[LD][AARCH64]Add BFD_RELOC_AARCH64_LD64_GOTOFF_LO15 Support.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
207 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
208
209 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
210 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
225
226 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
227 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
239
240 #define ELIMINATE_COPY_RELOCS 0
241
242 /* Return size of a relocation entry. HTAB is the bfd's
243 elf_aarch64_link_hash_entry. */
244 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
245
246 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
247 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
248 #define PLT_ENTRY_SIZE (32)
249 #define PLT_SMALL_ENTRY_SIZE (16)
250 #define PLT_TLSDESC_ENTRY_SIZE (32)
251
252 /* Encoding of the nop instruction */
253 #define INSN_NOP 0xd503201f
254
255 #define aarch64_compute_jump_table_size(htab) \
256 (((htab)->root.srelplt == NULL) ? 0 \
257 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
258
259 /* The first entry in a procedure linkage table looks like this
260 if the distance between the PLTGOT and the PLT is < 4GB use
261 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
262 in x16 and needs to work out PLTGOT[1] by using an address of
263 [x16,#-GOT_ENTRY_SIZE]. */
264 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
265 {
266 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
267 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
268 #if ARCH_SIZE == 64
269 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
270 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
271 #else
272 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
273 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
274 #endif
275 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
276 0x1f, 0x20, 0x03, 0xd5, /* nop */
277 0x1f, 0x20, 0x03, 0xd5, /* nop */
278 0x1f, 0x20, 0x03, 0xd5, /* nop */
279 };
280
281 /* Per function entry in a procedure linkage table looks like this
282 if the distance between the PLTGOT and the PLT is < 4GB use
283 these PLT entries. */
284 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
285 {
286 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
287 #if ARCH_SIZE == 64
288 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
289 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
290 #else
291 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
292 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
293 #endif
294 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
295 };
296
297 static const bfd_byte
298 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
299 {
300 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
301 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
302 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
303 #if ARCH_SIZE == 64
304 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
305 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
306 #else
307 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
308 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
309 #endif
310 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
311 0x1f, 0x20, 0x03, 0xd5, /* nop */
312 0x1f, 0x20, 0x03, 0xd5, /* nop */
313 };
314
315 #define elf_info_to_howto elfNN_aarch64_info_to_howto
316 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
317
318 #define AARCH64_ELF_ABI_VERSION 0
319
320 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
321 #define ALL_ONES (~ (bfd_vma) 0)
322
323 /* Indexed by the bfd interal reloc enumerators.
324 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
325 in reloc.c. */
326
327 static reloc_howto_type elfNN_aarch64_howto_table[] =
328 {
329 EMPTY_HOWTO (0),
330
331 /* Basic data relocations. */
332
333 #if ARCH_SIZE == 64
334 HOWTO (R_AARCH64_NULL, /* type */
335 0, /* rightshift */
336 3, /* size (0 = byte, 1 = short, 2 = long) */
337 0, /* bitsize */
338 FALSE, /* pc_relative */
339 0, /* bitpos */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AARCH64_NULL", /* name */
343 FALSE, /* partial_inplace */
344 0, /* src_mask */
345 0, /* dst_mask */
346 FALSE), /* pcrel_offset */
347 #else
348 HOWTO (R_AARCH64_NONE, /* type */
349 0, /* rightshift */
350 3, /* size (0 = byte, 1 = short, 2 = long) */
351 0, /* bitsize */
352 FALSE, /* pc_relative */
353 0, /* bitpos */
354 complain_overflow_dont, /* complain_on_overflow */
355 bfd_elf_generic_reloc, /* special_function */
356 "R_AARCH64_NONE", /* name */
357 FALSE, /* partial_inplace */
358 0, /* src_mask */
359 0, /* dst_mask */
360 FALSE), /* pcrel_offset */
361 #endif
362
363 /* .xword: (S+A) */
364 HOWTO64 (AARCH64_R (ABS64), /* type */
365 0, /* rightshift */
366 4, /* size (4 = long long) */
367 64, /* bitsize */
368 FALSE, /* pc_relative */
369 0, /* bitpos */
370 complain_overflow_unsigned, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 AARCH64_R_STR (ABS64), /* name */
373 FALSE, /* partial_inplace */
374 ALL_ONES, /* src_mask */
375 ALL_ONES, /* dst_mask */
376 FALSE), /* pcrel_offset */
377
378 /* .word: (S+A) */
379 HOWTO (AARCH64_R (ABS32), /* type */
380 0, /* rightshift */
381 2, /* size (0 = byte, 1 = short, 2 = long) */
382 32, /* bitsize */
383 FALSE, /* pc_relative */
384 0, /* bitpos */
385 complain_overflow_unsigned, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 AARCH64_R_STR (ABS32), /* name */
388 FALSE, /* partial_inplace */
389 0xffffffff, /* src_mask */
390 0xffffffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392
393 /* .half: (S+A) */
394 HOWTO (AARCH64_R (ABS16), /* type */
395 0, /* rightshift */
396 1, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 FALSE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_unsigned, /* complain_on_overflow */
401 bfd_elf_generic_reloc, /* special_function */
402 AARCH64_R_STR (ABS16), /* name */
403 FALSE, /* partial_inplace */
404 0xffff, /* src_mask */
405 0xffff, /* dst_mask */
406 FALSE), /* pcrel_offset */
407
408 /* .xword: (S+A-P) */
409 HOWTO64 (AARCH64_R (PREL64), /* type */
410 0, /* rightshift */
411 4, /* size (4 = long long) */
412 64, /* bitsize */
413 TRUE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_signed, /* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 AARCH64_R_STR (PREL64), /* name */
418 FALSE, /* partial_inplace */
419 ALL_ONES, /* src_mask */
420 ALL_ONES, /* dst_mask */
421 TRUE), /* pcrel_offset */
422
423 /* .word: (S+A-P) */
424 HOWTO (AARCH64_R (PREL32), /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 AARCH64_R_STR (PREL32), /* name */
433 FALSE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* .half: (S+A-P) */
439 HOWTO (AARCH64_R (PREL16), /* type */
440 0, /* rightshift */
441 1, /* size (0 = byte, 1 = short, 2 = long) */
442 16, /* bitsize */
443 TRUE, /* pc_relative */
444 0, /* bitpos */
445 complain_overflow_signed, /* complain_on_overflow */
446 bfd_elf_generic_reloc, /* special_function */
447 AARCH64_R_STR (PREL16), /* name */
448 FALSE, /* partial_inplace */
449 0xffff, /* src_mask */
450 0xffff, /* dst_mask */
451 TRUE), /* pcrel_offset */
452
453 /* Group relocations to create a 16, 32, 48 or 64 bit
454 unsigned data or abs address inline. */
455
456 /* MOVZ: ((S+A) >> 0) & 0xffff */
457 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 16, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_unsigned, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 AARCH64_R_STR (MOVW_UABS_G0), /* name */
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
472 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
473 0, /* rightshift */
474 2, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont, /* complain_on_overflow */
479 bfd_elf_generic_reloc, /* special_function */
480 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
481 FALSE, /* partial_inplace */
482 0xffff, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* MOVZ: ((S+A) >> 16) & 0xffff */
487 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
488 16, /* rightshift */
489 2, /* size (0 = byte, 1 = short, 2 = long) */
490 16, /* bitsize */
491 FALSE, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_unsigned, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
495 AARCH64_R_STR (MOVW_UABS_G1), /* name */
496 FALSE, /* partial_inplace */
497 0xffff, /* src_mask */
498 0xffff, /* dst_mask */
499 FALSE), /* pcrel_offset */
500
501 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
502 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
503 16, /* rightshift */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_dont, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
511 FALSE, /* partial_inplace */
512 0xffff, /* src_mask */
513 0xffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* MOVZ: ((S+A) >> 32) & 0xffff */
517 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
518 32, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 16, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_unsigned, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 AARCH64_R_STR (MOVW_UABS_G2), /* name */
526 FALSE, /* partial_inplace */
527 0xffff, /* src_mask */
528 0xffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
532 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
533 32, /* rightshift */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
535 16, /* bitsize */
536 FALSE, /* pc_relative */
537 0, /* bitpos */
538 complain_overflow_dont, /* complain_on_overflow */
539 bfd_elf_generic_reloc, /* special_function */
540 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
541 FALSE, /* partial_inplace */
542 0xffff, /* src_mask */
543 0xffff, /* dst_mask */
544 FALSE), /* pcrel_offset */
545
546 /* MOVZ: ((S+A) >> 48) & 0xffff */
547 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
548 48, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 16, /* bitsize */
551 FALSE, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_unsigned, /* complain_on_overflow */
554 bfd_elf_generic_reloc, /* special_function */
555 AARCH64_R_STR (MOVW_UABS_G3), /* name */
556 FALSE, /* partial_inplace */
557 0xffff, /* src_mask */
558 0xffff, /* dst_mask */
559 FALSE), /* pcrel_offset */
560
561 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
562 signed data or abs address inline. Will change instruction
563 to MOVN or MOVZ depending on sign of calculated value. */
564
565 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
566 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
567 0, /* rightshift */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
569 16, /* bitsize */
570 FALSE, /* pc_relative */
571 0, /* bitpos */
572 complain_overflow_signed, /* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
574 AARCH64_R_STR (MOVW_SABS_G0), /* name */
575 FALSE, /* partial_inplace */
576 0xffff, /* src_mask */
577 0xffff, /* dst_mask */
578 FALSE), /* pcrel_offset */
579
580 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
581 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
582 16, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 16, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_signed, /* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 AARCH64_R_STR (MOVW_SABS_G1), /* name */
590 FALSE, /* partial_inplace */
591 0xffff, /* src_mask */
592 0xffff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
596 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
597 32, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 16, /* bitsize */
600 FALSE, /* pc_relative */
601 0, /* bitpos */
602 complain_overflow_signed, /* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 AARCH64_R_STR (MOVW_SABS_G2), /* name */
605 FALSE, /* partial_inplace */
606 0xffff, /* src_mask */
607 0xffff, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
611 addresses: PG(x) is (x & ~0xfff). */
612
613 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
614 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
615 2, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 19, /* bitsize */
618 TRUE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 AARCH64_R_STR (LD_PREL_LO19), /* name */
623 FALSE, /* partial_inplace */
624 0x7ffff, /* src_mask */
625 0x7ffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* ADR: (S+A-P) & 0x1fffff */
629 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 21, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 AARCH64_R_STR (ADR_PREL_LO21), /* name */
638 FALSE, /* partial_inplace */
639 0x1fffff, /* src_mask */
640 0x1fffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
644 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
645 12, /* rightshift */
646 2, /* size (0 = byte, 1 = short, 2 = long) */
647 21, /* bitsize */
648 TRUE, /* pc_relative */
649 0, /* bitpos */
650 complain_overflow_signed, /* complain_on_overflow */
651 bfd_elf_generic_reloc, /* special_function */
652 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
653 FALSE, /* partial_inplace */
654 0x1fffff, /* src_mask */
655 0x1fffff, /* dst_mask */
656 TRUE), /* pcrel_offset */
657
658 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
659 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
660 12, /* rightshift */
661 2, /* size (0 = byte, 1 = short, 2 = long) */
662 21, /* bitsize */
663 TRUE, /* pc_relative */
664 0, /* bitpos */
665 complain_overflow_dont, /* complain_on_overflow */
666 bfd_elf_generic_reloc, /* special_function */
667 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
668 FALSE, /* partial_inplace */
669 0x1fffff, /* src_mask */
670 0x1fffff, /* dst_mask */
671 TRUE), /* pcrel_offset */
672
673 /* ADD: (S+A) & 0xfff [no overflow check] */
674 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 12, /* bitsize */
678 FALSE, /* pc_relative */
679 10, /* bitpos */
680 complain_overflow_dont, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
683 FALSE, /* partial_inplace */
684 0x3ffc00, /* src_mask */
685 0x3ffc00, /* dst_mask */
686 FALSE), /* pcrel_offset */
687
688 /* LD/ST8: (S+A) & 0xfff */
689 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 12, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
698 FALSE, /* partial_inplace */
699 0xfff, /* src_mask */
700 0xfff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Relocations for control-flow instructions. */
704
705 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
706 HOWTO (AARCH64_R (TSTBR14), /* type */
707 2, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 14, /* bitsize */
710 TRUE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_signed, /* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 AARCH64_R_STR (TSTBR14), /* name */
715 FALSE, /* partial_inplace */
716 0x3fff, /* src_mask */
717 0x3fff, /* dst_mask */
718 TRUE), /* pcrel_offset */
719
720 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
721 HOWTO (AARCH64_R (CONDBR19), /* type */
722 2, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 19, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (CONDBR19), /* name */
730 FALSE, /* partial_inplace */
731 0x7ffff, /* src_mask */
732 0x7ffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* B: ((S+A-P) >> 2) & 0x3ffffff */
736 HOWTO (AARCH64_R (JUMP26), /* type */
737 2, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 26, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (JUMP26), /* name */
745 FALSE, /* partial_inplace */
746 0x3ffffff, /* src_mask */
747 0x3ffffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
751 HOWTO (AARCH64_R (CALL26), /* type */
752 2, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 26, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (CALL26), /* name */
760 FALSE, /* partial_inplace */
761 0x3ffffff, /* src_mask */
762 0x3ffffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* LD/ST16: (S+A) & 0xffe */
766 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
767 1, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 12, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffe, /* src_mask */
777 0xffe, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* LD/ST32: (S+A) & 0xffc */
781 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
782 2, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 12, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_dont, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
790 FALSE, /* partial_inplace */
791 0xffc, /* src_mask */
792 0xffc, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* LD/ST64: (S+A) & 0xff8 */
796 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
797 3, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 12, /* bitsize */
800 FALSE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xff8, /* src_mask */
807 0xff8, /* dst_mask */
808 FALSE), /* pcrel_offset */
809
810 /* LD/ST128: (S+A) & 0xff0 */
811 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
812 4, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 12, /* bitsize */
815 FALSE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
820 FALSE, /* partial_inplace */
821 0xff0, /* src_mask */
822 0xff0, /* dst_mask */
823 FALSE), /* pcrel_offset */
824
825 /* Set a load-literal immediate field to bits
826 0x1FFFFC of G(S)-P */
827 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
828 2, /* rightshift */
829 2, /* size (0 = byte,1 = short,2 = long) */
830 19, /* bitsize */
831 TRUE, /* pc_relative */
832 0, /* bitpos */
833 complain_overflow_signed, /* complain_on_overflow */
834 bfd_elf_generic_reloc, /* special_function */
835 AARCH64_R_STR (GOT_LD_PREL19), /* name */
836 FALSE, /* partial_inplace */
837 0xffffe0, /* src_mask */
838 0xffffe0, /* dst_mask */
839 TRUE), /* pcrel_offset */
840
841 /* Get to the page for the GOT entry for the symbol
842 (G(S) - P) using an ADRP instruction. */
843 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
844 12, /* rightshift */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
846 21, /* bitsize */
847 TRUE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_dont, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
856
857 /* LD64: GOT offset G(S) & 0xff8 */
858 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
859 3, /* rightshift */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
861 12, /* bitsize */
862 FALSE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_dont, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
867 FALSE, /* partial_inplace */
868 0xff8, /* src_mask */
869 0xff8, /* dst_mask */
870 FALSE), /* pcrel_offset */
871
872 /* LD32: GOT offset G(S) & 0xffc */
873 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
874 2, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 12, /* bitsize */
877 FALSE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
882 FALSE, /* partial_inplace */
883 0xffc, /* src_mask */
884 0xffc, /* dst_mask */
885 FALSE), /* pcrel_offset */
886
887 /* LD64: GOT offset for the symbol. */
888 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
889 3, /* rightshift */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
891 12, /* bitsize */
892 FALSE, /* pc_relative */
893 0, /* bitpos */
894 complain_overflow_unsigned, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
897 FALSE, /* partial_inplace */
898 0x7ff8, /* src_mask */
899 0x7ff8, /* dst_mask */
900 FALSE), /* pcrel_offset */
901
902 /* LD32: GOT offset to the page address of GOT table.
903 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
904 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
905 2, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_unsigned, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
913 FALSE, /* partial_inplace */
914 0x5ffc, /* src_mask */
915 0x5ffc, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* LD64: GOT offset to the page address of GOT table.
919 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
920 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
921 3, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 12, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_unsigned, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
929 FALSE, /* partial_inplace */
930 0x7ff8, /* src_mask */
931 0x7ff8, /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* Get to the page for the GOT entry for the symbol
935 (G(S) - P) using an ADRP instruction. */
936 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
937 12, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 21, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
945 FALSE, /* partial_inplace */
946 0x1fffff, /* src_mask */
947 0x1fffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 21, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
959 FALSE, /* partial_inplace */
960 0x1fffff, /* src_mask */
961 0x1fffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
965 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
974 FALSE, /* partial_inplace */
975 0xfff, /* src_mask */
976 0xfff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
980 16, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1008 12, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 21, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1016 FALSE, /* partial_inplace */
1017 0x1fffff, /* src_mask */
1018 0x1fffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1022 3, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1030 FALSE, /* partial_inplace */
1031 0xff8, /* src_mask */
1032 0xff8, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
1035 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1036 2, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffc, /* src_mask */
1046 0xffc, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1050 2, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 19, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1058 FALSE, /* partial_inplace */
1059 0x1ffffc, /* src_mask */
1060 0x1ffffc, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1064 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1065 12, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 12, /* bitsize */
1068 FALSE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_unsigned, /* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1073 FALSE, /* partial_inplace */
1074 0xfff, /* src_mask */
1075 0xfff, /* dst_mask */
1076 FALSE), /* pcrel_offset */
1077
1078 /* Unsigned 12 bit byte offset to module TLS base address. */
1079 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1080 0, /* rightshift */
1081 2, /* size (0 = byte, 1 = short, 2 = long) */
1082 12, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_unsigned, /* complain_on_overflow */
1086 bfd_elf_generic_reloc, /* special_function */
1087 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1088 FALSE, /* partial_inplace */
1089 0xfff, /* src_mask */
1090 0xfff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1094 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1095 0, /* rightshift */
1096 2, /* size (0 = byte, 1 = short, 2 = long) */
1097 12, /* bitsize */
1098 FALSE, /* pc_relative */
1099 0, /* bitpos */
1100 complain_overflow_dont, /* complain_on_overflow */
1101 bfd_elf_generic_reloc, /* special_function */
1102 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1103 FALSE, /* partial_inplace */
1104 0xfff, /* src_mask */
1105 0xfff, /* dst_mask */
1106 FALSE), /* pcrel_offset */
1107
1108 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1109 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1110 0, /* rightshift */
1111 2, /* size (0 = byte, 1 = short, 2 = long) */
1112 12, /* bitsize */
1113 FALSE, /* pc_relative */
1114 0, /* bitpos */
1115 complain_overflow_dont, /* complain_on_overflow */
1116 bfd_elf_generic_reloc, /* special_function */
1117 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1118 FALSE, /* partial_inplace */
1119 0xfff, /* src_mask */
1120 0xfff, /* dst_mask */
1121 FALSE), /* pcrel_offset */
1122
1123 /* Get to the page for the GOT entry for the symbol
1124 (G(S) - P) using an ADRP instruction. */
1125 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1126 12, /* rightshift */
1127 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 21, /* bitsize */
1129 TRUE, /* pc_relative */
1130 0, /* bitpos */
1131 complain_overflow_signed, /* complain_on_overflow */
1132 bfd_elf_generic_reloc, /* special_function */
1133 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1134 FALSE, /* partial_inplace */
1135 0x1fffff, /* src_mask */
1136 0x1fffff, /* dst_mask */
1137 TRUE), /* pcrel_offset */
1138
1139 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1140 0, /* rightshift */
1141 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 21, /* bitsize */
1143 TRUE, /* pc_relative */
1144 0, /* bitpos */
1145 complain_overflow_signed, /* complain_on_overflow */
1146 bfd_elf_generic_reloc, /* special_function */
1147 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1148 FALSE, /* partial_inplace */
1149 0x1fffff, /* src_mask */
1150 0x1fffff, /* dst_mask */
1151 TRUE), /* pcrel_offset */
1152
1153 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1154 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1155 1, /* rightshift */
1156 2, /* size (0 = byte, 1 = short, 2 = long) */
1157 11, /* bitsize */
1158 FALSE, /* pc_relative */
1159 10, /* bitpos */
1160 complain_overflow_unsigned, /* complain_on_overflow */
1161 bfd_elf_generic_reloc, /* special_function */
1162 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1163 FALSE, /* partial_inplace */
1164 0x1ffc00, /* src_mask */
1165 0x1ffc00, /* dst_mask */
1166 FALSE), /* pcrel_offset */
1167
1168 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1169 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1170 1, /* rightshift */
1171 2, /* size (0 = byte, 1 = short, 2 = long) */
1172 11, /* bitsize */
1173 FALSE, /* pc_relative */
1174 10, /* bitpos */
1175 complain_overflow_dont, /* complain_on_overflow */
1176 bfd_elf_generic_reloc, /* special_function */
1177 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1178 FALSE, /* partial_inplace */
1179 0x1ffc00, /* src_mask */
1180 0x1ffc00, /* dst_mask */
1181 FALSE), /* pcrel_offset */
1182
1183 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1184 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1185 2, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 10, /* bitsize */
1188 FALSE, /* pc_relative */
1189 10, /* bitpos */
1190 complain_overflow_unsigned, /* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1193 FALSE, /* partial_inplace */
1194 0x3ffc00, /* src_mask */
1195 0x3ffc00, /* dst_mask */
1196 FALSE), /* pcrel_offset */
1197
1198 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1199 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1200 2, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 10, /* bitsize */
1203 FALSE, /* pc_relative */
1204 10, /* bitpos */
1205 complain_overflow_dont, /* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1208 FALSE, /* partial_inplace */
1209 0xffc00, /* src_mask */
1210 0xffc00, /* dst_mask */
1211 FALSE), /* pcrel_offset */
1212
1213 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1214 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1215 3, /* rightshift */
1216 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 9, /* bitsize */
1218 FALSE, /* pc_relative */
1219 10, /* bitpos */
1220 complain_overflow_unsigned, /* complain_on_overflow */
1221 bfd_elf_generic_reloc, /* special_function */
1222 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1223 FALSE, /* partial_inplace */
1224 0x3ffc00, /* src_mask */
1225 0x3ffc00, /* dst_mask */
1226 FALSE), /* pcrel_offset */
1227
1228 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1229 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1230 3, /* rightshift */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1232 9, /* bitsize */
1233 FALSE, /* pc_relative */
1234 10, /* bitpos */
1235 complain_overflow_dont, /* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1238 FALSE, /* partial_inplace */
1239 0x7fc00, /* src_mask */
1240 0x7fc00, /* dst_mask */
1241 FALSE), /* pcrel_offset */
1242
1243 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1244 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 12, /* bitsize */
1248 FALSE, /* pc_relative */
1249 10, /* bitpos */
1250 complain_overflow_unsigned, /* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1253 FALSE, /* partial_inplace */
1254 0x3ffc00, /* src_mask */
1255 0x3ffc00, /* dst_mask */
1256 FALSE), /* pcrel_offset */
1257
1258 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1259 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 12, /* bitsize */
1263 FALSE, /* pc_relative */
1264 10, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1268 FALSE, /* partial_inplace */
1269 0x3ffc00, /* src_mask */
1270 0x3ffc00, /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1274 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_unsigned, /* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1283 FALSE, /* partial_inplace */
1284 0xffff, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1289 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1298 FALSE, /* partial_inplace */
1299 0xffff, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1304 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1305 16, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_unsigned, /* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1313 FALSE, /* partial_inplace */
1314 0xffff, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1319 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1320 16, /* rightshift */
1321 2, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 bfd_elf_generic_reloc, /* special_function */
1327 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1328 FALSE, /* partial_inplace */
1329 0xffff, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1334 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1335 32, /* rightshift */
1336 2, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_unsigned, /* complain_on_overflow */
1341 bfd_elf_generic_reloc, /* special_function */
1342 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1343 FALSE, /* partial_inplace */
1344 0xffff, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1349 32, /* rightshift */
1350 2, /* size (0 = byte, 1 = short, 2 = long) */
1351 16, /* bitsize */
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
1354 complain_overflow_unsigned, /* complain_on_overflow */
1355 bfd_elf_generic_reloc, /* special_function */
1356 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1357 FALSE, /* partial_inplace */
1358 0xffff, /* src_mask */
1359 0xffff, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
1362 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1363 16, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1371 FALSE, /* partial_inplace */
1372 0xffff, /* src_mask */
1373 0xffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1377 16, /* rightshift */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1379 16, /* bitsize */
1380 FALSE, /* pc_relative */
1381 0, /* bitpos */
1382 complain_overflow_dont, /* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
1384 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1385 FALSE, /* partial_inplace */
1386 0xffff, /* src_mask */
1387 0xffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1389
1390 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1391 0, /* rightshift */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 16, /* bitsize */
1394 FALSE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
1398 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1399 FALSE, /* partial_inplace */
1400 0xffff, /* src_mask */
1401 0xffff, /* dst_mask */
1402 FALSE), /* pcrel_offset */
1403
1404 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1405 0, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_dont, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1419 12, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 12, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_unsigned, /* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1427 FALSE, /* partial_inplace */
1428 0xfff, /* src_mask */
1429 0xfff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 12, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_unsigned, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
1440 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1441 FALSE, /* partial_inplace */
1442 0xfff, /* src_mask */
1443 0xfff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1447 0, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 12, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
1454 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1455 FALSE, /* partial_inplace */
1456 0xfff, /* src_mask */
1457 0xfff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1461 2, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 19, /* bitsize */
1464 TRUE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1469 FALSE, /* partial_inplace */
1470 0x0ffffe0, /* src_mask */
1471 0x0ffffe0, /* dst_mask */
1472 TRUE), /* pcrel_offset */
1473
1474 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 21, /* bitsize */
1478 TRUE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1483 FALSE, /* partial_inplace */
1484 0x1fffff, /* src_mask */
1485 0x1fffff, /* dst_mask */
1486 TRUE), /* pcrel_offset */
1487
1488 /* Get to the page for the GOT entry for the symbol
1489 (G(S) - P) using an ADRP instruction. */
1490 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1491 12, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 21, /* bitsize */
1494 TRUE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_dont, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
1498 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1499 FALSE, /* partial_inplace */
1500 0x1fffff, /* src_mask */
1501 0x1fffff, /* dst_mask */
1502 TRUE), /* pcrel_offset */
1503
1504 /* LD64: GOT offset G(S) & 0xff8. */
1505 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1506 3, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 12, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_dont, /* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1514 FALSE, /* partial_inplace */
1515 0xff8, /* src_mask */
1516 0xff8, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 /* LD32: GOT offset G(S) & 0xffc. */
1520 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1521 2, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 12, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1529 FALSE, /* partial_inplace */
1530 0xffc, /* src_mask */
1531 0xffc, /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* ADD: GOT offset G(S) & 0xfff. */
1535 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1536 0, /* rightshift */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1538 12, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_dont, /* complain_on_overflow */
1542 bfd_elf_generic_reloc, /* special_function */
1543 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1544 FALSE, /* partial_inplace */
1545 0xfff, /* src_mask */
1546 0xfff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1550 16, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 12, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_dont, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 12, /* bitsize */
1567 FALSE, /* pc_relative */
1568 0, /* bitpos */
1569 complain_overflow_dont, /* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
1571 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1572 FALSE, /* partial_inplace */
1573 0xffff, /* src_mask */
1574 0xffff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1576
1577 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1578 0, /* rightshift */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1580 12, /* bitsize */
1581 FALSE, /* pc_relative */
1582 0, /* bitpos */
1583 complain_overflow_dont, /* complain_on_overflow */
1584 bfd_elf_generic_reloc, /* special_function */
1585 AARCH64_R_STR (TLSDESC_LDR), /* name */
1586 FALSE, /* partial_inplace */
1587 0x0, /* src_mask */
1588 0x0, /* dst_mask */
1589 FALSE), /* pcrel_offset */
1590
1591 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1592 0, /* rightshift */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1594 12, /* bitsize */
1595 FALSE, /* pc_relative */
1596 0, /* bitpos */
1597 complain_overflow_dont, /* complain_on_overflow */
1598 bfd_elf_generic_reloc, /* special_function */
1599 AARCH64_R_STR (TLSDESC_ADD), /* name */
1600 FALSE, /* partial_inplace */
1601 0x0, /* src_mask */
1602 0x0, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604
1605 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1606 0, /* rightshift */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1608 0, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_dont, /* complain_on_overflow */
1612 bfd_elf_generic_reloc, /* special_function */
1613 AARCH64_R_STR (TLSDESC_CALL), /* name */
1614 FALSE, /* partial_inplace */
1615 0x0, /* src_mask */
1616 0x0, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 HOWTO (AARCH64_R (COPY), /* type */
1620 0, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1622 64, /* bitsize */
1623 FALSE, /* pc_relative */
1624 0, /* bitpos */
1625 complain_overflow_bitfield, /* complain_on_overflow */
1626 bfd_elf_generic_reloc, /* special_function */
1627 AARCH64_R_STR (COPY), /* name */
1628 TRUE, /* partial_inplace */
1629 0xffffffff, /* src_mask */
1630 0xffffffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1632
1633 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1634 0, /* rightshift */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1636 64, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_bitfield, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
1641 AARCH64_R_STR (GLOB_DAT), /* name */
1642 TRUE, /* partial_inplace */
1643 0xffffffff, /* src_mask */
1644 0xffffffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
1647 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1648 0, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 64, /* bitsize */
1651 FALSE, /* pc_relative */
1652 0, /* bitpos */
1653 complain_overflow_bitfield, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (JUMP_SLOT), /* name */
1656 TRUE, /* partial_inplace */
1657 0xffffffff, /* src_mask */
1658 0xffffffff, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 HOWTO (AARCH64_R (RELATIVE), /* type */
1662 0, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 64, /* bitsize */
1665 FALSE, /* pc_relative */
1666 0, /* bitpos */
1667 complain_overflow_bitfield, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (RELATIVE), /* name */
1670 TRUE, /* partial_inplace */
1671 ALL_ONES, /* src_mask */
1672 ALL_ONES, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
1675 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1676 0, /* rightshift */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1678 64, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 #if ARCH_SIZE == 64
1684 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1685 #else
1686 AARCH64_R_STR (TLS_DTPMOD), /* name */
1687 #endif
1688 FALSE, /* partial_inplace */
1689 0, /* src_mask */
1690 ALL_ONES, /* dst_mask */
1691 FALSE), /* pc_reloffset */
1692
1693 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1694 0, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 64, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_dont, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 #if ARCH_SIZE == 64
1702 AARCH64_R_STR (TLS_DTPREL64), /* name */
1703 #else
1704 AARCH64_R_STR (TLS_DTPREL), /* name */
1705 #endif
1706 FALSE, /* partial_inplace */
1707 0, /* src_mask */
1708 ALL_ONES, /* dst_mask */
1709 FALSE), /* pcrel_offset */
1710
1711 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1712 0, /* rightshift */
1713 2, /* size (0 = byte, 1 = short, 2 = long) */
1714 64, /* bitsize */
1715 FALSE, /* pc_relative */
1716 0, /* bitpos */
1717 complain_overflow_dont, /* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
1719 #if ARCH_SIZE == 64
1720 AARCH64_R_STR (TLS_TPREL64), /* name */
1721 #else
1722 AARCH64_R_STR (TLS_TPREL), /* name */
1723 #endif
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 ALL_ONES, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (AARCH64_R (TLSDESC), /* type */
1730 0, /* rightshift */
1731 2, /* size (0 = byte, 1 = short, 2 = long) */
1732 64, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont, /* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 AARCH64_R_STR (TLSDESC), /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 ALL_ONES, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (AARCH64_R (IRELATIVE), /* type */
1744 0, /* rightshift */
1745 2, /* size (0 = byte, 1 = short, 2 = long) */
1746 64, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_bitfield, /* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 AARCH64_R_STR (IRELATIVE), /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 ALL_ONES, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 EMPTY_HOWTO (0),
1758 };
1759
1760 static reloc_howto_type elfNN_aarch64_howto_none =
1761 HOWTO (R_AARCH64_NONE, /* type */
1762 0, /* rightshift */
1763 3, /* size (0 = byte, 1 = short, 2 = long) */
1764 0, /* bitsize */
1765 FALSE, /* pc_relative */
1766 0, /* bitpos */
1767 complain_overflow_dont,/* complain_on_overflow */
1768 bfd_elf_generic_reloc, /* special_function */
1769 "R_AARCH64_NONE", /* name */
1770 FALSE, /* partial_inplace */
1771 0, /* src_mask */
1772 0, /* dst_mask */
1773 FALSE); /* pcrel_offset */
1774
1775 /* Given HOWTO, return the bfd internal relocation enumerator. */
1776
1777 static bfd_reloc_code_real_type
1778 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1779 {
1780 const int size
1781 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1782 const ptrdiff_t offset
1783 = howto - elfNN_aarch64_howto_table;
1784
1785 if (offset > 0 && offset < size - 1)
1786 return BFD_RELOC_AARCH64_RELOC_START + offset;
1787
1788 if (howto == &elfNN_aarch64_howto_none)
1789 return BFD_RELOC_AARCH64_NONE;
1790
1791 return BFD_RELOC_AARCH64_RELOC_START;
1792 }
1793
1794 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1795
1796 static bfd_reloc_code_real_type
1797 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1798 {
1799 static bfd_boolean initialized_p = FALSE;
1800 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1801 static unsigned int offsets[R_AARCH64_end];
1802
1803 if (initialized_p == FALSE)
1804 {
1805 unsigned int i;
1806
1807 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1808 if (elfNN_aarch64_howto_table[i].type != 0)
1809 offsets[elfNN_aarch64_howto_table[i].type] = i;
1810
1811 initialized_p = TRUE;
1812 }
1813
1814 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1815 return BFD_RELOC_AARCH64_NONE;
1816
1817 /* PR 17512: file: b371e70a. */
1818 if (r_type >= R_AARCH64_end)
1819 {
1820 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1821 bfd_set_error (bfd_error_bad_value);
1822 return BFD_RELOC_AARCH64_NONE;
1823 }
1824
1825 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1826 }
1827
1828 struct elf_aarch64_reloc_map
1829 {
1830 bfd_reloc_code_real_type from;
1831 bfd_reloc_code_real_type to;
1832 };
1833
1834 /* Map bfd generic reloc to AArch64-specific reloc. */
1835 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1836 {
1837 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1838
1839 /* Basic data relocations. */
1840 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1841 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1842 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1843 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1844 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1845 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1846 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1847 };
1848
1849 /* Given the bfd internal relocation enumerator in CODE, return the
1850 corresponding howto entry. */
1851
1852 static reloc_howto_type *
1853 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1854 {
1855 unsigned int i;
1856
1857 /* Convert bfd generic reloc to AArch64-specific reloc. */
1858 if (code < BFD_RELOC_AARCH64_RELOC_START
1859 || code > BFD_RELOC_AARCH64_RELOC_END)
1860 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1861 if (elf_aarch64_reloc_map[i].from == code)
1862 {
1863 code = elf_aarch64_reloc_map[i].to;
1864 break;
1865 }
1866
1867 if (code > BFD_RELOC_AARCH64_RELOC_START
1868 && code < BFD_RELOC_AARCH64_RELOC_END)
1869 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1870 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1871
1872 if (code == BFD_RELOC_AARCH64_NONE)
1873 return &elfNN_aarch64_howto_none;
1874
1875 return NULL;
1876 }
1877
1878 static reloc_howto_type *
1879 elfNN_aarch64_howto_from_type (unsigned int r_type)
1880 {
1881 bfd_reloc_code_real_type val;
1882 reloc_howto_type *howto;
1883
1884 #if ARCH_SIZE == 32
1885 if (r_type > 256)
1886 {
1887 bfd_set_error (bfd_error_bad_value);
1888 return NULL;
1889 }
1890 #endif
1891
1892 if (r_type == R_AARCH64_NONE)
1893 return &elfNN_aarch64_howto_none;
1894
1895 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1896 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1897
1898 if (howto != NULL)
1899 return howto;
1900
1901 bfd_set_error (bfd_error_bad_value);
1902 return NULL;
1903 }
1904
1905 static void
1906 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1907 Elf_Internal_Rela *elf_reloc)
1908 {
1909 unsigned int r_type;
1910
1911 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1912 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1913 }
1914
1915 static reloc_howto_type *
1916 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1917 bfd_reloc_code_real_type code)
1918 {
1919 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1920
1921 if (howto != NULL)
1922 return howto;
1923
1924 bfd_set_error (bfd_error_bad_value);
1925 return NULL;
1926 }
1927
1928 static reloc_howto_type *
1929 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1930 const char *r_name)
1931 {
1932 unsigned int i;
1933
1934 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1935 if (elfNN_aarch64_howto_table[i].name != NULL
1936 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1937 return &elfNN_aarch64_howto_table[i];
1938
1939 return NULL;
1940 }
1941
1942 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1943 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1944 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1945 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1946
1947 /* The linker script knows the section names for placement.
1948 The entry_names are used to do simple name mangling on the stubs.
1949 Given a function name, and its type, the stub can be found. The
1950 name can be changed. The only requirement is the %s be present. */
1951 #define STUB_ENTRY_NAME "__%s_veneer"
1952
1953 /* The name of the dynamic interpreter. This is put in the .interp
1954 section. */
1955 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1956
1957 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1958 (((1 << 25) - 1) << 2)
1959 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1960 (-((1 << 25) << 2))
1961
1962 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1963 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1964
1965 static int
1966 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1967 {
1968 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1969 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1970 }
1971
1972 static int
1973 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1974 {
1975 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1976 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1977 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1978 }
1979
1980 static const uint32_t aarch64_adrp_branch_stub [] =
1981 {
1982 0x90000010, /* adrp ip0, X */
1983 /* R_AARCH64_ADR_HI21_PCREL(X) */
1984 0x91000210, /* add ip0, ip0, :lo12:X */
1985 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1986 0xd61f0200, /* br ip0 */
1987 };
1988
1989 static const uint32_t aarch64_long_branch_stub[] =
1990 {
1991 #if ARCH_SIZE == 64
1992 0x58000090, /* ldr ip0, 1f */
1993 #else
1994 0x18000090, /* ldr wip0, 1f */
1995 #endif
1996 0x10000011, /* adr ip1, #0 */
1997 0x8b110210, /* add ip0, ip0, ip1 */
1998 0xd61f0200, /* br ip0 */
1999 0x00000000, /* 1: .xword or .word
2000 R_AARCH64_PRELNN(X) + 12
2001 */
2002 0x00000000,
2003 };
2004
2005 static const uint32_t aarch64_erratum_835769_stub[] =
2006 {
2007 0x00000000, /* Placeholder for multiply accumulate. */
2008 0x14000000, /* b <label> */
2009 };
2010
2011 static const uint32_t aarch64_erratum_843419_stub[] =
2012 {
2013 0x00000000, /* Placeholder for LDR instruction. */
2014 0x14000000, /* b <label> */
2015 };
2016
2017 /* Section name for stubs is the associated section name plus this
2018 string. */
2019 #define STUB_SUFFIX ".stub"
2020
2021 enum elf_aarch64_stub_type
2022 {
2023 aarch64_stub_none,
2024 aarch64_stub_adrp_branch,
2025 aarch64_stub_long_branch,
2026 aarch64_stub_erratum_835769_veneer,
2027 aarch64_stub_erratum_843419_veneer,
2028 };
2029
2030 struct elf_aarch64_stub_hash_entry
2031 {
2032 /* Base hash table entry structure. */
2033 struct bfd_hash_entry root;
2034
2035 /* The stub section. */
2036 asection *stub_sec;
2037
2038 /* Offset within stub_sec of the beginning of this stub. */
2039 bfd_vma stub_offset;
2040
2041 /* Given the symbol's value and its section we can determine its final
2042 value when building the stubs (so the stub knows where to jump). */
2043 bfd_vma target_value;
2044 asection *target_section;
2045
2046 enum elf_aarch64_stub_type stub_type;
2047
2048 /* The symbol table entry, if any, that this was derived from. */
2049 struct elf_aarch64_link_hash_entry *h;
2050
2051 /* Destination symbol type */
2052 unsigned char st_type;
2053
2054 /* Where this stub is being called from, or, in the case of combined
2055 stub sections, the first input section in the group. */
2056 asection *id_sec;
2057
2058 /* The name for the local symbol at the start of this stub. The
2059 stub name in the hash table has to be unique; this does not, so
2060 it can be friendlier. */
2061 char *output_name;
2062
2063 /* The instruction which caused this stub to be generated (only valid for
2064 erratum 835769 workaround stubs at present). */
2065 uint32_t veneered_insn;
2066
2067 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2068 bfd_vma adrp_offset;
2069 };
2070
2071 /* Used to build a map of a section. This is required for mixed-endian
2072 code/data. */
2073
2074 typedef struct elf_elf_section_map
2075 {
2076 bfd_vma vma;
2077 char type;
2078 }
2079 elf_aarch64_section_map;
2080
2081
2082 typedef struct _aarch64_elf_section_data
2083 {
2084 struct bfd_elf_section_data elf;
2085 unsigned int mapcount;
2086 unsigned int mapsize;
2087 elf_aarch64_section_map *map;
2088 }
2089 _aarch64_elf_section_data;
2090
2091 #define elf_aarch64_section_data(sec) \
2092 ((_aarch64_elf_section_data *) elf_section_data (sec))
2093
2094 /* The size of the thread control block which is defined to be two pointers. */
2095 #define TCB_SIZE (ARCH_SIZE/8)*2
2096
2097 struct elf_aarch64_local_symbol
2098 {
2099 unsigned int got_type;
2100 bfd_signed_vma got_refcount;
2101 bfd_vma got_offset;
2102
2103 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2104 offset is from the end of the jump table and reserved entries
2105 within the PLTGOT.
2106
2107 The magic value (bfd_vma) -1 indicates that an offset has not be
2108 allocated. */
2109 bfd_vma tlsdesc_got_jump_table_offset;
2110 };
2111
2112 struct elf_aarch64_obj_tdata
2113 {
2114 struct elf_obj_tdata root;
2115
2116 /* local symbol descriptors */
2117 struct elf_aarch64_local_symbol *locals;
2118
2119 /* Zero to warn when linking objects with incompatible enum sizes. */
2120 int no_enum_size_warning;
2121
2122 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2123 int no_wchar_size_warning;
2124 };
2125
2126 #define elf_aarch64_tdata(bfd) \
2127 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2128
2129 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2130
2131 #define is_aarch64_elf(bfd) \
2132 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2133 && elf_tdata (bfd) != NULL \
2134 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2135
2136 static bfd_boolean
2137 elfNN_aarch64_mkobject (bfd *abfd)
2138 {
2139 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2140 AARCH64_ELF_DATA);
2141 }
2142
2143 #define elf_aarch64_hash_entry(ent) \
2144 ((struct elf_aarch64_link_hash_entry *)(ent))
2145
2146 #define GOT_UNKNOWN 0
2147 #define GOT_NORMAL 1
2148 #define GOT_TLS_GD 2
2149 #define GOT_TLS_IE 4
2150 #define GOT_TLSDESC_GD 8
2151
2152 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2153
2154 /* AArch64 ELF linker hash entry. */
2155 struct elf_aarch64_link_hash_entry
2156 {
2157 struct elf_link_hash_entry root;
2158
2159 /* Track dynamic relocs copied for this symbol. */
2160 struct elf_dyn_relocs *dyn_relocs;
2161
2162 /* Since PLT entries have variable size, we need to record the
2163 index into .got.plt instead of recomputing it from the PLT
2164 offset. */
2165 bfd_signed_vma plt_got_offset;
2166
2167 /* Bit mask representing the type of GOT entry(s) if any required by
2168 this symbol. */
2169 unsigned int got_type;
2170
2171 /* A pointer to the most recently used stub hash entry against this
2172 symbol. */
2173 struct elf_aarch64_stub_hash_entry *stub_cache;
2174
2175 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2176 is from the end of the jump table and reserved entries within the PLTGOT.
2177
2178 The magic value (bfd_vma) -1 indicates that an offset has not
2179 be allocated. */
2180 bfd_vma tlsdesc_got_jump_table_offset;
2181 };
2182
2183 static unsigned int
2184 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2185 bfd *abfd,
2186 unsigned long r_symndx)
2187 {
2188 if (h)
2189 return elf_aarch64_hash_entry (h)->got_type;
2190
2191 if (! elf_aarch64_locals (abfd))
2192 return GOT_UNKNOWN;
2193
2194 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2195 }
2196
2197 /* Get the AArch64 elf linker hash table from a link_info structure. */
2198 #define elf_aarch64_hash_table(info) \
2199 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2200
2201 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2202 ((struct elf_aarch64_stub_hash_entry *) \
2203 bfd_hash_lookup ((table), (string), (create), (copy)))
2204
2205 /* AArch64 ELF linker hash table. */
2206 struct elf_aarch64_link_hash_table
2207 {
2208 /* The main hash table. */
2209 struct elf_link_hash_table root;
2210
2211 /* Nonzero to force PIC branch veneers. */
2212 int pic_veneer;
2213
2214 /* Fix erratum 835769. */
2215 int fix_erratum_835769;
2216
2217 /* Fix erratum 843419. */
2218 int fix_erratum_843419;
2219
2220 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2221 int fix_erratum_843419_adr;
2222
2223 /* The number of bytes in the initial entry in the PLT. */
2224 bfd_size_type plt_header_size;
2225
2226 /* The number of bytes in the subsequent PLT etries. */
2227 bfd_size_type plt_entry_size;
2228
2229 /* Short-cuts to get to dynamic linker sections. */
2230 asection *sdynbss;
2231 asection *srelbss;
2232
2233 /* Small local sym cache. */
2234 struct sym_cache sym_cache;
2235
2236 /* For convenience in allocate_dynrelocs. */
2237 bfd *obfd;
2238
2239 /* The amount of space used by the reserved portion of the sgotplt
2240 section, plus whatever space is used by the jump slots. */
2241 bfd_vma sgotplt_jump_table_size;
2242
2243 /* The stub hash table. */
2244 struct bfd_hash_table stub_hash_table;
2245
2246 /* Linker stub bfd. */
2247 bfd *stub_bfd;
2248
2249 /* Linker call-backs. */
2250 asection *(*add_stub_section) (const char *, asection *);
2251 void (*layout_sections_again) (void);
2252
2253 /* Array to keep track of which stub sections have been created, and
2254 information on stub grouping. */
2255 struct map_stub
2256 {
2257 /* This is the section to which stubs in the group will be
2258 attached. */
2259 asection *link_sec;
2260 /* The stub section. */
2261 asection *stub_sec;
2262 } *stub_group;
2263
2264 /* Assorted information used by elfNN_aarch64_size_stubs. */
2265 unsigned int bfd_count;
2266 unsigned int top_index;
2267 asection **input_list;
2268
2269 /* The offset into splt of the PLT entry for the TLS descriptor
2270 resolver. Special values are 0, if not necessary (or not found
2271 to be necessary yet), and -1 if needed but not determined
2272 yet. */
2273 bfd_vma tlsdesc_plt;
2274
2275 /* The GOT offset for the lazy trampoline. Communicated to the
2276 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2277 indicates an offset is not allocated. */
2278 bfd_vma dt_tlsdesc_got;
2279
2280 /* Used by local STT_GNU_IFUNC symbols. */
2281 htab_t loc_hash_table;
2282 void * loc_hash_memory;
2283 };
2284
2285 /* Create an entry in an AArch64 ELF linker hash table. */
2286
2287 static struct bfd_hash_entry *
2288 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2289 struct bfd_hash_table *table,
2290 const char *string)
2291 {
2292 struct elf_aarch64_link_hash_entry *ret =
2293 (struct elf_aarch64_link_hash_entry *) entry;
2294
2295 /* Allocate the structure if it has not already been allocated by a
2296 subclass. */
2297 if (ret == NULL)
2298 ret = bfd_hash_allocate (table,
2299 sizeof (struct elf_aarch64_link_hash_entry));
2300 if (ret == NULL)
2301 return (struct bfd_hash_entry *) ret;
2302
2303 /* Call the allocation method of the superclass. */
2304 ret = ((struct elf_aarch64_link_hash_entry *)
2305 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2306 table, string));
2307 if (ret != NULL)
2308 {
2309 ret->dyn_relocs = NULL;
2310 ret->got_type = GOT_UNKNOWN;
2311 ret->plt_got_offset = (bfd_vma) - 1;
2312 ret->stub_cache = NULL;
2313 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2314 }
2315
2316 return (struct bfd_hash_entry *) ret;
2317 }
2318
2319 /* Initialize an entry in the stub hash table. */
2320
2321 static struct bfd_hash_entry *
2322 stub_hash_newfunc (struct bfd_hash_entry *entry,
2323 struct bfd_hash_table *table, const char *string)
2324 {
2325 /* Allocate the structure if it has not already been allocated by a
2326 subclass. */
2327 if (entry == NULL)
2328 {
2329 entry = bfd_hash_allocate (table,
2330 sizeof (struct
2331 elf_aarch64_stub_hash_entry));
2332 if (entry == NULL)
2333 return entry;
2334 }
2335
2336 /* Call the allocation method of the superclass. */
2337 entry = bfd_hash_newfunc (entry, table, string);
2338 if (entry != NULL)
2339 {
2340 struct elf_aarch64_stub_hash_entry *eh;
2341
2342 /* Initialize the local fields. */
2343 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2344 eh->adrp_offset = 0;
2345 eh->stub_sec = NULL;
2346 eh->stub_offset = 0;
2347 eh->target_value = 0;
2348 eh->target_section = NULL;
2349 eh->stub_type = aarch64_stub_none;
2350 eh->h = NULL;
2351 eh->id_sec = NULL;
2352 }
2353
2354 return entry;
2355 }
2356
2357 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2358 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2359 as global symbol. We reuse indx and dynstr_index for local symbol
2360 hash since they aren't used by global symbols in this backend. */
2361
2362 static hashval_t
2363 elfNN_aarch64_local_htab_hash (const void *ptr)
2364 {
2365 struct elf_link_hash_entry *h
2366 = (struct elf_link_hash_entry *) ptr;
2367 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2368 }
2369
2370 /* Compare local hash entries. */
2371
2372 static int
2373 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2374 {
2375 struct elf_link_hash_entry *h1
2376 = (struct elf_link_hash_entry *) ptr1;
2377 struct elf_link_hash_entry *h2
2378 = (struct elf_link_hash_entry *) ptr2;
2379
2380 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2381 }
2382
2383 /* Find and/or create a hash entry for local symbol. */
2384
2385 static struct elf_link_hash_entry *
2386 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2387 bfd *abfd, const Elf_Internal_Rela *rel,
2388 bfd_boolean create)
2389 {
2390 struct elf_aarch64_link_hash_entry e, *ret;
2391 asection *sec = abfd->sections;
2392 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2393 ELFNN_R_SYM (rel->r_info));
2394 void **slot;
2395
2396 e.root.indx = sec->id;
2397 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2398 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2399 create ? INSERT : NO_INSERT);
2400
2401 if (!slot)
2402 return NULL;
2403
2404 if (*slot)
2405 {
2406 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2407 return &ret->root;
2408 }
2409
2410 ret = (struct elf_aarch64_link_hash_entry *)
2411 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2412 sizeof (struct elf_aarch64_link_hash_entry));
2413 if (ret)
2414 {
2415 memset (ret, 0, sizeof (*ret));
2416 ret->root.indx = sec->id;
2417 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2418 ret->root.dynindx = -1;
2419 *slot = ret;
2420 }
2421 return &ret->root;
2422 }
2423
2424 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2425
2426 static void
2427 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2428 struct elf_link_hash_entry *dir,
2429 struct elf_link_hash_entry *ind)
2430 {
2431 struct elf_aarch64_link_hash_entry *edir, *eind;
2432
2433 edir = (struct elf_aarch64_link_hash_entry *) dir;
2434 eind = (struct elf_aarch64_link_hash_entry *) ind;
2435
2436 if (eind->dyn_relocs != NULL)
2437 {
2438 if (edir->dyn_relocs != NULL)
2439 {
2440 struct elf_dyn_relocs **pp;
2441 struct elf_dyn_relocs *p;
2442
2443 /* Add reloc counts against the indirect sym to the direct sym
2444 list. Merge any entries against the same section. */
2445 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2446 {
2447 struct elf_dyn_relocs *q;
2448
2449 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2450 if (q->sec == p->sec)
2451 {
2452 q->pc_count += p->pc_count;
2453 q->count += p->count;
2454 *pp = p->next;
2455 break;
2456 }
2457 if (q == NULL)
2458 pp = &p->next;
2459 }
2460 *pp = edir->dyn_relocs;
2461 }
2462
2463 edir->dyn_relocs = eind->dyn_relocs;
2464 eind->dyn_relocs = NULL;
2465 }
2466
2467 if (ind->root.type == bfd_link_hash_indirect)
2468 {
2469 /* Copy over PLT info. */
2470 if (dir->got.refcount <= 0)
2471 {
2472 edir->got_type = eind->got_type;
2473 eind->got_type = GOT_UNKNOWN;
2474 }
2475 }
2476
2477 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2478 }
2479
2480 /* Destroy an AArch64 elf linker hash table. */
2481
2482 static void
2483 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2484 {
2485 struct elf_aarch64_link_hash_table *ret
2486 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2487
2488 if (ret->loc_hash_table)
2489 htab_delete (ret->loc_hash_table);
2490 if (ret->loc_hash_memory)
2491 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2492
2493 bfd_hash_table_free (&ret->stub_hash_table);
2494 _bfd_elf_link_hash_table_free (obfd);
2495 }
2496
2497 /* Create an AArch64 elf linker hash table. */
2498
2499 static struct bfd_link_hash_table *
2500 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2501 {
2502 struct elf_aarch64_link_hash_table *ret;
2503 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2504
2505 ret = bfd_zmalloc (amt);
2506 if (ret == NULL)
2507 return NULL;
2508
2509 if (!_bfd_elf_link_hash_table_init
2510 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2511 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2512 {
2513 free (ret);
2514 return NULL;
2515 }
2516
2517 ret->plt_header_size = PLT_ENTRY_SIZE;
2518 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2519 ret->obfd = abfd;
2520 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2521
2522 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2523 sizeof (struct elf_aarch64_stub_hash_entry)))
2524 {
2525 _bfd_elf_link_hash_table_free (abfd);
2526 return NULL;
2527 }
2528
2529 ret->loc_hash_table = htab_try_create (1024,
2530 elfNN_aarch64_local_htab_hash,
2531 elfNN_aarch64_local_htab_eq,
2532 NULL);
2533 ret->loc_hash_memory = objalloc_create ();
2534 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2535 {
2536 elfNN_aarch64_link_hash_table_free (abfd);
2537 return NULL;
2538 }
2539 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2540
2541 return &ret->root.root;
2542 }
2543
2544 static bfd_boolean
2545 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2546 bfd_vma offset, bfd_vma value)
2547 {
2548 reloc_howto_type *howto;
2549 bfd_vma place;
2550
2551 howto = elfNN_aarch64_howto_from_type (r_type);
2552 place = (input_section->output_section->vma + input_section->output_offset
2553 + offset);
2554
2555 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2556 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2557 return _bfd_aarch64_elf_put_addend (input_bfd,
2558 input_section->contents + offset, r_type,
2559 howto, value);
2560 }
2561
2562 static enum elf_aarch64_stub_type
2563 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2564 {
2565 if (aarch64_valid_for_adrp_p (value, place))
2566 return aarch64_stub_adrp_branch;
2567 return aarch64_stub_long_branch;
2568 }
2569
2570 /* Determine the type of stub needed, if any, for a call. */
2571
2572 static enum elf_aarch64_stub_type
2573 aarch64_type_of_stub (struct bfd_link_info *info,
2574 asection *input_sec,
2575 const Elf_Internal_Rela *rel,
2576 asection *sym_sec,
2577 unsigned char st_type,
2578 struct elf_aarch64_link_hash_entry *hash,
2579 bfd_vma destination)
2580 {
2581 bfd_vma location;
2582 bfd_signed_vma branch_offset;
2583 unsigned int r_type;
2584 struct elf_aarch64_link_hash_table *globals;
2585 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2586 bfd_boolean via_plt_p;
2587
2588 if (st_type != STT_FUNC
2589 && (sym_sec != bfd_abs_section_ptr))
2590 return stub_type;
2591
2592 globals = elf_aarch64_hash_table (info);
2593 via_plt_p = (globals->root.splt != NULL && hash != NULL
2594 && hash->root.plt.offset != (bfd_vma) - 1);
2595 /* Make sure call to plt stub can fit into the branch range. */
2596 if (via_plt_p)
2597 destination = (globals->root.splt->output_section->vma
2598 + globals->root.splt->output_offset
2599 + hash->root.plt.offset);
2600
2601 /* Determine where the call point is. */
2602 location = (input_sec->output_offset
2603 + input_sec->output_section->vma + rel->r_offset);
2604
2605 branch_offset = (bfd_signed_vma) (destination - location);
2606
2607 r_type = ELFNN_R_TYPE (rel->r_info);
2608
2609 /* We don't want to redirect any old unconditional jump in this way,
2610 only one which is being used for a sibcall, where it is
2611 acceptable for the IP0 and IP1 registers to be clobbered. */
2612 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2613 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2614 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2615 {
2616 stub_type = aarch64_stub_long_branch;
2617 }
2618
2619 return stub_type;
2620 }
2621
2622 /* Build a name for an entry in the stub hash table. */
2623
2624 static char *
2625 elfNN_aarch64_stub_name (const asection *input_section,
2626 const asection *sym_sec,
2627 const struct elf_aarch64_link_hash_entry *hash,
2628 const Elf_Internal_Rela *rel)
2629 {
2630 char *stub_name;
2631 bfd_size_type len;
2632
2633 if (hash)
2634 {
2635 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2636 stub_name = bfd_malloc (len);
2637 if (stub_name != NULL)
2638 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2639 (unsigned int) input_section->id,
2640 hash->root.root.root.string,
2641 rel->r_addend);
2642 }
2643 else
2644 {
2645 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2646 stub_name = bfd_malloc (len);
2647 if (stub_name != NULL)
2648 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2649 (unsigned int) input_section->id,
2650 (unsigned int) sym_sec->id,
2651 (unsigned int) ELFNN_R_SYM (rel->r_info),
2652 rel->r_addend);
2653 }
2654
2655 return stub_name;
2656 }
2657
2658 /* Look up an entry in the stub hash. Stub entries are cached because
2659 creating the stub name takes a bit of time. */
2660
2661 static struct elf_aarch64_stub_hash_entry *
2662 elfNN_aarch64_get_stub_entry (const asection *input_section,
2663 const asection *sym_sec,
2664 struct elf_link_hash_entry *hash,
2665 const Elf_Internal_Rela *rel,
2666 struct elf_aarch64_link_hash_table *htab)
2667 {
2668 struct elf_aarch64_stub_hash_entry *stub_entry;
2669 struct elf_aarch64_link_hash_entry *h =
2670 (struct elf_aarch64_link_hash_entry *) hash;
2671 const asection *id_sec;
2672
2673 if ((input_section->flags & SEC_CODE) == 0)
2674 return NULL;
2675
2676 /* If this input section is part of a group of sections sharing one
2677 stub section, then use the id of the first section in the group.
2678 Stub names need to include a section id, as there may well be
2679 more than one stub used to reach say, printf, and we need to
2680 distinguish between them. */
2681 id_sec = htab->stub_group[input_section->id].link_sec;
2682
2683 if (h != NULL && h->stub_cache != NULL
2684 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2685 {
2686 stub_entry = h->stub_cache;
2687 }
2688 else
2689 {
2690 char *stub_name;
2691
2692 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2693 if (stub_name == NULL)
2694 return NULL;
2695
2696 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2697 stub_name, FALSE, FALSE);
2698 if (h != NULL)
2699 h->stub_cache = stub_entry;
2700
2701 free (stub_name);
2702 }
2703
2704 return stub_entry;
2705 }
2706
2707
2708 /* Create a stub section. */
2709
2710 static asection *
2711 _bfd_aarch64_create_stub_section (asection *section,
2712 struct elf_aarch64_link_hash_table *htab)
2713 {
2714 size_t namelen;
2715 bfd_size_type len;
2716 char *s_name;
2717
2718 namelen = strlen (section->name);
2719 len = namelen + sizeof (STUB_SUFFIX);
2720 s_name = bfd_alloc (htab->stub_bfd, len);
2721 if (s_name == NULL)
2722 return NULL;
2723
2724 memcpy (s_name, section->name, namelen);
2725 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2726 return (*htab->add_stub_section) (s_name, section);
2727 }
2728
2729
2730 /* Find or create a stub section for a link section.
2731
2732 Fix or create the stub section used to collect stubs attached to
2733 the specified link section. */
2734
2735 static asection *
2736 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2737 struct elf_aarch64_link_hash_table *htab)
2738 {
2739 if (htab->stub_group[link_section->id].stub_sec == NULL)
2740 htab->stub_group[link_section->id].stub_sec
2741 = _bfd_aarch64_create_stub_section (link_section, htab);
2742 return htab->stub_group[link_section->id].stub_sec;
2743 }
2744
2745
2746 /* Find or create a stub section in the stub group for an input
2747 section. */
2748
2749 static asection *
2750 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2751 struct elf_aarch64_link_hash_table *htab)
2752 {
2753 asection *link_sec = htab->stub_group[section->id].link_sec;
2754 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2755 }
2756
2757
2758 /* Add a new stub entry in the stub group associated with an input
2759 section to the stub hash. Not all fields of the new stub entry are
2760 initialised. */
2761
2762 static struct elf_aarch64_stub_hash_entry *
2763 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2764 asection *section,
2765 struct elf_aarch64_link_hash_table *htab)
2766 {
2767 asection *link_sec;
2768 asection *stub_sec;
2769 struct elf_aarch64_stub_hash_entry *stub_entry;
2770
2771 link_sec = htab->stub_group[section->id].link_sec;
2772 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2773
2774 /* Enter this entry into the linker stub hash table. */
2775 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2776 TRUE, FALSE);
2777 if (stub_entry == NULL)
2778 {
2779 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2780 section->owner, stub_name);
2781 return NULL;
2782 }
2783
2784 stub_entry->stub_sec = stub_sec;
2785 stub_entry->stub_offset = 0;
2786 stub_entry->id_sec = link_sec;
2787
2788 return stub_entry;
2789 }
2790
2791 /* Add a new stub entry in the final stub section to the stub hash.
2792 Not all fields of the new stub entry are initialised. */
2793
2794 static struct elf_aarch64_stub_hash_entry *
2795 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2796 asection *link_section,
2797 struct elf_aarch64_link_hash_table *htab)
2798 {
2799 asection *stub_sec;
2800 struct elf_aarch64_stub_hash_entry *stub_entry;
2801
2802 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2803 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2804 TRUE, FALSE);
2805 if (stub_entry == NULL)
2806 {
2807 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2808 return NULL;
2809 }
2810
2811 stub_entry->stub_sec = stub_sec;
2812 stub_entry->stub_offset = 0;
2813 stub_entry->id_sec = link_section;
2814
2815 return stub_entry;
2816 }
2817
2818
2819 static bfd_boolean
2820 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2821 void *in_arg ATTRIBUTE_UNUSED)
2822 {
2823 struct elf_aarch64_stub_hash_entry *stub_entry;
2824 asection *stub_sec;
2825 bfd *stub_bfd;
2826 bfd_byte *loc;
2827 bfd_vma sym_value;
2828 bfd_vma veneered_insn_loc;
2829 bfd_vma veneer_entry_loc;
2830 bfd_signed_vma branch_offset = 0;
2831 unsigned int template_size;
2832 const uint32_t *template;
2833 unsigned int i;
2834
2835 /* Massage our args to the form they really have. */
2836 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2837
2838 stub_sec = stub_entry->stub_sec;
2839
2840 /* Make a note of the offset within the stubs for this entry. */
2841 stub_entry->stub_offset = stub_sec->size;
2842 loc = stub_sec->contents + stub_entry->stub_offset;
2843
2844 stub_bfd = stub_sec->owner;
2845
2846 /* This is the address of the stub destination. */
2847 sym_value = (stub_entry->target_value
2848 + stub_entry->target_section->output_offset
2849 + stub_entry->target_section->output_section->vma);
2850
2851 if (stub_entry->stub_type == aarch64_stub_long_branch)
2852 {
2853 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2854 + stub_sec->output_offset);
2855
2856 /* See if we can relax the stub. */
2857 if (aarch64_valid_for_adrp_p (sym_value, place))
2858 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2859 }
2860
2861 switch (stub_entry->stub_type)
2862 {
2863 case aarch64_stub_adrp_branch:
2864 template = aarch64_adrp_branch_stub;
2865 template_size = sizeof (aarch64_adrp_branch_stub);
2866 break;
2867 case aarch64_stub_long_branch:
2868 template = aarch64_long_branch_stub;
2869 template_size = sizeof (aarch64_long_branch_stub);
2870 break;
2871 case aarch64_stub_erratum_835769_veneer:
2872 template = aarch64_erratum_835769_stub;
2873 template_size = sizeof (aarch64_erratum_835769_stub);
2874 break;
2875 case aarch64_stub_erratum_843419_veneer:
2876 template = aarch64_erratum_843419_stub;
2877 template_size = sizeof (aarch64_erratum_843419_stub);
2878 break;
2879 default:
2880 abort ();
2881 }
2882
2883 for (i = 0; i < (template_size / sizeof template[0]); i++)
2884 {
2885 bfd_putl32 (template[i], loc);
2886 loc += 4;
2887 }
2888
2889 template_size = (template_size + 7) & ~7;
2890 stub_sec->size += template_size;
2891
2892 switch (stub_entry->stub_type)
2893 {
2894 case aarch64_stub_adrp_branch:
2895 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2896 stub_entry->stub_offset, sym_value))
2897 /* The stub would not have been relaxed if the offset was out
2898 of range. */
2899 BFD_FAIL ();
2900
2901 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2902 stub_entry->stub_offset + 4, sym_value))
2903 BFD_FAIL ();
2904 break;
2905
2906 case aarch64_stub_long_branch:
2907 /* We want the value relative to the address 12 bytes back from the
2908 value itself. */
2909 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2910 stub_entry->stub_offset + 16, sym_value + 12))
2911 BFD_FAIL ();
2912 break;
2913
2914 case aarch64_stub_erratum_835769_veneer:
2915 veneered_insn_loc = stub_entry->target_section->output_section->vma
2916 + stub_entry->target_section->output_offset
2917 + stub_entry->target_value;
2918 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2919 + stub_entry->stub_sec->output_offset
2920 + stub_entry->stub_offset;
2921 branch_offset = veneered_insn_loc - veneer_entry_loc;
2922 branch_offset >>= 2;
2923 branch_offset &= 0x3ffffff;
2924 bfd_putl32 (stub_entry->veneered_insn,
2925 stub_sec->contents + stub_entry->stub_offset);
2926 bfd_putl32 (template[1] | branch_offset,
2927 stub_sec->contents + stub_entry->stub_offset + 4);
2928 break;
2929
2930 case aarch64_stub_erratum_843419_veneer:
2931 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2932 stub_entry->stub_offset + 4, sym_value + 4))
2933 BFD_FAIL ();
2934 break;
2935
2936 default:
2937 abort ();
2938 }
2939
2940 return TRUE;
2941 }
2942
2943 /* As above, but don't actually build the stub. Just bump offset so
2944 we know stub section sizes. */
2945
2946 static bfd_boolean
2947 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2948 void *in_arg ATTRIBUTE_UNUSED)
2949 {
2950 struct elf_aarch64_stub_hash_entry *stub_entry;
2951 int size;
2952
2953 /* Massage our args to the form they really have. */
2954 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2955
2956 switch (stub_entry->stub_type)
2957 {
2958 case aarch64_stub_adrp_branch:
2959 size = sizeof (aarch64_adrp_branch_stub);
2960 break;
2961 case aarch64_stub_long_branch:
2962 size = sizeof (aarch64_long_branch_stub);
2963 break;
2964 case aarch64_stub_erratum_835769_veneer:
2965 size = sizeof (aarch64_erratum_835769_stub);
2966 break;
2967 case aarch64_stub_erratum_843419_veneer:
2968 size = sizeof (aarch64_erratum_843419_stub);
2969 break;
2970 default:
2971 abort ();
2972 }
2973
2974 size = (size + 7) & ~7;
2975 stub_entry->stub_sec->size += size;
2976 return TRUE;
2977 }
2978
2979 /* External entry points for sizing and building linker stubs. */
2980
2981 /* Set up various things so that we can make a list of input sections
2982 for each output section included in the link. Returns -1 on error,
2983 0 when no stubs will be needed, and 1 on success. */
2984
2985 int
2986 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
2987 struct bfd_link_info *info)
2988 {
2989 bfd *input_bfd;
2990 unsigned int bfd_count;
2991 unsigned int top_id, top_index;
2992 asection *section;
2993 asection **input_list, **list;
2994 bfd_size_type amt;
2995 struct elf_aarch64_link_hash_table *htab =
2996 elf_aarch64_hash_table (info);
2997
2998 if (!is_elf_hash_table (htab))
2999 return 0;
3000
3001 /* Count the number of input BFDs and find the top input section id. */
3002 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3003 input_bfd != NULL; input_bfd = input_bfd->link.next)
3004 {
3005 bfd_count += 1;
3006 for (section = input_bfd->sections;
3007 section != NULL; section = section->next)
3008 {
3009 if (top_id < section->id)
3010 top_id = section->id;
3011 }
3012 }
3013 htab->bfd_count = bfd_count;
3014
3015 amt = sizeof (struct map_stub) * (top_id + 1);
3016 htab->stub_group = bfd_zmalloc (amt);
3017 if (htab->stub_group == NULL)
3018 return -1;
3019
3020 /* We can't use output_bfd->section_count here to find the top output
3021 section index as some sections may have been removed, and
3022 _bfd_strip_section_from_output doesn't renumber the indices. */
3023 for (section = output_bfd->sections, top_index = 0;
3024 section != NULL; section = section->next)
3025 {
3026 if (top_index < section->index)
3027 top_index = section->index;
3028 }
3029
3030 htab->top_index = top_index;
3031 amt = sizeof (asection *) * (top_index + 1);
3032 input_list = bfd_malloc (amt);
3033 htab->input_list = input_list;
3034 if (input_list == NULL)
3035 return -1;
3036
3037 /* For sections we aren't interested in, mark their entries with a
3038 value we can check later. */
3039 list = input_list + top_index;
3040 do
3041 *list = bfd_abs_section_ptr;
3042 while (list-- != input_list);
3043
3044 for (section = output_bfd->sections;
3045 section != NULL; section = section->next)
3046 {
3047 if ((section->flags & SEC_CODE) != 0)
3048 input_list[section->index] = NULL;
3049 }
3050
3051 return 1;
3052 }
3053
3054 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3055 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3056
3057 /* The linker repeatedly calls this function for each input section,
3058 in the order that input sections are linked into output sections.
3059 Build lists of input sections to determine groupings between which
3060 we may insert linker stubs. */
3061
3062 void
3063 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3064 {
3065 struct elf_aarch64_link_hash_table *htab =
3066 elf_aarch64_hash_table (info);
3067
3068 if (isec->output_section->index <= htab->top_index)
3069 {
3070 asection **list = htab->input_list + isec->output_section->index;
3071
3072 if (*list != bfd_abs_section_ptr)
3073 {
3074 /* Steal the link_sec pointer for our list. */
3075 /* This happens to make the list in reverse order,
3076 which is what we want. */
3077 PREV_SEC (isec) = *list;
3078 *list = isec;
3079 }
3080 }
3081 }
3082
3083 /* See whether we can group stub sections together. Grouping stub
3084 sections may result in fewer stubs. More importantly, we need to
3085 put all .init* and .fini* stubs at the beginning of the .init or
3086 .fini output sections respectively, because glibc splits the
3087 _init and _fini functions into multiple parts. Putting a stub in
3088 the middle of a function is not a good idea. */
3089
3090 static void
3091 group_sections (struct elf_aarch64_link_hash_table *htab,
3092 bfd_size_type stub_group_size,
3093 bfd_boolean stubs_always_before_branch)
3094 {
3095 asection **list = htab->input_list + htab->top_index;
3096
3097 do
3098 {
3099 asection *tail = *list;
3100
3101 if (tail == bfd_abs_section_ptr)
3102 continue;
3103
3104 while (tail != NULL)
3105 {
3106 asection *curr;
3107 asection *prev;
3108 bfd_size_type total;
3109
3110 curr = tail;
3111 total = tail->size;
3112 while ((prev = PREV_SEC (curr)) != NULL
3113 && ((total += curr->output_offset - prev->output_offset)
3114 < stub_group_size))
3115 curr = prev;
3116
3117 /* OK, the size from the start of CURR to the end is less
3118 than stub_group_size and thus can be handled by one stub
3119 section. (Or the tail section is itself larger than
3120 stub_group_size, in which case we may be toast.)
3121 We should really be keeping track of the total size of
3122 stubs added here, as stubs contribute to the final output
3123 section size. */
3124 do
3125 {
3126 prev = PREV_SEC (tail);
3127 /* Set up this stub group. */
3128 htab->stub_group[tail->id].link_sec = curr;
3129 }
3130 while (tail != curr && (tail = prev) != NULL);
3131
3132 /* But wait, there's more! Input sections up to stub_group_size
3133 bytes before the stub section can be handled by it too. */
3134 if (!stubs_always_before_branch)
3135 {
3136 total = 0;
3137 while (prev != NULL
3138 && ((total += tail->output_offset - prev->output_offset)
3139 < stub_group_size))
3140 {
3141 tail = prev;
3142 prev = PREV_SEC (tail);
3143 htab->stub_group[tail->id].link_sec = curr;
3144 }
3145 }
3146 tail = prev;
3147 }
3148 }
3149 while (list-- != htab->input_list);
3150
3151 free (htab->input_list);
3152 }
3153
3154 #undef PREV_SEC
3155
3156 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3157
3158 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3159 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3160 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3161 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3162 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3163 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3164
3165 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3166 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3167 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3168 #define AARCH64_ZR 0x1f
3169
3170 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3171 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3172
3173 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3174 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3175 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3176 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3177 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3178 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3179 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3180 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3181 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3182 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3183 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3184 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3185 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3186 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3187 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3188 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3189 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3190 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3191
3192 /* Classify an INSN if it is indeed a load/store.
3193
3194 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3195
3196 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3197 is set equal to RT.
3198
3199 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3200
3201 */
3202
3203 static bfd_boolean
3204 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3205 bfd_boolean *pair, bfd_boolean *load)
3206 {
3207 uint32_t opcode;
3208 unsigned int r;
3209 uint32_t opc = 0;
3210 uint32_t v = 0;
3211 uint32_t opc_v = 0;
3212
3213 /* Bail out quickly if INSN doesn't fall into the the load-store
3214 encoding space. */
3215 if (!AARCH64_LDST (insn))
3216 return FALSE;
3217
3218 *pair = FALSE;
3219 *load = FALSE;
3220 if (AARCH64_LDST_EX (insn))
3221 {
3222 *rt = AARCH64_RT (insn);
3223 *rt2 = *rt;
3224 if (AARCH64_BIT (insn, 21) == 1)
3225 {
3226 *pair = TRUE;
3227 *rt2 = AARCH64_RT2 (insn);
3228 }
3229 *load = AARCH64_LD (insn);
3230 return TRUE;
3231 }
3232 else if (AARCH64_LDST_NAP (insn)
3233 || AARCH64_LDSTP_PI (insn)
3234 || AARCH64_LDSTP_O (insn)
3235 || AARCH64_LDSTP_PRE (insn))
3236 {
3237 *pair = TRUE;
3238 *rt = AARCH64_RT (insn);
3239 *rt2 = AARCH64_RT2 (insn);
3240 *load = AARCH64_LD (insn);
3241 return TRUE;
3242 }
3243 else if (AARCH64_LDST_PCREL (insn)
3244 || AARCH64_LDST_UI (insn)
3245 || AARCH64_LDST_PIIMM (insn)
3246 || AARCH64_LDST_U (insn)
3247 || AARCH64_LDST_PREIMM (insn)
3248 || AARCH64_LDST_RO (insn)
3249 || AARCH64_LDST_UIMM (insn))
3250 {
3251 *rt = AARCH64_RT (insn);
3252 *rt2 = *rt;
3253 if (AARCH64_LDST_PCREL (insn))
3254 *load = TRUE;
3255 opc = AARCH64_BITS (insn, 22, 2);
3256 v = AARCH64_BIT (insn, 26);
3257 opc_v = opc | (v << 2);
3258 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3259 || opc_v == 5 || opc_v == 7);
3260 return TRUE;
3261 }
3262 else if (AARCH64_LDST_SIMD_M (insn)
3263 || AARCH64_LDST_SIMD_M_PI (insn))
3264 {
3265 *rt = AARCH64_RT (insn);
3266 *load = AARCH64_BIT (insn, 22);
3267 opcode = (insn >> 12) & 0xf;
3268 switch (opcode)
3269 {
3270 case 0:
3271 case 2:
3272 *rt2 = *rt + 3;
3273 break;
3274
3275 case 4:
3276 case 6:
3277 *rt2 = *rt + 2;
3278 break;
3279
3280 case 7:
3281 *rt2 = *rt;
3282 break;
3283
3284 case 8:
3285 case 10:
3286 *rt2 = *rt + 1;
3287 break;
3288
3289 default:
3290 return FALSE;
3291 }
3292 return TRUE;
3293 }
3294 else if (AARCH64_LDST_SIMD_S (insn)
3295 || AARCH64_LDST_SIMD_S_PI (insn))
3296 {
3297 *rt = AARCH64_RT (insn);
3298 r = (insn >> 21) & 1;
3299 *load = AARCH64_BIT (insn, 22);
3300 opcode = (insn >> 13) & 0x7;
3301 switch (opcode)
3302 {
3303 case 0:
3304 case 2:
3305 case 4:
3306 *rt2 = *rt + r;
3307 break;
3308
3309 case 1:
3310 case 3:
3311 case 5:
3312 *rt2 = *rt + (r == 0 ? 2 : 3);
3313 break;
3314
3315 case 6:
3316 *rt2 = *rt + r;
3317 break;
3318
3319 case 7:
3320 *rt2 = *rt + (r == 0 ? 2 : 3);
3321 break;
3322
3323 default:
3324 return FALSE;
3325 }
3326 return TRUE;
3327 }
3328
3329 return FALSE;
3330 }
3331
3332 /* Return TRUE if INSN is multiply-accumulate. */
3333
3334 static bfd_boolean
3335 aarch64_mlxl_p (uint32_t insn)
3336 {
3337 uint32_t op31 = AARCH64_OP31 (insn);
3338
3339 if (AARCH64_MAC (insn)
3340 && (op31 == 0 || op31 == 1 || op31 == 5)
3341 /* Exclude MUL instructions which are encoded as a multiple accumulate
3342 with RA = XZR. */
3343 && AARCH64_RA (insn) != AARCH64_ZR)
3344 return TRUE;
3345
3346 return FALSE;
3347 }
3348
3349 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3350 it is possible for a 64-bit multiply-accumulate instruction to generate an
3351 incorrect result. The details are quite complex and hard to
3352 determine statically, since branches in the code may exist in some
3353 circumstances, but all cases end with a memory (load, store, or
3354 prefetch) instruction followed immediately by the multiply-accumulate
3355 operation. We employ a linker patching technique, by moving the potentially
3356 affected multiply-accumulate instruction into a patch region and replacing
3357 the original instruction with a branch to the patch. This function checks
3358 if INSN_1 is the memory operation followed by a multiply-accumulate
3359 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3360 if INSN_1 and INSN_2 are safe. */
3361
3362 static bfd_boolean
3363 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3364 {
3365 uint32_t rt;
3366 uint32_t rt2;
3367 uint32_t rn;
3368 uint32_t rm;
3369 uint32_t ra;
3370 bfd_boolean pair;
3371 bfd_boolean load;
3372
3373 if (aarch64_mlxl_p (insn_2)
3374 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3375 {
3376 /* Any SIMD memory op is independent of the subsequent MLA
3377 by definition of the erratum. */
3378 if (AARCH64_BIT (insn_1, 26))
3379 return TRUE;
3380
3381 /* If not SIMD, check for integer memory ops and MLA relationship. */
3382 rn = AARCH64_RN (insn_2);
3383 ra = AARCH64_RA (insn_2);
3384 rm = AARCH64_RM (insn_2);
3385
3386 /* If this is a load and there's a true(RAW) dependency, we are safe
3387 and this is not an erratum sequence. */
3388 if (load &&
3389 (rt == rn || rt == rm || rt == ra
3390 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3391 return FALSE;
3392
3393 /* We conservatively put out stubs for all other cases (including
3394 writebacks). */
3395 return TRUE;
3396 }
3397
3398 return FALSE;
3399 }
3400
3401 /* Used to order a list of mapping symbols by address. */
3402
3403 static int
3404 elf_aarch64_compare_mapping (const void *a, const void *b)
3405 {
3406 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3407 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3408
3409 if (amap->vma > bmap->vma)
3410 return 1;
3411 else if (amap->vma < bmap->vma)
3412 return -1;
3413 else if (amap->type > bmap->type)
3414 /* Ensure results do not depend on the host qsort for objects with
3415 multiple mapping symbols at the same address by sorting on type
3416 after vma. */
3417 return 1;
3418 else if (amap->type < bmap->type)
3419 return -1;
3420 else
3421 return 0;
3422 }
3423
3424
3425 static char *
3426 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3427 {
3428 char *stub_name = (char *) bfd_malloc
3429 (strlen ("__erratum_835769_veneer_") + 16);
3430 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3431 return stub_name;
3432 }
3433
3434 /* Scan for Cortex-A53 erratum 835769 sequence.
3435
3436 Return TRUE else FALSE on abnormal termination. */
3437
3438 static bfd_boolean
3439 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3440 struct bfd_link_info *info,
3441 unsigned int *num_fixes_p)
3442 {
3443 asection *section;
3444 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3445 unsigned int num_fixes = *num_fixes_p;
3446
3447 if (htab == NULL)
3448 return TRUE;
3449
3450 for (section = input_bfd->sections;
3451 section != NULL;
3452 section = section->next)
3453 {
3454 bfd_byte *contents = NULL;
3455 struct _aarch64_elf_section_data *sec_data;
3456 unsigned int span;
3457
3458 if (elf_section_type (section) != SHT_PROGBITS
3459 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3460 || (section->flags & SEC_EXCLUDE) != 0
3461 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3462 || (section->output_section == bfd_abs_section_ptr))
3463 continue;
3464
3465 if (elf_section_data (section)->this_hdr.contents != NULL)
3466 contents = elf_section_data (section)->this_hdr.contents;
3467 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3468 return FALSE;
3469
3470 sec_data = elf_aarch64_section_data (section);
3471
3472 qsort (sec_data->map, sec_data->mapcount,
3473 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3474
3475 for (span = 0; span < sec_data->mapcount; span++)
3476 {
3477 unsigned int span_start = sec_data->map[span].vma;
3478 unsigned int span_end = ((span == sec_data->mapcount - 1)
3479 ? sec_data->map[0].vma + section->size
3480 : sec_data->map[span + 1].vma);
3481 unsigned int i;
3482 char span_type = sec_data->map[span].type;
3483
3484 if (span_type == 'd')
3485 continue;
3486
3487 for (i = span_start; i + 4 < span_end; i += 4)
3488 {
3489 uint32_t insn_1 = bfd_getl32 (contents + i);
3490 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3491
3492 if (aarch64_erratum_sequence (insn_1, insn_2))
3493 {
3494 struct elf_aarch64_stub_hash_entry *stub_entry;
3495 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3496 if (! stub_name)
3497 return FALSE;
3498
3499 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3500 section,
3501 htab);
3502 if (! stub_entry)
3503 return FALSE;
3504
3505 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3506 stub_entry->target_section = section;
3507 stub_entry->target_value = i + 4;
3508 stub_entry->veneered_insn = insn_2;
3509 stub_entry->output_name = stub_name;
3510 num_fixes++;
3511 }
3512 }
3513 }
3514 if (elf_section_data (section)->this_hdr.contents == NULL)
3515 free (contents);
3516 }
3517
3518 *num_fixes_p = num_fixes;
3519
3520 return TRUE;
3521 }
3522
3523
3524 /* Test if instruction INSN is ADRP. */
3525
3526 static bfd_boolean
3527 _bfd_aarch64_adrp_p (uint32_t insn)
3528 {
3529 return ((insn & 0x9f000000) == 0x90000000);
3530 }
3531
3532
3533 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3534
3535 static bfd_boolean
3536 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3537 uint32_t insn_3)
3538 {
3539 uint32_t rt;
3540 uint32_t rt2;
3541 bfd_boolean pair;
3542 bfd_boolean load;
3543
3544 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3545 && (!pair
3546 || (pair && !load))
3547 && AARCH64_LDST_UIMM (insn_3)
3548 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3549 }
3550
3551
3552 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3553
3554 Return TRUE if section CONTENTS at offset I contains one of the
3555 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3556 seen set P_VENEER_I to the offset of the final LOAD/STORE
3557 instruction in the sequence.
3558 */
3559
3560 static bfd_boolean
3561 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3562 bfd_vma i, bfd_vma span_end,
3563 bfd_vma *p_veneer_i)
3564 {
3565 uint32_t insn_1 = bfd_getl32 (contents + i);
3566
3567 if (!_bfd_aarch64_adrp_p (insn_1))
3568 return FALSE;
3569
3570 if (span_end < i + 12)
3571 return FALSE;
3572
3573 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3574 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3575
3576 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3577 return FALSE;
3578
3579 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3580 {
3581 *p_veneer_i = i + 8;
3582 return TRUE;
3583 }
3584
3585 if (span_end < i + 16)
3586 return FALSE;
3587
3588 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3589
3590 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3591 {
3592 *p_veneer_i = i + 12;
3593 return TRUE;
3594 }
3595
3596 return FALSE;
3597 }
3598
3599
3600 /* Resize all stub sections. */
3601
3602 static void
3603 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3604 {
3605 asection *section;
3606
3607 /* OK, we've added some stubs. Find out the new size of the
3608 stub sections. */
3609 for (section = htab->stub_bfd->sections;
3610 section != NULL; section = section->next)
3611 {
3612 /* Ignore non-stub sections. */
3613 if (!strstr (section->name, STUB_SUFFIX))
3614 continue;
3615 section->size = 0;
3616 }
3617
3618 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3619
3620 for (section = htab->stub_bfd->sections;
3621 section != NULL; section = section->next)
3622 {
3623 if (!strstr (section->name, STUB_SUFFIX))
3624 continue;
3625
3626 if (section->size)
3627 section->size += 4;
3628
3629 /* Ensure all stub sections have a size which is a multiple of
3630 4096. This is important in order to ensure that the insertion
3631 of stub sections does not in itself move existing code around
3632 in such a way that new errata sequences are created. */
3633 if (htab->fix_erratum_843419)
3634 if (section->size)
3635 section->size = BFD_ALIGN (section->size, 0x1000);
3636 }
3637 }
3638
3639
3640 /* Construct an erratum 843419 workaround stub name.
3641 */
3642
3643 static char *
3644 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3645 bfd_vma offset)
3646 {
3647 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3648 char *stub_name = bfd_malloc (len);
3649
3650 if (stub_name != NULL)
3651 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3652 input_section->owner->id,
3653 input_section->id,
3654 offset);
3655 return stub_name;
3656 }
3657
3658 /* Build a stub_entry structure describing an 843419 fixup.
3659
3660 The stub_entry constructed is populated with the bit pattern INSN
3661 of the instruction located at OFFSET within input SECTION.
3662
3663 Returns TRUE on success. */
3664
3665 static bfd_boolean
3666 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3667 bfd_vma adrp_offset,
3668 bfd_vma ldst_offset,
3669 asection *section,
3670 struct bfd_link_info *info)
3671 {
3672 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3673 char *stub_name;
3674 struct elf_aarch64_stub_hash_entry *stub_entry;
3675
3676 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3677 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3678 FALSE, FALSE);
3679 if (stub_entry)
3680 {
3681 free (stub_name);
3682 return TRUE;
3683 }
3684
3685 /* We always place an 843419 workaround veneer in the stub section
3686 attached to the input section in which an erratum sequence has
3687 been found. This ensures that later in the link process (in
3688 elfNN_aarch64_write_section) when we copy the veneered
3689 instruction from the input section into the stub section the
3690 copied instruction will have had any relocations applied to it.
3691 If we placed workaround veneers in any other stub section then we
3692 could not assume that all relocations have been processed on the
3693 corresponding input section at the point we output the stub
3694 section.
3695 */
3696
3697 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3698 if (stub_entry == NULL)
3699 {
3700 free (stub_name);
3701 return FALSE;
3702 }
3703
3704 stub_entry->adrp_offset = adrp_offset;
3705 stub_entry->target_value = ldst_offset;
3706 stub_entry->target_section = section;
3707 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3708 stub_entry->veneered_insn = insn;
3709 stub_entry->output_name = stub_name;
3710
3711 return TRUE;
3712 }
3713
3714
3715 /* Scan an input section looking for the signature of erratum 843419.
3716
3717 Scans input SECTION in INPUT_BFD looking for erratum 843419
3718 signatures, for each signature found a stub_entry is created
3719 describing the location of the erratum for subsequent fixup.
3720
3721 Return TRUE on successful scan, FALSE on failure to scan.
3722 */
3723
3724 static bfd_boolean
3725 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3726 struct bfd_link_info *info)
3727 {
3728 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3729
3730 if (htab == NULL)
3731 return TRUE;
3732
3733 if (elf_section_type (section) != SHT_PROGBITS
3734 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3735 || (section->flags & SEC_EXCLUDE) != 0
3736 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3737 || (section->output_section == bfd_abs_section_ptr))
3738 return TRUE;
3739
3740 do
3741 {
3742 bfd_byte *contents = NULL;
3743 struct _aarch64_elf_section_data *sec_data;
3744 unsigned int span;
3745
3746 if (elf_section_data (section)->this_hdr.contents != NULL)
3747 contents = elf_section_data (section)->this_hdr.contents;
3748 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3749 return FALSE;
3750
3751 sec_data = elf_aarch64_section_data (section);
3752
3753 qsort (sec_data->map, sec_data->mapcount,
3754 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3755
3756 for (span = 0; span < sec_data->mapcount; span++)
3757 {
3758 unsigned int span_start = sec_data->map[span].vma;
3759 unsigned int span_end = ((span == sec_data->mapcount - 1)
3760 ? sec_data->map[0].vma + section->size
3761 : sec_data->map[span + 1].vma);
3762 unsigned int i;
3763 char span_type = sec_data->map[span].type;
3764
3765 if (span_type == 'd')
3766 continue;
3767
3768 for (i = span_start; i + 8 < span_end; i += 4)
3769 {
3770 bfd_vma vma = (section->output_section->vma
3771 + section->output_offset
3772 + i);
3773 bfd_vma veneer_i;
3774
3775 if (_bfd_aarch64_erratum_843419_p
3776 (contents, vma, i, span_end, &veneer_i))
3777 {
3778 uint32_t insn = bfd_getl32 (contents + veneer_i);
3779
3780 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3781 section, info))
3782 return FALSE;
3783 }
3784 }
3785 }
3786
3787 if (elf_section_data (section)->this_hdr.contents == NULL)
3788 free (contents);
3789 }
3790 while (0);
3791
3792 return TRUE;
3793 }
3794
3795
3796 /* Determine and set the size of the stub section for a final link.
3797
3798 The basic idea here is to examine all the relocations looking for
3799 PC-relative calls to a target that is unreachable with a "bl"
3800 instruction. */
3801
3802 bfd_boolean
3803 elfNN_aarch64_size_stubs (bfd *output_bfd,
3804 bfd *stub_bfd,
3805 struct bfd_link_info *info,
3806 bfd_signed_vma group_size,
3807 asection * (*add_stub_section) (const char *,
3808 asection *),
3809 void (*layout_sections_again) (void))
3810 {
3811 bfd_size_type stub_group_size;
3812 bfd_boolean stubs_always_before_branch;
3813 bfd_boolean stub_changed = FALSE;
3814 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3815 unsigned int num_erratum_835769_fixes = 0;
3816
3817 /* Propagate mach to stub bfd, because it may not have been
3818 finalized when we created stub_bfd. */
3819 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3820 bfd_get_mach (output_bfd));
3821
3822 /* Stash our params away. */
3823 htab->stub_bfd = stub_bfd;
3824 htab->add_stub_section = add_stub_section;
3825 htab->layout_sections_again = layout_sections_again;
3826 stubs_always_before_branch = group_size < 0;
3827 if (group_size < 0)
3828 stub_group_size = -group_size;
3829 else
3830 stub_group_size = group_size;
3831
3832 if (stub_group_size == 1)
3833 {
3834 /* Default values. */
3835 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3836 stub_group_size = 127 * 1024 * 1024;
3837 }
3838
3839 group_sections (htab, stub_group_size, stubs_always_before_branch);
3840
3841 (*htab->layout_sections_again) ();
3842
3843 if (htab->fix_erratum_835769)
3844 {
3845 bfd *input_bfd;
3846
3847 for (input_bfd = info->input_bfds;
3848 input_bfd != NULL; input_bfd = input_bfd->link.next)
3849 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3850 &num_erratum_835769_fixes))
3851 return FALSE;
3852
3853 _bfd_aarch64_resize_stubs (htab);
3854 (*htab->layout_sections_again) ();
3855 }
3856
3857 if (htab->fix_erratum_843419)
3858 {
3859 bfd *input_bfd;
3860
3861 for (input_bfd = info->input_bfds;
3862 input_bfd != NULL;
3863 input_bfd = input_bfd->link.next)
3864 {
3865 asection *section;
3866
3867 for (section = input_bfd->sections;
3868 section != NULL;
3869 section = section->next)
3870 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3871 return FALSE;
3872 }
3873
3874 _bfd_aarch64_resize_stubs (htab);
3875 (*htab->layout_sections_again) ();
3876 }
3877
3878 while (1)
3879 {
3880 bfd *input_bfd;
3881
3882 for (input_bfd = info->input_bfds;
3883 input_bfd != NULL; input_bfd = input_bfd->link.next)
3884 {
3885 Elf_Internal_Shdr *symtab_hdr;
3886 asection *section;
3887 Elf_Internal_Sym *local_syms = NULL;
3888
3889 /* We'll need the symbol table in a second. */
3890 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3891 if (symtab_hdr->sh_info == 0)
3892 continue;
3893
3894 /* Walk over each section attached to the input bfd. */
3895 for (section = input_bfd->sections;
3896 section != NULL; section = section->next)
3897 {
3898 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3899
3900 /* If there aren't any relocs, then there's nothing more
3901 to do. */
3902 if ((section->flags & SEC_RELOC) == 0
3903 || section->reloc_count == 0
3904 || (section->flags & SEC_CODE) == 0)
3905 continue;
3906
3907 /* If this section is a link-once section that will be
3908 discarded, then don't create any stubs. */
3909 if (section->output_section == NULL
3910 || section->output_section->owner != output_bfd)
3911 continue;
3912
3913 /* Get the relocs. */
3914 internal_relocs
3915 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3916 NULL, info->keep_memory);
3917 if (internal_relocs == NULL)
3918 goto error_ret_free_local;
3919
3920 /* Now examine each relocation. */
3921 irela = internal_relocs;
3922 irelaend = irela + section->reloc_count;
3923 for (; irela < irelaend; irela++)
3924 {
3925 unsigned int r_type, r_indx;
3926 enum elf_aarch64_stub_type stub_type;
3927 struct elf_aarch64_stub_hash_entry *stub_entry;
3928 asection *sym_sec;
3929 bfd_vma sym_value;
3930 bfd_vma destination;
3931 struct elf_aarch64_link_hash_entry *hash;
3932 const char *sym_name;
3933 char *stub_name;
3934 const asection *id_sec;
3935 unsigned char st_type;
3936 bfd_size_type len;
3937
3938 r_type = ELFNN_R_TYPE (irela->r_info);
3939 r_indx = ELFNN_R_SYM (irela->r_info);
3940
3941 if (r_type >= (unsigned int) R_AARCH64_end)
3942 {
3943 bfd_set_error (bfd_error_bad_value);
3944 error_ret_free_internal:
3945 if (elf_section_data (section)->relocs == NULL)
3946 free (internal_relocs);
3947 goto error_ret_free_local;
3948 }
3949
3950 /* Only look for stubs on unconditional branch and
3951 branch and link instructions. */
3952 if (r_type != (unsigned int) AARCH64_R (CALL26)
3953 && r_type != (unsigned int) AARCH64_R (JUMP26))
3954 continue;
3955
3956 /* Now determine the call target, its name, value,
3957 section. */
3958 sym_sec = NULL;
3959 sym_value = 0;
3960 destination = 0;
3961 hash = NULL;
3962 sym_name = NULL;
3963 if (r_indx < symtab_hdr->sh_info)
3964 {
3965 /* It's a local symbol. */
3966 Elf_Internal_Sym *sym;
3967 Elf_Internal_Shdr *hdr;
3968
3969 if (local_syms == NULL)
3970 {
3971 local_syms
3972 = (Elf_Internal_Sym *) symtab_hdr->contents;
3973 if (local_syms == NULL)
3974 local_syms
3975 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3976 symtab_hdr->sh_info, 0,
3977 NULL, NULL, NULL);
3978 if (local_syms == NULL)
3979 goto error_ret_free_internal;
3980 }
3981
3982 sym = local_syms + r_indx;
3983 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3984 sym_sec = hdr->bfd_section;
3985 if (!sym_sec)
3986 /* This is an undefined symbol. It can never
3987 be resolved. */
3988 continue;
3989
3990 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3991 sym_value = sym->st_value;
3992 destination = (sym_value + irela->r_addend
3993 + sym_sec->output_offset
3994 + sym_sec->output_section->vma);
3995 st_type = ELF_ST_TYPE (sym->st_info);
3996 sym_name
3997 = bfd_elf_string_from_elf_section (input_bfd,
3998 symtab_hdr->sh_link,
3999 sym->st_name);
4000 }
4001 else
4002 {
4003 int e_indx;
4004
4005 e_indx = r_indx - symtab_hdr->sh_info;
4006 hash = ((struct elf_aarch64_link_hash_entry *)
4007 elf_sym_hashes (input_bfd)[e_indx]);
4008
4009 while (hash->root.root.type == bfd_link_hash_indirect
4010 || hash->root.root.type == bfd_link_hash_warning)
4011 hash = ((struct elf_aarch64_link_hash_entry *)
4012 hash->root.root.u.i.link);
4013
4014 if (hash->root.root.type == bfd_link_hash_defined
4015 || hash->root.root.type == bfd_link_hash_defweak)
4016 {
4017 struct elf_aarch64_link_hash_table *globals =
4018 elf_aarch64_hash_table (info);
4019 sym_sec = hash->root.root.u.def.section;
4020 sym_value = hash->root.root.u.def.value;
4021 /* For a destination in a shared library,
4022 use the PLT stub as target address to
4023 decide whether a branch stub is
4024 needed. */
4025 if (globals->root.splt != NULL && hash != NULL
4026 && hash->root.plt.offset != (bfd_vma) - 1)
4027 {
4028 sym_sec = globals->root.splt;
4029 sym_value = hash->root.plt.offset;
4030 if (sym_sec->output_section != NULL)
4031 destination = (sym_value
4032 + sym_sec->output_offset
4033 +
4034 sym_sec->output_section->vma);
4035 }
4036 else if (sym_sec->output_section != NULL)
4037 destination = (sym_value + irela->r_addend
4038 + sym_sec->output_offset
4039 + sym_sec->output_section->vma);
4040 }
4041 else if (hash->root.root.type == bfd_link_hash_undefined
4042 || (hash->root.root.type
4043 == bfd_link_hash_undefweak))
4044 {
4045 /* For a shared library, use the PLT stub as
4046 target address to decide whether a long
4047 branch stub is needed.
4048 For absolute code, they cannot be handled. */
4049 struct elf_aarch64_link_hash_table *globals =
4050 elf_aarch64_hash_table (info);
4051
4052 if (globals->root.splt != NULL && hash != NULL
4053 && hash->root.plt.offset != (bfd_vma) - 1)
4054 {
4055 sym_sec = globals->root.splt;
4056 sym_value = hash->root.plt.offset;
4057 if (sym_sec->output_section != NULL)
4058 destination = (sym_value
4059 + sym_sec->output_offset
4060 +
4061 sym_sec->output_section->vma);
4062 }
4063 else
4064 continue;
4065 }
4066 else
4067 {
4068 bfd_set_error (bfd_error_bad_value);
4069 goto error_ret_free_internal;
4070 }
4071 st_type = ELF_ST_TYPE (hash->root.type);
4072 sym_name = hash->root.root.root.string;
4073 }
4074
4075 /* Determine what (if any) linker stub is needed. */
4076 stub_type = aarch64_type_of_stub
4077 (info, section, irela, sym_sec, st_type, hash, destination);
4078 if (stub_type == aarch64_stub_none)
4079 continue;
4080
4081 /* Support for grouping stub sections. */
4082 id_sec = htab->stub_group[section->id].link_sec;
4083
4084 /* Get the name of this stub. */
4085 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4086 irela);
4087 if (!stub_name)
4088 goto error_ret_free_internal;
4089
4090 stub_entry =
4091 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4092 stub_name, FALSE, FALSE);
4093 if (stub_entry != NULL)
4094 {
4095 /* The proper stub has already been created. */
4096 free (stub_name);
4097 continue;
4098 }
4099
4100 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4101 (stub_name, section, htab);
4102 if (stub_entry == NULL)
4103 {
4104 free (stub_name);
4105 goto error_ret_free_internal;
4106 }
4107
4108 stub_entry->target_value = sym_value;
4109 stub_entry->target_section = sym_sec;
4110 stub_entry->stub_type = stub_type;
4111 stub_entry->h = hash;
4112 stub_entry->st_type = st_type;
4113
4114 if (sym_name == NULL)
4115 sym_name = "unnamed";
4116 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4117 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4118 if (stub_entry->output_name == NULL)
4119 {
4120 free (stub_name);
4121 goto error_ret_free_internal;
4122 }
4123
4124 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4125 sym_name);
4126
4127 stub_changed = TRUE;
4128 }
4129
4130 /* We're done with the internal relocs, free them. */
4131 if (elf_section_data (section)->relocs == NULL)
4132 free (internal_relocs);
4133 }
4134 }
4135
4136 if (!stub_changed)
4137 break;
4138
4139 _bfd_aarch64_resize_stubs (htab);
4140
4141 /* Ask the linker to do its stuff. */
4142 (*htab->layout_sections_again) ();
4143 stub_changed = FALSE;
4144 }
4145
4146 return TRUE;
4147
4148 error_ret_free_local:
4149 return FALSE;
4150 }
4151
4152 /* Build all the stubs associated with the current output file. The
4153 stubs are kept in a hash table attached to the main linker hash
4154 table. We also set up the .plt entries for statically linked PIC
4155 functions here. This function is called via aarch64_elf_finish in the
4156 linker. */
4157
4158 bfd_boolean
4159 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4160 {
4161 asection *stub_sec;
4162 struct bfd_hash_table *table;
4163 struct elf_aarch64_link_hash_table *htab;
4164
4165 htab = elf_aarch64_hash_table (info);
4166
4167 for (stub_sec = htab->stub_bfd->sections;
4168 stub_sec != NULL; stub_sec = stub_sec->next)
4169 {
4170 bfd_size_type size;
4171
4172 /* Ignore non-stub sections. */
4173 if (!strstr (stub_sec->name, STUB_SUFFIX))
4174 continue;
4175
4176 /* Allocate memory to hold the linker stubs. */
4177 size = stub_sec->size;
4178 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4179 if (stub_sec->contents == NULL && size != 0)
4180 return FALSE;
4181 stub_sec->size = 0;
4182
4183 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4184 stub_sec->size += 4;
4185 }
4186
4187 /* Build the stubs as directed by the stub hash table. */
4188 table = &htab->stub_hash_table;
4189 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4190
4191 return TRUE;
4192 }
4193
4194
4195 /* Add an entry to the code/data map for section SEC. */
4196
4197 static void
4198 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4199 {
4200 struct _aarch64_elf_section_data *sec_data =
4201 elf_aarch64_section_data (sec);
4202 unsigned int newidx;
4203
4204 if (sec_data->map == NULL)
4205 {
4206 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4207 sec_data->mapcount = 0;
4208 sec_data->mapsize = 1;
4209 }
4210
4211 newidx = sec_data->mapcount++;
4212
4213 if (sec_data->mapcount > sec_data->mapsize)
4214 {
4215 sec_data->mapsize *= 2;
4216 sec_data->map = bfd_realloc_or_free
4217 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4218 }
4219
4220 if (sec_data->map)
4221 {
4222 sec_data->map[newidx].vma = vma;
4223 sec_data->map[newidx].type = type;
4224 }
4225 }
4226
4227
4228 /* Initialise maps of insn/data for input BFDs. */
4229 void
4230 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4231 {
4232 Elf_Internal_Sym *isymbuf;
4233 Elf_Internal_Shdr *hdr;
4234 unsigned int i, localsyms;
4235
4236 /* Make sure that we are dealing with an AArch64 elf binary. */
4237 if (!is_aarch64_elf (abfd))
4238 return;
4239
4240 if ((abfd->flags & DYNAMIC) != 0)
4241 return;
4242
4243 hdr = &elf_symtab_hdr (abfd);
4244 localsyms = hdr->sh_info;
4245
4246 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4247 should contain the number of local symbols, which should come before any
4248 global symbols. Mapping symbols are always local. */
4249 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4250
4251 /* No internal symbols read? Skip this BFD. */
4252 if (isymbuf == NULL)
4253 return;
4254
4255 for (i = 0; i < localsyms; i++)
4256 {
4257 Elf_Internal_Sym *isym = &isymbuf[i];
4258 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4259 const char *name;
4260
4261 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4262 {
4263 name = bfd_elf_string_from_elf_section (abfd,
4264 hdr->sh_link,
4265 isym->st_name);
4266
4267 if (bfd_is_aarch64_special_symbol_name
4268 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4269 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4270 }
4271 }
4272 }
4273
4274 /* Set option values needed during linking. */
4275 void
4276 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4277 struct bfd_link_info *link_info,
4278 int no_enum_warn,
4279 int no_wchar_warn, int pic_veneer,
4280 int fix_erratum_835769,
4281 int fix_erratum_843419)
4282 {
4283 struct elf_aarch64_link_hash_table *globals;
4284
4285 globals = elf_aarch64_hash_table (link_info);
4286 globals->pic_veneer = pic_veneer;
4287 globals->fix_erratum_835769 = fix_erratum_835769;
4288 globals->fix_erratum_843419 = fix_erratum_843419;
4289 globals->fix_erratum_843419_adr = TRUE;
4290
4291 BFD_ASSERT (is_aarch64_elf (output_bfd));
4292 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4293 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4294 }
4295
4296 static bfd_vma
4297 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4298 struct elf_aarch64_link_hash_table
4299 *globals, struct bfd_link_info *info,
4300 bfd_vma value, bfd *output_bfd,
4301 bfd_boolean *unresolved_reloc_p)
4302 {
4303 bfd_vma off = (bfd_vma) - 1;
4304 asection *basegot = globals->root.sgot;
4305 bfd_boolean dyn = globals->root.dynamic_sections_created;
4306
4307 if (h != NULL)
4308 {
4309 BFD_ASSERT (basegot != NULL);
4310 off = h->got.offset;
4311 BFD_ASSERT (off != (bfd_vma) - 1);
4312 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4313 || (bfd_link_pic (info)
4314 && SYMBOL_REFERENCES_LOCAL (info, h))
4315 || (ELF_ST_VISIBILITY (h->other)
4316 && h->root.type == bfd_link_hash_undefweak))
4317 {
4318 /* This is actually a static link, or it is a -Bsymbolic link
4319 and the symbol is defined locally. We must initialize this
4320 entry in the global offset table. Since the offset must
4321 always be a multiple of 8 (4 in the case of ILP32), we use
4322 the least significant bit to record whether we have
4323 initialized it already.
4324 When doing a dynamic link, we create a .rel(a).got relocation
4325 entry to initialize the value. This is done in the
4326 finish_dynamic_symbol routine. */
4327 if ((off & 1) != 0)
4328 off &= ~1;
4329 else
4330 {
4331 bfd_put_NN (output_bfd, value, basegot->contents + off);
4332 h->got.offset |= 1;
4333 }
4334 }
4335 else
4336 *unresolved_reloc_p = FALSE;
4337
4338 off = off + basegot->output_section->vma + basegot->output_offset;
4339 }
4340
4341 return off;
4342 }
4343
4344 /* Change R_TYPE to a more efficient access model where possible,
4345 return the new reloc type. */
4346
4347 static bfd_reloc_code_real_type
4348 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4349 struct elf_link_hash_entry *h)
4350 {
4351 bfd_boolean is_local = h == NULL;
4352
4353 switch (r_type)
4354 {
4355 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4356 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4357 return (is_local
4358 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4359 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4360
4361 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4362 return (is_local
4363 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4364 : r_type);
4365
4366 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4367 return (is_local
4368 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4369 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4370
4371 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4372 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4373 return (is_local
4374 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4375 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4376
4377 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4378 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4379
4380 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4381 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4382
4383 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4384 return r_type;
4385
4386 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4387 return (is_local
4388 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4389 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4390
4391 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4392 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4393 /* Instructions with these relocations will become NOPs. */
4394 return BFD_RELOC_AARCH64_NONE;
4395
4396 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4397 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4398 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4399 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4400
4401 default:
4402 break;
4403 }
4404
4405 return r_type;
4406 }
4407
4408 static unsigned int
4409 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4410 {
4411 switch (r_type)
4412 {
4413 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4414 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4415 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4416 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4417 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4418 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4419 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4420 return GOT_NORMAL;
4421
4422 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4423 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4424 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4425 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4426 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4427 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4428 return GOT_TLS_GD;
4429
4430 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4431 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4432 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4433 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4434 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4435 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4436 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4437 return GOT_TLSDESC_GD;
4438
4439 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4440 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4441 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4442 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4443 return GOT_TLS_IE;
4444
4445 default:
4446 break;
4447 }
4448 return GOT_UNKNOWN;
4449 }
4450
4451 static bfd_boolean
4452 aarch64_can_relax_tls (bfd *input_bfd,
4453 struct bfd_link_info *info,
4454 bfd_reloc_code_real_type r_type,
4455 struct elf_link_hash_entry *h,
4456 unsigned long r_symndx)
4457 {
4458 unsigned int symbol_got_type;
4459 unsigned int reloc_got_type;
4460
4461 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4462 return FALSE;
4463
4464 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4465 reloc_got_type = aarch64_reloc_got_type (r_type);
4466
4467 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4468 return TRUE;
4469
4470 if (bfd_link_pic (info))
4471 return FALSE;
4472
4473 if (h && h->root.type == bfd_link_hash_undefweak)
4474 return FALSE;
4475
4476 return TRUE;
4477 }
4478
4479 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4480 enumerator. */
4481
4482 static bfd_reloc_code_real_type
4483 aarch64_tls_transition (bfd *input_bfd,
4484 struct bfd_link_info *info,
4485 unsigned int r_type,
4486 struct elf_link_hash_entry *h,
4487 unsigned long r_symndx)
4488 {
4489 bfd_reloc_code_real_type bfd_r_type
4490 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4491
4492 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4493 return bfd_r_type;
4494
4495 return aarch64_tls_transition_without_check (bfd_r_type, h);
4496 }
4497
4498 /* Return the base VMA address which should be subtracted from real addresses
4499 when resolving R_AARCH64_TLS_DTPREL relocation. */
4500
4501 static bfd_vma
4502 dtpoff_base (struct bfd_link_info *info)
4503 {
4504 /* If tls_sec is NULL, we should have signalled an error already. */
4505 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4506 return elf_hash_table (info)->tls_sec->vma;
4507 }
4508
4509 /* Return the base VMA address which should be subtracted from real addresses
4510 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4511
4512 static bfd_vma
4513 tpoff_base (struct bfd_link_info *info)
4514 {
4515 struct elf_link_hash_table *htab = elf_hash_table (info);
4516
4517 /* If tls_sec is NULL, we should have signalled an error already. */
4518 BFD_ASSERT (htab->tls_sec != NULL);
4519
4520 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4521 htab->tls_sec->alignment_power);
4522 return htab->tls_sec->vma - base;
4523 }
4524
4525 static bfd_vma *
4526 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4527 unsigned long r_symndx)
4528 {
4529 /* Calculate the address of the GOT entry for symbol
4530 referred to in h. */
4531 if (h != NULL)
4532 return &h->got.offset;
4533 else
4534 {
4535 /* local symbol */
4536 struct elf_aarch64_local_symbol *l;
4537
4538 l = elf_aarch64_locals (input_bfd);
4539 return &l[r_symndx].got_offset;
4540 }
4541 }
4542
4543 static void
4544 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4545 unsigned long r_symndx)
4546 {
4547 bfd_vma *p;
4548 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4549 *p |= 1;
4550 }
4551
4552 static int
4553 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4554 unsigned long r_symndx)
4555 {
4556 bfd_vma value;
4557 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4558 return value & 1;
4559 }
4560
4561 static bfd_vma
4562 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4563 unsigned long r_symndx)
4564 {
4565 bfd_vma value;
4566 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4567 value &= ~1;
4568 return value;
4569 }
4570
4571 static bfd_vma *
4572 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4573 unsigned long r_symndx)
4574 {
4575 /* Calculate the address of the GOT entry for symbol
4576 referred to in h. */
4577 if (h != NULL)
4578 {
4579 struct elf_aarch64_link_hash_entry *eh;
4580 eh = (struct elf_aarch64_link_hash_entry *) h;
4581 return &eh->tlsdesc_got_jump_table_offset;
4582 }
4583 else
4584 {
4585 /* local symbol */
4586 struct elf_aarch64_local_symbol *l;
4587
4588 l = elf_aarch64_locals (input_bfd);
4589 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4590 }
4591 }
4592
4593 static void
4594 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4595 unsigned long r_symndx)
4596 {
4597 bfd_vma *p;
4598 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4599 *p |= 1;
4600 }
4601
4602 static int
4603 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4604 struct elf_link_hash_entry *h,
4605 unsigned long r_symndx)
4606 {
4607 bfd_vma value;
4608 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4609 return value & 1;
4610 }
4611
4612 static bfd_vma
4613 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4614 unsigned long r_symndx)
4615 {
4616 bfd_vma value;
4617 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4618 value &= ~1;
4619 return value;
4620 }
4621
4622 /* Data for make_branch_to_erratum_835769_stub(). */
4623
4624 struct erratum_835769_branch_to_stub_data
4625 {
4626 struct bfd_link_info *info;
4627 asection *output_section;
4628 bfd_byte *contents;
4629 };
4630
4631 /* Helper to insert branches to erratum 835769 stubs in the right
4632 places for a particular section. */
4633
4634 static bfd_boolean
4635 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4636 void *in_arg)
4637 {
4638 struct elf_aarch64_stub_hash_entry *stub_entry;
4639 struct erratum_835769_branch_to_stub_data *data;
4640 bfd_byte *contents;
4641 unsigned long branch_insn = 0;
4642 bfd_vma veneered_insn_loc, veneer_entry_loc;
4643 bfd_signed_vma branch_offset;
4644 unsigned int target;
4645 bfd *abfd;
4646
4647 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4648 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4649
4650 if (stub_entry->target_section != data->output_section
4651 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4652 return TRUE;
4653
4654 contents = data->contents;
4655 veneered_insn_loc = stub_entry->target_section->output_section->vma
4656 + stub_entry->target_section->output_offset
4657 + stub_entry->target_value;
4658 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4659 + stub_entry->stub_sec->output_offset
4660 + stub_entry->stub_offset;
4661 branch_offset = veneer_entry_loc - veneered_insn_loc;
4662
4663 abfd = stub_entry->target_section->owner;
4664 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4665 (*_bfd_error_handler)
4666 (_("%B: error: Erratum 835769 stub out "
4667 "of range (input file too large)"), abfd);
4668
4669 target = stub_entry->target_value;
4670 branch_insn = 0x14000000;
4671 branch_offset >>= 2;
4672 branch_offset &= 0x3ffffff;
4673 branch_insn |= branch_offset;
4674 bfd_putl32 (branch_insn, &contents[target]);
4675
4676 return TRUE;
4677 }
4678
4679
4680 static bfd_boolean
4681 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4682 void *in_arg)
4683 {
4684 struct elf_aarch64_stub_hash_entry *stub_entry
4685 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4686 struct erratum_835769_branch_to_stub_data *data
4687 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4688 struct bfd_link_info *info;
4689 struct elf_aarch64_link_hash_table *htab;
4690 bfd_byte *contents;
4691 asection *section;
4692 bfd *abfd;
4693 bfd_vma place;
4694 uint32_t insn;
4695
4696 info = data->info;
4697 contents = data->contents;
4698 section = data->output_section;
4699
4700 htab = elf_aarch64_hash_table (info);
4701
4702 if (stub_entry->target_section != section
4703 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4704 return TRUE;
4705
4706 insn = bfd_getl32 (contents + stub_entry->target_value);
4707 bfd_putl32 (insn,
4708 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4709
4710 place = (section->output_section->vma + section->output_offset
4711 + stub_entry->adrp_offset);
4712 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4713
4714 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4715 abort ();
4716
4717 bfd_signed_vma imm =
4718 (_bfd_aarch64_sign_extend
4719 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4720 - (place & 0xfff));
4721
4722 if (htab->fix_erratum_843419_adr
4723 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4724 {
4725 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4726 | AARCH64_RT (insn));
4727 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4728 }
4729 else
4730 {
4731 bfd_vma veneered_insn_loc;
4732 bfd_vma veneer_entry_loc;
4733 bfd_signed_vma branch_offset;
4734 uint32_t branch_insn;
4735
4736 veneered_insn_loc = stub_entry->target_section->output_section->vma
4737 + stub_entry->target_section->output_offset
4738 + stub_entry->target_value;
4739 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4740 + stub_entry->stub_sec->output_offset
4741 + stub_entry->stub_offset;
4742 branch_offset = veneer_entry_loc - veneered_insn_loc;
4743
4744 abfd = stub_entry->target_section->owner;
4745 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4746 (*_bfd_error_handler)
4747 (_("%B: error: Erratum 843419 stub out "
4748 "of range (input file too large)"), abfd);
4749
4750 branch_insn = 0x14000000;
4751 branch_offset >>= 2;
4752 branch_offset &= 0x3ffffff;
4753 branch_insn |= branch_offset;
4754 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4755 }
4756 return TRUE;
4757 }
4758
4759
4760 static bfd_boolean
4761 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4762 struct bfd_link_info *link_info,
4763 asection *sec,
4764 bfd_byte *contents)
4765
4766 {
4767 struct elf_aarch64_link_hash_table *globals =
4768 elf_aarch64_hash_table (link_info);
4769
4770 if (globals == NULL)
4771 return FALSE;
4772
4773 /* Fix code to point to erratum 835769 stubs. */
4774 if (globals->fix_erratum_835769)
4775 {
4776 struct erratum_835769_branch_to_stub_data data;
4777
4778 data.info = link_info;
4779 data.output_section = sec;
4780 data.contents = contents;
4781 bfd_hash_traverse (&globals->stub_hash_table,
4782 make_branch_to_erratum_835769_stub, &data);
4783 }
4784
4785 if (globals->fix_erratum_843419)
4786 {
4787 struct erratum_835769_branch_to_stub_data data;
4788
4789 data.info = link_info;
4790 data.output_section = sec;
4791 data.contents = contents;
4792 bfd_hash_traverse (&globals->stub_hash_table,
4793 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4794 }
4795
4796 return FALSE;
4797 }
4798
4799 /* Perform a relocation as part of a final link. */
4800 static bfd_reloc_status_type
4801 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4802 bfd *input_bfd,
4803 bfd *output_bfd,
4804 asection *input_section,
4805 bfd_byte *contents,
4806 Elf_Internal_Rela *rel,
4807 bfd_vma value,
4808 struct bfd_link_info *info,
4809 asection *sym_sec,
4810 struct elf_link_hash_entry *h,
4811 bfd_boolean *unresolved_reloc_p,
4812 bfd_boolean save_addend,
4813 bfd_vma *saved_addend,
4814 Elf_Internal_Sym *sym)
4815 {
4816 Elf_Internal_Shdr *symtab_hdr;
4817 unsigned int r_type = howto->type;
4818 bfd_reloc_code_real_type bfd_r_type
4819 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4820 bfd_reloc_code_real_type new_bfd_r_type;
4821 unsigned long r_symndx;
4822 bfd_byte *hit_data = contents + rel->r_offset;
4823 bfd_vma place, off;
4824 bfd_signed_vma signed_addend;
4825 struct elf_aarch64_link_hash_table *globals;
4826 bfd_boolean weak_undef_p;
4827 asection *base_got;
4828
4829 globals = elf_aarch64_hash_table (info);
4830
4831 symtab_hdr = &elf_symtab_hdr (input_bfd);
4832
4833 BFD_ASSERT (is_aarch64_elf (input_bfd));
4834
4835 r_symndx = ELFNN_R_SYM (rel->r_info);
4836
4837 /* It is possible to have linker relaxations on some TLS access
4838 models. Update our information here. */
4839 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4840 if (new_bfd_r_type != bfd_r_type)
4841 {
4842 bfd_r_type = new_bfd_r_type;
4843 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4844 BFD_ASSERT (howto != NULL);
4845 r_type = howto->type;
4846 }
4847
4848 place = input_section->output_section->vma
4849 + input_section->output_offset + rel->r_offset;
4850
4851 /* Get addend, accumulating the addend for consecutive relocs
4852 which refer to the same offset. */
4853 signed_addend = saved_addend ? *saved_addend : 0;
4854 signed_addend += rel->r_addend;
4855
4856 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4857 : bfd_is_und_section (sym_sec));
4858
4859 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4860 it here if it is defined in a non-shared object. */
4861 if (h != NULL
4862 && h->type == STT_GNU_IFUNC
4863 && h->def_regular)
4864 {
4865 asection *plt;
4866 const char *name;
4867 bfd_vma addend = 0;
4868
4869 if ((input_section->flags & SEC_ALLOC) == 0
4870 || h->plt.offset == (bfd_vma) -1)
4871 abort ();
4872
4873 /* STT_GNU_IFUNC symbol must go through PLT. */
4874 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4875 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4876
4877 switch (bfd_r_type)
4878 {
4879 default:
4880 if (h->root.root.string)
4881 name = h->root.root.string;
4882 else
4883 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4884 NULL);
4885 (*_bfd_error_handler)
4886 (_("%B: relocation %s against STT_GNU_IFUNC "
4887 "symbol `%s' isn't handled by %s"), input_bfd,
4888 howto->name, name, __FUNCTION__);
4889 bfd_set_error (bfd_error_bad_value);
4890 return FALSE;
4891
4892 case BFD_RELOC_AARCH64_NN:
4893 if (rel->r_addend != 0)
4894 {
4895 if (h->root.root.string)
4896 name = h->root.root.string;
4897 else
4898 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4899 sym, NULL);
4900 (*_bfd_error_handler)
4901 (_("%B: relocation %s against STT_GNU_IFUNC "
4902 "symbol `%s' has non-zero addend: %d"),
4903 input_bfd, howto->name, name, rel->r_addend);
4904 bfd_set_error (bfd_error_bad_value);
4905 return FALSE;
4906 }
4907
4908 /* Generate dynamic relocation only when there is a
4909 non-GOT reference in a shared object. */
4910 if (bfd_link_pic (info) && h->non_got_ref)
4911 {
4912 Elf_Internal_Rela outrel;
4913 asection *sreloc;
4914
4915 /* Need a dynamic relocation to get the real function
4916 address. */
4917 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4918 info,
4919 input_section,
4920 rel->r_offset);
4921 if (outrel.r_offset == (bfd_vma) -1
4922 || outrel.r_offset == (bfd_vma) -2)
4923 abort ();
4924
4925 outrel.r_offset += (input_section->output_section->vma
4926 + input_section->output_offset);
4927
4928 if (h->dynindx == -1
4929 || h->forced_local
4930 || bfd_link_executable (info))
4931 {
4932 /* This symbol is resolved locally. */
4933 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
4934 outrel.r_addend = (h->root.u.def.value
4935 + h->root.u.def.section->output_section->vma
4936 + h->root.u.def.section->output_offset);
4937 }
4938 else
4939 {
4940 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
4941 outrel.r_addend = 0;
4942 }
4943
4944 sreloc = globals->root.irelifunc;
4945 elf_append_rela (output_bfd, sreloc, &outrel);
4946
4947 /* If this reloc is against an external symbol, we
4948 do not want to fiddle with the addend. Otherwise,
4949 we need to include the symbol value so that it
4950 becomes an addend for the dynamic reloc. For an
4951 internal symbol, we have updated addend. */
4952 return bfd_reloc_ok;
4953 }
4954 /* FALLTHROUGH */
4955 case BFD_RELOC_AARCH64_CALL26:
4956 case BFD_RELOC_AARCH64_JUMP26:
4957 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4958 signed_addend,
4959 weak_undef_p);
4960 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
4961 howto, value);
4962 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4963 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4964 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4965 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4966 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4967 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4968 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4969 base_got = globals->root.sgot;
4970 off = h->got.offset;
4971
4972 if (base_got == NULL)
4973 abort ();
4974
4975 if (off == (bfd_vma) -1)
4976 {
4977 bfd_vma plt_index;
4978
4979 /* We can't use h->got.offset here to save state, or
4980 even just remember the offset, as finish_dynamic_symbol
4981 would use that as offset into .got. */
4982
4983 if (globals->root.splt != NULL)
4984 {
4985 plt_index = ((h->plt.offset - globals->plt_header_size) /
4986 globals->plt_entry_size);
4987 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4988 base_got = globals->root.sgotplt;
4989 }
4990 else
4991 {
4992 plt_index = h->plt.offset / globals->plt_entry_size;
4993 off = plt_index * GOT_ENTRY_SIZE;
4994 base_got = globals->root.igotplt;
4995 }
4996
4997 if (h->dynindx == -1
4998 || h->forced_local
4999 || info->symbolic)
5000 {
5001 /* This references the local definition. We must
5002 initialize this entry in the global offset table.
5003 Since the offset must always be a multiple of 8,
5004 we use the least significant bit to record
5005 whether we have initialized it already.
5006
5007 When doing a dynamic link, we create a .rela.got
5008 relocation entry to initialize the value. This
5009 is done in the finish_dynamic_symbol routine. */
5010 if ((off & 1) != 0)
5011 off &= ~1;
5012 else
5013 {
5014 bfd_put_NN (output_bfd, value,
5015 base_got->contents + off);
5016 /* Note that this is harmless as -1 | 1 still is -1. */
5017 h->got.offset |= 1;
5018 }
5019 }
5020 value = (base_got->output_section->vma
5021 + base_got->output_offset + off);
5022 }
5023 else
5024 value = aarch64_calculate_got_entry_vma (h, globals, info,
5025 value, output_bfd,
5026 unresolved_reloc_p);
5027
5028 switch (bfd_r_type)
5029 {
5030 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5031 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5032 addend = (globals->root.sgot->output_section->vma
5033 + globals->root.sgot->output_offset);
5034 break;
5035 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5036 value = (value - globals->root.sgot->output_section->vma
5037 - globals->root.sgot->output_offset);
5038 default:
5039 break;
5040 }
5041
5042 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5043 addend, weak_undef_p);
5044 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5045 case BFD_RELOC_AARCH64_ADD_LO12:
5046 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5047 break;
5048 }
5049 }
5050
5051 switch (bfd_r_type)
5052 {
5053 case BFD_RELOC_AARCH64_NONE:
5054 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5055 *unresolved_reloc_p = FALSE;
5056 return bfd_reloc_ok;
5057
5058 case BFD_RELOC_AARCH64_NN:
5059
5060 /* When generating a shared object or relocatable executable, these
5061 relocations are copied into the output file to be resolved at
5062 run time. */
5063 if (((bfd_link_pic (info) == TRUE)
5064 || globals->root.is_relocatable_executable)
5065 && (input_section->flags & SEC_ALLOC)
5066 && (h == NULL
5067 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5068 || h->root.type != bfd_link_hash_undefweak))
5069 {
5070 Elf_Internal_Rela outrel;
5071 bfd_byte *loc;
5072 bfd_boolean skip, relocate;
5073 asection *sreloc;
5074
5075 *unresolved_reloc_p = FALSE;
5076
5077 skip = FALSE;
5078 relocate = FALSE;
5079
5080 outrel.r_addend = signed_addend;
5081 outrel.r_offset =
5082 _bfd_elf_section_offset (output_bfd, info, input_section,
5083 rel->r_offset);
5084 if (outrel.r_offset == (bfd_vma) - 1)
5085 skip = TRUE;
5086 else if (outrel.r_offset == (bfd_vma) - 2)
5087 {
5088 skip = TRUE;
5089 relocate = TRUE;
5090 }
5091
5092 outrel.r_offset += (input_section->output_section->vma
5093 + input_section->output_offset);
5094
5095 if (skip)
5096 memset (&outrel, 0, sizeof outrel);
5097 else if (h != NULL
5098 && h->dynindx != -1
5099 && (!bfd_link_pic (info)
5100 || !SYMBOLIC_BIND (info, h)
5101 || !h->def_regular))
5102 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5103 else
5104 {
5105 int symbol;
5106
5107 /* On SVR4-ish systems, the dynamic loader cannot
5108 relocate the text and data segments independently,
5109 so the symbol does not matter. */
5110 symbol = 0;
5111 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5112 outrel.r_addend += value;
5113 }
5114
5115 sreloc = elf_section_data (input_section)->sreloc;
5116 if (sreloc == NULL || sreloc->contents == NULL)
5117 return bfd_reloc_notsupported;
5118
5119 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5120 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5121
5122 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5123 {
5124 /* Sanity to check that we have previously allocated
5125 sufficient space in the relocation section for the
5126 number of relocations we actually want to emit. */
5127 abort ();
5128 }
5129
5130 /* If this reloc is against an external symbol, we do not want to
5131 fiddle with the addend. Otherwise, we need to include the symbol
5132 value so that it becomes an addend for the dynamic reloc. */
5133 if (!relocate)
5134 return bfd_reloc_ok;
5135
5136 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5137 contents, rel->r_offset, value,
5138 signed_addend);
5139 }
5140 else
5141 value += signed_addend;
5142 break;
5143
5144 case BFD_RELOC_AARCH64_CALL26:
5145 case BFD_RELOC_AARCH64_JUMP26:
5146 {
5147 asection *splt = globals->root.splt;
5148 bfd_boolean via_plt_p =
5149 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5150
5151 /* A call to an undefined weak symbol is converted to a jump to
5152 the next instruction unless a PLT entry will be created.
5153 The jump to the next instruction is optimized as a NOP.
5154 Do the same for local undefined symbols. */
5155 if (weak_undef_p && ! via_plt_p)
5156 {
5157 bfd_putl32 (INSN_NOP, hit_data);
5158 return bfd_reloc_ok;
5159 }
5160
5161 /* If the call goes through a PLT entry, make sure to
5162 check distance to the right destination address. */
5163 if (via_plt_p)
5164 value = (splt->output_section->vma
5165 + splt->output_offset + h->plt.offset);
5166
5167 /* Check if a stub has to be inserted because the destination
5168 is too far away. */
5169 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5170 if (! aarch64_valid_branch_p (value, place))
5171 /* The target is out of reach, so redirect the branch to
5172 the local stub for this function. */
5173 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5174 rel, globals);
5175 if (stub_entry != NULL)
5176 value = (stub_entry->stub_offset
5177 + stub_entry->stub_sec->output_offset
5178 + stub_entry->stub_sec->output_section->vma);
5179 }
5180 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5181 signed_addend, weak_undef_p);
5182 *unresolved_reloc_p = FALSE;
5183 break;
5184
5185 case BFD_RELOC_AARCH64_16_PCREL:
5186 case BFD_RELOC_AARCH64_32_PCREL:
5187 case BFD_RELOC_AARCH64_64_PCREL:
5188 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5189 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5190 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5191 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5192 if (bfd_link_pic (info)
5193 && (input_section->flags & SEC_ALLOC) != 0
5194 && (input_section->flags & SEC_READONLY) != 0
5195 && h != NULL
5196 && !h->def_regular)
5197 {
5198 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5199
5200 (*_bfd_error_handler)
5201 (_("%B: relocation %s against external symbol `%s' can not be used"
5202 " when making a shared object; recompile with -fPIC"),
5203 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5204 h->root.root.string);
5205 bfd_set_error (bfd_error_bad_value);
5206 return FALSE;
5207 }
5208
5209 case BFD_RELOC_AARCH64_16:
5210 #if ARCH_SIZE == 64
5211 case BFD_RELOC_AARCH64_32:
5212 #endif
5213 case BFD_RELOC_AARCH64_ADD_LO12:
5214 case BFD_RELOC_AARCH64_BRANCH19:
5215 case BFD_RELOC_AARCH64_LDST128_LO12:
5216 case BFD_RELOC_AARCH64_LDST16_LO12:
5217 case BFD_RELOC_AARCH64_LDST32_LO12:
5218 case BFD_RELOC_AARCH64_LDST64_LO12:
5219 case BFD_RELOC_AARCH64_LDST8_LO12:
5220 case BFD_RELOC_AARCH64_MOVW_G0:
5221 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5222 case BFD_RELOC_AARCH64_MOVW_G0_S:
5223 case BFD_RELOC_AARCH64_MOVW_G1:
5224 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5225 case BFD_RELOC_AARCH64_MOVW_G1_S:
5226 case BFD_RELOC_AARCH64_MOVW_G2:
5227 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5228 case BFD_RELOC_AARCH64_MOVW_G2_S:
5229 case BFD_RELOC_AARCH64_MOVW_G3:
5230 case BFD_RELOC_AARCH64_TSTBR14:
5231 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5232 signed_addend, weak_undef_p);
5233 break;
5234
5235 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5236 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5237 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5238 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5239 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5240 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5241 if (globals->root.sgot == NULL)
5242 BFD_ASSERT (h != NULL);
5243
5244 if (h != NULL)
5245 {
5246 bfd_vma addend = 0;
5247 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5248 output_bfd,
5249 unresolved_reloc_p);
5250 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5251 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5252 addend = (globals->root.sgot->output_section->vma
5253 + globals->root.sgot->output_offset);
5254 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5255 addend, weak_undef_p);
5256 }
5257 else
5258 {
5259 bfd_vma addend = 0;
5260 struct elf_aarch64_local_symbol *locals
5261 = elf_aarch64_locals (input_bfd);
5262
5263 if (locals == NULL)
5264 {
5265 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5266 (*_bfd_error_handler)
5267 (_("%B: Local symbol descriptor table be NULL when applying "
5268 "relocation %s against local symbol"),
5269 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5270 abort ();
5271 }
5272
5273 off = symbol_got_offset (input_bfd, h, r_symndx);
5274 base_got = globals->root.sgot;
5275 bfd_vma got_entry_addr = (base_got->output_section->vma
5276 + base_got->output_offset + off);
5277
5278 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5279 {
5280 bfd_put_64 (output_bfd, value, base_got->contents + off);
5281
5282 if (bfd_link_pic (info))
5283 {
5284 asection *s;
5285 Elf_Internal_Rela outrel;
5286
5287 /* For local symbol, we have done absolute relocation in static
5288 linking stageh. While for share library, we need to update
5289 the content of GOT entry according to the share objects
5290 loading base address. So we need to generate a
5291 R_AARCH64_RELATIVE reloc for dynamic linker. */
5292 s = globals->root.srelgot;
5293 if (s == NULL)
5294 abort ();
5295
5296 outrel.r_offset = got_entry_addr;
5297 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5298 outrel.r_addend = value;
5299 elf_append_rela (output_bfd, s, &outrel);
5300 }
5301
5302 symbol_got_offset_mark (input_bfd, h, r_symndx);
5303 }
5304
5305 /* Update the relocation value to GOT entry addr as we have transformed
5306 the direct data access into indirect data access through GOT. */
5307 value = got_entry_addr;
5308
5309 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5310 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5311 addend = base_got->output_section->vma + base_got->output_offset;
5312
5313 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5314 addend, weak_undef_p);
5315 }
5316
5317 break;
5318
5319 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5320 if (h != NULL)
5321 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5322 output_bfd,
5323 unresolved_reloc_p);
5324 else
5325 {
5326 struct elf_aarch64_local_symbol *locals
5327 = elf_aarch64_locals (input_bfd);
5328
5329 if (locals == NULL)
5330 {
5331 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5332 (*_bfd_error_handler)
5333 (_("%B: Local symbol descriptor table be NULL when applying "
5334 "relocation %s against local symbol"),
5335 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5336 abort ();
5337 }
5338
5339 off = symbol_got_offset (input_bfd, h, r_symndx);
5340 base_got = globals->root.sgot;
5341 if (base_got == NULL)
5342 abort ();
5343
5344 bfd_vma got_entry_addr = (base_got->output_section->vma
5345 + base_got->output_offset + off);
5346
5347 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5348 {
5349 bfd_put_64 (output_bfd, value, base_got->contents + off);
5350
5351 if (bfd_link_pic (info))
5352 {
5353 asection *s;
5354 Elf_Internal_Rela outrel;
5355
5356 /* For local symbol, we have done absolute relocation in static
5357 linking stage. While for share library, we need to update
5358 the content of GOT entry according to the share objects
5359 loading base address. So we need to generate a
5360 R_AARCH64_RELATIVE reloc for dynamic linker. */
5361 s = globals->root.srelgot;
5362 if (s == NULL)
5363 abort ();
5364
5365 outrel.r_offset = got_entry_addr;
5366 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5367 outrel.r_addend = value;
5368 elf_append_rela (output_bfd, s, &outrel);
5369 }
5370
5371 symbol_got_offset_mark (input_bfd, h, r_symndx);
5372 }
5373 }
5374
5375 /* Update the relocation value to GOT entry addr as we have transformed
5376 the direct data access into indirect data access through GOT. */
5377 value = symbol_got_offset (input_bfd, h, r_symndx);
5378 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5379 0, weak_undef_p);
5380 *unresolved_reloc_p = FALSE;
5381 break;
5382
5383 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5384 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5385 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5386 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5387 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5388 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5389 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5390 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5391 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5392 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5393 if (globals->root.sgot == NULL)
5394 return bfd_reloc_notsupported;
5395
5396 value = (symbol_got_offset (input_bfd, h, r_symndx)
5397 + globals->root.sgot->output_section->vma
5398 + globals->root.sgot->output_offset);
5399
5400 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5401 0, weak_undef_p);
5402 *unresolved_reloc_p = FALSE;
5403 break;
5404
5405 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5406 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5407 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5408 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5409 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5410 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5411 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5412 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5413 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5414 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5415 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5416 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5417 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5418 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5419 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5420 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5421 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5422 signed_addend - dtpoff_base (info),
5423 weak_undef_p);
5424 break;
5425
5426 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5427 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5428 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5429 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5430 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5431 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5432 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5433 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5434 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5435 signed_addend - tpoff_base (info),
5436 weak_undef_p);
5437 *unresolved_reloc_p = FALSE;
5438 break;
5439
5440 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5441 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5442 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5443 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5444 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5445 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5446 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5447 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5448 if (globals->root.sgot == NULL)
5449 return bfd_reloc_notsupported;
5450 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5451 + globals->root.sgotplt->output_section->vma
5452 + globals->root.sgotplt->output_offset
5453 + globals->sgotplt_jump_table_size);
5454
5455 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5456 0, weak_undef_p);
5457 *unresolved_reloc_p = FALSE;
5458 break;
5459
5460 default:
5461 return bfd_reloc_notsupported;
5462 }
5463
5464 if (saved_addend)
5465 *saved_addend = value;
5466
5467 /* Only apply the final relocation in a sequence. */
5468 if (save_addend)
5469 return bfd_reloc_continue;
5470
5471 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5472 howto, value);
5473 }
5474
5475 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5476 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5477 link.
5478
5479 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5480 is to then call final_link_relocate. Return other values in the
5481 case of error. */
5482
5483 static bfd_reloc_status_type
5484 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5485 bfd *input_bfd, bfd_byte *contents,
5486 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5487 {
5488 bfd_boolean is_local = h == NULL;
5489 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5490 unsigned long insn;
5491
5492 BFD_ASSERT (globals && input_bfd && contents && rel);
5493
5494 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5495 {
5496 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5497 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5498 if (is_local)
5499 {
5500 /* GD->LE relaxation:
5501 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5502 or
5503 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5504 */
5505 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5506 return bfd_reloc_continue;
5507 }
5508 else
5509 {
5510 /* GD->IE relaxation:
5511 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5512 or
5513 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5514 */
5515 return bfd_reloc_continue;
5516 }
5517
5518 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5519 BFD_ASSERT (0);
5520 break;
5521
5522 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5523 if (is_local)
5524 {
5525 /* Tiny TLSDESC->LE relaxation:
5526 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5527 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5528 .tlsdesccall var
5529 blr x1 => nop
5530 */
5531 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5532 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5533
5534 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5535 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5536 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5537
5538 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5539 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5540 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5541 return bfd_reloc_continue;
5542 }
5543 else
5544 {
5545 /* Tiny TLSDESC->IE relaxation:
5546 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5547 adr x0, :tlsdesc:var => nop
5548 .tlsdesccall var
5549 blr x1 => nop
5550 */
5551 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5552 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5553
5554 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5555 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5556
5557 bfd_putl32 (0x58000000, contents + rel->r_offset);
5558 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5559 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5560 return bfd_reloc_continue;
5561 }
5562
5563 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5564 if (is_local)
5565 {
5566 /* Tiny GD->LE relaxation:
5567 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5568 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5569 nop => add x0, x0, #:tprel_lo12_nc:x
5570 */
5571
5572 /* First kill the tls_get_addr reloc on the bl instruction. */
5573 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5574
5575 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5576 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5577 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5578
5579 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5580 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5581 rel[1].r_offset = rel->r_offset + 8;
5582
5583 /* Move the current relocation to the second instruction in
5584 the sequence. */
5585 rel->r_offset += 4;
5586 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5587 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5588 return bfd_reloc_continue;
5589 }
5590 else
5591 {
5592 /* Tiny GD->IE relaxation:
5593 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5594 bl __tls_get_addr => mrs x1, tpidr_el0
5595 nop => add x0, x0, x1
5596 */
5597
5598 /* First kill the tls_get_addr reloc on the bl instruction. */
5599 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5600 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5601
5602 bfd_putl32 (0x58000000, contents + rel->r_offset);
5603 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5604 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5605 return bfd_reloc_continue;
5606 }
5607
5608 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5609 return bfd_reloc_continue;
5610
5611 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5612 if (is_local)
5613 {
5614 /* GD->LE relaxation:
5615 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5616 */
5617 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5618 return bfd_reloc_continue;
5619 }
5620 else
5621 {
5622 /* GD->IE relaxation:
5623 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5624 */
5625 insn = bfd_getl32 (contents + rel->r_offset);
5626 insn &= 0xffffffe0;
5627 bfd_putl32 (insn, contents + rel->r_offset);
5628 return bfd_reloc_continue;
5629 }
5630
5631 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5632 if (is_local)
5633 {
5634 /* GD->LE relaxation
5635 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5636 bl __tls_get_addr => mrs x1, tpidr_el0
5637 nop => add x0, x1, x0
5638 */
5639
5640 /* First kill the tls_get_addr reloc on the bl instruction. */
5641 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5642 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5643
5644 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5645 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5646 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5647 return bfd_reloc_continue;
5648 }
5649 else
5650 {
5651 /* GD->IE relaxation
5652 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5653 BL __tls_get_addr => mrs x1, tpidr_el0
5654 R_AARCH64_CALL26
5655 NOP => add x0, x1, x0
5656 */
5657
5658 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5659
5660 /* Remove the relocation on the BL instruction. */
5661 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5662
5663 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5664
5665 /* We choose to fixup the BL and NOP instructions using the
5666 offset from the second relocation to allow flexibility in
5667 scheduling instructions between the ADD and BL. */
5668 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5669 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5670 return bfd_reloc_continue;
5671 }
5672
5673 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5674 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5675 /* GD->IE/LE relaxation:
5676 add x0, x0, #:tlsdesc_lo12:var => nop
5677 blr xd => nop
5678 */
5679 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5680 return bfd_reloc_ok;
5681
5682 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5683 /* IE->LE relaxation:
5684 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5685 */
5686 if (is_local)
5687 {
5688 insn = bfd_getl32 (contents + rel->r_offset);
5689 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5690 }
5691 return bfd_reloc_continue;
5692
5693 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5694 /* IE->LE relaxation:
5695 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5696 */
5697 if (is_local)
5698 {
5699 insn = bfd_getl32 (contents + rel->r_offset);
5700 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5701 }
5702 return bfd_reloc_continue;
5703
5704 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5705 /* LD->LE relaxation (tiny):
5706 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5707 bl __tls_get_addr => add x0, x0, TCB_SIZE
5708 */
5709 if (is_local)
5710 {
5711 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5712 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5713 /* No need of CALL26 relocation for tls_get_addr. */
5714 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5715 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5716 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5717 return bfd_reloc_ok;
5718 }
5719 return bfd_reloc_continue;
5720
5721 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5722 /* LD->LE relaxation (small):
5723 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5724 */
5725 if (is_local)
5726 {
5727 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5728 return bfd_reloc_ok;
5729 }
5730 return bfd_reloc_continue;
5731
5732 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5733 /* LD->LE relaxation (small):
5734 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5735 bl __tls_get_addr => nop
5736 */
5737 if (is_local)
5738 {
5739 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5740 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5741 /* No need of CALL26 relocation for tls_get_addr. */
5742 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5743 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5744 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5745 return bfd_reloc_ok;
5746 }
5747 return bfd_reloc_continue;
5748
5749 default:
5750 return bfd_reloc_continue;
5751 }
5752
5753 return bfd_reloc_ok;
5754 }
5755
5756 /* Relocate an AArch64 ELF section. */
5757
5758 static bfd_boolean
5759 elfNN_aarch64_relocate_section (bfd *output_bfd,
5760 struct bfd_link_info *info,
5761 bfd *input_bfd,
5762 asection *input_section,
5763 bfd_byte *contents,
5764 Elf_Internal_Rela *relocs,
5765 Elf_Internal_Sym *local_syms,
5766 asection **local_sections)
5767 {
5768 Elf_Internal_Shdr *symtab_hdr;
5769 struct elf_link_hash_entry **sym_hashes;
5770 Elf_Internal_Rela *rel;
5771 Elf_Internal_Rela *relend;
5772 const char *name;
5773 struct elf_aarch64_link_hash_table *globals;
5774 bfd_boolean save_addend = FALSE;
5775 bfd_vma addend = 0;
5776
5777 globals = elf_aarch64_hash_table (info);
5778
5779 symtab_hdr = &elf_symtab_hdr (input_bfd);
5780 sym_hashes = elf_sym_hashes (input_bfd);
5781
5782 rel = relocs;
5783 relend = relocs + input_section->reloc_count;
5784 for (; rel < relend; rel++)
5785 {
5786 unsigned int r_type;
5787 bfd_reloc_code_real_type bfd_r_type;
5788 bfd_reloc_code_real_type relaxed_bfd_r_type;
5789 reloc_howto_type *howto;
5790 unsigned long r_symndx;
5791 Elf_Internal_Sym *sym;
5792 asection *sec;
5793 struct elf_link_hash_entry *h;
5794 bfd_vma relocation;
5795 bfd_reloc_status_type r;
5796 arelent bfd_reloc;
5797 char sym_type;
5798 bfd_boolean unresolved_reloc = FALSE;
5799 char *error_message = NULL;
5800
5801 r_symndx = ELFNN_R_SYM (rel->r_info);
5802 r_type = ELFNN_R_TYPE (rel->r_info);
5803
5804 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
5805 howto = bfd_reloc.howto;
5806
5807 if (howto == NULL)
5808 {
5809 (*_bfd_error_handler)
5810 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
5811 input_bfd, input_section, r_type);
5812 return FALSE;
5813 }
5814 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
5815
5816 h = NULL;
5817 sym = NULL;
5818 sec = NULL;
5819
5820 if (r_symndx < symtab_hdr->sh_info)
5821 {
5822 sym = local_syms + r_symndx;
5823 sym_type = ELFNN_ST_TYPE (sym->st_info);
5824 sec = local_sections[r_symndx];
5825
5826 /* An object file might have a reference to a local
5827 undefined symbol. This is a daft object file, but we
5828 should at least do something about it. */
5829 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
5830 && bfd_is_und_section (sec)
5831 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
5832 {
5833 if (!info->callbacks->undefined_symbol
5834 (info, bfd_elf_string_from_elf_section
5835 (input_bfd, symtab_hdr->sh_link, sym->st_name),
5836 input_bfd, input_section, rel->r_offset, TRUE))
5837 return FALSE;
5838 }
5839
5840 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
5841
5842 /* Relocate against local STT_GNU_IFUNC symbol. */
5843 if (!bfd_link_relocatable (info)
5844 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
5845 {
5846 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
5847 rel, FALSE);
5848 if (h == NULL)
5849 abort ();
5850
5851 /* Set STT_GNU_IFUNC symbol value. */
5852 h->root.u.def.value = sym->st_value;
5853 h->root.u.def.section = sec;
5854 }
5855 }
5856 else
5857 {
5858 bfd_boolean warned, ignored;
5859
5860 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
5861 r_symndx, symtab_hdr, sym_hashes,
5862 h, sec, relocation,
5863 unresolved_reloc, warned, ignored);
5864
5865 sym_type = h->type;
5866 }
5867
5868 if (sec != NULL && discarded_section (sec))
5869 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
5870 rel, 1, relend, howto, 0, contents);
5871
5872 if (bfd_link_relocatable (info))
5873 continue;
5874
5875 if (h != NULL)
5876 name = h->root.root.string;
5877 else
5878 {
5879 name = (bfd_elf_string_from_elf_section
5880 (input_bfd, symtab_hdr->sh_link, sym->st_name));
5881 if (name == NULL || *name == '\0')
5882 name = bfd_section_name (input_bfd, sec);
5883 }
5884
5885 if (r_symndx != 0
5886 && r_type != R_AARCH64_NONE
5887 && r_type != R_AARCH64_NULL
5888 && (h == NULL
5889 || h->root.type == bfd_link_hash_defined
5890 || h->root.type == bfd_link_hash_defweak)
5891 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
5892 {
5893 (*_bfd_error_handler)
5894 ((sym_type == STT_TLS
5895 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
5896 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
5897 input_bfd,
5898 input_section, (long) rel->r_offset, howto->name, name);
5899 }
5900
5901 /* We relax only if we can see that there can be a valid transition
5902 from a reloc type to another.
5903 We call elfNN_aarch64_final_link_relocate unless we're completely
5904 done, i.e., the relaxation produced the final output we want. */
5905
5906 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
5907 h, r_symndx);
5908 if (relaxed_bfd_r_type != bfd_r_type)
5909 {
5910 bfd_r_type = relaxed_bfd_r_type;
5911 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
5912 BFD_ASSERT (howto != NULL);
5913 r_type = howto->type;
5914 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
5915 unresolved_reloc = 0;
5916 }
5917 else
5918 r = bfd_reloc_continue;
5919
5920 /* There may be multiple consecutive relocations for the
5921 same offset. In that case we are supposed to treat the
5922 output of each relocation as the addend for the next. */
5923 if (rel + 1 < relend
5924 && rel->r_offset == rel[1].r_offset
5925 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
5926 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
5927 save_addend = TRUE;
5928 else
5929 save_addend = FALSE;
5930
5931 if (r == bfd_reloc_continue)
5932 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
5933 input_section, contents, rel,
5934 relocation, info, sec,
5935 h, &unresolved_reloc,
5936 save_addend, &addend, sym);
5937
5938 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5939 {
5940 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5941 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5942 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5943 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5944 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5945 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5946 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5947 {
5948 bfd_boolean need_relocs = FALSE;
5949 bfd_byte *loc;
5950 int indx;
5951 bfd_vma off;
5952
5953 off = symbol_got_offset (input_bfd, h, r_symndx);
5954 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5955
5956 need_relocs =
5957 (bfd_link_pic (info) || indx != 0) &&
5958 (h == NULL
5959 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5960 || h->root.type != bfd_link_hash_undefweak);
5961
5962 BFD_ASSERT (globals->root.srelgot != NULL);
5963
5964 if (need_relocs)
5965 {
5966 Elf_Internal_Rela rela;
5967 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
5968 rela.r_addend = 0;
5969 rela.r_offset = globals->root.sgot->output_section->vma +
5970 globals->root.sgot->output_offset + off;
5971
5972
5973 loc = globals->root.srelgot->contents;
5974 loc += globals->root.srelgot->reloc_count++
5975 * RELOC_SIZE (htab);
5976 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5977
5978 bfd_reloc_code_real_type real_type =
5979 elfNN_aarch64_bfd_reloc_from_type (r_type);
5980
5981 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
5982 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
5983 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
5984 {
5985 /* For local dynamic, don't generate DTPREL in any case.
5986 Initialize the DTPREL slot into zero, so we get module
5987 base address when invoke runtime TLS resolver. */
5988 bfd_put_NN (output_bfd, 0,
5989 globals->root.sgot->contents + off
5990 + GOT_ENTRY_SIZE);
5991 }
5992 else if (indx == 0)
5993 {
5994 bfd_put_NN (output_bfd,
5995 relocation - dtpoff_base (info),
5996 globals->root.sgot->contents + off
5997 + GOT_ENTRY_SIZE);
5998 }
5999 else
6000 {
6001 /* This TLS symbol is global. We emit a
6002 relocation to fixup the tls offset at load
6003 time. */
6004 rela.r_info =
6005 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6006 rela.r_addend = 0;
6007 rela.r_offset =
6008 (globals->root.sgot->output_section->vma
6009 + globals->root.sgot->output_offset + off
6010 + GOT_ENTRY_SIZE);
6011
6012 loc = globals->root.srelgot->contents;
6013 loc += globals->root.srelgot->reloc_count++
6014 * RELOC_SIZE (globals);
6015 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6016 bfd_put_NN (output_bfd, (bfd_vma) 0,
6017 globals->root.sgot->contents + off
6018 + GOT_ENTRY_SIZE);
6019 }
6020 }
6021 else
6022 {
6023 bfd_put_NN (output_bfd, (bfd_vma) 1,
6024 globals->root.sgot->contents + off);
6025 bfd_put_NN (output_bfd,
6026 relocation - dtpoff_base (info),
6027 globals->root.sgot->contents + off
6028 + GOT_ENTRY_SIZE);
6029 }
6030
6031 symbol_got_offset_mark (input_bfd, h, r_symndx);
6032 }
6033 break;
6034
6035 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6036 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6037 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6038 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6039 {
6040 bfd_boolean need_relocs = FALSE;
6041 bfd_byte *loc;
6042 int indx;
6043 bfd_vma off;
6044
6045 off = symbol_got_offset (input_bfd, h, r_symndx);
6046
6047 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6048
6049 need_relocs =
6050 (bfd_link_pic (info) || indx != 0) &&
6051 (h == NULL
6052 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6053 || h->root.type != bfd_link_hash_undefweak);
6054
6055 BFD_ASSERT (globals->root.srelgot != NULL);
6056
6057 if (need_relocs)
6058 {
6059 Elf_Internal_Rela rela;
6060
6061 if (indx == 0)
6062 rela.r_addend = relocation - dtpoff_base (info);
6063 else
6064 rela.r_addend = 0;
6065
6066 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6067 rela.r_offset = globals->root.sgot->output_section->vma +
6068 globals->root.sgot->output_offset + off;
6069
6070 loc = globals->root.srelgot->contents;
6071 loc += globals->root.srelgot->reloc_count++
6072 * RELOC_SIZE (htab);
6073
6074 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6075
6076 bfd_put_NN (output_bfd, rela.r_addend,
6077 globals->root.sgot->contents + off);
6078 }
6079 else
6080 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6081 globals->root.sgot->contents + off);
6082
6083 symbol_got_offset_mark (input_bfd, h, r_symndx);
6084 }
6085 break;
6086
6087 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6088 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6089 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6090 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6091 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6092 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6093 {
6094 bfd_boolean need_relocs = FALSE;
6095 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6096 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6097
6098 need_relocs = (h == NULL
6099 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6100 || h->root.type != bfd_link_hash_undefweak);
6101
6102 BFD_ASSERT (globals->root.srelgot != NULL);
6103 BFD_ASSERT (globals->root.sgot != NULL);
6104
6105 if (need_relocs)
6106 {
6107 bfd_byte *loc;
6108 Elf_Internal_Rela rela;
6109 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6110
6111 rela.r_addend = 0;
6112 rela.r_offset = (globals->root.sgotplt->output_section->vma
6113 + globals->root.sgotplt->output_offset
6114 + off + globals->sgotplt_jump_table_size);
6115
6116 if (indx == 0)
6117 rela.r_addend = relocation - dtpoff_base (info);
6118
6119 /* Allocate the next available slot in the PLT reloc
6120 section to hold our R_AARCH64_TLSDESC, the next
6121 available slot is determined from reloc_count,
6122 which we step. But note, reloc_count was
6123 artifically moved down while allocating slots for
6124 real PLT relocs such that all of the PLT relocs
6125 will fit above the initial reloc_count and the
6126 extra stuff will fit below. */
6127 loc = globals->root.srelplt->contents;
6128 loc += globals->root.srelplt->reloc_count++
6129 * RELOC_SIZE (globals);
6130
6131 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6132
6133 bfd_put_NN (output_bfd, (bfd_vma) 0,
6134 globals->root.sgotplt->contents + off +
6135 globals->sgotplt_jump_table_size);
6136 bfd_put_NN (output_bfd, (bfd_vma) 0,
6137 globals->root.sgotplt->contents + off +
6138 globals->sgotplt_jump_table_size +
6139 GOT_ENTRY_SIZE);
6140 }
6141
6142 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6143 }
6144 break;
6145 default:
6146 break;
6147 }
6148
6149 if (!save_addend)
6150 addend = 0;
6151
6152
6153 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6154 because such sections are not SEC_ALLOC and thus ld.so will
6155 not process them. */
6156 if (unresolved_reloc
6157 && !((input_section->flags & SEC_DEBUGGING) != 0
6158 && h->def_dynamic)
6159 && _bfd_elf_section_offset (output_bfd, info, input_section,
6160 +rel->r_offset) != (bfd_vma) - 1)
6161 {
6162 (*_bfd_error_handler)
6163 (_
6164 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6165 input_bfd, input_section, (long) rel->r_offset, howto->name,
6166 h->root.root.string);
6167 return FALSE;
6168 }
6169
6170 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6171 {
6172 bfd_reloc_code_real_type real_r_type
6173 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6174
6175 switch (r)
6176 {
6177 case bfd_reloc_overflow:
6178 if (!(*info->callbacks->reloc_overflow)
6179 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6180 input_bfd, input_section, rel->r_offset))
6181 return FALSE;
6182 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6183 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6184 {
6185 (*info->callbacks->warning)
6186 (info,
6187 _("Too many GOT entries for -fpic, "
6188 "please recompile with -fPIC"),
6189 name, input_bfd, input_section, rel->r_offset);
6190 return FALSE;
6191 }
6192 break;
6193
6194 case bfd_reloc_undefined:
6195 if (!((*info->callbacks->undefined_symbol)
6196 (info, name, input_bfd, input_section,
6197 rel->r_offset, TRUE)))
6198 return FALSE;
6199 break;
6200
6201 case bfd_reloc_outofrange:
6202 error_message = _("out of range");
6203 goto common_error;
6204
6205 case bfd_reloc_notsupported:
6206 error_message = _("unsupported relocation");
6207 goto common_error;
6208
6209 case bfd_reloc_dangerous:
6210 /* error_message should already be set. */
6211 goto common_error;
6212
6213 default:
6214 error_message = _("unknown error");
6215 /* Fall through. */
6216
6217 common_error:
6218 BFD_ASSERT (error_message != NULL);
6219 if (!((*info->callbacks->reloc_dangerous)
6220 (info, error_message, input_bfd, input_section,
6221 rel->r_offset)))
6222 return FALSE;
6223 break;
6224 }
6225 }
6226 }
6227
6228 return TRUE;
6229 }
6230
6231 /* Set the right machine number. */
6232
6233 static bfd_boolean
6234 elfNN_aarch64_object_p (bfd *abfd)
6235 {
6236 #if ARCH_SIZE == 32
6237 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6238 #else
6239 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6240 #endif
6241 return TRUE;
6242 }
6243
6244 /* Function to keep AArch64 specific flags in the ELF header. */
6245
6246 static bfd_boolean
6247 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6248 {
6249 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6250 {
6251 }
6252 else
6253 {
6254 elf_elfheader (abfd)->e_flags = flags;
6255 elf_flags_init (abfd) = TRUE;
6256 }
6257
6258 return TRUE;
6259 }
6260
6261 /* Merge backend specific data from an object file to the output
6262 object file when linking. */
6263
6264 static bfd_boolean
6265 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6266 {
6267 flagword out_flags;
6268 flagword in_flags;
6269 bfd_boolean flags_compatible = TRUE;
6270 asection *sec;
6271
6272 /* Check if we have the same endianess. */
6273 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6274 return FALSE;
6275
6276 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6277 return TRUE;
6278
6279 /* The input BFD must have had its flags initialised. */
6280 /* The following seems bogus to me -- The flags are initialized in
6281 the assembler but I don't think an elf_flags_init field is
6282 written into the object. */
6283 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6284
6285 in_flags = elf_elfheader (ibfd)->e_flags;
6286 out_flags = elf_elfheader (obfd)->e_flags;
6287
6288 if (!elf_flags_init (obfd))
6289 {
6290 /* If the input is the default architecture and had the default
6291 flags then do not bother setting the flags for the output
6292 architecture, instead allow future merges to do this. If no
6293 future merges ever set these flags then they will retain their
6294 uninitialised values, which surprise surprise, correspond
6295 to the default values. */
6296 if (bfd_get_arch_info (ibfd)->the_default
6297 && elf_elfheader (ibfd)->e_flags == 0)
6298 return TRUE;
6299
6300 elf_flags_init (obfd) = TRUE;
6301 elf_elfheader (obfd)->e_flags = in_flags;
6302
6303 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6304 && bfd_get_arch_info (obfd)->the_default)
6305 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6306 bfd_get_mach (ibfd));
6307
6308 return TRUE;
6309 }
6310
6311 /* Identical flags must be compatible. */
6312 if (in_flags == out_flags)
6313 return TRUE;
6314
6315 /* Check to see if the input BFD actually contains any sections. If
6316 not, its flags may not have been initialised either, but it
6317 cannot actually cause any incompatiblity. Do not short-circuit
6318 dynamic objects; their section list may be emptied by
6319 elf_link_add_object_symbols.
6320
6321 Also check to see if there are no code sections in the input.
6322 In this case there is no need to check for code specific flags.
6323 XXX - do we need to worry about floating-point format compatability
6324 in data sections ? */
6325 if (!(ibfd->flags & DYNAMIC))
6326 {
6327 bfd_boolean null_input_bfd = TRUE;
6328 bfd_boolean only_data_sections = TRUE;
6329
6330 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6331 {
6332 if ((bfd_get_section_flags (ibfd, sec)
6333 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6334 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6335 only_data_sections = FALSE;
6336
6337 null_input_bfd = FALSE;
6338 break;
6339 }
6340
6341 if (null_input_bfd || only_data_sections)
6342 return TRUE;
6343 }
6344
6345 return flags_compatible;
6346 }
6347
6348 /* Display the flags field. */
6349
6350 static bfd_boolean
6351 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6352 {
6353 FILE *file = (FILE *) ptr;
6354 unsigned long flags;
6355
6356 BFD_ASSERT (abfd != NULL && ptr != NULL);
6357
6358 /* Print normal ELF private data. */
6359 _bfd_elf_print_private_bfd_data (abfd, ptr);
6360
6361 flags = elf_elfheader (abfd)->e_flags;
6362 /* Ignore init flag - it may not be set, despite the flags field
6363 containing valid data. */
6364
6365 /* xgettext:c-format */
6366 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6367
6368 if (flags)
6369 fprintf (file, _("<Unrecognised flag bits set>"));
6370
6371 fputc ('\n', file);
6372
6373 return TRUE;
6374 }
6375
6376 /* Update the got entry reference counts for the section being removed. */
6377
6378 static bfd_boolean
6379 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6380 struct bfd_link_info *info,
6381 asection *sec,
6382 const Elf_Internal_Rela * relocs)
6383 {
6384 struct elf_aarch64_link_hash_table *htab;
6385 Elf_Internal_Shdr *symtab_hdr;
6386 struct elf_link_hash_entry **sym_hashes;
6387 struct elf_aarch64_local_symbol *locals;
6388 const Elf_Internal_Rela *rel, *relend;
6389
6390 if (bfd_link_relocatable (info))
6391 return TRUE;
6392
6393 htab = elf_aarch64_hash_table (info);
6394
6395 if (htab == NULL)
6396 return FALSE;
6397
6398 elf_section_data (sec)->local_dynrel = NULL;
6399
6400 symtab_hdr = &elf_symtab_hdr (abfd);
6401 sym_hashes = elf_sym_hashes (abfd);
6402
6403 locals = elf_aarch64_locals (abfd);
6404
6405 relend = relocs + sec->reloc_count;
6406 for (rel = relocs; rel < relend; rel++)
6407 {
6408 unsigned long r_symndx;
6409 unsigned int r_type;
6410 struct elf_link_hash_entry *h = NULL;
6411
6412 r_symndx = ELFNN_R_SYM (rel->r_info);
6413
6414 if (r_symndx >= symtab_hdr->sh_info)
6415 {
6416
6417 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6418 while (h->root.type == bfd_link_hash_indirect
6419 || h->root.type == bfd_link_hash_warning)
6420 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6421 }
6422 else
6423 {
6424 Elf_Internal_Sym *isym;
6425
6426 /* A local symbol. */
6427 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6428 abfd, r_symndx);
6429
6430 /* Check relocation against local STT_GNU_IFUNC symbol. */
6431 if (isym != NULL
6432 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6433 {
6434 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6435 if (h == NULL)
6436 abort ();
6437 }
6438 }
6439
6440 if (h)
6441 {
6442 struct elf_aarch64_link_hash_entry *eh;
6443 struct elf_dyn_relocs **pp;
6444 struct elf_dyn_relocs *p;
6445
6446 eh = (struct elf_aarch64_link_hash_entry *) h;
6447
6448 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6449 if (p->sec == sec)
6450 {
6451 /* Everything must go for SEC. */
6452 *pp = p->next;
6453 break;
6454 }
6455 }
6456
6457 r_type = ELFNN_R_TYPE (rel->r_info);
6458 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6459 {
6460 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6461 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6462 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6463 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6464 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6465 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6466 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6467 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6468 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6469 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6470 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6471 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6472 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6473 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6474 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6475 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6476 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6477 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6478 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6479 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6480 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6481 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6482 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6483 if (h != NULL)
6484 {
6485 if (h->got.refcount > 0)
6486 h->got.refcount -= 1;
6487
6488 if (h->type == STT_GNU_IFUNC)
6489 {
6490 if (h->plt.refcount > 0)
6491 h->plt.refcount -= 1;
6492 }
6493 }
6494 else if (locals != NULL)
6495 {
6496 if (locals[r_symndx].got_refcount > 0)
6497 locals[r_symndx].got_refcount -= 1;
6498 }
6499 break;
6500
6501 case BFD_RELOC_AARCH64_CALL26:
6502 case BFD_RELOC_AARCH64_JUMP26:
6503 /* If this is a local symbol then we resolve it
6504 directly without creating a PLT entry. */
6505 if (h == NULL)
6506 continue;
6507
6508 if (h->plt.refcount > 0)
6509 h->plt.refcount -= 1;
6510 break;
6511
6512 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6513 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6514 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6515 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6516 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6517 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6518 case BFD_RELOC_AARCH64_MOVW_G3:
6519 case BFD_RELOC_AARCH64_NN:
6520 if (h != NULL && bfd_link_executable (info))
6521 {
6522 if (h->plt.refcount > 0)
6523 h->plt.refcount -= 1;
6524 }
6525 break;
6526
6527 default:
6528 break;
6529 }
6530 }
6531
6532 return TRUE;
6533 }
6534
6535 /* Adjust a symbol defined by a dynamic object and referenced by a
6536 regular object. The current definition is in some section of the
6537 dynamic object, but we're not including those sections. We have to
6538 change the definition to something the rest of the link can
6539 understand. */
6540
6541 static bfd_boolean
6542 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6543 struct elf_link_hash_entry *h)
6544 {
6545 struct elf_aarch64_link_hash_table *htab;
6546 asection *s;
6547
6548 /* If this is a function, put it in the procedure linkage table. We
6549 will fill in the contents of the procedure linkage table later,
6550 when we know the address of the .got section. */
6551 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6552 {
6553 if (h->plt.refcount <= 0
6554 || (h->type != STT_GNU_IFUNC
6555 && (SYMBOL_CALLS_LOCAL (info, h)
6556 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6557 && h->root.type == bfd_link_hash_undefweak))))
6558 {
6559 /* This case can occur if we saw a CALL26 reloc in
6560 an input file, but the symbol wasn't referred to
6561 by a dynamic object or all references were
6562 garbage collected. In which case we can end up
6563 resolving. */
6564 h->plt.offset = (bfd_vma) - 1;
6565 h->needs_plt = 0;
6566 }
6567
6568 return TRUE;
6569 }
6570 else
6571 /* Otherwise, reset to -1. */
6572 h->plt.offset = (bfd_vma) - 1;
6573
6574
6575 /* If this is a weak symbol, and there is a real definition, the
6576 processor independent code will have arranged for us to see the
6577 real definition first, and we can just use the same value. */
6578 if (h->u.weakdef != NULL)
6579 {
6580 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6581 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6582 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6583 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6584 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6585 h->non_got_ref = h->u.weakdef->non_got_ref;
6586 return TRUE;
6587 }
6588
6589 /* If we are creating a shared library, we must presume that the
6590 only references to the symbol are via the global offset table.
6591 For such cases we need not do anything here; the relocations will
6592 be handled correctly by relocate_section. */
6593 if (bfd_link_pic (info))
6594 return TRUE;
6595
6596 /* If there are no references to this symbol that do not use the
6597 GOT, we don't need to generate a copy reloc. */
6598 if (!h->non_got_ref)
6599 return TRUE;
6600
6601 /* If -z nocopyreloc was given, we won't generate them either. */
6602 if (info->nocopyreloc)
6603 {
6604 h->non_got_ref = 0;
6605 return TRUE;
6606 }
6607
6608 /* We must allocate the symbol in our .dynbss section, which will
6609 become part of the .bss section of the executable. There will be
6610 an entry for this symbol in the .dynsym section. The dynamic
6611 object will contain position independent code, so all references
6612 from the dynamic object to this symbol will go through the global
6613 offset table. The dynamic linker will use the .dynsym entry to
6614 determine the address it must put in the global offset table, so
6615 both the dynamic object and the regular object will refer to the
6616 same memory location for the variable. */
6617
6618 htab = elf_aarch64_hash_table (info);
6619
6620 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6621 to copy the initial value out of the dynamic object and into the
6622 runtime process image. */
6623 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6624 {
6625 htab->srelbss->size += RELOC_SIZE (htab);
6626 h->needs_copy = 1;
6627 }
6628
6629 s = htab->sdynbss;
6630
6631 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6632
6633 }
6634
6635 static bfd_boolean
6636 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6637 {
6638 struct elf_aarch64_local_symbol *locals;
6639 locals = elf_aarch64_locals (abfd);
6640 if (locals == NULL)
6641 {
6642 locals = (struct elf_aarch64_local_symbol *)
6643 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6644 if (locals == NULL)
6645 return FALSE;
6646 elf_aarch64_locals (abfd) = locals;
6647 }
6648 return TRUE;
6649 }
6650
6651 /* Create the .got section to hold the global offset table. */
6652
6653 static bfd_boolean
6654 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6655 {
6656 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6657 flagword flags;
6658 asection *s;
6659 struct elf_link_hash_entry *h;
6660 struct elf_link_hash_table *htab = elf_hash_table (info);
6661
6662 /* This function may be called more than once. */
6663 s = bfd_get_linker_section (abfd, ".got");
6664 if (s != NULL)
6665 return TRUE;
6666
6667 flags = bed->dynamic_sec_flags;
6668
6669 s = bfd_make_section_anyway_with_flags (abfd,
6670 (bed->rela_plts_and_copies_p
6671 ? ".rela.got" : ".rel.got"),
6672 (bed->dynamic_sec_flags
6673 | SEC_READONLY));
6674 if (s == NULL
6675 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6676 return FALSE;
6677 htab->srelgot = s;
6678
6679 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6680 if (s == NULL
6681 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6682 return FALSE;
6683 htab->sgot = s;
6684 htab->sgot->size += GOT_ENTRY_SIZE;
6685
6686 if (bed->want_got_sym)
6687 {
6688 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6689 (or .got.plt) section. We don't do this in the linker script
6690 because we don't want to define the symbol if we are not creating
6691 a global offset table. */
6692 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6693 "_GLOBAL_OFFSET_TABLE_");
6694 elf_hash_table (info)->hgot = h;
6695 if (h == NULL)
6696 return FALSE;
6697 }
6698
6699 if (bed->want_got_plt)
6700 {
6701 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6702 if (s == NULL
6703 || !bfd_set_section_alignment (abfd, s,
6704 bed->s->log_file_align))
6705 return FALSE;
6706 htab->sgotplt = s;
6707 }
6708
6709 /* The first bit of the global offset table is the header. */
6710 s->size += bed->got_header_size;
6711
6712 return TRUE;
6713 }
6714
6715 /* Look through the relocs for a section during the first phase. */
6716
6717 static bfd_boolean
6718 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6719 asection *sec, const Elf_Internal_Rela *relocs)
6720 {
6721 Elf_Internal_Shdr *symtab_hdr;
6722 struct elf_link_hash_entry **sym_hashes;
6723 const Elf_Internal_Rela *rel;
6724 const Elf_Internal_Rela *rel_end;
6725 asection *sreloc;
6726
6727 struct elf_aarch64_link_hash_table *htab;
6728
6729 if (bfd_link_relocatable (info))
6730 return TRUE;
6731
6732 BFD_ASSERT (is_aarch64_elf (abfd));
6733
6734 htab = elf_aarch64_hash_table (info);
6735 sreloc = NULL;
6736
6737 symtab_hdr = &elf_symtab_hdr (abfd);
6738 sym_hashes = elf_sym_hashes (abfd);
6739
6740 rel_end = relocs + sec->reloc_count;
6741 for (rel = relocs; rel < rel_end; rel++)
6742 {
6743 struct elf_link_hash_entry *h;
6744 unsigned long r_symndx;
6745 unsigned int r_type;
6746 bfd_reloc_code_real_type bfd_r_type;
6747 Elf_Internal_Sym *isym;
6748
6749 r_symndx = ELFNN_R_SYM (rel->r_info);
6750 r_type = ELFNN_R_TYPE (rel->r_info);
6751
6752 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
6753 {
6754 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
6755 r_symndx);
6756 return FALSE;
6757 }
6758
6759 if (r_symndx < symtab_hdr->sh_info)
6760 {
6761 /* A local symbol. */
6762 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6763 abfd, r_symndx);
6764 if (isym == NULL)
6765 return FALSE;
6766
6767 /* Check relocation against local STT_GNU_IFUNC symbol. */
6768 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6769 {
6770 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
6771 TRUE);
6772 if (h == NULL)
6773 return FALSE;
6774
6775 /* Fake a STT_GNU_IFUNC symbol. */
6776 h->type = STT_GNU_IFUNC;
6777 h->def_regular = 1;
6778 h->ref_regular = 1;
6779 h->forced_local = 1;
6780 h->root.type = bfd_link_hash_defined;
6781 }
6782 else
6783 h = NULL;
6784 }
6785 else
6786 {
6787 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6788 while (h->root.type == bfd_link_hash_indirect
6789 || h->root.type == bfd_link_hash_warning)
6790 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6791
6792 /* PR15323, ref flags aren't set for references in the same
6793 object. */
6794 h->root.non_ir_ref = 1;
6795 }
6796
6797 /* Could be done earlier, if h were already available. */
6798 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
6799
6800 if (h != NULL)
6801 {
6802 /* Create the ifunc sections for static executables. If we
6803 never see an indirect function symbol nor we are building
6804 a static executable, those sections will be empty and
6805 won't appear in output. */
6806 switch (bfd_r_type)
6807 {
6808 default:
6809 break;
6810
6811 case BFD_RELOC_AARCH64_ADD_LO12:
6812 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6813 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6814 case BFD_RELOC_AARCH64_CALL26:
6815 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6816 case BFD_RELOC_AARCH64_JUMP26:
6817 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6818 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6819 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6820 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6821 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6822 case BFD_RELOC_AARCH64_NN:
6823 if (htab->root.dynobj == NULL)
6824 htab->root.dynobj = abfd;
6825 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
6826 return FALSE;
6827 break;
6828 }
6829
6830 /* It is referenced by a non-shared object. */
6831 h->ref_regular = 1;
6832 h->root.non_ir_ref = 1;
6833 }
6834
6835 switch (bfd_r_type)
6836 {
6837 case BFD_RELOC_AARCH64_NN:
6838
6839 /* We don't need to handle relocs into sections not going into
6840 the "real" output. */
6841 if ((sec->flags & SEC_ALLOC) == 0)
6842 break;
6843
6844 if (h != NULL)
6845 {
6846 if (!bfd_link_pic (info))
6847 h->non_got_ref = 1;
6848
6849 h->plt.refcount += 1;
6850 h->pointer_equality_needed = 1;
6851 }
6852
6853 /* No need to do anything if we're not creating a shared
6854 object. */
6855 if (! bfd_link_pic (info))
6856 break;
6857
6858 {
6859 struct elf_dyn_relocs *p;
6860 struct elf_dyn_relocs **head;
6861
6862 /* We must copy these reloc types into the output file.
6863 Create a reloc section in dynobj and make room for
6864 this reloc. */
6865 if (sreloc == NULL)
6866 {
6867 if (htab->root.dynobj == NULL)
6868 htab->root.dynobj = abfd;
6869
6870 sreloc = _bfd_elf_make_dynamic_reloc_section
6871 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
6872
6873 if (sreloc == NULL)
6874 return FALSE;
6875 }
6876
6877 /* If this is a global symbol, we count the number of
6878 relocations we need for this symbol. */
6879 if (h != NULL)
6880 {
6881 struct elf_aarch64_link_hash_entry *eh;
6882 eh = (struct elf_aarch64_link_hash_entry *) h;
6883 head = &eh->dyn_relocs;
6884 }
6885 else
6886 {
6887 /* Track dynamic relocs needed for local syms too.
6888 We really need local syms available to do this
6889 easily. Oh well. */
6890
6891 asection *s;
6892 void **vpp;
6893
6894 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6895 abfd, r_symndx);
6896 if (isym == NULL)
6897 return FALSE;
6898
6899 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
6900 if (s == NULL)
6901 s = sec;
6902
6903 /* Beware of type punned pointers vs strict aliasing
6904 rules. */
6905 vpp = &(elf_section_data (s)->local_dynrel);
6906 head = (struct elf_dyn_relocs **) vpp;
6907 }
6908
6909 p = *head;
6910 if (p == NULL || p->sec != sec)
6911 {
6912 bfd_size_type amt = sizeof *p;
6913 p = ((struct elf_dyn_relocs *)
6914 bfd_zalloc (htab->root.dynobj, amt));
6915 if (p == NULL)
6916 return FALSE;
6917 p->next = *head;
6918 *head = p;
6919 p->sec = sec;
6920 }
6921
6922 p->count += 1;
6923
6924 }
6925 break;
6926
6927 /* RR: We probably want to keep a consistency check that
6928 there are no dangling GOT_PAGE relocs. */
6929 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6930 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6931 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6932 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6933 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6934 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6935 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6936 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6937 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6938 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6939 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6940 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6941 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6942 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6943 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6944 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6945 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6946 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6947 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6948 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6949 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6950 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6951 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6952 {
6953 unsigned got_type;
6954 unsigned old_got_type;
6955
6956 got_type = aarch64_reloc_got_type (bfd_r_type);
6957
6958 if (h)
6959 {
6960 h->got.refcount += 1;
6961 old_got_type = elf_aarch64_hash_entry (h)->got_type;
6962 }
6963 else
6964 {
6965 struct elf_aarch64_local_symbol *locals;
6966
6967 if (!elfNN_aarch64_allocate_local_symbols
6968 (abfd, symtab_hdr->sh_info))
6969 return FALSE;
6970
6971 locals = elf_aarch64_locals (abfd);
6972 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6973 locals[r_symndx].got_refcount += 1;
6974 old_got_type = locals[r_symndx].got_type;
6975 }
6976
6977 /* If a variable is accessed with both general dynamic TLS
6978 methods, two slots may be created. */
6979 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
6980 got_type |= old_got_type;
6981
6982 /* We will already have issued an error message if there
6983 is a TLS/non-TLS mismatch, based on the symbol type.
6984 So just combine any TLS types needed. */
6985 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
6986 && got_type != GOT_NORMAL)
6987 got_type |= old_got_type;
6988
6989 /* If the symbol is accessed by both IE and GD methods, we
6990 are able to relax. Turn off the GD flag, without
6991 messing up with any other kind of TLS types that may be
6992 involved. */
6993 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
6994 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
6995
6996 if (old_got_type != got_type)
6997 {
6998 if (h != NULL)
6999 elf_aarch64_hash_entry (h)->got_type = got_type;
7000 else
7001 {
7002 struct elf_aarch64_local_symbol *locals;
7003 locals = elf_aarch64_locals (abfd);
7004 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7005 locals[r_symndx].got_type = got_type;
7006 }
7007 }
7008
7009 if (htab->root.dynobj == NULL)
7010 htab->root.dynobj = abfd;
7011 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7012 return FALSE;
7013 break;
7014 }
7015
7016 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7017 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7018 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7019 case BFD_RELOC_AARCH64_MOVW_G3:
7020 if (bfd_link_pic (info))
7021 {
7022 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7023 (*_bfd_error_handler)
7024 (_("%B: relocation %s against `%s' can not be used when making "
7025 "a shared object; recompile with -fPIC"),
7026 abfd, elfNN_aarch64_howto_table[howto_index].name,
7027 (h) ? h->root.root.string : "a local symbol");
7028 bfd_set_error (bfd_error_bad_value);
7029 return FALSE;
7030 }
7031
7032 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7033 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7034 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7035 if (h != NULL && bfd_link_executable (info))
7036 {
7037 /* If this reloc is in a read-only section, we might
7038 need a copy reloc. We can't check reliably at this
7039 stage whether the section is read-only, as input
7040 sections have not yet been mapped to output sections.
7041 Tentatively set the flag for now, and correct in
7042 adjust_dynamic_symbol. */
7043 h->non_got_ref = 1;
7044 h->plt.refcount += 1;
7045 h->pointer_equality_needed = 1;
7046 }
7047 /* FIXME:: RR need to handle these in shared libraries
7048 and essentially bomb out as these being non-PIC
7049 relocations in shared libraries. */
7050 break;
7051
7052 case BFD_RELOC_AARCH64_CALL26:
7053 case BFD_RELOC_AARCH64_JUMP26:
7054 /* If this is a local symbol then we resolve it
7055 directly without creating a PLT entry. */
7056 if (h == NULL)
7057 continue;
7058
7059 h->needs_plt = 1;
7060 if (h->plt.refcount <= 0)
7061 h->plt.refcount = 1;
7062 else
7063 h->plt.refcount += 1;
7064 break;
7065
7066 default:
7067 break;
7068 }
7069 }
7070
7071 return TRUE;
7072 }
7073
7074 /* Treat mapping symbols as special target symbols. */
7075
7076 static bfd_boolean
7077 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7078 asymbol *sym)
7079 {
7080 return bfd_is_aarch64_special_symbol_name (sym->name,
7081 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7082 }
7083
7084 /* This is a copy of elf_find_function () from elf.c except that
7085 AArch64 mapping symbols are ignored when looking for function names. */
7086
7087 static bfd_boolean
7088 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7089 asymbol **symbols,
7090 asection *section,
7091 bfd_vma offset,
7092 const char **filename_ptr,
7093 const char **functionname_ptr)
7094 {
7095 const char *filename = NULL;
7096 asymbol *func = NULL;
7097 bfd_vma low_func = 0;
7098 asymbol **p;
7099
7100 for (p = symbols; *p != NULL; p++)
7101 {
7102 elf_symbol_type *q;
7103
7104 q = (elf_symbol_type *) * p;
7105
7106 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7107 {
7108 default:
7109 break;
7110 case STT_FILE:
7111 filename = bfd_asymbol_name (&q->symbol);
7112 break;
7113 case STT_FUNC:
7114 case STT_NOTYPE:
7115 /* Skip mapping symbols. */
7116 if ((q->symbol.flags & BSF_LOCAL)
7117 && (bfd_is_aarch64_special_symbol_name
7118 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7119 continue;
7120 /* Fall through. */
7121 if (bfd_get_section (&q->symbol) == section
7122 && q->symbol.value >= low_func && q->symbol.value <= offset)
7123 {
7124 func = (asymbol *) q;
7125 low_func = q->symbol.value;
7126 }
7127 break;
7128 }
7129 }
7130
7131 if (func == NULL)
7132 return FALSE;
7133
7134 if (filename_ptr)
7135 *filename_ptr = filename;
7136 if (functionname_ptr)
7137 *functionname_ptr = bfd_asymbol_name (func);
7138
7139 return TRUE;
7140 }
7141
7142
7143 /* Find the nearest line to a particular section and offset, for error
7144 reporting. This code is a duplicate of the code in elf.c, except
7145 that it uses aarch64_elf_find_function. */
7146
7147 static bfd_boolean
7148 elfNN_aarch64_find_nearest_line (bfd *abfd,
7149 asymbol **symbols,
7150 asection *section,
7151 bfd_vma offset,
7152 const char **filename_ptr,
7153 const char **functionname_ptr,
7154 unsigned int *line_ptr,
7155 unsigned int *discriminator_ptr)
7156 {
7157 bfd_boolean found = FALSE;
7158
7159 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7160 filename_ptr, functionname_ptr,
7161 line_ptr, discriminator_ptr,
7162 dwarf_debug_sections, 0,
7163 &elf_tdata (abfd)->dwarf2_find_line_info))
7164 {
7165 if (!*functionname_ptr)
7166 aarch64_elf_find_function (abfd, symbols, section, offset,
7167 *filename_ptr ? NULL : filename_ptr,
7168 functionname_ptr);
7169
7170 return TRUE;
7171 }
7172
7173 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7174 toolchain uses DWARF1. */
7175
7176 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7177 &found, filename_ptr,
7178 functionname_ptr, line_ptr,
7179 &elf_tdata (abfd)->line_info))
7180 return FALSE;
7181
7182 if (found && (*functionname_ptr || *line_ptr))
7183 return TRUE;
7184
7185 if (symbols == NULL)
7186 return FALSE;
7187
7188 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7189 filename_ptr, functionname_ptr))
7190 return FALSE;
7191
7192 *line_ptr = 0;
7193 return TRUE;
7194 }
7195
7196 static bfd_boolean
7197 elfNN_aarch64_find_inliner_info (bfd *abfd,
7198 const char **filename_ptr,
7199 const char **functionname_ptr,
7200 unsigned int *line_ptr)
7201 {
7202 bfd_boolean found;
7203 found = _bfd_dwarf2_find_inliner_info
7204 (abfd, filename_ptr,
7205 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7206 return found;
7207 }
7208
7209
7210 static void
7211 elfNN_aarch64_post_process_headers (bfd *abfd,
7212 struct bfd_link_info *link_info)
7213 {
7214 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7215
7216 i_ehdrp = elf_elfheader (abfd);
7217 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7218
7219 _bfd_elf_post_process_headers (abfd, link_info);
7220 }
7221
7222 static enum elf_reloc_type_class
7223 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7224 const asection *rel_sec ATTRIBUTE_UNUSED,
7225 const Elf_Internal_Rela *rela)
7226 {
7227 switch ((int) ELFNN_R_TYPE (rela->r_info))
7228 {
7229 case AARCH64_R (RELATIVE):
7230 return reloc_class_relative;
7231 case AARCH64_R (JUMP_SLOT):
7232 return reloc_class_plt;
7233 case AARCH64_R (COPY):
7234 return reloc_class_copy;
7235 default:
7236 return reloc_class_normal;
7237 }
7238 }
7239
7240 /* Handle an AArch64 specific section when reading an object file. This is
7241 called when bfd_section_from_shdr finds a section with an unknown
7242 type. */
7243
7244 static bfd_boolean
7245 elfNN_aarch64_section_from_shdr (bfd *abfd,
7246 Elf_Internal_Shdr *hdr,
7247 const char *name, int shindex)
7248 {
7249 /* There ought to be a place to keep ELF backend specific flags, but
7250 at the moment there isn't one. We just keep track of the
7251 sections by their name, instead. Fortunately, the ABI gives
7252 names for all the AArch64 specific sections, so we will probably get
7253 away with this. */
7254 switch (hdr->sh_type)
7255 {
7256 case SHT_AARCH64_ATTRIBUTES:
7257 break;
7258
7259 default:
7260 return FALSE;
7261 }
7262
7263 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7264 return FALSE;
7265
7266 return TRUE;
7267 }
7268
7269 /* A structure used to record a list of sections, independently
7270 of the next and prev fields in the asection structure. */
7271 typedef struct section_list
7272 {
7273 asection *sec;
7274 struct section_list *next;
7275 struct section_list *prev;
7276 }
7277 section_list;
7278
7279 /* Unfortunately we need to keep a list of sections for which
7280 an _aarch64_elf_section_data structure has been allocated. This
7281 is because it is possible for functions like elfNN_aarch64_write_section
7282 to be called on a section which has had an elf_data_structure
7283 allocated for it (and so the used_by_bfd field is valid) but
7284 for which the AArch64 extended version of this structure - the
7285 _aarch64_elf_section_data structure - has not been allocated. */
7286 static section_list *sections_with_aarch64_elf_section_data = NULL;
7287
7288 static void
7289 record_section_with_aarch64_elf_section_data (asection *sec)
7290 {
7291 struct section_list *entry;
7292
7293 entry = bfd_malloc (sizeof (*entry));
7294 if (entry == NULL)
7295 return;
7296 entry->sec = sec;
7297 entry->next = sections_with_aarch64_elf_section_data;
7298 entry->prev = NULL;
7299 if (entry->next != NULL)
7300 entry->next->prev = entry;
7301 sections_with_aarch64_elf_section_data = entry;
7302 }
7303
7304 static struct section_list *
7305 find_aarch64_elf_section_entry (asection *sec)
7306 {
7307 struct section_list *entry;
7308 static struct section_list *last_entry = NULL;
7309
7310 /* This is a short cut for the typical case where the sections are added
7311 to the sections_with_aarch64_elf_section_data list in forward order and
7312 then looked up here in backwards order. This makes a real difference
7313 to the ld-srec/sec64k.exp linker test. */
7314 entry = sections_with_aarch64_elf_section_data;
7315 if (last_entry != NULL)
7316 {
7317 if (last_entry->sec == sec)
7318 entry = last_entry;
7319 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7320 entry = last_entry->next;
7321 }
7322
7323 for (; entry; entry = entry->next)
7324 if (entry->sec == sec)
7325 break;
7326
7327 if (entry)
7328 /* Record the entry prior to this one - it is the entry we are
7329 most likely to want to locate next time. Also this way if we
7330 have been called from
7331 unrecord_section_with_aarch64_elf_section_data () we will not
7332 be caching a pointer that is about to be freed. */
7333 last_entry = entry->prev;
7334
7335 return entry;
7336 }
7337
7338 static void
7339 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7340 {
7341 struct section_list *entry;
7342
7343 entry = find_aarch64_elf_section_entry (sec);
7344
7345 if (entry)
7346 {
7347 if (entry->prev != NULL)
7348 entry->prev->next = entry->next;
7349 if (entry->next != NULL)
7350 entry->next->prev = entry->prev;
7351 if (entry == sections_with_aarch64_elf_section_data)
7352 sections_with_aarch64_elf_section_data = entry->next;
7353 free (entry);
7354 }
7355 }
7356
7357
7358 typedef struct
7359 {
7360 void *finfo;
7361 struct bfd_link_info *info;
7362 asection *sec;
7363 int sec_shndx;
7364 int (*func) (void *, const char *, Elf_Internal_Sym *,
7365 asection *, struct elf_link_hash_entry *);
7366 } output_arch_syminfo;
7367
7368 enum map_symbol_type
7369 {
7370 AARCH64_MAP_INSN,
7371 AARCH64_MAP_DATA
7372 };
7373
7374
7375 /* Output a single mapping symbol. */
7376
7377 static bfd_boolean
7378 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7379 enum map_symbol_type type, bfd_vma offset)
7380 {
7381 static const char *names[2] = { "$x", "$d" };
7382 Elf_Internal_Sym sym;
7383
7384 sym.st_value = (osi->sec->output_section->vma
7385 + osi->sec->output_offset + offset);
7386 sym.st_size = 0;
7387 sym.st_other = 0;
7388 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7389 sym.st_shndx = osi->sec_shndx;
7390 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7391 }
7392
7393 /* Output a single local symbol for a generated stub. */
7394
7395 static bfd_boolean
7396 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7397 bfd_vma offset, bfd_vma size)
7398 {
7399 Elf_Internal_Sym sym;
7400
7401 sym.st_value = (osi->sec->output_section->vma
7402 + osi->sec->output_offset + offset);
7403 sym.st_size = size;
7404 sym.st_other = 0;
7405 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7406 sym.st_shndx = osi->sec_shndx;
7407 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7408 }
7409
7410 static bfd_boolean
7411 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7412 {
7413 struct elf_aarch64_stub_hash_entry *stub_entry;
7414 asection *stub_sec;
7415 bfd_vma addr;
7416 char *stub_name;
7417 output_arch_syminfo *osi;
7418
7419 /* Massage our args to the form they really have. */
7420 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7421 osi = (output_arch_syminfo *) in_arg;
7422
7423 stub_sec = stub_entry->stub_sec;
7424
7425 /* Ensure this stub is attached to the current section being
7426 processed. */
7427 if (stub_sec != osi->sec)
7428 return TRUE;
7429
7430 addr = (bfd_vma) stub_entry->stub_offset;
7431
7432 stub_name = stub_entry->output_name;
7433
7434 switch (stub_entry->stub_type)
7435 {
7436 case aarch64_stub_adrp_branch:
7437 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7438 sizeof (aarch64_adrp_branch_stub)))
7439 return FALSE;
7440 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7441 return FALSE;
7442 break;
7443 case aarch64_stub_long_branch:
7444 if (!elfNN_aarch64_output_stub_sym
7445 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7446 return FALSE;
7447 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7448 return FALSE;
7449 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7450 return FALSE;
7451 break;
7452 case aarch64_stub_erratum_835769_veneer:
7453 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7454 sizeof (aarch64_erratum_835769_stub)))
7455 return FALSE;
7456 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7457 return FALSE;
7458 break;
7459 case aarch64_stub_erratum_843419_veneer:
7460 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7461 sizeof (aarch64_erratum_843419_stub)))
7462 return FALSE;
7463 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7464 return FALSE;
7465 break;
7466
7467 default:
7468 abort ();
7469 }
7470
7471 return TRUE;
7472 }
7473
7474 /* Output mapping symbols for linker generated sections. */
7475
7476 static bfd_boolean
7477 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7478 struct bfd_link_info *info,
7479 void *finfo,
7480 int (*func) (void *, const char *,
7481 Elf_Internal_Sym *,
7482 asection *,
7483 struct elf_link_hash_entry
7484 *))
7485 {
7486 output_arch_syminfo osi;
7487 struct elf_aarch64_link_hash_table *htab;
7488
7489 htab = elf_aarch64_hash_table (info);
7490
7491 osi.finfo = finfo;
7492 osi.info = info;
7493 osi.func = func;
7494
7495 /* Long calls stubs. */
7496 if (htab->stub_bfd && htab->stub_bfd->sections)
7497 {
7498 asection *stub_sec;
7499
7500 for (stub_sec = htab->stub_bfd->sections;
7501 stub_sec != NULL; stub_sec = stub_sec->next)
7502 {
7503 /* Ignore non-stub sections. */
7504 if (!strstr (stub_sec->name, STUB_SUFFIX))
7505 continue;
7506
7507 osi.sec = stub_sec;
7508
7509 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7510 (output_bfd, osi.sec->output_section);
7511
7512 /* The first instruction in a stub is always a branch. */
7513 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7514 return FALSE;
7515
7516 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7517 &osi);
7518 }
7519 }
7520
7521 /* Finally, output mapping symbols for the PLT. */
7522 if (!htab->root.splt || htab->root.splt->size == 0)
7523 return TRUE;
7524
7525 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7526 (output_bfd, htab->root.splt->output_section);
7527 osi.sec = htab->root.splt;
7528
7529 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7530
7531 return TRUE;
7532
7533 }
7534
7535 /* Allocate target specific section data. */
7536
7537 static bfd_boolean
7538 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7539 {
7540 if (!sec->used_by_bfd)
7541 {
7542 _aarch64_elf_section_data *sdata;
7543 bfd_size_type amt = sizeof (*sdata);
7544
7545 sdata = bfd_zalloc (abfd, amt);
7546 if (sdata == NULL)
7547 return FALSE;
7548 sec->used_by_bfd = sdata;
7549 }
7550
7551 record_section_with_aarch64_elf_section_data (sec);
7552
7553 return _bfd_elf_new_section_hook (abfd, sec);
7554 }
7555
7556
7557 static void
7558 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7559 asection *sec,
7560 void *ignore ATTRIBUTE_UNUSED)
7561 {
7562 unrecord_section_with_aarch64_elf_section_data (sec);
7563 }
7564
7565 static bfd_boolean
7566 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7567 {
7568 if (abfd->sections)
7569 bfd_map_over_sections (abfd,
7570 unrecord_section_via_map_over_sections, NULL);
7571
7572 return _bfd_elf_close_and_cleanup (abfd);
7573 }
7574
7575 static bfd_boolean
7576 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7577 {
7578 if (abfd->sections)
7579 bfd_map_over_sections (abfd,
7580 unrecord_section_via_map_over_sections, NULL);
7581
7582 return _bfd_free_cached_info (abfd);
7583 }
7584
7585 /* Create dynamic sections. This is different from the ARM backend in that
7586 the got, plt, gotplt and their relocation sections are all created in the
7587 standard part of the bfd elf backend. */
7588
7589 static bfd_boolean
7590 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7591 struct bfd_link_info *info)
7592 {
7593 struct elf_aarch64_link_hash_table *htab;
7594
7595 /* We need to create .got section. */
7596 if (!aarch64_elf_create_got_section (dynobj, info))
7597 return FALSE;
7598
7599 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7600 return FALSE;
7601
7602 htab = elf_aarch64_hash_table (info);
7603 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7604 if (!bfd_link_pic (info))
7605 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7606
7607 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7608 abort ();
7609
7610 return TRUE;
7611 }
7612
7613
7614 /* Allocate space in .plt, .got and associated reloc sections for
7615 dynamic relocs. */
7616
7617 static bfd_boolean
7618 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7619 {
7620 struct bfd_link_info *info;
7621 struct elf_aarch64_link_hash_table *htab;
7622 struct elf_aarch64_link_hash_entry *eh;
7623 struct elf_dyn_relocs *p;
7624
7625 /* An example of a bfd_link_hash_indirect symbol is versioned
7626 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7627 -> __gxx_personality_v0(bfd_link_hash_defined)
7628
7629 There is no need to process bfd_link_hash_indirect symbols here
7630 because we will also be presented with the concrete instance of
7631 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7632 called to copy all relevant data from the generic to the concrete
7633 symbol instance.
7634 */
7635 if (h->root.type == bfd_link_hash_indirect)
7636 return TRUE;
7637
7638 if (h->root.type == bfd_link_hash_warning)
7639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7640
7641 info = (struct bfd_link_info *) inf;
7642 htab = elf_aarch64_hash_table (info);
7643
7644 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7645 here if it is defined and referenced in a non-shared object. */
7646 if (h->type == STT_GNU_IFUNC
7647 && h->def_regular)
7648 return TRUE;
7649 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7650 {
7651 /* Make sure this symbol is output as a dynamic symbol.
7652 Undefined weak syms won't yet be marked as dynamic. */
7653 if (h->dynindx == -1 && !h->forced_local)
7654 {
7655 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7656 return FALSE;
7657 }
7658
7659 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7660 {
7661 asection *s = htab->root.splt;
7662
7663 /* If this is the first .plt entry, make room for the special
7664 first entry. */
7665 if (s->size == 0)
7666 s->size += htab->plt_header_size;
7667
7668 h->plt.offset = s->size;
7669
7670 /* If this symbol is not defined in a regular file, and we are
7671 not generating a shared library, then set the symbol to this
7672 location in the .plt. This is required to make function
7673 pointers compare as equal between the normal executable and
7674 the shared library. */
7675 if (!bfd_link_pic (info) && !h->def_regular)
7676 {
7677 h->root.u.def.section = s;
7678 h->root.u.def.value = h->plt.offset;
7679 }
7680
7681 /* Make room for this entry. For now we only create the
7682 small model PLT entries. We later need to find a way
7683 of relaxing into these from the large model PLT entries. */
7684 s->size += PLT_SMALL_ENTRY_SIZE;
7685
7686 /* We also need to make an entry in the .got.plt section, which
7687 will be placed in the .got section by the linker script. */
7688 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7689
7690 /* We also need to make an entry in the .rela.plt section. */
7691 htab->root.srelplt->size += RELOC_SIZE (htab);
7692
7693 /* We need to ensure that all GOT entries that serve the PLT
7694 are consecutive with the special GOT slots [0] [1] and
7695 [2]. Any addtional relocations, such as
7696 R_AARCH64_TLSDESC, must be placed after the PLT related
7697 entries. We abuse the reloc_count such that during
7698 sizing we adjust reloc_count to indicate the number of
7699 PLT related reserved entries. In subsequent phases when
7700 filling in the contents of the reloc entries, PLT related
7701 entries are placed by computing their PLT index (0
7702 .. reloc_count). While other none PLT relocs are placed
7703 at the slot indicated by reloc_count and reloc_count is
7704 updated. */
7705
7706 htab->root.srelplt->reloc_count++;
7707 }
7708 else
7709 {
7710 h->plt.offset = (bfd_vma) - 1;
7711 h->needs_plt = 0;
7712 }
7713 }
7714 else
7715 {
7716 h->plt.offset = (bfd_vma) - 1;
7717 h->needs_plt = 0;
7718 }
7719
7720 eh = (struct elf_aarch64_link_hash_entry *) h;
7721 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7722
7723 if (h->got.refcount > 0)
7724 {
7725 bfd_boolean dyn;
7726 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
7727
7728 h->got.offset = (bfd_vma) - 1;
7729
7730 dyn = htab->root.dynamic_sections_created;
7731
7732 /* Make sure this symbol is output as a dynamic symbol.
7733 Undefined weak syms won't yet be marked as dynamic. */
7734 if (dyn && h->dynindx == -1 && !h->forced_local)
7735 {
7736 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7737 return FALSE;
7738 }
7739
7740 if (got_type == GOT_UNKNOWN)
7741 {
7742 }
7743 else if (got_type == GOT_NORMAL)
7744 {
7745 h->got.offset = htab->root.sgot->size;
7746 htab->root.sgot->size += GOT_ENTRY_SIZE;
7747 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7748 || h->root.type != bfd_link_hash_undefweak)
7749 && (bfd_link_pic (info)
7750 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7751 {
7752 htab->root.srelgot->size += RELOC_SIZE (htab);
7753 }
7754 }
7755 else
7756 {
7757 int indx;
7758 if (got_type & GOT_TLSDESC_GD)
7759 {
7760 eh->tlsdesc_got_jump_table_offset =
7761 (htab->root.sgotplt->size
7762 - aarch64_compute_jump_table_size (htab));
7763 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7764 h->got.offset = (bfd_vma) - 2;
7765 }
7766
7767 if (got_type & GOT_TLS_GD)
7768 {
7769 h->got.offset = htab->root.sgot->size;
7770 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7771 }
7772
7773 if (got_type & GOT_TLS_IE)
7774 {
7775 h->got.offset = htab->root.sgot->size;
7776 htab->root.sgot->size += GOT_ENTRY_SIZE;
7777 }
7778
7779 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7780 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7781 || h->root.type != bfd_link_hash_undefweak)
7782 && (bfd_link_pic (info)
7783 || indx != 0
7784 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7785 {
7786 if (got_type & GOT_TLSDESC_GD)
7787 {
7788 htab->root.srelplt->size += RELOC_SIZE (htab);
7789 /* Note reloc_count not incremented here! We have
7790 already adjusted reloc_count for this relocation
7791 type. */
7792
7793 /* TLSDESC PLT is now needed, but not yet determined. */
7794 htab->tlsdesc_plt = (bfd_vma) - 1;
7795 }
7796
7797 if (got_type & GOT_TLS_GD)
7798 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7799
7800 if (got_type & GOT_TLS_IE)
7801 htab->root.srelgot->size += RELOC_SIZE (htab);
7802 }
7803 }
7804 }
7805 else
7806 {
7807 h->got.offset = (bfd_vma) - 1;
7808 }
7809
7810 if (eh->dyn_relocs == NULL)
7811 return TRUE;
7812
7813 /* In the shared -Bsymbolic case, discard space allocated for
7814 dynamic pc-relative relocs against symbols which turn out to be
7815 defined in regular objects. For the normal shared case, discard
7816 space for pc-relative relocs that have become local due to symbol
7817 visibility changes. */
7818
7819 if (bfd_link_pic (info))
7820 {
7821 /* Relocs that use pc_count are those that appear on a call
7822 insn, or certain REL relocs that can generated via assembly.
7823 We want calls to protected symbols to resolve directly to the
7824 function rather than going via the plt. If people want
7825 function pointer comparisons to work as expected then they
7826 should avoid writing weird assembly. */
7827 if (SYMBOL_CALLS_LOCAL (info, h))
7828 {
7829 struct elf_dyn_relocs **pp;
7830
7831 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
7832 {
7833 p->count -= p->pc_count;
7834 p->pc_count = 0;
7835 if (p->count == 0)
7836 *pp = p->next;
7837 else
7838 pp = &p->next;
7839 }
7840 }
7841
7842 /* Also discard relocs on undefined weak syms with non-default
7843 visibility. */
7844 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
7845 {
7846 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7847 eh->dyn_relocs = NULL;
7848
7849 /* Make sure undefined weak symbols are output as a dynamic
7850 symbol in PIEs. */
7851 else if (h->dynindx == -1
7852 && !h->forced_local
7853 && !bfd_elf_link_record_dynamic_symbol (info, h))
7854 return FALSE;
7855 }
7856
7857 }
7858 else if (ELIMINATE_COPY_RELOCS)
7859 {
7860 /* For the non-shared case, discard space for relocs against
7861 symbols which turn out to need copy relocs or are not
7862 dynamic. */
7863
7864 if (!h->non_got_ref
7865 && ((h->def_dynamic
7866 && !h->def_regular)
7867 || (htab->root.dynamic_sections_created
7868 && (h->root.type == bfd_link_hash_undefweak
7869 || h->root.type == bfd_link_hash_undefined))))
7870 {
7871 /* Make sure this symbol is output as a dynamic symbol.
7872 Undefined weak syms won't yet be marked as dynamic. */
7873 if (h->dynindx == -1
7874 && !h->forced_local
7875 && !bfd_elf_link_record_dynamic_symbol (info, h))
7876 return FALSE;
7877
7878 /* If that succeeded, we know we'll be keeping all the
7879 relocs. */
7880 if (h->dynindx != -1)
7881 goto keep;
7882 }
7883
7884 eh->dyn_relocs = NULL;
7885
7886 keep:;
7887 }
7888
7889 /* Finally, allocate space. */
7890 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7891 {
7892 asection *sreloc;
7893
7894 sreloc = elf_section_data (p->sec)->sreloc;
7895
7896 BFD_ASSERT (sreloc != NULL);
7897
7898 sreloc->size += p->count * RELOC_SIZE (htab);
7899 }
7900
7901 return TRUE;
7902 }
7903
7904 /* Allocate space in .plt, .got and associated reloc sections for
7905 ifunc dynamic relocs. */
7906
7907 static bfd_boolean
7908 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
7909 void *inf)
7910 {
7911 struct bfd_link_info *info;
7912 struct elf_aarch64_link_hash_table *htab;
7913 struct elf_aarch64_link_hash_entry *eh;
7914
7915 /* An example of a bfd_link_hash_indirect symbol is versioned
7916 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7917 -> __gxx_personality_v0(bfd_link_hash_defined)
7918
7919 There is no need to process bfd_link_hash_indirect symbols here
7920 because we will also be presented with the concrete instance of
7921 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7922 called to copy all relevant data from the generic to the concrete
7923 symbol instance.
7924 */
7925 if (h->root.type == bfd_link_hash_indirect)
7926 return TRUE;
7927
7928 if (h->root.type == bfd_link_hash_warning)
7929 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7930
7931 info = (struct bfd_link_info *) inf;
7932 htab = elf_aarch64_hash_table (info);
7933
7934 eh = (struct elf_aarch64_link_hash_entry *) h;
7935
7936 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7937 here if it is defined and referenced in a non-shared object. */
7938 if (h->type == STT_GNU_IFUNC
7939 && h->def_regular)
7940 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
7941 &eh->dyn_relocs,
7942 htab->plt_entry_size,
7943 htab->plt_header_size,
7944 GOT_ENTRY_SIZE);
7945 return TRUE;
7946 }
7947
7948 /* Allocate space in .plt, .got and associated reloc sections for
7949 local dynamic relocs. */
7950
7951 static bfd_boolean
7952 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
7953 {
7954 struct elf_link_hash_entry *h
7955 = (struct elf_link_hash_entry *) *slot;
7956
7957 if (h->type != STT_GNU_IFUNC
7958 || !h->def_regular
7959 || !h->ref_regular
7960 || !h->forced_local
7961 || h->root.type != bfd_link_hash_defined)
7962 abort ();
7963
7964 return elfNN_aarch64_allocate_dynrelocs (h, inf);
7965 }
7966
7967 /* Allocate space in .plt, .got and associated reloc sections for
7968 local ifunc dynamic relocs. */
7969
7970 static bfd_boolean
7971 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
7972 {
7973 struct elf_link_hash_entry *h
7974 = (struct elf_link_hash_entry *) *slot;
7975
7976 if (h->type != STT_GNU_IFUNC
7977 || !h->def_regular
7978 || !h->ref_regular
7979 || !h->forced_local
7980 || h->root.type != bfd_link_hash_defined)
7981 abort ();
7982
7983 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
7984 }
7985
7986 /* Find any dynamic relocs that apply to read-only sections. */
7987
7988 static bfd_boolean
7989 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
7990 {
7991 struct elf_aarch64_link_hash_entry * eh;
7992 struct elf_dyn_relocs * p;
7993
7994 eh = (struct elf_aarch64_link_hash_entry *) h;
7995 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7996 {
7997 asection *s = p->sec;
7998
7999 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8000 {
8001 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8002
8003 info->flags |= DF_TEXTREL;
8004
8005 /* Not an error, just cut short the traversal. */
8006 return FALSE;
8007 }
8008 }
8009 return TRUE;
8010 }
8011
8012 /* This is the most important function of all . Innocuosly named
8013 though ! */
8014 static bfd_boolean
8015 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8016 struct bfd_link_info *info)
8017 {
8018 struct elf_aarch64_link_hash_table *htab;
8019 bfd *dynobj;
8020 asection *s;
8021 bfd_boolean relocs;
8022 bfd *ibfd;
8023
8024 htab = elf_aarch64_hash_table ((info));
8025 dynobj = htab->root.dynobj;
8026
8027 BFD_ASSERT (dynobj != NULL);
8028
8029 if (htab->root.dynamic_sections_created)
8030 {
8031 if (bfd_link_executable (info) && !info->nointerp)
8032 {
8033 s = bfd_get_linker_section (dynobj, ".interp");
8034 if (s == NULL)
8035 abort ();
8036 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8037 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8038 }
8039 }
8040
8041 /* Set up .got offsets for local syms, and space for local dynamic
8042 relocs. */
8043 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8044 {
8045 struct elf_aarch64_local_symbol *locals = NULL;
8046 Elf_Internal_Shdr *symtab_hdr;
8047 asection *srel;
8048 unsigned int i;
8049
8050 if (!is_aarch64_elf (ibfd))
8051 continue;
8052
8053 for (s = ibfd->sections; s != NULL; s = s->next)
8054 {
8055 struct elf_dyn_relocs *p;
8056
8057 for (p = (struct elf_dyn_relocs *)
8058 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8059 {
8060 if (!bfd_is_abs_section (p->sec)
8061 && bfd_is_abs_section (p->sec->output_section))
8062 {
8063 /* Input section has been discarded, either because
8064 it is a copy of a linkonce section or due to
8065 linker script /DISCARD/, so we'll be discarding
8066 the relocs too. */
8067 }
8068 else if (p->count != 0)
8069 {
8070 srel = elf_section_data (p->sec)->sreloc;
8071 srel->size += p->count * RELOC_SIZE (htab);
8072 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8073 info->flags |= DF_TEXTREL;
8074 }
8075 }
8076 }
8077
8078 locals = elf_aarch64_locals (ibfd);
8079 if (!locals)
8080 continue;
8081
8082 symtab_hdr = &elf_symtab_hdr (ibfd);
8083 srel = htab->root.srelgot;
8084 for (i = 0; i < symtab_hdr->sh_info; i++)
8085 {
8086 locals[i].got_offset = (bfd_vma) - 1;
8087 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8088 if (locals[i].got_refcount > 0)
8089 {
8090 unsigned got_type = locals[i].got_type;
8091 if (got_type & GOT_TLSDESC_GD)
8092 {
8093 locals[i].tlsdesc_got_jump_table_offset =
8094 (htab->root.sgotplt->size
8095 - aarch64_compute_jump_table_size (htab));
8096 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8097 locals[i].got_offset = (bfd_vma) - 2;
8098 }
8099
8100 if (got_type & GOT_TLS_GD)
8101 {
8102 locals[i].got_offset = htab->root.sgot->size;
8103 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8104 }
8105
8106 if (got_type & GOT_TLS_IE
8107 || got_type & GOT_NORMAL)
8108 {
8109 locals[i].got_offset = htab->root.sgot->size;
8110 htab->root.sgot->size += GOT_ENTRY_SIZE;
8111 }
8112
8113 if (got_type == GOT_UNKNOWN)
8114 {
8115 }
8116
8117 if (bfd_link_pic (info))
8118 {
8119 if (got_type & GOT_TLSDESC_GD)
8120 {
8121 htab->root.srelplt->size += RELOC_SIZE (htab);
8122 /* Note RELOC_COUNT not incremented here! */
8123 htab->tlsdesc_plt = (bfd_vma) - 1;
8124 }
8125
8126 if (got_type & GOT_TLS_GD)
8127 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8128
8129 if (got_type & GOT_TLS_IE
8130 || got_type & GOT_NORMAL)
8131 htab->root.srelgot->size += RELOC_SIZE (htab);
8132 }
8133 }
8134 else
8135 {
8136 locals[i].got_refcount = (bfd_vma) - 1;
8137 }
8138 }
8139 }
8140
8141
8142 /* Allocate global sym .plt and .got entries, and space for global
8143 sym dynamic relocs. */
8144 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8145 info);
8146
8147 /* Allocate global ifunc sym .plt and .got entries, and space for global
8148 ifunc sym dynamic relocs. */
8149 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8150 info);
8151
8152 /* Allocate .plt and .got entries, and space for local symbols. */
8153 htab_traverse (htab->loc_hash_table,
8154 elfNN_aarch64_allocate_local_dynrelocs,
8155 info);
8156
8157 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8158 htab_traverse (htab->loc_hash_table,
8159 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8160 info);
8161
8162 /* For every jump slot reserved in the sgotplt, reloc_count is
8163 incremented. However, when we reserve space for TLS descriptors,
8164 it's not incremented, so in order to compute the space reserved
8165 for them, it suffices to multiply the reloc count by the jump
8166 slot size. */
8167
8168 if (htab->root.srelplt)
8169 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8170
8171 if (htab->tlsdesc_plt)
8172 {
8173 if (htab->root.splt->size == 0)
8174 htab->root.splt->size += PLT_ENTRY_SIZE;
8175
8176 htab->tlsdesc_plt = htab->root.splt->size;
8177 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8178
8179 /* If we're not using lazy TLS relocations, don't generate the
8180 GOT entry required. */
8181 if (!(info->flags & DF_BIND_NOW))
8182 {
8183 htab->dt_tlsdesc_got = htab->root.sgot->size;
8184 htab->root.sgot->size += GOT_ENTRY_SIZE;
8185 }
8186 }
8187
8188 /* Init mapping symbols information to use later to distingush between
8189 code and data while scanning for errata. */
8190 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8191 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8192 {
8193 if (!is_aarch64_elf (ibfd))
8194 continue;
8195 bfd_elfNN_aarch64_init_maps (ibfd);
8196 }
8197
8198 /* We now have determined the sizes of the various dynamic sections.
8199 Allocate memory for them. */
8200 relocs = FALSE;
8201 for (s = dynobj->sections; s != NULL; s = s->next)
8202 {
8203 if ((s->flags & SEC_LINKER_CREATED) == 0)
8204 continue;
8205
8206 if (s == htab->root.splt
8207 || s == htab->root.sgot
8208 || s == htab->root.sgotplt
8209 || s == htab->root.iplt
8210 || s == htab->root.igotplt || s == htab->sdynbss)
8211 {
8212 /* Strip this section if we don't need it; see the
8213 comment below. */
8214 }
8215 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8216 {
8217 if (s->size != 0 && s != htab->root.srelplt)
8218 relocs = TRUE;
8219
8220 /* We use the reloc_count field as a counter if we need
8221 to copy relocs into the output file. */
8222 if (s != htab->root.srelplt)
8223 s->reloc_count = 0;
8224 }
8225 else
8226 {
8227 /* It's not one of our sections, so don't allocate space. */
8228 continue;
8229 }
8230
8231 if (s->size == 0)
8232 {
8233 /* If we don't need this section, strip it from the
8234 output file. This is mostly to handle .rela.bss and
8235 .rela.plt. We must create both sections in
8236 create_dynamic_sections, because they must be created
8237 before the linker maps input sections to output
8238 sections. The linker does that before
8239 adjust_dynamic_symbol is called, and it is that
8240 function which decides whether anything needs to go
8241 into these sections. */
8242
8243 s->flags |= SEC_EXCLUDE;
8244 continue;
8245 }
8246
8247 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8248 continue;
8249
8250 /* Allocate memory for the section contents. We use bfd_zalloc
8251 here in case unused entries are not reclaimed before the
8252 section's contents are written out. This should not happen,
8253 but this way if it does, we get a R_AARCH64_NONE reloc instead
8254 of garbage. */
8255 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8256 if (s->contents == NULL)
8257 return FALSE;
8258 }
8259
8260 if (htab->root.dynamic_sections_created)
8261 {
8262 /* Add some entries to the .dynamic section. We fill in the
8263 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8264 must add the entries now so that we get the correct size for
8265 the .dynamic section. The DT_DEBUG entry is filled in by the
8266 dynamic linker and used by the debugger. */
8267 #define add_dynamic_entry(TAG, VAL) \
8268 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8269
8270 if (bfd_link_executable (info))
8271 {
8272 if (!add_dynamic_entry (DT_DEBUG, 0))
8273 return FALSE;
8274 }
8275
8276 if (htab->root.splt->size != 0)
8277 {
8278 if (!add_dynamic_entry (DT_PLTGOT, 0)
8279 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8280 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8281 || !add_dynamic_entry (DT_JMPREL, 0))
8282 return FALSE;
8283
8284 if (htab->tlsdesc_plt
8285 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8286 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8287 return FALSE;
8288 }
8289
8290 if (relocs)
8291 {
8292 if (!add_dynamic_entry (DT_RELA, 0)
8293 || !add_dynamic_entry (DT_RELASZ, 0)
8294 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8295 return FALSE;
8296
8297 /* If any dynamic relocs apply to a read-only section,
8298 then we need a DT_TEXTREL entry. */
8299 if ((info->flags & DF_TEXTREL) == 0)
8300 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8301 info);
8302
8303 if ((info->flags & DF_TEXTREL) != 0)
8304 {
8305 if (!add_dynamic_entry (DT_TEXTREL, 0))
8306 return FALSE;
8307 }
8308 }
8309 }
8310 #undef add_dynamic_entry
8311
8312 return TRUE;
8313 }
8314
8315 static inline void
8316 elf_aarch64_update_plt_entry (bfd *output_bfd,
8317 bfd_reloc_code_real_type r_type,
8318 bfd_byte *plt_entry, bfd_vma value)
8319 {
8320 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8321
8322 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8323 }
8324
8325 static void
8326 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8327 struct elf_aarch64_link_hash_table
8328 *htab, bfd *output_bfd,
8329 struct bfd_link_info *info)
8330 {
8331 bfd_byte *plt_entry;
8332 bfd_vma plt_index;
8333 bfd_vma got_offset;
8334 bfd_vma gotplt_entry_address;
8335 bfd_vma plt_entry_address;
8336 Elf_Internal_Rela rela;
8337 bfd_byte *loc;
8338 asection *plt, *gotplt, *relplt;
8339
8340 /* When building a static executable, use .iplt, .igot.plt and
8341 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8342 if (htab->root.splt != NULL)
8343 {
8344 plt = htab->root.splt;
8345 gotplt = htab->root.sgotplt;
8346 relplt = htab->root.srelplt;
8347 }
8348 else
8349 {
8350 plt = htab->root.iplt;
8351 gotplt = htab->root.igotplt;
8352 relplt = htab->root.irelplt;
8353 }
8354
8355 /* Get the index in the procedure linkage table which
8356 corresponds to this symbol. This is the index of this symbol
8357 in all the symbols for which we are making plt entries. The
8358 first entry in the procedure linkage table is reserved.
8359
8360 Get the offset into the .got table of the entry that
8361 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8362 bytes. The first three are reserved for the dynamic linker.
8363
8364 For static executables, we don't reserve anything. */
8365
8366 if (plt == htab->root.splt)
8367 {
8368 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8369 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8370 }
8371 else
8372 {
8373 plt_index = h->plt.offset / htab->plt_entry_size;
8374 got_offset = plt_index * GOT_ENTRY_SIZE;
8375 }
8376
8377 plt_entry = plt->contents + h->plt.offset;
8378 plt_entry_address = plt->output_section->vma
8379 + plt->output_offset + h->plt.offset;
8380 gotplt_entry_address = gotplt->output_section->vma +
8381 gotplt->output_offset + got_offset;
8382
8383 /* Copy in the boiler-plate for the PLTn entry. */
8384 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8385
8386 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8387 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8388 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8389 plt_entry,
8390 PG (gotplt_entry_address) -
8391 PG (plt_entry_address));
8392
8393 /* Fill in the lo12 bits for the load from the pltgot. */
8394 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8395 plt_entry + 4,
8396 PG_OFFSET (gotplt_entry_address));
8397
8398 /* Fill in the lo12 bits for the add from the pltgot entry. */
8399 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8400 plt_entry + 8,
8401 PG_OFFSET (gotplt_entry_address));
8402
8403 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8404 bfd_put_NN (output_bfd,
8405 plt->output_section->vma + plt->output_offset,
8406 gotplt->contents + got_offset);
8407
8408 rela.r_offset = gotplt_entry_address;
8409
8410 if (h->dynindx == -1
8411 || ((bfd_link_executable (info)
8412 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8413 && h->def_regular
8414 && h->type == STT_GNU_IFUNC))
8415 {
8416 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8417 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8418 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8419 rela.r_addend = (h->root.u.def.value
8420 + h->root.u.def.section->output_section->vma
8421 + h->root.u.def.section->output_offset);
8422 }
8423 else
8424 {
8425 /* Fill in the entry in the .rela.plt section. */
8426 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8427 rela.r_addend = 0;
8428 }
8429
8430 /* Compute the relocation entry to used based on PLT index and do
8431 not adjust reloc_count. The reloc_count has already been adjusted
8432 to account for this entry. */
8433 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8434 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8435 }
8436
8437 /* Size sections even though they're not dynamic. We use it to setup
8438 _TLS_MODULE_BASE_, if needed. */
8439
8440 static bfd_boolean
8441 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8442 struct bfd_link_info *info)
8443 {
8444 asection *tls_sec;
8445
8446 if (bfd_link_relocatable (info))
8447 return TRUE;
8448
8449 tls_sec = elf_hash_table (info)->tls_sec;
8450
8451 if (tls_sec)
8452 {
8453 struct elf_link_hash_entry *tlsbase;
8454
8455 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8456 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8457
8458 if (tlsbase)
8459 {
8460 struct bfd_link_hash_entry *h = NULL;
8461 const struct elf_backend_data *bed =
8462 get_elf_backend_data (output_bfd);
8463
8464 if (!(_bfd_generic_link_add_one_symbol
8465 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8466 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8467 return FALSE;
8468
8469 tlsbase->type = STT_TLS;
8470 tlsbase = (struct elf_link_hash_entry *) h;
8471 tlsbase->def_regular = 1;
8472 tlsbase->other = STV_HIDDEN;
8473 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8474 }
8475 }
8476
8477 return TRUE;
8478 }
8479
8480 /* Finish up dynamic symbol handling. We set the contents of various
8481 dynamic sections here. */
8482 static bfd_boolean
8483 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8484 struct bfd_link_info *info,
8485 struct elf_link_hash_entry *h,
8486 Elf_Internal_Sym *sym)
8487 {
8488 struct elf_aarch64_link_hash_table *htab;
8489 htab = elf_aarch64_hash_table (info);
8490
8491 if (h->plt.offset != (bfd_vma) - 1)
8492 {
8493 asection *plt, *gotplt, *relplt;
8494
8495 /* This symbol has an entry in the procedure linkage table. Set
8496 it up. */
8497
8498 /* When building a static executable, use .iplt, .igot.plt and
8499 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8500 if (htab->root.splt != NULL)
8501 {
8502 plt = htab->root.splt;
8503 gotplt = htab->root.sgotplt;
8504 relplt = htab->root.srelplt;
8505 }
8506 else
8507 {
8508 plt = htab->root.iplt;
8509 gotplt = htab->root.igotplt;
8510 relplt = htab->root.irelplt;
8511 }
8512
8513 /* This symbol has an entry in the procedure linkage table. Set
8514 it up. */
8515 if ((h->dynindx == -1
8516 && !((h->forced_local || bfd_link_executable (info))
8517 && h->def_regular
8518 && h->type == STT_GNU_IFUNC))
8519 || plt == NULL
8520 || gotplt == NULL
8521 || relplt == NULL)
8522 abort ();
8523
8524 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8525 if (!h->def_regular)
8526 {
8527 /* Mark the symbol as undefined, rather than as defined in
8528 the .plt section. */
8529 sym->st_shndx = SHN_UNDEF;
8530 /* If the symbol is weak we need to clear the value.
8531 Otherwise, the PLT entry would provide a definition for
8532 the symbol even if the symbol wasn't defined anywhere,
8533 and so the symbol would never be NULL. Leave the value if
8534 there were any relocations where pointer equality matters
8535 (this is a clue for the dynamic linker, to make function
8536 pointer comparisons work between an application and shared
8537 library). */
8538 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8539 sym->st_value = 0;
8540 }
8541 }
8542
8543 if (h->got.offset != (bfd_vma) - 1
8544 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8545 {
8546 Elf_Internal_Rela rela;
8547 bfd_byte *loc;
8548
8549 /* This symbol has an entry in the global offset table. Set it
8550 up. */
8551 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8552 abort ();
8553
8554 rela.r_offset = (htab->root.sgot->output_section->vma
8555 + htab->root.sgot->output_offset
8556 + (h->got.offset & ~(bfd_vma) 1));
8557
8558 if (h->def_regular
8559 && h->type == STT_GNU_IFUNC)
8560 {
8561 if (bfd_link_pic (info))
8562 {
8563 /* Generate R_AARCH64_GLOB_DAT. */
8564 goto do_glob_dat;
8565 }
8566 else
8567 {
8568 asection *plt;
8569
8570 if (!h->pointer_equality_needed)
8571 abort ();
8572
8573 /* For non-shared object, we can't use .got.plt, which
8574 contains the real function address if we need pointer
8575 equality. We load the GOT entry with the PLT entry. */
8576 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8577 bfd_put_NN (output_bfd, (plt->output_section->vma
8578 + plt->output_offset
8579 + h->plt.offset),
8580 htab->root.sgot->contents
8581 + (h->got.offset & ~(bfd_vma) 1));
8582 return TRUE;
8583 }
8584 }
8585 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8586 {
8587 if (!h->def_regular)
8588 return FALSE;
8589
8590 BFD_ASSERT ((h->got.offset & 1) != 0);
8591 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8592 rela.r_addend = (h->root.u.def.value
8593 + h->root.u.def.section->output_section->vma
8594 + h->root.u.def.section->output_offset);
8595 }
8596 else
8597 {
8598 do_glob_dat:
8599 BFD_ASSERT ((h->got.offset & 1) == 0);
8600 bfd_put_NN (output_bfd, (bfd_vma) 0,
8601 htab->root.sgot->contents + h->got.offset);
8602 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8603 rela.r_addend = 0;
8604 }
8605
8606 loc = htab->root.srelgot->contents;
8607 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8608 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8609 }
8610
8611 if (h->needs_copy)
8612 {
8613 Elf_Internal_Rela rela;
8614 bfd_byte *loc;
8615
8616 /* This symbol needs a copy reloc. Set it up. */
8617
8618 if (h->dynindx == -1
8619 || (h->root.type != bfd_link_hash_defined
8620 && h->root.type != bfd_link_hash_defweak)
8621 || htab->srelbss == NULL)
8622 abort ();
8623
8624 rela.r_offset = (h->root.u.def.value
8625 + h->root.u.def.section->output_section->vma
8626 + h->root.u.def.section->output_offset);
8627 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8628 rela.r_addend = 0;
8629 loc = htab->srelbss->contents;
8630 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8631 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8632 }
8633
8634 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8635 be NULL for local symbols. */
8636 if (sym != NULL
8637 && (h == elf_hash_table (info)->hdynamic
8638 || h == elf_hash_table (info)->hgot))
8639 sym->st_shndx = SHN_ABS;
8640
8641 return TRUE;
8642 }
8643
8644 /* Finish up local dynamic symbol handling. We set the contents of
8645 various dynamic sections here. */
8646
8647 static bfd_boolean
8648 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8649 {
8650 struct elf_link_hash_entry *h
8651 = (struct elf_link_hash_entry *) *slot;
8652 struct bfd_link_info *info
8653 = (struct bfd_link_info *) inf;
8654
8655 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8656 info, h, NULL);
8657 }
8658
8659 static void
8660 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8661 struct elf_aarch64_link_hash_table
8662 *htab)
8663 {
8664 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8665 small and large plts and at the minute just generates
8666 the small PLT. */
8667
8668 /* PLT0 of the small PLT looks like this in ELF64 -
8669 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8670 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8671 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8672 // symbol resolver
8673 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8674 // GOTPLT entry for this.
8675 br x17
8676 PLT0 will be slightly different in ELF32 due to different got entry
8677 size.
8678 */
8679 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8680 bfd_vma plt_base;
8681
8682
8683 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8684 PLT_ENTRY_SIZE);
8685 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8686 PLT_ENTRY_SIZE;
8687
8688 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8689 + htab->root.sgotplt->output_offset
8690 + GOT_ENTRY_SIZE * 2);
8691
8692 plt_base = htab->root.splt->output_section->vma +
8693 htab->root.splt->output_offset;
8694
8695 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8696 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8697 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8698 htab->root.splt->contents + 4,
8699 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8700
8701 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8702 htab->root.splt->contents + 8,
8703 PG_OFFSET (plt_got_2nd_ent));
8704
8705 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8706 htab->root.splt->contents + 12,
8707 PG_OFFSET (plt_got_2nd_ent));
8708 }
8709
8710 static bfd_boolean
8711 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
8712 struct bfd_link_info *info)
8713 {
8714 struct elf_aarch64_link_hash_table *htab;
8715 bfd *dynobj;
8716 asection *sdyn;
8717
8718 htab = elf_aarch64_hash_table (info);
8719 dynobj = htab->root.dynobj;
8720 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
8721
8722 if (htab->root.dynamic_sections_created)
8723 {
8724 ElfNN_External_Dyn *dyncon, *dynconend;
8725
8726 if (sdyn == NULL || htab->root.sgot == NULL)
8727 abort ();
8728
8729 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
8730 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
8731 for (; dyncon < dynconend; dyncon++)
8732 {
8733 Elf_Internal_Dyn dyn;
8734 asection *s;
8735
8736 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
8737
8738 switch (dyn.d_tag)
8739 {
8740 default:
8741 continue;
8742
8743 case DT_PLTGOT:
8744 s = htab->root.sgotplt;
8745 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8746 break;
8747
8748 case DT_JMPREL:
8749 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
8750 break;
8751
8752 case DT_PLTRELSZ:
8753 s = htab->root.srelplt;
8754 dyn.d_un.d_val = s->size;
8755 break;
8756
8757 case DT_RELASZ:
8758 /* The procedure linkage table relocs (DT_JMPREL) should
8759 not be included in the overall relocs (DT_RELA).
8760 Therefore, we override the DT_RELASZ entry here to
8761 make it not include the JMPREL relocs. Since the
8762 linker script arranges for .rela.plt to follow all
8763 other relocation sections, we don't have to worry
8764 about changing the DT_RELA entry. */
8765 if (htab->root.srelplt != NULL)
8766 {
8767 s = htab->root.srelplt;
8768 dyn.d_un.d_val -= s->size;
8769 }
8770 break;
8771
8772 case DT_TLSDESC_PLT:
8773 s = htab->root.splt;
8774 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8775 + htab->tlsdesc_plt;
8776 break;
8777
8778 case DT_TLSDESC_GOT:
8779 s = htab->root.sgot;
8780 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8781 + htab->dt_tlsdesc_got;
8782 break;
8783 }
8784
8785 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
8786 }
8787
8788 }
8789
8790 /* Fill in the special first entry in the procedure linkage table. */
8791 if (htab->root.splt && htab->root.splt->size > 0)
8792 {
8793 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
8794
8795 elf_section_data (htab->root.splt->output_section)->
8796 this_hdr.sh_entsize = htab->plt_entry_size;
8797
8798
8799 if (htab->tlsdesc_plt)
8800 {
8801 bfd_put_NN (output_bfd, (bfd_vma) 0,
8802 htab->root.sgot->contents + htab->dt_tlsdesc_got);
8803
8804 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
8805 elfNN_aarch64_tlsdesc_small_plt_entry,
8806 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
8807
8808 {
8809 bfd_vma adrp1_addr =
8810 htab->root.splt->output_section->vma
8811 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
8812
8813 bfd_vma adrp2_addr = adrp1_addr + 4;
8814
8815 bfd_vma got_addr =
8816 htab->root.sgot->output_section->vma
8817 + htab->root.sgot->output_offset;
8818
8819 bfd_vma pltgot_addr =
8820 htab->root.sgotplt->output_section->vma
8821 + htab->root.sgotplt->output_offset;
8822
8823 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
8824
8825 bfd_byte *plt_entry =
8826 htab->root.splt->contents + htab->tlsdesc_plt;
8827
8828 /* adrp x2, DT_TLSDESC_GOT */
8829 elf_aarch64_update_plt_entry (output_bfd,
8830 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8831 plt_entry + 4,
8832 (PG (dt_tlsdesc_got)
8833 - PG (adrp1_addr)));
8834
8835 /* adrp x3, 0 */
8836 elf_aarch64_update_plt_entry (output_bfd,
8837 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8838 plt_entry + 8,
8839 (PG (pltgot_addr)
8840 - PG (adrp2_addr)));
8841
8842 /* ldr x2, [x2, #0] */
8843 elf_aarch64_update_plt_entry (output_bfd,
8844 BFD_RELOC_AARCH64_LDSTNN_LO12,
8845 plt_entry + 12,
8846 PG_OFFSET (dt_tlsdesc_got));
8847
8848 /* add x3, x3, 0 */
8849 elf_aarch64_update_plt_entry (output_bfd,
8850 BFD_RELOC_AARCH64_ADD_LO12,
8851 plt_entry + 16,
8852 PG_OFFSET (pltgot_addr));
8853 }
8854 }
8855 }
8856
8857 if (htab->root.sgotplt)
8858 {
8859 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
8860 {
8861 (*_bfd_error_handler)
8862 (_("discarded output section: `%A'"), htab->root.sgotplt);
8863 return FALSE;
8864 }
8865
8866 /* Fill in the first three entries in the global offset table. */
8867 if (htab->root.sgotplt->size > 0)
8868 {
8869 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
8870
8871 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
8872 bfd_put_NN (output_bfd,
8873 (bfd_vma) 0,
8874 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
8875 bfd_put_NN (output_bfd,
8876 (bfd_vma) 0,
8877 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
8878 }
8879
8880 if (htab->root.sgot)
8881 {
8882 if (htab->root.sgot->size > 0)
8883 {
8884 bfd_vma addr =
8885 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
8886 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
8887 }
8888 }
8889
8890 elf_section_data (htab->root.sgotplt->output_section)->
8891 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
8892 }
8893
8894 if (htab->root.sgot && htab->root.sgot->size > 0)
8895 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
8896 = GOT_ENTRY_SIZE;
8897
8898 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
8899 htab_traverse (htab->loc_hash_table,
8900 elfNN_aarch64_finish_local_dynamic_symbol,
8901 info);
8902
8903 return TRUE;
8904 }
8905
8906 /* Return address for Ith PLT stub in section PLT, for relocation REL
8907 or (bfd_vma) -1 if it should not be included. */
8908
8909 static bfd_vma
8910 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
8911 const arelent *rel ATTRIBUTE_UNUSED)
8912 {
8913 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
8914 }
8915
8916
8917 /* We use this so we can override certain functions
8918 (though currently we don't). */
8919
8920 const struct elf_size_info elfNN_aarch64_size_info =
8921 {
8922 sizeof (ElfNN_External_Ehdr),
8923 sizeof (ElfNN_External_Phdr),
8924 sizeof (ElfNN_External_Shdr),
8925 sizeof (ElfNN_External_Rel),
8926 sizeof (ElfNN_External_Rela),
8927 sizeof (ElfNN_External_Sym),
8928 sizeof (ElfNN_External_Dyn),
8929 sizeof (Elf_External_Note),
8930 4, /* Hash table entry size. */
8931 1, /* Internal relocs per external relocs. */
8932 ARCH_SIZE, /* Arch size. */
8933 LOG_FILE_ALIGN, /* Log_file_align. */
8934 ELFCLASSNN, EV_CURRENT,
8935 bfd_elfNN_write_out_phdrs,
8936 bfd_elfNN_write_shdrs_and_ehdr,
8937 bfd_elfNN_checksum_contents,
8938 bfd_elfNN_write_relocs,
8939 bfd_elfNN_swap_symbol_in,
8940 bfd_elfNN_swap_symbol_out,
8941 bfd_elfNN_slurp_reloc_table,
8942 bfd_elfNN_slurp_symbol_table,
8943 bfd_elfNN_swap_dyn_in,
8944 bfd_elfNN_swap_dyn_out,
8945 bfd_elfNN_swap_reloc_in,
8946 bfd_elfNN_swap_reloc_out,
8947 bfd_elfNN_swap_reloca_in,
8948 bfd_elfNN_swap_reloca_out
8949 };
8950
8951 #define ELF_ARCH bfd_arch_aarch64
8952 #define ELF_MACHINE_CODE EM_AARCH64
8953 #define ELF_MAXPAGESIZE 0x10000
8954 #define ELF_MINPAGESIZE 0x1000
8955 #define ELF_COMMONPAGESIZE 0x1000
8956
8957 #define bfd_elfNN_close_and_cleanup \
8958 elfNN_aarch64_close_and_cleanup
8959
8960 #define bfd_elfNN_bfd_free_cached_info \
8961 elfNN_aarch64_bfd_free_cached_info
8962
8963 #define bfd_elfNN_bfd_is_target_special_symbol \
8964 elfNN_aarch64_is_target_special_symbol
8965
8966 #define bfd_elfNN_bfd_link_hash_table_create \
8967 elfNN_aarch64_link_hash_table_create
8968
8969 #define bfd_elfNN_bfd_merge_private_bfd_data \
8970 elfNN_aarch64_merge_private_bfd_data
8971
8972 #define bfd_elfNN_bfd_print_private_bfd_data \
8973 elfNN_aarch64_print_private_bfd_data
8974
8975 #define bfd_elfNN_bfd_reloc_type_lookup \
8976 elfNN_aarch64_reloc_type_lookup
8977
8978 #define bfd_elfNN_bfd_reloc_name_lookup \
8979 elfNN_aarch64_reloc_name_lookup
8980
8981 #define bfd_elfNN_bfd_set_private_flags \
8982 elfNN_aarch64_set_private_flags
8983
8984 #define bfd_elfNN_find_inliner_info \
8985 elfNN_aarch64_find_inliner_info
8986
8987 #define bfd_elfNN_find_nearest_line \
8988 elfNN_aarch64_find_nearest_line
8989
8990 #define bfd_elfNN_mkobject \
8991 elfNN_aarch64_mkobject
8992
8993 #define bfd_elfNN_new_section_hook \
8994 elfNN_aarch64_new_section_hook
8995
8996 #define elf_backend_adjust_dynamic_symbol \
8997 elfNN_aarch64_adjust_dynamic_symbol
8998
8999 #define elf_backend_always_size_sections \
9000 elfNN_aarch64_always_size_sections
9001
9002 #define elf_backend_check_relocs \
9003 elfNN_aarch64_check_relocs
9004
9005 #define elf_backend_copy_indirect_symbol \
9006 elfNN_aarch64_copy_indirect_symbol
9007
9008 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9009 to them in our hash. */
9010 #define elf_backend_create_dynamic_sections \
9011 elfNN_aarch64_create_dynamic_sections
9012
9013 #define elf_backend_init_index_section \
9014 _bfd_elf_init_2_index_sections
9015
9016 #define elf_backend_finish_dynamic_sections \
9017 elfNN_aarch64_finish_dynamic_sections
9018
9019 #define elf_backend_finish_dynamic_symbol \
9020 elfNN_aarch64_finish_dynamic_symbol
9021
9022 #define elf_backend_gc_sweep_hook \
9023 elfNN_aarch64_gc_sweep_hook
9024
9025 #define elf_backend_object_p \
9026 elfNN_aarch64_object_p
9027
9028 #define elf_backend_output_arch_local_syms \
9029 elfNN_aarch64_output_arch_local_syms
9030
9031 #define elf_backend_plt_sym_val \
9032 elfNN_aarch64_plt_sym_val
9033
9034 #define elf_backend_post_process_headers \
9035 elfNN_aarch64_post_process_headers
9036
9037 #define elf_backend_relocate_section \
9038 elfNN_aarch64_relocate_section
9039
9040 #define elf_backend_reloc_type_class \
9041 elfNN_aarch64_reloc_type_class
9042
9043 #define elf_backend_section_from_shdr \
9044 elfNN_aarch64_section_from_shdr
9045
9046 #define elf_backend_size_dynamic_sections \
9047 elfNN_aarch64_size_dynamic_sections
9048
9049 #define elf_backend_size_info \
9050 elfNN_aarch64_size_info
9051
9052 #define elf_backend_write_section \
9053 elfNN_aarch64_write_section
9054
9055 #define elf_backend_can_refcount 1
9056 #define elf_backend_can_gc_sections 1
9057 #define elf_backend_plt_readonly 1
9058 #define elf_backend_want_got_plt 1
9059 #define elf_backend_want_plt_sym 0
9060 #define elf_backend_may_use_rel_p 0
9061 #define elf_backend_may_use_rela_p 1
9062 #define elf_backend_default_use_rela_p 1
9063 #define elf_backend_rela_normal 1
9064 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9065 #define elf_backend_default_execstack 0
9066 #define elf_backend_extern_protected_data 1
9067
9068 #undef elf_backend_obj_attrs_section
9069 #define elf_backend_obj_attrs_section ".ARM.attributes"
9070
9071 #include "elfNN-target.h"
This page took 0.290084 seconds and 4 git commands to generate.