[Binutils][AARCH64]Add TLS IE large memory support.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
209 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
210
211 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
212 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
227
228 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
229 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
241
242 #define ELIMINATE_COPY_RELOCS 0
243
244 /* Return size of a relocation entry. HTAB is the bfd's
245 elf_aarch64_link_hash_entry. */
246 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
247
248 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
249 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
250 #define PLT_ENTRY_SIZE (32)
251 #define PLT_SMALL_ENTRY_SIZE (16)
252 #define PLT_TLSDESC_ENTRY_SIZE (32)
253
254 /* Encoding of the nop instruction */
255 #define INSN_NOP 0xd503201f
256
257 #define aarch64_compute_jump_table_size(htab) \
258 (((htab)->root.srelplt == NULL) ? 0 \
259 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
260
261 /* The first entry in a procedure linkage table looks like this
262 if the distance between the PLTGOT and the PLT is < 4GB use
263 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
264 in x16 and needs to work out PLTGOT[1] by using an address of
265 [x16,#-GOT_ENTRY_SIZE]. */
266 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
267 {
268 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
269 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
270 #if ARCH_SIZE == 64
271 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
272 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
273 #else
274 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
275 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
276 #endif
277 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
278 0x1f, 0x20, 0x03, 0xd5, /* nop */
279 0x1f, 0x20, 0x03, 0xd5, /* nop */
280 0x1f, 0x20, 0x03, 0xd5, /* nop */
281 };
282
283 /* Per function entry in a procedure linkage table looks like this
284 if the distance between the PLTGOT and the PLT is < 4GB use
285 these PLT entries. */
286 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
287 {
288 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
289 #if ARCH_SIZE == 64
290 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
291 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
292 #else
293 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
294 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
295 #endif
296 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
297 };
298
299 static const bfd_byte
300 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
301 {
302 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
303 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
304 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
305 #if ARCH_SIZE == 64
306 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
307 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
308 #else
309 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
310 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
311 #endif
312 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
313 0x1f, 0x20, 0x03, 0xd5, /* nop */
314 0x1f, 0x20, 0x03, 0xd5, /* nop */
315 };
316
317 #define elf_info_to_howto elfNN_aarch64_info_to_howto
318 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
319
320 #define AARCH64_ELF_ABI_VERSION 0
321
322 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
323 #define ALL_ONES (~ (bfd_vma) 0)
324
325 /* Indexed by the bfd interal reloc enumerators.
326 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
327 in reloc.c. */
328
329 static reloc_howto_type elfNN_aarch64_howto_table[] =
330 {
331 EMPTY_HOWTO (0),
332
333 /* Basic data relocations. */
334
335 #if ARCH_SIZE == 64
336 HOWTO (R_AARCH64_NULL, /* type */
337 0, /* rightshift */
338 3, /* size (0 = byte, 1 = short, 2 = long) */
339 0, /* bitsize */
340 FALSE, /* pc_relative */
341 0, /* bitpos */
342 complain_overflow_dont, /* complain_on_overflow */
343 bfd_elf_generic_reloc, /* special_function */
344 "R_AARCH64_NULL", /* name */
345 FALSE, /* partial_inplace */
346 0, /* src_mask */
347 0, /* dst_mask */
348 FALSE), /* pcrel_offset */
349 #else
350 HOWTO (R_AARCH64_NONE, /* type */
351 0, /* rightshift */
352 3, /* size (0 = byte, 1 = short, 2 = long) */
353 0, /* bitsize */
354 FALSE, /* pc_relative */
355 0, /* bitpos */
356 complain_overflow_dont, /* complain_on_overflow */
357 bfd_elf_generic_reloc, /* special_function */
358 "R_AARCH64_NONE", /* name */
359 FALSE, /* partial_inplace */
360 0, /* src_mask */
361 0, /* dst_mask */
362 FALSE), /* pcrel_offset */
363 #endif
364
365 /* .xword: (S+A) */
366 HOWTO64 (AARCH64_R (ABS64), /* type */
367 0, /* rightshift */
368 4, /* size (4 = long long) */
369 64, /* bitsize */
370 FALSE, /* pc_relative */
371 0, /* bitpos */
372 complain_overflow_unsigned, /* complain_on_overflow */
373 bfd_elf_generic_reloc, /* special_function */
374 AARCH64_R_STR (ABS64), /* name */
375 FALSE, /* partial_inplace */
376 ALL_ONES, /* src_mask */
377 ALL_ONES, /* dst_mask */
378 FALSE), /* pcrel_offset */
379
380 /* .word: (S+A) */
381 HOWTO (AARCH64_R (ABS32), /* type */
382 0, /* rightshift */
383 2, /* size (0 = byte, 1 = short, 2 = long) */
384 32, /* bitsize */
385 FALSE, /* pc_relative */
386 0, /* bitpos */
387 complain_overflow_unsigned, /* complain_on_overflow */
388 bfd_elf_generic_reloc, /* special_function */
389 AARCH64_R_STR (ABS32), /* name */
390 FALSE, /* partial_inplace */
391 0xffffffff, /* src_mask */
392 0xffffffff, /* dst_mask */
393 FALSE), /* pcrel_offset */
394
395 /* .half: (S+A) */
396 HOWTO (AARCH64_R (ABS16), /* type */
397 0, /* rightshift */
398 1, /* size (0 = byte, 1 = short, 2 = long) */
399 16, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_unsigned, /* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 AARCH64_R_STR (ABS16), /* name */
405 FALSE, /* partial_inplace */
406 0xffff, /* src_mask */
407 0xffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 /* .xword: (S+A-P) */
411 HOWTO64 (AARCH64_R (PREL64), /* type */
412 0, /* rightshift */
413 4, /* size (4 = long long) */
414 64, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 bfd_elf_generic_reloc, /* special_function */
419 AARCH64_R_STR (PREL64), /* name */
420 FALSE, /* partial_inplace */
421 ALL_ONES, /* src_mask */
422 ALL_ONES, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* .word: (S+A-P) */
426 HOWTO (AARCH64_R (PREL32), /* type */
427 0, /* rightshift */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
429 32, /* bitsize */
430 TRUE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_signed, /* complain_on_overflow */
433 bfd_elf_generic_reloc, /* special_function */
434 AARCH64_R_STR (PREL32), /* name */
435 FALSE, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 TRUE), /* pcrel_offset */
439
440 /* .half: (S+A-P) */
441 HOWTO (AARCH64_R (PREL16), /* type */
442 0, /* rightshift */
443 1, /* size (0 = byte, 1 = short, 2 = long) */
444 16, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_signed, /* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 AARCH64_R_STR (PREL16), /* name */
450 FALSE, /* partial_inplace */
451 0xffff, /* src_mask */
452 0xffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 /* Group relocations to create a 16, 32, 48 or 64 bit
456 unsigned data or abs address inline. */
457
458 /* MOVZ: ((S+A) >> 0) & 0xffff */
459 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
460 0, /* rightshift */
461 2, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_unsigned, /* complain_on_overflow */
466 bfd_elf_generic_reloc, /* special_function */
467 AARCH64_R_STR (MOVW_UABS_G0), /* name */
468 FALSE, /* partial_inplace */
469 0xffff, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
474 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
475 0, /* rightshift */
476 2, /* size (0 = byte, 1 = short, 2 = long) */
477 16, /* bitsize */
478 FALSE, /* pc_relative */
479 0, /* bitpos */
480 complain_overflow_dont, /* complain_on_overflow */
481 bfd_elf_generic_reloc, /* special_function */
482 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
483 FALSE, /* partial_inplace */
484 0xffff, /* src_mask */
485 0xffff, /* dst_mask */
486 FALSE), /* pcrel_offset */
487
488 /* MOVZ: ((S+A) >> 16) & 0xffff */
489 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
490 16, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 16, /* bitsize */
493 FALSE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_unsigned, /* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 AARCH64_R_STR (MOVW_UABS_G1), /* name */
498 FALSE, /* partial_inplace */
499 0xffff, /* src_mask */
500 0xffff, /* dst_mask */
501 FALSE), /* pcrel_offset */
502
503 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
504 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
505 16, /* rightshift */
506 2, /* size (0 = byte, 1 = short, 2 = long) */
507 16, /* bitsize */
508 FALSE, /* pc_relative */
509 0, /* bitpos */
510 complain_overflow_dont, /* complain_on_overflow */
511 bfd_elf_generic_reloc, /* special_function */
512 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
513 FALSE, /* partial_inplace */
514 0xffff, /* src_mask */
515 0xffff, /* dst_mask */
516 FALSE), /* pcrel_offset */
517
518 /* MOVZ: ((S+A) >> 32) & 0xffff */
519 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
520 32, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 16, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_unsigned, /* complain_on_overflow */
526 bfd_elf_generic_reloc, /* special_function */
527 AARCH64_R_STR (MOVW_UABS_G2), /* name */
528 FALSE, /* partial_inplace */
529 0xffff, /* src_mask */
530 0xffff, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
534 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
535 32, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 16, /* bitsize */
538 FALSE, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
543 FALSE, /* partial_inplace */
544 0xffff, /* src_mask */
545 0xffff, /* dst_mask */
546 FALSE), /* pcrel_offset */
547
548 /* MOVZ: ((S+A) >> 48) & 0xffff */
549 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
550 48, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 16, /* bitsize */
553 FALSE, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_unsigned, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 AARCH64_R_STR (MOVW_UABS_G3), /* name */
558 FALSE, /* partial_inplace */
559 0xffff, /* src_mask */
560 0xffff, /* dst_mask */
561 FALSE), /* pcrel_offset */
562
563 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
564 signed data or abs address inline. Will change instruction
565 to MOVN or MOVZ depending on sign of calculated value. */
566
567 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
568 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 16, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_signed, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 AARCH64_R_STR (MOVW_SABS_G0), /* name */
577 FALSE, /* partial_inplace */
578 0xffff, /* src_mask */
579 0xffff, /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
583 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
584 16, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 16, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_signed, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 AARCH64_R_STR (MOVW_SABS_G1), /* name */
592 FALSE, /* partial_inplace */
593 0xffff, /* src_mask */
594 0xffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
598 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
599 32, /* rightshift */
600 2, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_signed, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 AARCH64_R_STR (MOVW_SABS_G2), /* name */
607 FALSE, /* partial_inplace */
608 0xffff, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
613 addresses: PG(x) is (x & ~0xfff). */
614
615 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
616 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
617 2, /* rightshift */
618 2, /* size (0 = byte, 1 = short, 2 = long) */
619 19, /* bitsize */
620 TRUE, /* pc_relative */
621 0, /* bitpos */
622 complain_overflow_signed, /* complain_on_overflow */
623 bfd_elf_generic_reloc, /* special_function */
624 AARCH64_R_STR (LD_PREL_LO19), /* name */
625 FALSE, /* partial_inplace */
626 0x7ffff, /* src_mask */
627 0x7ffff, /* dst_mask */
628 TRUE), /* pcrel_offset */
629
630 /* ADR: (S+A-P) & 0x1fffff */
631 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
632 0, /* rightshift */
633 2, /* size (0 = byte, 1 = short, 2 = long) */
634 21, /* bitsize */
635 TRUE, /* pc_relative */
636 0, /* bitpos */
637 complain_overflow_signed, /* complain_on_overflow */
638 bfd_elf_generic_reloc, /* special_function */
639 AARCH64_R_STR (ADR_PREL_LO21), /* name */
640 FALSE, /* partial_inplace */
641 0x1fffff, /* src_mask */
642 0x1fffff, /* dst_mask */
643 TRUE), /* pcrel_offset */
644
645 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
646 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
647 12, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 21, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 bfd_elf_generic_reloc, /* special_function */
654 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
655 FALSE, /* partial_inplace */
656 0x1fffff, /* src_mask */
657 0x1fffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
661 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
662 12, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 21, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
670 FALSE, /* partial_inplace */
671 0x1fffff, /* src_mask */
672 0x1fffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* ADD: (S+A) & 0xfff [no overflow check] */
676 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 12, /* bitsize */
680 FALSE, /* pc_relative */
681 10, /* bitpos */
682 complain_overflow_dont, /* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
685 FALSE, /* partial_inplace */
686 0x3ffc00, /* src_mask */
687 0x3ffc00, /* dst_mask */
688 FALSE), /* pcrel_offset */
689
690 /* LD/ST8: (S+A) & 0xfff */
691 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
692 0, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 12, /* bitsize */
695 FALSE, /* pc_relative */
696 0, /* bitpos */
697 complain_overflow_dont, /* complain_on_overflow */
698 bfd_elf_generic_reloc, /* special_function */
699 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
700 FALSE, /* partial_inplace */
701 0xfff, /* src_mask */
702 0xfff, /* dst_mask */
703 FALSE), /* pcrel_offset */
704
705 /* Relocations for control-flow instructions. */
706
707 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
708 HOWTO (AARCH64_R (TSTBR14), /* type */
709 2, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 14, /* bitsize */
712 TRUE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_signed, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 AARCH64_R_STR (TSTBR14), /* name */
717 FALSE, /* partial_inplace */
718 0x3fff, /* src_mask */
719 0x3fff, /* dst_mask */
720 TRUE), /* pcrel_offset */
721
722 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
723 HOWTO (AARCH64_R (CONDBR19), /* type */
724 2, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 19, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_signed, /* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 AARCH64_R_STR (CONDBR19), /* name */
732 FALSE, /* partial_inplace */
733 0x7ffff, /* src_mask */
734 0x7ffff, /* dst_mask */
735 TRUE), /* pcrel_offset */
736
737 /* B: ((S+A-P) >> 2) & 0x3ffffff */
738 HOWTO (AARCH64_R (JUMP26), /* type */
739 2, /* rightshift */
740 2, /* size (0 = byte, 1 = short, 2 = long) */
741 26, /* bitsize */
742 TRUE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_signed, /* complain_on_overflow */
745 bfd_elf_generic_reloc, /* special_function */
746 AARCH64_R_STR (JUMP26), /* name */
747 FALSE, /* partial_inplace */
748 0x3ffffff, /* src_mask */
749 0x3ffffff, /* dst_mask */
750 TRUE), /* pcrel_offset */
751
752 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
753 HOWTO (AARCH64_R (CALL26), /* type */
754 2, /* rightshift */
755 2, /* size (0 = byte, 1 = short, 2 = long) */
756 26, /* bitsize */
757 TRUE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_signed, /* complain_on_overflow */
760 bfd_elf_generic_reloc, /* special_function */
761 AARCH64_R_STR (CALL26), /* name */
762 FALSE, /* partial_inplace */
763 0x3ffffff, /* src_mask */
764 0x3ffffff, /* dst_mask */
765 TRUE), /* pcrel_offset */
766
767 /* LD/ST16: (S+A) & 0xffe */
768 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
769 1, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 12, /* bitsize */
772 FALSE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
777 FALSE, /* partial_inplace */
778 0xffe, /* src_mask */
779 0xffe, /* dst_mask */
780 FALSE), /* pcrel_offset */
781
782 /* LD/ST32: (S+A) & 0xffc */
783 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
784 2, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 12, /* bitsize */
787 FALSE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_dont, /* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
792 FALSE, /* partial_inplace */
793 0xffc, /* src_mask */
794 0xffc, /* dst_mask */
795 FALSE), /* pcrel_offset */
796
797 /* LD/ST64: (S+A) & 0xff8 */
798 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
799 3, /* rightshift */
800 2, /* size (0 = byte, 1 = short, 2 = long) */
801 12, /* bitsize */
802 FALSE, /* pc_relative */
803 0, /* bitpos */
804 complain_overflow_dont, /* complain_on_overflow */
805 bfd_elf_generic_reloc, /* special_function */
806 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
807 FALSE, /* partial_inplace */
808 0xff8, /* src_mask */
809 0xff8, /* dst_mask */
810 FALSE), /* pcrel_offset */
811
812 /* LD/ST128: (S+A) & 0xff0 */
813 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
814 4, /* rightshift */
815 2, /* size (0 = byte, 1 = short, 2 = long) */
816 12, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
822 FALSE, /* partial_inplace */
823 0xff0, /* src_mask */
824 0xff0, /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* Set a load-literal immediate field to bits
828 0x1FFFFC of G(S)-P */
829 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte,1 = short,2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (GOT_LD_PREL19), /* name */
838 FALSE, /* partial_inplace */
839 0xffffe0, /* src_mask */
840 0xffffe0, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* Get to the page for the GOT entry for the symbol
844 (G(S) - P) using an ADRP instruction. */
845 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
846 12, /* rightshift */
847 2, /* size (0 = byte, 1 = short, 2 = long) */
848 21, /* bitsize */
849 TRUE, /* pc_relative */
850 0, /* bitpos */
851 complain_overflow_dont, /* complain_on_overflow */
852 bfd_elf_generic_reloc, /* special_function */
853 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
854 FALSE, /* partial_inplace */
855 0x1fffff, /* src_mask */
856 0x1fffff, /* dst_mask */
857 TRUE), /* pcrel_offset */
858
859 /* LD64: GOT offset G(S) & 0xff8 */
860 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
861 3, /* rightshift */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
863 12, /* bitsize */
864 FALSE, /* pc_relative */
865 0, /* bitpos */
866 complain_overflow_dont, /* complain_on_overflow */
867 bfd_elf_generic_reloc, /* special_function */
868 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
869 FALSE, /* partial_inplace */
870 0xff8, /* src_mask */
871 0xff8, /* dst_mask */
872 FALSE), /* pcrel_offset */
873
874 /* LD32: GOT offset G(S) & 0xffc */
875 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
876 2, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 12, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
884 FALSE, /* partial_inplace */
885 0xffc, /* src_mask */
886 0xffc, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Lower 16 bits of GOT offset for the symbol. */
890 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
891 0, /* rightshift */
892 2, /* size (0 = byte, 1 = short, 2 = long) */
893 16, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
899 FALSE, /* partial_inplace */
900 0xffff, /* src_mask */
901 0xffff, /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* Higher 16 bits of GOT offset for the symbol. */
905 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
906 16, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 16, /* bitsize */
909 FALSE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_unsigned, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
914 FALSE, /* partial_inplace */
915 0xffff, /* src_mask */
916 0xffff, /* dst_mask */
917 FALSE), /* pcrel_offset */
918
919 /* LD64: GOT offset for the symbol. */
920 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
921 3, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 12, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_unsigned, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
929 FALSE, /* partial_inplace */
930 0x7ff8, /* src_mask */
931 0x7ff8, /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* LD32: GOT offset to the page address of GOT table.
935 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
936 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 12, /* bitsize */
940 FALSE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_unsigned, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
945 FALSE, /* partial_inplace */
946 0x5ffc, /* src_mask */
947 0x5ffc, /* dst_mask */
948 FALSE), /* pcrel_offset */
949
950 /* LD64: GOT offset to the page address of GOT table.
951 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
952 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
953 3, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 12, /* bitsize */
956 FALSE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_unsigned, /* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
961 FALSE, /* partial_inplace */
962 0x7ff8, /* src_mask */
963 0x7ff8, /* dst_mask */
964 FALSE), /* pcrel_offset */
965
966 /* Get to the page for the GOT entry for the symbol
967 (G(S) - P) using an ADRP instruction. */
968 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
969 12, /* rightshift */
970 2, /* size (0 = byte, 1 = short, 2 = long) */
971 21, /* bitsize */
972 TRUE, /* pc_relative */
973 0, /* bitpos */
974 complain_overflow_dont, /* complain_on_overflow */
975 bfd_elf_generic_reloc, /* special_function */
976 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
977 FALSE, /* partial_inplace */
978 0x1fffff, /* src_mask */
979 0x1fffff, /* dst_mask */
980 TRUE), /* pcrel_offset */
981
982 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
983 0, /* rightshift */
984 2, /* size (0 = byte, 1 = short, 2 = long) */
985 21, /* bitsize */
986 TRUE, /* pc_relative */
987 0, /* bitpos */
988 complain_overflow_dont, /* complain_on_overflow */
989 bfd_elf_generic_reloc, /* special_function */
990 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
991 FALSE, /* partial_inplace */
992 0x1fffff, /* src_mask */
993 0x1fffff, /* dst_mask */
994 TRUE), /* pcrel_offset */
995
996 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
997 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
998 0, /* rightshift */
999 2, /* size (0 = byte, 1 = short, 2 = long) */
1000 12, /* bitsize */
1001 FALSE, /* pc_relative */
1002 0, /* bitpos */
1003 complain_overflow_dont, /* complain_on_overflow */
1004 bfd_elf_generic_reloc, /* special_function */
1005 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1006 FALSE, /* partial_inplace */
1007 0xfff, /* src_mask */
1008 0xfff, /* dst_mask */
1009 FALSE), /* pcrel_offset */
1010
1011 /* Lower 16 bits of GOT offset to tls_index. */
1012 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 16, /* bitsize */
1016 FALSE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont, /* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1021 FALSE, /* partial_inplace */
1022 0xffff, /* src_mask */
1023 0xffff, /* dst_mask */
1024 FALSE), /* pcrel_offset */
1025
1026 /* Higher 16 bits of GOT offset to tls_index. */
1027 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1028 16, /* rightshift */
1029 2, /* size (0 = byte, 1 = short, 2 = long) */
1030 16, /* bitsize */
1031 FALSE, /* pc_relative */
1032 0, /* bitpos */
1033 complain_overflow_unsigned, /* complain_on_overflow */
1034 bfd_elf_generic_reloc, /* special_function */
1035 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1036 FALSE, /* partial_inplace */
1037 0xffff, /* src_mask */
1038 0xffff, /* dst_mask */
1039 FALSE), /* pcrel_offset */
1040
1041 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1042 12, /* rightshift */
1043 2, /* size (0 = byte, 1 = short, 2 = long) */
1044 21, /* bitsize */
1045 FALSE, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_dont, /* complain_on_overflow */
1048 bfd_elf_generic_reloc, /* special_function */
1049 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1050 FALSE, /* partial_inplace */
1051 0x1fffff, /* src_mask */
1052 0x1fffff, /* dst_mask */
1053 FALSE), /* pcrel_offset */
1054
1055 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1056 3, /* rightshift */
1057 2, /* size (0 = byte, 1 = short, 2 = long) */
1058 12, /* bitsize */
1059 FALSE, /* pc_relative */
1060 0, /* bitpos */
1061 complain_overflow_dont, /* complain_on_overflow */
1062 bfd_elf_generic_reloc, /* special_function */
1063 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1064 FALSE, /* partial_inplace */
1065 0xff8, /* src_mask */
1066 0xff8, /* dst_mask */
1067 FALSE), /* pcrel_offset */
1068
1069 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1070 2, /* rightshift */
1071 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 12, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont, /* complain_on_overflow */
1076 bfd_elf_generic_reloc, /* special_function */
1077 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1078 FALSE, /* partial_inplace */
1079 0xffc, /* src_mask */
1080 0xffc, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1084 2, /* rightshift */
1085 2, /* size (0 = byte, 1 = short, 2 = long) */
1086 19, /* bitsize */
1087 FALSE, /* pc_relative */
1088 0, /* bitpos */
1089 complain_overflow_dont, /* complain_on_overflow */
1090 bfd_elf_generic_reloc, /* special_function */
1091 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1092 FALSE, /* partial_inplace */
1093 0x1ffffc, /* src_mask */
1094 0x1ffffc, /* dst_mask */
1095 FALSE), /* pcrel_offset */
1096
1097 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1098 0, /* rightshift */
1099 2, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_dont, /* complain_on_overflow */
1104 bfd_elf_generic_reloc, /* special_function */
1105 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1106 FALSE, /* partial_inplace */
1107 0xffff, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1112 16, /* rightshift */
1113 2, /* size (0 = byte, 1 = short, 2 = long) */
1114 16, /* bitsize */
1115 FALSE, /* pc_relative */
1116 0, /* bitpos */
1117 complain_overflow_unsigned, /* complain_on_overflow */
1118 bfd_elf_generic_reloc, /* special_function */
1119 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1120 FALSE, /* partial_inplace */
1121 0xffff, /* src_mask */
1122 0xffff, /* dst_mask */
1123 FALSE), /* pcrel_offset */
1124
1125 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1126 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1127 12, /* rightshift */
1128 2, /* size (0 = byte, 1 = short, 2 = long) */
1129 12, /* bitsize */
1130 FALSE, /* pc_relative */
1131 0, /* bitpos */
1132 complain_overflow_unsigned, /* complain_on_overflow */
1133 bfd_elf_generic_reloc, /* special_function */
1134 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1135 FALSE, /* partial_inplace */
1136 0xfff, /* src_mask */
1137 0xfff, /* dst_mask */
1138 FALSE), /* pcrel_offset */
1139
1140 /* Unsigned 12 bit byte offset to module TLS base address. */
1141 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1142 0, /* rightshift */
1143 2, /* size (0 = byte, 1 = short, 2 = long) */
1144 12, /* bitsize */
1145 FALSE, /* pc_relative */
1146 0, /* bitpos */
1147 complain_overflow_unsigned, /* complain_on_overflow */
1148 bfd_elf_generic_reloc, /* special_function */
1149 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1150 FALSE, /* partial_inplace */
1151 0xfff, /* src_mask */
1152 0xfff, /* dst_mask */
1153 FALSE), /* pcrel_offset */
1154
1155 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1156 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 12, /* bitsize */
1160 FALSE, /* pc_relative */
1161 0, /* bitpos */
1162 complain_overflow_dont, /* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1165 FALSE, /* partial_inplace */
1166 0xfff, /* src_mask */
1167 0xfff, /* dst_mask */
1168 FALSE), /* pcrel_offset */
1169
1170 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1171 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 12, /* bitsize */
1175 FALSE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont, /* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1180 FALSE, /* partial_inplace */
1181 0xfff, /* src_mask */
1182 0xfff, /* dst_mask */
1183 FALSE), /* pcrel_offset */
1184
1185 /* Get to the page for the GOT entry for the symbol
1186 (G(S) - P) using an ADRP instruction. */
1187 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1188 12, /* rightshift */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1190 21, /* bitsize */
1191 TRUE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1196 FALSE, /* partial_inplace */
1197 0x1fffff, /* src_mask */
1198 0x1fffff, /* dst_mask */
1199 TRUE), /* pcrel_offset */
1200
1201 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1202 0, /* rightshift */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1204 21, /* bitsize */
1205 TRUE, /* pc_relative */
1206 0, /* bitpos */
1207 complain_overflow_signed, /* complain_on_overflow */
1208 bfd_elf_generic_reloc, /* special_function */
1209 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1210 FALSE, /* partial_inplace */
1211 0x1fffff, /* src_mask */
1212 0x1fffff, /* dst_mask */
1213 TRUE), /* pcrel_offset */
1214
1215 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1216 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1217 1, /* rightshift */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 11, /* bitsize */
1220 FALSE, /* pc_relative */
1221 10, /* bitpos */
1222 complain_overflow_unsigned, /* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1225 FALSE, /* partial_inplace */
1226 0x1ffc00, /* src_mask */
1227 0x1ffc00, /* dst_mask */
1228 FALSE), /* pcrel_offset */
1229
1230 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1231 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1232 1, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 11, /* bitsize */
1235 FALSE, /* pc_relative */
1236 10, /* bitpos */
1237 complain_overflow_dont, /* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1240 FALSE, /* partial_inplace */
1241 0x1ffc00, /* src_mask */
1242 0x1ffc00, /* dst_mask */
1243 FALSE), /* pcrel_offset */
1244
1245 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1246 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1247 2, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 10, /* bitsize */
1250 FALSE, /* pc_relative */
1251 10, /* bitpos */
1252 complain_overflow_unsigned, /* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
1254 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1255 FALSE, /* partial_inplace */
1256 0x3ffc00, /* src_mask */
1257 0x3ffc00, /* dst_mask */
1258 FALSE), /* pcrel_offset */
1259
1260 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1261 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1262 2, /* rightshift */
1263 2, /* size (0 = byte, 1 = short, 2 = long) */
1264 10, /* bitsize */
1265 FALSE, /* pc_relative */
1266 10, /* bitpos */
1267 complain_overflow_dont, /* complain_on_overflow */
1268 bfd_elf_generic_reloc, /* special_function */
1269 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1270 FALSE, /* partial_inplace */
1271 0xffc00, /* src_mask */
1272 0xffc00, /* dst_mask */
1273 FALSE), /* pcrel_offset */
1274
1275 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1276 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1277 3, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 9, /* bitsize */
1280 FALSE, /* pc_relative */
1281 10, /* bitpos */
1282 complain_overflow_unsigned, /* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1285 FALSE, /* partial_inplace */
1286 0x3ffc00, /* src_mask */
1287 0x3ffc00, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1291 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1292 3, /* rightshift */
1293 2, /* size (0 = byte, 1 = short, 2 = long) */
1294 9, /* bitsize */
1295 FALSE, /* pc_relative */
1296 10, /* bitpos */
1297 complain_overflow_dont, /* complain_on_overflow */
1298 bfd_elf_generic_reloc, /* special_function */
1299 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1300 FALSE, /* partial_inplace */
1301 0x7fc00, /* src_mask */
1302 0x7fc00, /* dst_mask */
1303 FALSE), /* pcrel_offset */
1304
1305 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1306 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1307 0, /* rightshift */
1308 2, /* size (0 = byte, 1 = short, 2 = long) */
1309 12, /* bitsize */
1310 FALSE, /* pc_relative */
1311 10, /* bitpos */
1312 complain_overflow_unsigned, /* complain_on_overflow */
1313 bfd_elf_generic_reloc, /* special_function */
1314 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1315 FALSE, /* partial_inplace */
1316 0x3ffc00, /* src_mask */
1317 0x3ffc00, /* dst_mask */
1318 FALSE), /* pcrel_offset */
1319
1320 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1321 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 12, /* bitsize */
1325 FALSE, /* pc_relative */
1326 10, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1330 FALSE, /* partial_inplace */
1331 0x3ffc00, /* src_mask */
1332 0x3ffc00, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1336 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_unsigned, /* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1345 FALSE, /* partial_inplace */
1346 0xffff, /* src_mask */
1347 0xffff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1351 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1352 0, /* rightshift */
1353 2, /* size (0 = byte, 1 = short, 2 = long) */
1354 16, /* bitsize */
1355 FALSE, /* pc_relative */
1356 0, /* bitpos */
1357 complain_overflow_dont, /* complain_on_overflow */
1358 bfd_elf_generic_reloc, /* special_function */
1359 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1360 FALSE, /* partial_inplace */
1361 0xffff, /* src_mask */
1362 0xffff, /* dst_mask */
1363 FALSE), /* pcrel_offset */
1364
1365 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1366 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1367 16, /* rightshift */
1368 2, /* size (0 = byte, 1 = short, 2 = long) */
1369 16, /* bitsize */
1370 FALSE, /* pc_relative */
1371 0, /* bitpos */
1372 complain_overflow_unsigned, /* complain_on_overflow */
1373 bfd_elf_generic_reloc, /* special_function */
1374 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1375 FALSE, /* partial_inplace */
1376 0xffff, /* src_mask */
1377 0xffff, /* dst_mask */
1378 FALSE), /* pcrel_offset */
1379
1380 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1381 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1382 16, /* rightshift */
1383 2, /* size (0 = byte, 1 = short, 2 = long) */
1384 16, /* bitsize */
1385 FALSE, /* pc_relative */
1386 0, /* bitpos */
1387 complain_overflow_dont, /* complain_on_overflow */
1388 bfd_elf_generic_reloc, /* special_function */
1389 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1390 FALSE, /* partial_inplace */
1391 0xffff, /* src_mask */
1392 0xffff, /* dst_mask */
1393 FALSE), /* pcrel_offset */
1394
1395 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1396 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1397 32, /* rightshift */
1398 2, /* size (0 = byte, 1 = short, 2 = long) */
1399 16, /* bitsize */
1400 FALSE, /* pc_relative */
1401 0, /* bitpos */
1402 complain_overflow_unsigned, /* complain_on_overflow */
1403 bfd_elf_generic_reloc, /* special_function */
1404 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1405 FALSE, /* partial_inplace */
1406 0xffff, /* src_mask */
1407 0xffff, /* dst_mask */
1408 FALSE), /* pcrel_offset */
1409
1410 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1411 32, /* rightshift */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1413 16, /* bitsize */
1414 FALSE, /* pc_relative */
1415 0, /* bitpos */
1416 complain_overflow_unsigned, /* complain_on_overflow */
1417 bfd_elf_generic_reloc, /* special_function */
1418 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1419 FALSE, /* partial_inplace */
1420 0xffff, /* src_mask */
1421 0xffff, /* dst_mask */
1422 FALSE), /* pcrel_offset */
1423
1424 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1425 16, /* rightshift */
1426 2, /* size (0 = byte, 1 = short, 2 = long) */
1427 16, /* bitsize */
1428 FALSE, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_dont, /* complain_on_overflow */
1431 bfd_elf_generic_reloc, /* special_function */
1432 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1433 FALSE, /* partial_inplace */
1434 0xffff, /* src_mask */
1435 0xffff, /* dst_mask */
1436 FALSE), /* pcrel_offset */
1437
1438 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1439 16, /* rightshift */
1440 2, /* size (0 = byte, 1 = short, 2 = long) */
1441 16, /* bitsize */
1442 FALSE, /* pc_relative */
1443 0, /* bitpos */
1444 complain_overflow_dont, /* complain_on_overflow */
1445 bfd_elf_generic_reloc, /* special_function */
1446 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1447 FALSE, /* partial_inplace */
1448 0xffff, /* src_mask */
1449 0xffff, /* dst_mask */
1450 FALSE), /* pcrel_offset */
1451
1452 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1453 0, /* rightshift */
1454 2, /* size (0 = byte, 1 = short, 2 = long) */
1455 16, /* bitsize */
1456 FALSE, /* pc_relative */
1457 0, /* bitpos */
1458 complain_overflow_dont, /* complain_on_overflow */
1459 bfd_elf_generic_reloc, /* special_function */
1460 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1461 FALSE, /* partial_inplace */
1462 0xffff, /* src_mask */
1463 0xffff, /* dst_mask */
1464 FALSE), /* pcrel_offset */
1465
1466 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1467 0, /* rightshift */
1468 2, /* size (0 = byte, 1 = short, 2 = long) */
1469 16, /* bitsize */
1470 FALSE, /* pc_relative */
1471 0, /* bitpos */
1472 complain_overflow_dont, /* complain_on_overflow */
1473 bfd_elf_generic_reloc, /* special_function */
1474 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1475 FALSE, /* partial_inplace */
1476 0xffff, /* src_mask */
1477 0xffff, /* dst_mask */
1478 FALSE), /* pcrel_offset */
1479
1480 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1481 12, /* rightshift */
1482 2, /* size (0 = byte, 1 = short, 2 = long) */
1483 12, /* bitsize */
1484 FALSE, /* pc_relative */
1485 0, /* bitpos */
1486 complain_overflow_unsigned, /* complain_on_overflow */
1487 bfd_elf_generic_reloc, /* special_function */
1488 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1489 FALSE, /* partial_inplace */
1490 0xfff, /* src_mask */
1491 0xfff, /* dst_mask */
1492 FALSE), /* pcrel_offset */
1493
1494 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1495 0, /* rightshift */
1496 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 12, /* bitsize */
1498 FALSE, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_unsigned, /* complain_on_overflow */
1501 bfd_elf_generic_reloc, /* special_function */
1502 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1503 FALSE, /* partial_inplace */
1504 0xfff, /* src_mask */
1505 0xfff, /* dst_mask */
1506 FALSE), /* pcrel_offset */
1507
1508 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1509 0, /* rightshift */
1510 2, /* size (0 = byte, 1 = short, 2 = long) */
1511 12, /* bitsize */
1512 FALSE, /* pc_relative */
1513 0, /* bitpos */
1514 complain_overflow_dont, /* complain_on_overflow */
1515 bfd_elf_generic_reloc, /* special_function */
1516 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1517 FALSE, /* partial_inplace */
1518 0xfff, /* src_mask */
1519 0xfff, /* dst_mask */
1520 FALSE), /* pcrel_offset */
1521
1522 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1523 2, /* rightshift */
1524 2, /* size (0 = byte, 1 = short, 2 = long) */
1525 19, /* bitsize */
1526 TRUE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 bfd_elf_generic_reloc, /* special_function */
1530 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1531 FALSE, /* partial_inplace */
1532 0x0ffffe0, /* src_mask */
1533 0x0ffffe0, /* dst_mask */
1534 TRUE), /* pcrel_offset */
1535
1536 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1537 0, /* rightshift */
1538 2, /* size (0 = byte, 1 = short, 2 = long) */
1539 21, /* bitsize */
1540 TRUE, /* pc_relative */
1541 0, /* bitpos */
1542 complain_overflow_dont, /* complain_on_overflow */
1543 bfd_elf_generic_reloc, /* special_function */
1544 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1545 FALSE, /* partial_inplace */
1546 0x1fffff, /* src_mask */
1547 0x1fffff, /* dst_mask */
1548 TRUE), /* pcrel_offset */
1549
1550 /* Get to the page for the GOT entry for the symbol
1551 (G(S) - P) using an ADRP instruction. */
1552 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1553 12, /* rightshift */
1554 2, /* size (0 = byte, 1 = short, 2 = long) */
1555 21, /* bitsize */
1556 TRUE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 bfd_elf_generic_reloc, /* special_function */
1560 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1561 FALSE, /* partial_inplace */
1562 0x1fffff, /* src_mask */
1563 0x1fffff, /* dst_mask */
1564 TRUE), /* pcrel_offset */
1565
1566 /* LD64: GOT offset G(S) & 0xff8. */
1567 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1568 3, /* rightshift */
1569 2, /* size (0 = byte, 1 = short, 2 = long) */
1570 12, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 bfd_elf_generic_reloc, /* special_function */
1575 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1576 FALSE, /* partial_inplace */
1577 0xff8, /* src_mask */
1578 0xff8, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* LD32: GOT offset G(S) & 0xffc. */
1582 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1583 2, /* rightshift */
1584 2, /* size (0 = byte, 1 = short, 2 = long) */
1585 12, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 bfd_elf_generic_reloc, /* special_function */
1590 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1591 FALSE, /* partial_inplace */
1592 0xffc, /* src_mask */
1593 0xffc, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* ADD: GOT offset G(S) & 0xfff. */
1597 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1598 0, /* rightshift */
1599 2, /* size (0 = byte, 1 = short, 2 = long) */
1600 12, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 bfd_elf_generic_reloc, /* special_function */
1605 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1606 FALSE, /* partial_inplace */
1607 0xfff, /* src_mask */
1608 0xfff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1612 16, /* rightshift */
1613 2, /* size (0 = byte, 1 = short, 2 = long) */
1614 12, /* bitsize */
1615 FALSE, /* pc_relative */
1616 0, /* bitpos */
1617 complain_overflow_dont, /* complain_on_overflow */
1618 bfd_elf_generic_reloc, /* special_function */
1619 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1620 FALSE, /* partial_inplace */
1621 0xffff, /* src_mask */
1622 0xffff, /* dst_mask */
1623 FALSE), /* pcrel_offset */
1624
1625 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1626 0, /* rightshift */
1627 2, /* size (0 = byte, 1 = short, 2 = long) */
1628 12, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 bfd_elf_generic_reloc, /* special_function */
1633 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1634 FALSE, /* partial_inplace */
1635 0xffff, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1640 0, /* rightshift */
1641 2, /* size (0 = byte, 1 = short, 2 = long) */
1642 12, /* bitsize */
1643 FALSE, /* pc_relative */
1644 0, /* bitpos */
1645 complain_overflow_dont, /* complain_on_overflow */
1646 bfd_elf_generic_reloc, /* special_function */
1647 AARCH64_R_STR (TLSDESC_LDR), /* name */
1648 FALSE, /* partial_inplace */
1649 0x0, /* src_mask */
1650 0x0, /* dst_mask */
1651 FALSE), /* pcrel_offset */
1652
1653 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1654 0, /* rightshift */
1655 2, /* size (0 = byte, 1 = short, 2 = long) */
1656 12, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_dont, /* complain_on_overflow */
1660 bfd_elf_generic_reloc, /* special_function */
1661 AARCH64_R_STR (TLSDESC_ADD), /* name */
1662 FALSE, /* partial_inplace */
1663 0x0, /* src_mask */
1664 0x0, /* dst_mask */
1665 FALSE), /* pcrel_offset */
1666
1667 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1668 0, /* rightshift */
1669 2, /* size (0 = byte, 1 = short, 2 = long) */
1670 0, /* bitsize */
1671 FALSE, /* pc_relative */
1672 0, /* bitpos */
1673 complain_overflow_dont, /* complain_on_overflow */
1674 bfd_elf_generic_reloc, /* special_function */
1675 AARCH64_R_STR (TLSDESC_CALL), /* name */
1676 FALSE, /* partial_inplace */
1677 0x0, /* src_mask */
1678 0x0, /* dst_mask */
1679 FALSE), /* pcrel_offset */
1680
1681 HOWTO (AARCH64_R (COPY), /* type */
1682 0, /* rightshift */
1683 2, /* size (0 = byte, 1 = short, 2 = long) */
1684 64, /* bitsize */
1685 FALSE, /* pc_relative */
1686 0, /* bitpos */
1687 complain_overflow_bitfield, /* complain_on_overflow */
1688 bfd_elf_generic_reloc, /* special_function */
1689 AARCH64_R_STR (COPY), /* name */
1690 TRUE, /* partial_inplace */
1691 0xffffffff, /* src_mask */
1692 0xffffffff, /* dst_mask */
1693 FALSE), /* pcrel_offset */
1694
1695 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1696 0, /* rightshift */
1697 2, /* size (0 = byte, 1 = short, 2 = long) */
1698 64, /* bitsize */
1699 FALSE, /* pc_relative */
1700 0, /* bitpos */
1701 complain_overflow_bitfield, /* complain_on_overflow */
1702 bfd_elf_generic_reloc, /* special_function */
1703 AARCH64_R_STR (GLOB_DAT), /* name */
1704 TRUE, /* partial_inplace */
1705 0xffffffff, /* src_mask */
1706 0xffffffff, /* dst_mask */
1707 FALSE), /* pcrel_offset */
1708
1709 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1710 0, /* rightshift */
1711 2, /* size (0 = byte, 1 = short, 2 = long) */
1712 64, /* bitsize */
1713 FALSE, /* pc_relative */
1714 0, /* bitpos */
1715 complain_overflow_bitfield, /* complain_on_overflow */
1716 bfd_elf_generic_reloc, /* special_function */
1717 AARCH64_R_STR (JUMP_SLOT), /* name */
1718 TRUE, /* partial_inplace */
1719 0xffffffff, /* src_mask */
1720 0xffffffff, /* dst_mask */
1721 FALSE), /* pcrel_offset */
1722
1723 HOWTO (AARCH64_R (RELATIVE), /* type */
1724 0, /* rightshift */
1725 2, /* size (0 = byte, 1 = short, 2 = long) */
1726 64, /* bitsize */
1727 FALSE, /* pc_relative */
1728 0, /* bitpos */
1729 complain_overflow_bitfield, /* complain_on_overflow */
1730 bfd_elf_generic_reloc, /* special_function */
1731 AARCH64_R_STR (RELATIVE), /* name */
1732 TRUE, /* partial_inplace */
1733 ALL_ONES, /* src_mask */
1734 ALL_ONES, /* dst_mask */
1735 FALSE), /* pcrel_offset */
1736
1737 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1738 0, /* rightshift */
1739 2, /* size (0 = byte, 1 = short, 2 = long) */
1740 64, /* bitsize */
1741 FALSE, /* pc_relative */
1742 0, /* bitpos */
1743 complain_overflow_dont, /* complain_on_overflow */
1744 bfd_elf_generic_reloc, /* special_function */
1745 #if ARCH_SIZE == 64
1746 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1747 #else
1748 AARCH64_R_STR (TLS_DTPMOD), /* name */
1749 #endif
1750 FALSE, /* partial_inplace */
1751 0, /* src_mask */
1752 ALL_ONES, /* dst_mask */
1753 FALSE), /* pc_reloffset */
1754
1755 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1756 0, /* rightshift */
1757 2, /* size (0 = byte, 1 = short, 2 = long) */
1758 64, /* bitsize */
1759 FALSE, /* pc_relative */
1760 0, /* bitpos */
1761 complain_overflow_dont, /* complain_on_overflow */
1762 bfd_elf_generic_reloc, /* special_function */
1763 #if ARCH_SIZE == 64
1764 AARCH64_R_STR (TLS_DTPREL64), /* name */
1765 #else
1766 AARCH64_R_STR (TLS_DTPREL), /* name */
1767 #endif
1768 FALSE, /* partial_inplace */
1769 0, /* src_mask */
1770 ALL_ONES, /* dst_mask */
1771 FALSE), /* pcrel_offset */
1772
1773 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1774 0, /* rightshift */
1775 2, /* size (0 = byte, 1 = short, 2 = long) */
1776 64, /* bitsize */
1777 FALSE, /* pc_relative */
1778 0, /* bitpos */
1779 complain_overflow_dont, /* complain_on_overflow */
1780 bfd_elf_generic_reloc, /* special_function */
1781 #if ARCH_SIZE == 64
1782 AARCH64_R_STR (TLS_TPREL64), /* name */
1783 #else
1784 AARCH64_R_STR (TLS_TPREL), /* name */
1785 #endif
1786 FALSE, /* partial_inplace */
1787 0, /* src_mask */
1788 ALL_ONES, /* dst_mask */
1789 FALSE), /* pcrel_offset */
1790
1791 HOWTO (AARCH64_R (TLSDESC), /* type */
1792 0, /* rightshift */
1793 2, /* size (0 = byte, 1 = short, 2 = long) */
1794 64, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 bfd_elf_generic_reloc, /* special_function */
1799 AARCH64_R_STR (TLSDESC), /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 ALL_ONES, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 HOWTO (AARCH64_R (IRELATIVE), /* type */
1806 0, /* rightshift */
1807 2, /* size (0 = byte, 1 = short, 2 = long) */
1808 64, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_bitfield, /* complain_on_overflow */
1812 bfd_elf_generic_reloc, /* special_function */
1813 AARCH64_R_STR (IRELATIVE), /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 ALL_ONES, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818
1819 EMPTY_HOWTO (0),
1820 };
1821
1822 static reloc_howto_type elfNN_aarch64_howto_none =
1823 HOWTO (R_AARCH64_NONE, /* type */
1824 0, /* rightshift */
1825 3, /* size (0 = byte, 1 = short, 2 = long) */
1826 0, /* bitsize */
1827 FALSE, /* pc_relative */
1828 0, /* bitpos */
1829 complain_overflow_dont,/* complain_on_overflow */
1830 bfd_elf_generic_reloc, /* special_function */
1831 "R_AARCH64_NONE", /* name */
1832 FALSE, /* partial_inplace */
1833 0, /* src_mask */
1834 0, /* dst_mask */
1835 FALSE); /* pcrel_offset */
1836
1837 /* Given HOWTO, return the bfd internal relocation enumerator. */
1838
1839 static bfd_reloc_code_real_type
1840 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1841 {
1842 const int size
1843 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1844 const ptrdiff_t offset
1845 = howto - elfNN_aarch64_howto_table;
1846
1847 if (offset > 0 && offset < size - 1)
1848 return BFD_RELOC_AARCH64_RELOC_START + offset;
1849
1850 if (howto == &elfNN_aarch64_howto_none)
1851 return BFD_RELOC_AARCH64_NONE;
1852
1853 return BFD_RELOC_AARCH64_RELOC_START;
1854 }
1855
1856 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1857
1858 static bfd_reloc_code_real_type
1859 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1860 {
1861 static bfd_boolean initialized_p = FALSE;
1862 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1863 static unsigned int offsets[R_AARCH64_end];
1864
1865 if (initialized_p == FALSE)
1866 {
1867 unsigned int i;
1868
1869 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1870 if (elfNN_aarch64_howto_table[i].type != 0)
1871 offsets[elfNN_aarch64_howto_table[i].type] = i;
1872
1873 initialized_p = TRUE;
1874 }
1875
1876 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1877 return BFD_RELOC_AARCH64_NONE;
1878
1879 /* PR 17512: file: b371e70a. */
1880 if (r_type >= R_AARCH64_end)
1881 {
1882 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1883 bfd_set_error (bfd_error_bad_value);
1884 return BFD_RELOC_AARCH64_NONE;
1885 }
1886
1887 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1888 }
1889
1890 struct elf_aarch64_reloc_map
1891 {
1892 bfd_reloc_code_real_type from;
1893 bfd_reloc_code_real_type to;
1894 };
1895
1896 /* Map bfd generic reloc to AArch64-specific reloc. */
1897 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1898 {
1899 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1900
1901 /* Basic data relocations. */
1902 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1903 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1904 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1905 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1906 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1907 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1908 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1909 };
1910
1911 /* Given the bfd internal relocation enumerator in CODE, return the
1912 corresponding howto entry. */
1913
1914 static reloc_howto_type *
1915 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1916 {
1917 unsigned int i;
1918
1919 /* Convert bfd generic reloc to AArch64-specific reloc. */
1920 if (code < BFD_RELOC_AARCH64_RELOC_START
1921 || code > BFD_RELOC_AARCH64_RELOC_END)
1922 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1923 if (elf_aarch64_reloc_map[i].from == code)
1924 {
1925 code = elf_aarch64_reloc_map[i].to;
1926 break;
1927 }
1928
1929 if (code > BFD_RELOC_AARCH64_RELOC_START
1930 && code < BFD_RELOC_AARCH64_RELOC_END)
1931 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1932 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1933
1934 if (code == BFD_RELOC_AARCH64_NONE)
1935 return &elfNN_aarch64_howto_none;
1936
1937 return NULL;
1938 }
1939
1940 static reloc_howto_type *
1941 elfNN_aarch64_howto_from_type (unsigned int r_type)
1942 {
1943 bfd_reloc_code_real_type val;
1944 reloc_howto_type *howto;
1945
1946 #if ARCH_SIZE == 32
1947 if (r_type > 256)
1948 {
1949 bfd_set_error (bfd_error_bad_value);
1950 return NULL;
1951 }
1952 #endif
1953
1954 if (r_type == R_AARCH64_NONE)
1955 return &elfNN_aarch64_howto_none;
1956
1957 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1958 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1959
1960 if (howto != NULL)
1961 return howto;
1962
1963 bfd_set_error (bfd_error_bad_value);
1964 return NULL;
1965 }
1966
1967 static void
1968 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1969 Elf_Internal_Rela *elf_reloc)
1970 {
1971 unsigned int r_type;
1972
1973 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1974 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1975 }
1976
1977 static reloc_howto_type *
1978 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1979 bfd_reloc_code_real_type code)
1980 {
1981 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1982
1983 if (howto != NULL)
1984 return howto;
1985
1986 bfd_set_error (bfd_error_bad_value);
1987 return NULL;
1988 }
1989
1990 static reloc_howto_type *
1991 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1992 const char *r_name)
1993 {
1994 unsigned int i;
1995
1996 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1997 if (elfNN_aarch64_howto_table[i].name != NULL
1998 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1999 return &elfNN_aarch64_howto_table[i];
2000
2001 return NULL;
2002 }
2003
2004 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2005 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2006 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2007 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2008
2009 /* The linker script knows the section names for placement.
2010 The entry_names are used to do simple name mangling on the stubs.
2011 Given a function name, and its type, the stub can be found. The
2012 name can be changed. The only requirement is the %s be present. */
2013 #define STUB_ENTRY_NAME "__%s_veneer"
2014
2015 /* The name of the dynamic interpreter. This is put in the .interp
2016 section. */
2017 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2018
2019 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2020 (((1 << 25) - 1) << 2)
2021 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2022 (-((1 << 25) << 2))
2023
2024 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2025 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2026
2027 static int
2028 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2029 {
2030 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2031 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2032 }
2033
2034 static int
2035 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2036 {
2037 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2038 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2039 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2040 }
2041
2042 static const uint32_t aarch64_adrp_branch_stub [] =
2043 {
2044 0x90000010, /* adrp ip0, X */
2045 /* R_AARCH64_ADR_HI21_PCREL(X) */
2046 0x91000210, /* add ip0, ip0, :lo12:X */
2047 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2048 0xd61f0200, /* br ip0 */
2049 };
2050
2051 static const uint32_t aarch64_long_branch_stub[] =
2052 {
2053 #if ARCH_SIZE == 64
2054 0x58000090, /* ldr ip0, 1f */
2055 #else
2056 0x18000090, /* ldr wip0, 1f */
2057 #endif
2058 0x10000011, /* adr ip1, #0 */
2059 0x8b110210, /* add ip0, ip0, ip1 */
2060 0xd61f0200, /* br ip0 */
2061 0x00000000, /* 1: .xword or .word
2062 R_AARCH64_PRELNN(X) + 12
2063 */
2064 0x00000000,
2065 };
2066
2067 static const uint32_t aarch64_erratum_835769_stub[] =
2068 {
2069 0x00000000, /* Placeholder for multiply accumulate. */
2070 0x14000000, /* b <label> */
2071 };
2072
2073 static const uint32_t aarch64_erratum_843419_stub[] =
2074 {
2075 0x00000000, /* Placeholder for LDR instruction. */
2076 0x14000000, /* b <label> */
2077 };
2078
2079 /* Section name for stubs is the associated section name plus this
2080 string. */
2081 #define STUB_SUFFIX ".stub"
2082
2083 enum elf_aarch64_stub_type
2084 {
2085 aarch64_stub_none,
2086 aarch64_stub_adrp_branch,
2087 aarch64_stub_long_branch,
2088 aarch64_stub_erratum_835769_veneer,
2089 aarch64_stub_erratum_843419_veneer,
2090 };
2091
2092 struct elf_aarch64_stub_hash_entry
2093 {
2094 /* Base hash table entry structure. */
2095 struct bfd_hash_entry root;
2096
2097 /* The stub section. */
2098 asection *stub_sec;
2099
2100 /* Offset within stub_sec of the beginning of this stub. */
2101 bfd_vma stub_offset;
2102
2103 /* Given the symbol's value and its section we can determine its final
2104 value when building the stubs (so the stub knows where to jump). */
2105 bfd_vma target_value;
2106 asection *target_section;
2107
2108 enum elf_aarch64_stub_type stub_type;
2109
2110 /* The symbol table entry, if any, that this was derived from. */
2111 struct elf_aarch64_link_hash_entry *h;
2112
2113 /* Destination symbol type */
2114 unsigned char st_type;
2115
2116 /* Where this stub is being called from, or, in the case of combined
2117 stub sections, the first input section in the group. */
2118 asection *id_sec;
2119
2120 /* The name for the local symbol at the start of this stub. The
2121 stub name in the hash table has to be unique; this does not, so
2122 it can be friendlier. */
2123 char *output_name;
2124
2125 /* The instruction which caused this stub to be generated (only valid for
2126 erratum 835769 workaround stubs at present). */
2127 uint32_t veneered_insn;
2128
2129 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2130 bfd_vma adrp_offset;
2131 };
2132
2133 /* Used to build a map of a section. This is required for mixed-endian
2134 code/data. */
2135
2136 typedef struct elf_elf_section_map
2137 {
2138 bfd_vma vma;
2139 char type;
2140 }
2141 elf_aarch64_section_map;
2142
2143
2144 typedef struct _aarch64_elf_section_data
2145 {
2146 struct bfd_elf_section_data elf;
2147 unsigned int mapcount;
2148 unsigned int mapsize;
2149 elf_aarch64_section_map *map;
2150 }
2151 _aarch64_elf_section_data;
2152
2153 #define elf_aarch64_section_data(sec) \
2154 ((_aarch64_elf_section_data *) elf_section_data (sec))
2155
2156 /* The size of the thread control block which is defined to be two pointers. */
2157 #define TCB_SIZE (ARCH_SIZE/8)*2
2158
2159 struct elf_aarch64_local_symbol
2160 {
2161 unsigned int got_type;
2162 bfd_signed_vma got_refcount;
2163 bfd_vma got_offset;
2164
2165 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2166 offset is from the end of the jump table and reserved entries
2167 within the PLTGOT.
2168
2169 The magic value (bfd_vma) -1 indicates that an offset has not be
2170 allocated. */
2171 bfd_vma tlsdesc_got_jump_table_offset;
2172 };
2173
2174 struct elf_aarch64_obj_tdata
2175 {
2176 struct elf_obj_tdata root;
2177
2178 /* local symbol descriptors */
2179 struct elf_aarch64_local_symbol *locals;
2180
2181 /* Zero to warn when linking objects with incompatible enum sizes. */
2182 int no_enum_size_warning;
2183
2184 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2185 int no_wchar_size_warning;
2186 };
2187
2188 #define elf_aarch64_tdata(bfd) \
2189 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2190
2191 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2192
2193 #define is_aarch64_elf(bfd) \
2194 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2195 && elf_tdata (bfd) != NULL \
2196 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2197
2198 static bfd_boolean
2199 elfNN_aarch64_mkobject (bfd *abfd)
2200 {
2201 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2202 AARCH64_ELF_DATA);
2203 }
2204
2205 #define elf_aarch64_hash_entry(ent) \
2206 ((struct elf_aarch64_link_hash_entry *)(ent))
2207
2208 #define GOT_UNKNOWN 0
2209 #define GOT_NORMAL 1
2210 #define GOT_TLS_GD 2
2211 #define GOT_TLS_IE 4
2212 #define GOT_TLSDESC_GD 8
2213
2214 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2215
2216 /* AArch64 ELF linker hash entry. */
2217 struct elf_aarch64_link_hash_entry
2218 {
2219 struct elf_link_hash_entry root;
2220
2221 /* Track dynamic relocs copied for this symbol. */
2222 struct elf_dyn_relocs *dyn_relocs;
2223
2224 /* Since PLT entries have variable size, we need to record the
2225 index into .got.plt instead of recomputing it from the PLT
2226 offset. */
2227 bfd_signed_vma plt_got_offset;
2228
2229 /* Bit mask representing the type of GOT entry(s) if any required by
2230 this symbol. */
2231 unsigned int got_type;
2232
2233 /* A pointer to the most recently used stub hash entry against this
2234 symbol. */
2235 struct elf_aarch64_stub_hash_entry *stub_cache;
2236
2237 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2238 is from the end of the jump table and reserved entries within the PLTGOT.
2239
2240 The magic value (bfd_vma) -1 indicates that an offset has not
2241 be allocated. */
2242 bfd_vma tlsdesc_got_jump_table_offset;
2243 };
2244
2245 static unsigned int
2246 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2247 bfd *abfd,
2248 unsigned long r_symndx)
2249 {
2250 if (h)
2251 return elf_aarch64_hash_entry (h)->got_type;
2252
2253 if (! elf_aarch64_locals (abfd))
2254 return GOT_UNKNOWN;
2255
2256 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2257 }
2258
2259 /* Get the AArch64 elf linker hash table from a link_info structure. */
2260 #define elf_aarch64_hash_table(info) \
2261 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2262
2263 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2264 ((struct elf_aarch64_stub_hash_entry *) \
2265 bfd_hash_lookup ((table), (string), (create), (copy)))
2266
2267 /* AArch64 ELF linker hash table. */
2268 struct elf_aarch64_link_hash_table
2269 {
2270 /* The main hash table. */
2271 struct elf_link_hash_table root;
2272
2273 /* Nonzero to force PIC branch veneers. */
2274 int pic_veneer;
2275
2276 /* Fix erratum 835769. */
2277 int fix_erratum_835769;
2278
2279 /* Fix erratum 843419. */
2280 int fix_erratum_843419;
2281
2282 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2283 int fix_erratum_843419_adr;
2284
2285 /* The number of bytes in the initial entry in the PLT. */
2286 bfd_size_type plt_header_size;
2287
2288 /* The number of bytes in the subsequent PLT etries. */
2289 bfd_size_type plt_entry_size;
2290
2291 /* Short-cuts to get to dynamic linker sections. */
2292 asection *sdynbss;
2293 asection *srelbss;
2294
2295 /* Small local sym cache. */
2296 struct sym_cache sym_cache;
2297
2298 /* For convenience in allocate_dynrelocs. */
2299 bfd *obfd;
2300
2301 /* The amount of space used by the reserved portion of the sgotplt
2302 section, plus whatever space is used by the jump slots. */
2303 bfd_vma sgotplt_jump_table_size;
2304
2305 /* The stub hash table. */
2306 struct bfd_hash_table stub_hash_table;
2307
2308 /* Linker stub bfd. */
2309 bfd *stub_bfd;
2310
2311 /* Linker call-backs. */
2312 asection *(*add_stub_section) (const char *, asection *);
2313 void (*layout_sections_again) (void);
2314
2315 /* Array to keep track of which stub sections have been created, and
2316 information on stub grouping. */
2317 struct map_stub
2318 {
2319 /* This is the section to which stubs in the group will be
2320 attached. */
2321 asection *link_sec;
2322 /* The stub section. */
2323 asection *stub_sec;
2324 } *stub_group;
2325
2326 /* Assorted information used by elfNN_aarch64_size_stubs. */
2327 unsigned int bfd_count;
2328 unsigned int top_index;
2329 asection **input_list;
2330
2331 /* The offset into splt of the PLT entry for the TLS descriptor
2332 resolver. Special values are 0, if not necessary (or not found
2333 to be necessary yet), and -1 if needed but not determined
2334 yet. */
2335 bfd_vma tlsdesc_plt;
2336
2337 /* The GOT offset for the lazy trampoline. Communicated to the
2338 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2339 indicates an offset is not allocated. */
2340 bfd_vma dt_tlsdesc_got;
2341
2342 /* Used by local STT_GNU_IFUNC symbols. */
2343 htab_t loc_hash_table;
2344 void * loc_hash_memory;
2345 };
2346
2347 /* Create an entry in an AArch64 ELF linker hash table. */
2348
2349 static struct bfd_hash_entry *
2350 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2351 struct bfd_hash_table *table,
2352 const char *string)
2353 {
2354 struct elf_aarch64_link_hash_entry *ret =
2355 (struct elf_aarch64_link_hash_entry *) entry;
2356
2357 /* Allocate the structure if it has not already been allocated by a
2358 subclass. */
2359 if (ret == NULL)
2360 ret = bfd_hash_allocate (table,
2361 sizeof (struct elf_aarch64_link_hash_entry));
2362 if (ret == NULL)
2363 return (struct bfd_hash_entry *) ret;
2364
2365 /* Call the allocation method of the superclass. */
2366 ret = ((struct elf_aarch64_link_hash_entry *)
2367 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2368 table, string));
2369 if (ret != NULL)
2370 {
2371 ret->dyn_relocs = NULL;
2372 ret->got_type = GOT_UNKNOWN;
2373 ret->plt_got_offset = (bfd_vma) - 1;
2374 ret->stub_cache = NULL;
2375 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2376 }
2377
2378 return (struct bfd_hash_entry *) ret;
2379 }
2380
2381 /* Initialize an entry in the stub hash table. */
2382
2383 static struct bfd_hash_entry *
2384 stub_hash_newfunc (struct bfd_hash_entry *entry,
2385 struct bfd_hash_table *table, const char *string)
2386 {
2387 /* Allocate the structure if it has not already been allocated by a
2388 subclass. */
2389 if (entry == NULL)
2390 {
2391 entry = bfd_hash_allocate (table,
2392 sizeof (struct
2393 elf_aarch64_stub_hash_entry));
2394 if (entry == NULL)
2395 return entry;
2396 }
2397
2398 /* Call the allocation method of the superclass. */
2399 entry = bfd_hash_newfunc (entry, table, string);
2400 if (entry != NULL)
2401 {
2402 struct elf_aarch64_stub_hash_entry *eh;
2403
2404 /* Initialize the local fields. */
2405 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2406 eh->adrp_offset = 0;
2407 eh->stub_sec = NULL;
2408 eh->stub_offset = 0;
2409 eh->target_value = 0;
2410 eh->target_section = NULL;
2411 eh->stub_type = aarch64_stub_none;
2412 eh->h = NULL;
2413 eh->id_sec = NULL;
2414 }
2415
2416 return entry;
2417 }
2418
2419 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2420 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2421 as global symbol. We reuse indx and dynstr_index for local symbol
2422 hash since they aren't used by global symbols in this backend. */
2423
2424 static hashval_t
2425 elfNN_aarch64_local_htab_hash (const void *ptr)
2426 {
2427 struct elf_link_hash_entry *h
2428 = (struct elf_link_hash_entry *) ptr;
2429 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2430 }
2431
2432 /* Compare local hash entries. */
2433
2434 static int
2435 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2436 {
2437 struct elf_link_hash_entry *h1
2438 = (struct elf_link_hash_entry *) ptr1;
2439 struct elf_link_hash_entry *h2
2440 = (struct elf_link_hash_entry *) ptr2;
2441
2442 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2443 }
2444
2445 /* Find and/or create a hash entry for local symbol. */
2446
2447 static struct elf_link_hash_entry *
2448 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2449 bfd *abfd, const Elf_Internal_Rela *rel,
2450 bfd_boolean create)
2451 {
2452 struct elf_aarch64_link_hash_entry e, *ret;
2453 asection *sec = abfd->sections;
2454 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2455 ELFNN_R_SYM (rel->r_info));
2456 void **slot;
2457
2458 e.root.indx = sec->id;
2459 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2460 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2461 create ? INSERT : NO_INSERT);
2462
2463 if (!slot)
2464 return NULL;
2465
2466 if (*slot)
2467 {
2468 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2469 return &ret->root;
2470 }
2471
2472 ret = (struct elf_aarch64_link_hash_entry *)
2473 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2474 sizeof (struct elf_aarch64_link_hash_entry));
2475 if (ret)
2476 {
2477 memset (ret, 0, sizeof (*ret));
2478 ret->root.indx = sec->id;
2479 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2480 ret->root.dynindx = -1;
2481 *slot = ret;
2482 }
2483 return &ret->root;
2484 }
2485
2486 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2487
2488 static void
2489 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2490 struct elf_link_hash_entry *dir,
2491 struct elf_link_hash_entry *ind)
2492 {
2493 struct elf_aarch64_link_hash_entry *edir, *eind;
2494
2495 edir = (struct elf_aarch64_link_hash_entry *) dir;
2496 eind = (struct elf_aarch64_link_hash_entry *) ind;
2497
2498 if (eind->dyn_relocs != NULL)
2499 {
2500 if (edir->dyn_relocs != NULL)
2501 {
2502 struct elf_dyn_relocs **pp;
2503 struct elf_dyn_relocs *p;
2504
2505 /* Add reloc counts against the indirect sym to the direct sym
2506 list. Merge any entries against the same section. */
2507 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2508 {
2509 struct elf_dyn_relocs *q;
2510
2511 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2512 if (q->sec == p->sec)
2513 {
2514 q->pc_count += p->pc_count;
2515 q->count += p->count;
2516 *pp = p->next;
2517 break;
2518 }
2519 if (q == NULL)
2520 pp = &p->next;
2521 }
2522 *pp = edir->dyn_relocs;
2523 }
2524
2525 edir->dyn_relocs = eind->dyn_relocs;
2526 eind->dyn_relocs = NULL;
2527 }
2528
2529 if (ind->root.type == bfd_link_hash_indirect)
2530 {
2531 /* Copy over PLT info. */
2532 if (dir->got.refcount <= 0)
2533 {
2534 edir->got_type = eind->got_type;
2535 eind->got_type = GOT_UNKNOWN;
2536 }
2537 }
2538
2539 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2540 }
2541
2542 /* Destroy an AArch64 elf linker hash table. */
2543
2544 static void
2545 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2546 {
2547 struct elf_aarch64_link_hash_table *ret
2548 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2549
2550 if (ret->loc_hash_table)
2551 htab_delete (ret->loc_hash_table);
2552 if (ret->loc_hash_memory)
2553 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2554
2555 bfd_hash_table_free (&ret->stub_hash_table);
2556 _bfd_elf_link_hash_table_free (obfd);
2557 }
2558
2559 /* Create an AArch64 elf linker hash table. */
2560
2561 static struct bfd_link_hash_table *
2562 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2563 {
2564 struct elf_aarch64_link_hash_table *ret;
2565 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2566
2567 ret = bfd_zmalloc (amt);
2568 if (ret == NULL)
2569 return NULL;
2570
2571 if (!_bfd_elf_link_hash_table_init
2572 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2573 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2574 {
2575 free (ret);
2576 return NULL;
2577 }
2578
2579 ret->plt_header_size = PLT_ENTRY_SIZE;
2580 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2581 ret->obfd = abfd;
2582 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2583
2584 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2585 sizeof (struct elf_aarch64_stub_hash_entry)))
2586 {
2587 _bfd_elf_link_hash_table_free (abfd);
2588 return NULL;
2589 }
2590
2591 ret->loc_hash_table = htab_try_create (1024,
2592 elfNN_aarch64_local_htab_hash,
2593 elfNN_aarch64_local_htab_eq,
2594 NULL);
2595 ret->loc_hash_memory = objalloc_create ();
2596 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2597 {
2598 elfNN_aarch64_link_hash_table_free (abfd);
2599 return NULL;
2600 }
2601 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2602
2603 return &ret->root.root;
2604 }
2605
2606 static bfd_boolean
2607 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2608 bfd_vma offset, bfd_vma value)
2609 {
2610 reloc_howto_type *howto;
2611 bfd_vma place;
2612
2613 howto = elfNN_aarch64_howto_from_type (r_type);
2614 place = (input_section->output_section->vma + input_section->output_offset
2615 + offset);
2616
2617 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2618 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2619 return _bfd_aarch64_elf_put_addend (input_bfd,
2620 input_section->contents + offset, r_type,
2621 howto, value);
2622 }
2623
2624 static enum elf_aarch64_stub_type
2625 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2626 {
2627 if (aarch64_valid_for_adrp_p (value, place))
2628 return aarch64_stub_adrp_branch;
2629 return aarch64_stub_long_branch;
2630 }
2631
2632 /* Determine the type of stub needed, if any, for a call. */
2633
2634 static enum elf_aarch64_stub_type
2635 aarch64_type_of_stub (struct bfd_link_info *info,
2636 asection *input_sec,
2637 const Elf_Internal_Rela *rel,
2638 asection *sym_sec,
2639 unsigned char st_type,
2640 struct elf_aarch64_link_hash_entry *hash,
2641 bfd_vma destination)
2642 {
2643 bfd_vma location;
2644 bfd_signed_vma branch_offset;
2645 unsigned int r_type;
2646 struct elf_aarch64_link_hash_table *globals;
2647 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2648 bfd_boolean via_plt_p;
2649
2650 if (st_type != STT_FUNC
2651 && (sym_sec != bfd_abs_section_ptr))
2652 return stub_type;
2653
2654 globals = elf_aarch64_hash_table (info);
2655 via_plt_p = (globals->root.splt != NULL && hash != NULL
2656 && hash->root.plt.offset != (bfd_vma) - 1);
2657 /* Make sure call to plt stub can fit into the branch range. */
2658 if (via_plt_p)
2659 destination = (globals->root.splt->output_section->vma
2660 + globals->root.splt->output_offset
2661 + hash->root.plt.offset);
2662
2663 /* Determine where the call point is. */
2664 location = (input_sec->output_offset
2665 + input_sec->output_section->vma + rel->r_offset);
2666
2667 branch_offset = (bfd_signed_vma) (destination - location);
2668
2669 r_type = ELFNN_R_TYPE (rel->r_info);
2670
2671 /* We don't want to redirect any old unconditional jump in this way,
2672 only one which is being used for a sibcall, where it is
2673 acceptable for the IP0 and IP1 registers to be clobbered. */
2674 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2675 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2676 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2677 {
2678 stub_type = aarch64_stub_long_branch;
2679 }
2680
2681 return stub_type;
2682 }
2683
2684 /* Build a name for an entry in the stub hash table. */
2685
2686 static char *
2687 elfNN_aarch64_stub_name (const asection *input_section,
2688 const asection *sym_sec,
2689 const struct elf_aarch64_link_hash_entry *hash,
2690 const Elf_Internal_Rela *rel)
2691 {
2692 char *stub_name;
2693 bfd_size_type len;
2694
2695 if (hash)
2696 {
2697 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2698 stub_name = bfd_malloc (len);
2699 if (stub_name != NULL)
2700 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2701 (unsigned int) input_section->id,
2702 hash->root.root.root.string,
2703 rel->r_addend);
2704 }
2705 else
2706 {
2707 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2708 stub_name = bfd_malloc (len);
2709 if (stub_name != NULL)
2710 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2711 (unsigned int) input_section->id,
2712 (unsigned int) sym_sec->id,
2713 (unsigned int) ELFNN_R_SYM (rel->r_info),
2714 rel->r_addend);
2715 }
2716
2717 return stub_name;
2718 }
2719
2720 /* Look up an entry in the stub hash. Stub entries are cached because
2721 creating the stub name takes a bit of time. */
2722
2723 static struct elf_aarch64_stub_hash_entry *
2724 elfNN_aarch64_get_stub_entry (const asection *input_section,
2725 const asection *sym_sec,
2726 struct elf_link_hash_entry *hash,
2727 const Elf_Internal_Rela *rel,
2728 struct elf_aarch64_link_hash_table *htab)
2729 {
2730 struct elf_aarch64_stub_hash_entry *stub_entry;
2731 struct elf_aarch64_link_hash_entry *h =
2732 (struct elf_aarch64_link_hash_entry *) hash;
2733 const asection *id_sec;
2734
2735 if ((input_section->flags & SEC_CODE) == 0)
2736 return NULL;
2737
2738 /* If this input section is part of a group of sections sharing one
2739 stub section, then use the id of the first section in the group.
2740 Stub names need to include a section id, as there may well be
2741 more than one stub used to reach say, printf, and we need to
2742 distinguish between them. */
2743 id_sec = htab->stub_group[input_section->id].link_sec;
2744
2745 if (h != NULL && h->stub_cache != NULL
2746 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2747 {
2748 stub_entry = h->stub_cache;
2749 }
2750 else
2751 {
2752 char *stub_name;
2753
2754 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2755 if (stub_name == NULL)
2756 return NULL;
2757
2758 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2759 stub_name, FALSE, FALSE);
2760 if (h != NULL)
2761 h->stub_cache = stub_entry;
2762
2763 free (stub_name);
2764 }
2765
2766 return stub_entry;
2767 }
2768
2769
2770 /* Create a stub section. */
2771
2772 static asection *
2773 _bfd_aarch64_create_stub_section (asection *section,
2774 struct elf_aarch64_link_hash_table *htab)
2775 {
2776 size_t namelen;
2777 bfd_size_type len;
2778 char *s_name;
2779
2780 namelen = strlen (section->name);
2781 len = namelen + sizeof (STUB_SUFFIX);
2782 s_name = bfd_alloc (htab->stub_bfd, len);
2783 if (s_name == NULL)
2784 return NULL;
2785
2786 memcpy (s_name, section->name, namelen);
2787 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2788 return (*htab->add_stub_section) (s_name, section);
2789 }
2790
2791
2792 /* Find or create a stub section for a link section.
2793
2794 Fix or create the stub section used to collect stubs attached to
2795 the specified link section. */
2796
2797 static asection *
2798 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2799 struct elf_aarch64_link_hash_table *htab)
2800 {
2801 if (htab->stub_group[link_section->id].stub_sec == NULL)
2802 htab->stub_group[link_section->id].stub_sec
2803 = _bfd_aarch64_create_stub_section (link_section, htab);
2804 return htab->stub_group[link_section->id].stub_sec;
2805 }
2806
2807
2808 /* Find or create a stub section in the stub group for an input
2809 section. */
2810
2811 static asection *
2812 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2813 struct elf_aarch64_link_hash_table *htab)
2814 {
2815 asection *link_sec = htab->stub_group[section->id].link_sec;
2816 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2817 }
2818
2819
2820 /* Add a new stub entry in the stub group associated with an input
2821 section to the stub hash. Not all fields of the new stub entry are
2822 initialised. */
2823
2824 static struct elf_aarch64_stub_hash_entry *
2825 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2826 asection *section,
2827 struct elf_aarch64_link_hash_table *htab)
2828 {
2829 asection *link_sec;
2830 asection *stub_sec;
2831 struct elf_aarch64_stub_hash_entry *stub_entry;
2832
2833 link_sec = htab->stub_group[section->id].link_sec;
2834 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2835
2836 /* Enter this entry into the linker stub hash table. */
2837 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2838 TRUE, FALSE);
2839 if (stub_entry == NULL)
2840 {
2841 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2842 section->owner, stub_name);
2843 return NULL;
2844 }
2845
2846 stub_entry->stub_sec = stub_sec;
2847 stub_entry->stub_offset = 0;
2848 stub_entry->id_sec = link_sec;
2849
2850 return stub_entry;
2851 }
2852
2853 /* Add a new stub entry in the final stub section to the stub hash.
2854 Not all fields of the new stub entry are initialised. */
2855
2856 static struct elf_aarch64_stub_hash_entry *
2857 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2858 asection *link_section,
2859 struct elf_aarch64_link_hash_table *htab)
2860 {
2861 asection *stub_sec;
2862 struct elf_aarch64_stub_hash_entry *stub_entry;
2863
2864 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2865 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2866 TRUE, FALSE);
2867 if (stub_entry == NULL)
2868 {
2869 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2870 return NULL;
2871 }
2872
2873 stub_entry->stub_sec = stub_sec;
2874 stub_entry->stub_offset = 0;
2875 stub_entry->id_sec = link_section;
2876
2877 return stub_entry;
2878 }
2879
2880
2881 static bfd_boolean
2882 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2883 void *in_arg ATTRIBUTE_UNUSED)
2884 {
2885 struct elf_aarch64_stub_hash_entry *stub_entry;
2886 asection *stub_sec;
2887 bfd *stub_bfd;
2888 bfd_byte *loc;
2889 bfd_vma sym_value;
2890 bfd_vma veneered_insn_loc;
2891 bfd_vma veneer_entry_loc;
2892 bfd_signed_vma branch_offset = 0;
2893 unsigned int template_size;
2894 const uint32_t *template;
2895 unsigned int i;
2896
2897 /* Massage our args to the form they really have. */
2898 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2899
2900 stub_sec = stub_entry->stub_sec;
2901
2902 /* Make a note of the offset within the stubs for this entry. */
2903 stub_entry->stub_offset = stub_sec->size;
2904 loc = stub_sec->contents + stub_entry->stub_offset;
2905
2906 stub_bfd = stub_sec->owner;
2907
2908 /* This is the address of the stub destination. */
2909 sym_value = (stub_entry->target_value
2910 + stub_entry->target_section->output_offset
2911 + stub_entry->target_section->output_section->vma);
2912
2913 if (stub_entry->stub_type == aarch64_stub_long_branch)
2914 {
2915 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2916 + stub_sec->output_offset);
2917
2918 /* See if we can relax the stub. */
2919 if (aarch64_valid_for_adrp_p (sym_value, place))
2920 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2921 }
2922
2923 switch (stub_entry->stub_type)
2924 {
2925 case aarch64_stub_adrp_branch:
2926 template = aarch64_adrp_branch_stub;
2927 template_size = sizeof (aarch64_adrp_branch_stub);
2928 break;
2929 case aarch64_stub_long_branch:
2930 template = aarch64_long_branch_stub;
2931 template_size = sizeof (aarch64_long_branch_stub);
2932 break;
2933 case aarch64_stub_erratum_835769_veneer:
2934 template = aarch64_erratum_835769_stub;
2935 template_size = sizeof (aarch64_erratum_835769_stub);
2936 break;
2937 case aarch64_stub_erratum_843419_veneer:
2938 template = aarch64_erratum_843419_stub;
2939 template_size = sizeof (aarch64_erratum_843419_stub);
2940 break;
2941 default:
2942 abort ();
2943 }
2944
2945 for (i = 0; i < (template_size / sizeof template[0]); i++)
2946 {
2947 bfd_putl32 (template[i], loc);
2948 loc += 4;
2949 }
2950
2951 template_size = (template_size + 7) & ~7;
2952 stub_sec->size += template_size;
2953
2954 switch (stub_entry->stub_type)
2955 {
2956 case aarch64_stub_adrp_branch:
2957 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2958 stub_entry->stub_offset, sym_value))
2959 /* The stub would not have been relaxed if the offset was out
2960 of range. */
2961 BFD_FAIL ();
2962
2963 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2964 stub_entry->stub_offset + 4, sym_value))
2965 BFD_FAIL ();
2966 break;
2967
2968 case aarch64_stub_long_branch:
2969 /* We want the value relative to the address 12 bytes back from the
2970 value itself. */
2971 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2972 stub_entry->stub_offset + 16, sym_value + 12))
2973 BFD_FAIL ();
2974 break;
2975
2976 case aarch64_stub_erratum_835769_veneer:
2977 veneered_insn_loc = stub_entry->target_section->output_section->vma
2978 + stub_entry->target_section->output_offset
2979 + stub_entry->target_value;
2980 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2981 + stub_entry->stub_sec->output_offset
2982 + stub_entry->stub_offset;
2983 branch_offset = veneered_insn_loc - veneer_entry_loc;
2984 branch_offset >>= 2;
2985 branch_offset &= 0x3ffffff;
2986 bfd_putl32 (stub_entry->veneered_insn,
2987 stub_sec->contents + stub_entry->stub_offset);
2988 bfd_putl32 (template[1] | branch_offset,
2989 stub_sec->contents + stub_entry->stub_offset + 4);
2990 break;
2991
2992 case aarch64_stub_erratum_843419_veneer:
2993 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2994 stub_entry->stub_offset + 4, sym_value + 4))
2995 BFD_FAIL ();
2996 break;
2997
2998 default:
2999 abort ();
3000 }
3001
3002 return TRUE;
3003 }
3004
3005 /* As above, but don't actually build the stub. Just bump offset so
3006 we know stub section sizes. */
3007
3008 static bfd_boolean
3009 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3010 void *in_arg ATTRIBUTE_UNUSED)
3011 {
3012 struct elf_aarch64_stub_hash_entry *stub_entry;
3013 int size;
3014
3015 /* Massage our args to the form they really have. */
3016 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3017
3018 switch (stub_entry->stub_type)
3019 {
3020 case aarch64_stub_adrp_branch:
3021 size = sizeof (aarch64_adrp_branch_stub);
3022 break;
3023 case aarch64_stub_long_branch:
3024 size = sizeof (aarch64_long_branch_stub);
3025 break;
3026 case aarch64_stub_erratum_835769_veneer:
3027 size = sizeof (aarch64_erratum_835769_stub);
3028 break;
3029 case aarch64_stub_erratum_843419_veneer:
3030 size = sizeof (aarch64_erratum_843419_stub);
3031 break;
3032 default:
3033 abort ();
3034 }
3035
3036 size = (size + 7) & ~7;
3037 stub_entry->stub_sec->size += size;
3038 return TRUE;
3039 }
3040
3041 /* External entry points for sizing and building linker stubs. */
3042
3043 /* Set up various things so that we can make a list of input sections
3044 for each output section included in the link. Returns -1 on error,
3045 0 when no stubs will be needed, and 1 on success. */
3046
3047 int
3048 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3049 struct bfd_link_info *info)
3050 {
3051 bfd *input_bfd;
3052 unsigned int bfd_count;
3053 unsigned int top_id, top_index;
3054 asection *section;
3055 asection **input_list, **list;
3056 bfd_size_type amt;
3057 struct elf_aarch64_link_hash_table *htab =
3058 elf_aarch64_hash_table (info);
3059
3060 if (!is_elf_hash_table (htab))
3061 return 0;
3062
3063 /* Count the number of input BFDs and find the top input section id. */
3064 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3065 input_bfd != NULL; input_bfd = input_bfd->link.next)
3066 {
3067 bfd_count += 1;
3068 for (section = input_bfd->sections;
3069 section != NULL; section = section->next)
3070 {
3071 if (top_id < section->id)
3072 top_id = section->id;
3073 }
3074 }
3075 htab->bfd_count = bfd_count;
3076
3077 amt = sizeof (struct map_stub) * (top_id + 1);
3078 htab->stub_group = bfd_zmalloc (amt);
3079 if (htab->stub_group == NULL)
3080 return -1;
3081
3082 /* We can't use output_bfd->section_count here to find the top output
3083 section index as some sections may have been removed, and
3084 _bfd_strip_section_from_output doesn't renumber the indices. */
3085 for (section = output_bfd->sections, top_index = 0;
3086 section != NULL; section = section->next)
3087 {
3088 if (top_index < section->index)
3089 top_index = section->index;
3090 }
3091
3092 htab->top_index = top_index;
3093 amt = sizeof (asection *) * (top_index + 1);
3094 input_list = bfd_malloc (amt);
3095 htab->input_list = input_list;
3096 if (input_list == NULL)
3097 return -1;
3098
3099 /* For sections we aren't interested in, mark their entries with a
3100 value we can check later. */
3101 list = input_list + top_index;
3102 do
3103 *list = bfd_abs_section_ptr;
3104 while (list-- != input_list);
3105
3106 for (section = output_bfd->sections;
3107 section != NULL; section = section->next)
3108 {
3109 if ((section->flags & SEC_CODE) != 0)
3110 input_list[section->index] = NULL;
3111 }
3112
3113 return 1;
3114 }
3115
3116 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3117 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3118
3119 /* The linker repeatedly calls this function for each input section,
3120 in the order that input sections are linked into output sections.
3121 Build lists of input sections to determine groupings between which
3122 we may insert linker stubs. */
3123
3124 void
3125 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3126 {
3127 struct elf_aarch64_link_hash_table *htab =
3128 elf_aarch64_hash_table (info);
3129
3130 if (isec->output_section->index <= htab->top_index)
3131 {
3132 asection **list = htab->input_list + isec->output_section->index;
3133
3134 if (*list != bfd_abs_section_ptr)
3135 {
3136 /* Steal the link_sec pointer for our list. */
3137 /* This happens to make the list in reverse order,
3138 which is what we want. */
3139 PREV_SEC (isec) = *list;
3140 *list = isec;
3141 }
3142 }
3143 }
3144
3145 /* See whether we can group stub sections together. Grouping stub
3146 sections may result in fewer stubs. More importantly, we need to
3147 put all .init* and .fini* stubs at the beginning of the .init or
3148 .fini output sections respectively, because glibc splits the
3149 _init and _fini functions into multiple parts. Putting a stub in
3150 the middle of a function is not a good idea. */
3151
3152 static void
3153 group_sections (struct elf_aarch64_link_hash_table *htab,
3154 bfd_size_type stub_group_size,
3155 bfd_boolean stubs_always_before_branch)
3156 {
3157 asection **list = htab->input_list + htab->top_index;
3158
3159 do
3160 {
3161 asection *tail = *list;
3162
3163 if (tail == bfd_abs_section_ptr)
3164 continue;
3165
3166 while (tail != NULL)
3167 {
3168 asection *curr;
3169 asection *prev;
3170 bfd_size_type total;
3171
3172 curr = tail;
3173 total = tail->size;
3174 while ((prev = PREV_SEC (curr)) != NULL
3175 && ((total += curr->output_offset - prev->output_offset)
3176 < stub_group_size))
3177 curr = prev;
3178
3179 /* OK, the size from the start of CURR to the end is less
3180 than stub_group_size and thus can be handled by one stub
3181 section. (Or the tail section is itself larger than
3182 stub_group_size, in which case we may be toast.)
3183 We should really be keeping track of the total size of
3184 stubs added here, as stubs contribute to the final output
3185 section size. */
3186 do
3187 {
3188 prev = PREV_SEC (tail);
3189 /* Set up this stub group. */
3190 htab->stub_group[tail->id].link_sec = curr;
3191 }
3192 while (tail != curr && (tail = prev) != NULL);
3193
3194 /* But wait, there's more! Input sections up to stub_group_size
3195 bytes before the stub section can be handled by it too. */
3196 if (!stubs_always_before_branch)
3197 {
3198 total = 0;
3199 while (prev != NULL
3200 && ((total += tail->output_offset - prev->output_offset)
3201 < stub_group_size))
3202 {
3203 tail = prev;
3204 prev = PREV_SEC (tail);
3205 htab->stub_group[tail->id].link_sec = curr;
3206 }
3207 }
3208 tail = prev;
3209 }
3210 }
3211 while (list-- != htab->input_list);
3212
3213 free (htab->input_list);
3214 }
3215
3216 #undef PREV_SEC
3217
3218 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3219
3220 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3221 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3222 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3223 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3224 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3225 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3226
3227 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3228 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3229 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3230 #define AARCH64_ZR 0x1f
3231
3232 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3233 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3234
3235 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3236 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3237 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3238 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3239 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3240 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3241 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3242 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3243 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3244 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3245 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3246 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3247 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3248 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3249 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3250 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3251 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3252 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3253
3254 /* Classify an INSN if it is indeed a load/store.
3255
3256 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3257
3258 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3259 is set equal to RT.
3260
3261 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3262
3263 */
3264
3265 static bfd_boolean
3266 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3267 bfd_boolean *pair, bfd_boolean *load)
3268 {
3269 uint32_t opcode;
3270 unsigned int r;
3271 uint32_t opc = 0;
3272 uint32_t v = 0;
3273 uint32_t opc_v = 0;
3274
3275 /* Bail out quickly if INSN doesn't fall into the the load-store
3276 encoding space. */
3277 if (!AARCH64_LDST (insn))
3278 return FALSE;
3279
3280 *pair = FALSE;
3281 *load = FALSE;
3282 if (AARCH64_LDST_EX (insn))
3283 {
3284 *rt = AARCH64_RT (insn);
3285 *rt2 = *rt;
3286 if (AARCH64_BIT (insn, 21) == 1)
3287 {
3288 *pair = TRUE;
3289 *rt2 = AARCH64_RT2 (insn);
3290 }
3291 *load = AARCH64_LD (insn);
3292 return TRUE;
3293 }
3294 else if (AARCH64_LDST_NAP (insn)
3295 || AARCH64_LDSTP_PI (insn)
3296 || AARCH64_LDSTP_O (insn)
3297 || AARCH64_LDSTP_PRE (insn))
3298 {
3299 *pair = TRUE;
3300 *rt = AARCH64_RT (insn);
3301 *rt2 = AARCH64_RT2 (insn);
3302 *load = AARCH64_LD (insn);
3303 return TRUE;
3304 }
3305 else if (AARCH64_LDST_PCREL (insn)
3306 || AARCH64_LDST_UI (insn)
3307 || AARCH64_LDST_PIIMM (insn)
3308 || AARCH64_LDST_U (insn)
3309 || AARCH64_LDST_PREIMM (insn)
3310 || AARCH64_LDST_RO (insn)
3311 || AARCH64_LDST_UIMM (insn))
3312 {
3313 *rt = AARCH64_RT (insn);
3314 *rt2 = *rt;
3315 if (AARCH64_LDST_PCREL (insn))
3316 *load = TRUE;
3317 opc = AARCH64_BITS (insn, 22, 2);
3318 v = AARCH64_BIT (insn, 26);
3319 opc_v = opc | (v << 2);
3320 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3321 || opc_v == 5 || opc_v == 7);
3322 return TRUE;
3323 }
3324 else if (AARCH64_LDST_SIMD_M (insn)
3325 || AARCH64_LDST_SIMD_M_PI (insn))
3326 {
3327 *rt = AARCH64_RT (insn);
3328 *load = AARCH64_BIT (insn, 22);
3329 opcode = (insn >> 12) & 0xf;
3330 switch (opcode)
3331 {
3332 case 0:
3333 case 2:
3334 *rt2 = *rt + 3;
3335 break;
3336
3337 case 4:
3338 case 6:
3339 *rt2 = *rt + 2;
3340 break;
3341
3342 case 7:
3343 *rt2 = *rt;
3344 break;
3345
3346 case 8:
3347 case 10:
3348 *rt2 = *rt + 1;
3349 break;
3350
3351 default:
3352 return FALSE;
3353 }
3354 return TRUE;
3355 }
3356 else if (AARCH64_LDST_SIMD_S (insn)
3357 || AARCH64_LDST_SIMD_S_PI (insn))
3358 {
3359 *rt = AARCH64_RT (insn);
3360 r = (insn >> 21) & 1;
3361 *load = AARCH64_BIT (insn, 22);
3362 opcode = (insn >> 13) & 0x7;
3363 switch (opcode)
3364 {
3365 case 0:
3366 case 2:
3367 case 4:
3368 *rt2 = *rt + r;
3369 break;
3370
3371 case 1:
3372 case 3:
3373 case 5:
3374 *rt2 = *rt + (r == 0 ? 2 : 3);
3375 break;
3376
3377 case 6:
3378 *rt2 = *rt + r;
3379 break;
3380
3381 case 7:
3382 *rt2 = *rt + (r == 0 ? 2 : 3);
3383 break;
3384
3385 default:
3386 return FALSE;
3387 }
3388 return TRUE;
3389 }
3390
3391 return FALSE;
3392 }
3393
3394 /* Return TRUE if INSN is multiply-accumulate. */
3395
3396 static bfd_boolean
3397 aarch64_mlxl_p (uint32_t insn)
3398 {
3399 uint32_t op31 = AARCH64_OP31 (insn);
3400
3401 if (AARCH64_MAC (insn)
3402 && (op31 == 0 || op31 == 1 || op31 == 5)
3403 /* Exclude MUL instructions which are encoded as a multiple accumulate
3404 with RA = XZR. */
3405 && AARCH64_RA (insn) != AARCH64_ZR)
3406 return TRUE;
3407
3408 return FALSE;
3409 }
3410
3411 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3412 it is possible for a 64-bit multiply-accumulate instruction to generate an
3413 incorrect result. The details are quite complex and hard to
3414 determine statically, since branches in the code may exist in some
3415 circumstances, but all cases end with a memory (load, store, or
3416 prefetch) instruction followed immediately by the multiply-accumulate
3417 operation. We employ a linker patching technique, by moving the potentially
3418 affected multiply-accumulate instruction into a patch region and replacing
3419 the original instruction with a branch to the patch. This function checks
3420 if INSN_1 is the memory operation followed by a multiply-accumulate
3421 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3422 if INSN_1 and INSN_2 are safe. */
3423
3424 static bfd_boolean
3425 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3426 {
3427 uint32_t rt;
3428 uint32_t rt2;
3429 uint32_t rn;
3430 uint32_t rm;
3431 uint32_t ra;
3432 bfd_boolean pair;
3433 bfd_boolean load;
3434
3435 if (aarch64_mlxl_p (insn_2)
3436 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3437 {
3438 /* Any SIMD memory op is independent of the subsequent MLA
3439 by definition of the erratum. */
3440 if (AARCH64_BIT (insn_1, 26))
3441 return TRUE;
3442
3443 /* If not SIMD, check for integer memory ops and MLA relationship. */
3444 rn = AARCH64_RN (insn_2);
3445 ra = AARCH64_RA (insn_2);
3446 rm = AARCH64_RM (insn_2);
3447
3448 /* If this is a load and there's a true(RAW) dependency, we are safe
3449 and this is not an erratum sequence. */
3450 if (load &&
3451 (rt == rn || rt == rm || rt == ra
3452 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3453 return FALSE;
3454
3455 /* We conservatively put out stubs for all other cases (including
3456 writebacks). */
3457 return TRUE;
3458 }
3459
3460 return FALSE;
3461 }
3462
3463 /* Used to order a list of mapping symbols by address. */
3464
3465 static int
3466 elf_aarch64_compare_mapping (const void *a, const void *b)
3467 {
3468 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3469 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3470
3471 if (amap->vma > bmap->vma)
3472 return 1;
3473 else if (amap->vma < bmap->vma)
3474 return -1;
3475 else if (amap->type > bmap->type)
3476 /* Ensure results do not depend on the host qsort for objects with
3477 multiple mapping symbols at the same address by sorting on type
3478 after vma. */
3479 return 1;
3480 else if (amap->type < bmap->type)
3481 return -1;
3482 else
3483 return 0;
3484 }
3485
3486
3487 static char *
3488 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3489 {
3490 char *stub_name = (char *) bfd_malloc
3491 (strlen ("__erratum_835769_veneer_") + 16);
3492 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3493 return stub_name;
3494 }
3495
3496 /* Scan for Cortex-A53 erratum 835769 sequence.
3497
3498 Return TRUE else FALSE on abnormal termination. */
3499
3500 static bfd_boolean
3501 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3502 struct bfd_link_info *info,
3503 unsigned int *num_fixes_p)
3504 {
3505 asection *section;
3506 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3507 unsigned int num_fixes = *num_fixes_p;
3508
3509 if (htab == NULL)
3510 return TRUE;
3511
3512 for (section = input_bfd->sections;
3513 section != NULL;
3514 section = section->next)
3515 {
3516 bfd_byte *contents = NULL;
3517 struct _aarch64_elf_section_data *sec_data;
3518 unsigned int span;
3519
3520 if (elf_section_type (section) != SHT_PROGBITS
3521 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3522 || (section->flags & SEC_EXCLUDE) != 0
3523 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3524 || (section->output_section == bfd_abs_section_ptr))
3525 continue;
3526
3527 if (elf_section_data (section)->this_hdr.contents != NULL)
3528 contents = elf_section_data (section)->this_hdr.contents;
3529 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3530 return FALSE;
3531
3532 sec_data = elf_aarch64_section_data (section);
3533
3534 qsort (sec_data->map, sec_data->mapcount,
3535 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3536
3537 for (span = 0; span < sec_data->mapcount; span++)
3538 {
3539 unsigned int span_start = sec_data->map[span].vma;
3540 unsigned int span_end = ((span == sec_data->mapcount - 1)
3541 ? sec_data->map[0].vma + section->size
3542 : sec_data->map[span + 1].vma);
3543 unsigned int i;
3544 char span_type = sec_data->map[span].type;
3545
3546 if (span_type == 'd')
3547 continue;
3548
3549 for (i = span_start; i + 4 < span_end; i += 4)
3550 {
3551 uint32_t insn_1 = bfd_getl32 (contents + i);
3552 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3553
3554 if (aarch64_erratum_sequence (insn_1, insn_2))
3555 {
3556 struct elf_aarch64_stub_hash_entry *stub_entry;
3557 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3558 if (! stub_name)
3559 return FALSE;
3560
3561 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3562 section,
3563 htab);
3564 if (! stub_entry)
3565 return FALSE;
3566
3567 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3568 stub_entry->target_section = section;
3569 stub_entry->target_value = i + 4;
3570 stub_entry->veneered_insn = insn_2;
3571 stub_entry->output_name = stub_name;
3572 num_fixes++;
3573 }
3574 }
3575 }
3576 if (elf_section_data (section)->this_hdr.contents == NULL)
3577 free (contents);
3578 }
3579
3580 *num_fixes_p = num_fixes;
3581
3582 return TRUE;
3583 }
3584
3585
3586 /* Test if instruction INSN is ADRP. */
3587
3588 static bfd_boolean
3589 _bfd_aarch64_adrp_p (uint32_t insn)
3590 {
3591 return ((insn & 0x9f000000) == 0x90000000);
3592 }
3593
3594
3595 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3596
3597 static bfd_boolean
3598 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3599 uint32_t insn_3)
3600 {
3601 uint32_t rt;
3602 uint32_t rt2;
3603 bfd_boolean pair;
3604 bfd_boolean load;
3605
3606 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3607 && (!pair
3608 || (pair && !load))
3609 && AARCH64_LDST_UIMM (insn_3)
3610 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3611 }
3612
3613
3614 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3615
3616 Return TRUE if section CONTENTS at offset I contains one of the
3617 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3618 seen set P_VENEER_I to the offset of the final LOAD/STORE
3619 instruction in the sequence.
3620 */
3621
3622 static bfd_boolean
3623 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3624 bfd_vma i, bfd_vma span_end,
3625 bfd_vma *p_veneer_i)
3626 {
3627 uint32_t insn_1 = bfd_getl32 (contents + i);
3628
3629 if (!_bfd_aarch64_adrp_p (insn_1))
3630 return FALSE;
3631
3632 if (span_end < i + 12)
3633 return FALSE;
3634
3635 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3636 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3637
3638 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3639 return FALSE;
3640
3641 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3642 {
3643 *p_veneer_i = i + 8;
3644 return TRUE;
3645 }
3646
3647 if (span_end < i + 16)
3648 return FALSE;
3649
3650 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3651
3652 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3653 {
3654 *p_veneer_i = i + 12;
3655 return TRUE;
3656 }
3657
3658 return FALSE;
3659 }
3660
3661
3662 /* Resize all stub sections. */
3663
3664 static void
3665 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3666 {
3667 asection *section;
3668
3669 /* OK, we've added some stubs. Find out the new size of the
3670 stub sections. */
3671 for (section = htab->stub_bfd->sections;
3672 section != NULL; section = section->next)
3673 {
3674 /* Ignore non-stub sections. */
3675 if (!strstr (section->name, STUB_SUFFIX))
3676 continue;
3677 section->size = 0;
3678 }
3679
3680 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3681
3682 for (section = htab->stub_bfd->sections;
3683 section != NULL; section = section->next)
3684 {
3685 if (!strstr (section->name, STUB_SUFFIX))
3686 continue;
3687
3688 if (section->size)
3689 section->size += 4;
3690
3691 /* Ensure all stub sections have a size which is a multiple of
3692 4096. This is important in order to ensure that the insertion
3693 of stub sections does not in itself move existing code around
3694 in such a way that new errata sequences are created. */
3695 if (htab->fix_erratum_843419)
3696 if (section->size)
3697 section->size = BFD_ALIGN (section->size, 0x1000);
3698 }
3699 }
3700
3701
3702 /* Construct an erratum 843419 workaround stub name.
3703 */
3704
3705 static char *
3706 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3707 bfd_vma offset)
3708 {
3709 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3710 char *stub_name = bfd_malloc (len);
3711
3712 if (stub_name != NULL)
3713 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3714 input_section->owner->id,
3715 input_section->id,
3716 offset);
3717 return stub_name;
3718 }
3719
3720 /* Build a stub_entry structure describing an 843419 fixup.
3721
3722 The stub_entry constructed is populated with the bit pattern INSN
3723 of the instruction located at OFFSET within input SECTION.
3724
3725 Returns TRUE on success. */
3726
3727 static bfd_boolean
3728 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3729 bfd_vma adrp_offset,
3730 bfd_vma ldst_offset,
3731 asection *section,
3732 struct bfd_link_info *info)
3733 {
3734 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3735 char *stub_name;
3736 struct elf_aarch64_stub_hash_entry *stub_entry;
3737
3738 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3739 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3740 FALSE, FALSE);
3741 if (stub_entry)
3742 {
3743 free (stub_name);
3744 return TRUE;
3745 }
3746
3747 /* We always place an 843419 workaround veneer in the stub section
3748 attached to the input section in which an erratum sequence has
3749 been found. This ensures that later in the link process (in
3750 elfNN_aarch64_write_section) when we copy the veneered
3751 instruction from the input section into the stub section the
3752 copied instruction will have had any relocations applied to it.
3753 If we placed workaround veneers in any other stub section then we
3754 could not assume that all relocations have been processed on the
3755 corresponding input section at the point we output the stub
3756 section.
3757 */
3758
3759 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3760 if (stub_entry == NULL)
3761 {
3762 free (stub_name);
3763 return FALSE;
3764 }
3765
3766 stub_entry->adrp_offset = adrp_offset;
3767 stub_entry->target_value = ldst_offset;
3768 stub_entry->target_section = section;
3769 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3770 stub_entry->veneered_insn = insn;
3771 stub_entry->output_name = stub_name;
3772
3773 return TRUE;
3774 }
3775
3776
3777 /* Scan an input section looking for the signature of erratum 843419.
3778
3779 Scans input SECTION in INPUT_BFD looking for erratum 843419
3780 signatures, for each signature found a stub_entry is created
3781 describing the location of the erratum for subsequent fixup.
3782
3783 Return TRUE on successful scan, FALSE on failure to scan.
3784 */
3785
3786 static bfd_boolean
3787 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3788 struct bfd_link_info *info)
3789 {
3790 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3791
3792 if (htab == NULL)
3793 return TRUE;
3794
3795 if (elf_section_type (section) != SHT_PROGBITS
3796 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3797 || (section->flags & SEC_EXCLUDE) != 0
3798 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3799 || (section->output_section == bfd_abs_section_ptr))
3800 return TRUE;
3801
3802 do
3803 {
3804 bfd_byte *contents = NULL;
3805 struct _aarch64_elf_section_data *sec_data;
3806 unsigned int span;
3807
3808 if (elf_section_data (section)->this_hdr.contents != NULL)
3809 contents = elf_section_data (section)->this_hdr.contents;
3810 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3811 return FALSE;
3812
3813 sec_data = elf_aarch64_section_data (section);
3814
3815 qsort (sec_data->map, sec_data->mapcount,
3816 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3817
3818 for (span = 0; span < sec_data->mapcount; span++)
3819 {
3820 unsigned int span_start = sec_data->map[span].vma;
3821 unsigned int span_end = ((span == sec_data->mapcount - 1)
3822 ? sec_data->map[0].vma + section->size
3823 : sec_data->map[span + 1].vma);
3824 unsigned int i;
3825 char span_type = sec_data->map[span].type;
3826
3827 if (span_type == 'd')
3828 continue;
3829
3830 for (i = span_start; i + 8 < span_end; i += 4)
3831 {
3832 bfd_vma vma = (section->output_section->vma
3833 + section->output_offset
3834 + i);
3835 bfd_vma veneer_i;
3836
3837 if (_bfd_aarch64_erratum_843419_p
3838 (contents, vma, i, span_end, &veneer_i))
3839 {
3840 uint32_t insn = bfd_getl32 (contents + veneer_i);
3841
3842 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3843 section, info))
3844 return FALSE;
3845 }
3846 }
3847 }
3848
3849 if (elf_section_data (section)->this_hdr.contents == NULL)
3850 free (contents);
3851 }
3852 while (0);
3853
3854 return TRUE;
3855 }
3856
3857
3858 /* Determine and set the size of the stub section for a final link.
3859
3860 The basic idea here is to examine all the relocations looking for
3861 PC-relative calls to a target that is unreachable with a "bl"
3862 instruction. */
3863
3864 bfd_boolean
3865 elfNN_aarch64_size_stubs (bfd *output_bfd,
3866 bfd *stub_bfd,
3867 struct bfd_link_info *info,
3868 bfd_signed_vma group_size,
3869 asection * (*add_stub_section) (const char *,
3870 asection *),
3871 void (*layout_sections_again) (void))
3872 {
3873 bfd_size_type stub_group_size;
3874 bfd_boolean stubs_always_before_branch;
3875 bfd_boolean stub_changed = FALSE;
3876 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3877 unsigned int num_erratum_835769_fixes = 0;
3878
3879 /* Propagate mach to stub bfd, because it may not have been
3880 finalized when we created stub_bfd. */
3881 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3882 bfd_get_mach (output_bfd));
3883
3884 /* Stash our params away. */
3885 htab->stub_bfd = stub_bfd;
3886 htab->add_stub_section = add_stub_section;
3887 htab->layout_sections_again = layout_sections_again;
3888 stubs_always_before_branch = group_size < 0;
3889 if (group_size < 0)
3890 stub_group_size = -group_size;
3891 else
3892 stub_group_size = group_size;
3893
3894 if (stub_group_size == 1)
3895 {
3896 /* Default values. */
3897 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3898 stub_group_size = 127 * 1024 * 1024;
3899 }
3900
3901 group_sections (htab, stub_group_size, stubs_always_before_branch);
3902
3903 (*htab->layout_sections_again) ();
3904
3905 if (htab->fix_erratum_835769)
3906 {
3907 bfd *input_bfd;
3908
3909 for (input_bfd = info->input_bfds;
3910 input_bfd != NULL; input_bfd = input_bfd->link.next)
3911 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3912 &num_erratum_835769_fixes))
3913 return FALSE;
3914
3915 _bfd_aarch64_resize_stubs (htab);
3916 (*htab->layout_sections_again) ();
3917 }
3918
3919 if (htab->fix_erratum_843419)
3920 {
3921 bfd *input_bfd;
3922
3923 for (input_bfd = info->input_bfds;
3924 input_bfd != NULL;
3925 input_bfd = input_bfd->link.next)
3926 {
3927 asection *section;
3928
3929 for (section = input_bfd->sections;
3930 section != NULL;
3931 section = section->next)
3932 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3933 return FALSE;
3934 }
3935
3936 _bfd_aarch64_resize_stubs (htab);
3937 (*htab->layout_sections_again) ();
3938 }
3939
3940 while (1)
3941 {
3942 bfd *input_bfd;
3943
3944 for (input_bfd = info->input_bfds;
3945 input_bfd != NULL; input_bfd = input_bfd->link.next)
3946 {
3947 Elf_Internal_Shdr *symtab_hdr;
3948 asection *section;
3949 Elf_Internal_Sym *local_syms = NULL;
3950
3951 /* We'll need the symbol table in a second. */
3952 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3953 if (symtab_hdr->sh_info == 0)
3954 continue;
3955
3956 /* Walk over each section attached to the input bfd. */
3957 for (section = input_bfd->sections;
3958 section != NULL; section = section->next)
3959 {
3960 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3961
3962 /* If there aren't any relocs, then there's nothing more
3963 to do. */
3964 if ((section->flags & SEC_RELOC) == 0
3965 || section->reloc_count == 0
3966 || (section->flags & SEC_CODE) == 0)
3967 continue;
3968
3969 /* If this section is a link-once section that will be
3970 discarded, then don't create any stubs. */
3971 if (section->output_section == NULL
3972 || section->output_section->owner != output_bfd)
3973 continue;
3974
3975 /* Get the relocs. */
3976 internal_relocs
3977 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3978 NULL, info->keep_memory);
3979 if (internal_relocs == NULL)
3980 goto error_ret_free_local;
3981
3982 /* Now examine each relocation. */
3983 irela = internal_relocs;
3984 irelaend = irela + section->reloc_count;
3985 for (; irela < irelaend; irela++)
3986 {
3987 unsigned int r_type, r_indx;
3988 enum elf_aarch64_stub_type stub_type;
3989 struct elf_aarch64_stub_hash_entry *stub_entry;
3990 asection *sym_sec;
3991 bfd_vma sym_value;
3992 bfd_vma destination;
3993 struct elf_aarch64_link_hash_entry *hash;
3994 const char *sym_name;
3995 char *stub_name;
3996 const asection *id_sec;
3997 unsigned char st_type;
3998 bfd_size_type len;
3999
4000 r_type = ELFNN_R_TYPE (irela->r_info);
4001 r_indx = ELFNN_R_SYM (irela->r_info);
4002
4003 if (r_type >= (unsigned int) R_AARCH64_end)
4004 {
4005 bfd_set_error (bfd_error_bad_value);
4006 error_ret_free_internal:
4007 if (elf_section_data (section)->relocs == NULL)
4008 free (internal_relocs);
4009 goto error_ret_free_local;
4010 }
4011
4012 /* Only look for stubs on unconditional branch and
4013 branch and link instructions. */
4014 if (r_type != (unsigned int) AARCH64_R (CALL26)
4015 && r_type != (unsigned int) AARCH64_R (JUMP26))
4016 continue;
4017
4018 /* Now determine the call target, its name, value,
4019 section. */
4020 sym_sec = NULL;
4021 sym_value = 0;
4022 destination = 0;
4023 hash = NULL;
4024 sym_name = NULL;
4025 if (r_indx < symtab_hdr->sh_info)
4026 {
4027 /* It's a local symbol. */
4028 Elf_Internal_Sym *sym;
4029 Elf_Internal_Shdr *hdr;
4030
4031 if (local_syms == NULL)
4032 {
4033 local_syms
4034 = (Elf_Internal_Sym *) symtab_hdr->contents;
4035 if (local_syms == NULL)
4036 local_syms
4037 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4038 symtab_hdr->sh_info, 0,
4039 NULL, NULL, NULL);
4040 if (local_syms == NULL)
4041 goto error_ret_free_internal;
4042 }
4043
4044 sym = local_syms + r_indx;
4045 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4046 sym_sec = hdr->bfd_section;
4047 if (!sym_sec)
4048 /* This is an undefined symbol. It can never
4049 be resolved. */
4050 continue;
4051
4052 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4053 sym_value = sym->st_value;
4054 destination = (sym_value + irela->r_addend
4055 + sym_sec->output_offset
4056 + sym_sec->output_section->vma);
4057 st_type = ELF_ST_TYPE (sym->st_info);
4058 sym_name
4059 = bfd_elf_string_from_elf_section (input_bfd,
4060 symtab_hdr->sh_link,
4061 sym->st_name);
4062 }
4063 else
4064 {
4065 int e_indx;
4066
4067 e_indx = r_indx - symtab_hdr->sh_info;
4068 hash = ((struct elf_aarch64_link_hash_entry *)
4069 elf_sym_hashes (input_bfd)[e_indx]);
4070
4071 while (hash->root.root.type == bfd_link_hash_indirect
4072 || hash->root.root.type == bfd_link_hash_warning)
4073 hash = ((struct elf_aarch64_link_hash_entry *)
4074 hash->root.root.u.i.link);
4075
4076 if (hash->root.root.type == bfd_link_hash_defined
4077 || hash->root.root.type == bfd_link_hash_defweak)
4078 {
4079 struct elf_aarch64_link_hash_table *globals =
4080 elf_aarch64_hash_table (info);
4081 sym_sec = hash->root.root.u.def.section;
4082 sym_value = hash->root.root.u.def.value;
4083 /* For a destination in a shared library,
4084 use the PLT stub as target address to
4085 decide whether a branch stub is
4086 needed. */
4087 if (globals->root.splt != NULL && hash != NULL
4088 && hash->root.plt.offset != (bfd_vma) - 1)
4089 {
4090 sym_sec = globals->root.splt;
4091 sym_value = hash->root.plt.offset;
4092 if (sym_sec->output_section != NULL)
4093 destination = (sym_value
4094 + sym_sec->output_offset
4095 +
4096 sym_sec->output_section->vma);
4097 }
4098 else if (sym_sec->output_section != NULL)
4099 destination = (sym_value + irela->r_addend
4100 + sym_sec->output_offset
4101 + sym_sec->output_section->vma);
4102 }
4103 else if (hash->root.root.type == bfd_link_hash_undefined
4104 || (hash->root.root.type
4105 == bfd_link_hash_undefweak))
4106 {
4107 /* For a shared library, use the PLT stub as
4108 target address to decide whether a long
4109 branch stub is needed.
4110 For absolute code, they cannot be handled. */
4111 struct elf_aarch64_link_hash_table *globals =
4112 elf_aarch64_hash_table (info);
4113
4114 if (globals->root.splt != NULL && hash != NULL
4115 && hash->root.plt.offset != (bfd_vma) - 1)
4116 {
4117 sym_sec = globals->root.splt;
4118 sym_value = hash->root.plt.offset;
4119 if (sym_sec->output_section != NULL)
4120 destination = (sym_value
4121 + sym_sec->output_offset
4122 +
4123 sym_sec->output_section->vma);
4124 }
4125 else
4126 continue;
4127 }
4128 else
4129 {
4130 bfd_set_error (bfd_error_bad_value);
4131 goto error_ret_free_internal;
4132 }
4133 st_type = ELF_ST_TYPE (hash->root.type);
4134 sym_name = hash->root.root.root.string;
4135 }
4136
4137 /* Determine what (if any) linker stub is needed. */
4138 stub_type = aarch64_type_of_stub
4139 (info, section, irela, sym_sec, st_type, hash, destination);
4140 if (stub_type == aarch64_stub_none)
4141 continue;
4142
4143 /* Support for grouping stub sections. */
4144 id_sec = htab->stub_group[section->id].link_sec;
4145
4146 /* Get the name of this stub. */
4147 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4148 irela);
4149 if (!stub_name)
4150 goto error_ret_free_internal;
4151
4152 stub_entry =
4153 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4154 stub_name, FALSE, FALSE);
4155 if (stub_entry != NULL)
4156 {
4157 /* The proper stub has already been created. */
4158 free (stub_name);
4159 continue;
4160 }
4161
4162 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4163 (stub_name, section, htab);
4164 if (stub_entry == NULL)
4165 {
4166 free (stub_name);
4167 goto error_ret_free_internal;
4168 }
4169
4170 stub_entry->target_value = sym_value;
4171 stub_entry->target_section = sym_sec;
4172 stub_entry->stub_type = stub_type;
4173 stub_entry->h = hash;
4174 stub_entry->st_type = st_type;
4175
4176 if (sym_name == NULL)
4177 sym_name = "unnamed";
4178 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4179 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4180 if (stub_entry->output_name == NULL)
4181 {
4182 free (stub_name);
4183 goto error_ret_free_internal;
4184 }
4185
4186 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4187 sym_name);
4188
4189 stub_changed = TRUE;
4190 }
4191
4192 /* We're done with the internal relocs, free them. */
4193 if (elf_section_data (section)->relocs == NULL)
4194 free (internal_relocs);
4195 }
4196 }
4197
4198 if (!stub_changed)
4199 break;
4200
4201 _bfd_aarch64_resize_stubs (htab);
4202
4203 /* Ask the linker to do its stuff. */
4204 (*htab->layout_sections_again) ();
4205 stub_changed = FALSE;
4206 }
4207
4208 return TRUE;
4209
4210 error_ret_free_local:
4211 return FALSE;
4212 }
4213
4214 /* Build all the stubs associated with the current output file. The
4215 stubs are kept in a hash table attached to the main linker hash
4216 table. We also set up the .plt entries for statically linked PIC
4217 functions here. This function is called via aarch64_elf_finish in the
4218 linker. */
4219
4220 bfd_boolean
4221 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4222 {
4223 asection *stub_sec;
4224 struct bfd_hash_table *table;
4225 struct elf_aarch64_link_hash_table *htab;
4226
4227 htab = elf_aarch64_hash_table (info);
4228
4229 for (stub_sec = htab->stub_bfd->sections;
4230 stub_sec != NULL; stub_sec = stub_sec->next)
4231 {
4232 bfd_size_type size;
4233
4234 /* Ignore non-stub sections. */
4235 if (!strstr (stub_sec->name, STUB_SUFFIX))
4236 continue;
4237
4238 /* Allocate memory to hold the linker stubs. */
4239 size = stub_sec->size;
4240 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4241 if (stub_sec->contents == NULL && size != 0)
4242 return FALSE;
4243 stub_sec->size = 0;
4244
4245 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4246 stub_sec->size += 4;
4247 }
4248
4249 /* Build the stubs as directed by the stub hash table. */
4250 table = &htab->stub_hash_table;
4251 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4252
4253 return TRUE;
4254 }
4255
4256
4257 /* Add an entry to the code/data map for section SEC. */
4258
4259 static void
4260 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4261 {
4262 struct _aarch64_elf_section_data *sec_data =
4263 elf_aarch64_section_data (sec);
4264 unsigned int newidx;
4265
4266 if (sec_data->map == NULL)
4267 {
4268 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4269 sec_data->mapcount = 0;
4270 sec_data->mapsize = 1;
4271 }
4272
4273 newidx = sec_data->mapcount++;
4274
4275 if (sec_data->mapcount > sec_data->mapsize)
4276 {
4277 sec_data->mapsize *= 2;
4278 sec_data->map = bfd_realloc_or_free
4279 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4280 }
4281
4282 if (sec_data->map)
4283 {
4284 sec_data->map[newidx].vma = vma;
4285 sec_data->map[newidx].type = type;
4286 }
4287 }
4288
4289
4290 /* Initialise maps of insn/data for input BFDs. */
4291 void
4292 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4293 {
4294 Elf_Internal_Sym *isymbuf;
4295 Elf_Internal_Shdr *hdr;
4296 unsigned int i, localsyms;
4297
4298 /* Make sure that we are dealing with an AArch64 elf binary. */
4299 if (!is_aarch64_elf (abfd))
4300 return;
4301
4302 if ((abfd->flags & DYNAMIC) != 0)
4303 return;
4304
4305 hdr = &elf_symtab_hdr (abfd);
4306 localsyms = hdr->sh_info;
4307
4308 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4309 should contain the number of local symbols, which should come before any
4310 global symbols. Mapping symbols are always local. */
4311 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4312
4313 /* No internal symbols read? Skip this BFD. */
4314 if (isymbuf == NULL)
4315 return;
4316
4317 for (i = 0; i < localsyms; i++)
4318 {
4319 Elf_Internal_Sym *isym = &isymbuf[i];
4320 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4321 const char *name;
4322
4323 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4324 {
4325 name = bfd_elf_string_from_elf_section (abfd,
4326 hdr->sh_link,
4327 isym->st_name);
4328
4329 if (bfd_is_aarch64_special_symbol_name
4330 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4331 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4332 }
4333 }
4334 }
4335
4336 /* Set option values needed during linking. */
4337 void
4338 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4339 struct bfd_link_info *link_info,
4340 int no_enum_warn,
4341 int no_wchar_warn, int pic_veneer,
4342 int fix_erratum_835769,
4343 int fix_erratum_843419)
4344 {
4345 struct elf_aarch64_link_hash_table *globals;
4346
4347 globals = elf_aarch64_hash_table (link_info);
4348 globals->pic_veneer = pic_veneer;
4349 globals->fix_erratum_835769 = fix_erratum_835769;
4350 globals->fix_erratum_843419 = fix_erratum_843419;
4351 globals->fix_erratum_843419_adr = TRUE;
4352
4353 BFD_ASSERT (is_aarch64_elf (output_bfd));
4354 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4355 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4356 }
4357
4358 static bfd_vma
4359 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4360 struct elf_aarch64_link_hash_table
4361 *globals, struct bfd_link_info *info,
4362 bfd_vma value, bfd *output_bfd,
4363 bfd_boolean *unresolved_reloc_p)
4364 {
4365 bfd_vma off = (bfd_vma) - 1;
4366 asection *basegot = globals->root.sgot;
4367 bfd_boolean dyn = globals->root.dynamic_sections_created;
4368
4369 if (h != NULL)
4370 {
4371 BFD_ASSERT (basegot != NULL);
4372 off = h->got.offset;
4373 BFD_ASSERT (off != (bfd_vma) - 1);
4374 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4375 || (bfd_link_pic (info)
4376 && SYMBOL_REFERENCES_LOCAL (info, h))
4377 || (ELF_ST_VISIBILITY (h->other)
4378 && h->root.type == bfd_link_hash_undefweak))
4379 {
4380 /* This is actually a static link, or it is a -Bsymbolic link
4381 and the symbol is defined locally. We must initialize this
4382 entry in the global offset table. Since the offset must
4383 always be a multiple of 8 (4 in the case of ILP32), we use
4384 the least significant bit to record whether we have
4385 initialized it already.
4386 When doing a dynamic link, we create a .rel(a).got relocation
4387 entry to initialize the value. This is done in the
4388 finish_dynamic_symbol routine. */
4389 if ((off & 1) != 0)
4390 off &= ~1;
4391 else
4392 {
4393 bfd_put_NN (output_bfd, value, basegot->contents + off);
4394 h->got.offset |= 1;
4395 }
4396 }
4397 else
4398 *unresolved_reloc_p = FALSE;
4399
4400 off = off + basegot->output_section->vma + basegot->output_offset;
4401 }
4402
4403 return off;
4404 }
4405
4406 /* Change R_TYPE to a more efficient access model where possible,
4407 return the new reloc type. */
4408
4409 static bfd_reloc_code_real_type
4410 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4411 struct elf_link_hash_entry *h)
4412 {
4413 bfd_boolean is_local = h == NULL;
4414
4415 switch (r_type)
4416 {
4417 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4418 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4419 return (is_local
4420 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4421 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4422
4423 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4424 return (is_local
4425 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4426 : r_type);
4427
4428 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4429 return (is_local
4430 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4431 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4432
4433 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4434 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4435 return (is_local
4436 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4437 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4438
4439 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4440 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4441
4442 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4443 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4444
4445 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4446 return r_type;
4447
4448 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4449 return (is_local
4450 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4451 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4452
4453 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4454 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4455 /* Instructions with these relocations will become NOPs. */
4456 return BFD_RELOC_AARCH64_NONE;
4457
4458 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4459 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4460 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4461 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4462
4463 default:
4464 break;
4465 }
4466
4467 return r_type;
4468 }
4469
4470 static unsigned int
4471 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4472 {
4473 switch (r_type)
4474 {
4475 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4476 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4477 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4478 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4479 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4480 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4481 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4482 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4483 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4484 return GOT_NORMAL;
4485
4486 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4487 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4488 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4489 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4490 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4491 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4492 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4493 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4494 return GOT_TLS_GD;
4495
4496 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4497 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4498 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4499 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4500 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4501 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4502 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4503 return GOT_TLSDESC_GD;
4504
4505 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4506 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4507 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4508 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4509 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4510 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4511 return GOT_TLS_IE;
4512
4513 default:
4514 break;
4515 }
4516 return GOT_UNKNOWN;
4517 }
4518
4519 static bfd_boolean
4520 aarch64_can_relax_tls (bfd *input_bfd,
4521 struct bfd_link_info *info,
4522 bfd_reloc_code_real_type r_type,
4523 struct elf_link_hash_entry *h,
4524 unsigned long r_symndx)
4525 {
4526 unsigned int symbol_got_type;
4527 unsigned int reloc_got_type;
4528
4529 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4530 return FALSE;
4531
4532 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4533 reloc_got_type = aarch64_reloc_got_type (r_type);
4534
4535 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4536 return TRUE;
4537
4538 if (bfd_link_pic (info))
4539 return FALSE;
4540
4541 if (h && h->root.type == bfd_link_hash_undefweak)
4542 return FALSE;
4543
4544 return TRUE;
4545 }
4546
4547 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4548 enumerator. */
4549
4550 static bfd_reloc_code_real_type
4551 aarch64_tls_transition (bfd *input_bfd,
4552 struct bfd_link_info *info,
4553 unsigned int r_type,
4554 struct elf_link_hash_entry *h,
4555 unsigned long r_symndx)
4556 {
4557 bfd_reloc_code_real_type bfd_r_type
4558 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4559
4560 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4561 return bfd_r_type;
4562
4563 return aarch64_tls_transition_without_check (bfd_r_type, h);
4564 }
4565
4566 /* Return the base VMA address which should be subtracted from real addresses
4567 when resolving R_AARCH64_TLS_DTPREL relocation. */
4568
4569 static bfd_vma
4570 dtpoff_base (struct bfd_link_info *info)
4571 {
4572 /* If tls_sec is NULL, we should have signalled an error already. */
4573 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4574 return elf_hash_table (info)->tls_sec->vma;
4575 }
4576
4577 /* Return the base VMA address which should be subtracted from real addresses
4578 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4579
4580 static bfd_vma
4581 tpoff_base (struct bfd_link_info *info)
4582 {
4583 struct elf_link_hash_table *htab = elf_hash_table (info);
4584
4585 /* If tls_sec is NULL, we should have signalled an error already. */
4586 BFD_ASSERT (htab->tls_sec != NULL);
4587
4588 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4589 htab->tls_sec->alignment_power);
4590 return htab->tls_sec->vma - base;
4591 }
4592
4593 static bfd_vma *
4594 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4595 unsigned long r_symndx)
4596 {
4597 /* Calculate the address of the GOT entry for symbol
4598 referred to in h. */
4599 if (h != NULL)
4600 return &h->got.offset;
4601 else
4602 {
4603 /* local symbol */
4604 struct elf_aarch64_local_symbol *l;
4605
4606 l = elf_aarch64_locals (input_bfd);
4607 return &l[r_symndx].got_offset;
4608 }
4609 }
4610
4611 static void
4612 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4613 unsigned long r_symndx)
4614 {
4615 bfd_vma *p;
4616 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4617 *p |= 1;
4618 }
4619
4620 static int
4621 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4622 unsigned long r_symndx)
4623 {
4624 bfd_vma value;
4625 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4626 return value & 1;
4627 }
4628
4629 static bfd_vma
4630 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4631 unsigned long r_symndx)
4632 {
4633 bfd_vma value;
4634 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4635 value &= ~1;
4636 return value;
4637 }
4638
4639 static bfd_vma *
4640 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4641 unsigned long r_symndx)
4642 {
4643 /* Calculate the address of the GOT entry for symbol
4644 referred to in h. */
4645 if (h != NULL)
4646 {
4647 struct elf_aarch64_link_hash_entry *eh;
4648 eh = (struct elf_aarch64_link_hash_entry *) h;
4649 return &eh->tlsdesc_got_jump_table_offset;
4650 }
4651 else
4652 {
4653 /* local symbol */
4654 struct elf_aarch64_local_symbol *l;
4655
4656 l = elf_aarch64_locals (input_bfd);
4657 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4658 }
4659 }
4660
4661 static void
4662 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4663 unsigned long r_symndx)
4664 {
4665 bfd_vma *p;
4666 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4667 *p |= 1;
4668 }
4669
4670 static int
4671 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4672 struct elf_link_hash_entry *h,
4673 unsigned long r_symndx)
4674 {
4675 bfd_vma value;
4676 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4677 return value & 1;
4678 }
4679
4680 static bfd_vma
4681 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4682 unsigned long r_symndx)
4683 {
4684 bfd_vma value;
4685 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4686 value &= ~1;
4687 return value;
4688 }
4689
4690 /* Data for make_branch_to_erratum_835769_stub(). */
4691
4692 struct erratum_835769_branch_to_stub_data
4693 {
4694 struct bfd_link_info *info;
4695 asection *output_section;
4696 bfd_byte *contents;
4697 };
4698
4699 /* Helper to insert branches to erratum 835769 stubs in the right
4700 places for a particular section. */
4701
4702 static bfd_boolean
4703 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4704 void *in_arg)
4705 {
4706 struct elf_aarch64_stub_hash_entry *stub_entry;
4707 struct erratum_835769_branch_to_stub_data *data;
4708 bfd_byte *contents;
4709 unsigned long branch_insn = 0;
4710 bfd_vma veneered_insn_loc, veneer_entry_loc;
4711 bfd_signed_vma branch_offset;
4712 unsigned int target;
4713 bfd *abfd;
4714
4715 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4716 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4717
4718 if (stub_entry->target_section != data->output_section
4719 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4720 return TRUE;
4721
4722 contents = data->contents;
4723 veneered_insn_loc = stub_entry->target_section->output_section->vma
4724 + stub_entry->target_section->output_offset
4725 + stub_entry->target_value;
4726 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4727 + stub_entry->stub_sec->output_offset
4728 + stub_entry->stub_offset;
4729 branch_offset = veneer_entry_loc - veneered_insn_loc;
4730
4731 abfd = stub_entry->target_section->owner;
4732 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4733 (*_bfd_error_handler)
4734 (_("%B: error: Erratum 835769 stub out "
4735 "of range (input file too large)"), abfd);
4736
4737 target = stub_entry->target_value;
4738 branch_insn = 0x14000000;
4739 branch_offset >>= 2;
4740 branch_offset &= 0x3ffffff;
4741 branch_insn |= branch_offset;
4742 bfd_putl32 (branch_insn, &contents[target]);
4743
4744 return TRUE;
4745 }
4746
4747
4748 static bfd_boolean
4749 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4750 void *in_arg)
4751 {
4752 struct elf_aarch64_stub_hash_entry *stub_entry
4753 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4754 struct erratum_835769_branch_to_stub_data *data
4755 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4756 struct bfd_link_info *info;
4757 struct elf_aarch64_link_hash_table *htab;
4758 bfd_byte *contents;
4759 asection *section;
4760 bfd *abfd;
4761 bfd_vma place;
4762 uint32_t insn;
4763
4764 info = data->info;
4765 contents = data->contents;
4766 section = data->output_section;
4767
4768 htab = elf_aarch64_hash_table (info);
4769
4770 if (stub_entry->target_section != section
4771 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4772 return TRUE;
4773
4774 insn = bfd_getl32 (contents + stub_entry->target_value);
4775 bfd_putl32 (insn,
4776 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4777
4778 place = (section->output_section->vma + section->output_offset
4779 + stub_entry->adrp_offset);
4780 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4781
4782 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4783 abort ();
4784
4785 bfd_signed_vma imm =
4786 (_bfd_aarch64_sign_extend
4787 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4788 - (place & 0xfff));
4789
4790 if (htab->fix_erratum_843419_adr
4791 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4792 {
4793 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4794 | AARCH64_RT (insn));
4795 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4796 }
4797 else
4798 {
4799 bfd_vma veneered_insn_loc;
4800 bfd_vma veneer_entry_loc;
4801 bfd_signed_vma branch_offset;
4802 uint32_t branch_insn;
4803
4804 veneered_insn_loc = stub_entry->target_section->output_section->vma
4805 + stub_entry->target_section->output_offset
4806 + stub_entry->target_value;
4807 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4808 + stub_entry->stub_sec->output_offset
4809 + stub_entry->stub_offset;
4810 branch_offset = veneer_entry_loc - veneered_insn_loc;
4811
4812 abfd = stub_entry->target_section->owner;
4813 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4814 (*_bfd_error_handler)
4815 (_("%B: error: Erratum 843419 stub out "
4816 "of range (input file too large)"), abfd);
4817
4818 branch_insn = 0x14000000;
4819 branch_offset >>= 2;
4820 branch_offset &= 0x3ffffff;
4821 branch_insn |= branch_offset;
4822 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4823 }
4824 return TRUE;
4825 }
4826
4827
4828 static bfd_boolean
4829 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4830 struct bfd_link_info *link_info,
4831 asection *sec,
4832 bfd_byte *contents)
4833
4834 {
4835 struct elf_aarch64_link_hash_table *globals =
4836 elf_aarch64_hash_table (link_info);
4837
4838 if (globals == NULL)
4839 return FALSE;
4840
4841 /* Fix code to point to erratum 835769 stubs. */
4842 if (globals->fix_erratum_835769)
4843 {
4844 struct erratum_835769_branch_to_stub_data data;
4845
4846 data.info = link_info;
4847 data.output_section = sec;
4848 data.contents = contents;
4849 bfd_hash_traverse (&globals->stub_hash_table,
4850 make_branch_to_erratum_835769_stub, &data);
4851 }
4852
4853 if (globals->fix_erratum_843419)
4854 {
4855 struct erratum_835769_branch_to_stub_data data;
4856
4857 data.info = link_info;
4858 data.output_section = sec;
4859 data.contents = contents;
4860 bfd_hash_traverse (&globals->stub_hash_table,
4861 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4862 }
4863
4864 return FALSE;
4865 }
4866
4867 /* Perform a relocation as part of a final link. */
4868 static bfd_reloc_status_type
4869 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4870 bfd *input_bfd,
4871 bfd *output_bfd,
4872 asection *input_section,
4873 bfd_byte *contents,
4874 Elf_Internal_Rela *rel,
4875 bfd_vma value,
4876 struct bfd_link_info *info,
4877 asection *sym_sec,
4878 struct elf_link_hash_entry *h,
4879 bfd_boolean *unresolved_reloc_p,
4880 bfd_boolean save_addend,
4881 bfd_vma *saved_addend,
4882 Elf_Internal_Sym *sym)
4883 {
4884 Elf_Internal_Shdr *symtab_hdr;
4885 unsigned int r_type = howto->type;
4886 bfd_reloc_code_real_type bfd_r_type
4887 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4888 bfd_reloc_code_real_type new_bfd_r_type;
4889 unsigned long r_symndx;
4890 bfd_byte *hit_data = contents + rel->r_offset;
4891 bfd_vma place, off;
4892 bfd_signed_vma signed_addend;
4893 struct elf_aarch64_link_hash_table *globals;
4894 bfd_boolean weak_undef_p;
4895 asection *base_got;
4896
4897 globals = elf_aarch64_hash_table (info);
4898
4899 symtab_hdr = &elf_symtab_hdr (input_bfd);
4900
4901 BFD_ASSERT (is_aarch64_elf (input_bfd));
4902
4903 r_symndx = ELFNN_R_SYM (rel->r_info);
4904
4905 /* It is possible to have linker relaxations on some TLS access
4906 models. Update our information here. */
4907 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4908 if (new_bfd_r_type != bfd_r_type)
4909 {
4910 bfd_r_type = new_bfd_r_type;
4911 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4912 BFD_ASSERT (howto != NULL);
4913 r_type = howto->type;
4914 }
4915
4916 place = input_section->output_section->vma
4917 + input_section->output_offset + rel->r_offset;
4918
4919 /* Get addend, accumulating the addend for consecutive relocs
4920 which refer to the same offset. */
4921 signed_addend = saved_addend ? *saved_addend : 0;
4922 signed_addend += rel->r_addend;
4923
4924 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4925 : bfd_is_und_section (sym_sec));
4926
4927 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4928 it here if it is defined in a non-shared object. */
4929 if (h != NULL
4930 && h->type == STT_GNU_IFUNC
4931 && h->def_regular)
4932 {
4933 asection *plt;
4934 const char *name;
4935 bfd_vma addend = 0;
4936
4937 if ((input_section->flags & SEC_ALLOC) == 0
4938 || h->plt.offset == (bfd_vma) -1)
4939 abort ();
4940
4941 /* STT_GNU_IFUNC symbol must go through PLT. */
4942 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4943 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4944
4945 switch (bfd_r_type)
4946 {
4947 default:
4948 if (h->root.root.string)
4949 name = h->root.root.string;
4950 else
4951 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4952 NULL);
4953 (*_bfd_error_handler)
4954 (_("%B: relocation %s against STT_GNU_IFUNC "
4955 "symbol `%s' isn't handled by %s"), input_bfd,
4956 howto->name, name, __FUNCTION__);
4957 bfd_set_error (bfd_error_bad_value);
4958 return FALSE;
4959
4960 case BFD_RELOC_AARCH64_NN:
4961 if (rel->r_addend != 0)
4962 {
4963 if (h->root.root.string)
4964 name = h->root.root.string;
4965 else
4966 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4967 sym, NULL);
4968 (*_bfd_error_handler)
4969 (_("%B: relocation %s against STT_GNU_IFUNC "
4970 "symbol `%s' has non-zero addend: %d"),
4971 input_bfd, howto->name, name, rel->r_addend);
4972 bfd_set_error (bfd_error_bad_value);
4973 return FALSE;
4974 }
4975
4976 /* Generate dynamic relocation only when there is a
4977 non-GOT reference in a shared object. */
4978 if (bfd_link_pic (info) && h->non_got_ref)
4979 {
4980 Elf_Internal_Rela outrel;
4981 asection *sreloc;
4982
4983 /* Need a dynamic relocation to get the real function
4984 address. */
4985 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4986 info,
4987 input_section,
4988 rel->r_offset);
4989 if (outrel.r_offset == (bfd_vma) -1
4990 || outrel.r_offset == (bfd_vma) -2)
4991 abort ();
4992
4993 outrel.r_offset += (input_section->output_section->vma
4994 + input_section->output_offset);
4995
4996 if (h->dynindx == -1
4997 || h->forced_local
4998 || bfd_link_executable (info))
4999 {
5000 /* This symbol is resolved locally. */
5001 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5002 outrel.r_addend = (h->root.u.def.value
5003 + h->root.u.def.section->output_section->vma
5004 + h->root.u.def.section->output_offset);
5005 }
5006 else
5007 {
5008 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5009 outrel.r_addend = 0;
5010 }
5011
5012 sreloc = globals->root.irelifunc;
5013 elf_append_rela (output_bfd, sreloc, &outrel);
5014
5015 /* If this reloc is against an external symbol, we
5016 do not want to fiddle with the addend. Otherwise,
5017 we need to include the symbol value so that it
5018 becomes an addend for the dynamic reloc. For an
5019 internal symbol, we have updated addend. */
5020 return bfd_reloc_ok;
5021 }
5022 /* FALLTHROUGH */
5023 case BFD_RELOC_AARCH64_CALL26:
5024 case BFD_RELOC_AARCH64_JUMP26:
5025 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5026 signed_addend,
5027 weak_undef_p);
5028 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5029 howto, value);
5030 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5031 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5032 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5033 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5034 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5035 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5036 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5037 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5038 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5039 base_got = globals->root.sgot;
5040 off = h->got.offset;
5041
5042 if (base_got == NULL)
5043 abort ();
5044
5045 if (off == (bfd_vma) -1)
5046 {
5047 bfd_vma plt_index;
5048
5049 /* We can't use h->got.offset here to save state, or
5050 even just remember the offset, as finish_dynamic_symbol
5051 would use that as offset into .got. */
5052
5053 if (globals->root.splt != NULL)
5054 {
5055 plt_index = ((h->plt.offset - globals->plt_header_size) /
5056 globals->plt_entry_size);
5057 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5058 base_got = globals->root.sgotplt;
5059 }
5060 else
5061 {
5062 plt_index = h->plt.offset / globals->plt_entry_size;
5063 off = plt_index * GOT_ENTRY_SIZE;
5064 base_got = globals->root.igotplt;
5065 }
5066
5067 if (h->dynindx == -1
5068 || h->forced_local
5069 || info->symbolic)
5070 {
5071 /* This references the local definition. We must
5072 initialize this entry in the global offset table.
5073 Since the offset must always be a multiple of 8,
5074 we use the least significant bit to record
5075 whether we have initialized it already.
5076
5077 When doing a dynamic link, we create a .rela.got
5078 relocation entry to initialize the value. This
5079 is done in the finish_dynamic_symbol routine. */
5080 if ((off & 1) != 0)
5081 off &= ~1;
5082 else
5083 {
5084 bfd_put_NN (output_bfd, value,
5085 base_got->contents + off);
5086 /* Note that this is harmless as -1 | 1 still is -1. */
5087 h->got.offset |= 1;
5088 }
5089 }
5090 value = (base_got->output_section->vma
5091 + base_got->output_offset + off);
5092 }
5093 else
5094 value = aarch64_calculate_got_entry_vma (h, globals, info,
5095 value, output_bfd,
5096 unresolved_reloc_p);
5097
5098 switch (bfd_r_type)
5099 {
5100 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5101 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5102 addend = (globals->root.sgot->output_section->vma
5103 + globals->root.sgot->output_offset);
5104 break;
5105 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5106 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5107 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5108 value = (value - globals->root.sgot->output_section->vma
5109 - globals->root.sgot->output_offset);
5110 default:
5111 break;
5112 }
5113
5114 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5115 addend, weak_undef_p);
5116 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5117 case BFD_RELOC_AARCH64_ADD_LO12:
5118 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5119 break;
5120 }
5121 }
5122
5123 switch (bfd_r_type)
5124 {
5125 case BFD_RELOC_AARCH64_NONE:
5126 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5127 *unresolved_reloc_p = FALSE;
5128 return bfd_reloc_ok;
5129
5130 case BFD_RELOC_AARCH64_NN:
5131
5132 /* When generating a shared object or relocatable executable, these
5133 relocations are copied into the output file to be resolved at
5134 run time. */
5135 if (((bfd_link_pic (info) == TRUE)
5136 || globals->root.is_relocatable_executable)
5137 && (input_section->flags & SEC_ALLOC)
5138 && (h == NULL
5139 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5140 || h->root.type != bfd_link_hash_undefweak))
5141 {
5142 Elf_Internal_Rela outrel;
5143 bfd_byte *loc;
5144 bfd_boolean skip, relocate;
5145 asection *sreloc;
5146
5147 *unresolved_reloc_p = FALSE;
5148
5149 skip = FALSE;
5150 relocate = FALSE;
5151
5152 outrel.r_addend = signed_addend;
5153 outrel.r_offset =
5154 _bfd_elf_section_offset (output_bfd, info, input_section,
5155 rel->r_offset);
5156 if (outrel.r_offset == (bfd_vma) - 1)
5157 skip = TRUE;
5158 else if (outrel.r_offset == (bfd_vma) - 2)
5159 {
5160 skip = TRUE;
5161 relocate = TRUE;
5162 }
5163
5164 outrel.r_offset += (input_section->output_section->vma
5165 + input_section->output_offset);
5166
5167 if (skip)
5168 memset (&outrel, 0, sizeof outrel);
5169 else if (h != NULL
5170 && h->dynindx != -1
5171 && (!bfd_link_pic (info)
5172 || !SYMBOLIC_BIND (info, h)
5173 || !h->def_regular))
5174 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5175 else
5176 {
5177 int symbol;
5178
5179 /* On SVR4-ish systems, the dynamic loader cannot
5180 relocate the text and data segments independently,
5181 so the symbol does not matter. */
5182 symbol = 0;
5183 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5184 outrel.r_addend += value;
5185 }
5186
5187 sreloc = elf_section_data (input_section)->sreloc;
5188 if (sreloc == NULL || sreloc->contents == NULL)
5189 return bfd_reloc_notsupported;
5190
5191 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5192 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5193
5194 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5195 {
5196 /* Sanity to check that we have previously allocated
5197 sufficient space in the relocation section for the
5198 number of relocations we actually want to emit. */
5199 abort ();
5200 }
5201
5202 /* If this reloc is against an external symbol, we do not want to
5203 fiddle with the addend. Otherwise, we need to include the symbol
5204 value so that it becomes an addend for the dynamic reloc. */
5205 if (!relocate)
5206 return bfd_reloc_ok;
5207
5208 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5209 contents, rel->r_offset, value,
5210 signed_addend);
5211 }
5212 else
5213 value += signed_addend;
5214 break;
5215
5216 case BFD_RELOC_AARCH64_CALL26:
5217 case BFD_RELOC_AARCH64_JUMP26:
5218 {
5219 asection *splt = globals->root.splt;
5220 bfd_boolean via_plt_p =
5221 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5222
5223 /* A call to an undefined weak symbol is converted to a jump to
5224 the next instruction unless a PLT entry will be created.
5225 The jump to the next instruction is optimized as a NOP.
5226 Do the same for local undefined symbols. */
5227 if (weak_undef_p && ! via_plt_p)
5228 {
5229 bfd_putl32 (INSN_NOP, hit_data);
5230 return bfd_reloc_ok;
5231 }
5232
5233 /* If the call goes through a PLT entry, make sure to
5234 check distance to the right destination address. */
5235 if (via_plt_p)
5236 value = (splt->output_section->vma
5237 + splt->output_offset + h->plt.offset);
5238
5239 /* Check if a stub has to be inserted because the destination
5240 is too far away. */
5241 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5242 if (! aarch64_valid_branch_p (value, place))
5243 /* The target is out of reach, so redirect the branch to
5244 the local stub for this function. */
5245 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5246 rel, globals);
5247 if (stub_entry != NULL)
5248 value = (stub_entry->stub_offset
5249 + stub_entry->stub_sec->output_offset
5250 + stub_entry->stub_sec->output_section->vma);
5251 }
5252 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5253 signed_addend, weak_undef_p);
5254 *unresolved_reloc_p = FALSE;
5255 break;
5256
5257 case BFD_RELOC_AARCH64_16_PCREL:
5258 case BFD_RELOC_AARCH64_32_PCREL:
5259 case BFD_RELOC_AARCH64_64_PCREL:
5260 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5261 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5262 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5263 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5264 if (bfd_link_pic (info)
5265 && (input_section->flags & SEC_ALLOC) != 0
5266 && (input_section->flags & SEC_READONLY) != 0
5267 && h != NULL
5268 && !h->def_regular)
5269 {
5270 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5271
5272 (*_bfd_error_handler)
5273 (_("%B: relocation %s against external symbol `%s' can not be used"
5274 " when making a shared object; recompile with -fPIC"),
5275 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5276 h->root.root.string);
5277 bfd_set_error (bfd_error_bad_value);
5278 return FALSE;
5279 }
5280
5281 case BFD_RELOC_AARCH64_16:
5282 #if ARCH_SIZE == 64
5283 case BFD_RELOC_AARCH64_32:
5284 #endif
5285 case BFD_RELOC_AARCH64_ADD_LO12:
5286 case BFD_RELOC_AARCH64_BRANCH19:
5287 case BFD_RELOC_AARCH64_LDST128_LO12:
5288 case BFD_RELOC_AARCH64_LDST16_LO12:
5289 case BFD_RELOC_AARCH64_LDST32_LO12:
5290 case BFD_RELOC_AARCH64_LDST64_LO12:
5291 case BFD_RELOC_AARCH64_LDST8_LO12:
5292 case BFD_RELOC_AARCH64_MOVW_G0:
5293 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5294 case BFD_RELOC_AARCH64_MOVW_G0_S:
5295 case BFD_RELOC_AARCH64_MOVW_G1:
5296 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5297 case BFD_RELOC_AARCH64_MOVW_G1_S:
5298 case BFD_RELOC_AARCH64_MOVW_G2:
5299 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5300 case BFD_RELOC_AARCH64_MOVW_G2_S:
5301 case BFD_RELOC_AARCH64_MOVW_G3:
5302 case BFD_RELOC_AARCH64_TSTBR14:
5303 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5304 signed_addend, weak_undef_p);
5305 break;
5306
5307 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5308 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5309 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5310 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5311 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5312 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5313 if (globals->root.sgot == NULL)
5314 BFD_ASSERT (h != NULL);
5315
5316 if (h != NULL)
5317 {
5318 bfd_vma addend = 0;
5319 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5320 output_bfd,
5321 unresolved_reloc_p);
5322 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5323 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5324 addend = (globals->root.sgot->output_section->vma
5325 + globals->root.sgot->output_offset);
5326 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5327 addend, weak_undef_p);
5328 }
5329 else
5330 {
5331 bfd_vma addend = 0;
5332 struct elf_aarch64_local_symbol *locals
5333 = elf_aarch64_locals (input_bfd);
5334
5335 if (locals == NULL)
5336 {
5337 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5338 (*_bfd_error_handler)
5339 (_("%B: Local symbol descriptor table be NULL when applying "
5340 "relocation %s against local symbol"),
5341 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5342 abort ();
5343 }
5344
5345 off = symbol_got_offset (input_bfd, h, r_symndx);
5346 base_got = globals->root.sgot;
5347 bfd_vma got_entry_addr = (base_got->output_section->vma
5348 + base_got->output_offset + off);
5349
5350 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5351 {
5352 bfd_put_64 (output_bfd, value, base_got->contents + off);
5353
5354 if (bfd_link_pic (info))
5355 {
5356 asection *s;
5357 Elf_Internal_Rela outrel;
5358
5359 /* For local symbol, we have done absolute relocation in static
5360 linking stageh. While for share library, we need to update
5361 the content of GOT entry according to the share objects
5362 loading base address. So we need to generate a
5363 R_AARCH64_RELATIVE reloc for dynamic linker. */
5364 s = globals->root.srelgot;
5365 if (s == NULL)
5366 abort ();
5367
5368 outrel.r_offset = got_entry_addr;
5369 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5370 outrel.r_addend = value;
5371 elf_append_rela (output_bfd, s, &outrel);
5372 }
5373
5374 symbol_got_offset_mark (input_bfd, h, r_symndx);
5375 }
5376
5377 /* Update the relocation value to GOT entry addr as we have transformed
5378 the direct data access into indirect data access through GOT. */
5379 value = got_entry_addr;
5380
5381 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5382 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5383 addend = base_got->output_section->vma + base_got->output_offset;
5384
5385 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5386 addend, weak_undef_p);
5387 }
5388
5389 break;
5390
5391 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5392 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5393 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5394 if (h != NULL)
5395 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5396 output_bfd,
5397 unresolved_reloc_p);
5398 else
5399 {
5400 struct elf_aarch64_local_symbol *locals
5401 = elf_aarch64_locals (input_bfd);
5402
5403 if (locals == NULL)
5404 {
5405 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5406 (*_bfd_error_handler)
5407 (_("%B: Local symbol descriptor table be NULL when applying "
5408 "relocation %s against local symbol"),
5409 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5410 abort ();
5411 }
5412
5413 off = symbol_got_offset (input_bfd, h, r_symndx);
5414 base_got = globals->root.sgot;
5415 if (base_got == NULL)
5416 abort ();
5417
5418 bfd_vma got_entry_addr = (base_got->output_section->vma
5419 + base_got->output_offset + off);
5420
5421 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5422 {
5423 bfd_put_64 (output_bfd, value, base_got->contents + off);
5424
5425 if (bfd_link_pic (info))
5426 {
5427 asection *s;
5428 Elf_Internal_Rela outrel;
5429
5430 /* For local symbol, we have done absolute relocation in static
5431 linking stage. While for share library, we need to update
5432 the content of GOT entry according to the share objects
5433 loading base address. So we need to generate a
5434 R_AARCH64_RELATIVE reloc for dynamic linker. */
5435 s = globals->root.srelgot;
5436 if (s == NULL)
5437 abort ();
5438
5439 outrel.r_offset = got_entry_addr;
5440 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5441 outrel.r_addend = value;
5442 elf_append_rela (output_bfd, s, &outrel);
5443 }
5444
5445 symbol_got_offset_mark (input_bfd, h, r_symndx);
5446 }
5447 }
5448
5449 /* Update the relocation value to GOT entry addr as we have transformed
5450 the direct data access into indirect data access through GOT. */
5451 value = symbol_got_offset (input_bfd, h, r_symndx);
5452 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5453 0, weak_undef_p);
5454 *unresolved_reloc_p = FALSE;
5455 break;
5456
5457 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5458 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5459 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5460 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5461 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5462 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5463 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5464 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5465 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5466 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5467 if (globals->root.sgot == NULL)
5468 return bfd_reloc_notsupported;
5469
5470 value = (symbol_got_offset (input_bfd, h, r_symndx)
5471 + globals->root.sgot->output_section->vma
5472 + globals->root.sgot->output_offset);
5473
5474 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5475 0, weak_undef_p);
5476 *unresolved_reloc_p = FALSE;
5477 break;
5478
5479 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5480 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5481 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5482 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5483 if (globals->root.sgot == NULL)
5484 return bfd_reloc_notsupported;
5485
5486 value = symbol_got_offset (input_bfd, h, r_symndx);
5487 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5488 0, weak_undef_p);
5489 *unresolved_reloc_p = FALSE;
5490 break;
5491
5492 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5493 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5494 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5495 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5496 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5497 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5498 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5499 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5500 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5501 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5502 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5503 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5504 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5505 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5506 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5507 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5508 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5509 signed_addend - dtpoff_base (info),
5510 weak_undef_p);
5511 break;
5512
5513 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5514 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5515 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5516 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5517 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5518 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5519 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5520 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5521 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5522 signed_addend - tpoff_base (info),
5523 weak_undef_p);
5524 *unresolved_reloc_p = FALSE;
5525 break;
5526
5527 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5528 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5529 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5530 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5531 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5532 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5533 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5534 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5535 if (globals->root.sgot == NULL)
5536 return bfd_reloc_notsupported;
5537 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5538 + globals->root.sgotplt->output_section->vma
5539 + globals->root.sgotplt->output_offset
5540 + globals->sgotplt_jump_table_size);
5541
5542 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5543 0, weak_undef_p);
5544 *unresolved_reloc_p = FALSE;
5545 break;
5546
5547 default:
5548 return bfd_reloc_notsupported;
5549 }
5550
5551 if (saved_addend)
5552 *saved_addend = value;
5553
5554 /* Only apply the final relocation in a sequence. */
5555 if (save_addend)
5556 return bfd_reloc_continue;
5557
5558 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5559 howto, value);
5560 }
5561
5562 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5563 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5564 link.
5565
5566 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5567 is to then call final_link_relocate. Return other values in the
5568 case of error. */
5569
5570 static bfd_reloc_status_type
5571 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5572 bfd *input_bfd, bfd_byte *contents,
5573 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5574 {
5575 bfd_boolean is_local = h == NULL;
5576 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5577 unsigned long insn;
5578
5579 BFD_ASSERT (globals && input_bfd && contents && rel);
5580
5581 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5582 {
5583 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5584 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5585 if (is_local)
5586 {
5587 /* GD->LE relaxation:
5588 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5589 or
5590 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5591 */
5592 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5593 return bfd_reloc_continue;
5594 }
5595 else
5596 {
5597 /* GD->IE relaxation:
5598 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5599 or
5600 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5601 */
5602 return bfd_reloc_continue;
5603 }
5604
5605 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5606 BFD_ASSERT (0);
5607 break;
5608
5609 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5610 if (is_local)
5611 {
5612 /* Tiny TLSDESC->LE relaxation:
5613 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5614 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5615 .tlsdesccall var
5616 blr x1 => nop
5617 */
5618 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5619 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5620
5621 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5622 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5623 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5624
5625 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5626 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5627 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5628 return bfd_reloc_continue;
5629 }
5630 else
5631 {
5632 /* Tiny TLSDESC->IE relaxation:
5633 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5634 adr x0, :tlsdesc:var => nop
5635 .tlsdesccall var
5636 blr x1 => nop
5637 */
5638 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5639 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5640
5641 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5642 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5643
5644 bfd_putl32 (0x58000000, contents + rel->r_offset);
5645 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5646 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5647 return bfd_reloc_continue;
5648 }
5649
5650 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5651 if (is_local)
5652 {
5653 /* Tiny GD->LE relaxation:
5654 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5655 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5656 nop => add x0, x0, #:tprel_lo12_nc:x
5657 */
5658
5659 /* First kill the tls_get_addr reloc on the bl instruction. */
5660 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5661
5662 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5663 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5664 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5665
5666 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5667 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5668 rel[1].r_offset = rel->r_offset + 8;
5669
5670 /* Move the current relocation to the second instruction in
5671 the sequence. */
5672 rel->r_offset += 4;
5673 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5674 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5675 return bfd_reloc_continue;
5676 }
5677 else
5678 {
5679 /* Tiny GD->IE relaxation:
5680 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5681 bl __tls_get_addr => mrs x1, tpidr_el0
5682 nop => add x0, x0, x1
5683 */
5684
5685 /* First kill the tls_get_addr reloc on the bl instruction. */
5686 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5687 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5688
5689 bfd_putl32 (0x58000000, contents + rel->r_offset);
5690 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5691 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5692 return bfd_reloc_continue;
5693 }
5694
5695 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5696 return bfd_reloc_continue;
5697
5698 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5699 if (is_local)
5700 {
5701 /* GD->LE relaxation:
5702 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5703 */
5704 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5705 return bfd_reloc_continue;
5706 }
5707 else
5708 {
5709 /* GD->IE relaxation:
5710 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5711 */
5712 insn = bfd_getl32 (contents + rel->r_offset);
5713 insn &= 0xffffffe0;
5714 bfd_putl32 (insn, contents + rel->r_offset);
5715 return bfd_reloc_continue;
5716 }
5717
5718 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5719 if (is_local)
5720 {
5721 /* GD->LE relaxation
5722 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5723 bl __tls_get_addr => mrs x1, tpidr_el0
5724 nop => add x0, x1, x0
5725 */
5726
5727 /* First kill the tls_get_addr reloc on the bl instruction. */
5728 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5729 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5730
5731 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5732 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5733 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5734 return bfd_reloc_continue;
5735 }
5736 else
5737 {
5738 /* GD->IE relaxation
5739 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5740 BL __tls_get_addr => mrs x1, tpidr_el0
5741 R_AARCH64_CALL26
5742 NOP => add x0, x1, x0
5743 */
5744
5745 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5746
5747 /* Remove the relocation on the BL instruction. */
5748 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5749
5750 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5751
5752 /* We choose to fixup the BL and NOP instructions using the
5753 offset from the second relocation to allow flexibility in
5754 scheduling instructions between the ADD and BL. */
5755 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5756 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5757 return bfd_reloc_continue;
5758 }
5759
5760 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5761 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5762 /* GD->IE/LE relaxation:
5763 add x0, x0, #:tlsdesc_lo12:var => nop
5764 blr xd => nop
5765 */
5766 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5767 return bfd_reloc_ok;
5768
5769 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5770 /* IE->LE relaxation:
5771 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5772 */
5773 if (is_local)
5774 {
5775 insn = bfd_getl32 (contents + rel->r_offset);
5776 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5777 }
5778 return bfd_reloc_continue;
5779
5780 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5781 /* IE->LE relaxation:
5782 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5783 */
5784 if (is_local)
5785 {
5786 insn = bfd_getl32 (contents + rel->r_offset);
5787 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5788 }
5789 return bfd_reloc_continue;
5790
5791 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5792 /* LD->LE relaxation (tiny):
5793 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5794 bl __tls_get_addr => add x0, x0, TCB_SIZE
5795 */
5796 if (is_local)
5797 {
5798 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5799 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5800 /* No need of CALL26 relocation for tls_get_addr. */
5801 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5802 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5803 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5804 return bfd_reloc_ok;
5805 }
5806 return bfd_reloc_continue;
5807
5808 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5809 /* LD->LE relaxation (small):
5810 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5811 */
5812 if (is_local)
5813 {
5814 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5815 return bfd_reloc_ok;
5816 }
5817 return bfd_reloc_continue;
5818
5819 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5820 /* LD->LE relaxation (small):
5821 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5822 bl __tls_get_addr => nop
5823 */
5824 if (is_local)
5825 {
5826 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5827 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5828 /* No need of CALL26 relocation for tls_get_addr. */
5829 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5830 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5831 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5832 return bfd_reloc_ok;
5833 }
5834 return bfd_reloc_continue;
5835
5836 default:
5837 return bfd_reloc_continue;
5838 }
5839
5840 return bfd_reloc_ok;
5841 }
5842
5843 /* Relocate an AArch64 ELF section. */
5844
5845 static bfd_boolean
5846 elfNN_aarch64_relocate_section (bfd *output_bfd,
5847 struct bfd_link_info *info,
5848 bfd *input_bfd,
5849 asection *input_section,
5850 bfd_byte *contents,
5851 Elf_Internal_Rela *relocs,
5852 Elf_Internal_Sym *local_syms,
5853 asection **local_sections)
5854 {
5855 Elf_Internal_Shdr *symtab_hdr;
5856 struct elf_link_hash_entry **sym_hashes;
5857 Elf_Internal_Rela *rel;
5858 Elf_Internal_Rela *relend;
5859 const char *name;
5860 struct elf_aarch64_link_hash_table *globals;
5861 bfd_boolean save_addend = FALSE;
5862 bfd_vma addend = 0;
5863
5864 globals = elf_aarch64_hash_table (info);
5865
5866 symtab_hdr = &elf_symtab_hdr (input_bfd);
5867 sym_hashes = elf_sym_hashes (input_bfd);
5868
5869 rel = relocs;
5870 relend = relocs + input_section->reloc_count;
5871 for (; rel < relend; rel++)
5872 {
5873 unsigned int r_type;
5874 bfd_reloc_code_real_type bfd_r_type;
5875 bfd_reloc_code_real_type relaxed_bfd_r_type;
5876 reloc_howto_type *howto;
5877 unsigned long r_symndx;
5878 Elf_Internal_Sym *sym;
5879 asection *sec;
5880 struct elf_link_hash_entry *h;
5881 bfd_vma relocation;
5882 bfd_reloc_status_type r;
5883 arelent bfd_reloc;
5884 char sym_type;
5885 bfd_boolean unresolved_reloc = FALSE;
5886 char *error_message = NULL;
5887
5888 r_symndx = ELFNN_R_SYM (rel->r_info);
5889 r_type = ELFNN_R_TYPE (rel->r_info);
5890
5891 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
5892 howto = bfd_reloc.howto;
5893
5894 if (howto == NULL)
5895 {
5896 (*_bfd_error_handler)
5897 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
5898 input_bfd, input_section, r_type);
5899 return FALSE;
5900 }
5901 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
5902
5903 h = NULL;
5904 sym = NULL;
5905 sec = NULL;
5906
5907 if (r_symndx < symtab_hdr->sh_info)
5908 {
5909 sym = local_syms + r_symndx;
5910 sym_type = ELFNN_ST_TYPE (sym->st_info);
5911 sec = local_sections[r_symndx];
5912
5913 /* An object file might have a reference to a local
5914 undefined symbol. This is a daft object file, but we
5915 should at least do something about it. */
5916 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
5917 && bfd_is_und_section (sec)
5918 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
5919 {
5920 if (!info->callbacks->undefined_symbol
5921 (info, bfd_elf_string_from_elf_section
5922 (input_bfd, symtab_hdr->sh_link, sym->st_name),
5923 input_bfd, input_section, rel->r_offset, TRUE))
5924 return FALSE;
5925 }
5926
5927 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
5928
5929 /* Relocate against local STT_GNU_IFUNC symbol. */
5930 if (!bfd_link_relocatable (info)
5931 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
5932 {
5933 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
5934 rel, FALSE);
5935 if (h == NULL)
5936 abort ();
5937
5938 /* Set STT_GNU_IFUNC symbol value. */
5939 h->root.u.def.value = sym->st_value;
5940 h->root.u.def.section = sec;
5941 }
5942 }
5943 else
5944 {
5945 bfd_boolean warned, ignored;
5946
5947 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
5948 r_symndx, symtab_hdr, sym_hashes,
5949 h, sec, relocation,
5950 unresolved_reloc, warned, ignored);
5951
5952 sym_type = h->type;
5953 }
5954
5955 if (sec != NULL && discarded_section (sec))
5956 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
5957 rel, 1, relend, howto, 0, contents);
5958
5959 if (bfd_link_relocatable (info))
5960 continue;
5961
5962 if (h != NULL)
5963 name = h->root.root.string;
5964 else
5965 {
5966 name = (bfd_elf_string_from_elf_section
5967 (input_bfd, symtab_hdr->sh_link, sym->st_name));
5968 if (name == NULL || *name == '\0')
5969 name = bfd_section_name (input_bfd, sec);
5970 }
5971
5972 if (r_symndx != 0
5973 && r_type != R_AARCH64_NONE
5974 && r_type != R_AARCH64_NULL
5975 && (h == NULL
5976 || h->root.type == bfd_link_hash_defined
5977 || h->root.type == bfd_link_hash_defweak)
5978 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
5979 {
5980 (*_bfd_error_handler)
5981 ((sym_type == STT_TLS
5982 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
5983 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
5984 input_bfd,
5985 input_section, (long) rel->r_offset, howto->name, name);
5986 }
5987
5988 /* We relax only if we can see that there can be a valid transition
5989 from a reloc type to another.
5990 We call elfNN_aarch64_final_link_relocate unless we're completely
5991 done, i.e., the relaxation produced the final output we want. */
5992
5993 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
5994 h, r_symndx);
5995 if (relaxed_bfd_r_type != bfd_r_type)
5996 {
5997 bfd_r_type = relaxed_bfd_r_type;
5998 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
5999 BFD_ASSERT (howto != NULL);
6000 r_type = howto->type;
6001 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6002 unresolved_reloc = 0;
6003 }
6004 else
6005 r = bfd_reloc_continue;
6006
6007 /* There may be multiple consecutive relocations for the
6008 same offset. In that case we are supposed to treat the
6009 output of each relocation as the addend for the next. */
6010 if (rel + 1 < relend
6011 && rel->r_offset == rel[1].r_offset
6012 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6013 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6014 save_addend = TRUE;
6015 else
6016 save_addend = FALSE;
6017
6018 if (r == bfd_reloc_continue)
6019 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6020 input_section, contents, rel,
6021 relocation, info, sec,
6022 h, &unresolved_reloc,
6023 save_addend, &addend, sym);
6024
6025 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6026 {
6027 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6028 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6029 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6030 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6031 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6032 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6033 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6034 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6035 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6036 {
6037 bfd_boolean need_relocs = FALSE;
6038 bfd_byte *loc;
6039 int indx;
6040 bfd_vma off;
6041
6042 off = symbol_got_offset (input_bfd, h, r_symndx);
6043 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6044
6045 need_relocs =
6046 (bfd_link_pic (info) || indx != 0) &&
6047 (h == NULL
6048 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6049 || h->root.type != bfd_link_hash_undefweak);
6050
6051 BFD_ASSERT (globals->root.srelgot != NULL);
6052
6053 if (need_relocs)
6054 {
6055 Elf_Internal_Rela rela;
6056 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6057 rela.r_addend = 0;
6058 rela.r_offset = globals->root.sgot->output_section->vma +
6059 globals->root.sgot->output_offset + off;
6060
6061
6062 loc = globals->root.srelgot->contents;
6063 loc += globals->root.srelgot->reloc_count++
6064 * RELOC_SIZE (htab);
6065 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6066
6067 bfd_reloc_code_real_type real_type =
6068 elfNN_aarch64_bfd_reloc_from_type (r_type);
6069
6070 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6071 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6072 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6073 {
6074 /* For local dynamic, don't generate DTPREL in any case.
6075 Initialize the DTPREL slot into zero, so we get module
6076 base address when invoke runtime TLS resolver. */
6077 bfd_put_NN (output_bfd, 0,
6078 globals->root.sgot->contents + off
6079 + GOT_ENTRY_SIZE);
6080 }
6081 else if (indx == 0)
6082 {
6083 bfd_put_NN (output_bfd,
6084 relocation - dtpoff_base (info),
6085 globals->root.sgot->contents + off
6086 + GOT_ENTRY_SIZE);
6087 }
6088 else
6089 {
6090 /* This TLS symbol is global. We emit a
6091 relocation to fixup the tls offset at load
6092 time. */
6093 rela.r_info =
6094 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6095 rela.r_addend = 0;
6096 rela.r_offset =
6097 (globals->root.sgot->output_section->vma
6098 + globals->root.sgot->output_offset + off
6099 + GOT_ENTRY_SIZE);
6100
6101 loc = globals->root.srelgot->contents;
6102 loc += globals->root.srelgot->reloc_count++
6103 * RELOC_SIZE (globals);
6104 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6105 bfd_put_NN (output_bfd, (bfd_vma) 0,
6106 globals->root.sgot->contents + off
6107 + GOT_ENTRY_SIZE);
6108 }
6109 }
6110 else
6111 {
6112 bfd_put_NN (output_bfd, (bfd_vma) 1,
6113 globals->root.sgot->contents + off);
6114 bfd_put_NN (output_bfd,
6115 relocation - dtpoff_base (info),
6116 globals->root.sgot->contents + off
6117 + GOT_ENTRY_SIZE);
6118 }
6119
6120 symbol_got_offset_mark (input_bfd, h, r_symndx);
6121 }
6122 break;
6123
6124 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6125 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6126 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6127 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6128 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6129 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6130 {
6131 bfd_boolean need_relocs = FALSE;
6132 bfd_byte *loc;
6133 int indx;
6134 bfd_vma off;
6135
6136 off = symbol_got_offset (input_bfd, h, r_symndx);
6137
6138 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6139
6140 need_relocs =
6141 (bfd_link_pic (info) || indx != 0) &&
6142 (h == NULL
6143 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6144 || h->root.type != bfd_link_hash_undefweak);
6145
6146 BFD_ASSERT (globals->root.srelgot != NULL);
6147
6148 if (need_relocs)
6149 {
6150 Elf_Internal_Rela rela;
6151
6152 if (indx == 0)
6153 rela.r_addend = relocation - dtpoff_base (info);
6154 else
6155 rela.r_addend = 0;
6156
6157 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6158 rela.r_offset = globals->root.sgot->output_section->vma +
6159 globals->root.sgot->output_offset + off;
6160
6161 loc = globals->root.srelgot->contents;
6162 loc += globals->root.srelgot->reloc_count++
6163 * RELOC_SIZE (htab);
6164
6165 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6166
6167 bfd_put_NN (output_bfd, rela.r_addend,
6168 globals->root.sgot->contents + off);
6169 }
6170 else
6171 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6172 globals->root.sgot->contents + off);
6173
6174 symbol_got_offset_mark (input_bfd, h, r_symndx);
6175 }
6176 break;
6177
6178 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6179 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6180 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6181 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6182 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6183 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6184 {
6185 bfd_boolean need_relocs = FALSE;
6186 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6187 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6188
6189 need_relocs = (h == NULL
6190 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6191 || h->root.type != bfd_link_hash_undefweak);
6192
6193 BFD_ASSERT (globals->root.srelgot != NULL);
6194 BFD_ASSERT (globals->root.sgot != NULL);
6195
6196 if (need_relocs)
6197 {
6198 bfd_byte *loc;
6199 Elf_Internal_Rela rela;
6200 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6201
6202 rela.r_addend = 0;
6203 rela.r_offset = (globals->root.sgotplt->output_section->vma
6204 + globals->root.sgotplt->output_offset
6205 + off + globals->sgotplt_jump_table_size);
6206
6207 if (indx == 0)
6208 rela.r_addend = relocation - dtpoff_base (info);
6209
6210 /* Allocate the next available slot in the PLT reloc
6211 section to hold our R_AARCH64_TLSDESC, the next
6212 available slot is determined from reloc_count,
6213 which we step. But note, reloc_count was
6214 artifically moved down while allocating slots for
6215 real PLT relocs such that all of the PLT relocs
6216 will fit above the initial reloc_count and the
6217 extra stuff will fit below. */
6218 loc = globals->root.srelplt->contents;
6219 loc += globals->root.srelplt->reloc_count++
6220 * RELOC_SIZE (globals);
6221
6222 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6223
6224 bfd_put_NN (output_bfd, (bfd_vma) 0,
6225 globals->root.sgotplt->contents + off +
6226 globals->sgotplt_jump_table_size);
6227 bfd_put_NN (output_bfd, (bfd_vma) 0,
6228 globals->root.sgotplt->contents + off +
6229 globals->sgotplt_jump_table_size +
6230 GOT_ENTRY_SIZE);
6231 }
6232
6233 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6234 }
6235 break;
6236 default:
6237 break;
6238 }
6239
6240 if (!save_addend)
6241 addend = 0;
6242
6243
6244 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6245 because such sections are not SEC_ALLOC and thus ld.so will
6246 not process them. */
6247 if (unresolved_reloc
6248 && !((input_section->flags & SEC_DEBUGGING) != 0
6249 && h->def_dynamic)
6250 && _bfd_elf_section_offset (output_bfd, info, input_section,
6251 +rel->r_offset) != (bfd_vma) - 1)
6252 {
6253 (*_bfd_error_handler)
6254 (_
6255 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6256 input_bfd, input_section, (long) rel->r_offset, howto->name,
6257 h->root.root.string);
6258 return FALSE;
6259 }
6260
6261 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6262 {
6263 bfd_reloc_code_real_type real_r_type
6264 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6265
6266 switch (r)
6267 {
6268 case bfd_reloc_overflow:
6269 if (!(*info->callbacks->reloc_overflow)
6270 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6271 input_bfd, input_section, rel->r_offset))
6272 return FALSE;
6273 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6274 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6275 {
6276 (*info->callbacks->warning)
6277 (info,
6278 _("Too many GOT entries for -fpic, "
6279 "please recompile with -fPIC"),
6280 name, input_bfd, input_section, rel->r_offset);
6281 return FALSE;
6282 }
6283 break;
6284
6285 case bfd_reloc_undefined:
6286 if (!((*info->callbacks->undefined_symbol)
6287 (info, name, input_bfd, input_section,
6288 rel->r_offset, TRUE)))
6289 return FALSE;
6290 break;
6291
6292 case bfd_reloc_outofrange:
6293 error_message = _("out of range");
6294 goto common_error;
6295
6296 case bfd_reloc_notsupported:
6297 error_message = _("unsupported relocation");
6298 goto common_error;
6299
6300 case bfd_reloc_dangerous:
6301 /* error_message should already be set. */
6302 goto common_error;
6303
6304 default:
6305 error_message = _("unknown error");
6306 /* Fall through. */
6307
6308 common_error:
6309 BFD_ASSERT (error_message != NULL);
6310 if (!((*info->callbacks->reloc_dangerous)
6311 (info, error_message, input_bfd, input_section,
6312 rel->r_offset)))
6313 return FALSE;
6314 break;
6315 }
6316 }
6317 }
6318
6319 return TRUE;
6320 }
6321
6322 /* Set the right machine number. */
6323
6324 static bfd_boolean
6325 elfNN_aarch64_object_p (bfd *abfd)
6326 {
6327 #if ARCH_SIZE == 32
6328 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6329 #else
6330 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6331 #endif
6332 return TRUE;
6333 }
6334
6335 /* Function to keep AArch64 specific flags in the ELF header. */
6336
6337 static bfd_boolean
6338 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6339 {
6340 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6341 {
6342 }
6343 else
6344 {
6345 elf_elfheader (abfd)->e_flags = flags;
6346 elf_flags_init (abfd) = TRUE;
6347 }
6348
6349 return TRUE;
6350 }
6351
6352 /* Merge backend specific data from an object file to the output
6353 object file when linking. */
6354
6355 static bfd_boolean
6356 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6357 {
6358 flagword out_flags;
6359 flagword in_flags;
6360 bfd_boolean flags_compatible = TRUE;
6361 asection *sec;
6362
6363 /* Check if we have the same endianess. */
6364 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6365 return FALSE;
6366
6367 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6368 return TRUE;
6369
6370 /* The input BFD must have had its flags initialised. */
6371 /* The following seems bogus to me -- The flags are initialized in
6372 the assembler but I don't think an elf_flags_init field is
6373 written into the object. */
6374 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6375
6376 in_flags = elf_elfheader (ibfd)->e_flags;
6377 out_flags = elf_elfheader (obfd)->e_flags;
6378
6379 if (!elf_flags_init (obfd))
6380 {
6381 /* If the input is the default architecture and had the default
6382 flags then do not bother setting the flags for the output
6383 architecture, instead allow future merges to do this. If no
6384 future merges ever set these flags then they will retain their
6385 uninitialised values, which surprise surprise, correspond
6386 to the default values. */
6387 if (bfd_get_arch_info (ibfd)->the_default
6388 && elf_elfheader (ibfd)->e_flags == 0)
6389 return TRUE;
6390
6391 elf_flags_init (obfd) = TRUE;
6392 elf_elfheader (obfd)->e_flags = in_flags;
6393
6394 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6395 && bfd_get_arch_info (obfd)->the_default)
6396 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6397 bfd_get_mach (ibfd));
6398
6399 return TRUE;
6400 }
6401
6402 /* Identical flags must be compatible. */
6403 if (in_flags == out_flags)
6404 return TRUE;
6405
6406 /* Check to see if the input BFD actually contains any sections. If
6407 not, its flags may not have been initialised either, but it
6408 cannot actually cause any incompatiblity. Do not short-circuit
6409 dynamic objects; their section list may be emptied by
6410 elf_link_add_object_symbols.
6411
6412 Also check to see if there are no code sections in the input.
6413 In this case there is no need to check for code specific flags.
6414 XXX - do we need to worry about floating-point format compatability
6415 in data sections ? */
6416 if (!(ibfd->flags & DYNAMIC))
6417 {
6418 bfd_boolean null_input_bfd = TRUE;
6419 bfd_boolean only_data_sections = TRUE;
6420
6421 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6422 {
6423 if ((bfd_get_section_flags (ibfd, sec)
6424 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6425 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6426 only_data_sections = FALSE;
6427
6428 null_input_bfd = FALSE;
6429 break;
6430 }
6431
6432 if (null_input_bfd || only_data_sections)
6433 return TRUE;
6434 }
6435
6436 return flags_compatible;
6437 }
6438
6439 /* Display the flags field. */
6440
6441 static bfd_boolean
6442 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6443 {
6444 FILE *file = (FILE *) ptr;
6445 unsigned long flags;
6446
6447 BFD_ASSERT (abfd != NULL && ptr != NULL);
6448
6449 /* Print normal ELF private data. */
6450 _bfd_elf_print_private_bfd_data (abfd, ptr);
6451
6452 flags = elf_elfheader (abfd)->e_flags;
6453 /* Ignore init flag - it may not be set, despite the flags field
6454 containing valid data. */
6455
6456 /* xgettext:c-format */
6457 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6458
6459 if (flags)
6460 fprintf (file, _("<Unrecognised flag bits set>"));
6461
6462 fputc ('\n', file);
6463
6464 return TRUE;
6465 }
6466
6467 /* Update the got entry reference counts for the section being removed. */
6468
6469 static bfd_boolean
6470 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6471 struct bfd_link_info *info,
6472 asection *sec,
6473 const Elf_Internal_Rela * relocs)
6474 {
6475 struct elf_aarch64_link_hash_table *htab;
6476 Elf_Internal_Shdr *symtab_hdr;
6477 struct elf_link_hash_entry **sym_hashes;
6478 struct elf_aarch64_local_symbol *locals;
6479 const Elf_Internal_Rela *rel, *relend;
6480
6481 if (bfd_link_relocatable (info))
6482 return TRUE;
6483
6484 htab = elf_aarch64_hash_table (info);
6485
6486 if (htab == NULL)
6487 return FALSE;
6488
6489 elf_section_data (sec)->local_dynrel = NULL;
6490
6491 symtab_hdr = &elf_symtab_hdr (abfd);
6492 sym_hashes = elf_sym_hashes (abfd);
6493
6494 locals = elf_aarch64_locals (abfd);
6495
6496 relend = relocs + sec->reloc_count;
6497 for (rel = relocs; rel < relend; rel++)
6498 {
6499 unsigned long r_symndx;
6500 unsigned int r_type;
6501 struct elf_link_hash_entry *h = NULL;
6502
6503 r_symndx = ELFNN_R_SYM (rel->r_info);
6504
6505 if (r_symndx >= symtab_hdr->sh_info)
6506 {
6507
6508 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6509 while (h->root.type == bfd_link_hash_indirect
6510 || h->root.type == bfd_link_hash_warning)
6511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6512 }
6513 else
6514 {
6515 Elf_Internal_Sym *isym;
6516
6517 /* A local symbol. */
6518 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6519 abfd, r_symndx);
6520
6521 /* Check relocation against local STT_GNU_IFUNC symbol. */
6522 if (isym != NULL
6523 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6524 {
6525 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6526 if (h == NULL)
6527 abort ();
6528 }
6529 }
6530
6531 if (h)
6532 {
6533 struct elf_aarch64_link_hash_entry *eh;
6534 struct elf_dyn_relocs **pp;
6535 struct elf_dyn_relocs *p;
6536
6537 eh = (struct elf_aarch64_link_hash_entry *) h;
6538
6539 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6540 if (p->sec == sec)
6541 {
6542 /* Everything must go for SEC. */
6543 *pp = p->next;
6544 break;
6545 }
6546 }
6547
6548 r_type = ELFNN_R_TYPE (rel->r_info);
6549 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6550 {
6551 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6552 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6553 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6554 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6555 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6556 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6557 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6558 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6559 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6560 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6561 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6562 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6563 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6564 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6565 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6566 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6567 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6568 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6569 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6570 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6571 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6572 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6573 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6574 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6575 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6576 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6577 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6578 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6579 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6580 if (h != NULL)
6581 {
6582 if (h->got.refcount > 0)
6583 h->got.refcount -= 1;
6584
6585 if (h->type == STT_GNU_IFUNC)
6586 {
6587 if (h->plt.refcount > 0)
6588 h->plt.refcount -= 1;
6589 }
6590 }
6591 else if (locals != NULL)
6592 {
6593 if (locals[r_symndx].got_refcount > 0)
6594 locals[r_symndx].got_refcount -= 1;
6595 }
6596 break;
6597
6598 case BFD_RELOC_AARCH64_CALL26:
6599 case BFD_RELOC_AARCH64_JUMP26:
6600 /* If this is a local symbol then we resolve it
6601 directly without creating a PLT entry. */
6602 if (h == NULL)
6603 continue;
6604
6605 if (h->plt.refcount > 0)
6606 h->plt.refcount -= 1;
6607 break;
6608
6609 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6610 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6611 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6612 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6613 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6614 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6615 case BFD_RELOC_AARCH64_MOVW_G3:
6616 case BFD_RELOC_AARCH64_NN:
6617 if (h != NULL && bfd_link_executable (info))
6618 {
6619 if (h->plt.refcount > 0)
6620 h->plt.refcount -= 1;
6621 }
6622 break;
6623
6624 default:
6625 break;
6626 }
6627 }
6628
6629 return TRUE;
6630 }
6631
6632 /* Adjust a symbol defined by a dynamic object and referenced by a
6633 regular object. The current definition is in some section of the
6634 dynamic object, but we're not including those sections. We have to
6635 change the definition to something the rest of the link can
6636 understand. */
6637
6638 static bfd_boolean
6639 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6640 struct elf_link_hash_entry *h)
6641 {
6642 struct elf_aarch64_link_hash_table *htab;
6643 asection *s;
6644
6645 /* If this is a function, put it in the procedure linkage table. We
6646 will fill in the contents of the procedure linkage table later,
6647 when we know the address of the .got section. */
6648 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6649 {
6650 if (h->plt.refcount <= 0
6651 || (h->type != STT_GNU_IFUNC
6652 && (SYMBOL_CALLS_LOCAL (info, h)
6653 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6654 && h->root.type == bfd_link_hash_undefweak))))
6655 {
6656 /* This case can occur if we saw a CALL26 reloc in
6657 an input file, but the symbol wasn't referred to
6658 by a dynamic object or all references were
6659 garbage collected. In which case we can end up
6660 resolving. */
6661 h->plt.offset = (bfd_vma) - 1;
6662 h->needs_plt = 0;
6663 }
6664
6665 return TRUE;
6666 }
6667 else
6668 /* Otherwise, reset to -1. */
6669 h->plt.offset = (bfd_vma) - 1;
6670
6671
6672 /* If this is a weak symbol, and there is a real definition, the
6673 processor independent code will have arranged for us to see the
6674 real definition first, and we can just use the same value. */
6675 if (h->u.weakdef != NULL)
6676 {
6677 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6678 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6679 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6680 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6681 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6682 h->non_got_ref = h->u.weakdef->non_got_ref;
6683 return TRUE;
6684 }
6685
6686 /* If we are creating a shared library, we must presume that the
6687 only references to the symbol are via the global offset table.
6688 For such cases we need not do anything here; the relocations will
6689 be handled correctly by relocate_section. */
6690 if (bfd_link_pic (info))
6691 return TRUE;
6692
6693 /* If there are no references to this symbol that do not use the
6694 GOT, we don't need to generate a copy reloc. */
6695 if (!h->non_got_ref)
6696 return TRUE;
6697
6698 /* If -z nocopyreloc was given, we won't generate them either. */
6699 if (info->nocopyreloc)
6700 {
6701 h->non_got_ref = 0;
6702 return TRUE;
6703 }
6704
6705 /* We must allocate the symbol in our .dynbss section, which will
6706 become part of the .bss section of the executable. There will be
6707 an entry for this symbol in the .dynsym section. The dynamic
6708 object will contain position independent code, so all references
6709 from the dynamic object to this symbol will go through the global
6710 offset table. The dynamic linker will use the .dynsym entry to
6711 determine the address it must put in the global offset table, so
6712 both the dynamic object and the regular object will refer to the
6713 same memory location for the variable. */
6714
6715 htab = elf_aarch64_hash_table (info);
6716
6717 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6718 to copy the initial value out of the dynamic object and into the
6719 runtime process image. */
6720 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6721 {
6722 htab->srelbss->size += RELOC_SIZE (htab);
6723 h->needs_copy = 1;
6724 }
6725
6726 s = htab->sdynbss;
6727
6728 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6729
6730 }
6731
6732 static bfd_boolean
6733 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6734 {
6735 struct elf_aarch64_local_symbol *locals;
6736 locals = elf_aarch64_locals (abfd);
6737 if (locals == NULL)
6738 {
6739 locals = (struct elf_aarch64_local_symbol *)
6740 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6741 if (locals == NULL)
6742 return FALSE;
6743 elf_aarch64_locals (abfd) = locals;
6744 }
6745 return TRUE;
6746 }
6747
6748 /* Create the .got section to hold the global offset table. */
6749
6750 static bfd_boolean
6751 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6752 {
6753 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6754 flagword flags;
6755 asection *s;
6756 struct elf_link_hash_entry *h;
6757 struct elf_link_hash_table *htab = elf_hash_table (info);
6758
6759 /* This function may be called more than once. */
6760 s = bfd_get_linker_section (abfd, ".got");
6761 if (s != NULL)
6762 return TRUE;
6763
6764 flags = bed->dynamic_sec_flags;
6765
6766 s = bfd_make_section_anyway_with_flags (abfd,
6767 (bed->rela_plts_and_copies_p
6768 ? ".rela.got" : ".rel.got"),
6769 (bed->dynamic_sec_flags
6770 | SEC_READONLY));
6771 if (s == NULL
6772 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6773 return FALSE;
6774 htab->srelgot = s;
6775
6776 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6777 if (s == NULL
6778 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6779 return FALSE;
6780 htab->sgot = s;
6781 htab->sgot->size += GOT_ENTRY_SIZE;
6782
6783 if (bed->want_got_sym)
6784 {
6785 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6786 (or .got.plt) section. We don't do this in the linker script
6787 because we don't want to define the symbol if we are not creating
6788 a global offset table. */
6789 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6790 "_GLOBAL_OFFSET_TABLE_");
6791 elf_hash_table (info)->hgot = h;
6792 if (h == NULL)
6793 return FALSE;
6794 }
6795
6796 if (bed->want_got_plt)
6797 {
6798 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6799 if (s == NULL
6800 || !bfd_set_section_alignment (abfd, s,
6801 bed->s->log_file_align))
6802 return FALSE;
6803 htab->sgotplt = s;
6804 }
6805
6806 /* The first bit of the global offset table is the header. */
6807 s->size += bed->got_header_size;
6808
6809 return TRUE;
6810 }
6811
6812 /* Look through the relocs for a section during the first phase. */
6813
6814 static bfd_boolean
6815 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6816 asection *sec, const Elf_Internal_Rela *relocs)
6817 {
6818 Elf_Internal_Shdr *symtab_hdr;
6819 struct elf_link_hash_entry **sym_hashes;
6820 const Elf_Internal_Rela *rel;
6821 const Elf_Internal_Rela *rel_end;
6822 asection *sreloc;
6823
6824 struct elf_aarch64_link_hash_table *htab;
6825
6826 if (bfd_link_relocatable (info))
6827 return TRUE;
6828
6829 BFD_ASSERT (is_aarch64_elf (abfd));
6830
6831 htab = elf_aarch64_hash_table (info);
6832 sreloc = NULL;
6833
6834 symtab_hdr = &elf_symtab_hdr (abfd);
6835 sym_hashes = elf_sym_hashes (abfd);
6836
6837 rel_end = relocs + sec->reloc_count;
6838 for (rel = relocs; rel < rel_end; rel++)
6839 {
6840 struct elf_link_hash_entry *h;
6841 unsigned long r_symndx;
6842 unsigned int r_type;
6843 bfd_reloc_code_real_type bfd_r_type;
6844 Elf_Internal_Sym *isym;
6845
6846 r_symndx = ELFNN_R_SYM (rel->r_info);
6847 r_type = ELFNN_R_TYPE (rel->r_info);
6848
6849 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
6850 {
6851 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
6852 r_symndx);
6853 return FALSE;
6854 }
6855
6856 if (r_symndx < symtab_hdr->sh_info)
6857 {
6858 /* A local symbol. */
6859 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6860 abfd, r_symndx);
6861 if (isym == NULL)
6862 return FALSE;
6863
6864 /* Check relocation against local STT_GNU_IFUNC symbol. */
6865 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6866 {
6867 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
6868 TRUE);
6869 if (h == NULL)
6870 return FALSE;
6871
6872 /* Fake a STT_GNU_IFUNC symbol. */
6873 h->type = STT_GNU_IFUNC;
6874 h->def_regular = 1;
6875 h->ref_regular = 1;
6876 h->forced_local = 1;
6877 h->root.type = bfd_link_hash_defined;
6878 }
6879 else
6880 h = NULL;
6881 }
6882 else
6883 {
6884 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6885 while (h->root.type == bfd_link_hash_indirect
6886 || h->root.type == bfd_link_hash_warning)
6887 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6888
6889 /* PR15323, ref flags aren't set for references in the same
6890 object. */
6891 h->root.non_ir_ref = 1;
6892 }
6893
6894 /* Could be done earlier, if h were already available. */
6895 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
6896
6897 if (h != NULL)
6898 {
6899 /* Create the ifunc sections for static executables. If we
6900 never see an indirect function symbol nor we are building
6901 a static executable, those sections will be empty and
6902 won't appear in output. */
6903 switch (bfd_r_type)
6904 {
6905 default:
6906 break;
6907
6908 case BFD_RELOC_AARCH64_ADD_LO12:
6909 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6910 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6911 case BFD_RELOC_AARCH64_CALL26:
6912 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6913 case BFD_RELOC_AARCH64_JUMP26:
6914 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6915 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6916 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6917 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6918 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6919 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6920 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6921 case BFD_RELOC_AARCH64_NN:
6922 if (htab->root.dynobj == NULL)
6923 htab->root.dynobj = abfd;
6924 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
6925 return FALSE;
6926 break;
6927 }
6928
6929 /* It is referenced by a non-shared object. */
6930 h->ref_regular = 1;
6931 h->root.non_ir_ref = 1;
6932 }
6933
6934 switch (bfd_r_type)
6935 {
6936 case BFD_RELOC_AARCH64_NN:
6937
6938 /* We don't need to handle relocs into sections not going into
6939 the "real" output. */
6940 if ((sec->flags & SEC_ALLOC) == 0)
6941 break;
6942
6943 if (h != NULL)
6944 {
6945 if (!bfd_link_pic (info))
6946 h->non_got_ref = 1;
6947
6948 h->plt.refcount += 1;
6949 h->pointer_equality_needed = 1;
6950 }
6951
6952 /* No need to do anything if we're not creating a shared
6953 object. */
6954 if (! bfd_link_pic (info))
6955 break;
6956
6957 {
6958 struct elf_dyn_relocs *p;
6959 struct elf_dyn_relocs **head;
6960
6961 /* We must copy these reloc types into the output file.
6962 Create a reloc section in dynobj and make room for
6963 this reloc. */
6964 if (sreloc == NULL)
6965 {
6966 if (htab->root.dynobj == NULL)
6967 htab->root.dynobj = abfd;
6968
6969 sreloc = _bfd_elf_make_dynamic_reloc_section
6970 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
6971
6972 if (sreloc == NULL)
6973 return FALSE;
6974 }
6975
6976 /* If this is a global symbol, we count the number of
6977 relocations we need for this symbol. */
6978 if (h != NULL)
6979 {
6980 struct elf_aarch64_link_hash_entry *eh;
6981 eh = (struct elf_aarch64_link_hash_entry *) h;
6982 head = &eh->dyn_relocs;
6983 }
6984 else
6985 {
6986 /* Track dynamic relocs needed for local syms too.
6987 We really need local syms available to do this
6988 easily. Oh well. */
6989
6990 asection *s;
6991 void **vpp;
6992
6993 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6994 abfd, r_symndx);
6995 if (isym == NULL)
6996 return FALSE;
6997
6998 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
6999 if (s == NULL)
7000 s = sec;
7001
7002 /* Beware of type punned pointers vs strict aliasing
7003 rules. */
7004 vpp = &(elf_section_data (s)->local_dynrel);
7005 head = (struct elf_dyn_relocs **) vpp;
7006 }
7007
7008 p = *head;
7009 if (p == NULL || p->sec != sec)
7010 {
7011 bfd_size_type amt = sizeof *p;
7012 p = ((struct elf_dyn_relocs *)
7013 bfd_zalloc (htab->root.dynobj, amt));
7014 if (p == NULL)
7015 return FALSE;
7016 p->next = *head;
7017 *head = p;
7018 p->sec = sec;
7019 }
7020
7021 p->count += 1;
7022
7023 }
7024 break;
7025
7026 /* RR: We probably want to keep a consistency check that
7027 there are no dangling GOT_PAGE relocs. */
7028 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7029 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7030 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7031 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7032 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7033 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7034 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7035 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7036 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7037 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7038 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7039 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7040 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7041 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7042 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7043 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7044 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7045 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7046 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7047 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7048 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7049 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7050 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7051 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7052 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7053 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7054 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7055 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7056 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7057 {
7058 unsigned got_type;
7059 unsigned old_got_type;
7060
7061 got_type = aarch64_reloc_got_type (bfd_r_type);
7062
7063 if (h)
7064 {
7065 h->got.refcount += 1;
7066 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7067 }
7068 else
7069 {
7070 struct elf_aarch64_local_symbol *locals;
7071
7072 if (!elfNN_aarch64_allocate_local_symbols
7073 (abfd, symtab_hdr->sh_info))
7074 return FALSE;
7075
7076 locals = elf_aarch64_locals (abfd);
7077 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7078 locals[r_symndx].got_refcount += 1;
7079 old_got_type = locals[r_symndx].got_type;
7080 }
7081
7082 /* If a variable is accessed with both general dynamic TLS
7083 methods, two slots may be created. */
7084 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7085 got_type |= old_got_type;
7086
7087 /* We will already have issued an error message if there
7088 is a TLS/non-TLS mismatch, based on the symbol type.
7089 So just combine any TLS types needed. */
7090 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7091 && got_type != GOT_NORMAL)
7092 got_type |= old_got_type;
7093
7094 /* If the symbol is accessed by both IE and GD methods, we
7095 are able to relax. Turn off the GD flag, without
7096 messing up with any other kind of TLS types that may be
7097 involved. */
7098 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7099 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7100
7101 if (old_got_type != got_type)
7102 {
7103 if (h != NULL)
7104 elf_aarch64_hash_entry (h)->got_type = got_type;
7105 else
7106 {
7107 struct elf_aarch64_local_symbol *locals;
7108 locals = elf_aarch64_locals (abfd);
7109 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7110 locals[r_symndx].got_type = got_type;
7111 }
7112 }
7113
7114 if (htab->root.dynobj == NULL)
7115 htab->root.dynobj = abfd;
7116 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7117 return FALSE;
7118 break;
7119 }
7120
7121 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7122 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7123 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7124 case BFD_RELOC_AARCH64_MOVW_G3:
7125 if (bfd_link_pic (info))
7126 {
7127 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7128 (*_bfd_error_handler)
7129 (_("%B: relocation %s against `%s' can not be used when making "
7130 "a shared object; recompile with -fPIC"),
7131 abfd, elfNN_aarch64_howto_table[howto_index].name,
7132 (h) ? h->root.root.string : "a local symbol");
7133 bfd_set_error (bfd_error_bad_value);
7134 return FALSE;
7135 }
7136
7137 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7138 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7139 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7140 if (h != NULL && bfd_link_executable (info))
7141 {
7142 /* If this reloc is in a read-only section, we might
7143 need a copy reloc. We can't check reliably at this
7144 stage whether the section is read-only, as input
7145 sections have not yet been mapped to output sections.
7146 Tentatively set the flag for now, and correct in
7147 adjust_dynamic_symbol. */
7148 h->non_got_ref = 1;
7149 h->plt.refcount += 1;
7150 h->pointer_equality_needed = 1;
7151 }
7152 /* FIXME:: RR need to handle these in shared libraries
7153 and essentially bomb out as these being non-PIC
7154 relocations in shared libraries. */
7155 break;
7156
7157 case BFD_RELOC_AARCH64_CALL26:
7158 case BFD_RELOC_AARCH64_JUMP26:
7159 /* If this is a local symbol then we resolve it
7160 directly without creating a PLT entry. */
7161 if (h == NULL)
7162 continue;
7163
7164 h->needs_plt = 1;
7165 if (h->plt.refcount <= 0)
7166 h->plt.refcount = 1;
7167 else
7168 h->plt.refcount += 1;
7169 break;
7170
7171 default:
7172 break;
7173 }
7174 }
7175
7176 return TRUE;
7177 }
7178
7179 /* Treat mapping symbols as special target symbols. */
7180
7181 static bfd_boolean
7182 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7183 asymbol *sym)
7184 {
7185 return bfd_is_aarch64_special_symbol_name (sym->name,
7186 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7187 }
7188
7189 /* This is a copy of elf_find_function () from elf.c except that
7190 AArch64 mapping symbols are ignored when looking for function names. */
7191
7192 static bfd_boolean
7193 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7194 asymbol **symbols,
7195 asection *section,
7196 bfd_vma offset,
7197 const char **filename_ptr,
7198 const char **functionname_ptr)
7199 {
7200 const char *filename = NULL;
7201 asymbol *func = NULL;
7202 bfd_vma low_func = 0;
7203 asymbol **p;
7204
7205 for (p = symbols; *p != NULL; p++)
7206 {
7207 elf_symbol_type *q;
7208
7209 q = (elf_symbol_type *) * p;
7210
7211 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7212 {
7213 default:
7214 break;
7215 case STT_FILE:
7216 filename = bfd_asymbol_name (&q->symbol);
7217 break;
7218 case STT_FUNC:
7219 case STT_NOTYPE:
7220 /* Skip mapping symbols. */
7221 if ((q->symbol.flags & BSF_LOCAL)
7222 && (bfd_is_aarch64_special_symbol_name
7223 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7224 continue;
7225 /* Fall through. */
7226 if (bfd_get_section (&q->symbol) == section
7227 && q->symbol.value >= low_func && q->symbol.value <= offset)
7228 {
7229 func = (asymbol *) q;
7230 low_func = q->symbol.value;
7231 }
7232 break;
7233 }
7234 }
7235
7236 if (func == NULL)
7237 return FALSE;
7238
7239 if (filename_ptr)
7240 *filename_ptr = filename;
7241 if (functionname_ptr)
7242 *functionname_ptr = bfd_asymbol_name (func);
7243
7244 return TRUE;
7245 }
7246
7247
7248 /* Find the nearest line to a particular section and offset, for error
7249 reporting. This code is a duplicate of the code in elf.c, except
7250 that it uses aarch64_elf_find_function. */
7251
7252 static bfd_boolean
7253 elfNN_aarch64_find_nearest_line (bfd *abfd,
7254 asymbol **symbols,
7255 asection *section,
7256 bfd_vma offset,
7257 const char **filename_ptr,
7258 const char **functionname_ptr,
7259 unsigned int *line_ptr,
7260 unsigned int *discriminator_ptr)
7261 {
7262 bfd_boolean found = FALSE;
7263
7264 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7265 filename_ptr, functionname_ptr,
7266 line_ptr, discriminator_ptr,
7267 dwarf_debug_sections, 0,
7268 &elf_tdata (abfd)->dwarf2_find_line_info))
7269 {
7270 if (!*functionname_ptr)
7271 aarch64_elf_find_function (abfd, symbols, section, offset,
7272 *filename_ptr ? NULL : filename_ptr,
7273 functionname_ptr);
7274
7275 return TRUE;
7276 }
7277
7278 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7279 toolchain uses DWARF1. */
7280
7281 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7282 &found, filename_ptr,
7283 functionname_ptr, line_ptr,
7284 &elf_tdata (abfd)->line_info))
7285 return FALSE;
7286
7287 if (found && (*functionname_ptr || *line_ptr))
7288 return TRUE;
7289
7290 if (symbols == NULL)
7291 return FALSE;
7292
7293 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7294 filename_ptr, functionname_ptr))
7295 return FALSE;
7296
7297 *line_ptr = 0;
7298 return TRUE;
7299 }
7300
7301 static bfd_boolean
7302 elfNN_aarch64_find_inliner_info (bfd *abfd,
7303 const char **filename_ptr,
7304 const char **functionname_ptr,
7305 unsigned int *line_ptr)
7306 {
7307 bfd_boolean found;
7308 found = _bfd_dwarf2_find_inliner_info
7309 (abfd, filename_ptr,
7310 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7311 return found;
7312 }
7313
7314
7315 static void
7316 elfNN_aarch64_post_process_headers (bfd *abfd,
7317 struct bfd_link_info *link_info)
7318 {
7319 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7320
7321 i_ehdrp = elf_elfheader (abfd);
7322 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7323
7324 _bfd_elf_post_process_headers (abfd, link_info);
7325 }
7326
7327 static enum elf_reloc_type_class
7328 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7329 const asection *rel_sec ATTRIBUTE_UNUSED,
7330 const Elf_Internal_Rela *rela)
7331 {
7332 switch ((int) ELFNN_R_TYPE (rela->r_info))
7333 {
7334 case AARCH64_R (RELATIVE):
7335 return reloc_class_relative;
7336 case AARCH64_R (JUMP_SLOT):
7337 return reloc_class_plt;
7338 case AARCH64_R (COPY):
7339 return reloc_class_copy;
7340 default:
7341 return reloc_class_normal;
7342 }
7343 }
7344
7345 /* Handle an AArch64 specific section when reading an object file. This is
7346 called when bfd_section_from_shdr finds a section with an unknown
7347 type. */
7348
7349 static bfd_boolean
7350 elfNN_aarch64_section_from_shdr (bfd *abfd,
7351 Elf_Internal_Shdr *hdr,
7352 const char *name, int shindex)
7353 {
7354 /* There ought to be a place to keep ELF backend specific flags, but
7355 at the moment there isn't one. We just keep track of the
7356 sections by their name, instead. Fortunately, the ABI gives
7357 names for all the AArch64 specific sections, so we will probably get
7358 away with this. */
7359 switch (hdr->sh_type)
7360 {
7361 case SHT_AARCH64_ATTRIBUTES:
7362 break;
7363
7364 default:
7365 return FALSE;
7366 }
7367
7368 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7369 return FALSE;
7370
7371 return TRUE;
7372 }
7373
7374 /* A structure used to record a list of sections, independently
7375 of the next and prev fields in the asection structure. */
7376 typedef struct section_list
7377 {
7378 asection *sec;
7379 struct section_list *next;
7380 struct section_list *prev;
7381 }
7382 section_list;
7383
7384 /* Unfortunately we need to keep a list of sections for which
7385 an _aarch64_elf_section_data structure has been allocated. This
7386 is because it is possible for functions like elfNN_aarch64_write_section
7387 to be called on a section which has had an elf_data_structure
7388 allocated for it (and so the used_by_bfd field is valid) but
7389 for which the AArch64 extended version of this structure - the
7390 _aarch64_elf_section_data structure - has not been allocated. */
7391 static section_list *sections_with_aarch64_elf_section_data = NULL;
7392
7393 static void
7394 record_section_with_aarch64_elf_section_data (asection *sec)
7395 {
7396 struct section_list *entry;
7397
7398 entry = bfd_malloc (sizeof (*entry));
7399 if (entry == NULL)
7400 return;
7401 entry->sec = sec;
7402 entry->next = sections_with_aarch64_elf_section_data;
7403 entry->prev = NULL;
7404 if (entry->next != NULL)
7405 entry->next->prev = entry;
7406 sections_with_aarch64_elf_section_data = entry;
7407 }
7408
7409 static struct section_list *
7410 find_aarch64_elf_section_entry (asection *sec)
7411 {
7412 struct section_list *entry;
7413 static struct section_list *last_entry = NULL;
7414
7415 /* This is a short cut for the typical case where the sections are added
7416 to the sections_with_aarch64_elf_section_data list in forward order and
7417 then looked up here in backwards order. This makes a real difference
7418 to the ld-srec/sec64k.exp linker test. */
7419 entry = sections_with_aarch64_elf_section_data;
7420 if (last_entry != NULL)
7421 {
7422 if (last_entry->sec == sec)
7423 entry = last_entry;
7424 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7425 entry = last_entry->next;
7426 }
7427
7428 for (; entry; entry = entry->next)
7429 if (entry->sec == sec)
7430 break;
7431
7432 if (entry)
7433 /* Record the entry prior to this one - it is the entry we are
7434 most likely to want to locate next time. Also this way if we
7435 have been called from
7436 unrecord_section_with_aarch64_elf_section_data () we will not
7437 be caching a pointer that is about to be freed. */
7438 last_entry = entry->prev;
7439
7440 return entry;
7441 }
7442
7443 static void
7444 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7445 {
7446 struct section_list *entry;
7447
7448 entry = find_aarch64_elf_section_entry (sec);
7449
7450 if (entry)
7451 {
7452 if (entry->prev != NULL)
7453 entry->prev->next = entry->next;
7454 if (entry->next != NULL)
7455 entry->next->prev = entry->prev;
7456 if (entry == sections_with_aarch64_elf_section_data)
7457 sections_with_aarch64_elf_section_data = entry->next;
7458 free (entry);
7459 }
7460 }
7461
7462
7463 typedef struct
7464 {
7465 void *finfo;
7466 struct bfd_link_info *info;
7467 asection *sec;
7468 int sec_shndx;
7469 int (*func) (void *, const char *, Elf_Internal_Sym *,
7470 asection *, struct elf_link_hash_entry *);
7471 } output_arch_syminfo;
7472
7473 enum map_symbol_type
7474 {
7475 AARCH64_MAP_INSN,
7476 AARCH64_MAP_DATA
7477 };
7478
7479
7480 /* Output a single mapping symbol. */
7481
7482 static bfd_boolean
7483 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7484 enum map_symbol_type type, bfd_vma offset)
7485 {
7486 static const char *names[2] = { "$x", "$d" };
7487 Elf_Internal_Sym sym;
7488
7489 sym.st_value = (osi->sec->output_section->vma
7490 + osi->sec->output_offset + offset);
7491 sym.st_size = 0;
7492 sym.st_other = 0;
7493 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7494 sym.st_shndx = osi->sec_shndx;
7495 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7496 }
7497
7498 /* Output a single local symbol for a generated stub. */
7499
7500 static bfd_boolean
7501 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7502 bfd_vma offset, bfd_vma size)
7503 {
7504 Elf_Internal_Sym sym;
7505
7506 sym.st_value = (osi->sec->output_section->vma
7507 + osi->sec->output_offset + offset);
7508 sym.st_size = size;
7509 sym.st_other = 0;
7510 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7511 sym.st_shndx = osi->sec_shndx;
7512 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7513 }
7514
7515 static bfd_boolean
7516 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7517 {
7518 struct elf_aarch64_stub_hash_entry *stub_entry;
7519 asection *stub_sec;
7520 bfd_vma addr;
7521 char *stub_name;
7522 output_arch_syminfo *osi;
7523
7524 /* Massage our args to the form they really have. */
7525 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7526 osi = (output_arch_syminfo *) in_arg;
7527
7528 stub_sec = stub_entry->stub_sec;
7529
7530 /* Ensure this stub is attached to the current section being
7531 processed. */
7532 if (stub_sec != osi->sec)
7533 return TRUE;
7534
7535 addr = (bfd_vma) stub_entry->stub_offset;
7536
7537 stub_name = stub_entry->output_name;
7538
7539 switch (stub_entry->stub_type)
7540 {
7541 case aarch64_stub_adrp_branch:
7542 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7543 sizeof (aarch64_adrp_branch_stub)))
7544 return FALSE;
7545 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7546 return FALSE;
7547 break;
7548 case aarch64_stub_long_branch:
7549 if (!elfNN_aarch64_output_stub_sym
7550 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7551 return FALSE;
7552 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7553 return FALSE;
7554 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7555 return FALSE;
7556 break;
7557 case aarch64_stub_erratum_835769_veneer:
7558 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7559 sizeof (aarch64_erratum_835769_stub)))
7560 return FALSE;
7561 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7562 return FALSE;
7563 break;
7564 case aarch64_stub_erratum_843419_veneer:
7565 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7566 sizeof (aarch64_erratum_843419_stub)))
7567 return FALSE;
7568 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7569 return FALSE;
7570 break;
7571
7572 default:
7573 abort ();
7574 }
7575
7576 return TRUE;
7577 }
7578
7579 /* Output mapping symbols for linker generated sections. */
7580
7581 static bfd_boolean
7582 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7583 struct bfd_link_info *info,
7584 void *finfo,
7585 int (*func) (void *, const char *,
7586 Elf_Internal_Sym *,
7587 asection *,
7588 struct elf_link_hash_entry
7589 *))
7590 {
7591 output_arch_syminfo osi;
7592 struct elf_aarch64_link_hash_table *htab;
7593
7594 htab = elf_aarch64_hash_table (info);
7595
7596 osi.finfo = finfo;
7597 osi.info = info;
7598 osi.func = func;
7599
7600 /* Long calls stubs. */
7601 if (htab->stub_bfd && htab->stub_bfd->sections)
7602 {
7603 asection *stub_sec;
7604
7605 for (stub_sec = htab->stub_bfd->sections;
7606 stub_sec != NULL; stub_sec = stub_sec->next)
7607 {
7608 /* Ignore non-stub sections. */
7609 if (!strstr (stub_sec->name, STUB_SUFFIX))
7610 continue;
7611
7612 osi.sec = stub_sec;
7613
7614 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7615 (output_bfd, osi.sec->output_section);
7616
7617 /* The first instruction in a stub is always a branch. */
7618 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7619 return FALSE;
7620
7621 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7622 &osi);
7623 }
7624 }
7625
7626 /* Finally, output mapping symbols for the PLT. */
7627 if (!htab->root.splt || htab->root.splt->size == 0)
7628 return TRUE;
7629
7630 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7631 (output_bfd, htab->root.splt->output_section);
7632 osi.sec = htab->root.splt;
7633
7634 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7635
7636 return TRUE;
7637
7638 }
7639
7640 /* Allocate target specific section data. */
7641
7642 static bfd_boolean
7643 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7644 {
7645 if (!sec->used_by_bfd)
7646 {
7647 _aarch64_elf_section_data *sdata;
7648 bfd_size_type amt = sizeof (*sdata);
7649
7650 sdata = bfd_zalloc (abfd, amt);
7651 if (sdata == NULL)
7652 return FALSE;
7653 sec->used_by_bfd = sdata;
7654 }
7655
7656 record_section_with_aarch64_elf_section_data (sec);
7657
7658 return _bfd_elf_new_section_hook (abfd, sec);
7659 }
7660
7661
7662 static void
7663 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7664 asection *sec,
7665 void *ignore ATTRIBUTE_UNUSED)
7666 {
7667 unrecord_section_with_aarch64_elf_section_data (sec);
7668 }
7669
7670 static bfd_boolean
7671 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7672 {
7673 if (abfd->sections)
7674 bfd_map_over_sections (abfd,
7675 unrecord_section_via_map_over_sections, NULL);
7676
7677 return _bfd_elf_close_and_cleanup (abfd);
7678 }
7679
7680 static bfd_boolean
7681 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7682 {
7683 if (abfd->sections)
7684 bfd_map_over_sections (abfd,
7685 unrecord_section_via_map_over_sections, NULL);
7686
7687 return _bfd_free_cached_info (abfd);
7688 }
7689
7690 /* Create dynamic sections. This is different from the ARM backend in that
7691 the got, plt, gotplt and their relocation sections are all created in the
7692 standard part of the bfd elf backend. */
7693
7694 static bfd_boolean
7695 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7696 struct bfd_link_info *info)
7697 {
7698 struct elf_aarch64_link_hash_table *htab;
7699
7700 /* We need to create .got section. */
7701 if (!aarch64_elf_create_got_section (dynobj, info))
7702 return FALSE;
7703
7704 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7705 return FALSE;
7706
7707 htab = elf_aarch64_hash_table (info);
7708 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7709 if (!bfd_link_pic (info))
7710 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7711
7712 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7713 abort ();
7714
7715 return TRUE;
7716 }
7717
7718
7719 /* Allocate space in .plt, .got and associated reloc sections for
7720 dynamic relocs. */
7721
7722 static bfd_boolean
7723 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7724 {
7725 struct bfd_link_info *info;
7726 struct elf_aarch64_link_hash_table *htab;
7727 struct elf_aarch64_link_hash_entry *eh;
7728 struct elf_dyn_relocs *p;
7729
7730 /* An example of a bfd_link_hash_indirect symbol is versioned
7731 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7732 -> __gxx_personality_v0(bfd_link_hash_defined)
7733
7734 There is no need to process bfd_link_hash_indirect symbols here
7735 because we will also be presented with the concrete instance of
7736 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7737 called to copy all relevant data from the generic to the concrete
7738 symbol instance.
7739 */
7740 if (h->root.type == bfd_link_hash_indirect)
7741 return TRUE;
7742
7743 if (h->root.type == bfd_link_hash_warning)
7744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7745
7746 info = (struct bfd_link_info *) inf;
7747 htab = elf_aarch64_hash_table (info);
7748
7749 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7750 here if it is defined and referenced in a non-shared object. */
7751 if (h->type == STT_GNU_IFUNC
7752 && h->def_regular)
7753 return TRUE;
7754 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7755 {
7756 /* Make sure this symbol is output as a dynamic symbol.
7757 Undefined weak syms won't yet be marked as dynamic. */
7758 if (h->dynindx == -1 && !h->forced_local)
7759 {
7760 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7761 return FALSE;
7762 }
7763
7764 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7765 {
7766 asection *s = htab->root.splt;
7767
7768 /* If this is the first .plt entry, make room for the special
7769 first entry. */
7770 if (s->size == 0)
7771 s->size += htab->plt_header_size;
7772
7773 h->plt.offset = s->size;
7774
7775 /* If this symbol is not defined in a regular file, and we are
7776 not generating a shared library, then set the symbol to this
7777 location in the .plt. This is required to make function
7778 pointers compare as equal between the normal executable and
7779 the shared library. */
7780 if (!bfd_link_pic (info) && !h->def_regular)
7781 {
7782 h->root.u.def.section = s;
7783 h->root.u.def.value = h->plt.offset;
7784 }
7785
7786 /* Make room for this entry. For now we only create the
7787 small model PLT entries. We later need to find a way
7788 of relaxing into these from the large model PLT entries. */
7789 s->size += PLT_SMALL_ENTRY_SIZE;
7790
7791 /* We also need to make an entry in the .got.plt section, which
7792 will be placed in the .got section by the linker script. */
7793 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7794
7795 /* We also need to make an entry in the .rela.plt section. */
7796 htab->root.srelplt->size += RELOC_SIZE (htab);
7797
7798 /* We need to ensure that all GOT entries that serve the PLT
7799 are consecutive with the special GOT slots [0] [1] and
7800 [2]. Any addtional relocations, such as
7801 R_AARCH64_TLSDESC, must be placed after the PLT related
7802 entries. We abuse the reloc_count such that during
7803 sizing we adjust reloc_count to indicate the number of
7804 PLT related reserved entries. In subsequent phases when
7805 filling in the contents of the reloc entries, PLT related
7806 entries are placed by computing their PLT index (0
7807 .. reloc_count). While other none PLT relocs are placed
7808 at the slot indicated by reloc_count and reloc_count is
7809 updated. */
7810
7811 htab->root.srelplt->reloc_count++;
7812 }
7813 else
7814 {
7815 h->plt.offset = (bfd_vma) - 1;
7816 h->needs_plt = 0;
7817 }
7818 }
7819 else
7820 {
7821 h->plt.offset = (bfd_vma) - 1;
7822 h->needs_plt = 0;
7823 }
7824
7825 eh = (struct elf_aarch64_link_hash_entry *) h;
7826 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7827
7828 if (h->got.refcount > 0)
7829 {
7830 bfd_boolean dyn;
7831 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
7832
7833 h->got.offset = (bfd_vma) - 1;
7834
7835 dyn = htab->root.dynamic_sections_created;
7836
7837 /* Make sure this symbol is output as a dynamic symbol.
7838 Undefined weak syms won't yet be marked as dynamic. */
7839 if (dyn && h->dynindx == -1 && !h->forced_local)
7840 {
7841 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7842 return FALSE;
7843 }
7844
7845 if (got_type == GOT_UNKNOWN)
7846 {
7847 }
7848 else if (got_type == GOT_NORMAL)
7849 {
7850 h->got.offset = htab->root.sgot->size;
7851 htab->root.sgot->size += GOT_ENTRY_SIZE;
7852 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7853 || h->root.type != bfd_link_hash_undefweak)
7854 && (bfd_link_pic (info)
7855 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7856 {
7857 htab->root.srelgot->size += RELOC_SIZE (htab);
7858 }
7859 }
7860 else
7861 {
7862 int indx;
7863 if (got_type & GOT_TLSDESC_GD)
7864 {
7865 eh->tlsdesc_got_jump_table_offset =
7866 (htab->root.sgotplt->size
7867 - aarch64_compute_jump_table_size (htab));
7868 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7869 h->got.offset = (bfd_vma) - 2;
7870 }
7871
7872 if (got_type & GOT_TLS_GD)
7873 {
7874 h->got.offset = htab->root.sgot->size;
7875 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7876 }
7877
7878 if (got_type & GOT_TLS_IE)
7879 {
7880 h->got.offset = htab->root.sgot->size;
7881 htab->root.sgot->size += GOT_ENTRY_SIZE;
7882 }
7883
7884 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7885 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7886 || h->root.type != bfd_link_hash_undefweak)
7887 && (bfd_link_pic (info)
7888 || indx != 0
7889 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7890 {
7891 if (got_type & GOT_TLSDESC_GD)
7892 {
7893 htab->root.srelplt->size += RELOC_SIZE (htab);
7894 /* Note reloc_count not incremented here! We have
7895 already adjusted reloc_count for this relocation
7896 type. */
7897
7898 /* TLSDESC PLT is now needed, but not yet determined. */
7899 htab->tlsdesc_plt = (bfd_vma) - 1;
7900 }
7901
7902 if (got_type & GOT_TLS_GD)
7903 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7904
7905 if (got_type & GOT_TLS_IE)
7906 htab->root.srelgot->size += RELOC_SIZE (htab);
7907 }
7908 }
7909 }
7910 else
7911 {
7912 h->got.offset = (bfd_vma) - 1;
7913 }
7914
7915 if (eh->dyn_relocs == NULL)
7916 return TRUE;
7917
7918 /* In the shared -Bsymbolic case, discard space allocated for
7919 dynamic pc-relative relocs against symbols which turn out to be
7920 defined in regular objects. For the normal shared case, discard
7921 space for pc-relative relocs that have become local due to symbol
7922 visibility changes. */
7923
7924 if (bfd_link_pic (info))
7925 {
7926 /* Relocs that use pc_count are those that appear on a call
7927 insn, or certain REL relocs that can generated via assembly.
7928 We want calls to protected symbols to resolve directly to the
7929 function rather than going via the plt. If people want
7930 function pointer comparisons to work as expected then they
7931 should avoid writing weird assembly. */
7932 if (SYMBOL_CALLS_LOCAL (info, h))
7933 {
7934 struct elf_dyn_relocs **pp;
7935
7936 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
7937 {
7938 p->count -= p->pc_count;
7939 p->pc_count = 0;
7940 if (p->count == 0)
7941 *pp = p->next;
7942 else
7943 pp = &p->next;
7944 }
7945 }
7946
7947 /* Also discard relocs on undefined weak syms with non-default
7948 visibility. */
7949 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
7950 {
7951 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7952 eh->dyn_relocs = NULL;
7953
7954 /* Make sure undefined weak symbols are output as a dynamic
7955 symbol in PIEs. */
7956 else if (h->dynindx == -1
7957 && !h->forced_local
7958 && !bfd_elf_link_record_dynamic_symbol (info, h))
7959 return FALSE;
7960 }
7961
7962 }
7963 else if (ELIMINATE_COPY_RELOCS)
7964 {
7965 /* For the non-shared case, discard space for relocs against
7966 symbols which turn out to need copy relocs or are not
7967 dynamic. */
7968
7969 if (!h->non_got_ref
7970 && ((h->def_dynamic
7971 && !h->def_regular)
7972 || (htab->root.dynamic_sections_created
7973 && (h->root.type == bfd_link_hash_undefweak
7974 || h->root.type == bfd_link_hash_undefined))))
7975 {
7976 /* Make sure this symbol is output as a dynamic symbol.
7977 Undefined weak syms won't yet be marked as dynamic. */
7978 if (h->dynindx == -1
7979 && !h->forced_local
7980 && !bfd_elf_link_record_dynamic_symbol (info, h))
7981 return FALSE;
7982
7983 /* If that succeeded, we know we'll be keeping all the
7984 relocs. */
7985 if (h->dynindx != -1)
7986 goto keep;
7987 }
7988
7989 eh->dyn_relocs = NULL;
7990
7991 keep:;
7992 }
7993
7994 /* Finally, allocate space. */
7995 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7996 {
7997 asection *sreloc;
7998
7999 sreloc = elf_section_data (p->sec)->sreloc;
8000
8001 BFD_ASSERT (sreloc != NULL);
8002
8003 sreloc->size += p->count * RELOC_SIZE (htab);
8004 }
8005
8006 return TRUE;
8007 }
8008
8009 /* Allocate space in .plt, .got and associated reloc sections for
8010 ifunc dynamic relocs. */
8011
8012 static bfd_boolean
8013 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8014 void *inf)
8015 {
8016 struct bfd_link_info *info;
8017 struct elf_aarch64_link_hash_table *htab;
8018 struct elf_aarch64_link_hash_entry *eh;
8019
8020 /* An example of a bfd_link_hash_indirect symbol is versioned
8021 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8022 -> __gxx_personality_v0(bfd_link_hash_defined)
8023
8024 There is no need to process bfd_link_hash_indirect symbols here
8025 because we will also be presented with the concrete instance of
8026 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8027 called to copy all relevant data from the generic to the concrete
8028 symbol instance.
8029 */
8030 if (h->root.type == bfd_link_hash_indirect)
8031 return TRUE;
8032
8033 if (h->root.type == bfd_link_hash_warning)
8034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8035
8036 info = (struct bfd_link_info *) inf;
8037 htab = elf_aarch64_hash_table (info);
8038
8039 eh = (struct elf_aarch64_link_hash_entry *) h;
8040
8041 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8042 here if it is defined and referenced in a non-shared object. */
8043 if (h->type == STT_GNU_IFUNC
8044 && h->def_regular)
8045 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8046 &eh->dyn_relocs,
8047 htab->plt_entry_size,
8048 htab->plt_header_size,
8049 GOT_ENTRY_SIZE);
8050 return TRUE;
8051 }
8052
8053 /* Allocate space in .plt, .got and associated reloc sections for
8054 local dynamic relocs. */
8055
8056 static bfd_boolean
8057 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8058 {
8059 struct elf_link_hash_entry *h
8060 = (struct elf_link_hash_entry *) *slot;
8061
8062 if (h->type != STT_GNU_IFUNC
8063 || !h->def_regular
8064 || !h->ref_regular
8065 || !h->forced_local
8066 || h->root.type != bfd_link_hash_defined)
8067 abort ();
8068
8069 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8070 }
8071
8072 /* Allocate space in .plt, .got and associated reloc sections for
8073 local ifunc dynamic relocs. */
8074
8075 static bfd_boolean
8076 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8077 {
8078 struct elf_link_hash_entry *h
8079 = (struct elf_link_hash_entry *) *slot;
8080
8081 if (h->type != STT_GNU_IFUNC
8082 || !h->def_regular
8083 || !h->ref_regular
8084 || !h->forced_local
8085 || h->root.type != bfd_link_hash_defined)
8086 abort ();
8087
8088 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8089 }
8090
8091 /* Find any dynamic relocs that apply to read-only sections. */
8092
8093 static bfd_boolean
8094 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8095 {
8096 struct elf_aarch64_link_hash_entry * eh;
8097 struct elf_dyn_relocs * p;
8098
8099 eh = (struct elf_aarch64_link_hash_entry *) h;
8100 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8101 {
8102 asection *s = p->sec;
8103
8104 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8105 {
8106 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8107
8108 info->flags |= DF_TEXTREL;
8109
8110 /* Not an error, just cut short the traversal. */
8111 return FALSE;
8112 }
8113 }
8114 return TRUE;
8115 }
8116
8117 /* This is the most important function of all . Innocuosly named
8118 though ! */
8119 static bfd_boolean
8120 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8121 struct bfd_link_info *info)
8122 {
8123 struct elf_aarch64_link_hash_table *htab;
8124 bfd *dynobj;
8125 asection *s;
8126 bfd_boolean relocs;
8127 bfd *ibfd;
8128
8129 htab = elf_aarch64_hash_table ((info));
8130 dynobj = htab->root.dynobj;
8131
8132 BFD_ASSERT (dynobj != NULL);
8133
8134 if (htab->root.dynamic_sections_created)
8135 {
8136 if (bfd_link_executable (info) && !info->nointerp)
8137 {
8138 s = bfd_get_linker_section (dynobj, ".interp");
8139 if (s == NULL)
8140 abort ();
8141 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8142 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8143 }
8144 }
8145
8146 /* Set up .got offsets for local syms, and space for local dynamic
8147 relocs. */
8148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8149 {
8150 struct elf_aarch64_local_symbol *locals = NULL;
8151 Elf_Internal_Shdr *symtab_hdr;
8152 asection *srel;
8153 unsigned int i;
8154
8155 if (!is_aarch64_elf (ibfd))
8156 continue;
8157
8158 for (s = ibfd->sections; s != NULL; s = s->next)
8159 {
8160 struct elf_dyn_relocs *p;
8161
8162 for (p = (struct elf_dyn_relocs *)
8163 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8164 {
8165 if (!bfd_is_abs_section (p->sec)
8166 && bfd_is_abs_section (p->sec->output_section))
8167 {
8168 /* Input section has been discarded, either because
8169 it is a copy of a linkonce section or due to
8170 linker script /DISCARD/, so we'll be discarding
8171 the relocs too. */
8172 }
8173 else if (p->count != 0)
8174 {
8175 srel = elf_section_data (p->sec)->sreloc;
8176 srel->size += p->count * RELOC_SIZE (htab);
8177 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8178 info->flags |= DF_TEXTREL;
8179 }
8180 }
8181 }
8182
8183 locals = elf_aarch64_locals (ibfd);
8184 if (!locals)
8185 continue;
8186
8187 symtab_hdr = &elf_symtab_hdr (ibfd);
8188 srel = htab->root.srelgot;
8189 for (i = 0; i < symtab_hdr->sh_info; i++)
8190 {
8191 locals[i].got_offset = (bfd_vma) - 1;
8192 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8193 if (locals[i].got_refcount > 0)
8194 {
8195 unsigned got_type = locals[i].got_type;
8196 if (got_type & GOT_TLSDESC_GD)
8197 {
8198 locals[i].tlsdesc_got_jump_table_offset =
8199 (htab->root.sgotplt->size
8200 - aarch64_compute_jump_table_size (htab));
8201 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8202 locals[i].got_offset = (bfd_vma) - 2;
8203 }
8204
8205 if (got_type & GOT_TLS_GD)
8206 {
8207 locals[i].got_offset = htab->root.sgot->size;
8208 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8209 }
8210
8211 if (got_type & GOT_TLS_IE
8212 || got_type & GOT_NORMAL)
8213 {
8214 locals[i].got_offset = htab->root.sgot->size;
8215 htab->root.sgot->size += GOT_ENTRY_SIZE;
8216 }
8217
8218 if (got_type == GOT_UNKNOWN)
8219 {
8220 }
8221
8222 if (bfd_link_pic (info))
8223 {
8224 if (got_type & GOT_TLSDESC_GD)
8225 {
8226 htab->root.srelplt->size += RELOC_SIZE (htab);
8227 /* Note RELOC_COUNT not incremented here! */
8228 htab->tlsdesc_plt = (bfd_vma) - 1;
8229 }
8230
8231 if (got_type & GOT_TLS_GD)
8232 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8233
8234 if (got_type & GOT_TLS_IE
8235 || got_type & GOT_NORMAL)
8236 htab->root.srelgot->size += RELOC_SIZE (htab);
8237 }
8238 }
8239 else
8240 {
8241 locals[i].got_refcount = (bfd_vma) - 1;
8242 }
8243 }
8244 }
8245
8246
8247 /* Allocate global sym .plt and .got entries, and space for global
8248 sym dynamic relocs. */
8249 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8250 info);
8251
8252 /* Allocate global ifunc sym .plt and .got entries, and space for global
8253 ifunc sym dynamic relocs. */
8254 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8255 info);
8256
8257 /* Allocate .plt and .got entries, and space for local symbols. */
8258 htab_traverse (htab->loc_hash_table,
8259 elfNN_aarch64_allocate_local_dynrelocs,
8260 info);
8261
8262 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8263 htab_traverse (htab->loc_hash_table,
8264 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8265 info);
8266
8267 /* For every jump slot reserved in the sgotplt, reloc_count is
8268 incremented. However, when we reserve space for TLS descriptors,
8269 it's not incremented, so in order to compute the space reserved
8270 for them, it suffices to multiply the reloc count by the jump
8271 slot size. */
8272
8273 if (htab->root.srelplt)
8274 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8275
8276 if (htab->tlsdesc_plt)
8277 {
8278 if (htab->root.splt->size == 0)
8279 htab->root.splt->size += PLT_ENTRY_SIZE;
8280
8281 htab->tlsdesc_plt = htab->root.splt->size;
8282 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8283
8284 /* If we're not using lazy TLS relocations, don't generate the
8285 GOT entry required. */
8286 if (!(info->flags & DF_BIND_NOW))
8287 {
8288 htab->dt_tlsdesc_got = htab->root.sgot->size;
8289 htab->root.sgot->size += GOT_ENTRY_SIZE;
8290 }
8291 }
8292
8293 /* Init mapping symbols information to use later to distingush between
8294 code and data while scanning for errata. */
8295 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8296 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8297 {
8298 if (!is_aarch64_elf (ibfd))
8299 continue;
8300 bfd_elfNN_aarch64_init_maps (ibfd);
8301 }
8302
8303 /* We now have determined the sizes of the various dynamic sections.
8304 Allocate memory for them. */
8305 relocs = FALSE;
8306 for (s = dynobj->sections; s != NULL; s = s->next)
8307 {
8308 if ((s->flags & SEC_LINKER_CREATED) == 0)
8309 continue;
8310
8311 if (s == htab->root.splt
8312 || s == htab->root.sgot
8313 || s == htab->root.sgotplt
8314 || s == htab->root.iplt
8315 || s == htab->root.igotplt || s == htab->sdynbss)
8316 {
8317 /* Strip this section if we don't need it; see the
8318 comment below. */
8319 }
8320 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8321 {
8322 if (s->size != 0 && s != htab->root.srelplt)
8323 relocs = TRUE;
8324
8325 /* We use the reloc_count field as a counter if we need
8326 to copy relocs into the output file. */
8327 if (s != htab->root.srelplt)
8328 s->reloc_count = 0;
8329 }
8330 else
8331 {
8332 /* It's not one of our sections, so don't allocate space. */
8333 continue;
8334 }
8335
8336 if (s->size == 0)
8337 {
8338 /* If we don't need this section, strip it from the
8339 output file. This is mostly to handle .rela.bss and
8340 .rela.plt. We must create both sections in
8341 create_dynamic_sections, because they must be created
8342 before the linker maps input sections to output
8343 sections. The linker does that before
8344 adjust_dynamic_symbol is called, and it is that
8345 function which decides whether anything needs to go
8346 into these sections. */
8347
8348 s->flags |= SEC_EXCLUDE;
8349 continue;
8350 }
8351
8352 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8353 continue;
8354
8355 /* Allocate memory for the section contents. We use bfd_zalloc
8356 here in case unused entries are not reclaimed before the
8357 section's contents are written out. This should not happen,
8358 but this way if it does, we get a R_AARCH64_NONE reloc instead
8359 of garbage. */
8360 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8361 if (s->contents == NULL)
8362 return FALSE;
8363 }
8364
8365 if (htab->root.dynamic_sections_created)
8366 {
8367 /* Add some entries to the .dynamic section. We fill in the
8368 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8369 must add the entries now so that we get the correct size for
8370 the .dynamic section. The DT_DEBUG entry is filled in by the
8371 dynamic linker and used by the debugger. */
8372 #define add_dynamic_entry(TAG, VAL) \
8373 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8374
8375 if (bfd_link_executable (info))
8376 {
8377 if (!add_dynamic_entry (DT_DEBUG, 0))
8378 return FALSE;
8379 }
8380
8381 if (htab->root.splt->size != 0)
8382 {
8383 if (!add_dynamic_entry (DT_PLTGOT, 0)
8384 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8385 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8386 || !add_dynamic_entry (DT_JMPREL, 0))
8387 return FALSE;
8388
8389 if (htab->tlsdesc_plt
8390 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8391 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8392 return FALSE;
8393 }
8394
8395 if (relocs)
8396 {
8397 if (!add_dynamic_entry (DT_RELA, 0)
8398 || !add_dynamic_entry (DT_RELASZ, 0)
8399 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8400 return FALSE;
8401
8402 /* If any dynamic relocs apply to a read-only section,
8403 then we need a DT_TEXTREL entry. */
8404 if ((info->flags & DF_TEXTREL) == 0)
8405 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8406 info);
8407
8408 if ((info->flags & DF_TEXTREL) != 0)
8409 {
8410 if (!add_dynamic_entry (DT_TEXTREL, 0))
8411 return FALSE;
8412 }
8413 }
8414 }
8415 #undef add_dynamic_entry
8416
8417 return TRUE;
8418 }
8419
8420 static inline void
8421 elf_aarch64_update_plt_entry (bfd *output_bfd,
8422 bfd_reloc_code_real_type r_type,
8423 bfd_byte *plt_entry, bfd_vma value)
8424 {
8425 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8426
8427 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8428 }
8429
8430 static void
8431 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8432 struct elf_aarch64_link_hash_table
8433 *htab, bfd *output_bfd,
8434 struct bfd_link_info *info)
8435 {
8436 bfd_byte *plt_entry;
8437 bfd_vma plt_index;
8438 bfd_vma got_offset;
8439 bfd_vma gotplt_entry_address;
8440 bfd_vma plt_entry_address;
8441 Elf_Internal_Rela rela;
8442 bfd_byte *loc;
8443 asection *plt, *gotplt, *relplt;
8444
8445 /* When building a static executable, use .iplt, .igot.plt and
8446 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8447 if (htab->root.splt != NULL)
8448 {
8449 plt = htab->root.splt;
8450 gotplt = htab->root.sgotplt;
8451 relplt = htab->root.srelplt;
8452 }
8453 else
8454 {
8455 plt = htab->root.iplt;
8456 gotplt = htab->root.igotplt;
8457 relplt = htab->root.irelplt;
8458 }
8459
8460 /* Get the index in the procedure linkage table which
8461 corresponds to this symbol. This is the index of this symbol
8462 in all the symbols for which we are making plt entries. The
8463 first entry in the procedure linkage table is reserved.
8464
8465 Get the offset into the .got table of the entry that
8466 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8467 bytes. The first three are reserved for the dynamic linker.
8468
8469 For static executables, we don't reserve anything. */
8470
8471 if (plt == htab->root.splt)
8472 {
8473 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8474 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8475 }
8476 else
8477 {
8478 plt_index = h->plt.offset / htab->plt_entry_size;
8479 got_offset = plt_index * GOT_ENTRY_SIZE;
8480 }
8481
8482 plt_entry = plt->contents + h->plt.offset;
8483 plt_entry_address = plt->output_section->vma
8484 + plt->output_offset + h->plt.offset;
8485 gotplt_entry_address = gotplt->output_section->vma +
8486 gotplt->output_offset + got_offset;
8487
8488 /* Copy in the boiler-plate for the PLTn entry. */
8489 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8490
8491 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8492 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8493 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8494 plt_entry,
8495 PG (gotplt_entry_address) -
8496 PG (plt_entry_address));
8497
8498 /* Fill in the lo12 bits for the load from the pltgot. */
8499 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8500 plt_entry + 4,
8501 PG_OFFSET (gotplt_entry_address));
8502
8503 /* Fill in the lo12 bits for the add from the pltgot entry. */
8504 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8505 plt_entry + 8,
8506 PG_OFFSET (gotplt_entry_address));
8507
8508 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8509 bfd_put_NN (output_bfd,
8510 plt->output_section->vma + plt->output_offset,
8511 gotplt->contents + got_offset);
8512
8513 rela.r_offset = gotplt_entry_address;
8514
8515 if (h->dynindx == -1
8516 || ((bfd_link_executable (info)
8517 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8518 && h->def_regular
8519 && h->type == STT_GNU_IFUNC))
8520 {
8521 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8522 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8523 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8524 rela.r_addend = (h->root.u.def.value
8525 + h->root.u.def.section->output_section->vma
8526 + h->root.u.def.section->output_offset);
8527 }
8528 else
8529 {
8530 /* Fill in the entry in the .rela.plt section. */
8531 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8532 rela.r_addend = 0;
8533 }
8534
8535 /* Compute the relocation entry to used based on PLT index and do
8536 not adjust reloc_count. The reloc_count has already been adjusted
8537 to account for this entry. */
8538 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8539 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8540 }
8541
8542 /* Size sections even though they're not dynamic. We use it to setup
8543 _TLS_MODULE_BASE_, if needed. */
8544
8545 static bfd_boolean
8546 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8547 struct bfd_link_info *info)
8548 {
8549 asection *tls_sec;
8550
8551 if (bfd_link_relocatable (info))
8552 return TRUE;
8553
8554 tls_sec = elf_hash_table (info)->tls_sec;
8555
8556 if (tls_sec)
8557 {
8558 struct elf_link_hash_entry *tlsbase;
8559
8560 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8561 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8562
8563 if (tlsbase)
8564 {
8565 struct bfd_link_hash_entry *h = NULL;
8566 const struct elf_backend_data *bed =
8567 get_elf_backend_data (output_bfd);
8568
8569 if (!(_bfd_generic_link_add_one_symbol
8570 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8571 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8572 return FALSE;
8573
8574 tlsbase->type = STT_TLS;
8575 tlsbase = (struct elf_link_hash_entry *) h;
8576 tlsbase->def_regular = 1;
8577 tlsbase->other = STV_HIDDEN;
8578 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8579 }
8580 }
8581
8582 return TRUE;
8583 }
8584
8585 /* Finish up dynamic symbol handling. We set the contents of various
8586 dynamic sections here. */
8587 static bfd_boolean
8588 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8589 struct bfd_link_info *info,
8590 struct elf_link_hash_entry *h,
8591 Elf_Internal_Sym *sym)
8592 {
8593 struct elf_aarch64_link_hash_table *htab;
8594 htab = elf_aarch64_hash_table (info);
8595
8596 if (h->plt.offset != (bfd_vma) - 1)
8597 {
8598 asection *plt, *gotplt, *relplt;
8599
8600 /* This symbol has an entry in the procedure linkage table. Set
8601 it up. */
8602
8603 /* When building a static executable, use .iplt, .igot.plt and
8604 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8605 if (htab->root.splt != NULL)
8606 {
8607 plt = htab->root.splt;
8608 gotplt = htab->root.sgotplt;
8609 relplt = htab->root.srelplt;
8610 }
8611 else
8612 {
8613 plt = htab->root.iplt;
8614 gotplt = htab->root.igotplt;
8615 relplt = htab->root.irelplt;
8616 }
8617
8618 /* This symbol has an entry in the procedure linkage table. Set
8619 it up. */
8620 if ((h->dynindx == -1
8621 && !((h->forced_local || bfd_link_executable (info))
8622 && h->def_regular
8623 && h->type == STT_GNU_IFUNC))
8624 || plt == NULL
8625 || gotplt == NULL
8626 || relplt == NULL)
8627 abort ();
8628
8629 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8630 if (!h->def_regular)
8631 {
8632 /* Mark the symbol as undefined, rather than as defined in
8633 the .plt section. */
8634 sym->st_shndx = SHN_UNDEF;
8635 /* If the symbol is weak we need to clear the value.
8636 Otherwise, the PLT entry would provide a definition for
8637 the symbol even if the symbol wasn't defined anywhere,
8638 and so the symbol would never be NULL. Leave the value if
8639 there were any relocations where pointer equality matters
8640 (this is a clue for the dynamic linker, to make function
8641 pointer comparisons work between an application and shared
8642 library). */
8643 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8644 sym->st_value = 0;
8645 }
8646 }
8647
8648 if (h->got.offset != (bfd_vma) - 1
8649 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8650 {
8651 Elf_Internal_Rela rela;
8652 bfd_byte *loc;
8653
8654 /* This symbol has an entry in the global offset table. Set it
8655 up. */
8656 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8657 abort ();
8658
8659 rela.r_offset = (htab->root.sgot->output_section->vma
8660 + htab->root.sgot->output_offset
8661 + (h->got.offset & ~(bfd_vma) 1));
8662
8663 if (h->def_regular
8664 && h->type == STT_GNU_IFUNC)
8665 {
8666 if (bfd_link_pic (info))
8667 {
8668 /* Generate R_AARCH64_GLOB_DAT. */
8669 goto do_glob_dat;
8670 }
8671 else
8672 {
8673 asection *plt;
8674
8675 if (!h->pointer_equality_needed)
8676 abort ();
8677
8678 /* For non-shared object, we can't use .got.plt, which
8679 contains the real function address if we need pointer
8680 equality. We load the GOT entry with the PLT entry. */
8681 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8682 bfd_put_NN (output_bfd, (plt->output_section->vma
8683 + plt->output_offset
8684 + h->plt.offset),
8685 htab->root.sgot->contents
8686 + (h->got.offset & ~(bfd_vma) 1));
8687 return TRUE;
8688 }
8689 }
8690 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8691 {
8692 if (!h->def_regular)
8693 return FALSE;
8694
8695 BFD_ASSERT ((h->got.offset & 1) != 0);
8696 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8697 rela.r_addend = (h->root.u.def.value
8698 + h->root.u.def.section->output_section->vma
8699 + h->root.u.def.section->output_offset);
8700 }
8701 else
8702 {
8703 do_glob_dat:
8704 BFD_ASSERT ((h->got.offset & 1) == 0);
8705 bfd_put_NN (output_bfd, (bfd_vma) 0,
8706 htab->root.sgot->contents + h->got.offset);
8707 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8708 rela.r_addend = 0;
8709 }
8710
8711 loc = htab->root.srelgot->contents;
8712 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8713 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8714 }
8715
8716 if (h->needs_copy)
8717 {
8718 Elf_Internal_Rela rela;
8719 bfd_byte *loc;
8720
8721 /* This symbol needs a copy reloc. Set it up. */
8722
8723 if (h->dynindx == -1
8724 || (h->root.type != bfd_link_hash_defined
8725 && h->root.type != bfd_link_hash_defweak)
8726 || htab->srelbss == NULL)
8727 abort ();
8728
8729 rela.r_offset = (h->root.u.def.value
8730 + h->root.u.def.section->output_section->vma
8731 + h->root.u.def.section->output_offset);
8732 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8733 rela.r_addend = 0;
8734 loc = htab->srelbss->contents;
8735 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8736 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8737 }
8738
8739 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8740 be NULL for local symbols. */
8741 if (sym != NULL
8742 && (h == elf_hash_table (info)->hdynamic
8743 || h == elf_hash_table (info)->hgot))
8744 sym->st_shndx = SHN_ABS;
8745
8746 return TRUE;
8747 }
8748
8749 /* Finish up local dynamic symbol handling. We set the contents of
8750 various dynamic sections here. */
8751
8752 static bfd_boolean
8753 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8754 {
8755 struct elf_link_hash_entry *h
8756 = (struct elf_link_hash_entry *) *slot;
8757 struct bfd_link_info *info
8758 = (struct bfd_link_info *) inf;
8759
8760 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8761 info, h, NULL);
8762 }
8763
8764 static void
8765 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8766 struct elf_aarch64_link_hash_table
8767 *htab)
8768 {
8769 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8770 small and large plts and at the minute just generates
8771 the small PLT. */
8772
8773 /* PLT0 of the small PLT looks like this in ELF64 -
8774 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8775 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8776 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8777 // symbol resolver
8778 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8779 // GOTPLT entry for this.
8780 br x17
8781 PLT0 will be slightly different in ELF32 due to different got entry
8782 size.
8783 */
8784 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8785 bfd_vma plt_base;
8786
8787
8788 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8789 PLT_ENTRY_SIZE);
8790 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8791 PLT_ENTRY_SIZE;
8792
8793 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8794 + htab->root.sgotplt->output_offset
8795 + GOT_ENTRY_SIZE * 2);
8796
8797 plt_base = htab->root.splt->output_section->vma +
8798 htab->root.splt->output_offset;
8799
8800 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8801 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8802 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8803 htab->root.splt->contents + 4,
8804 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8805
8806 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8807 htab->root.splt->contents + 8,
8808 PG_OFFSET (plt_got_2nd_ent));
8809
8810 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8811 htab->root.splt->contents + 12,
8812 PG_OFFSET (plt_got_2nd_ent));
8813 }
8814
8815 static bfd_boolean
8816 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
8817 struct bfd_link_info *info)
8818 {
8819 struct elf_aarch64_link_hash_table *htab;
8820 bfd *dynobj;
8821 asection *sdyn;
8822
8823 htab = elf_aarch64_hash_table (info);
8824 dynobj = htab->root.dynobj;
8825 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
8826
8827 if (htab->root.dynamic_sections_created)
8828 {
8829 ElfNN_External_Dyn *dyncon, *dynconend;
8830
8831 if (sdyn == NULL || htab->root.sgot == NULL)
8832 abort ();
8833
8834 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
8835 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
8836 for (; dyncon < dynconend; dyncon++)
8837 {
8838 Elf_Internal_Dyn dyn;
8839 asection *s;
8840
8841 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
8842
8843 switch (dyn.d_tag)
8844 {
8845 default:
8846 continue;
8847
8848 case DT_PLTGOT:
8849 s = htab->root.sgotplt;
8850 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8851 break;
8852
8853 case DT_JMPREL:
8854 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
8855 break;
8856
8857 case DT_PLTRELSZ:
8858 s = htab->root.srelplt;
8859 dyn.d_un.d_val = s->size;
8860 break;
8861
8862 case DT_RELASZ:
8863 /* The procedure linkage table relocs (DT_JMPREL) should
8864 not be included in the overall relocs (DT_RELA).
8865 Therefore, we override the DT_RELASZ entry here to
8866 make it not include the JMPREL relocs. Since the
8867 linker script arranges for .rela.plt to follow all
8868 other relocation sections, we don't have to worry
8869 about changing the DT_RELA entry. */
8870 if (htab->root.srelplt != NULL)
8871 {
8872 s = htab->root.srelplt;
8873 dyn.d_un.d_val -= s->size;
8874 }
8875 break;
8876
8877 case DT_TLSDESC_PLT:
8878 s = htab->root.splt;
8879 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8880 + htab->tlsdesc_plt;
8881 break;
8882
8883 case DT_TLSDESC_GOT:
8884 s = htab->root.sgot;
8885 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8886 + htab->dt_tlsdesc_got;
8887 break;
8888 }
8889
8890 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
8891 }
8892
8893 }
8894
8895 /* Fill in the special first entry in the procedure linkage table. */
8896 if (htab->root.splt && htab->root.splt->size > 0)
8897 {
8898 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
8899
8900 elf_section_data (htab->root.splt->output_section)->
8901 this_hdr.sh_entsize = htab->plt_entry_size;
8902
8903
8904 if (htab->tlsdesc_plt)
8905 {
8906 bfd_put_NN (output_bfd, (bfd_vma) 0,
8907 htab->root.sgot->contents + htab->dt_tlsdesc_got);
8908
8909 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
8910 elfNN_aarch64_tlsdesc_small_plt_entry,
8911 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
8912
8913 {
8914 bfd_vma adrp1_addr =
8915 htab->root.splt->output_section->vma
8916 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
8917
8918 bfd_vma adrp2_addr = adrp1_addr + 4;
8919
8920 bfd_vma got_addr =
8921 htab->root.sgot->output_section->vma
8922 + htab->root.sgot->output_offset;
8923
8924 bfd_vma pltgot_addr =
8925 htab->root.sgotplt->output_section->vma
8926 + htab->root.sgotplt->output_offset;
8927
8928 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
8929
8930 bfd_byte *plt_entry =
8931 htab->root.splt->contents + htab->tlsdesc_plt;
8932
8933 /* adrp x2, DT_TLSDESC_GOT */
8934 elf_aarch64_update_plt_entry (output_bfd,
8935 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8936 plt_entry + 4,
8937 (PG (dt_tlsdesc_got)
8938 - PG (adrp1_addr)));
8939
8940 /* adrp x3, 0 */
8941 elf_aarch64_update_plt_entry (output_bfd,
8942 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8943 plt_entry + 8,
8944 (PG (pltgot_addr)
8945 - PG (adrp2_addr)));
8946
8947 /* ldr x2, [x2, #0] */
8948 elf_aarch64_update_plt_entry (output_bfd,
8949 BFD_RELOC_AARCH64_LDSTNN_LO12,
8950 plt_entry + 12,
8951 PG_OFFSET (dt_tlsdesc_got));
8952
8953 /* add x3, x3, 0 */
8954 elf_aarch64_update_plt_entry (output_bfd,
8955 BFD_RELOC_AARCH64_ADD_LO12,
8956 plt_entry + 16,
8957 PG_OFFSET (pltgot_addr));
8958 }
8959 }
8960 }
8961
8962 if (htab->root.sgotplt)
8963 {
8964 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
8965 {
8966 (*_bfd_error_handler)
8967 (_("discarded output section: `%A'"), htab->root.sgotplt);
8968 return FALSE;
8969 }
8970
8971 /* Fill in the first three entries in the global offset table. */
8972 if (htab->root.sgotplt->size > 0)
8973 {
8974 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
8975
8976 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
8977 bfd_put_NN (output_bfd,
8978 (bfd_vma) 0,
8979 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
8980 bfd_put_NN (output_bfd,
8981 (bfd_vma) 0,
8982 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
8983 }
8984
8985 if (htab->root.sgot)
8986 {
8987 if (htab->root.sgot->size > 0)
8988 {
8989 bfd_vma addr =
8990 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
8991 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
8992 }
8993 }
8994
8995 elf_section_data (htab->root.sgotplt->output_section)->
8996 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
8997 }
8998
8999 if (htab->root.sgot && htab->root.sgot->size > 0)
9000 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9001 = GOT_ENTRY_SIZE;
9002
9003 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9004 htab_traverse (htab->loc_hash_table,
9005 elfNN_aarch64_finish_local_dynamic_symbol,
9006 info);
9007
9008 return TRUE;
9009 }
9010
9011 /* Return address for Ith PLT stub in section PLT, for relocation REL
9012 or (bfd_vma) -1 if it should not be included. */
9013
9014 static bfd_vma
9015 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9016 const arelent *rel ATTRIBUTE_UNUSED)
9017 {
9018 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9019 }
9020
9021
9022 /* We use this so we can override certain functions
9023 (though currently we don't). */
9024
9025 const struct elf_size_info elfNN_aarch64_size_info =
9026 {
9027 sizeof (ElfNN_External_Ehdr),
9028 sizeof (ElfNN_External_Phdr),
9029 sizeof (ElfNN_External_Shdr),
9030 sizeof (ElfNN_External_Rel),
9031 sizeof (ElfNN_External_Rela),
9032 sizeof (ElfNN_External_Sym),
9033 sizeof (ElfNN_External_Dyn),
9034 sizeof (Elf_External_Note),
9035 4, /* Hash table entry size. */
9036 1, /* Internal relocs per external relocs. */
9037 ARCH_SIZE, /* Arch size. */
9038 LOG_FILE_ALIGN, /* Log_file_align. */
9039 ELFCLASSNN, EV_CURRENT,
9040 bfd_elfNN_write_out_phdrs,
9041 bfd_elfNN_write_shdrs_and_ehdr,
9042 bfd_elfNN_checksum_contents,
9043 bfd_elfNN_write_relocs,
9044 bfd_elfNN_swap_symbol_in,
9045 bfd_elfNN_swap_symbol_out,
9046 bfd_elfNN_slurp_reloc_table,
9047 bfd_elfNN_slurp_symbol_table,
9048 bfd_elfNN_swap_dyn_in,
9049 bfd_elfNN_swap_dyn_out,
9050 bfd_elfNN_swap_reloc_in,
9051 bfd_elfNN_swap_reloc_out,
9052 bfd_elfNN_swap_reloca_in,
9053 bfd_elfNN_swap_reloca_out
9054 };
9055
9056 #define ELF_ARCH bfd_arch_aarch64
9057 #define ELF_MACHINE_CODE EM_AARCH64
9058 #define ELF_MAXPAGESIZE 0x10000
9059 #define ELF_MINPAGESIZE 0x1000
9060 #define ELF_COMMONPAGESIZE 0x1000
9061
9062 #define bfd_elfNN_close_and_cleanup \
9063 elfNN_aarch64_close_and_cleanup
9064
9065 #define bfd_elfNN_bfd_free_cached_info \
9066 elfNN_aarch64_bfd_free_cached_info
9067
9068 #define bfd_elfNN_bfd_is_target_special_symbol \
9069 elfNN_aarch64_is_target_special_symbol
9070
9071 #define bfd_elfNN_bfd_link_hash_table_create \
9072 elfNN_aarch64_link_hash_table_create
9073
9074 #define bfd_elfNN_bfd_merge_private_bfd_data \
9075 elfNN_aarch64_merge_private_bfd_data
9076
9077 #define bfd_elfNN_bfd_print_private_bfd_data \
9078 elfNN_aarch64_print_private_bfd_data
9079
9080 #define bfd_elfNN_bfd_reloc_type_lookup \
9081 elfNN_aarch64_reloc_type_lookup
9082
9083 #define bfd_elfNN_bfd_reloc_name_lookup \
9084 elfNN_aarch64_reloc_name_lookup
9085
9086 #define bfd_elfNN_bfd_set_private_flags \
9087 elfNN_aarch64_set_private_flags
9088
9089 #define bfd_elfNN_find_inliner_info \
9090 elfNN_aarch64_find_inliner_info
9091
9092 #define bfd_elfNN_find_nearest_line \
9093 elfNN_aarch64_find_nearest_line
9094
9095 #define bfd_elfNN_mkobject \
9096 elfNN_aarch64_mkobject
9097
9098 #define bfd_elfNN_new_section_hook \
9099 elfNN_aarch64_new_section_hook
9100
9101 #define elf_backend_adjust_dynamic_symbol \
9102 elfNN_aarch64_adjust_dynamic_symbol
9103
9104 #define elf_backend_always_size_sections \
9105 elfNN_aarch64_always_size_sections
9106
9107 #define elf_backend_check_relocs \
9108 elfNN_aarch64_check_relocs
9109
9110 #define elf_backend_copy_indirect_symbol \
9111 elfNN_aarch64_copy_indirect_symbol
9112
9113 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9114 to them in our hash. */
9115 #define elf_backend_create_dynamic_sections \
9116 elfNN_aarch64_create_dynamic_sections
9117
9118 #define elf_backend_init_index_section \
9119 _bfd_elf_init_2_index_sections
9120
9121 #define elf_backend_finish_dynamic_sections \
9122 elfNN_aarch64_finish_dynamic_sections
9123
9124 #define elf_backend_finish_dynamic_symbol \
9125 elfNN_aarch64_finish_dynamic_symbol
9126
9127 #define elf_backend_gc_sweep_hook \
9128 elfNN_aarch64_gc_sweep_hook
9129
9130 #define elf_backend_object_p \
9131 elfNN_aarch64_object_p
9132
9133 #define elf_backend_output_arch_local_syms \
9134 elfNN_aarch64_output_arch_local_syms
9135
9136 #define elf_backend_plt_sym_val \
9137 elfNN_aarch64_plt_sym_val
9138
9139 #define elf_backend_post_process_headers \
9140 elfNN_aarch64_post_process_headers
9141
9142 #define elf_backend_relocate_section \
9143 elfNN_aarch64_relocate_section
9144
9145 #define elf_backend_reloc_type_class \
9146 elfNN_aarch64_reloc_type_class
9147
9148 #define elf_backend_section_from_shdr \
9149 elfNN_aarch64_section_from_shdr
9150
9151 #define elf_backend_size_dynamic_sections \
9152 elfNN_aarch64_size_dynamic_sections
9153
9154 #define elf_backend_size_info \
9155 elfNN_aarch64_size_info
9156
9157 #define elf_backend_write_section \
9158 elfNN_aarch64_write_section
9159
9160 #define elf_backend_can_refcount 1
9161 #define elf_backend_can_gc_sections 1
9162 #define elf_backend_plt_readonly 1
9163 #define elf_backend_want_got_plt 1
9164 #define elf_backend_want_plt_sym 0
9165 #define elf_backend_may_use_rel_p 0
9166 #define elf_backend_may_use_rela_p 1
9167 #define elf_backend_default_use_rela_p 1
9168 #define elf_backend_rela_normal 1
9169 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9170 #define elf_backend_default_execstack 0
9171 #define elf_backend_extern_protected_data 1
9172
9173 #undef elf_backend_obj_attrs_section
9174 #define elf_backend_obj_attrs_section ".ARM.attributes"
9175
9176 #include "elfNN-target.h"
This page took 0.320915 seconds and 4 git commands to generate.