When examining weak symbols, follow indirect links.
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
83
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
86
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91 {
92 switch (bfd_get_format (abfd))
93 {
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
101 }
102 }
103 \f
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
109 {
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
114
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
118
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
122
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
127
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
132
133 return _bfd_is_global_symbol_definition (abfd, sym);
134
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
139
140 return true;
141 }
142
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
150 {
151 Elf_Internal_Shdr * hdr;
152 bfd_size_type symcount;
153 bfd_size_type extsymcount;
154 bfd_size_type extsymoff;
155 Elf_Internal_Sym *isymbuf;
156 Elf_Internal_Sym *isym;
157 Elf_Internal_Sym *isymend;
158 boolean result;
159
160 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
161 if (abfd == (bfd *) NULL)
162 return false;
163
164 if (! bfd_check_format (abfd, bfd_object))
165 return false;
166
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd->archive_pass)
172 return false;
173
174 /* Select the appropriate symbol table. */
175 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
176 hdr = &elf_tdata (abfd)->symtab_hdr;
177 else
178 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
179
180 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
181
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd))
185 {
186 extsymcount = symcount;
187 extsymoff = 0;
188 }
189 else
190 {
191 extsymcount = symcount - hdr->sh_info;
192 extsymoff = hdr->sh_info;
193 }
194
195 if (extsymcount == 0)
196 return false;
197
198 /* Read in the symbol table. */
199 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
200 NULL, NULL, NULL);
201 if (isymbuf == NULL)
202 return false;
203
204 /* Scan the symbol table looking for SYMDEF. */
205 result = false;
206 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
207 {
208 const char *name;
209
210 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
211 isym->st_name);
212 if (name == (const char *) NULL)
213 break;
214
215 if (strcmp (name, symdef->name) == 0)
216 {
217 result = is_global_data_symbol_definition (abfd, isym);
218 break;
219 }
220 }
221
222 free (isymbuf);
223
224 return result;
225 }
226 \f
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
242
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
247 object file.
248
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
251
252 static boolean
253 elf_link_add_archive_symbols (abfd, info)
254 bfd *abfd;
255 struct bfd_link_info *info;
256 {
257 symindex c;
258 boolean *defined = NULL;
259 boolean *included = NULL;
260 carsym *symdefs;
261 boolean loop;
262 bfd_size_type amt;
263
264 if (! bfd_has_map (abfd))
265 {
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
268 return true;
269 bfd_set_error (bfd_error_no_armap);
270 return false;
271 }
272
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c = bfd_ardata (abfd)->symdef_count;
277 if (c == 0)
278 return true;
279 amt = c;
280 amt *= sizeof (boolean);
281 defined = (boolean *) bfd_zmalloc (amt);
282 included = (boolean *) bfd_zmalloc (amt);
283 if (defined == (boolean *) NULL || included == (boolean *) NULL)
284 goto error_return;
285
286 symdefs = bfd_ardata (abfd)->symdefs;
287
288 do
289 {
290 file_ptr last;
291 symindex i;
292 carsym *symdef;
293 carsym *symdefend;
294
295 loop = false;
296 last = -1;
297
298 symdef = symdefs;
299 symdefend = symdef + c;
300 for (i = 0; symdef < symdefend; symdef++, i++)
301 {
302 struct elf_link_hash_entry *h;
303 bfd *element;
304 struct bfd_link_hash_entry *undefs_tail;
305 symindex mark;
306
307 if (defined[i] || included[i])
308 continue;
309 if (symdef->file_offset == last)
310 {
311 included[i] = true;
312 continue;
313 }
314
315 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
316 false, false, false);
317
318 if (h == NULL)
319 {
320 char *p, *copy;
321 size_t len, first;
322
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
328
329 p = strchr (symdef->name, ELF_VER_CHR);
330 if (p == NULL || p[1] != ELF_VER_CHR)
331 continue;
332
333 /* First check with only one `@'. */
334 len = strlen (symdef->name);
335 copy = bfd_alloc (abfd, (bfd_size_type) len);
336 if (copy == NULL)
337 goto error_return;
338 first = p - symdef->name + 1;
339 memcpy (copy, symdef->name, first);
340 memcpy (copy + first, symdef->name + first + 1, len - first);
341
342 h = elf_link_hash_lookup (elf_hash_table (info), copy,
343 false, false, false);
344
345 if (h == NULL)
346 {
347 /* We also need to check references to the symbol
348 without the version. */
349
350 copy[first - 1] = '\0';
351 h = elf_link_hash_lookup (elf_hash_table (info),
352 copy, false, false, false);
353 }
354
355 bfd_release (abfd, copy);
356 }
357
358 if (h == NULL)
359 continue;
360
361 if (h->root.type == bfd_link_hash_common)
362 {
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
367 declaration of it.
368
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
374 this is. */
375 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
376 continue;
377 }
378 else if (h->root.type != bfd_link_hash_undefined)
379 {
380 if (h->root.type != bfd_link_hash_undefweak)
381 defined[i] = true;
382 continue;
383 }
384
385 /* We need to include this archive member. */
386 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
387 if (element == (bfd *) NULL)
388 goto error_return;
389
390 if (! bfd_check_format (element, bfd_object))
391 goto error_return;
392
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element->archive_pass != 0)
397 {
398 bfd_set_error (bfd_error_bad_value);
399 goto error_return;
400 }
401 element->archive_pass = 1;
402
403 undefs_tail = info->hash->undefs_tail;
404
405 if (! (*info->callbacks->add_archive_element) (info, element,
406 symdef->name))
407 goto error_return;
408 if (! elf_link_add_object_symbols (element, info))
409 goto error_return;
410
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail != info->hash->undefs_tail)
419 loop = true;
420
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
423 mark = i;
424 do
425 {
426 included[mark] = true;
427 if (mark == 0)
428 break;
429 --mark;
430 }
431 while (symdefs[mark].file_offset == symdef->file_offset);
432
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last = symdef->file_offset;
436 }
437 }
438 while (loop);
439
440 free (defined);
441 free (included);
442
443 return true;
444
445 error_return:
446 if (defined != (boolean *) NULL)
447 free (defined);
448 if (included != (boolean *) NULL)
449 free (included);
450 return false;
451 }
452
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
463 a shared object. */
464
465 static boolean
466 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
467 override, type_change_ok, size_change_ok, dt_needed)
468 bfd *abfd;
469 struct bfd_link_info *info;
470 const char *name;
471 Elf_Internal_Sym *sym;
472 asection **psec;
473 bfd_vma *pvalue;
474 struct elf_link_hash_entry **sym_hash;
475 boolean *override;
476 boolean *type_change_ok;
477 boolean *size_change_ok;
478 boolean dt_needed;
479 {
480 asection *sec;
481 struct elf_link_hash_entry *h;
482 int bind;
483 bfd *oldbfd;
484 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
485
486 *override = false;
487
488 sec = *psec;
489 bind = ELF_ST_BIND (sym->st_info);
490
491 if (! bfd_is_und_section (sec))
492 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
493 else
494 h = ((struct elf_link_hash_entry *)
495 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
496 if (h == NULL)
497 return false;
498 *sym_hash = h;
499
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info->hash->creator != abfd->xvec)
503 return true;
504
505 /* For merging, we only care about real symbols. */
506
507 while (h->root.type == bfd_link_hash_indirect
508 || h->root.type == bfd_link_hash_warning)
509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
510
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
514
515 if (h->root.type == bfd_link_hash_new)
516 {
517 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
518 return true;
519 }
520
521 /* OLDBFD is a BFD associated with the existing symbol. */
522
523 switch (h->root.type)
524 {
525 default:
526 oldbfd = NULL;
527 break;
528
529 case bfd_link_hash_undefined:
530 case bfd_link_hash_undefweak:
531 oldbfd = h->root.u.undef.abfd;
532 break;
533
534 case bfd_link_hash_defined:
535 case bfd_link_hash_defweak:
536 oldbfd = h->root.u.def.section->owner;
537 break;
538
539 case bfd_link_hash_common:
540 oldbfd = h->root.u.c.p->section->owner;
541 break;
542 }
543
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
550 if (abfd == oldbfd
551 && ((abfd->flags & DYNAMIC) == 0
552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
553 return true;
554
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
557
558 if ((abfd->flags & DYNAMIC) != 0)
559 newdyn = true;
560 else
561 newdyn = false;
562
563 if (oldbfd != NULL)
564 olddyn = (oldbfd->flags & DYNAMIC) != 0;
565 else
566 {
567 asection *hsec;
568
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h->root.type)
572 {
573 default:
574 hsec = NULL;
575 break;
576
577 case bfd_link_hash_defined:
578 case bfd_link_hash_defweak:
579 hsec = h->root.u.def.section;
580 break;
581
582 case bfd_link_hash_common:
583 hsec = h->root.u.c.p->section;
584 break;
585 }
586
587 if (hsec == NULL)
588 olddyn = false;
589 else
590 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
591 }
592
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
595
596 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
597 newdef = false;
598 else
599 newdef = true;
600
601 if (h->root.type == bfd_link_hash_undefined
602 || h->root.type == bfd_link_hash_undefweak
603 || h->root.type == bfd_link_hash_common)
604 olddef = false;
605 else
606 olddef = true;
607
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
619 libraries.
620
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
623
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
629 harmless. */
630
631 if (newdyn
632 && newdef
633 && (sec->flags & SEC_ALLOC) != 0
634 && (sec->flags & SEC_LOAD) == 0
635 && sym->st_size > 0
636 && bind != STB_WEAK
637 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
638 newdyncommon = true;
639 else
640 newdyncommon = false;
641
642 if (olddyn
643 && olddef
644 && h->root.type == bfd_link_hash_defined
645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
646 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
647 && (h->root.u.def.section->flags & SEC_LOAD) == 0
648 && h->size > 0
649 && h->type != STT_FUNC)
650 olddyncommon = true;
651 else
652 olddyncommon = false;
653
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
658
659 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
660 || h->root.type == bfd_link_hash_undefweak
661 || bind == STB_WEAK)
662 *type_change_ok = true;
663
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
666
667 if (*type_change_ok
668 || h->root.type == bfd_link_hash_undefined)
669 *size_change_ok = true;
670
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
673 two. */
674
675 if (olddyncommon
676 && newdyncommon
677 && sym->st_size != h->size)
678 {
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
684
685 if (! ((*info->callbacks->multiple_common)
686 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
687 h->size, abfd, bfd_link_hash_common, sym->st_size)))
688 return false;
689
690 if (sym->st_size > h->size)
691 h->size = sym->st_size;
692
693 *size_change_ok = true;
694 }
695
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
701 bfd_und_section_ptr.
702
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
709
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
714
715 if (newdyn
716 && newdef
717 && (olddef
718 || (h->root.type == bfd_link_hash_common
719 && (bind == STB_WEAK
720 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
721 && (h->root.type != bfd_link_hash_defweak
722 || dt_needed
723 || bind == STB_WEAK))
724 {
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
728
729 *psec = sec = bfd_und_section_ptr;
730 *size_change_ok = true;
731
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
737
738 if (h->root.type == bfd_link_hash_common)
739 *type_change_ok = true;
740 }
741
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
746 the right thing. */
747
748 if (newdyncommon
749 && h->root.type == bfd_link_hash_common)
750 {
751 *override = true;
752 newdef = false;
753 newdyncommon = false;
754 *pvalue = sym->st_size;
755 *psec = sec = bfd_com_section_ptr;
756 *size_change_ok = true;
757 }
758
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
764
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
768
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
771
772 if (! newdyn
773 && (newdef
774 || (bfd_is_com_section (sec)
775 && (h->root.type == bfd_link_hash_defweak
776 || h->type == STT_FUNC)))
777 && olddyn
778 && olddef
779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (bind != STB_WEAK
781 || h->root.type == bfd_link_hash_defweak))
782 {
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
785 new definition. */
786
787 h->root.type = bfd_link_hash_undefined;
788 h->root.u.undef.abfd = h->root.u.def.section->owner;
789 *size_change_ok = true;
790
791 olddef = false;
792 olddyncommon = false;
793
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
796
797 if (bfd_is_com_section (sec))
798 *type_change_ok = true;
799
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
803
804 h->verinfo.vertree = NULL;
805
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
812 *sym_hash = h;
813 }
814
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
820
821 if (! newdyn
822 && bfd_is_com_section (sec)
823 && olddyncommon)
824 {
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
827 or the alignment. */
828 if (! ((*info->callbacks->multiple_common)
829 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
830 h->size, abfd, bfd_link_hash_common, sym->st_size)))
831 return false;
832
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
835
836 if (h->size > *pvalue)
837 *pvalue = h->size;
838
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
842
843 olddef = false;
844 olddyncommon = false;
845
846 h->root.type = bfd_link_hash_undefined;
847 h->root.u.undef.abfd = h->root.u.def.section->owner;
848
849 *size_change_ok = true;
850 *type_change_ok = true;
851
852 h->verinfo.vertree = NULL;
853 }
854
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
860 if (olddef
861 && ! dt_needed
862 && h->root.type == bfd_link_hash_defweak
863 && newdef
864 && newdyn
865 && bind != STB_WEAK)
866 {
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
869 definition. */
870 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
871 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
872 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
874 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC);
876
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
881 *sym_hash = h;
882 }
883
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
888 as a definition. */
889 if (olddef
890 && olddyn
891 && h->root.type != bfd_link_hash_defweak
892 && newdef
893 && ! newdyn
894 && bind == STB_WEAK)
895 *override = true;
896
897 return true;
898 }
899
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
905
906 static boolean
907 elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
908 dynsym, override, dt_needed)
909 bfd *abfd;
910 struct bfd_link_info *info;
911 struct elf_link_hash_entry *h;
912 const char *name;
913 Elf_Internal_Sym *sym;
914 asection **psec;
915 bfd_vma *value;
916 boolean *dynsym;
917 boolean override;
918 boolean dt_needed;
919 {
920 boolean type_change_ok;
921 boolean size_change_ok;
922 char *shortname;
923 struct elf_link_hash_entry *hi;
924 struct elf_backend_data *bed;
925 boolean collect;
926 boolean dynamic;
927 char *p;
928 size_t len, shortlen;
929 asection *sec;
930
931 /* If this symbol has a version, and it is the default version, we
932 create an indirect symbol from the default name to the fully
933 decorated name. This will cause external references which do not
934 specify a version to be bound to this version of the symbol. */
935 p = strchr (name, ELF_VER_CHR);
936 if (p == NULL || p[1] != ELF_VER_CHR)
937 return true;
938
939 if (override)
940 {
941 /* We are overridden by an old defition. We need to check if we
942 need to create the indirect symbol from the default name. */
943 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
944 false, false);
945 BFD_ASSERT (hi != NULL);
946 if (hi == h)
947 return true;
948 while (hi->root.type == bfd_link_hash_indirect
949 || hi->root.type == bfd_link_hash_warning)
950 {
951 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
952 if (hi == h)
953 return true;
954 }
955 }
956
957 bed = get_elf_backend_data (abfd);
958 collect = bed->collect;
959 dynamic = (abfd->flags & DYNAMIC) != 0;
960
961 shortlen = p - name;
962 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
963 if (shortname == NULL)
964 return false;
965 memcpy (shortname, name, shortlen);
966 shortname[shortlen] = '\0';
967
968 /* We are going to create a new symbol. Merge it with any existing
969 symbol with this name. For the purposes of the merge, act as
970 though we were defining the symbol we just defined, although we
971 actually going to define an indirect symbol. */
972 type_change_ok = false;
973 size_change_ok = false;
974 sec = *psec;
975 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
976 &hi, &override, &type_change_ok,
977 &size_change_ok, dt_needed))
978 return false;
979
980 if (! override)
981 {
982 if (! (_bfd_generic_link_add_one_symbol
983 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
984 (bfd_vma) 0, name, false, collect,
985 (struct bfd_link_hash_entry **) &hi)))
986 return false;
987 }
988 else
989 {
990 /* In this case the symbol named SHORTNAME is overriding the
991 indirect symbol we want to add. We were planning on making
992 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
993 is the name without a version. NAME is the fully versioned
994 name, and it is the default version.
995
996 Overriding means that we already saw a definition for the
997 symbol SHORTNAME in a regular object, and it is overriding
998 the symbol defined in the dynamic object.
999
1000 When this happens, we actually want to change NAME, the
1001 symbol we just added, to refer to SHORTNAME. This will cause
1002 references to NAME in the shared object to become references
1003 to SHORTNAME in the regular object. This is what we expect
1004 when we override a function in a shared object: that the
1005 references in the shared object will be mapped to the
1006 definition in the regular object. */
1007
1008 while (hi->root.type == bfd_link_hash_indirect
1009 || hi->root.type == bfd_link_hash_warning)
1010 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1011
1012 h->root.type = bfd_link_hash_indirect;
1013 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1014 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1015 {
1016 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1017 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1018 if (hi->elf_link_hash_flags
1019 & (ELF_LINK_HASH_REF_REGULAR
1020 | ELF_LINK_HASH_DEF_REGULAR))
1021 {
1022 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1023 return false;
1024 }
1025 }
1026
1027 /* Now set HI to H, so that the following code will set the
1028 other fields correctly. */
1029 hi = h;
1030 }
1031
1032 /* If there is a duplicate definition somewhere, then HI may not
1033 point to an indirect symbol. We will have reported an error to
1034 the user in that case. */
1035
1036 if (hi->root.type == bfd_link_hash_indirect)
1037 {
1038 struct elf_link_hash_entry *ht;
1039
1040 /* If the symbol became indirect, then we assume that we have
1041 not seen a definition before. */
1042 BFD_ASSERT ((hi->elf_link_hash_flags
1043 & (ELF_LINK_HASH_DEF_DYNAMIC
1044 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1045
1046 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1047 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1048
1049 /* See if the new flags lead us to realize that the symbol must
1050 be dynamic. */
1051 if (! *dynsym)
1052 {
1053 if (! dynamic)
1054 {
1055 if (info->shared
1056 || ((hi->elf_link_hash_flags
1057 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1058 *dynsym = true;
1059 }
1060 else
1061 {
1062 if ((hi->elf_link_hash_flags
1063 & ELF_LINK_HASH_REF_REGULAR) != 0)
1064 *dynsym = true;
1065 }
1066 }
1067 }
1068
1069 /* We also need to define an indirection from the nondefault version
1070 of the symbol. */
1071
1072 len = strlen (name);
1073 shortname = bfd_hash_allocate (&info->hash->table, len);
1074 if (shortname == NULL)
1075 return false;
1076 memcpy (shortname, name, shortlen);
1077 memcpy (shortname + shortlen, p + 1, len - shortlen);
1078
1079 /* Once again, merge with any existing symbol. */
1080 type_change_ok = false;
1081 size_change_ok = false;
1082 sec = *psec;
1083 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1084 &hi, &override, &type_change_ok,
1085 &size_change_ok, dt_needed))
1086 return false;
1087
1088 if (override)
1089 {
1090 /* Here SHORTNAME is a versioned name, so we don't expect to see
1091 the type of override we do in the case above unless it is
1092 overridden by a versioned definiton. */
1093 if (hi->root.type != bfd_link_hash_defined
1094 && hi->root.type != bfd_link_hash_defweak)
1095 (*_bfd_error_handler)
1096 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1097 bfd_archive_filename (abfd), shortname);
1098 }
1099 else
1100 {
1101 if (! (_bfd_generic_link_add_one_symbol
1102 (info, abfd, shortname, BSF_INDIRECT,
1103 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1104 collect, (struct bfd_link_hash_entry **) &hi)))
1105 return false;
1106
1107 /* If there is a duplicate definition somewhere, then HI may not
1108 point to an indirect symbol. We will have reported an error
1109 to the user in that case. */
1110
1111 if (hi->root.type == bfd_link_hash_indirect)
1112 {
1113 /* If the symbol became indirect, then we assume that we have
1114 not seen a definition before. */
1115 BFD_ASSERT ((hi->elf_link_hash_flags
1116 & (ELF_LINK_HASH_DEF_DYNAMIC
1117 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1118
1119 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1120
1121 /* See if the new flags lead us to realize that the symbol
1122 must be dynamic. */
1123 if (! *dynsym)
1124 {
1125 if (! dynamic)
1126 {
1127 if (info->shared
1128 || ((hi->elf_link_hash_flags
1129 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1130 *dynsym = true;
1131 }
1132 else
1133 {
1134 if ((hi->elf_link_hash_flags
1135 & ELF_LINK_HASH_REF_REGULAR) != 0)
1136 *dynsym = true;
1137 }
1138 }
1139 }
1140 }
1141
1142 return true;
1143 }
1144
1145 /* Add symbols from an ELF object file to the linker hash table. */
1146
1147 static boolean
1148 elf_link_add_object_symbols (abfd, info)
1149 bfd *abfd;
1150 struct bfd_link_info *info;
1151 {
1152 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1153 const Elf_Internal_Sym *,
1154 const char **, flagword *,
1155 asection **, bfd_vma *));
1156 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1157 asection *, const Elf_Internal_Rela *));
1158 boolean collect;
1159 Elf_Internal_Shdr *hdr;
1160 bfd_size_type symcount;
1161 bfd_size_type extsymcount;
1162 bfd_size_type extsymoff;
1163 struct elf_link_hash_entry **sym_hash;
1164 boolean dynamic;
1165 Elf_External_Versym *extversym = NULL;
1166 Elf_External_Versym *ever;
1167 struct elf_link_hash_entry *weaks;
1168 Elf_Internal_Sym *isymbuf = NULL;
1169 Elf_Internal_Sym *isym;
1170 Elf_Internal_Sym *isymend;
1171 struct elf_backend_data *bed;
1172 boolean dt_needed;
1173 struct elf_link_hash_table * hash_table;
1174 bfd_size_type amt;
1175
1176 hash_table = elf_hash_table (info);
1177
1178 bed = get_elf_backend_data (abfd);
1179 add_symbol_hook = bed->elf_add_symbol_hook;
1180 collect = bed->collect;
1181
1182 if ((abfd->flags & DYNAMIC) == 0)
1183 dynamic = false;
1184 else
1185 {
1186 dynamic = true;
1187
1188 /* You can't use -r against a dynamic object. Also, there's no
1189 hope of using a dynamic object which does not exactly match
1190 the format of the output file. */
1191 if (info->relocateable || info->hash->creator != abfd->xvec)
1192 {
1193 bfd_set_error (bfd_error_invalid_operation);
1194 goto error_return;
1195 }
1196 }
1197
1198 /* As a GNU extension, any input sections which are named
1199 .gnu.warning.SYMBOL are treated as warning symbols for the given
1200 symbol. This differs from .gnu.warning sections, which generate
1201 warnings when they are included in an output file. */
1202 if (! info->shared)
1203 {
1204 asection *s;
1205
1206 for (s = abfd->sections; s != NULL; s = s->next)
1207 {
1208 const char *name;
1209
1210 name = bfd_get_section_name (abfd, s);
1211 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1212 {
1213 char *msg;
1214 bfd_size_type sz;
1215
1216 name += sizeof ".gnu.warning." - 1;
1217
1218 /* If this is a shared object, then look up the symbol
1219 in the hash table. If it is there, and it is already
1220 been defined, then we will not be using the entry
1221 from this shared object, so we don't need to warn.
1222 FIXME: If we see the definition in a regular object
1223 later on, we will warn, but we shouldn't. The only
1224 fix is to keep track of what warnings we are supposed
1225 to emit, and then handle them all at the end of the
1226 link. */
1227 if (dynamic && abfd->xvec == info->hash->creator)
1228 {
1229 struct elf_link_hash_entry *h;
1230
1231 h = elf_link_hash_lookup (hash_table, name,
1232 false, false, true);
1233
1234 /* FIXME: What about bfd_link_hash_common? */
1235 if (h != NULL
1236 && (h->root.type == bfd_link_hash_defined
1237 || h->root.type == bfd_link_hash_defweak))
1238 {
1239 /* We don't want to issue this warning. Clobber
1240 the section size so that the warning does not
1241 get copied into the output file. */
1242 s->_raw_size = 0;
1243 continue;
1244 }
1245 }
1246
1247 sz = bfd_section_size (abfd, s);
1248 msg = (char *) bfd_alloc (abfd, sz + 1);
1249 if (msg == NULL)
1250 goto error_return;
1251
1252 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1253 goto error_return;
1254
1255 msg[sz] = '\0';
1256
1257 if (! (_bfd_generic_link_add_one_symbol
1258 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1259 false, collect, (struct bfd_link_hash_entry **) NULL)))
1260 goto error_return;
1261
1262 if (! info->relocateable)
1263 {
1264 /* Clobber the section size so that the warning does
1265 not get copied into the output file. */
1266 s->_raw_size = 0;
1267 }
1268 }
1269 }
1270 }
1271
1272 dt_needed = false;
1273 if (! dynamic)
1274 {
1275 /* If we are creating a shared library, create all the dynamic
1276 sections immediately. We need to attach them to something,
1277 so we attach them to this BFD, provided it is the right
1278 format. FIXME: If there are no input BFD's of the same
1279 format as the output, we can't make a shared library. */
1280 if (info->shared
1281 && is_elf_hash_table (info)
1282 && ! hash_table->dynamic_sections_created
1283 && abfd->xvec == info->hash->creator)
1284 {
1285 if (! elf_link_create_dynamic_sections (abfd, info))
1286 goto error_return;
1287 }
1288 }
1289 else if (! is_elf_hash_table (info))
1290 goto error_return;
1291 else
1292 {
1293 asection *s;
1294 boolean add_needed;
1295 const char *name;
1296 bfd_size_type oldsize;
1297 bfd_size_type strindex;
1298
1299 /* Find the name to use in a DT_NEEDED entry that refers to this
1300 object. If the object has a DT_SONAME entry, we use it.
1301 Otherwise, if the generic linker stuck something in
1302 elf_dt_name, we use that. Otherwise, we just use the file
1303 name. If the generic linker put a null string into
1304 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1305 there is a DT_SONAME entry. */
1306 add_needed = true;
1307 name = bfd_get_filename (abfd);
1308 if (elf_dt_name (abfd) != NULL)
1309 {
1310 name = elf_dt_name (abfd);
1311 if (*name == '\0')
1312 {
1313 if (elf_dt_soname (abfd) != NULL)
1314 dt_needed = true;
1315
1316 add_needed = false;
1317 }
1318 }
1319 s = bfd_get_section_by_name (abfd, ".dynamic");
1320 if (s != NULL)
1321 {
1322 Elf_External_Dyn *dynbuf = NULL;
1323 Elf_External_Dyn *extdyn;
1324 Elf_External_Dyn *extdynend;
1325 int elfsec;
1326 unsigned long shlink;
1327 int rpath;
1328 int runpath;
1329
1330 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1331 if (dynbuf == NULL)
1332 goto error_return;
1333
1334 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1335 (file_ptr) 0, s->_raw_size))
1336 goto error_free_dyn;
1337
1338 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1339 if (elfsec == -1)
1340 goto error_free_dyn;
1341 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1342
1343 extdyn = dynbuf;
1344 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1345 rpath = 0;
1346 runpath = 0;
1347 for (; extdyn < extdynend; extdyn++)
1348 {
1349 Elf_Internal_Dyn dyn;
1350
1351 elf_swap_dyn_in (abfd, extdyn, &dyn);
1352 if (dyn.d_tag == DT_SONAME)
1353 {
1354 unsigned int tagv = dyn.d_un.d_val;
1355 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1356 if (name == NULL)
1357 goto error_free_dyn;
1358 }
1359 if (dyn.d_tag == DT_NEEDED)
1360 {
1361 struct bfd_link_needed_list *n, **pn;
1362 char *fnm, *anm;
1363 unsigned int tagv = dyn.d_un.d_val;
1364
1365 amt = sizeof (struct bfd_link_needed_list);
1366 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1367 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1368 if (n == NULL || fnm == NULL)
1369 goto error_free_dyn;
1370 amt = strlen (fnm) + 1;
1371 anm = bfd_alloc (abfd, amt);
1372 if (anm == NULL)
1373 goto error_free_dyn;
1374 memcpy (anm, fnm, (size_t) amt);
1375 n->name = anm;
1376 n->by = abfd;
1377 n->next = NULL;
1378 for (pn = & hash_table->needed;
1379 *pn != NULL;
1380 pn = &(*pn)->next)
1381 ;
1382 *pn = n;
1383 }
1384 if (dyn.d_tag == DT_RUNPATH)
1385 {
1386 struct bfd_link_needed_list *n, **pn;
1387 char *fnm, *anm;
1388 unsigned int tagv = dyn.d_un.d_val;
1389
1390 /* When we see DT_RPATH before DT_RUNPATH, we have
1391 to clear runpath. Do _NOT_ bfd_release, as that
1392 frees all more recently bfd_alloc'd blocks as
1393 well. */
1394 if (rpath && hash_table->runpath)
1395 hash_table->runpath = NULL;
1396
1397 amt = sizeof (struct bfd_link_needed_list);
1398 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1399 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1400 if (n == NULL || fnm == NULL)
1401 goto error_free_dyn;
1402 amt = strlen (fnm) + 1;
1403 anm = bfd_alloc (abfd, amt);
1404 if (anm == NULL)
1405 goto error_free_dyn;
1406 memcpy (anm, fnm, (size_t) amt);
1407 n->name = anm;
1408 n->by = abfd;
1409 n->next = NULL;
1410 for (pn = & hash_table->runpath;
1411 *pn != NULL;
1412 pn = &(*pn)->next)
1413 ;
1414 *pn = n;
1415 runpath = 1;
1416 rpath = 0;
1417 }
1418 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1419 if (!runpath && dyn.d_tag == DT_RPATH)
1420 {
1421 struct bfd_link_needed_list *n, **pn;
1422 char *fnm, *anm;
1423 unsigned int tagv = dyn.d_un.d_val;
1424
1425 amt = sizeof (struct bfd_link_needed_list);
1426 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1427 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1428 if (n == NULL || fnm == NULL)
1429 goto error_free_dyn;
1430 amt = strlen (fnm) + 1;
1431 anm = bfd_alloc (abfd, amt);
1432 if (anm == NULL)
1433 {
1434 error_free_dyn:
1435 free (dynbuf);
1436 goto error_return;
1437 }
1438 memcpy (anm, fnm, (size_t) amt);
1439 n->name = anm;
1440 n->by = abfd;
1441 n->next = NULL;
1442 for (pn = & hash_table->runpath;
1443 *pn != NULL;
1444 pn = &(*pn)->next)
1445 ;
1446 *pn = n;
1447 rpath = 1;
1448 }
1449 }
1450
1451 free (dynbuf);
1452 }
1453
1454 /* We do not want to include any of the sections in a dynamic
1455 object in the output file. We hack by simply clobbering the
1456 list of sections in the BFD. This could be handled more
1457 cleanly by, say, a new section flag; the existing
1458 SEC_NEVER_LOAD flag is not the one we want, because that one
1459 still implies that the section takes up space in the output
1460 file. */
1461 bfd_section_list_clear (abfd);
1462
1463 /* If this is the first dynamic object found in the link, create
1464 the special sections required for dynamic linking. */
1465 if (! hash_table->dynamic_sections_created)
1466 if (! elf_link_create_dynamic_sections (abfd, info))
1467 goto error_return;
1468
1469 if (add_needed)
1470 {
1471 /* Add a DT_NEEDED entry for this dynamic object. */
1472 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1473 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1474 if (strindex == (bfd_size_type) -1)
1475 goto error_return;
1476
1477 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1478 {
1479 asection *sdyn;
1480 Elf_External_Dyn *dyncon, *dynconend;
1481
1482 /* The hash table size did not change, which means that
1483 the dynamic object name was already entered. If we
1484 have already included this dynamic object in the
1485 link, just ignore it. There is no reason to include
1486 a particular dynamic object more than once. */
1487 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1488 BFD_ASSERT (sdyn != NULL);
1489
1490 dyncon = (Elf_External_Dyn *) sdyn->contents;
1491 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1492 sdyn->_raw_size);
1493 for (; dyncon < dynconend; dyncon++)
1494 {
1495 Elf_Internal_Dyn dyn;
1496
1497 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1498 if (dyn.d_tag == DT_NEEDED
1499 && dyn.d_un.d_val == strindex)
1500 {
1501 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1502 return true;
1503 }
1504 }
1505 }
1506
1507 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1508 goto error_return;
1509 }
1510
1511 /* Save the SONAME, if there is one, because sometimes the
1512 linker emulation code will need to know it. */
1513 if (*name == '\0')
1514 name = basename (bfd_get_filename (abfd));
1515 elf_dt_name (abfd) = name;
1516 }
1517
1518 /* If this is a dynamic object, we always link against the .dynsym
1519 symbol table, not the .symtab symbol table. The dynamic linker
1520 will only see the .dynsym symbol table, so there is no reason to
1521 look at .symtab for a dynamic object. */
1522
1523 if (! dynamic || elf_dynsymtab (abfd) == 0)
1524 hdr = &elf_tdata (abfd)->symtab_hdr;
1525 else
1526 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1527
1528 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1529
1530 /* The sh_info field of the symtab header tells us where the
1531 external symbols start. We don't care about the local symbols at
1532 this point. */
1533 if (elf_bad_symtab (abfd))
1534 {
1535 extsymcount = symcount;
1536 extsymoff = 0;
1537 }
1538 else
1539 {
1540 extsymcount = symcount - hdr->sh_info;
1541 extsymoff = hdr->sh_info;
1542 }
1543
1544 sym_hash = NULL;
1545 if (extsymcount != 0)
1546 {
1547 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
1548 NULL, NULL, NULL);
1549 if (isymbuf == NULL)
1550 goto error_return;
1551
1552 /* We store a pointer to the hash table entry for each external
1553 symbol. */
1554 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1555 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1556 if (sym_hash == NULL)
1557 goto error_free_sym;
1558 elf_sym_hashes (abfd) = sym_hash;
1559 }
1560
1561 if (dynamic)
1562 {
1563 /* Read in any version definitions. */
1564 if (! _bfd_elf_slurp_version_tables (abfd))
1565 goto error_free_sym;
1566
1567 /* Read in the symbol versions, but don't bother to convert them
1568 to internal format. */
1569 if (elf_dynversym (abfd) != 0)
1570 {
1571 Elf_Internal_Shdr *versymhdr;
1572
1573 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1574 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1575 if (extversym == NULL)
1576 goto error_free_sym;
1577 amt = versymhdr->sh_size;
1578 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1579 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1580 goto error_free_vers;
1581 }
1582 }
1583
1584 weaks = NULL;
1585
1586 ever = extversym != NULL ? extversym + extsymoff : NULL;
1587 for (isym = isymbuf, isymend = isymbuf + extsymcount;
1588 isym < isymend;
1589 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1590 {
1591 int bind;
1592 bfd_vma value;
1593 asection *sec;
1594 flagword flags;
1595 const char *name;
1596 struct elf_link_hash_entry *h;
1597 boolean definition;
1598 boolean size_change_ok, type_change_ok;
1599 boolean new_weakdef;
1600 unsigned int old_alignment;
1601 boolean override;
1602
1603 override = false;
1604
1605 flags = BSF_NO_FLAGS;
1606 sec = NULL;
1607 value = isym->st_value;
1608 *sym_hash = NULL;
1609
1610 bind = ELF_ST_BIND (isym->st_info);
1611 if (bind == STB_LOCAL)
1612 {
1613 /* This should be impossible, since ELF requires that all
1614 global symbols follow all local symbols, and that sh_info
1615 point to the first global symbol. Unfortunatealy, Irix 5
1616 screws this up. */
1617 continue;
1618 }
1619 else if (bind == STB_GLOBAL)
1620 {
1621 if (isym->st_shndx != SHN_UNDEF
1622 && isym->st_shndx != SHN_COMMON)
1623 flags = BSF_GLOBAL;
1624 }
1625 else if (bind == STB_WEAK)
1626 flags = BSF_WEAK;
1627 else
1628 {
1629 /* Leave it up to the processor backend. */
1630 }
1631
1632 if (isym->st_shndx == SHN_UNDEF)
1633 sec = bfd_und_section_ptr;
1634 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
1635 {
1636 sec = section_from_elf_index (abfd, isym->st_shndx);
1637 if (sec == NULL)
1638 sec = bfd_abs_section_ptr;
1639 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1640 value -= sec->vma;
1641 }
1642 else if (isym->st_shndx == SHN_ABS)
1643 sec = bfd_abs_section_ptr;
1644 else if (isym->st_shndx == SHN_COMMON)
1645 {
1646 sec = bfd_com_section_ptr;
1647 /* What ELF calls the size we call the value. What ELF
1648 calls the value we call the alignment. */
1649 value = isym->st_size;
1650 }
1651 else
1652 {
1653 /* Leave it up to the processor backend. */
1654 }
1655
1656 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
1657 isym->st_name);
1658 if (name == (const char *) NULL)
1659 goto error_free_vers;
1660
1661 if (isym->st_shndx == SHN_COMMON
1662 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
1663 {
1664 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1665
1666 if (tcomm == NULL)
1667 {
1668 tcomm = bfd_make_section (abfd, ".tcommon");
1669 if (tcomm == NULL
1670 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1671 | SEC_IS_COMMON
1672 | SEC_LINKER_CREATED
1673 | SEC_THREAD_LOCAL)))
1674 goto error_free_vers;
1675 }
1676 sec = tcomm;
1677 }
1678 else if (add_symbol_hook)
1679 {
1680 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
1681 &value))
1682 goto error_free_vers;
1683
1684 /* The hook function sets the name to NULL if this symbol
1685 should be skipped for some reason. */
1686 if (name == (const char *) NULL)
1687 continue;
1688 }
1689
1690 /* Sanity check that all possibilities were handled. */
1691 if (sec == (asection *) NULL)
1692 {
1693 bfd_set_error (bfd_error_bad_value);
1694 goto error_free_vers;
1695 }
1696
1697 if (bfd_is_und_section (sec)
1698 || bfd_is_com_section (sec))
1699 definition = false;
1700 else
1701 definition = true;
1702
1703 size_change_ok = false;
1704 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1705 old_alignment = 0;
1706 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1707 {
1708 Elf_Internal_Versym iver;
1709 unsigned int vernum = 0;
1710
1711 if (ever != NULL)
1712 {
1713 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1714 vernum = iver.vs_vers & VERSYM_VERSION;
1715
1716 /* If this is a hidden symbol, or if it is not version
1717 1, we append the version name to the symbol name.
1718 However, we do not modify a non-hidden absolute
1719 symbol, because it might be the version symbol
1720 itself. FIXME: What if it isn't? */
1721 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1722 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1723 {
1724 const char *verstr;
1725 size_t namelen, verlen, newlen;
1726 char *newname, *p;
1727
1728 if (isym->st_shndx != SHN_UNDEF)
1729 {
1730 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1731 {
1732 (*_bfd_error_handler)
1733 (_("%s: %s: invalid version %u (max %d)"),
1734 bfd_archive_filename (abfd), name, vernum,
1735 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1736 bfd_set_error (bfd_error_bad_value);
1737 goto error_free_vers;
1738 }
1739 else if (vernum > 1)
1740 verstr =
1741 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1742 else
1743 verstr = "";
1744 }
1745 else
1746 {
1747 /* We cannot simply test for the number of
1748 entries in the VERNEED section since the
1749 numbers for the needed versions do not start
1750 at 0. */
1751 Elf_Internal_Verneed *t;
1752
1753 verstr = NULL;
1754 for (t = elf_tdata (abfd)->verref;
1755 t != NULL;
1756 t = t->vn_nextref)
1757 {
1758 Elf_Internal_Vernaux *a;
1759
1760 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1761 {
1762 if (a->vna_other == vernum)
1763 {
1764 verstr = a->vna_nodename;
1765 break;
1766 }
1767 }
1768 if (a != NULL)
1769 break;
1770 }
1771 if (verstr == NULL)
1772 {
1773 (*_bfd_error_handler)
1774 (_("%s: %s: invalid needed version %d"),
1775 bfd_archive_filename (abfd), name, vernum);
1776 bfd_set_error (bfd_error_bad_value);
1777 goto error_free_vers;
1778 }
1779 }
1780
1781 namelen = strlen (name);
1782 verlen = strlen (verstr);
1783 newlen = namelen + verlen + 2;
1784 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1785 && isym->st_shndx != SHN_UNDEF)
1786 ++newlen;
1787
1788 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1789 if (newname == NULL)
1790 goto error_free_vers;
1791 memcpy (newname, name, namelen);
1792 p = newname + namelen;
1793 *p++ = ELF_VER_CHR;
1794 /* If this is a defined non-hidden version symbol,
1795 we add another @ to the name. This indicates the
1796 default version of the symbol. */
1797 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1798 && isym->st_shndx != SHN_UNDEF)
1799 *p++ = ELF_VER_CHR;
1800 memcpy (p, verstr, verlen + 1);
1801
1802 name = newname;
1803 }
1804 }
1805
1806 if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
1807 sym_hash, &override, &type_change_ok,
1808 &size_change_ok, dt_needed))
1809 goto error_free_vers;
1810
1811 if (override)
1812 definition = false;
1813
1814 h = *sym_hash;
1815 while (h->root.type == bfd_link_hash_indirect
1816 || h->root.type == bfd_link_hash_warning)
1817 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1818
1819 /* Remember the old alignment if this is a common symbol, so
1820 that we don't reduce the alignment later on. We can't
1821 check later, because _bfd_generic_link_add_one_symbol
1822 will set a default for the alignment which we want to
1823 override. */
1824 if (h->root.type == bfd_link_hash_common)
1825 old_alignment = h->root.u.c.p->alignment_power;
1826
1827 if (elf_tdata (abfd)->verdef != NULL
1828 && ! override
1829 && vernum > 1
1830 && definition)
1831 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1832 }
1833
1834 if (! (_bfd_generic_link_add_one_symbol
1835 (info, abfd, name, flags, sec, value, (const char *) NULL,
1836 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1837 goto error_free_vers;
1838
1839 h = *sym_hash;
1840 while (h->root.type == bfd_link_hash_indirect
1841 || h->root.type == bfd_link_hash_warning)
1842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1843 *sym_hash = h;
1844
1845 new_weakdef = false;
1846 if (dynamic
1847 && definition
1848 && (flags & BSF_WEAK) != 0
1849 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
1850 && info->hash->creator->flavour == bfd_target_elf_flavour
1851 && h->weakdef == NULL)
1852 {
1853 /* Keep a list of all weak defined non function symbols from
1854 a dynamic object, using the weakdef field. Later in this
1855 function we will set the weakdef field to the correct
1856 value. We only put non-function symbols from dynamic
1857 objects on this list, because that happens to be the only
1858 time we need to know the normal symbol corresponding to a
1859 weak symbol, and the information is time consuming to
1860 figure out. If the weakdef field is not already NULL,
1861 then this symbol was already defined by some previous
1862 dynamic object, and we will be using that previous
1863 definition anyhow. */
1864
1865 h->weakdef = weaks;
1866 weaks = h;
1867 new_weakdef = true;
1868 }
1869
1870 /* Set the alignment of a common symbol. */
1871 if (isym->st_shndx == SHN_COMMON
1872 && h->root.type == bfd_link_hash_common)
1873 {
1874 unsigned int align;
1875
1876 align = bfd_log2 (isym->st_value);
1877 if (align > old_alignment
1878 /* Permit an alignment power of zero if an alignment of one
1879 is specified and no other alignments have been specified. */
1880 || (isym->st_value == 1 && old_alignment == 0))
1881 h->root.u.c.p->alignment_power = align;
1882 }
1883
1884 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1885 {
1886 int old_flags;
1887 boolean dynsym;
1888 int new_flag;
1889
1890 /* Remember the symbol size and type. */
1891 if (isym->st_size != 0
1892 && (definition || h->size == 0))
1893 {
1894 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
1895 (*_bfd_error_handler)
1896 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1897 name, (unsigned long) h->size,
1898 (unsigned long) isym->st_size, bfd_archive_filename (abfd));
1899
1900 h->size = isym->st_size;
1901 }
1902
1903 /* If this is a common symbol, then we always want H->SIZE
1904 to be the size of the common symbol. The code just above
1905 won't fix the size if a common symbol becomes larger. We
1906 don't warn about a size change here, because that is
1907 covered by --warn-common. */
1908 if (h->root.type == bfd_link_hash_common)
1909 h->size = h->root.u.c.size;
1910
1911 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
1912 && (definition || h->type == STT_NOTYPE))
1913 {
1914 if (h->type != STT_NOTYPE
1915 && h->type != ELF_ST_TYPE (isym->st_info)
1916 && ! type_change_ok)
1917 (*_bfd_error_handler)
1918 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1919 name, h->type, ELF_ST_TYPE (isym->st_info),
1920 bfd_archive_filename (abfd));
1921
1922 h->type = ELF_ST_TYPE (isym->st_info);
1923 }
1924
1925 /* If st_other has a processor-specific meaning, specific code
1926 might be needed here. */
1927 if (isym->st_other != 0)
1928 {
1929 /* Combine visibilities, using the most constraining one. */
1930 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1931 unsigned char symvis = ELF_ST_VISIBILITY (isym->st_other);
1932
1933 if (symvis && (hvis > symvis || hvis == 0))
1934 h->other = isym->st_other;
1935
1936 /* If neither has visibility, use the st_other of the
1937 definition. This is an arbitrary choice, since the
1938 other bits have no general meaning. */
1939 if (!symvis && !hvis
1940 && (definition || h->other == 0))
1941 h->other = isym->st_other;
1942 }
1943
1944 /* Set a flag in the hash table entry indicating the type of
1945 reference or definition we just found. Keep a count of
1946 the number of dynamic symbols we find. A dynamic symbol
1947 is one which is referenced or defined by both a regular
1948 object and a shared object. */
1949 old_flags = h->elf_link_hash_flags;
1950 dynsym = false;
1951 if (! dynamic)
1952 {
1953 if (! definition)
1954 {
1955 new_flag = ELF_LINK_HASH_REF_REGULAR;
1956 if (bind != STB_WEAK)
1957 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1958 }
1959 else
1960 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1961 if (info->shared
1962 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1963 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1964 dynsym = true;
1965 }
1966 else
1967 {
1968 if (! definition)
1969 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1970 else
1971 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1972 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1973 | ELF_LINK_HASH_REF_REGULAR)) != 0
1974 || (h->weakdef != NULL
1975 && ! new_weakdef
1976 && h->weakdef->dynindx != -1))
1977 dynsym = true;
1978 }
1979
1980 h->elf_link_hash_flags |= new_flag;
1981
1982 /* Check to see if we need to add an indirect symbol for
1983 the default name. */
1984 if (definition || h->root.type == bfd_link_hash_common)
1985 if (! elf_add_default_symbol (abfd, info, h, name, isym,
1986 &sec, &value, &dynsym,
1987 override, dt_needed))
1988 goto error_free_vers;
1989
1990 if (dynsym && h->dynindx == -1)
1991 {
1992 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1993 goto error_free_vers;
1994 if (h->weakdef != NULL
1995 && ! new_weakdef
1996 && h->weakdef->dynindx == -1)
1997 {
1998 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
1999 goto error_free_vers;
2000 }
2001 }
2002 else if (dynsym && h->dynindx != -1)
2003 /* If the symbol already has a dynamic index, but
2004 visibility says it should not be visible, turn it into
2005 a local symbol. */
2006 switch (ELF_ST_VISIBILITY (h->other))
2007 {
2008 case STV_INTERNAL:
2009 case STV_HIDDEN:
2010 (*bed->elf_backend_hide_symbol) (info, h, true);
2011 break;
2012 }
2013
2014 if (dt_needed && definition
2015 && (h->elf_link_hash_flags
2016 & ELF_LINK_HASH_REF_REGULAR) != 0)
2017 {
2018 bfd_size_type oldsize;
2019 bfd_size_type strindex;
2020
2021 if (! is_elf_hash_table (info))
2022 goto error_free_vers;
2023
2024 /* The symbol from a DT_NEEDED object is referenced from
2025 the regular object to create a dynamic executable. We
2026 have to make sure there is a DT_NEEDED entry for it. */
2027
2028 dt_needed = false;
2029 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2030 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2031 elf_dt_soname (abfd), false);
2032 if (strindex == (bfd_size_type) -1)
2033 goto error_free_vers;
2034
2035 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2036 {
2037 asection *sdyn;
2038 Elf_External_Dyn *dyncon, *dynconend;
2039
2040 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2041 ".dynamic");
2042 BFD_ASSERT (sdyn != NULL);
2043
2044 dyncon = (Elf_External_Dyn *) sdyn->contents;
2045 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2046 sdyn->_raw_size);
2047 for (; dyncon < dynconend; dyncon++)
2048 {
2049 Elf_Internal_Dyn dyn;
2050
2051 elf_swap_dyn_in (hash_table->dynobj,
2052 dyncon, &dyn);
2053 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2054 dyn.d_un.d_val != strindex);
2055 }
2056 }
2057
2058 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2059 goto error_free_vers;
2060 }
2061 }
2062 }
2063
2064 if (extversym != NULL)
2065 {
2066 free (extversym);
2067 extversym = NULL;
2068 }
2069
2070 if (isymbuf != NULL)
2071 free (isymbuf);
2072 isymbuf = NULL;
2073
2074 /* Now set the weakdefs field correctly for all the weak defined
2075 symbols we found. The only way to do this is to search all the
2076 symbols. Since we only need the information for non functions in
2077 dynamic objects, that's the only time we actually put anything on
2078 the list WEAKS. We need this information so that if a regular
2079 object refers to a symbol defined weakly in a dynamic object, the
2080 real symbol in the dynamic object is also put in the dynamic
2081 symbols; we also must arrange for both symbols to point to the
2082 same memory location. We could handle the general case of symbol
2083 aliasing, but a general symbol alias can only be generated in
2084 assembler code, handling it correctly would be very time
2085 consuming, and other ELF linkers don't handle general aliasing
2086 either. */
2087 while (weaks != NULL)
2088 {
2089 struct elf_link_hash_entry *hlook;
2090 asection *slook;
2091 bfd_vma vlook;
2092 struct elf_link_hash_entry **hpp;
2093 struct elf_link_hash_entry **hppend;
2094
2095 hlook = weaks;
2096 weaks = hlook->weakdef;
2097 hlook->weakdef = NULL;
2098
2099 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2100 || hlook->root.type == bfd_link_hash_defweak
2101 || hlook->root.type == bfd_link_hash_common
2102 || hlook->root.type == bfd_link_hash_indirect);
2103 slook = hlook->root.u.def.section;
2104 vlook = hlook->root.u.def.value;
2105
2106 hpp = elf_sym_hashes (abfd);
2107 hppend = hpp + extsymcount;
2108 for (; hpp < hppend; hpp++)
2109 {
2110 struct elf_link_hash_entry *h;
2111
2112 h = *hpp;
2113 if (h != NULL && h != hlook
2114 && h->root.type == bfd_link_hash_defined
2115 && h->root.u.def.section == slook
2116 && h->root.u.def.value == vlook)
2117 {
2118 hlook->weakdef = h;
2119
2120 /* If the weak definition is in the list of dynamic
2121 symbols, make sure the real definition is put there
2122 as well. */
2123 if (hlook->dynindx != -1
2124 && h->dynindx == -1)
2125 {
2126 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2127 goto error_return;
2128 }
2129
2130 /* If the real definition is in the list of dynamic
2131 symbols, make sure the weak definition is put there
2132 as well. If we don't do this, then the dynamic
2133 loader might not merge the entries for the real
2134 definition and the weak definition. */
2135 if (h->dynindx != -1
2136 && hlook->dynindx == -1)
2137 {
2138 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2139 goto error_return;
2140 }
2141 break;
2142 }
2143 }
2144 }
2145
2146 /* If this object is the same format as the output object, and it is
2147 not a shared library, then let the backend look through the
2148 relocs.
2149
2150 This is required to build global offset table entries and to
2151 arrange for dynamic relocs. It is not required for the
2152 particular common case of linking non PIC code, even when linking
2153 against shared libraries, but unfortunately there is no way of
2154 knowing whether an object file has been compiled PIC or not.
2155 Looking through the relocs is not particularly time consuming.
2156 The problem is that we must either (1) keep the relocs in memory,
2157 which causes the linker to require additional runtime memory or
2158 (2) read the relocs twice from the input file, which wastes time.
2159 This would be a good case for using mmap.
2160
2161 I have no idea how to handle linking PIC code into a file of a
2162 different format. It probably can't be done. */
2163 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2164 if (! dynamic
2165 && abfd->xvec == info->hash->creator
2166 && check_relocs != NULL)
2167 {
2168 asection *o;
2169
2170 for (o = abfd->sections; o != NULL; o = o->next)
2171 {
2172 Elf_Internal_Rela *internal_relocs;
2173 boolean ok;
2174
2175 if ((o->flags & SEC_RELOC) == 0
2176 || o->reloc_count == 0
2177 || ((info->strip == strip_all || info->strip == strip_debugger)
2178 && (o->flags & SEC_DEBUGGING) != 0)
2179 || bfd_is_abs_section (o->output_section))
2180 continue;
2181
2182 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2183 (abfd, o, (PTR) NULL,
2184 (Elf_Internal_Rela *) NULL,
2185 info->keep_memory));
2186 if (internal_relocs == NULL)
2187 goto error_return;
2188
2189 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2190
2191 if (elf_section_data (o)->relocs != internal_relocs)
2192 free (internal_relocs);
2193
2194 if (! ok)
2195 goto error_return;
2196 }
2197 }
2198
2199 /* If this is a non-traditional, non-relocateable link, try to
2200 optimize the handling of the .stab/.stabstr sections. */
2201 if (! dynamic
2202 && ! info->relocateable
2203 && ! info->traditional_format
2204 && info->hash->creator->flavour == bfd_target_elf_flavour
2205 && is_elf_hash_table (info)
2206 && (info->strip != strip_all && info->strip != strip_debugger))
2207 {
2208 asection *stab, *stabstr;
2209
2210 stab = bfd_get_section_by_name (abfd, ".stab");
2211 if (stab != NULL
2212 && (stab->flags & SEC_MERGE) == 0
2213 && !bfd_is_abs_section (stab->output_section))
2214 {
2215 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2216
2217 if (stabstr != NULL)
2218 {
2219 struct bfd_elf_section_data *secdata;
2220
2221 secdata = elf_section_data (stab);
2222 if (! _bfd_link_section_stabs (abfd,
2223 & hash_table->stab_info,
2224 stab, stabstr,
2225 &secdata->sec_info))
2226 goto error_return;
2227 if (secdata->sec_info)
2228 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2229 }
2230 }
2231 }
2232
2233 if (! info->relocateable && ! dynamic
2234 && is_elf_hash_table (info))
2235 {
2236 asection *s;
2237
2238 for (s = abfd->sections; s != NULL; s = s->next)
2239 if ((s->flags & SEC_MERGE) != 0
2240 && !bfd_is_abs_section (s->output_section))
2241 {
2242 struct bfd_elf_section_data *secdata;
2243
2244 secdata = elf_section_data (s);
2245 if (! _bfd_merge_section (abfd,
2246 & hash_table->merge_info,
2247 s, &secdata->sec_info))
2248 goto error_return;
2249 else if (secdata->sec_info)
2250 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2251 }
2252 }
2253
2254 if (is_elf_hash_table (info))
2255 {
2256 /* Add this bfd to the loaded list. */
2257 struct elf_link_loaded_list *n;
2258
2259 n = ((struct elf_link_loaded_list *)
2260 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2261 if (n == NULL)
2262 goto error_return;
2263 n->abfd = abfd;
2264 n->next = hash_table->loaded;
2265 hash_table->loaded = n;
2266 }
2267
2268 return true;
2269
2270 error_free_vers:
2271 if (extversym != NULL)
2272 free (extversym);
2273 error_free_sym:
2274 if (isymbuf != NULL)
2275 free (isymbuf);
2276 error_return:
2277 return false;
2278 }
2279
2280 /* Create some sections which will be filled in with dynamic linking
2281 information. ABFD is an input file which requires dynamic sections
2282 to be created. The dynamic sections take up virtual memory space
2283 when the final executable is run, so we need to create them before
2284 addresses are assigned to the output sections. We work out the
2285 actual contents and size of these sections later. */
2286
2287 boolean
2288 elf_link_create_dynamic_sections (abfd, info)
2289 bfd *abfd;
2290 struct bfd_link_info *info;
2291 {
2292 flagword flags;
2293 register asection *s;
2294 struct elf_link_hash_entry *h;
2295 struct elf_backend_data *bed;
2296
2297 if (! is_elf_hash_table (info))
2298 return false;
2299
2300 if (elf_hash_table (info)->dynamic_sections_created)
2301 return true;
2302
2303 /* Make sure that all dynamic sections use the same input BFD. */
2304 if (elf_hash_table (info)->dynobj == NULL)
2305 elf_hash_table (info)->dynobj = abfd;
2306 else
2307 abfd = elf_hash_table (info)->dynobj;
2308
2309 /* Note that we set the SEC_IN_MEMORY flag for all of these
2310 sections. */
2311 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2312 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2313
2314 /* A dynamically linked executable has a .interp section, but a
2315 shared library does not. */
2316 if (! info->shared)
2317 {
2318 s = bfd_make_section (abfd, ".interp");
2319 if (s == NULL
2320 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2321 return false;
2322 }
2323
2324 if (! info->traditional_format
2325 && info->hash->creator->flavour == bfd_target_elf_flavour)
2326 {
2327 s = bfd_make_section (abfd, ".eh_frame_hdr");
2328 if (s == NULL
2329 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2330 || ! bfd_set_section_alignment (abfd, s, 2))
2331 return false;
2332 }
2333
2334 /* Create sections to hold version informations. These are removed
2335 if they are not needed. */
2336 s = bfd_make_section (abfd, ".gnu.version_d");
2337 if (s == NULL
2338 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2339 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2340 return false;
2341
2342 s = bfd_make_section (abfd, ".gnu.version");
2343 if (s == NULL
2344 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2345 || ! bfd_set_section_alignment (abfd, s, 1))
2346 return false;
2347
2348 s = bfd_make_section (abfd, ".gnu.version_r");
2349 if (s == NULL
2350 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2351 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2352 return false;
2353
2354 s = bfd_make_section (abfd, ".dynsym");
2355 if (s == NULL
2356 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2357 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2358 return false;
2359
2360 s = bfd_make_section (abfd, ".dynstr");
2361 if (s == NULL
2362 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2363 return false;
2364
2365 /* Create a strtab to hold the dynamic symbol names. */
2366 if (elf_hash_table (info)->dynstr == NULL)
2367 {
2368 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2369 if (elf_hash_table (info)->dynstr == NULL)
2370 return false;
2371 }
2372
2373 s = bfd_make_section (abfd, ".dynamic");
2374 if (s == NULL
2375 || ! bfd_set_section_flags (abfd, s, flags)
2376 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2377 return false;
2378
2379 /* The special symbol _DYNAMIC is always set to the start of the
2380 .dynamic section. This call occurs before we have processed the
2381 symbols for any dynamic object, so we don't have to worry about
2382 overriding a dynamic definition. We could set _DYNAMIC in a
2383 linker script, but we only want to define it if we are, in fact,
2384 creating a .dynamic section. We don't want to define it if there
2385 is no .dynamic section, since on some ELF platforms the start up
2386 code examines it to decide how to initialize the process. */
2387 h = NULL;
2388 if (! (_bfd_generic_link_add_one_symbol
2389 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2390 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2391 (struct bfd_link_hash_entry **) &h)))
2392 return false;
2393 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2394 h->type = STT_OBJECT;
2395
2396 if (info->shared
2397 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2398 return false;
2399
2400 bed = get_elf_backend_data (abfd);
2401
2402 s = bfd_make_section (abfd, ".hash");
2403 if (s == NULL
2404 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2405 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2406 return false;
2407 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2408
2409 /* Let the backend create the rest of the sections. This lets the
2410 backend set the right flags. The backend will normally create
2411 the .got and .plt sections. */
2412 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2413 return false;
2414
2415 elf_hash_table (info)->dynamic_sections_created = true;
2416
2417 return true;
2418 }
2419
2420 /* Add an entry to the .dynamic table. */
2421
2422 boolean
2423 elf_add_dynamic_entry (info, tag, val)
2424 struct bfd_link_info *info;
2425 bfd_vma tag;
2426 bfd_vma val;
2427 {
2428 Elf_Internal_Dyn dyn;
2429 bfd *dynobj;
2430 asection *s;
2431 bfd_size_type newsize;
2432 bfd_byte *newcontents;
2433
2434 if (! is_elf_hash_table (info))
2435 return false;
2436
2437 dynobj = elf_hash_table (info)->dynobj;
2438
2439 s = bfd_get_section_by_name (dynobj, ".dynamic");
2440 BFD_ASSERT (s != NULL);
2441
2442 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2443 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2444 if (newcontents == NULL)
2445 return false;
2446
2447 dyn.d_tag = tag;
2448 dyn.d_un.d_val = val;
2449 elf_swap_dyn_out (dynobj, &dyn,
2450 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2451
2452 s->_raw_size = newsize;
2453 s->contents = newcontents;
2454
2455 return true;
2456 }
2457 \f
2458 /* Read and swap the relocs from the section indicated by SHDR. This
2459 may be either a REL or a RELA section. The relocations are
2460 translated into RELA relocations and stored in INTERNAL_RELOCS,
2461 which should have already been allocated to contain enough space.
2462 The EXTERNAL_RELOCS are a buffer where the external form of the
2463 relocations should be stored.
2464
2465 Returns false if something goes wrong. */
2466
2467 static boolean
2468 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2469 internal_relocs)
2470 bfd *abfd;
2471 Elf_Internal_Shdr *shdr;
2472 PTR external_relocs;
2473 Elf_Internal_Rela *internal_relocs;
2474 {
2475 struct elf_backend_data *bed;
2476 bfd_size_type amt;
2477
2478 /* If there aren't any relocations, that's OK. */
2479 if (!shdr)
2480 return true;
2481
2482 /* Position ourselves at the start of the section. */
2483 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2484 return false;
2485
2486 /* Read the relocations. */
2487 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2488 return false;
2489
2490 bed = get_elf_backend_data (abfd);
2491
2492 /* Convert the external relocations to the internal format. */
2493 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2494 {
2495 Elf_External_Rel *erel;
2496 Elf_External_Rel *erelend;
2497 Elf_Internal_Rela *irela;
2498 Elf_Internal_Rel *irel;
2499
2500 erel = (Elf_External_Rel *) external_relocs;
2501 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2502 irela = internal_relocs;
2503 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2504 irel = bfd_alloc (abfd, amt);
2505 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2506 {
2507 unsigned int i;
2508
2509 if (bed->s->swap_reloc_in)
2510 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2511 else
2512 elf_swap_reloc_in (abfd, erel, irel);
2513
2514 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2515 {
2516 irela[i].r_offset = irel[i].r_offset;
2517 irela[i].r_info = irel[i].r_info;
2518 irela[i].r_addend = 0;
2519 }
2520 }
2521 }
2522 else
2523 {
2524 Elf_External_Rela *erela;
2525 Elf_External_Rela *erelaend;
2526 Elf_Internal_Rela *irela;
2527
2528 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2529
2530 erela = (Elf_External_Rela *) external_relocs;
2531 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2532 irela = internal_relocs;
2533 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2534 {
2535 if (bed->s->swap_reloca_in)
2536 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2537 else
2538 elf_swap_reloca_in (abfd, erela, irela);
2539 }
2540 }
2541
2542 return true;
2543 }
2544
2545 /* Read and swap the relocs for a section O. They may have been
2546 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2547 not NULL, they are used as buffers to read into. They are known to
2548 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2549 the return value is allocated using either malloc or bfd_alloc,
2550 according to the KEEP_MEMORY argument. If O has two relocation
2551 sections (both REL and RELA relocations), then the REL_HDR
2552 relocations will appear first in INTERNAL_RELOCS, followed by the
2553 REL_HDR2 relocations. */
2554
2555 Elf_Internal_Rela *
2556 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2557 keep_memory)
2558 bfd *abfd;
2559 asection *o;
2560 PTR external_relocs;
2561 Elf_Internal_Rela *internal_relocs;
2562 boolean keep_memory;
2563 {
2564 Elf_Internal_Shdr *rel_hdr;
2565 PTR alloc1 = NULL;
2566 Elf_Internal_Rela *alloc2 = NULL;
2567 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2568
2569 if (elf_section_data (o)->relocs != NULL)
2570 return elf_section_data (o)->relocs;
2571
2572 if (o->reloc_count == 0)
2573 return NULL;
2574
2575 rel_hdr = &elf_section_data (o)->rel_hdr;
2576
2577 if (internal_relocs == NULL)
2578 {
2579 bfd_size_type size;
2580
2581 size = o->reloc_count;
2582 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2583 if (keep_memory)
2584 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2585 else
2586 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2587 if (internal_relocs == NULL)
2588 goto error_return;
2589 }
2590
2591 if (external_relocs == NULL)
2592 {
2593 bfd_size_type size = rel_hdr->sh_size;
2594
2595 if (elf_section_data (o)->rel_hdr2)
2596 size += elf_section_data (o)->rel_hdr2->sh_size;
2597 alloc1 = (PTR) bfd_malloc (size);
2598 if (alloc1 == NULL)
2599 goto error_return;
2600 external_relocs = alloc1;
2601 }
2602
2603 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2604 external_relocs,
2605 internal_relocs))
2606 goto error_return;
2607 if (!elf_link_read_relocs_from_section
2608 (abfd,
2609 elf_section_data (o)->rel_hdr2,
2610 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2611 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2612 * bed->s->int_rels_per_ext_rel)))
2613 goto error_return;
2614
2615 /* Cache the results for next time, if we can. */
2616 if (keep_memory)
2617 elf_section_data (o)->relocs = internal_relocs;
2618
2619 if (alloc1 != NULL)
2620 free (alloc1);
2621
2622 /* Don't free alloc2, since if it was allocated we are passing it
2623 back (under the name of internal_relocs). */
2624
2625 return internal_relocs;
2626
2627 error_return:
2628 if (alloc1 != NULL)
2629 free (alloc1);
2630 if (alloc2 != NULL)
2631 free (alloc2);
2632 return NULL;
2633 }
2634 \f
2635 /* Record an assignment to a symbol made by a linker script. We need
2636 this in case some dynamic object refers to this symbol. */
2637
2638 boolean
2639 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2640 bfd *output_bfd ATTRIBUTE_UNUSED;
2641 struct bfd_link_info *info;
2642 const char *name;
2643 boolean provide;
2644 {
2645 struct elf_link_hash_entry *h;
2646
2647 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2648 return true;
2649
2650 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2651 if (h == NULL)
2652 return false;
2653
2654 if (h->root.type == bfd_link_hash_new)
2655 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2656
2657 /* If this symbol is being provided by the linker script, and it is
2658 currently defined by a dynamic object, but not by a regular
2659 object, then mark it as undefined so that the generic linker will
2660 force the correct value. */
2661 if (provide
2662 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2663 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2664 h->root.type = bfd_link_hash_undefined;
2665
2666 /* If this symbol is not being provided by the linker script, and it is
2667 currently defined by a dynamic object, but not by a regular object,
2668 then clear out any version information because the symbol will not be
2669 associated with the dynamic object any more. */
2670 if (!provide
2671 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2672 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2673 h->verinfo.verdef = NULL;
2674
2675 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2676
2677 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2678 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2679 || info->shared)
2680 && h->dynindx == -1)
2681 {
2682 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2683 return false;
2684
2685 /* If this is a weak defined symbol, and we know a corresponding
2686 real symbol from the same dynamic object, make sure the real
2687 symbol is also made into a dynamic symbol. */
2688 if (h->weakdef != NULL
2689 && h->weakdef->dynindx == -1)
2690 {
2691 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2692 return false;
2693 }
2694 }
2695
2696 return true;
2697 }
2698 \f
2699 /* This structure is used to pass information to
2700 elf_link_assign_sym_version. */
2701
2702 struct elf_assign_sym_version_info
2703 {
2704 /* Output BFD. */
2705 bfd *output_bfd;
2706 /* General link information. */
2707 struct bfd_link_info *info;
2708 /* Version tree. */
2709 struct bfd_elf_version_tree *verdefs;
2710 /* Whether we had a failure. */
2711 boolean failed;
2712 };
2713
2714 /* This structure is used to pass information to
2715 elf_link_find_version_dependencies. */
2716
2717 struct elf_find_verdep_info
2718 {
2719 /* Output BFD. */
2720 bfd *output_bfd;
2721 /* General link information. */
2722 struct bfd_link_info *info;
2723 /* The number of dependencies. */
2724 unsigned int vers;
2725 /* Whether we had a failure. */
2726 boolean failed;
2727 };
2728
2729 /* Array used to determine the number of hash table buckets to use
2730 based on the number of symbols there are. If there are fewer than
2731 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2732 fewer than 37 we use 17 buckets, and so forth. We never use more
2733 than 32771 buckets. */
2734
2735 static const size_t elf_buckets[] =
2736 {
2737 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2738 16411, 32771, 0
2739 };
2740
2741 /* Compute bucket count for hashing table. We do not use a static set
2742 of possible tables sizes anymore. Instead we determine for all
2743 possible reasonable sizes of the table the outcome (i.e., the
2744 number of collisions etc) and choose the best solution. The
2745 weighting functions are not too simple to allow the table to grow
2746 without bounds. Instead one of the weighting factors is the size.
2747 Therefore the result is always a good payoff between few collisions
2748 (= short chain lengths) and table size. */
2749 static size_t
2750 compute_bucket_count (info)
2751 struct bfd_link_info *info;
2752 {
2753 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2754 size_t best_size = 0;
2755 unsigned long int *hashcodes;
2756 unsigned long int *hashcodesp;
2757 unsigned long int i;
2758 bfd_size_type amt;
2759
2760 /* Compute the hash values for all exported symbols. At the same
2761 time store the values in an array so that we could use them for
2762 optimizations. */
2763 amt = dynsymcount;
2764 amt *= sizeof (unsigned long int);
2765 hashcodes = (unsigned long int *) bfd_malloc (amt);
2766 if (hashcodes == NULL)
2767 return 0;
2768 hashcodesp = hashcodes;
2769
2770 /* Put all hash values in HASHCODES. */
2771 elf_link_hash_traverse (elf_hash_table (info),
2772 elf_collect_hash_codes, &hashcodesp);
2773
2774 /* We have a problem here. The following code to optimize the table
2775 size requires an integer type with more the 32 bits. If
2776 BFD_HOST_U_64_BIT is set we know about such a type. */
2777 #ifdef BFD_HOST_U_64_BIT
2778 if (info->optimize)
2779 {
2780 unsigned long int nsyms = hashcodesp - hashcodes;
2781 size_t minsize;
2782 size_t maxsize;
2783 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2784 unsigned long int *counts ;
2785
2786 /* Possible optimization parameters: if we have NSYMS symbols we say
2787 that the hashing table must at least have NSYMS/4 and at most
2788 2*NSYMS buckets. */
2789 minsize = nsyms / 4;
2790 if (minsize == 0)
2791 minsize = 1;
2792 best_size = maxsize = nsyms * 2;
2793
2794 /* Create array where we count the collisions in. We must use bfd_malloc
2795 since the size could be large. */
2796 amt = maxsize;
2797 amt *= sizeof (unsigned long int);
2798 counts = (unsigned long int *) bfd_malloc (amt);
2799 if (counts == NULL)
2800 {
2801 free (hashcodes);
2802 return 0;
2803 }
2804
2805 /* Compute the "optimal" size for the hash table. The criteria is a
2806 minimal chain length. The minor criteria is (of course) the size
2807 of the table. */
2808 for (i = minsize; i < maxsize; ++i)
2809 {
2810 /* Walk through the array of hashcodes and count the collisions. */
2811 BFD_HOST_U_64_BIT max;
2812 unsigned long int j;
2813 unsigned long int fact;
2814
2815 memset (counts, '\0', i * sizeof (unsigned long int));
2816
2817 /* Determine how often each hash bucket is used. */
2818 for (j = 0; j < nsyms; ++j)
2819 ++counts[hashcodes[j] % i];
2820
2821 /* For the weight function we need some information about the
2822 pagesize on the target. This is information need not be 100%
2823 accurate. Since this information is not available (so far) we
2824 define it here to a reasonable default value. If it is crucial
2825 to have a better value some day simply define this value. */
2826 # ifndef BFD_TARGET_PAGESIZE
2827 # define BFD_TARGET_PAGESIZE (4096)
2828 # endif
2829
2830 /* We in any case need 2 + NSYMS entries for the size values and
2831 the chains. */
2832 max = (2 + nsyms) * (ARCH_SIZE / 8);
2833
2834 # if 1
2835 /* Variant 1: optimize for short chains. We add the squares
2836 of all the chain lengths (which favous many small chain
2837 over a few long chains). */
2838 for (j = 0; j < i; ++j)
2839 max += counts[j] * counts[j];
2840
2841 /* This adds penalties for the overall size of the table. */
2842 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2843 max *= fact * fact;
2844 # else
2845 /* Variant 2: Optimize a lot more for small table. Here we
2846 also add squares of the size but we also add penalties for
2847 empty slots (the +1 term). */
2848 for (j = 0; j < i; ++j)
2849 max += (1 + counts[j]) * (1 + counts[j]);
2850
2851 /* The overall size of the table is considered, but not as
2852 strong as in variant 1, where it is squared. */
2853 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2854 max *= fact;
2855 # endif
2856
2857 /* Compare with current best results. */
2858 if (max < best_chlen)
2859 {
2860 best_chlen = max;
2861 best_size = i;
2862 }
2863 }
2864
2865 free (counts);
2866 }
2867 else
2868 #endif /* defined (BFD_HOST_U_64_BIT) */
2869 {
2870 /* This is the fallback solution if no 64bit type is available or if we
2871 are not supposed to spend much time on optimizations. We select the
2872 bucket count using a fixed set of numbers. */
2873 for (i = 0; elf_buckets[i] != 0; i++)
2874 {
2875 best_size = elf_buckets[i];
2876 if (dynsymcount < elf_buckets[i + 1])
2877 break;
2878 }
2879 }
2880
2881 /* Free the arrays we needed. */
2882 free (hashcodes);
2883
2884 return best_size;
2885 }
2886
2887 /* Set up the sizes and contents of the ELF dynamic sections. This is
2888 called by the ELF linker emulation before_allocation routine. We
2889 must set the sizes of the sections before the linker sets the
2890 addresses of the various sections. */
2891
2892 boolean
2893 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2894 filter_shlib,
2895 auxiliary_filters, info, sinterpptr,
2896 verdefs)
2897 bfd *output_bfd;
2898 const char *soname;
2899 const char *rpath;
2900 const char *filter_shlib;
2901 const char * const *auxiliary_filters;
2902 struct bfd_link_info *info;
2903 asection **sinterpptr;
2904 struct bfd_elf_version_tree *verdefs;
2905 {
2906 bfd_size_type soname_indx;
2907 bfd *dynobj;
2908 struct elf_backend_data *bed;
2909 struct elf_assign_sym_version_info asvinfo;
2910
2911 *sinterpptr = NULL;
2912
2913 soname_indx = (bfd_size_type) -1;
2914
2915 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2916 return true;
2917
2918 if (! is_elf_hash_table (info))
2919 return true;
2920
2921 /* Any syms created from now on start with -1 in
2922 got.refcount/offset and plt.refcount/offset. */
2923 elf_hash_table (info)->init_refcount = -1;
2924
2925 /* The backend may have to create some sections regardless of whether
2926 we're dynamic or not. */
2927 bed = get_elf_backend_data (output_bfd);
2928 if (bed->elf_backend_always_size_sections
2929 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2930 return false;
2931
2932 dynobj = elf_hash_table (info)->dynobj;
2933
2934 /* If there were no dynamic objects in the link, there is nothing to
2935 do here. */
2936 if (dynobj == NULL)
2937 return true;
2938
2939 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
2940 return false;
2941
2942 if (elf_hash_table (info)->dynamic_sections_created)
2943 {
2944 struct elf_info_failed eif;
2945 struct elf_link_hash_entry *h;
2946 asection *dynstr;
2947 struct bfd_elf_version_tree *t;
2948 struct bfd_elf_version_expr *d;
2949 boolean all_defined;
2950
2951 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2952 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2953
2954 if (soname != NULL)
2955 {
2956 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2957 soname, true);
2958 if (soname_indx == (bfd_size_type) -1
2959 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
2960 soname_indx))
2961 return false;
2962 }
2963
2964 if (info->symbolic)
2965 {
2966 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
2967 (bfd_vma) 0))
2968 return false;
2969 info->flags |= DF_SYMBOLIC;
2970 }
2971
2972 if (rpath != NULL)
2973 {
2974 bfd_size_type indx;
2975
2976 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
2977 true);
2978 if (info->new_dtags)
2979 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
2980 if (indx == (bfd_size_type) -1
2981 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
2982 || (info->new_dtags
2983 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
2984 indx)))
2985 return false;
2986 }
2987
2988 if (filter_shlib != NULL)
2989 {
2990 bfd_size_type indx;
2991
2992 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2993 filter_shlib, true);
2994 if (indx == (bfd_size_type) -1
2995 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
2996 return false;
2997 }
2998
2999 if (auxiliary_filters != NULL)
3000 {
3001 const char * const *p;
3002
3003 for (p = auxiliary_filters; *p != NULL; p++)
3004 {
3005 bfd_size_type indx;
3006
3007 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3008 *p, true);
3009 if (indx == (bfd_size_type) -1
3010 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3011 indx))
3012 return false;
3013 }
3014 }
3015
3016 eif.info = info;
3017 eif.verdefs = verdefs;
3018 eif.failed = false;
3019
3020 /* If we are supposed to export all symbols into the dynamic symbol
3021 table (this is not the normal case), then do so. */
3022 if (info->export_dynamic)
3023 {
3024 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3025 (PTR) &eif);
3026 if (eif.failed)
3027 return false;
3028 }
3029
3030 /* Make all global versions with definiton. */
3031 for (t = verdefs; t != NULL; t = t->next)
3032 for (d = t->globals; d != NULL; d = d->next)
3033 if (!d->symver && strchr (d->pattern, '*') == NULL)
3034 {
3035 const char *verstr, *name;
3036 size_t namelen, verlen, newlen;
3037 char *newname, *p;
3038 struct elf_link_hash_entry *newh;
3039
3040 name = d->pattern;
3041 namelen = strlen (name);
3042 verstr = t->name;
3043 verlen = strlen (verstr);
3044 newlen = namelen + verlen + 3;
3045
3046 newname = (char *) bfd_malloc ((bfd_size_type) newlen);
3047 if (newname == NULL)
3048 return false;
3049 memcpy (newname, name, namelen);
3050
3051 /* Check the hidden versioned definition. */
3052 p = newname + namelen;
3053 *p++ = ELF_VER_CHR;
3054 memcpy (p, verstr, verlen + 1);
3055 newh = elf_link_hash_lookup (elf_hash_table (info),
3056 newname, false, false,
3057 false);
3058 if (newh == NULL
3059 || (newh->root.type != bfd_link_hash_defined
3060 && newh->root.type != bfd_link_hash_defweak))
3061 {
3062 /* Check the default versioned definition. */
3063 *p++ = ELF_VER_CHR;
3064 memcpy (p, verstr, verlen + 1);
3065 newh = elf_link_hash_lookup (elf_hash_table (info),
3066 newname, false, false,
3067 false);
3068 }
3069 free (newname);
3070
3071 /* Mark this version if there is a definition and it is
3072 not defined in a shared object. */
3073 if (newh != NULL
3074 && ((newh->elf_link_hash_flags
3075 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3076 && (newh->root.type == bfd_link_hash_defined
3077 || newh->root.type == bfd_link_hash_defweak))
3078 d->symver = 1;
3079 }
3080
3081 /* Attach all the symbols to their version information. */
3082 asvinfo.output_bfd = output_bfd;
3083 asvinfo.info = info;
3084 asvinfo.verdefs = verdefs;
3085 asvinfo.failed = false;
3086
3087 elf_link_hash_traverse (elf_hash_table (info),
3088 elf_link_assign_sym_version,
3089 (PTR) &asvinfo);
3090 if (asvinfo.failed)
3091 return false;
3092
3093 if (!info->allow_undefined_version)
3094 {
3095 /* Check if all global versions have a definiton. */
3096 all_defined = true;
3097 for (t = verdefs; t != NULL; t = t->next)
3098 for (d = t->globals; d != NULL; d = d->next)
3099 if (!d->symver && !d->script
3100 && strchr (d->pattern, '*') == NULL)
3101 {
3102 (*_bfd_error_handler)
3103 (_("%s: undefined version: %s"),
3104 d->pattern, t->name);
3105 all_defined = false;
3106 }
3107
3108 if (!all_defined)
3109 {
3110 bfd_set_error (bfd_error_bad_value);
3111 return false;
3112 }
3113 }
3114
3115 /* Find all symbols which were defined in a dynamic object and make
3116 the backend pick a reasonable value for them. */
3117 elf_link_hash_traverse (elf_hash_table (info),
3118 elf_adjust_dynamic_symbol,
3119 (PTR) &eif);
3120 if (eif.failed)
3121 return false;
3122
3123 /* Add some entries to the .dynamic section. We fill in some of the
3124 values later, in elf_bfd_final_link, but we must add the entries
3125 now so that we know the final size of the .dynamic section. */
3126
3127 /* If there are initialization and/or finalization functions to
3128 call then add the corresponding DT_INIT/DT_FINI entries. */
3129 h = (info->init_function
3130 ? elf_link_hash_lookup (elf_hash_table (info),
3131 info->init_function, false,
3132 false, false)
3133 : NULL);
3134 if (h != NULL
3135 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3136 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3137 {
3138 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3139 return false;
3140 }
3141 h = (info->fini_function
3142 ? elf_link_hash_lookup (elf_hash_table (info),
3143 info->fini_function, false,
3144 false, false)
3145 : NULL);
3146 if (h != NULL
3147 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3148 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3149 {
3150 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3151 return false;
3152 }
3153
3154 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3155 {
3156 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3157 if (info->shared)
3158 {
3159 bfd *sub;
3160 asection *o;
3161
3162 for (sub = info->input_bfds; sub != NULL;
3163 sub = sub->link_next)
3164 for (o = sub->sections; o != NULL; o = o->next)
3165 if (elf_section_data (o)->this_hdr.sh_type
3166 == SHT_PREINIT_ARRAY)
3167 {
3168 (*_bfd_error_handler)
3169 (_("%s: .preinit_array section is not allowed in DSO"),
3170 bfd_archive_filename (sub));
3171 break;
3172 }
3173
3174 bfd_set_error (bfd_error_nonrepresentable_section);
3175 return false;
3176 }
3177
3178 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3179 (bfd_vma) 0)
3180 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3181 (bfd_vma) 0))
3182 return false;
3183 }
3184 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3185 {
3186 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3187 (bfd_vma) 0)
3188 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3189 (bfd_vma) 0))
3190 return false;
3191 }
3192 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3193 {
3194 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3195 (bfd_vma) 0)
3196 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3197 (bfd_vma) 0))
3198 return false;
3199 }
3200
3201 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3202 /* If .dynstr is excluded from the link, we don't want any of
3203 these tags. Strictly, we should be checking each section
3204 individually; This quick check covers for the case where
3205 someone does a /DISCARD/ : { *(*) }. */
3206 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3207 {
3208 bfd_size_type strsize;
3209
3210 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3211 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3212 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3213 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3214 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3215 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3216 (bfd_vma) sizeof (Elf_External_Sym)))
3217 return false;
3218 }
3219 }
3220
3221 /* The backend must work out the sizes of all the other dynamic
3222 sections. */
3223 if (bed->elf_backend_size_dynamic_sections
3224 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3225 return false;
3226
3227 if (elf_hash_table (info)->dynamic_sections_created)
3228 {
3229 bfd_size_type dynsymcount;
3230 asection *s;
3231 size_t bucketcount = 0;
3232 size_t hash_entry_size;
3233 unsigned int dtagcount;
3234
3235 /* Set up the version definition section. */
3236 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3237 BFD_ASSERT (s != NULL);
3238
3239 /* We may have created additional version definitions if we are
3240 just linking a regular application. */
3241 verdefs = asvinfo.verdefs;
3242
3243 /* Skip anonymous version tag. */
3244 if (verdefs != NULL && verdefs->vernum == 0)
3245 verdefs = verdefs->next;
3246
3247 if (verdefs == NULL)
3248 _bfd_strip_section_from_output (info, s);
3249 else
3250 {
3251 unsigned int cdefs;
3252 bfd_size_type size;
3253 struct bfd_elf_version_tree *t;
3254 bfd_byte *p;
3255 Elf_Internal_Verdef def;
3256 Elf_Internal_Verdaux defaux;
3257
3258 cdefs = 0;
3259 size = 0;
3260
3261 /* Make space for the base version. */
3262 size += sizeof (Elf_External_Verdef);
3263 size += sizeof (Elf_External_Verdaux);
3264 ++cdefs;
3265
3266 for (t = verdefs; t != NULL; t = t->next)
3267 {
3268 struct bfd_elf_version_deps *n;
3269
3270 size += sizeof (Elf_External_Verdef);
3271 size += sizeof (Elf_External_Verdaux);
3272 ++cdefs;
3273
3274 for (n = t->deps; n != NULL; n = n->next)
3275 size += sizeof (Elf_External_Verdaux);
3276 }
3277
3278 s->_raw_size = size;
3279 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3280 if (s->contents == NULL && s->_raw_size != 0)
3281 return false;
3282
3283 /* Fill in the version definition section. */
3284
3285 p = s->contents;
3286
3287 def.vd_version = VER_DEF_CURRENT;
3288 def.vd_flags = VER_FLG_BASE;
3289 def.vd_ndx = 1;
3290 def.vd_cnt = 1;
3291 def.vd_aux = sizeof (Elf_External_Verdef);
3292 def.vd_next = (sizeof (Elf_External_Verdef)
3293 + sizeof (Elf_External_Verdaux));
3294
3295 if (soname_indx != (bfd_size_type) -1)
3296 {
3297 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3298 soname_indx);
3299 def.vd_hash = bfd_elf_hash (soname);
3300 defaux.vda_name = soname_indx;
3301 }
3302 else
3303 {
3304 const char *name;
3305 bfd_size_type indx;
3306
3307 name = basename (output_bfd->filename);
3308 def.vd_hash = bfd_elf_hash (name);
3309 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3310 name, false);
3311 if (indx == (bfd_size_type) -1)
3312 return false;
3313 defaux.vda_name = indx;
3314 }
3315 defaux.vda_next = 0;
3316
3317 _bfd_elf_swap_verdef_out (output_bfd, &def,
3318 (Elf_External_Verdef *) p);
3319 p += sizeof (Elf_External_Verdef);
3320 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3321 (Elf_External_Verdaux *) p);
3322 p += sizeof (Elf_External_Verdaux);
3323
3324 for (t = verdefs; t != NULL; t = t->next)
3325 {
3326 unsigned int cdeps;
3327 struct bfd_elf_version_deps *n;
3328 struct elf_link_hash_entry *h;
3329
3330 cdeps = 0;
3331 for (n = t->deps; n != NULL; n = n->next)
3332 ++cdeps;
3333
3334 /* Add a symbol representing this version. */
3335 h = NULL;
3336 if (! (_bfd_generic_link_add_one_symbol
3337 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3338 (bfd_vma) 0, (const char *) NULL, false,
3339 get_elf_backend_data (dynobj)->collect,
3340 (struct bfd_link_hash_entry **) &h)))
3341 return false;
3342 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3343 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3344 h->type = STT_OBJECT;
3345 h->verinfo.vertree = t;
3346
3347 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3348 return false;
3349
3350 def.vd_version = VER_DEF_CURRENT;
3351 def.vd_flags = 0;
3352 if (t->globals == NULL && t->locals == NULL && ! t->used)
3353 def.vd_flags |= VER_FLG_WEAK;
3354 def.vd_ndx = t->vernum + 1;
3355 def.vd_cnt = cdeps + 1;
3356 def.vd_hash = bfd_elf_hash (t->name);
3357 def.vd_aux = sizeof (Elf_External_Verdef);
3358 if (t->next != NULL)
3359 def.vd_next = (sizeof (Elf_External_Verdef)
3360 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3361 else
3362 def.vd_next = 0;
3363
3364 _bfd_elf_swap_verdef_out (output_bfd, &def,
3365 (Elf_External_Verdef *) p);
3366 p += sizeof (Elf_External_Verdef);
3367
3368 defaux.vda_name = h->dynstr_index;
3369 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3370 h->dynstr_index);
3371 if (t->deps == NULL)
3372 defaux.vda_next = 0;
3373 else
3374 defaux.vda_next = sizeof (Elf_External_Verdaux);
3375 t->name_indx = defaux.vda_name;
3376
3377 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3378 (Elf_External_Verdaux *) p);
3379 p += sizeof (Elf_External_Verdaux);
3380
3381 for (n = t->deps; n != NULL; n = n->next)
3382 {
3383 if (n->version_needed == NULL)
3384 {
3385 /* This can happen if there was an error in the
3386 version script. */
3387 defaux.vda_name = 0;
3388 }
3389 else
3390 {
3391 defaux.vda_name = n->version_needed->name_indx;
3392 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3393 defaux.vda_name);
3394 }
3395 if (n->next == NULL)
3396 defaux.vda_next = 0;
3397 else
3398 defaux.vda_next = sizeof (Elf_External_Verdaux);
3399
3400 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3401 (Elf_External_Verdaux *) p);
3402 p += sizeof (Elf_External_Verdaux);
3403 }
3404 }
3405
3406 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3407 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3408 (bfd_vma) cdefs))
3409 return false;
3410
3411 elf_tdata (output_bfd)->cverdefs = cdefs;
3412 }
3413
3414 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3415 {
3416 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3417 return false;
3418 }
3419
3420 if (info->flags_1)
3421 {
3422 if (! info->shared)
3423 info->flags_1 &= ~ (DF_1_INITFIRST
3424 | DF_1_NODELETE
3425 | DF_1_NOOPEN);
3426 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3427 info->flags_1))
3428 return false;
3429 }
3430
3431 /* Work out the size of the version reference section. */
3432
3433 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3434 BFD_ASSERT (s != NULL);
3435 {
3436 struct elf_find_verdep_info sinfo;
3437
3438 sinfo.output_bfd = output_bfd;
3439 sinfo.info = info;
3440 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3441 if (sinfo.vers == 0)
3442 sinfo.vers = 1;
3443 sinfo.failed = false;
3444
3445 elf_link_hash_traverse (elf_hash_table (info),
3446 elf_link_find_version_dependencies,
3447 (PTR) &sinfo);
3448
3449 if (elf_tdata (output_bfd)->verref == NULL)
3450 _bfd_strip_section_from_output (info, s);
3451 else
3452 {
3453 Elf_Internal_Verneed *t;
3454 unsigned int size;
3455 unsigned int crefs;
3456 bfd_byte *p;
3457
3458 /* Build the version definition section. */
3459 size = 0;
3460 crefs = 0;
3461 for (t = elf_tdata (output_bfd)->verref;
3462 t != NULL;
3463 t = t->vn_nextref)
3464 {
3465 Elf_Internal_Vernaux *a;
3466
3467 size += sizeof (Elf_External_Verneed);
3468 ++crefs;
3469 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3470 size += sizeof (Elf_External_Vernaux);
3471 }
3472
3473 s->_raw_size = size;
3474 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3475 if (s->contents == NULL)
3476 return false;
3477
3478 p = s->contents;
3479 for (t = elf_tdata (output_bfd)->verref;
3480 t != NULL;
3481 t = t->vn_nextref)
3482 {
3483 unsigned int caux;
3484 Elf_Internal_Vernaux *a;
3485 bfd_size_type indx;
3486
3487 caux = 0;
3488 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3489 ++caux;
3490
3491 t->vn_version = VER_NEED_CURRENT;
3492 t->vn_cnt = caux;
3493 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3494 elf_dt_name (t->vn_bfd) != NULL
3495 ? elf_dt_name (t->vn_bfd)
3496 : basename (t->vn_bfd->filename),
3497 false);
3498 if (indx == (bfd_size_type) -1)
3499 return false;
3500 t->vn_file = indx;
3501 t->vn_aux = sizeof (Elf_External_Verneed);
3502 if (t->vn_nextref == NULL)
3503 t->vn_next = 0;
3504 else
3505 t->vn_next = (sizeof (Elf_External_Verneed)
3506 + caux * sizeof (Elf_External_Vernaux));
3507
3508 _bfd_elf_swap_verneed_out (output_bfd, t,
3509 (Elf_External_Verneed *) p);
3510 p += sizeof (Elf_External_Verneed);
3511
3512 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3513 {
3514 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3515 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3516 a->vna_nodename, false);
3517 if (indx == (bfd_size_type) -1)
3518 return false;
3519 a->vna_name = indx;
3520 if (a->vna_nextptr == NULL)
3521 a->vna_next = 0;
3522 else
3523 a->vna_next = sizeof (Elf_External_Vernaux);
3524
3525 _bfd_elf_swap_vernaux_out (output_bfd, a,
3526 (Elf_External_Vernaux *) p);
3527 p += sizeof (Elf_External_Vernaux);
3528 }
3529 }
3530
3531 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3532 (bfd_vma) 0)
3533 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3534 (bfd_vma) crefs))
3535 return false;
3536
3537 elf_tdata (output_bfd)->cverrefs = crefs;
3538 }
3539 }
3540
3541 /* Assign dynsym indicies. In a shared library we generate a
3542 section symbol for each output section, which come first.
3543 Next come all of the back-end allocated local dynamic syms,
3544 followed by the rest of the global symbols. */
3545
3546 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3547
3548 /* Work out the size of the symbol version section. */
3549 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3550 BFD_ASSERT (s != NULL);
3551 if (dynsymcount == 0
3552 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3553 {
3554 _bfd_strip_section_from_output (info, s);
3555 /* The DYNSYMCOUNT might have changed if we were going to
3556 output a dynamic symbol table entry for S. */
3557 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3558 }
3559 else
3560 {
3561 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3562 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3563 if (s->contents == NULL)
3564 return false;
3565
3566 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3567 return false;
3568 }
3569
3570 /* Set the size of the .dynsym and .hash sections. We counted
3571 the number of dynamic symbols in elf_link_add_object_symbols.
3572 We will build the contents of .dynsym and .hash when we build
3573 the final symbol table, because until then we do not know the
3574 correct value to give the symbols. We built the .dynstr
3575 section as we went along in elf_link_add_object_symbols. */
3576 s = bfd_get_section_by_name (dynobj, ".dynsym");
3577 BFD_ASSERT (s != NULL);
3578 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3579 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3580 if (s->contents == NULL && s->_raw_size != 0)
3581 return false;
3582
3583 if (dynsymcount != 0)
3584 {
3585 Elf_Internal_Sym isym;
3586
3587 /* The first entry in .dynsym is a dummy symbol. */
3588 isym.st_value = 0;
3589 isym.st_size = 0;
3590 isym.st_name = 0;
3591 isym.st_info = 0;
3592 isym.st_other = 0;
3593 isym.st_shndx = 0;
3594 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3595 }
3596
3597 /* Compute the size of the hashing table. As a side effect this
3598 computes the hash values for all the names we export. */
3599 bucketcount = compute_bucket_count (info);
3600
3601 s = bfd_get_section_by_name (dynobj, ".hash");
3602 BFD_ASSERT (s != NULL);
3603 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3604 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3605 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3606 if (s->contents == NULL)
3607 return false;
3608
3609 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3610 s->contents);
3611 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3612 s->contents + hash_entry_size);
3613
3614 elf_hash_table (info)->bucketcount = bucketcount;
3615
3616 s = bfd_get_section_by_name (dynobj, ".dynstr");
3617 BFD_ASSERT (s != NULL);
3618
3619 elf_finalize_dynstr (output_bfd, info);
3620
3621 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3622
3623 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3624 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3625 return false;
3626 }
3627
3628 return true;
3629 }
3630 \f
3631 /* This function is used to adjust offsets into .dynstr for
3632 dynamic symbols. This is called via elf_link_hash_traverse. */
3633
3634 static boolean elf_adjust_dynstr_offsets
3635 PARAMS ((struct elf_link_hash_entry *, PTR));
3636
3637 static boolean
3638 elf_adjust_dynstr_offsets (h, data)
3639 struct elf_link_hash_entry *h;
3640 PTR data;
3641 {
3642 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3643
3644 if (h->root.type == bfd_link_hash_warning)
3645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3646
3647 if (h->dynindx != -1)
3648 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3649 return true;
3650 }
3651
3652 /* Assign string offsets in .dynstr, update all structures referencing
3653 them. */
3654
3655 static boolean
3656 elf_finalize_dynstr (output_bfd, info)
3657 bfd *output_bfd;
3658 struct bfd_link_info *info;
3659 {
3660 struct elf_link_local_dynamic_entry *entry;
3661 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3662 bfd *dynobj = elf_hash_table (info)->dynobj;
3663 asection *sdyn;
3664 bfd_size_type size;
3665 Elf_External_Dyn *dyncon, *dynconend;
3666
3667 _bfd_elf_strtab_finalize (dynstr);
3668 size = _bfd_elf_strtab_size (dynstr);
3669
3670 /* Update all .dynamic entries referencing .dynstr strings. */
3671 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3672 BFD_ASSERT (sdyn != NULL);
3673
3674 dyncon = (Elf_External_Dyn *) sdyn->contents;
3675 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3676 sdyn->_raw_size);
3677 for (; dyncon < dynconend; dyncon++)
3678 {
3679 Elf_Internal_Dyn dyn;
3680
3681 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3682 switch (dyn.d_tag)
3683 {
3684 case DT_STRSZ:
3685 dyn.d_un.d_val = size;
3686 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3687 break;
3688 case DT_NEEDED:
3689 case DT_SONAME:
3690 case DT_RPATH:
3691 case DT_RUNPATH:
3692 case DT_FILTER:
3693 case DT_AUXILIARY:
3694 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3695 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3696 break;
3697 default:
3698 break;
3699 }
3700 }
3701
3702 /* Now update local dynamic symbols. */
3703 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3704 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3705 entry->isym.st_name);
3706
3707 /* And the rest of dynamic symbols. */
3708 elf_link_hash_traverse (elf_hash_table (info),
3709 elf_adjust_dynstr_offsets, dynstr);
3710
3711 /* Adjust version definitions. */
3712 if (elf_tdata (output_bfd)->cverdefs)
3713 {
3714 asection *s;
3715 bfd_byte *p;
3716 bfd_size_type i;
3717 Elf_Internal_Verdef def;
3718 Elf_Internal_Verdaux defaux;
3719
3720 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3721 p = (bfd_byte *) s->contents;
3722 do
3723 {
3724 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3725 &def);
3726 p += sizeof (Elf_External_Verdef);
3727 for (i = 0; i < def.vd_cnt; ++i)
3728 {
3729 _bfd_elf_swap_verdaux_in (output_bfd,
3730 (Elf_External_Verdaux *) p, &defaux);
3731 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3732 defaux.vda_name);
3733 _bfd_elf_swap_verdaux_out (output_bfd,
3734 &defaux, (Elf_External_Verdaux *) p);
3735 p += sizeof (Elf_External_Verdaux);
3736 }
3737 }
3738 while (def.vd_next);
3739 }
3740
3741 /* Adjust version references. */
3742 if (elf_tdata (output_bfd)->verref)
3743 {
3744 asection *s;
3745 bfd_byte *p;
3746 bfd_size_type i;
3747 Elf_Internal_Verneed need;
3748 Elf_Internal_Vernaux needaux;
3749
3750 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3751 p = (bfd_byte *) s->contents;
3752 do
3753 {
3754 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3755 &need);
3756 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3757 _bfd_elf_swap_verneed_out (output_bfd, &need,
3758 (Elf_External_Verneed *) p);
3759 p += sizeof (Elf_External_Verneed);
3760 for (i = 0; i < need.vn_cnt; ++i)
3761 {
3762 _bfd_elf_swap_vernaux_in (output_bfd,
3763 (Elf_External_Vernaux *) p, &needaux);
3764 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3765 needaux.vna_name);
3766 _bfd_elf_swap_vernaux_out (output_bfd,
3767 &needaux,
3768 (Elf_External_Vernaux *) p);
3769 p += sizeof (Elf_External_Vernaux);
3770 }
3771 }
3772 while (need.vn_next);
3773 }
3774
3775 return true;
3776 }
3777
3778 /* Fix up the flags for a symbol. This handles various cases which
3779 can only be fixed after all the input files are seen. This is
3780 currently called by both adjust_dynamic_symbol and
3781 assign_sym_version, which is unnecessary but perhaps more robust in
3782 the face of future changes. */
3783
3784 static boolean
3785 elf_fix_symbol_flags (h, eif)
3786 struct elf_link_hash_entry *h;
3787 struct elf_info_failed *eif;
3788 {
3789 /* If this symbol was mentioned in a non-ELF file, try to set
3790 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3791 permit a non-ELF file to correctly refer to a symbol defined in
3792 an ELF dynamic object. */
3793 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3794 {
3795 while (h->root.type == bfd_link_hash_indirect)
3796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3797
3798 if (h->root.type != bfd_link_hash_defined
3799 && h->root.type != bfd_link_hash_defweak)
3800 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3801 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3802 else
3803 {
3804 if (h->root.u.def.section->owner != NULL
3805 && (bfd_get_flavour (h->root.u.def.section->owner)
3806 == bfd_target_elf_flavour))
3807 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3808 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3809 else
3810 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3811 }
3812
3813 if (h->dynindx == -1
3814 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3815 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3816 {
3817 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3818 {
3819 eif->failed = true;
3820 return false;
3821 }
3822 }
3823 }
3824 else
3825 {
3826 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3827 was first seen in a non-ELF file. Fortunately, if the symbol
3828 was first seen in an ELF file, we're probably OK unless the
3829 symbol was defined in a non-ELF file. Catch that case here.
3830 FIXME: We're still in trouble if the symbol was first seen in
3831 a dynamic object, and then later in a non-ELF regular object. */
3832 if ((h->root.type == bfd_link_hash_defined
3833 || h->root.type == bfd_link_hash_defweak)
3834 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3835 && (h->root.u.def.section->owner != NULL
3836 ? (bfd_get_flavour (h->root.u.def.section->owner)
3837 != bfd_target_elf_flavour)
3838 : (bfd_is_abs_section (h->root.u.def.section)
3839 && (h->elf_link_hash_flags
3840 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3841 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3842 }
3843
3844 /* If this is a final link, and the symbol was defined as a common
3845 symbol in a regular object file, and there was no definition in
3846 any dynamic object, then the linker will have allocated space for
3847 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3848 flag will not have been set. */
3849 if (h->root.type == bfd_link_hash_defined
3850 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3851 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3852 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3853 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3854 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3855
3856 /* If -Bsymbolic was used (which means to bind references to global
3857 symbols to the definition within the shared object), and this
3858 symbol was defined in a regular object, then it actually doesn't
3859 need a PLT entry, and we can accomplish that by forcing it local.
3860 Likewise, if the symbol has hidden or internal visibility.
3861 FIXME: It might be that we also do not need a PLT for other
3862 non-hidden visibilities, but we would have to tell that to the
3863 backend specifically; we can't just clear PLT-related data here. */
3864 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3865 && eif->info->shared
3866 && is_elf_hash_table (eif->info)
3867 && (eif->info->symbolic
3868 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3869 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3870 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3871 {
3872 struct elf_backend_data *bed;
3873 boolean force_local;
3874
3875 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3876
3877 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3878 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3879 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3880 }
3881
3882 /* If this is a weak defined symbol in a dynamic object, and we know
3883 the real definition in the dynamic object, copy interesting flags
3884 over to the real definition. */
3885 if (h->weakdef != NULL)
3886 {
3887 struct elf_link_hash_entry *weakdef;
3888
3889 weakdef = h->weakdef;
3890 if (h->root.type == bfd_link_hash_indirect)
3891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3892
3893 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3894 || h->root.type == bfd_link_hash_defweak);
3895 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3896 || weakdef->root.type == bfd_link_hash_defweak);
3897 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3898
3899 /* If the real definition is defined by a regular object file,
3900 don't do anything special. See the longer description in
3901 elf_adjust_dynamic_symbol, below. */
3902 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3903 h->weakdef = NULL;
3904 else
3905 {
3906 struct elf_backend_data *bed;
3907
3908 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3909 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
3910 }
3911 }
3912
3913 return true;
3914 }
3915
3916 /* Make the backend pick a good value for a dynamic symbol. This is
3917 called via elf_link_hash_traverse, and also calls itself
3918 recursively. */
3919
3920 static boolean
3921 elf_adjust_dynamic_symbol (h, data)
3922 struct elf_link_hash_entry *h;
3923 PTR data;
3924 {
3925 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3926 bfd *dynobj;
3927 struct elf_backend_data *bed;
3928
3929 if (h->root.type == bfd_link_hash_warning)
3930 {
3931 h->plt.offset = (bfd_vma) -1;
3932 h->got.offset = (bfd_vma) -1;
3933
3934 /* When warning symbols are created, they **replace** the "real"
3935 entry in the hash table, thus we never get to see the real
3936 symbol in a hash traversal. So look at it now. */
3937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3938 }
3939
3940 /* Ignore indirect symbols. These are added by the versioning code. */
3941 if (h->root.type == bfd_link_hash_indirect)
3942 return true;
3943
3944 if (! is_elf_hash_table (eif->info))
3945 return false;
3946
3947 /* Fix the symbol flags. */
3948 if (! elf_fix_symbol_flags (h, eif))
3949 return false;
3950
3951 /* If this symbol does not require a PLT entry, and it is not
3952 defined by a dynamic object, or is not referenced by a regular
3953 object, ignore it. We do have to handle a weak defined symbol,
3954 even if no regular object refers to it, if we decided to add it
3955 to the dynamic symbol table. FIXME: Do we normally need to worry
3956 about symbols which are defined by one dynamic object and
3957 referenced by another one? */
3958 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3959 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3960 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3961 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3962 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3963 {
3964 h->plt.offset = (bfd_vma) -1;
3965 return true;
3966 }
3967
3968 /* If we've already adjusted this symbol, don't do it again. This
3969 can happen via a recursive call. */
3970 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3971 return true;
3972
3973 /* Don't look at this symbol again. Note that we must set this
3974 after checking the above conditions, because we may look at a
3975 symbol once, decide not to do anything, and then get called
3976 recursively later after REF_REGULAR is set below. */
3977 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3978
3979 /* If this is a weak definition, and we know a real definition, and
3980 the real symbol is not itself defined by a regular object file,
3981 then get a good value for the real definition. We handle the
3982 real symbol first, for the convenience of the backend routine.
3983
3984 Note that there is a confusing case here. If the real definition
3985 is defined by a regular object file, we don't get the real symbol
3986 from the dynamic object, but we do get the weak symbol. If the
3987 processor backend uses a COPY reloc, then if some routine in the
3988 dynamic object changes the real symbol, we will not see that
3989 change in the corresponding weak symbol. This is the way other
3990 ELF linkers work as well, and seems to be a result of the shared
3991 library model.
3992
3993 I will clarify this issue. Most SVR4 shared libraries define the
3994 variable _timezone and define timezone as a weak synonym. The
3995 tzset call changes _timezone. If you write
3996 extern int timezone;
3997 int _timezone = 5;
3998 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3999 you might expect that, since timezone is a synonym for _timezone,
4000 the same number will print both times. However, if the processor
4001 backend uses a COPY reloc, then actually timezone will be copied
4002 into your process image, and, since you define _timezone
4003 yourself, _timezone will not. Thus timezone and _timezone will
4004 wind up at different memory locations. The tzset call will set
4005 _timezone, leaving timezone unchanged. */
4006
4007 if (h->weakdef != NULL)
4008 {
4009 /* If we get to this point, we know there is an implicit
4010 reference by a regular object file via the weak symbol H.
4011 FIXME: Is this really true? What if the traversal finds
4012 H->WEAKDEF before it finds H? */
4013 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4014
4015 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4016 return false;
4017 }
4018
4019 /* If a symbol has no type and no size and does not require a PLT
4020 entry, then we are probably about to do the wrong thing here: we
4021 are probably going to create a COPY reloc for an empty object.
4022 This case can arise when a shared object is built with assembly
4023 code, and the assembly code fails to set the symbol type. */
4024 if (h->size == 0
4025 && h->type == STT_NOTYPE
4026 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4027 (*_bfd_error_handler)
4028 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4029 h->root.root.string);
4030
4031 dynobj = elf_hash_table (eif->info)->dynobj;
4032 bed = get_elf_backend_data (dynobj);
4033 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4034 {
4035 eif->failed = true;
4036 return false;
4037 }
4038
4039 return true;
4040 }
4041 \f
4042 /* This routine is used to export all defined symbols into the dynamic
4043 symbol table. It is called via elf_link_hash_traverse. */
4044
4045 static boolean
4046 elf_export_symbol (h, data)
4047 struct elf_link_hash_entry *h;
4048 PTR data;
4049 {
4050 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4051
4052 /* Ignore indirect symbols. These are added by the versioning code. */
4053 if (h->root.type == bfd_link_hash_indirect)
4054 return true;
4055
4056 if (h->root.type == bfd_link_hash_warning)
4057 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4058
4059 if (h->dynindx == -1
4060 && (h->elf_link_hash_flags
4061 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4062 {
4063 struct bfd_elf_version_tree *t;
4064 struct bfd_elf_version_expr *d;
4065
4066 for (t = eif->verdefs; t != NULL; t = t->next)
4067 {
4068 if (t->globals != NULL)
4069 {
4070 for (d = t->globals; d != NULL; d = d->next)
4071 {
4072 if ((*d->match) (d, h->root.root.string))
4073 goto doit;
4074 }
4075 }
4076
4077 if (t->locals != NULL)
4078 {
4079 for (d = t->locals ; d != NULL; d = d->next)
4080 {
4081 if ((*d->match) (d, h->root.root.string))
4082 return true;
4083 }
4084 }
4085 }
4086
4087 if (!eif->verdefs)
4088 {
4089 doit:
4090 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4091 {
4092 eif->failed = true;
4093 return false;
4094 }
4095 }
4096 }
4097
4098 return true;
4099 }
4100 \f
4101 /* Look through the symbols which are defined in other shared
4102 libraries and referenced here. Update the list of version
4103 dependencies. This will be put into the .gnu.version_r section.
4104 This function is called via elf_link_hash_traverse. */
4105
4106 static boolean
4107 elf_link_find_version_dependencies (h, data)
4108 struct elf_link_hash_entry *h;
4109 PTR data;
4110 {
4111 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4112 Elf_Internal_Verneed *t;
4113 Elf_Internal_Vernaux *a;
4114 bfd_size_type amt;
4115
4116 if (h->root.type == bfd_link_hash_warning)
4117 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4118
4119 /* We only care about symbols defined in shared objects with version
4120 information. */
4121 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4122 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4123 || h->dynindx == -1
4124 || h->verinfo.verdef == NULL)
4125 return true;
4126
4127 /* See if we already know about this version. */
4128 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4129 {
4130 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4131 continue;
4132
4133 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4134 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4135 return true;
4136
4137 break;
4138 }
4139
4140 /* This is a new version. Add it to tree we are building. */
4141
4142 if (t == NULL)
4143 {
4144 amt = sizeof *t;
4145 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4146 if (t == NULL)
4147 {
4148 rinfo->failed = true;
4149 return false;
4150 }
4151
4152 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4153 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4154 elf_tdata (rinfo->output_bfd)->verref = t;
4155 }
4156
4157 amt = sizeof *a;
4158 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4159
4160 /* Note that we are copying a string pointer here, and testing it
4161 above. If bfd_elf_string_from_elf_section is ever changed to
4162 discard the string data when low in memory, this will have to be
4163 fixed. */
4164 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4165
4166 a->vna_flags = h->verinfo.verdef->vd_flags;
4167 a->vna_nextptr = t->vn_auxptr;
4168
4169 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4170 ++rinfo->vers;
4171
4172 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4173
4174 t->vn_auxptr = a;
4175
4176 return true;
4177 }
4178
4179 /* Figure out appropriate versions for all the symbols. We may not
4180 have the version number script until we have read all of the input
4181 files, so until that point we don't know which symbols should be
4182 local. This function is called via elf_link_hash_traverse. */
4183
4184 static boolean
4185 elf_link_assign_sym_version (h, data)
4186 struct elf_link_hash_entry *h;
4187 PTR data;
4188 {
4189 struct elf_assign_sym_version_info *sinfo;
4190 struct bfd_link_info *info;
4191 struct elf_backend_data *bed;
4192 struct elf_info_failed eif;
4193 char *p;
4194 bfd_size_type amt;
4195
4196 sinfo = (struct elf_assign_sym_version_info *) data;
4197 info = sinfo->info;
4198
4199 if (h->root.type == bfd_link_hash_warning)
4200 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4201
4202 /* Fix the symbol flags. */
4203 eif.failed = false;
4204 eif.info = info;
4205 if (! elf_fix_symbol_flags (h, &eif))
4206 {
4207 if (eif.failed)
4208 sinfo->failed = true;
4209 return false;
4210 }
4211
4212 /* We only need version numbers for symbols defined in regular
4213 objects. */
4214 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4215 return true;
4216
4217 bed = get_elf_backend_data (sinfo->output_bfd);
4218 p = strchr (h->root.root.string, ELF_VER_CHR);
4219 if (p != NULL && h->verinfo.vertree == NULL)
4220 {
4221 struct bfd_elf_version_tree *t;
4222 boolean hidden;
4223
4224 hidden = true;
4225
4226 /* There are two consecutive ELF_VER_CHR characters if this is
4227 not a hidden symbol. */
4228 ++p;
4229 if (*p == ELF_VER_CHR)
4230 {
4231 hidden = false;
4232 ++p;
4233 }
4234
4235 /* If there is no version string, we can just return out. */
4236 if (*p == '\0')
4237 {
4238 if (hidden)
4239 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4240 return true;
4241 }
4242
4243 /* Look for the version. If we find it, it is no longer weak. */
4244 for (t = sinfo->verdefs; t != NULL; t = t->next)
4245 {
4246 if (strcmp (t->name, p) == 0)
4247 {
4248 size_t len;
4249 char *alc;
4250 struct bfd_elf_version_expr *d;
4251
4252 len = p - h->root.root.string;
4253 alc = bfd_malloc ((bfd_size_type) len);
4254 if (alc == NULL)
4255 return false;
4256 memcpy (alc, h->root.root.string, len - 1);
4257 alc[len - 1] = '\0';
4258 if (alc[len - 2] == ELF_VER_CHR)
4259 alc[len - 2] = '\0';
4260
4261 h->verinfo.vertree = t;
4262 t->used = true;
4263 d = NULL;
4264
4265 if (t->globals != NULL)
4266 {
4267 for (d = t->globals; d != NULL; d = d->next)
4268 if ((*d->match) (d, alc))
4269 break;
4270 }
4271
4272 /* See if there is anything to force this symbol to
4273 local scope. */
4274 if (d == NULL && t->locals != NULL)
4275 {
4276 for (d = t->locals; d != NULL; d = d->next)
4277 {
4278 if ((*d->match) (d, alc))
4279 {
4280 if (h->dynindx != -1
4281 && info->shared
4282 && ! info->export_dynamic)
4283 {
4284 (*bed->elf_backend_hide_symbol) (info, h, true);
4285 }
4286
4287 break;
4288 }
4289 }
4290 }
4291
4292 free (alc);
4293 break;
4294 }
4295 }
4296
4297 /* If we are building an application, we need to create a
4298 version node for this version. */
4299 if (t == NULL && ! info->shared)
4300 {
4301 struct bfd_elf_version_tree **pp;
4302 int version_index;
4303
4304 /* If we aren't going to export this symbol, we don't need
4305 to worry about it. */
4306 if (h->dynindx == -1)
4307 return true;
4308
4309 amt = sizeof *t;
4310 t = ((struct bfd_elf_version_tree *)
4311 bfd_alloc (sinfo->output_bfd, amt));
4312 if (t == NULL)
4313 {
4314 sinfo->failed = true;
4315 return false;
4316 }
4317
4318 t->next = NULL;
4319 t->name = p;
4320 t->globals = NULL;
4321 t->locals = NULL;
4322 t->deps = NULL;
4323 t->name_indx = (unsigned int) -1;
4324 t->used = true;
4325
4326 version_index = 1;
4327 /* Don't count anonymous version tag. */
4328 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4329 version_index = 0;
4330 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4331 ++version_index;
4332 t->vernum = version_index;
4333
4334 *pp = t;
4335
4336 h->verinfo.vertree = t;
4337 }
4338 else if (t == NULL)
4339 {
4340 /* We could not find the version for a symbol when
4341 generating a shared archive. Return an error. */
4342 (*_bfd_error_handler)
4343 (_("%s: undefined versioned symbol name %s"),
4344 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4345 bfd_set_error (bfd_error_bad_value);
4346 sinfo->failed = true;
4347 return false;
4348 }
4349
4350 if (hidden)
4351 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4352 }
4353
4354 /* If we don't have a version for this symbol, see if we can find
4355 something. */
4356 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4357 {
4358 struct bfd_elf_version_tree *t;
4359 struct bfd_elf_version_tree *local_ver;
4360 struct bfd_elf_version_expr *d;
4361
4362 /* See if can find what version this symbol is in. If the
4363 symbol is supposed to be local, then don't actually register
4364 it. */
4365 local_ver = NULL;
4366 for (t = sinfo->verdefs; t != NULL; t = t->next)
4367 {
4368 if (t->globals != NULL)
4369 {
4370 boolean matched;
4371
4372 matched = false;
4373 for (d = t->globals; d != NULL; d = d->next)
4374 {
4375 if ((*d->match) (d, h->root.root.string))
4376 {
4377 if (d->symver)
4378 matched = true;
4379 else
4380 {
4381 /* There is a version without definition. Make
4382 the symbol the default definition for this
4383 version. */
4384 h->verinfo.vertree = t;
4385 local_ver = NULL;
4386 d->script = 1;
4387 break;
4388 }
4389 }
4390 }
4391
4392 if (d != NULL)
4393 break;
4394 else if (matched)
4395 /* There is no undefined version for this symbol. Hide the
4396 default one. */
4397 (*bed->elf_backend_hide_symbol) (info, h, true);
4398 }
4399
4400 if (t->locals != NULL)
4401 {
4402 for (d = t->locals; d != NULL; d = d->next)
4403 {
4404 /* If the match is "*", keep looking for a more
4405 explicit, perhaps even global, match. */
4406 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4407 local_ver = t;
4408 else if ((*d->match) (d, h->root.root.string))
4409 {
4410 local_ver = t;
4411 break;
4412 }
4413 }
4414
4415 if (d != NULL)
4416 break;
4417 }
4418 }
4419
4420 if (local_ver != NULL)
4421 {
4422 h->verinfo.vertree = local_ver;
4423 if (h->dynindx != -1
4424 && info->shared
4425 && ! info->export_dynamic)
4426 {
4427 (*bed->elf_backend_hide_symbol) (info, h, true);
4428 }
4429 }
4430 }
4431
4432 return true;
4433 }
4434 \f
4435 /* Final phase of ELF linker. */
4436
4437 /* A structure we use to avoid passing large numbers of arguments. */
4438
4439 struct elf_final_link_info
4440 {
4441 /* General link information. */
4442 struct bfd_link_info *info;
4443 /* Output BFD. */
4444 bfd *output_bfd;
4445 /* Symbol string table. */
4446 struct bfd_strtab_hash *symstrtab;
4447 /* .dynsym section. */
4448 asection *dynsym_sec;
4449 /* .hash section. */
4450 asection *hash_sec;
4451 /* symbol version section (.gnu.version). */
4452 asection *symver_sec;
4453 /* first SHF_TLS section (if any). */
4454 asection *first_tls_sec;
4455 /* Buffer large enough to hold contents of any section. */
4456 bfd_byte *contents;
4457 /* Buffer large enough to hold external relocs of any section. */
4458 PTR external_relocs;
4459 /* Buffer large enough to hold internal relocs of any section. */
4460 Elf_Internal_Rela *internal_relocs;
4461 /* Buffer large enough to hold external local symbols of any input
4462 BFD. */
4463 Elf_External_Sym *external_syms;
4464 /* And a buffer for symbol section indices. */
4465 Elf_External_Sym_Shndx *locsym_shndx;
4466 /* Buffer large enough to hold internal local symbols of any input
4467 BFD. */
4468 Elf_Internal_Sym *internal_syms;
4469 /* Array large enough to hold a symbol index for each local symbol
4470 of any input BFD. */
4471 long *indices;
4472 /* Array large enough to hold a section pointer for each local
4473 symbol of any input BFD. */
4474 asection **sections;
4475 /* Buffer to hold swapped out symbols. */
4476 Elf_External_Sym *symbuf;
4477 /* And one for symbol section indices. */
4478 Elf_External_Sym_Shndx *symshndxbuf;
4479 /* Number of swapped out symbols in buffer. */
4480 size_t symbuf_count;
4481 /* Number of symbols which fit in symbuf. */
4482 size_t symbuf_size;
4483 };
4484
4485 static boolean elf_link_output_sym
4486 PARAMS ((struct elf_final_link_info *, const char *,
4487 Elf_Internal_Sym *, asection *));
4488 static boolean elf_link_flush_output_syms
4489 PARAMS ((struct elf_final_link_info *));
4490 static boolean elf_link_output_extsym
4491 PARAMS ((struct elf_link_hash_entry *, PTR));
4492 static boolean elf_link_sec_merge_syms
4493 PARAMS ((struct elf_link_hash_entry *, PTR));
4494 static boolean elf_link_check_versioned_symbol
4495 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4496 static boolean elf_link_input_bfd
4497 PARAMS ((struct elf_final_link_info *, bfd *));
4498 static boolean elf_reloc_link_order
4499 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4500 struct bfd_link_order *));
4501
4502 /* This struct is used to pass information to elf_link_output_extsym. */
4503
4504 struct elf_outext_info
4505 {
4506 boolean failed;
4507 boolean localsyms;
4508 struct elf_final_link_info *finfo;
4509 };
4510
4511 /* Compute the size of, and allocate space for, REL_HDR which is the
4512 section header for a section containing relocations for O. */
4513
4514 static boolean
4515 elf_link_size_reloc_section (abfd, rel_hdr, o)
4516 bfd *abfd;
4517 Elf_Internal_Shdr *rel_hdr;
4518 asection *o;
4519 {
4520 bfd_size_type reloc_count;
4521 bfd_size_type num_rel_hashes;
4522
4523 /* Figure out how many relocations there will be. */
4524 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4525 reloc_count = elf_section_data (o)->rel_count;
4526 else
4527 reloc_count = elf_section_data (o)->rel_count2;
4528
4529 num_rel_hashes = o->reloc_count;
4530 if (num_rel_hashes < reloc_count)
4531 num_rel_hashes = reloc_count;
4532
4533 /* That allows us to calculate the size of the section. */
4534 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4535
4536 /* The contents field must last into write_object_contents, so we
4537 allocate it with bfd_alloc rather than malloc. Also since we
4538 cannot be sure that the contents will actually be filled in,
4539 we zero the allocated space. */
4540 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4541 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4542 return false;
4543
4544 /* We only allocate one set of hash entries, so we only do it the
4545 first time we are called. */
4546 if (elf_section_data (o)->rel_hashes == NULL
4547 && num_rel_hashes)
4548 {
4549 struct elf_link_hash_entry **p;
4550
4551 p = ((struct elf_link_hash_entry **)
4552 bfd_zmalloc (num_rel_hashes
4553 * sizeof (struct elf_link_hash_entry *)));
4554 if (p == NULL)
4555 return false;
4556
4557 elf_section_data (o)->rel_hashes = p;
4558 }
4559
4560 return true;
4561 }
4562
4563 /* When performing a relocateable link, the input relocations are
4564 preserved. But, if they reference global symbols, the indices
4565 referenced must be updated. Update all the relocations in
4566 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4567
4568 static void
4569 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4570 bfd *abfd;
4571 Elf_Internal_Shdr *rel_hdr;
4572 unsigned int count;
4573 struct elf_link_hash_entry **rel_hash;
4574 {
4575 unsigned int i;
4576 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4577 Elf_Internal_Rel *irel;
4578 Elf_Internal_Rela *irela;
4579 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4580
4581 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4582 if (irel == NULL)
4583 {
4584 (*_bfd_error_handler) (_("Error: out of memory"));
4585 abort ();
4586 }
4587
4588 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4589 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4590 if (irela == NULL)
4591 {
4592 (*_bfd_error_handler) (_("Error: out of memory"));
4593 abort ();
4594 }
4595
4596 for (i = 0; i < count; i++, rel_hash++)
4597 {
4598 if (*rel_hash == NULL)
4599 continue;
4600
4601 BFD_ASSERT ((*rel_hash)->indx >= 0);
4602
4603 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4604 {
4605 Elf_External_Rel *erel;
4606 unsigned int j;
4607
4608 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4609 if (bed->s->swap_reloc_in)
4610 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4611 else
4612 elf_swap_reloc_in (abfd, erel, irel);
4613
4614 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4615 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4616 ELF_R_TYPE (irel[j].r_info));
4617
4618 if (bed->s->swap_reloc_out)
4619 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4620 else
4621 elf_swap_reloc_out (abfd, irel, erel);
4622 }
4623 else
4624 {
4625 Elf_External_Rela *erela;
4626 unsigned int j;
4627
4628 BFD_ASSERT (rel_hdr->sh_entsize
4629 == sizeof (Elf_External_Rela));
4630
4631 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4632 if (bed->s->swap_reloca_in)
4633 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4634 else
4635 elf_swap_reloca_in (abfd, erela, irela);
4636
4637 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4638 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4639 ELF_R_TYPE (irela[j].r_info));
4640
4641 if (bed->s->swap_reloca_out)
4642 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4643 else
4644 elf_swap_reloca_out (abfd, irela, erela);
4645 }
4646 }
4647
4648 free (irel);
4649 free (irela);
4650 }
4651
4652 struct elf_link_sort_rela
4653 {
4654 bfd_vma offset;
4655 enum elf_reloc_type_class type;
4656 union
4657 {
4658 Elf_Internal_Rel rel;
4659 Elf_Internal_Rela rela;
4660 } u;
4661 };
4662
4663 static int
4664 elf_link_sort_cmp1 (A, B)
4665 const PTR A;
4666 const PTR B;
4667 {
4668 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4669 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4670 int relativea, relativeb;
4671
4672 relativea = a->type == reloc_class_relative;
4673 relativeb = b->type == reloc_class_relative;
4674
4675 if (relativea < relativeb)
4676 return 1;
4677 if (relativea > relativeb)
4678 return -1;
4679 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4680 return -1;
4681 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4682 return 1;
4683 if (a->u.rel.r_offset < b->u.rel.r_offset)
4684 return -1;
4685 if (a->u.rel.r_offset > b->u.rel.r_offset)
4686 return 1;
4687 return 0;
4688 }
4689
4690 static int
4691 elf_link_sort_cmp2 (A, B)
4692 const PTR A;
4693 const PTR B;
4694 {
4695 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4696 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4697 int copya, copyb;
4698
4699 if (a->offset < b->offset)
4700 return -1;
4701 if (a->offset > b->offset)
4702 return 1;
4703 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4704 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4705 if (copya < copyb)
4706 return -1;
4707 if (copya > copyb)
4708 return 1;
4709 if (a->u.rel.r_offset < b->u.rel.r_offset)
4710 return -1;
4711 if (a->u.rel.r_offset > b->u.rel.r_offset)
4712 return 1;
4713 return 0;
4714 }
4715
4716 static size_t
4717 elf_link_sort_relocs (abfd, info, psec)
4718 bfd *abfd;
4719 struct bfd_link_info *info;
4720 asection **psec;
4721 {
4722 bfd *dynobj = elf_hash_table (info)->dynobj;
4723 asection *reldyn, *o;
4724 boolean rel = false;
4725 bfd_size_type count, size;
4726 size_t i, j, ret;
4727 struct elf_link_sort_rela *rela;
4728 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4729
4730 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4731 if (reldyn == NULL || reldyn->_raw_size == 0)
4732 {
4733 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4734 if (reldyn == NULL || reldyn->_raw_size == 0)
4735 return 0;
4736 rel = true;
4737 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4738 }
4739 else
4740 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4741
4742 size = 0;
4743 for (o = dynobj->sections; o != NULL; o = o->next)
4744 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4745 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4746 && o->output_section == reldyn)
4747 size += o->_raw_size;
4748
4749 if (size != reldyn->_raw_size)
4750 return 0;
4751
4752 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4753 if (rela == NULL)
4754 {
4755 (*info->callbacks->warning)
4756 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4757 (bfd_vma) 0);
4758 return 0;
4759 }
4760
4761 for (o = dynobj->sections; o != NULL; o = o->next)
4762 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4763 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4764 && o->output_section == reldyn)
4765 {
4766 if (rel)
4767 {
4768 Elf_External_Rel *erel, *erelend;
4769 struct elf_link_sort_rela *s;
4770
4771 erel = (Elf_External_Rel *) o->contents;
4772 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4773 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4774 for (; erel < erelend; erel++, s++)
4775 {
4776 if (bed->s->swap_reloc_in)
4777 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4778 else
4779 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4780
4781 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4782 }
4783 }
4784 else
4785 {
4786 Elf_External_Rela *erela, *erelaend;
4787 struct elf_link_sort_rela *s;
4788
4789 erela = (Elf_External_Rela *) o->contents;
4790 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4791 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4792 for (; erela < erelaend; erela++, s++)
4793 {
4794 if (bed->s->swap_reloca_in)
4795 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4796 &s->u.rela);
4797 else
4798 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4799
4800 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4801 }
4802 }
4803 }
4804
4805 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4806 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4807 ;
4808 for (i = ret, j = ret; i < count; i++)
4809 {
4810 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4811 j = i;
4812 rela[i].offset = rela[j].u.rel.r_offset;
4813 }
4814 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4815
4816 for (o = dynobj->sections; o != NULL; o = o->next)
4817 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4818 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4819 && o->output_section == reldyn)
4820 {
4821 if (rel)
4822 {
4823 Elf_External_Rel *erel, *erelend;
4824 struct elf_link_sort_rela *s;
4825
4826 erel = (Elf_External_Rel *) o->contents;
4827 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4828 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4829 for (; erel < erelend; erel++, s++)
4830 {
4831 if (bed->s->swap_reloc_out)
4832 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4833 (bfd_byte *) erel);
4834 else
4835 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4836 }
4837 }
4838 else
4839 {
4840 Elf_External_Rela *erela, *erelaend;
4841 struct elf_link_sort_rela *s;
4842
4843 erela = (Elf_External_Rela *) o->contents;
4844 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4845 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4846 for (; erela < erelaend; erela++, s++)
4847 {
4848 if (bed->s->swap_reloca_out)
4849 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4850 (bfd_byte *) erela);
4851 else
4852 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4853 }
4854 }
4855 }
4856
4857 free (rela);
4858 *psec = reldyn;
4859 return ret;
4860 }
4861
4862 /* Do the final step of an ELF link. */
4863
4864 boolean
4865 elf_bfd_final_link (abfd, info)
4866 bfd *abfd;
4867 struct bfd_link_info *info;
4868 {
4869 boolean dynamic;
4870 boolean emit_relocs;
4871 bfd *dynobj;
4872 struct elf_final_link_info finfo;
4873 register asection *o;
4874 register struct bfd_link_order *p;
4875 register bfd *sub;
4876 bfd_size_type max_contents_size;
4877 bfd_size_type max_external_reloc_size;
4878 bfd_size_type max_internal_reloc_count;
4879 bfd_size_type max_sym_count;
4880 bfd_size_type max_sym_shndx_count;
4881 file_ptr off;
4882 Elf_Internal_Sym elfsym;
4883 unsigned int i;
4884 Elf_Internal_Shdr *symtab_hdr;
4885 Elf_Internal_Shdr *symstrtab_hdr;
4886 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4887 struct elf_outext_info eoinfo;
4888 boolean merged;
4889 size_t relativecount = 0;
4890 asection *reldyn = 0;
4891 bfd_size_type amt;
4892
4893 if (! is_elf_hash_table (info))
4894 return false;
4895
4896 if (info->shared)
4897 abfd->flags |= DYNAMIC;
4898
4899 dynamic = elf_hash_table (info)->dynamic_sections_created;
4900 dynobj = elf_hash_table (info)->dynobj;
4901
4902 emit_relocs = (info->relocateable
4903 || info->emitrelocations
4904 || bed->elf_backend_emit_relocs);
4905
4906 finfo.info = info;
4907 finfo.output_bfd = abfd;
4908 finfo.symstrtab = elf_stringtab_init ();
4909 if (finfo.symstrtab == NULL)
4910 return false;
4911
4912 if (! dynamic)
4913 {
4914 finfo.dynsym_sec = NULL;
4915 finfo.hash_sec = NULL;
4916 finfo.symver_sec = NULL;
4917 }
4918 else
4919 {
4920 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4921 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4922 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4923 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4924 /* Note that it is OK if symver_sec is NULL. */
4925 }
4926
4927 finfo.contents = NULL;
4928 finfo.external_relocs = NULL;
4929 finfo.internal_relocs = NULL;
4930 finfo.external_syms = NULL;
4931 finfo.locsym_shndx = NULL;
4932 finfo.internal_syms = NULL;
4933 finfo.indices = NULL;
4934 finfo.sections = NULL;
4935 finfo.symbuf = NULL;
4936 finfo.symshndxbuf = NULL;
4937 finfo.symbuf_count = 0;
4938 finfo.first_tls_sec = NULL;
4939 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4940 if ((o->flags & SEC_THREAD_LOCAL) != 0
4941 && (o->flags & SEC_LOAD) != 0)
4942 {
4943 finfo.first_tls_sec = o;
4944 break;
4945 }
4946
4947 /* Count up the number of relocations we will output for each output
4948 section, so that we know the sizes of the reloc sections. We
4949 also figure out some maximum sizes. */
4950 max_contents_size = 0;
4951 max_external_reloc_size = 0;
4952 max_internal_reloc_count = 0;
4953 max_sym_count = 0;
4954 max_sym_shndx_count = 0;
4955 merged = false;
4956 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4957 {
4958 o->reloc_count = 0;
4959
4960 for (p = o->link_order_head; p != NULL; p = p->next)
4961 {
4962 if (p->type == bfd_section_reloc_link_order
4963 || p->type == bfd_symbol_reloc_link_order)
4964 ++o->reloc_count;
4965 else if (p->type == bfd_indirect_link_order)
4966 {
4967 asection *sec;
4968
4969 sec = p->u.indirect.section;
4970
4971 /* Mark all sections which are to be included in the
4972 link. This will normally be every section. We need
4973 to do this so that we can identify any sections which
4974 the linker has decided to not include. */
4975 sec->linker_mark = true;
4976
4977 if (sec->flags & SEC_MERGE)
4978 merged = true;
4979
4980 if (info->relocateable || info->emitrelocations)
4981 o->reloc_count += sec->reloc_count;
4982 else if (bed->elf_backend_count_relocs)
4983 {
4984 Elf_Internal_Rela * relocs;
4985
4986 relocs = (NAME(_bfd_elf,link_read_relocs)
4987 (abfd, sec, (PTR) NULL,
4988 (Elf_Internal_Rela *) NULL, info->keep_memory));
4989
4990 o->reloc_count
4991 += (*bed->elf_backend_count_relocs) (sec, relocs);
4992
4993 if (elf_section_data (o)->relocs != relocs)
4994 free (relocs);
4995 }
4996
4997 if (sec->_raw_size > max_contents_size)
4998 max_contents_size = sec->_raw_size;
4999 if (sec->_cooked_size > max_contents_size)
5000 max_contents_size = sec->_cooked_size;
5001
5002 /* We are interested in just local symbols, not all
5003 symbols. */
5004 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5005 && (sec->owner->flags & DYNAMIC) == 0)
5006 {
5007 size_t sym_count;
5008
5009 if (elf_bad_symtab (sec->owner))
5010 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5011 / sizeof (Elf_External_Sym));
5012 else
5013 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5014
5015 if (sym_count > max_sym_count)
5016 max_sym_count = sym_count;
5017
5018 if (sym_count > max_sym_shndx_count
5019 && elf_symtab_shndx (sec->owner) != 0)
5020 max_sym_shndx_count = sym_count;
5021
5022 if ((sec->flags & SEC_RELOC) != 0)
5023 {
5024 size_t ext_size;
5025
5026 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5027 if (ext_size > max_external_reloc_size)
5028 max_external_reloc_size = ext_size;
5029 if (sec->reloc_count > max_internal_reloc_count)
5030 max_internal_reloc_count = sec->reloc_count;
5031 }
5032 }
5033 }
5034 }
5035
5036 if (o->reloc_count > 0)
5037 o->flags |= SEC_RELOC;
5038 else
5039 {
5040 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5041 set it (this is probably a bug) and if it is set
5042 assign_section_numbers will create a reloc section. */
5043 o->flags &=~ SEC_RELOC;
5044 }
5045
5046 /* If the SEC_ALLOC flag is not set, force the section VMA to
5047 zero. This is done in elf_fake_sections as well, but forcing
5048 the VMA to 0 here will ensure that relocs against these
5049 sections are handled correctly. */
5050 if ((o->flags & SEC_ALLOC) == 0
5051 && ! o->user_set_vma)
5052 o->vma = 0;
5053 }
5054
5055 if (! info->relocateable && merged)
5056 elf_link_hash_traverse (elf_hash_table (info),
5057 elf_link_sec_merge_syms, (PTR) abfd);
5058
5059 /* Figure out the file positions for everything but the symbol table
5060 and the relocs. We set symcount to force assign_section_numbers
5061 to create a symbol table. */
5062 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5063 BFD_ASSERT (! abfd->output_has_begun);
5064 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5065 goto error_return;
5066
5067 /* Figure out how many relocations we will have in each section.
5068 Just using RELOC_COUNT isn't good enough since that doesn't
5069 maintain a separate value for REL vs. RELA relocations. */
5070 if (emit_relocs)
5071 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5072 for (o = sub->sections; o != NULL; o = o->next)
5073 {
5074 asection *output_section;
5075
5076 if (! o->linker_mark)
5077 {
5078 /* This section was omitted from the link. */
5079 continue;
5080 }
5081
5082 output_section = o->output_section;
5083
5084 if (output_section != NULL
5085 && (o->flags & SEC_RELOC) != 0)
5086 {
5087 struct bfd_elf_section_data *esdi
5088 = elf_section_data (o);
5089 struct bfd_elf_section_data *esdo
5090 = elf_section_data (output_section);
5091 unsigned int *rel_count;
5092 unsigned int *rel_count2;
5093 bfd_size_type entsize;
5094 bfd_size_type entsize2;
5095
5096 /* We must be careful to add the relocations from the
5097 input section to the right output count. */
5098 entsize = esdi->rel_hdr.sh_entsize;
5099 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5100 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5101 || entsize == sizeof (Elf_External_Rela))
5102 && entsize2 != entsize
5103 && (entsize2 == 0
5104 || entsize2 == sizeof (Elf_External_Rel)
5105 || entsize2 == sizeof (Elf_External_Rela)));
5106 if (entsize == esdo->rel_hdr.sh_entsize)
5107 {
5108 rel_count = &esdo->rel_count;
5109 rel_count2 = &esdo->rel_count2;
5110 }
5111 else
5112 {
5113 rel_count = &esdo->rel_count2;
5114 rel_count2 = &esdo->rel_count;
5115 }
5116
5117 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5118 if (esdi->rel_hdr2)
5119 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5120 output_section->flags |= SEC_RELOC;
5121 }
5122 }
5123
5124 /* That created the reloc sections. Set their sizes, and assign
5125 them file positions, and allocate some buffers. */
5126 for (o = abfd->sections; o != NULL; o = o->next)
5127 {
5128 if ((o->flags & SEC_RELOC) != 0)
5129 {
5130 if (!elf_link_size_reloc_section (abfd,
5131 &elf_section_data (o)->rel_hdr,
5132 o))
5133 goto error_return;
5134
5135 if (elf_section_data (o)->rel_hdr2
5136 && !elf_link_size_reloc_section (abfd,
5137 elf_section_data (o)->rel_hdr2,
5138 o))
5139 goto error_return;
5140 }
5141
5142 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5143 to count upwards while actually outputting the relocations. */
5144 elf_section_data (o)->rel_count = 0;
5145 elf_section_data (o)->rel_count2 = 0;
5146 }
5147
5148 _bfd_elf_assign_file_positions_for_relocs (abfd);
5149
5150 /* We have now assigned file positions for all the sections except
5151 .symtab and .strtab. We start the .symtab section at the current
5152 file position, and write directly to it. We build the .strtab
5153 section in memory. */
5154 bfd_get_symcount (abfd) = 0;
5155 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5156 /* sh_name is set in prep_headers. */
5157 symtab_hdr->sh_type = SHT_SYMTAB;
5158 symtab_hdr->sh_flags = 0;
5159 symtab_hdr->sh_addr = 0;
5160 symtab_hdr->sh_size = 0;
5161 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5162 /* sh_link is set in assign_section_numbers. */
5163 /* sh_info is set below. */
5164 /* sh_offset is set just below. */
5165 symtab_hdr->sh_addralign = bed->s->file_align;
5166
5167 off = elf_tdata (abfd)->next_file_pos;
5168 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5169
5170 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5171 incorrect. We do not yet know the size of the .symtab section.
5172 We correct next_file_pos below, after we do know the size. */
5173
5174 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5175 continuously seeking to the right position in the file. */
5176 if (! info->keep_memory || max_sym_count < 20)
5177 finfo.symbuf_size = 20;
5178 else
5179 finfo.symbuf_size = max_sym_count;
5180 amt = finfo.symbuf_size;
5181 amt *= sizeof (Elf_External_Sym);
5182 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5183 if (finfo.symbuf == NULL)
5184 goto error_return;
5185 if (elf_numsections (abfd) > SHN_LORESERVE)
5186 {
5187 amt = finfo.symbuf_size;
5188 amt *= sizeof (Elf_External_Sym_Shndx);
5189 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5190 if (finfo.symshndxbuf == NULL)
5191 goto error_return;
5192 }
5193
5194 /* Start writing out the symbol table. The first symbol is always a
5195 dummy symbol. */
5196 if (info->strip != strip_all
5197 || emit_relocs)
5198 {
5199 elfsym.st_value = 0;
5200 elfsym.st_size = 0;
5201 elfsym.st_info = 0;
5202 elfsym.st_other = 0;
5203 elfsym.st_shndx = SHN_UNDEF;
5204 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5205 &elfsym, bfd_und_section_ptr))
5206 goto error_return;
5207 }
5208
5209 #if 0
5210 /* Some standard ELF linkers do this, but we don't because it causes
5211 bootstrap comparison failures. */
5212 /* Output a file symbol for the output file as the second symbol.
5213 We output this even if we are discarding local symbols, although
5214 I'm not sure if this is correct. */
5215 elfsym.st_value = 0;
5216 elfsym.st_size = 0;
5217 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5218 elfsym.st_other = 0;
5219 elfsym.st_shndx = SHN_ABS;
5220 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5221 &elfsym, bfd_abs_section_ptr))
5222 goto error_return;
5223 #endif
5224
5225 /* Output a symbol for each section. We output these even if we are
5226 discarding local symbols, since they are used for relocs. These
5227 symbols have no names. We store the index of each one in the
5228 index field of the section, so that we can find it again when
5229 outputting relocs. */
5230 if (info->strip != strip_all
5231 || emit_relocs)
5232 {
5233 elfsym.st_size = 0;
5234 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5235 elfsym.st_other = 0;
5236 for (i = 1; i < elf_numsections (abfd); i++)
5237 {
5238 o = section_from_elf_index (abfd, i);
5239 if (o != NULL)
5240 o->target_index = bfd_get_symcount (abfd);
5241 elfsym.st_shndx = i;
5242 if (info->relocateable || o == NULL)
5243 elfsym.st_value = 0;
5244 else
5245 elfsym.st_value = o->vma;
5246 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5247 &elfsym, o))
5248 goto error_return;
5249 if (i == SHN_LORESERVE)
5250 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5251 }
5252 }
5253
5254 /* Allocate some memory to hold information read in from the input
5255 files. */
5256 if (max_contents_size != 0)
5257 {
5258 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5259 if (finfo.contents == NULL)
5260 goto error_return;
5261 }
5262
5263 if (max_external_reloc_size != 0)
5264 {
5265 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5266 if (finfo.external_relocs == NULL)
5267 goto error_return;
5268 }
5269
5270 if (max_internal_reloc_count != 0)
5271 {
5272 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5273 amt *= sizeof (Elf_Internal_Rela);
5274 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5275 if (finfo.internal_relocs == NULL)
5276 goto error_return;
5277 }
5278
5279 if (max_sym_count != 0)
5280 {
5281 amt = max_sym_count * sizeof (Elf_External_Sym);
5282 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5283 if (finfo.external_syms == NULL)
5284 goto error_return;
5285
5286 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5287 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5288 if (finfo.internal_syms == NULL)
5289 goto error_return;
5290
5291 amt = max_sym_count * sizeof (long);
5292 finfo.indices = (long *) bfd_malloc (amt);
5293 if (finfo.indices == NULL)
5294 goto error_return;
5295
5296 amt = max_sym_count * sizeof (asection *);
5297 finfo.sections = (asection **) bfd_malloc (amt);
5298 if (finfo.sections == NULL)
5299 goto error_return;
5300 }
5301
5302 if (max_sym_shndx_count != 0)
5303 {
5304 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5305 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5306 if (finfo.locsym_shndx == NULL)
5307 goto error_return;
5308 }
5309
5310 if (finfo.first_tls_sec)
5311 {
5312 unsigned int align = 0;
5313 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5314 asection *sec;
5315
5316 for (sec = finfo.first_tls_sec;
5317 sec && (sec->flags & SEC_THREAD_LOCAL);
5318 sec = sec->next)
5319 {
5320 bfd_vma size = sec->_raw_size;
5321
5322 if (bfd_get_section_alignment (abfd, sec) > align)
5323 align = bfd_get_section_alignment (abfd, sec);
5324 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5325 {
5326 struct bfd_link_order *o;
5327
5328 size = 0;
5329 for (o = sec->link_order_head; o != NULL; o = o->next)
5330 if (size < o->offset + o->size)
5331 size = o->offset + o->size;
5332 }
5333 end = sec->vma + size;
5334 }
5335 elf_hash_table (info)->tls_segment
5336 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5337 if (elf_hash_table (info)->tls_segment == NULL)
5338 goto error_return;
5339 elf_hash_table (info)->tls_segment->start = base;
5340 elf_hash_table (info)->tls_segment->size = end - base;
5341 elf_hash_table (info)->tls_segment->align = align;
5342 }
5343
5344 /* Since ELF permits relocations to be against local symbols, we
5345 must have the local symbols available when we do the relocations.
5346 Since we would rather only read the local symbols once, and we
5347 would rather not keep them in memory, we handle all the
5348 relocations for a single input file at the same time.
5349
5350 Unfortunately, there is no way to know the total number of local
5351 symbols until we have seen all of them, and the local symbol
5352 indices precede the global symbol indices. This means that when
5353 we are generating relocateable output, and we see a reloc against
5354 a global symbol, we can not know the symbol index until we have
5355 finished examining all the local symbols to see which ones we are
5356 going to output. To deal with this, we keep the relocations in
5357 memory, and don't output them until the end of the link. This is
5358 an unfortunate waste of memory, but I don't see a good way around
5359 it. Fortunately, it only happens when performing a relocateable
5360 link, which is not the common case. FIXME: If keep_memory is set
5361 we could write the relocs out and then read them again; I don't
5362 know how bad the memory loss will be. */
5363
5364 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5365 sub->output_has_begun = false;
5366 for (o = abfd->sections; o != NULL; o = o->next)
5367 {
5368 for (p = o->link_order_head; p != NULL; p = p->next)
5369 {
5370 if (p->type == bfd_indirect_link_order
5371 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5372 == bfd_target_elf_flavour)
5373 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5374 {
5375 if (! sub->output_has_begun)
5376 {
5377 if (! elf_link_input_bfd (&finfo, sub))
5378 goto error_return;
5379 sub->output_has_begun = true;
5380 }
5381 }
5382 else if (p->type == bfd_section_reloc_link_order
5383 || p->type == bfd_symbol_reloc_link_order)
5384 {
5385 if (! elf_reloc_link_order (abfd, info, o, p))
5386 goto error_return;
5387 }
5388 else
5389 {
5390 if (! _bfd_default_link_order (abfd, info, o, p))
5391 goto error_return;
5392 }
5393 }
5394 }
5395
5396 /* Output any global symbols that got converted to local in a
5397 version script or due to symbol visibility. We do this in a
5398 separate step since ELF requires all local symbols to appear
5399 prior to any global symbols. FIXME: We should only do this if
5400 some global symbols were, in fact, converted to become local.
5401 FIXME: Will this work correctly with the Irix 5 linker? */
5402 eoinfo.failed = false;
5403 eoinfo.finfo = &finfo;
5404 eoinfo.localsyms = true;
5405 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5406 (PTR) &eoinfo);
5407 if (eoinfo.failed)
5408 return false;
5409
5410 /* That wrote out all the local symbols. Finish up the symbol table
5411 with the global symbols. Even if we want to strip everything we
5412 can, we still need to deal with those global symbols that got
5413 converted to local in a version script. */
5414
5415 /* The sh_info field records the index of the first non local symbol. */
5416 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5417
5418 if (dynamic
5419 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5420 {
5421 Elf_Internal_Sym sym;
5422 Elf_External_Sym *dynsym =
5423 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5424 long last_local = 0;
5425
5426 /* Write out the section symbols for the output sections. */
5427 if (info->shared)
5428 {
5429 asection *s;
5430
5431 sym.st_size = 0;
5432 sym.st_name = 0;
5433 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5434 sym.st_other = 0;
5435
5436 for (s = abfd->sections; s != NULL; s = s->next)
5437 {
5438 int indx;
5439 Elf_External_Sym *dest;
5440
5441 indx = elf_section_data (s)->this_idx;
5442 BFD_ASSERT (indx > 0);
5443 sym.st_shndx = indx;
5444 sym.st_value = s->vma;
5445 dest = dynsym + elf_section_data (s)->dynindx;
5446 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5447 }
5448
5449 last_local = bfd_count_sections (abfd);
5450 }
5451
5452 /* Write out the local dynsyms. */
5453 if (elf_hash_table (info)->dynlocal)
5454 {
5455 struct elf_link_local_dynamic_entry *e;
5456 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5457 {
5458 asection *s;
5459 Elf_External_Sym *dest;
5460
5461 sym.st_size = e->isym.st_size;
5462 sym.st_other = e->isym.st_other;
5463
5464 /* Copy the internal symbol as is.
5465 Note that we saved a word of storage and overwrote
5466 the original st_name with the dynstr_index. */
5467 sym = e->isym;
5468
5469 if (e->isym.st_shndx != SHN_UNDEF
5470 && (e->isym.st_shndx < SHN_LORESERVE
5471 || e->isym.st_shndx > SHN_HIRESERVE))
5472 {
5473 s = bfd_section_from_elf_index (e->input_bfd,
5474 e->isym.st_shndx);
5475
5476 sym.st_shndx =
5477 elf_section_data (s->output_section)->this_idx;
5478 sym.st_value = (s->output_section->vma
5479 + s->output_offset
5480 + e->isym.st_value);
5481 }
5482
5483 if (last_local < e->dynindx)
5484 last_local = e->dynindx;
5485
5486 dest = dynsym + e->dynindx;
5487 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5488 }
5489 }
5490
5491 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5492 last_local + 1;
5493 }
5494
5495 /* We get the global symbols from the hash table. */
5496 eoinfo.failed = false;
5497 eoinfo.localsyms = false;
5498 eoinfo.finfo = &finfo;
5499 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5500 (PTR) &eoinfo);
5501 if (eoinfo.failed)
5502 return false;
5503
5504 /* If backend needs to output some symbols not present in the hash
5505 table, do it now. */
5506 if (bed->elf_backend_output_arch_syms)
5507 {
5508 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5509 Elf_Internal_Sym *,
5510 asection *));
5511
5512 if (! ((*bed->elf_backend_output_arch_syms)
5513 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5514 return false;
5515 }
5516
5517 /* Flush all symbols to the file. */
5518 if (! elf_link_flush_output_syms (&finfo))
5519 return false;
5520
5521 /* Now we know the size of the symtab section. */
5522 off += symtab_hdr->sh_size;
5523
5524 /* Finish up and write out the symbol string table (.strtab)
5525 section. */
5526 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5527 /* sh_name was set in prep_headers. */
5528 symstrtab_hdr->sh_type = SHT_STRTAB;
5529 symstrtab_hdr->sh_flags = 0;
5530 symstrtab_hdr->sh_addr = 0;
5531 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5532 symstrtab_hdr->sh_entsize = 0;
5533 symstrtab_hdr->sh_link = 0;
5534 symstrtab_hdr->sh_info = 0;
5535 /* sh_offset is set just below. */
5536 symstrtab_hdr->sh_addralign = 1;
5537
5538 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5539 elf_tdata (abfd)->next_file_pos = off;
5540
5541 if (bfd_get_symcount (abfd) > 0)
5542 {
5543 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5544 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5545 return false;
5546 }
5547
5548 /* Adjust the relocs to have the correct symbol indices. */
5549 for (o = abfd->sections; o != NULL; o = o->next)
5550 {
5551 if ((o->flags & SEC_RELOC) == 0)
5552 continue;
5553
5554 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5555 elf_section_data (o)->rel_count,
5556 elf_section_data (o)->rel_hashes);
5557 if (elf_section_data (o)->rel_hdr2 != NULL)
5558 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5559 elf_section_data (o)->rel_count2,
5560 (elf_section_data (o)->rel_hashes
5561 + elf_section_data (o)->rel_count));
5562
5563 /* Set the reloc_count field to 0 to prevent write_relocs from
5564 trying to swap the relocs out itself. */
5565 o->reloc_count = 0;
5566 }
5567
5568 if (dynamic && info->combreloc && dynobj != NULL)
5569 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5570
5571 /* If we are linking against a dynamic object, or generating a
5572 shared library, finish up the dynamic linking information. */
5573 if (dynamic)
5574 {
5575 Elf_External_Dyn *dyncon, *dynconend;
5576
5577 /* Fix up .dynamic entries. */
5578 o = bfd_get_section_by_name (dynobj, ".dynamic");
5579 BFD_ASSERT (o != NULL);
5580
5581 dyncon = (Elf_External_Dyn *) o->contents;
5582 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5583 for (; dyncon < dynconend; dyncon++)
5584 {
5585 Elf_Internal_Dyn dyn;
5586 const char *name;
5587 unsigned int type;
5588
5589 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5590
5591 switch (dyn.d_tag)
5592 {
5593 default:
5594 break;
5595 case DT_NULL:
5596 if (relativecount > 0 && dyncon + 1 < dynconend)
5597 {
5598 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5599 {
5600 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5601 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5602 default: break;
5603 }
5604 if (dyn.d_tag != DT_NULL)
5605 {
5606 dyn.d_un.d_val = relativecount;
5607 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5608 relativecount = 0;
5609 }
5610 }
5611 break;
5612 case DT_INIT:
5613 name = info->init_function;
5614 goto get_sym;
5615 case DT_FINI:
5616 name = info->fini_function;
5617 get_sym:
5618 {
5619 struct elf_link_hash_entry *h;
5620
5621 h = elf_link_hash_lookup (elf_hash_table (info), name,
5622 false, false, true);
5623 if (h != NULL
5624 && (h->root.type == bfd_link_hash_defined
5625 || h->root.type == bfd_link_hash_defweak))
5626 {
5627 dyn.d_un.d_val = h->root.u.def.value;
5628 o = h->root.u.def.section;
5629 if (o->output_section != NULL)
5630 dyn.d_un.d_val += (o->output_section->vma
5631 + o->output_offset);
5632 else
5633 {
5634 /* The symbol is imported from another shared
5635 library and does not apply to this one. */
5636 dyn.d_un.d_val = 0;
5637 }
5638
5639 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5640 }
5641 }
5642 break;
5643
5644 case DT_PREINIT_ARRAYSZ:
5645 name = ".preinit_array";
5646 goto get_size;
5647 case DT_INIT_ARRAYSZ:
5648 name = ".init_array";
5649 goto get_size;
5650 case DT_FINI_ARRAYSZ:
5651 name = ".fini_array";
5652 get_size:
5653 o = bfd_get_section_by_name (abfd, name);
5654 if (o == NULL)
5655 {
5656 (*_bfd_error_handler)
5657 (_("%s: could not find output section %s"),
5658 bfd_get_filename (abfd), name);
5659 goto error_return;
5660 }
5661 if (o->_raw_size == 0)
5662 (*_bfd_error_handler)
5663 (_("warning: %s section has zero size"), name);
5664 dyn.d_un.d_val = o->_raw_size;
5665 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5666 break;
5667
5668 case DT_PREINIT_ARRAY:
5669 name = ".preinit_array";
5670 goto get_vma;
5671 case DT_INIT_ARRAY:
5672 name = ".init_array";
5673 goto get_vma;
5674 case DT_FINI_ARRAY:
5675 name = ".fini_array";
5676 goto get_vma;
5677
5678 case DT_HASH:
5679 name = ".hash";
5680 goto get_vma;
5681 case DT_STRTAB:
5682 name = ".dynstr";
5683 goto get_vma;
5684 case DT_SYMTAB:
5685 name = ".dynsym";
5686 goto get_vma;
5687 case DT_VERDEF:
5688 name = ".gnu.version_d";
5689 goto get_vma;
5690 case DT_VERNEED:
5691 name = ".gnu.version_r";
5692 goto get_vma;
5693 case DT_VERSYM:
5694 name = ".gnu.version";
5695 get_vma:
5696 o = bfd_get_section_by_name (abfd, name);
5697 if (o == NULL)
5698 {
5699 (*_bfd_error_handler)
5700 (_("%s: could not find output section %s"),
5701 bfd_get_filename (abfd), name);
5702 goto error_return;
5703 }
5704 dyn.d_un.d_ptr = o->vma;
5705 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5706 break;
5707
5708 case DT_REL:
5709 case DT_RELA:
5710 case DT_RELSZ:
5711 case DT_RELASZ:
5712 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5713 type = SHT_REL;
5714 else
5715 type = SHT_RELA;
5716 dyn.d_un.d_val = 0;
5717 for (i = 1; i < elf_numsections (abfd); i++)
5718 {
5719 Elf_Internal_Shdr *hdr;
5720
5721 hdr = elf_elfsections (abfd)[i];
5722 if (hdr->sh_type == type
5723 && (hdr->sh_flags & SHF_ALLOC) != 0)
5724 {
5725 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5726 dyn.d_un.d_val += hdr->sh_size;
5727 else
5728 {
5729 if (dyn.d_un.d_val == 0
5730 || hdr->sh_addr < dyn.d_un.d_val)
5731 dyn.d_un.d_val = hdr->sh_addr;
5732 }
5733 }
5734 }
5735 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5736 break;
5737 }
5738 }
5739 }
5740
5741 /* If we have created any dynamic sections, then output them. */
5742 if (dynobj != NULL)
5743 {
5744 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5745 goto error_return;
5746
5747 for (o = dynobj->sections; o != NULL; o = o->next)
5748 {
5749 if ((o->flags & SEC_HAS_CONTENTS) == 0
5750 || o->_raw_size == 0
5751 || o->output_section == bfd_abs_section_ptr)
5752 continue;
5753 if ((o->flags & SEC_LINKER_CREATED) == 0)
5754 {
5755 /* At this point, we are only interested in sections
5756 created by elf_link_create_dynamic_sections. */
5757 continue;
5758 }
5759 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5760 != SHT_STRTAB)
5761 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5762 {
5763 if (! bfd_set_section_contents (abfd, o->output_section,
5764 o->contents,
5765 (file_ptr) o->output_offset,
5766 o->_raw_size))
5767 goto error_return;
5768 }
5769 else
5770 {
5771 /* The contents of the .dynstr section are actually in a
5772 stringtab. */
5773 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5774 if (bfd_seek (abfd, off, SEEK_SET) != 0
5775 || ! _bfd_elf_strtab_emit (abfd,
5776 elf_hash_table (info)->dynstr))
5777 goto error_return;
5778 }
5779 }
5780 }
5781
5782 if (info->relocateable)
5783 {
5784 boolean failed = false;
5785
5786 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5787 if (failed)
5788 goto error_return;
5789 }
5790
5791 /* If we have optimized stabs strings, output them. */
5792 if (elf_hash_table (info)->stab_info != NULL)
5793 {
5794 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5795 goto error_return;
5796 }
5797
5798 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5799 {
5800 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5801 ".eh_frame_hdr");
5802 if (o
5803 && (elf_section_data (o)->sec_info_type
5804 == ELF_INFO_TYPE_EH_FRAME_HDR))
5805 {
5806 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5807 goto error_return;
5808 }
5809 }
5810
5811 if (finfo.symstrtab != NULL)
5812 _bfd_stringtab_free (finfo.symstrtab);
5813 if (finfo.contents != NULL)
5814 free (finfo.contents);
5815 if (finfo.external_relocs != NULL)
5816 free (finfo.external_relocs);
5817 if (finfo.internal_relocs != NULL)
5818 free (finfo.internal_relocs);
5819 if (finfo.external_syms != NULL)
5820 free (finfo.external_syms);
5821 if (finfo.locsym_shndx != NULL)
5822 free (finfo.locsym_shndx);
5823 if (finfo.internal_syms != NULL)
5824 free (finfo.internal_syms);
5825 if (finfo.indices != NULL)
5826 free (finfo.indices);
5827 if (finfo.sections != NULL)
5828 free (finfo.sections);
5829 if (finfo.symbuf != NULL)
5830 free (finfo.symbuf);
5831 if (finfo.symshndxbuf != NULL)
5832 free (finfo.symbuf);
5833 for (o = abfd->sections; o != NULL; o = o->next)
5834 {
5835 if ((o->flags & SEC_RELOC) != 0
5836 && elf_section_data (o)->rel_hashes != NULL)
5837 free (elf_section_data (o)->rel_hashes);
5838 }
5839
5840 elf_tdata (abfd)->linker = true;
5841
5842 return true;
5843
5844 error_return:
5845 if (finfo.symstrtab != NULL)
5846 _bfd_stringtab_free (finfo.symstrtab);
5847 if (finfo.contents != NULL)
5848 free (finfo.contents);
5849 if (finfo.external_relocs != NULL)
5850 free (finfo.external_relocs);
5851 if (finfo.internal_relocs != NULL)
5852 free (finfo.internal_relocs);
5853 if (finfo.external_syms != NULL)
5854 free (finfo.external_syms);
5855 if (finfo.locsym_shndx != NULL)
5856 free (finfo.locsym_shndx);
5857 if (finfo.internal_syms != NULL)
5858 free (finfo.internal_syms);
5859 if (finfo.indices != NULL)
5860 free (finfo.indices);
5861 if (finfo.sections != NULL)
5862 free (finfo.sections);
5863 if (finfo.symbuf != NULL)
5864 free (finfo.symbuf);
5865 if (finfo.symshndxbuf != NULL)
5866 free (finfo.symbuf);
5867 for (o = abfd->sections; o != NULL; o = o->next)
5868 {
5869 if ((o->flags & SEC_RELOC) != 0
5870 && elf_section_data (o)->rel_hashes != NULL)
5871 free (elf_section_data (o)->rel_hashes);
5872 }
5873
5874 return false;
5875 }
5876
5877 /* Add a symbol to the output symbol table. */
5878
5879 static boolean
5880 elf_link_output_sym (finfo, name, elfsym, input_sec)
5881 struct elf_final_link_info *finfo;
5882 const char *name;
5883 Elf_Internal_Sym *elfsym;
5884 asection *input_sec;
5885 {
5886 Elf_External_Sym *dest;
5887 Elf_External_Sym_Shndx *destshndx;
5888
5889 boolean (*output_symbol_hook) PARAMS ((bfd *,
5890 struct bfd_link_info *info,
5891 const char *,
5892 Elf_Internal_Sym *,
5893 asection *));
5894
5895 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5896 elf_backend_link_output_symbol_hook;
5897 if (output_symbol_hook != NULL)
5898 {
5899 if (! ((*output_symbol_hook)
5900 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5901 return false;
5902 }
5903
5904 if (name == (const char *) NULL || *name == '\0')
5905 elfsym->st_name = 0;
5906 else if (input_sec->flags & SEC_EXCLUDE)
5907 elfsym->st_name = 0;
5908 else
5909 {
5910 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5911 name, true, false);
5912 if (elfsym->st_name == (unsigned long) -1)
5913 return false;
5914 }
5915
5916 if (finfo->symbuf_count >= finfo->symbuf_size)
5917 {
5918 if (! elf_link_flush_output_syms (finfo))
5919 return false;
5920 }
5921
5922 dest = finfo->symbuf + finfo->symbuf_count;
5923 destshndx = finfo->symshndxbuf;
5924 if (destshndx != NULL)
5925 destshndx += finfo->symbuf_count;
5926 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5927 ++finfo->symbuf_count;
5928
5929 ++ bfd_get_symcount (finfo->output_bfd);
5930
5931 return true;
5932 }
5933
5934 /* Flush the output symbols to the file. */
5935
5936 static boolean
5937 elf_link_flush_output_syms (finfo)
5938 struct elf_final_link_info *finfo;
5939 {
5940 if (finfo->symbuf_count > 0)
5941 {
5942 Elf_Internal_Shdr *hdr;
5943 file_ptr pos;
5944 bfd_size_type amt;
5945
5946 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5947 pos = hdr->sh_offset + hdr->sh_size;
5948 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5949 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5950 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5951 return false;
5952
5953 hdr->sh_size += amt;
5954
5955 if (finfo->symshndxbuf != NULL)
5956 {
5957 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5958 pos = hdr->sh_offset + hdr->sh_size;
5959 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5960 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5961 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5962 != amt))
5963 return false;
5964
5965 hdr->sh_size += amt;
5966 }
5967
5968 finfo->symbuf_count = 0;
5969 }
5970
5971 return true;
5972 }
5973
5974 /* Adjust all external symbols pointing into SEC_MERGE sections
5975 to reflect the object merging within the sections. */
5976
5977 static boolean
5978 elf_link_sec_merge_syms (h, data)
5979 struct elf_link_hash_entry *h;
5980 PTR data;
5981 {
5982 asection *sec;
5983
5984 if (h->root.type == bfd_link_hash_warning)
5985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5986
5987 if ((h->root.type == bfd_link_hash_defined
5988 || h->root.type == bfd_link_hash_defweak)
5989 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5990 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5991 {
5992 bfd *output_bfd = (bfd *) data;
5993
5994 h->root.u.def.value =
5995 _bfd_merged_section_offset (output_bfd,
5996 &h->root.u.def.section,
5997 elf_section_data (sec)->sec_info,
5998 h->root.u.def.value, (bfd_vma) 0);
5999 }
6000
6001 return true;
6002 }
6003
6004 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6005 allowing an unsatisfied unversioned symbol in the DSO to match a
6006 versioned symbol that would normally require an explicit version. */
6007
6008 static boolean
6009 elf_link_check_versioned_symbol (info, h)
6010 struct bfd_link_info *info;
6011 struct elf_link_hash_entry *h;
6012 {
6013 bfd *undef_bfd = h->root.u.undef.abfd;
6014 struct elf_link_loaded_list *loaded;
6015
6016 if ((undef_bfd->flags & DYNAMIC) == 0
6017 || info->hash->creator->flavour != bfd_target_elf_flavour
6018 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
6019 return false;
6020
6021 for (loaded = elf_hash_table (info)->loaded;
6022 loaded != NULL;
6023 loaded = loaded->next)
6024 {
6025 bfd *input;
6026 Elf_Internal_Shdr *hdr;
6027 bfd_size_type symcount;
6028 bfd_size_type extsymcount;
6029 bfd_size_type extsymoff;
6030 Elf_Internal_Shdr *versymhdr;
6031 Elf_Internal_Sym *isym;
6032 Elf_Internal_Sym *isymend;
6033 Elf_Internal_Sym *isymbuf;
6034 Elf_External_Versym *ever;
6035 Elf_External_Versym *extversym;
6036
6037 input = loaded->abfd;
6038
6039 /* We check each DSO for a possible hidden versioned definition. */
6040 if (input == undef_bfd
6041 || (input->flags & DYNAMIC) == 0
6042 || elf_dynversym (input) == 0)
6043 continue;
6044
6045 hdr = &elf_tdata (input)->dynsymtab_hdr;
6046
6047 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
6048 if (elf_bad_symtab (input))
6049 {
6050 extsymcount = symcount;
6051 extsymoff = 0;
6052 }
6053 else
6054 {
6055 extsymcount = symcount - hdr->sh_info;
6056 extsymoff = hdr->sh_info;
6057 }
6058
6059 if (extsymcount == 0)
6060 continue;
6061
6062 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6063 NULL, NULL, NULL);
6064 if (isymbuf == NULL)
6065 return false;
6066
6067 /* Read in any version definitions. */
6068 versymhdr = &elf_tdata (input)->dynversym_hdr;
6069 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
6070 if (extversym == NULL)
6071 goto error_ret;
6072
6073 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6074 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6075 != versymhdr->sh_size))
6076 {
6077 free (extversym);
6078 error_ret:
6079 free (isymbuf);
6080 return false;
6081 }
6082
6083 ever = extversym + extsymoff;
6084 isymend = isymbuf + extsymcount;
6085 for (isym = isymbuf; isym < isymend; isym++, ever++)
6086 {
6087 const char *name;
6088 Elf_Internal_Versym iver;
6089
6090 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6091 || isym->st_shndx == SHN_UNDEF)
6092 continue;
6093
6094 name = bfd_elf_string_from_elf_section (input,
6095 hdr->sh_link,
6096 isym->st_name);
6097 if (strcmp (name, h->root.root.string) != 0)
6098 continue;
6099
6100 _bfd_elf_swap_versym_in (input, ever, &iver);
6101
6102 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6103 {
6104 /* If we have a non-hidden versioned sym, then it should
6105 have provided a definition for the undefined sym. */
6106 abort ();
6107 }
6108
6109 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6110 {
6111 /* This is the oldest (default) sym. We can use it. */
6112 free (extversym);
6113 free (isymbuf);
6114 return true;
6115 }
6116 }
6117
6118 free (extversym);
6119 free (isymbuf);
6120 }
6121
6122 return false;
6123 }
6124
6125 /* Add an external symbol to the symbol table. This is called from
6126 the hash table traversal routine. When generating a shared object,
6127 we go through the symbol table twice. The first time we output
6128 anything that might have been forced to local scope in a version
6129 script. The second time we output the symbols that are still
6130 global symbols. */
6131
6132 static boolean
6133 elf_link_output_extsym (h, data)
6134 struct elf_link_hash_entry *h;
6135 PTR data;
6136 {
6137 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6138 struct elf_final_link_info *finfo = eoinfo->finfo;
6139 boolean strip;
6140 Elf_Internal_Sym sym;
6141 asection *input_sec;
6142
6143 if (h->root.type == bfd_link_hash_warning)
6144 {
6145 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6146 if (h->root.type == bfd_link_hash_new)
6147 return true;
6148 }
6149
6150 /* Decide whether to output this symbol in this pass. */
6151 if (eoinfo->localsyms)
6152 {
6153 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6154 return true;
6155 }
6156 else
6157 {
6158 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6159 return true;
6160 }
6161
6162 /* If we are not creating a shared library, and this symbol is
6163 referenced by a shared library but is not defined anywhere, then
6164 warn that it is undefined. If we do not do this, the runtime
6165 linker will complain that the symbol is undefined when the
6166 program is run. We don't have to worry about symbols that are
6167 referenced by regular files, because we will already have issued
6168 warnings for them. */
6169 if (! finfo->info->relocateable
6170 && ! finfo->info->allow_shlib_undefined
6171 && ! finfo->info->shared
6172 && h->root.type == bfd_link_hash_undefined
6173 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6174 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6175 && ! elf_link_check_versioned_symbol (finfo->info, h))
6176 {
6177 if (! ((*finfo->info->callbacks->undefined_symbol)
6178 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6179 (asection *) NULL, (bfd_vma) 0, true)))
6180 {
6181 eoinfo->failed = true;
6182 return false;
6183 }
6184 }
6185
6186 /* We don't want to output symbols that have never been mentioned by
6187 a regular file, or that we have been told to strip. However, if
6188 h->indx is set to -2, the symbol is used by a reloc and we must
6189 output it. */
6190 if (h->indx == -2)
6191 strip = false;
6192 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6193 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6194 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6195 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6196 strip = true;
6197 else if (finfo->info->strip == strip_all
6198 || (finfo->info->strip == strip_some
6199 && bfd_hash_lookup (finfo->info->keep_hash,
6200 h->root.root.string,
6201 false, false) == NULL))
6202 strip = true;
6203 else
6204 strip = false;
6205
6206 /* If we're stripping it, and it's not a dynamic symbol, there's
6207 nothing else to do unless it is a forced local symbol. */
6208 if (strip
6209 && h->dynindx == -1
6210 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6211 return true;
6212
6213 sym.st_value = 0;
6214 sym.st_size = h->size;
6215 sym.st_other = h->other;
6216 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6217 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6218 else if (h->root.type == bfd_link_hash_undefweak
6219 || h->root.type == bfd_link_hash_defweak)
6220 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6221 else
6222 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6223
6224 switch (h->root.type)
6225 {
6226 default:
6227 case bfd_link_hash_new:
6228 case bfd_link_hash_warning:
6229 abort ();
6230 return false;
6231
6232 case bfd_link_hash_undefined:
6233 case bfd_link_hash_undefweak:
6234 input_sec = bfd_und_section_ptr;
6235 sym.st_shndx = SHN_UNDEF;
6236 break;
6237
6238 case bfd_link_hash_defined:
6239 case bfd_link_hash_defweak:
6240 {
6241 input_sec = h->root.u.def.section;
6242 if (input_sec->output_section != NULL)
6243 {
6244 sym.st_shndx =
6245 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6246 input_sec->output_section);
6247 if (sym.st_shndx == SHN_BAD)
6248 {
6249 (*_bfd_error_handler)
6250 (_("%s: could not find output section %s for input section %s"),
6251 bfd_get_filename (finfo->output_bfd),
6252 input_sec->output_section->name,
6253 input_sec->name);
6254 eoinfo->failed = true;
6255 return false;
6256 }
6257
6258 /* ELF symbols in relocateable files are section relative,
6259 but in nonrelocateable files they are virtual
6260 addresses. */
6261 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6262 if (! finfo->info->relocateable)
6263 {
6264 sym.st_value += input_sec->output_section->vma;
6265 if (h->type == STT_TLS)
6266 {
6267 /* STT_TLS symbols are relative to PT_TLS segment
6268 base. */
6269 BFD_ASSERT (finfo->first_tls_sec != NULL);
6270 sym.st_value -= finfo->first_tls_sec->vma;
6271 }
6272 }
6273 }
6274 else
6275 {
6276 BFD_ASSERT (input_sec->owner == NULL
6277 || (input_sec->owner->flags & DYNAMIC) != 0);
6278 sym.st_shndx = SHN_UNDEF;
6279 input_sec = bfd_und_section_ptr;
6280 }
6281 }
6282 break;
6283
6284 case bfd_link_hash_common:
6285 input_sec = h->root.u.c.p->section;
6286 sym.st_shndx = SHN_COMMON;
6287 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6288 break;
6289
6290 case bfd_link_hash_indirect:
6291 /* These symbols are created by symbol versioning. They point
6292 to the decorated version of the name. For example, if the
6293 symbol foo@@GNU_1.2 is the default, which should be used when
6294 foo is used with no version, then we add an indirect symbol
6295 foo which points to foo@@GNU_1.2. We ignore these symbols,
6296 since the indirected symbol is already in the hash table. */
6297 return true;
6298 }
6299
6300 /* Give the processor backend a chance to tweak the symbol value,
6301 and also to finish up anything that needs to be done for this
6302 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6303 forced local syms when non-shared is due to a historical quirk. */
6304 if ((h->dynindx != -1
6305 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6306 && (finfo->info->shared
6307 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6308 && elf_hash_table (finfo->info)->dynamic_sections_created)
6309 {
6310 struct elf_backend_data *bed;
6311
6312 bed = get_elf_backend_data (finfo->output_bfd);
6313 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6314 (finfo->output_bfd, finfo->info, h, &sym)))
6315 {
6316 eoinfo->failed = true;
6317 return false;
6318 }
6319 }
6320
6321 /* If we are marking the symbol as undefined, and there are no
6322 non-weak references to this symbol from a regular object, then
6323 mark the symbol as weak undefined; if there are non-weak
6324 references, mark the symbol as strong. We can't do this earlier,
6325 because it might not be marked as undefined until the
6326 finish_dynamic_symbol routine gets through with it. */
6327 if (sym.st_shndx == SHN_UNDEF
6328 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6329 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6330 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6331 {
6332 int bindtype;
6333
6334 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6335 bindtype = STB_GLOBAL;
6336 else
6337 bindtype = STB_WEAK;
6338 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6339 }
6340
6341 /* If a symbol is not defined locally, we clear the visibility
6342 field. */
6343 if (! finfo->info->relocateable
6344 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6345 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6346
6347 /* If this symbol should be put in the .dynsym section, then put it
6348 there now. We already know the symbol index. We also fill in
6349 the entry in the .hash section. */
6350 if (h->dynindx != -1
6351 && elf_hash_table (finfo->info)->dynamic_sections_created)
6352 {
6353 size_t bucketcount;
6354 size_t bucket;
6355 size_t hash_entry_size;
6356 bfd_byte *bucketpos;
6357 bfd_vma chain;
6358 Elf_External_Sym *esym;
6359
6360 sym.st_name = h->dynstr_index;
6361 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6362 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6363
6364 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6365 bucket = h->elf_hash_value % bucketcount;
6366 hash_entry_size
6367 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6368 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6369 + (bucket + 2) * hash_entry_size);
6370 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6371 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6372 bucketpos);
6373 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6374 ((bfd_byte *) finfo->hash_sec->contents
6375 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6376
6377 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6378 {
6379 Elf_Internal_Versym iversym;
6380 Elf_External_Versym *eversym;
6381
6382 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6383 {
6384 if (h->verinfo.verdef == NULL)
6385 iversym.vs_vers = 0;
6386 else
6387 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6388 }
6389 else
6390 {
6391 if (h->verinfo.vertree == NULL)
6392 iversym.vs_vers = 1;
6393 else
6394 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6395 }
6396
6397 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6398 iversym.vs_vers |= VERSYM_HIDDEN;
6399
6400 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6401 eversym += h->dynindx;
6402 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6403 }
6404 }
6405
6406 /* If we're stripping it, then it was just a dynamic symbol, and
6407 there's nothing else to do. */
6408 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6409 return true;
6410
6411 h->indx = bfd_get_symcount (finfo->output_bfd);
6412
6413 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6414 {
6415 eoinfo->failed = true;
6416 return false;
6417 }
6418
6419 return true;
6420 }
6421
6422 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6423 originated from the section given by INPUT_REL_HDR) to the
6424 OUTPUT_BFD. */
6425
6426 static boolean
6427 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6428 internal_relocs)
6429 bfd *output_bfd;
6430 asection *input_section;
6431 Elf_Internal_Shdr *input_rel_hdr;
6432 Elf_Internal_Rela *internal_relocs;
6433 {
6434 Elf_Internal_Rela *irela;
6435 Elf_Internal_Rela *irelaend;
6436 Elf_Internal_Shdr *output_rel_hdr;
6437 asection *output_section;
6438 unsigned int *rel_countp = NULL;
6439 struct elf_backend_data *bed;
6440 bfd_size_type amt;
6441
6442 output_section = input_section->output_section;
6443 output_rel_hdr = NULL;
6444
6445 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6446 == input_rel_hdr->sh_entsize)
6447 {
6448 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6449 rel_countp = &elf_section_data (output_section)->rel_count;
6450 }
6451 else if (elf_section_data (output_section)->rel_hdr2
6452 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6453 == input_rel_hdr->sh_entsize))
6454 {
6455 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6456 rel_countp = &elf_section_data (output_section)->rel_count2;
6457 }
6458 else
6459 {
6460 (*_bfd_error_handler)
6461 (_("%s: relocation size mismatch in %s section %s"),
6462 bfd_get_filename (output_bfd),
6463 bfd_archive_filename (input_section->owner),
6464 input_section->name);
6465 bfd_set_error (bfd_error_wrong_object_format);
6466 return false;
6467 }
6468
6469 bed = get_elf_backend_data (output_bfd);
6470 irela = internal_relocs;
6471 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
6472 * bed->s->int_rels_per_ext_rel);
6473
6474 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6475 {
6476 Elf_External_Rel *erel;
6477 Elf_Internal_Rel *irel;
6478
6479 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6480 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6481 if (irel == NULL)
6482 {
6483 (*_bfd_error_handler) (_("Error: out of memory"));
6484 abort ();
6485 }
6486
6487 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6488 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6489 {
6490 unsigned int i;
6491
6492 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6493 {
6494 irel[i].r_offset = irela[i].r_offset;
6495 irel[i].r_info = irela[i].r_info;
6496 BFD_ASSERT (irela[i].r_addend == 0);
6497 }
6498
6499 if (bed->s->swap_reloc_out)
6500 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6501 else
6502 elf_swap_reloc_out (output_bfd, irel, erel);
6503 }
6504
6505 free (irel);
6506 }
6507 else
6508 {
6509 Elf_External_Rela *erela;
6510
6511 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6512
6513 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6514 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6515 if (bed->s->swap_reloca_out)
6516 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6517 else
6518 elf_swap_reloca_out (output_bfd, irela, erela);
6519 }
6520
6521 /* Bump the counter, so that we know where to add the next set of
6522 relocations. */
6523 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6524
6525 return true;
6526 }
6527
6528 /* Link an input file into the linker output file. This function
6529 handles all the sections and relocations of the input file at once.
6530 This is so that we only have to read the local symbols once, and
6531 don't have to keep them in memory. */
6532
6533 static boolean
6534 elf_link_input_bfd (finfo, input_bfd)
6535 struct elf_final_link_info *finfo;
6536 bfd *input_bfd;
6537 {
6538 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6539 bfd *, asection *, bfd_byte *,
6540 Elf_Internal_Rela *,
6541 Elf_Internal_Sym *, asection **));
6542 bfd *output_bfd;
6543 Elf_Internal_Shdr *symtab_hdr;
6544 size_t locsymcount;
6545 size_t extsymoff;
6546 Elf_Internal_Sym *isymbuf;
6547 Elf_Internal_Sym *isym;
6548 Elf_Internal_Sym *isymend;
6549 long *pindex;
6550 asection **ppsection;
6551 asection *o;
6552 struct elf_backend_data *bed;
6553 boolean emit_relocs;
6554 struct elf_link_hash_entry **sym_hashes;
6555
6556 output_bfd = finfo->output_bfd;
6557 bed = get_elf_backend_data (output_bfd);
6558 relocate_section = bed->elf_backend_relocate_section;
6559
6560 /* If this is a dynamic object, we don't want to do anything here:
6561 we don't want the local symbols, and we don't want the section
6562 contents. */
6563 if ((input_bfd->flags & DYNAMIC) != 0)
6564 return true;
6565
6566 emit_relocs = (finfo->info->relocateable
6567 || finfo->info->emitrelocations
6568 || bed->elf_backend_emit_relocs);
6569
6570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6571 if (elf_bad_symtab (input_bfd))
6572 {
6573 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6574 extsymoff = 0;
6575 }
6576 else
6577 {
6578 locsymcount = symtab_hdr->sh_info;
6579 extsymoff = symtab_hdr->sh_info;
6580 }
6581
6582 /* Read the local symbols. */
6583 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6584 if (isymbuf == NULL && locsymcount != 0)
6585 {
6586 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6587 finfo->internal_syms,
6588 finfo->external_syms,
6589 finfo->locsym_shndx);
6590 if (isymbuf == NULL)
6591 return false;
6592 }
6593
6594 /* Find local symbol sections and adjust values of symbols in
6595 SEC_MERGE sections. Write out those local symbols we know are
6596 going into the output file. */
6597 isymend = isymbuf + locsymcount;
6598 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6599 isym < isymend;
6600 isym++, pindex++, ppsection++)
6601 {
6602 asection *isec;
6603 const char *name;
6604 Elf_Internal_Sym osym;
6605
6606 *pindex = -1;
6607
6608 if (elf_bad_symtab (input_bfd))
6609 {
6610 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6611 {
6612 *ppsection = NULL;
6613 continue;
6614 }
6615 }
6616
6617 if (isym->st_shndx == SHN_UNDEF)
6618 isec = bfd_und_section_ptr;
6619 else if (isym->st_shndx < SHN_LORESERVE
6620 || isym->st_shndx > SHN_HIRESERVE)
6621 {
6622 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6623 if (isec
6624 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6625 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6626 isym->st_value =
6627 _bfd_merged_section_offset (output_bfd, &isec,
6628 elf_section_data (isec)->sec_info,
6629 isym->st_value, (bfd_vma) 0);
6630 }
6631 else if (isym->st_shndx == SHN_ABS)
6632 isec = bfd_abs_section_ptr;
6633 else if (isym->st_shndx == SHN_COMMON)
6634 isec = bfd_com_section_ptr;
6635 else
6636 {
6637 /* Who knows? */
6638 isec = NULL;
6639 }
6640
6641 *ppsection = isec;
6642
6643 /* Don't output the first, undefined, symbol. */
6644 if (ppsection == finfo->sections)
6645 continue;
6646
6647 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6648 {
6649 /* We never output section symbols. Instead, we use the
6650 section symbol of the corresponding section in the output
6651 file. */
6652 continue;
6653 }
6654
6655 /* If we are stripping all symbols, we don't want to output this
6656 one. */
6657 if (finfo->info->strip == strip_all)
6658 continue;
6659
6660 /* If we are discarding all local symbols, we don't want to
6661 output this one. If we are generating a relocateable output
6662 file, then some of the local symbols may be required by
6663 relocs; we output them below as we discover that they are
6664 needed. */
6665 if (finfo->info->discard == discard_all)
6666 continue;
6667
6668 /* If this symbol is defined in a section which we are
6669 discarding, we don't need to keep it, but note that
6670 linker_mark is only reliable for sections that have contents.
6671 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6672 as well as linker_mark. */
6673 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6674 && isec != NULL
6675 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6676 || (! finfo->info->relocateable
6677 && (isec->flags & SEC_EXCLUDE) != 0)))
6678 continue;
6679
6680 /* Get the name of the symbol. */
6681 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6682 isym->st_name);
6683 if (name == NULL)
6684 return false;
6685
6686 /* See if we are discarding symbols with this name. */
6687 if ((finfo->info->strip == strip_some
6688 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6689 == NULL))
6690 || (((finfo->info->discard == discard_sec_merge
6691 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6692 || finfo->info->discard == discard_l)
6693 && bfd_is_local_label_name (input_bfd, name)))
6694 continue;
6695
6696 /* If we get here, we are going to output this symbol. */
6697
6698 osym = *isym;
6699
6700 /* Adjust the section index for the output file. */
6701 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6702 isec->output_section);
6703 if (osym.st_shndx == SHN_BAD)
6704 return false;
6705
6706 *pindex = bfd_get_symcount (output_bfd);
6707
6708 /* ELF symbols in relocateable files are section relative, but
6709 in executable files they are virtual addresses. Note that
6710 this code assumes that all ELF sections have an associated
6711 BFD section with a reasonable value for output_offset; below
6712 we assume that they also have a reasonable value for
6713 output_section. Any special sections must be set up to meet
6714 these requirements. */
6715 osym.st_value += isec->output_offset;
6716 if (! finfo->info->relocateable)
6717 {
6718 osym.st_value += isec->output_section->vma;
6719 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6720 {
6721 /* STT_TLS symbols are relative to PT_TLS segment base. */
6722 BFD_ASSERT (finfo->first_tls_sec != NULL);
6723 osym.st_value -= finfo->first_tls_sec->vma;
6724 }
6725 }
6726
6727 if (! elf_link_output_sym (finfo, name, &osym, isec))
6728 return false;
6729 }
6730
6731 /* Relocate the contents of each section. */
6732 sym_hashes = elf_sym_hashes (input_bfd);
6733 for (o = input_bfd->sections; o != NULL; o = o->next)
6734 {
6735 bfd_byte *contents;
6736
6737 if (! o->linker_mark)
6738 {
6739 /* This section was omitted from the link. */
6740 continue;
6741 }
6742
6743 if ((o->flags & SEC_HAS_CONTENTS) == 0
6744 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6745 continue;
6746
6747 if ((o->flags & SEC_LINKER_CREATED) != 0)
6748 {
6749 /* Section was created by elf_link_create_dynamic_sections
6750 or somesuch. */
6751 continue;
6752 }
6753
6754 /* Get the contents of the section. They have been cached by a
6755 relaxation routine. Note that o is a section in an input
6756 file, so the contents field will not have been set by any of
6757 the routines which work on output files. */
6758 if (elf_section_data (o)->this_hdr.contents != NULL)
6759 contents = elf_section_data (o)->this_hdr.contents;
6760 else
6761 {
6762 contents = finfo->contents;
6763 if (! bfd_get_section_contents (input_bfd, o, contents,
6764 (file_ptr) 0, o->_raw_size))
6765 return false;
6766 }
6767
6768 if ((o->flags & SEC_RELOC) != 0)
6769 {
6770 Elf_Internal_Rela *internal_relocs;
6771
6772 /* Get the swapped relocs. */
6773 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6774 (input_bfd, o, finfo->external_relocs,
6775 finfo->internal_relocs, false));
6776 if (internal_relocs == NULL
6777 && o->reloc_count > 0)
6778 return false;
6779
6780 /* Run through the relocs looking for any against symbols
6781 from discarded sections and section symbols from
6782 removed link-once sections. Complain about relocs
6783 against discarded sections. Zero relocs against removed
6784 link-once sections. We should really complain if
6785 anything in the final link tries to use it, but
6786 DWARF-based exception handling might have an entry in
6787 .eh_frame to describe a routine in the linkonce section,
6788 and it turns out to be hard to remove the .eh_frame
6789 entry too. FIXME. */
6790 if (!finfo->info->relocateable
6791 && !elf_section_ignore_discarded_relocs (o))
6792 {
6793 Elf_Internal_Rela *rel, *relend;
6794
6795 rel = internal_relocs;
6796 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6797 for ( ; rel < relend; rel++)
6798 {
6799 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6800
6801 if (r_symndx >= locsymcount
6802 || (elf_bad_symtab (input_bfd)
6803 && finfo->sections[r_symndx] == NULL))
6804 {
6805 struct elf_link_hash_entry *h;
6806
6807 h = sym_hashes[r_symndx - extsymoff];
6808 while (h->root.type == bfd_link_hash_indirect
6809 || h->root.type == bfd_link_hash_warning)
6810 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6811
6812 /* Complain if the definition comes from a
6813 discarded section. */
6814 if ((h->root.type == bfd_link_hash_defined
6815 || h->root.type == bfd_link_hash_defweak)
6816 && elf_discarded_section (h->root.u.def.section))
6817 {
6818 #if BFD_VERSION_DATE < 20031005
6819 if ((o->flags & SEC_DEBUGGING) != 0)
6820 {
6821 #if BFD_VERSION_DATE > 20021005
6822 (*finfo->info->callbacks->warning)
6823 (finfo->info,
6824 _("warning: relocation against removed section; zeroing"),
6825 NULL, input_bfd, o, rel->r_offset);
6826 #endif
6827 BFD_ASSERT (r_symndx != 0);
6828 memset (rel, 0, sizeof (*rel));
6829 }
6830 else
6831 #endif
6832 {
6833 if (! ((*finfo->info->callbacks->undefined_symbol)
6834 (finfo->info, h->root.root.string,
6835 input_bfd, o, rel->r_offset,
6836 true)))
6837 return false;
6838 }
6839 }
6840 }
6841 else
6842 {
6843 asection *sec = finfo->sections[r_symndx];
6844
6845 if (sec != NULL && elf_discarded_section (sec))
6846 {
6847 #if BFD_VERSION_DATE < 20031005
6848 if ((o->flags & SEC_DEBUGGING) != 0
6849 || (sec->flags & SEC_LINK_ONCE) != 0)
6850 {
6851 #if BFD_VERSION_DATE > 20021005
6852 (*finfo->info->callbacks->warning)
6853 (finfo->info,
6854 _("warning: relocation against removed section"),
6855 NULL, input_bfd, o, rel->r_offset);
6856 #endif
6857 BFD_ASSERT (r_symndx != 0);
6858 rel->r_info
6859 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6860 rel->r_addend = 0;
6861 }
6862 else
6863 #endif
6864 {
6865 boolean ok;
6866 const char *msg
6867 = _("local symbols in discarded section %s");
6868 bfd_size_type amt
6869 = strlen (sec->name) + strlen (msg) - 1;
6870 char *buf = (char *) bfd_malloc (amt);
6871
6872 if (buf != NULL)
6873 sprintf (buf, msg, sec->name);
6874 else
6875 buf = (char *) sec->name;
6876 ok = (*finfo->info->callbacks
6877 ->undefined_symbol) (finfo->info, buf,
6878 input_bfd, o,
6879 rel->r_offset,
6880 true);
6881 if (buf != sec->name)
6882 free (buf);
6883 if (!ok)
6884 return false;
6885 }
6886 }
6887 }
6888 }
6889 }
6890
6891 /* Relocate the section by invoking a back end routine.
6892
6893 The back end routine is responsible for adjusting the
6894 section contents as necessary, and (if using Rela relocs
6895 and generating a relocateable output file) adjusting the
6896 reloc addend as necessary.
6897
6898 The back end routine does not have to worry about setting
6899 the reloc address or the reloc symbol index.
6900
6901 The back end routine is given a pointer to the swapped in
6902 internal symbols, and can access the hash table entries
6903 for the external symbols via elf_sym_hashes (input_bfd).
6904
6905 When generating relocateable output, the back end routine
6906 must handle STB_LOCAL/STT_SECTION symbols specially. The
6907 output symbol is going to be a section symbol
6908 corresponding to the output section, which will require
6909 the addend to be adjusted. */
6910
6911 if (! (*relocate_section) (output_bfd, finfo->info,
6912 input_bfd, o, contents,
6913 internal_relocs,
6914 isymbuf,
6915 finfo->sections))
6916 return false;
6917
6918 if (emit_relocs)
6919 {
6920 Elf_Internal_Rela *irela;
6921 Elf_Internal_Rela *irelaend;
6922 struct elf_link_hash_entry **rel_hash;
6923 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6924 unsigned int next_erel;
6925 boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
6926 Elf_Internal_Shdr *,
6927 Elf_Internal_Rela *));
6928 boolean rela_normal;
6929
6930 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6931 rela_normal = (bed->rela_normal
6932 && (input_rel_hdr->sh_entsize
6933 == sizeof (Elf_External_Rela)));
6934
6935 /* Adjust the reloc addresses and symbol indices. */
6936
6937 irela = internal_relocs;
6938 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6939 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6940 + elf_section_data (o->output_section)->rel_count
6941 + elf_section_data (o->output_section)->rel_count2);
6942 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6943 {
6944 unsigned long r_symndx;
6945 asection *sec;
6946 Elf_Internal_Sym sym;
6947
6948 if (next_erel == bed->s->int_rels_per_ext_rel)
6949 {
6950 rel_hash++;
6951 next_erel = 0;
6952 }
6953
6954 irela->r_offset += o->output_offset;
6955
6956 /* Relocs in an executable have to be virtual addresses. */
6957 if (!finfo->info->relocateable)
6958 irela->r_offset += o->output_section->vma;
6959
6960 r_symndx = ELF_R_SYM (irela->r_info);
6961
6962 if (r_symndx == 0)
6963 continue;
6964
6965 if (r_symndx >= locsymcount
6966 || (elf_bad_symtab (input_bfd)
6967 && finfo->sections[r_symndx] == NULL))
6968 {
6969 struct elf_link_hash_entry *rh;
6970 unsigned long indx;
6971
6972 /* This is a reloc against a global symbol. We
6973 have not yet output all the local symbols, so
6974 we do not know the symbol index of any global
6975 symbol. We set the rel_hash entry for this
6976 reloc to point to the global hash table entry
6977 for this symbol. The symbol index is then
6978 set at the end of elf_bfd_final_link. */
6979 indx = r_symndx - extsymoff;
6980 rh = elf_sym_hashes (input_bfd)[indx];
6981 while (rh->root.type == bfd_link_hash_indirect
6982 || rh->root.type == bfd_link_hash_warning)
6983 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6984
6985 /* Setting the index to -2 tells
6986 elf_link_output_extsym that this symbol is
6987 used by a reloc. */
6988 BFD_ASSERT (rh->indx < 0);
6989 rh->indx = -2;
6990
6991 *rel_hash = rh;
6992
6993 continue;
6994 }
6995
6996 /* This is a reloc against a local symbol. */
6997
6998 *rel_hash = NULL;
6999 sym = isymbuf[r_symndx];
7000 sec = finfo->sections[r_symndx];
7001 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7002 {
7003 /* I suppose the backend ought to fill in the
7004 section of any STT_SECTION symbol against a
7005 processor specific section. If we have
7006 discarded a section, the output_section will
7007 be the absolute section. */
7008 if (bfd_is_abs_section (sec)
7009 || (sec != NULL
7010 && bfd_is_abs_section (sec->output_section)))
7011 r_symndx = 0;
7012 else if (sec == NULL || sec->owner == NULL)
7013 {
7014 bfd_set_error (bfd_error_bad_value);
7015 return false;
7016 }
7017 else
7018 {
7019 r_symndx = sec->output_section->target_index;
7020 BFD_ASSERT (r_symndx != 0);
7021 }
7022
7023 /* Adjust the addend according to where the
7024 section winds up in the output section. */
7025 if (rela_normal)
7026 irela->r_addend += sec->output_offset;
7027 }
7028 else
7029 {
7030 if (finfo->indices[r_symndx] == -1)
7031 {
7032 unsigned long shlink;
7033 const char *name;
7034 asection *osec;
7035
7036 if (finfo->info->strip == strip_all)
7037 {
7038 /* You can't do ld -r -s. */
7039 bfd_set_error (bfd_error_invalid_operation);
7040 return false;
7041 }
7042
7043 /* This symbol was skipped earlier, but
7044 since it is needed by a reloc, we
7045 must output it now. */
7046 shlink = symtab_hdr->sh_link;
7047 name = (bfd_elf_string_from_elf_section
7048 (input_bfd, shlink, sym.st_name));
7049 if (name == NULL)
7050 return false;
7051
7052 osec = sec->output_section;
7053 sym.st_shndx =
7054 _bfd_elf_section_from_bfd_section (output_bfd,
7055 osec);
7056 if (sym.st_shndx == SHN_BAD)
7057 return false;
7058
7059 sym.st_value += sec->output_offset;
7060 if (! finfo->info->relocateable)
7061 {
7062 sym.st_value += osec->vma;
7063 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7064 {
7065 /* STT_TLS symbols are relative to PT_TLS
7066 segment base. */
7067 BFD_ASSERT (finfo->first_tls_sec != NULL);
7068 sym.st_value -= finfo->first_tls_sec->vma;
7069 }
7070 }
7071
7072 finfo->indices[r_symndx]
7073 = bfd_get_symcount (output_bfd);
7074
7075 if (! elf_link_output_sym (finfo, name, &sym, sec))
7076 return false;
7077 }
7078
7079 r_symndx = finfo->indices[r_symndx];
7080 }
7081
7082 irela->r_info = ELF_R_INFO (r_symndx,
7083 ELF_R_TYPE (irela->r_info));
7084 }
7085
7086 /* Swap out the relocs. */
7087 if (bed->elf_backend_emit_relocs
7088 && !(finfo->info->relocateable
7089 || finfo->info->emitrelocations))
7090 reloc_emitter = bed->elf_backend_emit_relocs;
7091 else
7092 reloc_emitter = elf_link_output_relocs;
7093
7094 if (input_rel_hdr->sh_size != 0
7095 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7096 internal_relocs))
7097 return false;
7098
7099 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7100 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7101 {
7102 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7103 * bed->s->int_rels_per_ext_rel);
7104 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7105 internal_relocs))
7106 return false;
7107 }
7108 }
7109 }
7110
7111 /* Write out the modified section contents. */
7112 if (bed->elf_backend_write_section
7113 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7114 {
7115 /* Section written out. */
7116 }
7117 else switch (elf_section_data (o)->sec_info_type)
7118 {
7119 case ELF_INFO_TYPE_STABS:
7120 if (! (_bfd_write_section_stabs
7121 (output_bfd,
7122 &elf_hash_table (finfo->info)->stab_info,
7123 o, &elf_section_data (o)->sec_info, contents)))
7124 return false;
7125 break;
7126 case ELF_INFO_TYPE_MERGE:
7127 if (! (_bfd_write_merged_section
7128 (output_bfd, o, elf_section_data (o)->sec_info)))
7129 return false;
7130 break;
7131 case ELF_INFO_TYPE_EH_FRAME:
7132 {
7133 asection *ehdrsec;
7134
7135 ehdrsec
7136 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
7137 ".eh_frame_hdr");
7138 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
7139 contents)))
7140 return false;
7141 }
7142 break;
7143 default:
7144 {
7145 bfd_size_type sec_size;
7146
7147 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7148 if (! (o->flags & SEC_EXCLUDE)
7149 && ! bfd_set_section_contents (output_bfd, o->output_section,
7150 contents,
7151 (file_ptr) o->output_offset,
7152 sec_size))
7153 return false;
7154 }
7155 break;
7156 }
7157 }
7158
7159 return true;
7160 }
7161
7162 /* Generate a reloc when linking an ELF file. This is a reloc
7163 requested by the linker, and does come from any input file. This
7164 is used to build constructor and destructor tables when linking
7165 with -Ur. */
7166
7167 static boolean
7168 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7169 bfd *output_bfd;
7170 struct bfd_link_info *info;
7171 asection *output_section;
7172 struct bfd_link_order *link_order;
7173 {
7174 reloc_howto_type *howto;
7175 long indx;
7176 bfd_vma offset;
7177 bfd_vma addend;
7178 struct elf_link_hash_entry **rel_hash_ptr;
7179 Elf_Internal_Shdr *rel_hdr;
7180 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7181
7182 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7183 if (howto == NULL)
7184 {
7185 bfd_set_error (bfd_error_bad_value);
7186 return false;
7187 }
7188
7189 addend = link_order->u.reloc.p->addend;
7190
7191 /* Figure out the symbol index. */
7192 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7193 + elf_section_data (output_section)->rel_count
7194 + elf_section_data (output_section)->rel_count2);
7195 if (link_order->type == bfd_section_reloc_link_order)
7196 {
7197 indx = link_order->u.reloc.p->u.section->target_index;
7198 BFD_ASSERT (indx != 0);
7199 *rel_hash_ptr = NULL;
7200 }
7201 else
7202 {
7203 struct elf_link_hash_entry *h;
7204
7205 /* Treat a reloc against a defined symbol as though it were
7206 actually against the section. */
7207 h = ((struct elf_link_hash_entry *)
7208 bfd_wrapped_link_hash_lookup (output_bfd, info,
7209 link_order->u.reloc.p->u.name,
7210 false, false, true));
7211 if (h != NULL
7212 && (h->root.type == bfd_link_hash_defined
7213 || h->root.type == bfd_link_hash_defweak))
7214 {
7215 asection *section;
7216
7217 section = h->root.u.def.section;
7218 indx = section->output_section->target_index;
7219 *rel_hash_ptr = NULL;
7220 /* It seems that we ought to add the symbol value to the
7221 addend here, but in practice it has already been added
7222 because it was passed to constructor_callback. */
7223 addend += section->output_section->vma + section->output_offset;
7224 }
7225 else if (h != NULL)
7226 {
7227 /* Setting the index to -2 tells elf_link_output_extsym that
7228 this symbol is used by a reloc. */
7229 h->indx = -2;
7230 *rel_hash_ptr = h;
7231 indx = 0;
7232 }
7233 else
7234 {
7235 if (! ((*info->callbacks->unattached_reloc)
7236 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7237 (asection *) NULL, (bfd_vma) 0)))
7238 return false;
7239 indx = 0;
7240 }
7241 }
7242
7243 /* If this is an inplace reloc, we must write the addend into the
7244 object file. */
7245 if (howto->partial_inplace && addend != 0)
7246 {
7247 bfd_size_type size;
7248 bfd_reloc_status_type rstat;
7249 bfd_byte *buf;
7250 boolean ok;
7251 const char *sym_name;
7252
7253 size = bfd_get_reloc_size (howto);
7254 buf = (bfd_byte *) bfd_zmalloc (size);
7255 if (buf == (bfd_byte *) NULL)
7256 return false;
7257 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7258 switch (rstat)
7259 {
7260 case bfd_reloc_ok:
7261 break;
7262
7263 default:
7264 case bfd_reloc_outofrange:
7265 abort ();
7266
7267 case bfd_reloc_overflow:
7268 if (link_order->type == bfd_section_reloc_link_order)
7269 sym_name = bfd_section_name (output_bfd,
7270 link_order->u.reloc.p->u.section);
7271 else
7272 sym_name = link_order->u.reloc.p->u.name;
7273 if (! ((*info->callbacks->reloc_overflow)
7274 (info, sym_name, howto->name, addend,
7275 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7276 {
7277 free (buf);
7278 return false;
7279 }
7280 break;
7281 }
7282 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7283 (file_ptr) link_order->offset, size);
7284 free (buf);
7285 if (! ok)
7286 return false;
7287 }
7288
7289 /* The address of a reloc is relative to the section in a
7290 relocateable file, and is a virtual address in an executable
7291 file. */
7292 offset = link_order->offset;
7293 if (! info->relocateable)
7294 offset += output_section->vma;
7295
7296 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7297
7298 if (rel_hdr->sh_type == SHT_REL)
7299 {
7300 bfd_size_type size;
7301 Elf_Internal_Rel *irel;
7302 Elf_External_Rel *erel;
7303 unsigned int i;
7304
7305 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7306 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7307 if (irel == NULL)
7308 return false;
7309
7310 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7311 irel[i].r_offset = offset;
7312 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7313
7314 erel = ((Elf_External_Rel *) rel_hdr->contents
7315 + elf_section_data (output_section)->rel_count);
7316
7317 if (bed->s->swap_reloc_out)
7318 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7319 else
7320 elf_swap_reloc_out (output_bfd, irel, erel);
7321
7322 free (irel);
7323 }
7324 else
7325 {
7326 bfd_size_type size;
7327 Elf_Internal_Rela *irela;
7328 Elf_External_Rela *erela;
7329 unsigned int i;
7330
7331 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7332 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7333 if (irela == NULL)
7334 return false;
7335
7336 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7337 irela[i].r_offset = offset;
7338 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7339 irela[0].r_addend = addend;
7340
7341 erela = ((Elf_External_Rela *) rel_hdr->contents
7342 + elf_section_data (output_section)->rel_count);
7343
7344 if (bed->s->swap_reloca_out)
7345 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7346 else
7347 elf_swap_reloca_out (output_bfd, irela, erela);
7348 }
7349
7350 ++elf_section_data (output_section)->rel_count;
7351
7352 return true;
7353 }
7354 \f
7355 /* Allocate a pointer to live in a linker created section. */
7356
7357 boolean
7358 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7359 bfd *abfd;
7360 struct bfd_link_info *info;
7361 elf_linker_section_t *lsect;
7362 struct elf_link_hash_entry *h;
7363 const Elf_Internal_Rela *rel;
7364 {
7365 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7366 elf_linker_section_pointers_t *linker_section_ptr;
7367 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7368 bfd_size_type amt;
7369
7370 BFD_ASSERT (lsect != NULL);
7371
7372 /* Is this a global symbol? */
7373 if (h != NULL)
7374 {
7375 /* Has this symbol already been allocated? If so, our work is done. */
7376 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7377 rel->r_addend,
7378 lsect->which))
7379 return true;
7380
7381 ptr_linker_section_ptr = &h->linker_section_pointer;
7382 /* Make sure this symbol is output as a dynamic symbol. */
7383 if (h->dynindx == -1)
7384 {
7385 if (! elf_link_record_dynamic_symbol (info, h))
7386 return false;
7387 }
7388
7389 if (lsect->rel_section)
7390 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7391 }
7392 else
7393 {
7394 /* Allocation of a pointer to a local symbol. */
7395 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7396
7397 /* Allocate a table to hold the local symbols if first time. */
7398 if (!ptr)
7399 {
7400 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7401 register unsigned int i;
7402
7403 amt = num_symbols;
7404 amt *= sizeof (elf_linker_section_pointers_t *);
7405 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7406
7407 if (!ptr)
7408 return false;
7409
7410 elf_local_ptr_offsets (abfd) = ptr;
7411 for (i = 0; i < num_symbols; i++)
7412 ptr[i] = (elf_linker_section_pointers_t *) 0;
7413 }
7414
7415 /* Has this symbol already been allocated? If so, our work is done. */
7416 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7417 rel->r_addend,
7418 lsect->which))
7419 return true;
7420
7421 ptr_linker_section_ptr = &ptr[r_symndx];
7422
7423 if (info->shared)
7424 {
7425 /* If we are generating a shared object, we need to
7426 output a R_<xxx>_RELATIVE reloc so that the
7427 dynamic linker can adjust this GOT entry. */
7428 BFD_ASSERT (lsect->rel_section != NULL);
7429 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7430 }
7431 }
7432
7433 /* Allocate space for a pointer in the linker section, and allocate
7434 a new pointer record from internal memory. */
7435 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7436 amt = sizeof (elf_linker_section_pointers_t);
7437 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7438
7439 if (!linker_section_ptr)
7440 return false;
7441
7442 linker_section_ptr->next = *ptr_linker_section_ptr;
7443 linker_section_ptr->addend = rel->r_addend;
7444 linker_section_ptr->which = lsect->which;
7445 linker_section_ptr->written_address_p = false;
7446 *ptr_linker_section_ptr = linker_section_ptr;
7447
7448 #if 0
7449 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7450 {
7451 linker_section_ptr->offset = (lsect->section->_raw_size
7452 - lsect->hole_size + (ARCH_SIZE / 8));
7453 lsect->hole_offset += ARCH_SIZE / 8;
7454 lsect->sym_offset += ARCH_SIZE / 8;
7455 if (lsect->sym_hash)
7456 {
7457 /* Bump up symbol value if needed. */
7458 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7459 #ifdef DEBUG
7460 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7461 lsect->sym_hash->root.root.string,
7462 (long) ARCH_SIZE / 8,
7463 (long) lsect->sym_hash->root.u.def.value);
7464 #endif
7465 }
7466 }
7467 else
7468 #endif
7469 linker_section_ptr->offset = lsect->section->_raw_size;
7470
7471 lsect->section->_raw_size += ARCH_SIZE / 8;
7472
7473 #ifdef DEBUG
7474 fprintf (stderr,
7475 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7476 lsect->name, (long) linker_section_ptr->offset,
7477 (long) lsect->section->_raw_size);
7478 #endif
7479
7480 return true;
7481 }
7482 \f
7483 #if ARCH_SIZE==64
7484 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7485 #endif
7486 #if ARCH_SIZE==32
7487 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7488 #endif
7489
7490 /* Fill in the address for a pointer generated in a linker section. */
7491
7492 bfd_vma
7493 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7494 relocation, rel, relative_reloc)
7495 bfd *output_bfd;
7496 bfd *input_bfd;
7497 struct bfd_link_info *info;
7498 elf_linker_section_t *lsect;
7499 struct elf_link_hash_entry *h;
7500 bfd_vma relocation;
7501 const Elf_Internal_Rela *rel;
7502 int relative_reloc;
7503 {
7504 elf_linker_section_pointers_t *linker_section_ptr;
7505
7506 BFD_ASSERT (lsect != NULL);
7507
7508 if (h != NULL)
7509 {
7510 /* Handle global symbol. */
7511 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7512 (h->linker_section_pointer,
7513 rel->r_addend,
7514 lsect->which));
7515
7516 BFD_ASSERT (linker_section_ptr != NULL);
7517
7518 if (! elf_hash_table (info)->dynamic_sections_created
7519 || (info->shared
7520 && info->symbolic
7521 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7522 {
7523 /* This is actually a static link, or it is a
7524 -Bsymbolic link and the symbol is defined
7525 locally. We must initialize this entry in the
7526 global section.
7527
7528 When doing a dynamic link, we create a .rela.<xxx>
7529 relocation entry to initialize the value. This
7530 is done in the finish_dynamic_symbol routine. */
7531 if (!linker_section_ptr->written_address_p)
7532 {
7533 linker_section_ptr->written_address_p = true;
7534 bfd_put_ptr (output_bfd,
7535 relocation + linker_section_ptr->addend,
7536 (lsect->section->contents
7537 + linker_section_ptr->offset));
7538 }
7539 }
7540 }
7541 else
7542 {
7543 /* Handle local symbol. */
7544 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7545 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7546 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7547 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7548 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7549 rel->r_addend,
7550 lsect->which));
7551
7552 BFD_ASSERT (linker_section_ptr != NULL);
7553
7554 /* Write out pointer if it hasn't been rewritten out before. */
7555 if (!linker_section_ptr->written_address_p)
7556 {
7557 linker_section_ptr->written_address_p = true;
7558 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7559 lsect->section->contents + linker_section_ptr->offset);
7560
7561 if (info->shared)
7562 {
7563 asection *srel = lsect->rel_section;
7564 Elf_Internal_Rela *outrel;
7565 Elf_External_Rela *erel;
7566 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7567 unsigned int i;
7568 bfd_size_type amt;
7569
7570 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7571 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7572 if (outrel == NULL)
7573 {
7574 (*_bfd_error_handler) (_("Error: out of memory"));
7575 return 0;
7576 }
7577
7578 /* We need to generate a relative reloc for the dynamic
7579 linker. */
7580 if (!srel)
7581 {
7582 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7583 lsect->rel_name);
7584 lsect->rel_section = srel;
7585 }
7586
7587 BFD_ASSERT (srel != NULL);
7588
7589 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7590 outrel[i].r_offset = (lsect->section->output_section->vma
7591 + lsect->section->output_offset
7592 + linker_section_ptr->offset);
7593 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7594 outrel[0].r_addend = 0;
7595 erel = (Elf_External_Rela *) lsect->section->contents;
7596 erel += elf_section_data (lsect->section)->rel_count;
7597 elf_swap_reloca_out (output_bfd, outrel, erel);
7598 ++elf_section_data (lsect->section)->rel_count;
7599
7600 free (outrel);
7601 }
7602 }
7603 }
7604
7605 relocation = (lsect->section->output_offset
7606 + linker_section_ptr->offset
7607 - lsect->hole_offset
7608 - lsect->sym_offset);
7609
7610 #ifdef DEBUG
7611 fprintf (stderr,
7612 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7613 lsect->name, (long) relocation, (long) relocation);
7614 #endif
7615
7616 /* Subtract out the addend, because it will get added back in by the normal
7617 processing. */
7618 return relocation - linker_section_ptr->addend;
7619 }
7620 \f
7621 /* Garbage collect unused sections. */
7622
7623 static boolean elf_gc_mark
7624 PARAMS ((struct bfd_link_info *, asection *,
7625 asection * (*) (asection *, struct bfd_link_info *,
7626 Elf_Internal_Rela *, struct elf_link_hash_entry *,
7627 Elf_Internal_Sym *)));
7628
7629 static boolean elf_gc_sweep
7630 PARAMS ((struct bfd_link_info *,
7631 boolean (*) (bfd *, struct bfd_link_info *, asection *,
7632 const Elf_Internal_Rela *)));
7633
7634 static boolean elf_gc_sweep_symbol
7635 PARAMS ((struct elf_link_hash_entry *, PTR));
7636
7637 static boolean elf_gc_allocate_got_offsets
7638 PARAMS ((struct elf_link_hash_entry *, PTR));
7639
7640 static boolean elf_gc_propagate_vtable_entries_used
7641 PARAMS ((struct elf_link_hash_entry *, PTR));
7642
7643 static boolean elf_gc_smash_unused_vtentry_relocs
7644 PARAMS ((struct elf_link_hash_entry *, PTR));
7645
7646 /* The mark phase of garbage collection. For a given section, mark
7647 it and any sections in this section's group, and all the sections
7648 which define symbols to which it refers. */
7649
7650 static boolean
7651 elf_gc_mark (info, sec, gc_mark_hook)
7652 struct bfd_link_info *info;
7653 asection *sec;
7654 asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
7655 Elf_Internal_Rela *,
7656 struct elf_link_hash_entry *,
7657 Elf_Internal_Sym *));
7658 {
7659 boolean ret;
7660 asection *group_sec;
7661
7662 sec->gc_mark = 1;
7663
7664 /* Mark all the sections in the group. */
7665 group_sec = elf_section_data (sec)->next_in_group;
7666 if (group_sec && !group_sec->gc_mark)
7667 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7668 return false;
7669
7670 /* Look through the section relocs. */
7671 ret = true;
7672 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7673 {
7674 Elf_Internal_Rela *relstart, *rel, *relend;
7675 Elf_Internal_Shdr *symtab_hdr;
7676 struct elf_link_hash_entry **sym_hashes;
7677 size_t nlocsyms;
7678 size_t extsymoff;
7679 bfd *input_bfd = sec->owner;
7680 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7681 Elf_Internal_Sym *isym = NULL;
7682
7683 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7684 sym_hashes = elf_sym_hashes (input_bfd);
7685
7686 /* Read the local symbols. */
7687 if (elf_bad_symtab (input_bfd))
7688 {
7689 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7690 extsymoff = 0;
7691 }
7692 else
7693 extsymoff = nlocsyms = symtab_hdr->sh_info;
7694
7695 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
7696 if (isym == NULL && nlocsyms != 0)
7697 {
7698 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
7699 NULL, NULL, NULL);
7700 if (isym == NULL)
7701 return false;
7702 }
7703
7704 /* Read the relocations. */
7705 relstart = (NAME(_bfd_elf,link_read_relocs)
7706 (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
7707 info->keep_memory));
7708 if (relstart == NULL)
7709 {
7710 ret = false;
7711 goto out1;
7712 }
7713 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7714
7715 for (rel = relstart; rel < relend; rel++)
7716 {
7717 unsigned long r_symndx;
7718 asection *rsec;
7719 struct elf_link_hash_entry *h;
7720
7721 r_symndx = ELF_R_SYM (rel->r_info);
7722 if (r_symndx == 0)
7723 continue;
7724
7725 if (r_symndx >= nlocsyms
7726 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
7727 {
7728 h = sym_hashes[r_symndx - extsymoff];
7729 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
7730 }
7731 else
7732 {
7733 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
7734 }
7735
7736 if (rsec && !rsec->gc_mark)
7737 {
7738 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7739 rsec->gc_mark = 1;
7740 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7741 {
7742 ret = false;
7743 goto out2;
7744 }
7745 }
7746 }
7747
7748 out2:
7749 if (elf_section_data (sec)->relocs != relstart)
7750 free (relstart);
7751 out1:
7752 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
7753 {
7754 if (! info->keep_memory)
7755 free (isym);
7756 else
7757 symtab_hdr->contents = (unsigned char *) isym;
7758 }
7759 }
7760
7761 return ret;
7762 }
7763
7764 /* The sweep phase of garbage collection. Remove all garbage sections. */
7765
7766 static boolean
7767 elf_gc_sweep (info, gc_sweep_hook)
7768 struct bfd_link_info *info;
7769 boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
7770 asection *, const Elf_Internal_Rela *));
7771 {
7772 bfd *sub;
7773
7774 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7775 {
7776 asection *o;
7777
7778 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7779 continue;
7780
7781 for (o = sub->sections; o != NULL; o = o->next)
7782 {
7783 /* Keep special sections. Keep .debug sections. */
7784 if ((o->flags & SEC_LINKER_CREATED)
7785 || (o->flags & SEC_DEBUGGING))
7786 o->gc_mark = 1;
7787
7788 if (o->gc_mark)
7789 continue;
7790
7791 /* Skip sweeping sections already excluded. */
7792 if (o->flags & SEC_EXCLUDE)
7793 continue;
7794
7795 /* Since this is early in the link process, it is simple
7796 to remove a section from the output. */
7797 o->flags |= SEC_EXCLUDE;
7798
7799 /* But we also have to update some of the relocation
7800 info we collected before. */
7801 if (gc_sweep_hook
7802 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7803 {
7804 Elf_Internal_Rela *internal_relocs;
7805 boolean r;
7806
7807 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7808 (o->owner, o, NULL, NULL, info->keep_memory));
7809 if (internal_relocs == NULL)
7810 return false;
7811
7812 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7813
7814 if (elf_section_data (o)->relocs != internal_relocs)
7815 free (internal_relocs);
7816
7817 if (!r)
7818 return false;
7819 }
7820 }
7821 }
7822
7823 /* Remove the symbols that were in the swept sections from the dynamic
7824 symbol table. GCFIXME: Anyone know how to get them out of the
7825 static symbol table as well? */
7826 {
7827 int i = 0;
7828
7829 elf_link_hash_traverse (elf_hash_table (info),
7830 elf_gc_sweep_symbol,
7831 (PTR) &i);
7832
7833 elf_hash_table (info)->dynsymcount = i;
7834 }
7835
7836 return true;
7837 }
7838
7839 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7840
7841 static boolean
7842 elf_gc_sweep_symbol (h, idxptr)
7843 struct elf_link_hash_entry *h;
7844 PTR idxptr;
7845 {
7846 int *idx = (int *) idxptr;
7847
7848 if (h->root.type == bfd_link_hash_warning)
7849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7850
7851 if (h->dynindx != -1
7852 && ((h->root.type != bfd_link_hash_defined
7853 && h->root.type != bfd_link_hash_defweak)
7854 || h->root.u.def.section->gc_mark))
7855 h->dynindx = (*idx)++;
7856
7857 return true;
7858 }
7859
7860 /* Propogate collected vtable information. This is called through
7861 elf_link_hash_traverse. */
7862
7863 static boolean
7864 elf_gc_propagate_vtable_entries_used (h, okp)
7865 struct elf_link_hash_entry *h;
7866 PTR okp;
7867 {
7868 if (h->root.type == bfd_link_hash_warning)
7869 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7870
7871 /* Those that are not vtables. */
7872 if (h->vtable_parent == NULL)
7873 return true;
7874
7875 /* Those vtables that do not have parents, we cannot merge. */
7876 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7877 return true;
7878
7879 /* If we've already been done, exit. */
7880 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7881 return true;
7882
7883 /* Make sure the parent's table is up to date. */
7884 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7885
7886 if (h->vtable_entries_used == NULL)
7887 {
7888 /* None of this table's entries were referenced. Re-use the
7889 parent's table. */
7890 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7891 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7892 }
7893 else
7894 {
7895 size_t n;
7896 boolean *cu, *pu;
7897
7898 /* Or the parent's entries into ours. */
7899 cu = h->vtable_entries_used;
7900 cu[-1] = true;
7901 pu = h->vtable_parent->vtable_entries_used;
7902 if (pu != NULL)
7903 {
7904 asection *sec = h->root.u.def.section;
7905 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7906 int file_align = bed->s->file_align;
7907
7908 n = h->vtable_parent->vtable_entries_size / file_align;
7909 while (n--)
7910 {
7911 if (*pu)
7912 *cu = true;
7913 pu++;
7914 cu++;
7915 }
7916 }
7917 }
7918
7919 return true;
7920 }
7921
7922 static boolean
7923 elf_gc_smash_unused_vtentry_relocs (h, okp)
7924 struct elf_link_hash_entry *h;
7925 PTR okp;
7926 {
7927 asection *sec;
7928 bfd_vma hstart, hend;
7929 Elf_Internal_Rela *relstart, *relend, *rel;
7930 struct elf_backend_data *bed;
7931 int file_align;
7932
7933 if (h->root.type == bfd_link_hash_warning)
7934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7935
7936 /* Take care of both those symbols that do not describe vtables as
7937 well as those that are not loaded. */
7938 if (h->vtable_parent == NULL)
7939 return true;
7940
7941 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7942 || h->root.type == bfd_link_hash_defweak);
7943
7944 sec = h->root.u.def.section;
7945 hstart = h->root.u.def.value;
7946 hend = hstart + h->size;
7947
7948 relstart = (NAME(_bfd_elf,link_read_relocs)
7949 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7950 if (!relstart)
7951 return *(boolean *) okp = false;
7952 bed = get_elf_backend_data (sec->owner);
7953 file_align = bed->s->file_align;
7954
7955 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7956
7957 for (rel = relstart; rel < relend; ++rel)
7958 if (rel->r_offset >= hstart && rel->r_offset < hend)
7959 {
7960 /* If the entry is in use, do nothing. */
7961 if (h->vtable_entries_used
7962 && (rel->r_offset - hstart) < h->vtable_entries_size)
7963 {
7964 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7965 if (h->vtable_entries_used[entry])
7966 continue;
7967 }
7968 /* Otherwise, kill it. */
7969 rel->r_offset = rel->r_info = rel->r_addend = 0;
7970 }
7971
7972 return true;
7973 }
7974
7975 /* Do mark and sweep of unused sections. */
7976
7977 boolean
7978 elf_gc_sections (abfd, info)
7979 bfd *abfd;
7980 struct bfd_link_info *info;
7981 {
7982 boolean ok = true;
7983 bfd *sub;
7984 asection * (*gc_mark_hook)
7985 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7986 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7987
7988 if (!get_elf_backend_data (abfd)->can_gc_sections
7989 || info->relocateable || info->emitrelocations
7990 || elf_hash_table (info)->dynamic_sections_created)
7991 return true;
7992
7993 /* Apply transitive closure to the vtable entry usage info. */
7994 elf_link_hash_traverse (elf_hash_table (info),
7995 elf_gc_propagate_vtable_entries_used,
7996 (PTR) &ok);
7997 if (!ok)
7998 return false;
7999
8000 /* Kill the vtable relocations that were not used. */
8001 elf_link_hash_traverse (elf_hash_table (info),
8002 elf_gc_smash_unused_vtentry_relocs,
8003 (PTR) &ok);
8004 if (!ok)
8005 return false;
8006
8007 /* Grovel through relocs to find out who stays ... */
8008
8009 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8010 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8011 {
8012 asection *o;
8013
8014 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8015 continue;
8016
8017 for (o = sub->sections; o != NULL; o = o->next)
8018 {
8019 if (o->flags & SEC_KEEP)
8020 if (!elf_gc_mark (info, o, gc_mark_hook))
8021 return false;
8022 }
8023 }
8024
8025 /* ... and mark SEC_EXCLUDE for those that go. */
8026 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8027 return false;
8028
8029 return true;
8030 }
8031 \f
8032 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8033
8034 boolean
8035 elf_gc_record_vtinherit (abfd, sec, h, offset)
8036 bfd *abfd;
8037 asection *sec;
8038 struct elf_link_hash_entry *h;
8039 bfd_vma offset;
8040 {
8041 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8042 struct elf_link_hash_entry **search, *child;
8043 bfd_size_type extsymcount;
8044
8045 /* The sh_info field of the symtab header tells us where the
8046 external symbols start. We don't care about the local symbols at
8047 this point. */
8048 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
8049 if (!elf_bad_symtab (abfd))
8050 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8051
8052 sym_hashes = elf_sym_hashes (abfd);
8053 sym_hashes_end = sym_hashes + extsymcount;
8054
8055 /* Hunt down the child symbol, which is in this section at the same
8056 offset as the relocation. */
8057 for (search = sym_hashes; search != sym_hashes_end; ++search)
8058 {
8059 if ((child = *search) != NULL
8060 && (child->root.type == bfd_link_hash_defined
8061 || child->root.type == bfd_link_hash_defweak)
8062 && child->root.u.def.section == sec
8063 && child->root.u.def.value == offset)
8064 goto win;
8065 }
8066
8067 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8068 bfd_archive_filename (abfd), sec->name,
8069 (unsigned long) offset);
8070 bfd_set_error (bfd_error_invalid_operation);
8071 return false;
8072
8073 win:
8074 if (!h)
8075 {
8076 /* This *should* only be the absolute section. It could potentially
8077 be that someone has defined a non-global vtable though, which
8078 would be bad. It isn't worth paging in the local symbols to be
8079 sure though; that case should simply be handled by the assembler. */
8080
8081 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8082 }
8083 else
8084 child->vtable_parent = h;
8085
8086 return true;
8087 }
8088
8089 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8090
8091 boolean
8092 elf_gc_record_vtentry (abfd, sec, h, addend)
8093 bfd *abfd ATTRIBUTE_UNUSED;
8094 asection *sec ATTRIBUTE_UNUSED;
8095 struct elf_link_hash_entry *h;
8096 bfd_vma addend;
8097 {
8098 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8099 int file_align = bed->s->file_align;
8100
8101 if (addend >= h->vtable_entries_size)
8102 {
8103 size_t size, bytes;
8104 boolean *ptr = h->vtable_entries_used;
8105
8106 /* While the symbol is undefined, we have to be prepared to handle
8107 a zero size. */
8108 if (h->root.type == bfd_link_hash_undefined)
8109 size = addend;
8110 else
8111 {
8112 size = h->size;
8113 if (size < addend)
8114 {
8115 /* Oops! We've got a reference past the defined end of
8116 the table. This is probably a bug -- shall we warn? */
8117 size = addend;
8118 }
8119 }
8120
8121 /* Allocate one extra entry for use as a "done" flag for the
8122 consolidation pass. */
8123 bytes = (size / file_align + 1) * sizeof (boolean);
8124
8125 if (ptr)
8126 {
8127 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
8128
8129 if (ptr != NULL)
8130 {
8131 size_t oldbytes;
8132
8133 oldbytes = ((h->vtable_entries_size / file_align + 1)
8134 * sizeof (boolean));
8135 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8136 }
8137 }
8138 else
8139 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8140
8141 if (ptr == NULL)
8142 return false;
8143
8144 /* And arrange for that done flag to be at index -1. */
8145 h->vtable_entries_used = ptr + 1;
8146 h->vtable_entries_size = size;
8147 }
8148
8149 h->vtable_entries_used[addend / file_align] = true;
8150
8151 return true;
8152 }
8153
8154 /* And an accompanying bit to work out final got entry offsets once
8155 we're done. Should be called from final_link. */
8156
8157 boolean
8158 elf_gc_common_finalize_got_offsets (abfd, info)
8159 bfd *abfd;
8160 struct bfd_link_info *info;
8161 {
8162 bfd *i;
8163 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8164 bfd_vma gotoff;
8165
8166 /* The GOT offset is relative to the .got section, but the GOT header is
8167 put into the .got.plt section, if the backend uses it. */
8168 if (bed->want_got_plt)
8169 gotoff = 0;
8170 else
8171 gotoff = bed->got_header_size;
8172
8173 /* Do the local .got entries first. */
8174 for (i = info->input_bfds; i; i = i->link_next)
8175 {
8176 bfd_signed_vma *local_got;
8177 bfd_size_type j, locsymcount;
8178 Elf_Internal_Shdr *symtab_hdr;
8179
8180 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8181 continue;
8182
8183 local_got = elf_local_got_refcounts (i);
8184 if (!local_got)
8185 continue;
8186
8187 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8188 if (elf_bad_symtab (i))
8189 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8190 else
8191 locsymcount = symtab_hdr->sh_info;
8192
8193 for (j = 0; j < locsymcount; ++j)
8194 {
8195 if (local_got[j] > 0)
8196 {
8197 local_got[j] = gotoff;
8198 gotoff += ARCH_SIZE / 8;
8199 }
8200 else
8201 local_got[j] = (bfd_vma) -1;
8202 }
8203 }
8204
8205 /* Then the global .got entries. .plt refcounts are handled by
8206 adjust_dynamic_symbol */
8207 elf_link_hash_traverse (elf_hash_table (info),
8208 elf_gc_allocate_got_offsets,
8209 (PTR) &gotoff);
8210 return true;
8211 }
8212
8213 /* We need a special top-level link routine to convert got reference counts
8214 to real got offsets. */
8215
8216 static boolean
8217 elf_gc_allocate_got_offsets (h, offarg)
8218 struct elf_link_hash_entry *h;
8219 PTR offarg;
8220 {
8221 bfd_vma *off = (bfd_vma *) offarg;
8222
8223 if (h->root.type == bfd_link_hash_warning)
8224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8225
8226 if (h->got.refcount > 0)
8227 {
8228 h->got.offset = off[0];
8229 off[0] += ARCH_SIZE / 8;
8230 }
8231 else
8232 h->got.offset = (bfd_vma) -1;
8233
8234 return true;
8235 }
8236
8237 /* Many folk need no more in the way of final link than this, once
8238 got entry reference counting is enabled. */
8239
8240 boolean
8241 elf_gc_common_final_link (abfd, info)
8242 bfd *abfd;
8243 struct bfd_link_info *info;
8244 {
8245 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8246 return false;
8247
8248 /* Invoke the regular ELF backend linker to do all the work. */
8249 return elf_bfd_final_link (abfd, info);
8250 }
8251
8252 /* This function will be called though elf_link_hash_traverse to store
8253 all hash value of the exported symbols in an array. */
8254
8255 static boolean
8256 elf_collect_hash_codes (h, data)
8257 struct elf_link_hash_entry *h;
8258 PTR data;
8259 {
8260 unsigned long **valuep = (unsigned long **) data;
8261 const char *name;
8262 char *p;
8263 unsigned long ha;
8264 char *alc = NULL;
8265
8266 if (h->root.type == bfd_link_hash_warning)
8267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8268
8269 /* Ignore indirect symbols. These are added by the versioning code. */
8270 if (h->dynindx == -1)
8271 return true;
8272
8273 name = h->root.root.string;
8274 p = strchr (name, ELF_VER_CHR);
8275 if (p != NULL)
8276 {
8277 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8278 memcpy (alc, name, (size_t) (p - name));
8279 alc[p - name] = '\0';
8280 name = alc;
8281 }
8282
8283 /* Compute the hash value. */
8284 ha = bfd_elf_hash (name);
8285
8286 /* Store the found hash value in the array given as the argument. */
8287 *(*valuep)++ = ha;
8288
8289 /* And store it in the struct so that we can put it in the hash table
8290 later. */
8291 h->elf_hash_value = ha;
8292
8293 if (alc != NULL)
8294 free (alc);
8295
8296 return true;
8297 }
8298
8299 boolean
8300 elf_reloc_symbol_deleted_p (offset, cookie)
8301 bfd_vma offset;
8302 PTR cookie;
8303 {
8304 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8305
8306 if (rcookie->bad_symtab)
8307 rcookie->rel = rcookie->rels;
8308
8309 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8310 {
8311 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8312
8313 if (! rcookie->bad_symtab)
8314 if (rcookie->rel->r_offset > offset)
8315 return false;
8316 if (rcookie->rel->r_offset != offset)
8317 continue;
8318
8319 if (r_symndx >= rcookie->locsymcount
8320 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8321 {
8322 struct elf_link_hash_entry *h;
8323
8324 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8325
8326 while (h->root.type == bfd_link_hash_indirect
8327 || h->root.type == bfd_link_hash_warning)
8328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8329
8330 if ((h->root.type == bfd_link_hash_defined
8331 || h->root.type == bfd_link_hash_defweak)
8332 && elf_discarded_section (h->root.u.def.section))
8333 return true;
8334 else
8335 return false;
8336 }
8337 else
8338 {
8339 /* It's not a relocation against a global symbol,
8340 but it could be a relocation against a local
8341 symbol for a discarded section. */
8342 asection *isec;
8343 Elf_Internal_Sym *isym;
8344
8345 /* Need to: get the symbol; get the section. */
8346 isym = &rcookie->locsyms[r_symndx];
8347 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8348 {
8349 isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
8350 if (isec != NULL && elf_discarded_section (isec))
8351 return true;
8352 }
8353 }
8354 return false;
8355 }
8356 return false;
8357 }
8358
8359 /* Discard unneeded references to discarded sections.
8360 Returns true if any section's size was changed. */
8361 /* This function assumes that the relocations are in sorted order,
8362 which is true for all known assemblers. */
8363
8364 boolean
8365 elf_bfd_discard_info (output_bfd, info)
8366 bfd *output_bfd;
8367 struct bfd_link_info *info;
8368 {
8369 struct elf_reloc_cookie cookie;
8370 asection *stab, *eh, *ehdr;
8371 Elf_Internal_Shdr *symtab_hdr;
8372 struct elf_backend_data *bed;
8373 bfd *abfd;
8374 boolean ret = false;
8375 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8376
8377 if (info->relocateable
8378 || info->traditional_format
8379 || info->hash->creator->flavour != bfd_target_elf_flavour
8380 || ! is_elf_hash_table (info))
8381 return false;
8382
8383 ehdr = NULL;
8384 if (elf_hash_table (info)->dynobj != NULL)
8385 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8386 ".eh_frame_hdr");
8387
8388 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8389 {
8390 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8391 continue;
8392
8393 bed = get_elf_backend_data (abfd);
8394
8395 if ((abfd->flags & DYNAMIC) != 0)
8396 continue;
8397
8398 eh = NULL;
8399 if (ehdr)
8400 {
8401 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8402 if (eh && (eh->_raw_size == 0
8403 || bfd_is_abs_section (eh->output_section)))
8404 eh = NULL;
8405 }
8406
8407 stab = NULL;
8408 if (!strip)
8409 {
8410 stab = bfd_get_section_by_name (abfd, ".stab");
8411 if (stab && (stab->_raw_size == 0
8412 || bfd_is_abs_section (stab->output_section)))
8413 stab = NULL;
8414 }
8415 if ((! stab
8416 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8417 && ! eh
8418 && (strip || ! bed->elf_backend_discard_info))
8419 continue;
8420
8421 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8422 cookie.abfd = abfd;
8423 cookie.sym_hashes = elf_sym_hashes (abfd);
8424 cookie.bad_symtab = elf_bad_symtab (abfd);
8425 if (cookie.bad_symtab)
8426 {
8427 cookie.locsymcount =
8428 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8429 cookie.extsymoff = 0;
8430 }
8431 else
8432 {
8433 cookie.locsymcount = symtab_hdr->sh_info;
8434 cookie.extsymoff = symtab_hdr->sh_info;
8435 }
8436
8437 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8438 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8439 {
8440 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8441 cookie.locsymcount, 0,
8442 NULL, NULL, NULL);
8443 if (cookie.locsyms == NULL)
8444 return false;
8445 }
8446
8447 if (stab)
8448 {
8449 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8450 (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8451 info->keep_memory));
8452 if (cookie.rels)
8453 {
8454 cookie.rel = cookie.rels;
8455 cookie.relend =
8456 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8457 if (_bfd_discard_section_stabs (abfd, stab,
8458 elf_section_data (stab)->sec_info,
8459 elf_reloc_symbol_deleted_p,
8460 &cookie))
8461 ret = true;
8462 if (elf_section_data (stab)->relocs != cookie.rels)
8463 free (cookie.rels);
8464 }
8465 }
8466
8467 if (eh)
8468 {
8469 cookie.rels = NULL;
8470 cookie.rel = NULL;
8471 cookie.relend = NULL;
8472 if (eh->reloc_count)
8473 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8474 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8475 info->keep_memory));
8476 if (cookie.rels)
8477 {
8478 cookie.rel = cookie.rels;
8479 cookie.relend =
8480 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8481 }
8482 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8483 elf_reloc_symbol_deleted_p,
8484 &cookie))
8485 ret = true;
8486 if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
8487 free (cookie.rels);
8488 }
8489
8490 if (bed->elf_backend_discard_info)
8491 {
8492 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8493 ret = true;
8494 }
8495
8496 if (cookie.locsyms != NULL
8497 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8498 {
8499 if (! info->keep_memory)
8500 free (cookie.locsyms);
8501 else
8502 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8503 }
8504 }
8505
8506 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8507 ret = true;
8508 return ret;
8509 }
8510
8511 static boolean
8512 elf_section_ignore_discarded_relocs (sec)
8513 asection *sec;
8514 {
8515 struct elf_backend_data *bed;
8516
8517 switch (elf_section_data (sec)->sec_info_type)
8518 {
8519 case ELF_INFO_TYPE_STABS:
8520 case ELF_INFO_TYPE_EH_FRAME:
8521 return true;
8522 default:
8523 break;
8524 }
8525
8526 bed = get_elf_backend_data (sec->owner);
8527 if (bed->elf_backend_ignore_discarded_relocs != NULL
8528 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8529 return true;
8530
8531 return false;
8532 }
This page took 0.230804 seconds and 5 git commands to generate.