 return false;
3650 }
3651
3652 /* If a symbol has no type and no size and does not require a PLT
3653 entry, then we are probably about to do the wrong thing here: we
3654 are probably going to create a COPY reloc for an empty object.
3655 This case can arise when a shared object is built with assembly
3656 code, and the assembly code fails to set the symbol type. */
3657 if (h->size == 0
3658 && h->type == STT_NOTYPE
3659 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3660 (*_bfd_error_handler)
3661 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3662 h->root.root.string);
3663
3664 dynobj = elf_hash_table (eif->info)->dynobj;
3665 bed = get_elf_backend_data (dynobj);
3666 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3667 {
3668 eif->failed = true;
3669 return false;
3670 }
3671
3672 return true;
3673 }
3674 \f
3675 /* This routine is used to export all defined symbols into the dynamic
3676 symbol table. It is called via elf_link_hash_traverse. */
3677
3678 static boolean
3679 elf_export_symbol (h, data)
3680 struct elf_link_hash_entry *h;
3681 PTR data;
3682 {
3683 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3684
3685 /* Ignore indirect symbols. These are added by the versioning code. */
3686 if (h->root.type == bfd_link_hash_indirect)
3687 return true;
3688
3689 if (h->dynindx == -1
3690 && (h->elf_link_hash_flags
3691 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3692 {
3693 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3694 {
3695 eif->failed = true;
3696 return false;
3697 }
3698 }
3699
3700 return true;
3701 }
3702 \f
3703 /* Look through the symbols which are defined in other shared
3704 libraries and referenced here. Update the list of version
3705 dependencies. This will be put into the .gnu.version_r section.
3706 This function is called via elf_link_hash_traverse. */
3707
3708 static boolean
3709 elf_link_find_version_dependencies (h, data)
3710 struct elf_link_hash_entry *h;
3711 PTR data;
3712 {
3713 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3714 Elf_Internal_Verneed *t;
3715 Elf_Internal_Vernaux *a;
3716
3717 /* We only care about symbols defined in shared objects with version
3718 information. */
3719 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3720 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3721 || h->dynindx == -1
3722 || h->verinfo.verdef == NULL)
3723 return true;
3724
3725 /* See if we already know about this version. */
3726 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3727 {
3728 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3729 continue;
3730
3731 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3732 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3733 return true;
3734
3735 break;
3736 }
3737
3738 /* This is a new version. Add it to tree we are building. */
3739
3740 if (t == NULL)
3741 {
3742 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3743 if (t == NULL)
3744 {
3745 rinfo->failed = true;
3746 return false;
3747 }
3748
3749 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3750 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3751 elf_tdata (rinfo->output_bfd)->verref = t;
3752 }
3753
3754 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3755
3756 /* Note that we are copying a string pointer here, and testing it
3757 above. If bfd_elf_string_from_elf_section is ever changed to
3758 discard the string data when low in memory, this will have to be
3759 fixed. */
3760 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3761
3762 a->vna_flags = h->verinfo.verdef->vd_flags;
3763 a->vna_nextptr = t->vn_auxptr;
3764
3765 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3766 ++rinfo->vers;
3767
3768 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3769
3770 t->vn_auxptr = a;
3771
3772 return true;
3773 }
3774
3775 /* Figure out appropriate versions for all the symbols. We may not
3776 have the version number script until we have read all of the input
3777 files, so until that point we don't know which symbols should be
3778 local. This function is called via elf_link_hash_traverse. */
3779
3780 static boolean
3781 elf_link_assign_sym_version (h, data)
3782 struct elf_link_hash_entry *h;
3783 PTR data;
3784 {
3785 struct elf_assign_sym_version_info *sinfo =
3786 (struct elf_assign_sym_version_info *) data;
3787 struct bfd_link_info *info = sinfo->info;
3788 struct elf_backend_data *bed;
3789 struct elf_info_failed eif;
3790 char *p;
3791
3792 /* Fix the symbol flags. */
3793 eif.failed = false;
3794 eif.info = info;
3795 if (! elf_fix_symbol_flags (h, &eif))
3796 {
3797 if (eif.failed)
3798 sinfo->failed = true;
3799 return false;
3800 }
3801
3802 /* We only need version numbers for symbols defined in regular
3803 objects. */
3804 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3805 return true;
3806
3807 bed = get_elf_backend_data (sinfo->output_bfd);
3808 p = strchr (h->root.root.string, ELF_VER_CHR);
3809 if (p != NULL && h->verinfo.vertree == NULL)
3810 {
3811 struct bfd_elf_version_tree *t;
3812 boolean hidden;
3813
3814 hidden = true;
3815
3816 /* There are two consecutive ELF_VER_CHR characters if this is
3817 not a hidden symbol. */
3818 ++p;
3819 if (*p == ELF_VER_CHR)
3820 {
3821 hidden = false;
3822 ++p;
3823 }
3824
3825 /* If there is no version string, we can just return out. */
3826 if (*p == '\0')
3827 {
3828 if (hidden)
3829 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3830 return true;
3831 }
3832
3833 /* Look for the version. If we find it, it is no longer weak. */
3834 for (t = sinfo->verdefs; t != NULL; t = t->next)
3835 {
3836 if (strcmp (t->name, p) == 0)
3837 {
3838 int len;
3839 char *alc;
3840 struct bfd_elf_version_expr *d;
3841
3842 len = p - h->root.root.string;
3843 alc = bfd_alloc (sinfo->output_bfd, len);
3844 if (alc == NULL)
3845 return false;
3846 strncpy (alc, h->root.root.string, len - 1);
3847 alc[len - 1] = '\0';
3848 if (alc[len - 2] == ELF_VER_CHR)
3849 alc[len - 2] = '\0';
3850
3851 h->verinfo.vertree = t;
3852 t->used = true;
3853 d = NULL;
3854
3855 if (t->globals != NULL)
3856 {
3857 for (d = t->globals; d != NULL; d = d->next)
3858 if ((*d->match) (d, alc))
3859 break;
3860 }
3861
3862 /* See if there is anything to force this symbol to
3863 local scope. */
3864 if (d == NULL && t->locals != NULL)
3865 {
3866 for (d = t->locals; d != NULL; d = d->next)
3867 {
3868 if ((*d->match) (d, alc))
3869 {
3870 if (h->dynindx != -1
3871 && info->shared
3872 && ! sinfo->export_dynamic)
3873 {
3874 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3875 (*bed->elf_backend_hide_symbol) (info, h);
3876 /* FIXME: The name of the symbol has
3877 already been recorded in the dynamic
3878 string table section. */
3879 }
3880
3881 break;
3882 }
3883 }
3884 }
3885
3886 bfd_release (sinfo->output_bfd, alc);
3887 break;
3888 }
3889 }
3890
3891 /* If we are building an application, we need to create a
3892 version node for this version. */
3893 if (t == NULL && ! info->shared)
3894 {
3895 struct bfd_elf_version_tree **pp;
3896 int version_index;
3897
3898 /* If we aren't going to export this symbol, we don't need
3899 to worry about it. */
3900 if (h->dynindx == -1)
3901 return true;
3902
3903 t = ((struct bfd_elf_version_tree *)
3904 bfd_alloc (sinfo->output_bfd, sizeof *t));
3905 if (t == NULL)
3906 {
3907 sinfo->failed = true;
3908 return false;
3909 }
3910
3911 t->next = NULL;
3912 t->name = p;
3913 t->globals = NULL;
3914 t->locals = NULL;
3915 t->deps = NULL;
3916 t->name_indx = (unsigned int) -1;
3917 t->used = true;
3918
3919 version_index = 1;
3920 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3921 ++version_index;
3922 t->vernum = version_index;
3923
3924 *pp = t;
3925
3926 h->verinfo.vertree = t;
3927 }
3928 else if (t == NULL)
3929 {
3930 /* We could not find the version for a symbol when
3931 generating a shared archive. Return an error. */
3932 (*_bfd_error_handler)
3933 (_("%s: undefined versioned symbol name %s"),
3934 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3935 bfd_set_error (bfd_error_bad_value);
3936 sinfo->failed = true;
3937 return false;
3938 }
3939
3940 if (hidden)
3941 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3942 }
3943
3944 /* If we don't have a version for this symbol, see if we can find
3945 something. */
3946 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3947 {
3948 struct bfd_elf_version_tree *t;
3949 struct bfd_elf_version_tree *deflt;
3950 struct bfd_elf_version_expr *d;
3951
3952 /* See if can find what version this symbol is in. If the
3953 symbol is supposed to be local, then don't actually register
3954 it. */
3955 deflt = NULL;
3956 for (t = sinfo->verdefs; t != NULL; t = t->next)
3957 {
3958 if (t->globals != NULL)
3959 {
3960 for (d = t->globals; d != NULL; d = d->next)
3961 {
3962 if ((*d->match) (d, h->root.root.string))
3963 {
3964 h->verinfo.vertree = t;
3965 break;
3966 }
3967 }
3968
3969 if (d != NULL)
3970 break;
3971 }
3972
3973 if (t->locals != NULL)
3974 {
3975 for (d = t->locals; d != NULL; d = d->next)
3976 {
3977 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3978 deflt = t;
3979 else if ((*d->match) (d, h->root.root.string))
3980 {
3981 h->verinfo.vertree = t;
3982 if (h->dynindx != -1
3983 && info->shared
3984 && ! sinfo->export_dynamic)
3985 {
3986 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3987 (*bed->elf_backend_hide_symbol) (info, h);
3988 /* FIXME: The name of the symbol has already
3989 been recorded in the dynamic string table
3990 section. */
3991 }
3992 break;
3993 }
3994 }
3995
3996 if (d != NULL)
3997 break;
3998 }
3999 }
4000
4001 if (deflt != NULL && h->verinfo.vertree == NULL)
4002 {
4003 h->verinfo.vertree = deflt;
4004 if (h->dynindx != -1
4005 && info->shared
4006 && ! sinfo->export_dynamic)
4007 {
4008 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4009 (*bed->elf_backend_hide_symbol) (info, h);
4010 /* FIXME: The name of the symbol has already been
4011 recorded in the dynamic string table section. */
4012 }
4013 }
4014 }
4015
4016 return true;
4017 }
4018 \f
4019 /* Final phase of ELF linker. */
4020
4021 /* A structure we use to avoid passing large numbers of arguments. */
4022
4023 struct elf_final_link_info
4024 {
4025 /* General link information. */
4026 struct bfd_link_info *info;
4027 /* Output BFD. */
4028 bfd *output_bfd;
4029 /* Symbol string table. */
4030 struct bfd_strtab_hash *symstrtab;
4031 /* .dynsym section. */
4032 asection *dynsym_sec;
4033 /* .hash section. */
4034 asection *hash_sec;
4035 /* symbol version section (.gnu.version). */
4036 asection *symver_sec;
4037 /* Buffer large enough to hold contents of any section. */
4038 bfd_byte *contents;
4039 /* Buffer large enough to hold external relocs of any section. */
4040 PTR external_relocs;
4041 /* Buffer large enough to hold internal relocs of any section. */
4042 Elf_Internal_Rela *internal_relocs;
4043 /* Buffer large enough to hold external local symbols of any input
4044 BFD. */
4045 Elf_External_Sym *external_syms;
4046 /* Buffer large enough to hold internal local symbols of any input
4047 BFD. */
4048 Elf_Internal_Sym *internal_syms;
4049 /* Array large enough to hold a symbol index for each local symbol
4050 of any input BFD. */
4051 long *indices;
4052 /* Array large enough to hold a section pointer for each local
4053 symbol of any input BFD. */
4054 asection **sections;
4055 /* Buffer to hold swapped out symbols. */
4056 Elf_External_Sym *symbuf;
4057 /* Number of swapped out symbols in buffer. */
4058 size_t symbuf_count;
4059 /* Number of symbols which fit in symbuf. */
4060 size_t symbuf_size;
4061 };
4062
4063 static boolean elf_link_output_sym
4064 PARAMS ((struct elf_final_link_info *, const char *,
4065 Elf_Internal_Sym *, asection *));
4066 static boolean elf_link_flush_output_syms
4067 PARAMS ((struct elf_final_link_info *));
4068 static boolean elf_link_output_extsym
4069 PARAMS ((struct elf_link_hash_entry *, PTR));
4070 static boolean elf_link_input_bfd
4071 PARAMS ((struct elf_final_link_info *, bfd *));
4072 static boolean elf_reloc_link_order
4073 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4074 struct bfd_link_order *));
4075
4076 /* This struct is used to pass information to elf_link_output_extsym. */
4077
4078 struct elf_outext_info
4079 {
4080 boolean failed;
4081 boolean localsyms;
4082 struct elf_final_link_info *finfo;
4083 };
4084
4085 /* Compute the size of, and allocate space for, REL_HDR which is the
4086 section header for a section containing relocations for O. */
4087
4088 static boolean
4089 elf_link_size_reloc_section (abfd, rel_hdr, o)
4090 bfd *abfd;
4091 Elf_Internal_Shdr *rel_hdr;
4092 asection *o;
4093 {
4094 register struct elf_link_hash_entry **p, **pend;
4095 unsigned reloc_count;
4096
4097 /* Figure out how many relocations there will be. */
4098 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4099 reloc_count = elf_section_data (o)->rel_count;
4100 else
4101 reloc_count = elf_section_data (o)->rel_count2;
4102
4103 /* That allows us to calculate the size of the section. */
4104 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4105
4106 /* The contents field must last into write_object_contents, so we
4107 allocate it with bfd_alloc rather than malloc. Also since we
4108 cannot be sure that the contents will actually be filled in,
4109 we zero the allocated space. */
4110 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4111 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4112 return false;
4113
4114 /* We only allocate one set of hash entries, so we only do it the
4115 first time we are called. */
4116 if (elf_section_data (o)->rel_hashes == NULL)
4117 {
4118 p = ((struct elf_link_hash_entry **)
4119 bfd_malloc (o->reloc_count
4120 * sizeof (struct elf_link_hash_entry *)));
4121 if (p == NULL && o->reloc_count != 0)
4122 return false;
4123
4124 elf_section_data (o)->rel_hashes = p;
4125 pend = p + o->reloc_count;
4126 for (; p < pend; p++)
4127 *p = NULL;
4128 }
4129
4130 return true;
4131 }
4132
4133 /* When performing a relocateable link, the input relocations are
4134 preserved. But, if they reference global symbols, the indices
4135 referenced must be updated. Update all the relocations in
4136 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4137
4138 static void
4139 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4140 bfd *abfd;
4141 Elf_Internal_Shdr *rel_hdr;
4142 unsigned int count;
4143 struct elf_link_hash_entry **rel_hash;
4144 {
4145 unsigned int i;
4146 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4147
4148 for (i = 0; i < count; i++, rel_hash++)
4149 {
4150 if (*rel_hash == NULL)
4151 continue;
4152
4153 BFD_ASSERT ((*rel_hash)->indx >= 0);
4154
4155 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4156 {
4157 Elf_External_Rel *erel;
4158 Elf_Internal_Rel irel;
4159
4160 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4161 if (bed->s->swap_reloc_in)
4162 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4163 else
4164 elf_swap_reloc_in (abfd, erel, &irel);
4165 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4166 ELF_R_TYPE (irel.r_info));
4167 if (bed->s->swap_reloc_out)
4168 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4169 else
4170 elf_swap_reloc_out (abfd, &irel, erel);
4171 }
4172 else
4173 {
4174 Elf_External_Rela *erela;
4175 Elf_Internal_Rela irela;
4176
4177 BFD_ASSERT (rel_hdr->sh_entsize
4178 == sizeof (Elf_External_Rela));
4179
4180 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4181 if (bed->s->swap_reloca_in)
4182 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4183 else
4184 elf_swap_reloca_in (abfd, erela, &irela);
4185 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4186 ELF_R_TYPE (irela.r_info));
4187 if (bed->s->swap_reloca_out)
4188 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4189 else
4190 elf_swap_reloca_out (abfd, &irela, erela);
4191 }
4192 }
4193 }
4194
4195 /* Do the final step of an ELF link. */
4196
4197 boolean
4198 elf_bfd_final_link (abfd, info)
4199 bfd *abfd;
4200 struct bfd_link_info *info;
4201 {
4202 boolean dynamic;
4203 bfd *dynobj;
4204 struct elf_final_link_info finfo;
4205 register asection *o;
4206 register struct bfd_link_order *p;
4207 register bfd *sub;
4208 size_t max_contents_size;
4209 size_t max_external_reloc_size;
4210 size_t max_internal_reloc_count;
4211 size_t max_sym_count;
4212 file_ptr off;
4213 Elf_Internal_Sym elfsym;
4214 unsigned int i;
4215 Elf_Internal_Shdr *symtab_hdr;
4216 Elf_Internal_Shdr *symstrtab_hdr;
4217 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4218 struct elf_outext_info eoinfo;
4219
4220 if (info->shared)
4221 abfd->flags |= DYNAMIC;
4222
4223 dynamic = elf_hash_table (info)->dynamic_sections_created;
4224 dynobj = elf_hash_table (info)->dynobj;
4225
4226 finfo.info = info;
4227 finfo.output_bfd = abfd;
4228 finfo.symstrtab = elf_stringtab_init ();
4229 if (finfo.symstrtab == NULL)
4230 return false;
4231
4232 if (! dynamic)
4233 {
4234 finfo.dynsym_sec = NULL;
4235 finfo.hash_sec = NULL;
4236 finfo.symver_sec = NULL;
4237 }
4238 else
4239 {
4240 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4241 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4242 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4243 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4244 /* Note that it is OK if symver_sec is NULL. */
4245 }
4246
4247 finfo.contents = NULL;
4248 finfo.external_relocs = NULL;
4249 finfo.internal_relocs = NULL;
4250 finfo.external_syms = NULL;
4251 finfo.internal_syms = NULL;
4252 finfo.indices = NULL;
4253 finfo.sections = NULL;
4254 finfo.symbuf = NULL;
4255 finfo.symbuf_count = 0;
4256
4257 /* Count up the number of relocations we will output for each output
4258 section, so that we know the sizes of the reloc sections. We
4259 also figure out some maximum sizes. */
4260 max_contents_size = 0;
4261 max_external_reloc_size = 0;
4262 max_internal_reloc_count = 0;
4263 max_sym_count = 0;
4264 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4265 {
4266 o->reloc_count = 0;
4267
4268 for (p = o->link_order_head; p != NULL; p = p->next)
4269 {
4270 if (p->type == bfd_section_reloc_link_order
4271 || p->type == bfd_symbol_reloc_link_order)
4272 ++o->reloc_count;
4273 else if (p->type == bfd_indirect_link_order)
4274 {
4275 asection *sec;
4276
4277 sec = p->u.indirect.section;
4278
4279 /* Mark all sections which are to be included in the
4280 link. This will normally be every section. We need
4281 to do this so that we can identify any sections which
4282 the linker has decided to not include. */
4283 sec->linker_mark = true;
4284
4285 if (info->relocateable || info->emitrelocations)
4286 o->reloc_count += sec->reloc_count;
4287
4288 if (sec->_raw_size > max_contents_size)
4289 max_contents_size = sec->_raw_size;
4290 if (sec->_cooked_size > max_contents_size)
4291 max_contents_size = sec->_cooked_size;
4292
4293 /* We are interested in just local symbols, not all
4294 symbols. */
4295 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4296 && (sec->owner->flags & DYNAMIC) == 0)
4297 {
4298 size_t sym_count;
4299
4300 if (elf_bad_symtab (sec->owner))
4301 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4302 / sizeof (Elf_External_Sym));
4303 else
4304 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4305
4306 if (sym_count > max_sym_count)
4307 max_sym_count = sym_count;
4308
4309 if ((sec->flags & SEC_RELOC) != 0)
4310 {
4311 size_t ext_size;
4312
4313 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4314 if (ext_size > max_external_reloc_size)
4315 max_external_reloc_size = ext_size;
4316 if (sec->reloc_count > max_internal_reloc_count)
4317 max_internal_reloc_count = sec->reloc_count;
4318 }
4319 }
4320 }
4321 }
4322
4323 if (o->reloc_count > 0)
4324 o->flags |= SEC_RELOC;
4325 else
4326 {
4327 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4328 set it (this is probably a bug) and if it is set
4329 assign_section_numbers will create a reloc section. */
4330 o->flags &=~ SEC_RELOC;
4331 }
4332
4333 /* If the SEC_ALLOC flag is not set, force the section VMA to
4334 zero. This is done in elf_fake_sections as well, but forcing
4335 the VMA to 0 here will ensure that relocs against these
4336 sections are handled correctly. */
4337 if ((o->flags & SEC_ALLOC) == 0
4338 && ! o->user_set_vma)
4339 o->vma = 0;
4340 }
4341
4342 /* Figure out the file positions for everything but the symbol table
4343 and the relocs. We set symcount to force assign_section_numbers
4344 to create a symbol table. */
4345 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4346 BFD_ASSERT (! abfd->output_has_begun);
4347 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4348 goto error_return;
4349
4350 /* Figure out how many relocations we will have in each section.
4351 Just using RELOC_COUNT isn't good enough since that doesn't
4352 maintain a separate value for REL vs. RELA relocations. */
4353 if (info->relocateable || info->emitrelocations)
4354 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4355 for (o = sub->sections; o != NULL; o = o->next)
4356 {
4357 asection *output_section;
4358
4359 if (! o->linker_mark)
4360 {
4361 /* This section was omitted from the link. */
4362 continue;
4363 }
4364
4365 output_section = o->output_section;
4366
4367 if (output_section != NULL
4368 && (o->flags & SEC_RELOC) != 0)
4369 {
4370 struct bfd_elf_section_data *esdi
4371 = elf_section_data (o);
4372 struct bfd_elf_section_data *esdo
4373 = elf_section_data (output_section);
4374 unsigned int *rel_count;
4375 unsigned int *rel_count2;
4376
4377 /* We must be careful to add the relocation froms the
4378 input section to the right output count. */
4379 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4380 {
4381 rel_count = &esdo->rel_count;
4382 rel_count2 = &esdo->rel_count2;
4383 }
4384 else
4385 {
4386 rel_count = &esdo->rel_count2;
4387 rel_count2 = &esdo->rel_count;
4388 }
4389
4390 *rel_count += (esdi->rel_hdr.sh_size
4391 / esdi->rel_hdr.sh_entsize);
4392 if (esdi->rel_hdr2)
4393 *rel_count2 += (esdi->rel_hdr2->sh_size
4394 / esdi->rel_hdr2->sh_entsize);
4395 }
4396 }
4397
4398 /* That created the reloc sections. Set their sizes, and assign
4399 them file positions, and allocate some buffers. */
4400 for (o = abfd->sections; o != NULL; o = o->next)
4401 {
4402 if ((o->flags & SEC_RELOC) != 0)
4403 {
4404 if (!elf_link_size_reloc_section (abfd,
4405 &elf_section_data (o)->rel_hdr,
4406 o))
4407 goto error_return;
4408
4409 if (elf_section_data (o)->rel_hdr2
4410 && !elf_link_size_reloc_section (abfd,
4411 elf_section_data (o)->rel_hdr2,
4412 o))
4413 goto error_return;
4414 }
4415
4416 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4417 to count upwards while actually outputting the relocations. */
4418 elf_section_data (o)->rel_count = 0;
4419 elf_section_data (o)->rel_count2 = 0;
4420 }
4421
4422 _bfd_elf_assign_file_positions_for_relocs (abfd);
4423
4424 /* We have now assigned file positions for all the sections except
4425 .symtab and .strtab. We start the .symtab section at the current
4426 file position, and write directly to it. We build the .strtab
4427 section in memory. */
4428 bfd_get_symcount (abfd) = 0;
4429 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4430 /* sh_name is set in prep_headers. */
4431 symtab_hdr->sh_type = SHT_SYMTAB;
4432 symtab_hdr->sh_flags = 0;
4433 symtab_hdr->sh_addr = 0;
4434 symtab_hdr->sh_size = 0;
4435 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4436 /* sh_link is set in assign_section_numbers. */
4437 /* sh_info is set below. */
4438 /* sh_offset is set just below. */
4439 symtab_hdr->sh_addralign = bed->s->file_align;
4440
4441 off = elf_tdata (abfd)->next_file_pos;
4442 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4443
4444 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4445 incorrect. We do not yet know the size of the .symtab section.
4446 We correct next_file_pos below, after we do know the size. */
4447
4448 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4449 continuously seeking to the right position in the file. */
4450 if (! info->keep_memory || max_sym_count < 20)
4451 finfo.symbuf_size = 20;
4452 else
4453 finfo.symbuf_size = max_sym_count;
4454 finfo.symbuf = ((Elf_External_Sym *)
4455 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4456 if (finfo.symbuf == NULL)
4457 goto error_return;
4458
4459 /* Start writing out the symbol table. The first symbol is always a
4460 dummy symbol. */
4461 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4462 {
4463 elfsym.st_value = 0;
4464 elfsym.st_size = 0;
4465 elfsym.st_info = 0;
4466 elfsym.st_other = 0;
4467 elfsym.st_shndx = SHN_UNDEF;
4468 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4469 &elfsym, bfd_und_section_ptr))
4470 goto error_return;
4471 }
4472
4473 #if 0
4474 /* Some standard ELF linkers do this, but we don't because it causes
4475 bootstrap comparison failures. */
4476 /* Output a file symbol for the output file as the second symbol.
4477 We output this even if we are discarding local symbols, although
4478 I'm not sure if this is correct. */
4479 elfsym.st_value = 0;
4480 elfsym.st_size = 0;
4481 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4482 elfsym.st_other = 0;
4483 elfsym.st_shndx = SHN_ABS;
4484 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4485 &elfsym, bfd_abs_section_ptr))
4486 goto error_return;
4487 #endif
4488
4489 /* Output a symbol for each section. We output these even if we are
4490 discarding local symbols, since they are used for relocs. These
4491 symbols have no names. We store the index of each one in the
4492 index field of the section, so that we can find it again when
4493 outputting relocs. */
4494 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4495 {
4496 elfsym.st_size = 0;
4497 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4498 elfsym.st_other = 0;
4499 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4500 {
4501 o = section_from_elf_index (abfd, i);
4502 if (o != NULL)
4503 o->target_index = bfd_get_symcount (abfd);
4504 elfsym.st_shndx = i;
4505 if (info->relocateable || o == NULL)
4506 elfsym.st_value = 0;
4507 else
4508 elfsym.st_value = o->vma;
4509 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4510 &elfsym, o))
4511 goto error_return;
4512 }
4513 }
4514
4515 /* Allocate some memory to hold information read in from the input
4516 files. */
4517 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4518 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4519 finfo.internal_relocs = ((Elf_Internal_Rela *)
4520 bfd_malloc (max_internal_reloc_count
4521 * sizeof (Elf_Internal_Rela)
4522 * bed->s->int_rels_per_ext_rel));
4523 finfo.external_syms = ((Elf_External_Sym *)
4524 bfd_malloc (max_sym_count
4525 * sizeof (Elf_External_Sym)));
4526 finfo.internal_syms = ((Elf_Internal_Sym *)
4527 bfd_malloc (max_sym_count
4528 * sizeof (Elf_Internal_Sym)));
4529 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4530 finfo.sections = ((asection **)
4531 bfd_malloc (max_sym_count * sizeof (asection *)));
4532 if ((finfo.contents == NULL && max_contents_size != 0)
4533 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4534 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4535 || (finfo.external_syms == NULL && max_sym_count != 0)
4536 || (finfo.internal_syms == NULL && max_sym_count != 0)
4537 || (finfo.indices == NULL && max_sym_count != 0)
4538 || (finfo.sections == NULL && max_sym_count != 0))
4539 goto error_return;
4540
4541 /* Since ELF permits relocations to be against local symbols, we
4542 must have the local symbols available when we do the relocations.
4543 Since we would rather only read the local symbols once, and we
4544 would rather not keep them in memory, we handle all the
4545 relocations for a single input file at the same time.
4546
4547 Unfortunately, there is no way to know the total number of local
4548 symbols until we have seen all of them, and the local symbol
4549 indices precede the global symbol indices. This means that when
4550 we are generating relocateable output, and we see a reloc against
4551 a global symbol, we can not know the symbol index until we have
4552 finished examining all the local symbols to see which ones we are
4553 going to output. To deal with this, we keep the relocations in
4554 memory, and don't output them until the end of the link. This is
4555 an unfortunate waste of memory, but I don't see a good way around
4556 it. Fortunately, it only happens when performing a relocateable
4557 link, which is not the common case. FIXME: If keep_memory is set
4558 we could write the relocs out and then read them again; I don't
4559 know how bad the memory loss will be. */
4560
4561 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4562 sub->output_has_begun = false;
4563 for (o = abfd->sections; o != NULL; o = o->next)
4564 {
4565 for (p = o->link_order_head; p != NULL; p = p->next)
4566 {
4567 if (p->type == bfd_indirect_link_order
4568 && (bfd_get_flavour (p->u.indirect.section->owner)
4569 == bfd_target_elf_flavour))
4570 {
4571 sub = p->u.indirect.section->owner;
4572 if (! sub->output_has_begun)
4573 {
4574 if (! elf_link_input_bfd (&finfo, sub))
4575 goto error_return;
4576 sub->output_has_begun = true;
4577 }
4578 }
4579 else if (p->type == bfd_section_reloc_link_order
4580 || p->type == bfd_symbol_reloc_link_order)
4581 {
4582 if (! elf_reloc_link_order (abfd, info, o, p))
4583 goto error_return;
4584 }
4585 else
4586 {
4587 if (! _bfd_default_link_order (abfd, info, o, p))
4588 goto error_return;
4589 }
4590 }
4591 }
4592
4593 /* That wrote out all the local symbols. Finish up the symbol table
4594 with the global symbols. Even if we want to strip everything we
4595 can, we still need to deal with those global symbols that got
4596 converted to local in a version script. */
4597
4598 if (info->shared)
4599 {
4600 /* Output any global symbols that got converted to local in a
4601 version script. We do this in a separate step since ELF
4602 requires all local symbols to appear prior to any global
4603 symbols. FIXME: We should only do this if some global
4604 symbols were, in fact, converted to become local. FIXME:
4605 Will this work correctly with the Irix 5 linker? */
4606 eoinfo.failed = false;
4607 eoinfo.finfo = &finfo;
4608 eoinfo.localsyms = true;
4609 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4610 (PTR) &eoinfo);
4611 if (eoinfo.failed)
4612 return false;
4613 }
4614
4615 /* The sh_info field records the index of the first non local symbol. */
4616 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4617
4618 if (dynamic
4619 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
4620 {
4621 Elf_Internal_Sym sym;
4622 Elf_External_Sym *dynsym =
4623 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4624 long last_local = 0;
4625
4626 /* Write out the section symbols for the output sections. */
4627 if (info->shared)
4628 {
4629 asection *s;
4630
4631 sym.st_size = 0;
4632 sym.st_name = 0;
4633 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4634 sym.st_other = 0;
4635
4636 for (s = abfd->sections; s != NULL; s = s->next)
4637 {
4638 int indx;
4639 indx = elf_section_data (s)->this_idx;
4640 BFD_ASSERT (indx > 0);
4641 sym.st_shndx = indx;
4642 sym.st_value = s->vma;
4643
4644 elf_swap_symbol_out (abfd, &sym,
4645 dynsym + elf_section_data (s)->dynindx);
4646 }
4647
4648 last_local = bfd_count_sections (abfd);
4649 }
4650
4651 /* Write out the local dynsyms. */
4652 if (elf_hash_table (info)->dynlocal)
4653 {
4654 struct elf_link_local_dynamic_entry *e;
4655 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4656 {
4657 asection *s;
4658
4659 sym.st_size = e->isym.st_size;
4660 sym.st_other = e->isym.st_other;
4661
4662 /* Copy the internal symbol as is.
4663 Note that we saved a word of storage and overwrote
4664 the original st_name with the dynstr_index. */
4665 sym = e->isym;
4666
4667 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4668 {
4669 s = bfd_section_from_elf_index (e->input_bfd,
4670 e->isym.st_shndx);
4671
4672 sym.st_shndx =
4673 elf_section_data (s->output_section)->this_idx;
4674 sym.st_value = (s->output_section->vma
4675 + s->output_offset
4676 + e->isym.st_value);
4677 }
4678
4679 if (last_local < e->dynindx)
4680 last_local = e->dynindx;
4681
4682 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4683 }
4684 }
4685
4686 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4687 last_local + 1;
4688 }
4689
4690 /* We get the global symbols from the hash table. */
4691 eoinfo.failed = false;
4692 eoinfo.localsyms = false;
4693 eoinfo.finfo = &finfo;
4694 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4695 (PTR) &eoinfo);
4696 if (eoinfo.failed)
4697 return false;
4698
4699 /* If backend needs to output some symbols not present in the hash
4700 table, do it now. */
4701 if (bed->elf_backend_output_arch_syms)
4702 {
4703 if (! (*bed->elf_backend_output_arch_syms)
4704 (abfd, info, (PTR) &finfo,
4705 (boolean (*) PARAMS ((PTR, const char *,
4706 Elf_Internal_Sym *, asection *)))
4707 elf_link_output_sym))
4708 return false;
4709 }
4710
4711 /* Flush all symbols to the file. */
4712 if (! elf_link_flush_output_syms (&finfo))
4713 return false;
4714
4715 /* Now we know the size of the symtab section. */
4716 off += symtab_hdr->sh_size;
4717
4718 /* Finish up and write out the symbol string table (.strtab)
4719 section. */
4720 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4721 /* sh_name was set in prep_headers. */
4722 symstrtab_hdr->sh_type = SHT_STRTAB;
4723 symstrtab_hdr->sh_flags = 0;
4724 symstrtab_hdr->sh_addr = 0;
4725 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4726 symstrtab_hdr->sh_entsize = 0;
4727 symstrtab_hdr->sh_link = 0;
4728 symstrtab_hdr->sh_info = 0;
4729 /* sh_offset is set just below. */
4730 symstrtab_hdr->sh_addralign = 1;
4731
4732 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4733 elf_tdata (abfd)->next_file_pos = off;
4734
4735 if (bfd_get_symcount (abfd) > 0)
4736 {
4737 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4738 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4739 return false;
4740 }
4741
4742 /* Adjust the relocs to have the correct symbol indices. */
4743 for (o = abfd->sections; o != NULL; o = o->next)
4744 {
4745 if ((o->flags & SEC_RELOC) == 0)
4746 continue;
4747
4748 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4749 elf_section_data (o)->rel_count,
4750 elf_section_data (o)->rel_hashes);
4751 if (elf_section_data (o)->rel_hdr2 != NULL)
4752 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4753 elf_section_data (o)->rel_count2,
4754 (elf_section_data (o)->rel_hashes
4755 + elf_section_data (o)->rel_count));
4756
4757 /* Set the reloc_count field to 0 to prevent write_relocs from
4758 trying to swap the relocs out itself. */
4759 o->reloc_count = 0;
4760 }
4761
4762 /* If we are linking against a dynamic object, or generating a
4763 shared library, finish up the dynamic linking information. */
4764 if (dynamic)
4765 {
4766 Elf_External_Dyn *dyncon, *dynconend;
4767
4768 /* Fix up .dynamic entries. */
4769 o = bfd_get_section_by_name (dynobj, ".dynamic");
4770 BFD_ASSERT (o != NULL);
4771
4772 dyncon = (Elf_External_Dyn *) o->contents;
4773 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4774 for (; dyncon < dynconend; dyncon++)
4775 {
4776 Elf_Internal_Dyn dyn;
4777 const char *name;
4778 unsigned int type;
4779
4780 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4781
4782 switch (dyn.d_tag)
4783 {
4784 default:
4785 break;
4786 case DT_INIT:
4787 name = info->init_function;
4788 goto get_sym;
4789 case DT_FINI:
4790 name = info->fini_function;
4791 get_sym:
4792 {
4793 struct elf_link_hash_entry *h;
4794
4795 h = elf_link_hash_lookup (elf_hash_table (info), name,
4796 false, false, true);
4797 if (h != NULL
4798 && (h->root.type == bfd_link_hash_defined
4799 || h->root.type == bfd_link_hash_defweak))
4800 {
4801 dyn.d_un.d_val = h->root.u.def.value;
4802 o = h->root.u.def.section;
4803 if (o->output_section != NULL)
4804 dyn.d_un.d_val += (o->output_section->vma
4805 + o->output_offset);
4806 else
4807 {
4808 /* The symbol is imported from another shared
4809 library and does not apply to this one. */
4810 dyn.d_un.d_val = 0;
4811 }
4812
4813 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4814 }
4815 }
4816 break;
4817
4818 case DT_HASH:
4819 name = ".hash";
4820 goto get_vma;
4821 case DT_STRTAB:
4822 name = ".dynstr";
4823 goto get_vma;
4824 case DT_SYMTAB:
4825 name = ".dynsym";
4826 goto get_vma;
4827 case DT_VERDEF:
4828 name = ".gnu.version_d";
4829 goto get_vma;
4830 case DT_VERNEED:
4831 name = ".gnu.version_r";
4832 goto get_vma;
4833 case DT_VERSYM:
4834 name = ".gnu.version";
4835 get_vma:
4836 o = bfd_get_section_by_name (abfd, name);
4837 BFD_ASSERT (o != NULL);
4838 dyn.d_un.d_ptr = o->vma;
4839 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4840 break;
4841
4842 case DT_REL:
4843 case DT_RELA:
4844 case DT_RELSZ:
4845 case DT_RELASZ:
4846 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4847 type = SHT_REL;
4848 else
4849 type = SHT_RELA;
4850 dyn.d_un.d_val = 0;
4851 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4852 {
4853 Elf_Internal_Shdr *hdr;
4854
4855 hdr = elf_elfsections (abfd)[i];
4856 if (hdr->sh_type == type
4857 && (hdr->sh_flags & SHF_ALLOC) != 0)
4858 {
4859 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4860 dyn.d_un.d_val += hdr->sh_size;
4861 else
4862 {
4863 if (dyn.d_un.d_val == 0
4864 || hdr->sh_addr < dyn.d_un.d_val)
4865 dyn.d_un.d_val = hdr->sh_addr;
4866 }
4867 }
4868 }
4869 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4870 break;
4871 }
4872 }
4873 }
4874
4875 /* If we have created any dynamic sections, then output them. */
4876 if (dynobj != NULL)
4877 {
4878 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4879 goto error_return;
4880
4881 for (o = dynobj->sections; o != NULL; o = o->next)
4882 {
4883 if ((o->flags & SEC_HAS_CONTENTS) == 0
4884 || o->_raw_size == 0
4885 || o->output_section == bfd_abs_section_ptr)
4886 continue;
4887 if ((o->flags & SEC_LINKER_CREATED) == 0)
4888 {
4889 /* At this point, we are only interested in sections
4890 created by elf_link_create_dynamic_sections. */
4891 continue;
4892 }
4893 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4894 != SHT_STRTAB)
4895 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4896 {
4897 if (! bfd_set_section_contents (abfd, o->output_section,
4898 o->contents, o->output_offset,
4899 o->_raw_size))
4900 goto error_return;
4901 }
4902 else
4903 {
4904 file_ptr off;
4905
4906 /* The contents of the .dynstr section are actually in a
4907 stringtab. */
4908 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4909 if (bfd_seek (abfd, off, SEEK_SET) != 0
4910 || ! _bfd_stringtab_emit (abfd,
4911 elf_hash_table (info)->dynstr))
4912 goto error_return;
4913 }
4914 }
4915 }
4916
4917 /* If we have optimized stabs strings, output them. */
4918 if (elf_hash_table (info)->stab_info != NULL)
4919 {
4920 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4921 goto error_return;
4922 }
4923
4924 if (finfo.symstrtab != NULL)
4925 _bfd_stringtab_free (finfo.symstrtab);
4926 if (finfo.contents != NULL)
4927 free (finfo.contents);
4928 if (finfo.external_relocs != NULL)
4929 free (finfo.external_relocs);
4930 if (finfo.internal_relocs != NULL)
4931 free (finfo.internal_relocs);
4932 if (finfo.external_syms != NULL)
4933 free (finfo.external_syms);
4934 if (finfo.internal_syms != NULL)
4935 free (finfo.internal_syms);
4936 if (finfo.indices != NULL)
4937 free (finfo.indices);
4938 if (finfo.sections != NULL)
4939 free (finfo.sections);
4940 if (finfo.symbuf != NULL)
4941 free (finfo.symbuf);
4942 for (o = abfd->sections; o != NULL; o = o->next)
4943 {
4944 if ((o->flags & SEC_RELOC) != 0
4945 && elf_section_data (o)->rel_hashes != NULL)
4946 free (elf_section_data (o)->rel_hashes);
4947 }
4948
4949 elf_tdata (abfd)->linker = true;
4950
4951 return true;
4952
4953 error_return:
4954 if (finfo.symstrtab != NULL)
4955 _bfd_stringtab_free (finfo.symstrtab);
4956 if (finfo.contents != NULL)
4957 free (finfo.contents);
4958 if (finfo.external_relocs != NULL)
4959 free (finfo.external_relocs);
4960 if (finfo.internal_relocs != NULL)
4961 free (finfo.internal_relocs);
4962 if (finfo.external_syms != NULL)
4963 free (finfo.external_syms);
4964 if (finfo.internal_syms != NULL)
4965 free (finfo.internal_syms);
4966 if (finfo.indices != NULL)
4967 free (finfo.indices);
4968 if (finfo.sections != NULL)
4969 free (finfo.sections);
4970 if (finfo.symbuf != NULL)
4971 free (finfo.symbuf);
4972 for (o = abfd->sections; o != NULL; o = o->next)
4973 {
4974 if ((o->flags & SEC_RELOC) != 0
4975 && elf_section_data (o)->rel_hashes != NULL)
4976 free (elf_section_data (o)->rel_hashes);
4977 }
4978
4979 return false;
4980 }
4981
4982 /* Add a symbol to the output symbol table. */
4983
4984 static boolean
4985 elf_link_output_sym (finfo, name, elfsym, input_sec)
4986 struct elf_final_link_info *finfo;
4987 const char *name;
4988 Elf_Internal_Sym *elfsym;
4989 asection *input_sec;
4990 {
4991 boolean (*output_symbol_hook) PARAMS ((bfd *,
4992 struct bfd_link_info *info,
4993 const char *,
4994 Elf_Internal_Sym *,
4995 asection *));
4996
4997 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4998 elf_backend_link_output_symbol_hook;
4999 if (output_symbol_hook != NULL)
5000 {
5001 if (! ((*output_symbol_hook)
5002 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5003 return false;
5004 }
5005
5006 if (name == (const char *) NULL || *name == '\0')
5007 elfsym->st_name = 0;
5008 else if (input_sec->flags & SEC_EXCLUDE)
5009 elfsym->st_name = 0;
5010 else
5011 {
5012 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5013 name, true,
5014 false);
5015 if (elfsym->st_name == (unsigned long) -1)
5016 return false;
5017 }
5018
5019 if (finfo->symbuf_count >= finfo->symbuf_size)
5020 {
5021 if (! elf_link_flush_output_syms (finfo))
5022 return false;
5023 }
5024
5025 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5026 (PTR) (finfo->symbuf + finfo->symbuf_count));
5027 ++finfo->symbuf_count;
5028
5029 ++ bfd_get_symcount (finfo->output_bfd);
5030
5031 return true;
5032 }
5033
5034 /* Flush the output symbols to the file. */
5035
5036 static boolean
5037 elf_link_flush_output_syms (finfo)
5038 struct elf_final_link_info *finfo;
5039 {
5040 if (finfo->symbuf_count > 0)
5041 {
5042 Elf_Internal_Shdr *symtab;
5043
5044 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5045
5046 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5047 SEEK_SET) != 0
5048 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5049 sizeof (Elf_External_Sym), finfo->output_bfd)
5050 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5051 return false;
5052
5053 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5054
5055 finfo->symbuf_count = 0;
5056 }
5057
5058 return true;
5059 }
5060
5061 /* Add an external symbol to the symbol table. This is called from
5062 the hash table traversal routine. When generating a shared object,
5063 we go through the symbol table twice. The first time we output
5064 anything that might have been forced to local scope in a version
5065 script. The second time we output the symbols that are still
5066 global symbols. */
5067
5068 static boolean
5069 elf_link_output_extsym (h, data)
5070 struct elf_link_hash_entry *h;
5071 PTR data;
5072 {
5073 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5074 struct elf_final_link_info *finfo = eoinfo->finfo;
5075 boolean strip;
5076 Elf_Internal_Sym sym;
5077 asection *input_sec;
5078
5079 /* Decide whether to output this symbol in this pass. */
5080 if (eoinfo->localsyms)
5081 {
5082 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5083 return true;
5084 }
5085 else
5086 {
5087 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5088 return true;
5089 }
5090
5091 /* If we are not creating a shared library, and this symbol is
5092 referenced by a shared library but is not defined anywhere, then
5093 warn that it is undefined. If we do not do this, the runtime
5094 linker will complain that the symbol is undefined when the
5095 program is run. We don't have to worry about symbols that are
5096 referenced by regular files, because we will already have issued
5097 warnings for them. */
5098 if (! finfo->info->relocateable
5099 && ! finfo->info->allow_shlib_undefined
5100 && ! (finfo->info->shared
5101 && !finfo->info->no_undefined)
5102 && h->root.type == bfd_link_hash_undefined
5103 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5104 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5105 {
5106 if (! ((*finfo->info->callbacks->undefined_symbol)
5107 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5108 (asection *) NULL, 0, true)))
5109 {
5110 eoinfo->failed = true;
5111 return false;
5112 }
5113 }
5114
5115 /* We don't want to output symbols that have never been mentioned by
5116 a regular file, or that we have been told to strip. However, if
5117 h->indx is set to -2, the symbol is used by a reloc and we must
5118 output it. */
5119 if (h->indx == -2)
5120 strip = false;
5121 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5122 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5123 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5124 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5125 strip = true;
5126 else if (finfo->info->strip == strip_all
5127 || (finfo->info->strip == strip_some
5128 && bfd_hash_lookup (finfo->info->keep_hash,
5129 h->root.root.string,
5130 false, false) == NULL))
5131 strip = true;
5132 else
5133 strip = false;
5134
5135 /* If we're stripping it, and it's not a dynamic symbol, there's
5136 nothing else to do unless it is a forced local symbol. */
5137 if (strip
5138 && h->dynindx == -1
5139 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5140 return true;
5141
5142 sym.st_value = 0;
5143 sym.st_size = h->size;
5144 sym.st_other = h->other;
5145 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5146 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5147 else if (h->root.type == bfd_link_hash_undefweak
5148 || h->root.type == bfd_link_hash_defweak)
5149 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5150 else
5151 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5152
5153 switch (h->root.type)
5154 {
5155 default:
5156 case bfd_link_hash_new:
5157 abort ();
5158 return false;
5159
5160 case bfd_link_hash_undefined:
5161 input_sec = bfd_und_section_ptr;
5162 sym.st_shndx = SHN_UNDEF;
5163 break;
5164
5165 case bfd_link_hash_undefweak:
5166 input_sec = bfd_und_section_ptr;
5167 sym.st_shndx = SHN_UNDEF;
5168 break;
5169
5170 case bfd_link_hash_defined:
5171 case bfd_link_hash_defweak:
5172 {
5173 input_sec = h->root.u.def.section;
5174 if (input_sec->output_section != NULL)
5175 {
5176 sym.st_shndx =
5177 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5178 input_sec->output_section);
5179 if (sym.st_shndx == (unsigned short) -1)
5180 {
5181 (*_bfd_error_handler)
5182 (_("%s: could not find output section %s for input section %s"),
5183 bfd_get_filename (finfo->output_bfd),
5184 input_sec->output_section->name,
5185 input_sec->name);
5186 eoinfo->failed = true;
5187 return false;
5188 }
5189
5190 /* ELF symbols in relocateable files are section relative,
5191 but in nonrelocateable files they are virtual
5192 addresses. */
5193 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5194 if (! finfo->info->relocateable)
5195 sym.st_value += input_sec->output_section->vma;
5196 }
5197 else
5198 {
5199 BFD_ASSERT (input_sec->owner == NULL
5200 || (input_sec->owner->flags & DYNAMIC) != 0);
5201 sym.st_shndx = SHN_UNDEF;
5202 input_sec = bfd_und_section_ptr;
5203 }
5204 }
5205 break;
5206
5207 case bfd_link_hash_common:
5208 input_sec = h->root.u.c.p->section;
5209 sym.st_shndx = SHN_COMMON;
5210 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5211 break;
5212
5213 case bfd_link_hash_indirect:
5214 /* These symbols are created by symbol versioning. They point
5215 to the decorated version of the name. For example, if the
5216 symbol foo@@GNU_1.2 is the default, which should be used when
5217 foo is used with no version, then we add an indirect symbol
5218 foo which points to foo@@GNU_1.2. We ignore these symbols,
5219 since the indirected symbol is already in the hash table. */
5220 return true;
5221
5222 case bfd_link_hash_warning:
5223 /* We can't represent these symbols in ELF, although a warning
5224 symbol may have come from a .gnu.warning.SYMBOL section. We
5225 just put the target symbol in the hash table. If the target
5226 symbol does not really exist, don't do anything. */
5227 if (h->root.u.i.link->type == bfd_link_hash_new)
5228 return true;
5229 return (elf_link_output_extsym
5230 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5231 }
5232
5233 /* Give the processor backend a chance to tweak the symbol value,
5234 and also to finish up anything that needs to be done for this
5235 symbol. */
5236 if ((h->dynindx != -1
5237 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5238 && elf_hash_table (finfo->info)->dynamic_sections_created)
5239 {
5240 struct elf_backend_data *bed;
5241
5242 bed = get_elf_backend_data (finfo->output_bfd);
5243 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5244 (finfo->output_bfd, finfo->info, h, &sym)))
5245 {
5246 eoinfo->failed = true;
5247 return false;
5248 }
5249 }
5250
5251 /* If we are marking the symbol as undefined, and there are no
5252 non-weak references to this symbol from a regular object, then
5253 mark the symbol as weak undefined; if there are non-weak
5254 references, mark the symbol as strong. We can't do this earlier,
5255 because it might not be marked as undefined until the
5256 finish_dynamic_symbol routine gets through with it. */
5257 if (sym.st_shndx == SHN_UNDEF
5258 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5259 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5260 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5261 {
5262 int bindtype;
5263
5264 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5265 bindtype = STB_GLOBAL;
5266 else
5267 bindtype = STB_WEAK;
5268 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5269 }
5270
5271 /* If a symbol is not defined locally, we clear the visibility
5272 field. */
5273 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5274 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5275
5276 /* If this symbol should be put in the .dynsym section, then put it
5277 there now. We have already know the symbol index. We also fill
5278 in the entry in the .hash section. */
5279 if (h->dynindx != -1
5280 && elf_hash_table (finfo->info)->dynamic_sections_created)
5281 {
5282 size_t bucketcount;
5283 size_t bucket;
5284 size_t hash_entry_size;
5285 bfd_byte *bucketpos;
5286 bfd_vma chain;
5287
5288 sym.st_name = h->dynstr_index;
5289
5290 elf_swap_symbol_out (finfo->output_bfd, &sym,
5291 (PTR) (((Elf_External_Sym *)
5292 finfo->dynsym_sec->contents)
5293 + h->dynindx));
5294
5295 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5296 bucket = h->elf_hash_value % bucketcount;
5297 hash_entry_size
5298 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5299 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5300 + (bucket + 2) * hash_entry_size);
5301 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5302 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5303 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5304 ((bfd_byte *) finfo->hash_sec->contents
5305 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5306
5307 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5308 {
5309 Elf_Internal_Versym iversym;
5310
5311 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5312 {
5313 if (h->verinfo.verdef == NULL)
5314 iversym.vs_vers = 0;
5315 else
5316 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5317 }
5318 else
5319 {
5320 if (h->verinfo.vertree == NULL)
5321 iversym.vs_vers = 1;
5322 else
5323 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5324 }
5325
5326 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5327 iversym.vs_vers |= VERSYM_HIDDEN;
5328
5329 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5330 (((Elf_External_Versym *)
5331 finfo->symver_sec->contents)
5332 + h->dynindx));
5333 }
5334 }
5335
5336 /* If we're stripping it, then it was just a dynamic symbol, and
5337 there's nothing else to do. */
5338 if (strip)
5339 return true;
5340
5341 h->indx = bfd_get_symcount (finfo->output_bfd);
5342
5343 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5344 {
5345 eoinfo->failed = true;
5346 return false;
5347 }
5348
5349 return true;
5350 }
5351
5352 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5353 originated from the section given by INPUT_REL_HDR) to the
5354 OUTPUT_BFD. */
5355
5356 static void
5357 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5358 internal_relocs)
5359 bfd *output_bfd;
5360 asection *input_section;
5361 Elf_Internal_Shdr *input_rel_hdr;
5362 Elf_Internal_Rela *internal_relocs;
5363 {
5364 Elf_Internal_Rela *irela;
5365 Elf_Internal_Rela *irelaend;
5366 Elf_Internal_Shdr *output_rel_hdr;
5367 asection *output_section;
5368 unsigned int *rel_countp = NULL;
5369 struct elf_backend_data *bed;
5370
5371 output_section = input_section->output_section;
5372 output_rel_hdr = NULL;
5373
5374 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5375 == input_rel_hdr->sh_entsize)
5376 {
5377 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5378 rel_countp = &elf_section_data (output_section)->rel_count;
5379 }
5380 else if (elf_section_data (output_section)->rel_hdr2
5381 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5382 == input_rel_hdr->sh_entsize))
5383 {
5384 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5385 rel_countp = &elf_section_data (output_section)->rel_count2;
5386 }
5387
5388 BFD_ASSERT (output_rel_hdr != NULL);
5389
5390 bed = get_elf_backend_data (output_bfd);
5391 irela = internal_relocs;
5392 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5393 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5394 {
5395 Elf_External_Rel *erel;
5396
5397 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5398 for (; irela < irelaend; irela++, erel++)
5399 {
5400 Elf_Internal_Rel irel;
5401
5402 irel.r_offset = irela->r_offset;
5403 irel.r_info = irela->r_info;
5404 BFD_ASSERT (irela->r_addend == 0);
5405 if (bed->s->swap_reloc_out)
5406 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5407 else
5408 elf_swap_reloc_out (output_bfd, &irel, erel);
5409 }
5410 }
5411 else
5412 {
5413 Elf_External_Rela *erela;
5414
5415 BFD_ASSERT (input_rel_hdr->sh_entsize
5416 == sizeof (Elf_External_Rela));
5417 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5418 for (; irela < irelaend; irela++, erela++)
5419 if (bed->s->swap_reloca_out)
5420 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5421 else
5422 elf_swap_reloca_out (output_bfd, irela, erela);
5423 }
5424
5425 /* Bump the counter, so that we know where to add the next set of
5426 relocations. */
5427 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5428 }
5429
5430 /* Link an input file into the linker output file. This function
5431 handles all the sections and relocations of the input file at once.
5432 This is so that we only have to read the local symbols once, and
5433 don't have to keep them in memory. */
5434
5435 static boolean
5436 elf_link_input_bfd (finfo, input_bfd)
5437 struct elf_final_link_info *finfo;
5438 bfd *input_bfd;
5439 {
5440 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5441 bfd *, asection *, bfd_byte *,
5442 Elf_Internal_Rela *,
5443 Elf_Internal_Sym *, asection **));
5444 bfd *output_bfd;
5445 Elf_Internal_Shdr *symtab_hdr;
5446 size_t locsymcount;
5447 size_t extsymoff;
5448 Elf_External_Sym *external_syms;
5449 Elf_External_Sym *esym;
5450 Elf_External_Sym *esymend;
5451 Elf_Internal_Sym *isym;
5452 long *pindex;
5453 asection **ppsection;
5454 asection *o;
5455 struct elf_backend_data *bed;
5456
5457 output_bfd = finfo->output_bfd;
5458 bed = get_elf_backend_data (output_bfd);
5459 relocate_section = bed->elf_backend_relocate_section;
5460
5461 /* If this is a dynamic object, we don't want to do anything here:
5462 we don't want the local symbols, and we don't want the section
5463 contents. */
5464 if ((input_bfd->flags & DYNAMIC) != 0)
5465 return true;
5466
5467 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5468 if (elf_bad_symtab (input_bfd))
5469 {
5470 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5471 extsymoff = 0;
5472 }
5473 else
5474 {
5475 locsymcount = symtab_hdr->sh_info;
5476 extsymoff = symtab_hdr->sh_info;
5477 }
5478
5479 /* Read the local symbols. */
5480 if (symtab_hdr->contents != NULL)
5481 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5482 else if (locsymcount == 0)
5483 external_syms = NULL;
5484 else
5485 {
5486 external_syms = finfo->external_syms;
5487 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5488 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5489 locsymcount, input_bfd)
5490 != locsymcount * sizeof (Elf_External_Sym)))
5491 return false;
5492 }
5493
5494 /* Swap in the local symbols and write out the ones which we know
5495 are going into the output file. */
5496 esym = external_syms;
5497 esymend = esym + locsymcount;
5498 isym = finfo->internal_syms;
5499 pindex = finfo->indices;
5500 ppsection = finfo->sections;
5501 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5502 {
5503 asection *isec;
5504 const char *name;
5505 Elf_Internal_Sym osym;
5506
5507 elf_swap_symbol_in (input_bfd, esym, isym);
5508 *pindex = -1;
5509
5510 if (elf_bad_symtab (input_bfd))
5511 {
5512 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5513 {
5514 *ppsection = NULL;
5515 continue;
5516 }
5517 }
5518
5519 name = NULL;
5520 if (isym->st_shndx == SHN_UNDEF)
5521 {
5522 isec = bfd_und_section_ptr;
5523 name = isec->name;
5524 }
5525 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5526 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5527 else if (isym->st_shndx == SHN_ABS)
5528 {
5529 isec = bfd_abs_section_ptr;
5530 name = isec->name;
5531 }
5532 else if (isym->st_shndx == SHN_COMMON)
5533 {
5534 isec = bfd_com_section_ptr;
5535 name = isec->name;
5536 }
5537 else
5538 {
5539 /* Who knows? */
5540 isec = NULL;
5541 }
5542
5543 *ppsection = isec;
5544
5545 /* Don't output the first, undefined, symbol. */
5546 if (esym == external_syms)
5547 continue;
5548
5549 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5550 {
5551 asection *ksec;
5552
5553 /* Save away all section symbol values. */
5554 if (isec != NULL)
5555 {
5556 if (name)
5557 {
5558 if (isec->symbol->value != isym->st_value)
5559 (*_bfd_error_handler)
5560 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5561 bfd_get_filename (input_bfd), isym->st_shndx,
5562 name);
5563 continue;
5564 }
5565 isec->symbol->value = isym->st_value;
5566 }
5567
5568 /* If this is a discarded link-once section symbol, update
5569 it's value to that of the kept section symbol. The
5570 linker will keep the first of any matching link-once
5571 sections, so we should have already seen it's section
5572 symbol. I trust no-one will have the bright idea of
5573 re-ordering the bfd list... */
5574 if (isec != NULL
5575 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5576 && (ksec = isec->kept_section) != NULL)
5577 {
5578 isym->st_value = ksec->symbol->value;
5579
5580 /* That put the value right, but the section info is all
5581 wrong. I hope this works. */
5582 isec->output_offset = ksec->output_offset;
5583 isec->output_section = ksec->output_section;
5584 }
5585
5586 /* We never output section symbols. Instead, we use the
5587 section symbol of the corresponding section in the output
5588 file. */
5589 continue;
5590 }
5591
5592 /* If we are stripping all symbols, we don't want to output this
5593 one. */
5594 if (finfo->info->strip == strip_all)
5595 continue;
5596
5597 /* If we are discarding all local symbols, we don't want to
5598 output this one. If we are generating a relocateable output
5599 file, then some of the local symbols may be required by
5600 relocs; we output them below as we discover that they are
5601 needed. */
5602 if (finfo->info->discard == discard_all)
5603 continue;
5604
5605 /* If this symbol is defined in a section which we are
5606 discarding, we don't need to keep it, but note that
5607 linker_mark is only reliable for sections that have contents.
5608 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5609 as well as linker_mark. */
5610 if (isym->st_shndx > 0
5611 && isym->st_shndx < SHN_LORESERVE
5612 && isec != NULL
5613 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5614 || (! finfo->info->relocateable
5615 && (isec->flags & SEC_EXCLUDE) != 0)))
5616 continue;
5617
5618 /* Get the name of the symbol. */
5619 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5620 isym->st_name);
5621 if (name == NULL)
5622 return false;
5623
5624 /* See if we are discarding symbols with this name. */
5625 if ((finfo->info->strip == strip_some
5626 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5627 == NULL))
5628 || (finfo->info->discard == discard_l
5629 && bfd_is_local_label_name (input_bfd, name)))
5630 continue;
5631
5632 /* If we get here, we are going to output this symbol. */
5633
5634 osym = *isym;
5635
5636 /* Adjust the section index for the output file. */
5637 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5638 isec->output_section);
5639 if (osym.st_shndx == (unsigned short) -1)
5640 return false;
5641
5642 *pindex = bfd_get_symcount (output_bfd);
5643
5644 /* ELF symbols in relocateable files are section relative, but
5645 in executable files they are virtual addresses. Note that
5646 this code assumes that all ELF sections have an associated
5647 BFD section with a reasonable value for output_offset; below
5648 we assume that they also have a reasonable value for
5649 output_section. Any special sections must be set up to meet
5650 these requirements. */
5651 osym.st_value += isec->output_offset;
5652 if (! finfo->info->relocateable)
5653 osym.st_value += isec->output_section->vma;
5654
5655 if (! elf_link_output_sym (finfo, name, &osym, isec))
5656 return false;
5657 }
5658
5659 /* Relocate the contents of each section. */
5660 for (o = input_bfd->sections; o != NULL; o = o->next)
5661 {
5662 bfd_byte *contents;
5663
5664 if (! o->linker_mark)
5665 {
5666 /* This section was omitted from the link. */
5667 continue;
5668 }
5669
5670 if ((o->flags & SEC_HAS_CONTENTS) == 0
5671 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5672 continue;
5673
5674 if ((o->flags & SEC_LINKER_CREATED) != 0)
5675 {
5676 /* Section was created by elf_link_create_dynamic_sections
5677 or somesuch. */
5678 continue;
5679 }
5680
5681 /* Get the contents of the section. They have been cached by a
5682 relaxation routine. Note that o is a section in an input
5683 file, so the contents field will not have been set by any of
5684 the routines which work on output files. */
5685 if (elf_section_data (o)->this_hdr.contents != NULL)
5686 contents = elf_section_data (o)->this_hdr.contents;
5687 else
5688 {
5689 contents = finfo->contents;
5690 if (! bfd_get_section_contents (input_bfd, o, contents,
5691 (file_ptr) 0, o->_raw_size))
5692 return false;
5693 }
5694
5695 if ((o->flags & SEC_RELOC) != 0)
5696 {
5697 Elf_Internal_Rela *internal_relocs;
5698
5699 /* Get the swapped relocs. */
5700 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5701 (input_bfd, o, finfo->external_relocs,
5702 finfo->internal_relocs, false));
5703 if (internal_relocs == NULL
5704 && o->reloc_count > 0)
5705 return false;
5706
5707 /* Relocate the section by invoking a back end routine.
5708
5709 The back end routine is responsible for adjusting the
5710 section contents as necessary, and (if using Rela relocs
5711 and generating a relocateable output file) adjusting the
5712 reloc addend as necessary.
5713
5714 The back end routine does not have to worry about setting
5715 the reloc address or the reloc symbol index.
5716
5717 The back end routine is given a pointer to the swapped in
5718 internal symbols, and can access the hash table entries
5719 for the external symbols via elf_sym_hashes (input_bfd).
5720
5721 When generating relocateable output, the back end routine
5722 must handle STB_LOCAL/STT_SECTION symbols specially. The
5723 output symbol is going to be a section symbol
5724 corresponding to the output section, which will require
5725 the addend to be adjusted. */
5726
5727 if (! (*relocate_section) (output_bfd, finfo->info,
5728 input_bfd, o, contents,
5729 internal_relocs,
5730 finfo->internal_syms,
5731 finfo->sections))
5732 return false;
5733
5734 if (finfo->info->relocateable || finfo->info->emitrelocations)
5735 {
5736 Elf_Internal_Rela *irela;
5737 Elf_Internal_Rela *irelaend;
5738 struct elf_link_hash_entry **rel_hash;
5739 Elf_Internal_Shdr *input_rel_hdr;
5740
5741 /* Adjust the reloc addresses and symbol indices. */
5742
5743 irela = internal_relocs;
5744 irelaend =
5745 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5746 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5747 + elf_section_data (o->output_section)->rel_count
5748 + elf_section_data (o->output_section)->rel_count2);
5749 for (; irela < irelaend; irela++, rel_hash++)
5750 {
5751 unsigned long r_symndx;
5752 Elf_Internal_Sym *isym;
5753 asection *sec;
5754
5755 irela->r_offset += o->output_offset;
5756
5757 /* Relocs in an executable have to be virtual addresses. */
5758 if (finfo->info->emitrelocations)
5759 irela->r_offset += o->output_section->vma;
5760
5761 r_symndx = ELF_R_SYM (irela->r_info);
5762
5763 if (r_symndx == 0)
5764 continue;
5765
5766 if (r_symndx >= locsymcount
5767 || (elf_bad_symtab (input_bfd)
5768 && finfo->sections[r_symndx] == NULL))
5769 {
5770 struct elf_link_hash_entry *rh;
5771 long indx;
5772
5773 /* This is a reloc against a global symbol. We
5774 have not yet output all the local symbols, so
5775 we do not know the symbol index of any global
5776 symbol. We set the rel_hash entry for this
5777 reloc to point to the global hash table entry
5778 for this symbol. The symbol index is then
5779 set at the end of elf_bfd_final_link. */
5780 indx = r_symndx - extsymoff;
5781 rh = elf_sym_hashes (input_bfd)[indx];
5782 while (rh->root.type == bfd_link_hash_indirect
5783 || rh->root.type == bfd_link_hash_warning)
5784 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5785
5786 /* Setting the index to -2 tells
5787 elf_link_output_extsym that this symbol is
5788 used by a reloc. */
5789 BFD_ASSERT (rh->indx < 0);
5790 rh->indx = -2;
5791
5792 *rel_hash = rh;
5793
5794 continue;
5795 }
5796
5797 /* This is a reloc against a local symbol. */
5798
5799 *rel_hash = NULL;
5800 isym = finfo->internal_syms + r_symndx;
5801 sec = finfo->sections[r_symndx];
5802 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5803 {
5804 /* I suppose the backend ought to fill in the
5805 section of any STT_SECTION symbol against a
5806 processor specific section. If we have
5807 discarded a section, the output_section will
5808 be the absolute section. */
5809 if (sec != NULL
5810 && (bfd_is_abs_section (sec)
5811 || (sec->output_section != NULL
5812 && bfd_is_abs_section (sec->output_section))))
5813 r_symndx = 0;
5814 else if (sec == NULL || sec->owner == NULL)
5815 {
5816 bfd_set_error (bfd_error_bad_value);
5817 return false;
5818 }
5819 else
5820 {
5821 r_symndx = sec->output_section->target_index;
5822 BFD_ASSERT (r_symndx != 0);
5823 }
5824 }
5825 else
5826 {
5827 if (finfo->indices[r_symndx] == -1)
5828 {
5829 unsigned long link;
5830 const char *name;
5831 asection *osec;
5832
5833 if (finfo->info->strip == strip_all)
5834 {
5835 /* You can't do ld -r -s. */
5836 bfd_set_error (bfd_error_invalid_operation);
5837 return false;
5838 }
5839
5840 /* This symbol was skipped earlier, but
5841 since it is needed by a reloc, we
5842 must output it now. */
5843 link = symtab_hdr->sh_link;
5844 name = bfd_elf_string_from_elf_section (input_bfd,
5845 link,
5846 isym->st_name);
5847 if (name == NULL)
5848 return false;
5849
5850 osec = sec->output_section;
5851 isym->st_shndx =
5852 _bfd_elf_section_from_bfd_section (output_bfd,
5853 osec);
5854 if (isym->st_shndx == (unsigned short) -1)
5855 return false;
5856
5857 isym->st_value += sec->output_offset;
5858 if (! finfo->info->relocateable)
5859 isym->st_value += osec->vma;
5860
5861 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5862
5863 if (! elf_link_output_sym (finfo, name, isym, sec))
5864 return false;
5865 }
5866
5867 r_symndx = finfo->indices[r_symndx];
5868 }
5869
5870 irela->r_info = ELF_R_INFO (r_symndx,
5871 ELF_R_TYPE (irela->r_info));
5872 }
5873
5874 /* Swap out the relocs. */
5875 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5876 elf_link_output_relocs (output_bfd, o,
5877 input_rel_hdr,
5878 internal_relocs);
5879 internal_relocs
5880 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5881 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5882 if (input_rel_hdr)
5883 elf_link_output_relocs (output_bfd, o,
5884 input_rel_hdr,
5885 internal_relocs);
5886 }
5887 }
5888
5889 /* Write out the modified section contents. */
5890 if (elf_section_data (o)->stab_info == NULL)
5891 {
5892 if (! (o->flags & SEC_EXCLUDE) &&
5893 ! bfd_set_section_contents (output_bfd, o->output_section,
5894 contents, o->output_offset,
5895 (o->_cooked_size != 0
5896 ? o->_cooked_size
5897 : o->_raw_size)))
5898 return false;
5899 }
5900 else
5901 {
5902 if (! (_bfd_write_section_stabs
5903 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5904 o, &elf_section_data (o)->stab_info, contents)))
5905 return false;
5906 }
5907 }
5908
5909 return true;
5910 }
5911
5912 /* Generate a reloc when linking an ELF file. This is a reloc
5913 requested by the linker, and does come from any input file. This
5914 is used to build constructor and destructor tables when linking
5915 with -Ur. */
5916
5917 static boolean
5918 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5919 bfd *output_bfd;
5920 struct bfd_link_info *info;
5921 asection *output_section;
5922 struct bfd_link_order *link_order;
5923 {
5924 reloc_howto_type *howto;
5925 long indx;
5926 bfd_vma offset;
5927 bfd_vma addend;
5928 struct elf_link_hash_entry **rel_hash_ptr;
5929 Elf_Internal_Shdr *rel_hdr;
5930 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
5931
5932 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5933 if (howto == NULL)
5934 {
5935 bfd_set_error (bfd_error_bad_value);
5936 return false;
5937 }
5938
5939 addend = link_order->u.reloc.p->addend;
5940
5941 /* Figure out the symbol index. */
5942 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5943 + elf_section_data (output_section)->rel_count
5944 + elf_section_data (output_section)->rel_count2);
5945 if (link_order->type == bfd_section_reloc_link_order)
5946 {
5947 indx = link_order->u.reloc.p->u.section->target_index;
5948 BFD_ASSERT (indx != 0);
5949 *rel_hash_ptr = NULL;
5950 }
5951 else
5952 {
5953 struct elf_link_hash_entry *h;
5954
5955 /* Treat a reloc against a defined symbol as though it were
5956 actually against the section. */
5957 h = ((struct elf_link_hash_entry *)
5958 bfd_wrapped_link_hash_lookup (output_bfd, info,
5959 link_order->u.reloc.p->u.name,
5960 false, false, true));
5961 if (h != NULL
5962 && (h->root.type == bfd_link_hash_defined
5963 || h->root.type == bfd_link_hash_defweak))
5964 {
5965 asection *section;
5966
5967 section = h->root.u.def.section;
5968 indx = section->output_section->target_index;
5969 *rel_hash_ptr = NULL;
5970 /* It seems that we ought to add the symbol value to the
5971 addend here, but in practice it has already been added
5972 because it was passed to constructor_callback. */
5973 addend += section->output_section->vma + section->output_offset;
5974 }
5975 else if (h != NULL)
5976 {
5977 /* Setting the index to -2 tells elf_link_output_extsym that
5978 this symbol is used by a reloc. */
5979 h->indx = -2;
5980 *rel_hash_ptr = h;
5981 indx = 0;
5982 }
5983 else
5984 {
5985 if (! ((*info->callbacks->unattached_reloc)
5986 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5987 (asection *) NULL, (bfd_vma) 0)))
5988 return false;
5989 indx = 0;
5990 }
5991 }
5992
5993 /* If this is an inplace reloc, we must write the addend into the
5994 object file. */
5995 if (howto->partial_inplace && addend != 0)
5996 {
5997 bfd_size_type size;
5998 bfd_reloc_status_type rstat;
5999 bfd_byte *buf;
6000 boolean ok;
6001
6002 size = bfd_get_reloc_size (howto);
6003 buf = (bfd_byte *) bfd_zmalloc (size);
6004 if (buf == (bfd_byte *) NULL)
6005 return false;
6006 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6007 switch (rstat)
6008 {
6009 case bfd_reloc_ok:
6010 break;
6011 default:
6012 case bfd_reloc_outofrange:
6013 abort ();
6014 case bfd_reloc_overflow:
6015 if (! ((*info->callbacks->reloc_overflow)
6016 (info,
6017 (link_order->type == bfd_section_reloc_link_order
6018 ? bfd_section_name (output_bfd,
6019 link_order->u.reloc.p->u.section)
6020 : link_order->u.reloc.p->u.name),
6021 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6022 (bfd_vma) 0)))
6023 {
6024 free (buf);
6025 return false;
6026 }
6027 break;
6028 }
6029 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6030 (file_ptr) link_order->offset, size);
6031 free (buf);
6032 if (! ok)
6033 return false;
6034 }
6035
6036 /* The address of a reloc is relative to the section in a
6037 relocateable file, and is a virtual address in an executable
6038 file. */
6039 offset = link_order->offset;
6040 if (! info->relocateable)
6041 offset += output_section->vma;
6042
6043 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6044
6045 if (rel_hdr->sh_type == SHT_REL)
6046 {
6047 Elf_Internal_Rel irel;
6048 Elf_External_Rel *erel;
6049
6050 irel.r_offset = offset;
6051 irel.r_info = ELF_R_INFO (indx, howto->type);
6052 erel = ((Elf_External_Rel *) rel_hdr->contents
6053 + elf_section_data (output_section)->rel_count);
6054 if (bed->s->swap_reloc_out)
6055 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
6056 else
6057 elf_swap_reloc_out (output_bfd, &irel, erel);
6058 }
6059 else
6060 {
6061 Elf_Internal_Rela irela;
6062 Elf_External_Rela *erela;
6063
6064 irela.r_offset = offset;
6065 irela.r_info = ELF_R_INFO (indx, howto->type);
6066 irela.r_addend = addend;
6067 erela = ((Elf_External_Rela *) rel_hdr->contents
6068 + elf_section_data (output_section)->rel_count);
6069 if (bed->s->swap_reloca_out)
6070 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
6071 else
6072 elf_swap_reloca_out (output_bfd, &irela, erela);
6073 }
6074
6075 ++elf_section_data (output_section)->rel_count;
6076
6077 return true;
6078 }
6079 \f
6080 /* Allocate a pointer to live in a linker created section. */
6081
6082 boolean
6083 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6084 bfd *abfd;
6085 struct bfd_link_info *info;
6086 elf_linker_section_t *lsect;
6087 struct elf_link_hash_entry *h;
6088 const Elf_Internal_Rela *rel;
6089 {
6090 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6091 elf_linker_section_pointers_t *linker_section_ptr;
6092 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6093
6094 BFD_ASSERT (lsect != NULL);
6095
6096 /* Is this a global symbol? */
6097 if (h != NULL)
6098 {
6099 /* Has this symbol already been allocated, if so, our work is done */
6100 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6101 rel->r_addend,
6102 lsect->which))
6103 return true;
6104
6105 ptr_linker_section_ptr = &h->linker_section_pointer;
6106 /* Make sure this symbol is output as a dynamic symbol. */
6107 if (h->dynindx == -1)
6108 {
6109 if (! elf_link_record_dynamic_symbol (info, h))
6110 return false;
6111 }
6112
6113 if (lsect->rel_section)
6114 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6115 }
6116
6117 else /* Allocation of a pointer to a local symbol */
6118 {
6119 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6120
6121 /* Allocate a table to hold the local symbols if first time */
6122 if (!ptr)
6123 {
6124 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6125 register unsigned int i;
6126
6127 ptr = (elf_linker_section_pointers_t **)
6128 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6129
6130 if (!ptr)
6131 return false;
6132
6133 elf_local_ptr_offsets (abfd) = ptr;
6134 for (i = 0; i < num_symbols; i++)
6135 ptr[i] = (elf_linker_section_pointers_t *)0;
6136 }
6137
6138 /* Has this symbol already been allocated, if so, our work is done */
6139 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6140 rel->r_addend,
6141 lsect->which))
6142 return true;
6143
6144 ptr_linker_section_ptr = &ptr[r_symndx];
6145
6146 if (info->shared)
6147 {
6148 /* If we are generating a shared object, we need to
6149 output a R_<xxx>_RELATIVE reloc so that the
6150 dynamic linker can adjust this GOT entry. */
6151 BFD_ASSERT (lsect->rel_section != NULL);
6152 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6153 }
6154 }
6155
6156 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6157 from internal memory. */
6158 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6159 linker_section_ptr = (elf_linker_section_pointers_t *)
6160 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6161
6162 if (!linker_section_ptr)
6163 return false;
6164
6165 linker_section_ptr->next = *ptr_linker_section_ptr;
6166 linker_section_ptr->addend = rel->r_addend;
6167 linker_section_ptr->which = lsect->which;
6168 linker_section_ptr->written_address_p = false;
6169 *ptr_linker_section_ptr = linker_section_ptr;
6170
6171 #if 0
6172 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6173 {
6174 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6175 lsect->hole_offset += ARCH_SIZE / 8;
6176 lsect->sym_offset += ARCH_SIZE / 8;
6177 if (lsect->sym_hash) /* Bump up symbol value if needed */
6178 {
6179 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6180 #ifdef DEBUG
6181 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6182 lsect->sym_hash->root.root.string,
6183 (long)ARCH_SIZE / 8,
6184 (long)lsect->sym_hash->root.u.def.value);
6185 #endif
6186 }
6187 }
6188 else
6189 #endif
6190 linker_section_ptr->offset = lsect->section->_raw_size;
6191
6192 lsect->section->_raw_size += ARCH_SIZE / 8;
6193
6194 #ifdef DEBUG
6195 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6196 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6197 #endif
6198
6199 return true;
6200 }
6201 \f
6202 #if ARCH_SIZE==64
6203 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6204 #endif
6205 #if ARCH_SIZE==32
6206 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6207 #endif
6208
6209 /* Fill in the address for a pointer generated in alinker section. */
6210
6211 bfd_vma
6212 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6213 bfd *output_bfd;
6214 bfd *input_bfd;
6215 struct bfd_link_info *info;
6216 elf_linker_section_t *lsect;
6217 struct elf_link_hash_entry *h;
6218 bfd_vma relocation;
6219 const Elf_Internal_Rela *rel;
6220 int relative_reloc;
6221 {
6222 elf_linker_section_pointers_t *linker_section_ptr;
6223
6224 BFD_ASSERT (lsect != NULL);
6225
6226 if (h != NULL) /* global symbol */
6227 {
6228 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6229 rel->r_addend,
6230 lsect->which);
6231
6232 BFD_ASSERT (linker_section_ptr != NULL);
6233
6234 if (! elf_hash_table (info)->dynamic_sections_created
6235 || (info->shared
6236 && info->symbolic
6237 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6238 {
6239 /* This is actually a static link, or it is a
6240 -Bsymbolic link and the symbol is defined
6241 locally. We must initialize this entry in the
6242 global section.
6243
6244 When doing a dynamic link, we create a .rela.<xxx>
6245 relocation entry to initialize the value. This
6246 is done in the finish_dynamic_symbol routine. */
6247 if (!linker_section_ptr->written_address_p)
6248 {
6249 linker_section_ptr->written_address_p = true;
6250 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6251 lsect->section->contents + linker_section_ptr->offset);
6252 }
6253 }
6254 }
6255 else /* local symbol */
6256 {
6257 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6258 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6259 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6260 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6261 rel->r_addend,
6262 lsect->which);
6263
6264 BFD_ASSERT (linker_section_ptr != NULL);
6265
6266 /* Write out pointer if it hasn't been rewritten out before */
6267 if (!linker_section_ptr->written_address_p)
6268 {
6269 linker_section_ptr->written_address_p = true;
6270 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6271 lsect->section->contents + linker_section_ptr->offset);
6272
6273 if (info->shared)
6274 {
6275 asection *srel = lsect->rel_section;
6276 Elf_Internal_Rela outrel;
6277
6278 /* We need to generate a relative reloc for the dynamic linker. */
6279 if (!srel)
6280 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6281 lsect->rel_name);
6282
6283 BFD_ASSERT (srel != NULL);
6284
6285 outrel.r_offset = (lsect->section->output_section->vma
6286 + lsect->section->output_offset
6287 + linker_section_ptr->offset);
6288 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6289 outrel.r_addend = 0;
6290 elf_swap_reloca_out (output_bfd, &outrel,
6291 (((Elf_External_Rela *)
6292 lsect->section->contents)
6293 + elf_section_data (lsect->section)->rel_count));
6294 ++elf_section_data (lsect->section)->rel_count;
6295 }
6296 }
6297 }
6298
6299 relocation = (lsect->section->output_offset
6300 + linker_section_ptr->offset
6301 - lsect->hole_offset
6302 - lsect->sym_offset);
6303
6304 #ifdef DEBUG
6305 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6306 lsect->name, (long)relocation, (long)relocation);
6307 #endif
6308
6309 /* Subtract out the addend, because it will get added back in by the normal
6310 processing. */
6311 return relocation - linker_section_ptr->addend;
6312 }
6313 \f
6314 /* Garbage collect unused sections. */
6315
6316 static boolean elf_gc_mark
6317 PARAMS ((struct bfd_link_info *info, asection *sec,
6318 asection * (*gc_mark_hook)
6319 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6320 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6321
6322 static boolean elf_gc_sweep
6323 PARAMS ((struct bfd_link_info *info,
6324 boolean (*gc_sweep_hook)
6325 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6326 const Elf_Internal_Rela *relocs))));
6327
6328 static boolean elf_gc_sweep_symbol
6329 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6330
6331 static boolean elf_gc_allocate_got_offsets
6332 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6333
6334 static boolean elf_gc_propagate_vtable_entries_used
6335 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6336
6337 static boolean elf_gc_smash_unused_vtentry_relocs
6338 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6339
6340 /* The mark phase of garbage collection. For a given section, mark
6341 it, and all the sections which define symbols to which it refers. */
6342
6343 static boolean
6344 elf_gc_mark (info, sec, gc_mark_hook)
6345 struct bfd_link_info *info;
6346 asection *sec;
6347 asection * (*gc_mark_hook)
6348 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6349 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6350 {
6351 boolean ret = true;
6352
6353 sec->gc_mark = 1;
6354
6355 /* Look through the section relocs. */
6356
6357 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6358 {
6359 Elf_Internal_Rela *relstart, *rel, *relend;
6360 Elf_Internal_Shdr *symtab_hdr;
6361 struct elf_link_hash_entry **sym_hashes;
6362 size_t nlocsyms;
6363 size_t extsymoff;
6364 Elf_External_Sym *locsyms, *freesyms = NULL;
6365 bfd *input_bfd = sec->owner;
6366 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6367
6368 /* GCFIXME: how to arrange so that relocs and symbols are not
6369 reread continually? */
6370
6371 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6372 sym_hashes = elf_sym_hashes (input_bfd);
6373
6374 /* Read the local symbols. */
6375 if (elf_bad_symtab (input_bfd))
6376 {
6377 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6378 extsymoff = 0;
6379 }
6380 else
6381 extsymoff = nlocsyms = symtab_hdr->sh_info;
6382 if (symtab_hdr->contents)
6383 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6384 else if (nlocsyms == 0)
6385 locsyms = NULL;
6386 else
6387 {
6388 locsyms = freesyms =
6389 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6390 if (freesyms == NULL
6391 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6392 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6393 nlocsyms, input_bfd)
6394 != nlocsyms * sizeof (Elf_External_Sym)))
6395 {
6396 ret = false;
6397 goto out1;
6398 }
6399 }
6400
6401 /* Read the relocations. */
6402 relstart = (NAME(_bfd_elf,link_read_relocs)
6403 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6404 info->keep_memory));
6405 if (relstart == NULL)
6406 {
6407 ret = false;
6408 goto out1;
6409 }
6410 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6411
6412 for (rel = relstart; rel < relend; rel++)
6413 {
6414 unsigned long r_symndx;
6415 asection *rsec;
6416 struct elf_link_hash_entry *h;
6417 Elf_Internal_Sym s;
6418
6419 r_symndx = ELF_R_SYM (rel->r_info);
6420 if (r_symndx == 0)
6421 continue;
6422
6423 if (elf_bad_symtab (sec->owner))
6424 {
6425 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6426 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6427 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6428 else
6429 {
6430 h = sym_hashes[r_symndx - extsymoff];
6431 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6432 }
6433 }
6434 else if (r_symndx >= nlocsyms)
6435 {
6436 h = sym_hashes[r_symndx - extsymoff];
6437 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6438 }
6439 else
6440 {
6441 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6442 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6443 }
6444
6445 if (rsec && !rsec->gc_mark)
6446 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6447 {
6448 ret = false;
6449 goto out2;
6450 }
6451 }
6452
6453 out2:
6454 if (!info->keep_memory)
6455 free (relstart);
6456 out1:
6457 if (freesyms)
6458 free (freesyms);
6459 }
6460
6461 return ret;
6462 }
6463
6464 /* The sweep phase of garbage collection. Remove all garbage sections. */
6465
6466 static boolean
6467 elf_gc_sweep (info, gc_sweep_hook)
6468 struct bfd_link_info *info;
6469 boolean (*gc_sweep_hook)
6470 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6471 const Elf_Internal_Rela *relocs));
6472 {
6473 bfd *sub;
6474
6475 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6476 {
6477 asection *o;
6478
6479 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6480 continue;
6481
6482 for (o = sub->sections; o != NULL; o = o->next)
6483 {
6484 /* Keep special sections. Keep .debug sections. */
6485 if ((o->flags & SEC_LINKER_CREATED)
6486 || (o->flags & SEC_DEBUGGING))
6487 o->gc_mark = 1;
6488
6489 if (o->gc_mark)
6490 continue;
6491
6492 /* Skip sweeping sections already excluded. */
6493 if (o->flags & SEC_EXCLUDE)
6494 continue;
6495
6496 /* Since this is early in the link process, it is simple
6497 to remove a section from the output. */
6498 o->flags |= SEC_EXCLUDE;
6499
6500 /* But we also have to update some of the relocation
6501 info we collected before. */
6502 if (gc_sweep_hook
6503 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6504 {
6505 Elf_Internal_Rela *internal_relocs;
6506 boolean r;
6507
6508 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6509 (o->owner, o, NULL, NULL, info->keep_memory));
6510 if (internal_relocs == NULL)
6511 return false;
6512
6513 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
6514
6515 if (!info->keep_memory)
6516 free (internal_relocs);
6517
6518 if (!r)
6519 return false;
6520 }
6521 }
6522 }
6523
6524 /* Remove the symbols that were in the swept sections from the dynamic
6525 symbol table. GCFIXME: Anyone know how to get them out of the
6526 static symbol table as well? */
6527 {
6528 int i = 0;
6529
6530 elf_link_hash_traverse (elf_hash_table (info),
6531 elf_gc_sweep_symbol,
6532 (PTR) &i);
6533
6534 elf_hash_table (info)->dynsymcount = i;
6535 }
6536
6537 return true;
6538 }
6539
6540 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6541
6542 static boolean
6543 elf_gc_sweep_symbol (h, idxptr)
6544 struct elf_link_hash_entry *h;
6545 PTR idxptr;
6546 {
6547 int *idx = (int *) idxptr;
6548
6549 if (h->dynindx != -1
6550 && ((h->root.type != bfd_link_hash_defined
6551 && h->root.type != bfd_link_hash_defweak)
6552 || h->root.u.def.section->gc_mark))
6553 h->dynindx = (*idx)++;
6554
6555 return true;
6556 }
6557
6558 /* Propogate collected vtable information. This is called through
6559 elf_link_hash_traverse. */
6560
6561 static boolean
6562 elf_gc_propagate_vtable_entries_used (h, okp)
6563 struct elf_link_hash_entry *h;
6564 PTR okp;
6565 {
6566 /* Those that are not vtables. */
6567 if (h->vtable_parent == NULL)
6568 return true;
6569
6570 /* Those vtables that do not have parents, we cannot merge. */
6571 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6572 return true;
6573
6574 /* If we've already been done, exit. */
6575 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6576 return true;
6577
6578 /* Make sure the parent's table is up to date. */
6579 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6580
6581 if (h->vtable_entries_used == NULL)
6582 {
6583 /* None of this table's entries were referenced. Re-use the
6584 parent's table. */
6585 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6586 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6587 }
6588 else
6589 {
6590 size_t n;
6591 boolean *cu, *pu;
6592
6593 /* Or the parent's entries into ours. */
6594 cu = h->vtable_entries_used;
6595 cu[-1] = true;
6596 pu = h->vtable_parent->vtable_entries_used;
6597 if (pu != NULL)
6598 {
6599 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6600 while (--n != 0)
6601 {
6602 if (*pu) *cu = true;
6603 pu++, cu++;
6604 }
6605 }
6606 }
6607
6608 return true;
6609 }
6610
6611 static boolean
6612 elf_gc_smash_unused_vtentry_relocs (h, okp)
6613 struct elf_link_hash_entry *h;
6614 PTR okp;
6615 {
6616 asection *sec;
6617 bfd_vma hstart, hend;
6618 Elf_Internal_Rela *relstart, *relend, *rel;
6619 struct elf_backend_data *bed;
6620
6621 /* Take care of both those symbols that do not describe vtables as
6622 well as those that are not loaded. */
6623 if (h->vtable_parent == NULL)
6624 return true;
6625
6626 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6627 || h->root.type == bfd_link_hash_defweak);
6628
6629 sec = h->root.u.def.section;
6630 hstart = h->root.u.def.value;
6631 hend = hstart + h->size;
6632
6633 relstart = (NAME(_bfd_elf,link_read_relocs)
6634 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6635 if (!relstart)
6636 return *(boolean *)okp = false;
6637 bed = get_elf_backend_data (sec->owner);
6638 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6639
6640 for (rel = relstart; rel < relend; ++rel)
6641 if (rel->r_offset >= hstart && rel->r_offset < hend)
6642 {
6643 /* If the entry is in use, do nothing. */
6644 if (h->vtable_entries_used
6645 && (rel->r_offset - hstart) < h->vtable_entries_size)
6646 {
6647 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6648 if (h->vtable_entries_used[entry])
6649 continue;
6650 }
6651 /* Otherwise, kill it. */
6652 rel->r_offset = rel->r_info = rel->r_addend = 0;
6653 }
6654
6655 return true;
6656 }
6657
6658 /* Do mark and sweep of unused sections. */
6659
6660 boolean
6661 elf_gc_sections (abfd, info)
6662 bfd *abfd;
6663 struct bfd_link_info *info;
6664 {
6665 boolean ok = true;
6666 bfd *sub;
6667 asection * (*gc_mark_hook)
6668 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6669 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6670
6671 if (!get_elf_backend_data (abfd)->can_gc_sections
6672 || info->relocateable || info->emitrelocations
6673 || elf_hash_table (info)->dynamic_sections_created)
6674 return true;
6675
6676 /* Apply transitive closure to the vtable entry usage info. */
6677 elf_link_hash_traverse (elf_hash_table (info),
6678 elf_gc_propagate_vtable_entries_used,
6679 (PTR) &ok);
6680 if (!ok)
6681 return false;
6682
6683 /* Kill the vtable relocations that were not used. */
6684 elf_link_hash_traverse (elf_hash_table (info),
6685 elf_gc_smash_unused_vtentry_relocs,
6686 (PTR) &ok);
6687 if (!ok)
6688 return false;
6689
6690 /* Grovel through relocs to find out who stays ... */
6691
6692 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6693 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6694 {
6695 asection *o;
6696
6697 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6698 continue;
6699
6700 for (o = sub->sections; o != NULL; o = o->next)
6701 {
6702 if (o->flags & SEC_KEEP)
6703 if (!elf_gc_mark (info, o, gc_mark_hook))
6704 return false;
6705 }
6706 }
6707
6708 /* ... and mark SEC_EXCLUDE for those that go. */
6709 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6710 return false;
6711
6712 return true;
6713 }
6714 \f
6715 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6716
6717 boolean
6718 elf_gc_record_vtinherit (abfd, sec, h, offset)
6719 bfd *abfd;
6720 asection *sec;
6721 struct elf_link_hash_entry *h;
6722 bfd_vma offset;
6723 {
6724 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6725 struct elf_link_hash_entry **search, *child;
6726 bfd_size_type extsymcount;
6727
6728 /* The sh_info field of the symtab header tells us where the
6729 external symbols start. We don't care about the local symbols at
6730 this point. */
6731 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6732 if (!elf_bad_symtab (abfd))
6733 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6734
6735 sym_hashes = elf_sym_hashes (abfd);
6736 sym_hashes_end = sym_hashes + extsymcount;
6737
6738 /* Hunt down the child symbol, which is in this section at the same
6739 offset as the relocation. */
6740 for (search = sym_hashes; search != sym_hashes_end; ++search)
6741 {
6742 if ((child = *search) != NULL
6743 && (child->root.type == bfd_link_hash_defined
6744 || child->root.type == bfd_link_hash_defweak)
6745 && child->root.u.def.section == sec
6746 && child->root.u.def.value == offset)
6747 goto win;
6748 }
6749
6750 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6751 bfd_get_filename (abfd), sec->name,
6752 (unsigned long)offset);
6753 bfd_set_error (bfd_error_invalid_operation);
6754 return false;
6755
6756 win:
6757 if (!h)
6758 {
6759 /* This *should* only be the absolute section. It could potentially
6760 be that someone has defined a non-global vtable though, which
6761 would be bad. It isn't worth paging in the local symbols to be
6762 sure though; that case should simply be handled by the assembler. */
6763
6764 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6765 }
6766 else
6767 child->vtable_parent = h;
6768
6769 return true;
6770 }
6771
6772 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6773
6774 boolean
6775 elf_gc_record_vtentry (abfd, sec, h, addend)
6776 bfd *abfd ATTRIBUTE_UNUSED;
6777 asection *sec ATTRIBUTE_UNUSED;
6778 struct elf_link_hash_entry *h;
6779 bfd_vma addend;
6780 {
6781 if (addend >= h->vtable_entries_size)
6782 {
6783 size_t size, bytes;
6784 boolean *ptr = h->vtable_entries_used;
6785
6786 /* While the symbol is undefined, we have to be prepared to handle
6787 a zero size. */
6788 if (h->root.type == bfd_link_hash_undefined)
6789 size = addend;
6790 else
6791 {
6792 size = h->size;
6793 if (size < addend)
6794 {
6795 /* Oops! We've got a reference past the defined end of
6796 the table. This is probably a bug -- shall we warn? */
6797 size = addend;
6798 }
6799 }
6800
6801 /* Allocate one extra entry for use as a "done" flag for the
6802 consolidation pass. */
6803 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6804
6805 if (ptr)
6806 {
6807 ptr = bfd_realloc (ptr - 1, bytes);
6808
6809 if (ptr != NULL)
6810 {
6811 size_t oldbytes;
6812
6813 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6814 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6815 }
6816 }
6817 else
6818 ptr = bfd_zmalloc (bytes);
6819
6820 if (ptr == NULL)
6821 return false;
6822
6823 /* And arrange for that done flag to be at index -1. */
6824 h->vtable_entries_used = ptr + 1;
6825 h->vtable_entries_size = size;
6826 }
6827
6828 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6829
6830 return true;
6831 }
6832
6833 /* And an accompanying bit to work out final got entry offsets once
6834 we're done. Should be called from final_link. */
6835
6836 boolean
6837 elf_gc_common_finalize_got_offsets (abfd, info)
6838 bfd *abfd;
6839 struct bfd_link_info *info;
6840 {
6841 bfd *i;
6842 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6843 bfd_vma gotoff;
6844
6845 /* The GOT offset is relative to the .got section, but the GOT header is
6846 put into the .got.plt section, if the backend uses it. */
6847 if (bed->want_got_plt)
6848 gotoff = 0;
6849 else
6850 gotoff = bed->got_header_size;
6851
6852 /* Do the local .got entries first. */
6853 for (i = info->input_bfds; i; i = i->link_next)
6854 {
6855 bfd_signed_vma *local_got;
6856 bfd_size_type j, locsymcount;
6857 Elf_Internal_Shdr *symtab_hdr;
6858
6859 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6860 continue;
6861
6862 local_got = elf_local_got_refcounts (i);
6863 if (!local_got)
6864 continue;
6865
6866 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6867 if (elf_bad_symtab (i))
6868 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6869 else
6870 locsymcount = symtab_hdr->sh_info;
6871
6872 for (j = 0; j < locsymcount; ++j)
6873 {
6874 if (local_got[j] > 0)
6875 {
6876 local_got[j] = gotoff;
6877 gotoff += ARCH_SIZE / 8;
6878 }
6879 else
6880 local_got[j] = (bfd_vma) -1;
6881 }
6882 }
6883
6884 /* Then the global .got entries. .plt refcounts are handled by
6885 adjust_dynamic_symbol */
6886 elf_link_hash_traverse (elf_hash_table (info),
6887 elf_gc_allocate_got_offsets,
6888 (PTR) &gotoff);
6889 return true;
6890 }
6891
6892 /* We need a special top-level link routine to convert got reference counts
6893 to real got offsets. */
6894
6895 static boolean
6896 elf_gc_allocate_got_offsets (h, offarg)
6897 struct elf_link_hash_entry *h;
6898 PTR offarg;
6899 {
6900 bfd_vma *off = (bfd_vma *) offarg;
6901
6902 if (h->got.refcount > 0)
6903 {
6904 h->got.offset = off[0];
6905 off[0] += ARCH_SIZE / 8;
6906 }
6907 else
6908 h->got.offset = (bfd_vma) -1;
6909
6910 return true;
6911 }
6912
6913 /* Many folk need no more in the way of final link than this, once
6914 got entry reference counting is enabled. */
6915
6916 boolean
6917 elf_gc_common_final_link (abfd, info)
6918 bfd *abfd;
6919 struct bfd_link_info *info;
6920 {
6921 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6922 return false;
6923
6924 /* Invoke the regular ELF backend linker to do all the work. */
6925 return elf_bfd_final_link (abfd, info);
6926 }
6927
6928 /* This function will be called though elf_link_hash_traverse to store
6929 all hash value of the exported symbols in an array. */
6930
6931 static boolean
6932 elf_collect_hash_codes (h, data)
6933 struct elf_link_hash_entry *h;
6934 PTR data;
6935 {
6936 unsigned long **valuep = (unsigned long **) data;
6937 const char *name;
6938 char *p;
6939 unsigned long ha;
6940 char *alc = NULL;
6941
6942 /* Ignore indirect symbols. These are added by the versioning code. */
6943 if (h->dynindx == -1)
6944 return true;
6945
6946 name = h->root.root.string;
6947 p = strchr (name, ELF_VER_CHR);
6948 if (p != NULL)
6949 {
6950 alc = bfd_malloc (p - name + 1);
6951 memcpy (alc, name, p - name);
6952 alc[p - name] = '\0';
6953 name = alc;
6954 }
6955
6956 /* Compute the hash value. */
6957 ha = bfd_elf_hash (name);
6958
6959 /* Store the found hash value in the array given as the argument. */
6960 *(*valuep)++ = ha;
6961
6962 /* And store it in the struct so that we can put it in the hash table
6963 later. */
6964 h->elf_hash_value = ha;
6965
6966 if (alc != NULL)
6967 free (alc);
6968
6969 return true;
6970 }
This page took 0.177611 seconds and 4 git commands to generate.