* elf-bfd.h (struct elf_link_hash_table): Add copy_indirect and
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83 /* Return true iff this is a non-common definition of a symbol. */
84 static boolean
85 is_global_symbol_definition (abfd, sym)
86 bfd * abfd;
87 Elf_Internal_Sym * sym;
88 {
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116 }
117
118
119 /* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122 static boolean
123 elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126 {
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
205 result = is_global_symbol_definition (abfd, & sym);
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213 }
214 \f
215
216 /* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241 static boolean
242 elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245 {
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
360
361 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
362 if (element == (bfd *) NULL)
363 goto error_return;
364
365 if (! bfd_check_format (element, bfd_object))
366 goto error_return;
367
368 /* Doublecheck that we have not included this object
369 already--it should be impossible, but there may be
370 something wrong with the archive. */
371 if (element->archive_pass != 0)
372 {
373 bfd_set_error (bfd_error_bad_value);
374 goto error_return;
375 }
376 element->archive_pass = 1;
377
378 undefs_tail = info->hash->undefs_tail;
379
380 if (! (*info->callbacks->add_archive_element) (info, element,
381 symdef->name))
382 goto error_return;
383 if (! elf_link_add_object_symbols (element, info))
384 goto error_return;
385
386 /* If there are any new undefined symbols, we need to make
387 another pass through the archive in order to see whether
388 they can be defined. FIXME: This isn't perfect, because
389 common symbols wind up on undefs_tail and because an
390 undefined symbol which is defined later on in this pass
391 does not require another pass. This isn't a bug, but it
392 does make the code less efficient than it could be. */
393 if (undefs_tail != info->hash->undefs_tail)
394 loop = true;
395
396 /* Look backward to mark all symbols from this object file
397 which we have already seen in this pass. */
398 mark = i;
399 do
400 {
401 included[mark] = true;
402 if (mark == 0)
403 break;
404 --mark;
405 }
406 while (symdefs[mark].file_offset == symdef->file_offset);
407
408 /* We mark subsequent symbols from this object file as we go
409 on through the loop. */
410 last = symdef->file_offset;
411 }
412 }
413 while (loop);
414
415 free (defined);
416 free (included);
417
418 return true;
419
420 error_return:
421 if (defined != (boolean *) NULL)
422 free (defined);
423 if (included != (boolean *) NULL)
424 free (included);
425 return false;
426 }
427
428 /* This function is called when we want to define a new symbol. It
429 handles the various cases which arise when we find a definition in
430 a dynamic object, or when there is already a definition in a
431 dynamic object. The new symbol is described by NAME, SYM, PSEC,
432 and PVALUE. We set SYM_HASH to the hash table entry. We set
433 OVERRIDE if the old symbol is overriding a new definition. We set
434 TYPE_CHANGE_OK if it is OK for the type to change. We set
435 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
436 change, we mean that we shouldn't warn if the type or size does
437 change. */
438
439 static boolean
440 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
441 override, type_change_ok, size_change_ok)
442 bfd *abfd;
443 struct bfd_link_info *info;
444 const char *name;
445 Elf_Internal_Sym *sym;
446 asection **psec;
447 bfd_vma *pvalue;
448 struct elf_link_hash_entry **sym_hash;
449 boolean *override;
450 boolean *type_change_ok;
451 boolean *size_change_ok;
452 {
453 asection *sec;
454 struct elf_link_hash_entry *h;
455 int bind;
456 bfd *oldbfd;
457 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
458
459 *override = false;
460
461 sec = *psec;
462 bind = ELF_ST_BIND (sym->st_info);
463
464 if (! bfd_is_und_section (sec))
465 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
466 else
467 h = ((struct elf_link_hash_entry *)
468 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
469 if (h == NULL)
470 return false;
471 *sym_hash = h;
472
473 /* This code is for coping with dynamic objects, and is only useful
474 if we are doing an ELF link. */
475 if (info->hash->creator != abfd->xvec)
476 return true;
477
478 /* For merging, we only care about real symbols. */
479
480 while (h->root.type == bfd_link_hash_indirect
481 || h->root.type == bfd_link_hash_warning)
482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
483
484 /* If we just created the symbol, mark it as being an ELF symbol.
485 Other than that, there is nothing to do--there is no merge issue
486 with a newly defined symbol--so we just return. */
487
488 if (h->root.type == bfd_link_hash_new)
489 {
490 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
491 return true;
492 }
493
494 /* OLDBFD is a BFD associated with the existing symbol. */
495
496 switch (h->root.type)
497 {
498 default:
499 oldbfd = NULL;
500 break;
501
502 case bfd_link_hash_undefined:
503 case bfd_link_hash_undefweak:
504 oldbfd = h->root.u.undef.abfd;
505 break;
506
507 case bfd_link_hash_defined:
508 case bfd_link_hash_defweak:
509 oldbfd = h->root.u.def.section->owner;
510 break;
511
512 case bfd_link_hash_common:
513 oldbfd = h->root.u.c.p->section->owner;
514 break;
515 }
516
517 /* In cases involving weak versioned symbols, we may wind up trying
518 to merge a symbol with itself. Catch that here, to avoid the
519 confusion that results if we try to override a symbol with
520 itself. The additional tests catch cases like
521 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
522 dynamic object, which we do want to handle here. */
523 if (abfd == oldbfd
524 && ((abfd->flags & DYNAMIC) == 0
525 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
526 return true;
527
528 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
529 respectively, is from a dynamic object. */
530
531 if ((abfd->flags & DYNAMIC) != 0)
532 newdyn = true;
533 else
534 newdyn = false;
535
536 if (oldbfd != NULL)
537 olddyn = (oldbfd->flags & DYNAMIC) != 0;
538 else
539 {
540 asection *hsec;
541
542 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
543 indices used by MIPS ELF. */
544 switch (h->root.type)
545 {
546 default:
547 hsec = NULL;
548 break;
549
550 case bfd_link_hash_defined:
551 case bfd_link_hash_defweak:
552 hsec = h->root.u.def.section;
553 break;
554
555 case bfd_link_hash_common:
556 hsec = h->root.u.c.p->section;
557 break;
558 }
559
560 if (hsec == NULL)
561 olddyn = false;
562 else
563 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
564 }
565
566 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
567 respectively, appear to be a definition rather than reference. */
568
569 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
570 newdef = false;
571 else
572 newdef = true;
573
574 if (h->root.type == bfd_link_hash_undefined
575 || h->root.type == bfd_link_hash_undefweak
576 || h->root.type == bfd_link_hash_common)
577 olddef = false;
578 else
579 olddef = true;
580
581 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
582 symbol, respectively, appears to be a common symbol in a dynamic
583 object. If a symbol appears in an uninitialized section, and is
584 not weak, and is not a function, then it may be a common symbol
585 which was resolved when the dynamic object was created. We want
586 to treat such symbols specially, because they raise special
587 considerations when setting the symbol size: if the symbol
588 appears as a common symbol in a regular object, and the size in
589 the regular object is larger, we must make sure that we use the
590 larger size. This problematic case can always be avoided in C,
591 but it must be handled correctly when using Fortran shared
592 libraries.
593
594 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
595 likewise for OLDDYNCOMMON and OLDDEF.
596
597 Note that this test is just a heuristic, and that it is quite
598 possible to have an uninitialized symbol in a shared object which
599 is really a definition, rather than a common symbol. This could
600 lead to some minor confusion when the symbol really is a common
601 symbol in some regular object. However, I think it will be
602 harmless. */
603
604 if (newdyn
605 && newdef
606 && (sec->flags & SEC_ALLOC) != 0
607 && (sec->flags & SEC_LOAD) == 0
608 && sym->st_size > 0
609 && bind != STB_WEAK
610 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
611 newdyncommon = true;
612 else
613 newdyncommon = false;
614
615 if (olddyn
616 && olddef
617 && h->root.type == bfd_link_hash_defined
618 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
619 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
620 && (h->root.u.def.section->flags & SEC_LOAD) == 0
621 && h->size > 0
622 && h->type != STT_FUNC)
623 olddyncommon = true;
624 else
625 olddyncommon = false;
626
627 /* It's OK to change the type if either the existing symbol or the
628 new symbol is weak. */
629
630 if (h->root.type == bfd_link_hash_defweak
631 || h->root.type == bfd_link_hash_undefweak
632 || bind == STB_WEAK)
633 *type_change_ok = true;
634
635 /* It's OK to change the size if either the existing symbol or the
636 new symbol is weak, or if the old symbol is undefined. */
637
638 if (*type_change_ok
639 || h->root.type == bfd_link_hash_undefined)
640 *size_change_ok = true;
641
642 /* If both the old and the new symbols look like common symbols in a
643 dynamic object, set the size of the symbol to the larger of the
644 two. */
645
646 if (olddyncommon
647 && newdyncommon
648 && sym->st_size != h->size)
649 {
650 /* Since we think we have two common symbols, issue a multiple
651 common warning if desired. Note that we only warn if the
652 size is different. If the size is the same, we simply let
653 the old symbol override the new one as normally happens with
654 symbols defined in dynamic objects. */
655
656 if (! ((*info->callbacks->multiple_common)
657 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
658 h->size, abfd, bfd_link_hash_common, sym->st_size)))
659 return false;
660
661 if (sym->st_size > h->size)
662 h->size = sym->st_size;
663
664 *size_change_ok = true;
665 }
666
667 /* If we are looking at a dynamic object, and we have found a
668 definition, we need to see if the symbol was already defined by
669 some other object. If so, we want to use the existing
670 definition, and we do not want to report a multiple symbol
671 definition error; we do this by clobbering *PSEC to be
672 bfd_und_section_ptr.
673
674 We treat a common symbol as a definition if the symbol in the
675 shared library is a function, since common symbols always
676 represent variables; this can cause confusion in principle, but
677 any such confusion would seem to indicate an erroneous program or
678 shared library. We also permit a common symbol in a regular
679 object to override a weak symbol in a shared object.
680
681 We prefer a non-weak definition in a shared library to a weak
682 definition in the executable. */
683
684 if (newdyn
685 && newdef
686 && (olddef
687 || (h->root.type == bfd_link_hash_common
688 && (bind == STB_WEAK
689 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
690 && (h->root.type != bfd_link_hash_defweak
691 || bind == STB_WEAK))
692 {
693 *override = true;
694 newdef = false;
695 newdyncommon = false;
696
697 *psec = sec = bfd_und_section_ptr;
698 *size_change_ok = true;
699
700 /* If we get here when the old symbol is a common symbol, then
701 we are explicitly letting it override a weak symbol or
702 function in a dynamic object, and we don't want to warn about
703 a type change. If the old symbol is a defined symbol, a type
704 change warning may still be appropriate. */
705
706 if (h->root.type == bfd_link_hash_common)
707 *type_change_ok = true;
708 }
709
710 /* Handle the special case of an old common symbol merging with a
711 new symbol which looks like a common symbol in a shared object.
712 We change *PSEC and *PVALUE to make the new symbol look like a
713 common symbol, and let _bfd_generic_link_add_one_symbol will do
714 the right thing. */
715
716 if (newdyncommon
717 && h->root.type == bfd_link_hash_common)
718 {
719 *override = true;
720 newdef = false;
721 newdyncommon = false;
722 *pvalue = sym->st_size;
723 *psec = sec = bfd_com_section_ptr;
724 *size_change_ok = true;
725 }
726
727 /* If the old symbol is from a dynamic object, and the new symbol is
728 a definition which is not from a dynamic object, then the new
729 symbol overrides the old symbol. Symbols from regular files
730 always take precedence over symbols from dynamic objects, even if
731 they are defined after the dynamic object in the link.
732
733 As above, we again permit a common symbol in a regular object to
734 override a definition in a shared object if the shared object
735 symbol is a function or is weak.
736
737 As above, we permit a non-weak definition in a shared object to
738 override a weak definition in a regular object. */
739
740 if (! newdyn
741 && (newdef
742 || (bfd_is_com_section (sec)
743 && (h->root.type == bfd_link_hash_defweak
744 || h->type == STT_FUNC)))
745 && olddyn
746 && olddef
747 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
748 && (bind != STB_WEAK
749 || h->root.type == bfd_link_hash_defweak))
750 {
751 /* Change the hash table entry to undefined, and let
752 _bfd_generic_link_add_one_symbol do the right thing with the
753 new definition. */
754
755 h->root.type = bfd_link_hash_undefined;
756 h->root.u.undef.abfd = h->root.u.def.section->owner;
757 *size_change_ok = true;
758
759 olddef = false;
760 olddyncommon = false;
761
762 /* We again permit a type change when a common symbol may be
763 overriding a function. */
764
765 if (bfd_is_com_section (sec))
766 *type_change_ok = true;
767
768 /* This union may have been set to be non-NULL when this symbol
769 was seen in a dynamic object. We must force the union to be
770 NULL, so that it is correct for a regular symbol. */
771
772 h->verinfo.vertree = NULL;
773
774 /* In this special case, if H is the target of an indirection,
775 we want the caller to frob with H rather than with the
776 indirect symbol. That will permit the caller to redefine the
777 target of the indirection, rather than the indirect symbol
778 itself. FIXME: This will break the -y option if we store a
779 symbol with a different name. */
780 *sym_hash = h;
781 }
782
783 /* Handle the special case of a new common symbol merging with an
784 old symbol that looks like it might be a common symbol defined in
785 a shared object. Note that we have already handled the case in
786 which a new common symbol should simply override the definition
787 in the shared library. */
788
789 if (! newdyn
790 && bfd_is_com_section (sec)
791 && olddyncommon)
792 {
793 /* It would be best if we could set the hash table entry to a
794 common symbol, but we don't know what to use for the section
795 or the alignment. */
796 if (! ((*info->callbacks->multiple_common)
797 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
798 h->size, abfd, bfd_link_hash_common, sym->st_size)))
799 return false;
800
801 /* If the predumed common symbol in the dynamic object is
802 larger, pretend that the new symbol has its size. */
803
804 if (h->size > *pvalue)
805 *pvalue = h->size;
806
807 /* FIXME: We no longer know the alignment required by the symbol
808 in the dynamic object, so we just wind up using the one from
809 the regular object. */
810
811 olddef = false;
812 olddyncommon = false;
813
814 h->root.type = bfd_link_hash_undefined;
815 h->root.u.undef.abfd = h->root.u.def.section->owner;
816
817 *size_change_ok = true;
818 *type_change_ok = true;
819
820 h->verinfo.vertree = NULL;
821 }
822
823 /* Handle the special case of a weak definition in a regular object
824 followed by a non-weak definition in a shared object. In this
825 case, we prefer the definition in the shared object. */
826 if (olddef
827 && h->root.type == bfd_link_hash_defweak
828 && newdef
829 && newdyn
830 && bind != STB_WEAK)
831 {
832 /* To make this work we have to frob the flags so that the rest
833 of the code does not think we are using the regular
834 definition. */
835 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
836 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
837 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
838 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
839 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
840 | ELF_LINK_HASH_DEF_DYNAMIC);
841
842 /* If H is the target of an indirection, we want the caller to
843 use H rather than the indirect symbol. Otherwise if we are
844 defining a new indirect symbol we will wind up attaching it
845 to the entry we are overriding. */
846 *sym_hash = h;
847 }
848
849 /* Handle the special case of a non-weak definition in a shared
850 object followed by a weak definition in a regular object. In
851 this case we prefer to definition in the shared object. To make
852 this work we have to tell the caller to not treat the new symbol
853 as a definition. */
854 if (olddef
855 && olddyn
856 && h->root.type != bfd_link_hash_defweak
857 && newdef
858 && ! newdyn
859 && bind == STB_WEAK)
860 *override = true;
861
862 return true;
863 }
864
865 /* Add symbols from an ELF object file to the linker hash table. */
866
867 static boolean
868 elf_link_add_object_symbols (abfd, info)
869 bfd *abfd;
870 struct bfd_link_info *info;
871 {
872 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
873 const Elf_Internal_Sym *,
874 const char **, flagword *,
875 asection **, bfd_vma *));
876 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
877 asection *, const Elf_Internal_Rela *));
878 boolean collect;
879 Elf_Internal_Shdr *hdr;
880 size_t symcount;
881 size_t extsymcount;
882 size_t extsymoff;
883 Elf_External_Sym *buf = NULL;
884 struct elf_link_hash_entry **sym_hash;
885 boolean dynamic;
886 bfd_byte *dynver = NULL;
887 Elf_External_Versym *extversym = NULL;
888 Elf_External_Versym *ever;
889 Elf_External_Dyn *dynbuf = NULL;
890 struct elf_link_hash_entry *weaks;
891 Elf_External_Sym *esym;
892 Elf_External_Sym *esymend;
893
894 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
895 collect = get_elf_backend_data (abfd)->collect;
896
897 if ((abfd->flags & DYNAMIC) == 0)
898 dynamic = false;
899 else
900 {
901 dynamic = true;
902
903 /* You can't use -r against a dynamic object. Also, there's no
904 hope of using a dynamic object which does not exactly match
905 the format of the output file. */
906 if (info->relocateable || info->hash->creator != abfd->xvec)
907 {
908 bfd_set_error (bfd_error_invalid_operation);
909 goto error_return;
910 }
911 }
912
913 /* As a GNU extension, any input sections which are named
914 .gnu.warning.SYMBOL are treated as warning symbols for the given
915 symbol. This differs from .gnu.warning sections, which generate
916 warnings when they are included in an output file. */
917 if (! info->shared)
918 {
919 asection *s;
920
921 for (s = abfd->sections; s != NULL; s = s->next)
922 {
923 const char *name;
924
925 name = bfd_get_section_name (abfd, s);
926 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
927 {
928 char *msg;
929 bfd_size_type sz;
930
931 name += sizeof ".gnu.warning." - 1;
932
933 /* If this is a shared object, then look up the symbol
934 in the hash table. If it is there, and it is already
935 been defined, then we will not be using the entry
936 from this shared object, so we don't need to warn.
937 FIXME: If we see the definition in a regular object
938 later on, we will warn, but we shouldn't. The only
939 fix is to keep track of what warnings we are supposed
940 to emit, and then handle them all at the end of the
941 link. */
942 if (dynamic && abfd->xvec == info->hash->creator)
943 {
944 struct elf_link_hash_entry *h;
945
946 h = elf_link_hash_lookup (elf_hash_table (info), name,
947 false, false, true);
948
949 /* FIXME: What about bfd_link_hash_common? */
950 if (h != NULL
951 && (h->root.type == bfd_link_hash_defined
952 || h->root.type == bfd_link_hash_defweak))
953 {
954 /* We don't want to issue this warning. Clobber
955 the section size so that the warning does not
956 get copied into the output file. */
957 s->_raw_size = 0;
958 continue;
959 }
960 }
961
962 sz = bfd_section_size (abfd, s);
963 msg = (char *) bfd_alloc (abfd, sz + 1);
964 if (msg == NULL)
965 goto error_return;
966
967 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
968 goto error_return;
969
970 msg[sz] = '\0';
971
972 if (! (_bfd_generic_link_add_one_symbol
973 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
974 false, collect, (struct bfd_link_hash_entry **) NULL)))
975 goto error_return;
976
977 if (! info->relocateable)
978 {
979 /* Clobber the section size so that the warning does
980 not get copied into the output file. */
981 s->_raw_size = 0;
982 }
983 }
984 }
985 }
986
987 /* If this is a dynamic object, we always link against the .dynsym
988 symbol table, not the .symtab symbol table. The dynamic linker
989 will only see the .dynsym symbol table, so there is no reason to
990 look at .symtab for a dynamic object. */
991
992 if (! dynamic || elf_dynsymtab (abfd) == 0)
993 hdr = &elf_tdata (abfd)->symtab_hdr;
994 else
995 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
996
997 if (dynamic)
998 {
999 /* Read in any version definitions. */
1000
1001 if (! _bfd_elf_slurp_version_tables (abfd))
1002 goto error_return;
1003
1004 /* Read in the symbol versions, but don't bother to convert them
1005 to internal format. */
1006 if (elf_dynversym (abfd) != 0)
1007 {
1008 Elf_Internal_Shdr *versymhdr;
1009
1010 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1011 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1012 if (extversym == NULL)
1013 goto error_return;
1014 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1015 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1016 != versymhdr->sh_size))
1017 goto error_return;
1018 }
1019 }
1020
1021 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1022
1023 /* The sh_info field of the symtab header tells us where the
1024 external symbols start. We don't care about the local symbols at
1025 this point. */
1026 if (elf_bad_symtab (abfd))
1027 {
1028 extsymcount = symcount;
1029 extsymoff = 0;
1030 }
1031 else
1032 {
1033 extsymcount = symcount - hdr->sh_info;
1034 extsymoff = hdr->sh_info;
1035 }
1036
1037 buf = ((Elf_External_Sym *)
1038 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1039 if (buf == NULL && extsymcount != 0)
1040 goto error_return;
1041
1042 /* We store a pointer to the hash table entry for each external
1043 symbol. */
1044 sym_hash = ((struct elf_link_hash_entry **)
1045 bfd_alloc (abfd,
1046 extsymcount * sizeof (struct elf_link_hash_entry *)));
1047 if (sym_hash == NULL)
1048 goto error_return;
1049 elf_sym_hashes (abfd) = sym_hash;
1050
1051 if (! dynamic)
1052 {
1053 /* If we are creating a shared library, create all the dynamic
1054 sections immediately. We need to attach them to something,
1055 so we attach them to this BFD, provided it is the right
1056 format. FIXME: If there are no input BFD's of the same
1057 format as the output, we can't make a shared library. */
1058 if (info->shared
1059 && ! elf_hash_table (info)->dynamic_sections_created
1060 && abfd->xvec == info->hash->creator)
1061 {
1062 if (! elf_link_create_dynamic_sections (abfd, info))
1063 goto error_return;
1064 }
1065 }
1066 else
1067 {
1068 asection *s;
1069 boolean add_needed;
1070 const char *name;
1071 bfd_size_type oldsize;
1072 bfd_size_type strindex;
1073
1074 /* Find the name to use in a DT_NEEDED entry that refers to this
1075 object. If the object has a DT_SONAME entry, we use it.
1076 Otherwise, if the generic linker stuck something in
1077 elf_dt_name, we use that. Otherwise, we just use the file
1078 name. If the generic linker put a null string into
1079 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1080 there is a DT_SONAME entry. */
1081 add_needed = true;
1082 name = bfd_get_filename (abfd);
1083 if (elf_dt_name (abfd) != NULL)
1084 {
1085 name = elf_dt_name (abfd);
1086 if (*name == '\0')
1087 add_needed = false;
1088 }
1089 s = bfd_get_section_by_name (abfd, ".dynamic");
1090 if (s != NULL)
1091 {
1092 Elf_External_Dyn *extdyn;
1093 Elf_External_Dyn *extdynend;
1094 int elfsec;
1095 unsigned long link;
1096
1097 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1098 if (dynbuf == NULL)
1099 goto error_return;
1100
1101 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1102 (file_ptr) 0, s->_raw_size))
1103 goto error_return;
1104
1105 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1106 if (elfsec == -1)
1107 goto error_return;
1108 link = elf_elfsections (abfd)[elfsec]->sh_link;
1109
1110 {
1111 /* The shared libraries distributed with hpux11 have a bogus
1112 sh_link field for the ".dynamic" section. This code detects
1113 when LINK refers to a section that is not a string table and
1114 tries to find the string table for the ".dynsym" section
1115 instead. */
1116 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1117 if (hdr->sh_type != SHT_STRTAB)
1118 {
1119 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1120 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1121 if (elfsec == -1)
1122 goto error_return;
1123 link = elf_elfsections (abfd)[elfsec]->sh_link;
1124 }
1125 }
1126
1127 extdyn = dynbuf;
1128 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1129 for (; extdyn < extdynend; extdyn++)
1130 {
1131 Elf_Internal_Dyn dyn;
1132
1133 elf_swap_dyn_in (abfd, extdyn, &dyn);
1134 if (dyn.d_tag == DT_SONAME)
1135 {
1136 name = bfd_elf_string_from_elf_section (abfd, link,
1137 dyn.d_un.d_val);
1138 if (name == NULL)
1139 goto error_return;
1140 }
1141 if (dyn.d_tag == DT_NEEDED)
1142 {
1143 struct bfd_link_needed_list *n, **pn;
1144 char *fnm, *anm;
1145
1146 n = ((struct bfd_link_needed_list *)
1147 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1148 fnm = bfd_elf_string_from_elf_section (abfd, link,
1149 dyn.d_un.d_val);
1150 if (n == NULL || fnm == NULL)
1151 goto error_return;
1152 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1153 if (anm == NULL)
1154 goto error_return;
1155 strcpy (anm, fnm);
1156 n->name = anm;
1157 n->by = abfd;
1158 n->next = NULL;
1159 for (pn = &elf_hash_table (info)->needed;
1160 *pn != NULL;
1161 pn = &(*pn)->next)
1162 ;
1163 *pn = n;
1164 }
1165 }
1166
1167 free (dynbuf);
1168 dynbuf = NULL;
1169 }
1170
1171 /* We do not want to include any of the sections in a dynamic
1172 object in the output file. We hack by simply clobbering the
1173 list of sections in the BFD. This could be handled more
1174 cleanly by, say, a new section flag; the existing
1175 SEC_NEVER_LOAD flag is not the one we want, because that one
1176 still implies that the section takes up space in the output
1177 file. */
1178 abfd->sections = NULL;
1179 abfd->section_count = 0;
1180
1181 /* If this is the first dynamic object found in the link, create
1182 the special sections required for dynamic linking. */
1183 if (! elf_hash_table (info)->dynamic_sections_created)
1184 {
1185 if (! elf_link_create_dynamic_sections (abfd, info))
1186 goto error_return;
1187 }
1188
1189 if (add_needed)
1190 {
1191 /* Add a DT_NEEDED entry for this dynamic object. */
1192 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1193 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1194 true, false);
1195 if (strindex == (bfd_size_type) -1)
1196 goto error_return;
1197
1198 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1199 {
1200 asection *sdyn;
1201 Elf_External_Dyn *dyncon, *dynconend;
1202
1203 /* The hash table size did not change, which means that
1204 the dynamic object name was already entered. If we
1205 have already included this dynamic object in the
1206 link, just ignore it. There is no reason to include
1207 a particular dynamic object more than once. */
1208 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1209 ".dynamic");
1210 BFD_ASSERT (sdyn != NULL);
1211
1212 dyncon = (Elf_External_Dyn *) sdyn->contents;
1213 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1214 sdyn->_raw_size);
1215 for (; dyncon < dynconend; dyncon++)
1216 {
1217 Elf_Internal_Dyn dyn;
1218
1219 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1220 &dyn);
1221 if (dyn.d_tag == DT_NEEDED
1222 && dyn.d_un.d_val == strindex)
1223 {
1224 if (buf != NULL)
1225 free (buf);
1226 if (extversym != NULL)
1227 free (extversym);
1228 return true;
1229 }
1230 }
1231 }
1232
1233 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1234 goto error_return;
1235 }
1236
1237 /* Save the SONAME, if there is one, because sometimes the
1238 linker emulation code will need to know it. */
1239 if (*name == '\0')
1240 name = bfd_get_filename (abfd);
1241 elf_dt_name (abfd) = name;
1242 }
1243
1244 if (bfd_seek (abfd,
1245 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1246 SEEK_SET) != 0
1247 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1248 != extsymcount * sizeof (Elf_External_Sym)))
1249 goto error_return;
1250
1251 weaks = NULL;
1252
1253 ever = extversym != NULL ? extversym + extsymoff : NULL;
1254 esymend = buf + extsymcount;
1255 for (esym = buf;
1256 esym < esymend;
1257 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1258 {
1259 Elf_Internal_Sym sym;
1260 int bind;
1261 bfd_vma value;
1262 asection *sec;
1263 flagword flags;
1264 const char *name;
1265 struct elf_link_hash_entry *h;
1266 boolean definition;
1267 boolean size_change_ok, type_change_ok;
1268 boolean new_weakdef;
1269 unsigned int old_alignment;
1270
1271 elf_swap_symbol_in (abfd, esym, &sym);
1272
1273 flags = BSF_NO_FLAGS;
1274 sec = NULL;
1275 value = sym.st_value;
1276 *sym_hash = NULL;
1277
1278 bind = ELF_ST_BIND (sym.st_info);
1279 if (bind == STB_LOCAL)
1280 {
1281 /* This should be impossible, since ELF requires that all
1282 global symbols follow all local symbols, and that sh_info
1283 point to the first global symbol. Unfortunatealy, Irix 5
1284 screws this up. */
1285 continue;
1286 }
1287 else if (bind == STB_GLOBAL)
1288 {
1289 if (sym.st_shndx != SHN_UNDEF
1290 && sym.st_shndx != SHN_COMMON)
1291 flags = BSF_GLOBAL;
1292 else
1293 flags = 0;
1294 }
1295 else if (bind == STB_WEAK)
1296 flags = BSF_WEAK;
1297 else
1298 {
1299 /* Leave it up to the processor backend. */
1300 }
1301
1302 if (sym.st_shndx == SHN_UNDEF)
1303 sec = bfd_und_section_ptr;
1304 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1305 {
1306 sec = section_from_elf_index (abfd, sym.st_shndx);
1307 if (sec == NULL)
1308 sec = bfd_abs_section_ptr;
1309 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1310 value -= sec->vma;
1311 }
1312 else if (sym.st_shndx == SHN_ABS)
1313 sec = bfd_abs_section_ptr;
1314 else if (sym.st_shndx == SHN_COMMON)
1315 {
1316 sec = bfd_com_section_ptr;
1317 /* What ELF calls the size we call the value. What ELF
1318 calls the value we call the alignment. */
1319 value = sym.st_size;
1320 }
1321 else
1322 {
1323 /* Leave it up to the processor backend. */
1324 }
1325
1326 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1327 if (name == (const char *) NULL)
1328 goto error_return;
1329
1330 if (add_symbol_hook)
1331 {
1332 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1333 &value))
1334 goto error_return;
1335
1336 /* The hook function sets the name to NULL if this symbol
1337 should be skipped for some reason. */
1338 if (name == (const char *) NULL)
1339 continue;
1340 }
1341
1342 /* Sanity check that all possibilities were handled. */
1343 if (sec == (asection *) NULL)
1344 {
1345 bfd_set_error (bfd_error_bad_value);
1346 goto error_return;
1347 }
1348
1349 if (bfd_is_und_section (sec)
1350 || bfd_is_com_section (sec))
1351 definition = false;
1352 else
1353 definition = true;
1354
1355 size_change_ok = false;
1356 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1357 old_alignment = 0;
1358 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1359 {
1360 Elf_Internal_Versym iver;
1361 unsigned int vernum = 0;
1362 boolean override;
1363
1364 if (ever != NULL)
1365 {
1366 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1367 vernum = iver.vs_vers & VERSYM_VERSION;
1368
1369 /* If this is a hidden symbol, or if it is not version
1370 1, we append the version name to the symbol name.
1371 However, we do not modify a non-hidden absolute
1372 symbol, because it might be the version symbol
1373 itself. FIXME: What if it isn't? */
1374 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1375 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1376 {
1377 const char *verstr;
1378 int namelen, newlen;
1379 char *newname, *p;
1380
1381 if (sym.st_shndx != SHN_UNDEF)
1382 {
1383 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1384 {
1385 (*_bfd_error_handler)
1386 (_("%s: %s: invalid version %u (max %d)"),
1387 bfd_get_filename (abfd), name, vernum,
1388 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1389 bfd_set_error (bfd_error_bad_value);
1390 goto error_return;
1391 }
1392 else if (vernum > 1)
1393 verstr =
1394 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1395 else
1396 verstr = "";
1397 }
1398 else
1399 {
1400 /* We cannot simply test for the number of
1401 entries in the VERNEED section since the
1402 numbers for the needed versions do not start
1403 at 0. */
1404 Elf_Internal_Verneed *t;
1405
1406 verstr = NULL;
1407 for (t = elf_tdata (abfd)->verref;
1408 t != NULL;
1409 t = t->vn_nextref)
1410 {
1411 Elf_Internal_Vernaux *a;
1412
1413 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1414 {
1415 if (a->vna_other == vernum)
1416 {
1417 verstr = a->vna_nodename;
1418 break;
1419 }
1420 }
1421 if (a != NULL)
1422 break;
1423 }
1424 if (verstr == NULL)
1425 {
1426 (*_bfd_error_handler)
1427 (_("%s: %s: invalid needed version %d"),
1428 bfd_get_filename (abfd), name, vernum);
1429 bfd_set_error (bfd_error_bad_value);
1430 goto error_return;
1431 }
1432 }
1433
1434 namelen = strlen (name);
1435 newlen = namelen + strlen (verstr) + 2;
1436 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1437 ++newlen;
1438
1439 newname = (char *) bfd_alloc (abfd, newlen);
1440 if (newname == NULL)
1441 goto error_return;
1442 strcpy (newname, name);
1443 p = newname + namelen;
1444 *p++ = ELF_VER_CHR;
1445 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1446 *p++ = ELF_VER_CHR;
1447 strcpy (p, verstr);
1448
1449 name = newname;
1450 }
1451 }
1452
1453 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1454 sym_hash, &override, &type_change_ok,
1455 &size_change_ok))
1456 goto error_return;
1457
1458 if (override)
1459 definition = false;
1460
1461 h = *sym_hash;
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465
1466 /* Remember the old alignment if this is a common symbol, so
1467 that we don't reduce the alignment later on. We can't
1468 check later, because _bfd_generic_link_add_one_symbol
1469 will set a default for the alignment which we want to
1470 override. */
1471 if (h->root.type == bfd_link_hash_common)
1472 old_alignment = h->root.u.c.p->alignment_power;
1473
1474 if (elf_tdata (abfd)->verdef != NULL
1475 && ! override
1476 && vernum > 1
1477 && definition)
1478 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1479 }
1480
1481 if (! (_bfd_generic_link_add_one_symbol
1482 (info, abfd, name, flags, sec, value, (const char *) NULL,
1483 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1484 goto error_return;
1485
1486 h = *sym_hash;
1487 while (h->root.type == bfd_link_hash_indirect
1488 || h->root.type == bfd_link_hash_warning)
1489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1490 *sym_hash = h;
1491
1492 new_weakdef = false;
1493 if (dynamic
1494 && definition
1495 && (flags & BSF_WEAK) != 0
1496 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1497 && info->hash->creator->flavour == bfd_target_elf_flavour
1498 && h->weakdef == NULL)
1499 {
1500 /* Keep a list of all weak defined non function symbols from
1501 a dynamic object, using the weakdef field. Later in this
1502 function we will set the weakdef field to the correct
1503 value. We only put non-function symbols from dynamic
1504 objects on this list, because that happens to be the only
1505 time we need to know the normal symbol corresponding to a
1506 weak symbol, and the information is time consuming to
1507 figure out. If the weakdef field is not already NULL,
1508 then this symbol was already defined by some previous
1509 dynamic object, and we will be using that previous
1510 definition anyhow. */
1511
1512 h->weakdef = weaks;
1513 weaks = h;
1514 new_weakdef = true;
1515 }
1516
1517 /* Set the alignment of a common symbol. */
1518 if (sym.st_shndx == SHN_COMMON
1519 && h->root.type == bfd_link_hash_common)
1520 {
1521 unsigned int align;
1522
1523 align = bfd_log2 (sym.st_value);
1524 if (align > old_alignment)
1525 h->root.u.c.p->alignment_power = align;
1526 }
1527
1528 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1529 {
1530 int old_flags;
1531 boolean dynsym;
1532 int new_flag;
1533
1534 /* Remember the symbol size and type. */
1535 if (sym.st_size != 0
1536 && (definition || h->size == 0))
1537 {
1538 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1539 (*_bfd_error_handler)
1540 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1541 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1542 bfd_get_filename (abfd));
1543
1544 h->size = sym.st_size;
1545 }
1546
1547 /* If this is a common symbol, then we always want H->SIZE
1548 to be the size of the common symbol. The code just above
1549 won't fix the size if a common symbol becomes larger. We
1550 don't warn about a size change here, because that is
1551 covered by --warn-common. */
1552 if (h->root.type == bfd_link_hash_common)
1553 h->size = h->root.u.c.size;
1554
1555 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1556 && (definition || h->type == STT_NOTYPE))
1557 {
1558 if (h->type != STT_NOTYPE
1559 && h->type != ELF_ST_TYPE (sym.st_info)
1560 && ! type_change_ok)
1561 (*_bfd_error_handler)
1562 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1563 name, h->type, ELF_ST_TYPE (sym.st_info),
1564 bfd_get_filename (abfd));
1565
1566 h->type = ELF_ST_TYPE (sym.st_info);
1567 }
1568
1569 /* If st_other has a processor-specific meaning, specific code
1570 might be needed here. */
1571 if (sym.st_other != 0)
1572 {
1573 /* Combine visibilities, using the most constraining one. */
1574 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1575 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1576
1577 if (symvis && (hvis > symvis || hvis == 0))
1578 h->other = sym.st_other;
1579
1580 /* If neither has visibility, use the st_other of the
1581 definition. This is an arbitrary choice, since the
1582 other bits have no general meaning. */
1583 if (!symvis && !hvis
1584 && (definition || h->other == 0))
1585 h->other = sym.st_other;
1586 }
1587
1588 /* Set a flag in the hash table entry indicating the type of
1589 reference or definition we just found. Keep a count of
1590 the number of dynamic symbols we find. A dynamic symbol
1591 is one which is referenced or defined by both a regular
1592 object and a shared object. */
1593 old_flags = h->elf_link_hash_flags;
1594 dynsym = false;
1595 if (! dynamic)
1596 {
1597 if (! definition)
1598 {
1599 new_flag = ELF_LINK_HASH_REF_REGULAR;
1600 if (bind != STB_WEAK)
1601 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1602 }
1603 else
1604 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1605 if (info->shared
1606 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1607 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1608 dynsym = true;
1609 }
1610 else
1611 {
1612 if (! definition)
1613 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1614 else
1615 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1616 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1617 | ELF_LINK_HASH_REF_REGULAR)) != 0
1618 || (h->weakdef != NULL
1619 && ! new_weakdef
1620 && h->weakdef->dynindx != -1))
1621 dynsym = true;
1622 }
1623
1624 h->elf_link_hash_flags |= new_flag;
1625
1626 /* If this symbol has a version, and it is the default
1627 version, we create an indirect symbol from the default
1628 name to the fully decorated name. This will cause
1629 external references which do not specify a version to be
1630 bound to this version of the symbol. */
1631 if (definition)
1632 {
1633 char *p;
1634
1635 p = strchr (name, ELF_VER_CHR);
1636 if (p != NULL && p[1] == ELF_VER_CHR)
1637 {
1638 char *shortname;
1639 struct elf_link_hash_entry *hi;
1640 boolean override;
1641
1642 shortname = bfd_hash_allocate (&info->hash->table,
1643 p - name + 1);
1644 if (shortname == NULL)
1645 goto error_return;
1646 strncpy (shortname, name, p - name);
1647 shortname[p - name] = '\0';
1648
1649 /* We are going to create a new symbol. Merge it
1650 with any existing symbol with this name. For the
1651 purposes of the merge, act as though we were
1652 defining the symbol we just defined, although we
1653 actually going to define an indirect symbol. */
1654 type_change_ok = false;
1655 size_change_ok = false;
1656 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1657 &value, &hi, &override,
1658 &type_change_ok, &size_change_ok))
1659 goto error_return;
1660
1661 if (! override)
1662 {
1663 if (! (_bfd_generic_link_add_one_symbol
1664 (info, abfd, shortname, BSF_INDIRECT,
1665 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1666 collect, (struct bfd_link_hash_entry **) &hi)))
1667 goto error_return;
1668 }
1669 else
1670 {
1671 /* In this case the symbol named SHORTNAME is
1672 overriding the indirect symbol we want to
1673 add. We were planning on making SHORTNAME an
1674 indirect symbol referring to NAME. SHORTNAME
1675 is the name without a version. NAME is the
1676 fully versioned name, and it is the default
1677 version.
1678
1679 Overriding means that we already saw a
1680 definition for the symbol SHORTNAME in a
1681 regular object, and it is overriding the
1682 symbol defined in the dynamic object.
1683
1684 When this happens, we actually want to change
1685 NAME, the symbol we just added, to refer to
1686 SHORTNAME. This will cause references to
1687 NAME in the shared object to become
1688 references to SHORTNAME in the regular
1689 object. This is what we expect when we
1690 override a function in a shared object: that
1691 the references in the shared object will be
1692 mapped to the definition in the regular
1693 object. */
1694
1695 while (hi->root.type == bfd_link_hash_indirect
1696 || hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1698
1699 h->root.type = bfd_link_hash_indirect;
1700 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1701 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1702 {
1703 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1704 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1705 if (hi->elf_link_hash_flags
1706 & (ELF_LINK_HASH_REF_REGULAR
1707 | ELF_LINK_HASH_DEF_REGULAR))
1708 {
1709 if (! _bfd_elf_link_record_dynamic_symbol (info,
1710 hi))
1711 goto error_return;
1712 }
1713 }
1714
1715 /* Now set HI to H, so that the following code
1716 will set the other fields correctly. */
1717 hi = h;
1718 }
1719
1720 /* If there is a duplicate definition somewhere,
1721 then HI may not point to an indirect symbol. We
1722 will have reported an error to the user in that
1723 case. */
1724
1725 if (hi->root.type == bfd_link_hash_indirect)
1726 {
1727 struct elf_link_hash_entry *ht;
1728
1729 /* If the symbol became indirect, then we assume
1730 that we have not seen a definition before. */
1731 BFD_ASSERT ((hi->elf_link_hash_flags
1732 & (ELF_LINK_HASH_DEF_DYNAMIC
1733 | ELF_LINK_HASH_DEF_REGULAR))
1734 == 0);
1735
1736 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1737 elf_link_hash_copy_indirect (elf_hash_table (info),
1738 ht, hi);
1739
1740 /* See if the new flags lead us to realize that
1741 the symbol must be dynamic. */
1742 if (! dynsym)
1743 {
1744 if (! dynamic)
1745 {
1746 if (info->shared
1747 || ((hi->elf_link_hash_flags
1748 & ELF_LINK_HASH_REF_DYNAMIC)
1749 != 0))
1750 dynsym = true;
1751 }
1752 else
1753 {
1754 if ((hi->elf_link_hash_flags
1755 & ELF_LINK_HASH_REF_REGULAR) != 0)
1756 dynsym = true;
1757 }
1758 }
1759 }
1760
1761 /* We also need to define an indirection from the
1762 nondefault version of the symbol. */
1763
1764 shortname = bfd_hash_allocate (&info->hash->table,
1765 strlen (name));
1766 if (shortname == NULL)
1767 goto error_return;
1768 strncpy (shortname, name, p - name);
1769 strcpy (shortname + (p - name), p + 1);
1770
1771 /* Once again, merge with any existing symbol. */
1772 type_change_ok = false;
1773 size_change_ok = false;
1774 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1775 &value, &hi, &override,
1776 &type_change_ok, &size_change_ok))
1777 goto error_return;
1778
1779 if (override)
1780 {
1781 /* Here SHORTNAME is a versioned name, so we
1782 don't expect to see the type of override we
1783 do in the case above. */
1784 (*_bfd_error_handler)
1785 (_("%s: warning: unexpected redefinition of `%s'"),
1786 bfd_get_filename (abfd), shortname);
1787 }
1788 else
1789 {
1790 if (! (_bfd_generic_link_add_one_symbol
1791 (info, abfd, shortname, BSF_INDIRECT,
1792 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1793 collect, (struct bfd_link_hash_entry **) &hi)))
1794 goto error_return;
1795
1796 /* If there is a duplicate definition somewhere,
1797 then HI may not point to an indirect symbol.
1798 We will have reported an error to the user in
1799 that case. */
1800
1801 if (hi->root.type == bfd_link_hash_indirect)
1802 {
1803 /* If the symbol became indirect, then we
1804 assume that we have not seen a definition
1805 before. */
1806 BFD_ASSERT ((hi->elf_link_hash_flags
1807 & (ELF_LINK_HASH_DEF_DYNAMIC
1808 | ELF_LINK_HASH_DEF_REGULAR))
1809 == 0);
1810
1811 elf_link_hash_copy_indirect (elf_hash_table (info),
1812 h, hi);
1813
1814 /* See if the new flags lead us to realize
1815 that the symbol must be dynamic. */
1816 if (! dynsym)
1817 {
1818 if (! dynamic)
1819 {
1820 if (info->shared
1821 || ((hi->elf_link_hash_flags
1822 & ELF_LINK_HASH_REF_DYNAMIC)
1823 != 0))
1824 dynsym = true;
1825 }
1826 else
1827 {
1828 if ((hi->elf_link_hash_flags
1829 & ELF_LINK_HASH_REF_REGULAR) != 0)
1830 dynsym = true;
1831 }
1832 }
1833 }
1834 }
1835 }
1836 }
1837
1838 if (dynsym && h->dynindx == -1)
1839 {
1840 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1841 goto error_return;
1842 if (h->weakdef != NULL
1843 && ! new_weakdef
1844 && h->weakdef->dynindx == -1)
1845 {
1846 if (! _bfd_elf_link_record_dynamic_symbol (info,
1847 h->weakdef))
1848 goto error_return;
1849 }
1850 }
1851 }
1852 }
1853
1854 /* Now set the weakdefs field correctly for all the weak defined
1855 symbols we found. The only way to do this is to search all the
1856 symbols. Since we only need the information for non functions in
1857 dynamic objects, that's the only time we actually put anything on
1858 the list WEAKS. We need this information so that if a regular
1859 object refers to a symbol defined weakly in a dynamic object, the
1860 real symbol in the dynamic object is also put in the dynamic
1861 symbols; we also must arrange for both symbols to point to the
1862 same memory location. We could handle the general case of symbol
1863 aliasing, but a general symbol alias can only be generated in
1864 assembler code, handling it correctly would be very time
1865 consuming, and other ELF linkers don't handle general aliasing
1866 either. */
1867 while (weaks != NULL)
1868 {
1869 struct elf_link_hash_entry *hlook;
1870 asection *slook;
1871 bfd_vma vlook;
1872 struct elf_link_hash_entry **hpp;
1873 struct elf_link_hash_entry **hppend;
1874
1875 hlook = weaks;
1876 weaks = hlook->weakdef;
1877 hlook->weakdef = NULL;
1878
1879 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1880 || hlook->root.type == bfd_link_hash_defweak
1881 || hlook->root.type == bfd_link_hash_common
1882 || hlook->root.type == bfd_link_hash_indirect);
1883 slook = hlook->root.u.def.section;
1884 vlook = hlook->root.u.def.value;
1885
1886 hpp = elf_sym_hashes (abfd);
1887 hppend = hpp + extsymcount;
1888 for (; hpp < hppend; hpp++)
1889 {
1890 struct elf_link_hash_entry *h;
1891
1892 h = *hpp;
1893 if (h != NULL && h != hlook
1894 && h->root.type == bfd_link_hash_defined
1895 && h->root.u.def.section == slook
1896 && h->root.u.def.value == vlook)
1897 {
1898 hlook->weakdef = h;
1899
1900 /* If the weak definition is in the list of dynamic
1901 symbols, make sure the real definition is put there
1902 as well. */
1903 if (hlook->dynindx != -1
1904 && h->dynindx == -1)
1905 {
1906 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1907 goto error_return;
1908 }
1909
1910 /* If the real definition is in the list of dynamic
1911 symbols, make sure the weak definition is put there
1912 as well. If we don't do this, then the dynamic
1913 loader might not merge the entries for the real
1914 definition and the weak definition. */
1915 if (h->dynindx != -1
1916 && hlook->dynindx == -1)
1917 {
1918 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1919 goto error_return;
1920 }
1921
1922 break;
1923 }
1924 }
1925 }
1926
1927 if (buf != NULL)
1928 {
1929 free (buf);
1930 buf = NULL;
1931 }
1932
1933 if (extversym != NULL)
1934 {
1935 free (extversym);
1936 extversym = NULL;
1937 }
1938
1939 /* If this object is the same format as the output object, and it is
1940 not a shared library, then let the backend look through the
1941 relocs.
1942
1943 This is required to build global offset table entries and to
1944 arrange for dynamic relocs. It is not required for the
1945 particular common case of linking non PIC code, even when linking
1946 against shared libraries, but unfortunately there is no way of
1947 knowing whether an object file has been compiled PIC or not.
1948 Looking through the relocs is not particularly time consuming.
1949 The problem is that we must either (1) keep the relocs in memory,
1950 which causes the linker to require additional runtime memory or
1951 (2) read the relocs twice from the input file, which wastes time.
1952 This would be a good case for using mmap.
1953
1954 I have no idea how to handle linking PIC code into a file of a
1955 different format. It probably can't be done. */
1956 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1957 if (! dynamic
1958 && abfd->xvec == info->hash->creator
1959 && check_relocs != NULL)
1960 {
1961 asection *o;
1962
1963 for (o = abfd->sections; o != NULL; o = o->next)
1964 {
1965 Elf_Internal_Rela *internal_relocs;
1966 boolean ok;
1967
1968 if ((o->flags & SEC_RELOC) == 0
1969 || o->reloc_count == 0
1970 || ((info->strip == strip_all || info->strip == strip_debugger)
1971 && (o->flags & SEC_DEBUGGING) != 0)
1972 || bfd_is_abs_section (o->output_section))
1973 continue;
1974
1975 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1976 (abfd, o, (PTR) NULL,
1977 (Elf_Internal_Rela *) NULL,
1978 info->keep_memory));
1979 if (internal_relocs == NULL)
1980 goto error_return;
1981
1982 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1983
1984 if (! info->keep_memory)
1985 free (internal_relocs);
1986
1987 if (! ok)
1988 goto error_return;
1989 }
1990 }
1991
1992 /* If this is a non-traditional, non-relocateable link, try to
1993 optimize the handling of the .stab/.stabstr sections. */
1994 if (! dynamic
1995 && ! info->relocateable
1996 && ! info->traditional_format
1997 && info->hash->creator->flavour == bfd_target_elf_flavour
1998 && (info->strip != strip_all && info->strip != strip_debugger))
1999 {
2000 asection *stab, *stabstr;
2001
2002 stab = bfd_get_section_by_name (abfd, ".stab");
2003 if (stab != NULL)
2004 {
2005 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2006
2007 if (stabstr != NULL)
2008 {
2009 struct bfd_elf_section_data *secdata;
2010
2011 secdata = elf_section_data (stab);
2012 if (! _bfd_link_section_stabs (abfd,
2013 &elf_hash_table (info)->stab_info,
2014 stab, stabstr,
2015 &secdata->stab_info))
2016 goto error_return;
2017 }
2018 }
2019 }
2020
2021 return true;
2022
2023 error_return:
2024 if (buf != NULL)
2025 free (buf);
2026 if (dynbuf != NULL)
2027 free (dynbuf);
2028 if (dynver != NULL)
2029 free (dynver);
2030 if (extversym != NULL)
2031 free (extversym);
2032 return false;
2033 }
2034
2035 /* Create some sections which will be filled in with dynamic linking
2036 information. ABFD is an input file which requires dynamic sections
2037 to be created. The dynamic sections take up virtual memory space
2038 when the final executable is run, so we need to create them before
2039 addresses are assigned to the output sections. We work out the
2040 actual contents and size of these sections later. */
2041
2042 boolean
2043 elf_link_create_dynamic_sections (abfd, info)
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046 {
2047 flagword flags;
2048 register asection *s;
2049 struct elf_link_hash_entry *h;
2050 struct elf_backend_data *bed;
2051
2052 if (elf_hash_table (info)->dynamic_sections_created)
2053 return true;
2054
2055 /* Make sure that all dynamic sections use the same input BFD. */
2056 if (elf_hash_table (info)->dynobj == NULL)
2057 elf_hash_table (info)->dynobj = abfd;
2058 else
2059 abfd = elf_hash_table (info)->dynobj;
2060
2061 /* Note that we set the SEC_IN_MEMORY flag for all of these
2062 sections. */
2063 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2064 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2065
2066 /* A dynamically linked executable has a .interp section, but a
2067 shared library does not. */
2068 if (! info->shared)
2069 {
2070 s = bfd_make_section (abfd, ".interp");
2071 if (s == NULL
2072 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2073 return false;
2074 }
2075
2076 /* Create sections to hold version informations. These are removed
2077 if they are not needed. */
2078 s = bfd_make_section (abfd, ".gnu.version_d");
2079 if (s == NULL
2080 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2081 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2082 return false;
2083
2084 s = bfd_make_section (abfd, ".gnu.version");
2085 if (s == NULL
2086 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2087 || ! bfd_set_section_alignment (abfd, s, 1))
2088 return false;
2089
2090 s = bfd_make_section (abfd, ".gnu.version_r");
2091 if (s == NULL
2092 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2093 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2094 return false;
2095
2096 s = bfd_make_section (abfd, ".dynsym");
2097 if (s == NULL
2098 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2099 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2100 return false;
2101
2102 s = bfd_make_section (abfd, ".dynstr");
2103 if (s == NULL
2104 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2105 return false;
2106
2107 /* Create a strtab to hold the dynamic symbol names. */
2108 if (elf_hash_table (info)->dynstr == NULL)
2109 {
2110 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2111 if (elf_hash_table (info)->dynstr == NULL)
2112 return false;
2113 }
2114
2115 s = bfd_make_section (abfd, ".dynamic");
2116 if (s == NULL
2117 || ! bfd_set_section_flags (abfd, s, flags)
2118 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2119 return false;
2120
2121 /* The special symbol _DYNAMIC is always set to the start of the
2122 .dynamic section. This call occurs before we have processed the
2123 symbols for any dynamic object, so we don't have to worry about
2124 overriding a dynamic definition. We could set _DYNAMIC in a
2125 linker script, but we only want to define it if we are, in fact,
2126 creating a .dynamic section. We don't want to define it if there
2127 is no .dynamic section, since on some ELF platforms the start up
2128 code examines it to decide how to initialize the process. */
2129 h = NULL;
2130 if (! (_bfd_generic_link_add_one_symbol
2131 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2132 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2133 (struct bfd_link_hash_entry **) &h)))
2134 return false;
2135 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2136 h->type = STT_OBJECT;
2137
2138 if (info->shared
2139 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2140 return false;
2141
2142 bed = get_elf_backend_data (abfd);
2143
2144 s = bfd_make_section (abfd, ".hash");
2145 if (s == NULL
2146 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2147 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2148 return false;
2149 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2150
2151 /* Let the backend create the rest of the sections. This lets the
2152 backend set the right flags. The backend will normally create
2153 the .got and .plt sections. */
2154 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2155 return false;
2156
2157 elf_hash_table (info)->dynamic_sections_created = true;
2158
2159 return true;
2160 }
2161
2162 /* Add an entry to the .dynamic table. */
2163
2164 boolean
2165 elf_add_dynamic_entry (info, tag, val)
2166 struct bfd_link_info *info;
2167 bfd_vma tag;
2168 bfd_vma val;
2169 {
2170 Elf_Internal_Dyn dyn;
2171 bfd *dynobj;
2172 asection *s;
2173 size_t newsize;
2174 bfd_byte *newcontents;
2175
2176 dynobj = elf_hash_table (info)->dynobj;
2177
2178 s = bfd_get_section_by_name (dynobj, ".dynamic");
2179 BFD_ASSERT (s != NULL);
2180
2181 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2182 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2183 if (newcontents == NULL)
2184 return false;
2185
2186 dyn.d_tag = tag;
2187 dyn.d_un.d_val = val;
2188 elf_swap_dyn_out (dynobj, &dyn,
2189 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2190
2191 s->_raw_size = newsize;
2192 s->contents = newcontents;
2193
2194 return true;
2195 }
2196
2197 /* Record a new local dynamic symbol. */
2198
2199 boolean
2200 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2201 struct bfd_link_info *info;
2202 bfd *input_bfd;
2203 long input_indx;
2204 {
2205 struct elf_link_local_dynamic_entry *entry;
2206 struct elf_link_hash_table *eht;
2207 struct bfd_strtab_hash *dynstr;
2208 Elf_External_Sym esym;
2209 unsigned long dynstr_index;
2210 char *name;
2211
2212 /* See if the entry exists already. */
2213 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2214 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2215 return true;
2216
2217 entry = (struct elf_link_local_dynamic_entry *)
2218 bfd_alloc (input_bfd, sizeof (*entry));
2219 if (entry == NULL)
2220 return false;
2221
2222 /* Go find the symbol, so that we can find it's name. */
2223 if (bfd_seek (input_bfd,
2224 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2225 + input_indx * sizeof (Elf_External_Sym)),
2226 SEEK_SET) != 0
2227 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2228 != sizeof (Elf_External_Sym)))
2229 return false;
2230 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2231
2232 name = (bfd_elf_string_from_elf_section
2233 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2234 entry->isym.st_name));
2235
2236 dynstr = elf_hash_table (info)->dynstr;
2237 if (dynstr == NULL)
2238 {
2239 /* Create a strtab to hold the dynamic symbol names. */
2240 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2241 if (dynstr == NULL)
2242 return false;
2243 }
2244
2245 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2246 if (dynstr_index == (unsigned long) -1)
2247 return false;
2248 entry->isym.st_name = dynstr_index;
2249
2250 eht = elf_hash_table (info);
2251
2252 entry->next = eht->dynlocal;
2253 eht->dynlocal = entry;
2254 entry->input_bfd = input_bfd;
2255 entry->input_indx = input_indx;
2256 eht->dynsymcount++;
2257
2258 /* Whatever binding the symbol had before, it's now local. */
2259 entry->isym.st_info
2260 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2261
2262 /* The dynindx will be set at the end of size_dynamic_sections. */
2263
2264 return true;
2265 }
2266 \f
2267
2268 /* Read and swap the relocs from the section indicated by SHDR. This
2269 may be either a REL or a RELA section. The relocations are
2270 translated into RELA relocations and stored in INTERNAL_RELOCS,
2271 which should have already been allocated to contain enough space.
2272 The EXTERNAL_RELOCS are a buffer where the external form of the
2273 relocations should be stored.
2274
2275 Returns false if something goes wrong. */
2276
2277 static boolean
2278 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2279 internal_relocs)
2280 bfd *abfd;
2281 Elf_Internal_Shdr *shdr;
2282 PTR external_relocs;
2283 Elf_Internal_Rela *internal_relocs;
2284 {
2285 struct elf_backend_data *bed;
2286
2287 /* If there aren't any relocations, that's OK. */
2288 if (!shdr)
2289 return true;
2290
2291 /* Position ourselves at the start of the section. */
2292 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2293 return false;
2294
2295 /* Read the relocations. */
2296 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2297 != shdr->sh_size)
2298 return false;
2299
2300 bed = get_elf_backend_data (abfd);
2301
2302 /* Convert the external relocations to the internal format. */
2303 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2304 {
2305 Elf_External_Rel *erel;
2306 Elf_External_Rel *erelend;
2307 Elf_Internal_Rela *irela;
2308 Elf_Internal_Rel *irel;
2309
2310 erel = (Elf_External_Rel *) external_relocs;
2311 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2312 irela = internal_relocs;
2313 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2314 * sizeof (Elf_Internal_Rel)));
2315 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2316 {
2317 unsigned char i;
2318
2319 if (bed->s->swap_reloc_in)
2320 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2321 else
2322 elf_swap_reloc_in (abfd, erel, irel);
2323
2324 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2325 {
2326 irela[i].r_offset = irel[i].r_offset;
2327 irela[i].r_info = irel[i].r_info;
2328 irela[i].r_addend = 0;
2329 }
2330 }
2331 }
2332 else
2333 {
2334 Elf_External_Rela *erela;
2335 Elf_External_Rela *erelaend;
2336 Elf_Internal_Rela *irela;
2337
2338 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2339
2340 erela = (Elf_External_Rela *) external_relocs;
2341 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2342 irela = internal_relocs;
2343 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2344 {
2345 if (bed->s->swap_reloca_in)
2346 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2347 else
2348 elf_swap_reloca_in (abfd, erela, irela);
2349 }
2350 }
2351
2352 return true;
2353 }
2354
2355 /* Read and swap the relocs for a section O. They may have been
2356 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2357 not NULL, they are used as buffers to read into. They are known to
2358 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2359 the return value is allocated using either malloc or bfd_alloc,
2360 according to the KEEP_MEMORY argument. If O has two relocation
2361 sections (both REL and RELA relocations), then the REL_HDR
2362 relocations will appear first in INTERNAL_RELOCS, followed by the
2363 REL_HDR2 relocations. */
2364
2365 Elf_Internal_Rela *
2366 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2367 keep_memory)
2368 bfd *abfd;
2369 asection *o;
2370 PTR external_relocs;
2371 Elf_Internal_Rela *internal_relocs;
2372 boolean keep_memory;
2373 {
2374 Elf_Internal_Shdr *rel_hdr;
2375 PTR alloc1 = NULL;
2376 Elf_Internal_Rela *alloc2 = NULL;
2377 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2378
2379 if (elf_section_data (o)->relocs != NULL)
2380 return elf_section_data (o)->relocs;
2381
2382 if (o->reloc_count == 0)
2383 return NULL;
2384
2385 rel_hdr = &elf_section_data (o)->rel_hdr;
2386
2387 if (internal_relocs == NULL)
2388 {
2389 size_t size;
2390
2391 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2392 * sizeof (Elf_Internal_Rela));
2393 if (keep_memory)
2394 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2395 else
2396 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2397 if (internal_relocs == NULL)
2398 goto error_return;
2399 }
2400
2401 if (external_relocs == NULL)
2402 {
2403 size_t size = (size_t) rel_hdr->sh_size;
2404
2405 if (elf_section_data (o)->rel_hdr2)
2406 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2407 alloc1 = (PTR) bfd_malloc (size);
2408 if (alloc1 == NULL)
2409 goto error_return;
2410 external_relocs = alloc1;
2411 }
2412
2413 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2414 external_relocs,
2415 internal_relocs))
2416 goto error_return;
2417 if (!elf_link_read_relocs_from_section
2418 (abfd,
2419 elf_section_data (o)->rel_hdr2,
2420 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2421 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2422 * bed->s->int_rels_per_ext_rel)))
2423 goto error_return;
2424
2425 /* Cache the results for next time, if we can. */
2426 if (keep_memory)
2427 elf_section_data (o)->relocs = internal_relocs;
2428
2429 if (alloc1 != NULL)
2430 free (alloc1);
2431
2432 /* Don't free alloc2, since if it was allocated we are passing it
2433 back (under the name of internal_relocs). */
2434
2435 return internal_relocs;
2436
2437 error_return:
2438 if (alloc1 != NULL)
2439 free (alloc1);
2440 if (alloc2 != NULL)
2441 free (alloc2);
2442 return NULL;
2443 }
2444 \f
2445
2446 /* Record an assignment to a symbol made by a linker script. We need
2447 this in case some dynamic object refers to this symbol. */
2448
2449 /*ARGSUSED*/
2450 boolean
2451 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2452 bfd *output_bfd ATTRIBUTE_UNUSED;
2453 struct bfd_link_info *info;
2454 const char *name;
2455 boolean provide;
2456 {
2457 struct elf_link_hash_entry *h;
2458
2459 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2460 return true;
2461
2462 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2463 if (h == NULL)
2464 return false;
2465
2466 if (h->root.type == bfd_link_hash_new)
2467 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2468
2469 /* If this symbol is being provided by the linker script, and it is
2470 currently defined by a dynamic object, but not by a regular
2471 object, then mark it as undefined so that the generic linker will
2472 force the correct value. */
2473 if (provide
2474 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2475 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2476 h->root.type = bfd_link_hash_undefined;
2477
2478 /* If this symbol is not being provided by the linker script, and it is
2479 currently defined by a dynamic object, but not by a regular object,
2480 then clear out any version information because the symbol will not be
2481 associated with the dynamic object any more. */
2482 if (!provide
2483 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2484 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2485 h->verinfo.verdef = NULL;
2486
2487 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2488
2489 /* When possible, keep the original type of the symbol */
2490 if (h->type == STT_NOTYPE)
2491 h->type = STT_OBJECT;
2492
2493 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2494 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2495 || info->shared)
2496 && h->dynindx == -1)
2497 {
2498 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2499 return false;
2500
2501 /* If this is a weak defined symbol, and we know a corresponding
2502 real symbol from the same dynamic object, make sure the real
2503 symbol is also made into a dynamic symbol. */
2504 if (h->weakdef != NULL
2505 && h->weakdef->dynindx == -1)
2506 {
2507 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2508 return false;
2509 }
2510 }
2511
2512 return true;
2513 }
2514 \f
2515 /* This structure is used to pass information to
2516 elf_link_assign_sym_version. */
2517
2518 struct elf_assign_sym_version_info
2519 {
2520 /* Output BFD. */
2521 bfd *output_bfd;
2522 /* General link information. */
2523 struct bfd_link_info *info;
2524 /* Version tree. */
2525 struct bfd_elf_version_tree *verdefs;
2526 /* Whether we are exporting all dynamic symbols. */
2527 boolean export_dynamic;
2528 /* Whether we had a failure. */
2529 boolean failed;
2530 };
2531
2532 /* This structure is used to pass information to
2533 elf_link_find_version_dependencies. */
2534
2535 struct elf_find_verdep_info
2536 {
2537 /* Output BFD. */
2538 bfd *output_bfd;
2539 /* General link information. */
2540 struct bfd_link_info *info;
2541 /* The number of dependencies. */
2542 unsigned int vers;
2543 /* Whether we had a failure. */
2544 boolean failed;
2545 };
2546
2547 /* Array used to determine the number of hash table buckets to use
2548 based on the number of symbols there are. If there are fewer than
2549 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2550 fewer than 37 we use 17 buckets, and so forth. We never use more
2551 than 32771 buckets. */
2552
2553 static const size_t elf_buckets[] =
2554 {
2555 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2556 16411, 32771, 0
2557 };
2558
2559 /* Compute bucket count for hashing table. We do not use a static set
2560 of possible tables sizes anymore. Instead we determine for all
2561 possible reasonable sizes of the table the outcome (i.e., the
2562 number of collisions etc) and choose the best solution. The
2563 weighting functions are not too simple to allow the table to grow
2564 without bounds. Instead one of the weighting factors is the size.
2565 Therefore the result is always a good payoff between few collisions
2566 (= short chain lengths) and table size. */
2567 static size_t
2568 compute_bucket_count (info)
2569 struct bfd_link_info *info;
2570 {
2571 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2572 size_t best_size = 0;
2573 unsigned long int *hashcodes;
2574 unsigned long int *hashcodesp;
2575 unsigned long int i;
2576
2577 /* Compute the hash values for all exported symbols. At the same
2578 time store the values in an array so that we could use them for
2579 optimizations. */
2580 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2581 * sizeof (unsigned long int));
2582 if (hashcodes == NULL)
2583 return 0;
2584 hashcodesp = hashcodes;
2585
2586 /* Put all hash values in HASHCODES. */
2587 elf_link_hash_traverse (elf_hash_table (info),
2588 elf_collect_hash_codes, &hashcodesp);
2589
2590 /* We have a problem here. The following code to optimize the table
2591 size requires an integer type with more the 32 bits. If
2592 BFD_HOST_U_64_BIT is set we know about such a type. */
2593 #ifdef BFD_HOST_U_64_BIT
2594 if (info->optimize == true)
2595 {
2596 unsigned long int nsyms = hashcodesp - hashcodes;
2597 size_t minsize;
2598 size_t maxsize;
2599 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2600 unsigned long int *counts ;
2601
2602 /* Possible optimization parameters: if we have NSYMS symbols we say
2603 that the hashing table must at least have NSYMS/4 and at most
2604 2*NSYMS buckets. */
2605 minsize = nsyms / 4;
2606 if (minsize == 0)
2607 minsize = 1;
2608 best_size = maxsize = nsyms * 2;
2609
2610 /* Create array where we count the collisions in. We must use bfd_malloc
2611 since the size could be large. */
2612 counts = (unsigned long int *) bfd_malloc (maxsize
2613 * sizeof (unsigned long int));
2614 if (counts == NULL)
2615 {
2616 free (hashcodes);
2617 return 0;
2618 }
2619
2620 /* Compute the "optimal" size for the hash table. The criteria is a
2621 minimal chain length. The minor criteria is (of course) the size
2622 of the table. */
2623 for (i = minsize; i < maxsize; ++i)
2624 {
2625 /* Walk through the array of hashcodes and count the collisions. */
2626 BFD_HOST_U_64_BIT max;
2627 unsigned long int j;
2628 unsigned long int fact;
2629
2630 memset (counts, '\0', i * sizeof (unsigned long int));
2631
2632 /* Determine how often each hash bucket is used. */
2633 for (j = 0; j < nsyms; ++j)
2634 ++counts[hashcodes[j] % i];
2635
2636 /* For the weight function we need some information about the
2637 pagesize on the target. This is information need not be 100%
2638 accurate. Since this information is not available (so far) we
2639 define it here to a reasonable default value. If it is crucial
2640 to have a better value some day simply define this value. */
2641 # ifndef BFD_TARGET_PAGESIZE
2642 # define BFD_TARGET_PAGESIZE (4096)
2643 # endif
2644
2645 /* We in any case need 2 + NSYMS entries for the size values and
2646 the chains. */
2647 max = (2 + nsyms) * (ARCH_SIZE / 8);
2648
2649 # if 1
2650 /* Variant 1: optimize for short chains. We add the squares
2651 of all the chain lengths (which favous many small chain
2652 over a few long chains). */
2653 for (j = 0; j < i; ++j)
2654 max += counts[j] * counts[j];
2655
2656 /* This adds penalties for the overall size of the table. */
2657 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2658 max *= fact * fact;
2659 # else
2660 /* Variant 2: Optimize a lot more for small table. Here we
2661 also add squares of the size but we also add penalties for
2662 empty slots (the +1 term). */
2663 for (j = 0; j < i; ++j)
2664 max += (1 + counts[j]) * (1 + counts[j]);
2665
2666 /* The overall size of the table is considered, but not as
2667 strong as in variant 1, where it is squared. */
2668 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2669 max *= fact;
2670 # endif
2671
2672 /* Compare with current best results. */
2673 if (max < best_chlen)
2674 {
2675 best_chlen = max;
2676 best_size = i;
2677 }
2678 }
2679
2680 free (counts);
2681 }
2682 else
2683 #endif /* defined (BFD_HOST_U_64_BIT) */
2684 {
2685 /* This is the fallback solution if no 64bit type is available or if we
2686 are not supposed to spend much time on optimizations. We select the
2687 bucket count using a fixed set of numbers. */
2688 for (i = 0; elf_buckets[i] != 0; i++)
2689 {
2690 best_size = elf_buckets[i];
2691 if (dynsymcount < elf_buckets[i + 1])
2692 break;
2693 }
2694 }
2695
2696 /* Free the arrays we needed. */
2697 free (hashcodes);
2698
2699 return best_size;
2700 }
2701
2702 /* Set up the sizes and contents of the ELF dynamic sections. This is
2703 called by the ELF linker emulation before_allocation routine. We
2704 must set the sizes of the sections before the linker sets the
2705 addresses of the various sections. */
2706
2707 boolean
2708 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2709 export_dynamic, filter_shlib,
2710 auxiliary_filters, info, sinterpptr,
2711 verdefs)
2712 bfd *output_bfd;
2713 const char *soname;
2714 const char *rpath;
2715 boolean export_dynamic;
2716 const char *filter_shlib;
2717 const char * const *auxiliary_filters;
2718 struct bfd_link_info *info;
2719 asection **sinterpptr;
2720 struct bfd_elf_version_tree *verdefs;
2721 {
2722 bfd_size_type soname_indx;
2723 bfd *dynobj;
2724 struct elf_backend_data *bed;
2725 struct elf_assign_sym_version_info asvinfo;
2726
2727 *sinterpptr = NULL;
2728
2729 soname_indx = (bfd_size_type) -1;
2730
2731 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2732 return true;
2733
2734 /* The backend may have to create some sections regardless of whether
2735 we're dynamic or not. */
2736 bed = get_elf_backend_data (output_bfd);
2737 if (bed->elf_backend_always_size_sections
2738 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2739 return false;
2740
2741 dynobj = elf_hash_table (info)->dynobj;
2742
2743 /* If there were no dynamic objects in the link, there is nothing to
2744 do here. */
2745 if (dynobj == NULL)
2746 return true;
2747
2748 if (elf_hash_table (info)->dynamic_sections_created)
2749 {
2750 struct elf_info_failed eif;
2751 struct elf_link_hash_entry *h;
2752 bfd_size_type strsize;
2753
2754 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2755 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2756
2757 if (soname != NULL)
2758 {
2759 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2760 soname, true, true);
2761 if (soname_indx == (bfd_size_type) -1
2762 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2763 return false;
2764 }
2765
2766 if (info->symbolic)
2767 {
2768 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2769 return false;
2770 }
2771
2772 if (rpath != NULL)
2773 {
2774 bfd_size_type indx;
2775
2776 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2777 true, true);
2778 if (indx == (bfd_size_type) -1
2779 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2780 return false;
2781 }
2782
2783 if (filter_shlib != NULL)
2784 {
2785 bfd_size_type indx;
2786
2787 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2788 filter_shlib, true, true);
2789 if (indx == (bfd_size_type) -1
2790 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2791 return false;
2792 }
2793
2794 if (auxiliary_filters != NULL)
2795 {
2796 const char * const *p;
2797
2798 for (p = auxiliary_filters; *p != NULL; p++)
2799 {
2800 bfd_size_type indx;
2801
2802 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2803 *p, true, true);
2804 if (indx == (bfd_size_type) -1
2805 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2806 return false;
2807 }
2808 }
2809
2810 /* If we are supposed to export all symbols into the dynamic symbol
2811 table (this is not the normal case), then do so. */
2812 if (export_dynamic)
2813 {
2814 struct elf_info_failed eif;
2815
2816 eif.failed = false;
2817 eif.info = info;
2818 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2819 (PTR) &eif);
2820 if (eif.failed)
2821 return false;
2822 }
2823
2824 /* Attach all the symbols to their version information. */
2825 asvinfo.output_bfd = output_bfd;
2826 asvinfo.info = info;
2827 asvinfo.verdefs = verdefs;
2828 asvinfo.export_dynamic = export_dynamic;
2829 asvinfo.failed = false;
2830
2831 elf_link_hash_traverse (elf_hash_table (info),
2832 elf_link_assign_sym_version,
2833 (PTR) &asvinfo);
2834 if (asvinfo.failed)
2835 return false;
2836
2837 /* Find all symbols which were defined in a dynamic object and make
2838 the backend pick a reasonable value for them. */
2839 eif.failed = false;
2840 eif.info = info;
2841 elf_link_hash_traverse (elf_hash_table (info),
2842 elf_adjust_dynamic_symbol,
2843 (PTR) &eif);
2844 if (eif.failed)
2845 return false;
2846
2847 /* Add some entries to the .dynamic section. We fill in some of the
2848 values later, in elf_bfd_final_link, but we must add the entries
2849 now so that we know the final size of the .dynamic section. */
2850
2851 /* If there are initialization and/or finalization functions to
2852 call then add the corresponding DT_INIT/DT_FINI entries. */
2853 h = (info->init_function
2854 ? elf_link_hash_lookup (elf_hash_table (info),
2855 info->init_function, false,
2856 false, false)
2857 : NULL);
2858 if (h != NULL
2859 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2860 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2861 {
2862 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2863 return false;
2864 }
2865 h = (info->fini_function
2866 ? elf_link_hash_lookup (elf_hash_table (info),
2867 info->fini_function, false,
2868 false, false)
2869 : NULL);
2870 if (h != NULL
2871 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2872 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2873 {
2874 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2875 return false;
2876 }
2877
2878 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2879 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2880 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2881 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2882 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2883 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2884 sizeof (Elf_External_Sym)))
2885 return false;
2886 }
2887
2888 /* The backend must work out the sizes of all the other dynamic
2889 sections. */
2890 if (bed->elf_backend_size_dynamic_sections
2891 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2892 return false;
2893
2894 if (elf_hash_table (info)->dynamic_sections_created)
2895 {
2896 size_t dynsymcount;
2897 asection *s;
2898 size_t bucketcount = 0;
2899 Elf_Internal_Sym isym;
2900 size_t hash_entry_size;
2901
2902 /* Set up the version definition section. */
2903 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2904 BFD_ASSERT (s != NULL);
2905
2906 /* We may have created additional version definitions if we are
2907 just linking a regular application. */
2908 verdefs = asvinfo.verdefs;
2909
2910 if (verdefs == NULL)
2911 _bfd_strip_section_from_output (info, s);
2912 else
2913 {
2914 unsigned int cdefs;
2915 bfd_size_type size;
2916 struct bfd_elf_version_tree *t;
2917 bfd_byte *p;
2918 Elf_Internal_Verdef def;
2919 Elf_Internal_Verdaux defaux;
2920
2921 cdefs = 0;
2922 size = 0;
2923
2924 /* Make space for the base version. */
2925 size += sizeof (Elf_External_Verdef);
2926 size += sizeof (Elf_External_Verdaux);
2927 ++cdefs;
2928
2929 for (t = verdefs; t != NULL; t = t->next)
2930 {
2931 struct bfd_elf_version_deps *n;
2932
2933 size += sizeof (Elf_External_Verdef);
2934 size += sizeof (Elf_External_Verdaux);
2935 ++cdefs;
2936
2937 for (n = t->deps; n != NULL; n = n->next)
2938 size += sizeof (Elf_External_Verdaux);
2939 }
2940
2941 s->_raw_size = size;
2942 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2943 if (s->contents == NULL && s->_raw_size != 0)
2944 return false;
2945
2946 /* Fill in the version definition section. */
2947
2948 p = s->contents;
2949
2950 def.vd_version = VER_DEF_CURRENT;
2951 def.vd_flags = VER_FLG_BASE;
2952 def.vd_ndx = 1;
2953 def.vd_cnt = 1;
2954 def.vd_aux = sizeof (Elf_External_Verdef);
2955 def.vd_next = (sizeof (Elf_External_Verdef)
2956 + sizeof (Elf_External_Verdaux));
2957
2958 if (soname_indx != (bfd_size_type) -1)
2959 {
2960 def.vd_hash = bfd_elf_hash (soname);
2961 defaux.vda_name = soname_indx;
2962 }
2963 else
2964 {
2965 const char *name;
2966 bfd_size_type indx;
2967
2968 name = output_bfd->filename;
2969 def.vd_hash = bfd_elf_hash (name);
2970 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2971 name, true, false);
2972 if (indx == (bfd_size_type) -1)
2973 return false;
2974 defaux.vda_name = indx;
2975 }
2976 defaux.vda_next = 0;
2977
2978 _bfd_elf_swap_verdef_out (output_bfd, &def,
2979 (Elf_External_Verdef *)p);
2980 p += sizeof (Elf_External_Verdef);
2981 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2982 (Elf_External_Verdaux *) p);
2983 p += sizeof (Elf_External_Verdaux);
2984
2985 for (t = verdefs; t != NULL; t = t->next)
2986 {
2987 unsigned int cdeps;
2988 struct bfd_elf_version_deps *n;
2989 struct elf_link_hash_entry *h;
2990
2991 cdeps = 0;
2992 for (n = t->deps; n != NULL; n = n->next)
2993 ++cdeps;
2994
2995 /* Add a symbol representing this version. */
2996 h = NULL;
2997 if (! (_bfd_generic_link_add_one_symbol
2998 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2999 (bfd_vma) 0, (const char *) NULL, false,
3000 get_elf_backend_data (dynobj)->collect,
3001 (struct bfd_link_hash_entry **) &h)))
3002 return false;
3003 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3004 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3005 h->type = STT_OBJECT;
3006 h->verinfo.vertree = t;
3007
3008 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3009 return false;
3010
3011 def.vd_version = VER_DEF_CURRENT;
3012 def.vd_flags = 0;
3013 if (t->globals == NULL && t->locals == NULL && ! t->used)
3014 def.vd_flags |= VER_FLG_WEAK;
3015 def.vd_ndx = t->vernum + 1;
3016 def.vd_cnt = cdeps + 1;
3017 def.vd_hash = bfd_elf_hash (t->name);
3018 def.vd_aux = sizeof (Elf_External_Verdef);
3019 if (t->next != NULL)
3020 def.vd_next = (sizeof (Elf_External_Verdef)
3021 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3022 else
3023 def.vd_next = 0;
3024
3025 _bfd_elf_swap_verdef_out (output_bfd, &def,
3026 (Elf_External_Verdef *) p);
3027 p += sizeof (Elf_External_Verdef);
3028
3029 defaux.vda_name = h->dynstr_index;
3030 if (t->deps == NULL)
3031 defaux.vda_next = 0;
3032 else
3033 defaux.vda_next = sizeof (Elf_External_Verdaux);
3034 t->name_indx = defaux.vda_name;
3035
3036 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3037 (Elf_External_Verdaux *) p);
3038 p += sizeof (Elf_External_Verdaux);
3039
3040 for (n = t->deps; n != NULL; n = n->next)
3041 {
3042 if (n->version_needed == NULL)
3043 {
3044 /* This can happen if there was an error in the
3045 version script. */
3046 defaux.vda_name = 0;
3047 }
3048 else
3049 defaux.vda_name = n->version_needed->name_indx;
3050 if (n->next == NULL)
3051 defaux.vda_next = 0;
3052 else
3053 defaux.vda_next = sizeof (Elf_External_Verdaux);
3054
3055 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3056 (Elf_External_Verdaux *) p);
3057 p += sizeof (Elf_External_Verdaux);
3058 }
3059 }
3060
3061 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3062 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3063 return false;
3064
3065 elf_tdata (output_bfd)->cverdefs = cdefs;
3066 }
3067
3068 /* Work out the size of the version reference section. */
3069
3070 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3071 BFD_ASSERT (s != NULL);
3072 {
3073 struct elf_find_verdep_info sinfo;
3074
3075 sinfo.output_bfd = output_bfd;
3076 sinfo.info = info;
3077 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3078 if (sinfo.vers == 0)
3079 sinfo.vers = 1;
3080 sinfo.failed = false;
3081
3082 elf_link_hash_traverse (elf_hash_table (info),
3083 elf_link_find_version_dependencies,
3084 (PTR) &sinfo);
3085
3086 if (elf_tdata (output_bfd)->verref == NULL)
3087 _bfd_strip_section_from_output (info, s);
3088 else
3089 {
3090 Elf_Internal_Verneed *t;
3091 unsigned int size;
3092 unsigned int crefs;
3093 bfd_byte *p;
3094
3095 /* Build the version definition section. */
3096 size = 0;
3097 crefs = 0;
3098 for (t = elf_tdata (output_bfd)->verref;
3099 t != NULL;
3100 t = t->vn_nextref)
3101 {
3102 Elf_Internal_Vernaux *a;
3103
3104 size += sizeof (Elf_External_Verneed);
3105 ++crefs;
3106 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3107 size += sizeof (Elf_External_Vernaux);
3108 }
3109
3110 s->_raw_size = size;
3111 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3112 if (s->contents == NULL)
3113 return false;
3114
3115 p = s->contents;
3116 for (t = elf_tdata (output_bfd)->verref;
3117 t != NULL;
3118 t = t->vn_nextref)
3119 {
3120 unsigned int caux;
3121 Elf_Internal_Vernaux *a;
3122 bfd_size_type indx;
3123
3124 caux = 0;
3125 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3126 ++caux;
3127
3128 t->vn_version = VER_NEED_CURRENT;
3129 t->vn_cnt = caux;
3130 if (elf_dt_name (t->vn_bfd) != NULL)
3131 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3132 elf_dt_name (t->vn_bfd),
3133 true, false);
3134 else
3135 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3136 t->vn_bfd->filename, true, false);
3137 if (indx == (bfd_size_type) -1)
3138 return false;
3139 t->vn_file = indx;
3140 t->vn_aux = sizeof (Elf_External_Verneed);
3141 if (t->vn_nextref == NULL)
3142 t->vn_next = 0;
3143 else
3144 t->vn_next = (sizeof (Elf_External_Verneed)
3145 + caux * sizeof (Elf_External_Vernaux));
3146
3147 _bfd_elf_swap_verneed_out (output_bfd, t,
3148 (Elf_External_Verneed *) p);
3149 p += sizeof (Elf_External_Verneed);
3150
3151 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3152 {
3153 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3154 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3155 a->vna_nodename, true, false);
3156 if (indx == (bfd_size_type) -1)
3157 return false;
3158 a->vna_name = indx;
3159 if (a->vna_nextptr == NULL)
3160 a->vna_next = 0;
3161 else
3162 a->vna_next = sizeof (Elf_External_Vernaux);
3163
3164 _bfd_elf_swap_vernaux_out (output_bfd, a,
3165 (Elf_External_Vernaux *) p);
3166 p += sizeof (Elf_External_Vernaux);
3167 }
3168 }
3169
3170 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3171 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3172 return false;
3173
3174 elf_tdata (output_bfd)->cverrefs = crefs;
3175 }
3176 }
3177
3178 /* Assign dynsym indicies. In a shared library we generate a
3179 section symbol for each output section, which come first.
3180 Next come all of the back-end allocated local dynamic syms,
3181 followed by the rest of the global symbols. */
3182
3183 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3184
3185 /* Work out the size of the symbol version section. */
3186 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3187 BFD_ASSERT (s != NULL);
3188 if (dynsymcount == 0
3189 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3190 {
3191 _bfd_strip_section_from_output (info, s);
3192 /* The DYNSYMCOUNT might have changed if we were going to
3193 output a dynamic symbol table entry for S. */
3194 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3195 }
3196 else
3197 {
3198 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3199 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3200 if (s->contents == NULL)
3201 return false;
3202
3203 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3204 return false;
3205 }
3206
3207 /* Set the size of the .dynsym and .hash sections. We counted
3208 the number of dynamic symbols in elf_link_add_object_symbols.
3209 We will build the contents of .dynsym and .hash when we build
3210 the final symbol table, because until then we do not know the
3211 correct value to give the symbols. We built the .dynstr
3212 section as we went along in elf_link_add_object_symbols. */
3213 s = bfd_get_section_by_name (dynobj, ".dynsym");
3214 BFD_ASSERT (s != NULL);
3215 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3216 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3217 if (s->contents == NULL && s->_raw_size != 0)
3218 return false;
3219
3220 /* The first entry in .dynsym is a dummy symbol. */
3221 isym.st_value = 0;
3222 isym.st_size = 0;
3223 isym.st_name = 0;
3224 isym.st_info = 0;
3225 isym.st_other = 0;
3226 isym.st_shndx = 0;
3227 elf_swap_symbol_out (output_bfd, &isym,
3228 (PTR) (Elf_External_Sym *) s->contents);
3229
3230 /* Compute the size of the hashing table. As a side effect this
3231 computes the hash values for all the names we export. */
3232 bucketcount = compute_bucket_count (info);
3233
3234 s = bfd_get_section_by_name (dynobj, ".hash");
3235 BFD_ASSERT (s != NULL);
3236 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3237 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3238 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3239 if (s->contents == NULL)
3240 return false;
3241 memset (s->contents, 0, (size_t) s->_raw_size);
3242
3243 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3244 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3245 s->contents + hash_entry_size);
3246
3247 elf_hash_table (info)->bucketcount = bucketcount;
3248
3249 s = bfd_get_section_by_name (dynobj, ".dynstr");
3250 BFD_ASSERT (s != NULL);
3251 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3252
3253 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3254 return false;
3255 }
3256
3257 return true;
3258 }
3259 \f
3260 /* Fix up the flags for a symbol. This handles various cases which
3261 can only be fixed after all the input files are seen. This is
3262 currently called by both adjust_dynamic_symbol and
3263 assign_sym_version, which is unnecessary but perhaps more robust in
3264 the face of future changes. */
3265
3266 static boolean
3267 elf_fix_symbol_flags (h, eif)
3268 struct elf_link_hash_entry *h;
3269 struct elf_info_failed *eif;
3270 {
3271 /* If this symbol was mentioned in a non-ELF file, try to set
3272 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3273 permit a non-ELF file to correctly refer to a symbol defined in
3274 an ELF dynamic object. */
3275 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3276 {
3277 if (h->root.type != bfd_link_hash_defined
3278 && h->root.type != bfd_link_hash_defweak)
3279 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3280 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3281 else
3282 {
3283 if (h->root.u.def.section->owner != NULL
3284 && (bfd_get_flavour (h->root.u.def.section->owner)
3285 == bfd_target_elf_flavour))
3286 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3287 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3288 else
3289 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3290 }
3291
3292 if (h->dynindx == -1
3293 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3294 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3295 {
3296 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3297 {
3298 eif->failed = true;
3299 return false;
3300 }
3301 }
3302 }
3303 else
3304 {
3305 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3306 was first seen in a non-ELF file. Fortunately, if the symbol
3307 was first seen in an ELF file, we're probably OK unless the
3308 symbol was defined in a non-ELF file. Catch that case here.
3309 FIXME: We're still in trouble if the symbol was first seen in
3310 a dynamic object, and then later in a non-ELF regular object. */
3311 if ((h->root.type == bfd_link_hash_defined
3312 || h->root.type == bfd_link_hash_defweak)
3313 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3314 && (h->root.u.def.section->owner != NULL
3315 ? (bfd_get_flavour (h->root.u.def.section->owner)
3316 != bfd_target_elf_flavour)
3317 : (bfd_is_abs_section (h->root.u.def.section)
3318 && (h->elf_link_hash_flags
3319 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3320 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3321 }
3322
3323 /* If this is a final link, and the symbol was defined as a common
3324 symbol in a regular object file, and there was no definition in
3325 any dynamic object, then the linker will have allocated space for
3326 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3327 flag will not have been set. */
3328 if (h->root.type == bfd_link_hash_defined
3329 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3330 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3331 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3332 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3333 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3334
3335 /* If -Bsymbolic was used (which means to bind references to global
3336 symbols to the definition within the shared object), and this
3337 symbol was defined in a regular object, then it actually doesn't
3338 need a PLT entry. */
3339 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3340 && eif->info->shared
3341 && eif->info->symbolic
3342 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3343 {
3344 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3345 h->plt.offset = (bfd_vma) -1;
3346 }
3347
3348 /* If this is a weak defined symbol in a dynamic object, and we know
3349 the real definition in the dynamic object, copy interesting flags
3350 over to the real definition. */
3351 if (h->weakdef != NULL)
3352 {
3353 struct elf_link_hash_entry *weakdef;
3354
3355 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3356 || h->root.type == bfd_link_hash_defweak);
3357 weakdef = h->weakdef;
3358 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3359 || weakdef->root.type == bfd_link_hash_defweak);
3360 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3361
3362 /* If the real definition is defined by a regular object file,
3363 don't do anything special. See the longer description in
3364 elf_adjust_dynamic_symbol, below. */
3365 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3366 h->weakdef = NULL;
3367 else
3368 weakdef->elf_link_hash_flags |=
3369 (h->elf_link_hash_flags
3370 & (ELF_LINK_HASH_REF_REGULAR
3371 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3372 | ELF_LINK_NON_GOT_REF));
3373 }
3374
3375 return true;
3376 }
3377
3378 /* Make the backend pick a good value for a dynamic symbol. This is
3379 called via elf_link_hash_traverse, and also calls itself
3380 recursively. */
3381
3382 static boolean
3383 elf_adjust_dynamic_symbol (h, data)
3384 struct elf_link_hash_entry *h;
3385 PTR data;
3386 {
3387 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3388 bfd *dynobj;
3389 struct elf_backend_data *bed;
3390
3391 /* Ignore indirect symbols. These are added by the versioning code. */
3392 if (h->root.type == bfd_link_hash_indirect)
3393 return true;
3394
3395 /* Fix the symbol flags. */
3396 if (! elf_fix_symbol_flags (h, eif))
3397 return false;
3398
3399 /* If this symbol does not require a PLT entry, and it is not
3400 defined by a dynamic object, or is not referenced by a regular
3401 object, ignore it. We do have to handle a weak defined symbol,
3402 even if no regular object refers to it, if we decided to add it
3403 to the dynamic symbol table. FIXME: Do we normally need to worry
3404 about symbols which are defined by one dynamic object and
3405 referenced by another one? */
3406 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3407 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3408 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3409 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3410 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3411 {
3412 h->plt.offset = (bfd_vma) -1;
3413 return true;
3414 }
3415
3416 /* If we've already adjusted this symbol, don't do it again. This
3417 can happen via a recursive call. */
3418 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3419 return true;
3420
3421 /* Don't look at this symbol again. Note that we must set this
3422 after checking the above conditions, because we may look at a
3423 symbol once, decide not to do anything, and then get called
3424 recursively later after REF_REGULAR is set below. */
3425 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3426
3427 /* If this is a weak definition, and we know a real definition, and
3428 the real symbol is not itself defined by a regular object file,
3429 then get a good value for the real definition. We handle the
3430 real symbol first, for the convenience of the backend routine.
3431
3432 Note that there is a confusing case here. If the real definition
3433 is defined by a regular object file, we don't get the real symbol
3434 from the dynamic object, but we do get the weak symbol. If the
3435 processor backend uses a COPY reloc, then if some routine in the
3436 dynamic object changes the real symbol, we will not see that
3437 change in the corresponding weak symbol. This is the way other
3438 ELF linkers work as well, and seems to be a result of the shared
3439 library model.
3440
3441 I will clarify this issue. Most SVR4 shared libraries define the
3442 variable _timezone and define timezone as a weak synonym. The
3443 tzset call changes _timezone. If you write
3444 extern int timezone;
3445 int _timezone = 5;
3446 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3447 you might expect that, since timezone is a synonym for _timezone,
3448 the same number will print both times. However, if the processor
3449 backend uses a COPY reloc, then actually timezone will be copied
3450 into your process image, and, since you define _timezone
3451 yourself, _timezone will not. Thus timezone and _timezone will
3452 wind up at different memory locations. The tzset call will set
3453 _timezone, leaving timezone unchanged. */
3454
3455 if (h->weakdef != NULL)
3456 {
3457 /* If we get to this point, we know there is an implicit
3458 reference by a regular object file via the weak symbol H.
3459 FIXME: Is this really true? What if the traversal finds
3460 H->WEAKDEF before it finds H? */
3461 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3462
3463 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3464 return false;
3465 }
3466
3467 /* If a symbol has no type and no size and does not require a PLT
3468 entry, then we are probably about to do the wrong thing here: we
3469 are probably going to create a COPY reloc for an empty object.
3470 This case can arise when a shared object is built with assembly
3471 code, and the assembly code fails to set the symbol type. */
3472 if (h->size == 0
3473 && h->type == STT_NOTYPE
3474 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3475 (*_bfd_error_handler)
3476 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3477 h->root.root.string);
3478
3479 dynobj = elf_hash_table (eif->info)->dynobj;
3480 bed = get_elf_backend_data (dynobj);
3481 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3482 {
3483 eif->failed = true;
3484 return false;
3485 }
3486
3487 return true;
3488 }
3489 \f
3490 /* This routine is used to export all defined symbols into the dynamic
3491 symbol table. It is called via elf_link_hash_traverse. */
3492
3493 static boolean
3494 elf_export_symbol (h, data)
3495 struct elf_link_hash_entry *h;
3496 PTR data;
3497 {
3498 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3499
3500 /* Ignore indirect symbols. These are added by the versioning code. */
3501 if (h->root.type == bfd_link_hash_indirect)
3502 return true;
3503
3504 if (h->dynindx == -1
3505 && (h->elf_link_hash_flags
3506 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3507 {
3508 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3509 {
3510 eif->failed = true;
3511 return false;
3512 }
3513 }
3514
3515 return true;
3516 }
3517 \f
3518 /* Look through the symbols which are defined in other shared
3519 libraries and referenced here. Update the list of version
3520 dependencies. This will be put into the .gnu.version_r section.
3521 This function is called via elf_link_hash_traverse. */
3522
3523 static boolean
3524 elf_link_find_version_dependencies (h, data)
3525 struct elf_link_hash_entry *h;
3526 PTR data;
3527 {
3528 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3529 Elf_Internal_Verneed *t;
3530 Elf_Internal_Vernaux *a;
3531
3532 /* We only care about symbols defined in shared objects with version
3533 information. */
3534 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3535 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3536 || h->dynindx == -1
3537 || h->verinfo.verdef == NULL)
3538 return true;
3539
3540 /* See if we already know about this version. */
3541 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3542 {
3543 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3544 continue;
3545
3546 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3547 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3548 return true;
3549
3550 break;
3551 }
3552
3553 /* This is a new version. Add it to tree we are building. */
3554
3555 if (t == NULL)
3556 {
3557 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3558 if (t == NULL)
3559 {
3560 rinfo->failed = true;
3561 return false;
3562 }
3563
3564 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3565 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3566 elf_tdata (rinfo->output_bfd)->verref = t;
3567 }
3568
3569 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3570
3571 /* Note that we are copying a string pointer here, and testing it
3572 above. If bfd_elf_string_from_elf_section is ever changed to
3573 discard the string data when low in memory, this will have to be
3574 fixed. */
3575 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3576
3577 a->vna_flags = h->verinfo.verdef->vd_flags;
3578 a->vna_nextptr = t->vn_auxptr;
3579
3580 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3581 ++rinfo->vers;
3582
3583 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3584
3585 t->vn_auxptr = a;
3586
3587 return true;
3588 }
3589
3590 /* Figure out appropriate versions for all the symbols. We may not
3591 have the version number script until we have read all of the input
3592 files, so until that point we don't know which symbols should be
3593 local. This function is called via elf_link_hash_traverse. */
3594
3595 static boolean
3596 elf_link_assign_sym_version (h, data)
3597 struct elf_link_hash_entry *h;
3598 PTR data;
3599 {
3600 struct elf_assign_sym_version_info *sinfo =
3601 (struct elf_assign_sym_version_info *) data;
3602 struct bfd_link_info *info = sinfo->info;
3603 struct elf_info_failed eif;
3604 char *p;
3605
3606 /* Fix the symbol flags. */
3607 eif.failed = false;
3608 eif.info = info;
3609 if (! elf_fix_symbol_flags (h, &eif))
3610 {
3611 if (eif.failed)
3612 sinfo->failed = true;
3613 return false;
3614 }
3615
3616 /* We only need version numbers for symbols defined in regular
3617 objects. */
3618 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3619 return true;
3620
3621 p = strchr (h->root.root.string, ELF_VER_CHR);
3622 if (p != NULL && h->verinfo.vertree == NULL)
3623 {
3624 struct bfd_elf_version_tree *t;
3625 boolean hidden;
3626
3627 hidden = true;
3628
3629 /* There are two consecutive ELF_VER_CHR characters if this is
3630 not a hidden symbol. */
3631 ++p;
3632 if (*p == ELF_VER_CHR)
3633 {
3634 hidden = false;
3635 ++p;
3636 }
3637
3638 /* If there is no version string, we can just return out. */
3639 if (*p == '\0')
3640 {
3641 if (hidden)
3642 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3643 return true;
3644 }
3645
3646 /* Look for the version. If we find it, it is no longer weak. */
3647 for (t = sinfo->verdefs; t != NULL; t = t->next)
3648 {
3649 if (strcmp (t->name, p) == 0)
3650 {
3651 int len;
3652 char *alc;
3653 struct bfd_elf_version_expr *d;
3654
3655 len = p - h->root.root.string;
3656 alc = bfd_alloc (sinfo->output_bfd, len);
3657 if (alc == NULL)
3658 return false;
3659 strncpy (alc, h->root.root.string, len - 1);
3660 alc[len - 1] = '\0';
3661 if (alc[len - 2] == ELF_VER_CHR)
3662 alc[len - 2] = '\0';
3663
3664 h->verinfo.vertree = t;
3665 t->used = true;
3666 d = NULL;
3667
3668 if (t->globals != NULL)
3669 {
3670 for (d = t->globals; d != NULL; d = d->next)
3671 if ((*d->match) (d, alc))
3672 break;
3673 }
3674
3675 /* See if there is anything to force this symbol to
3676 local scope. */
3677 if (d == NULL && t->locals != NULL)
3678 {
3679 for (d = t->locals; d != NULL; d = d->next)
3680 {
3681 if ((*d->match) (d, alc))
3682 {
3683 if (h->dynindx != -1
3684 && info->shared
3685 && ! sinfo->export_dynamic)
3686 {
3687 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3688 elf_link_hash_hide_symbol (elf_hash_table (info),
3689 h);
3690 /* FIXME: The name of the symbol has
3691 already been recorded in the dynamic
3692 string table section. */
3693 }
3694
3695 break;
3696 }
3697 }
3698 }
3699
3700 bfd_release (sinfo->output_bfd, alc);
3701 break;
3702 }
3703 }
3704
3705 /* If we are building an application, we need to create a
3706 version node for this version. */
3707 if (t == NULL && ! info->shared)
3708 {
3709 struct bfd_elf_version_tree **pp;
3710 int version_index;
3711
3712 /* If we aren't going to export this symbol, we don't need
3713 to worry about it. */
3714 if (h->dynindx == -1)
3715 return true;
3716
3717 t = ((struct bfd_elf_version_tree *)
3718 bfd_alloc (sinfo->output_bfd, sizeof *t));
3719 if (t == NULL)
3720 {
3721 sinfo->failed = true;
3722 return false;
3723 }
3724
3725 t->next = NULL;
3726 t->name = p;
3727 t->globals = NULL;
3728 t->locals = NULL;
3729 t->deps = NULL;
3730 t->name_indx = (unsigned int) -1;
3731 t->used = true;
3732
3733 version_index = 1;
3734 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3735 ++version_index;
3736 t->vernum = version_index;
3737
3738 *pp = t;
3739
3740 h->verinfo.vertree = t;
3741 }
3742 else if (t == NULL)
3743 {
3744 /* We could not find the version for a symbol when
3745 generating a shared archive. Return an error. */
3746 (*_bfd_error_handler)
3747 (_("%s: undefined versioned symbol name %s"),
3748 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3749 bfd_set_error (bfd_error_bad_value);
3750 sinfo->failed = true;
3751 return false;
3752 }
3753
3754 if (hidden)
3755 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3756 }
3757
3758 /* If we don't have a version for this symbol, see if we can find
3759 something. */
3760 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3761 {
3762 struct bfd_elf_version_tree *t;
3763 struct bfd_elf_version_tree *deflt;
3764 struct bfd_elf_version_expr *d;
3765
3766 /* See if can find what version this symbol is in. If the
3767 symbol is supposed to be local, then don't actually register
3768 it. */
3769 deflt = NULL;
3770 for (t = sinfo->verdefs; t != NULL; t = t->next)
3771 {
3772 if (t->globals != NULL)
3773 {
3774 for (d = t->globals; d != NULL; d = d->next)
3775 {
3776 if ((*d->match) (d, h->root.root.string))
3777 {
3778 h->verinfo.vertree = t;
3779 break;
3780 }
3781 }
3782
3783 if (d != NULL)
3784 break;
3785 }
3786
3787 if (t->locals != NULL)
3788 {
3789 for (d = t->locals; d != NULL; d = d->next)
3790 {
3791 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3792 deflt = t;
3793 else if ((*d->match) (d, h->root.root.string))
3794 {
3795 h->verinfo.vertree = t;
3796 if (h->dynindx != -1
3797 && info->shared
3798 && ! sinfo->export_dynamic)
3799 {
3800 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3801 elf_link_hash_hide_symbol (elf_hash_table (info), h);
3802 /* FIXME: The name of the symbol has already
3803 been recorded in the dynamic string table
3804 section. */
3805 }
3806 break;
3807 }
3808 }
3809
3810 if (d != NULL)
3811 break;
3812 }
3813 }
3814
3815 if (deflt != NULL && h->verinfo.vertree == NULL)
3816 {
3817 h->verinfo.vertree = deflt;
3818 if (h->dynindx != -1
3819 && info->shared
3820 && ! sinfo->export_dynamic)
3821 {
3822 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3823 elf_link_hash_hide_symbol (elf_hash_table (info), h);
3824 /* FIXME: The name of the symbol has already been
3825 recorded in the dynamic string table section. */
3826 }
3827 }
3828 }
3829
3830 return true;
3831 }
3832 \f
3833 /* Final phase of ELF linker. */
3834
3835 /* A structure we use to avoid passing large numbers of arguments. */
3836
3837 struct elf_final_link_info
3838 {
3839 /* General link information. */
3840 struct bfd_link_info *info;
3841 /* Output BFD. */
3842 bfd *output_bfd;
3843 /* Symbol string table. */
3844 struct bfd_strtab_hash *symstrtab;
3845 /* .dynsym section. */
3846 asection *dynsym_sec;
3847 /* .hash section. */
3848 asection *hash_sec;
3849 /* symbol version section (.gnu.version). */
3850 asection *symver_sec;
3851 /* Buffer large enough to hold contents of any section. */
3852 bfd_byte *contents;
3853 /* Buffer large enough to hold external relocs of any section. */
3854 PTR external_relocs;
3855 /* Buffer large enough to hold internal relocs of any section. */
3856 Elf_Internal_Rela *internal_relocs;
3857 /* Buffer large enough to hold external local symbols of any input
3858 BFD. */
3859 Elf_External_Sym *external_syms;
3860 /* Buffer large enough to hold internal local symbols of any input
3861 BFD. */
3862 Elf_Internal_Sym *internal_syms;
3863 /* Array large enough to hold a symbol index for each local symbol
3864 of any input BFD. */
3865 long *indices;
3866 /* Array large enough to hold a section pointer for each local
3867 symbol of any input BFD. */
3868 asection **sections;
3869 /* Buffer to hold swapped out symbols. */
3870 Elf_External_Sym *symbuf;
3871 /* Number of swapped out symbols in buffer. */
3872 size_t symbuf_count;
3873 /* Number of symbols which fit in symbuf. */
3874 size_t symbuf_size;
3875 };
3876
3877 static boolean elf_link_output_sym
3878 PARAMS ((struct elf_final_link_info *, const char *,
3879 Elf_Internal_Sym *, asection *));
3880 static boolean elf_link_flush_output_syms
3881 PARAMS ((struct elf_final_link_info *));
3882 static boolean elf_link_output_extsym
3883 PARAMS ((struct elf_link_hash_entry *, PTR));
3884 static boolean elf_link_input_bfd
3885 PARAMS ((struct elf_final_link_info *, bfd *));
3886 static boolean elf_reloc_link_order
3887 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3888 struct bfd_link_order *));
3889
3890 /* This struct is used to pass information to elf_link_output_extsym. */
3891
3892 struct elf_outext_info
3893 {
3894 boolean failed;
3895 boolean localsyms;
3896 struct elf_final_link_info *finfo;
3897 };
3898
3899 /* Compute the size of, and allocate space for, REL_HDR which is the
3900 section header for a section containing relocations for O. */
3901
3902 static boolean
3903 elf_link_size_reloc_section (abfd, rel_hdr, o)
3904 bfd *abfd;
3905 Elf_Internal_Shdr *rel_hdr;
3906 asection *o;
3907 {
3908 register struct elf_link_hash_entry **p, **pend;
3909 unsigned reloc_count;
3910
3911 /* Figure out how many relocations there will be. */
3912 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3913 reloc_count = elf_section_data (o)->rel_count;
3914 else
3915 reloc_count = elf_section_data (o)->rel_count2;
3916
3917 /* That allows us to calculate the size of the section. */
3918 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3919
3920 /* The contents field must last into write_object_contents, so we
3921 allocate it with bfd_alloc rather than malloc. */
3922 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3923 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3924 return false;
3925
3926 /* We only allocate one set of hash entries, so we only do it the
3927 first time we are called. */
3928 if (elf_section_data (o)->rel_hashes == NULL)
3929 {
3930 p = ((struct elf_link_hash_entry **)
3931 bfd_malloc (o->reloc_count
3932 * sizeof (struct elf_link_hash_entry *)));
3933 if (p == NULL && o->reloc_count != 0)
3934 return false;
3935
3936 elf_section_data (o)->rel_hashes = p;
3937 pend = p + o->reloc_count;
3938 for (; p < pend; p++)
3939 *p = NULL;
3940 }
3941
3942 return true;
3943 }
3944
3945 /* When performing a relocateable link, the input relocations are
3946 preserved. But, if they reference global symbols, the indices
3947 referenced must be updated. Update all the relocations in
3948 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3949
3950 static void
3951 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3952 bfd *abfd;
3953 Elf_Internal_Shdr *rel_hdr;
3954 unsigned int count;
3955 struct elf_link_hash_entry **rel_hash;
3956 {
3957 unsigned int i;
3958
3959 for (i = 0; i < count; i++, rel_hash++)
3960 {
3961 if (*rel_hash == NULL)
3962 continue;
3963
3964 BFD_ASSERT ((*rel_hash)->indx >= 0);
3965
3966 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3967 {
3968 Elf_External_Rel *erel;
3969 Elf_Internal_Rel irel;
3970
3971 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3972 elf_swap_reloc_in (abfd, erel, &irel);
3973 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3974 ELF_R_TYPE (irel.r_info));
3975 elf_swap_reloc_out (abfd, &irel, erel);
3976 }
3977 else
3978 {
3979 Elf_External_Rela *erela;
3980 Elf_Internal_Rela irela;
3981
3982 BFD_ASSERT (rel_hdr->sh_entsize
3983 == sizeof (Elf_External_Rela));
3984
3985 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3986 elf_swap_reloca_in (abfd, erela, &irela);
3987 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3988 ELF_R_TYPE (irela.r_info));
3989 elf_swap_reloca_out (abfd, &irela, erela);
3990 }
3991 }
3992 }
3993
3994 /* Do the final step of an ELF link. */
3995
3996 boolean
3997 elf_bfd_final_link (abfd, info)
3998 bfd *abfd;
3999 struct bfd_link_info *info;
4000 {
4001 boolean dynamic;
4002 bfd *dynobj;
4003 struct elf_final_link_info finfo;
4004 register asection *o;
4005 register struct bfd_link_order *p;
4006 register bfd *sub;
4007 size_t max_contents_size;
4008 size_t max_external_reloc_size;
4009 size_t max_internal_reloc_count;
4010 size_t max_sym_count;
4011 file_ptr off;
4012 Elf_Internal_Sym elfsym;
4013 unsigned int i;
4014 Elf_Internal_Shdr *symtab_hdr;
4015 Elf_Internal_Shdr *symstrtab_hdr;
4016 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4017 struct elf_outext_info eoinfo;
4018
4019 if (info->shared)
4020 abfd->flags |= DYNAMIC;
4021
4022 dynamic = elf_hash_table (info)->dynamic_sections_created;
4023 dynobj = elf_hash_table (info)->dynobj;
4024
4025 finfo.info = info;
4026 finfo.output_bfd = abfd;
4027 finfo.symstrtab = elf_stringtab_init ();
4028 if (finfo.symstrtab == NULL)
4029 return false;
4030
4031 if (! dynamic)
4032 {
4033 finfo.dynsym_sec = NULL;
4034 finfo.hash_sec = NULL;
4035 finfo.symver_sec = NULL;
4036 }
4037 else
4038 {
4039 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4040 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4041 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4042 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4043 /* Note that it is OK if symver_sec is NULL. */
4044 }
4045
4046 finfo.contents = NULL;
4047 finfo.external_relocs = NULL;
4048 finfo.internal_relocs = NULL;
4049 finfo.external_syms = NULL;
4050 finfo.internal_syms = NULL;
4051 finfo.indices = NULL;
4052 finfo.sections = NULL;
4053 finfo.symbuf = NULL;
4054 finfo.symbuf_count = 0;
4055
4056 /* Count up the number of relocations we will output for each output
4057 section, so that we know the sizes of the reloc sections. We
4058 also figure out some maximum sizes. */
4059 max_contents_size = 0;
4060 max_external_reloc_size = 0;
4061 max_internal_reloc_count = 0;
4062 max_sym_count = 0;
4063 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4064 {
4065 o->reloc_count = 0;
4066
4067 for (p = o->link_order_head; p != NULL; p = p->next)
4068 {
4069 if (p->type == bfd_section_reloc_link_order
4070 || p->type == bfd_symbol_reloc_link_order)
4071 ++o->reloc_count;
4072 else if (p->type == bfd_indirect_link_order)
4073 {
4074 asection *sec;
4075
4076 sec = p->u.indirect.section;
4077
4078 /* Mark all sections which are to be included in the
4079 link. This will normally be every section. We need
4080 to do this so that we can identify any sections which
4081 the linker has decided to not include. */
4082 sec->linker_mark = true;
4083
4084 if (info->relocateable)
4085 o->reloc_count += sec->reloc_count;
4086
4087 if (sec->_raw_size > max_contents_size)
4088 max_contents_size = sec->_raw_size;
4089 if (sec->_cooked_size > max_contents_size)
4090 max_contents_size = sec->_cooked_size;
4091
4092 /* We are interested in just local symbols, not all
4093 symbols. */
4094 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4095 && (sec->owner->flags & DYNAMIC) == 0)
4096 {
4097 size_t sym_count;
4098
4099 if (elf_bad_symtab (sec->owner))
4100 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4101 / sizeof (Elf_External_Sym));
4102 else
4103 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4104
4105 if (sym_count > max_sym_count)
4106 max_sym_count = sym_count;
4107
4108 if ((sec->flags & SEC_RELOC) != 0)
4109 {
4110 size_t ext_size;
4111
4112 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4113 if (ext_size > max_external_reloc_size)
4114 max_external_reloc_size = ext_size;
4115 if (sec->reloc_count > max_internal_reloc_count)
4116 max_internal_reloc_count = sec->reloc_count;
4117 }
4118 }
4119 }
4120 }
4121
4122 if (o->reloc_count > 0)
4123 o->flags |= SEC_RELOC;
4124 else
4125 {
4126 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4127 set it (this is probably a bug) and if it is set
4128 assign_section_numbers will create a reloc section. */
4129 o->flags &=~ SEC_RELOC;
4130 }
4131
4132 /* If the SEC_ALLOC flag is not set, force the section VMA to
4133 zero. This is done in elf_fake_sections as well, but forcing
4134 the VMA to 0 here will ensure that relocs against these
4135 sections are handled correctly. */
4136 if ((o->flags & SEC_ALLOC) == 0
4137 && ! o->user_set_vma)
4138 o->vma = 0;
4139 }
4140
4141 /* Figure out the file positions for everything but the symbol table
4142 and the relocs. We set symcount to force assign_section_numbers
4143 to create a symbol table. */
4144 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4145 BFD_ASSERT (! abfd->output_has_begun);
4146 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4147 goto error_return;
4148
4149 /* Figure out how many relocations we will have in each section.
4150 Just using RELOC_COUNT isn't good enough since that doesn't
4151 maintain a separate value for REL vs. RELA relocations. */
4152 if (info->relocateable)
4153 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4154 for (o = sub->sections; o != NULL; o = o->next)
4155 {
4156 asection *output_section;
4157
4158 if (! o->linker_mark)
4159 {
4160 /* This section was omitted from the link. */
4161 continue;
4162 }
4163
4164 output_section = o->output_section;
4165
4166 if (output_section != NULL
4167 && (o->flags & SEC_RELOC) != 0)
4168 {
4169 struct bfd_elf_section_data *esdi
4170 = elf_section_data (o);
4171 struct bfd_elf_section_data *esdo
4172 = elf_section_data (output_section);
4173 unsigned int *rel_count;
4174 unsigned int *rel_count2;
4175
4176 /* We must be careful to add the relocation froms the
4177 input section to the right output count. */
4178 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4179 {
4180 rel_count = &esdo->rel_count;
4181 rel_count2 = &esdo->rel_count2;
4182 }
4183 else
4184 {
4185 rel_count = &esdo->rel_count2;
4186 rel_count2 = &esdo->rel_count;
4187 }
4188
4189 *rel_count += (esdi->rel_hdr.sh_size
4190 / esdi->rel_hdr.sh_entsize);
4191 if (esdi->rel_hdr2)
4192 *rel_count2 += (esdi->rel_hdr2->sh_size
4193 / esdi->rel_hdr2->sh_entsize);
4194 }
4195 }
4196
4197 /* That created the reloc sections. Set their sizes, and assign
4198 them file positions, and allocate some buffers. */
4199 for (o = abfd->sections; o != NULL; o = o->next)
4200 {
4201 if ((o->flags & SEC_RELOC) != 0)
4202 {
4203 if (!elf_link_size_reloc_section (abfd,
4204 &elf_section_data (o)->rel_hdr,
4205 o))
4206 goto error_return;
4207
4208 if (elf_section_data (o)->rel_hdr2
4209 && !elf_link_size_reloc_section (abfd,
4210 elf_section_data (o)->rel_hdr2,
4211 o))
4212 goto error_return;
4213 }
4214
4215 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4216 to count upwards while actually outputting the relocations. */
4217 elf_section_data (o)->rel_count = 0;
4218 elf_section_data (o)->rel_count2 = 0;
4219 }
4220
4221 _bfd_elf_assign_file_positions_for_relocs (abfd);
4222
4223 /* We have now assigned file positions for all the sections except
4224 .symtab and .strtab. We start the .symtab section at the current
4225 file position, and write directly to it. We build the .strtab
4226 section in memory. */
4227 bfd_get_symcount (abfd) = 0;
4228 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4229 /* sh_name is set in prep_headers. */
4230 symtab_hdr->sh_type = SHT_SYMTAB;
4231 symtab_hdr->sh_flags = 0;
4232 symtab_hdr->sh_addr = 0;
4233 symtab_hdr->sh_size = 0;
4234 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4235 /* sh_link is set in assign_section_numbers. */
4236 /* sh_info is set below. */
4237 /* sh_offset is set just below. */
4238 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4239
4240 off = elf_tdata (abfd)->next_file_pos;
4241 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4242
4243 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4244 incorrect. We do not yet know the size of the .symtab section.
4245 We correct next_file_pos below, after we do know the size. */
4246
4247 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4248 continuously seeking to the right position in the file. */
4249 if (! info->keep_memory || max_sym_count < 20)
4250 finfo.symbuf_size = 20;
4251 else
4252 finfo.symbuf_size = max_sym_count;
4253 finfo.symbuf = ((Elf_External_Sym *)
4254 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4255 if (finfo.symbuf == NULL)
4256 goto error_return;
4257
4258 /* Start writing out the symbol table. The first symbol is always a
4259 dummy symbol. */
4260 if (info->strip != strip_all || info->relocateable)
4261 {
4262 elfsym.st_value = 0;
4263 elfsym.st_size = 0;
4264 elfsym.st_info = 0;
4265 elfsym.st_other = 0;
4266 elfsym.st_shndx = SHN_UNDEF;
4267 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4268 &elfsym, bfd_und_section_ptr))
4269 goto error_return;
4270 }
4271
4272 #if 0
4273 /* Some standard ELF linkers do this, but we don't because it causes
4274 bootstrap comparison failures. */
4275 /* Output a file symbol for the output file as the second symbol.
4276 We output this even if we are discarding local symbols, although
4277 I'm not sure if this is correct. */
4278 elfsym.st_value = 0;
4279 elfsym.st_size = 0;
4280 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4281 elfsym.st_other = 0;
4282 elfsym.st_shndx = SHN_ABS;
4283 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4284 &elfsym, bfd_abs_section_ptr))
4285 goto error_return;
4286 #endif
4287
4288 /* Output a symbol for each section. We output these even if we are
4289 discarding local symbols, since they are used for relocs. These
4290 symbols have no names. We store the index of each one in the
4291 index field of the section, so that we can find it again when
4292 outputting relocs. */
4293 if (info->strip != strip_all || info->relocateable)
4294 {
4295 elfsym.st_size = 0;
4296 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4297 elfsym.st_other = 0;
4298 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4299 {
4300 o = section_from_elf_index (abfd, i);
4301 if (o != NULL)
4302 o->target_index = bfd_get_symcount (abfd);
4303 elfsym.st_shndx = i;
4304 if (info->relocateable || o == NULL)
4305 elfsym.st_value = 0;
4306 else
4307 elfsym.st_value = o->vma;
4308 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4309 &elfsym, o))
4310 goto error_return;
4311 }
4312 }
4313
4314 /* Allocate some memory to hold information read in from the input
4315 files. */
4316 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4317 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4318 finfo.internal_relocs = ((Elf_Internal_Rela *)
4319 bfd_malloc (max_internal_reloc_count
4320 * sizeof (Elf_Internal_Rela)
4321 * bed->s->int_rels_per_ext_rel));
4322 finfo.external_syms = ((Elf_External_Sym *)
4323 bfd_malloc (max_sym_count
4324 * sizeof (Elf_External_Sym)));
4325 finfo.internal_syms = ((Elf_Internal_Sym *)
4326 bfd_malloc (max_sym_count
4327 * sizeof (Elf_Internal_Sym)));
4328 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4329 finfo.sections = ((asection **)
4330 bfd_malloc (max_sym_count * sizeof (asection *)));
4331 if ((finfo.contents == NULL && max_contents_size != 0)
4332 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4333 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4334 || (finfo.external_syms == NULL && max_sym_count != 0)
4335 || (finfo.internal_syms == NULL && max_sym_count != 0)
4336 || (finfo.indices == NULL && max_sym_count != 0)
4337 || (finfo.sections == NULL && max_sym_count != 0))
4338 goto error_return;
4339
4340 /* Since ELF permits relocations to be against local symbols, we
4341 must have the local symbols available when we do the relocations.
4342 Since we would rather only read the local symbols once, and we
4343 would rather not keep them in memory, we handle all the
4344 relocations for a single input file at the same time.
4345
4346 Unfortunately, there is no way to know the total number of local
4347 symbols until we have seen all of them, and the local symbol
4348 indices precede the global symbol indices. This means that when
4349 we are generating relocateable output, and we see a reloc against
4350 a global symbol, we can not know the symbol index until we have
4351 finished examining all the local symbols to see which ones we are
4352 going to output. To deal with this, we keep the relocations in
4353 memory, and don't output them until the end of the link. This is
4354 an unfortunate waste of memory, but I don't see a good way around
4355 it. Fortunately, it only happens when performing a relocateable
4356 link, which is not the common case. FIXME: If keep_memory is set
4357 we could write the relocs out and then read them again; I don't
4358 know how bad the memory loss will be. */
4359
4360 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4361 sub->output_has_begun = false;
4362 for (o = abfd->sections; o != NULL; o = o->next)
4363 {
4364 for (p = o->link_order_head; p != NULL; p = p->next)
4365 {
4366 if (p->type == bfd_indirect_link_order
4367 && (bfd_get_flavour (p->u.indirect.section->owner)
4368 == bfd_target_elf_flavour))
4369 {
4370 sub = p->u.indirect.section->owner;
4371 if (! sub->output_has_begun)
4372 {
4373 if (! elf_link_input_bfd (&finfo, sub))
4374 goto error_return;
4375 sub->output_has_begun = true;
4376 }
4377 }
4378 else if (p->type == bfd_section_reloc_link_order
4379 || p->type == bfd_symbol_reloc_link_order)
4380 {
4381 if (! elf_reloc_link_order (abfd, info, o, p))
4382 goto error_return;
4383 }
4384 else
4385 {
4386 if (! _bfd_default_link_order (abfd, info, o, p))
4387 goto error_return;
4388 }
4389 }
4390 }
4391
4392 /* That wrote out all the local symbols. Finish up the symbol table
4393 with the global symbols. */
4394
4395 if (info->strip != strip_all && info->shared)
4396 {
4397 /* Output any global symbols that got converted to local in a
4398 version script. We do this in a separate step since ELF
4399 requires all local symbols to appear prior to any global
4400 symbols. FIXME: We should only do this if some global
4401 symbols were, in fact, converted to become local. FIXME:
4402 Will this work correctly with the Irix 5 linker? */
4403 eoinfo.failed = false;
4404 eoinfo.finfo = &finfo;
4405 eoinfo.localsyms = true;
4406 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4407 (PTR) &eoinfo);
4408 if (eoinfo.failed)
4409 return false;
4410 }
4411
4412 /* The sh_info field records the index of the first non local symbol. */
4413 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4414
4415 if (dynamic)
4416 {
4417 Elf_Internal_Sym sym;
4418 Elf_External_Sym *dynsym =
4419 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4420 long last_local = 0;
4421
4422 /* Write out the section symbols for the output sections. */
4423 if (info->shared)
4424 {
4425 asection *s;
4426
4427 sym.st_size = 0;
4428 sym.st_name = 0;
4429 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4430 sym.st_other = 0;
4431
4432 for (s = abfd->sections; s != NULL; s = s->next)
4433 {
4434 int indx;
4435 indx = elf_section_data (s)->this_idx;
4436 BFD_ASSERT (indx > 0);
4437 sym.st_shndx = indx;
4438 sym.st_value = s->vma;
4439
4440 elf_swap_symbol_out (abfd, &sym,
4441 dynsym + elf_section_data (s)->dynindx);
4442 }
4443
4444 last_local = bfd_count_sections (abfd);
4445 }
4446
4447 /* Write out the local dynsyms. */
4448 if (elf_hash_table (info)->dynlocal)
4449 {
4450 struct elf_link_local_dynamic_entry *e;
4451 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4452 {
4453 asection *s;
4454
4455 sym.st_size = e->isym.st_size;
4456 sym.st_other = e->isym.st_other;
4457
4458 /* Copy the internal symbol as is.
4459 Note that we saved a word of storage and overwrote
4460 the original st_name with the dynstr_index. */
4461 sym = e->isym;
4462
4463 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4464 {
4465 s = bfd_section_from_elf_index (e->input_bfd,
4466 e->isym.st_shndx);
4467
4468 sym.st_shndx =
4469 elf_section_data (s->output_section)->this_idx;
4470 sym.st_value = (s->output_section->vma
4471 + s->output_offset
4472 + e->isym.st_value);
4473 }
4474
4475 if (last_local < e->dynindx)
4476 last_local = e->dynindx;
4477
4478 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4479 }
4480 }
4481
4482 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4483 last_local + 1;
4484 }
4485
4486 /* We get the global symbols from the hash table. */
4487 eoinfo.failed = false;
4488 eoinfo.localsyms = false;
4489 eoinfo.finfo = &finfo;
4490 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4491 (PTR) &eoinfo);
4492 if (eoinfo.failed)
4493 return false;
4494
4495 /* If backend needs to output some symbols not present in the hash
4496 table, do it now. */
4497 if (bed->elf_backend_output_arch_syms)
4498 {
4499 if (! (*bed->elf_backend_output_arch_syms)
4500 (abfd, info, (PTR) &finfo,
4501 (boolean (*) PARAMS ((PTR, const char *,
4502 Elf_Internal_Sym *, asection *)))
4503 elf_link_output_sym))
4504 return false;
4505 }
4506
4507 /* Flush all symbols to the file. */
4508 if (! elf_link_flush_output_syms (&finfo))
4509 return false;
4510
4511 /* Now we know the size of the symtab section. */
4512 off += symtab_hdr->sh_size;
4513
4514 /* Finish up and write out the symbol string table (.strtab)
4515 section. */
4516 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4517 /* sh_name was set in prep_headers. */
4518 symstrtab_hdr->sh_type = SHT_STRTAB;
4519 symstrtab_hdr->sh_flags = 0;
4520 symstrtab_hdr->sh_addr = 0;
4521 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4522 symstrtab_hdr->sh_entsize = 0;
4523 symstrtab_hdr->sh_link = 0;
4524 symstrtab_hdr->sh_info = 0;
4525 /* sh_offset is set just below. */
4526 symstrtab_hdr->sh_addralign = 1;
4527
4528 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4529 elf_tdata (abfd)->next_file_pos = off;
4530
4531 if (bfd_get_symcount (abfd) > 0)
4532 {
4533 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4534 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4535 return false;
4536 }
4537
4538 /* Adjust the relocs to have the correct symbol indices. */
4539 for (o = abfd->sections; o != NULL; o = o->next)
4540 {
4541 if ((o->flags & SEC_RELOC) == 0)
4542 continue;
4543
4544 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4545 elf_section_data (o)->rel_count,
4546 elf_section_data (o)->rel_hashes);
4547 if (elf_section_data (o)->rel_hdr2 != NULL)
4548 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4549 elf_section_data (o)->rel_count2,
4550 (elf_section_data (o)->rel_hashes
4551 + elf_section_data (o)->rel_count));
4552
4553 /* Set the reloc_count field to 0 to prevent write_relocs from
4554 trying to swap the relocs out itself. */
4555 o->reloc_count = 0;
4556 }
4557
4558 /* If we are linking against a dynamic object, or generating a
4559 shared library, finish up the dynamic linking information. */
4560 if (dynamic)
4561 {
4562 Elf_External_Dyn *dyncon, *dynconend;
4563
4564 /* Fix up .dynamic entries. */
4565 o = bfd_get_section_by_name (dynobj, ".dynamic");
4566 BFD_ASSERT (o != NULL);
4567
4568 dyncon = (Elf_External_Dyn *) o->contents;
4569 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4570 for (; dyncon < dynconend; dyncon++)
4571 {
4572 Elf_Internal_Dyn dyn;
4573 const char *name;
4574 unsigned int type;
4575
4576 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4577
4578 switch (dyn.d_tag)
4579 {
4580 default:
4581 break;
4582 case DT_INIT:
4583 name = info->init_function;
4584 goto get_sym;
4585 case DT_FINI:
4586 name = info->fini_function;
4587 get_sym:
4588 {
4589 struct elf_link_hash_entry *h;
4590
4591 h = elf_link_hash_lookup (elf_hash_table (info), name,
4592 false, false, true);
4593 if (h != NULL
4594 && (h->root.type == bfd_link_hash_defined
4595 || h->root.type == bfd_link_hash_defweak))
4596 {
4597 dyn.d_un.d_val = h->root.u.def.value;
4598 o = h->root.u.def.section;
4599 if (o->output_section != NULL)
4600 dyn.d_un.d_val += (o->output_section->vma
4601 + o->output_offset);
4602 else
4603 {
4604 /* The symbol is imported from another shared
4605 library and does not apply to this one. */
4606 dyn.d_un.d_val = 0;
4607 }
4608
4609 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4610 }
4611 }
4612 break;
4613
4614 case DT_HASH:
4615 name = ".hash";
4616 goto get_vma;
4617 case DT_STRTAB:
4618 name = ".dynstr";
4619 goto get_vma;
4620 case DT_SYMTAB:
4621 name = ".dynsym";
4622 goto get_vma;
4623 case DT_VERDEF:
4624 name = ".gnu.version_d";
4625 goto get_vma;
4626 case DT_VERNEED:
4627 name = ".gnu.version_r";
4628 goto get_vma;
4629 case DT_VERSYM:
4630 name = ".gnu.version";
4631 get_vma:
4632 o = bfd_get_section_by_name (abfd, name);
4633 BFD_ASSERT (o != NULL);
4634 dyn.d_un.d_ptr = o->vma;
4635 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4636 break;
4637
4638 case DT_REL:
4639 case DT_RELA:
4640 case DT_RELSZ:
4641 case DT_RELASZ:
4642 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4643 type = SHT_REL;
4644 else
4645 type = SHT_RELA;
4646 dyn.d_un.d_val = 0;
4647 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4648 {
4649 Elf_Internal_Shdr *hdr;
4650
4651 hdr = elf_elfsections (abfd)[i];
4652 if (hdr->sh_type == type
4653 && (hdr->sh_flags & SHF_ALLOC) != 0)
4654 {
4655 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4656 dyn.d_un.d_val += hdr->sh_size;
4657 else
4658 {
4659 if (dyn.d_un.d_val == 0
4660 || hdr->sh_addr < dyn.d_un.d_val)
4661 dyn.d_un.d_val = hdr->sh_addr;
4662 }
4663 }
4664 }
4665 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4666 break;
4667 }
4668 }
4669 }
4670
4671 /* If we have created any dynamic sections, then output them. */
4672 if (dynobj != NULL)
4673 {
4674 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4675 goto error_return;
4676
4677 for (o = dynobj->sections; o != NULL; o = o->next)
4678 {
4679 if ((o->flags & SEC_HAS_CONTENTS) == 0
4680 || o->_raw_size == 0)
4681 continue;
4682 if ((o->flags & SEC_LINKER_CREATED) == 0)
4683 {
4684 /* At this point, we are only interested in sections
4685 created by elf_link_create_dynamic_sections. */
4686 continue;
4687 }
4688 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4689 != SHT_STRTAB)
4690 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4691 {
4692 if (! bfd_set_section_contents (abfd, o->output_section,
4693 o->contents, o->output_offset,
4694 o->_raw_size))
4695 goto error_return;
4696 }
4697 else
4698 {
4699 file_ptr off;
4700
4701 /* The contents of the .dynstr section are actually in a
4702 stringtab. */
4703 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4704 if (bfd_seek (abfd, off, SEEK_SET) != 0
4705 || ! _bfd_stringtab_emit (abfd,
4706 elf_hash_table (info)->dynstr))
4707 goto error_return;
4708 }
4709 }
4710 }
4711
4712 /* If we have optimized stabs strings, output them. */
4713 if (elf_hash_table (info)->stab_info != NULL)
4714 {
4715 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4716 goto error_return;
4717 }
4718
4719 if (finfo.symstrtab != NULL)
4720 _bfd_stringtab_free (finfo.symstrtab);
4721 if (finfo.contents != NULL)
4722 free (finfo.contents);
4723 if (finfo.external_relocs != NULL)
4724 free (finfo.external_relocs);
4725 if (finfo.internal_relocs != NULL)
4726 free (finfo.internal_relocs);
4727 if (finfo.external_syms != NULL)
4728 free (finfo.external_syms);
4729 if (finfo.internal_syms != NULL)
4730 free (finfo.internal_syms);
4731 if (finfo.indices != NULL)
4732 free (finfo.indices);
4733 if (finfo.sections != NULL)
4734 free (finfo.sections);
4735 if (finfo.symbuf != NULL)
4736 free (finfo.symbuf);
4737 for (o = abfd->sections; o != NULL; o = o->next)
4738 {
4739 if ((o->flags & SEC_RELOC) != 0
4740 && elf_section_data (o)->rel_hashes != NULL)
4741 free (elf_section_data (o)->rel_hashes);
4742 }
4743
4744 elf_tdata (abfd)->linker = true;
4745
4746 return true;
4747
4748 error_return:
4749 if (finfo.symstrtab != NULL)
4750 _bfd_stringtab_free (finfo.symstrtab);
4751 if (finfo.contents != NULL)
4752 free (finfo.contents);
4753 if (finfo.external_relocs != NULL)
4754 free (finfo.external_relocs);
4755 if (finfo.internal_relocs != NULL)
4756 free (finfo.internal_relocs);
4757 if (finfo.external_syms != NULL)
4758 free (finfo.external_syms);
4759 if (finfo.internal_syms != NULL)
4760 free (finfo.internal_syms);
4761 if (finfo.indices != NULL)
4762 free (finfo.indices);
4763 if (finfo.sections != NULL)
4764 free (finfo.sections);
4765 if (finfo.symbuf != NULL)
4766 free (finfo.symbuf);
4767 for (o = abfd->sections; o != NULL; o = o->next)
4768 {
4769 if ((o->flags & SEC_RELOC) != 0
4770 && elf_section_data (o)->rel_hashes != NULL)
4771 free (elf_section_data (o)->rel_hashes);
4772 }
4773
4774 return false;
4775 }
4776
4777 /* Add a symbol to the output symbol table. */
4778
4779 static boolean
4780 elf_link_output_sym (finfo, name, elfsym, input_sec)
4781 struct elf_final_link_info *finfo;
4782 const char *name;
4783 Elf_Internal_Sym *elfsym;
4784 asection *input_sec;
4785 {
4786 boolean (*output_symbol_hook) PARAMS ((bfd *,
4787 struct bfd_link_info *info,
4788 const char *,
4789 Elf_Internal_Sym *,
4790 asection *));
4791
4792 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4793 elf_backend_link_output_symbol_hook;
4794 if (output_symbol_hook != NULL)
4795 {
4796 if (! ((*output_symbol_hook)
4797 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4798 return false;
4799 }
4800
4801 if (name == (const char *) NULL || *name == '\0')
4802 elfsym->st_name = 0;
4803 else if (input_sec->flags & SEC_EXCLUDE)
4804 elfsym->st_name = 0;
4805 else
4806 {
4807 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4808 name, true,
4809 false);
4810 if (elfsym->st_name == (unsigned long) -1)
4811 return false;
4812 }
4813
4814 if (finfo->symbuf_count >= finfo->symbuf_size)
4815 {
4816 if (! elf_link_flush_output_syms (finfo))
4817 return false;
4818 }
4819
4820 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4821 (PTR) (finfo->symbuf + finfo->symbuf_count));
4822 ++finfo->symbuf_count;
4823
4824 ++ bfd_get_symcount (finfo->output_bfd);
4825
4826 return true;
4827 }
4828
4829 /* Flush the output symbols to the file. */
4830
4831 static boolean
4832 elf_link_flush_output_syms (finfo)
4833 struct elf_final_link_info *finfo;
4834 {
4835 if (finfo->symbuf_count > 0)
4836 {
4837 Elf_Internal_Shdr *symtab;
4838
4839 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4840
4841 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4842 SEEK_SET) != 0
4843 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4844 sizeof (Elf_External_Sym), finfo->output_bfd)
4845 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4846 return false;
4847
4848 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4849
4850 finfo->symbuf_count = 0;
4851 }
4852
4853 return true;
4854 }
4855
4856 /* Add an external symbol to the symbol table. This is called from
4857 the hash table traversal routine. When generating a shared object,
4858 we go through the symbol table twice. The first time we output
4859 anything that might have been forced to local scope in a version
4860 script. The second time we output the symbols that are still
4861 global symbols. */
4862
4863 static boolean
4864 elf_link_output_extsym (h, data)
4865 struct elf_link_hash_entry *h;
4866 PTR data;
4867 {
4868 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4869 struct elf_final_link_info *finfo = eoinfo->finfo;
4870 boolean strip;
4871 Elf_Internal_Sym sym;
4872 asection *input_sec;
4873
4874 /* Decide whether to output this symbol in this pass. */
4875 if (eoinfo->localsyms)
4876 {
4877 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4878 return true;
4879 }
4880 else
4881 {
4882 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4883 return true;
4884 }
4885
4886 /* If we are not creating a shared library, and this symbol is
4887 referenced by a shared library but is not defined anywhere, then
4888 warn that it is undefined. If we do not do this, the runtime
4889 linker will complain that the symbol is undefined when the
4890 program is run. We don't have to worry about symbols that are
4891 referenced by regular files, because we will already have issued
4892 warnings for them. */
4893 if (! finfo->info->relocateable
4894 && ! (finfo->info->shared
4895 && !finfo->info->no_undefined)
4896 && h->root.type == bfd_link_hash_undefined
4897 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4898 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4899 {
4900 if (! ((*finfo->info->callbacks->undefined_symbol)
4901 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4902 (asection *) NULL, 0)))
4903 {
4904 eoinfo->failed = true;
4905 return false;
4906 }
4907 }
4908
4909 /* We don't want to output symbols that have never been mentioned by
4910 a regular file, or that we have been told to strip. However, if
4911 h->indx is set to -2, the symbol is used by a reloc and we must
4912 output it. */
4913 if (h->indx == -2)
4914 strip = false;
4915 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4916 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4917 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4918 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4919 strip = true;
4920 else if (finfo->info->strip == strip_all
4921 || (finfo->info->strip == strip_some
4922 && bfd_hash_lookup (finfo->info->keep_hash,
4923 h->root.root.string,
4924 false, false) == NULL))
4925 strip = true;
4926 else
4927 strip = false;
4928
4929 /* If we're stripping it, and it's not a dynamic symbol, there's
4930 nothing else to do. */
4931 if (strip && h->dynindx == -1)
4932 return true;
4933
4934 sym.st_value = 0;
4935 sym.st_size = h->size;
4936 sym.st_other = h->other;
4937 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4938 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4939 else if (h->root.type == bfd_link_hash_undefweak
4940 || h->root.type == bfd_link_hash_defweak)
4941 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4942 else
4943 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4944
4945 switch (h->root.type)
4946 {
4947 default:
4948 case bfd_link_hash_new:
4949 abort ();
4950 return false;
4951
4952 case bfd_link_hash_undefined:
4953 input_sec = bfd_und_section_ptr;
4954 sym.st_shndx = SHN_UNDEF;
4955 break;
4956
4957 case bfd_link_hash_undefweak:
4958 input_sec = bfd_und_section_ptr;
4959 sym.st_shndx = SHN_UNDEF;
4960 break;
4961
4962 case bfd_link_hash_defined:
4963 case bfd_link_hash_defweak:
4964 {
4965 input_sec = h->root.u.def.section;
4966 if (input_sec->output_section != NULL)
4967 {
4968 sym.st_shndx =
4969 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4970 input_sec->output_section);
4971 if (sym.st_shndx == (unsigned short) -1)
4972 {
4973 (*_bfd_error_handler)
4974 (_("%s: could not find output section %s for input section %s"),
4975 bfd_get_filename (finfo->output_bfd),
4976 input_sec->output_section->name,
4977 input_sec->name);
4978 eoinfo->failed = true;
4979 return false;
4980 }
4981
4982 /* ELF symbols in relocateable files are section relative,
4983 but in nonrelocateable files they are virtual
4984 addresses. */
4985 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4986 if (! finfo->info->relocateable)
4987 sym.st_value += input_sec->output_section->vma;
4988 }
4989 else
4990 {
4991 BFD_ASSERT (input_sec->owner == NULL
4992 || (input_sec->owner->flags & DYNAMIC) != 0);
4993 sym.st_shndx = SHN_UNDEF;
4994 input_sec = bfd_und_section_ptr;
4995 }
4996 }
4997 break;
4998
4999 case bfd_link_hash_common:
5000 input_sec = h->root.u.c.p->section;
5001 sym.st_shndx = SHN_COMMON;
5002 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5003 break;
5004
5005 case bfd_link_hash_indirect:
5006 /* These symbols are created by symbol versioning. They point
5007 to the decorated version of the name. For example, if the
5008 symbol foo@@GNU_1.2 is the default, which should be used when
5009 foo is used with no version, then we add an indirect symbol
5010 foo which points to foo@@GNU_1.2. We ignore these symbols,
5011 since the indirected symbol is already in the hash table. If
5012 the indirect symbol is non-ELF, fall through and output it. */
5013 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5014 return true;
5015
5016 /* Fall through. */
5017 case bfd_link_hash_warning:
5018 /* We can't represent these symbols in ELF, although a warning
5019 symbol may have come from a .gnu.warning.SYMBOL section. We
5020 just put the target symbol in the hash table. If the target
5021 symbol does not really exist, don't do anything. */
5022 if (h->root.u.i.link->type == bfd_link_hash_new)
5023 return true;
5024 return (elf_link_output_extsym
5025 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5026 }
5027
5028 /* Give the processor backend a chance to tweak the symbol value,
5029 and also to finish up anything that needs to be done for this
5030 symbol. */
5031 if ((h->dynindx != -1
5032 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5033 && elf_hash_table (finfo->info)->dynamic_sections_created)
5034 {
5035 struct elf_backend_data *bed;
5036
5037 bed = get_elf_backend_data (finfo->output_bfd);
5038 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5039 (finfo->output_bfd, finfo->info, h, &sym)))
5040 {
5041 eoinfo->failed = true;
5042 return false;
5043 }
5044 }
5045
5046 /* If we are marking the symbol as undefined, and there are no
5047 non-weak references to this symbol from a regular object, then
5048 mark the symbol as weak undefined; if there are non-weak
5049 references, mark the symbol as strong. We can't do this earlier,
5050 because it might not be marked as undefined until the
5051 finish_dynamic_symbol routine gets through with it. */
5052 if (sym.st_shndx == SHN_UNDEF
5053 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5054 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5055 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5056 {
5057 int bindtype;
5058
5059 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5060 bindtype = STB_GLOBAL;
5061 else
5062 bindtype = STB_WEAK;
5063 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5064 }
5065
5066 /* If this symbol should be put in the .dynsym section, then put it
5067 there now. We have already know the symbol index. We also fill
5068 in the entry in the .hash section. */
5069 if (h->dynindx != -1
5070 && elf_hash_table (finfo->info)->dynamic_sections_created)
5071 {
5072 size_t bucketcount;
5073 size_t bucket;
5074 size_t hash_entry_size;
5075 bfd_byte *bucketpos;
5076 bfd_vma chain;
5077
5078 sym.st_name = h->dynstr_index;
5079
5080 elf_swap_symbol_out (finfo->output_bfd, &sym,
5081 (PTR) (((Elf_External_Sym *)
5082 finfo->dynsym_sec->contents)
5083 + h->dynindx));
5084
5085 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5086 bucket = h->elf_hash_value % bucketcount;
5087 hash_entry_size
5088 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5089 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5090 + (bucket + 2) * hash_entry_size);
5091 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5092 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5093 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5094 ((bfd_byte *) finfo->hash_sec->contents
5095 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5096
5097 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5098 {
5099 Elf_Internal_Versym iversym;
5100
5101 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5102 {
5103 if (h->verinfo.verdef == NULL)
5104 iversym.vs_vers = 0;
5105 else
5106 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5107 }
5108 else
5109 {
5110 if (h->verinfo.vertree == NULL)
5111 iversym.vs_vers = 1;
5112 else
5113 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5114 }
5115
5116 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5117 iversym.vs_vers |= VERSYM_HIDDEN;
5118
5119 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5120 (((Elf_External_Versym *)
5121 finfo->symver_sec->contents)
5122 + h->dynindx));
5123 }
5124 }
5125
5126 /* If we're stripping it, then it was just a dynamic symbol, and
5127 there's nothing else to do. */
5128 if (strip)
5129 return true;
5130
5131 h->indx = bfd_get_symcount (finfo->output_bfd);
5132
5133 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5134 {
5135 eoinfo->failed = true;
5136 return false;
5137 }
5138
5139 return true;
5140 }
5141
5142 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5143 originated from the section given by INPUT_REL_HDR) to the
5144 OUTPUT_BFD. */
5145
5146 static void
5147 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5148 internal_relocs)
5149 bfd *output_bfd;
5150 asection *input_section;
5151 Elf_Internal_Shdr *input_rel_hdr;
5152 Elf_Internal_Rela *internal_relocs;
5153 {
5154 Elf_Internal_Rela *irela;
5155 Elf_Internal_Rela *irelaend;
5156 Elf_Internal_Shdr *output_rel_hdr;
5157 asection *output_section;
5158 unsigned int *rel_countp = NULL;
5159
5160 output_section = input_section->output_section;
5161 output_rel_hdr = NULL;
5162
5163 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5164 == input_rel_hdr->sh_entsize)
5165 {
5166 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5167 rel_countp = &elf_section_data (output_section)->rel_count;
5168 }
5169 else if (elf_section_data (output_section)->rel_hdr2
5170 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5171 == input_rel_hdr->sh_entsize))
5172 {
5173 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5174 rel_countp = &elf_section_data (output_section)->rel_count2;
5175 }
5176
5177 BFD_ASSERT (output_rel_hdr != NULL);
5178
5179 irela = internal_relocs;
5180 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5181 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5182 {
5183 Elf_External_Rel *erel;
5184
5185 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5186 for (; irela < irelaend; irela++, erel++)
5187 {
5188 Elf_Internal_Rel irel;
5189
5190 irel.r_offset = irela->r_offset;
5191 irel.r_info = irela->r_info;
5192 BFD_ASSERT (irela->r_addend == 0);
5193 elf_swap_reloc_out (output_bfd, &irel, erel);
5194 }
5195 }
5196 else
5197 {
5198 Elf_External_Rela *erela;
5199
5200 BFD_ASSERT (input_rel_hdr->sh_entsize
5201 == sizeof (Elf_External_Rela));
5202 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5203 for (; irela < irelaend; irela++, erela++)
5204 elf_swap_reloca_out (output_bfd, irela, erela);
5205 }
5206
5207 /* Bump the counter, so that we know where to add the next set of
5208 relocations. */
5209 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5210 }
5211
5212 /* Link an input file into the linker output file. This function
5213 handles all the sections and relocations of the input file at once.
5214 This is so that we only have to read the local symbols once, and
5215 don't have to keep them in memory. */
5216
5217 static boolean
5218 elf_link_input_bfd (finfo, input_bfd)
5219 struct elf_final_link_info *finfo;
5220 bfd *input_bfd;
5221 {
5222 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5223 bfd *, asection *, bfd_byte *,
5224 Elf_Internal_Rela *,
5225 Elf_Internal_Sym *, asection **));
5226 bfd *output_bfd;
5227 Elf_Internal_Shdr *symtab_hdr;
5228 size_t locsymcount;
5229 size_t extsymoff;
5230 Elf_External_Sym *external_syms;
5231 Elf_External_Sym *esym;
5232 Elf_External_Sym *esymend;
5233 Elf_Internal_Sym *isym;
5234 long *pindex;
5235 asection **ppsection;
5236 asection *o;
5237 struct elf_backend_data *bed;
5238
5239 output_bfd = finfo->output_bfd;
5240 bed = get_elf_backend_data (output_bfd);
5241 relocate_section = bed->elf_backend_relocate_section;
5242
5243 /* If this is a dynamic object, we don't want to do anything here:
5244 we don't want the local symbols, and we don't want the section
5245 contents. */
5246 if ((input_bfd->flags & DYNAMIC) != 0)
5247 return true;
5248
5249 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5250 if (elf_bad_symtab (input_bfd))
5251 {
5252 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5253 extsymoff = 0;
5254 }
5255 else
5256 {
5257 locsymcount = symtab_hdr->sh_info;
5258 extsymoff = symtab_hdr->sh_info;
5259 }
5260
5261 /* Read the local symbols. */
5262 if (symtab_hdr->contents != NULL)
5263 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5264 else if (locsymcount == 0)
5265 external_syms = NULL;
5266 else
5267 {
5268 external_syms = finfo->external_syms;
5269 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5270 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5271 locsymcount, input_bfd)
5272 != locsymcount * sizeof (Elf_External_Sym)))
5273 return false;
5274 }
5275
5276 /* Swap in the local symbols and write out the ones which we know
5277 are going into the output file. */
5278 esym = external_syms;
5279 esymend = esym + locsymcount;
5280 isym = finfo->internal_syms;
5281 pindex = finfo->indices;
5282 ppsection = finfo->sections;
5283 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5284 {
5285 asection *isec;
5286 const char *name;
5287 Elf_Internal_Sym osym;
5288
5289 elf_swap_symbol_in (input_bfd, esym, isym);
5290 *pindex = -1;
5291
5292 if (elf_bad_symtab (input_bfd))
5293 {
5294 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5295 {
5296 *ppsection = NULL;
5297 continue;
5298 }
5299 }
5300
5301 if (isym->st_shndx == SHN_UNDEF)
5302 isec = bfd_und_section_ptr;
5303 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5304 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5305 else if (isym->st_shndx == SHN_ABS)
5306 isec = bfd_abs_section_ptr;
5307 else if (isym->st_shndx == SHN_COMMON)
5308 isec = bfd_com_section_ptr;
5309 else
5310 {
5311 /* Who knows? */
5312 isec = NULL;
5313 }
5314
5315 *ppsection = isec;
5316
5317 /* Don't output the first, undefined, symbol. */
5318 if (esym == external_syms)
5319 continue;
5320
5321 /* If we are stripping all symbols, we don't want to output this
5322 one. */
5323 if (finfo->info->strip == strip_all)
5324 continue;
5325
5326 /* We never output section symbols. Instead, we use the section
5327 symbol of the corresponding section in the output file. */
5328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5329 continue;
5330
5331 /* If we are discarding all local symbols, we don't want to
5332 output this one. If we are generating a relocateable output
5333 file, then some of the local symbols may be required by
5334 relocs; we output them below as we discover that they are
5335 needed. */
5336 if (finfo->info->discard == discard_all)
5337 continue;
5338
5339 /* If this symbol is defined in a section which we are
5340 discarding, we don't need to keep it, but note that
5341 linker_mark is only reliable for sections that have contents.
5342 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5343 as well as linker_mark. */
5344 if (isym->st_shndx > 0
5345 && isym->st_shndx < SHN_LORESERVE
5346 && isec != NULL
5347 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5348 || (! finfo->info->relocateable
5349 && (isec->flags & SEC_EXCLUDE) != 0)))
5350 continue;
5351
5352 /* Get the name of the symbol. */
5353 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5354 isym->st_name);
5355 if (name == NULL)
5356 return false;
5357
5358 /* See if we are discarding symbols with this name. */
5359 if ((finfo->info->strip == strip_some
5360 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5361 == NULL))
5362 || (finfo->info->discard == discard_l
5363 && bfd_is_local_label_name (input_bfd, name)))
5364 continue;
5365
5366 /* If we get here, we are going to output this symbol. */
5367
5368 osym = *isym;
5369
5370 /* Adjust the section index for the output file. */
5371 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5372 isec->output_section);
5373 if (osym.st_shndx == (unsigned short) -1)
5374 return false;
5375
5376 *pindex = bfd_get_symcount (output_bfd);
5377
5378 /* ELF symbols in relocateable files are section relative, but
5379 in executable files they are virtual addresses. Note that
5380 this code assumes that all ELF sections have an associated
5381 BFD section with a reasonable value for output_offset; below
5382 we assume that they also have a reasonable value for
5383 output_section. Any special sections must be set up to meet
5384 these requirements. */
5385 osym.st_value += isec->output_offset;
5386 if (! finfo->info->relocateable)
5387 osym.st_value += isec->output_section->vma;
5388
5389 if (! elf_link_output_sym (finfo, name, &osym, isec))
5390 return false;
5391 }
5392
5393 /* Relocate the contents of each section. */
5394 for (o = input_bfd->sections; o != NULL; o = o->next)
5395 {
5396 bfd_byte *contents;
5397
5398 if (! o->linker_mark)
5399 {
5400 /* This section was omitted from the link. */
5401 continue;
5402 }
5403
5404 if ((o->flags & SEC_HAS_CONTENTS) == 0
5405 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5406 continue;
5407
5408 if ((o->flags & SEC_LINKER_CREATED) != 0)
5409 {
5410 /* Section was created by elf_link_create_dynamic_sections
5411 or somesuch. */
5412 continue;
5413 }
5414
5415 /* Get the contents of the section. They have been cached by a
5416 relaxation routine. Note that o is a section in an input
5417 file, so the contents field will not have been set by any of
5418 the routines which work on output files. */
5419 if (elf_section_data (o)->this_hdr.contents != NULL)
5420 contents = elf_section_data (o)->this_hdr.contents;
5421 else
5422 {
5423 contents = finfo->contents;
5424 if (! bfd_get_section_contents (input_bfd, o, contents,
5425 (file_ptr) 0, o->_raw_size))
5426 return false;
5427 }
5428
5429 if ((o->flags & SEC_RELOC) != 0)
5430 {
5431 Elf_Internal_Rela *internal_relocs;
5432
5433 /* Get the swapped relocs. */
5434 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5435 (input_bfd, o, finfo->external_relocs,
5436 finfo->internal_relocs, false));
5437 if (internal_relocs == NULL
5438 && o->reloc_count > 0)
5439 return false;
5440
5441 /* Relocate the section by invoking a back end routine.
5442
5443 The back end routine is responsible for adjusting the
5444 section contents as necessary, and (if using Rela relocs
5445 and generating a relocateable output file) adjusting the
5446 reloc addend as necessary.
5447
5448 The back end routine does not have to worry about setting
5449 the reloc address or the reloc symbol index.
5450
5451 The back end routine is given a pointer to the swapped in
5452 internal symbols, and can access the hash table entries
5453 for the external symbols via elf_sym_hashes (input_bfd).
5454
5455 When generating relocateable output, the back end routine
5456 must handle STB_LOCAL/STT_SECTION symbols specially. The
5457 output symbol is going to be a section symbol
5458 corresponding to the output section, which will require
5459 the addend to be adjusted. */
5460
5461 if (! (*relocate_section) (output_bfd, finfo->info,
5462 input_bfd, o, contents,
5463 internal_relocs,
5464 finfo->internal_syms,
5465 finfo->sections))
5466 return false;
5467
5468 if (finfo->info->relocateable)
5469 {
5470 Elf_Internal_Rela *irela;
5471 Elf_Internal_Rela *irelaend;
5472 struct elf_link_hash_entry **rel_hash;
5473 Elf_Internal_Shdr *input_rel_hdr;
5474
5475 /* Adjust the reloc addresses and symbol indices. */
5476
5477 irela = internal_relocs;
5478 irelaend =
5479 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5480 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5481 + elf_section_data (o->output_section)->rel_count
5482 + elf_section_data (o->output_section)->rel_count2);
5483 for (; irela < irelaend; irela++, rel_hash++)
5484 {
5485 unsigned long r_symndx;
5486 Elf_Internal_Sym *isym;
5487 asection *sec;
5488
5489 irela->r_offset += o->output_offset;
5490
5491 r_symndx = ELF_R_SYM (irela->r_info);
5492
5493 if (r_symndx == 0)
5494 continue;
5495
5496 if (r_symndx >= locsymcount
5497 || (elf_bad_symtab (input_bfd)
5498 && finfo->sections[r_symndx] == NULL))
5499 {
5500 struct elf_link_hash_entry *rh;
5501 long indx;
5502
5503 /* This is a reloc against a global symbol. We
5504 have not yet output all the local symbols, so
5505 we do not know the symbol index of any global
5506 symbol. We set the rel_hash entry for this
5507 reloc to point to the global hash table entry
5508 for this symbol. The symbol index is then
5509 set at the end of elf_bfd_final_link. */
5510 indx = r_symndx - extsymoff;
5511 rh = elf_sym_hashes (input_bfd)[indx];
5512 while (rh->root.type == bfd_link_hash_indirect
5513 || rh->root.type == bfd_link_hash_warning)
5514 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5515
5516 /* Setting the index to -2 tells
5517 elf_link_output_extsym that this symbol is
5518 used by a reloc. */
5519 BFD_ASSERT (rh->indx < 0);
5520 rh->indx = -2;
5521
5522 *rel_hash = rh;
5523
5524 continue;
5525 }
5526
5527 /* This is a reloc against a local symbol. */
5528
5529 *rel_hash = NULL;
5530 isym = finfo->internal_syms + r_symndx;
5531 sec = finfo->sections[r_symndx];
5532 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5533 {
5534 /* I suppose the backend ought to fill in the
5535 section of any STT_SECTION symbol against a
5536 processor specific section. If we have
5537 discarded a section, the output_section will
5538 be the absolute section. */
5539 if (sec != NULL
5540 && (bfd_is_abs_section (sec)
5541 || (sec->output_section != NULL
5542 && bfd_is_abs_section (sec->output_section))))
5543 r_symndx = 0;
5544 else if (sec == NULL || sec->owner == NULL)
5545 {
5546 bfd_set_error (bfd_error_bad_value);
5547 return false;
5548 }
5549 else
5550 {
5551 r_symndx = sec->output_section->target_index;
5552 BFD_ASSERT (r_symndx != 0);
5553 }
5554 }
5555 else
5556 {
5557 if (finfo->indices[r_symndx] == -1)
5558 {
5559 unsigned long link;
5560 const char *name;
5561 asection *osec;
5562
5563 if (finfo->info->strip == strip_all)
5564 {
5565 /* You can't do ld -r -s. */
5566 bfd_set_error (bfd_error_invalid_operation);
5567 return false;
5568 }
5569
5570 /* This symbol was skipped earlier, but
5571 since it is needed by a reloc, we
5572 must output it now. */
5573 link = symtab_hdr->sh_link;
5574 name = bfd_elf_string_from_elf_section (input_bfd,
5575 link,
5576 isym->st_name);
5577 if (name == NULL)
5578 return false;
5579
5580 osec = sec->output_section;
5581 isym->st_shndx =
5582 _bfd_elf_section_from_bfd_section (output_bfd,
5583 osec);
5584 if (isym->st_shndx == (unsigned short) -1)
5585 return false;
5586
5587 isym->st_value += sec->output_offset;
5588 if (! finfo->info->relocateable)
5589 isym->st_value += osec->vma;
5590
5591 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5592
5593 if (! elf_link_output_sym (finfo, name, isym, sec))
5594 return false;
5595 }
5596
5597 r_symndx = finfo->indices[r_symndx];
5598 }
5599
5600 irela->r_info = ELF_R_INFO (r_symndx,
5601 ELF_R_TYPE (irela->r_info));
5602 }
5603
5604 /* Swap out the relocs. */
5605 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5606 elf_link_output_relocs (output_bfd, o,
5607 input_rel_hdr,
5608 internal_relocs);
5609 internal_relocs
5610 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5611 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5612 if (input_rel_hdr)
5613 elf_link_output_relocs (output_bfd, o,
5614 input_rel_hdr,
5615 internal_relocs);
5616 }
5617 }
5618
5619 /* Write out the modified section contents. */
5620 if (elf_section_data (o)->stab_info == NULL)
5621 {
5622 if (! (o->flags & SEC_EXCLUDE) &&
5623 ! bfd_set_section_contents (output_bfd, o->output_section,
5624 contents, o->output_offset,
5625 (o->_cooked_size != 0
5626 ? o->_cooked_size
5627 : o->_raw_size)))
5628 return false;
5629 }
5630 else
5631 {
5632 if (! (_bfd_write_section_stabs
5633 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5634 o, &elf_section_data (o)->stab_info, contents)))
5635 return false;
5636 }
5637 }
5638
5639 return true;
5640 }
5641
5642 /* Generate a reloc when linking an ELF file. This is a reloc
5643 requested by the linker, and does come from any input file. This
5644 is used to build constructor and destructor tables when linking
5645 with -Ur. */
5646
5647 static boolean
5648 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5649 bfd *output_bfd;
5650 struct bfd_link_info *info;
5651 asection *output_section;
5652 struct bfd_link_order *link_order;
5653 {
5654 reloc_howto_type *howto;
5655 long indx;
5656 bfd_vma offset;
5657 bfd_vma addend;
5658 struct elf_link_hash_entry **rel_hash_ptr;
5659 Elf_Internal_Shdr *rel_hdr;
5660
5661 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5662 if (howto == NULL)
5663 {
5664 bfd_set_error (bfd_error_bad_value);
5665 return false;
5666 }
5667
5668 addend = link_order->u.reloc.p->addend;
5669
5670 /* Figure out the symbol index. */
5671 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5672 + elf_section_data (output_section)->rel_count
5673 + elf_section_data (output_section)->rel_count2);
5674 if (link_order->type == bfd_section_reloc_link_order)
5675 {
5676 indx = link_order->u.reloc.p->u.section->target_index;
5677 BFD_ASSERT (indx != 0);
5678 *rel_hash_ptr = NULL;
5679 }
5680 else
5681 {
5682 struct elf_link_hash_entry *h;
5683
5684 /* Treat a reloc against a defined symbol as though it were
5685 actually against the section. */
5686 h = ((struct elf_link_hash_entry *)
5687 bfd_wrapped_link_hash_lookup (output_bfd, info,
5688 link_order->u.reloc.p->u.name,
5689 false, false, true));
5690 if (h != NULL
5691 && (h->root.type == bfd_link_hash_defined
5692 || h->root.type == bfd_link_hash_defweak))
5693 {
5694 asection *section;
5695
5696 section = h->root.u.def.section;
5697 indx = section->output_section->target_index;
5698 *rel_hash_ptr = NULL;
5699 /* It seems that we ought to add the symbol value to the
5700 addend here, but in practice it has already been added
5701 because it was passed to constructor_callback. */
5702 addend += section->output_section->vma + section->output_offset;
5703 }
5704 else if (h != NULL)
5705 {
5706 /* Setting the index to -2 tells elf_link_output_extsym that
5707 this symbol is used by a reloc. */
5708 h->indx = -2;
5709 *rel_hash_ptr = h;
5710 indx = 0;
5711 }
5712 else
5713 {
5714 if (! ((*info->callbacks->unattached_reloc)
5715 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5716 (asection *) NULL, (bfd_vma) 0)))
5717 return false;
5718 indx = 0;
5719 }
5720 }
5721
5722 /* If this is an inplace reloc, we must write the addend into the
5723 object file. */
5724 if (howto->partial_inplace && addend != 0)
5725 {
5726 bfd_size_type size;
5727 bfd_reloc_status_type rstat;
5728 bfd_byte *buf;
5729 boolean ok;
5730
5731 size = bfd_get_reloc_size (howto);
5732 buf = (bfd_byte *) bfd_zmalloc (size);
5733 if (buf == (bfd_byte *) NULL)
5734 return false;
5735 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5736 switch (rstat)
5737 {
5738 case bfd_reloc_ok:
5739 break;
5740 default:
5741 case bfd_reloc_outofrange:
5742 abort ();
5743 case bfd_reloc_overflow:
5744 if (! ((*info->callbacks->reloc_overflow)
5745 (info,
5746 (link_order->type == bfd_section_reloc_link_order
5747 ? bfd_section_name (output_bfd,
5748 link_order->u.reloc.p->u.section)
5749 : link_order->u.reloc.p->u.name),
5750 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5751 (bfd_vma) 0)))
5752 {
5753 free (buf);
5754 return false;
5755 }
5756 break;
5757 }
5758 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5759 (file_ptr) link_order->offset, size);
5760 free (buf);
5761 if (! ok)
5762 return false;
5763 }
5764
5765 /* The address of a reloc is relative to the section in a
5766 relocateable file, and is a virtual address in an executable
5767 file. */
5768 offset = link_order->offset;
5769 if (! info->relocateable)
5770 offset += output_section->vma;
5771
5772 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5773
5774 if (rel_hdr->sh_type == SHT_REL)
5775 {
5776 Elf_Internal_Rel irel;
5777 Elf_External_Rel *erel;
5778
5779 irel.r_offset = offset;
5780 irel.r_info = ELF_R_INFO (indx, howto->type);
5781 erel = ((Elf_External_Rel *) rel_hdr->contents
5782 + elf_section_data (output_section)->rel_count);
5783 elf_swap_reloc_out (output_bfd, &irel, erel);
5784 }
5785 else
5786 {
5787 Elf_Internal_Rela irela;
5788 Elf_External_Rela *erela;
5789
5790 irela.r_offset = offset;
5791 irela.r_info = ELF_R_INFO (indx, howto->type);
5792 irela.r_addend = addend;
5793 erela = ((Elf_External_Rela *) rel_hdr->contents
5794 + elf_section_data (output_section)->rel_count);
5795 elf_swap_reloca_out (output_bfd, &irela, erela);
5796 }
5797
5798 ++elf_section_data (output_section)->rel_count;
5799
5800 return true;
5801 }
5802
5803 \f
5804 /* Allocate a pointer to live in a linker created section. */
5805
5806 boolean
5807 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5808 bfd *abfd;
5809 struct bfd_link_info *info;
5810 elf_linker_section_t *lsect;
5811 struct elf_link_hash_entry *h;
5812 const Elf_Internal_Rela *rel;
5813 {
5814 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5815 elf_linker_section_pointers_t *linker_section_ptr;
5816 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5817
5818 BFD_ASSERT (lsect != NULL);
5819
5820 /* Is this a global symbol? */
5821 if (h != NULL)
5822 {
5823 /* Has this symbol already been allocated, if so, our work is done */
5824 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5825 rel->r_addend,
5826 lsect->which))
5827 return true;
5828
5829 ptr_linker_section_ptr = &h->linker_section_pointer;
5830 /* Make sure this symbol is output as a dynamic symbol. */
5831 if (h->dynindx == -1)
5832 {
5833 if (! elf_link_record_dynamic_symbol (info, h))
5834 return false;
5835 }
5836
5837 if (lsect->rel_section)
5838 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5839 }
5840
5841 else /* Allocation of a pointer to a local symbol */
5842 {
5843 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5844
5845 /* Allocate a table to hold the local symbols if first time */
5846 if (!ptr)
5847 {
5848 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5849 register unsigned int i;
5850
5851 ptr = (elf_linker_section_pointers_t **)
5852 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5853
5854 if (!ptr)
5855 return false;
5856
5857 elf_local_ptr_offsets (abfd) = ptr;
5858 for (i = 0; i < num_symbols; i++)
5859 ptr[i] = (elf_linker_section_pointers_t *)0;
5860 }
5861
5862 /* Has this symbol already been allocated, if so, our work is done */
5863 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5864 rel->r_addend,
5865 lsect->which))
5866 return true;
5867
5868 ptr_linker_section_ptr = &ptr[r_symndx];
5869
5870 if (info->shared)
5871 {
5872 /* If we are generating a shared object, we need to
5873 output a R_<xxx>_RELATIVE reloc so that the
5874 dynamic linker can adjust this GOT entry. */
5875 BFD_ASSERT (lsect->rel_section != NULL);
5876 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5877 }
5878 }
5879
5880 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5881 from internal memory. */
5882 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5883 linker_section_ptr = (elf_linker_section_pointers_t *)
5884 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5885
5886 if (!linker_section_ptr)
5887 return false;
5888
5889 linker_section_ptr->next = *ptr_linker_section_ptr;
5890 linker_section_ptr->addend = rel->r_addend;
5891 linker_section_ptr->which = lsect->which;
5892 linker_section_ptr->written_address_p = false;
5893 *ptr_linker_section_ptr = linker_section_ptr;
5894
5895 #if 0
5896 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5897 {
5898 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5899 lsect->hole_offset += ARCH_SIZE / 8;
5900 lsect->sym_offset += ARCH_SIZE / 8;
5901 if (lsect->sym_hash) /* Bump up symbol value if needed */
5902 {
5903 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5904 #ifdef DEBUG
5905 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5906 lsect->sym_hash->root.root.string,
5907 (long)ARCH_SIZE / 8,
5908 (long)lsect->sym_hash->root.u.def.value);
5909 #endif
5910 }
5911 }
5912 else
5913 #endif
5914 linker_section_ptr->offset = lsect->section->_raw_size;
5915
5916 lsect->section->_raw_size += ARCH_SIZE / 8;
5917
5918 #ifdef DEBUG
5919 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5920 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5921 #endif
5922
5923 return true;
5924 }
5925
5926 \f
5927 #if ARCH_SIZE==64
5928 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5929 #endif
5930 #if ARCH_SIZE==32
5931 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5932 #endif
5933
5934 /* Fill in the address for a pointer generated in alinker section. */
5935
5936 bfd_vma
5937 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5938 bfd *output_bfd;
5939 bfd *input_bfd;
5940 struct bfd_link_info *info;
5941 elf_linker_section_t *lsect;
5942 struct elf_link_hash_entry *h;
5943 bfd_vma relocation;
5944 const Elf_Internal_Rela *rel;
5945 int relative_reloc;
5946 {
5947 elf_linker_section_pointers_t *linker_section_ptr;
5948
5949 BFD_ASSERT (lsect != NULL);
5950
5951 if (h != NULL) /* global symbol */
5952 {
5953 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5954 rel->r_addend,
5955 lsect->which);
5956
5957 BFD_ASSERT (linker_section_ptr != NULL);
5958
5959 if (! elf_hash_table (info)->dynamic_sections_created
5960 || (info->shared
5961 && info->symbolic
5962 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5963 {
5964 /* This is actually a static link, or it is a
5965 -Bsymbolic link and the symbol is defined
5966 locally. We must initialize this entry in the
5967 global section.
5968
5969 When doing a dynamic link, we create a .rela.<xxx>
5970 relocation entry to initialize the value. This
5971 is done in the finish_dynamic_symbol routine. */
5972 if (!linker_section_ptr->written_address_p)
5973 {
5974 linker_section_ptr->written_address_p = true;
5975 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5976 lsect->section->contents + linker_section_ptr->offset);
5977 }
5978 }
5979 }
5980 else /* local symbol */
5981 {
5982 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5983 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5984 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5985 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5986 rel->r_addend,
5987 lsect->which);
5988
5989 BFD_ASSERT (linker_section_ptr != NULL);
5990
5991 /* Write out pointer if it hasn't been rewritten out before */
5992 if (!linker_section_ptr->written_address_p)
5993 {
5994 linker_section_ptr->written_address_p = true;
5995 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5996 lsect->section->contents + linker_section_ptr->offset);
5997
5998 if (info->shared)
5999 {
6000 asection *srel = lsect->rel_section;
6001 Elf_Internal_Rela outrel;
6002
6003 /* We need to generate a relative reloc for the dynamic linker. */
6004 if (!srel)
6005 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6006 lsect->rel_name);
6007
6008 BFD_ASSERT (srel != NULL);
6009
6010 outrel.r_offset = (lsect->section->output_section->vma
6011 + lsect->section->output_offset
6012 + linker_section_ptr->offset);
6013 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6014 outrel.r_addend = 0;
6015 elf_swap_reloca_out (output_bfd, &outrel,
6016 (((Elf_External_Rela *)
6017 lsect->section->contents)
6018 + elf_section_data (lsect->section)->rel_count));
6019 ++elf_section_data (lsect->section)->rel_count;
6020 }
6021 }
6022 }
6023
6024 relocation = (lsect->section->output_offset
6025 + linker_section_ptr->offset
6026 - lsect->hole_offset
6027 - lsect->sym_offset);
6028
6029 #ifdef DEBUG
6030 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6031 lsect->name, (long)relocation, (long)relocation);
6032 #endif
6033
6034 /* Subtract out the addend, because it will get added back in by the normal
6035 processing. */
6036 return relocation - linker_section_ptr->addend;
6037 }
6038 \f
6039 /* Garbage collect unused sections. */
6040
6041 static boolean elf_gc_mark
6042 PARAMS ((struct bfd_link_info *info, asection *sec,
6043 asection * (*gc_mark_hook)
6044 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6045 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6046
6047 static boolean elf_gc_sweep
6048 PARAMS ((struct bfd_link_info *info,
6049 boolean (*gc_sweep_hook)
6050 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6051 const Elf_Internal_Rela *relocs))));
6052
6053 static boolean elf_gc_sweep_symbol
6054 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6055
6056 static boolean elf_gc_allocate_got_offsets
6057 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6058
6059 static boolean elf_gc_propagate_vtable_entries_used
6060 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6061
6062 static boolean elf_gc_smash_unused_vtentry_relocs
6063 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6064
6065 /* The mark phase of garbage collection. For a given section, mark
6066 it, and all the sections which define symbols to which it refers. */
6067
6068 static boolean
6069 elf_gc_mark (info, sec, gc_mark_hook)
6070 struct bfd_link_info *info;
6071 asection *sec;
6072 asection * (*gc_mark_hook)
6073 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6074 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6075 {
6076 boolean ret = true;
6077
6078 sec->gc_mark = 1;
6079
6080 /* Look through the section relocs. */
6081
6082 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6083 {
6084 Elf_Internal_Rela *relstart, *rel, *relend;
6085 Elf_Internal_Shdr *symtab_hdr;
6086 struct elf_link_hash_entry **sym_hashes;
6087 size_t nlocsyms;
6088 size_t extsymoff;
6089 Elf_External_Sym *locsyms, *freesyms = NULL;
6090 bfd *input_bfd = sec->owner;
6091 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6092
6093 /* GCFIXME: how to arrange so that relocs and symbols are not
6094 reread continually? */
6095
6096 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6097 sym_hashes = elf_sym_hashes (input_bfd);
6098
6099 /* Read the local symbols. */
6100 if (elf_bad_symtab (input_bfd))
6101 {
6102 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6103 extsymoff = 0;
6104 }
6105 else
6106 extsymoff = nlocsyms = symtab_hdr->sh_info;
6107 if (symtab_hdr->contents)
6108 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6109 else if (nlocsyms == 0)
6110 locsyms = NULL;
6111 else
6112 {
6113 locsyms = freesyms =
6114 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6115 if (freesyms == NULL
6116 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6117 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6118 nlocsyms, input_bfd)
6119 != nlocsyms * sizeof (Elf_External_Sym)))
6120 {
6121 ret = false;
6122 goto out1;
6123 }
6124 }
6125
6126 /* Read the relocations. */
6127 relstart = (NAME(_bfd_elf,link_read_relocs)
6128 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6129 info->keep_memory));
6130 if (relstart == NULL)
6131 {
6132 ret = false;
6133 goto out1;
6134 }
6135 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6136
6137 for (rel = relstart; rel < relend; rel++)
6138 {
6139 unsigned long r_symndx;
6140 asection *rsec;
6141 struct elf_link_hash_entry *h;
6142 Elf_Internal_Sym s;
6143
6144 r_symndx = ELF_R_SYM (rel->r_info);
6145 if (r_symndx == 0)
6146 continue;
6147
6148 if (elf_bad_symtab (sec->owner))
6149 {
6150 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6151 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6152 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6153 else
6154 {
6155 h = sym_hashes[r_symndx - extsymoff];
6156 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6157 }
6158 }
6159 else if (r_symndx >= nlocsyms)
6160 {
6161 h = sym_hashes[r_symndx - extsymoff];
6162 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6163 }
6164 else
6165 {
6166 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6167 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6168 }
6169
6170 if (rsec && !rsec->gc_mark)
6171 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6172 {
6173 ret = false;
6174 goto out2;
6175 }
6176 }
6177
6178 out2:
6179 if (!info->keep_memory)
6180 free (relstart);
6181 out1:
6182 if (freesyms)
6183 free (freesyms);
6184 }
6185
6186 return ret;
6187 }
6188
6189 /* The sweep phase of garbage collection. Remove all garbage sections. */
6190
6191 static boolean
6192 elf_gc_sweep (info, gc_sweep_hook)
6193 struct bfd_link_info *info;
6194 boolean (*gc_sweep_hook)
6195 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6196 const Elf_Internal_Rela *relocs));
6197 {
6198 bfd *sub;
6199
6200 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6201 {
6202 asection *o;
6203
6204 for (o = sub->sections; o != NULL; o = o->next)
6205 {
6206 /* Keep special sections. Keep .debug sections. */
6207 if ((o->flags & SEC_LINKER_CREATED)
6208 || (o->flags & SEC_DEBUGGING))
6209 o->gc_mark = 1;
6210
6211 if (o->gc_mark)
6212 continue;
6213
6214 /* Skip sweeping sections already excluded. */
6215 if (o->flags & SEC_EXCLUDE)
6216 continue;
6217
6218 /* Since this is early in the link process, it is simple
6219 to remove a section from the output. */
6220 o->flags |= SEC_EXCLUDE;
6221
6222 /* But we also have to update some of the relocation
6223 info we collected before. */
6224 if (gc_sweep_hook
6225 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6226 {
6227 Elf_Internal_Rela *internal_relocs;
6228 boolean r;
6229
6230 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6231 (o->owner, o, NULL, NULL, info->keep_memory));
6232 if (internal_relocs == NULL)
6233 return false;
6234
6235 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6236
6237 if (!info->keep_memory)
6238 free (internal_relocs);
6239
6240 if (!r)
6241 return false;
6242 }
6243 }
6244 }
6245
6246 /* Remove the symbols that were in the swept sections from the dynamic
6247 symbol table. GCFIXME: Anyone know how to get them out of the
6248 static symbol table as well? */
6249 {
6250 int i = 0;
6251
6252 elf_link_hash_traverse (elf_hash_table (info),
6253 elf_gc_sweep_symbol,
6254 (PTR) &i);
6255
6256 elf_hash_table (info)->dynsymcount = i;
6257 }
6258
6259 return true;
6260 }
6261
6262 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6263
6264 static boolean
6265 elf_gc_sweep_symbol (h, idxptr)
6266 struct elf_link_hash_entry *h;
6267 PTR idxptr;
6268 {
6269 int *idx = (int *) idxptr;
6270
6271 if (h->dynindx != -1
6272 && ((h->root.type != bfd_link_hash_defined
6273 && h->root.type != bfd_link_hash_defweak)
6274 || h->root.u.def.section->gc_mark))
6275 h->dynindx = (*idx)++;
6276
6277 return true;
6278 }
6279
6280 /* Propogate collected vtable information. This is called through
6281 elf_link_hash_traverse. */
6282
6283 static boolean
6284 elf_gc_propagate_vtable_entries_used (h, okp)
6285 struct elf_link_hash_entry *h;
6286 PTR okp;
6287 {
6288 /* Those that are not vtables. */
6289 if (h->vtable_parent == NULL)
6290 return true;
6291
6292 /* Those vtables that do not have parents, we cannot merge. */
6293 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6294 return true;
6295
6296 /* If we've already been done, exit. */
6297 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6298 return true;
6299
6300 /* Make sure the parent's table is up to date. */
6301 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6302
6303 if (h->vtable_entries_used == NULL)
6304 {
6305 /* None of this table's entries were referenced. Re-use the
6306 parent's table. */
6307 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6308 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6309 }
6310 else
6311 {
6312 size_t n;
6313 boolean *cu, *pu;
6314
6315 /* Or the parent's entries into ours. */
6316 cu = h->vtable_entries_used;
6317 cu[-1] = true;
6318 pu = h->vtable_parent->vtable_entries_used;
6319 if (pu != NULL)
6320 {
6321 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6322 while (--n != 0)
6323 {
6324 if (*pu) *cu = true;
6325 pu++, cu++;
6326 }
6327 }
6328 }
6329
6330 return true;
6331 }
6332
6333 static boolean
6334 elf_gc_smash_unused_vtentry_relocs (h, okp)
6335 struct elf_link_hash_entry *h;
6336 PTR okp;
6337 {
6338 asection *sec;
6339 bfd_vma hstart, hend;
6340 Elf_Internal_Rela *relstart, *relend, *rel;
6341 struct elf_backend_data *bed;
6342
6343 /* Take care of both those symbols that do not describe vtables as
6344 well as those that are not loaded. */
6345 if (h->vtable_parent == NULL)
6346 return true;
6347
6348 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6349 || h->root.type == bfd_link_hash_defweak);
6350
6351 sec = h->root.u.def.section;
6352 hstart = h->root.u.def.value;
6353 hend = hstart + h->size;
6354
6355 relstart = (NAME(_bfd_elf,link_read_relocs)
6356 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6357 if (!relstart)
6358 return *(boolean *)okp = false;
6359 bed = get_elf_backend_data (sec->owner);
6360 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6361
6362 for (rel = relstart; rel < relend; ++rel)
6363 if (rel->r_offset >= hstart && rel->r_offset < hend)
6364 {
6365 /* If the entry is in use, do nothing. */
6366 if (h->vtable_entries_used
6367 && (rel->r_offset - hstart) < h->vtable_entries_size)
6368 {
6369 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6370 if (h->vtable_entries_used[entry])
6371 continue;
6372 }
6373 /* Otherwise, kill it. */
6374 rel->r_offset = rel->r_info = rel->r_addend = 0;
6375 }
6376
6377 return true;
6378 }
6379
6380 /* Do mark and sweep of unused sections. */
6381
6382 boolean
6383 elf_gc_sections (abfd, info)
6384 bfd *abfd;
6385 struct bfd_link_info *info;
6386 {
6387 boolean ok = true;
6388 bfd *sub;
6389 asection * (*gc_mark_hook)
6390 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6391 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6392
6393 if (!get_elf_backend_data (abfd)->can_gc_sections
6394 || info->relocateable
6395 || elf_hash_table (info)->dynamic_sections_created)
6396 return true;
6397
6398 /* Apply transitive closure to the vtable entry usage info. */
6399 elf_link_hash_traverse (elf_hash_table (info),
6400 elf_gc_propagate_vtable_entries_used,
6401 (PTR) &ok);
6402 if (!ok)
6403 return false;
6404
6405 /* Kill the vtable relocations that were not used. */
6406 elf_link_hash_traverse (elf_hash_table (info),
6407 elf_gc_smash_unused_vtentry_relocs,
6408 (PTR) &ok);
6409 if (!ok)
6410 return false;
6411
6412 /* Grovel through relocs to find out who stays ... */
6413
6414 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6415 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6416 {
6417 asection *o;
6418 for (o = sub->sections; o != NULL; o = o->next)
6419 {
6420 if (o->flags & SEC_KEEP)
6421 if (!elf_gc_mark (info, o, gc_mark_hook))
6422 return false;
6423 }
6424 }
6425
6426 /* ... and mark SEC_EXCLUDE for those that go. */
6427 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6428 return false;
6429
6430 return true;
6431 }
6432 \f
6433 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6434
6435 boolean
6436 elf_gc_record_vtinherit (abfd, sec, h, offset)
6437 bfd *abfd;
6438 asection *sec;
6439 struct elf_link_hash_entry *h;
6440 bfd_vma offset;
6441 {
6442 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6443 struct elf_link_hash_entry **search, *child;
6444 bfd_size_type extsymcount;
6445
6446 /* The sh_info field of the symtab header tells us where the
6447 external symbols start. We don't care about the local symbols at
6448 this point. */
6449 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6450 if (!elf_bad_symtab (abfd))
6451 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6452
6453 sym_hashes = elf_sym_hashes (abfd);
6454 sym_hashes_end = sym_hashes + extsymcount;
6455
6456 /* Hunt down the child symbol, which is in this section at the same
6457 offset as the relocation. */
6458 for (search = sym_hashes; search != sym_hashes_end; ++search)
6459 {
6460 if ((child = *search) != NULL
6461 && (child->root.type == bfd_link_hash_defined
6462 || child->root.type == bfd_link_hash_defweak)
6463 && child->root.u.def.section == sec
6464 && child->root.u.def.value == offset)
6465 goto win;
6466 }
6467
6468 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6469 bfd_get_filename (abfd), sec->name,
6470 (unsigned long)offset);
6471 bfd_set_error (bfd_error_invalid_operation);
6472 return false;
6473
6474 win:
6475 if (!h)
6476 {
6477 /* This *should* only be the absolute section. It could potentially
6478 be that someone has defined a non-global vtable though, which
6479 would be bad. It isn't worth paging in the local symbols to be
6480 sure though; that case should simply be handled by the assembler. */
6481
6482 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6483 }
6484 else
6485 child->vtable_parent = h;
6486
6487 return true;
6488 }
6489
6490 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6491
6492 boolean
6493 elf_gc_record_vtentry (abfd, sec, h, addend)
6494 bfd *abfd ATTRIBUTE_UNUSED;
6495 asection *sec ATTRIBUTE_UNUSED;
6496 struct elf_link_hash_entry *h;
6497 bfd_vma addend;
6498 {
6499 if (addend >= h->vtable_entries_size)
6500 {
6501 size_t size, bytes;
6502 boolean *ptr = h->vtable_entries_used;
6503
6504 /* While the symbol is undefined, we have to be prepared to handle
6505 a zero size. */
6506 if (h->root.type == bfd_link_hash_undefined)
6507 size = addend;
6508 else
6509 {
6510 size = h->size;
6511 if (size < addend)
6512 {
6513 /* Oops! We've got a reference past the defined end of
6514 the table. This is probably a bug -- shall we warn? */
6515 size = addend;
6516 }
6517 }
6518
6519 /* Allocate one extra entry for use as a "done" flag for the
6520 consolidation pass. */
6521 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6522
6523 if (ptr)
6524 {
6525 ptr = bfd_realloc (ptr - 1, bytes);
6526
6527 if (ptr != NULL)
6528 {
6529 size_t oldbytes;
6530
6531 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6532 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6533 }
6534 }
6535 else
6536 ptr = bfd_zmalloc (bytes);
6537
6538 if (ptr == NULL)
6539 return false;
6540
6541 /* And arrange for that done flag to be at index -1. */
6542 h->vtable_entries_used = ptr + 1;
6543 h->vtable_entries_size = size;
6544 }
6545
6546 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6547
6548 return true;
6549 }
6550
6551 /* And an accompanying bit to work out final got entry offsets once
6552 we're done. Should be called from final_link. */
6553
6554 boolean
6555 elf_gc_common_finalize_got_offsets (abfd, info)
6556 bfd *abfd;
6557 struct bfd_link_info *info;
6558 {
6559 bfd *i;
6560 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6561 bfd_vma gotoff;
6562
6563 /* The GOT offset is relative to the .got section, but the GOT header is
6564 put into the .got.plt section, if the backend uses it. */
6565 if (bed->want_got_plt)
6566 gotoff = 0;
6567 else
6568 gotoff = bed->got_header_size;
6569
6570 /* Do the local .got entries first. */
6571 for (i = info->input_bfds; i; i = i->link_next)
6572 {
6573 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6574 bfd_size_type j, locsymcount;
6575 Elf_Internal_Shdr *symtab_hdr;
6576
6577 if (!local_got)
6578 continue;
6579
6580 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6581 if (elf_bad_symtab (i))
6582 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6583 else
6584 locsymcount = symtab_hdr->sh_info;
6585
6586 for (j = 0; j < locsymcount; ++j)
6587 {
6588 if (local_got[j] > 0)
6589 {
6590 local_got[j] = gotoff;
6591 gotoff += ARCH_SIZE / 8;
6592 }
6593 else
6594 local_got[j] = (bfd_vma) -1;
6595 }
6596 }
6597
6598 /* Then the global .got and .plt entries. */
6599 elf_link_hash_traverse (elf_hash_table (info),
6600 elf_gc_allocate_got_offsets,
6601 (PTR) &gotoff);
6602 return true;
6603 }
6604
6605 /* We need a special top-level link routine to convert got reference counts
6606 to real got offsets. */
6607
6608 static boolean
6609 elf_gc_allocate_got_offsets (h, offarg)
6610 struct elf_link_hash_entry *h;
6611 PTR offarg;
6612 {
6613 bfd_vma *off = (bfd_vma *) offarg;
6614
6615 if (h->got.refcount > 0)
6616 {
6617 h->got.offset = off[0];
6618 off[0] += ARCH_SIZE / 8;
6619 }
6620 else
6621 h->got.offset = (bfd_vma) -1;
6622
6623 return true;
6624 }
6625
6626 /* Many folk need no more in the way of final link than this, once
6627 got entry reference counting is enabled. */
6628
6629 boolean
6630 elf_gc_common_final_link (abfd, info)
6631 bfd *abfd;
6632 struct bfd_link_info *info;
6633 {
6634 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6635 return false;
6636
6637 /* Invoke the regular ELF backend linker to do all the work. */
6638 return elf_bfd_final_link (abfd, info);
6639 }
6640
6641 /* This function will be called though elf_link_hash_traverse to store
6642 all hash value of the exported symbols in an array. */
6643
6644 static boolean
6645 elf_collect_hash_codes (h, data)
6646 struct elf_link_hash_entry *h;
6647 PTR data;
6648 {
6649 unsigned long **valuep = (unsigned long **) data;
6650 const char *name;
6651 char *p;
6652 unsigned long ha;
6653 char *alc = NULL;
6654
6655 /* Ignore indirect symbols. These are added by the versioning code. */
6656 if (h->dynindx == -1)
6657 return true;
6658
6659 name = h->root.root.string;
6660 p = strchr (name, ELF_VER_CHR);
6661 if (p != NULL)
6662 {
6663 alc = bfd_malloc (p - name + 1);
6664 memcpy (alc, name, p - name);
6665 alc[p - name] = '\0';
6666 name = alc;
6667 }
6668
6669 /* Compute the hash value. */
6670 ha = bfd_elf_hash (name);
6671
6672 /* Store the found hash value in the array given as the argument. */
6673 *(*valuep)++ = ha;
6674
6675 /* And store it in the struct so that we can put it in the hash table
6676 later. */
6677 h->elf_hash_value = ha;
6678
6679 if (alc != NULL)
6680 free (alc);
6681
6682 return true;
6683 }
This page took 0.208212 seconds and 5 git commands to generate.