c325c3e9c777b212d6540c7d34417a0744eee8bf
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83
84 /* Add symbols from an ELF archive file to the linker hash table. We
85 don't use _bfd_generic_link_add_archive_symbols because of a
86 problem which arises on UnixWare. The UnixWare libc.so is an
87 archive which includes an entry libc.so.1 which defines a bunch of
88 symbols. The libc.so archive also includes a number of other
89 object files, which also define symbols, some of which are the same
90 as those defined in libc.so.1. Correct linking requires that we
91 consider each object file in turn, and include it if it defines any
92 symbols we need. _bfd_generic_link_add_archive_symbols does not do
93 this; it looks through the list of undefined symbols, and includes
94 any object file which defines them. When this algorithm is used on
95 UnixWare, it winds up pulling in libc.so.1 early and defining a
96 bunch of symbols. This means that some of the other objects in the
97 archive are not included in the link, which is incorrect since they
98 precede libc.so.1 in the archive.
99
100 Fortunately, ELF archive handling is simpler than that done by
101 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
102 oddities. In ELF, if we find a symbol in the archive map, and the
103 symbol is currently undefined, we know that we must pull in that
104 object file.
105
106 Unfortunately, we do have to make multiple passes over the symbol
107 table until nothing further is resolved. */
108
109 static boolean
110 elf_link_add_archive_symbols (abfd, info)
111 bfd *abfd;
112 struct bfd_link_info *info;
113 {
114 symindex c;
115 boolean *defined = NULL;
116 boolean *included = NULL;
117 carsym *symdefs;
118 boolean loop;
119
120 if (! bfd_has_map (abfd))
121 {
122 /* An empty archive is a special case. */
123 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
124 return true;
125 bfd_set_error (bfd_error_no_armap);
126 return false;
127 }
128
129 /* Keep track of all symbols we know to be already defined, and all
130 files we know to be already included. This is to speed up the
131 second and subsequent passes. */
132 c = bfd_ardata (abfd)->symdef_count;
133 if (c == 0)
134 return true;
135 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
136 included = (boolean *) bfd_malloc (c * sizeof (boolean));
137 if (defined == (boolean *) NULL || included == (boolean *) NULL)
138 goto error_return;
139 memset (defined, 0, c * sizeof (boolean));
140 memset (included, 0, c * sizeof (boolean));
141
142 symdefs = bfd_ardata (abfd)->symdefs;
143
144 do
145 {
146 file_ptr last;
147 symindex i;
148 carsym *symdef;
149 carsym *symdefend;
150
151 loop = false;
152 last = -1;
153
154 symdef = symdefs;
155 symdefend = symdef + c;
156 for (i = 0; symdef < symdefend; symdef++, i++)
157 {
158 struct elf_link_hash_entry *h;
159 bfd *element;
160 struct bfd_link_hash_entry *undefs_tail;
161 symindex mark;
162
163 if (defined[i] || included[i])
164 continue;
165 if (symdef->file_offset == last)
166 {
167 included[i] = true;
168 continue;
169 }
170
171 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
172 false, false, false);
173
174 if (h == NULL)
175 {
176 char *p, *copy;
177
178 /* If this is a default version (the name contains @@),
179 look up the symbol again without the version. The
180 effect is that references to the symbol without the
181 version will be matched by the default symbol in the
182 archive. */
183
184 p = strchr (symdef->name, ELF_VER_CHR);
185 if (p == NULL || p[1] != ELF_VER_CHR)
186 continue;
187
188 copy = bfd_alloc (abfd, p - symdef->name + 1);
189 if (copy == NULL)
190 goto error_return;
191 memcpy (copy, symdef->name, p - symdef->name);
192 copy[p - symdef->name] = '\0';
193
194 h = elf_link_hash_lookup (elf_hash_table (info), copy,
195 false, false, false);
196
197 bfd_release (abfd, copy);
198 }
199
200 if (h == NULL)
201 continue;
202
203 if (h->root.type != bfd_link_hash_undefined)
204 {
205 if (h->root.type != bfd_link_hash_undefweak)
206 defined[i] = true;
207 continue;
208 }
209
210 /* We need to include this archive member. */
211
212 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
213 if (element == (bfd *) NULL)
214 goto error_return;
215
216 if (! bfd_check_format (element, bfd_object))
217 goto error_return;
218
219 /* Doublecheck that we have not included this object
220 already--it should be impossible, but there may be
221 something wrong with the archive. */
222 if (element->archive_pass != 0)
223 {
224 bfd_set_error (bfd_error_bad_value);
225 goto error_return;
226 }
227 element->archive_pass = 1;
228
229 undefs_tail = info->hash->undefs_tail;
230
231 if (! (*info->callbacks->add_archive_element) (info, element,
232 symdef->name))
233 goto error_return;
234 if (! elf_link_add_object_symbols (element, info))
235 goto error_return;
236
237 /* If there are any new undefined symbols, we need to make
238 another pass through the archive in order to see whether
239 they can be defined. FIXME: This isn't perfect, because
240 common symbols wind up on undefs_tail and because an
241 undefined symbol which is defined later on in this pass
242 does not require another pass. This isn't a bug, but it
243 does make the code less efficient than it could be. */
244 if (undefs_tail != info->hash->undefs_tail)
245 loop = true;
246
247 /* Look backward to mark all symbols from this object file
248 which we have already seen in this pass. */
249 mark = i;
250 do
251 {
252 included[mark] = true;
253 if (mark == 0)
254 break;
255 --mark;
256 }
257 while (symdefs[mark].file_offset == symdef->file_offset);
258
259 /* We mark subsequent symbols from this object file as we go
260 on through the loop. */
261 last = symdef->file_offset;
262 }
263 }
264 while (loop);
265
266 free (defined);
267 free (included);
268
269 return true;
270
271 error_return:
272 if (defined != (boolean *) NULL)
273 free (defined);
274 if (included != (boolean *) NULL)
275 free (included);
276 return false;
277 }
278
279 /* This function is called when we want to define a new symbol. It
280 handles the various cases which arise when we find a definition in
281 a dynamic object, or when there is already a definition in a
282 dynamic object. The new symbol is described by NAME, SYM, PSEC,
283 and PVALUE. We set SYM_HASH to the hash table entry. We set
284 OVERRIDE if the old symbol is overriding a new definition. We set
285 TYPE_CHANGE_OK if it is OK for the type to change. We set
286 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
287 change, we mean that we shouldn't warn if the type or size does
288 change. */
289
290 static boolean
291 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
292 override, type_change_ok, size_change_ok)
293 bfd *abfd;
294 struct bfd_link_info *info;
295 const char *name;
296 Elf_Internal_Sym *sym;
297 asection **psec;
298 bfd_vma *pvalue;
299 struct elf_link_hash_entry **sym_hash;
300 boolean *override;
301 boolean *type_change_ok;
302 boolean *size_change_ok;
303 {
304 asection *sec;
305 struct elf_link_hash_entry *h;
306 int bind;
307 bfd *oldbfd;
308 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
309
310 *override = false;
311
312 sec = *psec;
313 bind = ELF_ST_BIND (sym->st_info);
314
315 if (! bfd_is_und_section (sec))
316 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
317 else
318 h = ((struct elf_link_hash_entry *)
319 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
320 if (h == NULL)
321 return false;
322 *sym_hash = h;
323
324 /* This code is for coping with dynamic objects, and is only useful
325 if we are doing an ELF link. */
326 if (info->hash->creator != abfd->xvec)
327 return true;
328
329 /* For merging, we only care about real symbols. */
330
331 while (h->root.type == bfd_link_hash_indirect
332 || h->root.type == bfd_link_hash_warning)
333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
334
335 /* If we just created the symbol, mark it as being an ELF symbol.
336 Other than that, there is nothing to do--there is no merge issue
337 with a newly defined symbol--so we just return. */
338
339 if (h->root.type == bfd_link_hash_new)
340 {
341 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
342 return true;
343 }
344
345 /* OLDBFD is a BFD associated with the existing symbol. */
346
347 switch (h->root.type)
348 {
349 default:
350 oldbfd = NULL;
351 break;
352
353 case bfd_link_hash_undefined:
354 case bfd_link_hash_undefweak:
355 oldbfd = h->root.u.undef.abfd;
356 break;
357
358 case bfd_link_hash_defined:
359 case bfd_link_hash_defweak:
360 oldbfd = h->root.u.def.section->owner;
361 break;
362
363 case bfd_link_hash_common:
364 oldbfd = h->root.u.c.p->section->owner;
365 break;
366 }
367
368 /* In cases involving weak versioned symbols, we may wind up trying
369 to merge a symbol with itself. Catch that here, to avoid the
370 confusion that results if we try to override a symbol with
371 itself. The additional tests catch cases like
372 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
373 dynamic object, which we do want to handle here. */
374 if (abfd == oldbfd
375 && ((abfd->flags & DYNAMIC) == 0
376 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
377 return true;
378
379 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
380 respectively, is from a dynamic object. */
381
382 if ((abfd->flags & DYNAMIC) != 0)
383 newdyn = true;
384 else
385 newdyn = false;
386
387 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
388 olddyn = false;
389 else
390 olddyn = true;
391
392 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
393 respectively, appear to be a definition rather than reference. */
394
395 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
396 newdef = false;
397 else
398 newdef = true;
399
400 if (h->root.type == bfd_link_hash_undefined
401 || h->root.type == bfd_link_hash_undefweak
402 || h->root.type == bfd_link_hash_common)
403 olddef = false;
404 else
405 olddef = true;
406
407 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
408 symbol, respectively, appears to be a common symbol in a dynamic
409 object. If a symbol appears in an uninitialized section, and is
410 not weak, and is not a function, then it may be a common symbol
411 which was resolved when the dynamic object was created. We want
412 to treat such symbols specially, because they raise special
413 considerations when setting the symbol size: if the symbol
414 appears as a common symbol in a regular object, and the size in
415 the regular object is larger, we must make sure that we use the
416 larger size. This problematic case can always be avoided in C,
417 but it must be handled correctly when using Fortran shared
418 libraries.
419
420 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
421 likewise for OLDDYNCOMMON and OLDDEF.
422
423 Note that this test is just a heuristic, and that it is quite
424 possible to have an uninitialized symbol in a shared object which
425 is really a definition, rather than a common symbol. This could
426 lead to some minor confusion when the symbol really is a common
427 symbol in some regular object. However, I think it will be
428 harmless. */
429
430 if (newdyn
431 && newdef
432 && (sec->flags & SEC_ALLOC) != 0
433 && (sec->flags & SEC_LOAD) == 0
434 && sym->st_size > 0
435 && bind != STB_WEAK
436 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
437 newdyncommon = true;
438 else
439 newdyncommon = false;
440
441 if (olddyn
442 && olddef
443 && h->root.type == bfd_link_hash_defined
444 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
445 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
446 && (h->root.u.def.section->flags & SEC_LOAD) == 0
447 && h->size > 0
448 && h->type != STT_FUNC)
449 olddyncommon = true;
450 else
451 olddyncommon = false;
452
453 /* It's OK to change the type if either the existing symbol or the
454 new symbol is weak. */
455
456 if (h->root.type == bfd_link_hash_defweak
457 || h->root.type == bfd_link_hash_undefweak
458 || bind == STB_WEAK)
459 *type_change_ok = true;
460
461 /* It's OK to change the size if either the existing symbol or the
462 new symbol is weak, or if the old symbol is undefined. */
463
464 if (*type_change_ok
465 || h->root.type == bfd_link_hash_undefined)
466 *size_change_ok = true;
467
468 /* If both the old and the new symbols look like common symbols in a
469 dynamic object, set the size of the symbol to the larger of the
470 two. */
471
472 if (olddyncommon
473 && newdyncommon
474 && sym->st_size != h->size)
475 {
476 /* Since we think we have two common symbols, issue a multiple
477 common warning if desired. Note that we only warn if the
478 size is different. If the size is the same, we simply let
479 the old symbol override the new one as normally happens with
480 symbols defined in dynamic objects. */
481
482 if (! ((*info->callbacks->multiple_common)
483 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
484 h->size, abfd, bfd_link_hash_common, sym->st_size)))
485 return false;
486
487 if (sym->st_size > h->size)
488 h->size = sym->st_size;
489
490 *size_change_ok = true;
491 }
492
493 /* If we are looking at a dynamic object, and we have found a
494 definition, we need to see if the symbol was already defined by
495 some other object. If so, we want to use the existing
496 definition, and we do not want to report a multiple symbol
497 definition error; we do this by clobbering *PSEC to be
498 bfd_und_section_ptr.
499
500 We treat a common symbol as a definition if the symbol in the
501 shared library is a function, since common symbols always
502 represent variables; this can cause confusion in principle, but
503 any such confusion would seem to indicate an erroneous program or
504 shared library. We also permit a common symbol in a regular
505 object to override a weak symbol in a shared object.
506
507 We prefer a non-weak definition in a shared library to a weak
508 definition in the executable. */
509
510 if (newdyn
511 && newdef
512 && (olddef
513 || (h->root.type == bfd_link_hash_common
514 && (bind == STB_WEAK
515 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
516 && (h->root.type != bfd_link_hash_defweak
517 || bind == STB_WEAK))
518 {
519 *override = true;
520 newdef = false;
521 newdyncommon = false;
522
523 *psec = sec = bfd_und_section_ptr;
524 *size_change_ok = true;
525
526 /* If we get here when the old symbol is a common symbol, then
527 we are explicitly letting it override a weak symbol or
528 function in a dynamic object, and we don't want to warn about
529 a type change. If the old symbol is a defined symbol, a type
530 change warning may still be appropriate. */
531
532 if (h->root.type == bfd_link_hash_common)
533 *type_change_ok = true;
534 }
535
536 /* Handle the special case of an old common symbol merging with a
537 new symbol which looks like a common symbol in a shared object.
538 We change *PSEC and *PVALUE to make the new symbol look like a
539 common symbol, and let _bfd_generic_link_add_one_symbol will do
540 the right thing. */
541
542 if (newdyncommon
543 && h->root.type == bfd_link_hash_common)
544 {
545 *override = true;
546 newdef = false;
547 newdyncommon = false;
548 *pvalue = sym->st_size;
549 *psec = sec = bfd_com_section_ptr;
550 *size_change_ok = true;
551 }
552
553 /* If the old symbol is from a dynamic object, and the new symbol is
554 a definition which is not from a dynamic object, then the new
555 symbol overrides the old symbol. Symbols from regular files
556 always take precedence over symbols from dynamic objects, even if
557 they are defined after the dynamic object in the link.
558
559 As above, we again permit a common symbol in a regular object to
560 override a definition in a shared object if the shared object
561 symbol is a function or is weak.
562
563 As above, we permit a non-weak definition in a shared object to
564 override a weak definition in a regular object. */
565
566 if (! newdyn
567 && (newdef
568 || (bfd_is_com_section (sec)
569 && (h->root.type == bfd_link_hash_defweak
570 || h->type == STT_FUNC)))
571 && olddyn
572 && olddef
573 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
574 && (bind != STB_WEAK
575 || h->root.type == bfd_link_hash_defweak))
576 {
577 /* Change the hash table entry to undefined, and let
578 _bfd_generic_link_add_one_symbol do the right thing with the
579 new definition. */
580
581 h->root.type = bfd_link_hash_undefined;
582 h->root.u.undef.abfd = h->root.u.def.section->owner;
583 *size_change_ok = true;
584
585 olddef = false;
586 olddyncommon = false;
587
588 /* We again permit a type change when a common symbol may be
589 overriding a function. */
590
591 if (bfd_is_com_section (sec))
592 *type_change_ok = true;
593
594 /* This union may have been set to be non-NULL when this symbol
595 was seen in a dynamic object. We must force the union to be
596 NULL, so that it is correct for a regular symbol. */
597
598 h->verinfo.vertree = NULL;
599
600 /* In this special case, if H is the target of an indirection,
601 we want the caller to frob with H rather than with the
602 indirect symbol. That will permit the caller to redefine the
603 target of the indirection, rather than the indirect symbol
604 itself. FIXME: This will break the -y option if we store a
605 symbol with a different name. */
606 *sym_hash = h;
607 }
608
609 /* Handle the special case of a new common symbol merging with an
610 old symbol that looks like it might be a common symbol defined in
611 a shared object. Note that we have already handled the case in
612 which a new common symbol should simply override the definition
613 in the shared library. */
614
615 if (! newdyn
616 && bfd_is_com_section (sec)
617 && olddyncommon)
618 {
619 /* It would be best if we could set the hash table entry to a
620 common symbol, but we don't know what to use for the section
621 or the alignment. */
622 if (! ((*info->callbacks->multiple_common)
623 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
624 h->size, abfd, bfd_link_hash_common, sym->st_size)))
625 return false;
626
627 /* If the predumed common symbol in the dynamic object is
628 larger, pretend that the new symbol has its size. */
629
630 if (h->size > *pvalue)
631 *pvalue = h->size;
632
633 /* FIXME: We no longer know the alignment required by the symbol
634 in the dynamic object, so we just wind up using the one from
635 the regular object. */
636
637 olddef = false;
638 olddyncommon = false;
639
640 h->root.type = bfd_link_hash_undefined;
641 h->root.u.undef.abfd = h->root.u.def.section->owner;
642
643 *size_change_ok = true;
644 *type_change_ok = true;
645
646 h->verinfo.vertree = NULL;
647 }
648
649 /* Handle the special case of a weak definition in a regular object
650 followed by a non-weak definition in a shared object. In this
651 case, we prefer the definition in the shared object. */
652 if (olddef
653 && h->root.type == bfd_link_hash_defweak
654 && newdef
655 && newdyn
656 && bind != STB_WEAK)
657 {
658 /* To make this work we have to frob the flags so that the rest
659 of the code does not think we are using the regular
660 definition. */
661 h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR;
662 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
663
664 /* If H is the target of an indirection, we want the caller to
665 use H rather than the indirect symbol. Otherwise if we are
666 defining a new indirect symbol we will wind up attaching it
667 to the entry we are overriding. */
668 *sym_hash = h;
669 }
670
671 /* Handle the special case of a non-weak definition in a shared
672 object followed by a weak definition in a regular object. In
673 this case we prefer to definition in the shared object. To make
674 this work we have to tell the caller to not treat the new symbol
675 as a definition. */
676 if (olddef
677 && olddyn
678 && h->root.type != bfd_link_hash_defweak
679 && newdef
680 && ! newdyn
681 && bind == STB_WEAK)
682 *override = true;
683
684 return true;
685 }
686
687 /* Add symbols from an ELF object file to the linker hash table. */
688
689 static boolean
690 elf_link_add_object_symbols (abfd, info)
691 bfd *abfd;
692 struct bfd_link_info *info;
693 {
694 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
695 const Elf_Internal_Sym *,
696 const char **, flagword *,
697 asection **, bfd_vma *));
698 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
699 asection *, const Elf_Internal_Rela *));
700 boolean collect;
701 Elf_Internal_Shdr *hdr;
702 size_t symcount;
703 size_t extsymcount;
704 size_t extsymoff;
705 Elf_External_Sym *buf = NULL;
706 struct elf_link_hash_entry **sym_hash;
707 boolean dynamic;
708 bfd_byte *dynver = NULL;
709 Elf_External_Versym *extversym = NULL;
710 Elf_External_Versym *ever;
711 Elf_External_Dyn *dynbuf = NULL;
712 struct elf_link_hash_entry *weaks;
713 Elf_External_Sym *esym;
714 Elf_External_Sym *esymend;
715
716 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
717 collect = get_elf_backend_data (abfd)->collect;
718
719 if ((abfd->flags & DYNAMIC) == 0)
720 dynamic = false;
721 else
722 {
723 dynamic = true;
724
725 /* You can't use -r against a dynamic object. Also, there's no
726 hope of using a dynamic object which does not exactly match
727 the format of the output file. */
728 if (info->relocateable || info->hash->creator != abfd->xvec)
729 {
730 bfd_set_error (bfd_error_invalid_operation);
731 goto error_return;
732 }
733 }
734
735 /* As a GNU extension, any input sections which are named
736 .gnu.warning.SYMBOL are treated as warning symbols for the given
737 symbol. This differs from .gnu.warning sections, which generate
738 warnings when they are included in an output file. */
739 if (! info->shared)
740 {
741 asection *s;
742
743 for (s = abfd->sections; s != NULL; s = s->next)
744 {
745 const char *name;
746
747 name = bfd_get_section_name (abfd, s);
748 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
749 {
750 char *msg;
751 bfd_size_type sz;
752
753 name += sizeof ".gnu.warning." - 1;
754
755 /* If this is a shared object, then look up the symbol
756 in the hash table. If it is there, and it is already
757 been defined, then we will not be using the entry
758 from this shared object, so we don't need to warn.
759 FIXME: If we see the definition in a regular object
760 later on, we will warn, but we shouldn't. The only
761 fix is to keep track of what warnings we are supposed
762 to emit, and then handle them all at the end of the
763 link. */
764 if (dynamic && abfd->xvec == info->hash->creator)
765 {
766 struct elf_link_hash_entry *h;
767
768 h = elf_link_hash_lookup (elf_hash_table (info), name,
769 false, false, true);
770
771 /* FIXME: What about bfd_link_hash_common? */
772 if (h != NULL
773 && (h->root.type == bfd_link_hash_defined
774 || h->root.type == bfd_link_hash_defweak))
775 {
776 /* We don't want to issue this warning. Clobber
777 the section size so that the warning does not
778 get copied into the output file. */
779 s->_raw_size = 0;
780 continue;
781 }
782 }
783
784 sz = bfd_section_size (abfd, s);
785 msg = (char *) bfd_alloc (abfd, sz + 1);
786 if (msg == NULL)
787 goto error_return;
788
789 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
790 goto error_return;
791
792 msg[sz] = '\0';
793
794 if (! (_bfd_generic_link_add_one_symbol
795 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
796 false, collect, (struct bfd_link_hash_entry **) NULL)))
797 goto error_return;
798
799 if (! info->relocateable)
800 {
801 /* Clobber the section size so that the warning does
802 not get copied into the output file. */
803 s->_raw_size = 0;
804 }
805 }
806 }
807 }
808
809 /* If this is a dynamic object, we always link against the .dynsym
810 symbol table, not the .symtab symbol table. The dynamic linker
811 will only see the .dynsym symbol table, so there is no reason to
812 look at .symtab for a dynamic object. */
813
814 if (! dynamic || elf_dynsymtab (abfd) == 0)
815 hdr = &elf_tdata (abfd)->symtab_hdr;
816 else
817 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
818
819 if (dynamic)
820 {
821 /* Read in any version definitions. */
822
823 if (! _bfd_elf_slurp_version_tables (abfd))
824 goto error_return;
825
826 /* Read in the symbol versions, but don't bother to convert them
827 to internal format. */
828 if (elf_dynversym (abfd) != 0)
829 {
830 Elf_Internal_Shdr *versymhdr;
831
832 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
833 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
834 if (extversym == NULL)
835 goto error_return;
836 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
837 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
838 != versymhdr->sh_size))
839 goto error_return;
840 }
841 }
842
843 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
844
845 /* The sh_info field of the symtab header tells us where the
846 external symbols start. We don't care about the local symbols at
847 this point. */
848 if (elf_bad_symtab (abfd))
849 {
850 extsymcount = symcount;
851 extsymoff = 0;
852 }
853 else
854 {
855 extsymcount = symcount - hdr->sh_info;
856 extsymoff = hdr->sh_info;
857 }
858
859 buf = ((Elf_External_Sym *)
860 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
861 if (buf == NULL && extsymcount != 0)
862 goto error_return;
863
864 /* We store a pointer to the hash table entry for each external
865 symbol. */
866 sym_hash = ((struct elf_link_hash_entry **)
867 bfd_alloc (abfd,
868 extsymcount * sizeof (struct elf_link_hash_entry *)));
869 if (sym_hash == NULL)
870 goto error_return;
871 elf_sym_hashes (abfd) = sym_hash;
872
873 if (! dynamic)
874 {
875 /* If we are creating a shared library, create all the dynamic
876 sections immediately. We need to attach them to something,
877 so we attach them to this BFD, provided it is the right
878 format. FIXME: If there are no input BFD's of the same
879 format as the output, we can't make a shared library. */
880 if (info->shared
881 && ! elf_hash_table (info)->dynamic_sections_created
882 && abfd->xvec == info->hash->creator)
883 {
884 if (! elf_link_create_dynamic_sections (abfd, info))
885 goto error_return;
886 }
887 }
888 else
889 {
890 asection *s;
891 boolean add_needed;
892 const char *name;
893 bfd_size_type oldsize;
894 bfd_size_type strindex;
895
896 /* Find the name to use in a DT_NEEDED entry that refers to this
897 object. If the object has a DT_SONAME entry, we use it.
898 Otherwise, if the generic linker stuck something in
899 elf_dt_name, we use that. Otherwise, we just use the file
900 name. If the generic linker put a null string into
901 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
902 there is a DT_SONAME entry. */
903 add_needed = true;
904 name = bfd_get_filename (abfd);
905 if (elf_dt_name (abfd) != NULL)
906 {
907 name = elf_dt_name (abfd);
908 if (*name == '\0')
909 add_needed = false;
910 }
911 s = bfd_get_section_by_name (abfd, ".dynamic");
912 if (s != NULL)
913 {
914 Elf_External_Dyn *extdyn;
915 Elf_External_Dyn *extdynend;
916 int elfsec;
917 unsigned long link;
918
919 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
920 if (dynbuf == NULL)
921 goto error_return;
922
923 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
924 (file_ptr) 0, s->_raw_size))
925 goto error_return;
926
927 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
928 if (elfsec == -1)
929 goto error_return;
930 link = elf_elfsections (abfd)[elfsec]->sh_link;
931
932 extdyn = dynbuf;
933 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
934 for (; extdyn < extdynend; extdyn++)
935 {
936 Elf_Internal_Dyn dyn;
937
938 elf_swap_dyn_in (abfd, extdyn, &dyn);
939 if (dyn.d_tag == DT_SONAME)
940 {
941 name = bfd_elf_string_from_elf_section (abfd, link,
942 dyn.d_un.d_val);
943 if (name == NULL)
944 goto error_return;
945 }
946 if (dyn.d_tag == DT_NEEDED)
947 {
948 struct bfd_link_needed_list *n, **pn;
949 char *fnm, *anm;
950
951 n = ((struct bfd_link_needed_list *)
952 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
953 fnm = bfd_elf_string_from_elf_section (abfd, link,
954 dyn.d_un.d_val);
955 if (n == NULL || fnm == NULL)
956 goto error_return;
957 anm = bfd_alloc (abfd, strlen (fnm) + 1);
958 if (anm == NULL)
959 goto error_return;
960 strcpy (anm, fnm);
961 n->name = anm;
962 n->by = abfd;
963 n->next = NULL;
964 for (pn = &elf_hash_table (info)->needed;
965 *pn != NULL;
966 pn = &(*pn)->next)
967 ;
968 *pn = n;
969 }
970 }
971
972 free (dynbuf);
973 dynbuf = NULL;
974 }
975
976 /* We do not want to include any of the sections in a dynamic
977 object in the output file. We hack by simply clobbering the
978 list of sections in the BFD. This could be handled more
979 cleanly by, say, a new section flag; the existing
980 SEC_NEVER_LOAD flag is not the one we want, because that one
981 still implies that the section takes up space in the output
982 file. */
983 abfd->sections = NULL;
984 abfd->section_count = 0;
985
986 /* If this is the first dynamic object found in the link, create
987 the special sections required for dynamic linking. */
988 if (! elf_hash_table (info)->dynamic_sections_created)
989 {
990 if (! elf_link_create_dynamic_sections (abfd, info))
991 goto error_return;
992 }
993
994 if (add_needed)
995 {
996 /* Add a DT_NEEDED entry for this dynamic object. */
997 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
998 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
999 true, false);
1000 if (strindex == (bfd_size_type) -1)
1001 goto error_return;
1002
1003 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1004 {
1005 asection *sdyn;
1006 Elf_External_Dyn *dyncon, *dynconend;
1007
1008 /* The hash table size did not change, which means that
1009 the dynamic object name was already entered. If we
1010 have already included this dynamic object in the
1011 link, just ignore it. There is no reason to include
1012 a particular dynamic object more than once. */
1013 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1014 ".dynamic");
1015 BFD_ASSERT (sdyn != NULL);
1016
1017 dyncon = (Elf_External_Dyn *) sdyn->contents;
1018 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1019 sdyn->_raw_size);
1020 for (; dyncon < dynconend; dyncon++)
1021 {
1022 Elf_Internal_Dyn dyn;
1023
1024 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1025 &dyn);
1026 if (dyn.d_tag == DT_NEEDED
1027 && dyn.d_un.d_val == strindex)
1028 {
1029 if (buf != NULL)
1030 free (buf);
1031 if (extversym != NULL)
1032 free (extversym);
1033 return true;
1034 }
1035 }
1036 }
1037
1038 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1039 goto error_return;
1040 }
1041
1042 /* Save the SONAME, if there is one, because sometimes the
1043 linker emulation code will need to know it. */
1044 if (*name == '\0')
1045 name = bfd_get_filename (abfd);
1046 elf_dt_name (abfd) = name;
1047 }
1048
1049 if (bfd_seek (abfd,
1050 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1051 SEEK_SET) != 0
1052 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1053 != extsymcount * sizeof (Elf_External_Sym)))
1054 goto error_return;
1055
1056 weaks = NULL;
1057
1058 ever = extversym != NULL ? extversym + extsymoff : NULL;
1059 esymend = buf + extsymcount;
1060 for (esym = buf;
1061 esym < esymend;
1062 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1063 {
1064 Elf_Internal_Sym sym;
1065 int bind;
1066 bfd_vma value;
1067 asection *sec;
1068 flagword flags;
1069 const char *name;
1070 struct elf_link_hash_entry *h;
1071 boolean definition;
1072 boolean size_change_ok, type_change_ok;
1073 boolean new_weakdef;
1074 unsigned int old_alignment;
1075
1076 elf_swap_symbol_in (abfd, esym, &sym);
1077
1078 flags = BSF_NO_FLAGS;
1079 sec = NULL;
1080 value = sym.st_value;
1081 *sym_hash = NULL;
1082
1083 bind = ELF_ST_BIND (sym.st_info);
1084 if (bind == STB_LOCAL)
1085 {
1086 /* This should be impossible, since ELF requires that all
1087 global symbols follow all local symbols, and that sh_info
1088 point to the first global symbol. Unfortunatealy, Irix 5
1089 screws this up. */
1090 continue;
1091 }
1092 else if (bind == STB_GLOBAL)
1093 {
1094 if (sym.st_shndx != SHN_UNDEF
1095 && sym.st_shndx != SHN_COMMON)
1096 flags = BSF_GLOBAL;
1097 else
1098 flags = 0;
1099 }
1100 else if (bind == STB_WEAK)
1101 flags = BSF_WEAK;
1102 else
1103 {
1104 /* Leave it up to the processor backend. */
1105 }
1106
1107 if (sym.st_shndx == SHN_UNDEF)
1108 sec = bfd_und_section_ptr;
1109 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1110 {
1111 sec = section_from_elf_index (abfd, sym.st_shndx);
1112 if (sec == NULL)
1113 sec = bfd_abs_section_ptr;
1114 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1115 value -= sec->vma;
1116 }
1117 else if (sym.st_shndx == SHN_ABS)
1118 sec = bfd_abs_section_ptr;
1119 else if (sym.st_shndx == SHN_COMMON)
1120 {
1121 sec = bfd_com_section_ptr;
1122 /* What ELF calls the size we call the value. What ELF
1123 calls the value we call the alignment. */
1124 value = sym.st_size;
1125 }
1126 else
1127 {
1128 /* Leave it up to the processor backend. */
1129 }
1130
1131 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1132 if (name == (const char *) NULL)
1133 goto error_return;
1134
1135 if (add_symbol_hook)
1136 {
1137 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1138 &value))
1139 goto error_return;
1140
1141 /* The hook function sets the name to NULL if this symbol
1142 should be skipped for some reason. */
1143 if (name == (const char *) NULL)
1144 continue;
1145 }
1146
1147 /* Sanity check that all possibilities were handled. */
1148 if (sec == (asection *) NULL)
1149 {
1150 bfd_set_error (bfd_error_bad_value);
1151 goto error_return;
1152 }
1153
1154 if (bfd_is_und_section (sec)
1155 || bfd_is_com_section (sec))
1156 definition = false;
1157 else
1158 definition = true;
1159
1160 size_change_ok = false;
1161 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1162 old_alignment = 0;
1163 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1164 {
1165 Elf_Internal_Versym iver;
1166 unsigned int vernum = 0;
1167 boolean override;
1168
1169 if (ever != NULL)
1170 {
1171 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1172 vernum = iver.vs_vers & VERSYM_VERSION;
1173
1174 /* If this is a hidden symbol, or if it is not version
1175 1, we append the version name to the symbol name.
1176 However, we do not modify a non-hidden absolute
1177 symbol, because it might be the version symbol
1178 itself. FIXME: What if it isn't? */
1179 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1180 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1181 {
1182 const char *verstr;
1183 int namelen, newlen;
1184 char *newname, *p;
1185
1186 if (sym.st_shndx != SHN_UNDEF)
1187 {
1188 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1189 {
1190 (*_bfd_error_handler)
1191 (_("%s: %s: invalid version %u (max %d)"),
1192 bfd_get_filename (abfd), name, vernum,
1193 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1194 bfd_set_error (bfd_error_bad_value);
1195 goto error_return;
1196 }
1197 else if (vernum > 1)
1198 verstr =
1199 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1200 else
1201 verstr = "";
1202 }
1203 else
1204 {
1205 /* We cannot simply test for the number of
1206 entries in the VERNEED section since the
1207 numbers for the needed versions do not start
1208 at 0. */
1209 Elf_Internal_Verneed *t;
1210
1211 verstr = NULL;
1212 for (t = elf_tdata (abfd)->verref;
1213 t != NULL;
1214 t = t->vn_nextref)
1215 {
1216 Elf_Internal_Vernaux *a;
1217
1218 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1219 {
1220 if (a->vna_other == vernum)
1221 {
1222 verstr = a->vna_nodename;
1223 break;
1224 }
1225 }
1226 if (a != NULL)
1227 break;
1228 }
1229 if (verstr == NULL)
1230 {
1231 (*_bfd_error_handler)
1232 (_("%s: %s: invalid needed version %d"),
1233 bfd_get_filename (abfd), name, vernum);
1234 bfd_set_error (bfd_error_bad_value);
1235 goto error_return;
1236 }
1237 }
1238
1239 namelen = strlen (name);
1240 newlen = namelen + strlen (verstr) + 2;
1241 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1242 ++newlen;
1243
1244 newname = (char *) bfd_alloc (abfd, newlen);
1245 if (newname == NULL)
1246 goto error_return;
1247 strcpy (newname, name);
1248 p = newname + namelen;
1249 *p++ = ELF_VER_CHR;
1250 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1251 *p++ = ELF_VER_CHR;
1252 strcpy (p, verstr);
1253
1254 name = newname;
1255 }
1256 }
1257
1258 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1259 sym_hash, &override, &type_change_ok,
1260 &size_change_ok))
1261 goto error_return;
1262
1263 if (override)
1264 definition = false;
1265
1266 h = *sym_hash;
1267 while (h->root.type == bfd_link_hash_indirect
1268 || h->root.type == bfd_link_hash_warning)
1269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1270
1271 /* Remember the old alignment if this is a common symbol, so
1272 that we don't reduce the alignment later on. We can't
1273 check later, because _bfd_generic_link_add_one_symbol
1274 will set a default for the alignment which we want to
1275 override. */
1276 if (h->root.type == bfd_link_hash_common)
1277 old_alignment = h->root.u.c.p->alignment_power;
1278
1279 if (elf_tdata (abfd)->verdef != NULL
1280 && ! override
1281 && vernum > 1
1282 && definition)
1283 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1284 }
1285
1286 if (! (_bfd_generic_link_add_one_symbol
1287 (info, abfd, name, flags, sec, value, (const char *) NULL,
1288 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1289 goto error_return;
1290
1291 h = *sym_hash;
1292 while (h->root.type == bfd_link_hash_indirect
1293 || h->root.type == bfd_link_hash_warning)
1294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1295 *sym_hash = h;
1296
1297 new_weakdef = false;
1298 if (dynamic
1299 && definition
1300 && (flags & BSF_WEAK) != 0
1301 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1302 && info->hash->creator->flavour == bfd_target_elf_flavour
1303 && h->weakdef == NULL)
1304 {
1305 /* Keep a list of all weak defined non function symbols from
1306 a dynamic object, using the weakdef field. Later in this
1307 function we will set the weakdef field to the correct
1308 value. We only put non-function symbols from dynamic
1309 objects on this list, because that happens to be the only
1310 time we need to know the normal symbol corresponding to a
1311 weak symbol, and the information is time consuming to
1312 figure out. If the weakdef field is not already NULL,
1313 then this symbol was already defined by some previous
1314 dynamic object, and we will be using that previous
1315 definition anyhow. */
1316
1317 h->weakdef = weaks;
1318 weaks = h;
1319 new_weakdef = true;
1320 }
1321
1322 /* Set the alignment of a common symbol. */
1323 if (sym.st_shndx == SHN_COMMON
1324 && h->root.type == bfd_link_hash_common)
1325 {
1326 unsigned int align;
1327
1328 align = bfd_log2 (sym.st_value);
1329 if (align > old_alignment)
1330 h->root.u.c.p->alignment_power = align;
1331 }
1332
1333 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1334 {
1335 int old_flags;
1336 boolean dynsym;
1337 int new_flag;
1338
1339 /* Remember the symbol size and type. */
1340 if (sym.st_size != 0
1341 && (definition || h->size == 0))
1342 {
1343 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1344 (*_bfd_error_handler)
1345 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1346 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1347 bfd_get_filename (abfd));
1348
1349 h->size = sym.st_size;
1350 }
1351
1352 /* If this is a common symbol, then we always want H->SIZE
1353 to be the size of the common symbol. The code just above
1354 won't fix the size if a common symbol becomes larger. We
1355 don't warn about a size change here, because that is
1356 covered by --warn-common. */
1357 if (h->root.type == bfd_link_hash_common)
1358 h->size = h->root.u.c.size;
1359
1360 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1361 && (definition || h->type == STT_NOTYPE))
1362 {
1363 if (h->type != STT_NOTYPE
1364 && h->type != ELF_ST_TYPE (sym.st_info)
1365 && ! type_change_ok)
1366 (*_bfd_error_handler)
1367 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1368 name, h->type, ELF_ST_TYPE (sym.st_info),
1369 bfd_get_filename (abfd));
1370
1371 h->type = ELF_ST_TYPE (sym.st_info);
1372 }
1373
1374 if (sym.st_other != 0
1375 && (definition || h->other == 0))
1376 h->other = sym.st_other;
1377
1378 /* Set a flag in the hash table entry indicating the type of
1379 reference or definition we just found. Keep a count of
1380 the number of dynamic symbols we find. A dynamic symbol
1381 is one which is referenced or defined by both a regular
1382 object and a shared object. */
1383 old_flags = h->elf_link_hash_flags;
1384 dynsym = false;
1385 if (! dynamic)
1386 {
1387 if (! definition)
1388 {
1389 new_flag = ELF_LINK_HASH_REF_REGULAR;
1390 if (bind != STB_WEAK)
1391 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1392 }
1393 else
1394 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1395 if (info->shared
1396 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1397 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1398 dynsym = true;
1399 }
1400 else
1401 {
1402 if (! definition)
1403 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1404 else
1405 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1406 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1407 | ELF_LINK_HASH_REF_REGULAR)) != 0
1408 || (h->weakdef != NULL
1409 && ! new_weakdef
1410 && h->weakdef->dynindx != -1))
1411 dynsym = true;
1412 }
1413
1414 h->elf_link_hash_flags |= new_flag;
1415
1416 /* If this symbol has a version, and it is the default
1417 version, we create an indirect symbol from the default
1418 name to the fully decorated name. This will cause
1419 external references which do not specify a version to be
1420 bound to this version of the symbol. */
1421 if (definition)
1422 {
1423 char *p;
1424
1425 p = strchr (name, ELF_VER_CHR);
1426 if (p != NULL && p[1] == ELF_VER_CHR)
1427 {
1428 char *shortname;
1429 struct elf_link_hash_entry *hi;
1430 boolean override;
1431
1432 shortname = bfd_hash_allocate (&info->hash->table,
1433 p - name + 1);
1434 if (shortname == NULL)
1435 goto error_return;
1436 strncpy (shortname, name, p - name);
1437 shortname[p - name] = '\0';
1438
1439 /* We are going to create a new symbol. Merge it
1440 with any existing symbol with this name. For the
1441 purposes of the merge, act as though we were
1442 defining the symbol we just defined, although we
1443 actually going to define an indirect symbol. */
1444 type_change_ok = false;
1445 size_change_ok = false;
1446 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1447 &value, &hi, &override,
1448 &type_change_ok, &size_change_ok))
1449 goto error_return;
1450
1451 if (! override)
1452 {
1453 if (! (_bfd_generic_link_add_one_symbol
1454 (info, abfd, shortname, BSF_INDIRECT,
1455 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1456 collect, (struct bfd_link_hash_entry **) &hi)))
1457 goto error_return;
1458 }
1459 else
1460 {
1461 /* In this case the symbol named SHORTNAME is
1462 overriding the indirect symbol we want to
1463 add. We were planning on making SHORTNAME an
1464 indirect symbol referring to NAME. SHORTNAME
1465 is the name without a version. NAME is the
1466 fully versioned name, and it is the default
1467 version.
1468
1469 Overriding means that we already saw a
1470 definition for the symbol SHORTNAME in a
1471 regular object, and it is overriding the
1472 symbol defined in the dynamic object.
1473
1474 When this happens, we actually want to change
1475 NAME, the symbol we just added, to refer to
1476 SHORTNAME. This will cause references to
1477 NAME in the shared object to become
1478 references to SHORTNAME in the regular
1479 object. This is what we expect when we
1480 override a function in a shared object: that
1481 the references in the shared object will be
1482 mapped to the definition in the regular
1483 object. */
1484
1485 while (hi->root.type == bfd_link_hash_indirect
1486 || hi->root.type == bfd_link_hash_warning)
1487 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1488
1489 h->root.type = bfd_link_hash_indirect;
1490 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1491 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1492 {
1493 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1494 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1495 if (hi->elf_link_hash_flags
1496 & (ELF_LINK_HASH_REF_REGULAR
1497 | ELF_LINK_HASH_DEF_REGULAR))
1498 {
1499 if (! _bfd_elf_link_record_dynamic_symbol (info,
1500 hi))
1501 goto error_return;
1502 }
1503 }
1504
1505 /* Now set HI to H, so that the following code
1506 will set the other fields correctly. */
1507 hi = h;
1508 }
1509
1510 /* If there is a duplicate definition somewhere,
1511 then HI may not point to an indirect symbol. We
1512 will have reported an error to the user in that
1513 case. */
1514
1515 if (hi->root.type == bfd_link_hash_indirect)
1516 {
1517 struct elf_link_hash_entry *ht;
1518
1519 /* If the symbol became indirect, then we assume
1520 that we have not seen a definition before. */
1521 BFD_ASSERT ((hi->elf_link_hash_flags
1522 & (ELF_LINK_HASH_DEF_DYNAMIC
1523 | ELF_LINK_HASH_DEF_REGULAR))
1524 == 0);
1525
1526 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1527
1528 /* Copy down any references that we may have
1529 already seen to the symbol which just became
1530 indirect. */
1531 ht->elf_link_hash_flags |=
1532 (hi->elf_link_hash_flags
1533 & (ELF_LINK_HASH_REF_DYNAMIC
1534 | ELF_LINK_HASH_REF_REGULAR
1535 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1536
1537 /* Copy over the global and procedure linkage table
1538 offset entries. These may have been already set
1539 up by a check_relocs routine. */
1540 if (ht->got.offset == (bfd_vma) -1)
1541 {
1542 ht->got.offset = hi->got.offset;
1543 hi->got.offset = (bfd_vma) -1;
1544 }
1545 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1546
1547 if (ht->plt.offset == (bfd_vma) -1)
1548 {
1549 ht->plt.offset = hi->plt.offset;
1550 hi->plt.offset = (bfd_vma) -1;
1551 }
1552 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1553
1554 if (ht->dynindx == -1)
1555 {
1556 ht->dynindx = hi->dynindx;
1557 ht->dynstr_index = hi->dynstr_index;
1558 hi->dynindx = -1;
1559 hi->dynstr_index = 0;
1560 }
1561 BFD_ASSERT (hi->dynindx == -1);
1562
1563 /* FIXME: There may be other information to copy
1564 over for particular targets. */
1565
1566 /* See if the new flags lead us to realize that
1567 the symbol must be dynamic. */
1568 if (! dynsym)
1569 {
1570 if (! dynamic)
1571 {
1572 if (info->shared
1573 || ((hi->elf_link_hash_flags
1574 & ELF_LINK_HASH_REF_DYNAMIC)
1575 != 0))
1576 dynsym = true;
1577 }
1578 else
1579 {
1580 if ((hi->elf_link_hash_flags
1581 & ELF_LINK_HASH_REF_REGULAR) != 0)
1582 dynsym = true;
1583 }
1584 }
1585 }
1586
1587 /* We also need to define an indirection from the
1588 nondefault version of the symbol. */
1589
1590 shortname = bfd_hash_allocate (&info->hash->table,
1591 strlen (name));
1592 if (shortname == NULL)
1593 goto error_return;
1594 strncpy (shortname, name, p - name);
1595 strcpy (shortname + (p - name), p + 1);
1596
1597 /* Once again, merge with any existing symbol. */
1598 type_change_ok = false;
1599 size_change_ok = false;
1600 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1601 &value, &hi, &override,
1602 &type_change_ok, &size_change_ok))
1603 goto error_return;
1604
1605 if (override)
1606 {
1607 /* Here SHORTNAME is a versioned name, so we
1608 don't expect to see the type of override we
1609 do in the case above. */
1610 (*_bfd_error_handler)
1611 (_("%s: warning: unexpected redefinition of `%s'"),
1612 bfd_get_filename (abfd), shortname);
1613 }
1614 else
1615 {
1616 if (! (_bfd_generic_link_add_one_symbol
1617 (info, abfd, shortname, BSF_INDIRECT,
1618 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1619 collect, (struct bfd_link_hash_entry **) &hi)))
1620 goto error_return;
1621
1622 /* If there is a duplicate definition somewhere,
1623 then HI may not point to an indirect symbol.
1624 We will have reported an error to the user in
1625 that case. */
1626
1627 if (hi->root.type == bfd_link_hash_indirect)
1628 {
1629 /* If the symbol became indirect, then we
1630 assume that we have not seen a definition
1631 before. */
1632 BFD_ASSERT ((hi->elf_link_hash_flags
1633 & (ELF_LINK_HASH_DEF_DYNAMIC
1634 | ELF_LINK_HASH_DEF_REGULAR))
1635 == 0);
1636
1637 /* Copy down any references that we may have
1638 already seen to the symbol which just
1639 became indirect. */
1640 h->elf_link_hash_flags |=
1641 (hi->elf_link_hash_flags
1642 & (ELF_LINK_HASH_REF_DYNAMIC
1643 | ELF_LINK_HASH_REF_REGULAR
1644 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1645
1646 /* Copy over the global and procedure linkage
1647 table offset entries. These may have been
1648 already set up by a check_relocs routine. */
1649 if (h->got.offset == (bfd_vma) -1)
1650 {
1651 h->got.offset = hi->got.offset;
1652 hi->got.offset = (bfd_vma) -1;
1653 }
1654 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1655
1656 if (h->plt.offset == (bfd_vma) -1)
1657 {
1658 h->plt.offset = hi->plt.offset;
1659 hi->plt.offset = (bfd_vma) -1;
1660 }
1661 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1662
1663 if (h->dynindx == -1)
1664 {
1665 h->dynindx = hi->dynindx;
1666 h->dynstr_index = hi->dynstr_index;
1667 hi->dynindx = -1;
1668 hi->dynstr_index = 0;
1669 }
1670 BFD_ASSERT (hi->dynindx == -1);
1671
1672 /* FIXME: There may be other information to
1673 copy over for particular targets. */
1674
1675 /* See if the new flags lead us to realize
1676 that the symbol must be dynamic. */
1677 if (! dynsym)
1678 {
1679 if (! dynamic)
1680 {
1681 if (info->shared
1682 || ((hi->elf_link_hash_flags
1683 & ELF_LINK_HASH_REF_DYNAMIC)
1684 != 0))
1685 dynsym = true;
1686 }
1687 else
1688 {
1689 if ((hi->elf_link_hash_flags
1690 & ELF_LINK_HASH_REF_REGULAR) != 0)
1691 dynsym = true;
1692 }
1693 }
1694 }
1695 }
1696 }
1697 }
1698
1699 if (dynsym && h->dynindx == -1)
1700 {
1701 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1702 goto error_return;
1703 if (h->weakdef != NULL
1704 && ! new_weakdef
1705 && h->weakdef->dynindx == -1)
1706 {
1707 if (! _bfd_elf_link_record_dynamic_symbol (info,
1708 h->weakdef))
1709 goto error_return;
1710 }
1711 }
1712 }
1713 }
1714
1715 /* Now set the weakdefs field correctly for all the weak defined
1716 symbols we found. The only way to do this is to search all the
1717 symbols. Since we only need the information for non functions in
1718 dynamic objects, that's the only time we actually put anything on
1719 the list WEAKS. We need this information so that if a regular
1720 object refers to a symbol defined weakly in a dynamic object, the
1721 real symbol in the dynamic object is also put in the dynamic
1722 symbols; we also must arrange for both symbols to point to the
1723 same memory location. We could handle the general case of symbol
1724 aliasing, but a general symbol alias can only be generated in
1725 assembler code, handling it correctly would be very time
1726 consuming, and other ELF linkers don't handle general aliasing
1727 either. */
1728 while (weaks != NULL)
1729 {
1730 struct elf_link_hash_entry *hlook;
1731 asection *slook;
1732 bfd_vma vlook;
1733 struct elf_link_hash_entry **hpp;
1734 struct elf_link_hash_entry **hppend;
1735
1736 hlook = weaks;
1737 weaks = hlook->weakdef;
1738 hlook->weakdef = NULL;
1739
1740 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1741 || hlook->root.type == bfd_link_hash_defweak
1742 || hlook->root.type == bfd_link_hash_common
1743 || hlook->root.type == bfd_link_hash_indirect);
1744 slook = hlook->root.u.def.section;
1745 vlook = hlook->root.u.def.value;
1746
1747 hpp = elf_sym_hashes (abfd);
1748 hppend = hpp + extsymcount;
1749 for (; hpp < hppend; hpp++)
1750 {
1751 struct elf_link_hash_entry *h;
1752
1753 h = *hpp;
1754 if (h != NULL && h != hlook
1755 && h->root.type == bfd_link_hash_defined
1756 && h->root.u.def.section == slook
1757 && h->root.u.def.value == vlook)
1758 {
1759 hlook->weakdef = h;
1760
1761 /* If the weak definition is in the list of dynamic
1762 symbols, make sure the real definition is put there
1763 as well. */
1764 if (hlook->dynindx != -1
1765 && h->dynindx == -1)
1766 {
1767 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1768 goto error_return;
1769 }
1770
1771 /* If the real definition is in the list of dynamic
1772 symbols, make sure the weak definition is put there
1773 as well. If we don't do this, then the dynamic
1774 loader might not merge the entries for the real
1775 definition and the weak definition. */
1776 if (h->dynindx != -1
1777 && hlook->dynindx == -1)
1778 {
1779 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1780 goto error_return;
1781 }
1782
1783 break;
1784 }
1785 }
1786 }
1787
1788 if (buf != NULL)
1789 {
1790 free (buf);
1791 buf = NULL;
1792 }
1793
1794 if (extversym != NULL)
1795 {
1796 free (extversym);
1797 extversym = NULL;
1798 }
1799
1800 /* If this object is the same format as the output object, and it is
1801 not a shared library, then let the backend look through the
1802 relocs.
1803
1804 This is required to build global offset table entries and to
1805 arrange for dynamic relocs. It is not required for the
1806 particular common case of linking non PIC code, even when linking
1807 against shared libraries, but unfortunately there is no way of
1808 knowing whether an object file has been compiled PIC or not.
1809 Looking through the relocs is not particularly time consuming.
1810 The problem is that we must either (1) keep the relocs in memory,
1811 which causes the linker to require additional runtime memory or
1812 (2) read the relocs twice from the input file, which wastes time.
1813 This would be a good case for using mmap.
1814
1815 I have no idea how to handle linking PIC code into a file of a
1816 different format. It probably can't be done. */
1817 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1818 if (! dynamic
1819 && abfd->xvec == info->hash->creator
1820 && check_relocs != NULL)
1821 {
1822 asection *o;
1823
1824 for (o = abfd->sections; o != NULL; o = o->next)
1825 {
1826 Elf_Internal_Rela *internal_relocs;
1827 boolean ok;
1828
1829 if ((o->flags & SEC_RELOC) == 0
1830 || o->reloc_count == 0
1831 || ((info->strip == strip_all || info->strip == strip_debugger)
1832 && (o->flags & SEC_DEBUGGING) != 0)
1833 || bfd_is_abs_section (o->output_section))
1834 continue;
1835
1836 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1837 (abfd, o, (PTR) NULL,
1838 (Elf_Internal_Rela *) NULL,
1839 info->keep_memory));
1840 if (internal_relocs == NULL)
1841 goto error_return;
1842
1843 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1844
1845 if (! info->keep_memory)
1846 free (internal_relocs);
1847
1848 if (! ok)
1849 goto error_return;
1850 }
1851 }
1852
1853 /* If this is a non-traditional, non-relocateable link, try to
1854 optimize the handling of the .stab/.stabstr sections. */
1855 if (! dynamic
1856 && ! info->relocateable
1857 && ! info->traditional_format
1858 && info->hash->creator->flavour == bfd_target_elf_flavour
1859 && (info->strip != strip_all && info->strip != strip_debugger))
1860 {
1861 asection *stab, *stabstr;
1862
1863 stab = bfd_get_section_by_name (abfd, ".stab");
1864 if (stab != NULL)
1865 {
1866 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1867
1868 if (stabstr != NULL)
1869 {
1870 struct bfd_elf_section_data *secdata;
1871
1872 secdata = elf_section_data (stab);
1873 if (! _bfd_link_section_stabs (abfd,
1874 &elf_hash_table (info)->stab_info,
1875 stab, stabstr,
1876 &secdata->stab_info))
1877 goto error_return;
1878 }
1879 }
1880 }
1881
1882 return true;
1883
1884 error_return:
1885 if (buf != NULL)
1886 free (buf);
1887 if (dynbuf != NULL)
1888 free (dynbuf);
1889 if (dynver != NULL)
1890 free (dynver);
1891 if (extversym != NULL)
1892 free (extversym);
1893 return false;
1894 }
1895
1896 /* Create some sections which will be filled in with dynamic linking
1897 information. ABFD is an input file which requires dynamic sections
1898 to be created. The dynamic sections take up virtual memory space
1899 when the final executable is run, so we need to create them before
1900 addresses are assigned to the output sections. We work out the
1901 actual contents and size of these sections later. */
1902
1903 boolean
1904 elf_link_create_dynamic_sections (abfd, info)
1905 bfd *abfd;
1906 struct bfd_link_info *info;
1907 {
1908 flagword flags;
1909 register asection *s;
1910 struct elf_link_hash_entry *h;
1911 struct elf_backend_data *bed;
1912
1913 if (elf_hash_table (info)->dynamic_sections_created)
1914 return true;
1915
1916 /* Make sure that all dynamic sections use the same input BFD. */
1917 if (elf_hash_table (info)->dynobj == NULL)
1918 elf_hash_table (info)->dynobj = abfd;
1919 else
1920 abfd = elf_hash_table (info)->dynobj;
1921
1922 /* Note that we set the SEC_IN_MEMORY flag for all of these
1923 sections. */
1924 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1925 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1926
1927 /* A dynamically linked executable has a .interp section, but a
1928 shared library does not. */
1929 if (! info->shared)
1930 {
1931 s = bfd_make_section (abfd, ".interp");
1932 if (s == NULL
1933 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1934 return false;
1935 }
1936
1937 /* Create sections to hold version informations. These are removed
1938 if they are not needed. */
1939 s = bfd_make_section (abfd, ".gnu.version_d");
1940 if (s == NULL
1941 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1942 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1943 return false;
1944
1945 s = bfd_make_section (abfd, ".gnu.version");
1946 if (s == NULL
1947 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1948 || ! bfd_set_section_alignment (abfd, s, 1))
1949 return false;
1950
1951 s = bfd_make_section (abfd, ".gnu.version_r");
1952 if (s == NULL
1953 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1954 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1955 return false;
1956
1957 s = bfd_make_section (abfd, ".dynsym");
1958 if (s == NULL
1959 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1960 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1961 return false;
1962
1963 s = bfd_make_section (abfd, ".dynstr");
1964 if (s == NULL
1965 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1966 return false;
1967
1968 /* Create a strtab to hold the dynamic symbol names. */
1969 if (elf_hash_table (info)->dynstr == NULL)
1970 {
1971 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1972 if (elf_hash_table (info)->dynstr == NULL)
1973 return false;
1974 }
1975
1976 s = bfd_make_section (abfd, ".dynamic");
1977 if (s == NULL
1978 || ! bfd_set_section_flags (abfd, s, flags)
1979 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1980 return false;
1981
1982 /* The special symbol _DYNAMIC is always set to the start of the
1983 .dynamic section. This call occurs before we have processed the
1984 symbols for any dynamic object, so we don't have to worry about
1985 overriding a dynamic definition. We could set _DYNAMIC in a
1986 linker script, but we only want to define it if we are, in fact,
1987 creating a .dynamic section. We don't want to define it if there
1988 is no .dynamic section, since on some ELF platforms the start up
1989 code examines it to decide how to initialize the process. */
1990 h = NULL;
1991 if (! (_bfd_generic_link_add_one_symbol
1992 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1993 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1994 (struct bfd_link_hash_entry **) &h)))
1995 return false;
1996 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1997 h->type = STT_OBJECT;
1998
1999 if (info->shared
2000 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2001 return false;
2002
2003 bed = get_elf_backend_data (abfd);
2004
2005 s = bfd_make_section (abfd, ".hash");
2006 if (s == NULL
2007 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2008 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2009 return false;
2010 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2011
2012 /* Let the backend create the rest of the sections. This lets the
2013 backend set the right flags. The backend will normally create
2014 the .got and .plt sections. */
2015 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2016 return false;
2017
2018 elf_hash_table (info)->dynamic_sections_created = true;
2019
2020 return true;
2021 }
2022
2023 /* Add an entry to the .dynamic table. */
2024
2025 boolean
2026 elf_add_dynamic_entry (info, tag, val)
2027 struct bfd_link_info *info;
2028 bfd_vma tag;
2029 bfd_vma val;
2030 {
2031 Elf_Internal_Dyn dyn;
2032 bfd *dynobj;
2033 asection *s;
2034 size_t newsize;
2035 bfd_byte *newcontents;
2036
2037 dynobj = elf_hash_table (info)->dynobj;
2038
2039 s = bfd_get_section_by_name (dynobj, ".dynamic");
2040 BFD_ASSERT (s != NULL);
2041
2042 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2043 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2044 if (newcontents == NULL)
2045 return false;
2046
2047 dyn.d_tag = tag;
2048 dyn.d_un.d_val = val;
2049 elf_swap_dyn_out (dynobj, &dyn,
2050 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2051
2052 s->_raw_size = newsize;
2053 s->contents = newcontents;
2054
2055 return true;
2056 }
2057
2058 /* Record a new local dynamic symbol. */
2059
2060 boolean
2061 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2062 struct bfd_link_info *info;
2063 bfd *input_bfd;
2064 long input_indx;
2065 {
2066 struct elf_link_local_dynamic_entry *entry;
2067 struct elf_link_hash_table *eht;
2068 struct bfd_strtab_hash *dynstr;
2069 Elf_External_Sym esym;
2070 unsigned long dynstr_index;
2071 char *name;
2072
2073 /* See if the entry exists already. */
2074 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2075 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2076 return true;
2077
2078 entry = (struct elf_link_local_dynamic_entry *)
2079 bfd_alloc (input_bfd, sizeof (*entry));
2080 if (entry == NULL)
2081 return false;
2082
2083 /* Go find the symbol, so that we can find it's name. */
2084 if (bfd_seek (input_bfd,
2085 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2086 + input_indx * sizeof (Elf_External_Sym)),
2087 SEEK_SET) != 0
2088 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2089 != sizeof (Elf_External_Sym)))
2090 return false;
2091 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2092
2093 name = (bfd_elf_string_from_elf_section
2094 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2095 entry->isym.st_name));
2096
2097 dynstr = elf_hash_table (info)->dynstr;
2098 if (dynstr == NULL)
2099 {
2100 /* Create a strtab to hold the dynamic symbol names. */
2101 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2102 if (dynstr == NULL)
2103 return false;
2104 }
2105
2106 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2107 if (dynstr_index == (unsigned long) -1)
2108 return false;
2109 entry->isym.st_name = dynstr_index;
2110
2111 eht = elf_hash_table (info);
2112
2113 entry->next = eht->dynlocal;
2114 eht->dynlocal = entry;
2115 entry->input_bfd = input_bfd;
2116 entry->input_indx = input_indx;
2117 eht->dynsymcount++;
2118
2119 /* Whatever binding the symbol had before, it's now local. */
2120 entry->isym.st_info
2121 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2122
2123 /* The dynindx will be set at the end of size_dynamic_sections. */
2124
2125 return true;
2126 }
2127 \f
2128
2129 /* Read and swap the relocs from the section indicated by SHDR. This
2130 may be either a REL or a RELA section. The relocations are
2131 translated into RELA relocations and stored in INTERNAL_RELOCS,
2132 which should have already been allocated to contain enough space.
2133 The EXTERNAL_RELOCS are a buffer where the external form of the
2134 relocations should be stored.
2135
2136 Returns false if something goes wrong. */
2137
2138 static boolean
2139 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2140 internal_relocs)
2141 bfd *abfd;
2142 Elf_Internal_Shdr *shdr;
2143 PTR external_relocs;
2144 Elf_Internal_Rela *internal_relocs;
2145 {
2146 struct elf_backend_data *bed;
2147
2148 /* If there aren't any relocations, that's OK. */
2149 if (!shdr)
2150 return true;
2151
2152 /* Position ourselves at the start of the section. */
2153 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2154 return false;
2155
2156 /* Read the relocations. */
2157 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2158 != shdr->sh_size)
2159 return false;
2160
2161 bed = get_elf_backend_data (abfd);
2162
2163 /* Convert the external relocations to the internal format. */
2164 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2165 {
2166 Elf_External_Rel *erel;
2167 Elf_External_Rel *erelend;
2168 Elf_Internal_Rela *irela;
2169 Elf_Internal_Rel *irel;
2170
2171 erel = (Elf_External_Rel *) external_relocs;
2172 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2173 irela = internal_relocs;
2174 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2175 * sizeof (Elf_Internal_Rel)));
2176 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2177 {
2178 unsigned char i;
2179
2180 if (bed->s->swap_reloc_in)
2181 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2182 else
2183 elf_swap_reloc_in (abfd, erel, irel);
2184
2185 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2186 {
2187 irela[i].r_offset = irel[i].r_offset;
2188 irela[i].r_info = irel[i].r_info;
2189 irela[i].r_addend = 0;
2190 }
2191 }
2192 }
2193 else
2194 {
2195 Elf_External_Rela *erela;
2196 Elf_External_Rela *erelaend;
2197 Elf_Internal_Rela *irela;
2198
2199 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2200
2201 erela = (Elf_External_Rela *) external_relocs;
2202 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2203 irela = internal_relocs;
2204 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2205 {
2206 if (bed->s->swap_reloca_in)
2207 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2208 else
2209 elf_swap_reloca_in (abfd, erela, irela);
2210 }
2211 }
2212
2213 return true;
2214 }
2215
2216 /* Read and swap the relocs for a section O. They may have been
2217 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2218 not NULL, they are used as buffers to read into. They are known to
2219 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2220 the return value is allocated using either malloc or bfd_alloc,
2221 according to the KEEP_MEMORY argument. If O has two relocation
2222 sections (both REL and RELA relocations), then the REL_HDR
2223 relocations will appear first in INTERNAL_RELOCS, followed by the
2224 REL_HDR2 relocations. */
2225
2226 Elf_Internal_Rela *
2227 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2228 keep_memory)
2229 bfd *abfd;
2230 asection *o;
2231 PTR external_relocs;
2232 Elf_Internal_Rela *internal_relocs;
2233 boolean keep_memory;
2234 {
2235 Elf_Internal_Shdr *rel_hdr;
2236 PTR alloc1 = NULL;
2237 Elf_Internal_Rela *alloc2 = NULL;
2238 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2239
2240 if (elf_section_data (o)->relocs != NULL)
2241 return elf_section_data (o)->relocs;
2242
2243 if (o->reloc_count == 0)
2244 return NULL;
2245
2246 rel_hdr = &elf_section_data (o)->rel_hdr;
2247
2248 if (internal_relocs == NULL)
2249 {
2250 size_t size;
2251
2252 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2253 * sizeof (Elf_Internal_Rela));
2254 if (keep_memory)
2255 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2256 else
2257 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2258 if (internal_relocs == NULL)
2259 goto error_return;
2260 }
2261
2262 if (external_relocs == NULL)
2263 {
2264 size_t size = (size_t) rel_hdr->sh_size;
2265
2266 if (elf_section_data (o)->rel_hdr2)
2267 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2268 alloc1 = (PTR) bfd_malloc (size);
2269 if (alloc1 == NULL)
2270 goto error_return;
2271 external_relocs = alloc1;
2272 }
2273
2274 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2275 external_relocs,
2276 internal_relocs))
2277 goto error_return;
2278 if (!elf_link_read_relocs_from_section
2279 (abfd,
2280 elf_section_data (o)->rel_hdr2,
2281 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2282 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2283 * bed->s->int_rels_per_ext_rel)))
2284 goto error_return;
2285
2286 /* Cache the results for next time, if we can. */
2287 if (keep_memory)
2288 elf_section_data (o)->relocs = internal_relocs;
2289
2290 if (alloc1 != NULL)
2291 free (alloc1);
2292
2293 /* Don't free alloc2, since if it was allocated we are passing it
2294 back (under the name of internal_relocs). */
2295
2296 return internal_relocs;
2297
2298 error_return:
2299 if (alloc1 != NULL)
2300 free (alloc1);
2301 if (alloc2 != NULL)
2302 free (alloc2);
2303 return NULL;
2304 }
2305 \f
2306
2307 /* Record an assignment to a symbol made by a linker script. We need
2308 this in case some dynamic object refers to this symbol. */
2309
2310 /*ARGSUSED*/
2311 boolean
2312 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2313 bfd *output_bfd ATTRIBUTE_UNUSED;
2314 struct bfd_link_info *info;
2315 const char *name;
2316 boolean provide;
2317 {
2318 struct elf_link_hash_entry *h;
2319
2320 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2321 return true;
2322
2323 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2324 if (h == NULL)
2325 return false;
2326
2327 if (h->root.type == bfd_link_hash_new)
2328 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2329
2330 /* If this symbol is being provided by the linker script, and it is
2331 currently defined by a dynamic object, but not by a regular
2332 object, then mark it as undefined so that the generic linker will
2333 force the correct value. */
2334 if (provide
2335 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2336 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2337 h->root.type = bfd_link_hash_undefined;
2338
2339 /* If this symbol is not being provided by the linker script, and it is
2340 currently defined by a dynamic object, but not by a regular object,
2341 then clear out any version information because the symbol will not be
2342 associated with the dynamic object any more. */
2343 if (!provide
2344 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2345 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2346 h->verinfo.verdef = NULL;
2347
2348 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2349 h->type = STT_OBJECT;
2350
2351 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2352 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2353 || info->shared)
2354 && h->dynindx == -1)
2355 {
2356 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2357 return false;
2358
2359 /* If this is a weak defined symbol, and we know a corresponding
2360 real symbol from the same dynamic object, make sure the real
2361 symbol is also made into a dynamic symbol. */
2362 if (h->weakdef != NULL
2363 && h->weakdef->dynindx == -1)
2364 {
2365 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2366 return false;
2367 }
2368 }
2369
2370 return true;
2371 }
2372 \f
2373 /* This structure is used to pass information to
2374 elf_link_assign_sym_version. */
2375
2376 struct elf_assign_sym_version_info
2377 {
2378 /* Output BFD. */
2379 bfd *output_bfd;
2380 /* General link information. */
2381 struct bfd_link_info *info;
2382 /* Version tree. */
2383 struct bfd_elf_version_tree *verdefs;
2384 /* Whether we are exporting all dynamic symbols. */
2385 boolean export_dynamic;
2386 /* Whether we had a failure. */
2387 boolean failed;
2388 };
2389
2390 /* This structure is used to pass information to
2391 elf_link_find_version_dependencies. */
2392
2393 struct elf_find_verdep_info
2394 {
2395 /* Output BFD. */
2396 bfd *output_bfd;
2397 /* General link information. */
2398 struct bfd_link_info *info;
2399 /* The number of dependencies. */
2400 unsigned int vers;
2401 /* Whether we had a failure. */
2402 boolean failed;
2403 };
2404
2405 /* Array used to determine the number of hash table buckets to use
2406 based on the number of symbols there are. If there are fewer than
2407 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2408 fewer than 37 we use 17 buckets, and so forth. We never use more
2409 than 32771 buckets. */
2410
2411 static const size_t elf_buckets[] =
2412 {
2413 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2414 16411, 32771, 0
2415 };
2416
2417 /* Compute bucket count for hashing table. We do not use a static set
2418 of possible tables sizes anymore. Instead we determine for all
2419 possible reasonable sizes of the table the outcome (i.e., the
2420 number of collisions etc) and choose the best solution. The
2421 weighting functions are not too simple to allow the table to grow
2422 without bounds. Instead one of the weighting factors is the size.
2423 Therefore the result is always a good payoff between few collisions
2424 (= short chain lengths) and table size. */
2425 static size_t
2426 compute_bucket_count (info)
2427 struct bfd_link_info *info;
2428 {
2429 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2430 size_t best_size = 0;
2431 unsigned long int *hashcodes;
2432 unsigned long int *hashcodesp;
2433 unsigned long int i;
2434
2435 /* Compute the hash values for all exported symbols. At the same
2436 time store the values in an array so that we could use them for
2437 optimizations. */
2438 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2439 * sizeof (unsigned long int));
2440 if (hashcodes == NULL)
2441 return 0;
2442 hashcodesp = hashcodes;
2443
2444 /* Put all hash values in HASHCODES. */
2445 elf_link_hash_traverse (elf_hash_table (info),
2446 elf_collect_hash_codes, &hashcodesp);
2447
2448 /* We have a problem here. The following code to optimize the table
2449 size requires an integer type with more the 32 bits. If
2450 BFD_HOST_U_64_BIT is set we know about such a type. */
2451 #ifdef BFD_HOST_U_64_BIT
2452 if (info->optimize == true)
2453 {
2454 unsigned long int nsyms = hashcodesp - hashcodes;
2455 size_t minsize;
2456 size_t maxsize;
2457 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2458 unsigned long int *counts ;
2459
2460 /* Possible optimization parameters: if we have NSYMS symbols we say
2461 that the hashing table must at least have NSYMS/4 and at most
2462 2*NSYMS buckets. */
2463 minsize = nsyms / 4;
2464 if (minsize == 0)
2465 minsize = 1;
2466 best_size = maxsize = nsyms * 2;
2467
2468 /* Create array where we count the collisions in. We must use bfd_malloc
2469 since the size could be large. */
2470 counts = (unsigned long int *) bfd_malloc (maxsize
2471 * sizeof (unsigned long int));
2472 if (counts == NULL)
2473 {
2474 free (hashcodes);
2475 return 0;
2476 }
2477
2478 /* Compute the "optimal" size for the hash table. The criteria is a
2479 minimal chain length. The minor criteria is (of course) the size
2480 of the table. */
2481 for (i = minsize; i < maxsize; ++i)
2482 {
2483 /* Walk through the array of hashcodes and count the collisions. */
2484 BFD_HOST_U_64_BIT max;
2485 unsigned long int j;
2486 unsigned long int fact;
2487
2488 memset (counts, '\0', i * sizeof (unsigned long int));
2489
2490 /* Determine how often each hash bucket is used. */
2491 for (j = 0; j < nsyms; ++j)
2492 ++counts[hashcodes[j] % i];
2493
2494 /* For the weight function we need some information about the
2495 pagesize on the target. This is information need not be 100%
2496 accurate. Since this information is not available (so far) we
2497 define it here to a reasonable default value. If it is crucial
2498 to have a better value some day simply define this value. */
2499 # ifndef BFD_TARGET_PAGESIZE
2500 # define BFD_TARGET_PAGESIZE (4096)
2501 # endif
2502
2503 /* We in any case need 2 + NSYMS entries for the size values and
2504 the chains. */
2505 max = (2 + nsyms) * (ARCH_SIZE / 8);
2506
2507 # if 1
2508 /* Variant 1: optimize for short chains. We add the squares
2509 of all the chain lengths (which favous many small chain
2510 over a few long chains). */
2511 for (j = 0; j < i; ++j)
2512 max += counts[j] * counts[j];
2513
2514 /* This adds penalties for the overall size of the table. */
2515 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2516 max *= fact * fact;
2517 # else
2518 /* Variant 2: Optimize a lot more for small table. Here we
2519 also add squares of the size but we also add penalties for
2520 empty slots (the +1 term). */
2521 for (j = 0; j < i; ++j)
2522 max += (1 + counts[j]) * (1 + counts[j]);
2523
2524 /* The overall size of the table is considered, but not as
2525 strong as in variant 1, where it is squared. */
2526 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2527 max *= fact;
2528 # endif
2529
2530 /* Compare with current best results. */
2531 if (max < best_chlen)
2532 {
2533 best_chlen = max;
2534 best_size = i;
2535 }
2536 }
2537
2538 free (counts);
2539 }
2540 else
2541 #endif /* defined (BFD_HOST_U_64_BIT) */
2542 {
2543 /* This is the fallback solution if no 64bit type is available or if we
2544 are not supposed to spend much time on optimizations. We select the
2545 bucket count using a fixed set of numbers. */
2546 for (i = 0; elf_buckets[i] != 0; i++)
2547 {
2548 best_size = elf_buckets[i];
2549 if (dynsymcount < elf_buckets[i + 1])
2550 break;
2551 }
2552 }
2553
2554 /* Free the arrays we needed. */
2555 free (hashcodes);
2556
2557 return best_size;
2558 }
2559
2560 /* Set up the sizes and contents of the ELF dynamic sections. This is
2561 called by the ELF linker emulation before_allocation routine. We
2562 must set the sizes of the sections before the linker sets the
2563 addresses of the various sections. */
2564
2565 boolean
2566 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2567 export_dynamic, filter_shlib,
2568 auxiliary_filters, info, sinterpptr,
2569 verdefs)
2570 bfd *output_bfd;
2571 const char *soname;
2572 const char *rpath;
2573 boolean export_dynamic;
2574 const char *filter_shlib;
2575 const char * const *auxiliary_filters;
2576 struct bfd_link_info *info;
2577 asection **sinterpptr;
2578 struct bfd_elf_version_tree *verdefs;
2579 {
2580 bfd_size_type soname_indx;
2581 bfd *dynobj;
2582 struct elf_backend_data *bed;
2583 struct elf_assign_sym_version_info asvinfo;
2584
2585 *sinterpptr = NULL;
2586
2587 soname_indx = (bfd_size_type) -1;
2588
2589 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2590 return true;
2591
2592 /* The backend may have to create some sections regardless of whether
2593 we're dynamic or not. */
2594 bed = get_elf_backend_data (output_bfd);
2595 if (bed->elf_backend_always_size_sections
2596 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2597 return false;
2598
2599 dynobj = elf_hash_table (info)->dynobj;
2600
2601 /* If there were no dynamic objects in the link, there is nothing to
2602 do here. */
2603 if (dynobj == NULL)
2604 return true;
2605
2606 /* If we are supposed to export all symbols into the dynamic symbol
2607 table (this is not the normal case), then do so. */
2608 if (export_dynamic)
2609 {
2610 struct elf_info_failed eif;
2611
2612 eif.failed = false;
2613 eif.info = info;
2614 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2615 (PTR) &eif);
2616 if (eif.failed)
2617 return false;
2618 }
2619
2620 if (elf_hash_table (info)->dynamic_sections_created)
2621 {
2622 struct elf_info_failed eif;
2623 struct elf_link_hash_entry *h;
2624 bfd_size_type strsize;
2625
2626 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2627 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2628
2629 if (soname != NULL)
2630 {
2631 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2632 soname, true, true);
2633 if (soname_indx == (bfd_size_type) -1
2634 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2635 return false;
2636 }
2637
2638 if (info->symbolic)
2639 {
2640 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2641 return false;
2642 }
2643
2644 if (rpath != NULL)
2645 {
2646 bfd_size_type indx;
2647
2648 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2649 true, true);
2650 if (indx == (bfd_size_type) -1
2651 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2652 return false;
2653 }
2654
2655 if (filter_shlib != NULL)
2656 {
2657 bfd_size_type indx;
2658
2659 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2660 filter_shlib, true, true);
2661 if (indx == (bfd_size_type) -1
2662 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2663 return false;
2664 }
2665
2666 if (auxiliary_filters != NULL)
2667 {
2668 const char * const *p;
2669
2670 for (p = auxiliary_filters; *p != NULL; p++)
2671 {
2672 bfd_size_type indx;
2673
2674 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2675 *p, true, true);
2676 if (indx == (bfd_size_type) -1
2677 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2678 return false;
2679 }
2680 }
2681
2682 /* Attach all the symbols to their version information. */
2683 asvinfo.output_bfd = output_bfd;
2684 asvinfo.info = info;
2685 asvinfo.verdefs = verdefs;
2686 asvinfo.export_dynamic = export_dynamic;
2687 asvinfo.failed = false;
2688
2689 elf_link_hash_traverse (elf_hash_table (info),
2690 elf_link_assign_sym_version,
2691 (PTR) &asvinfo);
2692 if (asvinfo.failed)
2693 return false;
2694
2695 /* Find all symbols which were defined in a dynamic object and make
2696 the backend pick a reasonable value for them. */
2697 eif.failed = false;
2698 eif.info = info;
2699 elf_link_hash_traverse (elf_hash_table (info),
2700 elf_adjust_dynamic_symbol,
2701 (PTR) &eif);
2702 if (eif.failed)
2703 return false;
2704
2705 /* Add some entries to the .dynamic section. We fill in some of the
2706 values later, in elf_bfd_final_link, but we must add the entries
2707 now so that we know the final size of the .dynamic section. */
2708
2709 /* If there are initialization and/or finalization functions to
2710 call then add the corresponding DT_INIT/DT_FINI entries. */
2711 h = (info->init_function
2712 ? elf_link_hash_lookup (elf_hash_table (info),
2713 info->init_function, false,
2714 false, false)
2715 : NULL);
2716 if (h != NULL
2717 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2718 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2719 {
2720 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2721 return false;
2722 }
2723 h = (info->fini_function
2724 ? elf_link_hash_lookup (elf_hash_table (info),
2725 info->fini_function, false,
2726 false, false)
2727 : NULL);
2728 if (h != NULL
2729 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2730 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2731 {
2732 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2733 return false;
2734 }
2735
2736 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2737 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2738 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2739 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2740 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2741 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2742 sizeof (Elf_External_Sym)))
2743 return false;
2744 }
2745
2746 /* The backend must work out the sizes of all the other dynamic
2747 sections. */
2748 if (bed->elf_backend_size_dynamic_sections
2749 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2750 return false;
2751
2752 if (elf_hash_table (info)->dynamic_sections_created)
2753 {
2754 size_t dynsymcount;
2755 asection *s;
2756 size_t bucketcount = 0;
2757 Elf_Internal_Sym isym;
2758 size_t hash_entry_size;
2759
2760 /* Set up the version definition section. */
2761 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2762 BFD_ASSERT (s != NULL);
2763
2764 /* We may have created additional version definitions if we are
2765 just linking a regular application. */
2766 verdefs = asvinfo.verdefs;
2767
2768 if (verdefs == NULL)
2769 _bfd_strip_section_from_output (s);
2770 else
2771 {
2772 unsigned int cdefs;
2773 bfd_size_type size;
2774 struct bfd_elf_version_tree *t;
2775 bfd_byte *p;
2776 Elf_Internal_Verdef def;
2777 Elf_Internal_Verdaux defaux;
2778
2779 cdefs = 0;
2780 size = 0;
2781
2782 /* Make space for the base version. */
2783 size += sizeof (Elf_External_Verdef);
2784 size += sizeof (Elf_External_Verdaux);
2785 ++cdefs;
2786
2787 for (t = verdefs; t != NULL; t = t->next)
2788 {
2789 struct bfd_elf_version_deps *n;
2790
2791 size += sizeof (Elf_External_Verdef);
2792 size += sizeof (Elf_External_Verdaux);
2793 ++cdefs;
2794
2795 for (n = t->deps; n != NULL; n = n->next)
2796 size += sizeof (Elf_External_Verdaux);
2797 }
2798
2799 s->_raw_size = size;
2800 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2801 if (s->contents == NULL && s->_raw_size != 0)
2802 return false;
2803
2804 /* Fill in the version definition section. */
2805
2806 p = s->contents;
2807
2808 def.vd_version = VER_DEF_CURRENT;
2809 def.vd_flags = VER_FLG_BASE;
2810 def.vd_ndx = 1;
2811 def.vd_cnt = 1;
2812 def.vd_aux = sizeof (Elf_External_Verdef);
2813 def.vd_next = (sizeof (Elf_External_Verdef)
2814 + sizeof (Elf_External_Verdaux));
2815
2816 if (soname_indx != (bfd_size_type) -1)
2817 {
2818 def.vd_hash = bfd_elf_hash (soname);
2819 defaux.vda_name = soname_indx;
2820 }
2821 else
2822 {
2823 const char *name;
2824 bfd_size_type indx;
2825
2826 name = output_bfd->filename;
2827 def.vd_hash = bfd_elf_hash (name);
2828 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2829 name, true, false);
2830 if (indx == (bfd_size_type) -1)
2831 return false;
2832 defaux.vda_name = indx;
2833 }
2834 defaux.vda_next = 0;
2835
2836 _bfd_elf_swap_verdef_out (output_bfd, &def,
2837 (Elf_External_Verdef *)p);
2838 p += sizeof (Elf_External_Verdef);
2839 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2840 (Elf_External_Verdaux *) p);
2841 p += sizeof (Elf_External_Verdaux);
2842
2843 for (t = verdefs; t != NULL; t = t->next)
2844 {
2845 unsigned int cdeps;
2846 struct bfd_elf_version_deps *n;
2847 struct elf_link_hash_entry *h;
2848
2849 cdeps = 0;
2850 for (n = t->deps; n != NULL; n = n->next)
2851 ++cdeps;
2852
2853 /* Add a symbol representing this version. */
2854 h = NULL;
2855 if (! (_bfd_generic_link_add_one_symbol
2856 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2857 (bfd_vma) 0, (const char *) NULL, false,
2858 get_elf_backend_data (dynobj)->collect,
2859 (struct bfd_link_hash_entry **) &h)))
2860 return false;
2861 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2862 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2863 h->type = STT_OBJECT;
2864 h->verinfo.vertree = t;
2865
2866 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2867 return false;
2868
2869 def.vd_version = VER_DEF_CURRENT;
2870 def.vd_flags = 0;
2871 if (t->globals == NULL && t->locals == NULL && ! t->used)
2872 def.vd_flags |= VER_FLG_WEAK;
2873 def.vd_ndx = t->vernum + 1;
2874 def.vd_cnt = cdeps + 1;
2875 def.vd_hash = bfd_elf_hash (t->name);
2876 def.vd_aux = sizeof (Elf_External_Verdef);
2877 if (t->next != NULL)
2878 def.vd_next = (sizeof (Elf_External_Verdef)
2879 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2880 else
2881 def.vd_next = 0;
2882
2883 _bfd_elf_swap_verdef_out (output_bfd, &def,
2884 (Elf_External_Verdef *) p);
2885 p += sizeof (Elf_External_Verdef);
2886
2887 defaux.vda_name = h->dynstr_index;
2888 if (t->deps == NULL)
2889 defaux.vda_next = 0;
2890 else
2891 defaux.vda_next = sizeof (Elf_External_Verdaux);
2892 t->name_indx = defaux.vda_name;
2893
2894 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2895 (Elf_External_Verdaux *) p);
2896 p += sizeof (Elf_External_Verdaux);
2897
2898 for (n = t->deps; n != NULL; n = n->next)
2899 {
2900 if (n->version_needed == NULL)
2901 {
2902 /* This can happen if there was an error in the
2903 version script. */
2904 defaux.vda_name = 0;
2905 }
2906 else
2907 defaux.vda_name = n->version_needed->name_indx;
2908 if (n->next == NULL)
2909 defaux.vda_next = 0;
2910 else
2911 defaux.vda_next = sizeof (Elf_External_Verdaux);
2912
2913 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2914 (Elf_External_Verdaux *) p);
2915 p += sizeof (Elf_External_Verdaux);
2916 }
2917 }
2918
2919 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2920 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2921 return false;
2922
2923 elf_tdata (output_bfd)->cverdefs = cdefs;
2924 }
2925
2926 /* Work out the size of the version reference section. */
2927
2928 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2929 BFD_ASSERT (s != NULL);
2930 {
2931 struct elf_find_verdep_info sinfo;
2932
2933 sinfo.output_bfd = output_bfd;
2934 sinfo.info = info;
2935 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2936 if (sinfo.vers == 0)
2937 sinfo.vers = 1;
2938 sinfo.failed = false;
2939
2940 elf_link_hash_traverse (elf_hash_table (info),
2941 elf_link_find_version_dependencies,
2942 (PTR) &sinfo);
2943
2944 if (elf_tdata (output_bfd)->verref == NULL)
2945 _bfd_strip_section_from_output (s);
2946 else
2947 {
2948 Elf_Internal_Verneed *t;
2949 unsigned int size;
2950 unsigned int crefs;
2951 bfd_byte *p;
2952
2953 /* Build the version definition section. */
2954 size = 0;
2955 crefs = 0;
2956 for (t = elf_tdata (output_bfd)->verref;
2957 t != NULL;
2958 t = t->vn_nextref)
2959 {
2960 Elf_Internal_Vernaux *a;
2961
2962 size += sizeof (Elf_External_Verneed);
2963 ++crefs;
2964 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2965 size += sizeof (Elf_External_Vernaux);
2966 }
2967
2968 s->_raw_size = size;
2969 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2970 if (s->contents == NULL)
2971 return false;
2972
2973 p = s->contents;
2974 for (t = elf_tdata (output_bfd)->verref;
2975 t != NULL;
2976 t = t->vn_nextref)
2977 {
2978 unsigned int caux;
2979 Elf_Internal_Vernaux *a;
2980 bfd_size_type indx;
2981
2982 caux = 0;
2983 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2984 ++caux;
2985
2986 t->vn_version = VER_NEED_CURRENT;
2987 t->vn_cnt = caux;
2988 if (elf_dt_name (t->vn_bfd) != NULL)
2989 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2990 elf_dt_name (t->vn_bfd),
2991 true, false);
2992 else
2993 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2994 t->vn_bfd->filename, true, false);
2995 if (indx == (bfd_size_type) -1)
2996 return false;
2997 t->vn_file = indx;
2998 t->vn_aux = sizeof (Elf_External_Verneed);
2999 if (t->vn_nextref == NULL)
3000 t->vn_next = 0;
3001 else
3002 t->vn_next = (sizeof (Elf_External_Verneed)
3003 + caux * sizeof (Elf_External_Vernaux));
3004
3005 _bfd_elf_swap_verneed_out (output_bfd, t,
3006 (Elf_External_Verneed *) p);
3007 p += sizeof (Elf_External_Verneed);
3008
3009 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3010 {
3011 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3012 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3013 a->vna_nodename, true, false);
3014 if (indx == (bfd_size_type) -1)
3015 return false;
3016 a->vna_name = indx;
3017 if (a->vna_nextptr == NULL)
3018 a->vna_next = 0;
3019 else
3020 a->vna_next = sizeof (Elf_External_Vernaux);
3021
3022 _bfd_elf_swap_vernaux_out (output_bfd, a,
3023 (Elf_External_Vernaux *) p);
3024 p += sizeof (Elf_External_Vernaux);
3025 }
3026 }
3027
3028 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3029 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3030 return false;
3031
3032 elf_tdata (output_bfd)->cverrefs = crefs;
3033 }
3034 }
3035
3036 /* Assign dynsym indicies. In a shared library we generate a
3037 section symbol for each output section, which come first.
3038 Next come all of the back-end allocated local dynamic syms,
3039 followed by the rest of the global symbols. */
3040
3041 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3042
3043 /* Work out the size of the symbol version section. */
3044 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3045 BFD_ASSERT (s != NULL);
3046 if (dynsymcount == 0
3047 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3048 {
3049 _bfd_strip_section_from_output (s);
3050 /* The DYNSYMCOUNT might have changed if we were going to
3051 output a dynamic symbol table entry for S. */
3052 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3053 }
3054 else
3055 {
3056 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3057 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3058 if (s->contents == NULL)
3059 return false;
3060
3061 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3062 return false;
3063 }
3064
3065 /* Set the size of the .dynsym and .hash sections. We counted
3066 the number of dynamic symbols in elf_link_add_object_symbols.
3067 We will build the contents of .dynsym and .hash when we build
3068 the final symbol table, because until then we do not know the
3069 correct value to give the symbols. We built the .dynstr
3070 section as we went along in elf_link_add_object_symbols. */
3071 s = bfd_get_section_by_name (dynobj, ".dynsym");
3072 BFD_ASSERT (s != NULL);
3073 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3074 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3075 if (s->contents == NULL && s->_raw_size != 0)
3076 return false;
3077
3078 /* The first entry in .dynsym is a dummy symbol. */
3079 isym.st_value = 0;
3080 isym.st_size = 0;
3081 isym.st_name = 0;
3082 isym.st_info = 0;
3083 isym.st_other = 0;
3084 isym.st_shndx = 0;
3085 elf_swap_symbol_out (output_bfd, &isym,
3086 (PTR) (Elf_External_Sym *) s->contents);
3087
3088 /* Compute the size of the hashing table. As a side effect this
3089 computes the hash values for all the names we export. */
3090 bucketcount = compute_bucket_count (info);
3091
3092 s = bfd_get_section_by_name (dynobj, ".hash");
3093 BFD_ASSERT (s != NULL);
3094 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3095 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3096 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3097 if (s->contents == NULL)
3098 return false;
3099 memset (s->contents, 0, (size_t) s->_raw_size);
3100
3101 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3102 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3103 s->contents + hash_entry_size);
3104
3105 elf_hash_table (info)->bucketcount = bucketcount;
3106
3107 s = bfd_get_section_by_name (dynobj, ".dynstr");
3108 BFD_ASSERT (s != NULL);
3109 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3110
3111 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3112 return false;
3113 }
3114
3115 return true;
3116 }
3117 \f
3118 /* Fix up the flags for a symbol. This handles various cases which
3119 can only be fixed after all the input files are seen. This is
3120 currently called by both adjust_dynamic_symbol and
3121 assign_sym_version, which is unnecessary but perhaps more robust in
3122 the face of future changes. */
3123
3124 static boolean
3125 elf_fix_symbol_flags (h, eif)
3126 struct elf_link_hash_entry *h;
3127 struct elf_info_failed *eif;
3128 {
3129 /* If this symbol was mentioned in a non-ELF file, try to set
3130 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3131 permit a non-ELF file to correctly refer to a symbol defined in
3132 an ELF dynamic object. */
3133 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3134 {
3135 if (h->root.type != bfd_link_hash_defined
3136 && h->root.type != bfd_link_hash_defweak)
3137 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3138 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3139 else
3140 {
3141 if (h->root.u.def.section->owner != NULL
3142 && (bfd_get_flavour (h->root.u.def.section->owner)
3143 == bfd_target_elf_flavour))
3144 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3145 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3146 else
3147 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3148 }
3149
3150 if (h->dynindx == -1
3151 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3152 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3153 {
3154 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3155 {
3156 eif->failed = true;
3157 return false;
3158 }
3159 }
3160 }
3161 else
3162 {
3163 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3164 was first seen in a non-ELF file. Fortunately, if the symbol
3165 was first seen in an ELF file, we're probably OK unless the
3166 symbol was defined in a non-ELF file. Catch that case here.
3167 FIXME: We're still in trouble if the symbol was first seen in
3168 a dynamic object, and then later in a non-ELF regular object. */
3169 if ((h->root.type == bfd_link_hash_defined
3170 || h->root.type == bfd_link_hash_defweak)
3171 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3172 && (h->root.u.def.section->owner != NULL
3173 ? (bfd_get_flavour (h->root.u.def.section->owner)
3174 != bfd_target_elf_flavour)
3175 : (bfd_is_abs_section (h->root.u.def.section)
3176 && (h->elf_link_hash_flags
3177 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3178 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3179 }
3180
3181 /* If this is a final link, and the symbol was defined as a common
3182 symbol in a regular object file, and there was no definition in
3183 any dynamic object, then the linker will have allocated space for
3184 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3185 flag will not have been set. */
3186 if (h->root.type == bfd_link_hash_defined
3187 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3188 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3189 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3190 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3191 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3192
3193 /* If -Bsymbolic was used (which means to bind references to global
3194 symbols to the definition within the shared object), and this
3195 symbol was defined in a regular object, then it actually doesn't
3196 need a PLT entry. */
3197 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3198 && eif->info->shared
3199 && eif->info->symbolic
3200 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3201 {
3202 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3203 h->plt.offset = (bfd_vma) -1;
3204 }
3205
3206 return true;
3207 }
3208
3209 /* Make the backend pick a good value for a dynamic symbol. This is
3210 called via elf_link_hash_traverse, and also calls itself
3211 recursively. */
3212
3213 static boolean
3214 elf_adjust_dynamic_symbol (h, data)
3215 struct elf_link_hash_entry *h;
3216 PTR data;
3217 {
3218 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3219 bfd *dynobj;
3220 struct elf_backend_data *bed;
3221
3222 /* Ignore indirect symbols. These are added by the versioning code. */
3223 if (h->root.type == bfd_link_hash_indirect)
3224 return true;
3225
3226 /* Fix the symbol flags. */
3227 if (! elf_fix_symbol_flags (h, eif))
3228 return false;
3229
3230 /* If this symbol does not require a PLT entry, and it is not
3231 defined by a dynamic object, or is not referenced by a regular
3232 object, ignore it. We do have to handle a weak defined symbol,
3233 even if no regular object refers to it, if we decided to add it
3234 to the dynamic symbol table. FIXME: Do we normally need to worry
3235 about symbols which are defined by one dynamic object and
3236 referenced by another one? */
3237 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3238 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3239 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3240 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3241 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3242 {
3243 h->plt.offset = (bfd_vma) -1;
3244 return true;
3245 }
3246
3247 /* If we've already adjusted this symbol, don't do it again. This
3248 can happen via a recursive call. */
3249 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3250 return true;
3251
3252 /* Don't look at this symbol again. Note that we must set this
3253 after checking the above conditions, because we may look at a
3254 symbol once, decide not to do anything, and then get called
3255 recursively later after REF_REGULAR is set below. */
3256 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3257
3258 /* If this is a weak definition, and we know a real definition, and
3259 the real symbol is not itself defined by a regular object file,
3260 then get a good value for the real definition. We handle the
3261 real symbol first, for the convenience of the backend routine.
3262
3263 Note that there is a confusing case here. If the real definition
3264 is defined by a regular object file, we don't get the real symbol
3265 from the dynamic object, but we do get the weak symbol. If the
3266 processor backend uses a COPY reloc, then if some routine in the
3267 dynamic object changes the real symbol, we will not see that
3268 change in the corresponding weak symbol. This is the way other
3269 ELF linkers work as well, and seems to be a result of the shared
3270 library model.
3271
3272 I will clarify this issue. Most SVR4 shared libraries define the
3273 variable _timezone and define timezone as a weak synonym. The
3274 tzset call changes _timezone. If you write
3275 extern int timezone;
3276 int _timezone = 5;
3277 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3278 you might expect that, since timezone is a synonym for _timezone,
3279 the same number will print both times. However, if the processor
3280 backend uses a COPY reloc, then actually timezone will be copied
3281 into your process image, and, since you define _timezone
3282 yourself, _timezone will not. Thus timezone and _timezone will
3283 wind up at different memory locations. The tzset call will set
3284 _timezone, leaving timezone unchanged. */
3285
3286 if (h->weakdef != NULL)
3287 {
3288 struct elf_link_hash_entry *weakdef;
3289
3290 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3291 || h->root.type == bfd_link_hash_defweak);
3292 weakdef = h->weakdef;
3293 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3294 || weakdef->root.type == bfd_link_hash_defweak);
3295 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3296 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3297 {
3298 /* This symbol is defined by a regular object file, so we
3299 will not do anything special. Clear weakdef for the
3300 convenience of the processor backend. */
3301 h->weakdef = NULL;
3302 }
3303 else
3304 {
3305 /* There is an implicit reference by a regular object file
3306 via the weak symbol. */
3307 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3308 if (h->weakdef->elf_link_hash_flags
3309 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3310 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3311 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3312 return false;
3313 }
3314 }
3315
3316 /* If a symbol has no type and no size and does not require a PLT
3317 entry, then we are probably about to do the wrong thing here: we
3318 are probably going to create a COPY reloc for an empty object.
3319 This case can arise when a shared object is built with assembly
3320 code, and the assembly code fails to set the symbol type. */
3321 if (h->size == 0
3322 && h->type == STT_NOTYPE
3323 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3324 (*_bfd_error_handler)
3325 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3326 h->root.root.string);
3327
3328 dynobj = elf_hash_table (eif->info)->dynobj;
3329 bed = get_elf_backend_data (dynobj);
3330 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3331 {
3332 eif->failed = true;
3333 return false;
3334 }
3335
3336 return true;
3337 }
3338 \f
3339 /* This routine is used to export all defined symbols into the dynamic
3340 symbol table. It is called via elf_link_hash_traverse. */
3341
3342 static boolean
3343 elf_export_symbol (h, data)
3344 struct elf_link_hash_entry *h;
3345 PTR data;
3346 {
3347 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3348
3349 /* Ignore indirect symbols. These are added by the versioning code. */
3350 if (h->root.type == bfd_link_hash_indirect)
3351 return true;
3352
3353 if (h->dynindx == -1
3354 && (h->elf_link_hash_flags
3355 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3356 {
3357 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3358 {
3359 eif->failed = true;
3360 return false;
3361 }
3362 }
3363
3364 return true;
3365 }
3366 \f
3367 /* Look through the symbols which are defined in other shared
3368 libraries and referenced here. Update the list of version
3369 dependencies. This will be put into the .gnu.version_r section.
3370 This function is called via elf_link_hash_traverse. */
3371
3372 static boolean
3373 elf_link_find_version_dependencies (h, data)
3374 struct elf_link_hash_entry *h;
3375 PTR data;
3376 {
3377 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3378 Elf_Internal_Verneed *t;
3379 Elf_Internal_Vernaux *a;
3380
3381 /* We only care about symbols defined in shared objects with version
3382 information. */
3383 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3384 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3385 || h->dynindx == -1
3386 || h->verinfo.verdef == NULL)
3387 return true;
3388
3389 /* See if we already know about this version. */
3390 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3391 {
3392 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3393 continue;
3394
3395 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3396 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3397 return true;
3398
3399 break;
3400 }
3401
3402 /* This is a new version. Add it to tree we are building. */
3403
3404 if (t == NULL)
3405 {
3406 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3407 if (t == NULL)
3408 {
3409 rinfo->failed = true;
3410 return false;
3411 }
3412
3413 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3414 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3415 elf_tdata (rinfo->output_bfd)->verref = t;
3416 }
3417
3418 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3419
3420 /* Note that we are copying a string pointer here, and testing it
3421 above. If bfd_elf_string_from_elf_section is ever changed to
3422 discard the string data when low in memory, this will have to be
3423 fixed. */
3424 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3425
3426 a->vna_flags = h->verinfo.verdef->vd_flags;
3427 a->vna_nextptr = t->vn_auxptr;
3428
3429 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3430 ++rinfo->vers;
3431
3432 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3433
3434 t->vn_auxptr = a;
3435
3436 return true;
3437 }
3438
3439 /* Figure out appropriate versions for all the symbols. We may not
3440 have the version number script until we have read all of the input
3441 files, so until that point we don't know which symbols should be
3442 local. This function is called via elf_link_hash_traverse. */
3443
3444 static boolean
3445 elf_link_assign_sym_version (h, data)
3446 struct elf_link_hash_entry *h;
3447 PTR data;
3448 {
3449 struct elf_assign_sym_version_info *sinfo =
3450 (struct elf_assign_sym_version_info *) data;
3451 struct bfd_link_info *info = sinfo->info;
3452 struct elf_info_failed eif;
3453 char *p;
3454
3455 /* Fix the symbol flags. */
3456 eif.failed = false;
3457 eif.info = info;
3458 if (! elf_fix_symbol_flags (h, &eif))
3459 {
3460 if (eif.failed)
3461 sinfo->failed = true;
3462 return false;
3463 }
3464
3465 /* We only need version numbers for symbols defined in regular
3466 objects. */
3467 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3468 return true;
3469
3470 p = strchr (h->root.root.string, ELF_VER_CHR);
3471 if (p != NULL && h->verinfo.vertree == NULL)
3472 {
3473 struct bfd_elf_version_tree *t;
3474 boolean hidden;
3475
3476 hidden = true;
3477
3478 /* There are two consecutive ELF_VER_CHR characters if this is
3479 not a hidden symbol. */
3480 ++p;
3481 if (*p == ELF_VER_CHR)
3482 {
3483 hidden = false;
3484 ++p;
3485 }
3486
3487 /* If there is no version string, we can just return out. */
3488 if (*p == '\0')
3489 {
3490 if (hidden)
3491 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3492 return true;
3493 }
3494
3495 /* Look for the version. If we find it, it is no longer weak. */
3496 for (t = sinfo->verdefs; t != NULL; t = t->next)
3497 {
3498 if (strcmp (t->name, p) == 0)
3499 {
3500 int len;
3501 char *alc;
3502 struct bfd_elf_version_expr *d;
3503
3504 len = p - h->root.root.string;
3505 alc = bfd_alloc (sinfo->output_bfd, len);
3506 if (alc == NULL)
3507 return false;
3508 strncpy (alc, h->root.root.string, len - 1);
3509 alc[len - 1] = '\0';
3510 if (alc[len - 2] == ELF_VER_CHR)
3511 alc[len - 2] = '\0';
3512
3513 h->verinfo.vertree = t;
3514 t->used = true;
3515 d = NULL;
3516
3517 if (t->globals != NULL)
3518 {
3519 for (d = t->globals; d != NULL; d = d->next)
3520 if ((*d->match) (d, alc))
3521 break;
3522 }
3523
3524 /* See if there is anything to force this symbol to
3525 local scope. */
3526 if (d == NULL && t->locals != NULL)
3527 {
3528 for (d = t->locals; d != NULL; d = d->next)
3529 {
3530 if ((*d->match) (d, alc))
3531 {
3532 if (h->dynindx != -1
3533 && info->shared
3534 && ! sinfo->export_dynamic)
3535 {
3536 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3537 h->elf_link_hash_flags &=~
3538 ELF_LINK_HASH_NEEDS_PLT;
3539 h->dynindx = -1;
3540 h->plt.offset = (bfd_vma) -1;
3541 /* FIXME: The name of the symbol has
3542 already been recorded in the dynamic
3543 string table section. */
3544 }
3545
3546 break;
3547 }
3548 }
3549 }
3550
3551 bfd_release (sinfo->output_bfd, alc);
3552 break;
3553 }
3554 }
3555
3556 /* If we are building an application, we need to create a
3557 version node for this version. */
3558 if (t == NULL && ! info->shared)
3559 {
3560 struct bfd_elf_version_tree **pp;
3561 int version_index;
3562
3563 /* If we aren't going to export this symbol, we don't need
3564 to worry about it. */
3565 if (h->dynindx == -1)
3566 return true;
3567
3568 t = ((struct bfd_elf_version_tree *)
3569 bfd_alloc (sinfo->output_bfd, sizeof *t));
3570 if (t == NULL)
3571 {
3572 sinfo->failed = true;
3573 return false;
3574 }
3575
3576 t->next = NULL;
3577 t->name = p;
3578 t->globals = NULL;
3579 t->locals = NULL;
3580 t->deps = NULL;
3581 t->name_indx = (unsigned int) -1;
3582 t->used = true;
3583
3584 version_index = 1;
3585 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3586 ++version_index;
3587 t->vernum = version_index;
3588
3589 *pp = t;
3590
3591 h->verinfo.vertree = t;
3592 }
3593 else if (t == NULL)
3594 {
3595 /* We could not find the version for a symbol when
3596 generating a shared archive. Return an error. */
3597 (*_bfd_error_handler)
3598 (_("%s: undefined versioned symbol name %s"),
3599 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3600 bfd_set_error (bfd_error_bad_value);
3601 sinfo->failed = true;
3602 return false;
3603 }
3604
3605 if (hidden)
3606 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3607 }
3608
3609 /* If we don't have a version for this symbol, see if we can find
3610 something. */
3611 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3612 {
3613 struct bfd_elf_version_tree *t;
3614 struct bfd_elf_version_tree *deflt;
3615 struct bfd_elf_version_expr *d;
3616
3617 /* See if can find what version this symbol is in. If the
3618 symbol is supposed to be local, then don't actually register
3619 it. */
3620 deflt = NULL;
3621 for (t = sinfo->verdefs; t != NULL; t = t->next)
3622 {
3623 if (t->globals != NULL)
3624 {
3625 for (d = t->globals; d != NULL; d = d->next)
3626 {
3627 if ((*d->match) (d, h->root.root.string))
3628 {
3629 h->verinfo.vertree = t;
3630 break;
3631 }
3632 }
3633
3634 if (d != NULL)
3635 break;
3636 }
3637
3638 if (t->locals != NULL)
3639 {
3640 for (d = t->locals; d != NULL; d = d->next)
3641 {
3642 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3643 deflt = t;
3644 else if ((*d->match) (d, h->root.root.string))
3645 {
3646 h->verinfo.vertree = t;
3647 if (h->dynindx != -1
3648 && info->shared
3649 && ! sinfo->export_dynamic)
3650 {
3651 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3652 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3653 h->dynindx = -1;
3654 h->plt.offset = (bfd_vma) -1;
3655 /* FIXME: The name of the symbol has already
3656 been recorded in the dynamic string table
3657 section. */
3658 }
3659 break;
3660 }
3661 }
3662
3663 if (d != NULL)
3664 break;
3665 }
3666 }
3667
3668 if (deflt != NULL && h->verinfo.vertree == NULL)
3669 {
3670 h->verinfo.vertree = deflt;
3671 if (h->dynindx != -1
3672 && info->shared
3673 && ! sinfo->export_dynamic)
3674 {
3675 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3676 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3677 h->dynindx = -1;
3678 h->plt.offset = (bfd_vma) -1;
3679 /* FIXME: The name of the symbol has already been
3680 recorded in the dynamic string table section. */
3681 }
3682 }
3683 }
3684
3685 return true;
3686 }
3687 \f
3688 /* Final phase of ELF linker. */
3689
3690 /* A structure we use to avoid passing large numbers of arguments. */
3691
3692 struct elf_final_link_info
3693 {
3694 /* General link information. */
3695 struct bfd_link_info *info;
3696 /* Output BFD. */
3697 bfd *output_bfd;
3698 /* Symbol string table. */
3699 struct bfd_strtab_hash *symstrtab;
3700 /* .dynsym section. */
3701 asection *dynsym_sec;
3702 /* .hash section. */
3703 asection *hash_sec;
3704 /* symbol version section (.gnu.version). */
3705 asection *symver_sec;
3706 /* Buffer large enough to hold contents of any section. */
3707 bfd_byte *contents;
3708 /* Buffer large enough to hold external relocs of any section. */
3709 PTR external_relocs;
3710 /* Buffer large enough to hold internal relocs of any section. */
3711 Elf_Internal_Rela *internal_relocs;
3712 /* Buffer large enough to hold external local symbols of any input
3713 BFD. */
3714 Elf_External_Sym *external_syms;
3715 /* Buffer large enough to hold internal local symbols of any input
3716 BFD. */
3717 Elf_Internal_Sym *internal_syms;
3718 /* Array large enough to hold a symbol index for each local symbol
3719 of any input BFD. */
3720 long *indices;
3721 /* Array large enough to hold a section pointer for each local
3722 symbol of any input BFD. */
3723 asection **sections;
3724 /* Buffer to hold swapped out symbols. */
3725 Elf_External_Sym *symbuf;
3726 /* Number of swapped out symbols in buffer. */
3727 size_t symbuf_count;
3728 /* Number of symbols which fit in symbuf. */
3729 size_t symbuf_size;
3730 };
3731
3732 static boolean elf_link_output_sym
3733 PARAMS ((struct elf_final_link_info *, const char *,
3734 Elf_Internal_Sym *, asection *));
3735 static boolean elf_link_flush_output_syms
3736 PARAMS ((struct elf_final_link_info *));
3737 static boolean elf_link_output_extsym
3738 PARAMS ((struct elf_link_hash_entry *, PTR));
3739 static boolean elf_link_input_bfd
3740 PARAMS ((struct elf_final_link_info *, bfd *));
3741 static boolean elf_reloc_link_order
3742 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3743 struct bfd_link_order *));
3744
3745 /* This struct is used to pass information to elf_link_output_extsym. */
3746
3747 struct elf_outext_info
3748 {
3749 boolean failed;
3750 boolean localsyms;
3751 struct elf_final_link_info *finfo;
3752 };
3753
3754 /* Compute the size of, and allocate space for, REL_HDR which is the
3755 section header for a section containing relocations for O. */
3756
3757 static boolean
3758 elf_link_size_reloc_section (abfd, rel_hdr, o)
3759 bfd *abfd;
3760 Elf_Internal_Shdr *rel_hdr;
3761 asection *o;
3762 {
3763 register struct elf_link_hash_entry **p, **pend;
3764 unsigned reloc_count;
3765
3766 /* Figure out how many relocations there will be. */
3767 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3768 reloc_count = elf_section_data (o)->rel_count;
3769 else
3770 reloc_count = elf_section_data (o)->rel_count2;
3771
3772 /* That allows us to calculate the size of the section. */
3773 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3774
3775 /* The contents field must last into write_object_contents, so we
3776 allocate it with bfd_alloc rather than malloc. */
3777 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3778 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3779 return false;
3780
3781 /* We only allocate one set of hash entries, so we only do it the
3782 first time we are called. */
3783 if (elf_section_data (o)->rel_hashes == NULL)
3784 {
3785 p = ((struct elf_link_hash_entry **)
3786 bfd_malloc (o->reloc_count
3787 * sizeof (struct elf_link_hash_entry *)));
3788 if (p == NULL && o->reloc_count != 0)
3789 return false;
3790
3791 elf_section_data (o)->rel_hashes = p;
3792 pend = p + o->reloc_count;
3793 for (; p < pend; p++)
3794 *p = NULL;
3795 }
3796
3797 return true;
3798 }
3799
3800 /* When performing a relocateable link, the input relocations are
3801 preserved. But, if they reference global symbols, the indices
3802 referenced must be updated. Update all the relocations in
3803 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3804
3805 static void
3806 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3807 bfd *abfd;
3808 Elf_Internal_Shdr *rel_hdr;
3809 unsigned int count;
3810 struct elf_link_hash_entry **rel_hash;
3811 {
3812 unsigned int i;
3813
3814 for (i = 0; i < count; i++, rel_hash++)
3815 {
3816 if (*rel_hash == NULL)
3817 continue;
3818
3819 BFD_ASSERT ((*rel_hash)->indx >= 0);
3820
3821 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3822 {
3823 Elf_External_Rel *erel;
3824 Elf_Internal_Rel irel;
3825
3826 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3827 elf_swap_reloc_in (abfd, erel, &irel);
3828 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3829 ELF_R_TYPE (irel.r_info));
3830 elf_swap_reloc_out (abfd, &irel, erel);
3831 }
3832 else
3833 {
3834 Elf_External_Rela *erela;
3835 Elf_Internal_Rela irela;
3836
3837 BFD_ASSERT (rel_hdr->sh_entsize
3838 == sizeof (Elf_External_Rela));
3839
3840 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3841 elf_swap_reloca_in (abfd, erela, &irela);
3842 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3843 ELF_R_TYPE (irela.r_info));
3844 elf_swap_reloca_out (abfd, &irela, erela);
3845 }
3846 }
3847 }
3848
3849 /* Do the final step of an ELF link. */
3850
3851 boolean
3852 elf_bfd_final_link (abfd, info)
3853 bfd *abfd;
3854 struct bfd_link_info *info;
3855 {
3856 boolean dynamic;
3857 bfd *dynobj;
3858 struct elf_final_link_info finfo;
3859 register asection *o;
3860 register struct bfd_link_order *p;
3861 register bfd *sub;
3862 size_t max_contents_size;
3863 size_t max_external_reloc_size;
3864 size_t max_internal_reloc_count;
3865 size_t max_sym_count;
3866 file_ptr off;
3867 Elf_Internal_Sym elfsym;
3868 unsigned int i;
3869 Elf_Internal_Shdr *symtab_hdr;
3870 Elf_Internal_Shdr *symstrtab_hdr;
3871 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3872 struct elf_outext_info eoinfo;
3873
3874 if (info->shared)
3875 abfd->flags |= DYNAMIC;
3876
3877 dynamic = elf_hash_table (info)->dynamic_sections_created;
3878 dynobj = elf_hash_table (info)->dynobj;
3879
3880 finfo.info = info;
3881 finfo.output_bfd = abfd;
3882 finfo.symstrtab = elf_stringtab_init ();
3883 if (finfo.symstrtab == NULL)
3884 return false;
3885
3886 if (! dynamic)
3887 {
3888 finfo.dynsym_sec = NULL;
3889 finfo.hash_sec = NULL;
3890 finfo.symver_sec = NULL;
3891 }
3892 else
3893 {
3894 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3895 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3896 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3897 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3898 /* Note that it is OK if symver_sec is NULL. */
3899 }
3900
3901 finfo.contents = NULL;
3902 finfo.external_relocs = NULL;
3903 finfo.internal_relocs = NULL;
3904 finfo.external_syms = NULL;
3905 finfo.internal_syms = NULL;
3906 finfo.indices = NULL;
3907 finfo.sections = NULL;
3908 finfo.symbuf = NULL;
3909 finfo.symbuf_count = 0;
3910
3911 /* Count up the number of relocations we will output for each output
3912 section, so that we know the sizes of the reloc sections. We
3913 also figure out some maximum sizes. */
3914 max_contents_size = 0;
3915 max_external_reloc_size = 0;
3916 max_internal_reloc_count = 0;
3917 max_sym_count = 0;
3918 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3919 {
3920 o->reloc_count = 0;
3921
3922 for (p = o->link_order_head; p != NULL; p = p->next)
3923 {
3924 if (p->type == bfd_section_reloc_link_order
3925 || p->type == bfd_symbol_reloc_link_order)
3926 ++o->reloc_count;
3927 else if (p->type == bfd_indirect_link_order)
3928 {
3929 asection *sec;
3930
3931 sec = p->u.indirect.section;
3932
3933 /* Mark all sections which are to be included in the
3934 link. This will normally be every section. We need
3935 to do this so that we can identify any sections which
3936 the linker has decided to not include. */
3937 sec->linker_mark = true;
3938
3939 if (info->relocateable)
3940 o->reloc_count += sec->reloc_count;
3941
3942 if (sec->_raw_size > max_contents_size)
3943 max_contents_size = sec->_raw_size;
3944 if (sec->_cooked_size > max_contents_size)
3945 max_contents_size = sec->_cooked_size;
3946
3947 /* We are interested in just local symbols, not all
3948 symbols. */
3949 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3950 && (sec->owner->flags & DYNAMIC) == 0)
3951 {
3952 size_t sym_count;
3953
3954 if (elf_bad_symtab (sec->owner))
3955 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3956 / sizeof (Elf_External_Sym));
3957 else
3958 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3959
3960 if (sym_count > max_sym_count)
3961 max_sym_count = sym_count;
3962
3963 if ((sec->flags & SEC_RELOC) != 0)
3964 {
3965 size_t ext_size;
3966
3967 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3968 if (ext_size > max_external_reloc_size)
3969 max_external_reloc_size = ext_size;
3970 if (sec->reloc_count > max_internal_reloc_count)
3971 max_internal_reloc_count = sec->reloc_count;
3972 }
3973 }
3974 }
3975 }
3976
3977 if (o->reloc_count > 0)
3978 o->flags |= SEC_RELOC;
3979 else
3980 {
3981 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3982 set it (this is probably a bug) and if it is set
3983 assign_section_numbers will create a reloc section. */
3984 o->flags &=~ SEC_RELOC;
3985 }
3986
3987 /* If the SEC_ALLOC flag is not set, force the section VMA to
3988 zero. This is done in elf_fake_sections as well, but forcing
3989 the VMA to 0 here will ensure that relocs against these
3990 sections are handled correctly. */
3991 if ((o->flags & SEC_ALLOC) == 0
3992 && ! o->user_set_vma)
3993 o->vma = 0;
3994 }
3995
3996 /* Figure out the file positions for everything but the symbol table
3997 and the relocs. We set symcount to force assign_section_numbers
3998 to create a symbol table. */
3999 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4000 BFD_ASSERT (! abfd->output_has_begun);
4001 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4002 goto error_return;
4003
4004 /* Figure out how many relocations we will have in each section.
4005 Just using RELOC_COUNT isn't good enough since that doesn't
4006 maintain a separate value for REL vs. RELA relocations. */
4007 if (info->relocateable)
4008 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4009 for (o = sub->sections; o != NULL; o = o->next)
4010 {
4011 asection* output_section = o->output_section;
4012
4013 if (output_section && (o->flags & SEC_RELOC) != 0)
4014 {
4015 struct bfd_elf_section_data *esdi
4016 = elf_section_data (o);
4017 struct bfd_elf_section_data *esdo
4018 = elf_section_data (output_section);
4019 unsigned int *rel_count;
4020 unsigned int *rel_count2;
4021
4022 /* We must be careful to add the relocation froms the
4023 input section to the right output count. */
4024 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4025 {
4026 rel_count = &esdo->rel_count;
4027 rel_count2 = &esdo->rel_count2;
4028 }
4029 else
4030 {
4031 rel_count = &esdo->rel_count2;
4032 rel_count2 = &esdo->rel_count;
4033 }
4034
4035 *rel_count += (esdi->rel_hdr.sh_size
4036 / esdi->rel_hdr.sh_entsize);
4037 if (esdi->rel_hdr2)
4038 *rel_count2 += (esdi->rel_hdr2->sh_size
4039 / esdi->rel_hdr2->sh_entsize);
4040 }
4041 }
4042
4043 /* That created the reloc sections. Set their sizes, and assign
4044 them file positions, and allocate some buffers. */
4045 for (o = abfd->sections; o != NULL; o = o->next)
4046 {
4047 if ((o->flags & SEC_RELOC) != 0)
4048 {
4049 if (!elf_link_size_reloc_section (abfd,
4050 &elf_section_data (o)->rel_hdr,
4051 o))
4052 goto error_return;
4053
4054 if (elf_section_data (o)->rel_hdr2
4055 && !elf_link_size_reloc_section (abfd,
4056 elf_section_data (o)->rel_hdr2,
4057 o))
4058 goto error_return;
4059 }
4060
4061 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4062 to count upwards while actually outputting the relocations. */
4063 elf_section_data (o)->rel_count = 0;
4064 elf_section_data (o)->rel_count2 = 0;
4065 }
4066
4067 _bfd_elf_assign_file_positions_for_relocs (abfd);
4068
4069 /* We have now assigned file positions for all the sections except
4070 .symtab and .strtab. We start the .symtab section at the current
4071 file position, and write directly to it. We build the .strtab
4072 section in memory. */
4073 bfd_get_symcount (abfd) = 0;
4074 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4075 /* sh_name is set in prep_headers. */
4076 symtab_hdr->sh_type = SHT_SYMTAB;
4077 symtab_hdr->sh_flags = 0;
4078 symtab_hdr->sh_addr = 0;
4079 symtab_hdr->sh_size = 0;
4080 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4081 /* sh_link is set in assign_section_numbers. */
4082 /* sh_info is set below. */
4083 /* sh_offset is set just below. */
4084 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4085
4086 off = elf_tdata (abfd)->next_file_pos;
4087 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4088
4089 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4090 incorrect. We do not yet know the size of the .symtab section.
4091 We correct next_file_pos below, after we do know the size. */
4092
4093 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4094 continuously seeking to the right position in the file. */
4095 if (! info->keep_memory || max_sym_count < 20)
4096 finfo.symbuf_size = 20;
4097 else
4098 finfo.symbuf_size = max_sym_count;
4099 finfo.symbuf = ((Elf_External_Sym *)
4100 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4101 if (finfo.symbuf == NULL)
4102 goto error_return;
4103
4104 /* Start writing out the symbol table. The first symbol is always a
4105 dummy symbol. */
4106 if (info->strip != strip_all || info->relocateable)
4107 {
4108 elfsym.st_value = 0;
4109 elfsym.st_size = 0;
4110 elfsym.st_info = 0;
4111 elfsym.st_other = 0;
4112 elfsym.st_shndx = SHN_UNDEF;
4113 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4114 &elfsym, bfd_und_section_ptr))
4115 goto error_return;
4116 }
4117
4118 #if 0
4119 /* Some standard ELF linkers do this, but we don't because it causes
4120 bootstrap comparison failures. */
4121 /* Output a file symbol for the output file as the second symbol.
4122 We output this even if we are discarding local symbols, although
4123 I'm not sure if this is correct. */
4124 elfsym.st_value = 0;
4125 elfsym.st_size = 0;
4126 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4127 elfsym.st_other = 0;
4128 elfsym.st_shndx = SHN_ABS;
4129 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4130 &elfsym, bfd_abs_section_ptr))
4131 goto error_return;
4132 #endif
4133
4134 /* Output a symbol for each section. We output these even if we are
4135 discarding local symbols, since they are used for relocs. These
4136 symbols have no names. We store the index of each one in the
4137 index field of the section, so that we can find it again when
4138 outputting relocs. */
4139 if (info->strip != strip_all || info->relocateable)
4140 {
4141 elfsym.st_size = 0;
4142 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4143 elfsym.st_other = 0;
4144 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4145 {
4146 o = section_from_elf_index (abfd, i);
4147 if (o != NULL)
4148 o->target_index = bfd_get_symcount (abfd);
4149 elfsym.st_shndx = i;
4150 if (info->relocateable || o == NULL)
4151 elfsym.st_value = 0;
4152 else
4153 elfsym.st_value = o->vma;
4154 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4155 &elfsym, o))
4156 goto error_return;
4157 }
4158 }
4159
4160 /* Allocate some memory to hold information read in from the input
4161 files. */
4162 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4163 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4164 finfo.internal_relocs = ((Elf_Internal_Rela *)
4165 bfd_malloc (max_internal_reloc_count
4166 * sizeof (Elf_Internal_Rela)
4167 * bed->s->int_rels_per_ext_rel));
4168 finfo.external_syms = ((Elf_External_Sym *)
4169 bfd_malloc (max_sym_count
4170 * sizeof (Elf_External_Sym)));
4171 finfo.internal_syms = ((Elf_Internal_Sym *)
4172 bfd_malloc (max_sym_count
4173 * sizeof (Elf_Internal_Sym)));
4174 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4175 finfo.sections = ((asection **)
4176 bfd_malloc (max_sym_count * sizeof (asection *)));
4177 if ((finfo.contents == NULL && max_contents_size != 0)
4178 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4179 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4180 || (finfo.external_syms == NULL && max_sym_count != 0)
4181 || (finfo.internal_syms == NULL && max_sym_count != 0)
4182 || (finfo.indices == NULL && max_sym_count != 0)
4183 || (finfo.sections == NULL && max_sym_count != 0))
4184 goto error_return;
4185
4186 /* Since ELF permits relocations to be against local symbols, we
4187 must have the local symbols available when we do the relocations.
4188 Since we would rather only read the local symbols once, and we
4189 would rather not keep them in memory, we handle all the
4190 relocations for a single input file at the same time.
4191
4192 Unfortunately, there is no way to know the total number of local
4193 symbols until we have seen all of them, and the local symbol
4194 indices precede the global symbol indices. This means that when
4195 we are generating relocateable output, and we see a reloc against
4196 a global symbol, we can not know the symbol index until we have
4197 finished examining all the local symbols to see which ones we are
4198 going to output. To deal with this, we keep the relocations in
4199 memory, and don't output them until the end of the link. This is
4200 an unfortunate waste of memory, but I don't see a good way around
4201 it. Fortunately, it only happens when performing a relocateable
4202 link, which is not the common case. FIXME: If keep_memory is set
4203 we could write the relocs out and then read them again; I don't
4204 know how bad the memory loss will be. */
4205
4206 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4207 sub->output_has_begun = false;
4208 for (o = abfd->sections; o != NULL; o = o->next)
4209 {
4210 for (p = o->link_order_head; p != NULL; p = p->next)
4211 {
4212 if (p->type == bfd_indirect_link_order
4213 && (bfd_get_flavour (p->u.indirect.section->owner)
4214 == bfd_target_elf_flavour))
4215 {
4216 sub = p->u.indirect.section->owner;
4217 if (! sub->output_has_begun)
4218 {
4219 if (! elf_link_input_bfd (&finfo, sub))
4220 goto error_return;
4221 sub->output_has_begun = true;
4222 }
4223 }
4224 else if (p->type == bfd_section_reloc_link_order
4225 || p->type == bfd_symbol_reloc_link_order)
4226 {
4227 if (! elf_reloc_link_order (abfd, info, o, p))
4228 goto error_return;
4229 }
4230 else
4231 {
4232 if (! _bfd_default_link_order (abfd, info, o, p))
4233 goto error_return;
4234 }
4235 }
4236 }
4237
4238 /* That wrote out all the local symbols. Finish up the symbol table
4239 with the global symbols. */
4240
4241 if (info->strip != strip_all && info->shared)
4242 {
4243 /* Output any global symbols that got converted to local in a
4244 version script. We do this in a separate step since ELF
4245 requires all local symbols to appear prior to any global
4246 symbols. FIXME: We should only do this if some global
4247 symbols were, in fact, converted to become local. FIXME:
4248 Will this work correctly with the Irix 5 linker? */
4249 eoinfo.failed = false;
4250 eoinfo.finfo = &finfo;
4251 eoinfo.localsyms = true;
4252 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4253 (PTR) &eoinfo);
4254 if (eoinfo.failed)
4255 return false;
4256 }
4257
4258 /* The sh_info field records the index of the first non local symbol. */
4259 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4260
4261 if (dynamic)
4262 {
4263 Elf_Internal_Sym sym;
4264 Elf_External_Sym *dynsym =
4265 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4266 unsigned long last_local = 0;
4267
4268 /* Write out the section symbols for the output sections. */
4269 if (info->shared)
4270 {
4271 asection *s;
4272
4273 sym.st_size = 0;
4274 sym.st_name = 0;
4275 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4276 sym.st_other = 0;
4277
4278 for (s = abfd->sections; s != NULL; s = s->next)
4279 {
4280 int indx;
4281 indx = elf_section_data (s)->this_idx;
4282 BFD_ASSERT (indx > 0);
4283 sym.st_shndx = indx;
4284 sym.st_value = s->vma;
4285
4286 elf_swap_symbol_out (abfd, &sym,
4287 dynsym + elf_section_data (s)->dynindx);
4288 }
4289
4290 last_local = bfd_count_sections (abfd);
4291 }
4292
4293 /* Write out the local dynsyms. */
4294 if (elf_hash_table (info)->dynlocal)
4295 {
4296 struct elf_link_local_dynamic_entry *e;
4297 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4298 {
4299 asection *s;
4300
4301 sym.st_size = e->isym.st_size;
4302 sym.st_other = e->isym.st_other;
4303
4304 /* Copy the internal symbol as is.
4305 Note that we saved a word of storage and overwrote
4306 the original st_name with the dynstr_index. */
4307 sym = e->isym;
4308
4309 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4310 {
4311 s = bfd_section_from_elf_index (e->input_bfd,
4312 e->isym.st_shndx);
4313
4314 sym.st_shndx =
4315 elf_section_data (s->output_section)->this_idx;
4316 sym.st_value = (s->output_section->vma
4317 + s->output_offset
4318 + e->isym.st_value);
4319 }
4320
4321 if (last_local < e->dynindx)
4322 last_local = e->dynindx;
4323
4324 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4325 }
4326 }
4327
4328 elf_section_data (finfo.dynsym_sec->output_section)
4329 ->this_hdr.sh_info = last_local + 1;
4330 }
4331
4332 /* We get the global symbols from the hash table. */
4333 eoinfo.failed = false;
4334 eoinfo.localsyms = false;
4335 eoinfo.finfo = &finfo;
4336 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4337 (PTR) &eoinfo);
4338 if (eoinfo.failed)
4339 return false;
4340
4341 /* If backend needs to output some symbols not present in the hash
4342 table, do it now. */
4343 if (bed->elf_backend_output_arch_syms)
4344 {
4345 if (! (*bed->elf_backend_output_arch_syms)
4346 (abfd, info, (PTR) &finfo,
4347 (boolean (*) PARAMS ((PTR, const char *,
4348 Elf_Internal_Sym *, asection *)))
4349 elf_link_output_sym))
4350 return false;
4351 }
4352
4353 /* Flush all symbols to the file. */
4354 if (! elf_link_flush_output_syms (&finfo))
4355 return false;
4356
4357 /* Now we know the size of the symtab section. */
4358 off += symtab_hdr->sh_size;
4359
4360 /* Finish up and write out the symbol string table (.strtab)
4361 section. */
4362 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4363 /* sh_name was set in prep_headers. */
4364 symstrtab_hdr->sh_type = SHT_STRTAB;
4365 symstrtab_hdr->sh_flags = 0;
4366 symstrtab_hdr->sh_addr = 0;
4367 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4368 symstrtab_hdr->sh_entsize = 0;
4369 symstrtab_hdr->sh_link = 0;
4370 symstrtab_hdr->sh_info = 0;
4371 /* sh_offset is set just below. */
4372 symstrtab_hdr->sh_addralign = 1;
4373
4374 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4375 elf_tdata (abfd)->next_file_pos = off;
4376
4377 if (bfd_get_symcount (abfd) > 0)
4378 {
4379 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4380 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4381 return false;
4382 }
4383
4384 /* Adjust the relocs to have the correct symbol indices. */
4385 for (o = abfd->sections; o != NULL; o = o->next)
4386 {
4387 if ((o->flags & SEC_RELOC) == 0)
4388 continue;
4389
4390 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4391 elf_section_data (o)->rel_count,
4392 elf_section_data (o)->rel_hashes);
4393 if (elf_section_data (o)->rel_hdr2 != NULL)
4394 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4395 elf_section_data (o)->rel_count2,
4396 (elf_section_data (o)->rel_hashes
4397 + elf_section_data (o)->rel_count));
4398
4399 /* Set the reloc_count field to 0 to prevent write_relocs from
4400 trying to swap the relocs out itself. */
4401 o->reloc_count = 0;
4402 }
4403
4404 /* If we are linking against a dynamic object, or generating a
4405 shared library, finish up the dynamic linking information. */
4406 if (dynamic)
4407 {
4408 Elf_External_Dyn *dyncon, *dynconend;
4409
4410 /* Fix up .dynamic entries. */
4411 o = bfd_get_section_by_name (dynobj, ".dynamic");
4412 BFD_ASSERT (o != NULL);
4413
4414 dyncon = (Elf_External_Dyn *) o->contents;
4415 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4416 for (; dyncon < dynconend; dyncon++)
4417 {
4418 Elf_Internal_Dyn dyn;
4419 const char *name;
4420 unsigned int type;
4421
4422 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4423
4424 switch (dyn.d_tag)
4425 {
4426 default:
4427 break;
4428 case DT_INIT:
4429 name = info->init_function;
4430 goto get_sym;
4431 case DT_FINI:
4432 name = info->fini_function;
4433 get_sym:
4434 {
4435 struct elf_link_hash_entry *h;
4436
4437 h = elf_link_hash_lookup (elf_hash_table (info), name,
4438 false, false, true);
4439 if (h != NULL
4440 && (h->root.type == bfd_link_hash_defined
4441 || h->root.type == bfd_link_hash_defweak))
4442 {
4443 dyn.d_un.d_val = h->root.u.def.value;
4444 o = h->root.u.def.section;
4445 if (o->output_section != NULL)
4446 dyn.d_un.d_val += (o->output_section->vma
4447 + o->output_offset);
4448 else
4449 {
4450 /* The symbol is imported from another shared
4451 library and does not apply to this one. */
4452 dyn.d_un.d_val = 0;
4453 }
4454
4455 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4456 }
4457 }
4458 break;
4459
4460 case DT_HASH:
4461 name = ".hash";
4462 goto get_vma;
4463 case DT_STRTAB:
4464 name = ".dynstr";
4465 goto get_vma;
4466 case DT_SYMTAB:
4467 name = ".dynsym";
4468 goto get_vma;
4469 case DT_VERDEF:
4470 name = ".gnu.version_d";
4471 goto get_vma;
4472 case DT_VERNEED:
4473 name = ".gnu.version_r";
4474 goto get_vma;
4475 case DT_VERSYM:
4476 name = ".gnu.version";
4477 get_vma:
4478 o = bfd_get_section_by_name (abfd, name);
4479 BFD_ASSERT (o != NULL);
4480 dyn.d_un.d_ptr = o->vma;
4481 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4482 break;
4483
4484 case DT_REL:
4485 case DT_RELA:
4486 case DT_RELSZ:
4487 case DT_RELASZ:
4488 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4489 type = SHT_REL;
4490 else
4491 type = SHT_RELA;
4492 dyn.d_un.d_val = 0;
4493 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4494 {
4495 Elf_Internal_Shdr *hdr;
4496
4497 hdr = elf_elfsections (abfd)[i];
4498 if (hdr->sh_type == type
4499 && (hdr->sh_flags & SHF_ALLOC) != 0)
4500 {
4501 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4502 dyn.d_un.d_val += hdr->sh_size;
4503 else
4504 {
4505 if (dyn.d_un.d_val == 0
4506 || hdr->sh_addr < dyn.d_un.d_val)
4507 dyn.d_un.d_val = hdr->sh_addr;
4508 }
4509 }
4510 }
4511 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4512 break;
4513 }
4514 }
4515 }
4516
4517 /* If we have created any dynamic sections, then output them. */
4518 if (dynobj != NULL)
4519 {
4520 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4521 goto error_return;
4522
4523 for (o = dynobj->sections; o != NULL; o = o->next)
4524 {
4525 if ((o->flags & SEC_HAS_CONTENTS) == 0
4526 || o->_raw_size == 0)
4527 continue;
4528 if ((o->flags & SEC_LINKER_CREATED) == 0)
4529 {
4530 /* At this point, we are only interested in sections
4531 created by elf_link_create_dynamic_sections. */
4532 continue;
4533 }
4534 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4535 != SHT_STRTAB)
4536 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4537 {
4538 if (! bfd_set_section_contents (abfd, o->output_section,
4539 o->contents, o->output_offset,
4540 o->_raw_size))
4541 goto error_return;
4542 }
4543 else
4544 {
4545 file_ptr off;
4546
4547 /* The contents of the .dynstr section are actually in a
4548 stringtab. */
4549 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4550 if (bfd_seek (abfd, off, SEEK_SET) != 0
4551 || ! _bfd_stringtab_emit (abfd,
4552 elf_hash_table (info)->dynstr))
4553 goto error_return;
4554 }
4555 }
4556 }
4557
4558 /* If we have optimized stabs strings, output them. */
4559 if (elf_hash_table (info)->stab_info != NULL)
4560 {
4561 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4562 goto error_return;
4563 }
4564
4565 if (finfo.symstrtab != NULL)
4566 _bfd_stringtab_free (finfo.symstrtab);
4567 if (finfo.contents != NULL)
4568 free (finfo.contents);
4569 if (finfo.external_relocs != NULL)
4570 free (finfo.external_relocs);
4571 if (finfo.internal_relocs != NULL)
4572 free (finfo.internal_relocs);
4573 if (finfo.external_syms != NULL)
4574 free (finfo.external_syms);
4575 if (finfo.internal_syms != NULL)
4576 free (finfo.internal_syms);
4577 if (finfo.indices != NULL)
4578 free (finfo.indices);
4579 if (finfo.sections != NULL)
4580 free (finfo.sections);
4581 if (finfo.symbuf != NULL)
4582 free (finfo.symbuf);
4583 for (o = abfd->sections; o != NULL; o = o->next)
4584 {
4585 if ((o->flags & SEC_RELOC) != 0
4586 && elf_section_data (o)->rel_hashes != NULL)
4587 free (elf_section_data (o)->rel_hashes);
4588 }
4589
4590 elf_tdata (abfd)->linker = true;
4591
4592 return true;
4593
4594 error_return:
4595 if (finfo.symstrtab != NULL)
4596 _bfd_stringtab_free (finfo.symstrtab);
4597 if (finfo.contents != NULL)
4598 free (finfo.contents);
4599 if (finfo.external_relocs != NULL)
4600 free (finfo.external_relocs);
4601 if (finfo.internal_relocs != NULL)
4602 free (finfo.internal_relocs);
4603 if (finfo.external_syms != NULL)
4604 free (finfo.external_syms);
4605 if (finfo.internal_syms != NULL)
4606 free (finfo.internal_syms);
4607 if (finfo.indices != NULL)
4608 free (finfo.indices);
4609 if (finfo.sections != NULL)
4610 free (finfo.sections);
4611 if (finfo.symbuf != NULL)
4612 free (finfo.symbuf);
4613 for (o = abfd->sections; o != NULL; o = o->next)
4614 {
4615 if ((o->flags & SEC_RELOC) != 0
4616 && elf_section_data (o)->rel_hashes != NULL)
4617 free (elf_section_data (o)->rel_hashes);
4618 }
4619
4620 return false;
4621 }
4622
4623 /* Add a symbol to the output symbol table. */
4624
4625 static boolean
4626 elf_link_output_sym (finfo, name, elfsym, input_sec)
4627 struct elf_final_link_info *finfo;
4628 const char *name;
4629 Elf_Internal_Sym *elfsym;
4630 asection *input_sec;
4631 {
4632 boolean (*output_symbol_hook) PARAMS ((bfd *,
4633 struct bfd_link_info *info,
4634 const char *,
4635 Elf_Internal_Sym *,
4636 asection *));
4637
4638 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4639 elf_backend_link_output_symbol_hook;
4640 if (output_symbol_hook != NULL)
4641 {
4642 if (! ((*output_symbol_hook)
4643 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4644 return false;
4645 }
4646
4647 if (name == (const char *) NULL || *name == '\0')
4648 elfsym->st_name = 0;
4649 else if (input_sec->flags & SEC_EXCLUDE)
4650 elfsym->st_name = 0;
4651 else
4652 {
4653 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4654 name, true,
4655 false);
4656 if (elfsym->st_name == (unsigned long) -1)
4657 return false;
4658 }
4659
4660 if (finfo->symbuf_count >= finfo->symbuf_size)
4661 {
4662 if (! elf_link_flush_output_syms (finfo))
4663 return false;
4664 }
4665
4666 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4667 (PTR) (finfo->symbuf + finfo->symbuf_count));
4668 ++finfo->symbuf_count;
4669
4670 ++ bfd_get_symcount (finfo->output_bfd);
4671
4672 return true;
4673 }
4674
4675 /* Flush the output symbols to the file. */
4676
4677 static boolean
4678 elf_link_flush_output_syms (finfo)
4679 struct elf_final_link_info *finfo;
4680 {
4681 if (finfo->symbuf_count > 0)
4682 {
4683 Elf_Internal_Shdr *symtab;
4684
4685 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4686
4687 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4688 SEEK_SET) != 0
4689 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4690 sizeof (Elf_External_Sym), finfo->output_bfd)
4691 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4692 return false;
4693
4694 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4695
4696 finfo->symbuf_count = 0;
4697 }
4698
4699 return true;
4700 }
4701
4702 /* Add an external symbol to the symbol table. This is called from
4703 the hash table traversal routine. When generating a shared object,
4704 we go through the symbol table twice. The first time we output
4705 anything that might have been forced to local scope in a version
4706 script. The second time we output the symbols that are still
4707 global symbols. */
4708
4709 static boolean
4710 elf_link_output_extsym (h, data)
4711 struct elf_link_hash_entry *h;
4712 PTR data;
4713 {
4714 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4715 struct elf_final_link_info *finfo = eoinfo->finfo;
4716 boolean strip;
4717 Elf_Internal_Sym sym;
4718 asection *input_sec;
4719
4720 /* Decide whether to output this symbol in this pass. */
4721 if (eoinfo->localsyms)
4722 {
4723 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4724 return true;
4725 }
4726 else
4727 {
4728 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4729 return true;
4730 }
4731
4732 /* If we are not creating a shared library, and this symbol is
4733 referenced by a shared library but is not defined anywhere, then
4734 warn that it is undefined. If we do not do this, the runtime
4735 linker will complain that the symbol is undefined when the
4736 program is run. We don't have to worry about symbols that are
4737 referenced by regular files, because we will already have issued
4738 warnings for them. */
4739 if (! finfo->info->relocateable
4740 && ! (finfo->info->shared
4741 && !finfo->info->no_undefined)
4742 && h->root.type == bfd_link_hash_undefined
4743 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4744 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4745 {
4746 if (! ((*finfo->info->callbacks->undefined_symbol)
4747 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4748 (asection *) NULL, 0)))
4749 {
4750 eoinfo->failed = true;
4751 return false;
4752 }
4753 }
4754
4755 /* We don't want to output symbols that have never been mentioned by
4756 a regular file, or that we have been told to strip. However, if
4757 h->indx is set to -2, the symbol is used by a reloc and we must
4758 output it. */
4759 if (h->indx == -2)
4760 strip = false;
4761 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4762 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4763 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4764 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4765 strip = true;
4766 else if (finfo->info->strip == strip_all
4767 || (finfo->info->strip == strip_some
4768 && bfd_hash_lookup (finfo->info->keep_hash,
4769 h->root.root.string,
4770 false, false) == NULL))
4771 strip = true;
4772 else
4773 strip = false;
4774
4775 /* If we're stripping it, and it's not a dynamic symbol, there's
4776 nothing else to do. */
4777 if (strip && h->dynindx == -1)
4778 return true;
4779
4780 sym.st_value = 0;
4781 sym.st_size = h->size;
4782 sym.st_other = h->other;
4783 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4784 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4785 else if (h->root.type == bfd_link_hash_undefweak
4786 || h->root.type == bfd_link_hash_defweak)
4787 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4788 else
4789 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4790
4791 switch (h->root.type)
4792 {
4793 default:
4794 case bfd_link_hash_new:
4795 abort ();
4796 return false;
4797
4798 case bfd_link_hash_undefined:
4799 input_sec = bfd_und_section_ptr;
4800 sym.st_shndx = SHN_UNDEF;
4801 break;
4802
4803 case bfd_link_hash_undefweak:
4804 input_sec = bfd_und_section_ptr;
4805 sym.st_shndx = SHN_UNDEF;
4806 break;
4807
4808 case bfd_link_hash_defined:
4809 case bfd_link_hash_defweak:
4810 {
4811 input_sec = h->root.u.def.section;
4812 if (input_sec->output_section != NULL)
4813 {
4814 sym.st_shndx =
4815 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4816 input_sec->output_section);
4817 if (sym.st_shndx == (unsigned short) -1)
4818 {
4819 (*_bfd_error_handler)
4820 (_("%s: could not find output section %s for input section %s"),
4821 bfd_get_filename (finfo->output_bfd),
4822 input_sec->output_section->name,
4823 input_sec->name);
4824 eoinfo->failed = true;
4825 return false;
4826 }
4827
4828 /* ELF symbols in relocateable files are section relative,
4829 but in nonrelocateable files they are virtual
4830 addresses. */
4831 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4832 if (! finfo->info->relocateable)
4833 sym.st_value += input_sec->output_section->vma;
4834 }
4835 else
4836 {
4837 BFD_ASSERT (input_sec->owner == NULL
4838 || (input_sec->owner->flags & DYNAMIC) != 0);
4839 sym.st_shndx = SHN_UNDEF;
4840 input_sec = bfd_und_section_ptr;
4841 }
4842 }
4843 break;
4844
4845 case bfd_link_hash_common:
4846 input_sec = h->root.u.c.p->section;
4847 sym.st_shndx = SHN_COMMON;
4848 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4849 break;
4850
4851 case bfd_link_hash_indirect:
4852 /* These symbols are created by symbol versioning. They point
4853 to the decorated version of the name. For example, if the
4854 symbol foo@@GNU_1.2 is the default, which should be used when
4855 foo is used with no version, then we add an indirect symbol
4856 foo which points to foo@@GNU_1.2. We ignore these symbols,
4857 since the indirected symbol is already in the hash table. If
4858 the indirect symbol is non-ELF, fall through and output it. */
4859 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4860 return true;
4861
4862 /* Fall through. */
4863 case bfd_link_hash_warning:
4864 /* We can't represent these symbols in ELF, although a warning
4865 symbol may have come from a .gnu.warning.SYMBOL section. We
4866 just put the target symbol in the hash table. If the target
4867 symbol does not really exist, don't do anything. */
4868 if (h->root.u.i.link->type == bfd_link_hash_new)
4869 return true;
4870 return (elf_link_output_extsym
4871 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4872 }
4873
4874 /* Give the processor backend a chance to tweak the symbol value,
4875 and also to finish up anything that needs to be done for this
4876 symbol. */
4877 if ((h->dynindx != -1
4878 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4879 && elf_hash_table (finfo->info)->dynamic_sections_created)
4880 {
4881 struct elf_backend_data *bed;
4882
4883 bed = get_elf_backend_data (finfo->output_bfd);
4884 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4885 (finfo->output_bfd, finfo->info, h, &sym)))
4886 {
4887 eoinfo->failed = true;
4888 return false;
4889 }
4890 }
4891
4892 /* If we are marking the symbol as undefined, and there are no
4893 non-weak references to this symbol from a regular object, then
4894 mark the symbol as weak undefined; if there are non-weak
4895 references, mark the symbol as strong. We can't do this earlier,
4896 because it might not be marked as undefined until the
4897 finish_dynamic_symbol routine gets through with it. */
4898 if (sym.st_shndx == SHN_UNDEF
4899 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4900 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
4901 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
4902 {
4903 int bindtype;
4904
4905 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
4906 bindtype = STB_GLOBAL;
4907 else
4908 bindtype = STB_WEAK;
4909 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
4910 }
4911
4912 /* If this symbol should be put in the .dynsym section, then put it
4913 there now. We have already know the symbol index. We also fill
4914 in the entry in the .hash section. */
4915 if (h->dynindx != -1
4916 && elf_hash_table (finfo->info)->dynamic_sections_created)
4917 {
4918 size_t bucketcount;
4919 size_t bucket;
4920 size_t hash_entry_size;
4921 bfd_byte *bucketpos;
4922 bfd_vma chain;
4923
4924 sym.st_name = h->dynstr_index;
4925
4926 elf_swap_symbol_out (finfo->output_bfd, &sym,
4927 (PTR) (((Elf_External_Sym *)
4928 finfo->dynsym_sec->contents)
4929 + h->dynindx));
4930
4931 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4932 bucket = h->elf_hash_value % bucketcount;
4933 hash_entry_size
4934 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
4935 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4936 + (bucket + 2) * hash_entry_size);
4937 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
4938 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
4939 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
4940 ((bfd_byte *) finfo->hash_sec->contents
4941 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
4942
4943 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4944 {
4945 Elf_Internal_Versym iversym;
4946
4947 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4948 {
4949 if (h->verinfo.verdef == NULL)
4950 iversym.vs_vers = 0;
4951 else
4952 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4953 }
4954 else
4955 {
4956 if (h->verinfo.vertree == NULL)
4957 iversym.vs_vers = 1;
4958 else
4959 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4960 }
4961
4962 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4963 iversym.vs_vers |= VERSYM_HIDDEN;
4964
4965 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4966 (((Elf_External_Versym *)
4967 finfo->symver_sec->contents)
4968 + h->dynindx));
4969 }
4970 }
4971
4972 /* If we're stripping it, then it was just a dynamic symbol, and
4973 there's nothing else to do. */
4974 if (strip)
4975 return true;
4976
4977 h->indx = bfd_get_symcount (finfo->output_bfd);
4978
4979 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4980 {
4981 eoinfo->failed = true;
4982 return false;
4983 }
4984
4985 return true;
4986 }
4987
4988 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
4989 originated from the section given by INPUT_REL_HDR) to the
4990 OUTPUT_BFD. */
4991
4992 static void
4993 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
4994 internal_relocs)
4995 bfd *output_bfd;
4996 asection *input_section;
4997 Elf_Internal_Shdr *input_rel_hdr;
4998 Elf_Internal_Rela *internal_relocs;
4999 {
5000 Elf_Internal_Rela *irela;
5001 Elf_Internal_Rela *irelaend;
5002 Elf_Internal_Shdr *output_rel_hdr;
5003 asection *output_section;
5004 unsigned int *rel_countp = NULL;
5005
5006 output_section = input_section->output_section;
5007 output_rel_hdr = NULL;
5008
5009 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5010 == input_rel_hdr->sh_entsize)
5011 {
5012 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5013 rel_countp = &elf_section_data (output_section)->rel_count;
5014 }
5015 else if (elf_section_data (output_section)->rel_hdr2
5016 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5017 == input_rel_hdr->sh_entsize))
5018 {
5019 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5020 rel_countp = &elf_section_data (output_section)->rel_count2;
5021 }
5022
5023 BFD_ASSERT (output_rel_hdr != NULL);
5024
5025 irela = internal_relocs;
5026 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5027 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5028 {
5029 Elf_External_Rel *erel;
5030
5031 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5032 for (; irela < irelaend; irela++, erel++)
5033 {
5034 Elf_Internal_Rel irel;
5035
5036 irel.r_offset = irela->r_offset;
5037 irel.r_info = irela->r_info;
5038 BFD_ASSERT (irela->r_addend == 0);
5039 elf_swap_reloc_out (output_bfd, &irel, erel);
5040 }
5041 }
5042 else
5043 {
5044 Elf_External_Rela *erela;
5045
5046 BFD_ASSERT (input_rel_hdr->sh_entsize
5047 == sizeof (Elf_External_Rela));
5048 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5049 for (; irela < irelaend; irela++, erela++)
5050 elf_swap_reloca_out (output_bfd, irela, erela);
5051 }
5052
5053 /* Bump the counter, so that we know where to add the next set of
5054 relocations. */
5055 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5056 }
5057
5058 /* Link an input file into the linker output file. This function
5059 handles all the sections and relocations of the input file at once.
5060 This is so that we only have to read the local symbols once, and
5061 don't have to keep them in memory. */
5062
5063 static boolean
5064 elf_link_input_bfd (finfo, input_bfd)
5065 struct elf_final_link_info *finfo;
5066 bfd *input_bfd;
5067 {
5068 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5069 bfd *, asection *, bfd_byte *,
5070 Elf_Internal_Rela *,
5071 Elf_Internal_Sym *, asection **));
5072 bfd *output_bfd;
5073 Elf_Internal_Shdr *symtab_hdr;
5074 size_t locsymcount;
5075 size_t extsymoff;
5076 Elf_External_Sym *external_syms;
5077 Elf_External_Sym *esym;
5078 Elf_External_Sym *esymend;
5079 Elf_Internal_Sym *isym;
5080 long *pindex;
5081 asection **ppsection;
5082 asection *o;
5083 struct elf_backend_data *bed;
5084
5085 output_bfd = finfo->output_bfd;
5086 bed = get_elf_backend_data (output_bfd);
5087 relocate_section = bed->elf_backend_relocate_section;
5088
5089 /* If this is a dynamic object, we don't want to do anything here:
5090 we don't want the local symbols, and we don't want the section
5091 contents. */
5092 if ((input_bfd->flags & DYNAMIC) != 0)
5093 return true;
5094
5095 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5096 if (elf_bad_symtab (input_bfd))
5097 {
5098 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5099 extsymoff = 0;
5100 }
5101 else
5102 {
5103 locsymcount = symtab_hdr->sh_info;
5104 extsymoff = symtab_hdr->sh_info;
5105 }
5106
5107 /* Read the local symbols. */
5108 if (symtab_hdr->contents != NULL)
5109 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5110 else if (locsymcount == 0)
5111 external_syms = NULL;
5112 else
5113 {
5114 external_syms = finfo->external_syms;
5115 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5116 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5117 locsymcount, input_bfd)
5118 != locsymcount * sizeof (Elf_External_Sym)))
5119 return false;
5120 }
5121
5122 /* Swap in the local symbols and write out the ones which we know
5123 are going into the output file. */
5124 esym = external_syms;
5125 esymend = esym + locsymcount;
5126 isym = finfo->internal_syms;
5127 pindex = finfo->indices;
5128 ppsection = finfo->sections;
5129 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5130 {
5131 asection *isec;
5132 const char *name;
5133 Elf_Internal_Sym osym;
5134
5135 elf_swap_symbol_in (input_bfd, esym, isym);
5136 *pindex = -1;
5137
5138 if (elf_bad_symtab (input_bfd))
5139 {
5140 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5141 {
5142 *ppsection = NULL;
5143 continue;
5144 }
5145 }
5146
5147 if (isym->st_shndx == SHN_UNDEF)
5148 isec = bfd_und_section_ptr;
5149 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5150 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5151 else if (isym->st_shndx == SHN_ABS)
5152 isec = bfd_abs_section_ptr;
5153 else if (isym->st_shndx == SHN_COMMON)
5154 isec = bfd_com_section_ptr;
5155 else
5156 {
5157 /* Who knows? */
5158 isec = NULL;
5159 }
5160
5161 *ppsection = isec;
5162
5163 /* Don't output the first, undefined, symbol. */
5164 if (esym == external_syms)
5165 continue;
5166
5167 /* If we are stripping all symbols, we don't want to output this
5168 one. */
5169 if (finfo->info->strip == strip_all)
5170 continue;
5171
5172 /* We never output section symbols. Instead, we use the section
5173 symbol of the corresponding section in the output file. */
5174 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5175 continue;
5176
5177 /* If we are discarding all local symbols, we don't want to
5178 output this one. If we are generating a relocateable output
5179 file, then some of the local symbols may be required by
5180 relocs; we output them below as we discover that they are
5181 needed. */
5182 if (finfo->info->discard == discard_all)
5183 continue;
5184
5185 /* If this symbol is defined in a section which we are
5186 discarding, we don't need to keep it, but note that
5187 linker_mark is only reliable for sections that have contents.
5188 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5189 as well as linker_mark. */
5190 if (isym->st_shndx > 0
5191 && isym->st_shndx < SHN_LORESERVE
5192 && isec != NULL
5193 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5194 || (! finfo->info->relocateable
5195 && (isec->flags & SEC_EXCLUDE) != 0)))
5196 continue;
5197
5198 /* Get the name of the symbol. */
5199 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5200 isym->st_name);
5201 if (name == NULL)
5202 return false;
5203
5204 /* See if we are discarding symbols with this name. */
5205 if ((finfo->info->strip == strip_some
5206 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5207 == NULL))
5208 || (finfo->info->discard == discard_l
5209 && bfd_is_local_label_name (input_bfd, name)))
5210 continue;
5211
5212 /* If we get here, we are going to output this symbol. */
5213
5214 osym = *isym;
5215
5216 /* Adjust the section index for the output file. */
5217 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5218 isec->output_section);
5219 if (osym.st_shndx == (unsigned short) -1)
5220 return false;
5221
5222 *pindex = bfd_get_symcount (output_bfd);
5223
5224 /* ELF symbols in relocateable files are section relative, but
5225 in executable files they are virtual addresses. Note that
5226 this code assumes that all ELF sections have an associated
5227 BFD section with a reasonable value for output_offset; below
5228 we assume that they also have a reasonable value for
5229 output_section. Any special sections must be set up to meet
5230 these requirements. */
5231 osym.st_value += isec->output_offset;
5232 if (! finfo->info->relocateable)
5233 osym.st_value += isec->output_section->vma;
5234
5235 if (! elf_link_output_sym (finfo, name, &osym, isec))
5236 return false;
5237 }
5238
5239 /* Relocate the contents of each section. */
5240 for (o = input_bfd->sections; o != NULL; o = o->next)
5241 {
5242 bfd_byte *contents;
5243
5244 if (! o->linker_mark)
5245 {
5246 /* This section was omitted from the link. */
5247 continue;
5248 }
5249
5250 if ((o->flags & SEC_HAS_CONTENTS) == 0
5251 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5252 continue;
5253
5254 if ((o->flags & SEC_LINKER_CREATED) != 0)
5255 {
5256 /* Section was created by elf_link_create_dynamic_sections
5257 or somesuch. */
5258 continue;
5259 }
5260
5261 /* Get the contents of the section. They have been cached by a
5262 relaxation routine. Note that o is a section in an input
5263 file, so the contents field will not have been set by any of
5264 the routines which work on output files. */
5265 if (elf_section_data (o)->this_hdr.contents != NULL)
5266 contents = elf_section_data (o)->this_hdr.contents;
5267 else
5268 {
5269 contents = finfo->contents;
5270 if (! bfd_get_section_contents (input_bfd, o, contents,
5271 (file_ptr) 0, o->_raw_size))
5272 return false;
5273 }
5274
5275 if ((o->flags & SEC_RELOC) != 0)
5276 {
5277 Elf_Internal_Rela *internal_relocs;
5278
5279 /* Get the swapped relocs. */
5280 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5281 (input_bfd, o, finfo->external_relocs,
5282 finfo->internal_relocs, false));
5283 if (internal_relocs == NULL
5284 && o->reloc_count > 0)
5285 return false;
5286
5287 /* Relocate the section by invoking a back end routine.
5288
5289 The back end routine is responsible for adjusting the
5290 section contents as necessary, and (if using Rela relocs
5291 and generating a relocateable output file) adjusting the
5292 reloc addend as necessary.
5293
5294 The back end routine does not have to worry about setting
5295 the reloc address or the reloc symbol index.
5296
5297 The back end routine is given a pointer to the swapped in
5298 internal symbols, and can access the hash table entries
5299 for the external symbols via elf_sym_hashes (input_bfd).
5300
5301 When generating relocateable output, the back end routine
5302 must handle STB_LOCAL/STT_SECTION symbols specially. The
5303 output symbol is going to be a section symbol
5304 corresponding to the output section, which will require
5305 the addend to be adjusted. */
5306
5307 if (! (*relocate_section) (output_bfd, finfo->info,
5308 input_bfd, o, contents,
5309 internal_relocs,
5310 finfo->internal_syms,
5311 finfo->sections))
5312 return false;
5313
5314 if (finfo->info->relocateable)
5315 {
5316 Elf_Internal_Rela *irela;
5317 Elf_Internal_Rela *irelaend;
5318 struct elf_link_hash_entry **rel_hash;
5319 Elf_Internal_Shdr *input_rel_hdr;
5320
5321 /* Adjust the reloc addresses and symbol indices. */
5322
5323 irela = internal_relocs;
5324 irelaend =
5325 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5326 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5327 + elf_section_data (o->output_section)->rel_count
5328 + elf_section_data (o->output_section)->rel_count2);
5329 for (; irela < irelaend; irela++, rel_hash++)
5330 {
5331 unsigned long r_symndx;
5332 Elf_Internal_Sym *isym;
5333 asection *sec;
5334
5335 irela->r_offset += o->output_offset;
5336
5337 r_symndx = ELF_R_SYM (irela->r_info);
5338
5339 if (r_symndx == 0)
5340 continue;
5341
5342 if (r_symndx >= locsymcount
5343 || (elf_bad_symtab (input_bfd)
5344 && finfo->sections[r_symndx] == NULL))
5345 {
5346 struct elf_link_hash_entry *rh;
5347 long indx;
5348
5349 /* This is a reloc against a global symbol. We
5350 have not yet output all the local symbols, so
5351 we do not know the symbol index of any global
5352 symbol. We set the rel_hash entry for this
5353 reloc to point to the global hash table entry
5354 for this symbol. The symbol index is then
5355 set at the end of elf_bfd_final_link. */
5356 indx = r_symndx - extsymoff;
5357 rh = elf_sym_hashes (input_bfd)[indx];
5358 while (rh->root.type == bfd_link_hash_indirect
5359 || rh->root.type == bfd_link_hash_warning)
5360 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5361
5362 /* Setting the index to -2 tells
5363 elf_link_output_extsym that this symbol is
5364 used by a reloc. */
5365 BFD_ASSERT (rh->indx < 0);
5366 rh->indx = -2;
5367
5368 *rel_hash = rh;
5369
5370 continue;
5371 }
5372
5373 /* This is a reloc against a local symbol. */
5374
5375 *rel_hash = NULL;
5376 isym = finfo->internal_syms + r_symndx;
5377 sec = finfo->sections[r_symndx];
5378 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5379 {
5380 /* I suppose the backend ought to fill in the
5381 section of any STT_SECTION symbol against a
5382 processor specific section. If we have
5383 discarded a section, the output_section will
5384 be the absolute section. */
5385 if (sec != NULL
5386 && (bfd_is_abs_section (sec)
5387 || (sec->output_section != NULL
5388 && bfd_is_abs_section (sec->output_section))))
5389 r_symndx = 0;
5390 else if (sec == NULL || sec->owner == NULL)
5391 {
5392 bfd_set_error (bfd_error_bad_value);
5393 return false;
5394 }
5395 else
5396 {
5397 r_symndx = sec->output_section->target_index;
5398 BFD_ASSERT (r_symndx != 0);
5399 }
5400 }
5401 else
5402 {
5403 if (finfo->indices[r_symndx] == -1)
5404 {
5405 unsigned long link;
5406 const char *name;
5407 asection *osec;
5408
5409 if (finfo->info->strip == strip_all)
5410 {
5411 /* You can't do ld -r -s. */
5412 bfd_set_error (bfd_error_invalid_operation);
5413 return false;
5414 }
5415
5416 /* This symbol was skipped earlier, but
5417 since it is needed by a reloc, we
5418 must output it now. */
5419 link = symtab_hdr->sh_link;
5420 name = bfd_elf_string_from_elf_section (input_bfd,
5421 link,
5422 isym->st_name);
5423 if (name == NULL)
5424 return false;
5425
5426 osec = sec->output_section;
5427 isym->st_shndx =
5428 _bfd_elf_section_from_bfd_section (output_bfd,
5429 osec);
5430 if (isym->st_shndx == (unsigned short) -1)
5431 return false;
5432
5433 isym->st_value += sec->output_offset;
5434 if (! finfo->info->relocateable)
5435 isym->st_value += osec->vma;
5436
5437 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5438
5439 if (! elf_link_output_sym (finfo, name, isym, sec))
5440 return false;
5441 }
5442
5443 r_symndx = finfo->indices[r_symndx];
5444 }
5445
5446 irela->r_info = ELF_R_INFO (r_symndx,
5447 ELF_R_TYPE (irela->r_info));
5448 }
5449
5450 /* Swap out the relocs. */
5451 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5452 elf_link_output_relocs (output_bfd, o,
5453 input_rel_hdr,
5454 internal_relocs);
5455 internal_relocs
5456 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5457 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5458 if (input_rel_hdr)
5459 elf_link_output_relocs (output_bfd, o,
5460 input_rel_hdr,
5461 internal_relocs);
5462 }
5463 }
5464
5465 /* Write out the modified section contents. */
5466 if (elf_section_data (o)->stab_info == NULL)
5467 {
5468 if (! (o->flags & SEC_EXCLUDE) &&
5469 ! bfd_set_section_contents (output_bfd, o->output_section,
5470 contents, o->output_offset,
5471 (o->_cooked_size != 0
5472 ? o->_cooked_size
5473 : o->_raw_size)))
5474 return false;
5475 }
5476 else
5477 {
5478 if (! (_bfd_write_section_stabs
5479 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5480 o, &elf_section_data (o)->stab_info, contents)))
5481 return false;
5482 }
5483 }
5484
5485 return true;
5486 }
5487
5488 /* Generate a reloc when linking an ELF file. This is a reloc
5489 requested by the linker, and does come from any input file. This
5490 is used to build constructor and destructor tables when linking
5491 with -Ur. */
5492
5493 static boolean
5494 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5495 bfd *output_bfd;
5496 struct bfd_link_info *info;
5497 asection *output_section;
5498 struct bfd_link_order *link_order;
5499 {
5500 reloc_howto_type *howto;
5501 long indx;
5502 bfd_vma offset;
5503 bfd_vma addend;
5504 struct elf_link_hash_entry **rel_hash_ptr;
5505 Elf_Internal_Shdr *rel_hdr;
5506
5507 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5508 if (howto == NULL)
5509 {
5510 bfd_set_error (bfd_error_bad_value);
5511 return false;
5512 }
5513
5514 addend = link_order->u.reloc.p->addend;
5515
5516 /* Figure out the symbol index. */
5517 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5518 + elf_section_data (output_section)->rel_count
5519 + elf_section_data (output_section)->rel_count2);
5520 if (link_order->type == bfd_section_reloc_link_order)
5521 {
5522 indx = link_order->u.reloc.p->u.section->target_index;
5523 BFD_ASSERT (indx != 0);
5524 *rel_hash_ptr = NULL;
5525 }
5526 else
5527 {
5528 struct elf_link_hash_entry *h;
5529
5530 /* Treat a reloc against a defined symbol as though it were
5531 actually against the section. */
5532 h = ((struct elf_link_hash_entry *)
5533 bfd_wrapped_link_hash_lookup (output_bfd, info,
5534 link_order->u.reloc.p->u.name,
5535 false, false, true));
5536 if (h != NULL
5537 && (h->root.type == bfd_link_hash_defined
5538 || h->root.type == bfd_link_hash_defweak))
5539 {
5540 asection *section;
5541
5542 section = h->root.u.def.section;
5543 indx = section->output_section->target_index;
5544 *rel_hash_ptr = NULL;
5545 /* It seems that we ought to add the symbol value to the
5546 addend here, but in practice it has already been added
5547 because it was passed to constructor_callback. */
5548 addend += section->output_section->vma + section->output_offset;
5549 }
5550 else if (h != NULL)
5551 {
5552 /* Setting the index to -2 tells elf_link_output_extsym that
5553 this symbol is used by a reloc. */
5554 h->indx = -2;
5555 *rel_hash_ptr = h;
5556 indx = 0;
5557 }
5558 else
5559 {
5560 if (! ((*info->callbacks->unattached_reloc)
5561 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5562 (asection *) NULL, (bfd_vma) 0)))
5563 return false;
5564 indx = 0;
5565 }
5566 }
5567
5568 /* If this is an inplace reloc, we must write the addend into the
5569 object file. */
5570 if (howto->partial_inplace && addend != 0)
5571 {
5572 bfd_size_type size;
5573 bfd_reloc_status_type rstat;
5574 bfd_byte *buf;
5575 boolean ok;
5576
5577 size = bfd_get_reloc_size (howto);
5578 buf = (bfd_byte *) bfd_zmalloc (size);
5579 if (buf == (bfd_byte *) NULL)
5580 return false;
5581 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5582 switch (rstat)
5583 {
5584 case bfd_reloc_ok:
5585 break;
5586 default:
5587 case bfd_reloc_outofrange:
5588 abort ();
5589 case bfd_reloc_overflow:
5590 if (! ((*info->callbacks->reloc_overflow)
5591 (info,
5592 (link_order->type == bfd_section_reloc_link_order
5593 ? bfd_section_name (output_bfd,
5594 link_order->u.reloc.p->u.section)
5595 : link_order->u.reloc.p->u.name),
5596 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5597 (bfd_vma) 0)))
5598 {
5599 free (buf);
5600 return false;
5601 }
5602 break;
5603 }
5604 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5605 (file_ptr) link_order->offset, size);
5606 free (buf);
5607 if (! ok)
5608 return false;
5609 }
5610
5611 /* The address of a reloc is relative to the section in a
5612 relocateable file, and is a virtual address in an executable
5613 file. */
5614 offset = link_order->offset;
5615 if (! info->relocateable)
5616 offset += output_section->vma;
5617
5618 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5619
5620 if (rel_hdr->sh_type == SHT_REL)
5621 {
5622 Elf_Internal_Rel irel;
5623 Elf_External_Rel *erel;
5624
5625 irel.r_offset = offset;
5626 irel.r_info = ELF_R_INFO (indx, howto->type);
5627 erel = ((Elf_External_Rel *) rel_hdr->contents
5628 + elf_section_data (output_section)->rel_count);
5629 elf_swap_reloc_out (output_bfd, &irel, erel);
5630 }
5631 else
5632 {
5633 Elf_Internal_Rela irela;
5634 Elf_External_Rela *erela;
5635
5636 irela.r_offset = offset;
5637 irela.r_info = ELF_R_INFO (indx, howto->type);
5638 irela.r_addend = addend;
5639 erela = ((Elf_External_Rela *) rel_hdr->contents
5640 + elf_section_data (output_section)->rel_count);
5641 elf_swap_reloca_out (output_bfd, &irela, erela);
5642 }
5643
5644 ++elf_section_data (output_section)->rel_count;
5645
5646 return true;
5647 }
5648
5649 \f
5650 /* Allocate a pointer to live in a linker created section. */
5651
5652 boolean
5653 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5654 bfd *abfd;
5655 struct bfd_link_info *info;
5656 elf_linker_section_t *lsect;
5657 struct elf_link_hash_entry *h;
5658 const Elf_Internal_Rela *rel;
5659 {
5660 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5661 elf_linker_section_pointers_t *linker_section_ptr;
5662 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5663
5664 BFD_ASSERT (lsect != NULL);
5665
5666 /* Is this a global symbol? */
5667 if (h != NULL)
5668 {
5669 /* Has this symbol already been allocated, if so, our work is done */
5670 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5671 rel->r_addend,
5672 lsect->which))
5673 return true;
5674
5675 ptr_linker_section_ptr = &h->linker_section_pointer;
5676 /* Make sure this symbol is output as a dynamic symbol. */
5677 if (h->dynindx == -1)
5678 {
5679 if (! elf_link_record_dynamic_symbol (info, h))
5680 return false;
5681 }
5682
5683 if (lsect->rel_section)
5684 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5685 }
5686
5687 else /* Allocation of a pointer to a local symbol */
5688 {
5689 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5690
5691 /* Allocate a table to hold the local symbols if first time */
5692 if (!ptr)
5693 {
5694 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5695 register unsigned int i;
5696
5697 ptr = (elf_linker_section_pointers_t **)
5698 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5699
5700 if (!ptr)
5701 return false;
5702
5703 elf_local_ptr_offsets (abfd) = ptr;
5704 for (i = 0; i < num_symbols; i++)
5705 ptr[i] = (elf_linker_section_pointers_t *)0;
5706 }
5707
5708 /* Has this symbol already been allocated, if so, our work is done */
5709 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5710 rel->r_addend,
5711 lsect->which))
5712 return true;
5713
5714 ptr_linker_section_ptr = &ptr[r_symndx];
5715
5716 if (info->shared)
5717 {
5718 /* If we are generating a shared object, we need to
5719 output a R_<xxx>_RELATIVE reloc so that the
5720 dynamic linker can adjust this GOT entry. */
5721 BFD_ASSERT (lsect->rel_section != NULL);
5722 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5723 }
5724 }
5725
5726 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5727 from internal memory. */
5728 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5729 linker_section_ptr = (elf_linker_section_pointers_t *)
5730 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5731
5732 if (!linker_section_ptr)
5733 return false;
5734
5735 linker_section_ptr->next = *ptr_linker_section_ptr;
5736 linker_section_ptr->addend = rel->r_addend;
5737 linker_section_ptr->which = lsect->which;
5738 linker_section_ptr->written_address_p = false;
5739 *ptr_linker_section_ptr = linker_section_ptr;
5740
5741 #if 0
5742 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5743 {
5744 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5745 lsect->hole_offset += ARCH_SIZE / 8;
5746 lsect->sym_offset += ARCH_SIZE / 8;
5747 if (lsect->sym_hash) /* Bump up symbol value if needed */
5748 {
5749 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5750 #ifdef DEBUG
5751 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5752 lsect->sym_hash->root.root.string,
5753 (long)ARCH_SIZE / 8,
5754 (long)lsect->sym_hash->root.u.def.value);
5755 #endif
5756 }
5757 }
5758 else
5759 #endif
5760 linker_section_ptr->offset = lsect->section->_raw_size;
5761
5762 lsect->section->_raw_size += ARCH_SIZE / 8;
5763
5764 #ifdef DEBUG
5765 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5766 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5767 #endif
5768
5769 return true;
5770 }
5771
5772 \f
5773 #if ARCH_SIZE==64
5774 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5775 #endif
5776 #if ARCH_SIZE==32
5777 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5778 #endif
5779
5780 /* Fill in the address for a pointer generated in alinker section. */
5781
5782 bfd_vma
5783 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5784 bfd *output_bfd;
5785 bfd *input_bfd;
5786 struct bfd_link_info *info;
5787 elf_linker_section_t *lsect;
5788 struct elf_link_hash_entry *h;
5789 bfd_vma relocation;
5790 const Elf_Internal_Rela *rel;
5791 int relative_reloc;
5792 {
5793 elf_linker_section_pointers_t *linker_section_ptr;
5794
5795 BFD_ASSERT (lsect != NULL);
5796
5797 if (h != NULL) /* global symbol */
5798 {
5799 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5800 rel->r_addend,
5801 lsect->which);
5802
5803 BFD_ASSERT (linker_section_ptr != NULL);
5804
5805 if (! elf_hash_table (info)->dynamic_sections_created
5806 || (info->shared
5807 && info->symbolic
5808 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5809 {
5810 /* This is actually a static link, or it is a
5811 -Bsymbolic link and the symbol is defined
5812 locally. We must initialize this entry in the
5813 global section.
5814
5815 When doing a dynamic link, we create a .rela.<xxx>
5816 relocation entry to initialize the value. This
5817 is done in the finish_dynamic_symbol routine. */
5818 if (!linker_section_ptr->written_address_p)
5819 {
5820 linker_section_ptr->written_address_p = true;
5821 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5822 lsect->section->contents + linker_section_ptr->offset);
5823 }
5824 }
5825 }
5826 else /* local symbol */
5827 {
5828 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5829 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5830 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5831 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5832 rel->r_addend,
5833 lsect->which);
5834
5835 BFD_ASSERT (linker_section_ptr != NULL);
5836
5837 /* Write out pointer if it hasn't been rewritten out before */
5838 if (!linker_section_ptr->written_address_p)
5839 {
5840 linker_section_ptr->written_address_p = true;
5841 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5842 lsect->section->contents + linker_section_ptr->offset);
5843
5844 if (info->shared)
5845 {
5846 asection *srel = lsect->rel_section;
5847 Elf_Internal_Rela outrel;
5848
5849 /* We need to generate a relative reloc for the dynamic linker. */
5850 if (!srel)
5851 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5852 lsect->rel_name);
5853
5854 BFD_ASSERT (srel != NULL);
5855
5856 outrel.r_offset = (lsect->section->output_section->vma
5857 + lsect->section->output_offset
5858 + linker_section_ptr->offset);
5859 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5860 outrel.r_addend = 0;
5861 elf_swap_reloca_out (output_bfd, &outrel,
5862 (((Elf_External_Rela *)
5863 lsect->section->contents)
5864 + elf_section_data (lsect->section)->rel_count));
5865 ++elf_section_data (lsect->section)->rel_count;
5866 }
5867 }
5868 }
5869
5870 relocation = (lsect->section->output_offset
5871 + linker_section_ptr->offset
5872 - lsect->hole_offset
5873 - lsect->sym_offset);
5874
5875 #ifdef DEBUG
5876 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5877 lsect->name, (long)relocation, (long)relocation);
5878 #endif
5879
5880 /* Subtract out the addend, because it will get added back in by the normal
5881 processing. */
5882 return relocation - linker_section_ptr->addend;
5883 }
5884 \f
5885 /* Garbage collect unused sections. */
5886
5887 static boolean elf_gc_mark
5888 PARAMS ((struct bfd_link_info *info, asection *sec,
5889 asection * (*gc_mark_hook)
5890 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5891 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5892
5893 static boolean elf_gc_sweep
5894 PARAMS ((struct bfd_link_info *info,
5895 boolean (*gc_sweep_hook)
5896 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5897 const Elf_Internal_Rela *relocs))));
5898
5899 static boolean elf_gc_sweep_symbol
5900 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5901
5902 static boolean elf_gc_allocate_got_offsets
5903 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5904
5905 static boolean elf_gc_propagate_vtable_entries_used
5906 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5907
5908 static boolean elf_gc_smash_unused_vtentry_relocs
5909 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5910
5911 /* The mark phase of garbage collection. For a given section, mark
5912 it, and all the sections which define symbols to which it refers. */
5913
5914 static boolean
5915 elf_gc_mark (info, sec, gc_mark_hook)
5916 struct bfd_link_info *info;
5917 asection *sec;
5918 asection * (*gc_mark_hook)
5919 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5920 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5921 {
5922 boolean ret = true;
5923
5924 sec->gc_mark = 1;
5925
5926 /* Look through the section relocs. */
5927
5928 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5929 {
5930 Elf_Internal_Rela *relstart, *rel, *relend;
5931 Elf_Internal_Shdr *symtab_hdr;
5932 struct elf_link_hash_entry **sym_hashes;
5933 size_t nlocsyms;
5934 size_t extsymoff;
5935 Elf_External_Sym *locsyms, *freesyms = NULL;
5936 bfd *input_bfd = sec->owner;
5937 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
5938
5939 /* GCFIXME: how to arrange so that relocs and symbols are not
5940 reread continually? */
5941
5942 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5943 sym_hashes = elf_sym_hashes (input_bfd);
5944
5945 /* Read the local symbols. */
5946 if (elf_bad_symtab (input_bfd))
5947 {
5948 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5949 extsymoff = 0;
5950 }
5951 else
5952 extsymoff = nlocsyms = symtab_hdr->sh_info;
5953 if (symtab_hdr->contents)
5954 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5955 else if (nlocsyms == 0)
5956 locsyms = NULL;
5957 else
5958 {
5959 locsyms = freesyms =
5960 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5961 if (freesyms == NULL
5962 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5963 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5964 nlocsyms, input_bfd)
5965 != nlocsyms * sizeof (Elf_External_Sym)))
5966 {
5967 ret = false;
5968 goto out1;
5969 }
5970 }
5971
5972 /* Read the relocations. */
5973 relstart = (NAME(_bfd_elf,link_read_relocs)
5974 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5975 info->keep_memory));
5976 if (relstart == NULL)
5977 {
5978 ret = false;
5979 goto out1;
5980 }
5981 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5982
5983 for (rel = relstart; rel < relend; rel++)
5984 {
5985 unsigned long r_symndx;
5986 asection *rsec;
5987 struct elf_link_hash_entry *h;
5988 Elf_Internal_Sym s;
5989
5990 r_symndx = ELF_R_SYM (rel->r_info);
5991 if (r_symndx == 0)
5992 continue;
5993
5994 if (elf_bad_symtab (sec->owner))
5995 {
5996 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5997 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5998 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5999 else
6000 {
6001 h = sym_hashes[r_symndx - extsymoff];
6002 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6003 }
6004 }
6005 else if (r_symndx >= nlocsyms)
6006 {
6007 h = sym_hashes[r_symndx - extsymoff];
6008 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6009 }
6010 else
6011 {
6012 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6013 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6014 }
6015
6016 if (rsec && !rsec->gc_mark)
6017 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6018 {
6019 ret = false;
6020 goto out2;
6021 }
6022 }
6023
6024 out2:
6025 if (!info->keep_memory)
6026 free (relstart);
6027 out1:
6028 if (freesyms)
6029 free (freesyms);
6030 }
6031
6032 return ret;
6033 }
6034
6035 /* The sweep phase of garbage collection. Remove all garbage sections. */
6036
6037 static boolean
6038 elf_gc_sweep (info, gc_sweep_hook)
6039 struct bfd_link_info *info;
6040 boolean (*gc_sweep_hook)
6041 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6042 const Elf_Internal_Rela *relocs));
6043 {
6044 bfd *sub;
6045
6046 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6047 {
6048 asection *o;
6049
6050 for (o = sub->sections; o != NULL; o = o->next)
6051 {
6052 /* Keep special sections. Keep .debug sections. */
6053 if ((o->flags & SEC_LINKER_CREATED)
6054 || (o->flags & SEC_DEBUGGING))
6055 o->gc_mark = 1;
6056
6057 if (o->gc_mark)
6058 continue;
6059
6060 /* Skip sweeping sections already excluded. */
6061 if (o->flags & SEC_EXCLUDE)
6062 continue;
6063
6064 /* Since this is early in the link process, it is simple
6065 to remove a section from the output. */
6066 o->flags |= SEC_EXCLUDE;
6067
6068 /* But we also have to update some of the relocation
6069 info we collected before. */
6070 if (gc_sweep_hook
6071 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6072 {
6073 Elf_Internal_Rela *internal_relocs;
6074 boolean r;
6075
6076 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6077 (o->owner, o, NULL, NULL, info->keep_memory));
6078 if (internal_relocs == NULL)
6079 return false;
6080
6081 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6082
6083 if (!info->keep_memory)
6084 free (internal_relocs);
6085
6086 if (!r)
6087 return false;
6088 }
6089 }
6090 }
6091
6092 /* Remove the symbols that were in the swept sections from the dynamic
6093 symbol table. GCFIXME: Anyone know how to get them out of the
6094 static symbol table as well? */
6095 {
6096 int i = 0;
6097
6098 elf_link_hash_traverse (elf_hash_table (info),
6099 elf_gc_sweep_symbol,
6100 (PTR) &i);
6101
6102 elf_hash_table (info)->dynsymcount = i;
6103 }
6104
6105 return true;
6106 }
6107
6108 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6109
6110 static boolean
6111 elf_gc_sweep_symbol (h, idxptr)
6112 struct elf_link_hash_entry *h;
6113 PTR idxptr;
6114 {
6115 int *idx = (int *) idxptr;
6116
6117 if (h->dynindx != -1
6118 && ((h->root.type != bfd_link_hash_defined
6119 && h->root.type != bfd_link_hash_defweak)
6120 || h->root.u.def.section->gc_mark))
6121 h->dynindx = (*idx)++;
6122
6123 return true;
6124 }
6125
6126 /* Propogate collected vtable information. This is called through
6127 elf_link_hash_traverse. */
6128
6129 static boolean
6130 elf_gc_propagate_vtable_entries_used (h, okp)
6131 struct elf_link_hash_entry *h;
6132 PTR okp;
6133 {
6134 /* Those that are not vtables. */
6135 if (h->vtable_parent == NULL)
6136 return true;
6137
6138 /* Those vtables that do not have parents, we cannot merge. */
6139 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6140 return true;
6141
6142 /* If we've already been done, exit. */
6143 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6144 return true;
6145
6146 /* Make sure the parent's table is up to date. */
6147 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6148
6149 if (h->vtable_entries_used == NULL)
6150 {
6151 /* None of this table's entries were referenced. Re-use the
6152 parent's table. */
6153 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6154 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6155 }
6156 else
6157 {
6158 size_t n;
6159 boolean *cu, *pu;
6160
6161 /* Or the parent's entries into ours. */
6162 cu = h->vtable_entries_used;
6163 cu[-1] = true;
6164 pu = h->vtable_parent->vtable_entries_used;
6165 if (pu != NULL)
6166 {
6167 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6168 while (--n != 0)
6169 {
6170 if (*pu) *cu = true;
6171 pu++, cu++;
6172 }
6173 }
6174 }
6175
6176 return true;
6177 }
6178
6179 static boolean
6180 elf_gc_smash_unused_vtentry_relocs (h, okp)
6181 struct elf_link_hash_entry *h;
6182 PTR okp;
6183 {
6184 asection *sec;
6185 bfd_vma hstart, hend;
6186 Elf_Internal_Rela *relstart, *relend, *rel;
6187 struct elf_backend_data *bed;
6188
6189 /* Take care of both those symbols that do not describe vtables as
6190 well as those that are not loaded. */
6191 if (h->vtable_parent == NULL)
6192 return true;
6193
6194 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6195 || h->root.type == bfd_link_hash_defweak);
6196
6197 sec = h->root.u.def.section;
6198 hstart = h->root.u.def.value;
6199 hend = hstart + h->size;
6200
6201 relstart = (NAME(_bfd_elf,link_read_relocs)
6202 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6203 if (!relstart)
6204 return *(boolean *)okp = false;
6205 bed = get_elf_backend_data (sec->owner);
6206 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6207
6208 for (rel = relstart; rel < relend; ++rel)
6209 if (rel->r_offset >= hstart && rel->r_offset < hend)
6210 {
6211 /* If the entry is in use, do nothing. */
6212 if (h->vtable_entries_used
6213 && (rel->r_offset - hstart) < h->vtable_entries_size)
6214 {
6215 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6216 if (h->vtable_entries_used[entry])
6217 continue;
6218 }
6219 /* Otherwise, kill it. */
6220 rel->r_offset = rel->r_info = rel->r_addend = 0;
6221 }
6222
6223 return true;
6224 }
6225
6226 /* Do mark and sweep of unused sections. */
6227
6228 boolean
6229 elf_gc_sections (abfd, info)
6230 bfd *abfd;
6231 struct bfd_link_info *info;
6232 {
6233 boolean ok = true;
6234 bfd *sub;
6235 asection * (*gc_mark_hook)
6236 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6237 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6238
6239 if (!get_elf_backend_data (abfd)->can_gc_sections
6240 || info->relocateable
6241 || elf_hash_table (info)->dynamic_sections_created)
6242 return true;
6243
6244 /* Apply transitive closure to the vtable entry usage info. */
6245 elf_link_hash_traverse (elf_hash_table (info),
6246 elf_gc_propagate_vtable_entries_used,
6247 (PTR) &ok);
6248 if (!ok)
6249 return false;
6250
6251 /* Kill the vtable relocations that were not used. */
6252 elf_link_hash_traverse (elf_hash_table (info),
6253 elf_gc_smash_unused_vtentry_relocs,
6254 (PTR) &ok);
6255 if (!ok)
6256 return false;
6257
6258 /* Grovel through relocs to find out who stays ... */
6259
6260 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6261 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6262 {
6263 asection *o;
6264 for (o = sub->sections; o != NULL; o = o->next)
6265 {
6266 if (o->flags & SEC_KEEP)
6267 if (!elf_gc_mark (info, o, gc_mark_hook))
6268 return false;
6269 }
6270 }
6271
6272 /* ... and mark SEC_EXCLUDE for those that go. */
6273 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6274 return false;
6275
6276 return true;
6277 }
6278 \f
6279 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6280
6281 boolean
6282 elf_gc_record_vtinherit (abfd, sec, h, offset)
6283 bfd *abfd;
6284 asection *sec;
6285 struct elf_link_hash_entry *h;
6286 bfd_vma offset;
6287 {
6288 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6289 struct elf_link_hash_entry **search, *child;
6290 bfd_size_type extsymcount;
6291
6292 /* The sh_info field of the symtab header tells us where the
6293 external symbols start. We don't care about the local symbols at
6294 this point. */
6295 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6296 if (!elf_bad_symtab (abfd))
6297 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6298
6299 sym_hashes = elf_sym_hashes (abfd);
6300 sym_hashes_end = sym_hashes + extsymcount;
6301
6302 /* Hunt down the child symbol, which is in this section at the same
6303 offset as the relocation. */
6304 for (search = sym_hashes; search != sym_hashes_end; ++search)
6305 {
6306 if ((child = *search) != NULL
6307 && (child->root.type == bfd_link_hash_defined
6308 || child->root.type == bfd_link_hash_defweak)
6309 && child->root.u.def.section == sec
6310 && child->root.u.def.value == offset)
6311 goto win;
6312 }
6313
6314 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6315 bfd_get_filename (abfd), sec->name,
6316 (unsigned long)offset);
6317 bfd_set_error (bfd_error_invalid_operation);
6318 return false;
6319
6320 win:
6321 if (!h)
6322 {
6323 /* This *should* only be the absolute section. It could potentially
6324 be that someone has defined a non-global vtable though, which
6325 would be bad. It isn't worth paging in the local symbols to be
6326 sure though; that case should simply be handled by the assembler. */
6327
6328 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6329 }
6330 else
6331 child->vtable_parent = h;
6332
6333 return true;
6334 }
6335
6336 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6337
6338 boolean
6339 elf_gc_record_vtentry (abfd, sec, h, addend)
6340 bfd *abfd ATTRIBUTE_UNUSED;
6341 asection *sec ATTRIBUTE_UNUSED;
6342 struct elf_link_hash_entry *h;
6343 bfd_vma addend;
6344 {
6345 if (addend >= h->vtable_entries_size)
6346 {
6347 size_t size, bytes;
6348 boolean *ptr = h->vtable_entries_used;
6349
6350 /* While the symbol is undefined, we have to be prepared to handle
6351 a zero size. */
6352 if (h->root.type == bfd_link_hash_undefined)
6353 size = addend;
6354 else
6355 {
6356 size = h->size;
6357 if (size < addend)
6358 {
6359 /* Oops! We've got a reference past the defined end of
6360 the table. This is probably a bug -- shall we warn? */
6361 size = addend;
6362 }
6363 }
6364
6365 /* Allocate one extra entry for use as a "done" flag for the
6366 consolidation pass. */
6367 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6368
6369 if (ptr)
6370 {
6371 size_t oldbytes;
6372
6373 ptr = realloc (ptr-1, bytes);
6374 if (ptr == NULL)
6375 return false;
6376
6377 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6378 memset (ptr + oldbytes, 0, bytes - oldbytes);
6379 }
6380 else
6381 {
6382 ptr = calloc (1, bytes);
6383 if (ptr == NULL)
6384 return false;
6385 }
6386
6387 /* And arrange for that done flag to be at index -1. */
6388 h->vtable_entries_used = ptr+1;
6389 h->vtable_entries_size = size;
6390 }
6391 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6392
6393 return true;
6394 }
6395
6396 /* And an accompanying bit to work out final got entry offsets once
6397 we're done. Should be called from final_link. */
6398
6399 boolean
6400 elf_gc_common_finalize_got_offsets (abfd, info)
6401 bfd *abfd;
6402 struct bfd_link_info *info;
6403 {
6404 bfd *i;
6405 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6406 bfd_vma gotoff;
6407
6408 /* The GOT offset is relative to the .got section, but the GOT header is
6409 put into the .got.plt section, if the backend uses it. */
6410 if (bed->want_got_plt)
6411 gotoff = 0;
6412 else
6413 gotoff = bed->got_header_size;
6414
6415 /* Do the local .got entries first. */
6416 for (i = info->input_bfds; i; i = i->link_next)
6417 {
6418 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6419 bfd_size_type j, locsymcount;
6420 Elf_Internal_Shdr *symtab_hdr;
6421
6422 if (!local_got)
6423 continue;
6424
6425 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6426 if (elf_bad_symtab (i))
6427 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6428 else
6429 locsymcount = symtab_hdr->sh_info;
6430
6431 for (j = 0; j < locsymcount; ++j)
6432 {
6433 if (local_got[j] > 0)
6434 {
6435 local_got[j] = gotoff;
6436 gotoff += ARCH_SIZE / 8;
6437 }
6438 else
6439 local_got[j] = (bfd_vma) -1;
6440 }
6441 }
6442
6443 /* Then the global .got and .plt entries. */
6444 elf_link_hash_traverse (elf_hash_table (info),
6445 elf_gc_allocate_got_offsets,
6446 (PTR) &gotoff);
6447 return true;
6448 }
6449
6450 /* We need a special top-level link routine to convert got reference counts
6451 to real got offsets. */
6452
6453 static boolean
6454 elf_gc_allocate_got_offsets (h, offarg)
6455 struct elf_link_hash_entry *h;
6456 PTR offarg;
6457 {
6458 bfd_vma *off = (bfd_vma *) offarg;
6459
6460 if (h->got.refcount > 0)
6461 {
6462 h->got.offset = off[0];
6463 off[0] += ARCH_SIZE / 8;
6464 }
6465 else
6466 h->got.offset = (bfd_vma) -1;
6467
6468 return true;
6469 }
6470
6471 /* Many folk need no more in the way of final link than this, once
6472 got entry reference counting is enabled. */
6473
6474 boolean
6475 elf_gc_common_final_link (abfd, info)
6476 bfd *abfd;
6477 struct bfd_link_info *info;
6478 {
6479 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6480 return false;
6481
6482 /* Invoke the regular ELF backend linker to do all the work. */
6483 return elf_bfd_final_link (abfd, info);
6484 }
6485
6486 /* This function will be called though elf_link_hash_traverse to store
6487 all hash value of the exported symbols in an array. */
6488
6489 static boolean
6490 elf_collect_hash_codes (h, data)
6491 struct elf_link_hash_entry *h;
6492 PTR data;
6493 {
6494 unsigned long **valuep = (unsigned long **) data;
6495 const char *name;
6496 char *p;
6497 unsigned long ha;
6498 char *alc = NULL;
6499
6500 /* Ignore indirect symbols. These are added by the versioning code. */
6501 if (h->dynindx == -1)
6502 return true;
6503
6504 name = h->root.root.string;
6505 p = strchr (name, ELF_VER_CHR);
6506 if (p != NULL)
6507 {
6508 alc = bfd_malloc (p - name + 1);
6509 memcpy (alc, name, p - name);
6510 alc[p - name] = '\0';
6511 name = alc;
6512 }
6513
6514 /* Compute the hash value. */
6515 ha = bfd_elf_hash (name);
6516
6517 /* Store the found hash value in the array given as the argument. */
6518 *(*valuep)++ = ha;
6519
6520 /* And store it in the struct so that we can put it in the hash table
6521 later. */
6522 h->elf_hash_value = ha;
6523
6524 if (alc != NULL)
6525 free (alc);
6526
6527 return true;
6528 }
This page took 0.170277 seconds and 4 git commands to generate.