* elflink.h (elf_link_input_bfd): Back out 2002-01-07 change.
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_find_version_dependencies
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_link_assign_sym_version
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_collect_hash_codes
65 PARAMS ((struct elf_link_hash_entry *, PTR));
66 static boolean elf_link_read_relocs_from_section
67 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
68 static size_t compute_bucket_count
69 PARAMS ((struct bfd_link_info *));
70 static void elf_link_output_relocs
71 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
72 static boolean elf_link_size_reloc_section
73 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
74 static void elf_link_adjust_relocs
75 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
76 struct elf_link_hash_entry **));
77 static int elf_link_sort_cmp1
78 PARAMS ((const void *, const void *));
79 static int elf_link_sort_cmp2
80 PARAMS ((const void *, const void *));
81 static size_t elf_link_sort_relocs
82 PARAMS ((bfd *, struct bfd_link_info *, asection **));
83 static boolean elf_section_ignore_discarded_relocs
84 PARAMS ((asection *));
85
86 /* Given an ELF BFD, add symbols to the global hash table as
87 appropriate. */
88
89 boolean
90 elf_bfd_link_add_symbols (abfd, info)
91 bfd *abfd;
92 struct bfd_link_info *info;
93 {
94 switch (bfd_get_format (abfd))
95 {
96 case bfd_object:
97 return elf_link_add_object_symbols (abfd, info);
98 case bfd_archive:
99 return elf_link_add_archive_symbols (abfd, info);
100 default:
101 bfd_set_error (bfd_error_wrong_format);
102 return false;
103 }
104 }
105 \f
106 /* Return true iff this is a non-common, definition of a non-function symbol. */
107 static boolean
108 is_global_data_symbol_definition (abfd, sym)
109 bfd * abfd ATTRIBUTE_UNUSED;
110 Elf_Internal_Sym * sym;
111 {
112 /* Local symbols do not count, but target specific ones might. */
113 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
114 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
115 return false;
116
117 /* Function symbols do not count. */
118 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
119 return false;
120
121 /* If the section is undefined, then so is the symbol. */
122 if (sym->st_shndx == SHN_UNDEF)
123 return false;
124
125 /* If the symbol is defined in the common section, then
126 it is a common definition and so does not count. */
127 if (sym->st_shndx == SHN_COMMON)
128 return false;
129
130 /* If the symbol is in a target specific section then we
131 must rely upon the backend to tell us what it is. */
132 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
133 /* FIXME - this function is not coded yet:
134
135 return _bfd_is_global_symbol_definition (abfd, sym);
136
137 Instead for now assume that the definition is not global,
138 Even if this is wrong, at least the linker will behave
139 in the same way that it used to do. */
140 return false;
141
142 return true;
143 }
144
145 /* Search the symbol table of the archive element of the archive ABFD
146 whose archive map contains a mention of SYMDEF, and determine if
147 the symbol is defined in this element. */
148 static boolean
149 elf_link_is_defined_archive_symbol (abfd, symdef)
150 bfd * abfd;
151 carsym * symdef;
152 {
153 Elf_Internal_Shdr * hdr;
154 Elf_Internal_Shdr * shndx_hdr;
155 Elf_External_Sym * esym;
156 Elf_External_Sym * esymend;
157 Elf_External_Sym * buf = NULL;
158 Elf_External_Sym_Shndx * shndx_buf = NULL;
159 Elf_External_Sym_Shndx * shndx;
160 bfd_size_type symcount;
161 bfd_size_type extsymcount;
162 bfd_size_type extsymoff;
163 boolean result = false;
164 file_ptr pos;
165 bfd_size_type amt;
166
167 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
168 if (abfd == (bfd *) NULL)
169 return false;
170
171 if (! bfd_check_format (abfd, bfd_object))
172 return false;
173
174 /* If we have already included the element containing this symbol in the
175 link then we do not need to include it again. Just claim that any symbol
176 it contains is not a definition, so that our caller will not decide to
177 (re)include this element. */
178 if (abfd->archive_pass)
179 return false;
180
181 /* Select the appropriate symbol table. */
182 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
183 {
184 hdr = &elf_tdata (abfd)->symtab_hdr;
185 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
186 }
187 else
188 {
189 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
190 shndx_hdr = NULL;
191 }
192
193 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
194
195 /* The sh_info field of the symtab header tells us where the
196 external symbols start. We don't care about the local symbols. */
197 if (elf_bad_symtab (abfd))
198 {
199 extsymcount = symcount;
200 extsymoff = 0;
201 }
202 else
203 {
204 extsymcount = symcount - hdr->sh_info;
205 extsymoff = hdr->sh_info;
206 }
207
208 amt = extsymcount * sizeof (Elf_External_Sym);
209 buf = (Elf_External_Sym *) bfd_malloc (amt);
210 if (buf == NULL && extsymcount != 0)
211 return false;
212
213 /* Read in the symbol table.
214 FIXME: This ought to be cached somewhere. */
215 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
216 if (bfd_seek (abfd, pos, SEEK_SET) != 0
217 || bfd_bread ((PTR) buf, amt, abfd) != amt)
218 goto error_exit;
219
220 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
221 {
222 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
223 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
224 if (shndx_buf == NULL && extsymcount != 0)
225 goto error_exit;
226
227 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
228 if (bfd_seek (abfd, pos, SEEK_SET) != 0
229 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
230 goto error_exit;
231 }
232
233 /* Scan the symbol table looking for SYMDEF. */
234 esymend = buf + extsymcount;
235 for (esym = buf, shndx = shndx_buf;
236 esym < esymend;
237 esym++, shndx = (shndx != NULL ? shndx + 1 : NULL))
238 {
239 Elf_Internal_Sym sym;
240 const char * name;
241
242 elf_swap_symbol_in (abfd, esym, shndx, &sym);
243
244 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
245 if (name == (const char *) NULL)
246 break;
247
248 if (strcmp (name, symdef->name) == 0)
249 {
250 result = is_global_data_symbol_definition (abfd, & sym);
251 break;
252 }
253 }
254
255 error_exit:
256 if (shndx_buf != NULL)
257 free (shndx_buf);
258 if (buf != NULL)
259 free (buf);
260
261 return result;
262 }
263 \f
264 /* Add symbols from an ELF archive file to the linker hash table. We
265 don't use _bfd_generic_link_add_archive_symbols because of a
266 problem which arises on UnixWare. The UnixWare libc.so is an
267 archive which includes an entry libc.so.1 which defines a bunch of
268 symbols. The libc.so archive also includes a number of other
269 object files, which also define symbols, some of which are the same
270 as those defined in libc.so.1. Correct linking requires that we
271 consider each object file in turn, and include it if it defines any
272 symbols we need. _bfd_generic_link_add_archive_symbols does not do
273 this; it looks through the list of undefined symbols, and includes
274 any object file which defines them. When this algorithm is used on
275 UnixWare, it winds up pulling in libc.so.1 early and defining a
276 bunch of symbols. This means that some of the other objects in the
277 archive are not included in the link, which is incorrect since they
278 precede libc.so.1 in the archive.
279
280 Fortunately, ELF archive handling is simpler than that done by
281 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
282 oddities. In ELF, if we find a symbol in the archive map, and the
283 symbol is currently undefined, we know that we must pull in that
284 object file.
285
286 Unfortunately, we do have to make multiple passes over the symbol
287 table until nothing further is resolved. */
288
289 static boolean
290 elf_link_add_archive_symbols (abfd, info)
291 bfd *abfd;
292 struct bfd_link_info *info;
293 {
294 symindex c;
295 boolean *defined = NULL;
296 boolean *included = NULL;
297 carsym *symdefs;
298 boolean loop;
299 bfd_size_type amt;
300
301 if (! bfd_has_map (abfd))
302 {
303 /* An empty archive is a special case. */
304 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
305 return true;
306 bfd_set_error (bfd_error_no_armap);
307 return false;
308 }
309
310 /* Keep track of all symbols we know to be already defined, and all
311 files we know to be already included. This is to speed up the
312 second and subsequent passes. */
313 c = bfd_ardata (abfd)->symdef_count;
314 if (c == 0)
315 return true;
316 amt = c;
317 amt *= sizeof (boolean);
318 defined = (boolean *) bfd_malloc (amt);
319 included = (boolean *) bfd_malloc (amt);
320 if (defined == (boolean *) NULL || included == (boolean *) NULL)
321 goto error_return;
322 memset (defined, 0, (size_t) amt);
323 memset (included, 0, (size_t) amt);
324
325 symdefs = bfd_ardata (abfd)->symdefs;
326
327 do
328 {
329 file_ptr last;
330 symindex i;
331 carsym *symdef;
332 carsym *symdefend;
333
334 loop = false;
335 last = -1;
336
337 symdef = symdefs;
338 symdefend = symdef + c;
339 for (i = 0; symdef < symdefend; symdef++, i++)
340 {
341 struct elf_link_hash_entry *h;
342 bfd *element;
343 struct bfd_link_hash_entry *undefs_tail;
344 symindex mark;
345
346 if (defined[i] || included[i])
347 continue;
348 if (symdef->file_offset == last)
349 {
350 included[i] = true;
351 continue;
352 }
353
354 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
355 false, false, false);
356
357 if (h == NULL)
358 {
359 char *p, *copy;
360
361 /* If this is a default version (the name contains @@),
362 look up the symbol again without the version. The
363 effect is that references to the symbol without the
364 version will be matched by the default symbol in the
365 archive. */
366
367 p = strchr (symdef->name, ELF_VER_CHR);
368 if (p == NULL || p[1] != ELF_VER_CHR)
369 continue;
370
371 copy = bfd_alloc (abfd, (bfd_size_type) (p - symdef->name + 1));
372 if (copy == NULL)
373 goto error_return;
374 memcpy (copy, symdef->name, (size_t) (p - symdef->name));
375 copy[p - symdef->name] = '\0';
376
377 h = elf_link_hash_lookup (elf_hash_table (info), copy,
378 false, false, false);
379
380 bfd_release (abfd, copy);
381 }
382
383 if (h == NULL)
384 continue;
385
386 if (h->root.type == bfd_link_hash_common)
387 {
388 /* We currently have a common symbol. The archive map contains
389 a reference to this symbol, so we may want to include it. We
390 only want to include it however, if this archive element
391 contains a definition of the symbol, not just another common
392 declaration of it.
393
394 Unfortunately some archivers (including GNU ar) will put
395 declarations of common symbols into their archive maps, as
396 well as real definitions, so we cannot just go by the archive
397 map alone. Instead we must read in the element's symbol
398 table and check that to see what kind of symbol definition
399 this is. */
400 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
401 continue;
402 }
403 else if (h->root.type != bfd_link_hash_undefined)
404 {
405 if (h->root.type != bfd_link_hash_undefweak)
406 defined[i] = true;
407 continue;
408 }
409
410 /* We need to include this archive member. */
411 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
412 if (element == (bfd *) NULL)
413 goto error_return;
414
415 if (! bfd_check_format (element, bfd_object))
416 goto error_return;
417
418 /* Doublecheck that we have not included this object
419 already--it should be impossible, but there may be
420 something wrong with the archive. */
421 if (element->archive_pass != 0)
422 {
423 bfd_set_error (bfd_error_bad_value);
424 goto error_return;
425 }
426 element->archive_pass = 1;
427
428 undefs_tail = info->hash->undefs_tail;
429
430 if (! (*info->callbacks->add_archive_element) (info, element,
431 symdef->name))
432 goto error_return;
433 if (! elf_link_add_object_symbols (element, info))
434 goto error_return;
435
436 /* If there are any new undefined symbols, we need to make
437 another pass through the archive in order to see whether
438 they can be defined. FIXME: This isn't perfect, because
439 common symbols wind up on undefs_tail and because an
440 undefined symbol which is defined later on in this pass
441 does not require another pass. This isn't a bug, but it
442 does make the code less efficient than it could be. */
443 if (undefs_tail != info->hash->undefs_tail)
444 loop = true;
445
446 /* Look backward to mark all symbols from this object file
447 which we have already seen in this pass. */
448 mark = i;
449 do
450 {
451 included[mark] = true;
452 if (mark == 0)
453 break;
454 --mark;
455 }
456 while (symdefs[mark].file_offset == symdef->file_offset);
457
458 /* We mark subsequent symbols from this object file as we go
459 on through the loop. */
460 last = symdef->file_offset;
461 }
462 }
463 while (loop);
464
465 free (defined);
466 free (included);
467
468 return true;
469
470 error_return:
471 if (defined != (boolean *) NULL)
472 free (defined);
473 if (included != (boolean *) NULL)
474 free (included);
475 return false;
476 }
477
478 /* This function is called when we want to define a new symbol. It
479 handles the various cases which arise when we find a definition in
480 a dynamic object, or when there is already a definition in a
481 dynamic object. The new symbol is described by NAME, SYM, PSEC,
482 and PVALUE. We set SYM_HASH to the hash table entry. We set
483 OVERRIDE if the old symbol is overriding a new definition. We set
484 TYPE_CHANGE_OK if it is OK for the type to change. We set
485 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
486 change, we mean that we shouldn't warn if the type or size does
487 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
488 a shared object. */
489
490 static boolean
491 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
492 override, type_change_ok, size_change_ok, dt_needed)
493 bfd *abfd;
494 struct bfd_link_info *info;
495 const char *name;
496 Elf_Internal_Sym *sym;
497 asection **psec;
498 bfd_vma *pvalue;
499 struct elf_link_hash_entry **sym_hash;
500 boolean *override;
501 boolean *type_change_ok;
502 boolean *size_change_ok;
503 boolean dt_needed;
504 {
505 asection *sec;
506 struct elf_link_hash_entry *h;
507 int bind;
508 bfd *oldbfd;
509 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
510
511 *override = false;
512
513 sec = *psec;
514 bind = ELF_ST_BIND (sym->st_info);
515
516 if (! bfd_is_und_section (sec))
517 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
518 else
519 h = ((struct elf_link_hash_entry *)
520 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
521 if (h == NULL)
522 return false;
523 *sym_hash = h;
524
525 /* This code is for coping with dynamic objects, and is only useful
526 if we are doing an ELF link. */
527 if (info->hash->creator != abfd->xvec)
528 return true;
529
530 /* For merging, we only care about real symbols. */
531
532 while (h->root.type == bfd_link_hash_indirect
533 || h->root.type == bfd_link_hash_warning)
534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
535
536 /* If we just created the symbol, mark it as being an ELF symbol.
537 Other than that, there is nothing to do--there is no merge issue
538 with a newly defined symbol--so we just return. */
539
540 if (h->root.type == bfd_link_hash_new)
541 {
542 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
543 return true;
544 }
545
546 /* OLDBFD is a BFD associated with the existing symbol. */
547
548 switch (h->root.type)
549 {
550 default:
551 oldbfd = NULL;
552 break;
553
554 case bfd_link_hash_undefined:
555 case bfd_link_hash_undefweak:
556 oldbfd = h->root.u.undef.abfd;
557 break;
558
559 case bfd_link_hash_defined:
560 case bfd_link_hash_defweak:
561 oldbfd = h->root.u.def.section->owner;
562 break;
563
564 case bfd_link_hash_common:
565 oldbfd = h->root.u.c.p->section->owner;
566 break;
567 }
568
569 /* In cases involving weak versioned symbols, we may wind up trying
570 to merge a symbol with itself. Catch that here, to avoid the
571 confusion that results if we try to override a symbol with
572 itself. The additional tests catch cases like
573 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
574 dynamic object, which we do want to handle here. */
575 if (abfd == oldbfd
576 && ((abfd->flags & DYNAMIC) == 0
577 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
578 return true;
579
580 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
581 respectively, is from a dynamic object. */
582
583 if ((abfd->flags & DYNAMIC) != 0)
584 newdyn = true;
585 else
586 newdyn = false;
587
588 if (oldbfd != NULL)
589 olddyn = (oldbfd->flags & DYNAMIC) != 0;
590 else
591 {
592 asection *hsec;
593
594 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
595 indices used by MIPS ELF. */
596 switch (h->root.type)
597 {
598 default:
599 hsec = NULL;
600 break;
601
602 case bfd_link_hash_defined:
603 case bfd_link_hash_defweak:
604 hsec = h->root.u.def.section;
605 break;
606
607 case bfd_link_hash_common:
608 hsec = h->root.u.c.p->section;
609 break;
610 }
611
612 if (hsec == NULL)
613 olddyn = false;
614 else
615 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
616 }
617
618 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
619 respectively, appear to be a definition rather than reference. */
620
621 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
622 newdef = false;
623 else
624 newdef = true;
625
626 if (h->root.type == bfd_link_hash_undefined
627 || h->root.type == bfd_link_hash_undefweak
628 || h->root.type == bfd_link_hash_common)
629 olddef = false;
630 else
631 olddef = true;
632
633 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
634 symbol, respectively, appears to be a common symbol in a dynamic
635 object. If a symbol appears in an uninitialized section, and is
636 not weak, and is not a function, then it may be a common symbol
637 which was resolved when the dynamic object was created. We want
638 to treat such symbols specially, because they raise special
639 considerations when setting the symbol size: if the symbol
640 appears as a common symbol in a regular object, and the size in
641 the regular object is larger, we must make sure that we use the
642 larger size. This problematic case can always be avoided in C,
643 but it must be handled correctly when using Fortran shared
644 libraries.
645
646 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
647 likewise for OLDDYNCOMMON and OLDDEF.
648
649 Note that this test is just a heuristic, and that it is quite
650 possible to have an uninitialized symbol in a shared object which
651 is really a definition, rather than a common symbol. This could
652 lead to some minor confusion when the symbol really is a common
653 symbol in some regular object. However, I think it will be
654 harmless. */
655
656 if (newdyn
657 && newdef
658 && (sec->flags & SEC_ALLOC) != 0
659 && (sec->flags & SEC_LOAD) == 0
660 && sym->st_size > 0
661 && bind != STB_WEAK
662 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
663 newdyncommon = true;
664 else
665 newdyncommon = false;
666
667 if (olddyn
668 && olddef
669 && h->root.type == bfd_link_hash_defined
670 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
671 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
672 && (h->root.u.def.section->flags & SEC_LOAD) == 0
673 && h->size > 0
674 && h->type != STT_FUNC)
675 olddyncommon = true;
676 else
677 olddyncommon = false;
678
679 /* It's OK to change the type if either the existing symbol or the
680 new symbol is weak unless it comes from a DT_NEEDED entry of
681 a shared object, in which case, the DT_NEEDED entry may not be
682 required at the run time. */
683
684 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
685 || h->root.type == bfd_link_hash_undefweak
686 || bind == STB_WEAK)
687 *type_change_ok = true;
688
689 /* It's OK to change the size if either the existing symbol or the
690 new symbol is weak, or if the old symbol is undefined. */
691
692 if (*type_change_ok
693 || h->root.type == bfd_link_hash_undefined)
694 *size_change_ok = true;
695
696 /* If both the old and the new symbols look like common symbols in a
697 dynamic object, set the size of the symbol to the larger of the
698 two. */
699
700 if (olddyncommon
701 && newdyncommon
702 && sym->st_size != h->size)
703 {
704 /* Since we think we have two common symbols, issue a multiple
705 common warning if desired. Note that we only warn if the
706 size is different. If the size is the same, we simply let
707 the old symbol override the new one as normally happens with
708 symbols defined in dynamic objects. */
709
710 if (! ((*info->callbacks->multiple_common)
711 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
712 h->size, abfd, bfd_link_hash_common, sym->st_size)))
713 return false;
714
715 if (sym->st_size > h->size)
716 h->size = sym->st_size;
717
718 *size_change_ok = true;
719 }
720
721 /* If we are looking at a dynamic object, and we have found a
722 definition, we need to see if the symbol was already defined by
723 some other object. If so, we want to use the existing
724 definition, and we do not want to report a multiple symbol
725 definition error; we do this by clobbering *PSEC to be
726 bfd_und_section_ptr.
727
728 We treat a common symbol as a definition if the symbol in the
729 shared library is a function, since common symbols always
730 represent variables; this can cause confusion in principle, but
731 any such confusion would seem to indicate an erroneous program or
732 shared library. We also permit a common symbol in a regular
733 object to override a weak symbol in a shared object.
734
735 We prefer a non-weak definition in a shared library to a weak
736 definition in the executable unless it comes from a DT_NEEDED
737 entry of a shared object, in which case, the DT_NEEDED entry
738 may not be required at the run time. */
739
740 if (newdyn
741 && newdef
742 && (olddef
743 || (h->root.type == bfd_link_hash_common
744 && (bind == STB_WEAK
745 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
746 && (h->root.type != bfd_link_hash_defweak
747 || dt_needed
748 || bind == STB_WEAK))
749 {
750 *override = true;
751 newdef = false;
752 newdyncommon = false;
753
754 *psec = sec = bfd_und_section_ptr;
755 *size_change_ok = true;
756
757 /* If we get here when the old symbol is a common symbol, then
758 we are explicitly letting it override a weak symbol or
759 function in a dynamic object, and we don't want to warn about
760 a type change. If the old symbol is a defined symbol, a type
761 change warning may still be appropriate. */
762
763 if (h->root.type == bfd_link_hash_common)
764 *type_change_ok = true;
765 }
766
767 /* Handle the special case of an old common symbol merging with a
768 new symbol which looks like a common symbol in a shared object.
769 We change *PSEC and *PVALUE to make the new symbol look like a
770 common symbol, and let _bfd_generic_link_add_one_symbol will do
771 the right thing. */
772
773 if (newdyncommon
774 && h->root.type == bfd_link_hash_common)
775 {
776 *override = true;
777 newdef = false;
778 newdyncommon = false;
779 *pvalue = sym->st_size;
780 *psec = sec = bfd_com_section_ptr;
781 *size_change_ok = true;
782 }
783
784 /* If the old symbol is from a dynamic object, and the new symbol is
785 a definition which is not from a dynamic object, then the new
786 symbol overrides the old symbol. Symbols from regular files
787 always take precedence over symbols from dynamic objects, even if
788 they are defined after the dynamic object in the link.
789
790 As above, we again permit a common symbol in a regular object to
791 override a definition in a shared object if the shared object
792 symbol is a function or is weak.
793
794 As above, we permit a non-weak definition in a shared object to
795 override a weak definition in a regular object. */
796
797 if (! newdyn
798 && (newdef
799 || (bfd_is_com_section (sec)
800 && (h->root.type == bfd_link_hash_defweak
801 || h->type == STT_FUNC)))
802 && olddyn
803 && olddef
804 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
805 && (bind != STB_WEAK
806 || h->root.type == bfd_link_hash_defweak))
807 {
808 /* Change the hash table entry to undefined, and let
809 _bfd_generic_link_add_one_symbol do the right thing with the
810 new definition. */
811
812 h->root.type = bfd_link_hash_undefined;
813 h->root.u.undef.abfd = h->root.u.def.section->owner;
814 *size_change_ok = true;
815
816 olddef = false;
817 olddyncommon = false;
818
819 /* We again permit a type change when a common symbol may be
820 overriding a function. */
821
822 if (bfd_is_com_section (sec))
823 *type_change_ok = true;
824
825 /* This union may have been set to be non-NULL when this symbol
826 was seen in a dynamic object. We must force the union to be
827 NULL, so that it is correct for a regular symbol. */
828
829 h->verinfo.vertree = NULL;
830
831 /* In this special case, if H is the target of an indirection,
832 we want the caller to frob with H rather than with the
833 indirect symbol. That will permit the caller to redefine the
834 target of the indirection, rather than the indirect symbol
835 itself. FIXME: This will break the -y option if we store a
836 symbol with a different name. */
837 *sym_hash = h;
838 }
839
840 /* Handle the special case of a new common symbol merging with an
841 old symbol that looks like it might be a common symbol defined in
842 a shared object. Note that we have already handled the case in
843 which a new common symbol should simply override the definition
844 in the shared library. */
845
846 if (! newdyn
847 && bfd_is_com_section (sec)
848 && olddyncommon)
849 {
850 /* It would be best if we could set the hash table entry to a
851 common symbol, but we don't know what to use for the section
852 or the alignment. */
853 if (! ((*info->callbacks->multiple_common)
854 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
855 h->size, abfd, bfd_link_hash_common, sym->st_size)))
856 return false;
857
858 /* If the predumed common symbol in the dynamic object is
859 larger, pretend that the new symbol has its size. */
860
861 if (h->size > *pvalue)
862 *pvalue = h->size;
863
864 /* FIXME: We no longer know the alignment required by the symbol
865 in the dynamic object, so we just wind up using the one from
866 the regular object. */
867
868 olddef = false;
869 olddyncommon = false;
870
871 h->root.type = bfd_link_hash_undefined;
872 h->root.u.undef.abfd = h->root.u.def.section->owner;
873
874 *size_change_ok = true;
875 *type_change_ok = true;
876
877 h->verinfo.vertree = NULL;
878 }
879
880 /* Handle the special case of a weak definition in a regular object
881 followed by a non-weak definition in a shared object. In this
882 case, we prefer the definition in the shared object unless it
883 comes from a DT_NEEDED entry of a shared object, in which case,
884 the DT_NEEDED entry may not be required at the run time. */
885 if (olddef
886 && ! dt_needed
887 && h->root.type == bfd_link_hash_defweak
888 && newdef
889 && newdyn
890 && bind != STB_WEAK)
891 {
892 /* To make this work we have to frob the flags so that the rest
893 of the code does not think we are using the regular
894 definition. */
895 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
896 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
897 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
898 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
899 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
900 | ELF_LINK_HASH_DEF_DYNAMIC);
901
902 /* If H is the target of an indirection, we want the caller to
903 use H rather than the indirect symbol. Otherwise if we are
904 defining a new indirect symbol we will wind up attaching it
905 to the entry we are overriding. */
906 *sym_hash = h;
907 }
908
909 /* Handle the special case of a non-weak definition in a shared
910 object followed by a weak definition in a regular object. In
911 this case we prefer to definition in the shared object. To make
912 this work we have to tell the caller to not treat the new symbol
913 as a definition. */
914 if (olddef
915 && olddyn
916 && h->root.type != bfd_link_hash_defweak
917 && newdef
918 && ! newdyn
919 && bind == STB_WEAK)
920 *override = true;
921
922 return true;
923 }
924
925 /* This function is called to create an indirect symbol from the
926 default for the symbol with the default version if needed. The
927 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
928 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
929 indicates if it comes from a DT_NEEDED entry of a shared object. */
930
931 static boolean
932 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
933 dynsym, override, dt_needed)
934 bfd *abfd;
935 struct bfd_link_info *info;
936 struct elf_link_hash_entry *h;
937 const char *name;
938 Elf_Internal_Sym *sym;
939 asection **sec;
940 bfd_vma *value;
941 boolean *dynsym;
942 boolean override;
943 boolean dt_needed;
944 {
945 boolean type_change_ok;
946 boolean size_change_ok;
947 char *shortname;
948 struct elf_link_hash_entry *hi;
949 struct elf_backend_data *bed;
950 boolean collect;
951 boolean dynamic;
952 char *p;
953
954 /* If this symbol has a version, and it is the default version, we
955 create an indirect symbol from the default name to the fully
956 decorated name. This will cause external references which do not
957 specify a version to be bound to this version of the symbol. */
958 p = strchr (name, ELF_VER_CHR);
959 if (p == NULL || p[1] != ELF_VER_CHR)
960 return true;
961
962 if (override)
963 {
964 /* We are overridden by an old defition. We need to check if we
965 need to crreate the indirect symbol from the default name. */
966 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
967 false, false);
968 BFD_ASSERT (hi != NULL);
969 if (hi == h)
970 return true;
971 while (hi->root.type == bfd_link_hash_indirect
972 || hi->root.type == bfd_link_hash_warning)
973 {
974 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
975 if (hi == h)
976 return true;
977 }
978 }
979
980 bed = get_elf_backend_data (abfd);
981 collect = bed->collect;
982 dynamic = (abfd->flags & DYNAMIC) != 0;
983
984 shortname = bfd_hash_allocate (&info->hash->table,
985 (size_t) (p - name + 1));
986 if (shortname == NULL)
987 return false;
988 strncpy (shortname, name, (size_t) (p - name));
989 shortname [p - name] = '\0';
990
991 /* We are going to create a new symbol. Merge it with any existing
992 symbol with this name. For the purposes of the merge, act as
993 though we were defining the symbol we just defined, although we
994 actually going to define an indirect symbol. */
995 type_change_ok = false;
996 size_change_ok = false;
997 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
998 &hi, &override, &type_change_ok,
999 &size_change_ok, dt_needed))
1000 return false;
1001
1002 if (! override)
1003 {
1004 if (! (_bfd_generic_link_add_one_symbol
1005 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1006 (bfd_vma) 0, name, false, collect,
1007 (struct bfd_link_hash_entry **) &hi)))
1008 return false;
1009 }
1010 else
1011 {
1012 /* In this case the symbol named SHORTNAME is overriding the
1013 indirect symbol we want to add. We were planning on making
1014 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1015 is the name without a version. NAME is the fully versioned
1016 name, and it is the default version.
1017
1018 Overriding means that we already saw a definition for the
1019 symbol SHORTNAME in a regular object, and it is overriding
1020 the symbol defined in the dynamic object.
1021
1022 When this happens, we actually want to change NAME, the
1023 symbol we just added, to refer to SHORTNAME. This will cause
1024 references to NAME in the shared object to become references
1025 to SHORTNAME in the regular object. This is what we expect
1026 when we override a function in a shared object: that the
1027 references in the shared object will be mapped to the
1028 definition in the regular object. */
1029
1030 while (hi->root.type == bfd_link_hash_indirect
1031 || hi->root.type == bfd_link_hash_warning)
1032 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1033
1034 h->root.type = bfd_link_hash_indirect;
1035 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1036 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1037 {
1038 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1039 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1040 if (hi->elf_link_hash_flags
1041 & (ELF_LINK_HASH_REF_REGULAR
1042 | ELF_LINK_HASH_DEF_REGULAR))
1043 {
1044 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1045 return false;
1046 }
1047 }
1048
1049 /* Now set HI to H, so that the following code will set the
1050 other fields correctly. */
1051 hi = h;
1052 }
1053
1054 /* If there is a duplicate definition somewhere, then HI may not
1055 point to an indirect symbol. We will have reported an error to
1056 the user in that case. */
1057
1058 if (hi->root.type == bfd_link_hash_indirect)
1059 {
1060 struct elf_link_hash_entry *ht;
1061
1062 /* If the symbol became indirect, then we assume that we have
1063 not seen a definition before. */
1064 BFD_ASSERT ((hi->elf_link_hash_flags
1065 & (ELF_LINK_HASH_DEF_DYNAMIC
1066 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1067
1068 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1069 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1070
1071 /* See if the new flags lead us to realize that the symbol must
1072 be dynamic. */
1073 if (! *dynsym)
1074 {
1075 if (! dynamic)
1076 {
1077 if (info->shared
1078 || ((hi->elf_link_hash_flags
1079 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1080 *dynsym = true;
1081 }
1082 else
1083 {
1084 if ((hi->elf_link_hash_flags
1085 & ELF_LINK_HASH_REF_REGULAR) != 0)
1086 *dynsym = true;
1087 }
1088 }
1089 }
1090
1091 /* We also need to define an indirection from the nondefault version
1092 of the symbol. */
1093
1094 shortname = bfd_hash_allocate (&info->hash->table, strlen (name));
1095 if (shortname == NULL)
1096 return false;
1097 strncpy (shortname, name, (size_t) (p - name));
1098 strcpy (shortname + (p - name), p + 1);
1099
1100 /* Once again, merge with any existing symbol. */
1101 type_change_ok = false;
1102 size_change_ok = false;
1103 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1104 &hi, &override, &type_change_ok,
1105 &size_change_ok, dt_needed))
1106 return false;
1107
1108 if (override)
1109 {
1110 /* Here SHORTNAME is a versioned name, so we don't expect to see
1111 the type of override we do in the case above. */
1112 (*_bfd_error_handler)
1113 (_("%s: warning: unexpected redefinition of `%s'"),
1114 bfd_archive_filename (abfd), shortname);
1115 }
1116 else
1117 {
1118 if (! (_bfd_generic_link_add_one_symbol
1119 (info, abfd, shortname, BSF_INDIRECT,
1120 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1121 collect, (struct bfd_link_hash_entry **) &hi)))
1122 return false;
1123
1124 /* If there is a duplicate definition somewhere, then HI may not
1125 point to an indirect symbol. We will have reported an error
1126 to the user in that case. */
1127
1128 if (hi->root.type == bfd_link_hash_indirect)
1129 {
1130 /* If the symbol became indirect, then we assume that we have
1131 not seen a definition before. */
1132 BFD_ASSERT ((hi->elf_link_hash_flags
1133 & (ELF_LINK_HASH_DEF_DYNAMIC
1134 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1135
1136 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1137
1138 /* See if the new flags lead us to realize that the symbol
1139 must be dynamic. */
1140 if (! *dynsym)
1141 {
1142 if (! dynamic)
1143 {
1144 if (info->shared
1145 || ((hi->elf_link_hash_flags
1146 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1147 *dynsym = true;
1148 }
1149 else
1150 {
1151 if ((hi->elf_link_hash_flags
1152 & ELF_LINK_HASH_REF_REGULAR) != 0)
1153 *dynsym = true;
1154 }
1155 }
1156 }
1157 }
1158
1159 return true;
1160 }
1161
1162 /* Add symbols from an ELF object file to the linker hash table. */
1163
1164 static boolean
1165 elf_link_add_object_symbols (abfd, info)
1166 bfd *abfd;
1167 struct bfd_link_info *info;
1168 {
1169 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1170 const Elf_Internal_Sym *,
1171 const char **, flagword *,
1172 asection **, bfd_vma *));
1173 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1174 asection *, const Elf_Internal_Rela *));
1175 boolean collect;
1176 Elf_Internal_Shdr *hdr;
1177 Elf_Internal_Shdr *shndx_hdr;
1178 bfd_size_type symcount;
1179 bfd_size_type extsymcount;
1180 bfd_size_type extsymoff;
1181 Elf_External_Sym *buf = NULL;
1182 Elf_External_Sym_Shndx *shndx_buf = NULL;
1183 Elf_External_Sym_Shndx *shndx;
1184 struct elf_link_hash_entry **sym_hash;
1185 boolean dynamic;
1186 Elf_External_Versym *extversym = NULL;
1187 Elf_External_Versym *ever;
1188 Elf_External_Dyn *dynbuf = NULL;
1189 struct elf_link_hash_entry *weaks;
1190 Elf_External_Sym *esym;
1191 Elf_External_Sym *esymend;
1192 struct elf_backend_data *bed;
1193 boolean dt_needed;
1194 struct elf_link_hash_table * hash_table;
1195 file_ptr pos;
1196 bfd_size_type amt;
1197
1198 hash_table = elf_hash_table (info);
1199
1200 bed = get_elf_backend_data (abfd);
1201 add_symbol_hook = bed->elf_add_symbol_hook;
1202 collect = bed->collect;
1203
1204 if ((abfd->flags & DYNAMIC) == 0)
1205 dynamic = false;
1206 else
1207 {
1208 dynamic = true;
1209
1210 /* You can't use -r against a dynamic object. Also, there's no
1211 hope of using a dynamic object which does not exactly match
1212 the format of the output file. */
1213 if (info->relocateable || info->hash->creator != abfd->xvec)
1214 {
1215 bfd_set_error (bfd_error_invalid_operation);
1216 goto error_return;
1217 }
1218 }
1219
1220 /* As a GNU extension, any input sections which are named
1221 .gnu.warning.SYMBOL are treated as warning symbols for the given
1222 symbol. This differs from .gnu.warning sections, which generate
1223 warnings when they are included in an output file. */
1224 if (! info->shared)
1225 {
1226 asection *s;
1227
1228 for (s = abfd->sections; s != NULL; s = s->next)
1229 {
1230 const char *name;
1231
1232 name = bfd_get_section_name (abfd, s);
1233 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1234 {
1235 char *msg;
1236 bfd_size_type sz;
1237
1238 name += sizeof ".gnu.warning." - 1;
1239
1240 /* If this is a shared object, then look up the symbol
1241 in the hash table. If it is there, and it is already
1242 been defined, then we will not be using the entry
1243 from this shared object, so we don't need to warn.
1244 FIXME: If we see the definition in a regular object
1245 later on, we will warn, but we shouldn't. The only
1246 fix is to keep track of what warnings we are supposed
1247 to emit, and then handle them all at the end of the
1248 link. */
1249 if (dynamic && abfd->xvec == info->hash->creator)
1250 {
1251 struct elf_link_hash_entry *h;
1252
1253 h = elf_link_hash_lookup (hash_table, name,
1254 false, false, true);
1255
1256 /* FIXME: What about bfd_link_hash_common? */
1257 if (h != NULL
1258 && (h->root.type == bfd_link_hash_defined
1259 || h->root.type == bfd_link_hash_defweak))
1260 {
1261 /* We don't want to issue this warning. Clobber
1262 the section size so that the warning does not
1263 get copied into the output file. */
1264 s->_raw_size = 0;
1265 continue;
1266 }
1267 }
1268
1269 sz = bfd_section_size (abfd, s);
1270 msg = (char *) bfd_alloc (abfd, sz + 1);
1271 if (msg == NULL)
1272 goto error_return;
1273
1274 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1275 goto error_return;
1276
1277 msg[sz] = '\0';
1278
1279 if (! (_bfd_generic_link_add_one_symbol
1280 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1281 false, collect, (struct bfd_link_hash_entry **) NULL)))
1282 goto error_return;
1283
1284 if (! info->relocateable)
1285 {
1286 /* Clobber the section size so that the warning does
1287 not get copied into the output file. */
1288 s->_raw_size = 0;
1289 }
1290 }
1291 }
1292 }
1293
1294 /* If this is a dynamic object, we always link against the .dynsym
1295 symbol table, not the .symtab symbol table. The dynamic linker
1296 will only see the .dynsym symbol table, so there is no reason to
1297 look at .symtab for a dynamic object. */
1298
1299 if (! dynamic || elf_dynsymtab (abfd) == 0)
1300 {
1301 hdr = &elf_tdata (abfd)->symtab_hdr;
1302 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
1303 }
1304 else
1305 {
1306 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1307 shndx_hdr = NULL;
1308 }
1309
1310 if (dynamic)
1311 {
1312 /* Read in any version definitions. */
1313
1314 if (! _bfd_elf_slurp_version_tables (abfd))
1315 goto error_return;
1316
1317 /* Read in the symbol versions, but don't bother to convert them
1318 to internal format. */
1319 if (elf_dynversym (abfd) != 0)
1320 {
1321 Elf_Internal_Shdr *versymhdr;
1322
1323 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1324 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1325 if (extversym == NULL)
1326 goto error_return;
1327 amt = versymhdr->sh_size;
1328 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1329 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1330 goto error_return;
1331 }
1332 }
1333
1334 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1335
1336 /* The sh_info field of the symtab header tells us where the
1337 external symbols start. We don't care about the local symbols at
1338 this point. */
1339 if (elf_bad_symtab (abfd))
1340 {
1341 extsymcount = symcount;
1342 extsymoff = 0;
1343 }
1344 else
1345 {
1346 extsymcount = symcount - hdr->sh_info;
1347 extsymoff = hdr->sh_info;
1348 }
1349
1350 amt = extsymcount * sizeof (Elf_External_Sym);
1351 buf = (Elf_External_Sym *) bfd_malloc (amt);
1352 if (buf == NULL && extsymcount != 0)
1353 goto error_return;
1354
1355 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1356 {
1357 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1358 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
1359 if (shndx_buf == NULL && extsymcount != 0)
1360 goto error_return;
1361 }
1362
1363 /* We store a pointer to the hash table entry for each external
1364 symbol. */
1365 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1366 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1367 if (sym_hash == NULL)
1368 goto error_return;
1369 elf_sym_hashes (abfd) = sym_hash;
1370
1371 dt_needed = false;
1372
1373 if (! dynamic)
1374 {
1375 /* If we are creating a shared library, create all the dynamic
1376 sections immediately. We need to attach them to something,
1377 so we attach them to this BFD, provided it is the right
1378 format. FIXME: If there are no input BFD's of the same
1379 format as the output, we can't make a shared library. */
1380 if (info->shared
1381 && is_elf_hash_table (info)
1382 && ! hash_table->dynamic_sections_created
1383 && abfd->xvec == info->hash->creator)
1384 {
1385 if (! elf_link_create_dynamic_sections (abfd, info))
1386 goto error_return;
1387 }
1388 }
1389 else if (! is_elf_hash_table (info))
1390 goto error_return;
1391 else
1392 {
1393 asection *s;
1394 boolean add_needed;
1395 const char *name;
1396 bfd_size_type oldsize;
1397 bfd_size_type strindex;
1398
1399 /* Find the name to use in a DT_NEEDED entry that refers to this
1400 object. If the object has a DT_SONAME entry, we use it.
1401 Otherwise, if the generic linker stuck something in
1402 elf_dt_name, we use that. Otherwise, we just use the file
1403 name. If the generic linker put a null string into
1404 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1405 there is a DT_SONAME entry. */
1406 add_needed = true;
1407 name = bfd_get_filename (abfd);
1408 if (elf_dt_name (abfd) != NULL)
1409 {
1410 name = elf_dt_name (abfd);
1411 if (*name == '\0')
1412 {
1413 if (elf_dt_soname (abfd) != NULL)
1414 dt_needed = true;
1415
1416 add_needed = false;
1417 }
1418 }
1419 s = bfd_get_section_by_name (abfd, ".dynamic");
1420 if (s != NULL)
1421 {
1422 Elf_External_Dyn *extdyn;
1423 Elf_External_Dyn *extdynend;
1424 int elfsec;
1425 unsigned long shlink;
1426 int rpath;
1427 int runpath;
1428
1429 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1430 if (dynbuf == NULL)
1431 goto error_return;
1432
1433 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1434 (file_ptr) 0, s->_raw_size))
1435 goto error_return;
1436
1437 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1438 if (elfsec == -1)
1439 goto error_return;
1440 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1441
1442 {
1443 /* The shared libraries distributed with hpux11 have a bogus
1444 sh_link field for the ".dynamic" section. This code detects
1445 when SHLINK refers to a section that is not a string table
1446 and tries to find the string table for the ".dynsym" section
1447 instead. */
1448 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[shlink];
1449 if (shdr->sh_type != SHT_STRTAB)
1450 {
1451 asection *ds = bfd_get_section_by_name (abfd, ".dynsym");
1452 int elfdsec = _bfd_elf_section_from_bfd_section (abfd, ds);
1453 if (elfdsec == -1)
1454 goto error_return;
1455 shlink = elf_elfsections (abfd)[elfdsec]->sh_link;
1456 }
1457 }
1458
1459 extdyn = dynbuf;
1460 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1461 rpath = 0;
1462 runpath = 0;
1463 for (; extdyn < extdynend; extdyn++)
1464 {
1465 Elf_Internal_Dyn dyn;
1466
1467 elf_swap_dyn_in (abfd, extdyn, &dyn);
1468 if (dyn.d_tag == DT_SONAME)
1469 {
1470 unsigned int tagv = dyn.d_un.d_val;
1471 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1472 if (name == NULL)
1473 goto error_return;
1474 }
1475 if (dyn.d_tag == DT_NEEDED)
1476 {
1477 struct bfd_link_needed_list *n, **pn;
1478 char *fnm, *anm;
1479 unsigned int tagv = dyn.d_un.d_val;
1480
1481 amt = sizeof (struct bfd_link_needed_list);
1482 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1483 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1484 if (n == NULL || fnm == NULL)
1485 goto error_return;
1486 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1487 if (anm == NULL)
1488 goto error_return;
1489 strcpy (anm, fnm);
1490 n->name = anm;
1491 n->by = abfd;
1492 n->next = NULL;
1493 for (pn = & hash_table->needed;
1494 *pn != NULL;
1495 pn = &(*pn)->next)
1496 ;
1497 *pn = n;
1498 }
1499 if (dyn.d_tag == DT_RUNPATH)
1500 {
1501 struct bfd_link_needed_list *n, **pn;
1502 char *fnm, *anm;
1503 unsigned int tagv = dyn.d_un.d_val;
1504
1505 /* When we see DT_RPATH before DT_RUNPATH, we have
1506 to clear runpath. Do _NOT_ bfd_release, as that
1507 frees all more recently bfd_alloc'd blocks as
1508 well. */
1509 if (rpath && hash_table->runpath)
1510 hash_table->runpath = NULL;
1511
1512 amt = sizeof (struct bfd_link_needed_list);
1513 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1514 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1515 if (n == NULL || fnm == NULL)
1516 goto error_return;
1517 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1518 if (anm == NULL)
1519 goto error_return;
1520 strcpy (anm, fnm);
1521 n->name = anm;
1522 n->by = abfd;
1523 n->next = NULL;
1524 for (pn = & hash_table->runpath;
1525 *pn != NULL;
1526 pn = &(*pn)->next)
1527 ;
1528 *pn = n;
1529 runpath = 1;
1530 rpath = 0;
1531 }
1532 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1533 if (!runpath && dyn.d_tag == DT_RPATH)
1534 {
1535 struct bfd_link_needed_list *n, **pn;
1536 char *fnm, *anm;
1537 unsigned int tagv = dyn.d_un.d_val;
1538
1539 amt = sizeof (struct bfd_link_needed_list);
1540 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1541 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1542 if (n == NULL || fnm == NULL)
1543 goto error_return;
1544 anm = bfd_alloc (abfd, (bfd_size_type) strlen (fnm) + 1);
1545 if (anm == NULL)
1546 goto error_return;
1547 strcpy (anm, fnm);
1548 n->name = anm;
1549 n->by = abfd;
1550 n->next = NULL;
1551 for (pn = & hash_table->runpath;
1552 *pn != NULL;
1553 pn = &(*pn)->next)
1554 ;
1555 *pn = n;
1556 rpath = 1;
1557 }
1558 }
1559
1560 free (dynbuf);
1561 dynbuf = NULL;
1562 }
1563
1564 /* We do not want to include any of the sections in a dynamic
1565 object in the output file. We hack by simply clobbering the
1566 list of sections in the BFD. This could be handled more
1567 cleanly by, say, a new section flag; the existing
1568 SEC_NEVER_LOAD flag is not the one we want, because that one
1569 still implies that the section takes up space in the output
1570 file. */
1571 abfd->sections = NULL;
1572 abfd->section_count = 0;
1573
1574 /* If this is the first dynamic object found in the link, create
1575 the special sections required for dynamic linking. */
1576 if (! hash_table->dynamic_sections_created)
1577 if (! elf_link_create_dynamic_sections (abfd, info))
1578 goto error_return;
1579
1580 if (add_needed)
1581 {
1582 /* Add a DT_NEEDED entry for this dynamic object. */
1583 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1584 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1585 if (strindex == (bfd_size_type) -1)
1586 goto error_return;
1587
1588 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1589 {
1590 asection *sdyn;
1591 Elf_External_Dyn *dyncon, *dynconend;
1592
1593 /* The hash table size did not change, which means that
1594 the dynamic object name was already entered. If we
1595 have already included this dynamic object in the
1596 link, just ignore it. There is no reason to include
1597 a particular dynamic object more than once. */
1598 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1599 BFD_ASSERT (sdyn != NULL);
1600
1601 dyncon = (Elf_External_Dyn *) sdyn->contents;
1602 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1603 sdyn->_raw_size);
1604 for (; dyncon < dynconend; dyncon++)
1605 {
1606 Elf_Internal_Dyn dyn;
1607
1608 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1609 if (dyn.d_tag == DT_NEEDED
1610 && dyn.d_un.d_val == strindex)
1611 {
1612 if (buf != NULL)
1613 free (buf);
1614 if (extversym != NULL)
1615 free (extversym);
1616 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1617 return true;
1618 }
1619 }
1620 }
1621
1622 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1623 goto error_return;
1624 }
1625
1626 /* Save the SONAME, if there is one, because sometimes the
1627 linker emulation code will need to know it. */
1628 if (*name == '\0')
1629 name = basename (bfd_get_filename (abfd));
1630 elf_dt_name (abfd) = name;
1631 }
1632
1633 pos = hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym);
1634 amt = extsymcount * sizeof (Elf_External_Sym);
1635 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1636 || bfd_bread ((PTR) buf, amt, abfd) != amt)
1637 goto error_return;
1638
1639 if (shndx_hdr != NULL && shndx_hdr->sh_size != 0)
1640 {
1641 amt = extsymcount * sizeof (Elf_External_Sym_Shndx);
1642 pos = shndx_hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym_Shndx);
1643 if (bfd_seek (abfd, pos, SEEK_SET) != 0
1644 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
1645 goto error_return;
1646 }
1647
1648 weaks = NULL;
1649
1650 ever = extversym != NULL ? extversym + extsymoff : NULL;
1651 esymend = buf + extsymcount;
1652 for (esym = buf, shndx = shndx_buf;
1653 esym < esymend;
1654 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL),
1655 shndx = (shndx != NULL ? shndx + 1 : NULL))
1656 {
1657 Elf_Internal_Sym sym;
1658 int bind;
1659 bfd_vma value;
1660 asection *sec;
1661 flagword flags;
1662 const char *name;
1663 struct elf_link_hash_entry *h;
1664 boolean definition;
1665 boolean size_change_ok, type_change_ok;
1666 boolean new_weakdef;
1667 unsigned int old_alignment;
1668 boolean override;
1669
1670 override = false;
1671
1672 elf_swap_symbol_in (abfd, esym, shndx, &sym);
1673
1674 flags = BSF_NO_FLAGS;
1675 sec = NULL;
1676 value = sym.st_value;
1677 *sym_hash = NULL;
1678
1679 bind = ELF_ST_BIND (sym.st_info);
1680 if (bind == STB_LOCAL)
1681 {
1682 /* This should be impossible, since ELF requires that all
1683 global symbols follow all local symbols, and that sh_info
1684 point to the first global symbol. Unfortunatealy, Irix 5
1685 screws this up. */
1686 continue;
1687 }
1688 else if (bind == STB_GLOBAL)
1689 {
1690 if (sym.st_shndx != SHN_UNDEF
1691 && sym.st_shndx != SHN_COMMON)
1692 flags = BSF_GLOBAL;
1693 }
1694 else if (bind == STB_WEAK)
1695 flags = BSF_WEAK;
1696 else
1697 {
1698 /* Leave it up to the processor backend. */
1699 }
1700
1701 if (sym.st_shndx == SHN_UNDEF)
1702 sec = bfd_und_section_ptr;
1703 else if (sym.st_shndx < SHN_LORESERVE || sym.st_shndx > SHN_HIRESERVE)
1704 {
1705 sec = section_from_elf_index (abfd, sym.st_shndx);
1706 if (sec == NULL)
1707 sec = bfd_abs_section_ptr;
1708 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1709 value -= sec->vma;
1710 }
1711 else if (sym.st_shndx == SHN_ABS)
1712 sec = bfd_abs_section_ptr;
1713 else if (sym.st_shndx == SHN_COMMON)
1714 {
1715 sec = bfd_com_section_ptr;
1716 /* What ELF calls the size we call the value. What ELF
1717 calls the value we call the alignment. */
1718 value = sym.st_size;
1719 }
1720 else
1721 {
1722 /* Leave it up to the processor backend. */
1723 }
1724
1725 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1726 if (name == (const char *) NULL)
1727 goto error_return;
1728
1729 if (add_symbol_hook)
1730 {
1731 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1732 &value))
1733 goto error_return;
1734
1735 /* The hook function sets the name to NULL if this symbol
1736 should be skipped for some reason. */
1737 if (name == (const char *) NULL)
1738 continue;
1739 }
1740
1741 /* Sanity check that all possibilities were handled. */
1742 if (sec == (asection *) NULL)
1743 {
1744 bfd_set_error (bfd_error_bad_value);
1745 goto error_return;
1746 }
1747
1748 if (bfd_is_und_section (sec)
1749 || bfd_is_com_section (sec))
1750 definition = false;
1751 else
1752 definition = true;
1753
1754 size_change_ok = false;
1755 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1756 old_alignment = 0;
1757 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1758 {
1759 Elf_Internal_Versym iver;
1760 unsigned int vernum = 0;
1761
1762 if (ever != NULL)
1763 {
1764 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1765 vernum = iver.vs_vers & VERSYM_VERSION;
1766
1767 /* If this is a hidden symbol, or if it is not version
1768 1, we append the version name to the symbol name.
1769 However, we do not modify a non-hidden absolute
1770 symbol, because it might be the version symbol
1771 itself. FIXME: What if it isn't? */
1772 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1773 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1774 {
1775 const char *verstr;
1776 unsigned int namelen;
1777 bfd_size_type newlen;
1778 char *newname, *p;
1779
1780 if (sym.st_shndx != SHN_UNDEF)
1781 {
1782 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1783 {
1784 (*_bfd_error_handler)
1785 (_("%s: %s: invalid version %u (max %d)"),
1786 bfd_archive_filename (abfd), name, vernum,
1787 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1788 bfd_set_error (bfd_error_bad_value);
1789 goto error_return;
1790 }
1791 else if (vernum > 1)
1792 verstr =
1793 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1794 else
1795 verstr = "";
1796 }
1797 else
1798 {
1799 /* We cannot simply test for the number of
1800 entries in the VERNEED section since the
1801 numbers for the needed versions do not start
1802 at 0. */
1803 Elf_Internal_Verneed *t;
1804
1805 verstr = NULL;
1806 for (t = elf_tdata (abfd)->verref;
1807 t != NULL;
1808 t = t->vn_nextref)
1809 {
1810 Elf_Internal_Vernaux *a;
1811
1812 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1813 {
1814 if (a->vna_other == vernum)
1815 {
1816 verstr = a->vna_nodename;
1817 break;
1818 }
1819 }
1820 if (a != NULL)
1821 break;
1822 }
1823 if (verstr == NULL)
1824 {
1825 (*_bfd_error_handler)
1826 (_("%s: %s: invalid needed version %d"),
1827 bfd_archive_filename (abfd), name, vernum);
1828 bfd_set_error (bfd_error_bad_value);
1829 goto error_return;
1830 }
1831 }
1832
1833 namelen = strlen (name);
1834 newlen = namelen + strlen (verstr) + 2;
1835 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1836 ++newlen;
1837
1838 newname = (char *) bfd_alloc (abfd, newlen);
1839 if (newname == NULL)
1840 goto error_return;
1841 strcpy (newname, name);
1842 p = newname + namelen;
1843 *p++ = ELF_VER_CHR;
1844 /* If this is a defined non-hidden version symbol,
1845 we add another @ to the name. This indicates the
1846 default version of the symbol. */
1847 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1848 && sym.st_shndx != SHN_UNDEF)
1849 *p++ = ELF_VER_CHR;
1850 strcpy (p, verstr);
1851
1852 name = newname;
1853 }
1854 }
1855
1856 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1857 sym_hash, &override, &type_change_ok,
1858 &size_change_ok, dt_needed))
1859 goto error_return;
1860
1861 if (override)
1862 definition = false;
1863
1864 h = *sym_hash;
1865 while (h->root.type == bfd_link_hash_indirect
1866 || h->root.type == bfd_link_hash_warning)
1867 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1868
1869 /* Remember the old alignment if this is a common symbol, so
1870 that we don't reduce the alignment later on. We can't
1871 check later, because _bfd_generic_link_add_one_symbol
1872 will set a default for the alignment which we want to
1873 override. */
1874 if (h->root.type == bfd_link_hash_common)
1875 old_alignment = h->root.u.c.p->alignment_power;
1876
1877 if (elf_tdata (abfd)->verdef != NULL
1878 && ! override
1879 && vernum > 1
1880 && definition)
1881 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1882 }
1883
1884 if (! (_bfd_generic_link_add_one_symbol
1885 (info, abfd, name, flags, sec, value, (const char *) NULL,
1886 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1887 goto error_return;
1888
1889 h = *sym_hash;
1890 while (h->root.type == bfd_link_hash_indirect
1891 || h->root.type == bfd_link_hash_warning)
1892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1893 *sym_hash = h;
1894
1895 new_weakdef = false;
1896 if (dynamic
1897 && definition
1898 && (flags & BSF_WEAK) != 0
1899 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1900 && info->hash->creator->flavour == bfd_target_elf_flavour
1901 && h->weakdef == NULL)
1902 {
1903 /* Keep a list of all weak defined non function symbols from
1904 a dynamic object, using the weakdef field. Later in this
1905 function we will set the weakdef field to the correct
1906 value. We only put non-function symbols from dynamic
1907 objects on this list, because that happens to be the only
1908 time we need to know the normal symbol corresponding to a
1909 weak symbol, and the information is time consuming to
1910 figure out. If the weakdef field is not already NULL,
1911 then this symbol was already defined by some previous
1912 dynamic object, and we will be using that previous
1913 definition anyhow. */
1914
1915 h->weakdef = weaks;
1916 weaks = h;
1917 new_weakdef = true;
1918 }
1919
1920 /* Set the alignment of a common symbol. */
1921 if (sym.st_shndx == SHN_COMMON
1922 && h->root.type == bfd_link_hash_common)
1923 {
1924 unsigned int align;
1925
1926 align = bfd_log2 (sym.st_value);
1927 if (align > old_alignment
1928 /* Permit an alignment power of zero if an alignment of one
1929 is specified and no other alignments have been specified. */
1930 || (sym.st_value == 1 && old_alignment == 0))
1931 h->root.u.c.p->alignment_power = align;
1932 }
1933
1934 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1935 {
1936 int old_flags;
1937 boolean dynsym;
1938 int new_flag;
1939
1940 /* Remember the symbol size and type. */
1941 if (sym.st_size != 0
1942 && (definition || h->size == 0))
1943 {
1944 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1945 (*_bfd_error_handler)
1946 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1947 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1948 bfd_archive_filename (abfd));
1949
1950 h->size = sym.st_size;
1951 }
1952
1953 /* If this is a common symbol, then we always want H->SIZE
1954 to be the size of the common symbol. The code just above
1955 won't fix the size if a common symbol becomes larger. We
1956 don't warn about a size change here, because that is
1957 covered by --warn-common. */
1958 if (h->root.type == bfd_link_hash_common)
1959 h->size = h->root.u.c.size;
1960
1961 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1962 && (definition || h->type == STT_NOTYPE))
1963 {
1964 if (h->type != STT_NOTYPE
1965 && h->type != ELF_ST_TYPE (sym.st_info)
1966 && ! type_change_ok)
1967 (*_bfd_error_handler)
1968 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1969 name, h->type, ELF_ST_TYPE (sym.st_info),
1970 bfd_archive_filename (abfd));
1971
1972 h->type = ELF_ST_TYPE (sym.st_info);
1973 }
1974
1975 /* If st_other has a processor-specific meaning, specific code
1976 might be needed here. */
1977 if (sym.st_other != 0)
1978 {
1979 /* Combine visibilities, using the most constraining one. */
1980 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1981 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1982
1983 if (symvis && (hvis > symvis || hvis == 0))
1984 h->other = sym.st_other;
1985
1986 /* If neither has visibility, use the st_other of the
1987 definition. This is an arbitrary choice, since the
1988 other bits have no general meaning. */
1989 if (!symvis && !hvis
1990 && (definition || h->other == 0))
1991 h->other = sym.st_other;
1992 }
1993
1994 /* Set a flag in the hash table entry indicating the type of
1995 reference or definition we just found. Keep a count of
1996 the number of dynamic symbols we find. A dynamic symbol
1997 is one which is referenced or defined by both a regular
1998 object and a shared object. */
1999 old_flags = h->elf_link_hash_flags;
2000 dynsym = false;
2001 if (! dynamic)
2002 {
2003 if (! definition)
2004 {
2005 new_flag = ELF_LINK_HASH_REF_REGULAR;
2006 if (bind != STB_WEAK)
2007 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
2008 }
2009 else
2010 new_flag = ELF_LINK_HASH_DEF_REGULAR;
2011 if (info->shared
2012 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2013 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
2014 dynsym = true;
2015 }
2016 else
2017 {
2018 if (! definition)
2019 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
2020 else
2021 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
2022 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
2023 | ELF_LINK_HASH_REF_REGULAR)) != 0
2024 || (h->weakdef != NULL
2025 && ! new_weakdef
2026 && h->weakdef->dynindx != -1))
2027 dynsym = true;
2028 }
2029
2030 h->elf_link_hash_flags |= new_flag;
2031
2032 /* Check to see if we need to add an indirect symbol for
2033 the default name. */
2034 if (definition || h->root.type == bfd_link_hash_common)
2035 if (! elf_add_default_symbol (abfd, info, h, name, &sym,
2036 &sec, &value, &dynsym,
2037 override, dt_needed))
2038 goto error_return;
2039
2040 if (dynsym && h->dynindx == -1)
2041 {
2042 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2043 goto error_return;
2044 if (h->weakdef != NULL
2045 && ! new_weakdef
2046 && h->weakdef->dynindx == -1)
2047 {
2048 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2049 goto error_return;
2050 }
2051 }
2052 else if (dynsym && h->dynindx != -1)
2053 /* If the symbol already has a dynamic index, but
2054 visibility says it should not be visible, turn it into
2055 a local symbol. */
2056 switch (ELF_ST_VISIBILITY (h->other))
2057 {
2058 case STV_INTERNAL:
2059 case STV_HIDDEN:
2060 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2061 (*bed->elf_backend_hide_symbol) (info, h);
2062 _bfd_elf_strtab_delref (hash_table->dynstr,
2063 h->dynstr_index);
2064 break;
2065 }
2066
2067 if (dt_needed && definition
2068 && (h->elf_link_hash_flags
2069 & ELF_LINK_HASH_REF_REGULAR) != 0)
2070 {
2071 bfd_size_type oldsize;
2072 bfd_size_type strindex;
2073
2074 if (! is_elf_hash_table (info))
2075 goto error_return;
2076
2077 /* The symbol from a DT_NEEDED object is referenced from
2078 the regular object to create a dynamic executable. We
2079 have to make sure there is a DT_NEEDED entry for it. */
2080
2081 dt_needed = false;
2082 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2083 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2084 elf_dt_soname (abfd), false);
2085 if (strindex == (bfd_size_type) -1)
2086 goto error_return;
2087
2088 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2089 {
2090 asection *sdyn;
2091 Elf_External_Dyn *dyncon, *dynconend;
2092
2093 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2094 ".dynamic");
2095 BFD_ASSERT (sdyn != NULL);
2096
2097 dyncon = (Elf_External_Dyn *) sdyn->contents;
2098 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2099 sdyn->_raw_size);
2100 for (; dyncon < dynconend; dyncon++)
2101 {
2102 Elf_Internal_Dyn dyn;
2103
2104 elf_swap_dyn_in (hash_table->dynobj,
2105 dyncon, &dyn);
2106 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2107 dyn.d_un.d_val != strindex);
2108 }
2109 }
2110
2111 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2112 goto error_return;
2113 }
2114 }
2115 }
2116
2117 /* Now set the weakdefs field correctly for all the weak defined
2118 symbols we found. The only way to do this is to search all the
2119 symbols. Since we only need the information for non functions in
2120 dynamic objects, that's the only time we actually put anything on
2121 the list WEAKS. We need this information so that if a regular
2122 object refers to a symbol defined weakly in a dynamic object, the
2123 real symbol in the dynamic object is also put in the dynamic
2124 symbols; we also must arrange for both symbols to point to the
2125 same memory location. We could handle the general case of symbol
2126 aliasing, but a general symbol alias can only be generated in
2127 assembler code, handling it correctly would be very time
2128 consuming, and other ELF linkers don't handle general aliasing
2129 either. */
2130 while (weaks != NULL)
2131 {
2132 struct elf_link_hash_entry *hlook;
2133 asection *slook;
2134 bfd_vma vlook;
2135 struct elf_link_hash_entry **hpp;
2136 struct elf_link_hash_entry **hppend;
2137
2138 hlook = weaks;
2139 weaks = hlook->weakdef;
2140 hlook->weakdef = NULL;
2141
2142 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2143 || hlook->root.type == bfd_link_hash_defweak
2144 || hlook->root.type == bfd_link_hash_common
2145 || hlook->root.type == bfd_link_hash_indirect);
2146 slook = hlook->root.u.def.section;
2147 vlook = hlook->root.u.def.value;
2148
2149 hpp = elf_sym_hashes (abfd);
2150 hppend = hpp + extsymcount;
2151 for (; hpp < hppend; hpp++)
2152 {
2153 struct elf_link_hash_entry *h;
2154
2155 h = *hpp;
2156 if (h != NULL && h != hlook
2157 && h->root.type == bfd_link_hash_defined
2158 && h->root.u.def.section == slook
2159 && h->root.u.def.value == vlook)
2160 {
2161 hlook->weakdef = h;
2162
2163 /* If the weak definition is in the list of dynamic
2164 symbols, make sure the real definition is put there
2165 as well. */
2166 if (hlook->dynindx != -1
2167 && h->dynindx == -1)
2168 {
2169 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2170 goto error_return;
2171 }
2172
2173 /* If the real definition is in the list of dynamic
2174 symbols, make sure the weak definition is put there
2175 as well. If we don't do this, then the dynamic
2176 loader might not merge the entries for the real
2177 definition and the weak definition. */
2178 if (h->dynindx != -1
2179 && hlook->dynindx == -1)
2180 {
2181 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2182 goto error_return;
2183 }
2184
2185 break;
2186 }
2187 }
2188 }
2189
2190 if (buf != NULL)
2191 {
2192 free (buf);
2193 buf = NULL;
2194 }
2195
2196 if (extversym != NULL)
2197 {
2198 free (extversym);
2199 extversym = NULL;
2200 }
2201
2202 /* If this object is the same format as the output object, and it is
2203 not a shared library, then let the backend look through the
2204 relocs.
2205
2206 This is required to build global offset table entries and to
2207 arrange for dynamic relocs. It is not required for the
2208 particular common case of linking non PIC code, even when linking
2209 against shared libraries, but unfortunately there is no way of
2210 knowing whether an object file has been compiled PIC or not.
2211 Looking through the relocs is not particularly time consuming.
2212 The problem is that we must either (1) keep the relocs in memory,
2213 which causes the linker to require additional runtime memory or
2214 (2) read the relocs twice from the input file, which wastes time.
2215 This would be a good case for using mmap.
2216
2217 I have no idea how to handle linking PIC code into a file of a
2218 different format. It probably can't be done. */
2219 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2220 if (! dynamic
2221 && abfd->xvec == info->hash->creator
2222 && check_relocs != NULL)
2223 {
2224 asection *o;
2225
2226 for (o = abfd->sections; o != NULL; o = o->next)
2227 {
2228 Elf_Internal_Rela *internal_relocs;
2229 boolean ok;
2230
2231 if ((o->flags & SEC_RELOC) == 0
2232 || o->reloc_count == 0
2233 || ((info->strip == strip_all || info->strip == strip_debugger)
2234 && (o->flags & SEC_DEBUGGING) != 0)
2235 || bfd_is_abs_section (o->output_section))
2236 continue;
2237
2238 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2239 (abfd, o, (PTR) NULL,
2240 (Elf_Internal_Rela *) NULL,
2241 info->keep_memory));
2242 if (internal_relocs == NULL)
2243 goto error_return;
2244
2245 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2246
2247 if (! info->keep_memory)
2248 free (internal_relocs);
2249
2250 if (! ok)
2251 goto error_return;
2252 }
2253 }
2254
2255 /* If this is a non-traditional, non-relocateable link, try to
2256 optimize the handling of the .stab/.stabstr sections. */
2257 if (! dynamic
2258 && ! info->relocateable
2259 && ! info->traditional_format
2260 && info->hash->creator->flavour == bfd_target_elf_flavour
2261 && is_elf_hash_table (info)
2262 && (info->strip != strip_all && info->strip != strip_debugger))
2263 {
2264 asection *stab, *stabstr;
2265
2266 stab = bfd_get_section_by_name (abfd, ".stab");
2267 if (stab != NULL && !(stab->flags & SEC_MERGE))
2268 {
2269 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2270
2271 if (stabstr != NULL)
2272 {
2273 struct bfd_elf_section_data *secdata;
2274
2275 secdata = elf_section_data (stab);
2276 if (! _bfd_link_section_stabs (abfd,
2277 & hash_table->stab_info,
2278 stab, stabstr,
2279 &secdata->sec_info))
2280 goto error_return;
2281 if (secdata->sec_info)
2282 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2283 }
2284 }
2285 }
2286
2287 if (! info->relocateable && ! dynamic
2288 && is_elf_hash_table (info))
2289 {
2290 asection *s;
2291
2292 for (s = abfd->sections; s != NULL; s = s->next)
2293 if (s->flags & SEC_MERGE)
2294 {
2295 struct bfd_elf_section_data *secdata;
2296
2297 secdata = elf_section_data (s);
2298 if (! _bfd_merge_section (abfd,
2299 & hash_table->merge_info,
2300 s, &secdata->sec_info))
2301 goto error_return;
2302 else if (secdata->sec_info)
2303 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2304 }
2305 }
2306
2307 return true;
2308
2309 error_return:
2310 if (buf != NULL)
2311 free (buf);
2312 if (dynbuf != NULL)
2313 free (dynbuf);
2314 if (extversym != NULL)
2315 free (extversym);
2316 return false;
2317 }
2318
2319 /* Create some sections which will be filled in with dynamic linking
2320 information. ABFD is an input file which requires dynamic sections
2321 to be created. The dynamic sections take up virtual memory space
2322 when the final executable is run, so we need to create them before
2323 addresses are assigned to the output sections. We work out the
2324 actual contents and size of these sections later. */
2325
2326 boolean
2327 elf_link_create_dynamic_sections (abfd, info)
2328 bfd *abfd;
2329 struct bfd_link_info *info;
2330 {
2331 flagword flags;
2332 register asection *s;
2333 struct elf_link_hash_entry *h;
2334 struct elf_backend_data *bed;
2335
2336 if (! is_elf_hash_table (info))
2337 return false;
2338
2339 if (elf_hash_table (info)->dynamic_sections_created)
2340 return true;
2341
2342 /* Make sure that all dynamic sections use the same input BFD. */
2343 if (elf_hash_table (info)->dynobj == NULL)
2344 elf_hash_table (info)->dynobj = abfd;
2345 else
2346 abfd = elf_hash_table (info)->dynobj;
2347
2348 /* Note that we set the SEC_IN_MEMORY flag for all of these
2349 sections. */
2350 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2351 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2352
2353 /* A dynamically linked executable has a .interp section, but a
2354 shared library does not. */
2355 if (! info->shared)
2356 {
2357 s = bfd_make_section (abfd, ".interp");
2358 if (s == NULL
2359 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2360 return false;
2361 }
2362
2363 if (! info->traditional_format
2364 && info->hash->creator->flavour == bfd_target_elf_flavour)
2365 {
2366 s = bfd_make_section (abfd, ".eh_frame_hdr");
2367 if (s == NULL
2368 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2369 || ! bfd_set_section_alignment (abfd, s, 2))
2370 return false;
2371 }
2372
2373 /* Create sections to hold version informations. These are removed
2374 if they are not needed. */
2375 s = bfd_make_section (abfd, ".gnu.version_d");
2376 if (s == NULL
2377 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2378 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2379 return false;
2380
2381 s = bfd_make_section (abfd, ".gnu.version");
2382 if (s == NULL
2383 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2384 || ! bfd_set_section_alignment (abfd, s, 1))
2385 return false;
2386
2387 s = bfd_make_section (abfd, ".gnu.version_r");
2388 if (s == NULL
2389 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2390 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2391 return false;
2392
2393 s = bfd_make_section (abfd, ".dynsym");
2394 if (s == NULL
2395 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2396 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2397 return false;
2398
2399 s = bfd_make_section (abfd, ".dynstr");
2400 if (s == NULL
2401 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2402 return false;
2403
2404 /* Create a strtab to hold the dynamic symbol names. */
2405 if (elf_hash_table (info)->dynstr == NULL)
2406 {
2407 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2408 if (elf_hash_table (info)->dynstr == NULL)
2409 return false;
2410 }
2411
2412 s = bfd_make_section (abfd, ".dynamic");
2413 if (s == NULL
2414 || ! bfd_set_section_flags (abfd, s, flags)
2415 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2416 return false;
2417
2418 /* The special symbol _DYNAMIC is always set to the start of the
2419 .dynamic section. This call occurs before we have processed the
2420 symbols for any dynamic object, so we don't have to worry about
2421 overriding a dynamic definition. We could set _DYNAMIC in a
2422 linker script, but we only want to define it if we are, in fact,
2423 creating a .dynamic section. We don't want to define it if there
2424 is no .dynamic section, since on some ELF platforms the start up
2425 code examines it to decide how to initialize the process. */
2426 h = NULL;
2427 if (! (_bfd_generic_link_add_one_symbol
2428 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2429 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2430 (struct bfd_link_hash_entry **) &h)))
2431 return false;
2432 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2433 h->type = STT_OBJECT;
2434
2435 if (info->shared
2436 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2437 return false;
2438
2439 bed = get_elf_backend_data (abfd);
2440
2441 s = bfd_make_section (abfd, ".hash");
2442 if (s == NULL
2443 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2444 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2445 return false;
2446 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2447
2448 /* Let the backend create the rest of the sections. This lets the
2449 backend set the right flags. The backend will normally create
2450 the .got and .plt sections. */
2451 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2452 return false;
2453
2454 elf_hash_table (info)->dynamic_sections_created = true;
2455
2456 return true;
2457 }
2458
2459 /* Add an entry to the .dynamic table. */
2460
2461 boolean
2462 elf_add_dynamic_entry (info, tag, val)
2463 struct bfd_link_info *info;
2464 bfd_vma tag;
2465 bfd_vma val;
2466 {
2467 Elf_Internal_Dyn dyn;
2468 bfd *dynobj;
2469 asection *s;
2470 bfd_size_type newsize;
2471 bfd_byte *newcontents;
2472
2473 if (! is_elf_hash_table (info))
2474 return false;
2475
2476 dynobj = elf_hash_table (info)->dynobj;
2477
2478 s = bfd_get_section_by_name (dynobj, ".dynamic");
2479 BFD_ASSERT (s != NULL);
2480
2481 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2482 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2483 if (newcontents == NULL)
2484 return false;
2485
2486 dyn.d_tag = tag;
2487 dyn.d_un.d_val = val;
2488 elf_swap_dyn_out (dynobj, &dyn,
2489 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2490
2491 s->_raw_size = newsize;
2492 s->contents = newcontents;
2493
2494 return true;
2495 }
2496
2497 /* Record a new local dynamic symbol. */
2498
2499 boolean
2500 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2501 struct bfd_link_info *info;
2502 bfd *input_bfd;
2503 long input_indx;
2504 {
2505 struct elf_link_local_dynamic_entry *entry;
2506 struct elf_link_hash_table *eht;
2507 struct elf_strtab_hash *dynstr;
2508 Elf_External_Sym esym;
2509 Elf_External_Sym_Shndx eshndx;
2510 Elf_External_Sym_Shndx *shndx;
2511 unsigned long dynstr_index;
2512 char *name;
2513 file_ptr pos;
2514 bfd_size_type amt;
2515
2516 if (! is_elf_hash_table (info))
2517 return false;
2518
2519 /* See if the entry exists already. */
2520 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2521 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2522 return true;
2523
2524 entry = (struct elf_link_local_dynamic_entry *)
2525 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2526 if (entry == NULL)
2527 return false;
2528
2529 /* Go find the symbol, so that we can find it's name. */
2530 amt = sizeof (Elf_External_Sym);
2531 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2532 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2533 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2534 return false;
2535 shndx = NULL;
2536 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2537 {
2538 amt = sizeof (Elf_External_Sym_Shndx);
2539 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2540 pos += input_indx * amt;
2541 shndx = &eshndx;
2542 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2543 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2544 return false;
2545 }
2546 elf_swap_symbol_in (input_bfd, &esym, shndx, &entry->isym);
2547
2548 name = (bfd_elf_string_from_elf_section
2549 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2550 entry->isym.st_name));
2551
2552 dynstr = elf_hash_table (info)->dynstr;
2553 if (dynstr == NULL)
2554 {
2555 /* Create a strtab to hold the dynamic symbol names. */
2556 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2557 if (dynstr == NULL)
2558 return false;
2559 }
2560
2561 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2562 if (dynstr_index == (unsigned long) -1)
2563 return false;
2564 entry->isym.st_name = dynstr_index;
2565
2566 eht = elf_hash_table (info);
2567
2568 entry->next = eht->dynlocal;
2569 eht->dynlocal = entry;
2570 entry->input_bfd = input_bfd;
2571 entry->input_indx = input_indx;
2572 eht->dynsymcount++;
2573
2574 /* Whatever binding the symbol had before, it's now local. */
2575 entry->isym.st_info
2576 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2577
2578 /* The dynindx will be set at the end of size_dynamic_sections. */
2579
2580 return true;
2581 }
2582 \f
2583 /* Read and swap the relocs from the section indicated by SHDR. This
2584 may be either a REL or a RELA section. The relocations are
2585 translated into RELA relocations and stored in INTERNAL_RELOCS,
2586 which should have already been allocated to contain enough space.
2587 The EXTERNAL_RELOCS are a buffer where the external form of the
2588 relocations should be stored.
2589
2590 Returns false if something goes wrong. */
2591
2592 static boolean
2593 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2594 internal_relocs)
2595 bfd *abfd;
2596 Elf_Internal_Shdr *shdr;
2597 PTR external_relocs;
2598 Elf_Internal_Rela *internal_relocs;
2599 {
2600 struct elf_backend_data *bed;
2601 bfd_size_type amt;
2602
2603 /* If there aren't any relocations, that's OK. */
2604 if (!shdr)
2605 return true;
2606
2607 /* Position ourselves at the start of the section. */
2608 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2609 return false;
2610
2611 /* Read the relocations. */
2612 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2613 return false;
2614
2615 bed = get_elf_backend_data (abfd);
2616
2617 /* Convert the external relocations to the internal format. */
2618 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2619 {
2620 Elf_External_Rel *erel;
2621 Elf_External_Rel *erelend;
2622 Elf_Internal_Rela *irela;
2623 Elf_Internal_Rel *irel;
2624
2625 erel = (Elf_External_Rel *) external_relocs;
2626 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2627 irela = internal_relocs;
2628 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2629 irel = bfd_alloc (abfd, amt);
2630 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2631 {
2632 unsigned int i;
2633
2634 if (bed->s->swap_reloc_in)
2635 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2636 else
2637 elf_swap_reloc_in (abfd, erel, irel);
2638
2639 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2640 {
2641 irela[i].r_offset = irel[i].r_offset;
2642 irela[i].r_info = irel[i].r_info;
2643 irela[i].r_addend = 0;
2644 }
2645 }
2646 }
2647 else
2648 {
2649 Elf_External_Rela *erela;
2650 Elf_External_Rela *erelaend;
2651 Elf_Internal_Rela *irela;
2652
2653 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2654
2655 erela = (Elf_External_Rela *) external_relocs;
2656 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2657 irela = internal_relocs;
2658 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2659 {
2660 if (bed->s->swap_reloca_in)
2661 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2662 else
2663 elf_swap_reloca_in (abfd, erela, irela);
2664 }
2665 }
2666
2667 return true;
2668 }
2669
2670 /* Read and swap the relocs for a section O. They may have been
2671 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2672 not NULL, they are used as buffers to read into. They are known to
2673 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2674 the return value is allocated using either malloc or bfd_alloc,
2675 according to the KEEP_MEMORY argument. If O has two relocation
2676 sections (both REL and RELA relocations), then the REL_HDR
2677 relocations will appear first in INTERNAL_RELOCS, followed by the
2678 REL_HDR2 relocations. */
2679
2680 Elf_Internal_Rela *
2681 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2682 keep_memory)
2683 bfd *abfd;
2684 asection *o;
2685 PTR external_relocs;
2686 Elf_Internal_Rela *internal_relocs;
2687 boolean keep_memory;
2688 {
2689 Elf_Internal_Shdr *rel_hdr;
2690 PTR alloc1 = NULL;
2691 Elf_Internal_Rela *alloc2 = NULL;
2692 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2693
2694 if (elf_section_data (o)->relocs != NULL)
2695 return elf_section_data (o)->relocs;
2696
2697 if (o->reloc_count == 0)
2698 return NULL;
2699
2700 rel_hdr = &elf_section_data (o)->rel_hdr;
2701
2702 if (internal_relocs == NULL)
2703 {
2704 bfd_size_type size;
2705
2706 size = o->reloc_count;
2707 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2708 if (keep_memory)
2709 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2710 else
2711 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2712 if (internal_relocs == NULL)
2713 goto error_return;
2714 }
2715
2716 if (external_relocs == NULL)
2717 {
2718 bfd_size_type size = rel_hdr->sh_size;
2719
2720 if (elf_section_data (o)->rel_hdr2)
2721 size += elf_section_data (o)->rel_hdr2->sh_size;
2722 alloc1 = (PTR) bfd_malloc (size);
2723 if (alloc1 == NULL)
2724 goto error_return;
2725 external_relocs = alloc1;
2726 }
2727
2728 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2729 external_relocs,
2730 internal_relocs))
2731 goto error_return;
2732 if (!elf_link_read_relocs_from_section
2733 (abfd,
2734 elf_section_data (o)->rel_hdr2,
2735 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2736 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2737 * bed->s->int_rels_per_ext_rel)))
2738 goto error_return;
2739
2740 /* Cache the results for next time, if we can. */
2741 if (keep_memory)
2742 elf_section_data (o)->relocs = internal_relocs;
2743
2744 if (alloc1 != NULL)
2745 free (alloc1);
2746
2747 /* Don't free alloc2, since if it was allocated we are passing it
2748 back (under the name of internal_relocs). */
2749
2750 return internal_relocs;
2751
2752 error_return:
2753 if (alloc1 != NULL)
2754 free (alloc1);
2755 if (alloc2 != NULL)
2756 free (alloc2);
2757 return NULL;
2758 }
2759 \f
2760 /* Record an assignment to a symbol made by a linker script. We need
2761 this in case some dynamic object refers to this symbol. */
2762
2763 boolean
2764 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2765 bfd *output_bfd ATTRIBUTE_UNUSED;
2766 struct bfd_link_info *info;
2767 const char *name;
2768 boolean provide;
2769 {
2770 struct elf_link_hash_entry *h;
2771
2772 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2773 return true;
2774
2775 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2776 if (h == NULL)
2777 return false;
2778
2779 if (h->root.type == bfd_link_hash_new)
2780 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2781
2782 /* If this symbol is being provided by the linker script, and it is
2783 currently defined by a dynamic object, but not by a regular
2784 object, then mark it as undefined so that the generic linker will
2785 force the correct value. */
2786 if (provide
2787 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2788 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2789 h->root.type = bfd_link_hash_undefined;
2790
2791 /* If this symbol is not being provided by the linker script, and it is
2792 currently defined by a dynamic object, but not by a regular object,
2793 then clear out any version information because the symbol will not be
2794 associated with the dynamic object any more. */
2795 if (!provide
2796 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2797 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2798 h->verinfo.verdef = NULL;
2799
2800 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2801
2802 /* When possible, keep the original type of the symbol. */
2803 if (h->type == STT_NOTYPE)
2804 h->type = STT_OBJECT;
2805
2806 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2807 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2808 || info->shared)
2809 && h->dynindx == -1)
2810 {
2811 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2812 return false;
2813
2814 /* If this is a weak defined symbol, and we know a corresponding
2815 real symbol from the same dynamic object, make sure the real
2816 symbol is also made into a dynamic symbol. */
2817 if (h->weakdef != NULL
2818 && h->weakdef->dynindx == -1)
2819 {
2820 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2821 return false;
2822 }
2823 }
2824
2825 return true;
2826 }
2827 \f
2828 /* This structure is used to pass information to
2829 elf_link_assign_sym_version. */
2830
2831 struct elf_assign_sym_version_info
2832 {
2833 /* Output BFD. */
2834 bfd *output_bfd;
2835 /* General link information. */
2836 struct bfd_link_info *info;
2837 /* Version tree. */
2838 struct bfd_elf_version_tree *verdefs;
2839 /* Whether we had a failure. */
2840 boolean failed;
2841 };
2842
2843 /* This structure is used to pass information to
2844 elf_link_find_version_dependencies. */
2845
2846 struct elf_find_verdep_info
2847 {
2848 /* Output BFD. */
2849 bfd *output_bfd;
2850 /* General link information. */
2851 struct bfd_link_info *info;
2852 /* The number of dependencies. */
2853 unsigned int vers;
2854 /* Whether we had a failure. */
2855 boolean failed;
2856 };
2857
2858 /* Array used to determine the number of hash table buckets to use
2859 based on the number of symbols there are. If there are fewer than
2860 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2861 fewer than 37 we use 17 buckets, and so forth. We never use more
2862 than 32771 buckets. */
2863
2864 static const size_t elf_buckets[] =
2865 {
2866 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2867 16411, 32771, 0
2868 };
2869
2870 /* Compute bucket count for hashing table. We do not use a static set
2871 of possible tables sizes anymore. Instead we determine for all
2872 possible reasonable sizes of the table the outcome (i.e., the
2873 number of collisions etc) and choose the best solution. The
2874 weighting functions are not too simple to allow the table to grow
2875 without bounds. Instead one of the weighting factors is the size.
2876 Therefore the result is always a good payoff between few collisions
2877 (= short chain lengths) and table size. */
2878 static size_t
2879 compute_bucket_count (info)
2880 struct bfd_link_info *info;
2881 {
2882 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2883 size_t best_size = 0;
2884 unsigned long int *hashcodes;
2885 unsigned long int *hashcodesp;
2886 unsigned long int i;
2887 bfd_size_type amt;
2888
2889 /* Compute the hash values for all exported symbols. At the same
2890 time store the values in an array so that we could use them for
2891 optimizations. */
2892 amt = dynsymcount;
2893 amt *= sizeof (unsigned long int);
2894 hashcodes = (unsigned long int *) bfd_malloc (amt);
2895 if (hashcodes == NULL)
2896 return 0;
2897 hashcodesp = hashcodes;
2898
2899 /* Put all hash values in HASHCODES. */
2900 elf_link_hash_traverse (elf_hash_table (info),
2901 elf_collect_hash_codes, &hashcodesp);
2902
2903 /* We have a problem here. The following code to optimize the table
2904 size requires an integer type with more the 32 bits. If
2905 BFD_HOST_U_64_BIT is set we know about such a type. */
2906 #ifdef BFD_HOST_U_64_BIT
2907 if (info->optimize == true)
2908 {
2909 unsigned long int nsyms = hashcodesp - hashcodes;
2910 size_t minsize;
2911 size_t maxsize;
2912 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2913 unsigned long int *counts ;
2914
2915 /* Possible optimization parameters: if we have NSYMS symbols we say
2916 that the hashing table must at least have NSYMS/4 and at most
2917 2*NSYMS buckets. */
2918 minsize = nsyms / 4;
2919 if (minsize == 0)
2920 minsize = 1;
2921 best_size = maxsize = nsyms * 2;
2922
2923 /* Create array where we count the collisions in. We must use bfd_malloc
2924 since the size could be large. */
2925 amt = maxsize;
2926 amt *= sizeof (unsigned long int);
2927 counts = (unsigned long int *) bfd_malloc (amt);
2928 if (counts == NULL)
2929 {
2930 free (hashcodes);
2931 return 0;
2932 }
2933
2934 /* Compute the "optimal" size for the hash table. The criteria is a
2935 minimal chain length. The minor criteria is (of course) the size
2936 of the table. */
2937 for (i = minsize; i < maxsize; ++i)
2938 {
2939 /* Walk through the array of hashcodes and count the collisions. */
2940 BFD_HOST_U_64_BIT max;
2941 unsigned long int j;
2942 unsigned long int fact;
2943
2944 memset (counts, '\0', i * sizeof (unsigned long int));
2945
2946 /* Determine how often each hash bucket is used. */
2947 for (j = 0; j < nsyms; ++j)
2948 ++counts[hashcodes[j] % i];
2949
2950 /* For the weight function we need some information about the
2951 pagesize on the target. This is information need not be 100%
2952 accurate. Since this information is not available (so far) we
2953 define it here to a reasonable default value. If it is crucial
2954 to have a better value some day simply define this value. */
2955 # ifndef BFD_TARGET_PAGESIZE
2956 # define BFD_TARGET_PAGESIZE (4096)
2957 # endif
2958
2959 /* We in any case need 2 + NSYMS entries for the size values and
2960 the chains. */
2961 max = (2 + nsyms) * (ARCH_SIZE / 8);
2962
2963 # if 1
2964 /* Variant 1: optimize for short chains. We add the squares
2965 of all the chain lengths (which favous many small chain
2966 over a few long chains). */
2967 for (j = 0; j < i; ++j)
2968 max += counts[j] * counts[j];
2969
2970 /* This adds penalties for the overall size of the table. */
2971 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2972 max *= fact * fact;
2973 # else
2974 /* Variant 2: Optimize a lot more for small table. Here we
2975 also add squares of the size but we also add penalties for
2976 empty slots (the +1 term). */
2977 for (j = 0; j < i; ++j)
2978 max += (1 + counts[j]) * (1 + counts[j]);
2979
2980 /* The overall size of the table is considered, but not as
2981 strong as in variant 1, where it is squared. */
2982 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2983 max *= fact;
2984 # endif
2985
2986 /* Compare with current best results. */
2987 if (max < best_chlen)
2988 {
2989 best_chlen = max;
2990 best_size = i;
2991 }
2992 }
2993
2994 free (counts);
2995 }
2996 else
2997 #endif /* defined (BFD_HOST_U_64_BIT) */
2998 {
2999 /* This is the fallback solution if no 64bit type is available or if we
3000 are not supposed to spend much time on optimizations. We select the
3001 bucket count using a fixed set of numbers. */
3002 for (i = 0; elf_buckets[i] != 0; i++)
3003 {
3004 best_size = elf_buckets[i];
3005 if (dynsymcount < elf_buckets[i + 1])
3006 break;
3007 }
3008 }
3009
3010 /* Free the arrays we needed. */
3011 free (hashcodes);
3012
3013 return best_size;
3014 }
3015
3016 /* Set up the sizes and contents of the ELF dynamic sections. This is
3017 called by the ELF linker emulation before_allocation routine. We
3018 must set the sizes of the sections before the linker sets the
3019 addresses of the various sections. */
3020
3021 boolean
3022 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
3023 filter_shlib,
3024 auxiliary_filters, info, sinterpptr,
3025 verdefs)
3026 bfd *output_bfd;
3027 const char *soname;
3028 const char *rpath;
3029 const char *filter_shlib;
3030 const char * const *auxiliary_filters;
3031 struct bfd_link_info *info;
3032 asection **sinterpptr;
3033 struct bfd_elf_version_tree *verdefs;
3034 {
3035 bfd_size_type soname_indx;
3036 bfd *dynobj;
3037 struct elf_backend_data *bed;
3038 struct elf_assign_sym_version_info asvinfo;
3039
3040 *sinterpptr = NULL;
3041
3042 soname_indx = (bfd_size_type) -1;
3043
3044 if (info->hash->creator->flavour != bfd_target_elf_flavour)
3045 return true;
3046
3047 if (! is_elf_hash_table (info))
3048 return false;
3049
3050 /* Any syms created from now on start with -1 in
3051 got.refcount/offset and plt.refcount/offset. */
3052 elf_hash_table (info)->init_refcount = -1;
3053
3054 /* The backend may have to create some sections regardless of whether
3055 we're dynamic or not. */
3056 bed = get_elf_backend_data (output_bfd);
3057 if (bed->elf_backend_always_size_sections
3058 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3059 return false;
3060
3061 dynobj = elf_hash_table (info)->dynobj;
3062
3063 /* If there were no dynamic objects in the link, there is nothing to
3064 do here. */
3065 if (dynobj == NULL)
3066 return true;
3067
3068 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3069 return false;
3070
3071 if (elf_hash_table (info)->dynamic_sections_created)
3072 {
3073 struct elf_info_failed eif;
3074 struct elf_link_hash_entry *h;
3075 asection *dynstr;
3076
3077 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3078 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3079
3080 if (soname != NULL)
3081 {
3082 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3083 soname, true);
3084 if (soname_indx == (bfd_size_type) -1
3085 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3086 soname_indx))
3087 return false;
3088 }
3089
3090 if (info->symbolic)
3091 {
3092 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3093 (bfd_vma) 0))
3094 return false;
3095 info->flags |= DF_SYMBOLIC;
3096 }
3097
3098 if (rpath != NULL)
3099 {
3100 bfd_size_type indx;
3101
3102 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3103 true);
3104 if (info->new_dtags)
3105 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3106 if (indx == (bfd_size_type) -1
3107 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3108 || (info->new_dtags
3109 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3110 indx)))
3111 return false;
3112 }
3113
3114 if (filter_shlib != NULL)
3115 {
3116 bfd_size_type indx;
3117
3118 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3119 filter_shlib, true);
3120 if (indx == (bfd_size_type) -1
3121 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3122 return false;
3123 }
3124
3125 if (auxiliary_filters != NULL)
3126 {
3127 const char * const *p;
3128
3129 for (p = auxiliary_filters; *p != NULL; p++)
3130 {
3131 bfd_size_type indx;
3132
3133 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3134 *p, true);
3135 if (indx == (bfd_size_type) -1
3136 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3137 indx))
3138 return false;
3139 }
3140 }
3141
3142 eif.info = info;
3143 eif.verdefs = verdefs;
3144 eif.failed = false;
3145
3146 /* If we are supposed to export all symbols into the dynamic symbol
3147 table (this is not the normal case), then do so. */
3148 if (info->export_dynamic)
3149 {
3150 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3151 (PTR) &eif);
3152 if (eif.failed)
3153 return false;
3154 }
3155
3156 /* Attach all the symbols to their version information. */
3157 asvinfo.output_bfd = output_bfd;
3158 asvinfo.info = info;
3159 asvinfo.verdefs = verdefs;
3160 asvinfo.failed = false;
3161
3162 elf_link_hash_traverse (elf_hash_table (info),
3163 elf_link_assign_sym_version,
3164 (PTR) &asvinfo);
3165 if (asvinfo.failed)
3166 return false;
3167
3168 /* Find all symbols which were defined in a dynamic object and make
3169 the backend pick a reasonable value for them. */
3170 elf_link_hash_traverse (elf_hash_table (info),
3171 elf_adjust_dynamic_symbol,
3172 (PTR) &eif);
3173 if (eif.failed)
3174 return false;
3175
3176 /* Add some entries to the .dynamic section. We fill in some of the
3177 values later, in elf_bfd_final_link, but we must add the entries
3178 now so that we know the final size of the .dynamic section. */
3179
3180 /* If there are initialization and/or finalization functions to
3181 call then add the corresponding DT_INIT/DT_FINI entries. */
3182 h = (info->init_function
3183 ? elf_link_hash_lookup (elf_hash_table (info),
3184 info->init_function, false,
3185 false, false)
3186 : NULL);
3187 if (h != NULL
3188 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3189 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3190 {
3191 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3192 return false;
3193 }
3194 h = (info->fini_function
3195 ? elf_link_hash_lookup (elf_hash_table (info),
3196 info->fini_function, false,
3197 false, false)
3198 : NULL);
3199 if (h != NULL
3200 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3201 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3202 {
3203 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3204 return false;
3205 }
3206
3207 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3208 /* If .dynstr is excluded from the link, we don't want any of
3209 these tags. Strictly, we should be checking each section
3210 individually; This quick check covers for the case where
3211 someone does a /DISCARD/ : { *(*) }. */
3212 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3213 {
3214 bfd_size_type strsize;
3215
3216 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3217 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3218 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3219 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3220 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3221 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3222 (bfd_vma) sizeof (Elf_External_Sym)))
3223 return false;
3224 }
3225 }
3226
3227 /* The backend must work out the sizes of all the other dynamic
3228 sections. */
3229 if (bed->elf_backend_size_dynamic_sections
3230 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3231 return false;
3232
3233 if (elf_hash_table (info)->dynamic_sections_created)
3234 {
3235 bfd_size_type dynsymcount;
3236 asection *s;
3237 size_t bucketcount = 0;
3238 size_t hash_entry_size;
3239 unsigned int dtagcount;
3240
3241 /* Set up the version definition section. */
3242 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3243 BFD_ASSERT (s != NULL);
3244
3245 /* We may have created additional version definitions if we are
3246 just linking a regular application. */
3247 verdefs = asvinfo.verdefs;
3248
3249 /* Skip anonymous version tag. */
3250 if (verdefs != NULL && verdefs->vernum == 0)
3251 verdefs = verdefs->next;
3252
3253 if (verdefs == NULL)
3254 _bfd_strip_section_from_output (info, s);
3255 else
3256 {
3257 unsigned int cdefs;
3258 bfd_size_type size;
3259 struct bfd_elf_version_tree *t;
3260 bfd_byte *p;
3261 Elf_Internal_Verdef def;
3262 Elf_Internal_Verdaux defaux;
3263
3264 cdefs = 0;
3265 size = 0;
3266
3267 /* Make space for the base version. */
3268 size += sizeof (Elf_External_Verdef);
3269 size += sizeof (Elf_External_Verdaux);
3270 ++cdefs;
3271
3272 for (t = verdefs; t != NULL; t = t->next)
3273 {
3274 struct bfd_elf_version_deps *n;
3275
3276 size += sizeof (Elf_External_Verdef);
3277 size += sizeof (Elf_External_Verdaux);
3278 ++cdefs;
3279
3280 for (n = t->deps; n != NULL; n = n->next)
3281 size += sizeof (Elf_External_Verdaux);
3282 }
3283
3284 s->_raw_size = size;
3285 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3286 if (s->contents == NULL && s->_raw_size != 0)
3287 return false;
3288
3289 /* Fill in the version definition section. */
3290
3291 p = s->contents;
3292
3293 def.vd_version = VER_DEF_CURRENT;
3294 def.vd_flags = VER_FLG_BASE;
3295 def.vd_ndx = 1;
3296 def.vd_cnt = 1;
3297 def.vd_aux = sizeof (Elf_External_Verdef);
3298 def.vd_next = (sizeof (Elf_External_Verdef)
3299 + sizeof (Elf_External_Verdaux));
3300
3301 if (soname_indx != (bfd_size_type) -1)
3302 {
3303 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3304 soname_indx);
3305 def.vd_hash = bfd_elf_hash (soname);
3306 defaux.vda_name = soname_indx;
3307 }
3308 else
3309 {
3310 const char *name;
3311 bfd_size_type indx;
3312
3313 name = basename (output_bfd->filename);
3314 def.vd_hash = bfd_elf_hash (name);
3315 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3316 name, false);
3317 if (indx == (bfd_size_type) -1)
3318 return false;
3319 defaux.vda_name = indx;
3320 }
3321 defaux.vda_next = 0;
3322
3323 _bfd_elf_swap_verdef_out (output_bfd, &def,
3324 (Elf_External_Verdef *) p);
3325 p += sizeof (Elf_External_Verdef);
3326 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3327 (Elf_External_Verdaux *) p);
3328 p += sizeof (Elf_External_Verdaux);
3329
3330 for (t = verdefs; t != NULL; t = t->next)
3331 {
3332 unsigned int cdeps;
3333 struct bfd_elf_version_deps *n;
3334 struct elf_link_hash_entry *h;
3335
3336 cdeps = 0;
3337 for (n = t->deps; n != NULL; n = n->next)
3338 ++cdeps;
3339
3340 /* Add a symbol representing this version. */
3341 h = NULL;
3342 if (! (_bfd_generic_link_add_one_symbol
3343 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3344 (bfd_vma) 0, (const char *) NULL, false,
3345 get_elf_backend_data (dynobj)->collect,
3346 (struct bfd_link_hash_entry **) &h)))
3347 return false;
3348 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3349 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3350 h->type = STT_OBJECT;
3351 h->verinfo.vertree = t;
3352
3353 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3354 return false;
3355
3356 def.vd_version = VER_DEF_CURRENT;
3357 def.vd_flags = 0;
3358 if (t->globals == NULL && t->locals == NULL && ! t->used)
3359 def.vd_flags |= VER_FLG_WEAK;
3360 def.vd_ndx = t->vernum + 1;
3361 def.vd_cnt = cdeps + 1;
3362 def.vd_hash = bfd_elf_hash (t->name);
3363 def.vd_aux = sizeof (Elf_External_Verdef);
3364 if (t->next != NULL)
3365 def.vd_next = (sizeof (Elf_External_Verdef)
3366 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3367 else
3368 def.vd_next = 0;
3369
3370 _bfd_elf_swap_verdef_out (output_bfd, &def,
3371 (Elf_External_Verdef *) p);
3372 p += sizeof (Elf_External_Verdef);
3373
3374 defaux.vda_name = h->dynstr_index;
3375 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3376 h->dynstr_index);
3377 if (t->deps == NULL)
3378 defaux.vda_next = 0;
3379 else
3380 defaux.vda_next = sizeof (Elf_External_Verdaux);
3381 t->name_indx = defaux.vda_name;
3382
3383 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3384 (Elf_External_Verdaux *) p);
3385 p += sizeof (Elf_External_Verdaux);
3386
3387 for (n = t->deps; n != NULL; n = n->next)
3388 {
3389 if (n->version_needed == NULL)
3390 {
3391 /* This can happen if there was an error in the
3392 version script. */
3393 defaux.vda_name = 0;
3394 }
3395 else
3396 {
3397 defaux.vda_name = n->version_needed->name_indx;
3398 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3399 defaux.vda_name);
3400 }
3401 if (n->next == NULL)
3402 defaux.vda_next = 0;
3403 else
3404 defaux.vda_next = sizeof (Elf_External_Verdaux);
3405
3406 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3407 (Elf_External_Verdaux *) p);
3408 p += sizeof (Elf_External_Verdaux);
3409 }
3410 }
3411
3412 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3413 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3414 (bfd_vma) cdefs))
3415 return false;
3416
3417 elf_tdata (output_bfd)->cverdefs = cdefs;
3418 }
3419
3420 if (info->new_dtags && info->flags)
3421 {
3422 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3423 return false;
3424 }
3425
3426 if (info->flags_1)
3427 {
3428 if (! info->shared)
3429 info->flags_1 &= ~ (DF_1_INITFIRST
3430 | DF_1_NODELETE
3431 | DF_1_NOOPEN);
3432 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3433 info->flags_1))
3434 return false;
3435 }
3436
3437 /* Work out the size of the version reference section. */
3438
3439 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3440 BFD_ASSERT (s != NULL);
3441 {
3442 struct elf_find_verdep_info sinfo;
3443
3444 sinfo.output_bfd = output_bfd;
3445 sinfo.info = info;
3446 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3447 if (sinfo.vers == 0)
3448 sinfo.vers = 1;
3449 sinfo.failed = false;
3450
3451 elf_link_hash_traverse (elf_hash_table (info),
3452 elf_link_find_version_dependencies,
3453 (PTR) &sinfo);
3454
3455 if (elf_tdata (output_bfd)->verref == NULL)
3456 _bfd_strip_section_from_output (info, s);
3457 else
3458 {
3459 Elf_Internal_Verneed *t;
3460 unsigned int size;
3461 unsigned int crefs;
3462 bfd_byte *p;
3463
3464 /* Build the version definition section. */
3465 size = 0;
3466 crefs = 0;
3467 for (t = elf_tdata (output_bfd)->verref;
3468 t != NULL;
3469 t = t->vn_nextref)
3470 {
3471 Elf_Internal_Vernaux *a;
3472
3473 size += sizeof (Elf_External_Verneed);
3474 ++crefs;
3475 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3476 size += sizeof (Elf_External_Vernaux);
3477 }
3478
3479 s->_raw_size = size;
3480 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3481 if (s->contents == NULL)
3482 return false;
3483
3484 p = s->contents;
3485 for (t = elf_tdata (output_bfd)->verref;
3486 t != NULL;
3487 t = t->vn_nextref)
3488 {
3489 unsigned int caux;
3490 Elf_Internal_Vernaux *a;
3491 bfd_size_type indx;
3492
3493 caux = 0;
3494 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3495 ++caux;
3496
3497 t->vn_version = VER_NEED_CURRENT;
3498 t->vn_cnt = caux;
3499 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3500 elf_dt_name (t->vn_bfd) != NULL
3501 ? elf_dt_name (t->vn_bfd)
3502 : basename (t->vn_bfd->filename),
3503 false);
3504 if (indx == (bfd_size_type) -1)
3505 return false;
3506 t->vn_file = indx;
3507 t->vn_aux = sizeof (Elf_External_Verneed);
3508 if (t->vn_nextref == NULL)
3509 t->vn_next = 0;
3510 else
3511 t->vn_next = (sizeof (Elf_External_Verneed)
3512 + caux * sizeof (Elf_External_Vernaux));
3513
3514 _bfd_elf_swap_verneed_out (output_bfd, t,
3515 (Elf_External_Verneed *) p);
3516 p += sizeof (Elf_External_Verneed);
3517
3518 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3519 {
3520 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3521 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3522 a->vna_nodename, false);
3523 if (indx == (bfd_size_type) -1)
3524 return false;
3525 a->vna_name = indx;
3526 if (a->vna_nextptr == NULL)
3527 a->vna_next = 0;
3528 else
3529 a->vna_next = sizeof (Elf_External_Vernaux);
3530
3531 _bfd_elf_swap_vernaux_out (output_bfd, a,
3532 (Elf_External_Vernaux *) p);
3533 p += sizeof (Elf_External_Vernaux);
3534 }
3535 }
3536
3537 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3538 (bfd_vma) 0)
3539 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3540 (bfd_vma) crefs))
3541 return false;
3542
3543 elf_tdata (output_bfd)->cverrefs = crefs;
3544 }
3545 }
3546
3547 /* Assign dynsym indicies. In a shared library we generate a
3548 section symbol for each output section, which come first.
3549 Next come all of the back-end allocated local dynamic syms,
3550 followed by the rest of the global symbols. */
3551
3552 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3553
3554 /* Work out the size of the symbol version section. */
3555 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3556 BFD_ASSERT (s != NULL);
3557 if (dynsymcount == 0
3558 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3559 {
3560 _bfd_strip_section_from_output (info, s);
3561 /* The DYNSYMCOUNT might have changed if we were going to
3562 output a dynamic symbol table entry for S. */
3563 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3564 }
3565 else
3566 {
3567 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3568 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3569 if (s->contents == NULL)
3570 return false;
3571
3572 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3573 return false;
3574 }
3575
3576 /* Set the size of the .dynsym and .hash sections. We counted
3577 the number of dynamic symbols in elf_link_add_object_symbols.
3578 We will build the contents of .dynsym and .hash when we build
3579 the final symbol table, because until then we do not know the
3580 correct value to give the symbols. We built the .dynstr
3581 section as we went along in elf_link_add_object_symbols. */
3582 s = bfd_get_section_by_name (dynobj, ".dynsym");
3583 BFD_ASSERT (s != NULL);
3584 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3585 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3586 if (s->contents == NULL && s->_raw_size != 0)
3587 return false;
3588
3589 if (dynsymcount != 0)
3590 {
3591 Elf_Internal_Sym isym;
3592
3593 /* The first entry in .dynsym is a dummy symbol. */
3594 isym.st_value = 0;
3595 isym.st_size = 0;
3596 isym.st_name = 0;
3597 isym.st_info = 0;
3598 isym.st_other = 0;
3599 isym.st_shndx = 0;
3600 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3601 }
3602
3603 /* Compute the size of the hashing table. As a side effect this
3604 computes the hash values for all the names we export. */
3605 bucketcount = compute_bucket_count (info);
3606
3607 s = bfd_get_section_by_name (dynobj, ".hash");
3608 BFD_ASSERT (s != NULL);
3609 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3610 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3611 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3612 if (s->contents == NULL)
3613 return false;
3614 memset (s->contents, 0, (size_t) s->_raw_size);
3615
3616 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3617 s->contents);
3618 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3619 s->contents + hash_entry_size);
3620
3621 elf_hash_table (info)->bucketcount = bucketcount;
3622
3623 s = bfd_get_section_by_name (dynobj, ".dynstr");
3624 BFD_ASSERT (s != NULL);
3625
3626 elf_finalize_dynstr (output_bfd, info);
3627
3628 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3629
3630 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3631 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3632 return false;
3633 }
3634
3635 return true;
3636 }
3637 \f
3638 /* This function is used to adjust offsets into .dynstr for
3639 dynamic symbols. This is called via elf_link_hash_traverse. */
3640
3641 static boolean elf_adjust_dynstr_offsets
3642 PARAMS ((struct elf_link_hash_entry *, PTR));
3643
3644 static boolean
3645 elf_adjust_dynstr_offsets (h, data)
3646 struct elf_link_hash_entry *h;
3647 PTR data;
3648 {
3649 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3650
3651 if (h->dynindx != -1)
3652 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3653 return true;
3654 }
3655
3656 /* Assign string offsets in .dynstr, update all structures referencing
3657 them. */
3658
3659 static boolean
3660 elf_finalize_dynstr (output_bfd, info)
3661 bfd *output_bfd;
3662 struct bfd_link_info *info;
3663 {
3664 struct elf_link_local_dynamic_entry *entry;
3665 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3666 bfd *dynobj = elf_hash_table (info)->dynobj;
3667 asection *sdyn;
3668 bfd_size_type size;
3669 Elf_External_Dyn *dyncon, *dynconend;
3670
3671 _bfd_elf_strtab_finalize (dynstr);
3672 size = _bfd_elf_strtab_size (dynstr);
3673
3674 /* Update all .dynamic entries referencing .dynstr strings. */
3675 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3676 BFD_ASSERT (sdyn != NULL);
3677
3678 dyncon = (Elf_External_Dyn *) sdyn->contents;
3679 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3680 sdyn->_raw_size);
3681 for (; dyncon < dynconend; dyncon++)
3682 {
3683 Elf_Internal_Dyn dyn;
3684
3685 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3686 switch (dyn.d_tag)
3687 {
3688 case DT_STRSZ:
3689 dyn.d_un.d_val = size;
3690 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3691 break;
3692 case DT_NEEDED:
3693 case DT_SONAME:
3694 case DT_RPATH:
3695 case DT_RUNPATH:
3696 case DT_FILTER:
3697 case DT_AUXILIARY:
3698 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3699 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3700 break;
3701 default:
3702 break;
3703 }
3704 }
3705
3706 /* Now update local dynamic symbols. */
3707 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3708 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3709 entry->isym.st_name);
3710
3711 /* And the rest of dynamic symbols. */
3712 elf_link_hash_traverse (elf_hash_table (info),
3713 elf_adjust_dynstr_offsets, dynstr);
3714
3715 /* Adjust version definitions. */
3716 if (elf_tdata (output_bfd)->cverdefs)
3717 {
3718 asection *s;
3719 bfd_byte *p;
3720 bfd_size_type i;
3721 Elf_Internal_Verdef def;
3722 Elf_Internal_Verdaux defaux;
3723
3724 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3725 p = (bfd_byte *) s->contents;
3726 do
3727 {
3728 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3729 &def);
3730 p += sizeof (Elf_External_Verdef);
3731 for (i = 0; i < def.vd_cnt; ++i)
3732 {
3733 _bfd_elf_swap_verdaux_in (output_bfd,
3734 (Elf_External_Verdaux *) p, &defaux);
3735 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3736 defaux.vda_name);
3737 _bfd_elf_swap_verdaux_out (output_bfd,
3738 &defaux, (Elf_External_Verdaux *) p);
3739 p += sizeof (Elf_External_Verdaux);
3740 }
3741 }
3742 while (def.vd_next);
3743 }
3744
3745 /* Adjust version references. */
3746 if (elf_tdata (output_bfd)->verref)
3747 {
3748 asection *s;
3749 bfd_byte *p;
3750 bfd_size_type i;
3751 Elf_Internal_Verneed need;
3752 Elf_Internal_Vernaux needaux;
3753
3754 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3755 p = (bfd_byte *) s->contents;
3756 do
3757 {
3758 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3759 &need);
3760 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3761 _bfd_elf_swap_verneed_out (output_bfd, &need,
3762 (Elf_External_Verneed *) p);
3763 p += sizeof (Elf_External_Verneed);
3764 for (i = 0; i < need.vn_cnt; ++i)
3765 {
3766 _bfd_elf_swap_vernaux_in (output_bfd,
3767 (Elf_External_Vernaux *) p, &needaux);
3768 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3769 needaux.vna_name);
3770 _bfd_elf_swap_vernaux_out (output_bfd,
3771 &needaux,
3772 (Elf_External_Vernaux *) p);
3773 p += sizeof (Elf_External_Vernaux);
3774 }
3775 }
3776 while (need.vn_next);
3777 }
3778
3779 return true;
3780 }
3781
3782 /* Fix up the flags for a symbol. This handles various cases which
3783 can only be fixed after all the input files are seen. This is
3784 currently called by both adjust_dynamic_symbol and
3785 assign_sym_version, which is unnecessary but perhaps more robust in
3786 the face of future changes. */
3787
3788 static boolean
3789 elf_fix_symbol_flags (h, eif)
3790 struct elf_link_hash_entry *h;
3791 struct elf_info_failed *eif;
3792 {
3793 /* If this symbol was mentioned in a non-ELF file, try to set
3794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3795 permit a non-ELF file to correctly refer to a symbol defined in
3796 an ELF dynamic object. */
3797 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3798 {
3799 while (h->root.type == bfd_link_hash_indirect)
3800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3801
3802 if (h->root.type != bfd_link_hash_defined
3803 && h->root.type != bfd_link_hash_defweak)
3804 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3805 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3806 else
3807 {
3808 if (h->root.u.def.section->owner != NULL
3809 && (bfd_get_flavour (h->root.u.def.section->owner)
3810 == bfd_target_elf_flavour))
3811 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3812 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3813 else
3814 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3815 }
3816
3817 if (h->dynindx == -1
3818 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3819 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3820 {
3821 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3822 {
3823 eif->failed = true;
3824 return false;
3825 }
3826 }
3827 }
3828 else
3829 {
3830 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3831 was first seen in a non-ELF file. Fortunately, if the symbol
3832 was first seen in an ELF file, we're probably OK unless the
3833 symbol was defined in a non-ELF file. Catch that case here.
3834 FIXME: We're still in trouble if the symbol was first seen in
3835 a dynamic object, and then later in a non-ELF regular object. */
3836 if ((h->root.type == bfd_link_hash_defined
3837 || h->root.type == bfd_link_hash_defweak)
3838 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3839 && (h->root.u.def.section->owner != NULL
3840 ? (bfd_get_flavour (h->root.u.def.section->owner)
3841 != bfd_target_elf_flavour)
3842 : (bfd_is_abs_section (h->root.u.def.section)
3843 && (h->elf_link_hash_flags
3844 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3845 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3846 }
3847
3848 /* If this is a final link, and the symbol was defined as a common
3849 symbol in a regular object file, and there was no definition in
3850 any dynamic object, then the linker will have allocated space for
3851 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3852 flag will not have been set. */
3853 if (h->root.type == bfd_link_hash_defined
3854 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3855 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3856 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3857 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3858 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3859
3860 /* If -Bsymbolic was used (which means to bind references to global
3861 symbols to the definition within the shared object), and this
3862 symbol was defined in a regular object, then it actually doesn't
3863 need a PLT entry, and we can accomplish that by forcing it local.
3864 Likewise, if the symbol has hidden or internal visibility.
3865 FIXME: It might be that we also do not need a PLT for other
3866 non-hidden visibilities, but we would have to tell that to the
3867 backend specifically; we can't just clear PLT-related data here. */
3868 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3869 && eif->info->shared
3870 && is_elf_hash_table (eif->info)
3871 && (eif->info->symbolic
3872 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3873 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3874 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3875 {
3876 struct elf_backend_data *bed;
3877
3878 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3879 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3880 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3881 {
3882 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3883 _bfd_elf_strtab_delref (elf_hash_table (eif->info)->dynstr,
3884 h->dynstr_index);
3885 }
3886 (*bed->elf_backend_hide_symbol) (eif->info, h);
3887 }
3888
3889 /* If this is a weak defined symbol in a dynamic object, and we know
3890 the real definition in the dynamic object, copy interesting flags
3891 over to the real definition. */
3892 if (h->weakdef != NULL)
3893 {
3894 struct elf_link_hash_entry *weakdef;
3895
3896 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3897 || h->root.type == bfd_link_hash_defweak);
3898 weakdef = h->weakdef;
3899 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3900 || weakdef->root.type == bfd_link_hash_defweak);
3901 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3902
3903 /* If the real definition is defined by a regular object file,
3904 don't do anything special. See the longer description in
3905 elf_adjust_dynamic_symbol, below. */
3906 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3907 h->weakdef = NULL;
3908 else
3909 {
3910 struct elf_backend_data *bed;
3911
3912 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3913 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
3914 }
3915 }
3916
3917 return true;
3918 }
3919
3920 /* Make the backend pick a good value for a dynamic symbol. This is
3921 called via elf_link_hash_traverse, and also calls itself
3922 recursively. */
3923
3924 static boolean
3925 elf_adjust_dynamic_symbol (h, data)
3926 struct elf_link_hash_entry *h;
3927 PTR data;
3928 {
3929 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3930 bfd *dynobj;
3931 struct elf_backend_data *bed;
3932
3933 /* Ignore indirect symbols. These are added by the versioning code. */
3934 if (h->root.type == bfd_link_hash_indirect)
3935 return true;
3936
3937 if (! is_elf_hash_table (eif->info))
3938 return false;
3939
3940 /* Fix the symbol flags. */
3941 if (! elf_fix_symbol_flags (h, eif))
3942 return false;
3943
3944 /* If this symbol does not require a PLT entry, and it is not
3945 defined by a dynamic object, or is not referenced by a regular
3946 object, ignore it. We do have to handle a weak defined symbol,
3947 even if no regular object refers to it, if we decided to add it
3948 to the dynamic symbol table. FIXME: Do we normally need to worry
3949 about symbols which are defined by one dynamic object and
3950 referenced by another one? */
3951 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3952 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3953 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3954 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3955 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3956 {
3957 h->plt.offset = (bfd_vma) -1;
3958 return true;
3959 }
3960
3961 /* If we've already adjusted this symbol, don't do it again. This
3962 can happen via a recursive call. */
3963 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3964 return true;
3965
3966 /* Don't look at this symbol again. Note that we must set this
3967 after checking the above conditions, because we may look at a
3968 symbol once, decide not to do anything, and then get called
3969 recursively later after REF_REGULAR is set below. */
3970 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3971
3972 /* If this is a weak definition, and we know a real definition, and
3973 the real symbol is not itself defined by a regular object file,
3974 then get a good value for the real definition. We handle the
3975 real symbol first, for the convenience of the backend routine.
3976
3977 Note that there is a confusing case here. If the real definition
3978 is defined by a regular object file, we don't get the real symbol
3979 from the dynamic object, but we do get the weak symbol. If the
3980 processor backend uses a COPY reloc, then if some routine in the
3981 dynamic object changes the real symbol, we will not see that
3982 change in the corresponding weak symbol. This is the way other
3983 ELF linkers work as well, and seems to be a result of the shared
3984 library model.
3985
3986 I will clarify this issue. Most SVR4 shared libraries define the
3987 variable _timezone and define timezone as a weak synonym. The
3988 tzset call changes _timezone. If you write
3989 extern int timezone;
3990 int _timezone = 5;
3991 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3992 you might expect that, since timezone is a synonym for _timezone,
3993 the same number will print both times. However, if the processor
3994 backend uses a COPY reloc, then actually timezone will be copied
3995 into your process image, and, since you define _timezone
3996 yourself, _timezone will not. Thus timezone and _timezone will
3997 wind up at different memory locations. The tzset call will set
3998 _timezone, leaving timezone unchanged. */
3999
4000 if (h->weakdef != NULL)
4001 {
4002 /* If we get to this point, we know there is an implicit
4003 reference by a regular object file via the weak symbol H.
4004 FIXME: Is this really true? What if the traversal finds
4005 H->WEAKDEF before it finds H? */
4006 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4007
4008 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4009 return false;
4010 }
4011
4012 /* If a symbol has no type and no size and does not require a PLT
4013 entry, then we are probably about to do the wrong thing here: we
4014 are probably going to create a COPY reloc for an empty object.
4015 This case can arise when a shared object is built with assembly
4016 code, and the assembly code fails to set the symbol type. */
4017 if (h->size == 0
4018 && h->type == STT_NOTYPE
4019 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4020 (*_bfd_error_handler)
4021 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4022 h->root.root.string);
4023
4024 dynobj = elf_hash_table (eif->info)->dynobj;
4025 bed = get_elf_backend_data (dynobj);
4026 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4027 {
4028 eif->failed = true;
4029 return false;
4030 }
4031
4032 return true;
4033 }
4034 \f
4035 /* This routine is used to export all defined symbols into the dynamic
4036 symbol table. It is called via elf_link_hash_traverse. */
4037
4038 static boolean
4039 elf_export_symbol (h, data)
4040 struct elf_link_hash_entry *h;
4041 PTR data;
4042 {
4043 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4044
4045 /* Ignore indirect symbols. These are added by the versioning code. */
4046 if (h->root.type == bfd_link_hash_indirect)
4047 return true;
4048
4049 if (h->dynindx == -1
4050 && (h->elf_link_hash_flags
4051 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4052 {
4053 struct bfd_elf_version_tree *t;
4054 struct bfd_elf_version_expr *d;
4055
4056 for (t = eif->verdefs; t != NULL; t = t->next)
4057 {
4058 if (t->globals != NULL)
4059 {
4060 for (d = t->globals; d != NULL; d = d->next)
4061 {
4062 if ((*d->match) (d, h->root.root.string))
4063 goto doit;
4064 }
4065 }
4066
4067 if (t->locals != NULL)
4068 {
4069 for (d = t->locals ; d != NULL; d = d->next)
4070 {
4071 if ((*d->match) (d, h->root.root.string))
4072 return true;
4073 }
4074 }
4075 }
4076
4077 if (!eif->verdefs)
4078 {
4079 doit:
4080 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4081 {
4082 eif->failed = true;
4083 return false;
4084 }
4085 }
4086 }
4087
4088 return true;
4089 }
4090 \f
4091 /* Look through the symbols which are defined in other shared
4092 libraries and referenced here. Update the list of version
4093 dependencies. This will be put into the .gnu.version_r section.
4094 This function is called via elf_link_hash_traverse. */
4095
4096 static boolean
4097 elf_link_find_version_dependencies (h, data)
4098 struct elf_link_hash_entry *h;
4099 PTR data;
4100 {
4101 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4102 Elf_Internal_Verneed *t;
4103 Elf_Internal_Vernaux *a;
4104 bfd_size_type amt;
4105
4106 /* We only care about symbols defined in shared objects with version
4107 information. */
4108 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4109 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4110 || h->dynindx == -1
4111 || h->verinfo.verdef == NULL)
4112 return true;
4113
4114 /* See if we already know about this version. */
4115 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4116 {
4117 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4118 continue;
4119
4120 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4121 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4122 return true;
4123
4124 break;
4125 }
4126
4127 /* This is a new version. Add it to tree we are building. */
4128
4129 if (t == NULL)
4130 {
4131 amt = sizeof *t;
4132 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4133 if (t == NULL)
4134 {
4135 rinfo->failed = true;
4136 return false;
4137 }
4138
4139 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4140 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4141 elf_tdata (rinfo->output_bfd)->verref = t;
4142 }
4143
4144 amt = sizeof *a;
4145 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4146
4147 /* Note that we are copying a string pointer here, and testing it
4148 above. If bfd_elf_string_from_elf_section is ever changed to
4149 discard the string data when low in memory, this will have to be
4150 fixed. */
4151 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4152
4153 a->vna_flags = h->verinfo.verdef->vd_flags;
4154 a->vna_nextptr = t->vn_auxptr;
4155
4156 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4157 ++rinfo->vers;
4158
4159 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4160
4161 t->vn_auxptr = a;
4162
4163 return true;
4164 }
4165
4166 /* Figure out appropriate versions for all the symbols. We may not
4167 have the version number script until we have read all of the input
4168 files, so until that point we don't know which symbols should be
4169 local. This function is called via elf_link_hash_traverse. */
4170
4171 static boolean
4172 elf_link_assign_sym_version (h, data)
4173 struct elf_link_hash_entry *h;
4174 PTR data;
4175 {
4176 struct elf_assign_sym_version_info *sinfo;
4177 struct bfd_link_info *info;
4178 struct elf_backend_data *bed;
4179 struct elf_info_failed eif;
4180 char *p;
4181 bfd_size_type amt;
4182
4183 sinfo = (struct elf_assign_sym_version_info *) data;
4184 info = sinfo->info;
4185
4186 /* Fix the symbol flags. */
4187 eif.failed = false;
4188 eif.info = info;
4189 if (! elf_fix_symbol_flags (h, &eif))
4190 {
4191 if (eif.failed)
4192 sinfo->failed = true;
4193 return false;
4194 }
4195
4196 /* We only need version numbers for symbols defined in regular
4197 objects. */
4198 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4199 return true;
4200
4201 bed = get_elf_backend_data (sinfo->output_bfd);
4202 p = strchr (h->root.root.string, ELF_VER_CHR);
4203 if (p != NULL && h->verinfo.vertree == NULL)
4204 {
4205 struct bfd_elf_version_tree *t;
4206 boolean hidden;
4207
4208 hidden = true;
4209
4210 /* There are two consecutive ELF_VER_CHR characters if this is
4211 not a hidden symbol. */
4212 ++p;
4213 if (*p == ELF_VER_CHR)
4214 {
4215 hidden = false;
4216 ++p;
4217 }
4218
4219 /* If there is no version string, we can just return out. */
4220 if (*p == '\0')
4221 {
4222 if (hidden)
4223 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4224 return true;
4225 }
4226
4227 /* Look for the version. If we find it, it is no longer weak. */
4228 for (t = sinfo->verdefs; t != NULL; t = t->next)
4229 {
4230 if (strcmp (t->name, p) == 0)
4231 {
4232 size_t len;
4233 char *alc;
4234 struct bfd_elf_version_expr *d;
4235
4236 len = p - h->root.root.string;
4237 alc = bfd_alloc (sinfo->output_bfd, (bfd_size_type) len);
4238 if (alc == NULL)
4239 return false;
4240 strncpy (alc, h->root.root.string, len - 1);
4241 alc[len - 1] = '\0';
4242 if (alc[len - 2] == ELF_VER_CHR)
4243 alc[len - 2] = '\0';
4244
4245 h->verinfo.vertree = t;
4246 t->used = true;
4247 d = NULL;
4248
4249 if (t->globals != NULL)
4250 {
4251 for (d = t->globals; d != NULL; d = d->next)
4252 if ((*d->match) (d, alc))
4253 break;
4254 }
4255
4256 /* See if there is anything to force this symbol to
4257 local scope. */
4258 if (d == NULL && t->locals != NULL)
4259 {
4260 for (d = t->locals; d != NULL; d = d->next)
4261 {
4262 if ((*d->match) (d, alc))
4263 {
4264 if (h->dynindx != -1
4265 && info->shared
4266 && ! info->export_dynamic)
4267 {
4268 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4269 (*bed->elf_backend_hide_symbol) (info, h);
4270 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4271 h->dynstr_index);
4272 }
4273
4274 break;
4275 }
4276 }
4277 }
4278
4279 bfd_release (sinfo->output_bfd, alc);
4280 break;
4281 }
4282 }
4283
4284 /* If we are building an application, we need to create a
4285 version node for this version. */
4286 if (t == NULL && ! info->shared)
4287 {
4288 struct bfd_elf_version_tree **pp;
4289 int version_index;
4290
4291 /* If we aren't going to export this symbol, we don't need
4292 to worry about it. */
4293 if (h->dynindx == -1)
4294 return true;
4295
4296 amt = sizeof *t;
4297 t = ((struct bfd_elf_version_tree *)
4298 bfd_alloc (sinfo->output_bfd, amt));
4299 if (t == NULL)
4300 {
4301 sinfo->failed = true;
4302 return false;
4303 }
4304
4305 t->next = NULL;
4306 t->name = p;
4307 t->globals = NULL;
4308 t->locals = NULL;
4309 t->deps = NULL;
4310 t->name_indx = (unsigned int) -1;
4311 t->used = true;
4312
4313 version_index = 1;
4314 /* Don't count anonymous version tag. */
4315 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4316 version_index = 0;
4317 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4318 ++version_index;
4319 t->vernum = version_index;
4320
4321 *pp = t;
4322
4323 h->verinfo.vertree = t;
4324 }
4325 else if (t == NULL)
4326 {
4327 /* We could not find the version for a symbol when
4328 generating a shared archive. Return an error. */
4329 (*_bfd_error_handler)
4330 (_("%s: undefined versioned symbol name %s"),
4331 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4332 bfd_set_error (bfd_error_bad_value);
4333 sinfo->failed = true;
4334 return false;
4335 }
4336
4337 if (hidden)
4338 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4339 }
4340
4341 /* If we don't have a version for this symbol, see if we can find
4342 something. */
4343 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4344 {
4345 struct bfd_elf_version_tree *t;
4346 struct bfd_elf_version_tree *deflt;
4347 struct bfd_elf_version_expr *d;
4348
4349 /* See if can find what version this symbol is in. If the
4350 symbol is supposed to be local, then don't actually register
4351 it. */
4352 deflt = NULL;
4353 for (t = sinfo->verdefs; t != NULL; t = t->next)
4354 {
4355 if (t->globals != NULL)
4356 {
4357 for (d = t->globals; d != NULL; d = d->next)
4358 {
4359 if ((*d->match) (d, h->root.root.string))
4360 {
4361 h->verinfo.vertree = t;
4362 break;
4363 }
4364 }
4365
4366 if (d != NULL)
4367 break;
4368 }
4369
4370 if (t->locals != NULL)
4371 {
4372 for (d = t->locals; d != NULL; d = d->next)
4373 {
4374 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4375 deflt = t;
4376 else if ((*d->match) (d, h->root.root.string))
4377 {
4378 h->verinfo.vertree = t;
4379 if (h->dynindx != -1
4380 && info->shared
4381 && ! info->export_dynamic)
4382 {
4383 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4384 (*bed->elf_backend_hide_symbol) (info, h);
4385 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4386 h->dynstr_index);
4387 }
4388 break;
4389 }
4390 }
4391
4392 if (d != NULL)
4393 break;
4394 }
4395 }
4396
4397 if (deflt != NULL && h->verinfo.vertree == NULL)
4398 {
4399 h->verinfo.vertree = deflt;
4400 if (h->dynindx != -1
4401 && info->shared
4402 && ! info->export_dynamic)
4403 {
4404 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4405 (*bed->elf_backend_hide_symbol) (info, h);
4406 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4407 h->dynstr_index);
4408 }
4409 }
4410 }
4411
4412 return true;
4413 }
4414 \f
4415 /* Final phase of ELF linker. */
4416
4417 /* A structure we use to avoid passing large numbers of arguments. */
4418
4419 struct elf_final_link_info
4420 {
4421 /* General link information. */
4422 struct bfd_link_info *info;
4423 /* Output BFD. */
4424 bfd *output_bfd;
4425 /* Symbol string table. */
4426 struct bfd_strtab_hash *symstrtab;
4427 /* .dynsym section. */
4428 asection *dynsym_sec;
4429 /* .hash section. */
4430 asection *hash_sec;
4431 /* symbol version section (.gnu.version). */
4432 asection *symver_sec;
4433 /* Buffer large enough to hold contents of any section. */
4434 bfd_byte *contents;
4435 /* Buffer large enough to hold external relocs of any section. */
4436 PTR external_relocs;
4437 /* Buffer large enough to hold internal relocs of any section. */
4438 Elf_Internal_Rela *internal_relocs;
4439 /* Buffer large enough to hold external local symbols of any input
4440 BFD. */
4441 Elf_External_Sym *external_syms;
4442 /* And a buffer for symbol section indices. */
4443 Elf_External_Sym_Shndx *locsym_shndx;
4444 /* Buffer large enough to hold internal local symbols of any input
4445 BFD. */
4446 Elf_Internal_Sym *internal_syms;
4447 /* Array large enough to hold a symbol index for each local symbol
4448 of any input BFD. */
4449 long *indices;
4450 /* Array large enough to hold a section pointer for each local
4451 symbol of any input BFD. */
4452 asection **sections;
4453 /* Buffer to hold swapped out symbols. */
4454 Elf_External_Sym *symbuf;
4455 /* And one for symbol section indices. */
4456 Elf_External_Sym_Shndx *symshndxbuf;
4457 /* Number of swapped out symbols in buffer. */
4458 size_t symbuf_count;
4459 /* Number of symbols which fit in symbuf. */
4460 size_t symbuf_size;
4461 };
4462
4463 static boolean elf_link_output_sym
4464 PARAMS ((struct elf_final_link_info *, const char *,
4465 Elf_Internal_Sym *, asection *));
4466 static boolean elf_link_flush_output_syms
4467 PARAMS ((struct elf_final_link_info *));
4468 static boolean elf_link_output_extsym
4469 PARAMS ((struct elf_link_hash_entry *, PTR));
4470 static boolean elf_link_sec_merge_syms
4471 PARAMS ((struct elf_link_hash_entry *, PTR));
4472 static boolean elf_link_input_bfd
4473 PARAMS ((struct elf_final_link_info *, bfd *));
4474 static boolean elf_reloc_link_order
4475 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4476 struct bfd_link_order *));
4477
4478 /* This struct is used to pass information to elf_link_output_extsym. */
4479
4480 struct elf_outext_info
4481 {
4482 boolean failed;
4483 boolean localsyms;
4484 struct elf_final_link_info *finfo;
4485 };
4486
4487 /* Compute the size of, and allocate space for, REL_HDR which is the
4488 section header for a section containing relocations for O. */
4489
4490 static boolean
4491 elf_link_size_reloc_section (abfd, rel_hdr, o)
4492 bfd *abfd;
4493 Elf_Internal_Shdr *rel_hdr;
4494 asection *o;
4495 {
4496 bfd_size_type reloc_count;
4497 bfd_size_type num_rel_hashes;
4498
4499 /* Figure out how many relocations there will be. */
4500 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4501 reloc_count = elf_section_data (o)->rel_count;
4502 else
4503 reloc_count = elf_section_data (o)->rel_count2;
4504
4505 num_rel_hashes = o->reloc_count;
4506 if (num_rel_hashes < reloc_count)
4507 num_rel_hashes = reloc_count;
4508
4509 /* That allows us to calculate the size of the section. */
4510 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4511
4512 /* The contents field must last into write_object_contents, so we
4513 allocate it with bfd_alloc rather than malloc. Also since we
4514 cannot be sure that the contents will actually be filled in,
4515 we zero the allocated space. */
4516 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4517 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4518 return false;
4519
4520 /* We only allocate one set of hash entries, so we only do it the
4521 first time we are called. */
4522 if (elf_section_data (o)->rel_hashes == NULL
4523 && num_rel_hashes)
4524 {
4525 struct elf_link_hash_entry **p;
4526
4527 p = ((struct elf_link_hash_entry **)
4528 bfd_zmalloc (num_rel_hashes
4529 * sizeof (struct elf_link_hash_entry *)));
4530 if (p == NULL)
4531 return false;
4532
4533 elf_section_data (o)->rel_hashes = p;
4534 }
4535
4536 return true;
4537 }
4538
4539 /* When performing a relocateable link, the input relocations are
4540 preserved. But, if they reference global symbols, the indices
4541 referenced must be updated. Update all the relocations in
4542 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4543
4544 static void
4545 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4546 bfd *abfd;
4547 Elf_Internal_Shdr *rel_hdr;
4548 unsigned int count;
4549 struct elf_link_hash_entry **rel_hash;
4550 {
4551 unsigned int i;
4552 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4553 Elf_Internal_Rel *irel;
4554 Elf_Internal_Rela *irela;
4555 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4556
4557 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4558 if (irel == NULL)
4559 {
4560 (*_bfd_error_handler) (_("Error: out of memory"));
4561 abort ();
4562 }
4563
4564 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4565 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4566 if (irela == NULL)
4567 {
4568 (*_bfd_error_handler) (_("Error: out of memory"));
4569 abort ();
4570 }
4571
4572 for (i = 0; i < count; i++, rel_hash++)
4573 {
4574 if (*rel_hash == NULL)
4575 continue;
4576
4577 BFD_ASSERT ((*rel_hash)->indx >= 0);
4578
4579 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4580 {
4581 Elf_External_Rel *erel;
4582 unsigned int j;
4583
4584 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4585 if (bed->s->swap_reloc_in)
4586 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4587 else
4588 elf_swap_reloc_in (abfd, erel, irel);
4589
4590 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4591 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4592 ELF_R_TYPE (irel[j].r_info));
4593
4594 if (bed->s->swap_reloc_out)
4595 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4596 else
4597 elf_swap_reloc_out (abfd, irel, erel);
4598 }
4599 else
4600 {
4601 Elf_External_Rela *erela;
4602 unsigned int j;
4603
4604 BFD_ASSERT (rel_hdr->sh_entsize
4605 == sizeof (Elf_External_Rela));
4606
4607 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4608 if (bed->s->swap_reloca_in)
4609 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4610 else
4611 elf_swap_reloca_in (abfd, erela, irela);
4612
4613 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4614 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4615 ELF_R_TYPE (irela[j].r_info));
4616
4617 if (bed->s->swap_reloca_out)
4618 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4619 else
4620 elf_swap_reloca_out (abfd, irela, erela);
4621 }
4622 }
4623
4624 free (irel);
4625 free (irela);
4626 }
4627
4628 struct elf_link_sort_rela {
4629 bfd_vma offset;
4630 enum elf_reloc_type_class type;
4631 union {
4632 Elf_Internal_Rel rel;
4633 Elf_Internal_Rela rela;
4634 } u;
4635 };
4636
4637 static int
4638 elf_link_sort_cmp1 (A, B)
4639 const PTR A;
4640 const PTR B;
4641 {
4642 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4643 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4644 int relativea, relativeb;
4645
4646 relativea = a->type == reloc_class_relative;
4647 relativeb = b->type == reloc_class_relative;
4648
4649 if (relativea < relativeb)
4650 return 1;
4651 if (relativea > relativeb)
4652 return -1;
4653 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4654 return -1;
4655 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4656 return 1;
4657 if (a->u.rel.r_offset < b->u.rel.r_offset)
4658 return -1;
4659 if (a->u.rel.r_offset > b->u.rel.r_offset)
4660 return 1;
4661 return 0;
4662 }
4663
4664 static int
4665 elf_link_sort_cmp2 (A, B)
4666 const PTR A;
4667 const PTR B;
4668 {
4669 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4670 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4671 int copya, copyb;
4672
4673 if (a->offset < b->offset)
4674 return -1;
4675 if (a->offset > b->offset)
4676 return 1;
4677 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4678 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4679 if (copya < copyb)
4680 return -1;
4681 if (copya > copyb)
4682 return 1;
4683 if (a->u.rel.r_offset < b->u.rel.r_offset)
4684 return -1;
4685 if (a->u.rel.r_offset > b->u.rel.r_offset)
4686 return 1;
4687 return 0;
4688 }
4689
4690 static size_t
4691 elf_link_sort_relocs (abfd, info, psec)
4692 bfd *abfd;
4693 struct bfd_link_info *info;
4694 asection **psec;
4695 {
4696 bfd *dynobj = elf_hash_table (info)->dynobj;
4697 asection *reldyn, *o;
4698 boolean rel = false;
4699 bfd_size_type count, size;
4700 size_t i, j, ret;
4701 struct elf_link_sort_rela *rela;
4702 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4703
4704 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4705 if (reldyn == NULL || reldyn->_raw_size == 0)
4706 {
4707 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4708 if (reldyn == NULL || reldyn->_raw_size == 0)
4709 return 0;
4710 rel = true;
4711 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4712 }
4713 else
4714 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4715
4716 size = 0;
4717 for (o = dynobj->sections; o != NULL; o = o->next)
4718 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4719 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4720 && o->output_section == reldyn)
4721 size += o->_raw_size;
4722
4723 if (size != reldyn->_raw_size)
4724 return 0;
4725
4726 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4727 if (rela == NULL)
4728 {
4729 (*info->callbacks->warning)
4730 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4731 (bfd_vma) 0);
4732 return 0;
4733 }
4734
4735 for (o = dynobj->sections; o != NULL; o = o->next)
4736 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4737 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4738 && o->output_section == reldyn)
4739 {
4740 if (rel)
4741 {
4742 Elf_External_Rel *erel, *erelend;
4743 struct elf_link_sort_rela *s;
4744
4745 erel = (Elf_External_Rel *) o->contents;
4746 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4747 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4748 for (; erel < erelend; erel++, s++)
4749 {
4750 if (bed->s->swap_reloc_in)
4751 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4752 else
4753 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4754
4755 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4756 }
4757 }
4758 else
4759 {
4760 Elf_External_Rela *erela, *erelaend;
4761 struct elf_link_sort_rela *s;
4762
4763 erela = (Elf_External_Rela *) o->contents;
4764 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4765 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4766 for (; erela < erelaend; erela++, s++)
4767 {
4768 if (bed->s->swap_reloca_in)
4769 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4770 &s->u.rela);
4771 else
4772 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4773
4774 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4775 }
4776 }
4777 }
4778
4779 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4780 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4781 ;
4782 for (i = ret, j = ret; i < count; i++)
4783 {
4784 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4785 j = i;
4786 rela[i].offset = rela[j].u.rel.r_offset;
4787 }
4788 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4789
4790 for (o = dynobj->sections; o != NULL; o = o->next)
4791 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4792 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4793 && o->output_section == reldyn)
4794 {
4795 if (rel)
4796 {
4797 Elf_External_Rel *erel, *erelend;
4798 struct elf_link_sort_rela *s;
4799
4800 erel = (Elf_External_Rel *) o->contents;
4801 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4802 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4803 for (; erel < erelend; erel++, s++)
4804 {
4805 if (bed->s->swap_reloc_out)
4806 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4807 (bfd_byte *) erel);
4808 else
4809 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4810 }
4811 }
4812 else
4813 {
4814 Elf_External_Rela *erela, *erelaend;
4815 struct elf_link_sort_rela *s;
4816
4817 erela = (Elf_External_Rela *) o->contents;
4818 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4819 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4820 for (; erela < erelaend; erela++, s++)
4821 {
4822 if (bed->s->swap_reloca_out)
4823 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4824 (bfd_byte *) erela);
4825 else
4826 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4827 }
4828 }
4829 }
4830
4831 free (rela);
4832 *psec = reldyn;
4833 return ret;
4834 }
4835
4836 /* Do the final step of an ELF link. */
4837
4838 boolean
4839 elf_bfd_final_link (abfd, info)
4840 bfd *abfd;
4841 struct bfd_link_info *info;
4842 {
4843 boolean dynamic;
4844 boolean emit_relocs;
4845 bfd *dynobj;
4846 struct elf_final_link_info finfo;
4847 register asection *o;
4848 register struct bfd_link_order *p;
4849 register bfd *sub;
4850 bfd_size_type max_contents_size;
4851 bfd_size_type max_external_reloc_size;
4852 bfd_size_type max_internal_reloc_count;
4853 bfd_size_type max_sym_count;
4854 bfd_size_type max_sym_shndx_count;
4855 file_ptr off;
4856 Elf_Internal_Sym elfsym;
4857 unsigned int i;
4858 Elf_Internal_Shdr *symtab_hdr;
4859 Elf_Internal_Shdr *symstrtab_hdr;
4860 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4861 struct elf_outext_info eoinfo;
4862 boolean merged;
4863 size_t relativecount = 0;
4864 asection *reldyn = 0;
4865 bfd_size_type amt;
4866
4867 if (! is_elf_hash_table (info))
4868 return false;
4869
4870 if (info->shared)
4871 abfd->flags |= DYNAMIC;
4872
4873 dynamic = elf_hash_table (info)->dynamic_sections_created;
4874 dynobj = elf_hash_table (info)->dynobj;
4875
4876 emit_relocs = (info->relocateable
4877 || info->emitrelocations
4878 || bed->elf_backend_emit_relocs);
4879
4880 finfo.info = info;
4881 finfo.output_bfd = abfd;
4882 finfo.symstrtab = elf_stringtab_init ();
4883 if (finfo.symstrtab == NULL)
4884 return false;
4885
4886 if (! dynamic)
4887 {
4888 finfo.dynsym_sec = NULL;
4889 finfo.hash_sec = NULL;
4890 finfo.symver_sec = NULL;
4891 }
4892 else
4893 {
4894 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4895 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4896 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4897 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4898 /* Note that it is OK if symver_sec is NULL. */
4899 }
4900
4901 finfo.contents = NULL;
4902 finfo.external_relocs = NULL;
4903 finfo.internal_relocs = NULL;
4904 finfo.external_syms = NULL;
4905 finfo.locsym_shndx = NULL;
4906 finfo.internal_syms = NULL;
4907 finfo.indices = NULL;
4908 finfo.sections = NULL;
4909 finfo.symbuf = NULL;
4910 finfo.symshndxbuf = NULL;
4911 finfo.symbuf_count = 0;
4912
4913 /* Count up the number of relocations we will output for each output
4914 section, so that we know the sizes of the reloc sections. We
4915 also figure out some maximum sizes. */
4916 max_contents_size = 0;
4917 max_external_reloc_size = 0;
4918 max_internal_reloc_count = 0;
4919 max_sym_count = 0;
4920 max_sym_shndx_count = 0;
4921 merged = false;
4922 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4923 {
4924 o->reloc_count = 0;
4925
4926 for (p = o->link_order_head; p != NULL; p = p->next)
4927 {
4928 if (p->type == bfd_section_reloc_link_order
4929 || p->type == bfd_symbol_reloc_link_order)
4930 ++o->reloc_count;
4931 else if (p->type == bfd_indirect_link_order)
4932 {
4933 asection *sec;
4934
4935 sec = p->u.indirect.section;
4936
4937 /* Mark all sections which are to be included in the
4938 link. This will normally be every section. We need
4939 to do this so that we can identify any sections which
4940 the linker has decided to not include. */
4941 sec->linker_mark = true;
4942
4943 if (sec->flags & SEC_MERGE)
4944 merged = true;
4945
4946 if (info->relocateable || info->emitrelocations)
4947 o->reloc_count += sec->reloc_count;
4948 else if (bed->elf_backend_count_relocs)
4949 {
4950 Elf_Internal_Rela * relocs;
4951
4952 relocs = (NAME(_bfd_elf,link_read_relocs)
4953 (abfd, sec, (PTR) NULL,
4954 (Elf_Internal_Rela *) NULL, info->keep_memory));
4955
4956 o->reloc_count += (*bed->elf_backend_count_relocs)
4957 (sec, relocs);
4958
4959 if (!info->keep_memory)
4960 free (relocs);
4961 }
4962
4963 if (sec->_raw_size > max_contents_size)
4964 max_contents_size = sec->_raw_size;
4965 if (sec->_cooked_size > max_contents_size)
4966 max_contents_size = sec->_cooked_size;
4967
4968 /* We are interested in just local symbols, not all
4969 symbols. */
4970 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4971 && (sec->owner->flags & DYNAMIC) == 0)
4972 {
4973 size_t sym_count;
4974
4975 if (elf_bad_symtab (sec->owner))
4976 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4977 / sizeof (Elf_External_Sym));
4978 else
4979 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4980
4981 if (sym_count > max_sym_count)
4982 max_sym_count = sym_count;
4983
4984 if (sym_count > max_sym_shndx_count
4985 && elf_symtab_shndx (sec->owner) != 0)
4986 max_sym_shndx_count = sym_count;
4987
4988 if ((sec->flags & SEC_RELOC) != 0)
4989 {
4990 size_t ext_size;
4991
4992 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4993 if (ext_size > max_external_reloc_size)
4994 max_external_reloc_size = ext_size;
4995 if (sec->reloc_count > max_internal_reloc_count)
4996 max_internal_reloc_count = sec->reloc_count;
4997 }
4998 }
4999 }
5000 }
5001
5002 if (o->reloc_count > 0)
5003 o->flags |= SEC_RELOC;
5004 else
5005 {
5006 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5007 set it (this is probably a bug) and if it is set
5008 assign_section_numbers will create a reloc section. */
5009 o->flags &=~ SEC_RELOC;
5010 }
5011
5012 /* If the SEC_ALLOC flag is not set, force the section VMA to
5013 zero. This is done in elf_fake_sections as well, but forcing
5014 the VMA to 0 here will ensure that relocs against these
5015 sections are handled correctly. */
5016 if ((o->flags & SEC_ALLOC) == 0
5017 && ! o->user_set_vma)
5018 o->vma = 0;
5019 }
5020
5021 if (! info->relocateable && merged)
5022 elf_link_hash_traverse (elf_hash_table (info),
5023 elf_link_sec_merge_syms, (PTR) abfd);
5024
5025 /* Figure out the file positions for everything but the symbol table
5026 and the relocs. We set symcount to force assign_section_numbers
5027 to create a symbol table. */
5028 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5029 BFD_ASSERT (! abfd->output_has_begun);
5030 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5031 goto error_return;
5032
5033 /* Figure out how many relocations we will have in each section.
5034 Just using RELOC_COUNT isn't good enough since that doesn't
5035 maintain a separate value for REL vs. RELA relocations. */
5036 if (emit_relocs)
5037 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5038 for (o = sub->sections; o != NULL; o = o->next)
5039 {
5040 asection *output_section;
5041
5042 if (! o->linker_mark)
5043 {
5044 /* This section was omitted from the link. */
5045 continue;
5046 }
5047
5048 output_section = o->output_section;
5049
5050 if (output_section != NULL
5051 && (o->flags & SEC_RELOC) != 0)
5052 {
5053 struct bfd_elf_section_data *esdi
5054 = elf_section_data (o);
5055 struct bfd_elf_section_data *esdo
5056 = elf_section_data (output_section);
5057 unsigned int *rel_count;
5058 unsigned int *rel_count2;
5059
5060 /* We must be careful to add the relocation froms the
5061 input section to the right output count. */
5062 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
5063 {
5064 rel_count = &esdo->rel_count;
5065 rel_count2 = &esdo->rel_count2;
5066 }
5067 else
5068 {
5069 rel_count = &esdo->rel_count2;
5070 rel_count2 = &esdo->rel_count;
5071 }
5072
5073 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5074 if (esdi->rel_hdr2)
5075 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5076 output_section->flags |= SEC_RELOC;
5077 }
5078 }
5079
5080 /* That created the reloc sections. Set their sizes, and assign
5081 them file positions, and allocate some buffers. */
5082 for (o = abfd->sections; o != NULL; o = o->next)
5083 {
5084 if ((o->flags & SEC_RELOC) != 0)
5085 {
5086 if (!elf_link_size_reloc_section (abfd,
5087 &elf_section_data (o)->rel_hdr,
5088 o))
5089 goto error_return;
5090
5091 if (elf_section_data (o)->rel_hdr2
5092 && !elf_link_size_reloc_section (abfd,
5093 elf_section_data (o)->rel_hdr2,
5094 o))
5095 goto error_return;
5096 }
5097
5098 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5099 to count upwards while actually outputting the relocations. */
5100 elf_section_data (o)->rel_count = 0;
5101 elf_section_data (o)->rel_count2 = 0;
5102 }
5103
5104 _bfd_elf_assign_file_positions_for_relocs (abfd);
5105
5106 /* We have now assigned file positions for all the sections except
5107 .symtab and .strtab. We start the .symtab section at the current
5108 file position, and write directly to it. We build the .strtab
5109 section in memory. */
5110 bfd_get_symcount (abfd) = 0;
5111 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5112 /* sh_name is set in prep_headers. */
5113 symtab_hdr->sh_type = SHT_SYMTAB;
5114 symtab_hdr->sh_flags = 0;
5115 symtab_hdr->sh_addr = 0;
5116 symtab_hdr->sh_size = 0;
5117 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5118 /* sh_link is set in assign_section_numbers. */
5119 /* sh_info is set below. */
5120 /* sh_offset is set just below. */
5121 symtab_hdr->sh_addralign = bed->s->file_align;
5122
5123 off = elf_tdata (abfd)->next_file_pos;
5124 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5125
5126 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5127 incorrect. We do not yet know the size of the .symtab section.
5128 We correct next_file_pos below, after we do know the size. */
5129
5130 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5131 continuously seeking to the right position in the file. */
5132 if (! info->keep_memory || max_sym_count < 20)
5133 finfo.symbuf_size = 20;
5134 else
5135 finfo.symbuf_size = max_sym_count;
5136 amt = finfo.symbuf_size;
5137 amt *= sizeof (Elf_External_Sym);
5138 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5139 if (finfo.symbuf == NULL)
5140 goto error_return;
5141 if (elf_numsections (abfd) > SHN_LORESERVE)
5142 {
5143 amt = finfo.symbuf_size;
5144 amt *= sizeof (Elf_External_Sym_Shndx);
5145 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5146 if (finfo.symshndxbuf == NULL)
5147 goto error_return;
5148 }
5149
5150 /* Start writing out the symbol table. The first symbol is always a
5151 dummy symbol. */
5152 if (info->strip != strip_all
5153 || emit_relocs)
5154 {
5155 elfsym.st_value = 0;
5156 elfsym.st_size = 0;
5157 elfsym.st_info = 0;
5158 elfsym.st_other = 0;
5159 elfsym.st_shndx = SHN_UNDEF;
5160 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5161 &elfsym, bfd_und_section_ptr))
5162 goto error_return;
5163 }
5164
5165 #if 0
5166 /* Some standard ELF linkers do this, but we don't because it causes
5167 bootstrap comparison failures. */
5168 /* Output a file symbol for the output file as the second symbol.
5169 We output this even if we are discarding local symbols, although
5170 I'm not sure if this is correct. */
5171 elfsym.st_value = 0;
5172 elfsym.st_size = 0;
5173 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5174 elfsym.st_other = 0;
5175 elfsym.st_shndx = SHN_ABS;
5176 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5177 &elfsym, bfd_abs_section_ptr))
5178 goto error_return;
5179 #endif
5180
5181 /* Output a symbol for each section. We output these even if we are
5182 discarding local symbols, since they are used for relocs. These
5183 symbols have no names. We store the index of each one in the
5184 index field of the section, so that we can find it again when
5185 outputting relocs. */
5186 if (info->strip != strip_all
5187 || emit_relocs)
5188 {
5189 elfsym.st_size = 0;
5190 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5191 elfsym.st_other = 0;
5192 for (i = 1; i < elf_numsections (abfd); i++)
5193 {
5194 o = section_from_elf_index (abfd, i);
5195 if (o != NULL)
5196 o->target_index = bfd_get_symcount (abfd);
5197 elfsym.st_shndx = i;
5198 if (info->relocateable || o == NULL)
5199 elfsym.st_value = 0;
5200 else
5201 elfsym.st_value = o->vma;
5202 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5203 &elfsym, o))
5204 goto error_return;
5205 if (i == SHN_LORESERVE)
5206 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5207 }
5208 }
5209
5210 /* Allocate some memory to hold information read in from the input
5211 files. */
5212 if (max_contents_size != 0)
5213 {
5214 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5215 if (finfo.contents == NULL)
5216 goto error_return;
5217 }
5218
5219 if (max_external_reloc_size != 0)
5220 {
5221 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5222 if (finfo.external_relocs == NULL)
5223 goto error_return;
5224 }
5225
5226 if (max_internal_reloc_count != 0)
5227 {
5228 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5229 amt *= sizeof (Elf_Internal_Rela);
5230 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5231 if (finfo.internal_relocs == NULL)
5232 goto error_return;
5233 }
5234
5235 if (max_sym_count != 0)
5236 {
5237 amt = max_sym_count * sizeof (Elf_External_Sym);
5238 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5239 if (finfo.external_syms == NULL)
5240 goto error_return;
5241
5242 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5243 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5244 if (finfo.internal_syms == NULL)
5245 goto error_return;
5246
5247 amt = max_sym_count * sizeof (long);
5248 finfo.indices = (long *) bfd_malloc (amt);
5249 if (finfo.indices == NULL)
5250 goto error_return;
5251
5252 amt = max_sym_count * sizeof (asection *);
5253 finfo.sections = (asection **) bfd_malloc (amt);
5254 if (finfo.sections == NULL)
5255 goto error_return;
5256 }
5257
5258 if (max_sym_shndx_count != 0)
5259 {
5260 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5261 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5262 if (finfo.locsym_shndx == NULL)
5263 goto error_return;
5264 }
5265
5266 /* Since ELF permits relocations to be against local symbols, we
5267 must have the local symbols available when we do the relocations.
5268 Since we would rather only read the local symbols once, and we
5269 would rather not keep them in memory, we handle all the
5270 relocations for a single input file at the same time.
5271
5272 Unfortunately, there is no way to know the total number of local
5273 symbols until we have seen all of them, and the local symbol
5274 indices precede the global symbol indices. This means that when
5275 we are generating relocateable output, and we see a reloc against
5276 a global symbol, we can not know the symbol index until we have
5277 finished examining all the local symbols to see which ones we are
5278 going to output. To deal with this, we keep the relocations in
5279 memory, and don't output them until the end of the link. This is
5280 an unfortunate waste of memory, but I don't see a good way around
5281 it. Fortunately, it only happens when performing a relocateable
5282 link, which is not the common case. FIXME: If keep_memory is set
5283 we could write the relocs out and then read them again; I don't
5284 know how bad the memory loss will be. */
5285
5286 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5287 sub->output_has_begun = false;
5288 for (o = abfd->sections; o != NULL; o = o->next)
5289 {
5290 for (p = o->link_order_head; p != NULL; p = p->next)
5291 {
5292 if (p->type == bfd_indirect_link_order
5293 && (bfd_get_flavour (p->u.indirect.section->owner)
5294 == bfd_target_elf_flavour))
5295 {
5296 sub = p->u.indirect.section->owner;
5297 if (! sub->output_has_begun)
5298 {
5299 if (! elf_link_input_bfd (&finfo, sub))
5300 goto error_return;
5301 sub->output_has_begun = true;
5302 }
5303 }
5304 else if (p->type == bfd_section_reloc_link_order
5305 || p->type == bfd_symbol_reloc_link_order)
5306 {
5307 if (! elf_reloc_link_order (abfd, info, o, p))
5308 goto error_return;
5309 }
5310 else
5311 {
5312 if (! _bfd_default_link_order (abfd, info, o, p))
5313 goto error_return;
5314 }
5315 }
5316 }
5317
5318 /* That wrote out all the local symbols. Finish up the symbol table
5319 with the global symbols. Even if we want to strip everything we
5320 can, we still need to deal with those global symbols that got
5321 converted to local in a version script. */
5322
5323 if (info->shared)
5324 {
5325 /* Output any global symbols that got converted to local in a
5326 version script. We do this in a separate step since ELF
5327 requires all local symbols to appear prior to any global
5328 symbols. FIXME: We should only do this if some global
5329 symbols were, in fact, converted to become local. FIXME:
5330 Will this work correctly with the Irix 5 linker? */
5331 eoinfo.failed = false;
5332 eoinfo.finfo = &finfo;
5333 eoinfo.localsyms = true;
5334 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5335 (PTR) &eoinfo);
5336 if (eoinfo.failed)
5337 return false;
5338 }
5339
5340 /* The sh_info field records the index of the first non local symbol. */
5341 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5342
5343 if (dynamic
5344 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5345 {
5346 Elf_Internal_Sym sym;
5347 Elf_External_Sym *dynsym =
5348 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5349 long last_local = 0;
5350
5351 /* Write out the section symbols for the output sections. */
5352 if (info->shared)
5353 {
5354 asection *s;
5355
5356 sym.st_size = 0;
5357 sym.st_name = 0;
5358 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5359 sym.st_other = 0;
5360
5361 for (s = abfd->sections; s != NULL; s = s->next)
5362 {
5363 int indx;
5364 Elf_External_Sym *dest;
5365
5366 indx = elf_section_data (s)->this_idx;
5367 BFD_ASSERT (indx > 0);
5368 sym.st_shndx = indx;
5369 sym.st_value = s->vma;
5370 dest = dynsym + elf_section_data (s)->dynindx;
5371 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5372 }
5373
5374 last_local = bfd_count_sections (abfd);
5375 }
5376
5377 /* Write out the local dynsyms. */
5378 if (elf_hash_table (info)->dynlocal)
5379 {
5380 struct elf_link_local_dynamic_entry *e;
5381 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5382 {
5383 asection *s;
5384 Elf_External_Sym *dest;
5385
5386 sym.st_size = e->isym.st_size;
5387 sym.st_other = e->isym.st_other;
5388
5389 /* Copy the internal symbol as is.
5390 Note that we saved a word of storage and overwrote
5391 the original st_name with the dynstr_index. */
5392 sym = e->isym;
5393
5394 if (e->isym.st_shndx < SHN_LORESERVE
5395 || e->isym.st_shndx > SHN_HIRESERVE)
5396 {
5397 s = bfd_section_from_elf_index (e->input_bfd,
5398 e->isym.st_shndx);
5399
5400 sym.st_shndx =
5401 elf_section_data (s->output_section)->this_idx;
5402 sym.st_value = (s->output_section->vma
5403 + s->output_offset
5404 + e->isym.st_value);
5405 }
5406
5407 if (last_local < e->dynindx)
5408 last_local = e->dynindx;
5409
5410 dest = dynsym + e->dynindx;
5411 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5412 }
5413 }
5414
5415 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5416 last_local + 1;
5417 }
5418
5419 /* We get the global symbols from the hash table. */
5420 eoinfo.failed = false;
5421 eoinfo.localsyms = false;
5422 eoinfo.finfo = &finfo;
5423 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5424 (PTR) &eoinfo);
5425 if (eoinfo.failed)
5426 return false;
5427
5428 /* If backend needs to output some symbols not present in the hash
5429 table, do it now. */
5430 if (bed->elf_backend_output_arch_syms)
5431 {
5432 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5433 Elf_Internal_Sym *,
5434 asection *));
5435
5436 if (! ((*bed->elf_backend_output_arch_syms)
5437 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5438 return false;
5439 }
5440
5441 /* Flush all symbols to the file. */
5442 if (! elf_link_flush_output_syms (&finfo))
5443 return false;
5444
5445 /* Now we know the size of the symtab section. */
5446 off += symtab_hdr->sh_size;
5447
5448 /* Finish up and write out the symbol string table (.strtab)
5449 section. */
5450 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5451 /* sh_name was set in prep_headers. */
5452 symstrtab_hdr->sh_type = SHT_STRTAB;
5453 symstrtab_hdr->sh_flags = 0;
5454 symstrtab_hdr->sh_addr = 0;
5455 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5456 symstrtab_hdr->sh_entsize = 0;
5457 symstrtab_hdr->sh_link = 0;
5458 symstrtab_hdr->sh_info = 0;
5459 /* sh_offset is set just below. */
5460 symstrtab_hdr->sh_addralign = 1;
5461
5462 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5463 elf_tdata (abfd)->next_file_pos = off;
5464
5465 if (bfd_get_symcount (abfd) > 0)
5466 {
5467 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5468 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5469 return false;
5470 }
5471
5472 /* Adjust the relocs to have the correct symbol indices. */
5473 for (o = abfd->sections; o != NULL; o = o->next)
5474 {
5475 if ((o->flags & SEC_RELOC) == 0)
5476 continue;
5477
5478 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5479 elf_section_data (o)->rel_count,
5480 elf_section_data (o)->rel_hashes);
5481 if (elf_section_data (o)->rel_hdr2 != NULL)
5482 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5483 elf_section_data (o)->rel_count2,
5484 (elf_section_data (o)->rel_hashes
5485 + elf_section_data (o)->rel_count));
5486
5487 /* Set the reloc_count field to 0 to prevent write_relocs from
5488 trying to swap the relocs out itself. */
5489 o->reloc_count = 0;
5490 }
5491
5492 if (dynamic && info->combreloc && dynobj != NULL)
5493 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5494
5495 /* If we are linking against a dynamic object, or generating a
5496 shared library, finish up the dynamic linking information. */
5497 if (dynamic)
5498 {
5499 Elf_External_Dyn *dyncon, *dynconend;
5500
5501 /* Fix up .dynamic entries. */
5502 o = bfd_get_section_by_name (dynobj, ".dynamic");
5503 BFD_ASSERT (o != NULL);
5504
5505 dyncon = (Elf_External_Dyn *) o->contents;
5506 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5507 for (; dyncon < dynconend; dyncon++)
5508 {
5509 Elf_Internal_Dyn dyn;
5510 const char *name;
5511 unsigned int type;
5512
5513 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5514
5515 switch (dyn.d_tag)
5516 {
5517 default:
5518 break;
5519 case DT_NULL:
5520 if (relativecount > 0 && dyncon + 1 < dynconend)
5521 {
5522 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5523 {
5524 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5525 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5526 default: break;
5527 }
5528 if (dyn.d_tag != DT_NULL)
5529 {
5530 dyn.d_un.d_val = relativecount;
5531 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5532 relativecount = 0;
5533 }
5534 }
5535 break;
5536 case DT_INIT:
5537 name = info->init_function;
5538 goto get_sym;
5539 case DT_FINI:
5540 name = info->fini_function;
5541 get_sym:
5542 {
5543 struct elf_link_hash_entry *h;
5544
5545 h = elf_link_hash_lookup (elf_hash_table (info), name,
5546 false, false, true);
5547 if (h != NULL
5548 && (h->root.type == bfd_link_hash_defined
5549 || h->root.type == bfd_link_hash_defweak))
5550 {
5551 dyn.d_un.d_val = h->root.u.def.value;
5552 o = h->root.u.def.section;
5553 if (o->output_section != NULL)
5554 dyn.d_un.d_val += (o->output_section->vma
5555 + o->output_offset);
5556 else
5557 {
5558 /* The symbol is imported from another shared
5559 library and does not apply to this one. */
5560 dyn.d_un.d_val = 0;
5561 }
5562
5563 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5564 }
5565 }
5566 break;
5567
5568 case DT_HASH:
5569 name = ".hash";
5570 goto get_vma;
5571 case DT_STRTAB:
5572 name = ".dynstr";
5573 goto get_vma;
5574 case DT_SYMTAB:
5575 name = ".dynsym";
5576 goto get_vma;
5577 case DT_VERDEF:
5578 name = ".gnu.version_d";
5579 goto get_vma;
5580 case DT_VERNEED:
5581 name = ".gnu.version_r";
5582 goto get_vma;
5583 case DT_VERSYM:
5584 name = ".gnu.version";
5585 get_vma:
5586 o = bfd_get_section_by_name (abfd, name);
5587 BFD_ASSERT (o != NULL);
5588 dyn.d_un.d_ptr = o->vma;
5589 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5590 break;
5591
5592 case DT_REL:
5593 case DT_RELA:
5594 case DT_RELSZ:
5595 case DT_RELASZ:
5596 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5597 type = SHT_REL;
5598 else
5599 type = SHT_RELA;
5600 dyn.d_un.d_val = 0;
5601 for (i = 1; i < elf_numsections (abfd); i++)
5602 {
5603 Elf_Internal_Shdr *hdr;
5604
5605 hdr = elf_elfsections (abfd)[i];
5606 if (hdr->sh_type == type
5607 && (hdr->sh_flags & SHF_ALLOC) != 0)
5608 {
5609 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5610 dyn.d_un.d_val += hdr->sh_size;
5611 else
5612 {
5613 if (dyn.d_un.d_val == 0
5614 || hdr->sh_addr < dyn.d_un.d_val)
5615 dyn.d_un.d_val = hdr->sh_addr;
5616 }
5617 }
5618 }
5619 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5620 break;
5621 }
5622 }
5623 }
5624
5625 /* If we have created any dynamic sections, then output them. */
5626 if (dynobj != NULL)
5627 {
5628 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5629 goto error_return;
5630
5631 for (o = dynobj->sections; o != NULL; o = o->next)
5632 {
5633 if ((o->flags & SEC_HAS_CONTENTS) == 0
5634 || o->_raw_size == 0
5635 || o->output_section == bfd_abs_section_ptr)
5636 continue;
5637 if ((o->flags & SEC_LINKER_CREATED) == 0)
5638 {
5639 /* At this point, we are only interested in sections
5640 created by elf_link_create_dynamic_sections. */
5641 continue;
5642 }
5643 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5644 != SHT_STRTAB)
5645 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5646 {
5647 if (! bfd_set_section_contents (abfd, o->output_section,
5648 o->contents,
5649 (file_ptr) o->output_offset,
5650 o->_raw_size))
5651 goto error_return;
5652 }
5653 else
5654 {
5655 /* The contents of the .dynstr section are actually in a
5656 stringtab. */
5657 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5658 if (bfd_seek (abfd, off, SEEK_SET) != 0
5659 || ! _bfd_elf_strtab_emit (abfd,
5660 elf_hash_table (info)->dynstr))
5661 goto error_return;
5662 }
5663 }
5664 }
5665
5666 /* If we have optimized stabs strings, output them. */
5667 if (elf_hash_table (info)->stab_info != NULL)
5668 {
5669 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5670 goto error_return;
5671 }
5672
5673 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5674 {
5675 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5676 ".eh_frame_hdr");
5677 if (o
5678 && (elf_section_data (o)->sec_info_type
5679 == ELF_INFO_TYPE_EH_FRAME_HDR))
5680 {
5681 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5682 goto error_return;
5683 }
5684 }
5685
5686 if (finfo.symstrtab != NULL)
5687 _bfd_stringtab_free (finfo.symstrtab);
5688 if (finfo.contents != NULL)
5689 free (finfo.contents);
5690 if (finfo.external_relocs != NULL)
5691 free (finfo.external_relocs);
5692 if (finfo.internal_relocs != NULL)
5693 free (finfo.internal_relocs);
5694 if (finfo.external_syms != NULL)
5695 free (finfo.external_syms);
5696 if (finfo.locsym_shndx != NULL)
5697 free (finfo.locsym_shndx);
5698 if (finfo.internal_syms != NULL)
5699 free (finfo.internal_syms);
5700 if (finfo.indices != NULL)
5701 free (finfo.indices);
5702 if (finfo.sections != NULL)
5703 free (finfo.sections);
5704 if (finfo.symbuf != NULL)
5705 free (finfo.symbuf);
5706 if (finfo.symshndxbuf != NULL)
5707 free (finfo.symbuf);
5708 for (o = abfd->sections; o != NULL; o = o->next)
5709 {
5710 if ((o->flags & SEC_RELOC) != 0
5711 && elf_section_data (o)->rel_hashes != NULL)
5712 free (elf_section_data (o)->rel_hashes);
5713 }
5714
5715 elf_tdata (abfd)->linker = true;
5716
5717 return true;
5718
5719 error_return:
5720 if (finfo.symstrtab != NULL)
5721 _bfd_stringtab_free (finfo.symstrtab);
5722 if (finfo.contents != NULL)
5723 free (finfo.contents);
5724 if (finfo.external_relocs != NULL)
5725 free (finfo.external_relocs);
5726 if (finfo.internal_relocs != NULL)
5727 free (finfo.internal_relocs);
5728 if (finfo.external_syms != NULL)
5729 free (finfo.external_syms);
5730 if (finfo.locsym_shndx != NULL)
5731 free (finfo.locsym_shndx);
5732 if (finfo.internal_syms != NULL)
5733 free (finfo.internal_syms);
5734 if (finfo.indices != NULL)
5735 free (finfo.indices);
5736 if (finfo.sections != NULL)
5737 free (finfo.sections);
5738 if (finfo.symbuf != NULL)
5739 free (finfo.symbuf);
5740 if (finfo.symshndxbuf != NULL)
5741 free (finfo.symbuf);
5742 for (o = abfd->sections; o != NULL; o = o->next)
5743 {
5744 if ((o->flags & SEC_RELOC) != 0
5745 && elf_section_data (o)->rel_hashes != NULL)
5746 free (elf_section_data (o)->rel_hashes);
5747 }
5748
5749 return false;
5750 }
5751
5752 /* Add a symbol to the output symbol table. */
5753
5754 static boolean
5755 elf_link_output_sym (finfo, name, elfsym, input_sec)
5756 struct elf_final_link_info *finfo;
5757 const char *name;
5758 Elf_Internal_Sym *elfsym;
5759 asection *input_sec;
5760 {
5761 Elf_External_Sym *dest;
5762 Elf_External_Sym_Shndx *destshndx;
5763
5764 boolean (*output_symbol_hook) PARAMS ((bfd *,
5765 struct bfd_link_info *info,
5766 const char *,
5767 Elf_Internal_Sym *,
5768 asection *));
5769
5770 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5771 elf_backend_link_output_symbol_hook;
5772 if (output_symbol_hook != NULL)
5773 {
5774 if (! ((*output_symbol_hook)
5775 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5776 return false;
5777 }
5778
5779 if (name == (const char *) NULL || *name == '\0')
5780 elfsym->st_name = 0;
5781 else if (input_sec->flags & SEC_EXCLUDE)
5782 elfsym->st_name = 0;
5783 else
5784 {
5785 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5786 name, true, false);
5787 if (elfsym->st_name == (unsigned long) -1)
5788 return false;
5789 }
5790
5791 if (finfo->symbuf_count >= finfo->symbuf_size)
5792 {
5793 if (! elf_link_flush_output_syms (finfo))
5794 return false;
5795 }
5796
5797 dest = finfo->symbuf + finfo->symbuf_count;
5798 destshndx = finfo->symshndxbuf;
5799 if (destshndx != NULL)
5800 destshndx += finfo->symbuf_count;
5801 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5802 ++finfo->symbuf_count;
5803
5804 ++ bfd_get_symcount (finfo->output_bfd);
5805
5806 return true;
5807 }
5808
5809 /* Flush the output symbols to the file. */
5810
5811 static boolean
5812 elf_link_flush_output_syms (finfo)
5813 struct elf_final_link_info *finfo;
5814 {
5815 if (finfo->symbuf_count > 0)
5816 {
5817 Elf_Internal_Shdr *hdr;
5818 file_ptr pos;
5819 bfd_size_type amt;
5820
5821 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5822 pos = hdr->sh_offset + hdr->sh_size;
5823 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5824 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5825 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5826 return false;
5827
5828 hdr->sh_size += amt;
5829
5830 if (finfo->symshndxbuf != NULL)
5831 {
5832 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5833 pos = hdr->sh_offset + hdr->sh_size;
5834 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5835 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5836 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5837 != amt))
5838 return false;
5839
5840 hdr->sh_size += amt;
5841 }
5842
5843 finfo->symbuf_count = 0;
5844 }
5845
5846 return true;
5847 }
5848
5849 /* Adjust all external symbols pointing into SEC_MERGE sections
5850 to reflect the object merging within the sections. */
5851
5852 static boolean
5853 elf_link_sec_merge_syms (h, data)
5854 struct elf_link_hash_entry *h;
5855 PTR data;
5856 {
5857 asection *sec;
5858
5859 if ((h->root.type == bfd_link_hash_defined
5860 || h->root.type == bfd_link_hash_defweak)
5861 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5862 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5863 {
5864 bfd *output_bfd = (bfd *) data;
5865
5866 h->root.u.def.value =
5867 _bfd_merged_section_offset (output_bfd,
5868 &h->root.u.def.section,
5869 elf_section_data (sec)->sec_info,
5870 h->root.u.def.value, (bfd_vma) 0);
5871 }
5872
5873 return true;
5874 }
5875
5876 /* Add an external symbol to the symbol table. This is called from
5877 the hash table traversal routine. When generating a shared object,
5878 we go through the symbol table twice. The first time we output
5879 anything that might have been forced to local scope in a version
5880 script. The second time we output the symbols that are still
5881 global symbols. */
5882
5883 static boolean
5884 elf_link_output_extsym (h, data)
5885 struct elf_link_hash_entry *h;
5886 PTR data;
5887 {
5888 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5889 struct elf_final_link_info *finfo = eoinfo->finfo;
5890 boolean strip;
5891 Elf_Internal_Sym sym;
5892 asection *input_sec;
5893
5894 /* Decide whether to output this symbol in this pass. */
5895 if (eoinfo->localsyms)
5896 {
5897 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5898 return true;
5899 }
5900 else
5901 {
5902 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5903 return true;
5904 }
5905
5906 /* If we are not creating a shared library, and this symbol is
5907 referenced by a shared library but is not defined anywhere, then
5908 warn that it is undefined. If we do not do this, the runtime
5909 linker will complain that the symbol is undefined when the
5910 program is run. We don't have to worry about symbols that are
5911 referenced by regular files, because we will already have issued
5912 warnings for them. */
5913 if (! finfo->info->relocateable
5914 && ! finfo->info->allow_shlib_undefined
5915 && ! finfo->info->shared
5916 && h->root.type == bfd_link_hash_undefined
5917 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5918 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5919 {
5920 if (! ((*finfo->info->callbacks->undefined_symbol)
5921 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5922 (asection *) NULL, (bfd_vma) 0, true)))
5923 {
5924 eoinfo->failed = true;
5925 return false;
5926 }
5927 }
5928
5929 /* We don't want to output symbols that have never been mentioned by
5930 a regular file, or that we have been told to strip. However, if
5931 h->indx is set to -2, the symbol is used by a reloc and we must
5932 output it. */
5933 if (h->indx == -2)
5934 strip = false;
5935 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5936 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5937 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5938 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5939 strip = true;
5940 else if (finfo->info->strip == strip_all
5941 || (finfo->info->strip == strip_some
5942 && bfd_hash_lookup (finfo->info->keep_hash,
5943 h->root.root.string,
5944 false, false) == NULL))
5945 strip = true;
5946 else
5947 strip = false;
5948
5949 /* If we're stripping it, and it's not a dynamic symbol, there's
5950 nothing else to do unless it is a forced local symbol. */
5951 if (strip
5952 && h->dynindx == -1
5953 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5954 return true;
5955
5956 sym.st_value = 0;
5957 sym.st_size = h->size;
5958 sym.st_other = h->other;
5959 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5960 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5961 else if (h->root.type == bfd_link_hash_undefweak
5962 || h->root.type == bfd_link_hash_defweak)
5963 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5964 else
5965 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5966
5967 switch (h->root.type)
5968 {
5969 default:
5970 case bfd_link_hash_new:
5971 abort ();
5972 return false;
5973
5974 case bfd_link_hash_undefined:
5975 input_sec = bfd_und_section_ptr;
5976 sym.st_shndx = SHN_UNDEF;
5977 break;
5978
5979 case bfd_link_hash_undefweak:
5980 input_sec = bfd_und_section_ptr;
5981 sym.st_shndx = SHN_UNDEF;
5982 break;
5983
5984 case bfd_link_hash_defined:
5985 case bfd_link_hash_defweak:
5986 {
5987 input_sec = h->root.u.def.section;
5988 if (input_sec->output_section != NULL)
5989 {
5990 sym.st_shndx =
5991 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5992 input_sec->output_section);
5993 if (sym.st_shndx == SHN_BAD)
5994 {
5995 (*_bfd_error_handler)
5996 (_("%s: could not find output section %s for input section %s"),
5997 bfd_get_filename (finfo->output_bfd),
5998 input_sec->output_section->name,
5999 input_sec->name);
6000 eoinfo->failed = true;
6001 return false;
6002 }
6003
6004 /* ELF symbols in relocateable files are section relative,
6005 but in nonrelocateable files they are virtual
6006 addresses. */
6007 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6008 if (! finfo->info->relocateable)
6009 sym.st_value += input_sec->output_section->vma;
6010 }
6011 else
6012 {
6013 BFD_ASSERT (input_sec->owner == NULL
6014 || (input_sec->owner->flags & DYNAMIC) != 0);
6015 sym.st_shndx = SHN_UNDEF;
6016 input_sec = bfd_und_section_ptr;
6017 }
6018 }
6019 break;
6020
6021 case bfd_link_hash_common:
6022 input_sec = h->root.u.c.p->section;
6023 sym.st_shndx = SHN_COMMON;
6024 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6025 break;
6026
6027 case bfd_link_hash_indirect:
6028 /* These symbols are created by symbol versioning. They point
6029 to the decorated version of the name. For example, if the
6030 symbol foo@@GNU_1.2 is the default, which should be used when
6031 foo is used with no version, then we add an indirect symbol
6032 foo which points to foo@@GNU_1.2. We ignore these symbols,
6033 since the indirected symbol is already in the hash table. */
6034 return true;
6035
6036 case bfd_link_hash_warning:
6037 /* We can't represent these symbols in ELF, although a warning
6038 symbol may have come from a .gnu.warning.SYMBOL section. We
6039 just put the target symbol in the hash table. If the target
6040 symbol does not really exist, don't do anything. */
6041 if (h->root.u.i.link->type == bfd_link_hash_new)
6042 return true;
6043 return (elf_link_output_extsym
6044 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
6045 }
6046
6047 /* Give the processor backend a chance to tweak the symbol value,
6048 and also to finish up anything that needs to be done for this
6049 symbol. */
6050 if ((h->dynindx != -1
6051 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6052 && elf_hash_table (finfo->info)->dynamic_sections_created)
6053 {
6054 struct elf_backend_data *bed;
6055
6056 bed = get_elf_backend_data (finfo->output_bfd);
6057 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6058 (finfo->output_bfd, finfo->info, h, &sym)))
6059 {
6060 eoinfo->failed = true;
6061 return false;
6062 }
6063 }
6064
6065 /* If we are marking the symbol as undefined, and there are no
6066 non-weak references to this symbol from a regular object, then
6067 mark the symbol as weak undefined; if there are non-weak
6068 references, mark the symbol as strong. We can't do this earlier,
6069 because it might not be marked as undefined until the
6070 finish_dynamic_symbol routine gets through with it. */
6071 if (sym.st_shndx == SHN_UNDEF
6072 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6073 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6074 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6075 {
6076 int bindtype;
6077
6078 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6079 bindtype = STB_GLOBAL;
6080 else
6081 bindtype = STB_WEAK;
6082 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6083 }
6084
6085 /* If a symbol is not defined locally, we clear the visibility
6086 field. */
6087 if (! finfo->info->relocateable
6088 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6089 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6090
6091 /* If this symbol should be put in the .dynsym section, then put it
6092 there now. We have already know the symbol index. We also fill
6093 in the entry in the .hash section. */
6094 if (h->dynindx != -1
6095 && elf_hash_table (finfo->info)->dynamic_sections_created)
6096 {
6097 size_t bucketcount;
6098 size_t bucket;
6099 size_t hash_entry_size;
6100 bfd_byte *bucketpos;
6101 bfd_vma chain;
6102 Elf_External_Sym *esym;
6103
6104 sym.st_name = h->dynstr_index;
6105 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6106 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6107
6108 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6109 bucket = h->elf_hash_value % bucketcount;
6110 hash_entry_size
6111 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6112 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6113 + (bucket + 2) * hash_entry_size);
6114 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6115 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6116 bucketpos);
6117 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6118 ((bfd_byte *) finfo->hash_sec->contents
6119 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6120
6121 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6122 {
6123 Elf_Internal_Versym iversym;
6124 Elf_External_Versym *eversym;
6125
6126 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6127 {
6128 if (h->verinfo.verdef == NULL)
6129 iversym.vs_vers = 0;
6130 else
6131 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6132 }
6133 else
6134 {
6135 if (h->verinfo.vertree == NULL)
6136 iversym.vs_vers = 1;
6137 else
6138 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6139 }
6140
6141 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6142 iversym.vs_vers |= VERSYM_HIDDEN;
6143
6144 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6145 eversym += h->dynindx;
6146 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6147 }
6148 }
6149
6150 /* If we're stripping it, then it was just a dynamic symbol, and
6151 there's nothing else to do. */
6152 if (strip)
6153 return true;
6154
6155 h->indx = bfd_get_symcount (finfo->output_bfd);
6156
6157 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6158 {
6159 eoinfo->failed = true;
6160 return false;
6161 }
6162
6163 return true;
6164 }
6165
6166 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6167 originated from the section given by INPUT_REL_HDR) to the
6168 OUTPUT_BFD. */
6169
6170 static void
6171 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6172 internal_relocs)
6173 bfd *output_bfd;
6174 asection *input_section;
6175 Elf_Internal_Shdr *input_rel_hdr;
6176 Elf_Internal_Rela *internal_relocs;
6177 {
6178 Elf_Internal_Rela *irela;
6179 Elf_Internal_Rela *irelaend;
6180 Elf_Internal_Shdr *output_rel_hdr;
6181 asection *output_section;
6182 unsigned int *rel_countp = NULL;
6183 struct elf_backend_data *bed;
6184 bfd_size_type amt;
6185
6186 output_section = input_section->output_section;
6187 output_rel_hdr = NULL;
6188
6189 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6190 == input_rel_hdr->sh_entsize)
6191 {
6192 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6193 rel_countp = &elf_section_data (output_section)->rel_count;
6194 }
6195 else if (elf_section_data (output_section)->rel_hdr2
6196 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6197 == input_rel_hdr->sh_entsize))
6198 {
6199 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6200 rel_countp = &elf_section_data (output_section)->rel_count2;
6201 }
6202
6203 BFD_ASSERT (output_rel_hdr != NULL);
6204
6205 bed = get_elf_backend_data (output_bfd);
6206 irela = internal_relocs;
6207 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6208 * bed->s->int_rels_per_ext_rel;
6209
6210 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6211 {
6212 Elf_External_Rel *erel;
6213 Elf_Internal_Rel *irel;
6214
6215 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6216 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6217 if (irel == NULL)
6218 {
6219 (*_bfd_error_handler) (_("Error: out of memory"));
6220 abort ();
6221 }
6222
6223 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6224 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6225 {
6226 unsigned int i;
6227
6228 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6229 {
6230 irel[i].r_offset = irela[i].r_offset;
6231 irel[i].r_info = irela[i].r_info;
6232 BFD_ASSERT (irela[i].r_addend == 0);
6233 }
6234
6235 if (bed->s->swap_reloc_out)
6236 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6237 else
6238 elf_swap_reloc_out (output_bfd, irel, erel);
6239 }
6240
6241 free (irel);
6242 }
6243 else
6244 {
6245 Elf_External_Rela *erela;
6246
6247 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6248
6249 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6250 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6251 if (bed->s->swap_reloca_out)
6252 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6253 else
6254 elf_swap_reloca_out (output_bfd, irela, erela);
6255 }
6256
6257 /* Bump the counter, so that we know where to add the next set of
6258 relocations. */
6259 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6260 }
6261
6262 /* Link an input file into the linker output file. This function
6263 handles all the sections and relocations of the input file at once.
6264 This is so that we only have to read the local symbols once, and
6265 don't have to keep them in memory. */
6266
6267 static boolean
6268 elf_link_input_bfd (finfo, input_bfd)
6269 struct elf_final_link_info *finfo;
6270 bfd *input_bfd;
6271 {
6272 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6273 bfd *, asection *, bfd_byte *,
6274 Elf_Internal_Rela *,
6275 Elf_Internal_Sym *, asection **));
6276 bfd *output_bfd;
6277 Elf_Internal_Shdr *symtab_hdr;
6278 Elf_Internal_Shdr *shndx_hdr;
6279 size_t locsymcount;
6280 size_t extsymoff;
6281 Elf_External_Sym *external_syms;
6282 Elf_External_Sym *esym;
6283 Elf_External_Sym *esymend;
6284 Elf_External_Sym_Shndx *shndx_buf;
6285 Elf_External_Sym_Shndx *shndx;
6286 Elf_Internal_Sym *isym;
6287 long *pindex;
6288 asection **ppsection;
6289 asection *o;
6290 struct elf_backend_data *bed;
6291 boolean emit_relocs;
6292 struct elf_link_hash_entry **sym_hashes;
6293
6294 output_bfd = finfo->output_bfd;
6295 bed = get_elf_backend_data (output_bfd);
6296 relocate_section = bed->elf_backend_relocate_section;
6297
6298 /* If this is a dynamic object, we don't want to do anything here:
6299 we don't want the local symbols, and we don't want the section
6300 contents. */
6301 if ((input_bfd->flags & DYNAMIC) != 0)
6302 return true;
6303
6304 emit_relocs = (finfo->info->relocateable
6305 || finfo->info->emitrelocations
6306 || bed->elf_backend_emit_relocs);
6307
6308 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6309 if (elf_bad_symtab (input_bfd))
6310 {
6311 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6312 extsymoff = 0;
6313 }
6314 else
6315 {
6316 locsymcount = symtab_hdr->sh_info;
6317 extsymoff = symtab_hdr->sh_info;
6318 }
6319
6320 /* Read the local symbols. */
6321 if (symtab_hdr->contents != NULL)
6322 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
6323 else if (locsymcount == 0)
6324 external_syms = NULL;
6325 else
6326 {
6327 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym);
6328 external_syms = finfo->external_syms;
6329 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6330 || bfd_bread (external_syms, amt, input_bfd) != amt)
6331 return false;
6332 }
6333
6334 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
6335 shndx_buf = NULL;
6336 if (shndx_hdr->sh_size != 0 && locsymcount != 0)
6337 {
6338 bfd_size_type amt = locsymcount * sizeof (Elf_External_Sym_Shndx);
6339 shndx_buf = finfo->locsym_shndx;
6340 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
6341 || bfd_bread (shndx_buf, amt, input_bfd) != amt)
6342 return false;
6343 }
6344
6345 /* Swap in the local symbols and write out the ones which we know
6346 are going into the output file. */
6347 for (esym = external_syms, esymend = esym + locsymcount,
6348 isym = finfo->internal_syms, pindex = finfo->indices,
6349 ppsection = finfo->sections, shndx = shndx_buf;
6350 esym < esymend;
6351 esym++, isym++, pindex++, ppsection++,
6352 shndx = (shndx != NULL ? shndx + 1 : NULL))
6353 {
6354 asection *isec;
6355 const char *name;
6356 Elf_Internal_Sym osym;
6357
6358 elf_swap_symbol_in (input_bfd, esym, shndx, isym);
6359 *pindex = -1;
6360
6361 if (elf_bad_symtab (input_bfd))
6362 {
6363 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6364 {
6365 *ppsection = NULL;
6366 continue;
6367 }
6368 }
6369
6370 if (isym->st_shndx == SHN_UNDEF)
6371 isec = bfd_und_section_ptr;
6372 else if (isym->st_shndx < SHN_LORESERVE
6373 || isym->st_shndx > SHN_HIRESERVE)
6374 {
6375 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6376 if (isec
6377 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6378 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6379 isym->st_value =
6380 _bfd_merged_section_offset (output_bfd, &isec,
6381 elf_section_data (isec)->sec_info,
6382 isym->st_value, (bfd_vma) 0);
6383 }
6384 else if (isym->st_shndx == SHN_ABS)
6385 isec = bfd_abs_section_ptr;
6386 else if (isym->st_shndx == SHN_COMMON)
6387 isec = bfd_com_section_ptr;
6388 else
6389 {
6390 /* Who knows? */
6391 isec = NULL;
6392 }
6393
6394 *ppsection = isec;
6395
6396 /* Don't output the first, undefined, symbol. */
6397 if (esym == external_syms)
6398 continue;
6399
6400 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6401 {
6402 /* We never output section symbols. Instead, we use the
6403 section symbol of the corresponding section in the output
6404 file. */
6405 continue;
6406 }
6407
6408 /* If we are stripping all symbols, we don't want to output this
6409 one. */
6410 if (finfo->info->strip == strip_all)
6411 continue;
6412
6413 /* If we are discarding all local symbols, we don't want to
6414 output this one. If we are generating a relocateable output
6415 file, then some of the local symbols may be required by
6416 relocs; we output them below as we discover that they are
6417 needed. */
6418 if (finfo->info->discard == discard_all)
6419 continue;
6420
6421 /* If this symbol is defined in a section which we are
6422 discarding, we don't need to keep it, but note that
6423 linker_mark is only reliable for sections that have contents.
6424 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6425 as well as linker_mark. */
6426 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6427 && isec != NULL
6428 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6429 || (! finfo->info->relocateable
6430 && (isec->flags & SEC_EXCLUDE) != 0)))
6431 continue;
6432
6433 /* Get the name of the symbol. */
6434 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6435 isym->st_name);
6436 if (name == NULL)
6437 return false;
6438
6439 /* See if we are discarding symbols with this name. */
6440 if ((finfo->info->strip == strip_some
6441 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6442 == NULL))
6443 || (((finfo->info->discard == discard_sec_merge
6444 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6445 || finfo->info->discard == discard_l)
6446 && bfd_is_local_label_name (input_bfd, name)))
6447 continue;
6448
6449 /* If we get here, we are going to output this symbol. */
6450
6451 osym = *isym;
6452
6453 /* Adjust the section index for the output file. */
6454 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6455 isec->output_section);
6456 if (osym.st_shndx == SHN_BAD)
6457 return false;
6458
6459 *pindex = bfd_get_symcount (output_bfd);
6460
6461 /* ELF symbols in relocateable files are section relative, but
6462 in executable files they are virtual addresses. Note that
6463 this code assumes that all ELF sections have an associated
6464 BFD section with a reasonable value for output_offset; below
6465 we assume that they also have a reasonable value for
6466 output_section. Any special sections must be set up to meet
6467 these requirements. */
6468 osym.st_value += isec->output_offset;
6469 if (! finfo->info->relocateable)
6470 osym.st_value += isec->output_section->vma;
6471
6472 if (! elf_link_output_sym (finfo, name, &osym, isec))
6473 return false;
6474 }
6475
6476 /* Relocate the contents of each section. */
6477 sym_hashes = elf_sym_hashes (input_bfd);
6478 for (o = input_bfd->sections; o != NULL; o = o->next)
6479 {
6480 bfd_byte *contents;
6481
6482 if (! o->linker_mark)
6483 {
6484 /* This section was omitted from the link. */
6485 continue;
6486 }
6487
6488 if ((o->flags & SEC_HAS_CONTENTS) == 0
6489 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6490 continue;
6491
6492 if ((o->flags & SEC_LINKER_CREATED) != 0)
6493 {
6494 /* Section was created by elf_link_create_dynamic_sections
6495 or somesuch. */
6496 continue;
6497 }
6498
6499 /* Get the contents of the section. They have been cached by a
6500 relaxation routine. Note that o is a section in an input
6501 file, so the contents field will not have been set by any of
6502 the routines which work on output files. */
6503 if (elf_section_data (o)->this_hdr.contents != NULL)
6504 contents = elf_section_data (o)->this_hdr.contents;
6505 else
6506 {
6507 contents = finfo->contents;
6508 if (! bfd_get_section_contents (input_bfd, o, contents,
6509 (file_ptr) 0, o->_raw_size))
6510 return false;
6511 }
6512
6513 if ((o->flags & SEC_RELOC) != 0)
6514 {
6515 Elf_Internal_Rela *internal_relocs;
6516
6517 /* Get the swapped relocs. */
6518 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6519 (input_bfd, o, finfo->external_relocs,
6520 finfo->internal_relocs, false));
6521 if (internal_relocs == NULL
6522 && o->reloc_count > 0)
6523 return false;
6524
6525 /* Run through the relocs looking for any against symbols
6526 from discarded sections and section symbols from
6527 removed link-once sections. Complain about relocs
6528 against discarded sections. Zero relocs against removed
6529 link-once sections. We should really complain if
6530 anything in the final link tries to use it, but
6531 DWARF-based exception handling might have an entry in
6532 .eh_frame to describe a routine in the linkonce section,
6533 and it turns out to be hard to remove the .eh_frame
6534 entry too. FIXME. */
6535 if (!finfo->info->relocateable
6536 && !elf_section_ignore_discarded_relocs (o))
6537 {
6538 Elf_Internal_Rela *rel, *relend;
6539
6540 rel = internal_relocs;
6541 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6542 for ( ; rel < relend; rel++)
6543 {
6544 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6545
6546 if (r_symndx >= locsymcount
6547 || (elf_bad_symtab (input_bfd)
6548 && finfo->sections[r_symndx] == NULL))
6549 {
6550 struct elf_link_hash_entry *h;
6551
6552 h = sym_hashes[r_symndx - extsymoff];
6553 while (h->root.type == bfd_link_hash_indirect
6554 || h->root.type == bfd_link_hash_warning)
6555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6556
6557 /* Complain if the definition comes from a
6558 discarded section. */
6559 if ((h->root.type == bfd_link_hash_defined
6560 || h->root.type == bfd_link_hash_defweak)
6561 && elf_discarded_section (h->root.u.def.section))
6562 {
6563 #if BFD_VERSION_DATE < 20031005
6564 if ((o->flags & SEC_DEBUGGING) != 0)
6565 {
6566 #if BFD_VERSION_DATE > 20021005
6567 (*finfo->info->callbacks->warning)
6568 (finfo->info,
6569 _("warning: relocation against removed section; zeroing"),
6570 NULL, input_bfd, o, rel->r_offset);
6571 #endif
6572 BFD_ASSERT (r_symndx != 0);
6573 memset (rel, 0, sizeof (*rel));
6574 }
6575 else
6576 #endif
6577 {
6578 if (! ((*finfo->info->callbacks->undefined_symbol)
6579 (finfo->info, h->root.root.string,
6580 input_bfd, o, rel->r_offset,
6581 true)))
6582 return false;
6583 }
6584 }
6585 }
6586 else
6587 {
6588 asection *sec = finfo->sections[r_symndx];
6589
6590 if (sec != NULL && elf_discarded_section (sec))
6591 {
6592 #if BFD_VERSION_DATE < 20031005
6593 if ((o->flags & SEC_DEBUGGING) != 0
6594 || (sec->flags & SEC_LINK_ONCE) != 0)
6595 {
6596 #if BFD_VERSION_DATE > 20021005
6597 (*finfo->info->callbacks->warning)
6598 (finfo->info,
6599 _("warning: relocation against removed section"),
6600 NULL, input_bfd, o, rel->r_offset);
6601 #endif
6602 BFD_ASSERT (r_symndx != 0);
6603 rel->r_info
6604 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6605 rel->r_addend = 0;
6606 }
6607 else
6608 #endif
6609 {
6610 boolean ok;
6611 const char *msg
6612 = _("local symbols in discarded section %s");
6613 bfd_size_type amt
6614 = strlen (sec->name) + strlen (msg) - 1;
6615 char *buf = (char *) bfd_malloc (amt);
6616
6617 if (buf != NULL)
6618 sprintf (buf, msg, sec->name);
6619 else
6620 buf = (char *) sec->name;
6621 ok = (*finfo->info->callbacks
6622 ->undefined_symbol) (finfo->info, buf,
6623 input_bfd, o,
6624 rel->r_offset,
6625 true);
6626 if (buf != sec->name)
6627 free (buf);
6628 if (!ok)
6629 return false;
6630 }
6631 }
6632 }
6633 }
6634 }
6635
6636 /* Relocate the section by invoking a back end routine.
6637
6638 The back end routine is responsible for adjusting the
6639 section contents as necessary, and (if using Rela relocs
6640 and generating a relocateable output file) adjusting the
6641 reloc addend as necessary.
6642
6643 The back end routine does not have to worry about setting
6644 the reloc address or the reloc symbol index.
6645
6646 The back end routine is given a pointer to the swapped in
6647 internal symbols, and can access the hash table entries
6648 for the external symbols via elf_sym_hashes (input_bfd).
6649
6650 When generating relocateable output, the back end routine
6651 must handle STB_LOCAL/STT_SECTION symbols specially. The
6652 output symbol is going to be a section symbol
6653 corresponding to the output section, which will require
6654 the addend to be adjusted. */
6655
6656 if (! (*relocate_section) (output_bfd, finfo->info,
6657 input_bfd, o, contents,
6658 internal_relocs,
6659 finfo->internal_syms,
6660 finfo->sections))
6661 return false;
6662
6663 if (emit_relocs)
6664 {
6665 Elf_Internal_Rela *irela;
6666 Elf_Internal_Rela *irelaend;
6667 struct elf_link_hash_entry **rel_hash;
6668 Elf_Internal_Shdr *input_rel_hdr;
6669 unsigned int next_erel;
6670 void (*reloc_emitter) PARAMS ((bfd *, asection *,
6671 Elf_Internal_Shdr *,
6672 Elf_Internal_Rela *));
6673
6674 /* Adjust the reloc addresses and symbol indices. */
6675
6676 irela = internal_relocs;
6677 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6678 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6679 + elf_section_data (o->output_section)->rel_count
6680 + elf_section_data (o->output_section)->rel_count2);
6681 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6682 {
6683 unsigned long r_symndx;
6684 asection *sec;
6685
6686 if (next_erel == bed->s->int_rels_per_ext_rel)
6687 {
6688 rel_hash++;
6689 next_erel = 0;
6690 }
6691
6692 irela->r_offset += o->output_offset;
6693
6694 /* Relocs in an executable have to be virtual addresses. */
6695 if (finfo->info->emitrelocations)
6696 irela->r_offset += o->output_section->vma;
6697
6698 r_symndx = ELF_R_SYM (irela->r_info);
6699
6700 if (r_symndx == 0)
6701 continue;
6702
6703 if (r_symndx >= locsymcount
6704 || (elf_bad_symtab (input_bfd)
6705 && finfo->sections[r_symndx] == NULL))
6706 {
6707 struct elf_link_hash_entry *rh;
6708 unsigned long indx;
6709
6710 /* This is a reloc against a global symbol. We
6711 have not yet output all the local symbols, so
6712 we do not know the symbol index of any global
6713 symbol. We set the rel_hash entry for this
6714 reloc to point to the global hash table entry
6715 for this symbol. The symbol index is then
6716 set at the end of elf_bfd_final_link. */
6717 indx = r_symndx - extsymoff;
6718 rh = elf_sym_hashes (input_bfd)[indx];
6719 while (rh->root.type == bfd_link_hash_indirect
6720 || rh->root.type == bfd_link_hash_warning)
6721 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6722
6723 /* Setting the index to -2 tells
6724 elf_link_output_extsym that this symbol is
6725 used by a reloc. */
6726 BFD_ASSERT (rh->indx < 0);
6727 rh->indx = -2;
6728
6729 *rel_hash = rh;
6730
6731 continue;
6732 }
6733
6734 /* This is a reloc against a local symbol. */
6735
6736 *rel_hash = NULL;
6737 isym = finfo->internal_syms + r_symndx;
6738 sec = finfo->sections[r_symndx];
6739 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6740 {
6741 /* I suppose the backend ought to fill in the
6742 section of any STT_SECTION symbol against a
6743 processor specific section. If we have
6744 discarded a section, the output_section will
6745 be the absolute section. */
6746 if (sec != NULL
6747 && (bfd_is_abs_section (sec)
6748 || (sec->output_section != NULL
6749 && bfd_is_abs_section (sec->output_section))))
6750 r_symndx = 0;
6751 else if (sec == NULL || sec->owner == NULL)
6752 {
6753 bfd_set_error (bfd_error_bad_value);
6754 return false;
6755 }
6756 else
6757 {
6758 r_symndx = sec->output_section->target_index;
6759 BFD_ASSERT (r_symndx != 0);
6760 }
6761 }
6762 else
6763 {
6764 if (finfo->indices[r_symndx] == -1)
6765 {
6766 unsigned long shlink;
6767 const char *name;
6768 asection *osec;
6769
6770 if (finfo->info->strip == strip_all)
6771 {
6772 /* You can't do ld -r -s. */
6773 bfd_set_error (bfd_error_invalid_operation);
6774 return false;
6775 }
6776
6777 /* This symbol was skipped earlier, but
6778 since it is needed by a reloc, we
6779 must output it now. */
6780 shlink = symtab_hdr->sh_link;
6781 name = (bfd_elf_string_from_elf_section
6782 (input_bfd, shlink, isym->st_name));
6783 if (name == NULL)
6784 return false;
6785
6786 osec = sec->output_section;
6787 isym->st_shndx =
6788 _bfd_elf_section_from_bfd_section (output_bfd,
6789 osec);
6790 if (isym->st_shndx == SHN_BAD)
6791 return false;
6792
6793 isym->st_value += sec->output_offset;
6794 if (! finfo->info->relocateable)
6795 isym->st_value += osec->vma;
6796
6797 finfo->indices[r_symndx]
6798 = bfd_get_symcount (output_bfd);
6799
6800 if (! elf_link_output_sym (finfo, name, isym, sec))
6801 return false;
6802 }
6803
6804 r_symndx = finfo->indices[r_symndx];
6805 }
6806
6807 irela->r_info = ELF_R_INFO (r_symndx,
6808 ELF_R_TYPE (irela->r_info));
6809 }
6810
6811 /* Swap out the relocs. */
6812 if (bed->elf_backend_emit_relocs
6813 && !(finfo->info->relocateable
6814 || finfo->info->emitrelocations))
6815 reloc_emitter = bed->elf_backend_emit_relocs;
6816 else
6817 reloc_emitter = elf_link_output_relocs;
6818
6819 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6820 (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs);
6821
6822 input_rel_hdr = elf_section_data (o)->rel_hdr2;
6823 if (input_rel_hdr)
6824 {
6825 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6826 * bed->s->int_rels_per_ext_rel);
6827 reloc_emitter (output_bfd, o, input_rel_hdr, internal_relocs);
6828 }
6829
6830 }
6831 }
6832
6833 /* Write out the modified section contents. */
6834 if (bed->elf_backend_write_section
6835 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6836 {
6837 /* Section written out. */
6838 }
6839 else switch (elf_section_data (o)->sec_info_type)
6840 {
6841 case ELF_INFO_TYPE_STABS:
6842 if (! (_bfd_write_section_stabs
6843 (output_bfd,
6844 &elf_hash_table (finfo->info)->stab_info,
6845 o, &elf_section_data (o)->sec_info, contents)))
6846 return false;
6847 break;
6848 case ELF_INFO_TYPE_MERGE:
6849 if (! (_bfd_write_merged_section
6850 (output_bfd, o, elf_section_data (o)->sec_info)))
6851 return false;
6852 break;
6853 case ELF_INFO_TYPE_EH_FRAME:
6854 {
6855 asection *ehdrsec;
6856
6857 ehdrsec
6858 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
6859 ".eh_frame_hdr");
6860 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
6861 contents)))
6862 return false;
6863 }
6864 break;
6865 default:
6866 {
6867 bfd_size_type sec_size;
6868
6869 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
6870 if (! (o->flags & SEC_EXCLUDE)
6871 && ! bfd_set_section_contents (output_bfd, o->output_section,
6872 contents,
6873 (file_ptr) o->output_offset,
6874 sec_size))
6875 return false;
6876 }
6877 break;
6878 }
6879 }
6880
6881 return true;
6882 }
6883
6884 /* Generate a reloc when linking an ELF file. This is a reloc
6885 requested by the linker, and does come from any input file. This
6886 is used to build constructor and destructor tables when linking
6887 with -Ur. */
6888
6889 static boolean
6890 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6891 bfd *output_bfd;
6892 struct bfd_link_info *info;
6893 asection *output_section;
6894 struct bfd_link_order *link_order;
6895 {
6896 reloc_howto_type *howto;
6897 long indx;
6898 bfd_vma offset;
6899 bfd_vma addend;
6900 struct elf_link_hash_entry **rel_hash_ptr;
6901 Elf_Internal_Shdr *rel_hdr;
6902 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6903
6904 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6905 if (howto == NULL)
6906 {
6907 bfd_set_error (bfd_error_bad_value);
6908 return false;
6909 }
6910
6911 addend = link_order->u.reloc.p->addend;
6912
6913 /* Figure out the symbol index. */
6914 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6915 + elf_section_data (output_section)->rel_count
6916 + elf_section_data (output_section)->rel_count2);
6917 if (link_order->type == bfd_section_reloc_link_order)
6918 {
6919 indx = link_order->u.reloc.p->u.section->target_index;
6920 BFD_ASSERT (indx != 0);
6921 *rel_hash_ptr = NULL;
6922 }
6923 else
6924 {
6925 struct elf_link_hash_entry *h;
6926
6927 /* Treat a reloc against a defined symbol as though it were
6928 actually against the section. */
6929 h = ((struct elf_link_hash_entry *)
6930 bfd_wrapped_link_hash_lookup (output_bfd, info,
6931 link_order->u.reloc.p->u.name,
6932 false, false, true));
6933 if (h != NULL
6934 && (h->root.type == bfd_link_hash_defined
6935 || h->root.type == bfd_link_hash_defweak))
6936 {
6937 asection *section;
6938
6939 section = h->root.u.def.section;
6940 indx = section->output_section->target_index;
6941 *rel_hash_ptr = NULL;
6942 /* It seems that we ought to add the symbol value to the
6943 addend here, but in practice it has already been added
6944 because it was passed to constructor_callback. */
6945 addend += section->output_section->vma + section->output_offset;
6946 }
6947 else if (h != NULL)
6948 {
6949 /* Setting the index to -2 tells elf_link_output_extsym that
6950 this symbol is used by a reloc. */
6951 h->indx = -2;
6952 *rel_hash_ptr = h;
6953 indx = 0;
6954 }
6955 else
6956 {
6957 if (! ((*info->callbacks->unattached_reloc)
6958 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
6959 (asection *) NULL, (bfd_vma) 0)))
6960 return false;
6961 indx = 0;
6962 }
6963 }
6964
6965 /* If this is an inplace reloc, we must write the addend into the
6966 object file. */
6967 if (howto->partial_inplace && addend != 0)
6968 {
6969 bfd_size_type size;
6970 bfd_reloc_status_type rstat;
6971 bfd_byte *buf;
6972 boolean ok;
6973 const char *sym_name;
6974
6975 size = bfd_get_reloc_size (howto);
6976 buf = (bfd_byte *) bfd_zmalloc (size);
6977 if (buf == (bfd_byte *) NULL)
6978 return false;
6979 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
6980 switch (rstat)
6981 {
6982 case bfd_reloc_ok:
6983 break;
6984
6985 default:
6986 case bfd_reloc_outofrange:
6987 abort ();
6988
6989 case bfd_reloc_overflow:
6990 if (link_order->type == bfd_section_reloc_link_order)
6991 sym_name = bfd_section_name (output_bfd,
6992 link_order->u.reloc.p->u.section);
6993 else
6994 sym_name = link_order->u.reloc.p->u.name;
6995 if (! ((*info->callbacks->reloc_overflow)
6996 (info, sym_name, howto->name, addend,
6997 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
6998 {
6999 free (buf);
7000 return false;
7001 }
7002 break;
7003 }
7004 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7005 (file_ptr) link_order->offset, size);
7006 free (buf);
7007 if (! ok)
7008 return false;
7009 }
7010
7011 /* The address of a reloc is relative to the section in a
7012 relocateable file, and is a virtual address in an executable
7013 file. */
7014 offset = link_order->offset;
7015 if (! info->relocateable)
7016 offset += output_section->vma;
7017
7018 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7019
7020 if (rel_hdr->sh_type == SHT_REL)
7021 {
7022 bfd_size_type size;
7023 Elf_Internal_Rel *irel;
7024 Elf_External_Rel *erel;
7025 unsigned int i;
7026
7027 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7028 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7029 if (irel == NULL)
7030 return false;
7031
7032 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7033 irel[i].r_offset = offset;
7034 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7035
7036 erel = ((Elf_External_Rel *) rel_hdr->contents
7037 + elf_section_data (output_section)->rel_count);
7038
7039 if (bed->s->swap_reloc_out)
7040 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7041 else
7042 elf_swap_reloc_out (output_bfd, irel, erel);
7043
7044 free (irel);
7045 }
7046 else
7047 {
7048 bfd_size_type size;
7049 Elf_Internal_Rela *irela;
7050 Elf_External_Rela *erela;
7051 unsigned int i;
7052
7053 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7054 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7055 if (irela == NULL)
7056 return false;
7057
7058 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7059 irela[i].r_offset = offset;
7060 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7061 irela[0].r_addend = addend;
7062
7063 erela = ((Elf_External_Rela *) rel_hdr->contents
7064 + elf_section_data (output_section)->rel_count);
7065
7066 if (bed->s->swap_reloca_out)
7067 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7068 else
7069 elf_swap_reloca_out (output_bfd, irela, erela);
7070 }
7071
7072 ++elf_section_data (output_section)->rel_count;
7073
7074 return true;
7075 }
7076 \f
7077 /* Allocate a pointer to live in a linker created section. */
7078
7079 boolean
7080 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7081 bfd *abfd;
7082 struct bfd_link_info *info;
7083 elf_linker_section_t *lsect;
7084 struct elf_link_hash_entry *h;
7085 const Elf_Internal_Rela *rel;
7086 {
7087 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7088 elf_linker_section_pointers_t *linker_section_ptr;
7089 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7090 bfd_size_type amt;
7091
7092 BFD_ASSERT (lsect != NULL);
7093
7094 /* Is this a global symbol? */
7095 if (h != NULL)
7096 {
7097 /* Has this symbol already been allocated? If so, our work is done. */
7098 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7099 rel->r_addend,
7100 lsect->which))
7101 return true;
7102
7103 ptr_linker_section_ptr = &h->linker_section_pointer;
7104 /* Make sure this symbol is output as a dynamic symbol. */
7105 if (h->dynindx == -1)
7106 {
7107 if (! elf_link_record_dynamic_symbol (info, h))
7108 return false;
7109 }
7110
7111 if (lsect->rel_section)
7112 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7113 }
7114 else
7115 {
7116 /* Allocation of a pointer to a local symbol. */
7117 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7118
7119 /* Allocate a table to hold the local symbols if first time. */
7120 if (!ptr)
7121 {
7122 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7123 register unsigned int i;
7124
7125 amt = num_symbols;
7126 amt *= sizeof (elf_linker_section_pointers_t *);
7127 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7128
7129 if (!ptr)
7130 return false;
7131
7132 elf_local_ptr_offsets (abfd) = ptr;
7133 for (i = 0; i < num_symbols; i++)
7134 ptr[i] = (elf_linker_section_pointers_t *) 0;
7135 }
7136
7137 /* Has this symbol already been allocated? If so, our work is done. */
7138 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7139 rel->r_addend,
7140 lsect->which))
7141 return true;
7142
7143 ptr_linker_section_ptr = &ptr[r_symndx];
7144
7145 if (info->shared)
7146 {
7147 /* If we are generating a shared object, we need to
7148 output a R_<xxx>_RELATIVE reloc so that the
7149 dynamic linker can adjust this GOT entry. */
7150 BFD_ASSERT (lsect->rel_section != NULL);
7151 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7152 }
7153 }
7154
7155 /* Allocate space for a pointer in the linker section, and allocate
7156 a new pointer record from internal memory. */
7157 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7158 amt = sizeof (elf_linker_section_pointers_t);
7159 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7160
7161 if (!linker_section_ptr)
7162 return false;
7163
7164 linker_section_ptr->next = *ptr_linker_section_ptr;
7165 linker_section_ptr->addend = rel->r_addend;
7166 linker_section_ptr->which = lsect->which;
7167 linker_section_ptr->written_address_p = false;
7168 *ptr_linker_section_ptr = linker_section_ptr;
7169
7170 #if 0
7171 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7172 {
7173 linker_section_ptr->offset = (lsect->section->_raw_size
7174 - lsect->hole_size + (ARCH_SIZE / 8));
7175 lsect->hole_offset += ARCH_SIZE / 8;
7176 lsect->sym_offset += ARCH_SIZE / 8;
7177 if (lsect->sym_hash)
7178 {
7179 /* Bump up symbol value if needed. */
7180 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7181 #ifdef DEBUG
7182 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7183 lsect->sym_hash->root.root.string,
7184 (long) ARCH_SIZE / 8,
7185 (long) lsect->sym_hash->root.u.def.value);
7186 #endif
7187 }
7188 }
7189 else
7190 #endif
7191 linker_section_ptr->offset = lsect->section->_raw_size;
7192
7193 lsect->section->_raw_size += ARCH_SIZE / 8;
7194
7195 #ifdef DEBUG
7196 fprintf (stderr,
7197 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7198 lsect->name, (long) linker_section_ptr->offset,
7199 (long) lsect->section->_raw_size);
7200 #endif
7201
7202 return true;
7203 }
7204 \f
7205 #if ARCH_SIZE==64
7206 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7207 #endif
7208 #if ARCH_SIZE==32
7209 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7210 #endif
7211
7212 /* Fill in the address for a pointer generated in a linker section. */
7213
7214 bfd_vma
7215 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7216 relocation, rel, relative_reloc)
7217 bfd *output_bfd;
7218 bfd *input_bfd;
7219 struct bfd_link_info *info;
7220 elf_linker_section_t *lsect;
7221 struct elf_link_hash_entry *h;
7222 bfd_vma relocation;
7223 const Elf_Internal_Rela *rel;
7224 int relative_reloc;
7225 {
7226 elf_linker_section_pointers_t *linker_section_ptr;
7227
7228 BFD_ASSERT (lsect != NULL);
7229
7230 if (h != NULL)
7231 {
7232 /* Handle global symbol. */
7233 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7234 (h->linker_section_pointer,
7235 rel->r_addend,
7236 lsect->which));
7237
7238 BFD_ASSERT (linker_section_ptr != NULL);
7239
7240 if (! elf_hash_table (info)->dynamic_sections_created
7241 || (info->shared
7242 && info->symbolic
7243 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7244 {
7245 /* This is actually a static link, or it is a
7246 -Bsymbolic link and the symbol is defined
7247 locally. We must initialize this entry in the
7248 global section.
7249
7250 When doing a dynamic link, we create a .rela.<xxx>
7251 relocation entry to initialize the value. This
7252 is done in the finish_dynamic_symbol routine. */
7253 if (!linker_section_ptr->written_address_p)
7254 {
7255 linker_section_ptr->written_address_p = true;
7256 bfd_put_ptr (output_bfd,
7257 relocation + linker_section_ptr->addend,
7258 (lsect->section->contents
7259 + linker_section_ptr->offset));
7260 }
7261 }
7262 }
7263 else
7264 {
7265 /* Handle local symbol. */
7266 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7267 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7268 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7269 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7270 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7271 rel->r_addend,
7272 lsect->which));
7273
7274 BFD_ASSERT (linker_section_ptr != NULL);
7275
7276 /* Write out pointer if it hasn't been rewritten out before. */
7277 if (!linker_section_ptr->written_address_p)
7278 {
7279 linker_section_ptr->written_address_p = true;
7280 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7281 lsect->section->contents + linker_section_ptr->offset);
7282
7283 if (info->shared)
7284 {
7285 asection *srel = lsect->rel_section;
7286 Elf_Internal_Rela *outrel;
7287 Elf_External_Rela *erel;
7288 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7289 unsigned int i;
7290 bfd_size_type amt;
7291
7292 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7293 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7294 if (outrel == NULL)
7295 {
7296 (*_bfd_error_handler) (_("Error: out of memory"));
7297 return 0;
7298 }
7299
7300 /* We need to generate a relative reloc for the dynamic
7301 linker. */
7302 if (!srel)
7303 {
7304 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7305 lsect->rel_name);
7306 lsect->rel_section = srel;
7307 }
7308
7309 BFD_ASSERT (srel != NULL);
7310
7311 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7312 outrel[i].r_offset = (lsect->section->output_section->vma
7313 + lsect->section->output_offset
7314 + linker_section_ptr->offset);
7315 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7316 outrel[0].r_addend = 0;
7317 erel = (Elf_External_Rela *) lsect->section->contents;
7318 erel += elf_section_data (lsect->section)->rel_count;
7319 elf_swap_reloca_out (output_bfd, outrel, erel);
7320 ++elf_section_data (lsect->section)->rel_count;
7321
7322 free (outrel);
7323 }
7324 }
7325 }
7326
7327 relocation = (lsect->section->output_offset
7328 + linker_section_ptr->offset
7329 - lsect->hole_offset
7330 - lsect->sym_offset);
7331
7332 #ifdef DEBUG
7333 fprintf (stderr,
7334 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7335 lsect->name, (long) relocation, (long) relocation);
7336 #endif
7337
7338 /* Subtract out the addend, because it will get added back in by the normal
7339 processing. */
7340 return relocation - linker_section_ptr->addend;
7341 }
7342 \f
7343 /* Garbage collect unused sections. */
7344
7345 static boolean elf_gc_mark
7346 PARAMS ((struct bfd_link_info *info, asection *sec,
7347 asection * (*gc_mark_hook)
7348 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7349 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7350
7351 static boolean elf_gc_sweep
7352 PARAMS ((struct bfd_link_info *info,
7353 boolean (*gc_sweep_hook)
7354 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7355 const Elf_Internal_Rela *relocs))));
7356
7357 static boolean elf_gc_sweep_symbol
7358 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7359
7360 static boolean elf_gc_allocate_got_offsets
7361 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7362
7363 static boolean elf_gc_propagate_vtable_entries_used
7364 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7365
7366 static boolean elf_gc_smash_unused_vtentry_relocs
7367 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7368
7369 /* The mark phase of garbage collection. For a given section, mark
7370 it and any sections in this section's group, and all the sections
7371 which define symbols to which it refers. */
7372
7373 static boolean
7374 elf_gc_mark (info, sec, gc_mark_hook)
7375 struct bfd_link_info *info;
7376 asection *sec;
7377 asection * (*gc_mark_hook)
7378 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7379 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7380 {
7381 boolean ret;
7382 asection *group_sec;
7383
7384 sec->gc_mark = 1;
7385
7386 /* Mark all the sections in the group. */
7387 group_sec = elf_section_data (sec)->next_in_group;
7388 if (group_sec && !group_sec->gc_mark)
7389 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7390 return false;
7391
7392 /* Look through the section relocs. */
7393 ret = true;
7394 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7395 {
7396 Elf_Internal_Rela *relstart, *rel, *relend;
7397 Elf_Internal_Shdr *symtab_hdr;
7398 Elf_Internal_Shdr *shndx_hdr;
7399 struct elf_link_hash_entry **sym_hashes;
7400 size_t nlocsyms;
7401 size_t extsymoff;
7402 Elf_External_Sym *locsyms, *freesyms = NULL;
7403 Elf_External_Sym_Shndx *locsym_shndx;
7404 bfd *input_bfd = sec->owner;
7405 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7406
7407 /* GCFIXME: how to arrange so that relocs and symbols are not
7408 reread continually? */
7409
7410 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7411 sym_hashes = elf_sym_hashes (input_bfd);
7412
7413 /* Read the local symbols. */
7414 if (elf_bad_symtab (input_bfd))
7415 {
7416 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7417 extsymoff = 0;
7418 }
7419 else
7420 extsymoff = nlocsyms = symtab_hdr->sh_info;
7421
7422 if (symtab_hdr->contents)
7423 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
7424 else if (nlocsyms == 0)
7425 locsyms = NULL;
7426 else
7427 {
7428 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym);
7429 locsyms = freesyms = bfd_malloc (amt);
7430 if (freesyms == NULL
7431 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
7432 || bfd_bread (locsyms, amt, input_bfd) != amt)
7433 {
7434 ret = false;
7435 goto out1;
7436 }
7437 }
7438
7439 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
7440 locsym_shndx = NULL;
7441 if (shndx_hdr->sh_size != 0 && nlocsyms != 0)
7442 {
7443 bfd_size_type amt = nlocsyms * sizeof (Elf_External_Sym_Shndx);
7444 locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
7445 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
7446 || bfd_bread (locsym_shndx, amt, input_bfd) != amt)
7447 return false;
7448 }
7449
7450 /* Read the relocations. */
7451 relstart = (NAME(_bfd_elf,link_read_relocs)
7452 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
7453 info->keep_memory));
7454 if (relstart == NULL)
7455 {
7456 ret = false;
7457 goto out1;
7458 }
7459 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7460
7461 for (rel = relstart; rel < relend; rel++)
7462 {
7463 unsigned long r_symndx;
7464 asection *rsec;
7465 struct elf_link_hash_entry *h;
7466 Elf_Internal_Sym s;
7467
7468 r_symndx = ELF_R_SYM (rel->r_info);
7469 if (r_symndx == 0)
7470 continue;
7471
7472 if (elf_bad_symtab (sec->owner))
7473 {
7474 elf_swap_symbol_in (input_bfd,
7475 locsyms + r_symndx,
7476 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7477 &s);
7478 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
7479 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7480 else
7481 {
7482 h = sym_hashes[r_symndx - extsymoff];
7483 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7484 }
7485 }
7486 else if (r_symndx >= nlocsyms)
7487 {
7488 h = sym_hashes[r_symndx - extsymoff];
7489 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
7490 }
7491 else
7492 {
7493 elf_swap_symbol_in (input_bfd,
7494 locsyms + r_symndx,
7495 locsym_shndx + (locsym_shndx ? r_symndx : 0),
7496 &s);
7497 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
7498 }
7499
7500 if (rsec && !rsec->gc_mark)
7501 if (!elf_gc_mark (info, rsec, gc_mark_hook))
7502 {
7503 ret = false;
7504 goto out2;
7505 }
7506 }
7507
7508 out2:
7509 if (!info->keep_memory)
7510 free (relstart);
7511 out1:
7512 if (freesyms)
7513 free (freesyms);
7514 }
7515
7516 return ret;
7517 }
7518
7519 /* The sweep phase of garbage collection. Remove all garbage sections. */
7520
7521 static boolean
7522 elf_gc_sweep (info, gc_sweep_hook)
7523 struct bfd_link_info *info;
7524 boolean (*gc_sweep_hook)
7525 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7526 const Elf_Internal_Rela *relocs));
7527 {
7528 bfd *sub;
7529
7530 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7531 {
7532 asection *o;
7533
7534 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7535 continue;
7536
7537 for (o = sub->sections; o != NULL; o = o->next)
7538 {
7539 /* Keep special sections. Keep .debug sections. */
7540 if ((o->flags & SEC_LINKER_CREATED)
7541 || (o->flags & SEC_DEBUGGING))
7542 o->gc_mark = 1;
7543
7544 if (o->gc_mark)
7545 continue;
7546
7547 /* Skip sweeping sections already excluded. */
7548 if (o->flags & SEC_EXCLUDE)
7549 continue;
7550
7551 /* Since this is early in the link process, it is simple
7552 to remove a section from the output. */
7553 o->flags |= SEC_EXCLUDE;
7554
7555 /* But we also have to update some of the relocation
7556 info we collected before. */
7557 if (gc_sweep_hook
7558 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7559 {
7560 Elf_Internal_Rela *internal_relocs;
7561 boolean r;
7562
7563 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7564 (o->owner, o, NULL, NULL, info->keep_memory));
7565 if (internal_relocs == NULL)
7566 return false;
7567
7568 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7569
7570 if (!info->keep_memory)
7571 free (internal_relocs);
7572
7573 if (!r)
7574 return false;
7575 }
7576 }
7577 }
7578
7579 /* Remove the symbols that were in the swept sections from the dynamic
7580 symbol table. GCFIXME: Anyone know how to get them out of the
7581 static symbol table as well? */
7582 {
7583 int i = 0;
7584
7585 elf_link_hash_traverse (elf_hash_table (info),
7586 elf_gc_sweep_symbol,
7587 (PTR) &i);
7588
7589 elf_hash_table (info)->dynsymcount = i;
7590 }
7591
7592 return true;
7593 }
7594
7595 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7596
7597 static boolean
7598 elf_gc_sweep_symbol (h, idxptr)
7599 struct elf_link_hash_entry *h;
7600 PTR idxptr;
7601 {
7602 int *idx = (int *) idxptr;
7603
7604 if (h->dynindx != -1
7605 && ((h->root.type != bfd_link_hash_defined
7606 && h->root.type != bfd_link_hash_defweak)
7607 || h->root.u.def.section->gc_mark))
7608 h->dynindx = (*idx)++;
7609
7610 return true;
7611 }
7612
7613 /* Propogate collected vtable information. This is called through
7614 elf_link_hash_traverse. */
7615
7616 static boolean
7617 elf_gc_propagate_vtable_entries_used (h, okp)
7618 struct elf_link_hash_entry *h;
7619 PTR okp;
7620 {
7621 /* Those that are not vtables. */
7622 if (h->vtable_parent == NULL)
7623 return true;
7624
7625 /* Those vtables that do not have parents, we cannot merge. */
7626 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7627 return true;
7628
7629 /* If we've already been done, exit. */
7630 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7631 return true;
7632
7633 /* Make sure the parent's table is up to date. */
7634 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7635
7636 if (h->vtable_entries_used == NULL)
7637 {
7638 /* None of this table's entries were referenced. Re-use the
7639 parent's table. */
7640 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7641 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7642 }
7643 else
7644 {
7645 size_t n;
7646 boolean *cu, *pu;
7647
7648 /* Or the parent's entries into ours. */
7649 cu = h->vtable_entries_used;
7650 cu[-1] = true;
7651 pu = h->vtable_parent->vtable_entries_used;
7652 if (pu != NULL)
7653 {
7654 asection *sec = h->root.u.def.section;
7655 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7656 int file_align = bed->s->file_align;
7657
7658 n = h->vtable_parent->vtable_entries_size / file_align;
7659 while (n--)
7660 {
7661 if (*pu)
7662 *cu = true;
7663 pu++;
7664 cu++;
7665 }
7666 }
7667 }
7668
7669 return true;
7670 }
7671
7672 static boolean
7673 elf_gc_smash_unused_vtentry_relocs (h, okp)
7674 struct elf_link_hash_entry *h;
7675 PTR okp;
7676 {
7677 asection *sec;
7678 bfd_vma hstart, hend;
7679 Elf_Internal_Rela *relstart, *relend, *rel;
7680 struct elf_backend_data *bed;
7681 int file_align;
7682
7683 /* Take care of both those symbols that do not describe vtables as
7684 well as those that are not loaded. */
7685 if (h->vtable_parent == NULL)
7686 return true;
7687
7688 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7689 || h->root.type == bfd_link_hash_defweak);
7690
7691 sec = h->root.u.def.section;
7692 hstart = h->root.u.def.value;
7693 hend = hstart + h->size;
7694
7695 relstart = (NAME(_bfd_elf,link_read_relocs)
7696 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7697 if (!relstart)
7698 return *(boolean *) okp = false;
7699 bed = get_elf_backend_data (sec->owner);
7700 file_align = bed->s->file_align;
7701
7702 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7703
7704 for (rel = relstart; rel < relend; ++rel)
7705 if (rel->r_offset >= hstart && rel->r_offset < hend)
7706 {
7707 /* If the entry is in use, do nothing. */
7708 if (h->vtable_entries_used
7709 && (rel->r_offset - hstart) < h->vtable_entries_size)
7710 {
7711 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7712 if (h->vtable_entries_used[entry])
7713 continue;
7714 }
7715 /* Otherwise, kill it. */
7716 rel->r_offset = rel->r_info = rel->r_addend = 0;
7717 }
7718
7719 return true;
7720 }
7721
7722 /* Do mark and sweep of unused sections. */
7723
7724 boolean
7725 elf_gc_sections (abfd, info)
7726 bfd *abfd;
7727 struct bfd_link_info *info;
7728 {
7729 boolean ok = true;
7730 bfd *sub;
7731 asection * (*gc_mark_hook)
7732 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
7733 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7734
7735 if (!get_elf_backend_data (abfd)->can_gc_sections
7736 || info->relocateable || info->emitrelocations
7737 || elf_hash_table (info)->dynamic_sections_created)
7738 return true;
7739
7740 /* Apply transitive closure to the vtable entry usage info. */
7741 elf_link_hash_traverse (elf_hash_table (info),
7742 elf_gc_propagate_vtable_entries_used,
7743 (PTR) &ok);
7744 if (!ok)
7745 return false;
7746
7747 /* Kill the vtable relocations that were not used. */
7748 elf_link_hash_traverse (elf_hash_table (info),
7749 elf_gc_smash_unused_vtentry_relocs,
7750 (PTR) &ok);
7751 if (!ok)
7752 return false;
7753
7754 /* Grovel through relocs to find out who stays ... */
7755
7756 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7757 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7758 {
7759 asection *o;
7760
7761 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7762 continue;
7763
7764 for (o = sub->sections; o != NULL; o = o->next)
7765 {
7766 if (o->flags & SEC_KEEP)
7767 if (!elf_gc_mark (info, o, gc_mark_hook))
7768 return false;
7769 }
7770 }
7771
7772 /* ... and mark SEC_EXCLUDE for those that go. */
7773 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
7774 return false;
7775
7776 return true;
7777 }
7778 \f
7779 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
7780
7781 boolean
7782 elf_gc_record_vtinherit (abfd, sec, h, offset)
7783 bfd *abfd;
7784 asection *sec;
7785 struct elf_link_hash_entry *h;
7786 bfd_vma offset;
7787 {
7788 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
7789 struct elf_link_hash_entry **search, *child;
7790 bfd_size_type extsymcount;
7791
7792 /* The sh_info field of the symtab header tells us where the
7793 external symbols start. We don't care about the local symbols at
7794 this point. */
7795 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
7796 if (!elf_bad_symtab (abfd))
7797 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
7798
7799 sym_hashes = elf_sym_hashes (abfd);
7800 sym_hashes_end = sym_hashes + extsymcount;
7801
7802 /* Hunt down the child symbol, which is in this section at the same
7803 offset as the relocation. */
7804 for (search = sym_hashes; search != sym_hashes_end; ++search)
7805 {
7806 if ((child = *search) != NULL
7807 && (child->root.type == bfd_link_hash_defined
7808 || child->root.type == bfd_link_hash_defweak)
7809 && child->root.u.def.section == sec
7810 && child->root.u.def.value == offset)
7811 goto win;
7812 }
7813
7814 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
7815 bfd_archive_filename (abfd), sec->name,
7816 (unsigned long) offset);
7817 bfd_set_error (bfd_error_invalid_operation);
7818 return false;
7819
7820 win:
7821 if (!h)
7822 {
7823 /* This *should* only be the absolute section. It could potentially
7824 be that someone has defined a non-global vtable though, which
7825 would be bad. It isn't worth paging in the local symbols to be
7826 sure though; that case should simply be handled by the assembler. */
7827
7828 child->vtable_parent = (struct elf_link_hash_entry *) -1;
7829 }
7830 else
7831 child->vtable_parent = h;
7832
7833 return true;
7834 }
7835
7836 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
7837
7838 boolean
7839 elf_gc_record_vtentry (abfd, sec, h, addend)
7840 bfd *abfd ATTRIBUTE_UNUSED;
7841 asection *sec ATTRIBUTE_UNUSED;
7842 struct elf_link_hash_entry *h;
7843 bfd_vma addend;
7844 {
7845 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7846 int file_align = bed->s->file_align;
7847
7848 if (addend >= h->vtable_entries_size)
7849 {
7850 size_t size, bytes;
7851 boolean *ptr = h->vtable_entries_used;
7852
7853 /* While the symbol is undefined, we have to be prepared to handle
7854 a zero size. */
7855 if (h->root.type == bfd_link_hash_undefined)
7856 size = addend;
7857 else
7858 {
7859 size = h->size;
7860 if (size < addend)
7861 {
7862 /* Oops! We've got a reference past the defined end of
7863 the table. This is probably a bug -- shall we warn? */
7864 size = addend;
7865 }
7866 }
7867
7868 /* Allocate one extra entry for use as a "done" flag for the
7869 consolidation pass. */
7870 bytes = (size / file_align + 1) * sizeof (boolean);
7871
7872 if (ptr)
7873 {
7874 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
7875
7876 if (ptr != NULL)
7877 {
7878 size_t oldbytes;
7879
7880 oldbytes = ((h->vtable_entries_size / file_align + 1)
7881 * sizeof (boolean));
7882 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
7883 }
7884 }
7885 else
7886 ptr = bfd_zmalloc ((bfd_size_type) bytes);
7887
7888 if (ptr == NULL)
7889 return false;
7890
7891 /* And arrange for that done flag to be at index -1. */
7892 h->vtable_entries_used = ptr + 1;
7893 h->vtable_entries_size = size;
7894 }
7895
7896 h->vtable_entries_used[addend / file_align] = true;
7897
7898 return true;
7899 }
7900
7901 /* And an accompanying bit to work out final got entry offsets once
7902 we're done. Should be called from final_link. */
7903
7904 boolean
7905 elf_gc_common_finalize_got_offsets (abfd, info)
7906 bfd *abfd;
7907 struct bfd_link_info *info;
7908 {
7909 bfd *i;
7910 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7911 bfd_vma gotoff;
7912
7913 /* The GOT offset is relative to the .got section, but the GOT header is
7914 put into the .got.plt section, if the backend uses it. */
7915 if (bed->want_got_plt)
7916 gotoff = 0;
7917 else
7918 gotoff = bed->got_header_size;
7919
7920 /* Do the local .got entries first. */
7921 for (i = info->input_bfds; i; i = i->link_next)
7922 {
7923 bfd_signed_vma *local_got;
7924 bfd_size_type j, locsymcount;
7925 Elf_Internal_Shdr *symtab_hdr;
7926
7927 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
7928 continue;
7929
7930 local_got = elf_local_got_refcounts (i);
7931 if (!local_got)
7932 continue;
7933
7934 symtab_hdr = &elf_tdata (i)->symtab_hdr;
7935 if (elf_bad_symtab (i))
7936 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7937 else
7938 locsymcount = symtab_hdr->sh_info;
7939
7940 for (j = 0; j < locsymcount; ++j)
7941 {
7942 if (local_got[j] > 0)
7943 {
7944 local_got[j] = gotoff;
7945 gotoff += ARCH_SIZE / 8;
7946 }
7947 else
7948 local_got[j] = (bfd_vma) -1;
7949 }
7950 }
7951
7952 /* Then the global .got entries. .plt refcounts are handled by
7953 adjust_dynamic_symbol */
7954 elf_link_hash_traverse (elf_hash_table (info),
7955 elf_gc_allocate_got_offsets,
7956 (PTR) &gotoff);
7957 return true;
7958 }
7959
7960 /* We need a special top-level link routine to convert got reference counts
7961 to real got offsets. */
7962
7963 static boolean
7964 elf_gc_allocate_got_offsets (h, offarg)
7965 struct elf_link_hash_entry *h;
7966 PTR offarg;
7967 {
7968 bfd_vma *off = (bfd_vma *) offarg;
7969
7970 if (h->got.refcount > 0)
7971 {
7972 h->got.offset = off[0];
7973 off[0] += ARCH_SIZE / 8;
7974 }
7975 else
7976 h->got.offset = (bfd_vma) -1;
7977
7978 return true;
7979 }
7980
7981 /* Many folk need no more in the way of final link than this, once
7982 got entry reference counting is enabled. */
7983
7984 boolean
7985 elf_gc_common_final_link (abfd, info)
7986 bfd *abfd;
7987 struct bfd_link_info *info;
7988 {
7989 if (!elf_gc_common_finalize_got_offsets (abfd, info))
7990 return false;
7991
7992 /* Invoke the regular ELF backend linker to do all the work. */
7993 return elf_bfd_final_link (abfd, info);
7994 }
7995
7996 /* This function will be called though elf_link_hash_traverse to store
7997 all hash value of the exported symbols in an array. */
7998
7999 static boolean
8000 elf_collect_hash_codes (h, data)
8001 struct elf_link_hash_entry *h;
8002 PTR data;
8003 {
8004 unsigned long **valuep = (unsigned long **) data;
8005 const char *name;
8006 char *p;
8007 unsigned long ha;
8008 char *alc = NULL;
8009
8010 /* Ignore indirect symbols. These are added by the versioning code. */
8011 if (h->dynindx == -1)
8012 return true;
8013
8014 name = h->root.root.string;
8015 p = strchr (name, ELF_VER_CHR);
8016 if (p != NULL)
8017 {
8018 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8019 memcpy (alc, name, (size_t) (p - name));
8020 alc[p - name] = '\0';
8021 name = alc;
8022 }
8023
8024 /* Compute the hash value. */
8025 ha = bfd_elf_hash (name);
8026
8027 /* Store the found hash value in the array given as the argument. */
8028 *(*valuep)++ = ha;
8029
8030 /* And store it in the struct so that we can put it in the hash table
8031 later. */
8032 h->elf_hash_value = ha;
8033
8034 if (alc != NULL)
8035 free (alc);
8036
8037 return true;
8038 }
8039
8040 boolean
8041 elf_reloc_symbol_deleted_p (offset, cookie)
8042 bfd_vma offset;
8043 PTR cookie;
8044 {
8045 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8046
8047 if (rcookie->bad_symtab)
8048 rcookie->rel = rcookie->rels;
8049
8050 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8051 {
8052 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8053 Elf_Internal_Sym isym;
8054
8055 if (! rcookie->bad_symtab)
8056 if (rcookie->rel->r_offset > offset)
8057 return false;
8058 if (rcookie->rel->r_offset != offset)
8059 continue;
8060
8061 if (rcookie->locsyms && r_symndx < rcookie->locsymcount)
8062 {
8063 Elf_External_Sym *lsym;
8064 Elf_External_Sym_Shndx *lshndx;
8065
8066 lsym = (Elf_External_Sym *) rcookie->locsyms + r_symndx;
8067 lshndx = (Elf_External_Sym_Shndx *) rcookie->locsym_shndx;
8068 if (lshndx != NULL)
8069 lshndx += r_symndx;
8070 elf_swap_symbol_in (rcookie->abfd, lsym, lshndx, &isym);
8071 }
8072
8073 if (r_symndx >= rcookie->locsymcount
8074 || (rcookie->locsyms
8075 && ELF_ST_BIND (isym.st_info) != STB_LOCAL))
8076 {
8077 struct elf_link_hash_entry *h;
8078
8079 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8080
8081 while (h->root.type == bfd_link_hash_indirect
8082 || h->root.type == bfd_link_hash_warning)
8083 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8084
8085 if ((h->root.type == bfd_link_hash_defined
8086 || h->root.type == bfd_link_hash_defweak)
8087 && elf_discarded_section (h->root.u.def.section))
8088 return true;
8089 else
8090 return false;
8091 }
8092 else if (rcookie->locsyms)
8093 {
8094 /* It's not a relocation against a global symbol,
8095 but it could be a relocation against a local
8096 symbol for a discarded section. */
8097 asection *isec;
8098
8099 /* Need to: get the symbol; get the section. */
8100 if (isym.st_shndx < SHN_LORESERVE || isym.st_shndx > SHN_HIRESERVE)
8101 {
8102 isec = section_from_elf_index (rcookie->abfd, isym.st_shndx);
8103 if (isec != NULL && elf_discarded_section (isec))
8104 return true;
8105 }
8106 }
8107 return false;
8108 }
8109 return false;
8110 }
8111
8112 /* Discard unneeded references to discarded sections.
8113 Returns true if any section's size was changed. */
8114 /* This function assumes that the relocations are in sorted order,
8115 which is true for all known assemblers. */
8116
8117 boolean
8118 elf_bfd_discard_info (output_bfd, info)
8119 bfd *output_bfd;
8120 struct bfd_link_info *info;
8121 {
8122 struct elf_reloc_cookie cookie;
8123 asection *stab, *eh, *ehdr;
8124 Elf_Internal_Shdr *symtab_hdr;
8125 Elf_Internal_Shdr *shndx_hdr;
8126 Elf_External_Sym *freesyms;
8127 struct elf_backend_data *bed;
8128 bfd *abfd;
8129 boolean ret = false;
8130 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8131
8132 if (info->relocateable
8133 || info->traditional_format
8134 || info->hash->creator->flavour != bfd_target_elf_flavour
8135 || ! is_elf_hash_table (info))
8136 return false;
8137
8138 ehdr = NULL;
8139 if (elf_hash_table (info)->dynobj != NULL)
8140 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8141 ".eh_frame_hdr");
8142
8143 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8144 {
8145 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8146 continue;
8147
8148 bed = get_elf_backend_data (abfd);
8149
8150 if ((abfd->flags & DYNAMIC) != 0)
8151 continue;
8152
8153 eh = NULL;
8154 if (ehdr)
8155 {
8156 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8157 if (eh && eh->_raw_size == 0)
8158 eh = NULL;
8159 }
8160
8161 stab = strip ? NULL : bfd_get_section_by_name (abfd, ".stab");
8162 if ((! stab || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8163 && ! eh
8164 && (strip || ! bed->elf_backend_discard_info))
8165 continue;
8166
8167 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8168 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8169
8170 cookie.abfd = abfd;
8171 cookie.sym_hashes = elf_sym_hashes (abfd);
8172 cookie.bad_symtab = elf_bad_symtab (abfd);
8173 if (cookie.bad_symtab)
8174 {
8175 cookie.locsymcount =
8176 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8177 cookie.extsymoff = 0;
8178 }
8179 else
8180 {
8181 cookie.locsymcount = symtab_hdr->sh_info;
8182 cookie.extsymoff = symtab_hdr->sh_info;
8183 }
8184
8185 freesyms = NULL;
8186 if (symtab_hdr->contents)
8187 cookie.locsyms = (void *) symtab_hdr->contents;
8188 else if (cookie.locsymcount == 0)
8189 cookie.locsyms = NULL;
8190 else
8191 {
8192 bfd_size_type amt = cookie.locsymcount * sizeof (Elf_External_Sym);
8193 cookie.locsyms = bfd_malloc (amt);
8194 if (cookie.locsyms == NULL)
8195 return false;
8196 freesyms = cookie.locsyms;
8197 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
8198 || bfd_bread (cookie.locsyms, amt, abfd) != amt)
8199 {
8200 error_ret_free_loc:
8201 free (cookie.locsyms);
8202 return false;
8203 }
8204 }
8205
8206 cookie.locsym_shndx = NULL;
8207 if (shndx_hdr->sh_size != 0 && cookie.locsymcount != 0)
8208 {
8209 bfd_size_type amt;
8210 amt = cookie.locsymcount * sizeof (Elf_External_Sym_Shndx);
8211 cookie.locsym_shndx = bfd_malloc (amt);
8212 if (cookie.locsym_shndx == NULL)
8213 goto error_ret_free_loc;
8214 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
8215 || bfd_bread (cookie.locsym_shndx, amt, abfd) != amt)
8216 {
8217 free (cookie.locsym_shndx);
8218 goto error_ret_free_loc;
8219 }
8220 }
8221
8222 if (stab)
8223 {
8224 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8225 (abfd, stab, (PTR) NULL,
8226 (Elf_Internal_Rela *) NULL,
8227 info->keep_memory));
8228 if (cookie.rels)
8229 {
8230 cookie.rel = cookie.rels;
8231 cookie.relend =
8232 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8233 if (_bfd_discard_section_stabs (abfd, stab,
8234 elf_section_data (stab)->sec_info,
8235 elf_reloc_symbol_deleted_p,
8236 &cookie))
8237 ret = true;
8238 if (! info->keep_memory)
8239 free (cookie.rels);
8240 }
8241 }
8242
8243 if (eh)
8244 {
8245 cookie.rels = NULL;
8246 cookie.rel = NULL;
8247 cookie.relend = NULL;
8248 if (eh->reloc_count)
8249 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8250 (abfd, eh, (PTR) NULL,
8251 (Elf_Internal_Rela *) NULL,
8252 info->keep_memory));
8253 if (cookie.rels)
8254 {
8255 cookie.rel = cookie.rels;
8256 cookie.relend =
8257 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8258 }
8259 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8260 elf_reloc_symbol_deleted_p,
8261 &cookie))
8262 ret = true;
8263 if (! info->keep_memory)
8264 free (cookie.rels);
8265 }
8266
8267 if (bed->elf_backend_discard_info)
8268 {
8269 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8270 ret = true;
8271 }
8272
8273 if (cookie.locsym_shndx != NULL)
8274 free (cookie.locsym_shndx);
8275
8276 if (freesyms != NULL)
8277 free (freesyms);
8278 }
8279
8280 if (ehdr
8281 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd,
8282 info, ehdr))
8283 ret = true;
8284 return ret;
8285 }
8286
8287 static boolean
8288 elf_section_ignore_discarded_relocs (sec)
8289 asection *sec;
8290 {
8291 switch (elf_section_data (sec)->sec_info_type)
8292 {
8293 case ELF_INFO_TYPE_STABS:
8294 case ELF_INFO_TYPE_EH_FRAME:
8295 return true;
8296 default:
8297 break;
8298 }
8299 if ((get_elf_backend_data (sec->owner)->elf_backend_ignore_discarded_relocs
8300 != NULL)
8301 && (*get_elf_backend_data (sec->owner)
8302 ->elf_backend_ignore_discarded_relocs) (sec))
8303 return true;
8304
8305 return false;
8306 }
This page took 0.238275 seconds and 5 git commands to generate.