6f3bd0d5650818e5429fc64775593a160ccee844
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147
148 #define ARCH_SIZE NN
149
150 #if ARCH_SIZE == 64
151 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
152 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
153 #define HOWTO64(...) HOWTO (__VA_ARGS__)
154 #define HOWTO32(...) EMPTY_HOWTO (0)
155 #define LOG_FILE_ALIGN 3
156 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
166 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
167 #endif
168
169 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
170 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
219 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
220
221 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
222 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
244
245 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
246 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
258
259 #define ELIMINATE_COPY_RELOCS 1
260
261 /* Return size of a relocation entry. HTAB is the bfd's
262 elf_aarch64_link_hash_entry. */
263 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
264
265 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
266 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
267 #define PLT_ENTRY_SIZE (32)
268 #define PLT_SMALL_ENTRY_SIZE (16)
269 #define PLT_TLSDESC_ENTRY_SIZE (32)
270 /* PLT sizes with BTI insn. */
271 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
272 /* PLT sizes with PAC insn. */
273 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
274 /* PLT sizes with BTI and PAC insn. */
275 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
276
277 /* Encoding of the nop instruction. */
278 #define INSN_NOP 0xd503201f
279
280 #define aarch64_compute_jump_table_size(htab) \
281 (((htab)->root.srelplt == NULL) ? 0 \
282 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
283
284 /* The first entry in a procedure linkage table looks like this
285 if the distance between the PLTGOT and the PLT is < 4GB use
286 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
287 in x16 and needs to work out PLTGOT[1] by using an address of
288 [x16,#-GOT_ENTRY_SIZE]. */
289 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
290 {
291 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
292 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
293 #if ARCH_SIZE == 64
294 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
295 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
296 #else
297 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
298 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
299 #endif
300 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
301 0x1f, 0x20, 0x03, 0xd5, /* nop */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 };
305
306 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
307 {
308 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
309 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
310 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
311 #if ARCH_SIZE == 64
312 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
313 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
314 #else
315 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
316 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
317 #endif
318 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
319 0x1f, 0x20, 0x03, 0xd5, /* nop */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 };
322
323 /* Per function entry in a procedure linkage table looks like this
324 if the distance between the PLTGOT and the PLT is < 4GB use
325 these PLT entries. Use BTI versions of the PLTs when enabled. */
326 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
327 {
328 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
329 #if ARCH_SIZE == 64
330 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
331 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
332 #else
333 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
334 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
335 #endif
336 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
337 };
338
339 static const bfd_byte
340 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
341 {
342 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
343 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
344 #if ARCH_SIZE == 64
345 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
346 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
347 #else
348 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
349 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
350 #endif
351 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
352 0x1f, 0x20, 0x03, 0xd5, /* nop */
353 };
354
355 static const bfd_byte
356 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
357 {
358 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
359 #if ARCH_SIZE == 64
360 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
361 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
362 #else
363 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
364 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
365 #endif
366 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
367 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
368 0x1f, 0x20, 0x03, 0xd5, /* nop */
369 };
370
371 static const bfd_byte
372 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
373 {
374 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
375 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
376 #if ARCH_SIZE == 64
377 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
378 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
379 #else
380 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
381 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
382 #endif
383 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
384 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
385 };
386
387 static const bfd_byte
388 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
389 {
390 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
391 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
392 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
393 #if ARCH_SIZE == 64
394 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
395 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
396 #else
397 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
398 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
399 #endif
400 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
401 0x1f, 0x20, 0x03, 0xd5, /* nop */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 };
404
405 static const bfd_byte
406 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
407 {
408 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
409 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
410 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
411 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
412 #if ARCH_SIZE == 64
413 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
414 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
415 #else
416 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
417 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
418 #endif
419 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
420 0x1f, 0x20, 0x03, 0xd5, /* nop */
421 };
422
423 #define elf_info_to_howto elfNN_aarch64_info_to_howto
424 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
425
426 #define AARCH64_ELF_ABI_VERSION 0
427
428 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
429 #define ALL_ONES (~ (bfd_vma) 0)
430
431 /* Indexed by the bfd interal reloc enumerators.
432 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
433 in reloc.c. */
434
435 static reloc_howto_type elfNN_aarch64_howto_table[] =
436 {
437 EMPTY_HOWTO (0),
438
439 /* Basic data relocations. */
440
441 /* Deprecated, but retained for backwards compatibility. */
442 HOWTO64 (R_AARCH64_NULL, /* type */
443 0, /* rightshift */
444 3, /* size (0 = byte, 1 = short, 2 = long) */
445 0, /* bitsize */
446 FALSE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_dont, /* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_AARCH64_NULL", /* name */
451 FALSE, /* partial_inplace */
452 0, /* src_mask */
453 0, /* dst_mask */
454 FALSE), /* pcrel_offset */
455 HOWTO (R_AARCH64_NONE, /* type */
456 0, /* rightshift */
457 3, /* size (0 = byte, 1 = short, 2 = long) */
458 0, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_dont, /* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_AARCH64_NONE", /* name */
464 FALSE, /* partial_inplace */
465 0, /* src_mask */
466 0, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 /* .xword: (S+A) */
470 HOWTO64 (AARCH64_R (ABS64), /* type */
471 0, /* rightshift */
472 4, /* size (4 = long long) */
473 64, /* bitsize */
474 FALSE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_unsigned, /* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 AARCH64_R_STR (ABS64), /* name */
479 FALSE, /* partial_inplace */
480 ALL_ONES, /* src_mask */
481 ALL_ONES, /* dst_mask */
482 FALSE), /* pcrel_offset */
483
484 /* .word: (S+A) */
485 HOWTO (AARCH64_R (ABS32), /* type */
486 0, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 32, /* bitsize */
489 FALSE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_unsigned, /* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 AARCH64_R_STR (ABS32), /* name */
494 FALSE, /* partial_inplace */
495 0xffffffff, /* src_mask */
496 0xffffffff, /* dst_mask */
497 FALSE), /* pcrel_offset */
498
499 /* .half: (S+A) */
500 HOWTO (AARCH64_R (ABS16), /* type */
501 0, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_unsigned, /* complain_on_overflow */
507 bfd_elf_generic_reloc, /* special_function */
508 AARCH64_R_STR (ABS16), /* name */
509 FALSE, /* partial_inplace */
510 0xffff, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* .xword: (S+A-P) */
515 HOWTO64 (AARCH64_R (PREL64), /* type */
516 0, /* rightshift */
517 4, /* size (4 = long long) */
518 64, /* bitsize */
519 TRUE, /* pc_relative */
520 0, /* bitpos */
521 complain_overflow_signed, /* complain_on_overflow */
522 bfd_elf_generic_reloc, /* special_function */
523 AARCH64_R_STR (PREL64), /* name */
524 FALSE, /* partial_inplace */
525 ALL_ONES, /* src_mask */
526 ALL_ONES, /* dst_mask */
527 TRUE), /* pcrel_offset */
528
529 /* .word: (S+A-P) */
530 HOWTO (AARCH64_R (PREL32), /* type */
531 0, /* rightshift */
532 2, /* size (0 = byte, 1 = short, 2 = long) */
533 32, /* bitsize */
534 TRUE, /* pc_relative */
535 0, /* bitpos */
536 complain_overflow_signed, /* complain_on_overflow */
537 bfd_elf_generic_reloc, /* special_function */
538 AARCH64_R_STR (PREL32), /* name */
539 FALSE, /* partial_inplace */
540 0xffffffff, /* src_mask */
541 0xffffffff, /* dst_mask */
542 TRUE), /* pcrel_offset */
543
544 /* .half: (S+A-P) */
545 HOWTO (AARCH64_R (PREL16), /* type */
546 0, /* rightshift */
547 1, /* size (0 = byte, 1 = short, 2 = long) */
548 16, /* bitsize */
549 TRUE, /* pc_relative */
550 0, /* bitpos */
551 complain_overflow_signed, /* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 AARCH64_R_STR (PREL16), /* name */
554 FALSE, /* partial_inplace */
555 0xffff, /* src_mask */
556 0xffff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 /* Group relocations to create a 16, 32, 48 or 64 bit
560 unsigned data or abs address inline. */
561
562 /* MOVZ: ((S+A) >> 0) & 0xffff */
563 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 16, /* bitsize */
567 FALSE, /* pc_relative */
568 0, /* bitpos */
569 complain_overflow_unsigned, /* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 AARCH64_R_STR (MOVW_UABS_G0), /* name */
572 FALSE, /* partial_inplace */
573 0xffff, /* src_mask */
574 0xffff, /* dst_mask */
575 FALSE), /* pcrel_offset */
576
577 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
578 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 16, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont, /* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
587 FALSE, /* partial_inplace */
588 0xffff, /* src_mask */
589 0xffff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 /* MOVZ: ((S+A) >> 16) & 0xffff */
593 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
594 16, /* rightshift */
595 2, /* size (0 = byte, 1 = short, 2 = long) */
596 16, /* bitsize */
597 FALSE, /* pc_relative */
598 0, /* bitpos */
599 complain_overflow_unsigned, /* complain_on_overflow */
600 bfd_elf_generic_reloc, /* special_function */
601 AARCH64_R_STR (MOVW_UABS_G1), /* name */
602 FALSE, /* partial_inplace */
603 0xffff, /* src_mask */
604 0xffff, /* dst_mask */
605 FALSE), /* pcrel_offset */
606
607 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
608 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
609 16, /* rightshift */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
611 16, /* bitsize */
612 FALSE, /* pc_relative */
613 0, /* bitpos */
614 complain_overflow_dont, /* complain_on_overflow */
615 bfd_elf_generic_reloc, /* special_function */
616 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
617 FALSE, /* partial_inplace */
618 0xffff, /* src_mask */
619 0xffff, /* dst_mask */
620 FALSE), /* pcrel_offset */
621
622 /* MOVZ: ((S+A) >> 32) & 0xffff */
623 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
624 32, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 16, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_unsigned, /* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 AARCH64_R_STR (MOVW_UABS_G2), /* name */
632 FALSE, /* partial_inplace */
633 0xffff, /* src_mask */
634 0xffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
638 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
639 32, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 16, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont, /* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
647 FALSE, /* partial_inplace */
648 0xffff, /* src_mask */
649 0xffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 /* MOVZ: ((S+A) >> 48) & 0xffff */
653 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
654 48, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 16, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_unsigned, /* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 AARCH64_R_STR (MOVW_UABS_G3), /* name */
662 FALSE, /* partial_inplace */
663 0xffff, /* src_mask */
664 0xffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
668 signed data or abs address inline. Will change instruction
669 to MOVN or MOVZ depending on sign of calculated value. */
670
671 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
672 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 17, /* bitsize */
676 FALSE, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 AARCH64_R_STR (MOVW_SABS_G0), /* name */
681 FALSE, /* partial_inplace */
682 0xffff, /* src_mask */
683 0xffff, /* dst_mask */
684 FALSE), /* pcrel_offset */
685
686 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
687 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
688 16, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 17, /* bitsize */
691 FALSE, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_signed, /* complain_on_overflow */
694 bfd_elf_generic_reloc, /* special_function */
695 AARCH64_R_STR (MOVW_SABS_G1), /* name */
696 FALSE, /* partial_inplace */
697 0xffff, /* src_mask */
698 0xffff, /* dst_mask */
699 FALSE), /* pcrel_offset */
700
701 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
702 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
703 32, /* rightshift */
704 2, /* size (0 = byte, 1 = short, 2 = long) */
705 17, /* bitsize */
706 FALSE, /* pc_relative */
707 0, /* bitpos */
708 complain_overflow_signed, /* complain_on_overflow */
709 bfd_elf_generic_reloc, /* special_function */
710 AARCH64_R_STR (MOVW_SABS_G2), /* name */
711 FALSE, /* partial_inplace */
712 0xffff, /* src_mask */
713 0xffff, /* dst_mask */
714 FALSE), /* pcrel_offset */
715
716 /* Group relocations to create a 16, 32, 48 or 64 bit
717 PC relative address inline. */
718
719 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
720 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
721 0, /* rightshift */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
723 17, /* bitsize */
724 TRUE, /* pc_relative */
725 0, /* bitpos */
726 complain_overflow_signed, /* complain_on_overflow */
727 bfd_elf_generic_reloc, /* special_function */
728 AARCH64_R_STR (MOVW_PREL_G0), /* name */
729 FALSE, /* partial_inplace */
730 0xffff, /* src_mask */
731 0xffff, /* dst_mask */
732 TRUE), /* pcrel_offset */
733
734 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
735 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_dont, /* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
744 FALSE, /* partial_inplace */
745 0xffff, /* src_mask */
746 0xffff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
750 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
751 16, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 17, /* bitsize */
754 TRUE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_signed, /* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 AARCH64_R_STR (MOVW_PREL_G1), /* name */
759 FALSE, /* partial_inplace */
760 0xffff, /* src_mask */
761 0xffff, /* dst_mask */
762 TRUE), /* pcrel_offset */
763
764 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
765 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
766 16, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 TRUE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_dont, /* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
774 FALSE, /* partial_inplace */
775 0xffff, /* src_mask */
776 0xffff, /* dst_mask */
777 TRUE), /* pcrel_offset */
778
779 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
780 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
781 32, /* rightshift */
782 2, /* size (0 = byte, 1 = short, 2 = long) */
783 17, /* bitsize */
784 TRUE, /* pc_relative */
785 0, /* bitpos */
786 complain_overflow_signed, /* complain_on_overflow */
787 bfd_elf_generic_reloc, /* special_function */
788 AARCH64_R_STR (MOVW_PREL_G2), /* name */
789 FALSE, /* partial_inplace */
790 0xffff, /* src_mask */
791 0xffff, /* dst_mask */
792 TRUE), /* pcrel_offset */
793
794 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
795 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
796 32, /* rightshift */
797 2, /* size (0 = byte, 1 = short, 2 = long) */
798 16, /* bitsize */
799 TRUE, /* pc_relative */
800 0, /* bitpos */
801 complain_overflow_dont, /* complain_on_overflow */
802 bfd_elf_generic_reloc, /* special_function */
803 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
804 FALSE, /* partial_inplace */
805 0xffff, /* src_mask */
806 0xffff, /* dst_mask */
807 TRUE), /* pcrel_offset */
808
809 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
810 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
811 48, /* rightshift */
812 2, /* size (0 = byte, 1 = short, 2 = long) */
813 16, /* bitsize */
814 TRUE, /* pc_relative */
815 0, /* bitpos */
816 complain_overflow_dont, /* complain_on_overflow */
817 bfd_elf_generic_reloc, /* special_function */
818 AARCH64_R_STR (MOVW_PREL_G3), /* name */
819 FALSE, /* partial_inplace */
820 0xffff, /* src_mask */
821 0xffff, /* dst_mask */
822 TRUE), /* pcrel_offset */
823
824 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
825 addresses: PG(x) is (x & ~0xfff). */
826
827 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
828 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
829 2, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 19, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_signed, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 AARCH64_R_STR (LD_PREL_LO19), /* name */
837 FALSE, /* partial_inplace */
838 0x7ffff, /* src_mask */
839 0x7ffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 /* ADR: (S+A-P) & 0x1fffff */
843 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
844 0, /* rightshift */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
846 21, /* bitsize */
847 TRUE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_signed, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 AARCH64_R_STR (ADR_PREL_LO21), /* name */
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
856
857 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
858 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
859 12, /* rightshift */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
861 21, /* bitsize */
862 TRUE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_signed, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
867 FALSE, /* partial_inplace */
868 0x1fffff, /* src_mask */
869 0x1fffff, /* dst_mask */
870 TRUE), /* pcrel_offset */
871
872 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
873 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
874 12, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 21, /* bitsize */
877 TRUE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
882 FALSE, /* partial_inplace */
883 0x1fffff, /* src_mask */
884 0x1fffff, /* dst_mask */
885 TRUE), /* pcrel_offset */
886
887 /* ADD: (S+A) & 0xfff [no overflow check] */
888 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
889 0, /* rightshift */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
891 12, /* bitsize */
892 FALSE, /* pc_relative */
893 10, /* bitpos */
894 complain_overflow_dont, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
897 FALSE, /* partial_inplace */
898 0x3ffc00, /* src_mask */
899 0x3ffc00, /* dst_mask */
900 FALSE), /* pcrel_offset */
901
902 /* LD/ST8: (S+A) & 0xfff */
903 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
904 0, /* rightshift */
905 2, /* size (0 = byte, 1 = short, 2 = long) */
906 12, /* bitsize */
907 FALSE, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_dont, /* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
912 FALSE, /* partial_inplace */
913 0xfff, /* src_mask */
914 0xfff, /* dst_mask */
915 FALSE), /* pcrel_offset */
916
917 /* Relocations for control-flow instructions. */
918
919 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
920 HOWTO (AARCH64_R (TSTBR14), /* type */
921 2, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 14, /* bitsize */
924 TRUE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_signed, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (TSTBR14), /* name */
929 FALSE, /* partial_inplace */
930 0x3fff, /* src_mask */
931 0x3fff, /* dst_mask */
932 TRUE), /* pcrel_offset */
933
934 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
935 HOWTO (AARCH64_R (CONDBR19), /* type */
936 2, /* rightshift */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
938 19, /* bitsize */
939 TRUE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_signed, /* complain_on_overflow */
942 bfd_elf_generic_reloc, /* special_function */
943 AARCH64_R_STR (CONDBR19), /* name */
944 FALSE, /* partial_inplace */
945 0x7ffff, /* src_mask */
946 0x7ffff, /* dst_mask */
947 TRUE), /* pcrel_offset */
948
949 /* B: ((S+A-P) >> 2) & 0x3ffffff */
950 HOWTO (AARCH64_R (JUMP26), /* type */
951 2, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 26, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_signed, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (JUMP26), /* name */
959 FALSE, /* partial_inplace */
960 0x3ffffff, /* src_mask */
961 0x3ffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
965 HOWTO (AARCH64_R (CALL26), /* type */
966 2, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 26, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_signed, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (CALL26), /* name */
974 FALSE, /* partial_inplace */
975 0x3ffffff, /* src_mask */
976 0x3ffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 /* LD/ST16: (S+A) & 0xffe */
980 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
981 1, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 12, /* bitsize */
984 FALSE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont, /* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
989 FALSE, /* partial_inplace */
990 0xffe, /* src_mask */
991 0xffe, /* dst_mask */
992 FALSE), /* pcrel_offset */
993
994 /* LD/ST32: (S+A) & 0xffc */
995 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
996 2, /* rightshift */
997 2, /* size (0 = byte, 1 = short, 2 = long) */
998 12, /* bitsize */
999 FALSE, /* pc_relative */
1000 0, /* bitpos */
1001 complain_overflow_dont, /* complain_on_overflow */
1002 bfd_elf_generic_reloc, /* special_function */
1003 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1004 FALSE, /* partial_inplace */
1005 0xffc, /* src_mask */
1006 0xffc, /* dst_mask */
1007 FALSE), /* pcrel_offset */
1008
1009 /* LD/ST64: (S+A) & 0xff8 */
1010 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1011 3, /* rightshift */
1012 2, /* size (0 = byte, 1 = short, 2 = long) */
1013 12, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 bfd_elf_generic_reloc, /* special_function */
1018 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1019 FALSE, /* partial_inplace */
1020 0xff8, /* src_mask */
1021 0xff8, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* LD/ST128: (S+A) & 0xff0 */
1025 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1026 4, /* rightshift */
1027 2, /* size (0 = byte, 1 = short, 2 = long) */
1028 12, /* bitsize */
1029 FALSE, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_dont, /* complain_on_overflow */
1032 bfd_elf_generic_reloc, /* special_function */
1033 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1034 FALSE, /* partial_inplace */
1035 0xff0, /* src_mask */
1036 0xff0, /* dst_mask */
1037 FALSE), /* pcrel_offset */
1038
1039 /* Set a load-literal immediate field to bits
1040 0x1FFFFC of G(S)-P */
1041 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1042 2, /* rightshift */
1043 2, /* size (0 = byte,1 = short,2 = long) */
1044 19, /* bitsize */
1045 TRUE, /* pc_relative */
1046 0, /* bitpos */
1047 complain_overflow_signed, /* complain_on_overflow */
1048 bfd_elf_generic_reloc, /* special_function */
1049 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1050 FALSE, /* partial_inplace */
1051 0xffffe0, /* src_mask */
1052 0xffffe0, /* dst_mask */
1053 TRUE), /* pcrel_offset */
1054
1055 /* Get to the page for the GOT entry for the symbol
1056 (G(S) - P) using an ADRP instruction. */
1057 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1058 12, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 21, /* bitsize */
1061 TRUE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont, /* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1066 FALSE, /* partial_inplace */
1067 0x1fffff, /* src_mask */
1068 0x1fffff, /* dst_mask */
1069 TRUE), /* pcrel_offset */
1070
1071 /* LD64: GOT offset G(S) & 0xff8 */
1072 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1073 3, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 12, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1081 FALSE, /* partial_inplace */
1082 0xff8, /* src_mask */
1083 0xff8, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* LD32: GOT offset G(S) & 0xffc */
1087 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1088 2, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 12, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont, /* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1096 FALSE, /* partial_inplace */
1097 0xffc, /* src_mask */
1098 0xffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Lower 16 bits of GOT offset for the symbol. */
1102 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1103 0, /* rightshift */
1104 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_dont, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1111 FALSE, /* partial_inplace */
1112 0xffff, /* src_mask */
1113 0xffff, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Higher 16 bits of GOT offset for the symbol. */
1117 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1118 16, /* rightshift */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_unsigned, /* complain_on_overflow */
1124 bfd_elf_generic_reloc, /* special_function */
1125 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1126 FALSE, /* partial_inplace */
1127 0xffff, /* src_mask */
1128 0xffff, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* LD64: GOT offset for the symbol. */
1132 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1133 3, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 12, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_unsigned, /* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1141 FALSE, /* partial_inplace */
1142 0x7ff8, /* src_mask */
1143 0x7ff8, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* LD32: GOT offset to the page address of GOT table.
1147 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1148 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1149 2, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 12, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_unsigned, /* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1157 FALSE, /* partial_inplace */
1158 0x5ffc, /* src_mask */
1159 0x5ffc, /* dst_mask */
1160 FALSE), /* pcrel_offset */
1161
1162 /* LD64: GOT offset to the page address of GOT table.
1163 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1164 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1165 3, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 12, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_unsigned, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1173 FALSE, /* partial_inplace */
1174 0x7ff8, /* src_mask */
1175 0x7ff8, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Get to the page for the GOT entry for the symbol
1179 (G(S) - P) using an ADRP instruction. */
1180 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1181 12, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 21, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1189 FALSE, /* partial_inplace */
1190 0x1fffff, /* src_mask */
1191 0x1fffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 21, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1203 FALSE, /* partial_inplace */
1204 0x1fffff, /* src_mask */
1205 0x1fffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1209 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1210 0, /* rightshift */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 12, /* bitsize */
1213 FALSE, /* pc_relative */
1214 0, /* bitpos */
1215 complain_overflow_dont, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1218 FALSE, /* partial_inplace */
1219 0xfff, /* src_mask */
1220 0xfff, /* dst_mask */
1221 FALSE), /* pcrel_offset */
1222
1223 /* Lower 16 bits of GOT offset to tls_index. */
1224 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1225 0, /* rightshift */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1233 FALSE, /* partial_inplace */
1234 0xffff, /* src_mask */
1235 0xffff, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Higher 16 bits of GOT offset to tls_index. */
1239 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1240 16, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 16, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_unsigned, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1248 FALSE, /* partial_inplace */
1249 0xffff, /* src_mask */
1250 0xffff, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1254 12, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 21, /* bitsize */
1257 FALSE, /* pc_relative */
1258 0, /* bitpos */
1259 complain_overflow_dont, /* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1262 FALSE, /* partial_inplace */
1263 0x1fffff, /* src_mask */
1264 0x1fffff, /* dst_mask */
1265 FALSE), /* pcrel_offset */
1266
1267 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1268 3, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 12, /* bitsize */
1271 FALSE, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1276 FALSE, /* partial_inplace */
1277 0xff8, /* src_mask */
1278 0xff8, /* dst_mask */
1279 FALSE), /* pcrel_offset */
1280
1281 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1282 2, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 12, /* bitsize */
1285 FALSE, /* pc_relative */
1286 0, /* bitpos */
1287 complain_overflow_dont, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1290 FALSE, /* partial_inplace */
1291 0xffc, /* src_mask */
1292 0xffc, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1296 2, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 19, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1304 FALSE, /* partial_inplace */
1305 0x1ffffc, /* src_mask */
1306 0x1ffffc, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1310 0, /* rightshift */
1311 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 16, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 bfd_elf_generic_reloc, /* special_function */
1317 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1318 FALSE, /* partial_inplace */
1319 0xffff, /* src_mask */
1320 0xffff, /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1324 16, /* rightshift */
1325 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 16, /* bitsize */
1327 FALSE, /* pc_relative */
1328 0, /* bitpos */
1329 complain_overflow_unsigned, /* complain_on_overflow */
1330 bfd_elf_generic_reloc, /* special_function */
1331 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1332 FALSE, /* partial_inplace */
1333 0xffff, /* src_mask */
1334 0xffff, /* dst_mask */
1335 FALSE), /* pcrel_offset */
1336
1337 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1338 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1339 12, /* rightshift */
1340 2, /* size (0 = byte, 1 = short, 2 = long) */
1341 12, /* bitsize */
1342 FALSE, /* pc_relative */
1343 0, /* bitpos */
1344 complain_overflow_unsigned, /* complain_on_overflow */
1345 bfd_elf_generic_reloc, /* special_function */
1346 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1347 FALSE, /* partial_inplace */
1348 0xfff, /* src_mask */
1349 0xfff, /* dst_mask */
1350 FALSE), /* pcrel_offset */
1351
1352 /* Unsigned 12 bit byte offset to module TLS base address. */
1353 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1354 0, /* rightshift */
1355 2, /* size (0 = byte, 1 = short, 2 = long) */
1356 12, /* bitsize */
1357 FALSE, /* pc_relative */
1358 0, /* bitpos */
1359 complain_overflow_unsigned, /* complain_on_overflow */
1360 bfd_elf_generic_reloc, /* special_function */
1361 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1362 FALSE, /* partial_inplace */
1363 0xfff, /* src_mask */
1364 0xfff, /* dst_mask */
1365 FALSE), /* pcrel_offset */
1366
1367 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1368 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1369 0, /* rightshift */
1370 2, /* size (0 = byte, 1 = short, 2 = long) */
1371 12, /* bitsize */
1372 FALSE, /* pc_relative */
1373 0, /* bitpos */
1374 complain_overflow_dont, /* complain_on_overflow */
1375 bfd_elf_generic_reloc, /* special_function */
1376 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1377 FALSE, /* partial_inplace */
1378 0xfff, /* src_mask */
1379 0xfff, /* dst_mask */
1380 FALSE), /* pcrel_offset */
1381
1382 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1383 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 12, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1392 FALSE, /* partial_inplace */
1393 0xfff, /* src_mask */
1394 0xfff, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 /* Get to the page for the GOT entry for the symbol
1398 (G(S) - P) using an ADRP instruction. */
1399 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1400 12, /* rightshift */
1401 2, /* size (0 = byte, 1 = short, 2 = long) */
1402 21, /* bitsize */
1403 TRUE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 bfd_elf_generic_reloc, /* special_function */
1407 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1408 FALSE, /* partial_inplace */
1409 0x1fffff, /* src_mask */
1410 0x1fffff, /* dst_mask */
1411 TRUE), /* pcrel_offset */
1412
1413 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1414 0, /* rightshift */
1415 2, /* size (0 = byte, 1 = short, 2 = long) */
1416 21, /* bitsize */
1417 TRUE, /* pc_relative */
1418 0, /* bitpos */
1419 complain_overflow_signed, /* complain_on_overflow */
1420 bfd_elf_generic_reloc, /* special_function */
1421 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1422 FALSE, /* partial_inplace */
1423 0x1fffff, /* src_mask */
1424 0x1fffff, /* dst_mask */
1425 TRUE), /* pcrel_offset */
1426
1427 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1428 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1429 1, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 11, /* bitsize */
1432 FALSE, /* pc_relative */
1433 10, /* bitpos */
1434 complain_overflow_unsigned, /* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1437 FALSE, /* partial_inplace */
1438 0x1ffc00, /* src_mask */
1439 0x1ffc00, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1443 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1444 1, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 11, /* bitsize */
1447 FALSE, /* pc_relative */
1448 10, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1452 FALSE, /* partial_inplace */
1453 0x1ffc00, /* src_mask */
1454 0x1ffc00, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1458 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1459 2, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 10, /* bitsize */
1462 FALSE, /* pc_relative */
1463 10, /* bitpos */
1464 complain_overflow_unsigned, /* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1467 FALSE, /* partial_inplace */
1468 0x3ffc00, /* src_mask */
1469 0x3ffc00, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1473 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1474 2, /* rightshift */
1475 2, /* size (0 = byte, 1 = short, 2 = long) */
1476 10, /* bitsize */
1477 FALSE, /* pc_relative */
1478 10, /* bitpos */
1479 complain_overflow_dont, /* complain_on_overflow */
1480 bfd_elf_generic_reloc, /* special_function */
1481 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1482 FALSE, /* partial_inplace */
1483 0xffc00, /* src_mask */
1484 0xffc00, /* dst_mask */
1485 FALSE), /* pcrel_offset */
1486
1487 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1488 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1489 3, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 9, /* bitsize */
1492 FALSE, /* pc_relative */
1493 10, /* bitpos */
1494 complain_overflow_unsigned, /* complain_on_overflow */
1495 bfd_elf_generic_reloc, /* special_function */
1496 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1497 FALSE, /* partial_inplace */
1498 0x3ffc00, /* src_mask */
1499 0x3ffc00, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1503 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1504 3, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 9, /* bitsize */
1507 FALSE, /* pc_relative */
1508 10, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 bfd_elf_generic_reloc, /* special_function */
1511 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1512 FALSE, /* partial_inplace */
1513 0x7fc00, /* src_mask */
1514 0x7fc00, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1518 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 12, /* bitsize */
1522 FALSE, /* pc_relative */
1523 10, /* bitpos */
1524 complain_overflow_unsigned, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1527 FALSE, /* partial_inplace */
1528 0x3ffc00, /* src_mask */
1529 0x3ffc00, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1533 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 12, /* bitsize */
1537 FALSE, /* pc_relative */
1538 10, /* bitpos */
1539 complain_overflow_dont, /* complain_on_overflow */
1540 bfd_elf_generic_reloc, /* special_function */
1541 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1542 FALSE, /* partial_inplace */
1543 0x3ffc00, /* src_mask */
1544 0x3ffc00, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1546
1547 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1548 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1549 0, /* rightshift */
1550 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 16, /* bitsize */
1552 FALSE, /* pc_relative */
1553 0, /* bitpos */
1554 complain_overflow_unsigned, /* complain_on_overflow */
1555 bfd_elf_generic_reloc, /* special_function */
1556 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1557 FALSE, /* partial_inplace */
1558 0xffff, /* src_mask */
1559 0xffff, /* dst_mask */
1560 FALSE), /* pcrel_offset */
1561
1562 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1563 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 16, /* bitsize */
1567 FALSE, /* pc_relative */
1568 0, /* bitpos */
1569 complain_overflow_dont, /* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
1571 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1572 FALSE, /* partial_inplace */
1573 0xffff, /* src_mask */
1574 0xffff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1576
1577 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1578 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1579 16, /* rightshift */
1580 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 16, /* bitsize */
1582 FALSE, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_unsigned, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1587 FALSE, /* partial_inplace */
1588 0xffff, /* src_mask */
1589 0xffff, /* dst_mask */
1590 FALSE), /* pcrel_offset */
1591
1592 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1593 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1594 16, /* rightshift */
1595 2, /* size (0 = byte, 1 = short, 2 = long) */
1596 16, /* bitsize */
1597 FALSE, /* pc_relative */
1598 0, /* bitpos */
1599 complain_overflow_dont, /* complain_on_overflow */
1600 bfd_elf_generic_reloc, /* special_function */
1601 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1602 FALSE, /* partial_inplace */
1603 0xffff, /* src_mask */
1604 0xffff, /* dst_mask */
1605 FALSE), /* pcrel_offset */
1606
1607 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1608 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1609 32, /* rightshift */
1610 2, /* size (0 = byte, 1 = short, 2 = long) */
1611 16, /* bitsize */
1612 FALSE, /* pc_relative */
1613 0, /* bitpos */
1614 complain_overflow_unsigned, /* complain_on_overflow */
1615 bfd_elf_generic_reloc, /* special_function */
1616 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1617 FALSE, /* partial_inplace */
1618 0xffff, /* src_mask */
1619 0xffff, /* dst_mask */
1620 FALSE), /* pcrel_offset */
1621
1622 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1623 32, /* rightshift */
1624 2, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_unsigned, /* complain_on_overflow */
1629 bfd_elf_generic_reloc, /* special_function */
1630 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1631 FALSE, /* partial_inplace */
1632 0xffff, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1637 16, /* rightshift */
1638 2, /* size (0 = byte, 1 = short, 2 = long) */
1639 16, /* bitsize */
1640 FALSE, /* pc_relative */
1641 0, /* bitpos */
1642 complain_overflow_dont, /* complain_on_overflow */
1643 bfd_elf_generic_reloc, /* special_function */
1644 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1645 FALSE, /* partial_inplace */
1646 0xffff, /* src_mask */
1647 0xffff, /* dst_mask */
1648 FALSE), /* pcrel_offset */
1649
1650 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1651 16, /* rightshift */
1652 2, /* size (0 = byte, 1 = short, 2 = long) */
1653 16, /* bitsize */
1654 FALSE, /* pc_relative */
1655 0, /* bitpos */
1656 complain_overflow_dont, /* complain_on_overflow */
1657 bfd_elf_generic_reloc, /* special_function */
1658 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1659 FALSE, /* partial_inplace */
1660 0xffff, /* src_mask */
1661 0xffff, /* dst_mask */
1662 FALSE), /* pcrel_offset */
1663
1664 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1665 0, /* rightshift */
1666 2, /* size (0 = byte, 1 = short, 2 = long) */
1667 16, /* bitsize */
1668 FALSE, /* pc_relative */
1669 0, /* bitpos */
1670 complain_overflow_dont, /* complain_on_overflow */
1671 bfd_elf_generic_reloc, /* special_function */
1672 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1673 FALSE, /* partial_inplace */
1674 0xffff, /* src_mask */
1675 0xffff, /* dst_mask */
1676 FALSE), /* pcrel_offset */
1677
1678 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1679 0, /* rightshift */
1680 2, /* size (0 = byte, 1 = short, 2 = long) */
1681 16, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_dont, /* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1687 FALSE, /* partial_inplace */
1688 0xffff, /* src_mask */
1689 0xffff, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691
1692 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1693 12, /* rightshift */
1694 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 12, /* bitsize */
1696 FALSE, /* pc_relative */
1697 0, /* bitpos */
1698 complain_overflow_unsigned, /* complain_on_overflow */
1699 bfd_elf_generic_reloc, /* special_function */
1700 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1701 FALSE, /* partial_inplace */
1702 0xfff, /* src_mask */
1703 0xfff, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1707 0, /* rightshift */
1708 2, /* size (0 = byte, 1 = short, 2 = long) */
1709 12, /* bitsize */
1710 FALSE, /* pc_relative */
1711 0, /* bitpos */
1712 complain_overflow_unsigned, /* complain_on_overflow */
1713 bfd_elf_generic_reloc, /* special_function */
1714 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1715 FALSE, /* partial_inplace */
1716 0xfff, /* src_mask */
1717 0xfff, /* dst_mask */
1718 FALSE), /* pcrel_offset */
1719
1720 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1721 0, /* rightshift */
1722 2, /* size (0 = byte, 1 = short, 2 = long) */
1723 12, /* bitsize */
1724 FALSE, /* pc_relative */
1725 0, /* bitpos */
1726 complain_overflow_dont, /* complain_on_overflow */
1727 bfd_elf_generic_reloc, /* special_function */
1728 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1729 FALSE, /* partial_inplace */
1730 0xfff, /* src_mask */
1731 0xfff, /* dst_mask */
1732 FALSE), /* pcrel_offset */
1733
1734 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1735 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1736 1, /* rightshift */
1737 2, /* size (0 = byte, 1 = short, 2 = long) */
1738 11, /* bitsize */
1739 FALSE, /* pc_relative */
1740 10, /* bitpos */
1741 complain_overflow_unsigned, /* complain_on_overflow */
1742 bfd_elf_generic_reloc, /* special_function */
1743 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1744 FALSE, /* partial_inplace */
1745 0x1ffc00, /* src_mask */
1746 0x1ffc00, /* dst_mask */
1747 FALSE), /* pcrel_offset */
1748
1749 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1750 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1751 1, /* rightshift */
1752 2, /* size (0 = byte, 1 = short, 2 = long) */
1753 11, /* bitsize */
1754 FALSE, /* pc_relative */
1755 10, /* bitpos */
1756 complain_overflow_dont, /* complain_on_overflow */
1757 bfd_elf_generic_reloc, /* special_function */
1758 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1759 FALSE, /* partial_inplace */
1760 0x1ffc00, /* src_mask */
1761 0x1ffc00, /* dst_mask */
1762 FALSE), /* pcrel_offset */
1763
1764 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1765 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1766 2, /* rightshift */
1767 2, /* size (0 = byte, 1 = short, 2 = long) */
1768 10, /* bitsize */
1769 FALSE, /* pc_relative */
1770 10, /* bitpos */
1771 complain_overflow_unsigned, /* complain_on_overflow */
1772 bfd_elf_generic_reloc, /* special_function */
1773 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1774 FALSE, /* partial_inplace */
1775 0xffc00, /* src_mask */
1776 0xffc00, /* dst_mask */
1777 FALSE), /* pcrel_offset */
1778
1779 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1780 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1781 2, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 10, /* bitsize */
1784 FALSE, /* pc_relative */
1785 10, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
1788 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1789 FALSE, /* partial_inplace */
1790 0xffc00, /* src_mask */
1791 0xffc00, /* dst_mask */
1792 FALSE), /* pcrel_offset */
1793
1794 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1795 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1796 3, /* rightshift */
1797 2, /* size (0 = byte, 1 = short, 2 = long) */
1798 9, /* bitsize */
1799 FALSE, /* pc_relative */
1800 10, /* bitpos */
1801 complain_overflow_unsigned, /* complain_on_overflow */
1802 bfd_elf_generic_reloc, /* special_function */
1803 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1804 FALSE, /* partial_inplace */
1805 0x7fc00, /* src_mask */
1806 0x7fc00, /* dst_mask */
1807 FALSE), /* pcrel_offset */
1808
1809 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1810 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1811 3, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 9, /* bitsize */
1814 FALSE, /* pc_relative */
1815 10, /* bitpos */
1816 complain_overflow_dont, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1819 FALSE, /* partial_inplace */
1820 0x7fc00, /* src_mask */
1821 0x7fc00, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1825 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1826 0, /* rightshift */
1827 2, /* size (0 = byte, 1 = short, 2 = long) */
1828 12, /* bitsize */
1829 FALSE, /* pc_relative */
1830 10, /* bitpos */
1831 complain_overflow_unsigned, /* complain_on_overflow */
1832 bfd_elf_generic_reloc, /* special_function */
1833 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1834 FALSE, /* partial_inplace */
1835 0x3ffc00, /* src_mask */
1836 0x3ffc00, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1840 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1841 0, /* rightshift */
1842 2, /* size (0 = byte, 1 = short, 2 = long) */
1843 12, /* bitsize */
1844 FALSE, /* pc_relative */
1845 10, /* bitpos */
1846 complain_overflow_dont, /* complain_on_overflow */
1847 bfd_elf_generic_reloc, /* special_function */
1848 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1849 FALSE, /* partial_inplace */
1850 0x3ffc00, /* src_mask */
1851 0x3ffc00, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1855 2, /* rightshift */
1856 2, /* size (0 = byte, 1 = short, 2 = long) */
1857 19, /* bitsize */
1858 TRUE, /* pc_relative */
1859 0, /* bitpos */
1860 complain_overflow_dont, /* complain_on_overflow */
1861 bfd_elf_generic_reloc, /* special_function */
1862 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1863 FALSE, /* partial_inplace */
1864 0x0ffffe0, /* src_mask */
1865 0x0ffffe0, /* dst_mask */
1866 TRUE), /* pcrel_offset */
1867
1868 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 21, /* bitsize */
1872 TRUE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_dont, /* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1877 FALSE, /* partial_inplace */
1878 0x1fffff, /* src_mask */
1879 0x1fffff, /* dst_mask */
1880 TRUE), /* pcrel_offset */
1881
1882 /* Get to the page for the GOT entry for the symbol
1883 (G(S) - P) using an ADRP instruction. */
1884 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1885 12, /* rightshift */
1886 2, /* size (0 = byte, 1 = short, 2 = long) */
1887 21, /* bitsize */
1888 TRUE, /* pc_relative */
1889 0, /* bitpos */
1890 complain_overflow_dont, /* complain_on_overflow */
1891 bfd_elf_generic_reloc, /* special_function */
1892 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1893 FALSE, /* partial_inplace */
1894 0x1fffff, /* src_mask */
1895 0x1fffff, /* dst_mask */
1896 TRUE), /* pcrel_offset */
1897
1898 /* LD64: GOT offset G(S) & 0xff8. */
1899 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1900 3, /* rightshift */
1901 2, /* size (0 = byte, 1 = short, 2 = long) */
1902 12, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont, /* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1908 FALSE, /* partial_inplace */
1909 0xff8, /* src_mask */
1910 0xff8, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 /* LD32: GOT offset G(S) & 0xffc. */
1914 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1915 2, /* rightshift */
1916 2, /* size (0 = byte, 1 = short, 2 = long) */
1917 12, /* bitsize */
1918 FALSE, /* pc_relative */
1919 0, /* bitpos */
1920 complain_overflow_dont, /* complain_on_overflow */
1921 bfd_elf_generic_reloc, /* special_function */
1922 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1923 FALSE, /* partial_inplace */
1924 0xffc, /* src_mask */
1925 0xffc, /* dst_mask */
1926 FALSE), /* pcrel_offset */
1927
1928 /* ADD: GOT offset G(S) & 0xfff. */
1929 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1930 0, /* rightshift */
1931 2, /* size (0 = byte, 1 = short, 2 = long) */
1932 12, /* bitsize */
1933 FALSE, /* pc_relative */
1934 0, /* bitpos */
1935 complain_overflow_dont,/* complain_on_overflow */
1936 bfd_elf_generic_reloc, /* special_function */
1937 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1938 FALSE, /* partial_inplace */
1939 0xfff, /* src_mask */
1940 0xfff, /* dst_mask */
1941 FALSE), /* pcrel_offset */
1942
1943 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1944 16, /* rightshift */
1945 2, /* size (0 = byte, 1 = short, 2 = long) */
1946 12, /* bitsize */
1947 FALSE, /* pc_relative */
1948 0, /* bitpos */
1949 complain_overflow_unsigned, /* complain_on_overflow */
1950 bfd_elf_generic_reloc, /* special_function */
1951 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1952 FALSE, /* partial_inplace */
1953 0xffff, /* src_mask */
1954 0xffff, /* dst_mask */
1955 FALSE), /* pcrel_offset */
1956
1957 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1958 0, /* rightshift */
1959 2, /* size (0 = byte, 1 = short, 2 = long) */
1960 12, /* bitsize */
1961 FALSE, /* pc_relative */
1962 0, /* bitpos */
1963 complain_overflow_dont, /* complain_on_overflow */
1964 bfd_elf_generic_reloc, /* special_function */
1965 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1966 FALSE, /* partial_inplace */
1967 0xffff, /* src_mask */
1968 0xffff, /* dst_mask */
1969 FALSE), /* pcrel_offset */
1970
1971 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1972 0, /* rightshift */
1973 2, /* size (0 = byte, 1 = short, 2 = long) */
1974 12, /* bitsize */
1975 FALSE, /* pc_relative */
1976 0, /* bitpos */
1977 complain_overflow_dont, /* complain_on_overflow */
1978 bfd_elf_generic_reloc, /* special_function */
1979 AARCH64_R_STR (TLSDESC_LDR), /* name */
1980 FALSE, /* partial_inplace */
1981 0x0, /* src_mask */
1982 0x0, /* dst_mask */
1983 FALSE), /* pcrel_offset */
1984
1985 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1986 0, /* rightshift */
1987 2, /* size (0 = byte, 1 = short, 2 = long) */
1988 12, /* bitsize */
1989 FALSE, /* pc_relative */
1990 0, /* bitpos */
1991 complain_overflow_dont, /* complain_on_overflow */
1992 bfd_elf_generic_reloc, /* special_function */
1993 AARCH64_R_STR (TLSDESC_ADD), /* name */
1994 FALSE, /* partial_inplace */
1995 0x0, /* src_mask */
1996 0x0, /* dst_mask */
1997 FALSE), /* pcrel_offset */
1998
1999 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2000 0, /* rightshift */
2001 2, /* size (0 = byte, 1 = short, 2 = long) */
2002 0, /* bitsize */
2003 FALSE, /* pc_relative */
2004 0, /* bitpos */
2005 complain_overflow_dont, /* complain_on_overflow */
2006 bfd_elf_generic_reloc, /* special_function */
2007 AARCH64_R_STR (TLSDESC_CALL), /* name */
2008 FALSE, /* partial_inplace */
2009 0x0, /* src_mask */
2010 0x0, /* dst_mask */
2011 FALSE), /* pcrel_offset */
2012
2013 HOWTO (AARCH64_R (COPY), /* type */
2014 0, /* rightshift */
2015 2, /* size (0 = byte, 1 = short, 2 = long) */
2016 64, /* bitsize */
2017 FALSE, /* pc_relative */
2018 0, /* bitpos */
2019 complain_overflow_bitfield, /* complain_on_overflow */
2020 bfd_elf_generic_reloc, /* special_function */
2021 AARCH64_R_STR (COPY), /* name */
2022 TRUE, /* partial_inplace */
2023 0xffffffff, /* src_mask */
2024 0xffffffff, /* dst_mask */
2025 FALSE), /* pcrel_offset */
2026
2027 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2028 0, /* rightshift */
2029 2, /* size (0 = byte, 1 = short, 2 = long) */
2030 64, /* bitsize */
2031 FALSE, /* pc_relative */
2032 0, /* bitpos */
2033 complain_overflow_bitfield, /* complain_on_overflow */
2034 bfd_elf_generic_reloc, /* special_function */
2035 AARCH64_R_STR (GLOB_DAT), /* name */
2036 TRUE, /* partial_inplace */
2037 0xffffffff, /* src_mask */
2038 0xffffffff, /* dst_mask */
2039 FALSE), /* pcrel_offset */
2040
2041 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2042 0, /* rightshift */
2043 2, /* size (0 = byte, 1 = short, 2 = long) */
2044 64, /* bitsize */
2045 FALSE, /* pc_relative */
2046 0, /* bitpos */
2047 complain_overflow_bitfield, /* complain_on_overflow */
2048 bfd_elf_generic_reloc, /* special_function */
2049 AARCH64_R_STR (JUMP_SLOT), /* name */
2050 TRUE, /* partial_inplace */
2051 0xffffffff, /* src_mask */
2052 0xffffffff, /* dst_mask */
2053 FALSE), /* pcrel_offset */
2054
2055 HOWTO (AARCH64_R (RELATIVE), /* type */
2056 0, /* rightshift */
2057 2, /* size (0 = byte, 1 = short, 2 = long) */
2058 64, /* bitsize */
2059 FALSE, /* pc_relative */
2060 0, /* bitpos */
2061 complain_overflow_bitfield, /* complain_on_overflow */
2062 bfd_elf_generic_reloc, /* special_function */
2063 AARCH64_R_STR (RELATIVE), /* name */
2064 TRUE, /* partial_inplace */
2065 ALL_ONES, /* src_mask */
2066 ALL_ONES, /* dst_mask */
2067 FALSE), /* pcrel_offset */
2068
2069 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2070 0, /* rightshift */
2071 2, /* size (0 = byte, 1 = short, 2 = long) */
2072 64, /* bitsize */
2073 FALSE, /* pc_relative */
2074 0, /* bitpos */
2075 complain_overflow_dont, /* complain_on_overflow */
2076 bfd_elf_generic_reloc, /* special_function */
2077 #if ARCH_SIZE == 64
2078 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2079 #else
2080 AARCH64_R_STR (TLS_DTPMOD), /* name */
2081 #endif
2082 FALSE, /* partial_inplace */
2083 0, /* src_mask */
2084 ALL_ONES, /* dst_mask */
2085 FALSE), /* pc_reloffset */
2086
2087 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2088 0, /* rightshift */
2089 2, /* size (0 = byte, 1 = short, 2 = long) */
2090 64, /* bitsize */
2091 FALSE, /* pc_relative */
2092 0, /* bitpos */
2093 complain_overflow_dont, /* complain_on_overflow */
2094 bfd_elf_generic_reloc, /* special_function */
2095 #if ARCH_SIZE == 64
2096 AARCH64_R_STR (TLS_DTPREL64), /* name */
2097 #else
2098 AARCH64_R_STR (TLS_DTPREL), /* name */
2099 #endif
2100 FALSE, /* partial_inplace */
2101 0, /* src_mask */
2102 ALL_ONES, /* dst_mask */
2103 FALSE), /* pcrel_offset */
2104
2105 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2106 0, /* rightshift */
2107 2, /* size (0 = byte, 1 = short, 2 = long) */
2108 64, /* bitsize */
2109 FALSE, /* pc_relative */
2110 0, /* bitpos */
2111 complain_overflow_dont, /* complain_on_overflow */
2112 bfd_elf_generic_reloc, /* special_function */
2113 #if ARCH_SIZE == 64
2114 AARCH64_R_STR (TLS_TPREL64), /* name */
2115 #else
2116 AARCH64_R_STR (TLS_TPREL), /* name */
2117 #endif
2118 FALSE, /* partial_inplace */
2119 0, /* src_mask */
2120 ALL_ONES, /* dst_mask */
2121 FALSE), /* pcrel_offset */
2122
2123 HOWTO (AARCH64_R (TLSDESC), /* type */
2124 0, /* rightshift */
2125 2, /* size (0 = byte, 1 = short, 2 = long) */
2126 64, /* bitsize */
2127 FALSE, /* pc_relative */
2128 0, /* bitpos */
2129 complain_overflow_dont, /* complain_on_overflow */
2130 bfd_elf_generic_reloc, /* special_function */
2131 AARCH64_R_STR (TLSDESC), /* name */
2132 FALSE, /* partial_inplace */
2133 0, /* src_mask */
2134 ALL_ONES, /* dst_mask */
2135 FALSE), /* pcrel_offset */
2136
2137 HOWTO (AARCH64_R (IRELATIVE), /* type */
2138 0, /* rightshift */
2139 2, /* size (0 = byte, 1 = short, 2 = long) */
2140 64, /* bitsize */
2141 FALSE, /* pc_relative */
2142 0, /* bitpos */
2143 complain_overflow_bitfield, /* complain_on_overflow */
2144 bfd_elf_generic_reloc, /* special_function */
2145 AARCH64_R_STR (IRELATIVE), /* name */
2146 FALSE, /* partial_inplace */
2147 0, /* src_mask */
2148 ALL_ONES, /* dst_mask */
2149 FALSE), /* pcrel_offset */
2150
2151 EMPTY_HOWTO (0),
2152 };
2153
2154 static reloc_howto_type elfNN_aarch64_howto_none =
2155 HOWTO (R_AARCH64_NONE, /* type */
2156 0, /* rightshift */
2157 3, /* size (0 = byte, 1 = short, 2 = long) */
2158 0, /* bitsize */
2159 FALSE, /* pc_relative */
2160 0, /* bitpos */
2161 complain_overflow_dont,/* complain_on_overflow */
2162 bfd_elf_generic_reloc, /* special_function */
2163 "R_AARCH64_NONE", /* name */
2164 FALSE, /* partial_inplace */
2165 0, /* src_mask */
2166 0, /* dst_mask */
2167 FALSE); /* pcrel_offset */
2168
2169 /* Given HOWTO, return the bfd internal relocation enumerator. */
2170
2171 static bfd_reloc_code_real_type
2172 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2173 {
2174 const int size
2175 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2176 const ptrdiff_t offset
2177 = howto - elfNN_aarch64_howto_table;
2178
2179 if (offset > 0 && offset < size - 1)
2180 return BFD_RELOC_AARCH64_RELOC_START + offset;
2181
2182 if (howto == &elfNN_aarch64_howto_none)
2183 return BFD_RELOC_AARCH64_NONE;
2184
2185 return BFD_RELOC_AARCH64_RELOC_START;
2186 }
2187
2188 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2189
2190 static bfd_reloc_code_real_type
2191 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2192 {
2193 static bfd_boolean initialized_p = FALSE;
2194 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2195 static unsigned int offsets[R_AARCH64_end];
2196
2197 if (!initialized_p)
2198 {
2199 unsigned int i;
2200
2201 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2202 if (elfNN_aarch64_howto_table[i].type != 0)
2203 offsets[elfNN_aarch64_howto_table[i].type] = i;
2204
2205 initialized_p = TRUE;
2206 }
2207
2208 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2209 return BFD_RELOC_AARCH64_NONE;
2210
2211 /* PR 17512: file: b371e70a. */
2212 if (r_type >= R_AARCH64_end)
2213 {
2214 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2215 abfd, r_type);
2216 bfd_set_error (bfd_error_bad_value);
2217 return BFD_RELOC_AARCH64_NONE;
2218 }
2219
2220 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2221 }
2222
2223 struct elf_aarch64_reloc_map
2224 {
2225 bfd_reloc_code_real_type from;
2226 bfd_reloc_code_real_type to;
2227 };
2228
2229 /* Map bfd generic reloc to AArch64-specific reloc. */
2230 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2231 {
2232 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2233
2234 /* Basic data relocations. */
2235 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2236 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2237 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2238 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2239 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2240 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2241 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2242 };
2243
2244 /* Given the bfd internal relocation enumerator in CODE, return the
2245 corresponding howto entry. */
2246
2247 static reloc_howto_type *
2248 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2249 {
2250 unsigned int i;
2251
2252 /* Convert bfd generic reloc to AArch64-specific reloc. */
2253 if (code < BFD_RELOC_AARCH64_RELOC_START
2254 || code > BFD_RELOC_AARCH64_RELOC_END)
2255 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2256 if (elf_aarch64_reloc_map[i].from == code)
2257 {
2258 code = elf_aarch64_reloc_map[i].to;
2259 break;
2260 }
2261
2262 if (code > BFD_RELOC_AARCH64_RELOC_START
2263 && code < BFD_RELOC_AARCH64_RELOC_END)
2264 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2265 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2266
2267 if (code == BFD_RELOC_AARCH64_NONE)
2268 return &elfNN_aarch64_howto_none;
2269
2270 return NULL;
2271 }
2272
2273 static reloc_howto_type *
2274 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2275 {
2276 bfd_reloc_code_real_type val;
2277 reloc_howto_type *howto;
2278
2279 #if ARCH_SIZE == 32
2280 if (r_type > 256)
2281 {
2282 bfd_set_error (bfd_error_bad_value);
2283 return NULL;
2284 }
2285 #endif
2286
2287 if (r_type == R_AARCH64_NONE)
2288 return &elfNN_aarch64_howto_none;
2289
2290 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2291 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2292
2293 if (howto != NULL)
2294 return howto;
2295
2296 bfd_set_error (bfd_error_bad_value);
2297 return NULL;
2298 }
2299
2300 static bfd_boolean
2301 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2302 Elf_Internal_Rela *elf_reloc)
2303 {
2304 unsigned int r_type;
2305
2306 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2307 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2308
2309 if (bfd_reloc->howto == NULL)
2310 {
2311 /* xgettext:c-format */
2312 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2313 return FALSE;
2314 }
2315 return TRUE;
2316 }
2317
2318 static reloc_howto_type *
2319 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2320 bfd_reloc_code_real_type code)
2321 {
2322 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2323
2324 if (howto != NULL)
2325 return howto;
2326
2327 bfd_set_error (bfd_error_bad_value);
2328 return NULL;
2329 }
2330
2331 static reloc_howto_type *
2332 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2333 const char *r_name)
2334 {
2335 unsigned int i;
2336
2337 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2338 if (elfNN_aarch64_howto_table[i].name != NULL
2339 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2340 return &elfNN_aarch64_howto_table[i];
2341
2342 return NULL;
2343 }
2344
2345 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2346 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2347 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2348 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2349
2350 /* The linker script knows the section names for placement.
2351 The entry_names are used to do simple name mangling on the stubs.
2352 Given a function name, and its type, the stub can be found. The
2353 name can be changed. The only requirement is the %s be present. */
2354 #define STUB_ENTRY_NAME "__%s_veneer"
2355
2356 /* The name of the dynamic interpreter. This is put in the .interp
2357 section. */
2358 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2359
2360 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2361 (((1 << 25) - 1) << 2)
2362 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2363 (-((1 << 25) << 2))
2364
2365 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2366 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2367
2368 static int
2369 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2370 {
2371 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2372 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2373 }
2374
2375 static int
2376 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2377 {
2378 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2379 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2380 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2381 }
2382
2383 static const uint32_t aarch64_adrp_branch_stub [] =
2384 {
2385 0x90000010, /* adrp ip0, X */
2386 /* R_AARCH64_ADR_HI21_PCREL(X) */
2387 0x91000210, /* add ip0, ip0, :lo12:X */
2388 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2389 0xd61f0200, /* br ip0 */
2390 };
2391
2392 static const uint32_t aarch64_long_branch_stub[] =
2393 {
2394 #if ARCH_SIZE == 64
2395 0x58000090, /* ldr ip0, 1f */
2396 #else
2397 0x18000090, /* ldr wip0, 1f */
2398 #endif
2399 0x10000011, /* adr ip1, #0 */
2400 0x8b110210, /* add ip0, ip0, ip1 */
2401 0xd61f0200, /* br ip0 */
2402 0x00000000, /* 1: .xword or .word
2403 R_AARCH64_PRELNN(X) + 12
2404 */
2405 0x00000000,
2406 };
2407
2408 static const uint32_t aarch64_erratum_835769_stub[] =
2409 {
2410 0x00000000, /* Placeholder for multiply accumulate. */
2411 0x14000000, /* b <label> */
2412 };
2413
2414 static const uint32_t aarch64_erratum_843419_stub[] =
2415 {
2416 0x00000000, /* Placeholder for LDR instruction. */
2417 0x14000000, /* b <label> */
2418 };
2419
2420 /* Section name for stubs is the associated section name plus this
2421 string. */
2422 #define STUB_SUFFIX ".stub"
2423
2424 enum elf_aarch64_stub_type
2425 {
2426 aarch64_stub_none,
2427 aarch64_stub_adrp_branch,
2428 aarch64_stub_long_branch,
2429 aarch64_stub_erratum_835769_veneer,
2430 aarch64_stub_erratum_843419_veneer,
2431 };
2432
2433 struct elf_aarch64_stub_hash_entry
2434 {
2435 /* Base hash table entry structure. */
2436 struct bfd_hash_entry root;
2437
2438 /* The stub section. */
2439 asection *stub_sec;
2440
2441 /* Offset within stub_sec of the beginning of this stub. */
2442 bfd_vma stub_offset;
2443
2444 /* Given the symbol's value and its section we can determine its final
2445 value when building the stubs (so the stub knows where to jump). */
2446 bfd_vma target_value;
2447 asection *target_section;
2448
2449 enum elf_aarch64_stub_type stub_type;
2450
2451 /* The symbol table entry, if any, that this was derived from. */
2452 struct elf_aarch64_link_hash_entry *h;
2453
2454 /* Destination symbol type */
2455 unsigned char st_type;
2456
2457 /* Where this stub is being called from, or, in the case of combined
2458 stub sections, the first input section in the group. */
2459 asection *id_sec;
2460
2461 /* The name for the local symbol at the start of this stub. The
2462 stub name in the hash table has to be unique; this does not, so
2463 it can be friendlier. */
2464 char *output_name;
2465
2466 /* The instruction which caused this stub to be generated (only valid for
2467 erratum 835769 workaround stubs at present). */
2468 uint32_t veneered_insn;
2469
2470 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2471 bfd_vma adrp_offset;
2472 };
2473
2474 /* Used to build a map of a section. This is required for mixed-endian
2475 code/data. */
2476
2477 typedef struct elf_elf_section_map
2478 {
2479 bfd_vma vma;
2480 char type;
2481 }
2482 elf_aarch64_section_map;
2483
2484
2485 typedef struct _aarch64_elf_section_data
2486 {
2487 struct bfd_elf_section_data elf;
2488 unsigned int mapcount;
2489 unsigned int mapsize;
2490 elf_aarch64_section_map *map;
2491 }
2492 _aarch64_elf_section_data;
2493
2494 #define elf_aarch64_section_data(sec) \
2495 ((_aarch64_elf_section_data *) elf_section_data (sec))
2496
2497 /* The size of the thread control block which is defined to be two pointers. */
2498 #define TCB_SIZE (ARCH_SIZE/8)*2
2499
2500 struct elf_aarch64_local_symbol
2501 {
2502 unsigned int got_type;
2503 bfd_signed_vma got_refcount;
2504 bfd_vma got_offset;
2505
2506 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2507 offset is from the end of the jump table and reserved entries
2508 within the PLTGOT.
2509
2510 The magic value (bfd_vma) -1 indicates that an offset has not be
2511 allocated. */
2512 bfd_vma tlsdesc_got_jump_table_offset;
2513 };
2514
2515 struct elf_aarch64_obj_tdata
2516 {
2517 struct elf_obj_tdata root;
2518
2519 /* local symbol descriptors */
2520 struct elf_aarch64_local_symbol *locals;
2521
2522 /* Zero to warn when linking objects with incompatible enum sizes. */
2523 int no_enum_size_warning;
2524
2525 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2526 int no_wchar_size_warning;
2527
2528 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2529 uint32_t gnu_and_prop;
2530
2531 /* Zero to warn when linking objects with incompatible
2532 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2533 int no_bti_warn;
2534
2535 /* PLT type based on security. */
2536 aarch64_plt_type plt_type;
2537 };
2538
2539 #define elf_aarch64_tdata(bfd) \
2540 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2541
2542 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2543
2544 #define is_aarch64_elf(bfd) \
2545 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2546 && elf_tdata (bfd) != NULL \
2547 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2548
2549 static bfd_boolean
2550 elfNN_aarch64_mkobject (bfd *abfd)
2551 {
2552 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2553 AARCH64_ELF_DATA);
2554 }
2555
2556 #define elf_aarch64_hash_entry(ent) \
2557 ((struct elf_aarch64_link_hash_entry *)(ent))
2558
2559 #define GOT_UNKNOWN 0
2560 #define GOT_NORMAL 1
2561 #define GOT_TLS_GD 2
2562 #define GOT_TLS_IE 4
2563 #define GOT_TLSDESC_GD 8
2564
2565 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2566
2567 /* AArch64 ELF linker hash entry. */
2568 struct elf_aarch64_link_hash_entry
2569 {
2570 struct elf_link_hash_entry root;
2571
2572 /* Track dynamic relocs copied for this symbol. */
2573 struct elf_dyn_relocs *dyn_relocs;
2574
2575 /* Since PLT entries have variable size, we need to record the
2576 index into .got.plt instead of recomputing it from the PLT
2577 offset. */
2578 bfd_signed_vma plt_got_offset;
2579
2580 /* Bit mask representing the type of GOT entry(s) if any required by
2581 this symbol. */
2582 unsigned int got_type;
2583
2584 /* A pointer to the most recently used stub hash entry against this
2585 symbol. */
2586 struct elf_aarch64_stub_hash_entry *stub_cache;
2587
2588 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2589 is from the end of the jump table and reserved entries within the PLTGOT.
2590
2591 The magic value (bfd_vma) -1 indicates that an offset has not
2592 be allocated. */
2593 bfd_vma tlsdesc_got_jump_table_offset;
2594 };
2595
2596 static unsigned int
2597 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2598 bfd *abfd,
2599 unsigned long r_symndx)
2600 {
2601 if (h)
2602 return elf_aarch64_hash_entry (h)->got_type;
2603
2604 if (! elf_aarch64_locals (abfd))
2605 return GOT_UNKNOWN;
2606
2607 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2608 }
2609
2610 /* Get the AArch64 elf linker hash table from a link_info structure. */
2611 #define elf_aarch64_hash_table(info) \
2612 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2613
2614 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2615 ((struct elf_aarch64_stub_hash_entry *) \
2616 bfd_hash_lookup ((table), (string), (create), (copy)))
2617
2618 /* AArch64 ELF linker hash table. */
2619 struct elf_aarch64_link_hash_table
2620 {
2621 /* The main hash table. */
2622 struct elf_link_hash_table root;
2623
2624 /* Nonzero to force PIC branch veneers. */
2625 int pic_veneer;
2626
2627 /* Fix erratum 835769. */
2628 int fix_erratum_835769;
2629
2630 /* Fix erratum 843419. */
2631 erratum_84319_opts fix_erratum_843419;
2632
2633 /* Don't apply link-time values for dynamic relocations. */
2634 int no_apply_dynamic_relocs;
2635
2636 /* The number of bytes in the initial entry in the PLT. */
2637 bfd_size_type plt_header_size;
2638
2639 /* The bytes of the initial PLT entry. */
2640 const bfd_byte *plt0_entry;
2641
2642 /* The number of bytes in the subsequent PLT entries. */
2643 bfd_size_type plt_entry_size;
2644
2645 /* The bytes of the subsequent PLT entry. */
2646 const bfd_byte *plt_entry;
2647
2648 /* Small local sym cache. */
2649 struct sym_cache sym_cache;
2650
2651 /* For convenience in allocate_dynrelocs. */
2652 bfd *obfd;
2653
2654 /* The amount of space used by the reserved portion of the sgotplt
2655 section, plus whatever space is used by the jump slots. */
2656 bfd_vma sgotplt_jump_table_size;
2657
2658 /* The stub hash table. */
2659 struct bfd_hash_table stub_hash_table;
2660
2661 /* Linker stub bfd. */
2662 bfd *stub_bfd;
2663
2664 /* Linker call-backs. */
2665 asection *(*add_stub_section) (const char *, asection *);
2666 void (*layout_sections_again) (void);
2667
2668 /* Array to keep track of which stub sections have been created, and
2669 information on stub grouping. */
2670 struct map_stub
2671 {
2672 /* This is the section to which stubs in the group will be
2673 attached. */
2674 asection *link_sec;
2675 /* The stub section. */
2676 asection *stub_sec;
2677 } *stub_group;
2678
2679 /* Assorted information used by elfNN_aarch64_size_stubs. */
2680 unsigned int bfd_count;
2681 unsigned int top_index;
2682 asection **input_list;
2683
2684 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2685 int variant_pcs;
2686
2687 /* The offset into splt of the PLT entry for the TLS descriptor
2688 resolver. Special values are 0, if not necessary (or not found
2689 to be necessary yet), and -1 if needed but not determined
2690 yet. */
2691 bfd_vma tlsdesc_plt;
2692
2693 /* The number of bytes in the PLT enty for the TLS descriptor. */
2694 bfd_size_type tlsdesc_plt_entry_size;
2695
2696 /* The GOT offset for the lazy trampoline. Communicated to the
2697 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2698 indicates an offset is not allocated. */
2699 bfd_vma dt_tlsdesc_got;
2700
2701 /* Used by local STT_GNU_IFUNC symbols. */
2702 htab_t loc_hash_table;
2703 void * loc_hash_memory;
2704 };
2705
2706 /* Create an entry in an AArch64 ELF linker hash table. */
2707
2708 static struct bfd_hash_entry *
2709 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2710 struct bfd_hash_table *table,
2711 const char *string)
2712 {
2713 struct elf_aarch64_link_hash_entry *ret =
2714 (struct elf_aarch64_link_hash_entry *) entry;
2715
2716 /* Allocate the structure if it has not already been allocated by a
2717 subclass. */
2718 if (ret == NULL)
2719 ret = bfd_hash_allocate (table,
2720 sizeof (struct elf_aarch64_link_hash_entry));
2721 if (ret == NULL)
2722 return (struct bfd_hash_entry *) ret;
2723
2724 /* Call the allocation method of the superclass. */
2725 ret = ((struct elf_aarch64_link_hash_entry *)
2726 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2727 table, string));
2728 if (ret != NULL)
2729 {
2730 ret->dyn_relocs = NULL;
2731 ret->got_type = GOT_UNKNOWN;
2732 ret->plt_got_offset = (bfd_vma) - 1;
2733 ret->stub_cache = NULL;
2734 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2735 }
2736
2737 return (struct bfd_hash_entry *) ret;
2738 }
2739
2740 /* Initialize an entry in the stub hash table. */
2741
2742 static struct bfd_hash_entry *
2743 stub_hash_newfunc (struct bfd_hash_entry *entry,
2744 struct bfd_hash_table *table, const char *string)
2745 {
2746 /* Allocate the structure if it has not already been allocated by a
2747 subclass. */
2748 if (entry == NULL)
2749 {
2750 entry = bfd_hash_allocate (table,
2751 sizeof (struct
2752 elf_aarch64_stub_hash_entry));
2753 if (entry == NULL)
2754 return entry;
2755 }
2756
2757 /* Call the allocation method of the superclass. */
2758 entry = bfd_hash_newfunc (entry, table, string);
2759 if (entry != NULL)
2760 {
2761 struct elf_aarch64_stub_hash_entry *eh;
2762
2763 /* Initialize the local fields. */
2764 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2765 eh->adrp_offset = 0;
2766 eh->stub_sec = NULL;
2767 eh->stub_offset = 0;
2768 eh->target_value = 0;
2769 eh->target_section = NULL;
2770 eh->stub_type = aarch64_stub_none;
2771 eh->h = NULL;
2772 eh->id_sec = NULL;
2773 }
2774
2775 return entry;
2776 }
2777
2778 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2779 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2780 as global symbol. We reuse indx and dynstr_index for local symbol
2781 hash since they aren't used by global symbols in this backend. */
2782
2783 static hashval_t
2784 elfNN_aarch64_local_htab_hash (const void *ptr)
2785 {
2786 struct elf_link_hash_entry *h
2787 = (struct elf_link_hash_entry *) ptr;
2788 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2789 }
2790
2791 /* Compare local hash entries. */
2792
2793 static int
2794 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2795 {
2796 struct elf_link_hash_entry *h1
2797 = (struct elf_link_hash_entry *) ptr1;
2798 struct elf_link_hash_entry *h2
2799 = (struct elf_link_hash_entry *) ptr2;
2800
2801 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2802 }
2803
2804 /* Find and/or create a hash entry for local symbol. */
2805
2806 static struct elf_link_hash_entry *
2807 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2808 bfd *abfd, const Elf_Internal_Rela *rel,
2809 bfd_boolean create)
2810 {
2811 struct elf_aarch64_link_hash_entry e, *ret;
2812 asection *sec = abfd->sections;
2813 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2814 ELFNN_R_SYM (rel->r_info));
2815 void **slot;
2816
2817 e.root.indx = sec->id;
2818 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2819 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2820 create ? INSERT : NO_INSERT);
2821
2822 if (!slot)
2823 return NULL;
2824
2825 if (*slot)
2826 {
2827 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2828 return &ret->root;
2829 }
2830
2831 ret = (struct elf_aarch64_link_hash_entry *)
2832 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2833 sizeof (struct elf_aarch64_link_hash_entry));
2834 if (ret)
2835 {
2836 memset (ret, 0, sizeof (*ret));
2837 ret->root.indx = sec->id;
2838 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2839 ret->root.dynindx = -1;
2840 *slot = ret;
2841 }
2842 return &ret->root;
2843 }
2844
2845 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2846
2847 static void
2848 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2849 struct elf_link_hash_entry *dir,
2850 struct elf_link_hash_entry *ind)
2851 {
2852 struct elf_aarch64_link_hash_entry *edir, *eind;
2853
2854 edir = (struct elf_aarch64_link_hash_entry *) dir;
2855 eind = (struct elf_aarch64_link_hash_entry *) ind;
2856
2857 if (eind->dyn_relocs != NULL)
2858 {
2859 if (edir->dyn_relocs != NULL)
2860 {
2861 struct elf_dyn_relocs **pp;
2862 struct elf_dyn_relocs *p;
2863
2864 /* Add reloc counts against the indirect sym to the direct sym
2865 list. Merge any entries against the same section. */
2866 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2867 {
2868 struct elf_dyn_relocs *q;
2869
2870 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2871 if (q->sec == p->sec)
2872 {
2873 q->pc_count += p->pc_count;
2874 q->count += p->count;
2875 *pp = p->next;
2876 break;
2877 }
2878 if (q == NULL)
2879 pp = &p->next;
2880 }
2881 *pp = edir->dyn_relocs;
2882 }
2883
2884 edir->dyn_relocs = eind->dyn_relocs;
2885 eind->dyn_relocs = NULL;
2886 }
2887
2888 if (ind->root.type == bfd_link_hash_indirect)
2889 {
2890 /* Copy over PLT info. */
2891 if (dir->got.refcount <= 0)
2892 {
2893 edir->got_type = eind->got_type;
2894 eind->got_type = GOT_UNKNOWN;
2895 }
2896 }
2897
2898 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2899 }
2900
2901 /* Merge non-visibility st_other attributes. */
2902
2903 static void
2904 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2905 const Elf_Internal_Sym *isym,
2906 bfd_boolean definition ATTRIBUTE_UNUSED,
2907 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2908 {
2909 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2910 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2911
2912 if (isym_sto == h_sto)
2913 return;
2914
2915 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2916 /* Not fatal, this callback cannot fail. */
2917 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2918 h->root.root.string, isym_sto);
2919
2920 /* Note: Ideally we would warn about any attribute mismatch, but
2921 this api does not allow that without substantial changes. */
2922 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2923 h->other |= STO_AARCH64_VARIANT_PCS;
2924 }
2925
2926 /* Destroy an AArch64 elf linker hash table. */
2927
2928 static void
2929 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2930 {
2931 struct elf_aarch64_link_hash_table *ret
2932 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2933
2934 if (ret->loc_hash_table)
2935 htab_delete (ret->loc_hash_table);
2936 if (ret->loc_hash_memory)
2937 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2938
2939 bfd_hash_table_free (&ret->stub_hash_table);
2940 _bfd_elf_link_hash_table_free (obfd);
2941 }
2942
2943 /* Create an AArch64 elf linker hash table. */
2944
2945 static struct bfd_link_hash_table *
2946 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2947 {
2948 struct elf_aarch64_link_hash_table *ret;
2949 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2950
2951 ret = bfd_zmalloc (amt);
2952 if (ret == NULL)
2953 return NULL;
2954
2955 if (!_bfd_elf_link_hash_table_init
2956 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2957 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2958 {
2959 free (ret);
2960 return NULL;
2961 }
2962
2963 ret->plt_header_size = PLT_ENTRY_SIZE;
2964 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2965 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2966 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2967 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2968 ret->obfd = abfd;
2969 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2970
2971 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2972 sizeof (struct elf_aarch64_stub_hash_entry)))
2973 {
2974 _bfd_elf_link_hash_table_free (abfd);
2975 return NULL;
2976 }
2977
2978 ret->loc_hash_table = htab_try_create (1024,
2979 elfNN_aarch64_local_htab_hash,
2980 elfNN_aarch64_local_htab_eq,
2981 NULL);
2982 ret->loc_hash_memory = objalloc_create ();
2983 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2984 {
2985 elfNN_aarch64_link_hash_table_free (abfd);
2986 return NULL;
2987 }
2988 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2989
2990 return &ret->root.root;
2991 }
2992
2993 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2994
2995 static bfd_boolean
2996 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2997 bfd_vma offset, bfd_vma value)
2998 {
2999 reloc_howto_type *howto;
3000 bfd_vma place;
3001
3002 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3003 place = (input_section->output_section->vma + input_section->output_offset
3004 + offset);
3005
3006 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3007 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3008 value, 0, FALSE);
3009 return _bfd_aarch64_elf_put_addend (input_bfd,
3010 input_section->contents + offset, r_type,
3011 howto, value) == bfd_reloc_ok;
3012 }
3013
3014 static enum elf_aarch64_stub_type
3015 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3016 {
3017 if (aarch64_valid_for_adrp_p (value, place))
3018 return aarch64_stub_adrp_branch;
3019 return aarch64_stub_long_branch;
3020 }
3021
3022 /* Determine the type of stub needed, if any, for a call. */
3023
3024 static enum elf_aarch64_stub_type
3025 aarch64_type_of_stub (asection *input_sec,
3026 const Elf_Internal_Rela *rel,
3027 asection *sym_sec,
3028 unsigned char st_type,
3029 bfd_vma destination)
3030 {
3031 bfd_vma location;
3032 bfd_signed_vma branch_offset;
3033 unsigned int r_type;
3034 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3035
3036 if (st_type != STT_FUNC
3037 && (sym_sec == input_sec))
3038 return stub_type;
3039
3040 /* Determine where the call point is. */
3041 location = (input_sec->output_offset
3042 + input_sec->output_section->vma + rel->r_offset);
3043
3044 branch_offset = (bfd_signed_vma) (destination - location);
3045
3046 r_type = ELFNN_R_TYPE (rel->r_info);
3047
3048 /* We don't want to redirect any old unconditional jump in this way,
3049 only one which is being used for a sibcall, where it is
3050 acceptable for the IP0 and IP1 registers to be clobbered. */
3051 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3052 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3053 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3054 {
3055 stub_type = aarch64_stub_long_branch;
3056 }
3057
3058 return stub_type;
3059 }
3060
3061 /* Build a name for an entry in the stub hash table. */
3062
3063 static char *
3064 elfNN_aarch64_stub_name (const asection *input_section,
3065 const asection *sym_sec,
3066 const struct elf_aarch64_link_hash_entry *hash,
3067 const Elf_Internal_Rela *rel)
3068 {
3069 char *stub_name;
3070 bfd_size_type len;
3071
3072 if (hash)
3073 {
3074 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3075 stub_name = bfd_malloc (len);
3076 if (stub_name != NULL)
3077 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3078 (unsigned int) input_section->id,
3079 hash->root.root.root.string,
3080 rel->r_addend);
3081 }
3082 else
3083 {
3084 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3085 stub_name = bfd_malloc (len);
3086 if (stub_name != NULL)
3087 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3088 (unsigned int) input_section->id,
3089 (unsigned int) sym_sec->id,
3090 (unsigned int) ELFNN_R_SYM (rel->r_info),
3091 rel->r_addend);
3092 }
3093
3094 return stub_name;
3095 }
3096
3097 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3098 executable PLT slots where the executable never takes the address of those
3099 functions, the function symbols are not added to the hash table. */
3100
3101 static bfd_boolean
3102 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3103 {
3104 if (h->plt.offset != (bfd_vma) -1
3105 && !h->def_regular
3106 && !h->pointer_equality_needed)
3107 return FALSE;
3108
3109 return _bfd_elf_hash_symbol (h);
3110 }
3111
3112
3113 /* Look up an entry in the stub hash. Stub entries are cached because
3114 creating the stub name takes a bit of time. */
3115
3116 static struct elf_aarch64_stub_hash_entry *
3117 elfNN_aarch64_get_stub_entry (const asection *input_section,
3118 const asection *sym_sec,
3119 struct elf_link_hash_entry *hash,
3120 const Elf_Internal_Rela *rel,
3121 struct elf_aarch64_link_hash_table *htab)
3122 {
3123 struct elf_aarch64_stub_hash_entry *stub_entry;
3124 struct elf_aarch64_link_hash_entry *h =
3125 (struct elf_aarch64_link_hash_entry *) hash;
3126 const asection *id_sec;
3127
3128 if ((input_section->flags & SEC_CODE) == 0)
3129 return NULL;
3130
3131 /* If this input section is part of a group of sections sharing one
3132 stub section, then use the id of the first section in the group.
3133 Stub names need to include a section id, as there may well be
3134 more than one stub used to reach say, printf, and we need to
3135 distinguish between them. */
3136 id_sec = htab->stub_group[input_section->id].link_sec;
3137
3138 if (h != NULL && h->stub_cache != NULL
3139 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3140 {
3141 stub_entry = h->stub_cache;
3142 }
3143 else
3144 {
3145 char *stub_name;
3146
3147 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3148 if (stub_name == NULL)
3149 return NULL;
3150
3151 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3152 stub_name, FALSE, FALSE);
3153 if (h != NULL)
3154 h->stub_cache = stub_entry;
3155
3156 free (stub_name);
3157 }
3158
3159 return stub_entry;
3160 }
3161
3162
3163 /* Create a stub section. */
3164
3165 static asection *
3166 _bfd_aarch64_create_stub_section (asection *section,
3167 struct elf_aarch64_link_hash_table *htab)
3168 {
3169 size_t namelen;
3170 bfd_size_type len;
3171 char *s_name;
3172
3173 namelen = strlen (section->name);
3174 len = namelen + sizeof (STUB_SUFFIX);
3175 s_name = bfd_alloc (htab->stub_bfd, len);
3176 if (s_name == NULL)
3177 return NULL;
3178
3179 memcpy (s_name, section->name, namelen);
3180 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3181 return (*htab->add_stub_section) (s_name, section);
3182 }
3183
3184
3185 /* Find or create a stub section for a link section.
3186
3187 Fix or create the stub section used to collect stubs attached to
3188 the specified link section. */
3189
3190 static asection *
3191 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3192 struct elf_aarch64_link_hash_table *htab)
3193 {
3194 if (htab->stub_group[link_section->id].stub_sec == NULL)
3195 htab->stub_group[link_section->id].stub_sec
3196 = _bfd_aarch64_create_stub_section (link_section, htab);
3197 return htab->stub_group[link_section->id].stub_sec;
3198 }
3199
3200
3201 /* Find or create a stub section in the stub group for an input
3202 section. */
3203
3204 static asection *
3205 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3206 struct elf_aarch64_link_hash_table *htab)
3207 {
3208 asection *link_sec = htab->stub_group[section->id].link_sec;
3209 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3210 }
3211
3212
3213 /* Add a new stub entry in the stub group associated with an input
3214 section to the stub hash. Not all fields of the new stub entry are
3215 initialised. */
3216
3217 static struct elf_aarch64_stub_hash_entry *
3218 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3219 asection *section,
3220 struct elf_aarch64_link_hash_table *htab)
3221 {
3222 asection *link_sec;
3223 asection *stub_sec;
3224 struct elf_aarch64_stub_hash_entry *stub_entry;
3225
3226 link_sec = htab->stub_group[section->id].link_sec;
3227 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3228
3229 /* Enter this entry into the linker stub hash table. */
3230 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3231 TRUE, FALSE);
3232 if (stub_entry == NULL)
3233 {
3234 /* xgettext:c-format */
3235 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3236 section->owner, stub_name);
3237 return NULL;
3238 }
3239
3240 stub_entry->stub_sec = stub_sec;
3241 stub_entry->stub_offset = 0;
3242 stub_entry->id_sec = link_sec;
3243
3244 return stub_entry;
3245 }
3246
3247 /* Add a new stub entry in the final stub section to the stub hash.
3248 Not all fields of the new stub entry are initialised. */
3249
3250 static struct elf_aarch64_stub_hash_entry *
3251 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3252 asection *link_section,
3253 struct elf_aarch64_link_hash_table *htab)
3254 {
3255 asection *stub_sec;
3256 struct elf_aarch64_stub_hash_entry *stub_entry;
3257
3258 stub_sec = NULL;
3259 /* Only create the actual stub if we will end up needing it. */
3260 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3261 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3262 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3263 TRUE, FALSE);
3264 if (stub_entry == NULL)
3265 {
3266 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3267 return NULL;
3268 }
3269
3270 stub_entry->stub_sec = stub_sec;
3271 stub_entry->stub_offset = 0;
3272 stub_entry->id_sec = link_section;
3273
3274 return stub_entry;
3275 }
3276
3277
3278 static bfd_boolean
3279 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3280 void *in_arg ATTRIBUTE_UNUSED)
3281 {
3282 struct elf_aarch64_stub_hash_entry *stub_entry;
3283 asection *stub_sec;
3284 bfd *stub_bfd;
3285 bfd_byte *loc;
3286 bfd_vma sym_value;
3287 bfd_vma veneered_insn_loc;
3288 bfd_vma veneer_entry_loc;
3289 bfd_signed_vma branch_offset = 0;
3290 unsigned int template_size;
3291 const uint32_t *template;
3292 unsigned int i;
3293
3294 /* Massage our args to the form they really have. */
3295 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3296
3297 stub_sec = stub_entry->stub_sec;
3298
3299 /* Make a note of the offset within the stubs for this entry. */
3300 stub_entry->stub_offset = stub_sec->size;
3301 loc = stub_sec->contents + stub_entry->stub_offset;
3302
3303 stub_bfd = stub_sec->owner;
3304
3305 /* This is the address of the stub destination. */
3306 sym_value = (stub_entry->target_value
3307 + stub_entry->target_section->output_offset
3308 + stub_entry->target_section->output_section->vma);
3309
3310 if (stub_entry->stub_type == aarch64_stub_long_branch)
3311 {
3312 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3313 + stub_sec->output_offset);
3314
3315 /* See if we can relax the stub. */
3316 if (aarch64_valid_for_adrp_p (sym_value, place))
3317 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3318 }
3319
3320 switch (stub_entry->stub_type)
3321 {
3322 case aarch64_stub_adrp_branch:
3323 template = aarch64_adrp_branch_stub;
3324 template_size = sizeof (aarch64_adrp_branch_stub);
3325 break;
3326 case aarch64_stub_long_branch:
3327 template = aarch64_long_branch_stub;
3328 template_size = sizeof (aarch64_long_branch_stub);
3329 break;
3330 case aarch64_stub_erratum_835769_veneer:
3331 template = aarch64_erratum_835769_stub;
3332 template_size = sizeof (aarch64_erratum_835769_stub);
3333 break;
3334 case aarch64_stub_erratum_843419_veneer:
3335 template = aarch64_erratum_843419_stub;
3336 template_size = sizeof (aarch64_erratum_843419_stub);
3337 break;
3338 default:
3339 abort ();
3340 }
3341
3342 for (i = 0; i < (template_size / sizeof template[0]); i++)
3343 {
3344 bfd_putl32 (template[i], loc);
3345 loc += 4;
3346 }
3347
3348 template_size = (template_size + 7) & ~7;
3349 stub_sec->size += template_size;
3350
3351 switch (stub_entry->stub_type)
3352 {
3353 case aarch64_stub_adrp_branch:
3354 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3355 stub_entry->stub_offset, sym_value))
3356 /* The stub would not have been relaxed if the offset was out
3357 of range. */
3358 BFD_FAIL ();
3359
3360 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3361 stub_entry->stub_offset + 4, sym_value))
3362 BFD_FAIL ();
3363 break;
3364
3365 case aarch64_stub_long_branch:
3366 /* We want the value relative to the address 12 bytes back from the
3367 value itself. */
3368 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3369 stub_entry->stub_offset + 16, sym_value + 12))
3370 BFD_FAIL ();
3371 break;
3372
3373 case aarch64_stub_erratum_835769_veneer:
3374 veneered_insn_loc = stub_entry->target_section->output_section->vma
3375 + stub_entry->target_section->output_offset
3376 + stub_entry->target_value;
3377 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3378 + stub_entry->stub_sec->output_offset
3379 + stub_entry->stub_offset;
3380 branch_offset = veneered_insn_loc - veneer_entry_loc;
3381 branch_offset >>= 2;
3382 branch_offset &= 0x3ffffff;
3383 bfd_putl32 (stub_entry->veneered_insn,
3384 stub_sec->contents + stub_entry->stub_offset);
3385 bfd_putl32 (template[1] | branch_offset,
3386 stub_sec->contents + stub_entry->stub_offset + 4);
3387 break;
3388
3389 case aarch64_stub_erratum_843419_veneer:
3390 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3391 stub_entry->stub_offset + 4, sym_value + 4))
3392 BFD_FAIL ();
3393 break;
3394
3395 default:
3396 abort ();
3397 }
3398
3399 return TRUE;
3400 }
3401
3402 /* As above, but don't actually build the stub. Just bump offset so
3403 we know stub section sizes. */
3404
3405 static bfd_boolean
3406 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3407 {
3408 struct elf_aarch64_stub_hash_entry *stub_entry;
3409 struct elf_aarch64_link_hash_table *htab;
3410 int size;
3411
3412 /* Massage our args to the form they really have. */
3413 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3414 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3415
3416 switch (stub_entry->stub_type)
3417 {
3418 case aarch64_stub_adrp_branch:
3419 size = sizeof (aarch64_adrp_branch_stub);
3420 break;
3421 case aarch64_stub_long_branch:
3422 size = sizeof (aarch64_long_branch_stub);
3423 break;
3424 case aarch64_stub_erratum_835769_veneer:
3425 size = sizeof (aarch64_erratum_835769_stub);
3426 break;
3427 case aarch64_stub_erratum_843419_veneer:
3428 {
3429 if (htab->fix_erratum_843419 == ERRAT_ADR)
3430 return TRUE;
3431 size = sizeof (aarch64_erratum_843419_stub);
3432 }
3433 break;
3434 default:
3435 abort ();
3436 }
3437
3438 size = (size + 7) & ~7;
3439 stub_entry->stub_sec->size += size;
3440 return TRUE;
3441 }
3442
3443 /* External entry points for sizing and building linker stubs. */
3444
3445 /* Set up various things so that we can make a list of input sections
3446 for each output section included in the link. Returns -1 on error,
3447 0 when no stubs will be needed, and 1 on success. */
3448
3449 int
3450 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3451 struct bfd_link_info *info)
3452 {
3453 bfd *input_bfd;
3454 unsigned int bfd_count;
3455 unsigned int top_id, top_index;
3456 asection *section;
3457 asection **input_list, **list;
3458 bfd_size_type amt;
3459 struct elf_aarch64_link_hash_table *htab =
3460 elf_aarch64_hash_table (info);
3461
3462 if (!is_elf_hash_table (htab))
3463 return 0;
3464
3465 /* Count the number of input BFDs and find the top input section id. */
3466 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3467 input_bfd != NULL; input_bfd = input_bfd->link.next)
3468 {
3469 bfd_count += 1;
3470 for (section = input_bfd->sections;
3471 section != NULL; section = section->next)
3472 {
3473 if (top_id < section->id)
3474 top_id = section->id;
3475 }
3476 }
3477 htab->bfd_count = bfd_count;
3478
3479 amt = sizeof (struct map_stub) * (top_id + 1);
3480 htab->stub_group = bfd_zmalloc (amt);
3481 if (htab->stub_group == NULL)
3482 return -1;
3483
3484 /* We can't use output_bfd->section_count here to find the top output
3485 section index as some sections may have been removed, and
3486 _bfd_strip_section_from_output doesn't renumber the indices. */
3487 for (section = output_bfd->sections, top_index = 0;
3488 section != NULL; section = section->next)
3489 {
3490 if (top_index < section->index)
3491 top_index = section->index;
3492 }
3493
3494 htab->top_index = top_index;
3495 amt = sizeof (asection *) * (top_index + 1);
3496 input_list = bfd_malloc (amt);
3497 htab->input_list = input_list;
3498 if (input_list == NULL)
3499 return -1;
3500
3501 /* For sections we aren't interested in, mark their entries with a
3502 value we can check later. */
3503 list = input_list + top_index;
3504 do
3505 *list = bfd_abs_section_ptr;
3506 while (list-- != input_list);
3507
3508 for (section = output_bfd->sections;
3509 section != NULL; section = section->next)
3510 {
3511 if ((section->flags & SEC_CODE) != 0)
3512 input_list[section->index] = NULL;
3513 }
3514
3515 return 1;
3516 }
3517
3518 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3519 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3520
3521 /* The linker repeatedly calls this function for each input section,
3522 in the order that input sections are linked into output sections.
3523 Build lists of input sections to determine groupings between which
3524 we may insert linker stubs. */
3525
3526 void
3527 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3528 {
3529 struct elf_aarch64_link_hash_table *htab =
3530 elf_aarch64_hash_table (info);
3531
3532 if (isec->output_section->index <= htab->top_index)
3533 {
3534 asection **list = htab->input_list + isec->output_section->index;
3535
3536 if (*list != bfd_abs_section_ptr)
3537 {
3538 /* Steal the link_sec pointer for our list. */
3539 /* This happens to make the list in reverse order,
3540 which is what we want. */
3541 PREV_SEC (isec) = *list;
3542 *list = isec;
3543 }
3544 }
3545 }
3546
3547 /* See whether we can group stub sections together. Grouping stub
3548 sections may result in fewer stubs. More importantly, we need to
3549 put all .init* and .fini* stubs at the beginning of the .init or
3550 .fini output sections respectively, because glibc splits the
3551 _init and _fini functions into multiple parts. Putting a stub in
3552 the middle of a function is not a good idea. */
3553
3554 static void
3555 group_sections (struct elf_aarch64_link_hash_table *htab,
3556 bfd_size_type stub_group_size,
3557 bfd_boolean stubs_always_before_branch)
3558 {
3559 asection **list = htab->input_list + htab->top_index;
3560
3561 do
3562 {
3563 asection *tail = *list;
3564
3565 if (tail == bfd_abs_section_ptr)
3566 continue;
3567
3568 while (tail != NULL)
3569 {
3570 asection *curr;
3571 asection *prev;
3572 bfd_size_type total;
3573
3574 curr = tail;
3575 total = tail->size;
3576 while ((prev = PREV_SEC (curr)) != NULL
3577 && ((total += curr->output_offset - prev->output_offset)
3578 < stub_group_size))
3579 curr = prev;
3580
3581 /* OK, the size from the start of CURR to the end is less
3582 than stub_group_size and thus can be handled by one stub
3583 section. (Or the tail section is itself larger than
3584 stub_group_size, in which case we may be toast.)
3585 We should really be keeping track of the total size of
3586 stubs added here, as stubs contribute to the final output
3587 section size. */
3588 do
3589 {
3590 prev = PREV_SEC (tail);
3591 /* Set up this stub group. */
3592 htab->stub_group[tail->id].link_sec = curr;
3593 }
3594 while (tail != curr && (tail = prev) != NULL);
3595
3596 /* But wait, there's more! Input sections up to stub_group_size
3597 bytes before the stub section can be handled by it too. */
3598 if (!stubs_always_before_branch)
3599 {
3600 total = 0;
3601 while (prev != NULL
3602 && ((total += tail->output_offset - prev->output_offset)
3603 < stub_group_size))
3604 {
3605 tail = prev;
3606 prev = PREV_SEC (tail);
3607 htab->stub_group[tail->id].link_sec = curr;
3608 }
3609 }
3610 tail = prev;
3611 }
3612 }
3613 while (list-- != htab->input_list);
3614
3615 free (htab->input_list);
3616 }
3617
3618 #undef PREV_SEC
3619
3620 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3621
3622 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3623 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3624 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3625 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3626 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3627 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3628
3629 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3630 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3631 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3632 #define AARCH64_ZR 0x1f
3633
3634 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3635 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3636
3637 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3638 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3639 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3640 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3641 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3642 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3643 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3644 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3645 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3646 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3647 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3648 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3649 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3650 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3651 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3652 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3653 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3654 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3655
3656 /* Classify an INSN if it is indeed a load/store.
3657
3658 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3659
3660 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3661 is set equal to RT.
3662
3663 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3664
3665 static bfd_boolean
3666 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3667 bfd_boolean *pair, bfd_boolean *load)
3668 {
3669 uint32_t opcode;
3670 unsigned int r;
3671 uint32_t opc = 0;
3672 uint32_t v = 0;
3673 uint32_t opc_v = 0;
3674
3675 /* Bail out quickly if INSN doesn't fall into the load-store
3676 encoding space. */
3677 if (!AARCH64_LDST (insn))
3678 return FALSE;
3679
3680 *pair = FALSE;
3681 *load = FALSE;
3682 if (AARCH64_LDST_EX (insn))
3683 {
3684 *rt = AARCH64_RT (insn);
3685 *rt2 = *rt;
3686 if (AARCH64_BIT (insn, 21) == 1)
3687 {
3688 *pair = TRUE;
3689 *rt2 = AARCH64_RT2 (insn);
3690 }
3691 *load = AARCH64_LD (insn);
3692 return TRUE;
3693 }
3694 else if (AARCH64_LDST_NAP (insn)
3695 || AARCH64_LDSTP_PI (insn)
3696 || AARCH64_LDSTP_O (insn)
3697 || AARCH64_LDSTP_PRE (insn))
3698 {
3699 *pair = TRUE;
3700 *rt = AARCH64_RT (insn);
3701 *rt2 = AARCH64_RT2 (insn);
3702 *load = AARCH64_LD (insn);
3703 return TRUE;
3704 }
3705 else if (AARCH64_LDST_PCREL (insn)
3706 || AARCH64_LDST_UI (insn)
3707 || AARCH64_LDST_PIIMM (insn)
3708 || AARCH64_LDST_U (insn)
3709 || AARCH64_LDST_PREIMM (insn)
3710 || AARCH64_LDST_RO (insn)
3711 || AARCH64_LDST_UIMM (insn))
3712 {
3713 *rt = AARCH64_RT (insn);
3714 *rt2 = *rt;
3715 if (AARCH64_LDST_PCREL (insn))
3716 *load = TRUE;
3717 opc = AARCH64_BITS (insn, 22, 2);
3718 v = AARCH64_BIT (insn, 26);
3719 opc_v = opc | (v << 2);
3720 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3721 || opc_v == 5 || opc_v == 7);
3722 return TRUE;
3723 }
3724 else if (AARCH64_LDST_SIMD_M (insn)
3725 || AARCH64_LDST_SIMD_M_PI (insn))
3726 {
3727 *rt = AARCH64_RT (insn);
3728 *load = AARCH64_BIT (insn, 22);
3729 opcode = (insn >> 12) & 0xf;
3730 switch (opcode)
3731 {
3732 case 0:
3733 case 2:
3734 *rt2 = *rt + 3;
3735 break;
3736
3737 case 4:
3738 case 6:
3739 *rt2 = *rt + 2;
3740 break;
3741
3742 case 7:
3743 *rt2 = *rt;
3744 break;
3745
3746 case 8:
3747 case 10:
3748 *rt2 = *rt + 1;
3749 break;
3750
3751 default:
3752 return FALSE;
3753 }
3754 return TRUE;
3755 }
3756 else if (AARCH64_LDST_SIMD_S (insn)
3757 || AARCH64_LDST_SIMD_S_PI (insn))
3758 {
3759 *rt = AARCH64_RT (insn);
3760 r = (insn >> 21) & 1;
3761 *load = AARCH64_BIT (insn, 22);
3762 opcode = (insn >> 13) & 0x7;
3763 switch (opcode)
3764 {
3765 case 0:
3766 case 2:
3767 case 4:
3768 *rt2 = *rt + r;
3769 break;
3770
3771 case 1:
3772 case 3:
3773 case 5:
3774 *rt2 = *rt + (r == 0 ? 2 : 3);
3775 break;
3776
3777 case 6:
3778 *rt2 = *rt + r;
3779 break;
3780
3781 case 7:
3782 *rt2 = *rt + (r == 0 ? 2 : 3);
3783 break;
3784
3785 default:
3786 return FALSE;
3787 }
3788 return TRUE;
3789 }
3790
3791 return FALSE;
3792 }
3793
3794 /* Return TRUE if INSN is multiply-accumulate. */
3795
3796 static bfd_boolean
3797 aarch64_mlxl_p (uint32_t insn)
3798 {
3799 uint32_t op31 = AARCH64_OP31 (insn);
3800
3801 if (AARCH64_MAC (insn)
3802 && (op31 == 0 || op31 == 1 || op31 == 5)
3803 /* Exclude MUL instructions which are encoded as a multiple accumulate
3804 with RA = XZR. */
3805 && AARCH64_RA (insn) != AARCH64_ZR)
3806 return TRUE;
3807
3808 return FALSE;
3809 }
3810
3811 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3812 it is possible for a 64-bit multiply-accumulate instruction to generate an
3813 incorrect result. The details are quite complex and hard to
3814 determine statically, since branches in the code may exist in some
3815 circumstances, but all cases end with a memory (load, store, or
3816 prefetch) instruction followed immediately by the multiply-accumulate
3817 operation. We employ a linker patching technique, by moving the potentially
3818 affected multiply-accumulate instruction into a patch region and replacing
3819 the original instruction with a branch to the patch. This function checks
3820 if INSN_1 is the memory operation followed by a multiply-accumulate
3821 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3822 if INSN_1 and INSN_2 are safe. */
3823
3824 static bfd_boolean
3825 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3826 {
3827 uint32_t rt;
3828 uint32_t rt2;
3829 uint32_t rn;
3830 uint32_t rm;
3831 uint32_t ra;
3832 bfd_boolean pair;
3833 bfd_boolean load;
3834
3835 if (aarch64_mlxl_p (insn_2)
3836 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3837 {
3838 /* Any SIMD memory op is independent of the subsequent MLA
3839 by definition of the erratum. */
3840 if (AARCH64_BIT (insn_1, 26))
3841 return TRUE;
3842
3843 /* If not SIMD, check for integer memory ops and MLA relationship. */
3844 rn = AARCH64_RN (insn_2);
3845 ra = AARCH64_RA (insn_2);
3846 rm = AARCH64_RM (insn_2);
3847
3848 /* If this is a load and there's a true(RAW) dependency, we are safe
3849 and this is not an erratum sequence. */
3850 if (load &&
3851 (rt == rn || rt == rm || rt == ra
3852 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3853 return FALSE;
3854
3855 /* We conservatively put out stubs for all other cases (including
3856 writebacks). */
3857 return TRUE;
3858 }
3859
3860 return FALSE;
3861 }
3862
3863 /* Used to order a list of mapping symbols by address. */
3864
3865 static int
3866 elf_aarch64_compare_mapping (const void *a, const void *b)
3867 {
3868 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3869 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3870
3871 if (amap->vma > bmap->vma)
3872 return 1;
3873 else if (amap->vma < bmap->vma)
3874 return -1;
3875 else if (amap->type > bmap->type)
3876 /* Ensure results do not depend on the host qsort for objects with
3877 multiple mapping symbols at the same address by sorting on type
3878 after vma. */
3879 return 1;
3880 else if (amap->type < bmap->type)
3881 return -1;
3882 else
3883 return 0;
3884 }
3885
3886
3887 static char *
3888 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3889 {
3890 char *stub_name = (char *) bfd_malloc
3891 (strlen ("__erratum_835769_veneer_") + 16);
3892 if (stub_name != NULL)
3893 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3894 return stub_name;
3895 }
3896
3897 /* Scan for Cortex-A53 erratum 835769 sequence.
3898
3899 Return TRUE else FALSE on abnormal termination. */
3900
3901 static bfd_boolean
3902 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3903 struct bfd_link_info *info,
3904 unsigned int *num_fixes_p)
3905 {
3906 asection *section;
3907 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3908 unsigned int num_fixes = *num_fixes_p;
3909
3910 if (htab == NULL)
3911 return TRUE;
3912
3913 for (section = input_bfd->sections;
3914 section != NULL;
3915 section = section->next)
3916 {
3917 bfd_byte *contents = NULL;
3918 struct _aarch64_elf_section_data *sec_data;
3919 unsigned int span;
3920
3921 if (elf_section_type (section) != SHT_PROGBITS
3922 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3923 || (section->flags & SEC_EXCLUDE) != 0
3924 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3925 || (section->output_section == bfd_abs_section_ptr))
3926 continue;
3927
3928 if (elf_section_data (section)->this_hdr.contents != NULL)
3929 contents = elf_section_data (section)->this_hdr.contents;
3930 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3931 return FALSE;
3932
3933 sec_data = elf_aarch64_section_data (section);
3934
3935 qsort (sec_data->map, sec_data->mapcount,
3936 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3937
3938 for (span = 0; span < sec_data->mapcount; span++)
3939 {
3940 unsigned int span_start = sec_data->map[span].vma;
3941 unsigned int span_end = ((span == sec_data->mapcount - 1)
3942 ? sec_data->map[0].vma + section->size
3943 : sec_data->map[span + 1].vma);
3944 unsigned int i;
3945 char span_type = sec_data->map[span].type;
3946
3947 if (span_type == 'd')
3948 continue;
3949
3950 for (i = span_start; i + 4 < span_end; i += 4)
3951 {
3952 uint32_t insn_1 = bfd_getl32 (contents + i);
3953 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3954
3955 if (aarch64_erratum_sequence (insn_1, insn_2))
3956 {
3957 struct elf_aarch64_stub_hash_entry *stub_entry;
3958 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3959 if (! stub_name)
3960 return FALSE;
3961
3962 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3963 section,
3964 htab);
3965 if (! stub_entry)
3966 return FALSE;
3967
3968 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3969 stub_entry->target_section = section;
3970 stub_entry->target_value = i + 4;
3971 stub_entry->veneered_insn = insn_2;
3972 stub_entry->output_name = stub_name;
3973 num_fixes++;
3974 }
3975 }
3976 }
3977 if (elf_section_data (section)->this_hdr.contents == NULL)
3978 free (contents);
3979 }
3980
3981 *num_fixes_p = num_fixes;
3982
3983 return TRUE;
3984 }
3985
3986
3987 /* Test if instruction INSN is ADRP. */
3988
3989 static bfd_boolean
3990 _bfd_aarch64_adrp_p (uint32_t insn)
3991 {
3992 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3993 }
3994
3995
3996 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3997
3998 static bfd_boolean
3999 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4000 uint32_t insn_3)
4001 {
4002 uint32_t rt;
4003 uint32_t rt2;
4004 bfd_boolean pair;
4005 bfd_boolean load;
4006
4007 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4008 && (!pair
4009 || (pair && !load))
4010 && AARCH64_LDST_UIMM (insn_3)
4011 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4012 }
4013
4014
4015 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4016
4017 Return TRUE if section CONTENTS at offset I contains one of the
4018 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4019 seen set P_VENEER_I to the offset of the final LOAD/STORE
4020 instruction in the sequence.
4021 */
4022
4023 static bfd_boolean
4024 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4025 bfd_vma i, bfd_vma span_end,
4026 bfd_vma *p_veneer_i)
4027 {
4028 uint32_t insn_1 = bfd_getl32 (contents + i);
4029
4030 if (!_bfd_aarch64_adrp_p (insn_1))
4031 return FALSE;
4032
4033 if (span_end < i + 12)
4034 return FALSE;
4035
4036 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4037 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4038
4039 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4040 return FALSE;
4041
4042 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4043 {
4044 *p_veneer_i = i + 8;
4045 return TRUE;
4046 }
4047
4048 if (span_end < i + 16)
4049 return FALSE;
4050
4051 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4052
4053 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4054 {
4055 *p_veneer_i = i + 12;
4056 return TRUE;
4057 }
4058
4059 return FALSE;
4060 }
4061
4062
4063 /* Resize all stub sections. */
4064
4065 static void
4066 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4067 {
4068 asection *section;
4069
4070 /* OK, we've added some stubs. Find out the new size of the
4071 stub sections. */
4072 for (section = htab->stub_bfd->sections;
4073 section != NULL; section = section->next)
4074 {
4075 /* Ignore non-stub sections. */
4076 if (!strstr (section->name, STUB_SUFFIX))
4077 continue;
4078 section->size = 0;
4079 }
4080
4081 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4082
4083 for (section = htab->stub_bfd->sections;
4084 section != NULL; section = section->next)
4085 {
4086 if (!strstr (section->name, STUB_SUFFIX))
4087 continue;
4088
4089 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4090 as long branch stubs contain a 64-bit address. */
4091 if (section->size)
4092 section->size += 8;
4093
4094 /* Ensure all stub sections have a size which is a multiple of
4095 4096. This is important in order to ensure that the insertion
4096 of stub sections does not in itself move existing code around
4097 in such a way that new errata sequences are created. We only do this
4098 when the ADRP workaround is enabled. If only the ADR workaround is
4099 enabled then the stubs workaround won't ever be used. */
4100 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4101 if (section->size)
4102 section->size = BFD_ALIGN (section->size, 0x1000);
4103 }
4104 }
4105
4106 /* Construct an erratum 843419 workaround stub name. */
4107
4108 static char *
4109 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4110 bfd_vma offset)
4111 {
4112 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4113 char *stub_name = bfd_malloc (len);
4114
4115 if (stub_name != NULL)
4116 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4117 input_section->owner->id,
4118 input_section->id,
4119 offset);
4120 return stub_name;
4121 }
4122
4123 /* Build a stub_entry structure describing an 843419 fixup.
4124
4125 The stub_entry constructed is populated with the bit pattern INSN
4126 of the instruction located at OFFSET within input SECTION.
4127
4128 Returns TRUE on success. */
4129
4130 static bfd_boolean
4131 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4132 bfd_vma adrp_offset,
4133 bfd_vma ldst_offset,
4134 asection *section,
4135 struct bfd_link_info *info)
4136 {
4137 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4138 char *stub_name;
4139 struct elf_aarch64_stub_hash_entry *stub_entry;
4140
4141 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4142 if (stub_name == NULL)
4143 return FALSE;
4144 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4145 FALSE, FALSE);
4146 if (stub_entry)
4147 {
4148 free (stub_name);
4149 return TRUE;
4150 }
4151
4152 /* We always place an 843419 workaround veneer in the stub section
4153 attached to the input section in which an erratum sequence has
4154 been found. This ensures that later in the link process (in
4155 elfNN_aarch64_write_section) when we copy the veneered
4156 instruction from the input section into the stub section the
4157 copied instruction will have had any relocations applied to it.
4158 If we placed workaround veneers in any other stub section then we
4159 could not assume that all relocations have been processed on the
4160 corresponding input section at the point we output the stub
4161 section. */
4162
4163 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4164 if (stub_entry == NULL)
4165 {
4166 free (stub_name);
4167 return FALSE;
4168 }
4169
4170 stub_entry->adrp_offset = adrp_offset;
4171 stub_entry->target_value = ldst_offset;
4172 stub_entry->target_section = section;
4173 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4174 stub_entry->veneered_insn = insn;
4175 stub_entry->output_name = stub_name;
4176
4177 return TRUE;
4178 }
4179
4180
4181 /* Scan an input section looking for the signature of erratum 843419.
4182
4183 Scans input SECTION in INPUT_BFD looking for erratum 843419
4184 signatures, for each signature found a stub_entry is created
4185 describing the location of the erratum for subsequent fixup.
4186
4187 Return TRUE on successful scan, FALSE on failure to scan.
4188 */
4189
4190 static bfd_boolean
4191 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4192 struct bfd_link_info *info)
4193 {
4194 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4195
4196 if (htab == NULL)
4197 return TRUE;
4198
4199 if (elf_section_type (section) != SHT_PROGBITS
4200 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4201 || (section->flags & SEC_EXCLUDE) != 0
4202 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4203 || (section->output_section == bfd_abs_section_ptr))
4204 return TRUE;
4205
4206 do
4207 {
4208 bfd_byte *contents = NULL;
4209 struct _aarch64_elf_section_data *sec_data;
4210 unsigned int span;
4211
4212 if (elf_section_data (section)->this_hdr.contents != NULL)
4213 contents = elf_section_data (section)->this_hdr.contents;
4214 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4215 return FALSE;
4216
4217 sec_data = elf_aarch64_section_data (section);
4218
4219 qsort (sec_data->map, sec_data->mapcount,
4220 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4221
4222 for (span = 0; span < sec_data->mapcount; span++)
4223 {
4224 unsigned int span_start = sec_data->map[span].vma;
4225 unsigned int span_end = ((span == sec_data->mapcount - 1)
4226 ? sec_data->map[0].vma + section->size
4227 : sec_data->map[span + 1].vma);
4228 unsigned int i;
4229 char span_type = sec_data->map[span].type;
4230
4231 if (span_type == 'd')
4232 continue;
4233
4234 for (i = span_start; i + 8 < span_end; i += 4)
4235 {
4236 bfd_vma vma = (section->output_section->vma
4237 + section->output_offset
4238 + i);
4239 bfd_vma veneer_i;
4240
4241 if (_bfd_aarch64_erratum_843419_p
4242 (contents, vma, i, span_end, &veneer_i))
4243 {
4244 uint32_t insn = bfd_getl32 (contents + veneer_i);
4245
4246 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4247 section, info))
4248 return FALSE;
4249 }
4250 }
4251 }
4252
4253 if (elf_section_data (section)->this_hdr.contents == NULL)
4254 free (contents);
4255 }
4256 while (0);
4257
4258 return TRUE;
4259 }
4260
4261
4262 /* Determine and set the size of the stub section for a final link.
4263
4264 The basic idea here is to examine all the relocations looking for
4265 PC-relative calls to a target that is unreachable with a "bl"
4266 instruction. */
4267
4268 bfd_boolean
4269 elfNN_aarch64_size_stubs (bfd *output_bfd,
4270 bfd *stub_bfd,
4271 struct bfd_link_info *info,
4272 bfd_signed_vma group_size,
4273 asection * (*add_stub_section) (const char *,
4274 asection *),
4275 void (*layout_sections_again) (void))
4276 {
4277 bfd_size_type stub_group_size;
4278 bfd_boolean stubs_always_before_branch;
4279 bfd_boolean stub_changed = FALSE;
4280 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4281 unsigned int num_erratum_835769_fixes = 0;
4282
4283 /* Propagate mach to stub bfd, because it may not have been
4284 finalized when we created stub_bfd. */
4285 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4286 bfd_get_mach (output_bfd));
4287
4288 /* Stash our params away. */
4289 htab->stub_bfd = stub_bfd;
4290 htab->add_stub_section = add_stub_section;
4291 htab->layout_sections_again = layout_sections_again;
4292 stubs_always_before_branch = group_size < 0;
4293 if (group_size < 0)
4294 stub_group_size = -group_size;
4295 else
4296 stub_group_size = group_size;
4297
4298 if (stub_group_size == 1)
4299 {
4300 /* Default values. */
4301 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4302 stub_group_size = 127 * 1024 * 1024;
4303 }
4304
4305 group_sections (htab, stub_group_size, stubs_always_before_branch);
4306
4307 (*htab->layout_sections_again) ();
4308
4309 if (htab->fix_erratum_835769)
4310 {
4311 bfd *input_bfd;
4312
4313 for (input_bfd = info->input_bfds;
4314 input_bfd != NULL; input_bfd = input_bfd->link.next)
4315 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4316 &num_erratum_835769_fixes))
4317 return FALSE;
4318
4319 _bfd_aarch64_resize_stubs (htab);
4320 (*htab->layout_sections_again) ();
4321 }
4322
4323 if (htab->fix_erratum_843419 != ERRAT_NONE)
4324 {
4325 bfd *input_bfd;
4326
4327 for (input_bfd = info->input_bfds;
4328 input_bfd != NULL;
4329 input_bfd = input_bfd->link.next)
4330 {
4331 asection *section;
4332
4333 for (section = input_bfd->sections;
4334 section != NULL;
4335 section = section->next)
4336 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4337 return FALSE;
4338 }
4339
4340 _bfd_aarch64_resize_stubs (htab);
4341 (*htab->layout_sections_again) ();
4342 }
4343
4344 while (1)
4345 {
4346 bfd *input_bfd;
4347
4348 for (input_bfd = info->input_bfds;
4349 input_bfd != NULL; input_bfd = input_bfd->link.next)
4350 {
4351 Elf_Internal_Shdr *symtab_hdr;
4352 asection *section;
4353 Elf_Internal_Sym *local_syms = NULL;
4354
4355 /* We'll need the symbol table in a second. */
4356 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4357 if (symtab_hdr->sh_info == 0)
4358 continue;
4359
4360 /* Walk over each section attached to the input bfd. */
4361 for (section = input_bfd->sections;
4362 section != NULL; section = section->next)
4363 {
4364 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4365
4366 /* If there aren't any relocs, then there's nothing more
4367 to do. */
4368 if ((section->flags & SEC_RELOC) == 0
4369 || section->reloc_count == 0
4370 || (section->flags & SEC_CODE) == 0)
4371 continue;
4372
4373 /* If this section is a link-once section that will be
4374 discarded, then don't create any stubs. */
4375 if (section->output_section == NULL
4376 || section->output_section->owner != output_bfd)
4377 continue;
4378
4379 /* Get the relocs. */
4380 internal_relocs
4381 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4382 NULL, info->keep_memory);
4383 if (internal_relocs == NULL)
4384 goto error_ret_free_local;
4385
4386 /* Now examine each relocation. */
4387 irela = internal_relocs;
4388 irelaend = irela + section->reloc_count;
4389 for (; irela < irelaend; irela++)
4390 {
4391 unsigned int r_type, r_indx;
4392 enum elf_aarch64_stub_type stub_type;
4393 struct elf_aarch64_stub_hash_entry *stub_entry;
4394 asection *sym_sec;
4395 bfd_vma sym_value;
4396 bfd_vma destination;
4397 struct elf_aarch64_link_hash_entry *hash;
4398 const char *sym_name;
4399 char *stub_name;
4400 const asection *id_sec;
4401 unsigned char st_type;
4402 bfd_size_type len;
4403
4404 r_type = ELFNN_R_TYPE (irela->r_info);
4405 r_indx = ELFNN_R_SYM (irela->r_info);
4406
4407 if (r_type >= (unsigned int) R_AARCH64_end)
4408 {
4409 bfd_set_error (bfd_error_bad_value);
4410 error_ret_free_internal:
4411 if (elf_section_data (section)->relocs == NULL)
4412 free (internal_relocs);
4413 goto error_ret_free_local;
4414 }
4415
4416 /* Only look for stubs on unconditional branch and
4417 branch and link instructions. */
4418 if (r_type != (unsigned int) AARCH64_R (CALL26)
4419 && r_type != (unsigned int) AARCH64_R (JUMP26))
4420 continue;
4421
4422 /* Now determine the call target, its name, value,
4423 section. */
4424 sym_sec = NULL;
4425 sym_value = 0;
4426 destination = 0;
4427 hash = NULL;
4428 sym_name = NULL;
4429 if (r_indx < symtab_hdr->sh_info)
4430 {
4431 /* It's a local symbol. */
4432 Elf_Internal_Sym *sym;
4433 Elf_Internal_Shdr *hdr;
4434
4435 if (local_syms == NULL)
4436 {
4437 local_syms
4438 = (Elf_Internal_Sym *) symtab_hdr->contents;
4439 if (local_syms == NULL)
4440 local_syms
4441 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4442 symtab_hdr->sh_info, 0,
4443 NULL, NULL, NULL);
4444 if (local_syms == NULL)
4445 goto error_ret_free_internal;
4446 }
4447
4448 sym = local_syms + r_indx;
4449 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4450 sym_sec = hdr->bfd_section;
4451 if (!sym_sec)
4452 /* This is an undefined symbol. It can never
4453 be resolved. */
4454 continue;
4455
4456 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4457 sym_value = sym->st_value;
4458 destination = (sym_value + irela->r_addend
4459 + sym_sec->output_offset
4460 + sym_sec->output_section->vma);
4461 st_type = ELF_ST_TYPE (sym->st_info);
4462 sym_name
4463 = bfd_elf_string_from_elf_section (input_bfd,
4464 symtab_hdr->sh_link,
4465 sym->st_name);
4466 }
4467 else
4468 {
4469 int e_indx;
4470
4471 e_indx = r_indx - symtab_hdr->sh_info;
4472 hash = ((struct elf_aarch64_link_hash_entry *)
4473 elf_sym_hashes (input_bfd)[e_indx]);
4474
4475 while (hash->root.root.type == bfd_link_hash_indirect
4476 || hash->root.root.type == bfd_link_hash_warning)
4477 hash = ((struct elf_aarch64_link_hash_entry *)
4478 hash->root.root.u.i.link);
4479
4480 if (hash->root.root.type == bfd_link_hash_defined
4481 || hash->root.root.type == bfd_link_hash_defweak)
4482 {
4483 struct elf_aarch64_link_hash_table *globals =
4484 elf_aarch64_hash_table (info);
4485 sym_sec = hash->root.root.u.def.section;
4486 sym_value = hash->root.root.u.def.value;
4487 /* For a destination in a shared library,
4488 use the PLT stub as target address to
4489 decide whether a branch stub is
4490 needed. */
4491 if (globals->root.splt != NULL && hash != NULL
4492 && hash->root.plt.offset != (bfd_vma) - 1)
4493 {
4494 sym_sec = globals->root.splt;
4495 sym_value = hash->root.plt.offset;
4496 if (sym_sec->output_section != NULL)
4497 destination = (sym_value
4498 + sym_sec->output_offset
4499 +
4500 sym_sec->output_section->vma);
4501 }
4502 else if (sym_sec->output_section != NULL)
4503 destination = (sym_value + irela->r_addend
4504 + sym_sec->output_offset
4505 + sym_sec->output_section->vma);
4506 }
4507 else if (hash->root.root.type == bfd_link_hash_undefined
4508 || (hash->root.root.type
4509 == bfd_link_hash_undefweak))
4510 {
4511 /* For a shared library, use the PLT stub as
4512 target address to decide whether a long
4513 branch stub is needed.
4514 For absolute code, they cannot be handled. */
4515 struct elf_aarch64_link_hash_table *globals =
4516 elf_aarch64_hash_table (info);
4517
4518 if (globals->root.splt != NULL && hash != NULL
4519 && hash->root.plt.offset != (bfd_vma) - 1)
4520 {
4521 sym_sec = globals->root.splt;
4522 sym_value = hash->root.plt.offset;
4523 if (sym_sec->output_section != NULL)
4524 destination = (sym_value
4525 + sym_sec->output_offset
4526 +
4527 sym_sec->output_section->vma);
4528 }
4529 else
4530 continue;
4531 }
4532 else
4533 {
4534 bfd_set_error (bfd_error_bad_value);
4535 goto error_ret_free_internal;
4536 }
4537 st_type = ELF_ST_TYPE (hash->root.type);
4538 sym_name = hash->root.root.root.string;
4539 }
4540
4541 /* Determine what (if any) linker stub is needed. */
4542 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4543 st_type, destination);
4544 if (stub_type == aarch64_stub_none)
4545 continue;
4546
4547 /* Support for grouping stub sections. */
4548 id_sec = htab->stub_group[section->id].link_sec;
4549
4550 /* Get the name of this stub. */
4551 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4552 irela);
4553 if (!stub_name)
4554 goto error_ret_free_internal;
4555
4556 stub_entry =
4557 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4558 stub_name, FALSE, FALSE);
4559 if (stub_entry != NULL)
4560 {
4561 /* The proper stub has already been created. */
4562 free (stub_name);
4563 /* Always update this stub's target since it may have
4564 changed after layout. */
4565 stub_entry->target_value = sym_value + irela->r_addend;
4566 continue;
4567 }
4568
4569 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4570 (stub_name, section, htab);
4571 if (stub_entry == NULL)
4572 {
4573 free (stub_name);
4574 goto error_ret_free_internal;
4575 }
4576
4577 stub_entry->target_value = sym_value + irela->r_addend;
4578 stub_entry->target_section = sym_sec;
4579 stub_entry->stub_type = stub_type;
4580 stub_entry->h = hash;
4581 stub_entry->st_type = st_type;
4582
4583 if (sym_name == NULL)
4584 sym_name = "unnamed";
4585 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4586 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4587 if (stub_entry->output_name == NULL)
4588 {
4589 free (stub_name);
4590 goto error_ret_free_internal;
4591 }
4592
4593 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4594 sym_name);
4595
4596 stub_changed = TRUE;
4597 }
4598
4599 /* We're done with the internal relocs, free them. */
4600 if (elf_section_data (section)->relocs == NULL)
4601 free (internal_relocs);
4602 }
4603 }
4604
4605 if (!stub_changed)
4606 break;
4607
4608 _bfd_aarch64_resize_stubs (htab);
4609
4610 /* Ask the linker to do its stuff. */
4611 (*htab->layout_sections_again) ();
4612 stub_changed = FALSE;
4613 }
4614
4615 return TRUE;
4616
4617 error_ret_free_local:
4618 return FALSE;
4619 }
4620
4621 /* Build all the stubs associated with the current output file. The
4622 stubs are kept in a hash table attached to the main linker hash
4623 table. We also set up the .plt entries for statically linked PIC
4624 functions here. This function is called via aarch64_elf_finish in the
4625 linker. */
4626
4627 bfd_boolean
4628 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4629 {
4630 asection *stub_sec;
4631 struct bfd_hash_table *table;
4632 struct elf_aarch64_link_hash_table *htab;
4633
4634 htab = elf_aarch64_hash_table (info);
4635
4636 for (stub_sec = htab->stub_bfd->sections;
4637 stub_sec != NULL; stub_sec = stub_sec->next)
4638 {
4639 bfd_size_type size;
4640
4641 /* Ignore non-stub sections. */
4642 if (!strstr (stub_sec->name, STUB_SUFFIX))
4643 continue;
4644
4645 /* Allocate memory to hold the linker stubs. */
4646 size = stub_sec->size;
4647 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4648 if (stub_sec->contents == NULL && size != 0)
4649 return FALSE;
4650 stub_sec->size = 0;
4651
4652 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4653 aligned, as long branch stubs contain a 64-bit address. */
4654 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4655 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4656 stub_sec->size += 8;
4657 }
4658
4659 /* Build the stubs as directed by the stub hash table. */
4660 table = &htab->stub_hash_table;
4661 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4662
4663 return TRUE;
4664 }
4665
4666
4667 /* Add an entry to the code/data map for section SEC. */
4668
4669 static void
4670 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4671 {
4672 struct _aarch64_elf_section_data *sec_data =
4673 elf_aarch64_section_data (sec);
4674 unsigned int newidx;
4675
4676 if (sec_data->map == NULL)
4677 {
4678 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4679 sec_data->mapcount = 0;
4680 sec_data->mapsize = 1;
4681 }
4682
4683 newidx = sec_data->mapcount++;
4684
4685 if (sec_data->mapcount > sec_data->mapsize)
4686 {
4687 sec_data->mapsize *= 2;
4688 sec_data->map = bfd_realloc_or_free
4689 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4690 }
4691
4692 if (sec_data->map)
4693 {
4694 sec_data->map[newidx].vma = vma;
4695 sec_data->map[newidx].type = type;
4696 }
4697 }
4698
4699
4700 /* Initialise maps of insn/data for input BFDs. */
4701 void
4702 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4703 {
4704 Elf_Internal_Sym *isymbuf;
4705 Elf_Internal_Shdr *hdr;
4706 unsigned int i, localsyms;
4707
4708 /* Make sure that we are dealing with an AArch64 elf binary. */
4709 if (!is_aarch64_elf (abfd))
4710 return;
4711
4712 if ((abfd->flags & DYNAMIC) != 0)
4713 return;
4714
4715 hdr = &elf_symtab_hdr (abfd);
4716 localsyms = hdr->sh_info;
4717
4718 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4719 should contain the number of local symbols, which should come before any
4720 global symbols. Mapping symbols are always local. */
4721 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4722
4723 /* No internal symbols read? Skip this BFD. */
4724 if (isymbuf == NULL)
4725 return;
4726
4727 for (i = 0; i < localsyms; i++)
4728 {
4729 Elf_Internal_Sym *isym = &isymbuf[i];
4730 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4731 const char *name;
4732
4733 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4734 {
4735 name = bfd_elf_string_from_elf_section (abfd,
4736 hdr->sh_link,
4737 isym->st_name);
4738
4739 if (bfd_is_aarch64_special_symbol_name
4740 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4741 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4742 }
4743 }
4744 }
4745
4746 static void
4747 setup_plt_values (struct bfd_link_info *link_info,
4748 aarch64_plt_type plt_type)
4749 {
4750 struct elf_aarch64_link_hash_table *globals;
4751 globals = elf_aarch64_hash_table (link_info);
4752
4753 if (plt_type == PLT_BTI_PAC)
4754 {
4755 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4756
4757 /* Only in ET_EXEC we need PLTn with BTI. */
4758 if (bfd_link_pde (link_info))
4759 {
4760 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4761 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4762 }
4763 else
4764 {
4765 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4766 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4767 }
4768 }
4769 else if (plt_type == PLT_BTI)
4770 {
4771 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4772
4773 /* Only in ET_EXEC we need PLTn with BTI. */
4774 if (bfd_link_pde (link_info))
4775 {
4776 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4777 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4778 }
4779 }
4780 else if (plt_type == PLT_PAC)
4781 {
4782 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4783 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4784 }
4785 }
4786
4787 /* Set option values needed during linking. */
4788 void
4789 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4790 struct bfd_link_info *link_info,
4791 int no_enum_warn,
4792 int no_wchar_warn, int pic_veneer,
4793 int fix_erratum_835769,
4794 erratum_84319_opts fix_erratum_843419,
4795 int no_apply_dynamic_relocs,
4796 aarch64_bti_pac_info bp_info)
4797 {
4798 struct elf_aarch64_link_hash_table *globals;
4799
4800 globals = elf_aarch64_hash_table (link_info);
4801 globals->pic_veneer = pic_veneer;
4802 globals->fix_erratum_835769 = fix_erratum_835769;
4803 /* If the default options are used, then ERRAT_ADR will be set by default
4804 which will enable the ADRP->ADR workaround for the erratum 843419
4805 workaround. */
4806 globals->fix_erratum_843419 = fix_erratum_843419;
4807 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4808
4809 BFD_ASSERT (is_aarch64_elf (output_bfd));
4810 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4811 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4812
4813 switch (bp_info.bti_type)
4814 {
4815 case BTI_WARN:
4816 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4817 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4818 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4819 break;
4820
4821 default:
4822 break;
4823 }
4824 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4825 setup_plt_values (link_info, bp_info.plt_type);
4826 }
4827
4828 static bfd_vma
4829 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4830 struct elf_aarch64_link_hash_table
4831 *globals, struct bfd_link_info *info,
4832 bfd_vma value, bfd *output_bfd,
4833 bfd_boolean *unresolved_reloc_p)
4834 {
4835 bfd_vma off = (bfd_vma) - 1;
4836 asection *basegot = globals->root.sgot;
4837 bfd_boolean dyn = globals->root.dynamic_sections_created;
4838
4839 if (h != NULL)
4840 {
4841 BFD_ASSERT (basegot != NULL);
4842 off = h->got.offset;
4843 BFD_ASSERT (off != (bfd_vma) - 1);
4844 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4845 || (bfd_link_pic (info)
4846 && SYMBOL_REFERENCES_LOCAL (info, h))
4847 || (ELF_ST_VISIBILITY (h->other)
4848 && h->root.type == bfd_link_hash_undefweak))
4849 {
4850 /* This is actually a static link, or it is a -Bsymbolic link
4851 and the symbol is defined locally. We must initialize this
4852 entry in the global offset table. Since the offset must
4853 always be a multiple of 8 (4 in the case of ILP32), we use
4854 the least significant bit to record whether we have
4855 initialized it already.
4856 When doing a dynamic link, we create a .rel(a).got relocation
4857 entry to initialize the value. This is done in the
4858 finish_dynamic_symbol routine. */
4859 if ((off & 1) != 0)
4860 off &= ~1;
4861 else
4862 {
4863 bfd_put_NN (output_bfd, value, basegot->contents + off);
4864 h->got.offset |= 1;
4865 }
4866 }
4867 else
4868 *unresolved_reloc_p = FALSE;
4869
4870 off = off + basegot->output_section->vma + basegot->output_offset;
4871 }
4872
4873 return off;
4874 }
4875
4876 /* Change R_TYPE to a more efficient access model where possible,
4877 return the new reloc type. */
4878
4879 static bfd_reloc_code_real_type
4880 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4881 struct elf_link_hash_entry *h)
4882 {
4883 bfd_boolean is_local = h == NULL;
4884
4885 switch (r_type)
4886 {
4887 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4888 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4889 return (is_local
4890 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4891 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4892
4893 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4894 return (is_local
4895 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4896 : r_type);
4897
4898 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4899 return (is_local
4900 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4901 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4902
4903 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4904 return (is_local
4905 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4906 : BFD_RELOC_AARCH64_NONE);
4907
4908 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4909 return (is_local
4910 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4911 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4912
4913 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4914 return (is_local
4915 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4916 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4917
4918 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4919 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4920 return (is_local
4921 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4922 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4923
4924 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4925 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4926
4927 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4928 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4929
4930 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4931 return r_type;
4932
4933 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4934 return (is_local
4935 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4936 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4937
4938 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4939 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4940 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4941 /* Instructions with these relocations will become NOPs. */
4942 return BFD_RELOC_AARCH64_NONE;
4943
4944 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4945 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4946 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4947 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4948
4949 #if ARCH_SIZE == 64
4950 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4951 return is_local
4952 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4953 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4954
4955 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4956 return is_local
4957 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4958 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4959 #endif
4960
4961 default:
4962 break;
4963 }
4964
4965 return r_type;
4966 }
4967
4968 static unsigned int
4969 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4970 {
4971 switch (r_type)
4972 {
4973 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4974 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4975 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4976 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4977 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4978 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4979 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4980 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4981 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4982 return GOT_NORMAL;
4983
4984 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4985 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4986 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4987 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4988 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4989 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4990 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4991 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4992 return GOT_TLS_GD;
4993
4994 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4995 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4996 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4997 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4998 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4999 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5000 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5001 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5002 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5003 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5004 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5005 return GOT_TLSDESC_GD;
5006
5007 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5008 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5009 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5010 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5011 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5012 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5013 return GOT_TLS_IE;
5014
5015 default:
5016 break;
5017 }
5018 return GOT_UNKNOWN;
5019 }
5020
5021 static bfd_boolean
5022 aarch64_can_relax_tls (bfd *input_bfd,
5023 struct bfd_link_info *info,
5024 bfd_reloc_code_real_type r_type,
5025 struct elf_link_hash_entry *h,
5026 unsigned long r_symndx)
5027 {
5028 unsigned int symbol_got_type;
5029 unsigned int reloc_got_type;
5030
5031 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5032 return FALSE;
5033
5034 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5035 reloc_got_type = aarch64_reloc_got_type (r_type);
5036
5037 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5038 return TRUE;
5039
5040 if (!bfd_link_executable (info))
5041 return FALSE;
5042
5043 if (h && h->root.type == bfd_link_hash_undefweak)
5044 return FALSE;
5045
5046 return TRUE;
5047 }
5048
5049 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5050 enumerator. */
5051
5052 static bfd_reloc_code_real_type
5053 aarch64_tls_transition (bfd *input_bfd,
5054 struct bfd_link_info *info,
5055 unsigned int r_type,
5056 struct elf_link_hash_entry *h,
5057 unsigned long r_symndx)
5058 {
5059 bfd_reloc_code_real_type bfd_r_type
5060 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5061
5062 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5063 return bfd_r_type;
5064
5065 return aarch64_tls_transition_without_check (bfd_r_type, h);
5066 }
5067
5068 /* Return the base VMA address which should be subtracted from real addresses
5069 when resolving R_AARCH64_TLS_DTPREL relocation. */
5070
5071 static bfd_vma
5072 dtpoff_base (struct bfd_link_info *info)
5073 {
5074 /* If tls_sec is NULL, we should have signalled an error already. */
5075 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5076 return elf_hash_table (info)->tls_sec->vma;
5077 }
5078
5079 /* Return the base VMA address which should be subtracted from real addresses
5080 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5081
5082 static bfd_vma
5083 tpoff_base (struct bfd_link_info *info)
5084 {
5085 struct elf_link_hash_table *htab = elf_hash_table (info);
5086
5087 /* If tls_sec is NULL, we should have signalled an error already. */
5088 BFD_ASSERT (htab->tls_sec != NULL);
5089
5090 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5091 htab->tls_sec->alignment_power);
5092 return htab->tls_sec->vma - base;
5093 }
5094
5095 static bfd_vma *
5096 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5097 unsigned long r_symndx)
5098 {
5099 /* Calculate the address of the GOT entry for symbol
5100 referred to in h. */
5101 if (h != NULL)
5102 return &h->got.offset;
5103 else
5104 {
5105 /* local symbol */
5106 struct elf_aarch64_local_symbol *l;
5107
5108 l = elf_aarch64_locals (input_bfd);
5109 return &l[r_symndx].got_offset;
5110 }
5111 }
5112
5113 static void
5114 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5115 unsigned long r_symndx)
5116 {
5117 bfd_vma *p;
5118 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5119 *p |= 1;
5120 }
5121
5122 static int
5123 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5124 unsigned long r_symndx)
5125 {
5126 bfd_vma value;
5127 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5128 return value & 1;
5129 }
5130
5131 static bfd_vma
5132 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5133 unsigned long r_symndx)
5134 {
5135 bfd_vma value;
5136 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5137 value &= ~1;
5138 return value;
5139 }
5140
5141 static bfd_vma *
5142 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5143 unsigned long r_symndx)
5144 {
5145 /* Calculate the address of the GOT entry for symbol
5146 referred to in h. */
5147 if (h != NULL)
5148 {
5149 struct elf_aarch64_link_hash_entry *eh;
5150 eh = (struct elf_aarch64_link_hash_entry *) h;
5151 return &eh->tlsdesc_got_jump_table_offset;
5152 }
5153 else
5154 {
5155 /* local symbol */
5156 struct elf_aarch64_local_symbol *l;
5157
5158 l = elf_aarch64_locals (input_bfd);
5159 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5160 }
5161 }
5162
5163 static void
5164 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5165 unsigned long r_symndx)
5166 {
5167 bfd_vma *p;
5168 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5169 *p |= 1;
5170 }
5171
5172 static int
5173 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5174 struct elf_link_hash_entry *h,
5175 unsigned long r_symndx)
5176 {
5177 bfd_vma value;
5178 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5179 return value & 1;
5180 }
5181
5182 static bfd_vma
5183 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5184 unsigned long r_symndx)
5185 {
5186 bfd_vma value;
5187 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5188 value &= ~1;
5189 return value;
5190 }
5191
5192 /* Data for make_branch_to_erratum_835769_stub(). */
5193
5194 struct erratum_835769_branch_to_stub_data
5195 {
5196 struct bfd_link_info *info;
5197 asection *output_section;
5198 bfd_byte *contents;
5199 };
5200
5201 /* Helper to insert branches to erratum 835769 stubs in the right
5202 places for a particular section. */
5203
5204 static bfd_boolean
5205 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5206 void *in_arg)
5207 {
5208 struct elf_aarch64_stub_hash_entry *stub_entry;
5209 struct erratum_835769_branch_to_stub_data *data;
5210 bfd_byte *contents;
5211 unsigned long branch_insn = 0;
5212 bfd_vma veneered_insn_loc, veneer_entry_loc;
5213 bfd_signed_vma branch_offset;
5214 unsigned int target;
5215 bfd *abfd;
5216
5217 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5218 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5219
5220 if (stub_entry->target_section != data->output_section
5221 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5222 return TRUE;
5223
5224 contents = data->contents;
5225 veneered_insn_loc = stub_entry->target_section->output_section->vma
5226 + stub_entry->target_section->output_offset
5227 + stub_entry->target_value;
5228 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5229 + stub_entry->stub_sec->output_offset
5230 + stub_entry->stub_offset;
5231 branch_offset = veneer_entry_loc - veneered_insn_loc;
5232
5233 abfd = stub_entry->target_section->owner;
5234 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5235 _bfd_error_handler
5236 (_("%pB: error: erratum 835769 stub out "
5237 "of range (input file too large)"), abfd);
5238
5239 target = stub_entry->target_value;
5240 branch_insn = 0x14000000;
5241 branch_offset >>= 2;
5242 branch_offset &= 0x3ffffff;
5243 branch_insn |= branch_offset;
5244 bfd_putl32 (branch_insn, &contents[target]);
5245
5246 return TRUE;
5247 }
5248
5249
5250 static bfd_boolean
5251 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5252 void *in_arg)
5253 {
5254 struct elf_aarch64_stub_hash_entry *stub_entry
5255 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5256 struct erratum_835769_branch_to_stub_data *data
5257 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5258 struct bfd_link_info *info;
5259 struct elf_aarch64_link_hash_table *htab;
5260 bfd_byte *contents;
5261 asection *section;
5262 bfd *abfd;
5263 bfd_vma place;
5264 uint32_t insn;
5265
5266 info = data->info;
5267 contents = data->contents;
5268 section = data->output_section;
5269
5270 htab = elf_aarch64_hash_table (info);
5271
5272 if (stub_entry->target_section != section
5273 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5274 return TRUE;
5275
5276 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5277 || (htab->fix_erratum_843419 & ERRAT_ADR));
5278
5279 /* Only update the stub section if we have one. We should always have one if
5280 we're allowed to use the ADRP errata workaround, otherwise it is not
5281 required. */
5282 if (stub_entry->stub_sec)
5283 {
5284 insn = bfd_getl32 (contents + stub_entry->target_value);
5285 bfd_putl32 (insn,
5286 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5287 }
5288
5289 place = (section->output_section->vma + section->output_offset
5290 + stub_entry->adrp_offset);
5291 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5292
5293 if (!_bfd_aarch64_adrp_p (insn))
5294 abort ();
5295
5296 bfd_signed_vma imm =
5297 (_bfd_aarch64_sign_extend
5298 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5299 - (place & 0xfff));
5300
5301 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5302 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5303 {
5304 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5305 | AARCH64_RT (insn));
5306 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5307 /* Stub is not needed, don't map it out. */
5308 stub_entry->stub_type = aarch64_stub_none;
5309 }
5310 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5311 {
5312 bfd_vma veneered_insn_loc;
5313 bfd_vma veneer_entry_loc;
5314 bfd_signed_vma branch_offset;
5315 uint32_t branch_insn;
5316
5317 veneered_insn_loc = stub_entry->target_section->output_section->vma
5318 + stub_entry->target_section->output_offset
5319 + stub_entry->target_value;
5320 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5321 + stub_entry->stub_sec->output_offset
5322 + stub_entry->stub_offset;
5323 branch_offset = veneer_entry_loc - veneered_insn_loc;
5324
5325 abfd = stub_entry->target_section->owner;
5326 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5327 _bfd_error_handler
5328 (_("%pB: error: erratum 843419 stub out "
5329 "of range (input file too large)"), abfd);
5330
5331 branch_insn = 0x14000000;
5332 branch_offset >>= 2;
5333 branch_offset &= 0x3ffffff;
5334 branch_insn |= branch_offset;
5335 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5336 }
5337 else
5338 {
5339 abfd = stub_entry->target_section->owner;
5340 _bfd_error_handler
5341 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5342 "out of range for ADR (input file too large) and "
5343 "--fix-cortex-a53-843419=adr used. Run the linker with "
5344 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5345 bfd_set_error (bfd_error_bad_value);
5346 /* This function is called inside a hashtable traversal and the error
5347 handlers called above turn into non-fatal errors. Which means this
5348 case ld returns an exit code 0 and also produces a broken object file.
5349 To prevent this, issue a hard abort. */
5350 BFD_FAIL ();
5351 }
5352 return TRUE;
5353 }
5354
5355
5356 static bfd_boolean
5357 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5358 struct bfd_link_info *link_info,
5359 asection *sec,
5360 bfd_byte *contents)
5361
5362 {
5363 struct elf_aarch64_link_hash_table *globals =
5364 elf_aarch64_hash_table (link_info);
5365
5366 if (globals == NULL)
5367 return FALSE;
5368
5369 /* Fix code to point to erratum 835769 stubs. */
5370 if (globals->fix_erratum_835769)
5371 {
5372 struct erratum_835769_branch_to_stub_data data;
5373
5374 data.info = link_info;
5375 data.output_section = sec;
5376 data.contents = contents;
5377 bfd_hash_traverse (&globals->stub_hash_table,
5378 make_branch_to_erratum_835769_stub, &data);
5379 }
5380
5381 if (globals->fix_erratum_843419)
5382 {
5383 struct erratum_835769_branch_to_stub_data data;
5384
5385 data.info = link_info;
5386 data.output_section = sec;
5387 data.contents = contents;
5388 bfd_hash_traverse (&globals->stub_hash_table,
5389 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5390 }
5391
5392 return FALSE;
5393 }
5394
5395 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5396
5397 static bfd_boolean
5398 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5399 {
5400 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5401 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5402 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5403 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5404 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5405 }
5406
5407 /* Perform a relocation as part of a final link. The input relocation type
5408 should be TLS relaxed. */
5409
5410 static bfd_reloc_status_type
5411 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5412 bfd *input_bfd,
5413 bfd *output_bfd,
5414 asection *input_section,
5415 bfd_byte *contents,
5416 Elf_Internal_Rela *rel,
5417 bfd_vma value,
5418 struct bfd_link_info *info,
5419 asection *sym_sec,
5420 struct elf_link_hash_entry *h,
5421 bfd_boolean *unresolved_reloc_p,
5422 bfd_boolean save_addend,
5423 bfd_vma *saved_addend,
5424 Elf_Internal_Sym *sym)
5425 {
5426 Elf_Internal_Shdr *symtab_hdr;
5427 unsigned int r_type = howto->type;
5428 bfd_reloc_code_real_type bfd_r_type
5429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5430 unsigned long r_symndx;
5431 bfd_byte *hit_data = contents + rel->r_offset;
5432 bfd_vma place, off, got_entry_addr = 0;
5433 bfd_signed_vma signed_addend;
5434 struct elf_aarch64_link_hash_table *globals;
5435 bfd_boolean weak_undef_p;
5436 bfd_boolean relative_reloc;
5437 asection *base_got;
5438 bfd_vma orig_value = value;
5439 bfd_boolean resolved_to_zero;
5440 bfd_boolean abs_symbol_p;
5441
5442 globals = elf_aarch64_hash_table (info);
5443
5444 symtab_hdr = &elf_symtab_hdr (input_bfd);
5445
5446 BFD_ASSERT (is_aarch64_elf (input_bfd));
5447
5448 r_symndx = ELFNN_R_SYM (rel->r_info);
5449
5450 place = input_section->output_section->vma
5451 + input_section->output_offset + rel->r_offset;
5452
5453 /* Get addend, accumulating the addend for consecutive relocs
5454 which refer to the same offset. */
5455 signed_addend = saved_addend ? *saved_addend : 0;
5456 signed_addend += rel->r_addend;
5457
5458 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5459 : bfd_is_und_section (sym_sec));
5460 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5461
5462
5463 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5464 it here if it is defined in a non-shared object. */
5465 if (h != NULL
5466 && h->type == STT_GNU_IFUNC
5467 && h->def_regular)
5468 {
5469 asection *plt;
5470 const char *name;
5471 bfd_vma addend = 0;
5472
5473 if ((input_section->flags & SEC_ALLOC) == 0)
5474 {
5475 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5476 STT_GNU_IFUNC symbol as STT_FUNC. */
5477 if (elf_section_type (input_section) == SHT_NOTE)
5478 goto skip_ifunc;
5479
5480 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5481 sections because such sections are not SEC_ALLOC and
5482 thus ld.so will not process them. */
5483 if ((input_section->flags & SEC_DEBUGGING) != 0)
5484 return bfd_reloc_ok;
5485
5486 if (h->root.root.string)
5487 name = h->root.root.string;
5488 else
5489 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5490 _bfd_error_handler
5491 /* xgettext:c-format */
5492 (_("%pB(%pA+%#" PRIx64 "): "
5493 "unresolvable %s relocation against symbol `%s'"),
5494 input_bfd, input_section, (uint64_t) rel->r_offset,
5495 howto->name, name);
5496 bfd_set_error (bfd_error_bad_value);
5497 return bfd_reloc_notsupported;
5498 }
5499 else if (h->plt.offset == (bfd_vma) -1)
5500 goto bad_ifunc_reloc;
5501
5502 /* STT_GNU_IFUNC symbol must go through PLT. */
5503 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5504 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5505
5506 switch (bfd_r_type)
5507 {
5508 default:
5509 bad_ifunc_reloc:
5510 if (h->root.root.string)
5511 name = h->root.root.string;
5512 else
5513 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5514 NULL);
5515 _bfd_error_handler
5516 /* xgettext:c-format */
5517 (_("%pB: relocation %s against STT_GNU_IFUNC "
5518 "symbol `%s' isn't handled by %s"), input_bfd,
5519 howto->name, name, __FUNCTION__);
5520 bfd_set_error (bfd_error_bad_value);
5521 return bfd_reloc_notsupported;
5522
5523 case BFD_RELOC_AARCH64_NN:
5524 if (rel->r_addend != 0)
5525 {
5526 if (h->root.root.string)
5527 name = h->root.root.string;
5528 else
5529 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5530 sym, NULL);
5531 _bfd_error_handler
5532 /* xgettext:c-format */
5533 (_("%pB: relocation %s against STT_GNU_IFUNC "
5534 "symbol `%s' has non-zero addend: %" PRId64),
5535 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5536 bfd_set_error (bfd_error_bad_value);
5537 return bfd_reloc_notsupported;
5538 }
5539
5540 /* Generate dynamic relocation only when there is a
5541 non-GOT reference in a shared object. */
5542 if (bfd_link_pic (info) && h->non_got_ref)
5543 {
5544 Elf_Internal_Rela outrel;
5545 asection *sreloc;
5546
5547 /* Need a dynamic relocation to get the real function
5548 address. */
5549 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5550 info,
5551 input_section,
5552 rel->r_offset);
5553 if (outrel.r_offset == (bfd_vma) -1
5554 || outrel.r_offset == (bfd_vma) -2)
5555 abort ();
5556
5557 outrel.r_offset += (input_section->output_section->vma
5558 + input_section->output_offset);
5559
5560 if (h->dynindx == -1
5561 || h->forced_local
5562 || bfd_link_executable (info))
5563 {
5564 /* This symbol is resolved locally. */
5565 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5566 outrel.r_addend = (h->root.u.def.value
5567 + h->root.u.def.section->output_section->vma
5568 + h->root.u.def.section->output_offset);
5569 }
5570 else
5571 {
5572 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5573 outrel.r_addend = 0;
5574 }
5575
5576 sreloc = globals->root.irelifunc;
5577 elf_append_rela (output_bfd, sreloc, &outrel);
5578
5579 /* If this reloc is against an external symbol, we
5580 do not want to fiddle with the addend. Otherwise,
5581 we need to include the symbol value so that it
5582 becomes an addend for the dynamic reloc. For an
5583 internal symbol, we have updated addend. */
5584 return bfd_reloc_ok;
5585 }
5586 /* FALLTHROUGH */
5587 case BFD_RELOC_AARCH64_CALL26:
5588 case BFD_RELOC_AARCH64_JUMP26:
5589 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5590 place, value,
5591 signed_addend,
5592 weak_undef_p);
5593 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5594 howto, value);
5595 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5596 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5597 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5598 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5599 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5600 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5601 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5602 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5603 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5604 base_got = globals->root.sgot;
5605 off = h->got.offset;
5606
5607 if (base_got == NULL)
5608 abort ();
5609
5610 if (off == (bfd_vma) -1)
5611 {
5612 bfd_vma plt_index;
5613
5614 /* We can't use h->got.offset here to save state, or
5615 even just remember the offset, as finish_dynamic_symbol
5616 would use that as offset into .got. */
5617
5618 if (globals->root.splt != NULL)
5619 {
5620 plt_index = ((h->plt.offset - globals->plt_header_size) /
5621 globals->plt_entry_size);
5622 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5623 base_got = globals->root.sgotplt;
5624 }
5625 else
5626 {
5627 plt_index = h->plt.offset / globals->plt_entry_size;
5628 off = plt_index * GOT_ENTRY_SIZE;
5629 base_got = globals->root.igotplt;
5630 }
5631
5632 if (h->dynindx == -1
5633 || h->forced_local
5634 || info->symbolic)
5635 {
5636 /* This references the local definition. We must
5637 initialize this entry in the global offset table.
5638 Since the offset must always be a multiple of 8,
5639 we use the least significant bit to record
5640 whether we have initialized it already.
5641
5642 When doing a dynamic link, we create a .rela.got
5643 relocation entry to initialize the value. This
5644 is done in the finish_dynamic_symbol routine. */
5645 if ((off & 1) != 0)
5646 off &= ~1;
5647 else
5648 {
5649 bfd_put_NN (output_bfd, value,
5650 base_got->contents + off);
5651 /* Note that this is harmless as -1 | 1 still is -1. */
5652 h->got.offset |= 1;
5653 }
5654 }
5655 value = (base_got->output_section->vma
5656 + base_got->output_offset + off);
5657 }
5658 else
5659 value = aarch64_calculate_got_entry_vma (h, globals, info,
5660 value, output_bfd,
5661 unresolved_reloc_p);
5662
5663 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5664 addend = (globals->root.sgot->output_section->vma
5665 + globals->root.sgot->output_offset);
5666
5667 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5668 place, value,
5669 addend, weak_undef_p);
5670 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5671 case BFD_RELOC_AARCH64_ADD_LO12:
5672 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5673 break;
5674 }
5675 }
5676
5677 skip_ifunc:
5678 resolved_to_zero = (h != NULL
5679 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5680
5681 switch (bfd_r_type)
5682 {
5683 case BFD_RELOC_AARCH64_NONE:
5684 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5685 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5686 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5687 *unresolved_reloc_p = FALSE;
5688 return bfd_reloc_ok;
5689
5690 case BFD_RELOC_AARCH64_NN:
5691
5692 /* When generating a shared object or relocatable executable, these
5693 relocations are copied into the output file to be resolved at
5694 run time. */
5695 if (((bfd_link_pic (info)
5696 || globals->root.is_relocatable_executable)
5697 && (input_section->flags & SEC_ALLOC)
5698 && (h == NULL
5699 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5700 && !resolved_to_zero)
5701 || h->root.type != bfd_link_hash_undefweak))
5702 /* Or we are creating an executable, we may need to keep relocations
5703 for symbols satisfied by a dynamic library if we manage to avoid
5704 copy relocs for the symbol. */
5705 || (ELIMINATE_COPY_RELOCS
5706 && !bfd_link_pic (info)
5707 && h != NULL
5708 && (input_section->flags & SEC_ALLOC)
5709 && h->dynindx != -1
5710 && !h->non_got_ref
5711 && ((h->def_dynamic
5712 && !h->def_regular)
5713 || h->root.type == bfd_link_hash_undefweak
5714 || h->root.type == bfd_link_hash_undefined)))
5715 {
5716 Elf_Internal_Rela outrel;
5717 bfd_byte *loc;
5718 bfd_boolean skip, relocate;
5719 asection *sreloc;
5720
5721 *unresolved_reloc_p = FALSE;
5722
5723 skip = FALSE;
5724 relocate = FALSE;
5725
5726 outrel.r_addend = signed_addend;
5727 outrel.r_offset =
5728 _bfd_elf_section_offset (output_bfd, info, input_section,
5729 rel->r_offset);
5730 if (outrel.r_offset == (bfd_vma) - 1)
5731 skip = TRUE;
5732 else if (outrel.r_offset == (bfd_vma) - 2)
5733 {
5734 skip = TRUE;
5735 relocate = TRUE;
5736 }
5737 else if (abs_symbol_p)
5738 {
5739 /* Local absolute symbol. */
5740 skip = (h->forced_local || (h->dynindx == -1));
5741 relocate = skip;
5742 }
5743
5744 outrel.r_offset += (input_section->output_section->vma
5745 + input_section->output_offset);
5746
5747 if (skip)
5748 memset (&outrel, 0, sizeof outrel);
5749 else if (h != NULL
5750 && h->dynindx != -1
5751 && (!bfd_link_pic (info)
5752 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5753 || !h->def_regular))
5754 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5755 else
5756 {
5757 int symbol;
5758
5759 /* On SVR4-ish systems, the dynamic loader cannot
5760 relocate the text and data segments independently,
5761 so the symbol does not matter. */
5762 symbol = 0;
5763 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5764 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5765 outrel.r_addend += value;
5766 }
5767
5768 sreloc = elf_section_data (input_section)->sreloc;
5769 if (sreloc == NULL || sreloc->contents == NULL)
5770 return bfd_reloc_notsupported;
5771
5772 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5773 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5774
5775 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5776 {
5777 /* Sanity to check that we have previously allocated
5778 sufficient space in the relocation section for the
5779 number of relocations we actually want to emit. */
5780 abort ();
5781 }
5782
5783 /* If this reloc is against an external symbol, we do not want to
5784 fiddle with the addend. Otherwise, we need to include the symbol
5785 value so that it becomes an addend for the dynamic reloc. */
5786 if (!relocate)
5787 return bfd_reloc_ok;
5788
5789 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5790 contents, rel->r_offset, value,
5791 signed_addend);
5792 }
5793 else
5794 value += signed_addend;
5795 break;
5796
5797 case BFD_RELOC_AARCH64_CALL26:
5798 case BFD_RELOC_AARCH64_JUMP26:
5799 {
5800 asection *splt = globals->root.splt;
5801 bfd_boolean via_plt_p =
5802 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5803
5804 /* A call to an undefined weak symbol is converted to a jump to
5805 the next instruction unless a PLT entry will be created.
5806 The jump to the next instruction is optimized as a NOP.
5807 Do the same for local undefined symbols. */
5808 if (weak_undef_p && ! via_plt_p)
5809 {
5810 bfd_putl32 (INSN_NOP, hit_data);
5811 return bfd_reloc_ok;
5812 }
5813
5814 /* If the call goes through a PLT entry, make sure to
5815 check distance to the right destination address. */
5816 if (via_plt_p)
5817 value = (splt->output_section->vma
5818 + splt->output_offset + h->plt.offset);
5819
5820 /* Check if a stub has to be inserted because the destination
5821 is too far away. */
5822 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5823
5824 /* If the branch destination is directed to plt stub, "value" will be
5825 the final destination, otherwise we should plus signed_addend, it may
5826 contain non-zero value, for example call to local function symbol
5827 which are turned into "sec_sym + sec_off", and sec_off is kept in
5828 signed_addend. */
5829 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5830 place))
5831 /* The target is out of reach, so redirect the branch to
5832 the local stub for this function. */
5833 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5834 rel, globals);
5835 if (stub_entry != NULL)
5836 {
5837 value = (stub_entry->stub_offset
5838 + stub_entry->stub_sec->output_offset
5839 + stub_entry->stub_sec->output_section->vma);
5840
5841 /* We have redirected the destination to stub entry address,
5842 so ignore any addend record in the original rela entry. */
5843 signed_addend = 0;
5844 }
5845 }
5846 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5847 place, value,
5848 signed_addend, weak_undef_p);
5849 *unresolved_reloc_p = FALSE;
5850 break;
5851
5852 case BFD_RELOC_AARCH64_16_PCREL:
5853 case BFD_RELOC_AARCH64_32_PCREL:
5854 case BFD_RELOC_AARCH64_64_PCREL:
5855 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5856 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5857 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5858 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5859 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5860 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5861 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5862 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5863 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5864 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5865 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5866 if (bfd_link_pic (info)
5867 && (input_section->flags & SEC_ALLOC) != 0
5868 && (input_section->flags & SEC_READONLY) != 0
5869 && !SYMBOL_REFERENCES_LOCAL (info, h))
5870 {
5871 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5872
5873 _bfd_error_handler
5874 /* xgettext:c-format */
5875 (_("%pB: relocation %s against symbol `%s' which may bind "
5876 "externally can not be used when making a shared object; "
5877 "recompile with -fPIC"),
5878 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5879 h->root.root.string);
5880 bfd_set_error (bfd_error_bad_value);
5881 return bfd_reloc_notsupported;
5882 }
5883 /* Fall through. */
5884
5885 case BFD_RELOC_AARCH64_16:
5886 #if ARCH_SIZE == 64
5887 case BFD_RELOC_AARCH64_32:
5888 #endif
5889 case BFD_RELOC_AARCH64_ADD_LO12:
5890 case BFD_RELOC_AARCH64_BRANCH19:
5891 case BFD_RELOC_AARCH64_LDST128_LO12:
5892 case BFD_RELOC_AARCH64_LDST16_LO12:
5893 case BFD_RELOC_AARCH64_LDST32_LO12:
5894 case BFD_RELOC_AARCH64_LDST64_LO12:
5895 case BFD_RELOC_AARCH64_LDST8_LO12:
5896 case BFD_RELOC_AARCH64_MOVW_G0:
5897 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5898 case BFD_RELOC_AARCH64_MOVW_G0_S:
5899 case BFD_RELOC_AARCH64_MOVW_G1:
5900 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5901 case BFD_RELOC_AARCH64_MOVW_G1_S:
5902 case BFD_RELOC_AARCH64_MOVW_G2:
5903 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5904 case BFD_RELOC_AARCH64_MOVW_G2_S:
5905 case BFD_RELOC_AARCH64_MOVW_G3:
5906 case BFD_RELOC_AARCH64_TSTBR14:
5907 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5908 place, value,
5909 signed_addend, weak_undef_p);
5910 break;
5911
5912 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5913 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5914 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5915 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5916 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5917 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5918 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5919 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5920 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5921 if (globals->root.sgot == NULL)
5922 BFD_ASSERT (h != NULL);
5923
5924 relative_reloc = FALSE;
5925 if (h != NULL)
5926 {
5927 bfd_vma addend = 0;
5928
5929 /* If a symbol is not dynamic and is not undefined weak, bind it
5930 locally and generate a RELATIVE relocation under PIC mode.
5931
5932 NOTE: one symbol may be referenced by several relocations, we
5933 should only generate one RELATIVE relocation for that symbol.
5934 Therefore, check GOT offset mark first. */
5935 if (h->dynindx == -1
5936 && !h->forced_local
5937 && h->root.type != bfd_link_hash_undefweak
5938 && bfd_link_pic (info)
5939 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5940 relative_reloc = TRUE;
5941
5942 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5943 output_bfd,
5944 unresolved_reloc_p);
5945 /* Record the GOT entry address which will be used when generating
5946 RELATIVE relocation. */
5947 if (relative_reloc)
5948 got_entry_addr = value;
5949
5950 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5951 addend = (globals->root.sgot->output_section->vma
5952 + globals->root.sgot->output_offset);
5953 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5954 place, value,
5955 addend, weak_undef_p);
5956 }
5957 else
5958 {
5959 bfd_vma addend = 0;
5960 struct elf_aarch64_local_symbol *locals
5961 = elf_aarch64_locals (input_bfd);
5962
5963 if (locals == NULL)
5964 {
5965 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5966 _bfd_error_handler
5967 /* xgettext:c-format */
5968 (_("%pB: local symbol descriptor table be NULL when applying "
5969 "relocation %s against local symbol"),
5970 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5971 abort ();
5972 }
5973
5974 off = symbol_got_offset (input_bfd, h, r_symndx);
5975 base_got = globals->root.sgot;
5976 got_entry_addr = (base_got->output_section->vma
5977 + base_got->output_offset + off);
5978
5979 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5980 {
5981 bfd_put_64 (output_bfd, value, base_got->contents + off);
5982
5983 /* For local symbol, we have done absolute relocation in static
5984 linking stage. While for shared library, we need to update the
5985 content of GOT entry according to the shared object's runtime
5986 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5987 for dynamic linker. */
5988 if (bfd_link_pic (info))
5989 relative_reloc = TRUE;
5990
5991 symbol_got_offset_mark (input_bfd, h, r_symndx);
5992 }
5993
5994 /* Update the relocation value to GOT entry addr as we have transformed
5995 the direct data access into indirect data access through GOT. */
5996 value = got_entry_addr;
5997
5998 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5999 addend = base_got->output_section->vma + base_got->output_offset;
6000
6001 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6002 place, value,
6003 addend, weak_undef_p);
6004 }
6005
6006 if (relative_reloc)
6007 {
6008 asection *s;
6009 Elf_Internal_Rela outrel;
6010
6011 s = globals->root.srelgot;
6012 if (s == NULL)
6013 abort ();
6014
6015 outrel.r_offset = got_entry_addr;
6016 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6017 outrel.r_addend = orig_value;
6018 elf_append_rela (output_bfd, s, &outrel);
6019 }
6020 break;
6021
6022 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6023 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6024 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6025 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6026 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6027 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6028 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6029 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6030 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6031 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6032 if (globals->root.sgot == NULL)
6033 return bfd_reloc_notsupported;
6034
6035 value = (symbol_got_offset (input_bfd, h, r_symndx)
6036 + globals->root.sgot->output_section->vma
6037 + globals->root.sgot->output_offset);
6038
6039 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6040 place, value,
6041 0, weak_undef_p);
6042 *unresolved_reloc_p = FALSE;
6043 break;
6044
6045 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6046 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6047 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6048 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6049 if (globals->root.sgot == NULL)
6050 return bfd_reloc_notsupported;
6051
6052 value = symbol_got_offset (input_bfd, h, r_symndx);
6053 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6054 place, value,
6055 0, weak_undef_p);
6056 *unresolved_reloc_p = FALSE;
6057 break;
6058
6059 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6060 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6061 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6062 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6063 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6064 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6065 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6066 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6067 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6068 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6069 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6070 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6071 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6072 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6073 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6074 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6075 {
6076 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6077 {
6078 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6079 _bfd_error_handler
6080 /* xgettext:c-format */
6081 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6082 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6083 h->root.root.string);
6084 bfd_set_error (bfd_error_bad_value);
6085 return bfd_reloc_notsupported;
6086 }
6087
6088 bfd_vma def_value
6089 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6090 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6091 place, value,
6092 def_value, weak_undef_p);
6093 break;
6094 }
6095
6096 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6097 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6098 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6099 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6100 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6101 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6102 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6103 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6104 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6105 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6106 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6107 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6108 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6109 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6110 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6111 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6112 {
6113 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6114 {
6115 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6116 _bfd_error_handler
6117 /* xgettext:c-format */
6118 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6119 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6120 h->root.root.string);
6121 bfd_set_error (bfd_error_bad_value);
6122 return bfd_reloc_notsupported;
6123 }
6124
6125 bfd_vma def_value
6126 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6127 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6128 place, value,
6129 def_value, weak_undef_p);
6130 *unresolved_reloc_p = FALSE;
6131 break;
6132 }
6133
6134 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6135 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6136 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6137 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6138 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6139 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6140 if (globals->root.sgot == NULL)
6141 return bfd_reloc_notsupported;
6142 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6143 + globals->root.sgotplt->output_section->vma
6144 + globals->root.sgotplt->output_offset
6145 + globals->sgotplt_jump_table_size);
6146
6147 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6148 place, value,
6149 0, weak_undef_p);
6150 *unresolved_reloc_p = FALSE;
6151 break;
6152
6153 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6154 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6155 if (globals->root.sgot == NULL)
6156 return bfd_reloc_notsupported;
6157
6158 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6159 + globals->root.sgotplt->output_section->vma
6160 + globals->root.sgotplt->output_offset
6161 + globals->sgotplt_jump_table_size);
6162
6163 value -= (globals->root.sgot->output_section->vma
6164 + globals->root.sgot->output_offset);
6165
6166 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6167 place, value,
6168 0, weak_undef_p);
6169 *unresolved_reloc_p = FALSE;
6170 break;
6171
6172 default:
6173 return bfd_reloc_notsupported;
6174 }
6175
6176 if (saved_addend)
6177 *saved_addend = value;
6178
6179 /* Only apply the final relocation in a sequence. */
6180 if (save_addend)
6181 return bfd_reloc_continue;
6182
6183 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6184 howto, value);
6185 }
6186
6187 /* LP64 and ILP32 operates on x- and w-registers respectively.
6188 Next definitions take into account the difference between
6189 corresponding machine codes. R means x-register if the target
6190 arch is LP64, and w-register if the target is ILP32. */
6191
6192 #if ARCH_SIZE == 64
6193 # define add_R0_R0 (0x91000000)
6194 # define add_R0_R0_R1 (0x8b000020)
6195 # define add_R0_R1 (0x91400020)
6196 # define ldr_R0 (0x58000000)
6197 # define ldr_R0_mask(i) (i & 0xffffffe0)
6198 # define ldr_R0_x0 (0xf9400000)
6199 # define ldr_hw_R0 (0xf2a00000)
6200 # define movk_R0 (0xf2800000)
6201 # define movz_R0 (0xd2a00000)
6202 # define movz_hw_R0 (0xd2c00000)
6203 #else /*ARCH_SIZE == 32 */
6204 # define add_R0_R0 (0x11000000)
6205 # define add_R0_R0_R1 (0x0b000020)
6206 # define add_R0_R1 (0x11400020)
6207 # define ldr_R0 (0x18000000)
6208 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6209 # define ldr_R0_x0 (0xb9400000)
6210 # define ldr_hw_R0 (0x72a00000)
6211 # define movk_R0 (0x72800000)
6212 # define movz_R0 (0x52a00000)
6213 # define movz_hw_R0 (0x52c00000)
6214 #endif
6215
6216 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6217 it is used to identify the stub information to reset. */
6218
6219 struct erratum_843419_branch_to_stub_clear_data
6220 {
6221 bfd_vma adrp_offset;
6222 asection *output_section;
6223 };
6224
6225 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6226 section inside IN_ARG matches. The clearing is done by setting the
6227 stub_type to none. */
6228
6229 static bfd_boolean
6230 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6231 void *in_arg)
6232 {
6233 struct elf_aarch64_stub_hash_entry *stub_entry
6234 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6235 struct erratum_843419_branch_to_stub_clear_data *data
6236 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6237
6238 if (stub_entry->target_section != data->output_section
6239 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6240 || stub_entry->adrp_offset != data->adrp_offset)
6241 return TRUE;
6242
6243 /* Change the stub type instead of removing the entry, removing from the hash
6244 table would be slower and we have already reserved the memory for the entry
6245 so there wouldn't be much gain. Changing the stub also keeps around a
6246 record of what was there before. */
6247 stub_entry->stub_type = aarch64_stub_none;
6248
6249 /* We're done and there could have been only one matching stub at that
6250 particular offset, so abort further traversal. */
6251 return FALSE;
6252 }
6253
6254 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6255 sequence. In this case the erratum no longer applies and we need to remove
6256 the entry from the pending stub generation. This clears matching adrp insn
6257 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6258
6259 static void
6260 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6261 bfd_vma adrp_offset, asection *input_section)
6262 {
6263 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6264 {
6265 struct erratum_843419_branch_to_stub_clear_data data;
6266 data.adrp_offset = adrp_offset;
6267 data.output_section = input_section;
6268
6269 bfd_hash_traverse (&globals->stub_hash_table,
6270 _bfd_aarch64_erratum_843419_clear_stub, &data);
6271 }
6272 }
6273
6274 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6275 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6276 link.
6277
6278 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6279 is to then call final_link_relocate. Return other values in the
6280 case of error. */
6281
6282 static bfd_reloc_status_type
6283 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6284 bfd *input_bfd, asection *input_section,
6285 bfd_byte *contents, Elf_Internal_Rela *rel,
6286 struct elf_link_hash_entry *h)
6287 {
6288 bfd_boolean is_local = h == NULL;
6289 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6290 unsigned long insn;
6291
6292 BFD_ASSERT (globals && input_bfd && contents && rel);
6293
6294 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6295 {
6296 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6297 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6298 if (is_local)
6299 {
6300 /* GD->LE relaxation:
6301 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6302 or
6303 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6304
6305 Where R is x for LP64, and w for ILP32. */
6306 bfd_putl32 (movz_R0, contents + rel->r_offset);
6307 /* We have relaxed the adrp into a mov, we may have to clear any
6308 pending erratum fixes. */
6309 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6310 return bfd_reloc_continue;
6311 }
6312 else
6313 {
6314 /* GD->IE relaxation:
6315 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6316 or
6317 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6318 */
6319 return bfd_reloc_continue;
6320 }
6321
6322 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6323 BFD_ASSERT (0);
6324 break;
6325
6326 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6327 if (is_local)
6328 {
6329 /* Tiny TLSDESC->LE relaxation:
6330 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6331 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6332 .tlsdesccall var
6333 blr x1 => nop
6334
6335 Where R is x for LP64, and w for ILP32. */
6336 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6337 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6338
6339 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6340 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6341 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6342
6343 bfd_putl32 (movz_R0, contents + rel->r_offset);
6344 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6345 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6346 return bfd_reloc_continue;
6347 }
6348 else
6349 {
6350 /* Tiny TLSDESC->IE relaxation:
6351 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6352 adr x0, :tlsdesc:var => nop
6353 .tlsdesccall var
6354 blr x1 => nop
6355 */
6356 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6357 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6358
6359 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6360 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6361
6362 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6363 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6364 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6365 return bfd_reloc_continue;
6366 }
6367
6368 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6369 if (is_local)
6370 {
6371 /* Tiny GD->LE relaxation:
6372 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6373 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6374 nop => add R0, R0, #:tprel_lo12_nc:x
6375
6376 Where R is x for LP64, and x for Ilp32. */
6377
6378 /* First kill the tls_get_addr reloc on the bl instruction. */
6379 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6380
6381 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6382 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6383 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6384
6385 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6386 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6387 rel[1].r_offset = rel->r_offset + 8;
6388
6389 /* Move the current relocation to the second instruction in
6390 the sequence. */
6391 rel->r_offset += 4;
6392 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6393 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6394 return bfd_reloc_continue;
6395 }
6396 else
6397 {
6398 /* Tiny GD->IE relaxation:
6399 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6400 bl __tls_get_addr => mrs x1, tpidr_el0
6401 nop => add R0, R0, R1
6402
6403 Where R is x for LP64, and w for Ilp32. */
6404
6405 /* First kill the tls_get_addr reloc on the bl instruction. */
6406 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6407 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6408
6409 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6410 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6411 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6412 return bfd_reloc_continue;
6413 }
6414
6415 #if ARCH_SIZE == 64
6416 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6417 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6418 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6419 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6420
6421 if (is_local)
6422 {
6423 /* Large GD->LE relaxation:
6424 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6425 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6426 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6427 bl __tls_get_addr => mrs x1, tpidr_el0
6428 nop => add x0, x0, x1
6429 */
6430 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6431 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6432 rel[2].r_offset = rel->r_offset + 8;
6433
6434 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6435 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6436 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6437 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6438 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6439 }
6440 else
6441 {
6442 /* Large GD->IE relaxation:
6443 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6444 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6445 add x0, gp, x0 => ldr x0, [gp, x0]
6446 bl __tls_get_addr => mrs x1, tpidr_el0
6447 nop => add x0, x0, x1
6448 */
6449 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6450 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6451 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6452 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6453 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6454 }
6455 return bfd_reloc_continue;
6456
6457 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6458 return bfd_reloc_continue;
6459 #endif
6460
6461 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6462 return bfd_reloc_continue;
6463
6464 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6465 if (is_local)
6466 {
6467 /* GD->LE relaxation:
6468 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6469
6470 Where R is x for lp64 mode, and w for ILP32 mode. */
6471 bfd_putl32 (movk_R0, contents + rel->r_offset);
6472 return bfd_reloc_continue;
6473 }
6474 else
6475 {
6476 /* GD->IE relaxation:
6477 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6478
6479 Where R is x for lp64 mode, and w for ILP32 mode. */
6480 insn = bfd_getl32 (contents + rel->r_offset);
6481 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6482 return bfd_reloc_continue;
6483 }
6484
6485 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6486 if (is_local)
6487 {
6488 /* GD->LE relaxation
6489 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6490 bl __tls_get_addr => mrs x1, tpidr_el0
6491 nop => add R0, R1, R0
6492
6493 Where R is x for lp64 mode, and w for ILP32 mode. */
6494
6495 /* First kill the tls_get_addr reloc on the bl instruction. */
6496 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6497 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6498
6499 bfd_putl32 (movk_R0, contents + rel->r_offset);
6500 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6501 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6502 return bfd_reloc_continue;
6503 }
6504 else
6505 {
6506 /* GD->IE relaxation
6507 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6508 BL __tls_get_addr => mrs x1, tpidr_el0
6509 R_AARCH64_CALL26
6510 NOP => add R0, R1, R0
6511
6512 Where R is x for lp64 mode, and w for ilp32 mode. */
6513
6514 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6515
6516 /* Remove the relocation on the BL instruction. */
6517 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6518
6519 /* We choose to fixup the BL and NOP instructions using the
6520 offset from the second relocation to allow flexibility in
6521 scheduling instructions between the ADD and BL. */
6522 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6523 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6524 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6525 return bfd_reloc_continue;
6526 }
6527
6528 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6529 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6530 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6531 /* GD->IE/LE relaxation:
6532 add x0, x0, #:tlsdesc_lo12:var => nop
6533 blr xd => nop
6534 */
6535 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6536 return bfd_reloc_ok;
6537
6538 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6539 if (is_local)
6540 {
6541 /* GD->LE relaxation:
6542 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6543
6544 Where R is x for lp64 mode, and w for ILP32 mode. */
6545 bfd_putl32 (movk_R0, contents + rel->r_offset);
6546 return bfd_reloc_continue;
6547 }
6548 else
6549 {
6550 /* GD->IE relaxation:
6551 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6552
6553 Where R is x for lp64 mode, and w for ILP32 mode. */
6554 insn = bfd_getl32 (contents + rel->r_offset);
6555 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6556 return bfd_reloc_ok;
6557 }
6558
6559 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6560 /* GD->LE relaxation:
6561 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6562 GD->IE relaxation:
6563 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6564
6565 Where R is x for lp64 mode, and w for ILP32 mode. */
6566 if (is_local)
6567 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6568 return bfd_reloc_continue;
6569
6570 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6571 if (is_local)
6572 {
6573 /* GD->LE relaxation:
6574 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6575
6576 Where R is x for lp64 mode, and w for ILP32 mode. */
6577 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6578 return bfd_reloc_continue;
6579 }
6580 else
6581 {
6582 /* GD->IE relaxation:
6583 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6584
6585 Where R is x for lp64 mode, and w for ILP32 mode. */
6586 insn = bfd_getl32 (contents + rel->r_offset);
6587 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6588 return bfd_reloc_continue;
6589 }
6590
6591 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6592 /* IE->LE relaxation:
6593 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6594
6595 Where R is x for lp64 mode, and w for ILP32 mode. */
6596 if (is_local)
6597 {
6598 insn = bfd_getl32 (contents + rel->r_offset);
6599 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6600 /* We have relaxed the adrp into a mov, we may have to clear any
6601 pending erratum fixes. */
6602 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6603 }
6604 return bfd_reloc_continue;
6605
6606 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6607 /* IE->LE relaxation:
6608 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6609
6610 Where R is x for lp64 mode, and w for ILP32 mode. */
6611 if (is_local)
6612 {
6613 insn = bfd_getl32 (contents + rel->r_offset);
6614 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6615 }
6616 return bfd_reloc_continue;
6617
6618 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6619 /* LD->LE relaxation (tiny):
6620 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6621 bl __tls_get_addr => add R0, R0, TCB_SIZE
6622
6623 Where R is x for lp64 mode, and w for ilp32 mode. */
6624 if (is_local)
6625 {
6626 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6627 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6628 /* No need of CALL26 relocation for tls_get_addr. */
6629 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6630 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6631 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6632 contents + rel->r_offset + 4);
6633 return bfd_reloc_ok;
6634 }
6635 return bfd_reloc_continue;
6636
6637 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6638 /* LD->LE relaxation (small):
6639 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6640 */
6641 if (is_local)
6642 {
6643 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6644 return bfd_reloc_ok;
6645 }
6646 return bfd_reloc_continue;
6647
6648 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6649 /* LD->LE relaxation (small):
6650 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6651 bl __tls_get_addr => nop
6652
6653 Where R is x for lp64 mode, and w for ilp32 mode. */
6654 if (is_local)
6655 {
6656 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6657 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6658 /* No need of CALL26 relocation for tls_get_addr. */
6659 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6660 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6661 contents + rel->r_offset + 0);
6662 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6663 return bfd_reloc_ok;
6664 }
6665 return bfd_reloc_continue;
6666
6667 default:
6668 return bfd_reloc_continue;
6669 }
6670
6671 return bfd_reloc_ok;
6672 }
6673
6674 /* Relocate an AArch64 ELF section. */
6675
6676 static bfd_boolean
6677 elfNN_aarch64_relocate_section (bfd *output_bfd,
6678 struct bfd_link_info *info,
6679 bfd *input_bfd,
6680 asection *input_section,
6681 bfd_byte *contents,
6682 Elf_Internal_Rela *relocs,
6683 Elf_Internal_Sym *local_syms,
6684 asection **local_sections)
6685 {
6686 Elf_Internal_Shdr *symtab_hdr;
6687 struct elf_link_hash_entry **sym_hashes;
6688 Elf_Internal_Rela *rel;
6689 Elf_Internal_Rela *relend;
6690 const char *name;
6691 struct elf_aarch64_link_hash_table *globals;
6692 bfd_boolean save_addend = FALSE;
6693 bfd_vma addend = 0;
6694
6695 globals = elf_aarch64_hash_table (info);
6696
6697 symtab_hdr = &elf_symtab_hdr (input_bfd);
6698 sym_hashes = elf_sym_hashes (input_bfd);
6699
6700 rel = relocs;
6701 relend = relocs + input_section->reloc_count;
6702 for (; rel < relend; rel++)
6703 {
6704 unsigned int r_type;
6705 bfd_reloc_code_real_type bfd_r_type;
6706 bfd_reloc_code_real_type relaxed_bfd_r_type;
6707 reloc_howto_type *howto;
6708 unsigned long r_symndx;
6709 Elf_Internal_Sym *sym;
6710 asection *sec;
6711 struct elf_link_hash_entry *h;
6712 bfd_vma relocation;
6713 bfd_reloc_status_type r;
6714 arelent bfd_reloc;
6715 char sym_type;
6716 bfd_boolean unresolved_reloc = FALSE;
6717 char *error_message = NULL;
6718
6719 r_symndx = ELFNN_R_SYM (rel->r_info);
6720 r_type = ELFNN_R_TYPE (rel->r_info);
6721
6722 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6723 howto = bfd_reloc.howto;
6724
6725 if (howto == NULL)
6726 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6727
6728 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6729
6730 h = NULL;
6731 sym = NULL;
6732 sec = NULL;
6733
6734 if (r_symndx < symtab_hdr->sh_info)
6735 {
6736 sym = local_syms + r_symndx;
6737 sym_type = ELFNN_ST_TYPE (sym->st_info);
6738 sec = local_sections[r_symndx];
6739
6740 /* An object file might have a reference to a local
6741 undefined symbol. This is a daft object file, but we
6742 should at least do something about it. */
6743 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6744 && bfd_is_und_section (sec)
6745 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6746 (*info->callbacks->undefined_symbol)
6747 (info, bfd_elf_string_from_elf_section
6748 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6749 input_bfd, input_section, rel->r_offset, TRUE);
6750
6751 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6752
6753 /* Relocate against local STT_GNU_IFUNC symbol. */
6754 if (!bfd_link_relocatable (info)
6755 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6756 {
6757 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6758 rel, FALSE);
6759 if (h == NULL)
6760 abort ();
6761
6762 /* Set STT_GNU_IFUNC symbol value. */
6763 h->root.u.def.value = sym->st_value;
6764 h->root.u.def.section = sec;
6765 }
6766 }
6767 else
6768 {
6769 bfd_boolean warned, ignored;
6770
6771 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6772 r_symndx, symtab_hdr, sym_hashes,
6773 h, sec, relocation,
6774 unresolved_reloc, warned, ignored);
6775
6776 sym_type = h->type;
6777 }
6778
6779 if (sec != NULL && discarded_section (sec))
6780 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6781 rel, 1, relend, howto, 0, contents);
6782
6783 if (bfd_link_relocatable (info))
6784 continue;
6785
6786 if (h != NULL)
6787 name = h->root.root.string;
6788 else
6789 {
6790 name = (bfd_elf_string_from_elf_section
6791 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6792 if (name == NULL || *name == '\0')
6793 name = bfd_section_name (sec);
6794 }
6795
6796 if (r_symndx != 0
6797 && r_type != R_AARCH64_NONE
6798 && r_type != R_AARCH64_NULL
6799 && (h == NULL
6800 || h->root.type == bfd_link_hash_defined
6801 || h->root.type == bfd_link_hash_defweak)
6802 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6803 {
6804 _bfd_error_handler
6805 ((sym_type == STT_TLS
6806 /* xgettext:c-format */
6807 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6808 /* xgettext:c-format */
6809 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6810 input_bfd,
6811 input_section, (uint64_t) rel->r_offset, howto->name, name);
6812 }
6813
6814 /* We relax only if we can see that there can be a valid transition
6815 from a reloc type to another.
6816 We call elfNN_aarch64_final_link_relocate unless we're completely
6817 done, i.e., the relaxation produced the final output we want. */
6818
6819 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6820 h, r_symndx);
6821 if (relaxed_bfd_r_type != bfd_r_type)
6822 {
6823 bfd_r_type = relaxed_bfd_r_type;
6824 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6825 BFD_ASSERT (howto != NULL);
6826 r_type = howto->type;
6827 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6828 contents, rel, h);
6829 unresolved_reloc = 0;
6830 }
6831 else
6832 r = bfd_reloc_continue;
6833
6834 /* There may be multiple consecutive relocations for the
6835 same offset. In that case we are supposed to treat the
6836 output of each relocation as the addend for the next. */
6837 if (rel + 1 < relend
6838 && rel->r_offset == rel[1].r_offset
6839 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6840 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6841 save_addend = TRUE;
6842 else
6843 save_addend = FALSE;
6844
6845 if (r == bfd_reloc_continue)
6846 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6847 input_section, contents, rel,
6848 relocation, info, sec,
6849 h, &unresolved_reloc,
6850 save_addend, &addend, sym);
6851
6852 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6853 {
6854 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6855 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6856 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6857 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6858 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6859 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6860 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6861 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6862 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6863 {
6864 bfd_boolean need_relocs = FALSE;
6865 bfd_byte *loc;
6866 int indx;
6867 bfd_vma off;
6868
6869 off = symbol_got_offset (input_bfd, h, r_symndx);
6870 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6871
6872 need_relocs =
6873 (!bfd_link_executable (info) || indx != 0) &&
6874 (h == NULL
6875 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6876 || h->root.type != bfd_link_hash_undefweak);
6877
6878 BFD_ASSERT (globals->root.srelgot != NULL);
6879
6880 if (need_relocs)
6881 {
6882 Elf_Internal_Rela rela;
6883 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6884 rela.r_addend = 0;
6885 rela.r_offset = globals->root.sgot->output_section->vma +
6886 globals->root.sgot->output_offset + off;
6887
6888
6889 loc = globals->root.srelgot->contents;
6890 loc += globals->root.srelgot->reloc_count++
6891 * RELOC_SIZE (htab);
6892 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6893
6894 bfd_reloc_code_real_type real_type =
6895 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6896
6897 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6898 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6899 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6900 {
6901 /* For local dynamic, don't generate DTPREL in any case.
6902 Initialize the DTPREL slot into zero, so we get module
6903 base address when invoke runtime TLS resolver. */
6904 bfd_put_NN (output_bfd, 0,
6905 globals->root.sgot->contents + off
6906 + GOT_ENTRY_SIZE);
6907 }
6908 else if (indx == 0)
6909 {
6910 bfd_put_NN (output_bfd,
6911 relocation - dtpoff_base (info),
6912 globals->root.sgot->contents + off
6913 + GOT_ENTRY_SIZE);
6914 }
6915 else
6916 {
6917 /* This TLS symbol is global. We emit a
6918 relocation to fixup the tls offset at load
6919 time. */
6920 rela.r_info =
6921 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6922 rela.r_addend = 0;
6923 rela.r_offset =
6924 (globals->root.sgot->output_section->vma
6925 + globals->root.sgot->output_offset + off
6926 + GOT_ENTRY_SIZE);
6927
6928 loc = globals->root.srelgot->contents;
6929 loc += globals->root.srelgot->reloc_count++
6930 * RELOC_SIZE (globals);
6931 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6932 bfd_put_NN (output_bfd, (bfd_vma) 0,
6933 globals->root.sgot->contents + off
6934 + GOT_ENTRY_SIZE);
6935 }
6936 }
6937 else
6938 {
6939 bfd_put_NN (output_bfd, (bfd_vma) 1,
6940 globals->root.sgot->contents + off);
6941 bfd_put_NN (output_bfd,
6942 relocation - dtpoff_base (info),
6943 globals->root.sgot->contents + off
6944 + GOT_ENTRY_SIZE);
6945 }
6946
6947 symbol_got_offset_mark (input_bfd, h, r_symndx);
6948 }
6949 break;
6950
6951 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6952 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6953 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6954 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6955 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6956 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6957 {
6958 bfd_boolean need_relocs = FALSE;
6959 bfd_byte *loc;
6960 int indx;
6961 bfd_vma off;
6962
6963 off = symbol_got_offset (input_bfd, h, r_symndx);
6964
6965 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6966
6967 need_relocs =
6968 (!bfd_link_executable (info) || indx != 0) &&
6969 (h == NULL
6970 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6971 || h->root.type != bfd_link_hash_undefweak);
6972
6973 BFD_ASSERT (globals->root.srelgot != NULL);
6974
6975 if (need_relocs)
6976 {
6977 Elf_Internal_Rela rela;
6978
6979 if (indx == 0)
6980 rela.r_addend = relocation - dtpoff_base (info);
6981 else
6982 rela.r_addend = 0;
6983
6984 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6985 rela.r_offset = globals->root.sgot->output_section->vma +
6986 globals->root.sgot->output_offset + off;
6987
6988 loc = globals->root.srelgot->contents;
6989 loc += globals->root.srelgot->reloc_count++
6990 * RELOC_SIZE (htab);
6991
6992 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6993
6994 bfd_put_NN (output_bfd, rela.r_addend,
6995 globals->root.sgot->contents + off);
6996 }
6997 else
6998 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6999 globals->root.sgot->contents + off);
7000
7001 symbol_got_offset_mark (input_bfd, h, r_symndx);
7002 }
7003 break;
7004
7005 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7006 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7007 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7008 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7009 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7010 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7011 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7012 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7013 {
7014 bfd_boolean need_relocs = FALSE;
7015 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7016 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7017
7018 need_relocs = (h == NULL
7019 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7020 || h->root.type != bfd_link_hash_undefweak);
7021
7022 BFD_ASSERT (globals->root.srelgot != NULL);
7023 BFD_ASSERT (globals->root.sgot != NULL);
7024
7025 if (need_relocs)
7026 {
7027 bfd_byte *loc;
7028 Elf_Internal_Rela rela;
7029 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7030
7031 rela.r_addend = 0;
7032 rela.r_offset = (globals->root.sgotplt->output_section->vma
7033 + globals->root.sgotplt->output_offset
7034 + off + globals->sgotplt_jump_table_size);
7035
7036 if (indx == 0)
7037 rela.r_addend = relocation - dtpoff_base (info);
7038
7039 /* Allocate the next available slot in the PLT reloc
7040 section to hold our R_AARCH64_TLSDESC, the next
7041 available slot is determined from reloc_count,
7042 which we step. But note, reloc_count was
7043 artifically moved down while allocating slots for
7044 real PLT relocs such that all of the PLT relocs
7045 will fit above the initial reloc_count and the
7046 extra stuff will fit below. */
7047 loc = globals->root.srelplt->contents;
7048 loc += globals->root.srelplt->reloc_count++
7049 * RELOC_SIZE (globals);
7050
7051 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7052
7053 bfd_put_NN (output_bfd, (bfd_vma) 0,
7054 globals->root.sgotplt->contents + off +
7055 globals->sgotplt_jump_table_size);
7056 bfd_put_NN (output_bfd, (bfd_vma) 0,
7057 globals->root.sgotplt->contents + off +
7058 globals->sgotplt_jump_table_size +
7059 GOT_ENTRY_SIZE);
7060 }
7061
7062 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7063 }
7064 break;
7065 default:
7066 break;
7067 }
7068
7069 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7070 because such sections are not SEC_ALLOC and thus ld.so will
7071 not process them. */
7072 if (unresolved_reloc
7073 && !((input_section->flags & SEC_DEBUGGING) != 0
7074 && h->def_dynamic)
7075 && _bfd_elf_section_offset (output_bfd, info, input_section,
7076 +rel->r_offset) != (bfd_vma) - 1)
7077 {
7078 _bfd_error_handler
7079 /* xgettext:c-format */
7080 (_("%pB(%pA+%#" PRIx64 "): "
7081 "unresolvable %s relocation against symbol `%s'"),
7082 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7083 h->root.root.string);
7084 return FALSE;
7085 }
7086
7087 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7088 {
7089 bfd_reloc_code_real_type real_r_type
7090 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7091
7092 switch (r)
7093 {
7094 case bfd_reloc_overflow:
7095 (*info->callbacks->reloc_overflow)
7096 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7097 input_bfd, input_section, rel->r_offset);
7098 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7099 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7100 {
7101 (*info->callbacks->warning)
7102 (info,
7103 _("too many GOT entries for -fpic, "
7104 "please recompile with -fPIC"),
7105 name, input_bfd, input_section, rel->r_offset);
7106 return FALSE;
7107 }
7108 /* Overflow can occur when a variable is referenced with a type
7109 that has a larger alignment than the type with which it was
7110 declared. eg:
7111 file1.c: extern int foo; int a (void) { return foo; }
7112 file2.c: char bar, foo, baz;
7113 If the variable is placed into a data section at an offset
7114 that is incompatible with the larger alignment requirement
7115 overflow will occur. (Strictly speaking this is not overflow
7116 but rather an alignment problem, but the bfd_reloc_ error
7117 enum does not have a value to cover that situation).
7118
7119 Try to catch this situation here and provide a more helpful
7120 error message to the user. */
7121 if (addend & ((1 << howto->rightshift) - 1)
7122 /* FIXME: Are we testing all of the appropriate reloc
7123 types here ? */
7124 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7125 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7126 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7127 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7128 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7129 {
7130 info->callbacks->warning
7131 (info, _("one possible cause of this error is that the \
7132 symbol is being referenced in the indicated code as if it had a larger \
7133 alignment than was declared where it was defined"),
7134 name, input_bfd, input_section, rel->r_offset);
7135 }
7136 break;
7137
7138 case bfd_reloc_undefined:
7139 (*info->callbacks->undefined_symbol)
7140 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7141 break;
7142
7143 case bfd_reloc_outofrange:
7144 error_message = _("out of range");
7145 goto common_error;
7146
7147 case bfd_reloc_notsupported:
7148 error_message = _("unsupported relocation");
7149 goto common_error;
7150
7151 case bfd_reloc_dangerous:
7152 /* error_message should already be set. */
7153 goto common_error;
7154
7155 default:
7156 error_message = _("unknown error");
7157 /* Fall through. */
7158
7159 common_error:
7160 BFD_ASSERT (error_message != NULL);
7161 (*info->callbacks->reloc_dangerous)
7162 (info, error_message, input_bfd, input_section, rel->r_offset);
7163 break;
7164 }
7165 }
7166
7167 if (!save_addend)
7168 addend = 0;
7169 }
7170
7171 return TRUE;
7172 }
7173
7174 /* Set the right machine number. */
7175
7176 static bfd_boolean
7177 elfNN_aarch64_object_p (bfd *abfd)
7178 {
7179 #if ARCH_SIZE == 32
7180 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7181 #else
7182 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7183 #endif
7184 return TRUE;
7185 }
7186
7187 /* Function to keep AArch64 specific flags in the ELF header. */
7188
7189 static bfd_boolean
7190 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7191 {
7192 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7193 {
7194 }
7195 else
7196 {
7197 elf_elfheader (abfd)->e_flags = flags;
7198 elf_flags_init (abfd) = TRUE;
7199 }
7200
7201 return TRUE;
7202 }
7203
7204 /* Merge backend specific data from an object file to the output
7205 object file when linking. */
7206
7207 static bfd_boolean
7208 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7209 {
7210 bfd *obfd = info->output_bfd;
7211 flagword out_flags;
7212 flagword in_flags;
7213 bfd_boolean flags_compatible = TRUE;
7214 asection *sec;
7215
7216 /* Check if we have the same endianess. */
7217 if (!_bfd_generic_verify_endian_match (ibfd, info))
7218 return FALSE;
7219
7220 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7221 return TRUE;
7222
7223 /* The input BFD must have had its flags initialised. */
7224 /* The following seems bogus to me -- The flags are initialized in
7225 the assembler but I don't think an elf_flags_init field is
7226 written into the object. */
7227 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7228
7229 in_flags = elf_elfheader (ibfd)->e_flags;
7230 out_flags = elf_elfheader (obfd)->e_flags;
7231
7232 if (!elf_flags_init (obfd))
7233 {
7234 /* If the input is the default architecture and had the default
7235 flags then do not bother setting the flags for the output
7236 architecture, instead allow future merges to do this. If no
7237 future merges ever set these flags then they will retain their
7238 uninitialised values, which surprise surprise, correspond
7239 to the default values. */
7240 if (bfd_get_arch_info (ibfd)->the_default
7241 && elf_elfheader (ibfd)->e_flags == 0)
7242 return TRUE;
7243
7244 elf_flags_init (obfd) = TRUE;
7245 elf_elfheader (obfd)->e_flags = in_flags;
7246
7247 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7248 && bfd_get_arch_info (obfd)->the_default)
7249 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7250 bfd_get_mach (ibfd));
7251
7252 return TRUE;
7253 }
7254
7255 /* Identical flags must be compatible. */
7256 if (in_flags == out_flags)
7257 return TRUE;
7258
7259 /* Check to see if the input BFD actually contains any sections. If
7260 not, its flags may not have been initialised either, but it
7261 cannot actually cause any incompatiblity. Do not short-circuit
7262 dynamic objects; their section list may be emptied by
7263 elf_link_add_object_symbols.
7264
7265 Also check to see if there are no code sections in the input.
7266 In this case there is no need to check for code specific flags.
7267 XXX - do we need to worry about floating-point format compatability
7268 in data sections ? */
7269 if (!(ibfd->flags & DYNAMIC))
7270 {
7271 bfd_boolean null_input_bfd = TRUE;
7272 bfd_boolean only_data_sections = TRUE;
7273
7274 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7275 {
7276 if ((bfd_section_flags (sec)
7277 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7278 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7279 only_data_sections = FALSE;
7280
7281 null_input_bfd = FALSE;
7282 break;
7283 }
7284
7285 if (null_input_bfd || only_data_sections)
7286 return TRUE;
7287 }
7288
7289 return flags_compatible;
7290 }
7291
7292 /* Display the flags field. */
7293
7294 static bfd_boolean
7295 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7296 {
7297 FILE *file = (FILE *) ptr;
7298 unsigned long flags;
7299
7300 BFD_ASSERT (abfd != NULL && ptr != NULL);
7301
7302 /* Print normal ELF private data. */
7303 _bfd_elf_print_private_bfd_data (abfd, ptr);
7304
7305 flags = elf_elfheader (abfd)->e_flags;
7306 /* Ignore init flag - it may not be set, despite the flags field
7307 containing valid data. */
7308
7309 /* xgettext:c-format */
7310 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7311
7312 if (flags)
7313 fprintf (file, _("<Unrecognised flag bits set>"));
7314
7315 fputc ('\n', file);
7316
7317 return TRUE;
7318 }
7319
7320 /* Find dynamic relocs for H that apply to read-only sections. */
7321
7322 static asection *
7323 readonly_dynrelocs (struct elf_link_hash_entry *h)
7324 {
7325 struct elf_dyn_relocs *p;
7326
7327 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7328 {
7329 asection *s = p->sec->output_section;
7330
7331 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7332 return p->sec;
7333 }
7334 return NULL;
7335 }
7336
7337 /* Return true if we need copy relocation against EH. */
7338
7339 static bfd_boolean
7340 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7341 {
7342 struct elf_dyn_relocs *p;
7343 asection *s;
7344
7345 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7346 {
7347 /* If there is any pc-relative reference, we need to keep copy relocation
7348 to avoid propagating the relocation into runtime that current glibc
7349 does not support. */
7350 if (p->pc_count)
7351 return TRUE;
7352
7353 s = p->sec->output_section;
7354 /* Need copy relocation if it's against read-only section. */
7355 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7356 return TRUE;
7357 }
7358
7359 return FALSE;
7360 }
7361
7362 /* Adjust a symbol defined by a dynamic object and referenced by a
7363 regular object. The current definition is in some section of the
7364 dynamic object, but we're not including those sections. We have to
7365 change the definition to something the rest of the link can
7366 understand. */
7367
7368 static bfd_boolean
7369 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7370 struct elf_link_hash_entry *h)
7371 {
7372 struct elf_aarch64_link_hash_table *htab;
7373 asection *s, *srel;
7374
7375 /* If this is a function, put it in the procedure linkage table. We
7376 will fill in the contents of the procedure linkage table later,
7377 when we know the address of the .got section. */
7378 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7379 {
7380 if (h->plt.refcount <= 0
7381 || (h->type != STT_GNU_IFUNC
7382 && (SYMBOL_CALLS_LOCAL (info, h)
7383 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7384 && h->root.type == bfd_link_hash_undefweak))))
7385 {
7386 /* This case can occur if we saw a CALL26 reloc in
7387 an input file, but the symbol wasn't referred to
7388 by a dynamic object or all references were
7389 garbage collected. In which case we can end up
7390 resolving. */
7391 h->plt.offset = (bfd_vma) - 1;
7392 h->needs_plt = 0;
7393 }
7394
7395 return TRUE;
7396 }
7397 else
7398 /* Otherwise, reset to -1. */
7399 h->plt.offset = (bfd_vma) - 1;
7400
7401
7402 /* If this is a weak symbol, and there is a real definition, the
7403 processor independent code will have arranged for us to see the
7404 real definition first, and we can just use the same value. */
7405 if (h->is_weakalias)
7406 {
7407 struct elf_link_hash_entry *def = weakdef (h);
7408 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7409 h->root.u.def.section = def->root.u.def.section;
7410 h->root.u.def.value = def->root.u.def.value;
7411 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7412 h->non_got_ref = def->non_got_ref;
7413 return TRUE;
7414 }
7415
7416 /* If we are creating a shared library, we must presume that the
7417 only references to the symbol are via the global offset table.
7418 For such cases we need not do anything here; the relocations will
7419 be handled correctly by relocate_section. */
7420 if (bfd_link_pic (info))
7421 return TRUE;
7422
7423 /* If there are no references to this symbol that do not use the
7424 GOT, we don't need to generate a copy reloc. */
7425 if (!h->non_got_ref)
7426 return TRUE;
7427
7428 /* If -z nocopyreloc was given, we won't generate them either. */
7429 if (info->nocopyreloc)
7430 {
7431 h->non_got_ref = 0;
7432 return TRUE;
7433 }
7434
7435 if (ELIMINATE_COPY_RELOCS)
7436 {
7437 struct elf_aarch64_link_hash_entry *eh;
7438 /* If we don't find any dynamic relocs in read-only sections, then
7439 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7440 eh = (struct elf_aarch64_link_hash_entry *) h;
7441 if (!need_copy_relocation_p (eh))
7442 {
7443 h->non_got_ref = 0;
7444 return TRUE;
7445 }
7446 }
7447
7448 /* We must allocate the symbol in our .dynbss section, which will
7449 become part of the .bss section of the executable. There will be
7450 an entry for this symbol in the .dynsym section. The dynamic
7451 object will contain position independent code, so all references
7452 from the dynamic object to this symbol will go through the global
7453 offset table. The dynamic linker will use the .dynsym entry to
7454 determine the address it must put in the global offset table, so
7455 both the dynamic object and the regular object will refer to the
7456 same memory location for the variable. */
7457
7458 htab = elf_aarch64_hash_table (info);
7459
7460 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7461 to copy the initial value out of the dynamic object and into the
7462 runtime process image. */
7463 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7464 {
7465 s = htab->root.sdynrelro;
7466 srel = htab->root.sreldynrelro;
7467 }
7468 else
7469 {
7470 s = htab->root.sdynbss;
7471 srel = htab->root.srelbss;
7472 }
7473 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7474 {
7475 srel->size += RELOC_SIZE (htab);
7476 h->needs_copy = 1;
7477 }
7478
7479 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7480
7481 }
7482
7483 static bfd_boolean
7484 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7485 {
7486 struct elf_aarch64_local_symbol *locals;
7487 locals = elf_aarch64_locals (abfd);
7488 if (locals == NULL)
7489 {
7490 locals = (struct elf_aarch64_local_symbol *)
7491 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7492 if (locals == NULL)
7493 return FALSE;
7494 elf_aarch64_locals (abfd) = locals;
7495 }
7496 return TRUE;
7497 }
7498
7499 /* Create the .got section to hold the global offset table. */
7500
7501 static bfd_boolean
7502 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7503 {
7504 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7505 flagword flags;
7506 asection *s;
7507 struct elf_link_hash_entry *h;
7508 struct elf_link_hash_table *htab = elf_hash_table (info);
7509
7510 /* This function may be called more than once. */
7511 if (htab->sgot != NULL)
7512 return TRUE;
7513
7514 flags = bed->dynamic_sec_flags;
7515
7516 s = bfd_make_section_anyway_with_flags (abfd,
7517 (bed->rela_plts_and_copies_p
7518 ? ".rela.got" : ".rel.got"),
7519 (bed->dynamic_sec_flags
7520 | SEC_READONLY));
7521 if (s == NULL
7522 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7523 return FALSE;
7524 htab->srelgot = s;
7525
7526 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7527 if (s == NULL
7528 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7529 return FALSE;
7530 htab->sgot = s;
7531 htab->sgot->size += GOT_ENTRY_SIZE;
7532
7533 if (bed->want_got_sym)
7534 {
7535 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7536 (or .got.plt) section. We don't do this in the linker script
7537 because we don't want to define the symbol if we are not creating
7538 a global offset table. */
7539 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7540 "_GLOBAL_OFFSET_TABLE_");
7541 elf_hash_table (info)->hgot = h;
7542 if (h == NULL)
7543 return FALSE;
7544 }
7545
7546 if (bed->want_got_plt)
7547 {
7548 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7549 if (s == NULL
7550 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7551 return FALSE;
7552 htab->sgotplt = s;
7553 }
7554
7555 /* The first bit of the global offset table is the header. */
7556 s->size += bed->got_header_size;
7557
7558 return TRUE;
7559 }
7560
7561 /* Look through the relocs for a section during the first phase. */
7562
7563 static bfd_boolean
7564 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7565 asection *sec, const Elf_Internal_Rela *relocs)
7566 {
7567 Elf_Internal_Shdr *symtab_hdr;
7568 struct elf_link_hash_entry **sym_hashes;
7569 const Elf_Internal_Rela *rel;
7570 const Elf_Internal_Rela *rel_end;
7571 asection *sreloc;
7572
7573 struct elf_aarch64_link_hash_table *htab;
7574
7575 if (bfd_link_relocatable (info))
7576 return TRUE;
7577
7578 BFD_ASSERT (is_aarch64_elf (abfd));
7579
7580 htab = elf_aarch64_hash_table (info);
7581 sreloc = NULL;
7582
7583 symtab_hdr = &elf_symtab_hdr (abfd);
7584 sym_hashes = elf_sym_hashes (abfd);
7585
7586 rel_end = relocs + sec->reloc_count;
7587 for (rel = relocs; rel < rel_end; rel++)
7588 {
7589 struct elf_link_hash_entry *h;
7590 unsigned int r_symndx;
7591 unsigned int r_type;
7592 bfd_reloc_code_real_type bfd_r_type;
7593 Elf_Internal_Sym *isym;
7594
7595 r_symndx = ELFNN_R_SYM (rel->r_info);
7596 r_type = ELFNN_R_TYPE (rel->r_info);
7597
7598 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7599 {
7600 /* xgettext:c-format */
7601 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7602 return FALSE;
7603 }
7604
7605 if (r_symndx < symtab_hdr->sh_info)
7606 {
7607 /* A local symbol. */
7608 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7609 abfd, r_symndx);
7610 if (isym == NULL)
7611 return FALSE;
7612
7613 /* Check relocation against local STT_GNU_IFUNC symbol. */
7614 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7615 {
7616 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7617 TRUE);
7618 if (h == NULL)
7619 return FALSE;
7620
7621 /* Fake a STT_GNU_IFUNC symbol. */
7622 h->type = STT_GNU_IFUNC;
7623 h->def_regular = 1;
7624 h->ref_regular = 1;
7625 h->forced_local = 1;
7626 h->root.type = bfd_link_hash_defined;
7627 }
7628 else
7629 h = NULL;
7630 }
7631 else
7632 {
7633 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7634 while (h->root.type == bfd_link_hash_indirect
7635 || h->root.type == bfd_link_hash_warning)
7636 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7637 }
7638
7639 /* Could be done earlier, if h were already available. */
7640 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7641
7642 if (h != NULL)
7643 {
7644 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7645 This shows up in particular in an R_AARCH64_PREL64 in large model
7646 when calculating the pc-relative address to .got section which is
7647 used to initialize the gp register. */
7648 if (h->root.root.string
7649 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7650 {
7651 if (htab->root.dynobj == NULL)
7652 htab->root.dynobj = abfd;
7653
7654 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7655 return FALSE;
7656
7657 BFD_ASSERT (h == htab->root.hgot);
7658 }
7659
7660 /* Create the ifunc sections for static executables. If we
7661 never see an indirect function symbol nor we are building
7662 a static executable, those sections will be empty and
7663 won't appear in output. */
7664 switch (bfd_r_type)
7665 {
7666 default:
7667 break;
7668
7669 case BFD_RELOC_AARCH64_ADD_LO12:
7670 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7671 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7672 case BFD_RELOC_AARCH64_CALL26:
7673 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7674 case BFD_RELOC_AARCH64_JUMP26:
7675 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7676 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7677 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7678 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7679 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7680 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7681 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7682 case BFD_RELOC_AARCH64_NN:
7683 if (htab->root.dynobj == NULL)
7684 htab->root.dynobj = abfd;
7685 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7686 return FALSE;
7687 break;
7688 }
7689
7690 /* It is referenced by a non-shared object. */
7691 h->ref_regular = 1;
7692 }
7693
7694 switch (bfd_r_type)
7695 {
7696 case BFD_RELOC_AARCH64_16:
7697 #if ARCH_SIZE == 64
7698 case BFD_RELOC_AARCH64_32:
7699 #endif
7700 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7701 {
7702 if (h != NULL
7703 /* This is an absolute symbol. It represents a value instead
7704 of an address. */
7705 && (bfd_is_abs_symbol (&h->root)
7706 /* This is an undefined symbol. */
7707 || h->root.type == bfd_link_hash_undefined))
7708 break;
7709
7710 /* For local symbols, defined global symbols in a non-ABS section,
7711 it is assumed that the value is an address. */
7712 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7713 _bfd_error_handler
7714 /* xgettext:c-format */
7715 (_("%pB: relocation %s against `%s' can not be used when making "
7716 "a shared object"),
7717 abfd, elfNN_aarch64_howto_table[howto_index].name,
7718 (h) ? h->root.root.string : "a local symbol");
7719 bfd_set_error (bfd_error_bad_value);
7720 return FALSE;
7721 }
7722 else
7723 break;
7724
7725 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7726 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7727 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7728 case BFD_RELOC_AARCH64_MOVW_G3:
7729 if (bfd_link_pic (info))
7730 {
7731 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7732 _bfd_error_handler
7733 /* xgettext:c-format */
7734 (_("%pB: relocation %s against `%s' can not be used when making "
7735 "a shared object; recompile with -fPIC"),
7736 abfd, elfNN_aarch64_howto_table[howto_index].name,
7737 (h) ? h->root.root.string : "a local symbol");
7738 bfd_set_error (bfd_error_bad_value);
7739 return FALSE;
7740 }
7741 /* Fall through. */
7742
7743 case BFD_RELOC_AARCH64_16_PCREL:
7744 case BFD_RELOC_AARCH64_32_PCREL:
7745 case BFD_RELOC_AARCH64_64_PCREL:
7746 case BFD_RELOC_AARCH64_ADD_LO12:
7747 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7748 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7749 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7750 case BFD_RELOC_AARCH64_LDST128_LO12:
7751 case BFD_RELOC_AARCH64_LDST16_LO12:
7752 case BFD_RELOC_AARCH64_LDST32_LO12:
7753 case BFD_RELOC_AARCH64_LDST64_LO12:
7754 case BFD_RELOC_AARCH64_LDST8_LO12:
7755 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7756 if (h == NULL || bfd_link_pic (info))
7757 break;
7758 /* Fall through. */
7759
7760 case BFD_RELOC_AARCH64_NN:
7761
7762 /* We don't need to handle relocs into sections not going into
7763 the "real" output. */
7764 if ((sec->flags & SEC_ALLOC) == 0)
7765 break;
7766
7767 if (h != NULL)
7768 {
7769 if (!bfd_link_pic (info))
7770 h->non_got_ref = 1;
7771
7772 h->plt.refcount += 1;
7773 h->pointer_equality_needed = 1;
7774 }
7775
7776 /* No need to do anything if we're not creating a shared
7777 object. */
7778 if (!(bfd_link_pic (info)
7779 /* If on the other hand, we are creating an executable, we
7780 may need to keep relocations for symbols satisfied by a
7781 dynamic library if we manage to avoid copy relocs for the
7782 symbol.
7783
7784 NOTE: Currently, there is no support of copy relocs
7785 elimination on pc-relative relocation types, because there is
7786 no dynamic relocation support for them in glibc. We still
7787 record the dynamic symbol reference for them. This is
7788 because one symbol may be referenced by both absolute
7789 relocation (for example, BFD_RELOC_AARCH64_NN) and
7790 pc-relative relocation. We need full symbol reference
7791 information to make correct decision later in
7792 elfNN_aarch64_adjust_dynamic_symbol. */
7793 || (ELIMINATE_COPY_RELOCS
7794 && !bfd_link_pic (info)
7795 && h != NULL
7796 && (h->root.type == bfd_link_hash_defweak
7797 || !h->def_regular))))
7798 break;
7799
7800 {
7801 struct elf_dyn_relocs *p;
7802 struct elf_dyn_relocs **head;
7803 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7804
7805 /* We must copy these reloc types into the output file.
7806 Create a reloc section in dynobj and make room for
7807 this reloc. */
7808 if (sreloc == NULL)
7809 {
7810 if (htab->root.dynobj == NULL)
7811 htab->root.dynobj = abfd;
7812
7813 sreloc = _bfd_elf_make_dynamic_reloc_section
7814 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7815
7816 if (sreloc == NULL)
7817 return FALSE;
7818 }
7819
7820 /* If this is a global symbol, we count the number of
7821 relocations we need for this symbol. */
7822 if (h != NULL)
7823 {
7824 struct elf_aarch64_link_hash_entry *eh;
7825 eh = (struct elf_aarch64_link_hash_entry *) h;
7826 head = &eh->dyn_relocs;
7827 }
7828 else
7829 {
7830 /* Track dynamic relocs needed for local syms too.
7831 We really need local syms available to do this
7832 easily. Oh well. */
7833
7834 asection *s;
7835 void **vpp;
7836
7837 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7838 abfd, r_symndx);
7839 if (isym == NULL)
7840 return FALSE;
7841
7842 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7843 if (s == NULL)
7844 s = sec;
7845
7846 /* Beware of type punned pointers vs strict aliasing
7847 rules. */
7848 vpp = &(elf_section_data (s)->local_dynrel);
7849 head = (struct elf_dyn_relocs **) vpp;
7850 }
7851
7852 p = *head;
7853 if (p == NULL || p->sec != sec)
7854 {
7855 bfd_size_type amt = sizeof *p;
7856 p = ((struct elf_dyn_relocs *)
7857 bfd_zalloc (htab->root.dynobj, amt));
7858 if (p == NULL)
7859 return FALSE;
7860 p->next = *head;
7861 *head = p;
7862 p->sec = sec;
7863 }
7864
7865 p->count += 1;
7866
7867 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7868 p->pc_count += 1;
7869 }
7870 break;
7871
7872 /* RR: We probably want to keep a consistency check that
7873 there are no dangling GOT_PAGE relocs. */
7874 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7875 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7876 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7877 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7878 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7879 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7880 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7881 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7882 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7883 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7884 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7885 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7886 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7887 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7888 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7889 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7890 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7891 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7892 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7893 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7894 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7895 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7896 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7897 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7898 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7899 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7900 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7901 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7902 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7903 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7904 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7905 {
7906 unsigned got_type;
7907 unsigned old_got_type;
7908
7909 got_type = aarch64_reloc_got_type (bfd_r_type);
7910
7911 if (h)
7912 {
7913 h->got.refcount += 1;
7914 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7915 }
7916 else
7917 {
7918 struct elf_aarch64_local_symbol *locals;
7919
7920 if (!elfNN_aarch64_allocate_local_symbols
7921 (abfd, symtab_hdr->sh_info))
7922 return FALSE;
7923
7924 locals = elf_aarch64_locals (abfd);
7925 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7926 locals[r_symndx].got_refcount += 1;
7927 old_got_type = locals[r_symndx].got_type;
7928 }
7929
7930 /* If a variable is accessed with both general dynamic TLS
7931 methods, two slots may be created. */
7932 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7933 got_type |= old_got_type;
7934
7935 /* We will already have issued an error message if there
7936 is a TLS/non-TLS mismatch, based on the symbol type.
7937 So just combine any TLS types needed. */
7938 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7939 && got_type != GOT_NORMAL)
7940 got_type |= old_got_type;
7941
7942 /* If the symbol is accessed by both IE and GD methods, we
7943 are able to relax. Turn off the GD flag, without
7944 messing up with any other kind of TLS types that may be
7945 involved. */
7946 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7947 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7948
7949 if (old_got_type != got_type)
7950 {
7951 if (h != NULL)
7952 elf_aarch64_hash_entry (h)->got_type = got_type;
7953 else
7954 {
7955 struct elf_aarch64_local_symbol *locals;
7956 locals = elf_aarch64_locals (abfd);
7957 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7958 locals[r_symndx].got_type = got_type;
7959 }
7960 }
7961
7962 if (htab->root.dynobj == NULL)
7963 htab->root.dynobj = abfd;
7964 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7965 return FALSE;
7966 break;
7967 }
7968
7969 case BFD_RELOC_AARCH64_CALL26:
7970 case BFD_RELOC_AARCH64_JUMP26:
7971 /* If this is a local symbol then we resolve it
7972 directly without creating a PLT entry. */
7973 if (h == NULL)
7974 continue;
7975
7976 h->needs_plt = 1;
7977 if (h->plt.refcount <= 0)
7978 h->plt.refcount = 1;
7979 else
7980 h->plt.refcount += 1;
7981 break;
7982
7983 default:
7984 break;
7985 }
7986 }
7987
7988 return TRUE;
7989 }
7990
7991 /* Treat mapping symbols as special target symbols. */
7992
7993 static bfd_boolean
7994 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7995 asymbol *sym)
7996 {
7997 return bfd_is_aarch64_special_symbol_name (sym->name,
7998 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7999 }
8000
8001 /* This is a version of _bfd_elf_find_function() from dwarf2.c except that
8002 AArch64 mapping symbols are ignored when looking for function names. */
8003
8004 static bfd_boolean
8005 aarch64_elf_find_function (bfd * abfd,
8006 asymbol ** symbols,
8007 asection * section,
8008 bfd_vma offset,
8009 const char ** filename_ptr,
8010 const char ** functionname_ptr)
8011 {
8012 const char *filename = NULL;
8013 asymbol *func = NULL;
8014 bfd_vma low_func = 0;
8015 asymbol **p;
8016
8017 if (symbols == NULL)
8018 return FALSE;
8019
8020 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8021 return FALSE;
8022
8023 for (p = symbols; *p != NULL; p++)
8024 {
8025 elf_symbol_type *q;
8026
8027 q = (elf_symbol_type *) * p;
8028
8029 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
8030 {
8031 default:
8032 break;
8033 case STT_FILE:
8034 filename = bfd_asymbol_name (&q->symbol);
8035 break;
8036 case STT_FUNC:
8037 case STT_NOTYPE:
8038 /* Skip mapping symbols. */
8039 if ((q->symbol.flags & BSF_LOCAL)
8040 && (bfd_is_aarch64_special_symbol_name
8041 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
8042 continue;
8043 /* Fall through. */
8044 if (bfd_asymbol_section (&q->symbol) == section
8045 && q->symbol.value >= low_func && q->symbol.value <= offset)
8046 {
8047 func = (asymbol *) q;
8048 low_func = q->symbol.value;
8049 }
8050 break;
8051 }
8052 }
8053
8054 if (func == NULL)
8055 return FALSE;
8056
8057 if (filename_ptr)
8058 *filename_ptr = filename;
8059 if (functionname_ptr)
8060 *functionname_ptr = bfd_asymbol_name (func);
8061
8062 return TRUE;
8063 }
8064
8065
8066 /* Find the nearest line to a particular section and offset, for error
8067 reporting. This code is a duplicate of the code in elf.c, except
8068 that it uses aarch64_elf_find_function. */
8069
8070 static bfd_boolean
8071 elfNN_aarch64_find_nearest_line (bfd *abfd,
8072 asymbol **symbols,
8073 asection *section,
8074 bfd_vma offset,
8075 const char **filename_ptr,
8076 const char **functionname_ptr,
8077 unsigned int *line_ptr,
8078 unsigned int *discriminator_ptr)
8079 {
8080 bfd_boolean found = FALSE;
8081
8082 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8083 filename_ptr, functionname_ptr,
8084 line_ptr, discriminator_ptr,
8085 dwarf_debug_sections,
8086 &elf_tdata (abfd)->dwarf2_find_line_info))
8087 {
8088 if (!*functionname_ptr)
8089 aarch64_elf_find_function (abfd, symbols, section, offset,
8090 *filename_ptr ? NULL : filename_ptr,
8091 functionname_ptr);
8092
8093 return TRUE;
8094 }
8095
8096 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
8097 toolchain uses DWARF1. */
8098
8099 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8100 &found, filename_ptr,
8101 functionname_ptr, line_ptr,
8102 &elf_tdata (abfd)->line_info))
8103 return FALSE;
8104
8105 if (found && (*functionname_ptr || *line_ptr))
8106 return TRUE;
8107
8108 if (symbols == NULL)
8109 return FALSE;
8110
8111 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
8112 filename_ptr, functionname_ptr))
8113 return FALSE;
8114
8115 *line_ptr = 0;
8116 return TRUE;
8117 }
8118
8119 static bfd_boolean
8120 elfNN_aarch64_find_inliner_info (bfd *abfd,
8121 const char **filename_ptr,
8122 const char **functionname_ptr,
8123 unsigned int *line_ptr)
8124 {
8125 bfd_boolean found;
8126 found = _bfd_dwarf2_find_inliner_info
8127 (abfd, filename_ptr,
8128 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8129 return found;
8130 }
8131
8132
8133 static void
8134 elfNN_aarch64_post_process_headers (bfd *abfd,
8135 struct bfd_link_info *link_info)
8136 {
8137 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8138
8139 i_ehdrp = elf_elfheader (abfd);
8140 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8141
8142 _bfd_elf_post_process_headers (abfd, link_info);
8143 }
8144
8145 static enum elf_reloc_type_class
8146 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8147 const asection *rel_sec ATTRIBUTE_UNUSED,
8148 const Elf_Internal_Rela *rela)
8149 {
8150 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8151
8152 if (htab->root.dynsym != NULL
8153 && htab->root.dynsym->contents != NULL)
8154 {
8155 /* Check relocation against STT_GNU_IFUNC symbol if there are
8156 dynamic symbols. */
8157 bfd *abfd = info->output_bfd;
8158 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8159 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8160 if (r_symndx != STN_UNDEF)
8161 {
8162 Elf_Internal_Sym sym;
8163 if (!bed->s->swap_symbol_in (abfd,
8164 (htab->root.dynsym->contents
8165 + r_symndx * bed->s->sizeof_sym),
8166 0, &sym))
8167 {
8168 /* xgettext:c-format */
8169 _bfd_error_handler (_("%pB symbol number %lu references"
8170 " nonexistent SHT_SYMTAB_SHNDX section"),
8171 abfd, r_symndx);
8172 /* Ideally an error class should be returned here. */
8173 }
8174 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8175 return reloc_class_ifunc;
8176 }
8177 }
8178
8179 switch ((int) ELFNN_R_TYPE (rela->r_info))
8180 {
8181 case AARCH64_R (IRELATIVE):
8182 return reloc_class_ifunc;
8183 case AARCH64_R (RELATIVE):
8184 return reloc_class_relative;
8185 case AARCH64_R (JUMP_SLOT):
8186 return reloc_class_plt;
8187 case AARCH64_R (COPY):
8188 return reloc_class_copy;
8189 default:
8190 return reloc_class_normal;
8191 }
8192 }
8193
8194 /* Handle an AArch64 specific section when reading an object file. This is
8195 called when bfd_section_from_shdr finds a section with an unknown
8196 type. */
8197
8198 static bfd_boolean
8199 elfNN_aarch64_section_from_shdr (bfd *abfd,
8200 Elf_Internal_Shdr *hdr,
8201 const char *name, int shindex)
8202 {
8203 /* There ought to be a place to keep ELF backend specific flags, but
8204 at the moment there isn't one. We just keep track of the
8205 sections by their name, instead. Fortunately, the ABI gives
8206 names for all the AArch64 specific sections, so we will probably get
8207 away with this. */
8208 switch (hdr->sh_type)
8209 {
8210 case SHT_AARCH64_ATTRIBUTES:
8211 break;
8212
8213 default:
8214 return FALSE;
8215 }
8216
8217 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8218 return FALSE;
8219
8220 return TRUE;
8221 }
8222
8223 /* A structure used to record a list of sections, independently
8224 of the next and prev fields in the asection structure. */
8225 typedef struct section_list
8226 {
8227 asection *sec;
8228 struct section_list *next;
8229 struct section_list *prev;
8230 }
8231 section_list;
8232
8233 /* Unfortunately we need to keep a list of sections for which
8234 an _aarch64_elf_section_data structure has been allocated. This
8235 is because it is possible for functions like elfNN_aarch64_write_section
8236 to be called on a section which has had an elf_data_structure
8237 allocated for it (and so the used_by_bfd field is valid) but
8238 for which the AArch64 extended version of this structure - the
8239 _aarch64_elf_section_data structure - has not been allocated. */
8240 static section_list *sections_with_aarch64_elf_section_data = NULL;
8241
8242 static void
8243 record_section_with_aarch64_elf_section_data (asection *sec)
8244 {
8245 struct section_list *entry;
8246
8247 entry = bfd_malloc (sizeof (*entry));
8248 if (entry == NULL)
8249 return;
8250 entry->sec = sec;
8251 entry->next = sections_with_aarch64_elf_section_data;
8252 entry->prev = NULL;
8253 if (entry->next != NULL)
8254 entry->next->prev = entry;
8255 sections_with_aarch64_elf_section_data = entry;
8256 }
8257
8258 static struct section_list *
8259 find_aarch64_elf_section_entry (asection *sec)
8260 {
8261 struct section_list *entry;
8262 static struct section_list *last_entry = NULL;
8263
8264 /* This is a short cut for the typical case where the sections are added
8265 to the sections_with_aarch64_elf_section_data list in forward order and
8266 then looked up here in backwards order. This makes a real difference
8267 to the ld-srec/sec64k.exp linker test. */
8268 entry = sections_with_aarch64_elf_section_data;
8269 if (last_entry != NULL)
8270 {
8271 if (last_entry->sec == sec)
8272 entry = last_entry;
8273 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8274 entry = last_entry->next;
8275 }
8276
8277 for (; entry; entry = entry->next)
8278 if (entry->sec == sec)
8279 break;
8280
8281 if (entry)
8282 /* Record the entry prior to this one - it is the entry we are
8283 most likely to want to locate next time. Also this way if we
8284 have been called from
8285 unrecord_section_with_aarch64_elf_section_data () we will not
8286 be caching a pointer that is about to be freed. */
8287 last_entry = entry->prev;
8288
8289 return entry;
8290 }
8291
8292 static void
8293 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8294 {
8295 struct section_list *entry;
8296
8297 entry = find_aarch64_elf_section_entry (sec);
8298
8299 if (entry)
8300 {
8301 if (entry->prev != NULL)
8302 entry->prev->next = entry->next;
8303 if (entry->next != NULL)
8304 entry->next->prev = entry->prev;
8305 if (entry == sections_with_aarch64_elf_section_data)
8306 sections_with_aarch64_elf_section_data = entry->next;
8307 free (entry);
8308 }
8309 }
8310
8311
8312 typedef struct
8313 {
8314 void *finfo;
8315 struct bfd_link_info *info;
8316 asection *sec;
8317 int sec_shndx;
8318 int (*func) (void *, const char *, Elf_Internal_Sym *,
8319 asection *, struct elf_link_hash_entry *);
8320 } output_arch_syminfo;
8321
8322 enum map_symbol_type
8323 {
8324 AARCH64_MAP_INSN,
8325 AARCH64_MAP_DATA
8326 };
8327
8328
8329 /* Output a single mapping symbol. */
8330
8331 static bfd_boolean
8332 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8333 enum map_symbol_type type, bfd_vma offset)
8334 {
8335 static const char *names[2] = { "$x", "$d" };
8336 Elf_Internal_Sym sym;
8337
8338 sym.st_value = (osi->sec->output_section->vma
8339 + osi->sec->output_offset + offset);
8340 sym.st_size = 0;
8341 sym.st_other = 0;
8342 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8343 sym.st_shndx = osi->sec_shndx;
8344 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8345 }
8346
8347 /* Output a single local symbol for a generated stub. */
8348
8349 static bfd_boolean
8350 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8351 bfd_vma offset, bfd_vma size)
8352 {
8353 Elf_Internal_Sym sym;
8354
8355 sym.st_value = (osi->sec->output_section->vma
8356 + osi->sec->output_offset + offset);
8357 sym.st_size = size;
8358 sym.st_other = 0;
8359 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8360 sym.st_shndx = osi->sec_shndx;
8361 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8362 }
8363
8364 static bfd_boolean
8365 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8366 {
8367 struct elf_aarch64_stub_hash_entry *stub_entry;
8368 asection *stub_sec;
8369 bfd_vma addr;
8370 char *stub_name;
8371 output_arch_syminfo *osi;
8372
8373 /* Massage our args to the form they really have. */
8374 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8375 osi = (output_arch_syminfo *) in_arg;
8376
8377 stub_sec = stub_entry->stub_sec;
8378
8379 /* Ensure this stub is attached to the current section being
8380 processed. */
8381 if (stub_sec != osi->sec)
8382 return TRUE;
8383
8384 addr = (bfd_vma) stub_entry->stub_offset;
8385
8386 stub_name = stub_entry->output_name;
8387
8388 switch (stub_entry->stub_type)
8389 {
8390 case aarch64_stub_adrp_branch:
8391 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8392 sizeof (aarch64_adrp_branch_stub)))
8393 return FALSE;
8394 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8395 return FALSE;
8396 break;
8397 case aarch64_stub_long_branch:
8398 if (!elfNN_aarch64_output_stub_sym
8399 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8400 return FALSE;
8401 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8402 return FALSE;
8403 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8404 return FALSE;
8405 break;
8406 case aarch64_stub_erratum_835769_veneer:
8407 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8408 sizeof (aarch64_erratum_835769_stub)))
8409 return FALSE;
8410 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8411 return FALSE;
8412 break;
8413 case aarch64_stub_erratum_843419_veneer:
8414 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8415 sizeof (aarch64_erratum_843419_stub)))
8416 return FALSE;
8417 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8418 return FALSE;
8419 break;
8420 case aarch64_stub_none:
8421 break;
8422
8423 default:
8424 abort ();
8425 }
8426
8427 return TRUE;
8428 }
8429
8430 /* Output mapping symbols for linker generated sections. */
8431
8432 static bfd_boolean
8433 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8434 struct bfd_link_info *info,
8435 void *finfo,
8436 int (*func) (void *, const char *,
8437 Elf_Internal_Sym *,
8438 asection *,
8439 struct elf_link_hash_entry
8440 *))
8441 {
8442 output_arch_syminfo osi;
8443 struct elf_aarch64_link_hash_table *htab;
8444
8445 htab = elf_aarch64_hash_table (info);
8446
8447 osi.finfo = finfo;
8448 osi.info = info;
8449 osi.func = func;
8450
8451 /* Long calls stubs. */
8452 if (htab->stub_bfd && htab->stub_bfd->sections)
8453 {
8454 asection *stub_sec;
8455
8456 for (stub_sec = htab->stub_bfd->sections;
8457 stub_sec != NULL; stub_sec = stub_sec->next)
8458 {
8459 /* Ignore non-stub sections. */
8460 if (!strstr (stub_sec->name, STUB_SUFFIX))
8461 continue;
8462
8463 osi.sec = stub_sec;
8464
8465 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8466 (output_bfd, osi.sec->output_section);
8467
8468 /* The first instruction in a stub is always a branch. */
8469 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8470 return FALSE;
8471
8472 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8473 &osi);
8474 }
8475 }
8476
8477 /* Finally, output mapping symbols for the PLT. */
8478 if (!htab->root.splt || htab->root.splt->size == 0)
8479 return TRUE;
8480
8481 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8482 (output_bfd, htab->root.splt->output_section);
8483 osi.sec = htab->root.splt;
8484
8485 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8486
8487 return TRUE;
8488
8489 }
8490
8491 /* Allocate target specific section data. */
8492
8493 static bfd_boolean
8494 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8495 {
8496 if (!sec->used_by_bfd)
8497 {
8498 _aarch64_elf_section_data *sdata;
8499 bfd_size_type amt = sizeof (*sdata);
8500
8501 sdata = bfd_zalloc (abfd, amt);
8502 if (sdata == NULL)
8503 return FALSE;
8504 sec->used_by_bfd = sdata;
8505 }
8506
8507 record_section_with_aarch64_elf_section_data (sec);
8508
8509 return _bfd_elf_new_section_hook (abfd, sec);
8510 }
8511
8512
8513 static void
8514 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8515 asection *sec,
8516 void *ignore ATTRIBUTE_UNUSED)
8517 {
8518 unrecord_section_with_aarch64_elf_section_data (sec);
8519 }
8520
8521 static bfd_boolean
8522 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8523 {
8524 if (abfd->sections)
8525 bfd_map_over_sections (abfd,
8526 unrecord_section_via_map_over_sections, NULL);
8527
8528 return _bfd_elf_close_and_cleanup (abfd);
8529 }
8530
8531 static bfd_boolean
8532 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8533 {
8534 if (abfd->sections)
8535 bfd_map_over_sections (abfd,
8536 unrecord_section_via_map_over_sections, NULL);
8537
8538 return _bfd_free_cached_info (abfd);
8539 }
8540
8541 /* Create dynamic sections. This is different from the ARM backend in that
8542 the got, plt, gotplt and their relocation sections are all created in the
8543 standard part of the bfd elf backend. */
8544
8545 static bfd_boolean
8546 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8547 struct bfd_link_info *info)
8548 {
8549 /* We need to create .got section. */
8550 if (!aarch64_elf_create_got_section (dynobj, info))
8551 return FALSE;
8552
8553 return _bfd_elf_create_dynamic_sections (dynobj, info);
8554 }
8555
8556
8557 /* Allocate space in .plt, .got and associated reloc sections for
8558 dynamic relocs. */
8559
8560 static bfd_boolean
8561 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8562 {
8563 struct bfd_link_info *info;
8564 struct elf_aarch64_link_hash_table *htab;
8565 struct elf_aarch64_link_hash_entry *eh;
8566 struct elf_dyn_relocs *p;
8567
8568 /* An example of a bfd_link_hash_indirect symbol is versioned
8569 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8570 -> __gxx_personality_v0(bfd_link_hash_defined)
8571
8572 There is no need to process bfd_link_hash_indirect symbols here
8573 because we will also be presented with the concrete instance of
8574 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8575 called to copy all relevant data from the generic to the concrete
8576 symbol instance. */
8577 if (h->root.type == bfd_link_hash_indirect)
8578 return TRUE;
8579
8580 if (h->root.type == bfd_link_hash_warning)
8581 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8582
8583 info = (struct bfd_link_info *) inf;
8584 htab = elf_aarch64_hash_table (info);
8585
8586 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8587 here if it is defined and referenced in a non-shared object. */
8588 if (h->type == STT_GNU_IFUNC
8589 && h->def_regular)
8590 return TRUE;
8591 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8592 {
8593 /* Make sure this symbol is output as a dynamic symbol.
8594 Undefined weak syms won't yet be marked as dynamic. */
8595 if (h->dynindx == -1 && !h->forced_local
8596 && h->root.type == bfd_link_hash_undefweak)
8597 {
8598 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8599 return FALSE;
8600 }
8601
8602 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8603 {
8604 asection *s = htab->root.splt;
8605
8606 /* If this is the first .plt entry, make room for the special
8607 first entry. */
8608 if (s->size == 0)
8609 s->size += htab->plt_header_size;
8610
8611 h->plt.offset = s->size;
8612
8613 /* If this symbol is not defined in a regular file, and we are
8614 not generating a shared library, then set the symbol to this
8615 location in the .plt. This is required to make function
8616 pointers compare as equal between the normal executable and
8617 the shared library. */
8618 if (!bfd_link_pic (info) && !h->def_regular)
8619 {
8620 h->root.u.def.section = s;
8621 h->root.u.def.value = h->plt.offset;
8622 }
8623
8624 /* Make room for this entry. For now we only create the
8625 small model PLT entries. We later need to find a way
8626 of relaxing into these from the large model PLT entries. */
8627 s->size += htab->plt_entry_size;
8628
8629 /* We also need to make an entry in the .got.plt section, which
8630 will be placed in the .got section by the linker script. */
8631 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8632
8633 /* We also need to make an entry in the .rela.plt section. */
8634 htab->root.srelplt->size += RELOC_SIZE (htab);
8635
8636 /* We need to ensure that all GOT entries that serve the PLT
8637 are consecutive with the special GOT slots [0] [1] and
8638 [2]. Any addtional relocations, such as
8639 R_AARCH64_TLSDESC, must be placed after the PLT related
8640 entries. We abuse the reloc_count such that during
8641 sizing we adjust reloc_count to indicate the number of
8642 PLT related reserved entries. In subsequent phases when
8643 filling in the contents of the reloc entries, PLT related
8644 entries are placed by computing their PLT index (0
8645 .. reloc_count). While other none PLT relocs are placed
8646 at the slot indicated by reloc_count and reloc_count is
8647 updated. */
8648
8649 htab->root.srelplt->reloc_count++;
8650
8651 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8652 variant PCS symbols are present. */
8653 if (h->other & STO_AARCH64_VARIANT_PCS)
8654 htab->variant_pcs = 1;
8655
8656 }
8657 else
8658 {
8659 h->plt.offset = (bfd_vma) - 1;
8660 h->needs_plt = 0;
8661 }
8662 }
8663 else
8664 {
8665 h->plt.offset = (bfd_vma) - 1;
8666 h->needs_plt = 0;
8667 }
8668
8669 eh = (struct elf_aarch64_link_hash_entry *) h;
8670 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8671
8672 if (h->got.refcount > 0)
8673 {
8674 bfd_boolean dyn;
8675 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8676
8677 h->got.offset = (bfd_vma) - 1;
8678
8679 dyn = htab->root.dynamic_sections_created;
8680
8681 /* Make sure this symbol is output as a dynamic symbol.
8682 Undefined weak syms won't yet be marked as dynamic. */
8683 if (dyn && h->dynindx == -1 && !h->forced_local
8684 && h->root.type == bfd_link_hash_undefweak)
8685 {
8686 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8687 return FALSE;
8688 }
8689
8690 if (got_type == GOT_UNKNOWN)
8691 {
8692 }
8693 else if (got_type == GOT_NORMAL)
8694 {
8695 h->got.offset = htab->root.sgot->size;
8696 htab->root.sgot->size += GOT_ENTRY_SIZE;
8697 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8698 || h->root.type != bfd_link_hash_undefweak)
8699 && (bfd_link_pic (info)
8700 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8701 /* Undefined weak symbol in static PIE resolves to 0 without
8702 any dynamic relocations. */
8703 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8704 {
8705 htab->root.srelgot->size += RELOC_SIZE (htab);
8706 }
8707 }
8708 else
8709 {
8710 int indx;
8711 if (got_type & GOT_TLSDESC_GD)
8712 {
8713 eh->tlsdesc_got_jump_table_offset =
8714 (htab->root.sgotplt->size
8715 - aarch64_compute_jump_table_size (htab));
8716 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8717 h->got.offset = (bfd_vma) - 2;
8718 }
8719
8720 if (got_type & GOT_TLS_GD)
8721 {
8722 h->got.offset = htab->root.sgot->size;
8723 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8724 }
8725
8726 if (got_type & GOT_TLS_IE)
8727 {
8728 h->got.offset = htab->root.sgot->size;
8729 htab->root.sgot->size += GOT_ENTRY_SIZE;
8730 }
8731
8732 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8733 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8734 || h->root.type != bfd_link_hash_undefweak)
8735 && (!bfd_link_executable (info)
8736 || indx != 0
8737 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8738 {
8739 if (got_type & GOT_TLSDESC_GD)
8740 {
8741 htab->root.srelplt->size += RELOC_SIZE (htab);
8742 /* Note reloc_count not incremented here! We have
8743 already adjusted reloc_count for this relocation
8744 type. */
8745
8746 /* TLSDESC PLT is now needed, but not yet determined. */
8747 htab->tlsdesc_plt = (bfd_vma) - 1;
8748 }
8749
8750 if (got_type & GOT_TLS_GD)
8751 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8752
8753 if (got_type & GOT_TLS_IE)
8754 htab->root.srelgot->size += RELOC_SIZE (htab);
8755 }
8756 }
8757 }
8758 else
8759 {
8760 h->got.offset = (bfd_vma) - 1;
8761 }
8762
8763 if (eh->dyn_relocs == NULL)
8764 return TRUE;
8765
8766 /* In the shared -Bsymbolic case, discard space allocated for
8767 dynamic pc-relative relocs against symbols which turn out to be
8768 defined in regular objects. For the normal shared case, discard
8769 space for pc-relative relocs that have become local due to symbol
8770 visibility changes. */
8771
8772 if (bfd_link_pic (info))
8773 {
8774 /* Relocs that use pc_count are those that appear on a call
8775 insn, or certain REL relocs that can generated via assembly.
8776 We want calls to protected symbols to resolve directly to the
8777 function rather than going via the plt. If people want
8778 function pointer comparisons to work as expected then they
8779 should avoid writing weird assembly. */
8780 if (SYMBOL_CALLS_LOCAL (info, h))
8781 {
8782 struct elf_dyn_relocs **pp;
8783
8784 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8785 {
8786 p->count -= p->pc_count;
8787 p->pc_count = 0;
8788 if (p->count == 0)
8789 *pp = p->next;
8790 else
8791 pp = &p->next;
8792 }
8793 }
8794
8795 /* Also discard relocs on undefined weak syms with non-default
8796 visibility. */
8797 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8798 {
8799 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8800 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8801 eh->dyn_relocs = NULL;
8802
8803 /* Make sure undefined weak symbols are output as a dynamic
8804 symbol in PIEs. */
8805 else if (h->dynindx == -1
8806 && !h->forced_local
8807 && h->root.type == bfd_link_hash_undefweak
8808 && !bfd_elf_link_record_dynamic_symbol (info, h))
8809 return FALSE;
8810 }
8811
8812 }
8813 else if (ELIMINATE_COPY_RELOCS)
8814 {
8815 /* For the non-shared case, discard space for relocs against
8816 symbols which turn out to need copy relocs or are not
8817 dynamic. */
8818
8819 if (!h->non_got_ref
8820 && ((h->def_dynamic
8821 && !h->def_regular)
8822 || (htab->root.dynamic_sections_created
8823 && (h->root.type == bfd_link_hash_undefweak
8824 || h->root.type == bfd_link_hash_undefined))))
8825 {
8826 /* Make sure this symbol is output as a dynamic symbol.
8827 Undefined weak syms won't yet be marked as dynamic. */
8828 if (h->dynindx == -1
8829 && !h->forced_local
8830 && h->root.type == bfd_link_hash_undefweak
8831 && !bfd_elf_link_record_dynamic_symbol (info, h))
8832 return FALSE;
8833
8834 /* If that succeeded, we know we'll be keeping all the
8835 relocs. */
8836 if (h->dynindx != -1)
8837 goto keep;
8838 }
8839
8840 eh->dyn_relocs = NULL;
8841
8842 keep:;
8843 }
8844
8845 /* Finally, allocate space. */
8846 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8847 {
8848 asection *sreloc;
8849
8850 sreloc = elf_section_data (p->sec)->sreloc;
8851
8852 BFD_ASSERT (sreloc != NULL);
8853
8854 sreloc->size += p->count * RELOC_SIZE (htab);
8855 }
8856
8857 return TRUE;
8858 }
8859
8860 /* Allocate space in .plt, .got and associated reloc sections for
8861 ifunc dynamic relocs. */
8862
8863 static bfd_boolean
8864 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8865 void *inf)
8866 {
8867 struct bfd_link_info *info;
8868 struct elf_aarch64_link_hash_table *htab;
8869 struct elf_aarch64_link_hash_entry *eh;
8870
8871 /* An example of a bfd_link_hash_indirect symbol is versioned
8872 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8873 -> __gxx_personality_v0(bfd_link_hash_defined)
8874
8875 There is no need to process bfd_link_hash_indirect symbols here
8876 because we will also be presented with the concrete instance of
8877 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8878 called to copy all relevant data from the generic to the concrete
8879 symbol instance. */
8880 if (h->root.type == bfd_link_hash_indirect)
8881 return TRUE;
8882
8883 if (h->root.type == bfd_link_hash_warning)
8884 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8885
8886 info = (struct bfd_link_info *) inf;
8887 htab = elf_aarch64_hash_table (info);
8888
8889 eh = (struct elf_aarch64_link_hash_entry *) h;
8890
8891 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8892 here if it is defined and referenced in a non-shared object. */
8893 if (h->type == STT_GNU_IFUNC
8894 && h->def_regular)
8895 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8896 &eh->dyn_relocs,
8897 NULL,
8898 htab->plt_entry_size,
8899 htab->plt_header_size,
8900 GOT_ENTRY_SIZE,
8901 FALSE);
8902 return TRUE;
8903 }
8904
8905 /* Allocate space in .plt, .got and associated reloc sections for
8906 local ifunc dynamic relocs. */
8907
8908 static bfd_boolean
8909 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8910 {
8911 struct elf_link_hash_entry *h
8912 = (struct elf_link_hash_entry *) *slot;
8913
8914 if (h->type != STT_GNU_IFUNC
8915 || !h->def_regular
8916 || !h->ref_regular
8917 || !h->forced_local
8918 || h->root.type != bfd_link_hash_defined)
8919 abort ();
8920
8921 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8922 }
8923
8924 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8925 read-only sections. */
8926
8927 static bfd_boolean
8928 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8929 {
8930 asection *sec;
8931
8932 if (h->root.type == bfd_link_hash_indirect)
8933 return TRUE;
8934
8935 sec = readonly_dynrelocs (h);
8936 if (sec != NULL)
8937 {
8938 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8939
8940 info->flags |= DF_TEXTREL;
8941 info->callbacks->minfo
8942 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8943 sec->owner, h->root.root.string, sec);
8944
8945 /* Not an error, just cut short the traversal. */
8946 return FALSE;
8947 }
8948 return TRUE;
8949 }
8950
8951 /* This is the most important function of all . Innocuosly named
8952 though ! */
8953
8954 static bfd_boolean
8955 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8956 struct bfd_link_info *info)
8957 {
8958 struct elf_aarch64_link_hash_table *htab;
8959 bfd *dynobj;
8960 asection *s;
8961 bfd_boolean relocs;
8962 bfd *ibfd;
8963
8964 htab = elf_aarch64_hash_table ((info));
8965 dynobj = htab->root.dynobj;
8966
8967 BFD_ASSERT (dynobj != NULL);
8968
8969 if (htab->root.dynamic_sections_created)
8970 {
8971 if (bfd_link_executable (info) && !info->nointerp)
8972 {
8973 s = bfd_get_linker_section (dynobj, ".interp");
8974 if (s == NULL)
8975 abort ();
8976 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8977 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8978 }
8979 }
8980
8981 /* Set up .got offsets for local syms, and space for local dynamic
8982 relocs. */
8983 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8984 {
8985 struct elf_aarch64_local_symbol *locals = NULL;
8986 Elf_Internal_Shdr *symtab_hdr;
8987 asection *srel;
8988 unsigned int i;
8989
8990 if (!is_aarch64_elf (ibfd))
8991 continue;
8992
8993 for (s = ibfd->sections; s != NULL; s = s->next)
8994 {
8995 struct elf_dyn_relocs *p;
8996
8997 for (p = (struct elf_dyn_relocs *)
8998 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8999 {
9000 if (!bfd_is_abs_section (p->sec)
9001 && bfd_is_abs_section (p->sec->output_section))
9002 {
9003 /* Input section has been discarded, either because
9004 it is a copy of a linkonce section or due to
9005 linker script /DISCARD/, so we'll be discarding
9006 the relocs too. */
9007 }
9008 else if (p->count != 0)
9009 {
9010 srel = elf_section_data (p->sec)->sreloc;
9011 srel->size += p->count * RELOC_SIZE (htab);
9012 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9013 info->flags |= DF_TEXTREL;
9014 }
9015 }
9016 }
9017
9018 locals = elf_aarch64_locals (ibfd);
9019 if (!locals)
9020 continue;
9021
9022 symtab_hdr = &elf_symtab_hdr (ibfd);
9023 srel = htab->root.srelgot;
9024 for (i = 0; i < symtab_hdr->sh_info; i++)
9025 {
9026 locals[i].got_offset = (bfd_vma) - 1;
9027 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
9028 if (locals[i].got_refcount > 0)
9029 {
9030 unsigned got_type = locals[i].got_type;
9031 if (got_type & GOT_TLSDESC_GD)
9032 {
9033 locals[i].tlsdesc_got_jump_table_offset =
9034 (htab->root.sgotplt->size
9035 - aarch64_compute_jump_table_size (htab));
9036 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
9037 locals[i].got_offset = (bfd_vma) - 2;
9038 }
9039
9040 if (got_type & GOT_TLS_GD)
9041 {
9042 locals[i].got_offset = htab->root.sgot->size;
9043 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
9044 }
9045
9046 if (got_type & GOT_TLS_IE
9047 || got_type & GOT_NORMAL)
9048 {
9049 locals[i].got_offset = htab->root.sgot->size;
9050 htab->root.sgot->size += GOT_ENTRY_SIZE;
9051 }
9052
9053 if (got_type == GOT_UNKNOWN)
9054 {
9055 }
9056
9057 if (bfd_link_pic (info))
9058 {
9059 if (got_type & GOT_TLSDESC_GD)
9060 {
9061 htab->root.srelplt->size += RELOC_SIZE (htab);
9062 /* Note RELOC_COUNT not incremented here! */
9063 htab->tlsdesc_plt = (bfd_vma) - 1;
9064 }
9065
9066 if (got_type & GOT_TLS_GD)
9067 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
9068
9069 if (got_type & GOT_TLS_IE
9070 || got_type & GOT_NORMAL)
9071 htab->root.srelgot->size += RELOC_SIZE (htab);
9072 }
9073 }
9074 else
9075 {
9076 locals[i].got_refcount = (bfd_vma) - 1;
9077 }
9078 }
9079 }
9080
9081
9082 /* Allocate global sym .plt and .got entries, and space for global
9083 sym dynamic relocs. */
9084 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9085 info);
9086
9087 /* Allocate global ifunc sym .plt and .got entries, and space for global
9088 ifunc sym dynamic relocs. */
9089 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9090 info);
9091
9092 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9093 htab_traverse (htab->loc_hash_table,
9094 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9095 info);
9096
9097 /* For every jump slot reserved in the sgotplt, reloc_count is
9098 incremented. However, when we reserve space for TLS descriptors,
9099 it's not incremented, so in order to compute the space reserved
9100 for them, it suffices to multiply the reloc count by the jump
9101 slot size. */
9102
9103 if (htab->root.srelplt)
9104 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9105
9106 if (htab->tlsdesc_plt)
9107 {
9108 if (htab->root.splt->size == 0)
9109 htab->root.splt->size += htab->plt_header_size;
9110
9111 /* If we're not using lazy TLS relocations, don't generate the
9112 GOT and PLT entry required. */
9113 if (!(info->flags & DF_BIND_NOW))
9114 {
9115 htab->tlsdesc_plt = htab->root.splt->size;
9116 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9117
9118 htab->dt_tlsdesc_got = htab->root.sgot->size;
9119 htab->root.sgot->size += GOT_ENTRY_SIZE;
9120 }
9121 }
9122
9123 /* Init mapping symbols information to use later to distingush between
9124 code and data while scanning for errata. */
9125 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9126 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9127 {
9128 if (!is_aarch64_elf (ibfd))
9129 continue;
9130 bfd_elfNN_aarch64_init_maps (ibfd);
9131 }
9132
9133 /* We now have determined the sizes of the various dynamic sections.
9134 Allocate memory for them. */
9135 relocs = FALSE;
9136 for (s = dynobj->sections; s != NULL; s = s->next)
9137 {
9138 if ((s->flags & SEC_LINKER_CREATED) == 0)
9139 continue;
9140
9141 if (s == htab->root.splt
9142 || s == htab->root.sgot
9143 || s == htab->root.sgotplt
9144 || s == htab->root.iplt
9145 || s == htab->root.igotplt
9146 || s == htab->root.sdynbss
9147 || s == htab->root.sdynrelro)
9148 {
9149 /* Strip this section if we don't need it; see the
9150 comment below. */
9151 }
9152 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9153 {
9154 if (s->size != 0 && s != htab->root.srelplt)
9155 relocs = TRUE;
9156
9157 /* We use the reloc_count field as a counter if we need
9158 to copy relocs into the output file. */
9159 if (s != htab->root.srelplt)
9160 s->reloc_count = 0;
9161 }
9162 else
9163 {
9164 /* It's not one of our sections, so don't allocate space. */
9165 continue;
9166 }
9167
9168 if (s->size == 0)
9169 {
9170 /* If we don't need this section, strip it from the
9171 output file. This is mostly to handle .rela.bss and
9172 .rela.plt. We must create both sections in
9173 create_dynamic_sections, because they must be created
9174 before the linker maps input sections to output
9175 sections. The linker does that before
9176 adjust_dynamic_symbol is called, and it is that
9177 function which decides whether anything needs to go
9178 into these sections. */
9179 s->flags |= SEC_EXCLUDE;
9180 continue;
9181 }
9182
9183 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9184 continue;
9185
9186 /* Allocate memory for the section contents. We use bfd_zalloc
9187 here in case unused entries are not reclaimed before the
9188 section's contents are written out. This should not happen,
9189 but this way if it does, we get a R_AARCH64_NONE reloc instead
9190 of garbage. */
9191 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9192 if (s->contents == NULL)
9193 return FALSE;
9194 }
9195
9196 if (htab->root.dynamic_sections_created)
9197 {
9198 /* Add some entries to the .dynamic section. We fill in the
9199 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9200 must add the entries now so that we get the correct size for
9201 the .dynamic section. The DT_DEBUG entry is filled in by the
9202 dynamic linker and used by the debugger. */
9203 #define add_dynamic_entry(TAG, VAL) \
9204 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9205
9206 if (bfd_link_executable (info))
9207 {
9208 if (!add_dynamic_entry (DT_DEBUG, 0))
9209 return FALSE;
9210 }
9211
9212 if (htab->root.splt->size != 0)
9213 {
9214 if (!add_dynamic_entry (DT_PLTGOT, 0)
9215 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9216 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9217 || !add_dynamic_entry (DT_JMPREL, 0))
9218 return FALSE;
9219
9220 if (htab->variant_pcs
9221 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9222 return FALSE;
9223
9224 if (htab->tlsdesc_plt
9225 && !(info->flags & DF_BIND_NOW)
9226 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9227 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9228 return FALSE;
9229
9230 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9231 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9232 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9233 return FALSE;
9234
9235 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9236 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9237 return FALSE;
9238
9239 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9240 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9241 return FALSE;
9242 }
9243
9244 if (relocs)
9245 {
9246 if (!add_dynamic_entry (DT_RELA, 0)
9247 || !add_dynamic_entry (DT_RELASZ, 0)
9248 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9249 return FALSE;
9250
9251 /* If any dynamic relocs apply to a read-only section,
9252 then we need a DT_TEXTREL entry. */
9253 if ((info->flags & DF_TEXTREL) == 0)
9254 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9255
9256 if ((info->flags & DF_TEXTREL) != 0)
9257 {
9258 if (!add_dynamic_entry (DT_TEXTREL, 0))
9259 return FALSE;
9260 }
9261 }
9262 }
9263 #undef add_dynamic_entry
9264
9265 return TRUE;
9266 }
9267
9268 static inline void
9269 elf_aarch64_update_plt_entry (bfd *output_bfd,
9270 bfd_reloc_code_real_type r_type,
9271 bfd_byte *plt_entry, bfd_vma value)
9272 {
9273 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9274
9275 /* FIXME: We should check the return value from this function call. */
9276 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9277 }
9278
9279 static void
9280 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9281 struct elf_aarch64_link_hash_table
9282 *htab, bfd *output_bfd,
9283 struct bfd_link_info *info)
9284 {
9285 bfd_byte *plt_entry;
9286 bfd_vma plt_index;
9287 bfd_vma got_offset;
9288 bfd_vma gotplt_entry_address;
9289 bfd_vma plt_entry_address;
9290 Elf_Internal_Rela rela;
9291 bfd_byte *loc;
9292 asection *plt, *gotplt, *relplt;
9293
9294 /* When building a static executable, use .iplt, .igot.plt and
9295 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9296 if (htab->root.splt != NULL)
9297 {
9298 plt = htab->root.splt;
9299 gotplt = htab->root.sgotplt;
9300 relplt = htab->root.srelplt;
9301 }
9302 else
9303 {
9304 plt = htab->root.iplt;
9305 gotplt = htab->root.igotplt;
9306 relplt = htab->root.irelplt;
9307 }
9308
9309 /* Get the index in the procedure linkage table which
9310 corresponds to this symbol. This is the index of this symbol
9311 in all the symbols for which we are making plt entries. The
9312 first entry in the procedure linkage table is reserved.
9313
9314 Get the offset into the .got table of the entry that
9315 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9316 bytes. The first three are reserved for the dynamic linker.
9317
9318 For static executables, we don't reserve anything. */
9319
9320 if (plt == htab->root.splt)
9321 {
9322 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9323 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9324 }
9325 else
9326 {
9327 plt_index = h->plt.offset / htab->plt_entry_size;
9328 got_offset = plt_index * GOT_ENTRY_SIZE;
9329 }
9330
9331 plt_entry = plt->contents + h->plt.offset;
9332 plt_entry_address = plt->output_section->vma
9333 + plt->output_offset + h->plt.offset;
9334 gotplt_entry_address = gotplt->output_section->vma +
9335 gotplt->output_offset + got_offset;
9336
9337 /* Copy in the boiler-plate for the PLTn entry. */
9338 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9339
9340 /* First instruction in BTI enabled PLT stub is a BTI
9341 instruction so skip it. */
9342 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9343 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9344 plt_entry = plt_entry + 4;
9345
9346 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9347 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9348 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9349 plt_entry,
9350 PG (gotplt_entry_address) -
9351 PG (plt_entry_address));
9352
9353 /* Fill in the lo12 bits for the load from the pltgot. */
9354 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9355 plt_entry + 4,
9356 PG_OFFSET (gotplt_entry_address));
9357
9358 /* Fill in the lo12 bits for the add from the pltgot entry. */
9359 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9360 plt_entry + 8,
9361 PG_OFFSET (gotplt_entry_address));
9362
9363 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9364 bfd_put_NN (output_bfd,
9365 plt->output_section->vma + plt->output_offset,
9366 gotplt->contents + got_offset);
9367
9368 rela.r_offset = gotplt_entry_address;
9369
9370 if (h->dynindx == -1
9371 || ((bfd_link_executable (info)
9372 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9373 && h->def_regular
9374 && h->type == STT_GNU_IFUNC))
9375 {
9376 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9377 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9378 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9379 rela.r_addend = (h->root.u.def.value
9380 + h->root.u.def.section->output_section->vma
9381 + h->root.u.def.section->output_offset);
9382 }
9383 else
9384 {
9385 /* Fill in the entry in the .rela.plt section. */
9386 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9387 rela.r_addend = 0;
9388 }
9389
9390 /* Compute the relocation entry to used based on PLT index and do
9391 not adjust reloc_count. The reloc_count has already been adjusted
9392 to account for this entry. */
9393 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9394 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9395 }
9396
9397 /* Size sections even though they're not dynamic. We use it to setup
9398 _TLS_MODULE_BASE_, if needed. */
9399
9400 static bfd_boolean
9401 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9402 struct bfd_link_info *info)
9403 {
9404 asection *tls_sec;
9405
9406 if (bfd_link_relocatable (info))
9407 return TRUE;
9408
9409 tls_sec = elf_hash_table (info)->tls_sec;
9410
9411 if (tls_sec)
9412 {
9413 struct elf_link_hash_entry *tlsbase;
9414
9415 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9416 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9417
9418 if (tlsbase)
9419 {
9420 struct bfd_link_hash_entry *h = NULL;
9421 const struct elf_backend_data *bed =
9422 get_elf_backend_data (output_bfd);
9423
9424 if (!(_bfd_generic_link_add_one_symbol
9425 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9426 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9427 return FALSE;
9428
9429 tlsbase->type = STT_TLS;
9430 tlsbase = (struct elf_link_hash_entry *) h;
9431 tlsbase->def_regular = 1;
9432 tlsbase->other = STV_HIDDEN;
9433 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9434 }
9435 }
9436
9437 return TRUE;
9438 }
9439
9440 /* Finish up dynamic symbol handling. We set the contents of various
9441 dynamic sections here. */
9442
9443 static bfd_boolean
9444 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9445 struct bfd_link_info *info,
9446 struct elf_link_hash_entry *h,
9447 Elf_Internal_Sym *sym)
9448 {
9449 struct elf_aarch64_link_hash_table *htab;
9450 htab = elf_aarch64_hash_table (info);
9451
9452 if (h->plt.offset != (bfd_vma) - 1)
9453 {
9454 asection *plt, *gotplt, *relplt;
9455
9456 /* This symbol has an entry in the procedure linkage table. Set
9457 it up. */
9458
9459 /* When building a static executable, use .iplt, .igot.plt and
9460 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9461 if (htab->root.splt != NULL)
9462 {
9463 plt = htab->root.splt;
9464 gotplt = htab->root.sgotplt;
9465 relplt = htab->root.srelplt;
9466 }
9467 else
9468 {
9469 plt = htab->root.iplt;
9470 gotplt = htab->root.igotplt;
9471 relplt = htab->root.irelplt;
9472 }
9473
9474 /* This symbol has an entry in the procedure linkage table. Set
9475 it up. */
9476 if ((h->dynindx == -1
9477 && !((h->forced_local || bfd_link_executable (info))
9478 && h->def_regular
9479 && h->type == STT_GNU_IFUNC))
9480 || plt == NULL
9481 || gotplt == NULL
9482 || relplt == NULL)
9483 return FALSE;
9484
9485 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9486 if (!h->def_regular)
9487 {
9488 /* Mark the symbol as undefined, rather than as defined in
9489 the .plt section. */
9490 sym->st_shndx = SHN_UNDEF;
9491 /* If the symbol is weak we need to clear the value.
9492 Otherwise, the PLT entry would provide a definition for
9493 the symbol even if the symbol wasn't defined anywhere,
9494 and so the symbol would never be NULL. Leave the value if
9495 there were any relocations where pointer equality matters
9496 (this is a clue for the dynamic linker, to make function
9497 pointer comparisons work between an application and shared
9498 library). */
9499 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9500 sym->st_value = 0;
9501 }
9502 }
9503
9504 if (h->got.offset != (bfd_vma) - 1
9505 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9506 /* Undefined weak symbol in static PIE resolves to 0 without
9507 any dynamic relocations. */
9508 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9509 {
9510 Elf_Internal_Rela rela;
9511 bfd_byte *loc;
9512
9513 /* This symbol has an entry in the global offset table. Set it
9514 up. */
9515 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9516 abort ();
9517
9518 rela.r_offset = (htab->root.sgot->output_section->vma
9519 + htab->root.sgot->output_offset
9520 + (h->got.offset & ~(bfd_vma) 1));
9521
9522 if (h->def_regular
9523 && h->type == STT_GNU_IFUNC)
9524 {
9525 if (bfd_link_pic (info))
9526 {
9527 /* Generate R_AARCH64_GLOB_DAT. */
9528 goto do_glob_dat;
9529 }
9530 else
9531 {
9532 asection *plt;
9533
9534 if (!h->pointer_equality_needed)
9535 abort ();
9536
9537 /* For non-shared object, we can't use .got.plt, which
9538 contains the real function address if we need pointer
9539 equality. We load the GOT entry with the PLT entry. */
9540 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9541 bfd_put_NN (output_bfd, (plt->output_section->vma
9542 + plt->output_offset
9543 + h->plt.offset),
9544 htab->root.sgot->contents
9545 + (h->got.offset & ~(bfd_vma) 1));
9546 return TRUE;
9547 }
9548 }
9549 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9550 {
9551 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9552 return FALSE;
9553
9554 BFD_ASSERT ((h->got.offset & 1) != 0);
9555 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9556 rela.r_addend = (h->root.u.def.value
9557 + h->root.u.def.section->output_section->vma
9558 + h->root.u.def.section->output_offset);
9559 }
9560 else
9561 {
9562 do_glob_dat:
9563 BFD_ASSERT ((h->got.offset & 1) == 0);
9564 bfd_put_NN (output_bfd, (bfd_vma) 0,
9565 htab->root.sgot->contents + h->got.offset);
9566 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9567 rela.r_addend = 0;
9568 }
9569
9570 loc = htab->root.srelgot->contents;
9571 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9572 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9573 }
9574
9575 if (h->needs_copy)
9576 {
9577 Elf_Internal_Rela rela;
9578 asection *s;
9579 bfd_byte *loc;
9580
9581 /* This symbol needs a copy reloc. Set it up. */
9582 if (h->dynindx == -1
9583 || (h->root.type != bfd_link_hash_defined
9584 && h->root.type != bfd_link_hash_defweak)
9585 || htab->root.srelbss == NULL)
9586 abort ();
9587
9588 rela.r_offset = (h->root.u.def.value
9589 + h->root.u.def.section->output_section->vma
9590 + h->root.u.def.section->output_offset);
9591 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9592 rela.r_addend = 0;
9593 if (h->root.u.def.section == htab->root.sdynrelro)
9594 s = htab->root.sreldynrelro;
9595 else
9596 s = htab->root.srelbss;
9597 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9598 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9599 }
9600
9601 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9602 be NULL for local symbols. */
9603 if (sym != NULL
9604 && (h == elf_hash_table (info)->hdynamic
9605 || h == elf_hash_table (info)->hgot))
9606 sym->st_shndx = SHN_ABS;
9607
9608 return TRUE;
9609 }
9610
9611 /* Finish up local dynamic symbol handling. We set the contents of
9612 various dynamic sections here. */
9613
9614 static bfd_boolean
9615 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9616 {
9617 struct elf_link_hash_entry *h
9618 = (struct elf_link_hash_entry *) *slot;
9619 struct bfd_link_info *info
9620 = (struct bfd_link_info *) inf;
9621
9622 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9623 info, h, NULL);
9624 }
9625
9626 static void
9627 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9628 struct elf_aarch64_link_hash_table
9629 *htab)
9630 {
9631 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9632 small and large plts and at the minute just generates
9633 the small PLT. */
9634
9635 /* PLT0 of the small PLT looks like this in ELF64 -
9636 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9637 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9638 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9639 // symbol resolver
9640 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9641 // GOTPLT entry for this.
9642 br x17
9643 PLT0 will be slightly different in ELF32 due to different got entry
9644 size. */
9645 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9646 bfd_vma plt_base;
9647
9648
9649 memcpy (htab->root.splt->contents, htab->plt0_entry,
9650 htab->plt_header_size);
9651 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9652 htab->plt_header_size;
9653
9654 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9655 + htab->root.sgotplt->output_offset
9656 + GOT_ENTRY_SIZE * 2);
9657
9658 plt_base = htab->root.splt->output_section->vma +
9659 htab->root.splt->output_offset;
9660
9661 /* First instruction in BTI enabled PLT stub is a BTI
9662 instruction so skip it. */
9663 bfd_byte *plt0_entry = htab->root.splt->contents;
9664 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9665 plt0_entry = plt0_entry + 4;
9666
9667 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9668 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9669 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9670 plt0_entry + 4,
9671 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9672
9673 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9674 plt0_entry + 8,
9675 PG_OFFSET (plt_got_2nd_ent));
9676
9677 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9678 plt0_entry + 12,
9679 PG_OFFSET (plt_got_2nd_ent));
9680 }
9681
9682 static bfd_boolean
9683 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9684 struct bfd_link_info *info)
9685 {
9686 struct elf_aarch64_link_hash_table *htab;
9687 bfd *dynobj;
9688 asection *sdyn;
9689
9690 htab = elf_aarch64_hash_table (info);
9691 dynobj = htab->root.dynobj;
9692 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9693
9694 if (htab->root.dynamic_sections_created)
9695 {
9696 ElfNN_External_Dyn *dyncon, *dynconend;
9697
9698 if (sdyn == NULL || htab->root.sgot == NULL)
9699 abort ();
9700
9701 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9702 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9703 for (; dyncon < dynconend; dyncon++)
9704 {
9705 Elf_Internal_Dyn dyn;
9706 asection *s;
9707
9708 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9709
9710 switch (dyn.d_tag)
9711 {
9712 default:
9713 continue;
9714
9715 case DT_PLTGOT:
9716 s = htab->root.sgotplt;
9717 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9718 break;
9719
9720 case DT_JMPREL:
9721 s = htab->root.srelplt;
9722 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9723 break;
9724
9725 case DT_PLTRELSZ:
9726 s = htab->root.srelplt;
9727 dyn.d_un.d_val = s->size;
9728 break;
9729
9730 case DT_TLSDESC_PLT:
9731 s = htab->root.splt;
9732 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9733 + htab->tlsdesc_plt;
9734 break;
9735
9736 case DT_TLSDESC_GOT:
9737 s = htab->root.sgot;
9738 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9739 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9740 + htab->dt_tlsdesc_got;
9741 break;
9742 }
9743
9744 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9745 }
9746
9747 }
9748
9749 /* Fill in the special first entry in the procedure linkage table. */
9750 if (htab->root.splt && htab->root.splt->size > 0)
9751 {
9752 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9753
9754 elf_section_data (htab->root.splt->output_section)->
9755 this_hdr.sh_entsize = htab->plt_entry_size;
9756
9757
9758 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9759 {
9760 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9761 bfd_put_NN (output_bfd, (bfd_vma) 0,
9762 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9763
9764 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9765 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9766
9767 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9768 if (type == PLT_BTI || type == PLT_BTI_PAC)
9769 {
9770 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9771 }
9772
9773 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9774 entry, htab->tlsdesc_plt_entry_size);
9775
9776 {
9777 bfd_vma adrp1_addr =
9778 htab->root.splt->output_section->vma
9779 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9780
9781 bfd_vma adrp2_addr = adrp1_addr + 4;
9782
9783 bfd_vma got_addr =
9784 htab->root.sgot->output_section->vma
9785 + htab->root.sgot->output_offset;
9786
9787 bfd_vma pltgot_addr =
9788 htab->root.sgotplt->output_section->vma
9789 + htab->root.sgotplt->output_offset;
9790
9791 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9792
9793 bfd_byte *plt_entry =
9794 htab->root.splt->contents + htab->tlsdesc_plt;
9795
9796 /* First instruction in BTI enabled PLT stub is a BTI
9797 instruction so skip it. */
9798 if (type & PLT_BTI)
9799 {
9800 plt_entry = plt_entry + 4;
9801 adrp1_addr = adrp1_addr + 4;
9802 adrp2_addr = adrp2_addr + 4;
9803 }
9804
9805 /* adrp x2, DT_TLSDESC_GOT */
9806 elf_aarch64_update_plt_entry (output_bfd,
9807 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9808 plt_entry + 4,
9809 (PG (dt_tlsdesc_got)
9810 - PG (adrp1_addr)));
9811
9812 /* adrp x3, 0 */
9813 elf_aarch64_update_plt_entry (output_bfd,
9814 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9815 plt_entry + 8,
9816 (PG (pltgot_addr)
9817 - PG (adrp2_addr)));
9818
9819 /* ldr x2, [x2, #0] */
9820 elf_aarch64_update_plt_entry (output_bfd,
9821 BFD_RELOC_AARCH64_LDSTNN_LO12,
9822 plt_entry + 12,
9823 PG_OFFSET (dt_tlsdesc_got));
9824
9825 /* add x3, x3, 0 */
9826 elf_aarch64_update_plt_entry (output_bfd,
9827 BFD_RELOC_AARCH64_ADD_LO12,
9828 plt_entry + 16,
9829 PG_OFFSET (pltgot_addr));
9830 }
9831 }
9832 }
9833
9834 if (htab->root.sgotplt)
9835 {
9836 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9837 {
9838 _bfd_error_handler
9839 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9840 return FALSE;
9841 }
9842
9843 /* Fill in the first three entries in the global offset table. */
9844 if (htab->root.sgotplt->size > 0)
9845 {
9846 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9847
9848 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9849 bfd_put_NN (output_bfd,
9850 (bfd_vma) 0,
9851 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9852 bfd_put_NN (output_bfd,
9853 (bfd_vma) 0,
9854 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9855 }
9856
9857 if (htab->root.sgot)
9858 {
9859 if (htab->root.sgot->size > 0)
9860 {
9861 bfd_vma addr =
9862 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9863 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9864 }
9865 }
9866
9867 elf_section_data (htab->root.sgotplt->output_section)->
9868 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9869 }
9870
9871 if (htab->root.sgot && htab->root.sgot->size > 0)
9872 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9873 = GOT_ENTRY_SIZE;
9874
9875 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9876 htab_traverse (htab->loc_hash_table,
9877 elfNN_aarch64_finish_local_dynamic_symbol,
9878 info);
9879
9880 return TRUE;
9881 }
9882
9883 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9884 static aarch64_plt_type
9885 get_plt_type (bfd *abfd)
9886 {
9887 aarch64_plt_type ret = PLT_NORMAL;
9888 bfd_byte *contents, *extdyn, *extdynend;
9889 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9890 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9891 return ret;
9892 extdyn = contents;
9893 extdynend = contents + sec->size;
9894 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9895 {
9896 Elf_Internal_Dyn dyn;
9897 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9898
9899 /* Let's check the processor specific dynamic array tags. */
9900 bfd_vma tag = dyn.d_tag;
9901 if (tag < DT_LOPROC || tag > DT_HIPROC)
9902 continue;
9903
9904 switch (tag)
9905 {
9906 case DT_AARCH64_BTI_PLT:
9907 ret |= PLT_BTI;
9908 break;
9909
9910 case DT_AARCH64_PAC_PLT:
9911 ret |= PLT_PAC;
9912 break;
9913
9914 default: break;
9915 }
9916 }
9917 free (contents);
9918 return ret;
9919 }
9920
9921 static long
9922 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9923 long symcount,
9924 asymbol **syms,
9925 long dynsymcount,
9926 asymbol **dynsyms,
9927 asymbol **ret)
9928 {
9929 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9930 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9931 dynsymcount, dynsyms, ret);
9932 }
9933
9934 /* Return address for Ith PLT stub in section PLT, for relocation REL
9935 or (bfd_vma) -1 if it should not be included. */
9936
9937 static bfd_vma
9938 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9939 const arelent *rel ATTRIBUTE_UNUSED)
9940 {
9941 size_t plt0_size = PLT_ENTRY_SIZE;
9942 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9943
9944 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9945 {
9946 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9947 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9948 else
9949 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9950 }
9951 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9952 {
9953 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9954 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9955 }
9956 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9957 {
9958 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9959 }
9960
9961 return plt->vma + plt0_size + i * pltn_size;
9962 }
9963
9964 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9965 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9966 It also allows a period initiated suffix to be added to the symbol, ie:
9967 "$[adtx]\.[:sym_char]+". */
9968
9969 static bfd_boolean
9970 is_aarch64_mapping_symbol (const char * name)
9971 {
9972 return name != NULL /* Paranoia. */
9973 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9974 the mapping symbols could have acquired a prefix.
9975 We do not support this here, since such symbols no
9976 longer conform to the ARM ELF ABI. */
9977 && (name[1] == 'd' || name[1] == 'x')
9978 && (name[2] == 0 || name[2] == '.');
9979 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9980 any characters that follow the period are legal characters for the body
9981 of a symbol's name. For now we just assume that this is the case. */
9982 }
9983
9984 /* Make sure that mapping symbols in object files are not removed via the
9985 "strip --strip-unneeded" tool. These symbols might needed in order to
9986 correctly generate linked files. Once an object file has been linked,
9987 it should be safe to remove them. */
9988
9989 static void
9990 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9991 {
9992 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9993 && sym->section != bfd_abs_section_ptr
9994 && is_aarch64_mapping_symbol (sym->name))
9995 sym->flags |= BSF_KEEP;
9996 }
9997
9998 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9999 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
10000 for the effect of GNU properties of the output_bfd. */
10001 static bfd *
10002 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
10003 {
10004 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
10005 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
10006 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
10007 elf_aarch64_tdata (info->output_bfd)->plt_type
10008 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
10009 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
10010 return pbfd;
10011 }
10012
10013 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
10014 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
10015 for the effect of GNU properties of the output_bfd. */
10016 static bfd_boolean
10017 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
10018 bfd *abfd, bfd *bbfd,
10019 elf_property *aprop,
10020 elf_property *bprop)
10021 {
10022 uint32_t prop
10023 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
10024
10025 /* If output has been marked with BTI using command line argument, give out
10026 warning if necessary. */
10027 /* Properties are merged per type, hence only check for warnings when merging
10028 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
10029 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
10030 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
10031 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
10032 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
10033 {
10034 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10035 || !aprop)
10036 {
10037 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10038 "all inputs do not have BTI in NOTE section."),
10039 abfd);
10040 }
10041 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
10042 || !bprop)
10043 {
10044 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
10045 "all inputs do not have BTI in NOTE section."),
10046 bbfd);
10047 }
10048 }
10049
10050 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
10051 bprop, prop);
10052 }
10053
10054 /* We use this so we can override certain functions
10055 (though currently we don't). */
10056
10057 const struct elf_size_info elfNN_aarch64_size_info =
10058 {
10059 sizeof (ElfNN_External_Ehdr),
10060 sizeof (ElfNN_External_Phdr),
10061 sizeof (ElfNN_External_Shdr),
10062 sizeof (ElfNN_External_Rel),
10063 sizeof (ElfNN_External_Rela),
10064 sizeof (ElfNN_External_Sym),
10065 sizeof (ElfNN_External_Dyn),
10066 sizeof (Elf_External_Note),
10067 4, /* Hash table entry size. */
10068 1, /* Internal relocs per external relocs. */
10069 ARCH_SIZE, /* Arch size. */
10070 LOG_FILE_ALIGN, /* Log_file_align. */
10071 ELFCLASSNN, EV_CURRENT,
10072 bfd_elfNN_write_out_phdrs,
10073 bfd_elfNN_write_shdrs_and_ehdr,
10074 bfd_elfNN_checksum_contents,
10075 bfd_elfNN_write_relocs,
10076 bfd_elfNN_swap_symbol_in,
10077 bfd_elfNN_swap_symbol_out,
10078 bfd_elfNN_slurp_reloc_table,
10079 bfd_elfNN_slurp_symbol_table,
10080 bfd_elfNN_swap_dyn_in,
10081 bfd_elfNN_swap_dyn_out,
10082 bfd_elfNN_swap_reloc_in,
10083 bfd_elfNN_swap_reloc_out,
10084 bfd_elfNN_swap_reloca_in,
10085 bfd_elfNN_swap_reloca_out
10086 };
10087
10088 #define ELF_ARCH bfd_arch_aarch64
10089 #define ELF_MACHINE_CODE EM_AARCH64
10090 #define ELF_MAXPAGESIZE 0x10000
10091 #define ELF_MINPAGESIZE 0x1000
10092 #define ELF_COMMONPAGESIZE 0x1000
10093
10094 #define bfd_elfNN_close_and_cleanup \
10095 elfNN_aarch64_close_and_cleanup
10096
10097 #define bfd_elfNN_bfd_free_cached_info \
10098 elfNN_aarch64_bfd_free_cached_info
10099
10100 #define bfd_elfNN_bfd_is_target_special_symbol \
10101 elfNN_aarch64_is_target_special_symbol
10102
10103 #define bfd_elfNN_bfd_link_hash_table_create \
10104 elfNN_aarch64_link_hash_table_create
10105
10106 #define bfd_elfNN_bfd_merge_private_bfd_data \
10107 elfNN_aarch64_merge_private_bfd_data
10108
10109 #define bfd_elfNN_bfd_print_private_bfd_data \
10110 elfNN_aarch64_print_private_bfd_data
10111
10112 #define bfd_elfNN_bfd_reloc_type_lookup \
10113 elfNN_aarch64_reloc_type_lookup
10114
10115 #define bfd_elfNN_bfd_reloc_name_lookup \
10116 elfNN_aarch64_reloc_name_lookup
10117
10118 #define bfd_elfNN_bfd_set_private_flags \
10119 elfNN_aarch64_set_private_flags
10120
10121 #define bfd_elfNN_find_inliner_info \
10122 elfNN_aarch64_find_inliner_info
10123
10124 #define bfd_elfNN_find_nearest_line \
10125 elfNN_aarch64_find_nearest_line
10126
10127 #define bfd_elfNN_get_synthetic_symtab \
10128 elfNN_aarch64_get_synthetic_symtab
10129
10130 #define bfd_elfNN_mkobject \
10131 elfNN_aarch64_mkobject
10132
10133 #define bfd_elfNN_new_section_hook \
10134 elfNN_aarch64_new_section_hook
10135
10136 #define elf_backend_adjust_dynamic_symbol \
10137 elfNN_aarch64_adjust_dynamic_symbol
10138
10139 #define elf_backend_always_size_sections \
10140 elfNN_aarch64_always_size_sections
10141
10142 #define elf_backend_check_relocs \
10143 elfNN_aarch64_check_relocs
10144
10145 #define elf_backend_copy_indirect_symbol \
10146 elfNN_aarch64_copy_indirect_symbol
10147
10148 #define elf_backend_merge_symbol_attribute \
10149 elfNN_aarch64_merge_symbol_attribute
10150
10151 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10152 to them in our hash. */
10153 #define elf_backend_create_dynamic_sections \
10154 elfNN_aarch64_create_dynamic_sections
10155
10156 #define elf_backend_init_index_section \
10157 _bfd_elf_init_2_index_sections
10158
10159 #define elf_backend_finish_dynamic_sections \
10160 elfNN_aarch64_finish_dynamic_sections
10161
10162 #define elf_backend_finish_dynamic_symbol \
10163 elfNN_aarch64_finish_dynamic_symbol
10164
10165 #define elf_backend_object_p \
10166 elfNN_aarch64_object_p
10167
10168 #define elf_backend_output_arch_local_syms \
10169 elfNN_aarch64_output_arch_local_syms
10170
10171 #define elf_backend_plt_sym_val \
10172 elfNN_aarch64_plt_sym_val
10173
10174 #define elf_backend_post_process_headers \
10175 elfNN_aarch64_post_process_headers
10176
10177 #define elf_backend_relocate_section \
10178 elfNN_aarch64_relocate_section
10179
10180 #define elf_backend_reloc_type_class \
10181 elfNN_aarch64_reloc_type_class
10182
10183 #define elf_backend_section_from_shdr \
10184 elfNN_aarch64_section_from_shdr
10185
10186 #define elf_backend_size_dynamic_sections \
10187 elfNN_aarch64_size_dynamic_sections
10188
10189 #define elf_backend_size_info \
10190 elfNN_aarch64_size_info
10191
10192 #define elf_backend_write_section \
10193 elfNN_aarch64_write_section
10194
10195 #define elf_backend_symbol_processing \
10196 elfNN_aarch64_backend_symbol_processing
10197
10198 #define elf_backend_setup_gnu_properties \
10199 elfNN_aarch64_link_setup_gnu_properties
10200
10201 #define elf_backend_merge_gnu_properties \
10202 elfNN_aarch64_merge_gnu_properties
10203
10204 #define elf_backend_can_refcount 1
10205 #define elf_backend_can_gc_sections 1
10206 #define elf_backend_plt_readonly 1
10207 #define elf_backend_want_got_plt 1
10208 #define elf_backend_want_plt_sym 0
10209 #define elf_backend_want_dynrelro 1
10210 #define elf_backend_may_use_rel_p 0
10211 #define elf_backend_may_use_rela_p 1
10212 #define elf_backend_default_use_rela_p 1
10213 #define elf_backend_rela_normal 1
10214 #define elf_backend_dtrel_excludes_plt 1
10215 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10216 #define elf_backend_default_execstack 0
10217 #define elf_backend_extern_protected_data 1
10218 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10219
10220 #undef elf_backend_obj_attrs_section
10221 #define elf_backend_obj_attrs_section ".ARM.attributes"
10222
10223 #include "elfNN-target.h"
10224
10225 /* CloudABI support. */
10226
10227 #undef TARGET_LITTLE_SYM
10228 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10229 #undef TARGET_LITTLE_NAME
10230 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10231 #undef TARGET_BIG_SYM
10232 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10233 #undef TARGET_BIG_NAME
10234 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10235
10236 #undef ELF_OSABI
10237 #define ELF_OSABI ELFOSABI_CLOUDABI
10238
10239 #undef elfNN_bed
10240 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10241
10242 #include "elfNN-target.h"
This page took 0.435272 seconds and 4 git commands to generate.