[AArch64] Use SYMBOL_REFERENCES_LOCAL in one symbol check
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
212 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
213
214 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
215 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
237
238 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
239 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
251
252 #define ELIMINATE_COPY_RELOCS 1
253
254 /* Return size of a relocation entry. HTAB is the bfd's
255 elf_aarch64_link_hash_entry. */
256 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
257
258 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
259 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
260 #define PLT_ENTRY_SIZE (32)
261 #define PLT_SMALL_ENTRY_SIZE (16)
262 #define PLT_TLSDESC_ENTRY_SIZE (32)
263
264 /* Encoding of the nop instruction. */
265 #define INSN_NOP 0xd503201f
266
267 #define aarch64_compute_jump_table_size(htab) \
268 (((htab)->root.srelplt == NULL) ? 0 \
269 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
270
271 /* The first entry in a procedure linkage table looks like this
272 if the distance between the PLTGOT and the PLT is < 4GB use
273 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
274 in x16 and needs to work out PLTGOT[1] by using an address of
275 [x16,#-GOT_ENTRY_SIZE]. */
276 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
277 {
278 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
279 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
280 #if ARCH_SIZE == 64
281 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
282 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
283 #else
284 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
285 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
286 #endif
287 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
288 0x1f, 0x20, 0x03, 0xd5, /* nop */
289 0x1f, 0x20, 0x03, 0xd5, /* nop */
290 0x1f, 0x20, 0x03, 0xd5, /* nop */
291 };
292
293 /* Per function entry in a procedure linkage table looks like this
294 if the distance between the PLTGOT and the PLT is < 4GB use
295 these PLT entries. */
296 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
297 {
298 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
299 #if ARCH_SIZE == 64
300 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
301 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
302 #else
303 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
304 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
305 #endif
306 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
307 };
308
309 static const bfd_byte
310 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
311 {
312 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
313 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
314 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
315 #if ARCH_SIZE == 64
316 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
318 #else
319 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
320 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
321 #endif
322 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
323 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 0x1f, 0x20, 0x03, 0xd5, /* nop */
325 };
326
327 #define elf_info_to_howto elfNN_aarch64_info_to_howto
328 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
329
330 #define AARCH64_ELF_ABI_VERSION 0
331
332 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
333 #define ALL_ONES (~ (bfd_vma) 0)
334
335 /* Indexed by the bfd interal reloc enumerators.
336 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
337 in reloc.c. */
338
339 static reloc_howto_type elfNN_aarch64_howto_table[] =
340 {
341 EMPTY_HOWTO (0),
342
343 /* Basic data relocations. */
344
345 /* Deprecated, but retained for backwards compatibility. */
346 HOWTO64 (R_AARCH64_NULL, /* type */
347 0, /* rightshift */
348 3, /* size (0 = byte, 1 = short, 2 = long) */
349 0, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_dont, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
354 "R_AARCH64_NULL", /* name */
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
357 0, /* dst_mask */
358 FALSE), /* pcrel_offset */
359 HOWTO (R_AARCH64_NONE, /* type */
360 0, /* rightshift */
361 3, /* size (0 = byte, 1 = short, 2 = long) */
362 0, /* bitsize */
363 FALSE, /* pc_relative */
364 0, /* bitpos */
365 complain_overflow_dont, /* complain_on_overflow */
366 bfd_elf_generic_reloc, /* special_function */
367 "R_AARCH64_NONE", /* name */
368 FALSE, /* partial_inplace */
369 0, /* src_mask */
370 0, /* dst_mask */
371 FALSE), /* pcrel_offset */
372
373 /* .xword: (S+A) */
374 HOWTO64 (AARCH64_R (ABS64), /* type */
375 0, /* rightshift */
376 4, /* size (4 = long long) */
377 64, /* bitsize */
378 FALSE, /* pc_relative */
379 0, /* bitpos */
380 complain_overflow_unsigned, /* complain_on_overflow */
381 bfd_elf_generic_reloc, /* special_function */
382 AARCH64_R_STR (ABS64), /* name */
383 FALSE, /* partial_inplace */
384 ALL_ONES, /* src_mask */
385 ALL_ONES, /* dst_mask */
386 FALSE), /* pcrel_offset */
387
388 /* .word: (S+A) */
389 HOWTO (AARCH64_R (ABS32), /* type */
390 0, /* rightshift */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
392 32, /* bitsize */
393 FALSE, /* pc_relative */
394 0, /* bitpos */
395 complain_overflow_unsigned, /* complain_on_overflow */
396 bfd_elf_generic_reloc, /* special_function */
397 AARCH64_R_STR (ABS32), /* name */
398 FALSE, /* partial_inplace */
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
401 FALSE), /* pcrel_offset */
402
403 /* .half: (S+A) */
404 HOWTO (AARCH64_R (ABS16), /* type */
405 0, /* rightshift */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
407 16, /* bitsize */
408 FALSE, /* pc_relative */
409 0, /* bitpos */
410 complain_overflow_unsigned, /* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
412 AARCH64_R_STR (ABS16), /* name */
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
417
418 /* .xword: (S+A-P) */
419 HOWTO64 (AARCH64_R (PREL64), /* type */
420 0, /* rightshift */
421 4, /* size (4 = long long) */
422 64, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 AARCH64_R_STR (PREL64), /* name */
428 FALSE, /* partial_inplace */
429 ALL_ONES, /* src_mask */
430 ALL_ONES, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* .word: (S+A-P) */
434 HOWTO (AARCH64_R (PREL32), /* type */
435 0, /* rightshift */
436 2, /* size (0 = byte, 1 = short, 2 = long) */
437 32, /* bitsize */
438 TRUE, /* pc_relative */
439 0, /* bitpos */
440 complain_overflow_signed, /* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
442 AARCH64_R_STR (PREL32), /* name */
443 FALSE, /* partial_inplace */
444 0xffffffff, /* src_mask */
445 0xffffffff, /* dst_mask */
446 TRUE), /* pcrel_offset */
447
448 /* .half: (S+A-P) */
449 HOWTO (AARCH64_R (PREL16), /* type */
450 0, /* rightshift */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
452 16, /* bitsize */
453 TRUE, /* pc_relative */
454 0, /* bitpos */
455 complain_overflow_signed, /* complain_on_overflow */
456 bfd_elf_generic_reloc, /* special_function */
457 AARCH64_R_STR (PREL16), /* name */
458 FALSE, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 TRUE), /* pcrel_offset */
462
463 /* Group relocations to create a 16, 32, 48 or 64 bit
464 unsigned data or abs address inline. */
465
466 /* MOVZ: ((S+A) >> 0) & 0xffff */
467 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
468 0, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 16, /* bitsize */
471 FALSE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_unsigned, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* special_function */
475 AARCH64_R_STR (MOVW_UABS_G0), /* name */
476 FALSE, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
480
481 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
482 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
483 0, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 16, /* bitsize */
486 FALSE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_dont, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
491 FALSE, /* partial_inplace */
492 0xffff, /* src_mask */
493 0xffff, /* dst_mask */
494 FALSE), /* pcrel_offset */
495
496 /* MOVZ: ((S+A) >> 16) & 0xffff */
497 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
498 16, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_unsigned, /* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 AARCH64_R_STR (MOVW_UABS_G1), /* name */
506 FALSE, /* partial_inplace */
507 0xffff, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
512 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
513 16, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 16, /* bitsize */
516 FALSE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_dont, /* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
521 FALSE, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 FALSE), /* pcrel_offset */
525
526 /* MOVZ: ((S+A) >> 32) & 0xffff */
527 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
528 32, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 16, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_unsigned, /* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 AARCH64_R_STR (MOVW_UABS_G2), /* name */
536 FALSE, /* partial_inplace */
537 0xffff, /* src_mask */
538 0xffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
542 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
543 32, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 16, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
551 FALSE, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* MOVZ: ((S+A) >> 48) & 0xffff */
557 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
558 48, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 16, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_unsigned, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 AARCH64_R_STR (MOVW_UABS_G3), /* name */
566 FALSE, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
572 signed data or abs address inline. Will change instruction
573 to MOVN or MOVZ depending on sign of calculated value. */
574
575 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
576 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 17, /* bitsize */
580 FALSE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
584 AARCH64_R_STR (MOVW_SABS_G0), /* name */
585 FALSE, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 FALSE), /* pcrel_offset */
589
590 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
591 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
592 16, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 17, /* bitsize */
595 FALSE, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 AARCH64_R_STR (MOVW_SABS_G1), /* name */
600 FALSE, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
606 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
607 32, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 17, /* bitsize */
610 FALSE, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 AARCH64_R_STR (MOVW_SABS_G2), /* name */
615 FALSE, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
621 addresses: PG(x) is (x & ~0xfff). */
622
623 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
624 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
625 2, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 19, /* bitsize */
628 TRUE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_signed, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (LD_PREL_LO19), /* name */
633 FALSE, /* partial_inplace */
634 0x7ffff, /* src_mask */
635 0x7ffff, /* dst_mask */
636 TRUE), /* pcrel_offset */
637
638 /* ADR: (S+A-P) & 0x1fffff */
639 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 21, /* bitsize */
643 TRUE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_signed, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (ADR_PREL_LO21), /* name */
648 FALSE, /* partial_inplace */
649 0x1fffff, /* src_mask */
650 0x1fffff, /* dst_mask */
651 TRUE), /* pcrel_offset */
652
653 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
654 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
655 12, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 21, /* bitsize */
658 TRUE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_signed, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
663 FALSE, /* partial_inplace */
664 0x1fffff, /* src_mask */
665 0x1fffff, /* dst_mask */
666 TRUE), /* pcrel_offset */
667
668 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
669 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
670 12, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 21, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_dont, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
678 FALSE, /* partial_inplace */
679 0x1fffff, /* src_mask */
680 0x1fffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* ADD: (S+A) & 0xfff [no overflow check] */
684 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
685 0, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 12, /* bitsize */
688 FALSE, /* pc_relative */
689 10, /* bitpos */
690 complain_overflow_dont, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
693 FALSE, /* partial_inplace */
694 0x3ffc00, /* src_mask */
695 0x3ffc00, /* dst_mask */
696 FALSE), /* pcrel_offset */
697
698 /* LD/ST8: (S+A) & 0xfff */
699 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 12, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_dont, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
708 FALSE, /* partial_inplace */
709 0xfff, /* src_mask */
710 0xfff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 /* Relocations for control-flow instructions. */
714
715 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
716 HOWTO (AARCH64_R (TSTBR14), /* type */
717 2, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 14, /* bitsize */
720 TRUE, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_signed, /* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 AARCH64_R_STR (TSTBR14), /* name */
725 FALSE, /* partial_inplace */
726 0x3fff, /* src_mask */
727 0x3fff, /* dst_mask */
728 TRUE), /* pcrel_offset */
729
730 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
731 HOWTO (AARCH64_R (CONDBR19), /* type */
732 2, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 19, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_signed, /* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 AARCH64_R_STR (CONDBR19), /* name */
740 FALSE, /* partial_inplace */
741 0x7ffff, /* src_mask */
742 0x7ffff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
745 /* B: ((S+A-P) >> 2) & 0x3ffffff */
746 HOWTO (AARCH64_R (JUMP26), /* type */
747 2, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 26, /* bitsize */
750 TRUE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_signed, /* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 AARCH64_R_STR (JUMP26), /* name */
755 FALSE, /* partial_inplace */
756 0x3ffffff, /* src_mask */
757 0x3ffffff, /* dst_mask */
758 TRUE), /* pcrel_offset */
759
760 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
761 HOWTO (AARCH64_R (CALL26), /* type */
762 2, /* rightshift */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
764 26, /* bitsize */
765 TRUE, /* pc_relative */
766 0, /* bitpos */
767 complain_overflow_signed, /* complain_on_overflow */
768 bfd_elf_generic_reloc, /* special_function */
769 AARCH64_R_STR (CALL26), /* name */
770 FALSE, /* partial_inplace */
771 0x3ffffff, /* src_mask */
772 0x3ffffff, /* dst_mask */
773 TRUE), /* pcrel_offset */
774
775 /* LD/ST16: (S+A) & 0xffe */
776 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
777 1, /* rightshift */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
779 12, /* bitsize */
780 FALSE, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_dont, /* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
785 FALSE, /* partial_inplace */
786 0xffe, /* src_mask */
787 0xffe, /* dst_mask */
788 FALSE), /* pcrel_offset */
789
790 /* LD/ST32: (S+A) & 0xffc */
791 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
792 2, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 12, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
800 FALSE, /* partial_inplace */
801 0xffc, /* src_mask */
802 0xffc, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* LD/ST64: (S+A) & 0xff8 */
806 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
807 3, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 12, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
815 FALSE, /* partial_inplace */
816 0xff8, /* src_mask */
817 0xff8, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* LD/ST128: (S+A) & 0xff0 */
821 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
822 4, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
830 FALSE, /* partial_inplace */
831 0xff0, /* src_mask */
832 0xff0, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* Set a load-literal immediate field to bits
836 0x1FFFFC of G(S)-P */
837 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
838 2, /* rightshift */
839 2, /* size (0 = byte,1 = short,2 = long) */
840 19, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_signed, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 AARCH64_R_STR (GOT_LD_PREL19), /* name */
846 FALSE, /* partial_inplace */
847 0xffffe0, /* src_mask */
848 0xffffe0, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 /* Get to the page for the GOT entry for the symbol
852 (G(S) - P) using an ADRP instruction. */
853 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
854 12, /* rightshift */
855 2, /* size (0 = byte, 1 = short, 2 = long) */
856 21, /* bitsize */
857 TRUE, /* pc_relative */
858 0, /* bitpos */
859 complain_overflow_dont, /* complain_on_overflow */
860 bfd_elf_generic_reloc, /* special_function */
861 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
862 FALSE, /* partial_inplace */
863 0x1fffff, /* src_mask */
864 0x1fffff, /* dst_mask */
865 TRUE), /* pcrel_offset */
866
867 /* LD64: GOT offset G(S) & 0xff8 */
868 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
869 3, /* rightshift */
870 2, /* size (0 = byte, 1 = short, 2 = long) */
871 12, /* bitsize */
872 FALSE, /* pc_relative */
873 0, /* bitpos */
874 complain_overflow_dont, /* complain_on_overflow */
875 bfd_elf_generic_reloc, /* special_function */
876 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
877 FALSE, /* partial_inplace */
878 0xff8, /* src_mask */
879 0xff8, /* dst_mask */
880 FALSE), /* pcrel_offset */
881
882 /* LD32: GOT offset G(S) & 0xffc */
883 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
884 2, /* rightshift */
885 2, /* size (0 = byte, 1 = short, 2 = long) */
886 12, /* bitsize */
887 FALSE, /* pc_relative */
888 0, /* bitpos */
889 complain_overflow_dont, /* complain_on_overflow */
890 bfd_elf_generic_reloc, /* special_function */
891 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
892 FALSE, /* partial_inplace */
893 0xffc, /* src_mask */
894 0xffc, /* dst_mask */
895 FALSE), /* pcrel_offset */
896
897 /* Lower 16 bits of GOT offset for the symbol. */
898 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
899 0, /* rightshift */
900 2, /* size (0 = byte, 1 = short, 2 = long) */
901 16, /* bitsize */
902 FALSE, /* pc_relative */
903 0, /* bitpos */
904 complain_overflow_dont, /* complain_on_overflow */
905 bfd_elf_generic_reloc, /* special_function */
906 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
907 FALSE, /* partial_inplace */
908 0xffff, /* src_mask */
909 0xffff, /* dst_mask */
910 FALSE), /* pcrel_offset */
911
912 /* Higher 16 bits of GOT offset for the symbol. */
913 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
914 16, /* rightshift */
915 2, /* size (0 = byte, 1 = short, 2 = long) */
916 16, /* bitsize */
917 FALSE, /* pc_relative */
918 0, /* bitpos */
919 complain_overflow_unsigned, /* complain_on_overflow */
920 bfd_elf_generic_reloc, /* special_function */
921 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
922 FALSE, /* partial_inplace */
923 0xffff, /* src_mask */
924 0xffff, /* dst_mask */
925 FALSE), /* pcrel_offset */
926
927 /* LD64: GOT offset for the symbol. */
928 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
929 3, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 12, /* bitsize */
932 FALSE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_unsigned, /* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
937 FALSE, /* partial_inplace */
938 0x7ff8, /* src_mask */
939 0x7ff8, /* dst_mask */
940 FALSE), /* pcrel_offset */
941
942 /* LD32: GOT offset to the page address of GOT table.
943 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
944 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
945 2, /* rightshift */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
947 12, /* bitsize */
948 FALSE, /* pc_relative */
949 0, /* bitpos */
950 complain_overflow_unsigned, /* complain_on_overflow */
951 bfd_elf_generic_reloc, /* special_function */
952 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
953 FALSE, /* partial_inplace */
954 0x5ffc, /* src_mask */
955 0x5ffc, /* dst_mask */
956 FALSE), /* pcrel_offset */
957
958 /* LD64: GOT offset to the page address of GOT table.
959 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
960 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
961 3, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 12, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_unsigned, /* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
969 FALSE, /* partial_inplace */
970 0x7ff8, /* src_mask */
971 0x7ff8, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* Get to the page for the GOT entry for the symbol
975 (G(S) - P) using an ADRP instruction. */
976 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
977 12, /* rightshift */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
979 21, /* bitsize */
980 TRUE, /* pc_relative */
981 0, /* bitpos */
982 complain_overflow_dont, /* complain_on_overflow */
983 bfd_elf_generic_reloc, /* special_function */
984 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
985 FALSE, /* partial_inplace */
986 0x1fffff, /* src_mask */
987 0x1fffff, /* dst_mask */
988 TRUE), /* pcrel_offset */
989
990 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
991 0, /* rightshift */
992 2, /* size (0 = byte, 1 = short, 2 = long) */
993 21, /* bitsize */
994 TRUE, /* pc_relative */
995 0, /* bitpos */
996 complain_overflow_dont, /* complain_on_overflow */
997 bfd_elf_generic_reloc, /* special_function */
998 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
999 FALSE, /* partial_inplace */
1000 0x1fffff, /* src_mask */
1001 0x1fffff, /* dst_mask */
1002 TRUE), /* pcrel_offset */
1003
1004 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1005 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1006 0, /* rightshift */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1008 12, /* bitsize */
1009 FALSE, /* pc_relative */
1010 0, /* bitpos */
1011 complain_overflow_dont, /* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1014 FALSE, /* partial_inplace */
1015 0xfff, /* src_mask */
1016 0xfff, /* dst_mask */
1017 FALSE), /* pcrel_offset */
1018
1019 /* Lower 16 bits of GOT offset to tls_index. */
1020 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 16, /* bitsize */
1024 FALSE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont, /* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1029 FALSE, /* partial_inplace */
1030 0xffff, /* src_mask */
1031 0xffff, /* dst_mask */
1032 FALSE), /* pcrel_offset */
1033
1034 /* Higher 16 bits of GOT offset to tls_index. */
1035 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1036 16, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_unsigned, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffff, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1050 12, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 21, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1058 FALSE, /* partial_inplace */
1059 0x1fffff, /* src_mask */
1060 0x1fffff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1064 3, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1072 FALSE, /* partial_inplace */
1073 0xff8, /* src_mask */
1074 0xff8, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1078 2, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 12, /* bitsize */
1081 FALSE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1086 FALSE, /* partial_inplace */
1087 0xffc, /* src_mask */
1088 0xffc, /* dst_mask */
1089 FALSE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1092 2, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 19, /* bitsize */
1095 FALSE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1ffffc, /* src_mask */
1102 0x1ffffc, /* dst_mask */
1103 FALSE), /* pcrel_offset */
1104
1105 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 16, /* bitsize */
1109 FALSE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont, /* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1114 FALSE, /* partial_inplace */
1115 0xffff, /* src_mask */
1116 0xffff, /* dst_mask */
1117 FALSE), /* pcrel_offset */
1118
1119 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1120 16, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_unsigned, /* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1128 FALSE, /* partial_inplace */
1129 0xffff, /* src_mask */
1130 0xffff, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1134 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1135 12, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 12, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_unsigned, /* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1143 FALSE, /* partial_inplace */
1144 0xfff, /* src_mask */
1145 0xfff, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Unsigned 12 bit byte offset to module TLS base address. */
1149 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1150 0, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1158 FALSE, /* partial_inplace */
1159 0xfff, /* src_mask */
1160 0xfff, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1164 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1165 0, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 12, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_dont, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1173 FALSE, /* partial_inplace */
1174 0xfff, /* src_mask */
1175 0xfff, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1179 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1180 0, /* rightshift */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1182 12, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xfff, /* src_mask */
1190 0xfff, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Get to the page for the GOT entry for the symbol
1194 (G(S) - P) using an ADRP instruction. */
1195 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1196 12, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1210 0, /* rightshift */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 21, /* bitsize */
1213 TRUE, /* pc_relative */
1214 0, /* bitpos */
1215 complain_overflow_signed, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1218 FALSE, /* partial_inplace */
1219 0x1fffff, /* src_mask */
1220 0x1fffff, /* dst_mask */
1221 TRUE), /* pcrel_offset */
1222
1223 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1224 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1225 1, /* rightshift */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1227 11, /* bitsize */
1228 FALSE, /* pc_relative */
1229 10, /* bitpos */
1230 complain_overflow_unsigned, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1233 FALSE, /* partial_inplace */
1234 0x1ffc00, /* src_mask */
1235 0x1ffc00, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1239 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1240 1, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 11, /* bitsize */
1243 FALSE, /* pc_relative */
1244 10, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1248 FALSE, /* partial_inplace */
1249 0x1ffc00, /* src_mask */
1250 0x1ffc00, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1254 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1255 2, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 10, /* bitsize */
1258 FALSE, /* pc_relative */
1259 10, /* bitpos */
1260 complain_overflow_unsigned, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1263 FALSE, /* partial_inplace */
1264 0x3ffc00, /* src_mask */
1265 0x3ffc00, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1269 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1270 2, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 10, /* bitsize */
1273 FALSE, /* pc_relative */
1274 10, /* bitpos */
1275 complain_overflow_dont, /* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1278 FALSE, /* partial_inplace */
1279 0xffc00, /* src_mask */
1280 0xffc00, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1284 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1285 3, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 9, /* bitsize */
1288 FALSE, /* pc_relative */
1289 10, /* bitpos */
1290 complain_overflow_unsigned, /* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1293 FALSE, /* partial_inplace */
1294 0x3ffc00, /* src_mask */
1295 0x3ffc00, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1299 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1300 3, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 9, /* bitsize */
1303 FALSE, /* pc_relative */
1304 10, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1308 FALSE, /* partial_inplace */
1309 0x7fc00, /* src_mask */
1310 0x7fc00, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1314 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1315 0, /* rightshift */
1316 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 12, /* bitsize */
1318 FALSE, /* pc_relative */
1319 10, /* bitpos */
1320 complain_overflow_unsigned, /* complain_on_overflow */
1321 bfd_elf_generic_reloc, /* special_function */
1322 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1323 FALSE, /* partial_inplace */
1324 0x3ffc00, /* src_mask */
1325 0x3ffc00, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1329 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1330 0, /* rightshift */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1332 12, /* bitsize */
1333 FALSE, /* pc_relative */
1334 10, /* bitpos */
1335 complain_overflow_dont, /* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1338 FALSE, /* partial_inplace */
1339 0x3ffc00, /* src_mask */
1340 0x3ffc00, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1342
1343 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1344 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_unsigned, /* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1353 FALSE, /* partial_inplace */
1354 0xffff, /* src_mask */
1355 0xffff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1359 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 16, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont, /* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1368 FALSE, /* partial_inplace */
1369 0xffff, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1374 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1375 16, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 16, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_unsigned, /* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1383 FALSE, /* partial_inplace */
1384 0xffff, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1389 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1390 16, /* rightshift */
1391 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 16, /* bitsize */
1393 FALSE, /* pc_relative */
1394 0, /* bitpos */
1395 complain_overflow_dont, /* complain_on_overflow */
1396 bfd_elf_generic_reloc, /* special_function */
1397 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1398 FALSE, /* partial_inplace */
1399 0xffff, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE), /* pcrel_offset */
1402
1403 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1404 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1405 32, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_unsigned, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1419 32, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 16, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_unsigned, /* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1427 FALSE, /* partial_inplace */
1428 0xffff, /* src_mask */
1429 0xffff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1433 16, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 16, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
1440 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1441 FALSE, /* partial_inplace */
1442 0xffff, /* src_mask */
1443 0xffff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1447 16, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
1454 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1455 FALSE, /* partial_inplace */
1456 0xffff, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 16, /* bitsize */
1464 FALSE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1473
1474 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffff, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1489 12, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 12, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_unsigned, /* complain_on_overflow */
1495 bfd_elf_generic_reloc, /* special_function */
1496 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1497 FALSE, /* partial_inplace */
1498 0xfff, /* src_mask */
1499 0xfff, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 12, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_unsigned, /* complain_on_overflow */
1509 bfd_elf_generic_reloc, /* special_function */
1510 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1511 FALSE, /* partial_inplace */
1512 0xfff, /* src_mask */
1513 0xfff, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1517 0, /* rightshift */
1518 2, /* size (0 = byte, 1 = short, 2 = long) */
1519 12, /* bitsize */
1520 FALSE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_dont, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1525 FALSE, /* partial_inplace */
1526 0xfff, /* src_mask */
1527 0xfff, /* dst_mask */
1528 FALSE), /* pcrel_offset */
1529
1530 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1531 2, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 19, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1539 FALSE, /* partial_inplace */
1540 0x0ffffe0, /* src_mask */
1541 0x0ffffe0, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1545 0, /* rightshift */
1546 2, /* size (0 = byte, 1 = short, 2 = long) */
1547 21, /* bitsize */
1548 TRUE, /* pc_relative */
1549 0, /* bitpos */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 bfd_elf_generic_reloc, /* special_function */
1552 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1553 FALSE, /* partial_inplace */
1554 0x1fffff, /* src_mask */
1555 0x1fffff, /* dst_mask */
1556 TRUE), /* pcrel_offset */
1557
1558 /* Get to the page for the GOT entry for the symbol
1559 (G(S) - P) using an ADRP instruction. */
1560 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1561 12, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 21, /* bitsize */
1564 TRUE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_dont, /* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1569 FALSE, /* partial_inplace */
1570 0x1fffff, /* src_mask */
1571 0x1fffff, /* dst_mask */
1572 TRUE), /* pcrel_offset */
1573
1574 /* LD64: GOT offset G(S) & 0xff8. */
1575 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1576 3, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1584 FALSE, /* partial_inplace */
1585 0xff8, /* src_mask */
1586 0xff8, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* LD32: GOT offset G(S) & 0xffc. */
1590 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1591 2, /* rightshift */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 12, /* bitsize */
1594 FALSE, /* pc_relative */
1595 0, /* bitpos */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffc, /* src_mask */
1601 0xffc, /* dst_mask */
1602 FALSE), /* pcrel_offset */
1603
1604 /* ADD: GOT offset G(S) & 0xfff. */
1605 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1606 0, /* rightshift */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1608 12, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_dont,/* complain_on_overflow */
1612 bfd_elf_generic_reloc, /* special_function */
1613 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1614 FALSE, /* partial_inplace */
1615 0xfff, /* src_mask */
1616 0xfff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1620 16, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1622 12, /* bitsize */
1623 FALSE, /* pc_relative */
1624 0, /* bitpos */
1625 complain_overflow_unsigned, /* complain_on_overflow */
1626 bfd_elf_generic_reloc, /* special_function */
1627 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1628 FALSE, /* partial_inplace */
1629 0xffff, /* src_mask */
1630 0xffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1632
1633 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1634 0, /* rightshift */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1636 12, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_dont, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
1641 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1642 FALSE, /* partial_inplace */
1643 0xffff, /* src_mask */
1644 0xffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
1647 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1648 0, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 12, /* bitsize */
1651 FALSE, /* pc_relative */
1652 0, /* bitpos */
1653 complain_overflow_dont, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (TLSDESC_LDR), /* name */
1656 FALSE, /* partial_inplace */
1657 0x0, /* src_mask */
1658 0x0, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1662 0, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 12, /* bitsize */
1665 FALSE, /* pc_relative */
1666 0, /* bitpos */
1667 complain_overflow_dont, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (TLSDESC_ADD), /* name */
1670 FALSE, /* partial_inplace */
1671 0x0, /* src_mask */
1672 0x0, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
1675 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1676 0, /* rightshift */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1678 0, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 AARCH64_R_STR (TLSDESC_CALL), /* name */
1684 FALSE, /* partial_inplace */
1685 0x0, /* src_mask */
1686 0x0, /* dst_mask */
1687 FALSE), /* pcrel_offset */
1688
1689 HOWTO (AARCH64_R (COPY), /* type */
1690 0, /* rightshift */
1691 2, /* size (0 = byte, 1 = short, 2 = long) */
1692 64, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_bitfield, /* complain_on_overflow */
1696 bfd_elf_generic_reloc, /* special_function */
1697 AARCH64_R_STR (COPY), /* name */
1698 TRUE, /* partial_inplace */
1699 0xffffffff, /* src_mask */
1700 0xffffffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1704 0, /* rightshift */
1705 2, /* size (0 = byte, 1 = short, 2 = long) */
1706 64, /* bitsize */
1707 FALSE, /* pc_relative */
1708 0, /* bitpos */
1709 complain_overflow_bitfield, /* complain_on_overflow */
1710 bfd_elf_generic_reloc, /* special_function */
1711 AARCH64_R_STR (GLOB_DAT), /* name */
1712 TRUE, /* partial_inplace */
1713 0xffffffff, /* src_mask */
1714 0xffffffff, /* dst_mask */
1715 FALSE), /* pcrel_offset */
1716
1717 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1718 0, /* rightshift */
1719 2, /* size (0 = byte, 1 = short, 2 = long) */
1720 64, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_bitfield, /* complain_on_overflow */
1724 bfd_elf_generic_reloc, /* special_function */
1725 AARCH64_R_STR (JUMP_SLOT), /* name */
1726 TRUE, /* partial_inplace */
1727 0xffffffff, /* src_mask */
1728 0xffffffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 HOWTO (AARCH64_R (RELATIVE), /* type */
1732 0, /* rightshift */
1733 2, /* size (0 = byte, 1 = short, 2 = long) */
1734 64, /* bitsize */
1735 FALSE, /* pc_relative */
1736 0, /* bitpos */
1737 complain_overflow_bitfield, /* complain_on_overflow */
1738 bfd_elf_generic_reloc, /* special_function */
1739 AARCH64_R_STR (RELATIVE), /* name */
1740 TRUE, /* partial_inplace */
1741 ALL_ONES, /* src_mask */
1742 ALL_ONES, /* dst_mask */
1743 FALSE), /* pcrel_offset */
1744
1745 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1746 0, /* rightshift */
1747 2, /* size (0 = byte, 1 = short, 2 = long) */
1748 64, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 bfd_elf_generic_reloc, /* special_function */
1753 #if ARCH_SIZE == 64
1754 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1755 #else
1756 AARCH64_R_STR (TLS_DTPMOD), /* name */
1757 #endif
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 ALL_ONES, /* dst_mask */
1761 FALSE), /* pc_reloffset */
1762
1763 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1764 0, /* rightshift */
1765 2, /* size (0 = byte, 1 = short, 2 = long) */
1766 64, /* bitsize */
1767 FALSE, /* pc_relative */
1768 0, /* bitpos */
1769 complain_overflow_dont, /* complain_on_overflow */
1770 bfd_elf_generic_reloc, /* special_function */
1771 #if ARCH_SIZE == 64
1772 AARCH64_R_STR (TLS_DTPREL64), /* name */
1773 #else
1774 AARCH64_R_STR (TLS_DTPREL), /* name */
1775 #endif
1776 FALSE, /* partial_inplace */
1777 0, /* src_mask */
1778 ALL_ONES, /* dst_mask */
1779 FALSE), /* pcrel_offset */
1780
1781 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1782 0, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 64, /* bitsize */
1785 FALSE, /* pc_relative */
1786 0, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 #if ARCH_SIZE == 64
1790 AARCH64_R_STR (TLS_TPREL64), /* name */
1791 #else
1792 AARCH64_R_STR (TLS_TPREL), /* name */
1793 #endif
1794 FALSE, /* partial_inplace */
1795 0, /* src_mask */
1796 ALL_ONES, /* dst_mask */
1797 FALSE), /* pcrel_offset */
1798
1799 HOWTO (AARCH64_R (TLSDESC), /* type */
1800 0, /* rightshift */
1801 2, /* size (0 = byte, 1 = short, 2 = long) */
1802 64, /* bitsize */
1803 FALSE, /* pc_relative */
1804 0, /* bitpos */
1805 complain_overflow_dont, /* complain_on_overflow */
1806 bfd_elf_generic_reloc, /* special_function */
1807 AARCH64_R_STR (TLSDESC), /* name */
1808 FALSE, /* partial_inplace */
1809 0, /* src_mask */
1810 ALL_ONES, /* dst_mask */
1811 FALSE), /* pcrel_offset */
1812
1813 HOWTO (AARCH64_R (IRELATIVE), /* type */
1814 0, /* rightshift */
1815 2, /* size (0 = byte, 1 = short, 2 = long) */
1816 64, /* bitsize */
1817 FALSE, /* pc_relative */
1818 0, /* bitpos */
1819 complain_overflow_bitfield, /* complain_on_overflow */
1820 bfd_elf_generic_reloc, /* special_function */
1821 AARCH64_R_STR (IRELATIVE), /* name */
1822 FALSE, /* partial_inplace */
1823 0, /* src_mask */
1824 ALL_ONES, /* dst_mask */
1825 FALSE), /* pcrel_offset */
1826
1827 EMPTY_HOWTO (0),
1828 };
1829
1830 static reloc_howto_type elfNN_aarch64_howto_none =
1831 HOWTO (R_AARCH64_NONE, /* type */
1832 0, /* rightshift */
1833 3, /* size (0 = byte, 1 = short, 2 = long) */
1834 0, /* bitsize */
1835 FALSE, /* pc_relative */
1836 0, /* bitpos */
1837 complain_overflow_dont,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_AARCH64_NONE", /* name */
1840 FALSE, /* partial_inplace */
1841 0, /* src_mask */
1842 0, /* dst_mask */
1843 FALSE); /* pcrel_offset */
1844
1845 /* Given HOWTO, return the bfd internal relocation enumerator. */
1846
1847 static bfd_reloc_code_real_type
1848 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1849 {
1850 const int size
1851 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1852 const ptrdiff_t offset
1853 = howto - elfNN_aarch64_howto_table;
1854
1855 if (offset > 0 && offset < size - 1)
1856 return BFD_RELOC_AARCH64_RELOC_START + offset;
1857
1858 if (howto == &elfNN_aarch64_howto_none)
1859 return BFD_RELOC_AARCH64_NONE;
1860
1861 return BFD_RELOC_AARCH64_RELOC_START;
1862 }
1863
1864 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1865
1866 static bfd_reloc_code_real_type
1867 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1868 {
1869 static bfd_boolean initialized_p = FALSE;
1870 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1871 static unsigned int offsets[R_AARCH64_end];
1872
1873 if (!initialized_p)
1874 {
1875 unsigned int i;
1876
1877 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1878 if (elfNN_aarch64_howto_table[i].type != 0)
1879 offsets[elfNN_aarch64_howto_table[i].type] = i;
1880
1881 initialized_p = TRUE;
1882 }
1883
1884 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1885 return BFD_RELOC_AARCH64_NONE;
1886
1887 /* PR 17512: file: b371e70a. */
1888 if (r_type >= R_AARCH64_end)
1889 {
1890 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1891 bfd_set_error (bfd_error_bad_value);
1892 return BFD_RELOC_AARCH64_NONE;
1893 }
1894
1895 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1896 }
1897
1898 struct elf_aarch64_reloc_map
1899 {
1900 bfd_reloc_code_real_type from;
1901 bfd_reloc_code_real_type to;
1902 };
1903
1904 /* Map bfd generic reloc to AArch64-specific reloc. */
1905 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1906 {
1907 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1908
1909 /* Basic data relocations. */
1910 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1911 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1912 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1913 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1914 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1915 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1916 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1917 };
1918
1919 /* Given the bfd internal relocation enumerator in CODE, return the
1920 corresponding howto entry. */
1921
1922 static reloc_howto_type *
1923 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1924 {
1925 unsigned int i;
1926
1927 /* Convert bfd generic reloc to AArch64-specific reloc. */
1928 if (code < BFD_RELOC_AARCH64_RELOC_START
1929 || code > BFD_RELOC_AARCH64_RELOC_END)
1930 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1931 if (elf_aarch64_reloc_map[i].from == code)
1932 {
1933 code = elf_aarch64_reloc_map[i].to;
1934 break;
1935 }
1936
1937 if (code > BFD_RELOC_AARCH64_RELOC_START
1938 && code < BFD_RELOC_AARCH64_RELOC_END)
1939 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1940 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1941
1942 if (code == BFD_RELOC_AARCH64_NONE)
1943 return &elfNN_aarch64_howto_none;
1944
1945 return NULL;
1946 }
1947
1948 static reloc_howto_type *
1949 elfNN_aarch64_howto_from_type (unsigned int r_type)
1950 {
1951 bfd_reloc_code_real_type val;
1952 reloc_howto_type *howto;
1953
1954 #if ARCH_SIZE == 32
1955 if (r_type > 256)
1956 {
1957 bfd_set_error (bfd_error_bad_value);
1958 return NULL;
1959 }
1960 #endif
1961
1962 if (r_type == R_AARCH64_NONE)
1963 return &elfNN_aarch64_howto_none;
1964
1965 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1966 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1967
1968 if (howto != NULL)
1969 return howto;
1970
1971 bfd_set_error (bfd_error_bad_value);
1972 return NULL;
1973 }
1974
1975 static void
1976 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1977 Elf_Internal_Rela *elf_reloc)
1978 {
1979 unsigned int r_type;
1980
1981 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1982 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1983 }
1984
1985 static reloc_howto_type *
1986 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1987 bfd_reloc_code_real_type code)
1988 {
1989 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1990
1991 if (howto != NULL)
1992 return howto;
1993
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 static reloc_howto_type *
1999 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2000 const char *r_name)
2001 {
2002 unsigned int i;
2003
2004 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2005 if (elfNN_aarch64_howto_table[i].name != NULL
2006 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2007 return &elfNN_aarch64_howto_table[i];
2008
2009 return NULL;
2010 }
2011
2012 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2013 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2014 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2015 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2016
2017 /* The linker script knows the section names for placement.
2018 The entry_names are used to do simple name mangling on the stubs.
2019 Given a function name, and its type, the stub can be found. The
2020 name can be changed. The only requirement is the %s be present. */
2021 #define STUB_ENTRY_NAME "__%s_veneer"
2022
2023 /* The name of the dynamic interpreter. This is put in the .interp
2024 section. */
2025 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2026
2027 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2028 (((1 << 25) - 1) << 2)
2029 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2030 (-((1 << 25) << 2))
2031
2032 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2033 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2034
2035 static int
2036 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2037 {
2038 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2039 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2040 }
2041
2042 static int
2043 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2044 {
2045 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2046 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2047 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2048 }
2049
2050 static const uint32_t aarch64_adrp_branch_stub [] =
2051 {
2052 0x90000010, /* adrp ip0, X */
2053 /* R_AARCH64_ADR_HI21_PCREL(X) */
2054 0x91000210, /* add ip0, ip0, :lo12:X */
2055 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2056 0xd61f0200, /* br ip0 */
2057 };
2058
2059 static const uint32_t aarch64_long_branch_stub[] =
2060 {
2061 #if ARCH_SIZE == 64
2062 0x58000090, /* ldr ip0, 1f */
2063 #else
2064 0x18000090, /* ldr wip0, 1f */
2065 #endif
2066 0x10000011, /* adr ip1, #0 */
2067 0x8b110210, /* add ip0, ip0, ip1 */
2068 0xd61f0200, /* br ip0 */
2069 0x00000000, /* 1: .xword or .word
2070 R_AARCH64_PRELNN(X) + 12
2071 */
2072 0x00000000,
2073 };
2074
2075 static const uint32_t aarch64_erratum_835769_stub[] =
2076 {
2077 0x00000000, /* Placeholder for multiply accumulate. */
2078 0x14000000, /* b <label> */
2079 };
2080
2081 static const uint32_t aarch64_erratum_843419_stub[] =
2082 {
2083 0x00000000, /* Placeholder for LDR instruction. */
2084 0x14000000, /* b <label> */
2085 };
2086
2087 /* Section name for stubs is the associated section name plus this
2088 string. */
2089 #define STUB_SUFFIX ".stub"
2090
2091 enum elf_aarch64_stub_type
2092 {
2093 aarch64_stub_none,
2094 aarch64_stub_adrp_branch,
2095 aarch64_stub_long_branch,
2096 aarch64_stub_erratum_835769_veneer,
2097 aarch64_stub_erratum_843419_veneer,
2098 };
2099
2100 struct elf_aarch64_stub_hash_entry
2101 {
2102 /* Base hash table entry structure. */
2103 struct bfd_hash_entry root;
2104
2105 /* The stub section. */
2106 asection *stub_sec;
2107
2108 /* Offset within stub_sec of the beginning of this stub. */
2109 bfd_vma stub_offset;
2110
2111 /* Given the symbol's value and its section we can determine its final
2112 value when building the stubs (so the stub knows where to jump). */
2113 bfd_vma target_value;
2114 asection *target_section;
2115
2116 enum elf_aarch64_stub_type stub_type;
2117
2118 /* The symbol table entry, if any, that this was derived from. */
2119 struct elf_aarch64_link_hash_entry *h;
2120
2121 /* Destination symbol type */
2122 unsigned char st_type;
2123
2124 /* Where this stub is being called from, or, in the case of combined
2125 stub sections, the first input section in the group. */
2126 asection *id_sec;
2127
2128 /* The name for the local symbol at the start of this stub. The
2129 stub name in the hash table has to be unique; this does not, so
2130 it can be friendlier. */
2131 char *output_name;
2132
2133 /* The instruction which caused this stub to be generated (only valid for
2134 erratum 835769 workaround stubs at present). */
2135 uint32_t veneered_insn;
2136
2137 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2138 bfd_vma adrp_offset;
2139 };
2140
2141 /* Used to build a map of a section. This is required for mixed-endian
2142 code/data. */
2143
2144 typedef struct elf_elf_section_map
2145 {
2146 bfd_vma vma;
2147 char type;
2148 }
2149 elf_aarch64_section_map;
2150
2151
2152 typedef struct _aarch64_elf_section_data
2153 {
2154 struct bfd_elf_section_data elf;
2155 unsigned int mapcount;
2156 unsigned int mapsize;
2157 elf_aarch64_section_map *map;
2158 }
2159 _aarch64_elf_section_data;
2160
2161 #define elf_aarch64_section_data(sec) \
2162 ((_aarch64_elf_section_data *) elf_section_data (sec))
2163
2164 /* The size of the thread control block which is defined to be two pointers. */
2165 #define TCB_SIZE (ARCH_SIZE/8)*2
2166
2167 struct elf_aarch64_local_symbol
2168 {
2169 unsigned int got_type;
2170 bfd_signed_vma got_refcount;
2171 bfd_vma got_offset;
2172
2173 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2174 offset is from the end of the jump table and reserved entries
2175 within the PLTGOT.
2176
2177 The magic value (bfd_vma) -1 indicates that an offset has not be
2178 allocated. */
2179 bfd_vma tlsdesc_got_jump_table_offset;
2180 };
2181
2182 struct elf_aarch64_obj_tdata
2183 {
2184 struct elf_obj_tdata root;
2185
2186 /* local symbol descriptors */
2187 struct elf_aarch64_local_symbol *locals;
2188
2189 /* Zero to warn when linking objects with incompatible enum sizes. */
2190 int no_enum_size_warning;
2191
2192 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2193 int no_wchar_size_warning;
2194 };
2195
2196 #define elf_aarch64_tdata(bfd) \
2197 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2198
2199 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2200
2201 #define is_aarch64_elf(bfd) \
2202 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2203 && elf_tdata (bfd) != NULL \
2204 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2205
2206 static bfd_boolean
2207 elfNN_aarch64_mkobject (bfd *abfd)
2208 {
2209 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2210 AARCH64_ELF_DATA);
2211 }
2212
2213 #define elf_aarch64_hash_entry(ent) \
2214 ((struct elf_aarch64_link_hash_entry *)(ent))
2215
2216 #define GOT_UNKNOWN 0
2217 #define GOT_NORMAL 1
2218 #define GOT_TLS_GD 2
2219 #define GOT_TLS_IE 4
2220 #define GOT_TLSDESC_GD 8
2221
2222 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2223
2224 /* AArch64 ELF linker hash entry. */
2225 struct elf_aarch64_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Track dynamic relocs copied for this symbol. */
2230 struct elf_dyn_relocs *dyn_relocs;
2231
2232 /* Since PLT entries have variable size, we need to record the
2233 index into .got.plt instead of recomputing it from the PLT
2234 offset. */
2235 bfd_signed_vma plt_got_offset;
2236
2237 /* Bit mask representing the type of GOT entry(s) if any required by
2238 this symbol. */
2239 unsigned int got_type;
2240
2241 /* A pointer to the most recently used stub hash entry against this
2242 symbol. */
2243 struct elf_aarch64_stub_hash_entry *stub_cache;
2244
2245 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2246 is from the end of the jump table and reserved entries within the PLTGOT.
2247
2248 The magic value (bfd_vma) -1 indicates that an offset has not
2249 be allocated. */
2250 bfd_vma tlsdesc_got_jump_table_offset;
2251 };
2252
2253 static unsigned int
2254 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2255 bfd *abfd,
2256 unsigned long r_symndx)
2257 {
2258 if (h)
2259 return elf_aarch64_hash_entry (h)->got_type;
2260
2261 if (! elf_aarch64_locals (abfd))
2262 return GOT_UNKNOWN;
2263
2264 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2265 }
2266
2267 /* Get the AArch64 elf linker hash table from a link_info structure. */
2268 #define elf_aarch64_hash_table(info) \
2269 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2270
2271 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf_aarch64_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* AArch64 ELF linker hash table. */
2276 struct elf_aarch64_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* Nonzero to force PIC branch veneers. */
2282 int pic_veneer;
2283
2284 /* Fix erratum 835769. */
2285 int fix_erratum_835769;
2286
2287 /* Fix erratum 843419. */
2288 int fix_erratum_843419;
2289
2290 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2291 int fix_erratum_843419_adr;
2292
2293 /* Don't apply link-time values for dynamic relocations. */
2294 int no_apply_dynamic_relocs;
2295
2296 /* The number of bytes in the initial entry in the PLT. */
2297 bfd_size_type plt_header_size;
2298
2299 /* The number of bytes in the subsequent PLT etries. */
2300 bfd_size_type plt_entry_size;
2301
2302 /* Small local sym cache. */
2303 struct sym_cache sym_cache;
2304
2305 /* For convenience in allocate_dynrelocs. */
2306 bfd *obfd;
2307
2308 /* The amount of space used by the reserved portion of the sgotplt
2309 section, plus whatever space is used by the jump slots. */
2310 bfd_vma sgotplt_jump_table_size;
2311
2312 /* The stub hash table. */
2313 struct bfd_hash_table stub_hash_table;
2314
2315 /* Linker stub bfd. */
2316 bfd *stub_bfd;
2317
2318 /* Linker call-backs. */
2319 asection *(*add_stub_section) (const char *, asection *);
2320 void (*layout_sections_again) (void);
2321
2322 /* Array to keep track of which stub sections have been created, and
2323 information on stub grouping. */
2324 struct map_stub
2325 {
2326 /* This is the section to which stubs in the group will be
2327 attached. */
2328 asection *link_sec;
2329 /* The stub section. */
2330 asection *stub_sec;
2331 } *stub_group;
2332
2333 /* Assorted information used by elfNN_aarch64_size_stubs. */
2334 unsigned int bfd_count;
2335 unsigned int top_index;
2336 asection **input_list;
2337
2338 /* The offset into splt of the PLT entry for the TLS descriptor
2339 resolver. Special values are 0, if not necessary (or not found
2340 to be necessary yet), and -1 if needed but not determined
2341 yet. */
2342 bfd_vma tlsdesc_plt;
2343
2344 /* The GOT offset for the lazy trampoline. Communicated to the
2345 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2346 indicates an offset is not allocated. */
2347 bfd_vma dt_tlsdesc_got;
2348
2349 /* Used by local STT_GNU_IFUNC symbols. */
2350 htab_t loc_hash_table;
2351 void * loc_hash_memory;
2352 };
2353
2354 /* Create an entry in an AArch64 ELF linker hash table. */
2355
2356 static struct bfd_hash_entry *
2357 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2358 struct bfd_hash_table *table,
2359 const char *string)
2360 {
2361 struct elf_aarch64_link_hash_entry *ret =
2362 (struct elf_aarch64_link_hash_entry *) entry;
2363
2364 /* Allocate the structure if it has not already been allocated by a
2365 subclass. */
2366 if (ret == NULL)
2367 ret = bfd_hash_allocate (table,
2368 sizeof (struct elf_aarch64_link_hash_entry));
2369 if (ret == NULL)
2370 return (struct bfd_hash_entry *) ret;
2371
2372 /* Call the allocation method of the superclass. */
2373 ret = ((struct elf_aarch64_link_hash_entry *)
2374 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2375 table, string));
2376 if (ret != NULL)
2377 {
2378 ret->dyn_relocs = NULL;
2379 ret->got_type = GOT_UNKNOWN;
2380 ret->plt_got_offset = (bfd_vma) - 1;
2381 ret->stub_cache = NULL;
2382 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2383 }
2384
2385 return (struct bfd_hash_entry *) ret;
2386 }
2387
2388 /* Initialize an entry in the stub hash table. */
2389
2390 static struct bfd_hash_entry *
2391 stub_hash_newfunc (struct bfd_hash_entry *entry,
2392 struct bfd_hash_table *table, const char *string)
2393 {
2394 /* Allocate the structure if it has not already been allocated by a
2395 subclass. */
2396 if (entry == NULL)
2397 {
2398 entry = bfd_hash_allocate (table,
2399 sizeof (struct
2400 elf_aarch64_stub_hash_entry));
2401 if (entry == NULL)
2402 return entry;
2403 }
2404
2405 /* Call the allocation method of the superclass. */
2406 entry = bfd_hash_newfunc (entry, table, string);
2407 if (entry != NULL)
2408 {
2409 struct elf_aarch64_stub_hash_entry *eh;
2410
2411 /* Initialize the local fields. */
2412 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2413 eh->adrp_offset = 0;
2414 eh->stub_sec = NULL;
2415 eh->stub_offset = 0;
2416 eh->target_value = 0;
2417 eh->target_section = NULL;
2418 eh->stub_type = aarch64_stub_none;
2419 eh->h = NULL;
2420 eh->id_sec = NULL;
2421 }
2422
2423 return entry;
2424 }
2425
2426 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2427 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2428 as global symbol. We reuse indx and dynstr_index for local symbol
2429 hash since they aren't used by global symbols in this backend. */
2430
2431 static hashval_t
2432 elfNN_aarch64_local_htab_hash (const void *ptr)
2433 {
2434 struct elf_link_hash_entry *h
2435 = (struct elf_link_hash_entry *) ptr;
2436 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2437 }
2438
2439 /* Compare local hash entries. */
2440
2441 static int
2442 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2443 {
2444 struct elf_link_hash_entry *h1
2445 = (struct elf_link_hash_entry *) ptr1;
2446 struct elf_link_hash_entry *h2
2447 = (struct elf_link_hash_entry *) ptr2;
2448
2449 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2450 }
2451
2452 /* Find and/or create a hash entry for local symbol. */
2453
2454 static struct elf_link_hash_entry *
2455 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2456 bfd *abfd, const Elf_Internal_Rela *rel,
2457 bfd_boolean create)
2458 {
2459 struct elf_aarch64_link_hash_entry e, *ret;
2460 asection *sec = abfd->sections;
2461 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2462 ELFNN_R_SYM (rel->r_info));
2463 void **slot;
2464
2465 e.root.indx = sec->id;
2466 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2467 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2468 create ? INSERT : NO_INSERT);
2469
2470 if (!slot)
2471 return NULL;
2472
2473 if (*slot)
2474 {
2475 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2476 return &ret->root;
2477 }
2478
2479 ret = (struct elf_aarch64_link_hash_entry *)
2480 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2481 sizeof (struct elf_aarch64_link_hash_entry));
2482 if (ret)
2483 {
2484 memset (ret, 0, sizeof (*ret));
2485 ret->root.indx = sec->id;
2486 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2487 ret->root.dynindx = -1;
2488 *slot = ret;
2489 }
2490 return &ret->root;
2491 }
2492
2493 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2494
2495 static void
2496 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2497 struct elf_link_hash_entry *dir,
2498 struct elf_link_hash_entry *ind)
2499 {
2500 struct elf_aarch64_link_hash_entry *edir, *eind;
2501
2502 edir = (struct elf_aarch64_link_hash_entry *) dir;
2503 eind = (struct elf_aarch64_link_hash_entry *) ind;
2504
2505 if (eind->dyn_relocs != NULL)
2506 {
2507 if (edir->dyn_relocs != NULL)
2508 {
2509 struct elf_dyn_relocs **pp;
2510 struct elf_dyn_relocs *p;
2511
2512 /* Add reloc counts against the indirect sym to the direct sym
2513 list. Merge any entries against the same section. */
2514 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2515 {
2516 struct elf_dyn_relocs *q;
2517
2518 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2519 if (q->sec == p->sec)
2520 {
2521 q->pc_count += p->pc_count;
2522 q->count += p->count;
2523 *pp = p->next;
2524 break;
2525 }
2526 if (q == NULL)
2527 pp = &p->next;
2528 }
2529 *pp = edir->dyn_relocs;
2530 }
2531
2532 edir->dyn_relocs = eind->dyn_relocs;
2533 eind->dyn_relocs = NULL;
2534 }
2535
2536 if (ind->root.type == bfd_link_hash_indirect)
2537 {
2538 /* Copy over PLT info. */
2539 if (dir->got.refcount <= 0)
2540 {
2541 edir->got_type = eind->got_type;
2542 eind->got_type = GOT_UNKNOWN;
2543 }
2544 }
2545
2546 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2547 }
2548
2549 /* Destroy an AArch64 elf linker hash table. */
2550
2551 static void
2552 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2553 {
2554 struct elf_aarch64_link_hash_table *ret
2555 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2556
2557 if (ret->loc_hash_table)
2558 htab_delete (ret->loc_hash_table);
2559 if (ret->loc_hash_memory)
2560 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2561
2562 bfd_hash_table_free (&ret->stub_hash_table);
2563 _bfd_elf_link_hash_table_free (obfd);
2564 }
2565
2566 /* Create an AArch64 elf linker hash table. */
2567
2568 static struct bfd_link_hash_table *
2569 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2570 {
2571 struct elf_aarch64_link_hash_table *ret;
2572 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2573
2574 ret = bfd_zmalloc (amt);
2575 if (ret == NULL)
2576 return NULL;
2577
2578 if (!_bfd_elf_link_hash_table_init
2579 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2580 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2581 {
2582 free (ret);
2583 return NULL;
2584 }
2585
2586 ret->plt_header_size = PLT_ENTRY_SIZE;
2587 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2588 ret->obfd = abfd;
2589 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2590
2591 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2592 sizeof (struct elf_aarch64_stub_hash_entry)))
2593 {
2594 _bfd_elf_link_hash_table_free (abfd);
2595 return NULL;
2596 }
2597
2598 ret->loc_hash_table = htab_try_create (1024,
2599 elfNN_aarch64_local_htab_hash,
2600 elfNN_aarch64_local_htab_eq,
2601 NULL);
2602 ret->loc_hash_memory = objalloc_create ();
2603 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2604 {
2605 elfNN_aarch64_link_hash_table_free (abfd);
2606 return NULL;
2607 }
2608 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2609
2610 return &ret->root.root;
2611 }
2612
2613 static bfd_boolean
2614 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2615 bfd_vma offset, bfd_vma value)
2616 {
2617 reloc_howto_type *howto;
2618 bfd_vma place;
2619
2620 howto = elfNN_aarch64_howto_from_type (r_type);
2621 place = (input_section->output_section->vma + input_section->output_offset
2622 + offset);
2623
2624 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2625 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2626 return _bfd_aarch64_elf_put_addend (input_bfd,
2627 input_section->contents + offset, r_type,
2628 howto, value);
2629 }
2630
2631 static enum elf_aarch64_stub_type
2632 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2633 {
2634 if (aarch64_valid_for_adrp_p (value, place))
2635 return aarch64_stub_adrp_branch;
2636 return aarch64_stub_long_branch;
2637 }
2638
2639 /* Determine the type of stub needed, if any, for a call. */
2640
2641 static enum elf_aarch64_stub_type
2642 aarch64_type_of_stub (asection *input_sec,
2643 const Elf_Internal_Rela *rel,
2644 asection *sym_sec,
2645 unsigned char st_type,
2646 bfd_vma destination)
2647 {
2648 bfd_vma location;
2649 bfd_signed_vma branch_offset;
2650 unsigned int r_type;
2651 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2652
2653 if (st_type != STT_FUNC
2654 && (sym_sec == input_sec))
2655 return stub_type;
2656
2657 /* Determine where the call point is. */
2658 location = (input_sec->output_offset
2659 + input_sec->output_section->vma + rel->r_offset);
2660
2661 branch_offset = (bfd_signed_vma) (destination - location);
2662
2663 r_type = ELFNN_R_TYPE (rel->r_info);
2664
2665 /* We don't want to redirect any old unconditional jump in this way,
2666 only one which is being used for a sibcall, where it is
2667 acceptable for the IP0 and IP1 registers to be clobbered. */
2668 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2669 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2670 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2671 {
2672 stub_type = aarch64_stub_long_branch;
2673 }
2674
2675 return stub_type;
2676 }
2677
2678 /* Build a name for an entry in the stub hash table. */
2679
2680 static char *
2681 elfNN_aarch64_stub_name (const asection *input_section,
2682 const asection *sym_sec,
2683 const struct elf_aarch64_link_hash_entry *hash,
2684 const Elf_Internal_Rela *rel)
2685 {
2686 char *stub_name;
2687 bfd_size_type len;
2688
2689 if (hash)
2690 {
2691 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2692 stub_name = bfd_malloc (len);
2693 if (stub_name != NULL)
2694 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2695 (unsigned int) input_section->id,
2696 hash->root.root.root.string,
2697 rel->r_addend);
2698 }
2699 else
2700 {
2701 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2702 stub_name = bfd_malloc (len);
2703 if (stub_name != NULL)
2704 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2705 (unsigned int) input_section->id,
2706 (unsigned int) sym_sec->id,
2707 (unsigned int) ELFNN_R_SYM (rel->r_info),
2708 rel->r_addend);
2709 }
2710
2711 return stub_name;
2712 }
2713
2714 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2715 executable PLT slots where the executable never takes the address of those
2716 functions, the function symbols are not added to the hash table. */
2717
2718 static bfd_boolean
2719 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2720 {
2721 if (h->plt.offset != (bfd_vma) -1
2722 && !h->def_regular
2723 && !h->pointer_equality_needed)
2724 return FALSE;
2725
2726 return _bfd_elf_hash_symbol (h);
2727 }
2728
2729
2730 /* Look up an entry in the stub hash. Stub entries are cached because
2731 creating the stub name takes a bit of time. */
2732
2733 static struct elf_aarch64_stub_hash_entry *
2734 elfNN_aarch64_get_stub_entry (const asection *input_section,
2735 const asection *sym_sec,
2736 struct elf_link_hash_entry *hash,
2737 const Elf_Internal_Rela *rel,
2738 struct elf_aarch64_link_hash_table *htab)
2739 {
2740 struct elf_aarch64_stub_hash_entry *stub_entry;
2741 struct elf_aarch64_link_hash_entry *h =
2742 (struct elf_aarch64_link_hash_entry *) hash;
2743 const asection *id_sec;
2744
2745 if ((input_section->flags & SEC_CODE) == 0)
2746 return NULL;
2747
2748 /* If this input section is part of a group of sections sharing one
2749 stub section, then use the id of the first section in the group.
2750 Stub names need to include a section id, as there may well be
2751 more than one stub used to reach say, printf, and we need to
2752 distinguish between them. */
2753 id_sec = htab->stub_group[input_section->id].link_sec;
2754
2755 if (h != NULL && h->stub_cache != NULL
2756 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2757 {
2758 stub_entry = h->stub_cache;
2759 }
2760 else
2761 {
2762 char *stub_name;
2763
2764 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2765 if (stub_name == NULL)
2766 return NULL;
2767
2768 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2769 stub_name, FALSE, FALSE);
2770 if (h != NULL)
2771 h->stub_cache = stub_entry;
2772
2773 free (stub_name);
2774 }
2775
2776 return stub_entry;
2777 }
2778
2779
2780 /* Create a stub section. */
2781
2782 static asection *
2783 _bfd_aarch64_create_stub_section (asection *section,
2784 struct elf_aarch64_link_hash_table *htab)
2785 {
2786 size_t namelen;
2787 bfd_size_type len;
2788 char *s_name;
2789
2790 namelen = strlen (section->name);
2791 len = namelen + sizeof (STUB_SUFFIX);
2792 s_name = bfd_alloc (htab->stub_bfd, len);
2793 if (s_name == NULL)
2794 return NULL;
2795
2796 memcpy (s_name, section->name, namelen);
2797 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2798 return (*htab->add_stub_section) (s_name, section);
2799 }
2800
2801
2802 /* Find or create a stub section for a link section.
2803
2804 Fix or create the stub section used to collect stubs attached to
2805 the specified link section. */
2806
2807 static asection *
2808 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2809 struct elf_aarch64_link_hash_table *htab)
2810 {
2811 if (htab->stub_group[link_section->id].stub_sec == NULL)
2812 htab->stub_group[link_section->id].stub_sec
2813 = _bfd_aarch64_create_stub_section (link_section, htab);
2814 return htab->stub_group[link_section->id].stub_sec;
2815 }
2816
2817
2818 /* Find or create a stub section in the stub group for an input
2819 section. */
2820
2821 static asection *
2822 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2823 struct elf_aarch64_link_hash_table *htab)
2824 {
2825 asection *link_sec = htab->stub_group[section->id].link_sec;
2826 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2827 }
2828
2829
2830 /* Add a new stub entry in the stub group associated with an input
2831 section to the stub hash. Not all fields of the new stub entry are
2832 initialised. */
2833
2834 static struct elf_aarch64_stub_hash_entry *
2835 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2836 asection *section,
2837 struct elf_aarch64_link_hash_table *htab)
2838 {
2839 asection *link_sec;
2840 asection *stub_sec;
2841 struct elf_aarch64_stub_hash_entry *stub_entry;
2842
2843 link_sec = htab->stub_group[section->id].link_sec;
2844 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2845
2846 /* Enter this entry into the linker stub hash table. */
2847 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2848 TRUE, FALSE);
2849 if (stub_entry == NULL)
2850 {
2851 /* xgettext:c-format */
2852 _bfd_error_handler (_("%B: cannot create stub entry %s"),
2853 section->owner, stub_name);
2854 return NULL;
2855 }
2856
2857 stub_entry->stub_sec = stub_sec;
2858 stub_entry->stub_offset = 0;
2859 stub_entry->id_sec = link_sec;
2860
2861 return stub_entry;
2862 }
2863
2864 /* Add a new stub entry in the final stub section to the stub hash.
2865 Not all fields of the new stub entry are initialised. */
2866
2867 static struct elf_aarch64_stub_hash_entry *
2868 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2869 asection *link_section,
2870 struct elf_aarch64_link_hash_table *htab)
2871 {
2872 asection *stub_sec;
2873 struct elf_aarch64_stub_hash_entry *stub_entry;
2874
2875 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2876 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2877 TRUE, FALSE);
2878 if (stub_entry == NULL)
2879 {
2880 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
2881 return NULL;
2882 }
2883
2884 stub_entry->stub_sec = stub_sec;
2885 stub_entry->stub_offset = 0;
2886 stub_entry->id_sec = link_section;
2887
2888 return stub_entry;
2889 }
2890
2891
2892 static bfd_boolean
2893 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2894 void *in_arg ATTRIBUTE_UNUSED)
2895 {
2896 struct elf_aarch64_stub_hash_entry *stub_entry;
2897 asection *stub_sec;
2898 bfd *stub_bfd;
2899 bfd_byte *loc;
2900 bfd_vma sym_value;
2901 bfd_vma veneered_insn_loc;
2902 bfd_vma veneer_entry_loc;
2903 bfd_signed_vma branch_offset = 0;
2904 unsigned int template_size;
2905 const uint32_t *template;
2906 unsigned int i;
2907
2908 /* Massage our args to the form they really have. */
2909 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2910
2911 stub_sec = stub_entry->stub_sec;
2912
2913 /* Make a note of the offset within the stubs for this entry. */
2914 stub_entry->stub_offset = stub_sec->size;
2915 loc = stub_sec->contents + stub_entry->stub_offset;
2916
2917 stub_bfd = stub_sec->owner;
2918
2919 /* This is the address of the stub destination. */
2920 sym_value = (stub_entry->target_value
2921 + stub_entry->target_section->output_offset
2922 + stub_entry->target_section->output_section->vma);
2923
2924 if (stub_entry->stub_type == aarch64_stub_long_branch)
2925 {
2926 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2927 + stub_sec->output_offset);
2928
2929 /* See if we can relax the stub. */
2930 if (aarch64_valid_for_adrp_p (sym_value, place))
2931 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2932 }
2933
2934 switch (stub_entry->stub_type)
2935 {
2936 case aarch64_stub_adrp_branch:
2937 template = aarch64_adrp_branch_stub;
2938 template_size = sizeof (aarch64_adrp_branch_stub);
2939 break;
2940 case aarch64_stub_long_branch:
2941 template = aarch64_long_branch_stub;
2942 template_size = sizeof (aarch64_long_branch_stub);
2943 break;
2944 case aarch64_stub_erratum_835769_veneer:
2945 template = aarch64_erratum_835769_stub;
2946 template_size = sizeof (aarch64_erratum_835769_stub);
2947 break;
2948 case aarch64_stub_erratum_843419_veneer:
2949 template = aarch64_erratum_843419_stub;
2950 template_size = sizeof (aarch64_erratum_843419_stub);
2951 break;
2952 default:
2953 abort ();
2954 }
2955
2956 for (i = 0; i < (template_size / sizeof template[0]); i++)
2957 {
2958 bfd_putl32 (template[i], loc);
2959 loc += 4;
2960 }
2961
2962 template_size = (template_size + 7) & ~7;
2963 stub_sec->size += template_size;
2964
2965 switch (stub_entry->stub_type)
2966 {
2967 case aarch64_stub_adrp_branch:
2968 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2969 stub_entry->stub_offset, sym_value))
2970 /* The stub would not have been relaxed if the offset was out
2971 of range. */
2972 BFD_FAIL ();
2973
2974 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2975 stub_entry->stub_offset + 4, sym_value))
2976 BFD_FAIL ();
2977 break;
2978
2979 case aarch64_stub_long_branch:
2980 /* We want the value relative to the address 12 bytes back from the
2981 value itself. */
2982 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2983 stub_entry->stub_offset + 16, sym_value + 12))
2984 BFD_FAIL ();
2985 break;
2986
2987 case aarch64_stub_erratum_835769_veneer:
2988 veneered_insn_loc = stub_entry->target_section->output_section->vma
2989 + stub_entry->target_section->output_offset
2990 + stub_entry->target_value;
2991 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2992 + stub_entry->stub_sec->output_offset
2993 + stub_entry->stub_offset;
2994 branch_offset = veneered_insn_loc - veneer_entry_loc;
2995 branch_offset >>= 2;
2996 branch_offset &= 0x3ffffff;
2997 bfd_putl32 (stub_entry->veneered_insn,
2998 stub_sec->contents + stub_entry->stub_offset);
2999 bfd_putl32 (template[1] | branch_offset,
3000 stub_sec->contents + stub_entry->stub_offset + 4);
3001 break;
3002
3003 case aarch64_stub_erratum_843419_veneer:
3004 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3005 stub_entry->stub_offset + 4, sym_value + 4))
3006 BFD_FAIL ();
3007 break;
3008
3009 default:
3010 abort ();
3011 }
3012
3013 return TRUE;
3014 }
3015
3016 /* As above, but don't actually build the stub. Just bump offset so
3017 we know stub section sizes. */
3018
3019 static bfd_boolean
3020 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3021 void *in_arg ATTRIBUTE_UNUSED)
3022 {
3023 struct elf_aarch64_stub_hash_entry *stub_entry;
3024 int size;
3025
3026 /* Massage our args to the form they really have. */
3027 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3028
3029 switch (stub_entry->stub_type)
3030 {
3031 case aarch64_stub_adrp_branch:
3032 size = sizeof (aarch64_adrp_branch_stub);
3033 break;
3034 case aarch64_stub_long_branch:
3035 size = sizeof (aarch64_long_branch_stub);
3036 break;
3037 case aarch64_stub_erratum_835769_veneer:
3038 size = sizeof (aarch64_erratum_835769_stub);
3039 break;
3040 case aarch64_stub_erratum_843419_veneer:
3041 size = sizeof (aarch64_erratum_843419_stub);
3042 break;
3043 default:
3044 abort ();
3045 }
3046
3047 size = (size + 7) & ~7;
3048 stub_entry->stub_sec->size += size;
3049 return TRUE;
3050 }
3051
3052 /* External entry points for sizing and building linker stubs. */
3053
3054 /* Set up various things so that we can make a list of input sections
3055 for each output section included in the link. Returns -1 on error,
3056 0 when no stubs will be needed, and 1 on success. */
3057
3058 int
3059 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3060 struct bfd_link_info *info)
3061 {
3062 bfd *input_bfd;
3063 unsigned int bfd_count;
3064 unsigned int top_id, top_index;
3065 asection *section;
3066 asection **input_list, **list;
3067 bfd_size_type amt;
3068 struct elf_aarch64_link_hash_table *htab =
3069 elf_aarch64_hash_table (info);
3070
3071 if (!is_elf_hash_table (htab))
3072 return 0;
3073
3074 /* Count the number of input BFDs and find the top input section id. */
3075 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3076 input_bfd != NULL; input_bfd = input_bfd->link.next)
3077 {
3078 bfd_count += 1;
3079 for (section = input_bfd->sections;
3080 section != NULL; section = section->next)
3081 {
3082 if (top_id < section->id)
3083 top_id = section->id;
3084 }
3085 }
3086 htab->bfd_count = bfd_count;
3087
3088 amt = sizeof (struct map_stub) * (top_id + 1);
3089 htab->stub_group = bfd_zmalloc (amt);
3090 if (htab->stub_group == NULL)
3091 return -1;
3092
3093 /* We can't use output_bfd->section_count here to find the top output
3094 section index as some sections may have been removed, and
3095 _bfd_strip_section_from_output doesn't renumber the indices. */
3096 for (section = output_bfd->sections, top_index = 0;
3097 section != NULL; section = section->next)
3098 {
3099 if (top_index < section->index)
3100 top_index = section->index;
3101 }
3102
3103 htab->top_index = top_index;
3104 amt = sizeof (asection *) * (top_index + 1);
3105 input_list = bfd_malloc (amt);
3106 htab->input_list = input_list;
3107 if (input_list == NULL)
3108 return -1;
3109
3110 /* For sections we aren't interested in, mark their entries with a
3111 value we can check later. */
3112 list = input_list + top_index;
3113 do
3114 *list = bfd_abs_section_ptr;
3115 while (list-- != input_list);
3116
3117 for (section = output_bfd->sections;
3118 section != NULL; section = section->next)
3119 {
3120 if ((section->flags & SEC_CODE) != 0)
3121 input_list[section->index] = NULL;
3122 }
3123
3124 return 1;
3125 }
3126
3127 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3128 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3129
3130 /* The linker repeatedly calls this function for each input section,
3131 in the order that input sections are linked into output sections.
3132 Build lists of input sections to determine groupings between which
3133 we may insert linker stubs. */
3134
3135 void
3136 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3137 {
3138 struct elf_aarch64_link_hash_table *htab =
3139 elf_aarch64_hash_table (info);
3140
3141 if (isec->output_section->index <= htab->top_index)
3142 {
3143 asection **list = htab->input_list + isec->output_section->index;
3144
3145 if (*list != bfd_abs_section_ptr)
3146 {
3147 /* Steal the link_sec pointer for our list. */
3148 /* This happens to make the list in reverse order,
3149 which is what we want. */
3150 PREV_SEC (isec) = *list;
3151 *list = isec;
3152 }
3153 }
3154 }
3155
3156 /* See whether we can group stub sections together. Grouping stub
3157 sections may result in fewer stubs. More importantly, we need to
3158 put all .init* and .fini* stubs at the beginning of the .init or
3159 .fini output sections respectively, because glibc splits the
3160 _init and _fini functions into multiple parts. Putting a stub in
3161 the middle of a function is not a good idea. */
3162
3163 static void
3164 group_sections (struct elf_aarch64_link_hash_table *htab,
3165 bfd_size_type stub_group_size,
3166 bfd_boolean stubs_always_before_branch)
3167 {
3168 asection **list = htab->input_list + htab->top_index;
3169
3170 do
3171 {
3172 asection *tail = *list;
3173
3174 if (tail == bfd_abs_section_ptr)
3175 continue;
3176
3177 while (tail != NULL)
3178 {
3179 asection *curr;
3180 asection *prev;
3181 bfd_size_type total;
3182
3183 curr = tail;
3184 total = tail->size;
3185 while ((prev = PREV_SEC (curr)) != NULL
3186 && ((total += curr->output_offset - prev->output_offset)
3187 < stub_group_size))
3188 curr = prev;
3189
3190 /* OK, the size from the start of CURR to the end is less
3191 than stub_group_size and thus can be handled by one stub
3192 section. (Or the tail section is itself larger than
3193 stub_group_size, in which case we may be toast.)
3194 We should really be keeping track of the total size of
3195 stubs added here, as stubs contribute to the final output
3196 section size. */
3197 do
3198 {
3199 prev = PREV_SEC (tail);
3200 /* Set up this stub group. */
3201 htab->stub_group[tail->id].link_sec = curr;
3202 }
3203 while (tail != curr && (tail = prev) != NULL);
3204
3205 /* But wait, there's more! Input sections up to stub_group_size
3206 bytes before the stub section can be handled by it too. */
3207 if (!stubs_always_before_branch)
3208 {
3209 total = 0;
3210 while (prev != NULL
3211 && ((total += tail->output_offset - prev->output_offset)
3212 < stub_group_size))
3213 {
3214 tail = prev;
3215 prev = PREV_SEC (tail);
3216 htab->stub_group[tail->id].link_sec = curr;
3217 }
3218 }
3219 tail = prev;
3220 }
3221 }
3222 while (list-- != htab->input_list);
3223
3224 free (htab->input_list);
3225 }
3226
3227 #undef PREV_SEC
3228
3229 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3230
3231 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3232 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3233 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3234 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3235 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3236 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3237
3238 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3239 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3240 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3241 #define AARCH64_ZR 0x1f
3242
3243 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3244 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3245
3246 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3247 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3248 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3249 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3250 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3251 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3252 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3253 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3254 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3255 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3256 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3257 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3258 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3259 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3260 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3261 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3262 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3263 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3264
3265 /* Classify an INSN if it is indeed a load/store.
3266
3267 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3268
3269 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3270 is set equal to RT.
3271
3272 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3273
3274 static bfd_boolean
3275 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3276 bfd_boolean *pair, bfd_boolean *load)
3277 {
3278 uint32_t opcode;
3279 unsigned int r;
3280 uint32_t opc = 0;
3281 uint32_t v = 0;
3282 uint32_t opc_v = 0;
3283
3284 /* Bail out quickly if INSN doesn't fall into the the load-store
3285 encoding space. */
3286 if (!AARCH64_LDST (insn))
3287 return FALSE;
3288
3289 *pair = FALSE;
3290 *load = FALSE;
3291 if (AARCH64_LDST_EX (insn))
3292 {
3293 *rt = AARCH64_RT (insn);
3294 *rt2 = *rt;
3295 if (AARCH64_BIT (insn, 21) == 1)
3296 {
3297 *pair = TRUE;
3298 *rt2 = AARCH64_RT2 (insn);
3299 }
3300 *load = AARCH64_LD (insn);
3301 return TRUE;
3302 }
3303 else if (AARCH64_LDST_NAP (insn)
3304 || AARCH64_LDSTP_PI (insn)
3305 || AARCH64_LDSTP_O (insn)
3306 || AARCH64_LDSTP_PRE (insn))
3307 {
3308 *pair = TRUE;
3309 *rt = AARCH64_RT (insn);
3310 *rt2 = AARCH64_RT2 (insn);
3311 *load = AARCH64_LD (insn);
3312 return TRUE;
3313 }
3314 else if (AARCH64_LDST_PCREL (insn)
3315 || AARCH64_LDST_UI (insn)
3316 || AARCH64_LDST_PIIMM (insn)
3317 || AARCH64_LDST_U (insn)
3318 || AARCH64_LDST_PREIMM (insn)
3319 || AARCH64_LDST_RO (insn)
3320 || AARCH64_LDST_UIMM (insn))
3321 {
3322 *rt = AARCH64_RT (insn);
3323 *rt2 = *rt;
3324 if (AARCH64_LDST_PCREL (insn))
3325 *load = TRUE;
3326 opc = AARCH64_BITS (insn, 22, 2);
3327 v = AARCH64_BIT (insn, 26);
3328 opc_v = opc | (v << 2);
3329 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3330 || opc_v == 5 || opc_v == 7);
3331 return TRUE;
3332 }
3333 else if (AARCH64_LDST_SIMD_M (insn)
3334 || AARCH64_LDST_SIMD_M_PI (insn))
3335 {
3336 *rt = AARCH64_RT (insn);
3337 *load = AARCH64_BIT (insn, 22);
3338 opcode = (insn >> 12) & 0xf;
3339 switch (opcode)
3340 {
3341 case 0:
3342 case 2:
3343 *rt2 = *rt + 3;
3344 break;
3345
3346 case 4:
3347 case 6:
3348 *rt2 = *rt + 2;
3349 break;
3350
3351 case 7:
3352 *rt2 = *rt;
3353 break;
3354
3355 case 8:
3356 case 10:
3357 *rt2 = *rt + 1;
3358 break;
3359
3360 default:
3361 return FALSE;
3362 }
3363 return TRUE;
3364 }
3365 else if (AARCH64_LDST_SIMD_S (insn)
3366 || AARCH64_LDST_SIMD_S_PI (insn))
3367 {
3368 *rt = AARCH64_RT (insn);
3369 r = (insn >> 21) & 1;
3370 *load = AARCH64_BIT (insn, 22);
3371 opcode = (insn >> 13) & 0x7;
3372 switch (opcode)
3373 {
3374 case 0:
3375 case 2:
3376 case 4:
3377 *rt2 = *rt + r;
3378 break;
3379
3380 case 1:
3381 case 3:
3382 case 5:
3383 *rt2 = *rt + (r == 0 ? 2 : 3);
3384 break;
3385
3386 case 6:
3387 *rt2 = *rt + r;
3388 break;
3389
3390 case 7:
3391 *rt2 = *rt + (r == 0 ? 2 : 3);
3392 break;
3393
3394 default:
3395 return FALSE;
3396 }
3397 return TRUE;
3398 }
3399
3400 return FALSE;
3401 }
3402
3403 /* Return TRUE if INSN is multiply-accumulate. */
3404
3405 static bfd_boolean
3406 aarch64_mlxl_p (uint32_t insn)
3407 {
3408 uint32_t op31 = AARCH64_OP31 (insn);
3409
3410 if (AARCH64_MAC (insn)
3411 && (op31 == 0 || op31 == 1 || op31 == 5)
3412 /* Exclude MUL instructions which are encoded as a multiple accumulate
3413 with RA = XZR. */
3414 && AARCH64_RA (insn) != AARCH64_ZR)
3415 return TRUE;
3416
3417 return FALSE;
3418 }
3419
3420 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3421 it is possible for a 64-bit multiply-accumulate instruction to generate an
3422 incorrect result. The details are quite complex and hard to
3423 determine statically, since branches in the code may exist in some
3424 circumstances, but all cases end with a memory (load, store, or
3425 prefetch) instruction followed immediately by the multiply-accumulate
3426 operation. We employ a linker patching technique, by moving the potentially
3427 affected multiply-accumulate instruction into a patch region and replacing
3428 the original instruction with a branch to the patch. This function checks
3429 if INSN_1 is the memory operation followed by a multiply-accumulate
3430 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3431 if INSN_1 and INSN_2 are safe. */
3432
3433 static bfd_boolean
3434 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3435 {
3436 uint32_t rt;
3437 uint32_t rt2;
3438 uint32_t rn;
3439 uint32_t rm;
3440 uint32_t ra;
3441 bfd_boolean pair;
3442 bfd_boolean load;
3443
3444 if (aarch64_mlxl_p (insn_2)
3445 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3446 {
3447 /* Any SIMD memory op is independent of the subsequent MLA
3448 by definition of the erratum. */
3449 if (AARCH64_BIT (insn_1, 26))
3450 return TRUE;
3451
3452 /* If not SIMD, check for integer memory ops and MLA relationship. */
3453 rn = AARCH64_RN (insn_2);
3454 ra = AARCH64_RA (insn_2);
3455 rm = AARCH64_RM (insn_2);
3456
3457 /* If this is a load and there's a true(RAW) dependency, we are safe
3458 and this is not an erratum sequence. */
3459 if (load &&
3460 (rt == rn || rt == rm || rt == ra
3461 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3462 return FALSE;
3463
3464 /* We conservatively put out stubs for all other cases (including
3465 writebacks). */
3466 return TRUE;
3467 }
3468
3469 return FALSE;
3470 }
3471
3472 /* Used to order a list of mapping symbols by address. */
3473
3474 static int
3475 elf_aarch64_compare_mapping (const void *a, const void *b)
3476 {
3477 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3478 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3479
3480 if (amap->vma > bmap->vma)
3481 return 1;
3482 else if (amap->vma < bmap->vma)
3483 return -1;
3484 else if (amap->type > bmap->type)
3485 /* Ensure results do not depend on the host qsort for objects with
3486 multiple mapping symbols at the same address by sorting on type
3487 after vma. */
3488 return 1;
3489 else if (amap->type < bmap->type)
3490 return -1;
3491 else
3492 return 0;
3493 }
3494
3495
3496 static char *
3497 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3498 {
3499 char *stub_name = (char *) bfd_malloc
3500 (strlen ("__erratum_835769_veneer_") + 16);
3501 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3502 return stub_name;
3503 }
3504
3505 /* Scan for Cortex-A53 erratum 835769 sequence.
3506
3507 Return TRUE else FALSE on abnormal termination. */
3508
3509 static bfd_boolean
3510 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3511 struct bfd_link_info *info,
3512 unsigned int *num_fixes_p)
3513 {
3514 asection *section;
3515 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3516 unsigned int num_fixes = *num_fixes_p;
3517
3518 if (htab == NULL)
3519 return TRUE;
3520
3521 for (section = input_bfd->sections;
3522 section != NULL;
3523 section = section->next)
3524 {
3525 bfd_byte *contents = NULL;
3526 struct _aarch64_elf_section_data *sec_data;
3527 unsigned int span;
3528
3529 if (elf_section_type (section) != SHT_PROGBITS
3530 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3531 || (section->flags & SEC_EXCLUDE) != 0
3532 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3533 || (section->output_section == bfd_abs_section_ptr))
3534 continue;
3535
3536 if (elf_section_data (section)->this_hdr.contents != NULL)
3537 contents = elf_section_data (section)->this_hdr.contents;
3538 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3539 return FALSE;
3540
3541 sec_data = elf_aarch64_section_data (section);
3542
3543 qsort (sec_data->map, sec_data->mapcount,
3544 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3545
3546 for (span = 0; span < sec_data->mapcount; span++)
3547 {
3548 unsigned int span_start = sec_data->map[span].vma;
3549 unsigned int span_end = ((span == sec_data->mapcount - 1)
3550 ? sec_data->map[0].vma + section->size
3551 : sec_data->map[span + 1].vma);
3552 unsigned int i;
3553 char span_type = sec_data->map[span].type;
3554
3555 if (span_type == 'd')
3556 continue;
3557
3558 for (i = span_start; i + 4 < span_end; i += 4)
3559 {
3560 uint32_t insn_1 = bfd_getl32 (contents + i);
3561 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3562
3563 if (aarch64_erratum_sequence (insn_1, insn_2))
3564 {
3565 struct elf_aarch64_stub_hash_entry *stub_entry;
3566 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3567 if (! stub_name)
3568 return FALSE;
3569
3570 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3571 section,
3572 htab);
3573 if (! stub_entry)
3574 return FALSE;
3575
3576 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3577 stub_entry->target_section = section;
3578 stub_entry->target_value = i + 4;
3579 stub_entry->veneered_insn = insn_2;
3580 stub_entry->output_name = stub_name;
3581 num_fixes++;
3582 }
3583 }
3584 }
3585 if (elf_section_data (section)->this_hdr.contents == NULL)
3586 free (contents);
3587 }
3588
3589 *num_fixes_p = num_fixes;
3590
3591 return TRUE;
3592 }
3593
3594
3595 /* Test if instruction INSN is ADRP. */
3596
3597 static bfd_boolean
3598 _bfd_aarch64_adrp_p (uint32_t insn)
3599 {
3600 return ((insn & 0x9f000000) == 0x90000000);
3601 }
3602
3603
3604 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3605
3606 static bfd_boolean
3607 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3608 uint32_t insn_3)
3609 {
3610 uint32_t rt;
3611 uint32_t rt2;
3612 bfd_boolean pair;
3613 bfd_boolean load;
3614
3615 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3616 && (!pair
3617 || (pair && !load))
3618 && AARCH64_LDST_UIMM (insn_3)
3619 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3620 }
3621
3622
3623 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3624
3625 Return TRUE if section CONTENTS at offset I contains one of the
3626 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3627 seen set P_VENEER_I to the offset of the final LOAD/STORE
3628 instruction in the sequence.
3629 */
3630
3631 static bfd_boolean
3632 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3633 bfd_vma i, bfd_vma span_end,
3634 bfd_vma *p_veneer_i)
3635 {
3636 uint32_t insn_1 = bfd_getl32 (contents + i);
3637
3638 if (!_bfd_aarch64_adrp_p (insn_1))
3639 return FALSE;
3640
3641 if (span_end < i + 12)
3642 return FALSE;
3643
3644 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3645 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3646
3647 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3648 return FALSE;
3649
3650 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3651 {
3652 *p_veneer_i = i + 8;
3653 return TRUE;
3654 }
3655
3656 if (span_end < i + 16)
3657 return FALSE;
3658
3659 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3660
3661 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3662 {
3663 *p_veneer_i = i + 12;
3664 return TRUE;
3665 }
3666
3667 return FALSE;
3668 }
3669
3670
3671 /* Resize all stub sections. */
3672
3673 static void
3674 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3675 {
3676 asection *section;
3677
3678 /* OK, we've added some stubs. Find out the new size of the
3679 stub sections. */
3680 for (section = htab->stub_bfd->sections;
3681 section != NULL; section = section->next)
3682 {
3683 /* Ignore non-stub sections. */
3684 if (!strstr (section->name, STUB_SUFFIX))
3685 continue;
3686 section->size = 0;
3687 }
3688
3689 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3690
3691 for (section = htab->stub_bfd->sections;
3692 section != NULL; section = section->next)
3693 {
3694 if (!strstr (section->name, STUB_SUFFIX))
3695 continue;
3696
3697 if (section->size)
3698 section->size += 4;
3699
3700 /* Ensure all stub sections have a size which is a multiple of
3701 4096. This is important in order to ensure that the insertion
3702 of stub sections does not in itself move existing code around
3703 in such a way that new errata sequences are created. */
3704 if (htab->fix_erratum_843419)
3705 if (section->size)
3706 section->size = BFD_ALIGN (section->size, 0x1000);
3707 }
3708 }
3709
3710
3711 /* Construct an erratum 843419 workaround stub name.
3712 */
3713
3714 static char *
3715 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3716 bfd_vma offset)
3717 {
3718 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3719 char *stub_name = bfd_malloc (len);
3720
3721 if (stub_name != NULL)
3722 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3723 input_section->owner->id,
3724 input_section->id,
3725 offset);
3726 return stub_name;
3727 }
3728
3729 /* Build a stub_entry structure describing an 843419 fixup.
3730
3731 The stub_entry constructed is populated with the bit pattern INSN
3732 of the instruction located at OFFSET within input SECTION.
3733
3734 Returns TRUE on success. */
3735
3736 static bfd_boolean
3737 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3738 bfd_vma adrp_offset,
3739 bfd_vma ldst_offset,
3740 asection *section,
3741 struct bfd_link_info *info)
3742 {
3743 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3744 char *stub_name;
3745 struct elf_aarch64_stub_hash_entry *stub_entry;
3746
3747 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3748 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3749 FALSE, FALSE);
3750 if (stub_entry)
3751 {
3752 free (stub_name);
3753 return TRUE;
3754 }
3755
3756 /* We always place an 843419 workaround veneer in the stub section
3757 attached to the input section in which an erratum sequence has
3758 been found. This ensures that later in the link process (in
3759 elfNN_aarch64_write_section) when we copy the veneered
3760 instruction from the input section into the stub section the
3761 copied instruction will have had any relocations applied to it.
3762 If we placed workaround veneers in any other stub section then we
3763 could not assume that all relocations have been processed on the
3764 corresponding input section at the point we output the stub
3765 section.
3766 */
3767
3768 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3769 if (stub_entry == NULL)
3770 {
3771 free (stub_name);
3772 return FALSE;
3773 }
3774
3775 stub_entry->adrp_offset = adrp_offset;
3776 stub_entry->target_value = ldst_offset;
3777 stub_entry->target_section = section;
3778 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3779 stub_entry->veneered_insn = insn;
3780 stub_entry->output_name = stub_name;
3781
3782 return TRUE;
3783 }
3784
3785
3786 /* Scan an input section looking for the signature of erratum 843419.
3787
3788 Scans input SECTION in INPUT_BFD looking for erratum 843419
3789 signatures, for each signature found a stub_entry is created
3790 describing the location of the erratum for subsequent fixup.
3791
3792 Return TRUE on successful scan, FALSE on failure to scan.
3793 */
3794
3795 static bfd_boolean
3796 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3797 struct bfd_link_info *info)
3798 {
3799 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3800
3801 if (htab == NULL)
3802 return TRUE;
3803
3804 if (elf_section_type (section) != SHT_PROGBITS
3805 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3806 || (section->flags & SEC_EXCLUDE) != 0
3807 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3808 || (section->output_section == bfd_abs_section_ptr))
3809 return TRUE;
3810
3811 do
3812 {
3813 bfd_byte *contents = NULL;
3814 struct _aarch64_elf_section_data *sec_data;
3815 unsigned int span;
3816
3817 if (elf_section_data (section)->this_hdr.contents != NULL)
3818 contents = elf_section_data (section)->this_hdr.contents;
3819 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3820 return FALSE;
3821
3822 sec_data = elf_aarch64_section_data (section);
3823
3824 qsort (sec_data->map, sec_data->mapcount,
3825 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3826
3827 for (span = 0; span < sec_data->mapcount; span++)
3828 {
3829 unsigned int span_start = sec_data->map[span].vma;
3830 unsigned int span_end = ((span == sec_data->mapcount - 1)
3831 ? sec_data->map[0].vma + section->size
3832 : sec_data->map[span + 1].vma);
3833 unsigned int i;
3834 char span_type = sec_data->map[span].type;
3835
3836 if (span_type == 'd')
3837 continue;
3838
3839 for (i = span_start; i + 8 < span_end; i += 4)
3840 {
3841 bfd_vma vma = (section->output_section->vma
3842 + section->output_offset
3843 + i);
3844 bfd_vma veneer_i;
3845
3846 if (_bfd_aarch64_erratum_843419_p
3847 (contents, vma, i, span_end, &veneer_i))
3848 {
3849 uint32_t insn = bfd_getl32 (contents + veneer_i);
3850
3851 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3852 section, info))
3853 return FALSE;
3854 }
3855 }
3856 }
3857
3858 if (elf_section_data (section)->this_hdr.contents == NULL)
3859 free (contents);
3860 }
3861 while (0);
3862
3863 return TRUE;
3864 }
3865
3866
3867 /* Determine and set the size of the stub section for a final link.
3868
3869 The basic idea here is to examine all the relocations looking for
3870 PC-relative calls to a target that is unreachable with a "bl"
3871 instruction. */
3872
3873 bfd_boolean
3874 elfNN_aarch64_size_stubs (bfd *output_bfd,
3875 bfd *stub_bfd,
3876 struct bfd_link_info *info,
3877 bfd_signed_vma group_size,
3878 asection * (*add_stub_section) (const char *,
3879 asection *),
3880 void (*layout_sections_again) (void))
3881 {
3882 bfd_size_type stub_group_size;
3883 bfd_boolean stubs_always_before_branch;
3884 bfd_boolean stub_changed = FALSE;
3885 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3886 unsigned int num_erratum_835769_fixes = 0;
3887
3888 /* Propagate mach to stub bfd, because it may not have been
3889 finalized when we created stub_bfd. */
3890 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3891 bfd_get_mach (output_bfd));
3892
3893 /* Stash our params away. */
3894 htab->stub_bfd = stub_bfd;
3895 htab->add_stub_section = add_stub_section;
3896 htab->layout_sections_again = layout_sections_again;
3897 stubs_always_before_branch = group_size < 0;
3898 if (group_size < 0)
3899 stub_group_size = -group_size;
3900 else
3901 stub_group_size = group_size;
3902
3903 if (stub_group_size == 1)
3904 {
3905 /* Default values. */
3906 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3907 stub_group_size = 127 * 1024 * 1024;
3908 }
3909
3910 group_sections (htab, stub_group_size, stubs_always_before_branch);
3911
3912 (*htab->layout_sections_again) ();
3913
3914 if (htab->fix_erratum_835769)
3915 {
3916 bfd *input_bfd;
3917
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL; input_bfd = input_bfd->link.next)
3920 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3921 &num_erratum_835769_fixes))
3922 return FALSE;
3923
3924 _bfd_aarch64_resize_stubs (htab);
3925 (*htab->layout_sections_again) ();
3926 }
3927
3928 if (htab->fix_erratum_843419)
3929 {
3930 bfd *input_bfd;
3931
3932 for (input_bfd = info->input_bfds;
3933 input_bfd != NULL;
3934 input_bfd = input_bfd->link.next)
3935 {
3936 asection *section;
3937
3938 for (section = input_bfd->sections;
3939 section != NULL;
3940 section = section->next)
3941 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3942 return FALSE;
3943 }
3944
3945 _bfd_aarch64_resize_stubs (htab);
3946 (*htab->layout_sections_again) ();
3947 }
3948
3949 while (1)
3950 {
3951 bfd *input_bfd;
3952
3953 for (input_bfd = info->input_bfds;
3954 input_bfd != NULL; input_bfd = input_bfd->link.next)
3955 {
3956 Elf_Internal_Shdr *symtab_hdr;
3957 asection *section;
3958 Elf_Internal_Sym *local_syms = NULL;
3959
3960 /* We'll need the symbol table in a second. */
3961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3962 if (symtab_hdr->sh_info == 0)
3963 continue;
3964
3965 /* Walk over each section attached to the input bfd. */
3966 for (section = input_bfd->sections;
3967 section != NULL; section = section->next)
3968 {
3969 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3970
3971 /* If there aren't any relocs, then there's nothing more
3972 to do. */
3973 if ((section->flags & SEC_RELOC) == 0
3974 || section->reloc_count == 0
3975 || (section->flags & SEC_CODE) == 0)
3976 continue;
3977
3978 /* If this section is a link-once section that will be
3979 discarded, then don't create any stubs. */
3980 if (section->output_section == NULL
3981 || section->output_section->owner != output_bfd)
3982 continue;
3983
3984 /* Get the relocs. */
3985 internal_relocs
3986 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3987 NULL, info->keep_memory);
3988 if (internal_relocs == NULL)
3989 goto error_ret_free_local;
3990
3991 /* Now examine each relocation. */
3992 irela = internal_relocs;
3993 irelaend = irela + section->reloc_count;
3994 for (; irela < irelaend; irela++)
3995 {
3996 unsigned int r_type, r_indx;
3997 enum elf_aarch64_stub_type stub_type;
3998 struct elf_aarch64_stub_hash_entry *stub_entry;
3999 asection *sym_sec;
4000 bfd_vma sym_value;
4001 bfd_vma destination;
4002 struct elf_aarch64_link_hash_entry *hash;
4003 const char *sym_name;
4004 char *stub_name;
4005 const asection *id_sec;
4006 unsigned char st_type;
4007 bfd_size_type len;
4008
4009 r_type = ELFNN_R_TYPE (irela->r_info);
4010 r_indx = ELFNN_R_SYM (irela->r_info);
4011
4012 if (r_type >= (unsigned int) R_AARCH64_end)
4013 {
4014 bfd_set_error (bfd_error_bad_value);
4015 error_ret_free_internal:
4016 if (elf_section_data (section)->relocs == NULL)
4017 free (internal_relocs);
4018 goto error_ret_free_local;
4019 }
4020
4021 /* Only look for stubs on unconditional branch and
4022 branch and link instructions. */
4023 if (r_type != (unsigned int) AARCH64_R (CALL26)
4024 && r_type != (unsigned int) AARCH64_R (JUMP26))
4025 continue;
4026
4027 /* Now determine the call target, its name, value,
4028 section. */
4029 sym_sec = NULL;
4030 sym_value = 0;
4031 destination = 0;
4032 hash = NULL;
4033 sym_name = NULL;
4034 if (r_indx < symtab_hdr->sh_info)
4035 {
4036 /* It's a local symbol. */
4037 Elf_Internal_Sym *sym;
4038 Elf_Internal_Shdr *hdr;
4039
4040 if (local_syms == NULL)
4041 {
4042 local_syms
4043 = (Elf_Internal_Sym *) symtab_hdr->contents;
4044 if (local_syms == NULL)
4045 local_syms
4046 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4047 symtab_hdr->sh_info, 0,
4048 NULL, NULL, NULL);
4049 if (local_syms == NULL)
4050 goto error_ret_free_internal;
4051 }
4052
4053 sym = local_syms + r_indx;
4054 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4055 sym_sec = hdr->bfd_section;
4056 if (!sym_sec)
4057 /* This is an undefined symbol. It can never
4058 be resolved. */
4059 continue;
4060
4061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4062 sym_value = sym->st_value;
4063 destination = (sym_value + irela->r_addend
4064 + sym_sec->output_offset
4065 + sym_sec->output_section->vma);
4066 st_type = ELF_ST_TYPE (sym->st_info);
4067 sym_name
4068 = bfd_elf_string_from_elf_section (input_bfd,
4069 symtab_hdr->sh_link,
4070 sym->st_name);
4071 }
4072 else
4073 {
4074 int e_indx;
4075
4076 e_indx = r_indx - symtab_hdr->sh_info;
4077 hash = ((struct elf_aarch64_link_hash_entry *)
4078 elf_sym_hashes (input_bfd)[e_indx]);
4079
4080 while (hash->root.root.type == bfd_link_hash_indirect
4081 || hash->root.root.type == bfd_link_hash_warning)
4082 hash = ((struct elf_aarch64_link_hash_entry *)
4083 hash->root.root.u.i.link);
4084
4085 if (hash->root.root.type == bfd_link_hash_defined
4086 || hash->root.root.type == bfd_link_hash_defweak)
4087 {
4088 struct elf_aarch64_link_hash_table *globals =
4089 elf_aarch64_hash_table (info);
4090 sym_sec = hash->root.root.u.def.section;
4091 sym_value = hash->root.root.u.def.value;
4092 /* For a destination in a shared library,
4093 use the PLT stub as target address to
4094 decide whether a branch stub is
4095 needed. */
4096 if (globals->root.splt != NULL && hash != NULL
4097 && hash->root.plt.offset != (bfd_vma) - 1)
4098 {
4099 sym_sec = globals->root.splt;
4100 sym_value = hash->root.plt.offset;
4101 if (sym_sec->output_section != NULL)
4102 destination = (sym_value
4103 + sym_sec->output_offset
4104 +
4105 sym_sec->output_section->vma);
4106 }
4107 else if (sym_sec->output_section != NULL)
4108 destination = (sym_value + irela->r_addend
4109 + sym_sec->output_offset
4110 + sym_sec->output_section->vma);
4111 }
4112 else if (hash->root.root.type == bfd_link_hash_undefined
4113 || (hash->root.root.type
4114 == bfd_link_hash_undefweak))
4115 {
4116 /* For a shared library, use the PLT stub as
4117 target address to decide whether a long
4118 branch stub is needed.
4119 For absolute code, they cannot be handled. */
4120 struct elf_aarch64_link_hash_table *globals =
4121 elf_aarch64_hash_table (info);
4122
4123 if (globals->root.splt != NULL && hash != NULL
4124 && hash->root.plt.offset != (bfd_vma) - 1)
4125 {
4126 sym_sec = globals->root.splt;
4127 sym_value = hash->root.plt.offset;
4128 if (sym_sec->output_section != NULL)
4129 destination = (sym_value
4130 + sym_sec->output_offset
4131 +
4132 sym_sec->output_section->vma);
4133 }
4134 else
4135 continue;
4136 }
4137 else
4138 {
4139 bfd_set_error (bfd_error_bad_value);
4140 goto error_ret_free_internal;
4141 }
4142 st_type = ELF_ST_TYPE (hash->root.type);
4143 sym_name = hash->root.root.root.string;
4144 }
4145
4146 /* Determine what (if any) linker stub is needed. */
4147 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4148 st_type, destination);
4149 if (stub_type == aarch64_stub_none)
4150 continue;
4151
4152 /* Support for grouping stub sections. */
4153 id_sec = htab->stub_group[section->id].link_sec;
4154
4155 /* Get the name of this stub. */
4156 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4157 irela);
4158 if (!stub_name)
4159 goto error_ret_free_internal;
4160
4161 stub_entry =
4162 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4163 stub_name, FALSE, FALSE);
4164 if (stub_entry != NULL)
4165 {
4166 /* The proper stub has already been created. */
4167 free (stub_name);
4168 continue;
4169 }
4170
4171 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4172 (stub_name, section, htab);
4173 if (stub_entry == NULL)
4174 {
4175 free (stub_name);
4176 goto error_ret_free_internal;
4177 }
4178
4179 stub_entry->target_value = sym_value + irela->r_addend;
4180 stub_entry->target_section = sym_sec;
4181 stub_entry->stub_type = stub_type;
4182 stub_entry->h = hash;
4183 stub_entry->st_type = st_type;
4184
4185 if (sym_name == NULL)
4186 sym_name = "unnamed";
4187 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4188 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4189 if (stub_entry->output_name == NULL)
4190 {
4191 free (stub_name);
4192 goto error_ret_free_internal;
4193 }
4194
4195 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4196 sym_name);
4197
4198 stub_changed = TRUE;
4199 }
4200
4201 /* We're done with the internal relocs, free them. */
4202 if (elf_section_data (section)->relocs == NULL)
4203 free (internal_relocs);
4204 }
4205 }
4206
4207 if (!stub_changed)
4208 break;
4209
4210 _bfd_aarch64_resize_stubs (htab);
4211
4212 /* Ask the linker to do its stuff. */
4213 (*htab->layout_sections_again) ();
4214 stub_changed = FALSE;
4215 }
4216
4217 return TRUE;
4218
4219 error_ret_free_local:
4220 return FALSE;
4221 }
4222
4223 /* Build all the stubs associated with the current output file. The
4224 stubs are kept in a hash table attached to the main linker hash
4225 table. We also set up the .plt entries for statically linked PIC
4226 functions here. This function is called via aarch64_elf_finish in the
4227 linker. */
4228
4229 bfd_boolean
4230 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4231 {
4232 asection *stub_sec;
4233 struct bfd_hash_table *table;
4234 struct elf_aarch64_link_hash_table *htab;
4235
4236 htab = elf_aarch64_hash_table (info);
4237
4238 for (stub_sec = htab->stub_bfd->sections;
4239 stub_sec != NULL; stub_sec = stub_sec->next)
4240 {
4241 bfd_size_type size;
4242
4243 /* Ignore non-stub sections. */
4244 if (!strstr (stub_sec->name, STUB_SUFFIX))
4245 continue;
4246
4247 /* Allocate memory to hold the linker stubs. */
4248 size = stub_sec->size;
4249 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4250 if (stub_sec->contents == NULL && size != 0)
4251 return FALSE;
4252 stub_sec->size = 0;
4253
4254 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4255 stub_sec->size += 4;
4256 }
4257
4258 /* Build the stubs as directed by the stub hash table. */
4259 table = &htab->stub_hash_table;
4260 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4261
4262 return TRUE;
4263 }
4264
4265
4266 /* Add an entry to the code/data map for section SEC. */
4267
4268 static void
4269 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4270 {
4271 struct _aarch64_elf_section_data *sec_data =
4272 elf_aarch64_section_data (sec);
4273 unsigned int newidx;
4274
4275 if (sec_data->map == NULL)
4276 {
4277 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4278 sec_data->mapcount = 0;
4279 sec_data->mapsize = 1;
4280 }
4281
4282 newidx = sec_data->mapcount++;
4283
4284 if (sec_data->mapcount > sec_data->mapsize)
4285 {
4286 sec_data->mapsize *= 2;
4287 sec_data->map = bfd_realloc_or_free
4288 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4289 }
4290
4291 if (sec_data->map)
4292 {
4293 sec_data->map[newidx].vma = vma;
4294 sec_data->map[newidx].type = type;
4295 }
4296 }
4297
4298
4299 /* Initialise maps of insn/data for input BFDs. */
4300 void
4301 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4302 {
4303 Elf_Internal_Sym *isymbuf;
4304 Elf_Internal_Shdr *hdr;
4305 unsigned int i, localsyms;
4306
4307 /* Make sure that we are dealing with an AArch64 elf binary. */
4308 if (!is_aarch64_elf (abfd))
4309 return;
4310
4311 if ((abfd->flags & DYNAMIC) != 0)
4312 return;
4313
4314 hdr = &elf_symtab_hdr (abfd);
4315 localsyms = hdr->sh_info;
4316
4317 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4318 should contain the number of local symbols, which should come before any
4319 global symbols. Mapping symbols are always local. */
4320 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4321
4322 /* No internal symbols read? Skip this BFD. */
4323 if (isymbuf == NULL)
4324 return;
4325
4326 for (i = 0; i < localsyms; i++)
4327 {
4328 Elf_Internal_Sym *isym = &isymbuf[i];
4329 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4330 const char *name;
4331
4332 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4333 {
4334 name = bfd_elf_string_from_elf_section (abfd,
4335 hdr->sh_link,
4336 isym->st_name);
4337
4338 if (bfd_is_aarch64_special_symbol_name
4339 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4340 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4341 }
4342 }
4343 }
4344
4345 /* Set option values needed during linking. */
4346 void
4347 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4348 struct bfd_link_info *link_info,
4349 int no_enum_warn,
4350 int no_wchar_warn, int pic_veneer,
4351 int fix_erratum_835769,
4352 int fix_erratum_843419,
4353 int no_apply_dynamic_relocs)
4354 {
4355 struct elf_aarch64_link_hash_table *globals;
4356
4357 globals = elf_aarch64_hash_table (link_info);
4358 globals->pic_veneer = pic_veneer;
4359 globals->fix_erratum_835769 = fix_erratum_835769;
4360 globals->fix_erratum_843419 = fix_erratum_843419;
4361 globals->fix_erratum_843419_adr = TRUE;
4362 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4363
4364 BFD_ASSERT (is_aarch64_elf (output_bfd));
4365 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4366 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4367 }
4368
4369 static bfd_vma
4370 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4371 struct elf_aarch64_link_hash_table
4372 *globals, struct bfd_link_info *info,
4373 bfd_vma value, bfd *output_bfd,
4374 bfd_boolean *unresolved_reloc_p)
4375 {
4376 bfd_vma off = (bfd_vma) - 1;
4377 asection *basegot = globals->root.sgot;
4378 bfd_boolean dyn = globals->root.dynamic_sections_created;
4379
4380 if (h != NULL)
4381 {
4382 BFD_ASSERT (basegot != NULL);
4383 off = h->got.offset;
4384 BFD_ASSERT (off != (bfd_vma) - 1);
4385 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4386 || (bfd_link_pic (info)
4387 && SYMBOL_REFERENCES_LOCAL (info, h))
4388 || (ELF_ST_VISIBILITY (h->other)
4389 && h->root.type == bfd_link_hash_undefweak))
4390 {
4391 /* This is actually a static link, or it is a -Bsymbolic link
4392 and the symbol is defined locally. We must initialize this
4393 entry in the global offset table. Since the offset must
4394 always be a multiple of 8 (4 in the case of ILP32), we use
4395 the least significant bit to record whether we have
4396 initialized it already.
4397 When doing a dynamic link, we create a .rel(a).got relocation
4398 entry to initialize the value. This is done in the
4399 finish_dynamic_symbol routine. */
4400 if ((off & 1) != 0)
4401 off &= ~1;
4402 else
4403 {
4404 bfd_put_NN (output_bfd, value, basegot->contents + off);
4405 h->got.offset |= 1;
4406 }
4407 }
4408 else
4409 *unresolved_reloc_p = FALSE;
4410
4411 off = off + basegot->output_section->vma + basegot->output_offset;
4412 }
4413
4414 return off;
4415 }
4416
4417 /* Change R_TYPE to a more efficient access model where possible,
4418 return the new reloc type. */
4419
4420 static bfd_reloc_code_real_type
4421 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4422 struct elf_link_hash_entry *h)
4423 {
4424 bfd_boolean is_local = h == NULL;
4425
4426 switch (r_type)
4427 {
4428 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4429 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4430 return (is_local
4431 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4432 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4433
4434 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4435 return (is_local
4436 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4437 : r_type);
4438
4439 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4440 return (is_local
4441 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4442 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4443
4444 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4445 return (is_local
4446 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4447 : BFD_RELOC_AARCH64_NONE);
4448
4449 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4450 return (is_local
4451 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4452 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4453
4454 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4455 return (is_local
4456 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4457 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4458
4459 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4460 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4461 return (is_local
4462 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4463 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4464
4465 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4466 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4467
4468 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4469 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4470
4471 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4472 return r_type;
4473
4474 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4475 return (is_local
4476 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4477 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4478
4479 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4480 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4481 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4482 /* Instructions with these relocations will become NOPs. */
4483 return BFD_RELOC_AARCH64_NONE;
4484
4485 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4486 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4487 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4488 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4489
4490 #if ARCH_SIZE == 64
4491 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4492 return is_local
4493 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4494 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4495
4496 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4497 return is_local
4498 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4499 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4500 #endif
4501
4502 default:
4503 break;
4504 }
4505
4506 return r_type;
4507 }
4508
4509 static unsigned int
4510 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4511 {
4512 switch (r_type)
4513 {
4514 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4515 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4516 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4517 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4518 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4519 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4520 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4521 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4522 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4523 return GOT_NORMAL;
4524
4525 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4526 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4527 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4528 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4529 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4530 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4531 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4532 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4533 return GOT_TLS_GD;
4534
4535 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4536 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4537 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4538 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4539 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4540 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4541 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4542 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4543 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4544 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4545 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4546 return GOT_TLSDESC_GD;
4547
4548 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4549 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4550 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4551 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4552 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4553 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4554 return GOT_TLS_IE;
4555
4556 default:
4557 break;
4558 }
4559 return GOT_UNKNOWN;
4560 }
4561
4562 static bfd_boolean
4563 aarch64_can_relax_tls (bfd *input_bfd,
4564 struct bfd_link_info *info,
4565 bfd_reloc_code_real_type r_type,
4566 struct elf_link_hash_entry *h,
4567 unsigned long r_symndx)
4568 {
4569 unsigned int symbol_got_type;
4570 unsigned int reloc_got_type;
4571
4572 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4573 return FALSE;
4574
4575 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4576 reloc_got_type = aarch64_reloc_got_type (r_type);
4577
4578 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4579 return TRUE;
4580
4581 if (bfd_link_pic (info))
4582 return FALSE;
4583
4584 if (h && h->root.type == bfd_link_hash_undefweak)
4585 return FALSE;
4586
4587 return TRUE;
4588 }
4589
4590 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4591 enumerator. */
4592
4593 static bfd_reloc_code_real_type
4594 aarch64_tls_transition (bfd *input_bfd,
4595 struct bfd_link_info *info,
4596 unsigned int r_type,
4597 struct elf_link_hash_entry *h,
4598 unsigned long r_symndx)
4599 {
4600 bfd_reloc_code_real_type bfd_r_type
4601 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4602
4603 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4604 return bfd_r_type;
4605
4606 return aarch64_tls_transition_without_check (bfd_r_type, h);
4607 }
4608
4609 /* Return the base VMA address which should be subtracted from real addresses
4610 when resolving R_AARCH64_TLS_DTPREL relocation. */
4611
4612 static bfd_vma
4613 dtpoff_base (struct bfd_link_info *info)
4614 {
4615 /* If tls_sec is NULL, we should have signalled an error already. */
4616 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4617 return elf_hash_table (info)->tls_sec->vma;
4618 }
4619
4620 /* Return the base VMA address which should be subtracted from real addresses
4621 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4622
4623 static bfd_vma
4624 tpoff_base (struct bfd_link_info *info)
4625 {
4626 struct elf_link_hash_table *htab = elf_hash_table (info);
4627
4628 /* If tls_sec is NULL, we should have signalled an error already. */
4629 BFD_ASSERT (htab->tls_sec != NULL);
4630
4631 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4632 htab->tls_sec->alignment_power);
4633 return htab->tls_sec->vma - base;
4634 }
4635
4636 static bfd_vma *
4637 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4638 unsigned long r_symndx)
4639 {
4640 /* Calculate the address of the GOT entry for symbol
4641 referred to in h. */
4642 if (h != NULL)
4643 return &h->got.offset;
4644 else
4645 {
4646 /* local symbol */
4647 struct elf_aarch64_local_symbol *l;
4648
4649 l = elf_aarch64_locals (input_bfd);
4650 return &l[r_symndx].got_offset;
4651 }
4652 }
4653
4654 static void
4655 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4656 unsigned long r_symndx)
4657 {
4658 bfd_vma *p;
4659 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4660 *p |= 1;
4661 }
4662
4663 static int
4664 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4665 unsigned long r_symndx)
4666 {
4667 bfd_vma value;
4668 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4669 return value & 1;
4670 }
4671
4672 static bfd_vma
4673 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4674 unsigned long r_symndx)
4675 {
4676 bfd_vma value;
4677 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4678 value &= ~1;
4679 return value;
4680 }
4681
4682 static bfd_vma *
4683 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4684 unsigned long r_symndx)
4685 {
4686 /* Calculate the address of the GOT entry for symbol
4687 referred to in h. */
4688 if (h != NULL)
4689 {
4690 struct elf_aarch64_link_hash_entry *eh;
4691 eh = (struct elf_aarch64_link_hash_entry *) h;
4692 return &eh->tlsdesc_got_jump_table_offset;
4693 }
4694 else
4695 {
4696 /* local symbol */
4697 struct elf_aarch64_local_symbol *l;
4698
4699 l = elf_aarch64_locals (input_bfd);
4700 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4701 }
4702 }
4703
4704 static void
4705 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4706 unsigned long r_symndx)
4707 {
4708 bfd_vma *p;
4709 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4710 *p |= 1;
4711 }
4712
4713 static int
4714 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4715 struct elf_link_hash_entry *h,
4716 unsigned long r_symndx)
4717 {
4718 bfd_vma value;
4719 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4720 return value & 1;
4721 }
4722
4723 static bfd_vma
4724 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4725 unsigned long r_symndx)
4726 {
4727 bfd_vma value;
4728 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4729 value &= ~1;
4730 return value;
4731 }
4732
4733 /* Data for make_branch_to_erratum_835769_stub(). */
4734
4735 struct erratum_835769_branch_to_stub_data
4736 {
4737 struct bfd_link_info *info;
4738 asection *output_section;
4739 bfd_byte *contents;
4740 };
4741
4742 /* Helper to insert branches to erratum 835769 stubs in the right
4743 places for a particular section. */
4744
4745 static bfd_boolean
4746 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4747 void *in_arg)
4748 {
4749 struct elf_aarch64_stub_hash_entry *stub_entry;
4750 struct erratum_835769_branch_to_stub_data *data;
4751 bfd_byte *contents;
4752 unsigned long branch_insn = 0;
4753 bfd_vma veneered_insn_loc, veneer_entry_loc;
4754 bfd_signed_vma branch_offset;
4755 unsigned int target;
4756 bfd *abfd;
4757
4758 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4759 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4760
4761 if (stub_entry->target_section != data->output_section
4762 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4763 return TRUE;
4764
4765 contents = data->contents;
4766 veneered_insn_loc = stub_entry->target_section->output_section->vma
4767 + stub_entry->target_section->output_offset
4768 + stub_entry->target_value;
4769 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4770 + stub_entry->stub_sec->output_offset
4771 + stub_entry->stub_offset;
4772 branch_offset = veneer_entry_loc - veneered_insn_loc;
4773
4774 abfd = stub_entry->target_section->owner;
4775 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4776 _bfd_error_handler
4777 (_("%B: error: Erratum 835769 stub out "
4778 "of range (input file too large)"), abfd);
4779
4780 target = stub_entry->target_value;
4781 branch_insn = 0x14000000;
4782 branch_offset >>= 2;
4783 branch_offset &= 0x3ffffff;
4784 branch_insn |= branch_offset;
4785 bfd_putl32 (branch_insn, &contents[target]);
4786
4787 return TRUE;
4788 }
4789
4790
4791 static bfd_boolean
4792 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4793 void *in_arg)
4794 {
4795 struct elf_aarch64_stub_hash_entry *stub_entry
4796 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4797 struct erratum_835769_branch_to_stub_data *data
4798 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4799 struct bfd_link_info *info;
4800 struct elf_aarch64_link_hash_table *htab;
4801 bfd_byte *contents;
4802 asection *section;
4803 bfd *abfd;
4804 bfd_vma place;
4805 uint32_t insn;
4806
4807 info = data->info;
4808 contents = data->contents;
4809 section = data->output_section;
4810
4811 htab = elf_aarch64_hash_table (info);
4812
4813 if (stub_entry->target_section != section
4814 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4815 return TRUE;
4816
4817 insn = bfd_getl32 (contents + stub_entry->target_value);
4818 bfd_putl32 (insn,
4819 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4820
4821 place = (section->output_section->vma + section->output_offset
4822 + stub_entry->adrp_offset);
4823 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4824
4825 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4826 abort ();
4827
4828 bfd_signed_vma imm =
4829 (_bfd_aarch64_sign_extend
4830 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4831 - (place & 0xfff));
4832
4833 if (htab->fix_erratum_843419_adr
4834 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4835 {
4836 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4837 | AARCH64_RT (insn));
4838 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4839 }
4840 else
4841 {
4842 bfd_vma veneered_insn_loc;
4843 bfd_vma veneer_entry_loc;
4844 bfd_signed_vma branch_offset;
4845 uint32_t branch_insn;
4846
4847 veneered_insn_loc = stub_entry->target_section->output_section->vma
4848 + stub_entry->target_section->output_offset
4849 + stub_entry->target_value;
4850 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4851 + stub_entry->stub_sec->output_offset
4852 + stub_entry->stub_offset;
4853 branch_offset = veneer_entry_loc - veneered_insn_loc;
4854
4855 abfd = stub_entry->target_section->owner;
4856 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4857 _bfd_error_handler
4858 (_("%B: error: Erratum 843419 stub out "
4859 "of range (input file too large)"), abfd);
4860
4861 branch_insn = 0x14000000;
4862 branch_offset >>= 2;
4863 branch_offset &= 0x3ffffff;
4864 branch_insn |= branch_offset;
4865 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4866 }
4867 return TRUE;
4868 }
4869
4870
4871 static bfd_boolean
4872 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4873 struct bfd_link_info *link_info,
4874 asection *sec,
4875 bfd_byte *contents)
4876
4877 {
4878 struct elf_aarch64_link_hash_table *globals =
4879 elf_aarch64_hash_table (link_info);
4880
4881 if (globals == NULL)
4882 return FALSE;
4883
4884 /* Fix code to point to erratum 835769 stubs. */
4885 if (globals->fix_erratum_835769)
4886 {
4887 struct erratum_835769_branch_to_stub_data data;
4888
4889 data.info = link_info;
4890 data.output_section = sec;
4891 data.contents = contents;
4892 bfd_hash_traverse (&globals->stub_hash_table,
4893 make_branch_to_erratum_835769_stub, &data);
4894 }
4895
4896 if (globals->fix_erratum_843419)
4897 {
4898 struct erratum_835769_branch_to_stub_data data;
4899
4900 data.info = link_info;
4901 data.output_section = sec;
4902 data.contents = contents;
4903 bfd_hash_traverse (&globals->stub_hash_table,
4904 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4905 }
4906
4907 return FALSE;
4908 }
4909
4910 /* Perform a relocation as part of a final link. The input relocation type
4911 should be TLS relaxed. */
4912
4913 static bfd_reloc_status_type
4914 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4915 bfd *input_bfd,
4916 bfd *output_bfd,
4917 asection *input_section,
4918 bfd_byte *contents,
4919 Elf_Internal_Rela *rel,
4920 bfd_vma value,
4921 struct bfd_link_info *info,
4922 asection *sym_sec,
4923 struct elf_link_hash_entry *h,
4924 bfd_boolean *unresolved_reloc_p,
4925 bfd_boolean save_addend,
4926 bfd_vma *saved_addend,
4927 Elf_Internal_Sym *sym)
4928 {
4929 Elf_Internal_Shdr *symtab_hdr;
4930 unsigned int r_type = howto->type;
4931 bfd_reloc_code_real_type bfd_r_type
4932 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4933 unsigned long r_symndx;
4934 bfd_byte *hit_data = contents + rel->r_offset;
4935 bfd_vma place, off;
4936 bfd_signed_vma signed_addend;
4937 struct elf_aarch64_link_hash_table *globals;
4938 bfd_boolean weak_undef_p;
4939 asection *base_got;
4940
4941 globals = elf_aarch64_hash_table (info);
4942
4943 symtab_hdr = &elf_symtab_hdr (input_bfd);
4944
4945 BFD_ASSERT (is_aarch64_elf (input_bfd));
4946
4947 r_symndx = ELFNN_R_SYM (rel->r_info);
4948
4949 place = input_section->output_section->vma
4950 + input_section->output_offset + rel->r_offset;
4951
4952 /* Get addend, accumulating the addend for consecutive relocs
4953 which refer to the same offset. */
4954 signed_addend = saved_addend ? *saved_addend : 0;
4955 signed_addend += rel->r_addend;
4956
4957 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4958 : bfd_is_und_section (sym_sec));
4959
4960 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4961 it here if it is defined in a non-shared object. */
4962 if (h != NULL
4963 && h->type == STT_GNU_IFUNC
4964 && h->def_regular)
4965 {
4966 asection *plt;
4967 const char *name;
4968 bfd_vma addend = 0;
4969
4970 if ((input_section->flags & SEC_ALLOC) == 0
4971 || h->plt.offset == (bfd_vma) -1)
4972 abort ();
4973
4974 /* STT_GNU_IFUNC symbol must go through PLT. */
4975 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4976 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4977
4978 switch (bfd_r_type)
4979 {
4980 default:
4981 if (h->root.root.string)
4982 name = h->root.root.string;
4983 else
4984 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4985 NULL);
4986 _bfd_error_handler
4987 /* xgettext:c-format */
4988 (_("%B: relocation %s against STT_GNU_IFUNC "
4989 "symbol `%s' isn't handled by %s"), input_bfd,
4990 howto->name, name, __FUNCTION__);
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993
4994 case BFD_RELOC_AARCH64_NN:
4995 if (rel->r_addend != 0)
4996 {
4997 if (h->root.root.string)
4998 name = h->root.root.string;
4999 else
5000 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5001 sym, NULL);
5002 _bfd_error_handler
5003 /* xgettext:c-format */
5004 (_("%B: relocation %s against STT_GNU_IFUNC "
5005 "symbol `%s' has non-zero addend: %d"),
5006 input_bfd, howto->name, name, rel->r_addend);
5007 bfd_set_error (bfd_error_bad_value);
5008 return FALSE;
5009 }
5010
5011 /* Generate dynamic relocation only when there is a
5012 non-GOT reference in a shared object. */
5013 if (bfd_link_pic (info) && h->non_got_ref)
5014 {
5015 Elf_Internal_Rela outrel;
5016 asection *sreloc;
5017
5018 /* Need a dynamic relocation to get the real function
5019 address. */
5020 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5021 info,
5022 input_section,
5023 rel->r_offset);
5024 if (outrel.r_offset == (bfd_vma) -1
5025 || outrel.r_offset == (bfd_vma) -2)
5026 abort ();
5027
5028 outrel.r_offset += (input_section->output_section->vma
5029 + input_section->output_offset);
5030
5031 if (h->dynindx == -1
5032 || h->forced_local
5033 || bfd_link_executable (info))
5034 {
5035 /* This symbol is resolved locally. */
5036 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5037 outrel.r_addend = (h->root.u.def.value
5038 + h->root.u.def.section->output_section->vma
5039 + h->root.u.def.section->output_offset);
5040 }
5041 else
5042 {
5043 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5044 outrel.r_addend = 0;
5045 }
5046
5047 sreloc = globals->root.irelifunc;
5048 elf_append_rela (output_bfd, sreloc, &outrel);
5049
5050 /* If this reloc is against an external symbol, we
5051 do not want to fiddle with the addend. Otherwise,
5052 we need to include the symbol value so that it
5053 becomes an addend for the dynamic reloc. For an
5054 internal symbol, we have updated addend. */
5055 return bfd_reloc_ok;
5056 }
5057 /* FALLTHROUGH */
5058 case BFD_RELOC_AARCH64_CALL26:
5059 case BFD_RELOC_AARCH64_JUMP26:
5060 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5061 signed_addend,
5062 weak_undef_p);
5063 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5064 howto, value);
5065 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5066 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5067 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5068 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5069 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5070 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5071 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5072 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5073 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5074 base_got = globals->root.sgot;
5075 off = h->got.offset;
5076
5077 if (base_got == NULL)
5078 abort ();
5079
5080 if (off == (bfd_vma) -1)
5081 {
5082 bfd_vma plt_index;
5083
5084 /* We can't use h->got.offset here to save state, or
5085 even just remember the offset, as finish_dynamic_symbol
5086 would use that as offset into .got. */
5087
5088 if (globals->root.splt != NULL)
5089 {
5090 plt_index = ((h->plt.offset - globals->plt_header_size) /
5091 globals->plt_entry_size);
5092 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5093 base_got = globals->root.sgotplt;
5094 }
5095 else
5096 {
5097 plt_index = h->plt.offset / globals->plt_entry_size;
5098 off = plt_index * GOT_ENTRY_SIZE;
5099 base_got = globals->root.igotplt;
5100 }
5101
5102 if (h->dynindx == -1
5103 || h->forced_local
5104 || info->symbolic)
5105 {
5106 /* This references the local definition. We must
5107 initialize this entry in the global offset table.
5108 Since the offset must always be a multiple of 8,
5109 we use the least significant bit to record
5110 whether we have initialized it already.
5111
5112 When doing a dynamic link, we create a .rela.got
5113 relocation entry to initialize the value. This
5114 is done in the finish_dynamic_symbol routine. */
5115 if ((off & 1) != 0)
5116 off &= ~1;
5117 else
5118 {
5119 bfd_put_NN (output_bfd, value,
5120 base_got->contents + off);
5121 /* Note that this is harmless as -1 | 1 still is -1. */
5122 h->got.offset |= 1;
5123 }
5124 }
5125 value = (base_got->output_section->vma
5126 + base_got->output_offset + off);
5127 }
5128 else
5129 value = aarch64_calculate_got_entry_vma (h, globals, info,
5130 value, output_bfd,
5131 unresolved_reloc_p);
5132
5133 switch (bfd_r_type)
5134 {
5135 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5136 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5137 addend = (globals->root.sgot->output_section->vma
5138 + globals->root.sgot->output_offset);
5139 break;
5140 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5141 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5142 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5143 value = (value - globals->root.sgot->output_section->vma
5144 - globals->root.sgot->output_offset);
5145 default:
5146 break;
5147 }
5148
5149 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5150 addend, weak_undef_p);
5151 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5152 case BFD_RELOC_AARCH64_ADD_LO12:
5153 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5154 break;
5155 }
5156 }
5157
5158 switch (bfd_r_type)
5159 {
5160 case BFD_RELOC_AARCH64_NONE:
5161 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5162 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5163 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5164 *unresolved_reloc_p = FALSE;
5165 return bfd_reloc_ok;
5166
5167 case BFD_RELOC_AARCH64_NN:
5168
5169 /* When generating a shared object or relocatable executable, these
5170 relocations are copied into the output file to be resolved at
5171 run time. */
5172 if (((bfd_link_pic (info)
5173 || globals->root.is_relocatable_executable)
5174 && (input_section->flags & SEC_ALLOC)
5175 && (h == NULL
5176 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5177 || h->root.type != bfd_link_hash_undefweak))
5178 /* Or we are creating an executable, we may need to keep relocations
5179 for symbols satisfied by a dynamic library if we manage to avoid
5180 copy relocs for the symbol. */
5181 || (ELIMINATE_COPY_RELOCS
5182 && !bfd_link_pic (info)
5183 && h != NULL
5184 && (input_section->flags & SEC_ALLOC)
5185 && h->dynindx != -1
5186 && !h->non_got_ref
5187 && ((h->def_dynamic
5188 && !h->def_regular)
5189 || h->root.type == bfd_link_hash_undefweak
5190 || h->root.type == bfd_link_hash_undefined)))
5191 {
5192 Elf_Internal_Rela outrel;
5193 bfd_byte *loc;
5194 bfd_boolean skip, relocate;
5195 asection *sreloc;
5196
5197 *unresolved_reloc_p = FALSE;
5198
5199 skip = FALSE;
5200 relocate = FALSE;
5201
5202 outrel.r_addend = signed_addend;
5203 outrel.r_offset =
5204 _bfd_elf_section_offset (output_bfd, info, input_section,
5205 rel->r_offset);
5206 if (outrel.r_offset == (bfd_vma) - 1)
5207 skip = TRUE;
5208 else if (outrel.r_offset == (bfd_vma) - 2)
5209 {
5210 skip = TRUE;
5211 relocate = TRUE;
5212 }
5213
5214 outrel.r_offset += (input_section->output_section->vma
5215 + input_section->output_offset);
5216
5217 if (skip)
5218 memset (&outrel, 0, sizeof outrel);
5219 else if (h != NULL
5220 && h->dynindx != -1
5221 && (!bfd_link_pic (info)
5222 || !(bfd_link_pie (info)
5223 || SYMBOLIC_BIND (info, h))
5224 || !h->def_regular))
5225 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5226 else
5227 {
5228 int symbol;
5229
5230 /* On SVR4-ish systems, the dynamic loader cannot
5231 relocate the text and data segments independently,
5232 so the symbol does not matter. */
5233 symbol = 0;
5234 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5235 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5236 outrel.r_addend += value;
5237 }
5238
5239 sreloc = elf_section_data (input_section)->sreloc;
5240 if (sreloc == NULL || sreloc->contents == NULL)
5241 return bfd_reloc_notsupported;
5242
5243 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5244 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5245
5246 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5247 {
5248 /* Sanity to check that we have previously allocated
5249 sufficient space in the relocation section for the
5250 number of relocations we actually want to emit. */
5251 abort ();
5252 }
5253
5254 /* If this reloc is against an external symbol, we do not want to
5255 fiddle with the addend. Otherwise, we need to include the symbol
5256 value so that it becomes an addend for the dynamic reloc. */
5257 if (!relocate)
5258 return bfd_reloc_ok;
5259
5260 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5261 contents, rel->r_offset, value,
5262 signed_addend);
5263 }
5264 else
5265 value += signed_addend;
5266 break;
5267
5268 case BFD_RELOC_AARCH64_CALL26:
5269 case BFD_RELOC_AARCH64_JUMP26:
5270 {
5271 asection *splt = globals->root.splt;
5272 bfd_boolean via_plt_p =
5273 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5274
5275 /* A call to an undefined weak symbol is converted to a jump to
5276 the next instruction unless a PLT entry will be created.
5277 The jump to the next instruction is optimized as a NOP.
5278 Do the same for local undefined symbols. */
5279 if (weak_undef_p && ! via_plt_p)
5280 {
5281 bfd_putl32 (INSN_NOP, hit_data);
5282 return bfd_reloc_ok;
5283 }
5284
5285 /* If the call goes through a PLT entry, make sure to
5286 check distance to the right destination address. */
5287 if (via_plt_p)
5288 value = (splt->output_section->vma
5289 + splt->output_offset + h->plt.offset);
5290
5291 /* Check if a stub has to be inserted because the destination
5292 is too far away. */
5293 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5294
5295 /* If the branch destination is directed to plt stub, "value" will be
5296 the final destination, otherwise we should plus signed_addend, it may
5297 contain non-zero value, for example call to local function symbol
5298 which are turned into "sec_sym + sec_off", and sec_off is kept in
5299 signed_addend. */
5300 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5301 place))
5302 /* The target is out of reach, so redirect the branch to
5303 the local stub for this function. */
5304 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5305 rel, globals);
5306 if (stub_entry != NULL)
5307 {
5308 value = (stub_entry->stub_offset
5309 + stub_entry->stub_sec->output_offset
5310 + stub_entry->stub_sec->output_section->vma);
5311
5312 /* We have redirected the destination to stub entry address,
5313 so ignore any addend record in the original rela entry. */
5314 signed_addend = 0;
5315 }
5316 }
5317 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5318 signed_addend, weak_undef_p);
5319 *unresolved_reloc_p = FALSE;
5320 break;
5321
5322 case BFD_RELOC_AARCH64_16_PCREL:
5323 case BFD_RELOC_AARCH64_32_PCREL:
5324 case BFD_RELOC_AARCH64_64_PCREL:
5325 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5326 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5327 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5328 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5329 if (bfd_link_pic (info)
5330 && (input_section->flags & SEC_ALLOC) != 0
5331 && (input_section->flags & SEC_READONLY) != 0
5332 && !SYMBOL_REFERENCES_LOCAL (info, h))
5333 {
5334 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5335
5336 _bfd_error_handler
5337 /* xgettext:c-format */
5338 (_("%B: relocation %s against symbol `%s' which may bind "
5339 "externally can not be used when making a shared object; "
5340 "recompile with -fPIC"),
5341 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5342 h->root.root.string);
5343 bfd_set_error (bfd_error_bad_value);
5344 return FALSE;
5345 }
5346 /* Fall through. */
5347
5348 case BFD_RELOC_AARCH64_16:
5349 #if ARCH_SIZE == 64
5350 case BFD_RELOC_AARCH64_32:
5351 #endif
5352 case BFD_RELOC_AARCH64_ADD_LO12:
5353 case BFD_RELOC_AARCH64_BRANCH19:
5354 case BFD_RELOC_AARCH64_LDST128_LO12:
5355 case BFD_RELOC_AARCH64_LDST16_LO12:
5356 case BFD_RELOC_AARCH64_LDST32_LO12:
5357 case BFD_RELOC_AARCH64_LDST64_LO12:
5358 case BFD_RELOC_AARCH64_LDST8_LO12:
5359 case BFD_RELOC_AARCH64_MOVW_G0:
5360 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5361 case BFD_RELOC_AARCH64_MOVW_G0_S:
5362 case BFD_RELOC_AARCH64_MOVW_G1:
5363 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5364 case BFD_RELOC_AARCH64_MOVW_G1_S:
5365 case BFD_RELOC_AARCH64_MOVW_G2:
5366 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5367 case BFD_RELOC_AARCH64_MOVW_G2_S:
5368 case BFD_RELOC_AARCH64_MOVW_G3:
5369 case BFD_RELOC_AARCH64_TSTBR14:
5370 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5371 signed_addend, weak_undef_p);
5372 break;
5373
5374 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5375 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5376 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5377 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5378 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5379 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5380 if (globals->root.sgot == NULL)
5381 BFD_ASSERT (h != NULL);
5382
5383 if (h != NULL)
5384 {
5385 bfd_vma addend = 0;
5386 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5387 output_bfd,
5388 unresolved_reloc_p);
5389 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5390 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5391 addend = (globals->root.sgot->output_section->vma
5392 + globals->root.sgot->output_offset);
5393 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5394 addend, weak_undef_p);
5395 }
5396 else
5397 {
5398 bfd_vma addend = 0;
5399 struct elf_aarch64_local_symbol *locals
5400 = elf_aarch64_locals (input_bfd);
5401
5402 if (locals == NULL)
5403 {
5404 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5405 _bfd_error_handler
5406 /* xgettext:c-format */
5407 (_("%B: Local symbol descriptor table be NULL when applying "
5408 "relocation %s against local symbol"),
5409 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5410 abort ();
5411 }
5412
5413 off = symbol_got_offset (input_bfd, h, r_symndx);
5414 base_got = globals->root.sgot;
5415 bfd_vma got_entry_addr = (base_got->output_section->vma
5416 + base_got->output_offset + off);
5417
5418 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5419 {
5420 bfd_put_64 (output_bfd, value, base_got->contents + off);
5421
5422 if (bfd_link_pic (info))
5423 {
5424 asection *s;
5425 Elf_Internal_Rela outrel;
5426
5427 /* For local symbol, we have done absolute relocation in static
5428 linking stageh. While for share library, we need to update
5429 the content of GOT entry according to the share objects
5430 loading base address. So we need to generate a
5431 R_AARCH64_RELATIVE reloc for dynamic linker. */
5432 s = globals->root.srelgot;
5433 if (s == NULL)
5434 abort ();
5435
5436 outrel.r_offset = got_entry_addr;
5437 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5438 outrel.r_addend = value;
5439 elf_append_rela (output_bfd, s, &outrel);
5440 }
5441
5442 symbol_got_offset_mark (input_bfd, h, r_symndx);
5443 }
5444
5445 /* Update the relocation value to GOT entry addr as we have transformed
5446 the direct data access into indirect data access through GOT. */
5447 value = got_entry_addr;
5448
5449 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5450 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5451 addend = base_got->output_section->vma + base_got->output_offset;
5452
5453 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5454 addend, weak_undef_p);
5455 }
5456
5457 break;
5458
5459 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5460 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5461 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5462 if (h != NULL)
5463 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5464 output_bfd,
5465 unresolved_reloc_p);
5466 else
5467 {
5468 struct elf_aarch64_local_symbol *locals
5469 = elf_aarch64_locals (input_bfd);
5470
5471 if (locals == NULL)
5472 {
5473 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5474 _bfd_error_handler
5475 /* xgettext:c-format */
5476 (_("%B: Local symbol descriptor table be NULL when applying "
5477 "relocation %s against local symbol"),
5478 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5479 abort ();
5480 }
5481
5482 off = symbol_got_offset (input_bfd, h, r_symndx);
5483 base_got = globals->root.sgot;
5484 if (base_got == NULL)
5485 abort ();
5486
5487 bfd_vma got_entry_addr = (base_got->output_section->vma
5488 + base_got->output_offset + off);
5489
5490 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5491 {
5492 bfd_put_64 (output_bfd, value, base_got->contents + off);
5493
5494 if (bfd_link_pic (info))
5495 {
5496 asection *s;
5497 Elf_Internal_Rela outrel;
5498
5499 /* For local symbol, we have done absolute relocation in static
5500 linking stage. While for share library, we need to update
5501 the content of GOT entry according to the share objects
5502 loading base address. So we need to generate a
5503 R_AARCH64_RELATIVE reloc for dynamic linker. */
5504 s = globals->root.srelgot;
5505 if (s == NULL)
5506 abort ();
5507
5508 outrel.r_offset = got_entry_addr;
5509 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5510 outrel.r_addend = value;
5511 elf_append_rela (output_bfd, s, &outrel);
5512 }
5513
5514 symbol_got_offset_mark (input_bfd, h, r_symndx);
5515 }
5516 }
5517
5518 /* Update the relocation value to GOT entry addr as we have transformed
5519 the direct data access into indirect data access through GOT. */
5520 value = symbol_got_offset (input_bfd, h, r_symndx);
5521 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5522 0, weak_undef_p);
5523 *unresolved_reloc_p = FALSE;
5524 break;
5525
5526 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5527 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5528 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5529 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5530 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5531 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5532 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5533 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5534 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5535 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5536 if (globals->root.sgot == NULL)
5537 return bfd_reloc_notsupported;
5538
5539 value = (symbol_got_offset (input_bfd, h, r_symndx)
5540 + globals->root.sgot->output_section->vma
5541 + globals->root.sgot->output_offset);
5542
5543 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5544 0, weak_undef_p);
5545 *unresolved_reloc_p = FALSE;
5546 break;
5547
5548 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5549 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5550 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5551 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5552 if (globals->root.sgot == NULL)
5553 return bfd_reloc_notsupported;
5554
5555 value = symbol_got_offset (input_bfd, h, r_symndx);
5556 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5557 0, weak_undef_p);
5558 *unresolved_reloc_p = FALSE;
5559 break;
5560
5561 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5562 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5563 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5564 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5565 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5566 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5567 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5568 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5569 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5570 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5571 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5572 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5573 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5574 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5575 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5576 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5577 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5578 signed_addend - dtpoff_base (info),
5579 weak_undef_p);
5580 break;
5581
5582 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5583 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5584 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5585 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5586 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5587 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5588 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5589 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5590 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5591 signed_addend - tpoff_base (info),
5592 weak_undef_p);
5593 *unresolved_reloc_p = FALSE;
5594 break;
5595
5596 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5597 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5598 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5599 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5600 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5601 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5602 if (globals->root.sgot == NULL)
5603 return bfd_reloc_notsupported;
5604 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5605 + globals->root.sgotplt->output_section->vma
5606 + globals->root.sgotplt->output_offset
5607 + globals->sgotplt_jump_table_size);
5608
5609 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5610 0, weak_undef_p);
5611 *unresolved_reloc_p = FALSE;
5612 break;
5613
5614 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5615 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5616 if (globals->root.sgot == NULL)
5617 return bfd_reloc_notsupported;
5618
5619 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5620 + globals->root.sgotplt->output_section->vma
5621 + globals->root.sgotplt->output_offset
5622 + globals->sgotplt_jump_table_size);
5623
5624 value -= (globals->root.sgot->output_section->vma
5625 + globals->root.sgot->output_offset);
5626
5627 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5628 0, weak_undef_p);
5629 *unresolved_reloc_p = FALSE;
5630 break;
5631
5632 default:
5633 return bfd_reloc_notsupported;
5634 }
5635
5636 if (saved_addend)
5637 *saved_addend = value;
5638
5639 /* Only apply the final relocation in a sequence. */
5640 if (save_addend)
5641 return bfd_reloc_continue;
5642
5643 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5644 howto, value);
5645 }
5646
5647 /* LP64 and ILP32 operates on x- and w-registers respectively.
5648 Next definitions take into account the difference between
5649 corresponding machine codes. R means x-register if the target
5650 arch is LP64, and w-register if the target is ILP32. */
5651
5652 #if ARCH_SIZE == 64
5653 # define add_R0_R0 (0x91000000)
5654 # define add_R0_R0_R1 (0x8b000020)
5655 # define add_R0_R1 (0x91400020)
5656 # define ldr_R0 (0x58000000)
5657 # define ldr_R0_mask(i) (i & 0xffffffe0)
5658 # define ldr_R0_x0 (0xf9400000)
5659 # define ldr_hw_R0 (0xf2a00000)
5660 # define movk_R0 (0xf2800000)
5661 # define movz_R0 (0xd2a00000)
5662 # define movz_hw_R0 (0xd2c00000)
5663 #else /*ARCH_SIZE == 32 */
5664 # define add_R0_R0 (0x11000000)
5665 # define add_R0_R0_R1 (0x0b000020)
5666 # define add_R0_R1 (0x11400020)
5667 # define ldr_R0 (0x18000000)
5668 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5669 # define ldr_R0_x0 (0xb9400000)
5670 # define ldr_hw_R0 (0x72a00000)
5671 # define movk_R0 (0x72800000)
5672 # define movz_R0 (0x52a00000)
5673 # define movz_hw_R0 (0x52c00000)
5674 #endif
5675
5676 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5677 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5678 link.
5679
5680 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5681 is to then call final_link_relocate. Return other values in the
5682 case of error. */
5683
5684 static bfd_reloc_status_type
5685 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5686 bfd *input_bfd, bfd_byte *contents,
5687 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5688 {
5689 bfd_boolean is_local = h == NULL;
5690 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5691 unsigned long insn;
5692
5693 BFD_ASSERT (globals && input_bfd && contents && rel);
5694
5695 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5696 {
5697 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5698 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5699 if (is_local)
5700 {
5701 /* GD->LE relaxation:
5702 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5703 or
5704 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5705
5706 Where R is x for LP64, and w for ILP32. */
5707 bfd_putl32 (movz_R0, contents + rel->r_offset);
5708 return bfd_reloc_continue;
5709 }
5710 else
5711 {
5712 /* GD->IE relaxation:
5713 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5714 or
5715 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5716 */
5717 return bfd_reloc_continue;
5718 }
5719
5720 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5721 BFD_ASSERT (0);
5722 break;
5723
5724 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5725 if (is_local)
5726 {
5727 /* Tiny TLSDESC->LE relaxation:
5728 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5729 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5730 .tlsdesccall var
5731 blr x1 => nop
5732
5733 Where R is x for LP64, and w for ILP32. */
5734 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5735 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5736
5737 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5738 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5739 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5740
5741 bfd_putl32 (movz_R0, contents + rel->r_offset);
5742 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
5743 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5744 return bfd_reloc_continue;
5745 }
5746 else
5747 {
5748 /* Tiny TLSDESC->IE relaxation:
5749 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5750 adr x0, :tlsdesc:var => nop
5751 .tlsdesccall var
5752 blr x1 => nop
5753 */
5754 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5755 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5756
5757 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5758 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5759
5760 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5761 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5762 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5763 return bfd_reloc_continue;
5764 }
5765
5766 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5767 if (is_local)
5768 {
5769 /* Tiny GD->LE relaxation:
5770 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5771 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
5772 nop => add R0, R0, #:tprel_lo12_nc:x
5773
5774 Where R is x for LP64, and x for Ilp32. */
5775
5776 /* First kill the tls_get_addr reloc on the bl instruction. */
5777 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5778
5779 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5780 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
5781 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
5782
5783 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5784 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5785 rel[1].r_offset = rel->r_offset + 8;
5786
5787 /* Move the current relocation to the second instruction in
5788 the sequence. */
5789 rel->r_offset += 4;
5790 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5791 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5792 return bfd_reloc_continue;
5793 }
5794 else
5795 {
5796 /* Tiny GD->IE relaxation:
5797 adr x0, :tlsgd:var => ldr R0, :gottprel:var
5798 bl __tls_get_addr => mrs x1, tpidr_el0
5799 nop => add R0, R0, R1
5800
5801 Where R is x for LP64, and w for Ilp32. */
5802
5803 /* First kill the tls_get_addr reloc on the bl instruction. */
5804 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5805 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5806
5807 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5808 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5809 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5810 return bfd_reloc_continue;
5811 }
5812
5813 #if ARCH_SIZE == 64
5814 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5815 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5816 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5817 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5818
5819 if (is_local)
5820 {
5821 /* Large GD->LE relaxation:
5822 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5823 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5824 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5825 bl __tls_get_addr => mrs x1, tpidr_el0
5826 nop => add x0, x0, x1
5827 */
5828 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5829 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5830 rel[2].r_offset = rel->r_offset + 8;
5831
5832 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
5833 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
5834 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
5835 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5836 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5837 }
5838 else
5839 {
5840 /* Large GD->IE relaxation:
5841 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5842 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5843 add x0, gp, x0 => ldr x0, [gp, x0]
5844 bl __tls_get_addr => mrs x1, tpidr_el0
5845 nop => add x0, x0, x1
5846 */
5847 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5848 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5849 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
5850 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5851 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5852 }
5853 return bfd_reloc_continue;
5854
5855 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5856 return bfd_reloc_continue;
5857 #endif
5858
5859 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5860 return bfd_reloc_continue;
5861
5862 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5863 if (is_local)
5864 {
5865 /* GD->LE relaxation:
5866 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5867
5868 Where R is x for lp64 mode, and w for ILP32 mode. */
5869 bfd_putl32 (movk_R0, contents + rel->r_offset);
5870 return bfd_reloc_continue;
5871 }
5872 else
5873 {
5874 /* GD->IE relaxation:
5875 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
5876
5877 Where R is x for lp64 mode, and w for ILP32 mode. */
5878 insn = bfd_getl32 (contents + rel->r_offset);
5879 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5880 return bfd_reloc_continue;
5881 }
5882
5883 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5884 if (is_local)
5885 {
5886 /* GD->LE relaxation
5887 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
5888 bl __tls_get_addr => mrs x1, tpidr_el0
5889 nop => add R0, R1, R0
5890
5891 Where R is x for lp64 mode, and w for ILP32 mode. */
5892
5893 /* First kill the tls_get_addr reloc on the bl instruction. */
5894 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5895 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5896
5897 bfd_putl32 (movk_R0, contents + rel->r_offset);
5898 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5899 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5900 return bfd_reloc_continue;
5901 }
5902 else
5903 {
5904 /* GD->IE relaxation
5905 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
5906 BL __tls_get_addr => mrs x1, tpidr_el0
5907 R_AARCH64_CALL26
5908 NOP => add R0, R1, R0
5909
5910 Where R is x for lp64 mode, and w for ilp32 mode. */
5911
5912 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5913
5914 /* Remove the relocation on the BL instruction. */
5915 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5916
5917 /* We choose to fixup the BL and NOP instructions using the
5918 offset from the second relocation to allow flexibility in
5919 scheduling instructions between the ADD and BL. */
5920 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
5921 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5922 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
5923 return bfd_reloc_continue;
5924 }
5925
5926 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5927 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5928 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5929 /* GD->IE/LE relaxation:
5930 add x0, x0, #:tlsdesc_lo12:var => nop
5931 blr xd => nop
5932 */
5933 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5934 return bfd_reloc_ok;
5935
5936 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5937 if (is_local)
5938 {
5939 /* GD->LE relaxation:
5940 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
5941
5942 Where R is x for lp64 mode, and w for ILP32 mode. */
5943 bfd_putl32 (movk_R0, contents + rel->r_offset);
5944 return bfd_reloc_continue;
5945 }
5946 else
5947 {
5948 /* GD->IE relaxation:
5949 ldr xd, [gp, xn] => ldr R0, [gp, xn]
5950
5951 Where R is x for lp64 mode, and w for ILP32 mode. */
5952 insn = bfd_getl32 (contents + rel->r_offset);
5953 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5954 return bfd_reloc_ok;
5955 }
5956
5957 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5958 /* GD->LE relaxation:
5959 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
5960 GD->IE relaxation:
5961 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
5962
5963 Where R is x for lp64 mode, and w for ILP32 mode. */
5964 if (is_local)
5965 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
5966 return bfd_reloc_continue;
5967
5968 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5969 if (is_local)
5970 {
5971 /* GD->LE relaxation:
5972 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
5973
5974 Where R is x for lp64 mode, and w for ILP32 mode. */
5975 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
5976 return bfd_reloc_continue;
5977 }
5978 else
5979 {
5980 /* GD->IE relaxation:
5981 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
5982
5983 Where R is x for lp64 mode, and w for ILP32 mode. */
5984 insn = bfd_getl32 (contents + rel->r_offset);
5985 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
5986 return bfd_reloc_continue;
5987 }
5988
5989 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5990 /* IE->LE relaxation:
5991 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
5992
5993 Where R is x for lp64 mode, and w for ILP32 mode. */
5994 if (is_local)
5995 {
5996 insn = bfd_getl32 (contents + rel->r_offset);
5997 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
5998 }
5999 return bfd_reloc_continue;
6000
6001 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6002 /* IE->LE relaxation:
6003 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6004
6005 Where R is x for lp64 mode, and w for ILP32 mode. */
6006 if (is_local)
6007 {
6008 insn = bfd_getl32 (contents + rel->r_offset);
6009 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6010 }
6011 return bfd_reloc_continue;
6012
6013 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6014 /* LD->LE relaxation (tiny):
6015 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6016 bl __tls_get_addr => add R0, R0, TCB_SIZE
6017
6018 Where R is x for lp64 mode, and w for ilp32 mode. */
6019 if (is_local)
6020 {
6021 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6022 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6023 /* No need of CALL26 relocation for tls_get_addr. */
6024 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6025 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6026 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6027 contents + rel->r_offset + 4);
6028 return bfd_reloc_ok;
6029 }
6030 return bfd_reloc_continue;
6031
6032 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6033 /* LD->LE relaxation (small):
6034 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6035 */
6036 if (is_local)
6037 {
6038 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6039 return bfd_reloc_ok;
6040 }
6041 return bfd_reloc_continue;
6042
6043 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6044 /* LD->LE relaxation (small):
6045 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6046 bl __tls_get_addr => nop
6047
6048 Where R is x for lp64 mode, and w for ilp32 mode. */
6049 if (is_local)
6050 {
6051 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6052 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6053 /* No need of CALL26 relocation for tls_get_addr. */
6054 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6055 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6056 contents + rel->r_offset + 0);
6057 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6058 return bfd_reloc_ok;
6059 }
6060 return bfd_reloc_continue;
6061
6062 default:
6063 return bfd_reloc_continue;
6064 }
6065
6066 return bfd_reloc_ok;
6067 }
6068
6069 /* Relocate an AArch64 ELF section. */
6070
6071 static bfd_boolean
6072 elfNN_aarch64_relocate_section (bfd *output_bfd,
6073 struct bfd_link_info *info,
6074 bfd *input_bfd,
6075 asection *input_section,
6076 bfd_byte *contents,
6077 Elf_Internal_Rela *relocs,
6078 Elf_Internal_Sym *local_syms,
6079 asection **local_sections)
6080 {
6081 Elf_Internal_Shdr *symtab_hdr;
6082 struct elf_link_hash_entry **sym_hashes;
6083 Elf_Internal_Rela *rel;
6084 Elf_Internal_Rela *relend;
6085 const char *name;
6086 struct elf_aarch64_link_hash_table *globals;
6087 bfd_boolean save_addend = FALSE;
6088 bfd_vma addend = 0;
6089
6090 globals = elf_aarch64_hash_table (info);
6091
6092 symtab_hdr = &elf_symtab_hdr (input_bfd);
6093 sym_hashes = elf_sym_hashes (input_bfd);
6094
6095 rel = relocs;
6096 relend = relocs + input_section->reloc_count;
6097 for (; rel < relend; rel++)
6098 {
6099 unsigned int r_type;
6100 bfd_reloc_code_real_type bfd_r_type;
6101 bfd_reloc_code_real_type relaxed_bfd_r_type;
6102 reloc_howto_type *howto;
6103 unsigned long r_symndx;
6104 Elf_Internal_Sym *sym;
6105 asection *sec;
6106 struct elf_link_hash_entry *h;
6107 bfd_vma relocation;
6108 bfd_reloc_status_type r;
6109 arelent bfd_reloc;
6110 char sym_type;
6111 bfd_boolean unresolved_reloc = FALSE;
6112 char *error_message = NULL;
6113
6114 r_symndx = ELFNN_R_SYM (rel->r_info);
6115 r_type = ELFNN_R_TYPE (rel->r_info);
6116
6117 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6118 howto = bfd_reloc.howto;
6119
6120 if (howto == NULL)
6121 {
6122 /* xgettext:c-format */
6123 _bfd_error_handler
6124 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6125 input_bfd, r_type, input_section);
6126 return FALSE;
6127 }
6128 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6129
6130 h = NULL;
6131 sym = NULL;
6132 sec = NULL;
6133
6134 if (r_symndx < symtab_hdr->sh_info)
6135 {
6136 sym = local_syms + r_symndx;
6137 sym_type = ELFNN_ST_TYPE (sym->st_info);
6138 sec = local_sections[r_symndx];
6139
6140 /* An object file might have a reference to a local
6141 undefined symbol. This is a daft object file, but we
6142 should at least do something about it. */
6143 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6144 && bfd_is_und_section (sec)
6145 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6146 (*info->callbacks->undefined_symbol)
6147 (info, bfd_elf_string_from_elf_section
6148 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6149 input_bfd, input_section, rel->r_offset, TRUE);
6150
6151 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6152
6153 /* Relocate against local STT_GNU_IFUNC symbol. */
6154 if (!bfd_link_relocatable (info)
6155 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6156 {
6157 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6158 rel, FALSE);
6159 if (h == NULL)
6160 abort ();
6161
6162 /* Set STT_GNU_IFUNC symbol value. */
6163 h->root.u.def.value = sym->st_value;
6164 h->root.u.def.section = sec;
6165 }
6166 }
6167 else
6168 {
6169 bfd_boolean warned, ignored;
6170
6171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6172 r_symndx, symtab_hdr, sym_hashes,
6173 h, sec, relocation,
6174 unresolved_reloc, warned, ignored);
6175
6176 sym_type = h->type;
6177 }
6178
6179 if (sec != NULL && discarded_section (sec))
6180 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6181 rel, 1, relend, howto, 0, contents);
6182
6183 if (bfd_link_relocatable (info))
6184 continue;
6185
6186 if (h != NULL)
6187 name = h->root.root.string;
6188 else
6189 {
6190 name = (bfd_elf_string_from_elf_section
6191 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6192 if (name == NULL || *name == '\0')
6193 name = bfd_section_name (input_bfd, sec);
6194 }
6195
6196 if (r_symndx != 0
6197 && r_type != R_AARCH64_NONE
6198 && r_type != R_AARCH64_NULL
6199 && (h == NULL
6200 || h->root.type == bfd_link_hash_defined
6201 || h->root.type == bfd_link_hash_defweak)
6202 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6203 {
6204 _bfd_error_handler
6205 ((sym_type == STT_TLS
6206 /* xgettext:c-format */
6207 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6208 /* xgettext:c-format */
6209 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6210 input_bfd,
6211 input_section, (long) rel->r_offset, howto->name, name);
6212 }
6213
6214 /* We relax only if we can see that there can be a valid transition
6215 from a reloc type to another.
6216 We call elfNN_aarch64_final_link_relocate unless we're completely
6217 done, i.e., the relaxation produced the final output we want. */
6218
6219 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6220 h, r_symndx);
6221 if (relaxed_bfd_r_type != bfd_r_type)
6222 {
6223 bfd_r_type = relaxed_bfd_r_type;
6224 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6225 BFD_ASSERT (howto != NULL);
6226 r_type = howto->type;
6227 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6228 unresolved_reloc = 0;
6229 }
6230 else
6231 r = bfd_reloc_continue;
6232
6233 /* There may be multiple consecutive relocations for the
6234 same offset. In that case we are supposed to treat the
6235 output of each relocation as the addend for the next. */
6236 if (rel + 1 < relend
6237 && rel->r_offset == rel[1].r_offset
6238 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6239 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6240 save_addend = TRUE;
6241 else
6242 save_addend = FALSE;
6243
6244 if (r == bfd_reloc_continue)
6245 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6246 input_section, contents, rel,
6247 relocation, info, sec,
6248 h, &unresolved_reloc,
6249 save_addend, &addend, sym);
6250
6251 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6252 {
6253 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6254 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6255 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6256 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6257 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6258 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6259 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6260 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6261 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6262 {
6263 bfd_boolean need_relocs = FALSE;
6264 bfd_byte *loc;
6265 int indx;
6266 bfd_vma off;
6267
6268 off = symbol_got_offset (input_bfd, h, r_symndx);
6269 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6270
6271 need_relocs =
6272 (bfd_link_pic (info) || indx != 0) &&
6273 (h == NULL
6274 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6275 || h->root.type != bfd_link_hash_undefweak);
6276
6277 BFD_ASSERT (globals->root.srelgot != NULL);
6278
6279 if (need_relocs)
6280 {
6281 Elf_Internal_Rela rela;
6282 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6283 rela.r_addend = 0;
6284 rela.r_offset = globals->root.sgot->output_section->vma +
6285 globals->root.sgot->output_offset + off;
6286
6287
6288 loc = globals->root.srelgot->contents;
6289 loc += globals->root.srelgot->reloc_count++
6290 * RELOC_SIZE (htab);
6291 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6292
6293 bfd_reloc_code_real_type real_type =
6294 elfNN_aarch64_bfd_reloc_from_type (r_type);
6295
6296 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6297 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6298 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6299 {
6300 /* For local dynamic, don't generate DTPREL in any case.
6301 Initialize the DTPREL slot into zero, so we get module
6302 base address when invoke runtime TLS resolver. */
6303 bfd_put_NN (output_bfd, 0,
6304 globals->root.sgot->contents + off
6305 + GOT_ENTRY_SIZE);
6306 }
6307 else if (indx == 0)
6308 {
6309 bfd_put_NN (output_bfd,
6310 relocation - dtpoff_base (info),
6311 globals->root.sgot->contents + off
6312 + GOT_ENTRY_SIZE);
6313 }
6314 else
6315 {
6316 /* This TLS symbol is global. We emit a
6317 relocation to fixup the tls offset at load
6318 time. */
6319 rela.r_info =
6320 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6321 rela.r_addend = 0;
6322 rela.r_offset =
6323 (globals->root.sgot->output_section->vma
6324 + globals->root.sgot->output_offset + off
6325 + GOT_ENTRY_SIZE);
6326
6327 loc = globals->root.srelgot->contents;
6328 loc += globals->root.srelgot->reloc_count++
6329 * RELOC_SIZE (globals);
6330 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6331 bfd_put_NN (output_bfd, (bfd_vma) 0,
6332 globals->root.sgot->contents + off
6333 + GOT_ENTRY_SIZE);
6334 }
6335 }
6336 else
6337 {
6338 bfd_put_NN (output_bfd, (bfd_vma) 1,
6339 globals->root.sgot->contents + off);
6340 bfd_put_NN (output_bfd,
6341 relocation - dtpoff_base (info),
6342 globals->root.sgot->contents + off
6343 + GOT_ENTRY_SIZE);
6344 }
6345
6346 symbol_got_offset_mark (input_bfd, h, r_symndx);
6347 }
6348 break;
6349
6350 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6351 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6352 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6353 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6354 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6355 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6356 {
6357 bfd_boolean need_relocs = FALSE;
6358 bfd_byte *loc;
6359 int indx;
6360 bfd_vma off;
6361
6362 off = symbol_got_offset (input_bfd, h, r_symndx);
6363
6364 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6365
6366 need_relocs =
6367 (bfd_link_pic (info) || indx != 0) &&
6368 (h == NULL
6369 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6370 || h->root.type != bfd_link_hash_undefweak);
6371
6372 BFD_ASSERT (globals->root.srelgot != NULL);
6373
6374 if (need_relocs)
6375 {
6376 Elf_Internal_Rela rela;
6377
6378 if (indx == 0)
6379 rela.r_addend = relocation - dtpoff_base (info);
6380 else
6381 rela.r_addend = 0;
6382
6383 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6384 rela.r_offset = globals->root.sgot->output_section->vma +
6385 globals->root.sgot->output_offset + off;
6386
6387 loc = globals->root.srelgot->contents;
6388 loc += globals->root.srelgot->reloc_count++
6389 * RELOC_SIZE (htab);
6390
6391 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6392
6393 bfd_put_NN (output_bfd, rela.r_addend,
6394 globals->root.sgot->contents + off);
6395 }
6396 else
6397 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6398 globals->root.sgot->contents + off);
6399
6400 symbol_got_offset_mark (input_bfd, h, r_symndx);
6401 }
6402 break;
6403
6404 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6405 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6406 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6407 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6408 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6409 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6410 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6411 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6412 {
6413 bfd_boolean need_relocs = FALSE;
6414 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6415 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6416
6417 need_relocs = (h == NULL
6418 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6419 || h->root.type != bfd_link_hash_undefweak);
6420
6421 BFD_ASSERT (globals->root.srelgot != NULL);
6422 BFD_ASSERT (globals->root.sgot != NULL);
6423
6424 if (need_relocs)
6425 {
6426 bfd_byte *loc;
6427 Elf_Internal_Rela rela;
6428 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6429
6430 rela.r_addend = 0;
6431 rela.r_offset = (globals->root.sgotplt->output_section->vma
6432 + globals->root.sgotplt->output_offset
6433 + off + globals->sgotplt_jump_table_size);
6434
6435 if (indx == 0)
6436 rela.r_addend = relocation - dtpoff_base (info);
6437
6438 /* Allocate the next available slot in the PLT reloc
6439 section to hold our R_AARCH64_TLSDESC, the next
6440 available slot is determined from reloc_count,
6441 which we step. But note, reloc_count was
6442 artifically moved down while allocating slots for
6443 real PLT relocs such that all of the PLT relocs
6444 will fit above the initial reloc_count and the
6445 extra stuff will fit below. */
6446 loc = globals->root.srelplt->contents;
6447 loc += globals->root.srelplt->reloc_count++
6448 * RELOC_SIZE (globals);
6449
6450 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6451
6452 bfd_put_NN (output_bfd, (bfd_vma) 0,
6453 globals->root.sgotplt->contents + off +
6454 globals->sgotplt_jump_table_size);
6455 bfd_put_NN (output_bfd, (bfd_vma) 0,
6456 globals->root.sgotplt->contents + off +
6457 globals->sgotplt_jump_table_size +
6458 GOT_ENTRY_SIZE);
6459 }
6460
6461 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6462 }
6463 break;
6464 default:
6465 break;
6466 }
6467
6468 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6469 because such sections are not SEC_ALLOC and thus ld.so will
6470 not process them. */
6471 if (unresolved_reloc
6472 && !((input_section->flags & SEC_DEBUGGING) != 0
6473 && h->def_dynamic)
6474 && _bfd_elf_section_offset (output_bfd, info, input_section,
6475 +rel->r_offset) != (bfd_vma) - 1)
6476 {
6477 _bfd_error_handler
6478 /* xgettext:c-format */
6479 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6480 input_bfd, input_section, (long) rel->r_offset, howto->name,
6481 h->root.root.string);
6482 return FALSE;
6483 }
6484
6485 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6486 {
6487 bfd_reloc_code_real_type real_r_type
6488 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6489
6490 switch (r)
6491 {
6492 case bfd_reloc_overflow:
6493 (*info->callbacks->reloc_overflow)
6494 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6495 input_bfd, input_section, rel->r_offset);
6496 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6497 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6498 {
6499 (*info->callbacks->warning)
6500 (info,
6501 _("Too many GOT entries for -fpic, "
6502 "please recompile with -fPIC"),
6503 name, input_bfd, input_section, rel->r_offset);
6504 return FALSE;
6505 }
6506 /* Overflow can occur when a variable is referenced with a type
6507 that has a larger alignment than the type with which it was
6508 declared. eg:
6509 file1.c: extern int foo; int a (void) { return foo; }
6510 file2.c: char bar, foo, baz;
6511 If the variable is placed into a data section at an offset
6512 that is incompatible with the larger alignment requirement
6513 overflow will occur. (Strictly speaking this is not overflow
6514 but rather an alignment problem, but the bfd_reloc_ error
6515 enum does not have a value to cover that situation).
6516
6517 Try to catch this situation here and provide a more helpful
6518 error message to the user. */
6519 if (addend & ((1 << howto->rightshift) - 1)
6520 /* FIXME: Are we testing all of the appropriate reloc
6521 types here ? */
6522 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6523 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6524 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6525 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6526 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6527 {
6528 info->callbacks->warning
6529 (info, _("One possible cause of this error is that the \
6530 symbol is being referenced in the indicated code as if it had a larger \
6531 alignment than was declared where it was defined."),
6532 name, input_bfd, input_section, rel->r_offset);
6533 }
6534 break;
6535
6536 case bfd_reloc_undefined:
6537 (*info->callbacks->undefined_symbol)
6538 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6539 break;
6540
6541 case bfd_reloc_outofrange:
6542 error_message = _("out of range");
6543 goto common_error;
6544
6545 case bfd_reloc_notsupported:
6546 error_message = _("unsupported relocation");
6547 goto common_error;
6548
6549 case bfd_reloc_dangerous:
6550 /* error_message should already be set. */
6551 goto common_error;
6552
6553 default:
6554 error_message = _("unknown error");
6555 /* Fall through. */
6556
6557 common_error:
6558 BFD_ASSERT (error_message != NULL);
6559 (*info->callbacks->reloc_dangerous)
6560 (info, error_message, input_bfd, input_section, rel->r_offset);
6561 break;
6562 }
6563 }
6564
6565 if (!save_addend)
6566 addend = 0;
6567 }
6568
6569 return TRUE;
6570 }
6571
6572 /* Set the right machine number. */
6573
6574 static bfd_boolean
6575 elfNN_aarch64_object_p (bfd *abfd)
6576 {
6577 #if ARCH_SIZE == 32
6578 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6579 #else
6580 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6581 #endif
6582 return TRUE;
6583 }
6584
6585 /* Function to keep AArch64 specific flags in the ELF header. */
6586
6587 static bfd_boolean
6588 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6589 {
6590 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6591 {
6592 }
6593 else
6594 {
6595 elf_elfheader (abfd)->e_flags = flags;
6596 elf_flags_init (abfd) = TRUE;
6597 }
6598
6599 return TRUE;
6600 }
6601
6602 /* Merge backend specific data from an object file to the output
6603 object file when linking. */
6604
6605 static bfd_boolean
6606 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6607 {
6608 bfd *obfd = info->output_bfd;
6609 flagword out_flags;
6610 flagword in_flags;
6611 bfd_boolean flags_compatible = TRUE;
6612 asection *sec;
6613
6614 /* Check if we have the same endianess. */
6615 if (!_bfd_generic_verify_endian_match (ibfd, info))
6616 return FALSE;
6617
6618 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6619 return TRUE;
6620
6621 /* The input BFD must have had its flags initialised. */
6622 /* The following seems bogus to me -- The flags are initialized in
6623 the assembler but I don't think an elf_flags_init field is
6624 written into the object. */
6625 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6626
6627 in_flags = elf_elfheader (ibfd)->e_flags;
6628 out_flags = elf_elfheader (obfd)->e_flags;
6629
6630 if (!elf_flags_init (obfd))
6631 {
6632 /* If the input is the default architecture and had the default
6633 flags then do not bother setting the flags for the output
6634 architecture, instead allow future merges to do this. If no
6635 future merges ever set these flags then they will retain their
6636 uninitialised values, which surprise surprise, correspond
6637 to the default values. */
6638 if (bfd_get_arch_info (ibfd)->the_default
6639 && elf_elfheader (ibfd)->e_flags == 0)
6640 return TRUE;
6641
6642 elf_flags_init (obfd) = TRUE;
6643 elf_elfheader (obfd)->e_flags = in_flags;
6644
6645 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6646 && bfd_get_arch_info (obfd)->the_default)
6647 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6648 bfd_get_mach (ibfd));
6649
6650 return TRUE;
6651 }
6652
6653 /* Identical flags must be compatible. */
6654 if (in_flags == out_flags)
6655 return TRUE;
6656
6657 /* Check to see if the input BFD actually contains any sections. If
6658 not, its flags may not have been initialised either, but it
6659 cannot actually cause any incompatiblity. Do not short-circuit
6660 dynamic objects; their section list may be emptied by
6661 elf_link_add_object_symbols.
6662
6663 Also check to see if there are no code sections in the input.
6664 In this case there is no need to check for code specific flags.
6665 XXX - do we need to worry about floating-point format compatability
6666 in data sections ? */
6667 if (!(ibfd->flags & DYNAMIC))
6668 {
6669 bfd_boolean null_input_bfd = TRUE;
6670 bfd_boolean only_data_sections = TRUE;
6671
6672 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6673 {
6674 if ((bfd_get_section_flags (ibfd, sec)
6675 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6676 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6677 only_data_sections = FALSE;
6678
6679 null_input_bfd = FALSE;
6680 break;
6681 }
6682
6683 if (null_input_bfd || only_data_sections)
6684 return TRUE;
6685 }
6686
6687 return flags_compatible;
6688 }
6689
6690 /* Display the flags field. */
6691
6692 static bfd_boolean
6693 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6694 {
6695 FILE *file = (FILE *) ptr;
6696 unsigned long flags;
6697
6698 BFD_ASSERT (abfd != NULL && ptr != NULL);
6699
6700 /* Print normal ELF private data. */
6701 _bfd_elf_print_private_bfd_data (abfd, ptr);
6702
6703 flags = elf_elfheader (abfd)->e_flags;
6704 /* Ignore init flag - it may not be set, despite the flags field
6705 containing valid data. */
6706
6707 /* xgettext:c-format */
6708 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6709
6710 if (flags)
6711 fprintf (file, _("<Unrecognised flag bits set>"));
6712
6713 fputc ('\n', file);
6714
6715 return TRUE;
6716 }
6717
6718 /* Update the got entry reference counts for the section being removed. */
6719
6720 static bfd_boolean
6721 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6722 struct bfd_link_info *info,
6723 asection *sec,
6724 const Elf_Internal_Rela * relocs)
6725 {
6726 struct elf_aarch64_link_hash_table *htab;
6727 Elf_Internal_Shdr *symtab_hdr;
6728 struct elf_link_hash_entry **sym_hashes;
6729 struct elf_aarch64_local_symbol *locals;
6730 const Elf_Internal_Rela *rel, *relend;
6731
6732 if (bfd_link_relocatable (info))
6733 return TRUE;
6734
6735 htab = elf_aarch64_hash_table (info);
6736
6737 if (htab == NULL)
6738 return FALSE;
6739
6740 elf_section_data (sec)->local_dynrel = NULL;
6741
6742 symtab_hdr = &elf_symtab_hdr (abfd);
6743 sym_hashes = elf_sym_hashes (abfd);
6744
6745 locals = elf_aarch64_locals (abfd);
6746
6747 relend = relocs + sec->reloc_count;
6748 for (rel = relocs; rel < relend; rel++)
6749 {
6750 unsigned long r_symndx;
6751 unsigned int r_type;
6752 struct elf_link_hash_entry *h = NULL;
6753
6754 r_symndx = ELFNN_R_SYM (rel->r_info);
6755
6756 if (r_symndx >= symtab_hdr->sh_info)
6757 {
6758
6759 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6760 while (h->root.type == bfd_link_hash_indirect
6761 || h->root.type == bfd_link_hash_warning)
6762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6763 }
6764 else
6765 {
6766 Elf_Internal_Sym *isym;
6767
6768 /* A local symbol. */
6769 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6770 abfd, r_symndx);
6771
6772 /* Check relocation against local STT_GNU_IFUNC symbol. */
6773 if (isym != NULL
6774 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6775 {
6776 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6777 if (h == NULL)
6778 abort ();
6779 }
6780 }
6781
6782 if (h)
6783 {
6784 struct elf_aarch64_link_hash_entry *eh;
6785 struct elf_dyn_relocs **pp;
6786 struct elf_dyn_relocs *p;
6787
6788 eh = (struct elf_aarch64_link_hash_entry *) h;
6789
6790 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6791 if (p->sec == sec)
6792 {
6793 /* Everything must go for SEC. */
6794 *pp = p->next;
6795 break;
6796 }
6797 }
6798
6799 r_type = ELFNN_R_TYPE (rel->r_info);
6800 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6801 {
6802 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6803 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6804 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6805 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6806 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6807 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6808 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6809 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6810 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6811 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6812 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6813 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6814 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6815 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6816 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6817 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6818 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6819 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6820 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6821 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6822 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6823 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6824 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6825 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6826 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6827 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6828 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6829 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6830 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6831 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6832 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6833 if (h != NULL)
6834 {
6835 if (h->got.refcount > 0)
6836 h->got.refcount -= 1;
6837
6838 if (h->type == STT_GNU_IFUNC)
6839 {
6840 if (h->plt.refcount > 0)
6841 h->plt.refcount -= 1;
6842 }
6843 }
6844 else if (locals != NULL)
6845 {
6846 if (locals[r_symndx].got_refcount > 0)
6847 locals[r_symndx].got_refcount -= 1;
6848 }
6849 break;
6850
6851 case BFD_RELOC_AARCH64_CALL26:
6852 case BFD_RELOC_AARCH64_JUMP26:
6853 /* If this is a local symbol then we resolve it
6854 directly without creating a PLT entry. */
6855 if (h == NULL)
6856 continue;
6857
6858 if (h->plt.refcount > 0)
6859 h->plt.refcount -= 1;
6860 break;
6861
6862 case BFD_RELOC_AARCH64_ADD_LO12:
6863 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6864 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6865 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6866 case BFD_RELOC_AARCH64_LDST128_LO12:
6867 case BFD_RELOC_AARCH64_LDST16_LO12:
6868 case BFD_RELOC_AARCH64_LDST32_LO12:
6869 case BFD_RELOC_AARCH64_LDST64_LO12:
6870 case BFD_RELOC_AARCH64_LDST8_LO12:
6871 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
6872 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6873 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6874 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6875 case BFD_RELOC_AARCH64_MOVW_G3:
6876 case BFD_RELOC_AARCH64_NN:
6877 if (h != NULL && !bfd_link_pic (info))
6878 {
6879 if (h->plt.refcount > 0)
6880 h->plt.refcount -= 1;
6881 }
6882 break;
6883
6884 default:
6885 break;
6886 }
6887 }
6888
6889 return TRUE;
6890 }
6891
6892 /* Return true if we need copy relocation against EH. */
6893
6894 static bfd_boolean
6895 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
6896 {
6897 struct elf_dyn_relocs *p;
6898 asection *s;
6899
6900 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6901 {
6902 /* If there is any pc-relative reference, we need to keep copy relocation
6903 to avoid propagating the relocation into runtime that current glibc
6904 does not support. */
6905 if (p->pc_count)
6906 return TRUE;
6907
6908 s = p->sec->output_section;
6909 /* Need copy relocation if it's against read-only section. */
6910 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6911 return TRUE;
6912 }
6913
6914 return FALSE;
6915 }
6916
6917 /* Adjust a symbol defined by a dynamic object and referenced by a
6918 regular object. The current definition is in some section of the
6919 dynamic object, but we're not including those sections. We have to
6920 change the definition to something the rest of the link can
6921 understand. */
6922
6923 static bfd_boolean
6924 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6925 struct elf_link_hash_entry *h)
6926 {
6927 struct elf_aarch64_link_hash_table *htab;
6928 asection *s, *srel;
6929
6930 /* If this is a function, put it in the procedure linkage table. We
6931 will fill in the contents of the procedure linkage table later,
6932 when we know the address of the .got section. */
6933 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6934 {
6935 if (h->plt.refcount <= 0
6936 || (h->type != STT_GNU_IFUNC
6937 && (SYMBOL_CALLS_LOCAL (info, h)
6938 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6939 && h->root.type == bfd_link_hash_undefweak))))
6940 {
6941 /* This case can occur if we saw a CALL26 reloc in
6942 an input file, but the symbol wasn't referred to
6943 by a dynamic object or all references were
6944 garbage collected. In which case we can end up
6945 resolving. */
6946 h->plt.offset = (bfd_vma) - 1;
6947 h->needs_plt = 0;
6948 }
6949
6950 return TRUE;
6951 }
6952 else
6953 /* Otherwise, reset to -1. */
6954 h->plt.offset = (bfd_vma) - 1;
6955
6956
6957 /* If this is a weak symbol, and there is a real definition, the
6958 processor independent code will have arranged for us to see the
6959 real definition first, and we can just use the same value. */
6960 if (h->u.weakdef != NULL)
6961 {
6962 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6963 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6964 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6965 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6966 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6967 h->non_got_ref = h->u.weakdef->non_got_ref;
6968 return TRUE;
6969 }
6970
6971 /* If we are creating a shared library, we must presume that the
6972 only references to the symbol are via the global offset table.
6973 For such cases we need not do anything here; the relocations will
6974 be handled correctly by relocate_section. */
6975 if (bfd_link_pic (info))
6976 return TRUE;
6977
6978 /* If there are no references to this symbol that do not use the
6979 GOT, we don't need to generate a copy reloc. */
6980 if (!h->non_got_ref)
6981 return TRUE;
6982
6983 /* If -z nocopyreloc was given, we won't generate them either. */
6984 if (info->nocopyreloc)
6985 {
6986 h->non_got_ref = 0;
6987 return TRUE;
6988 }
6989
6990 if (ELIMINATE_COPY_RELOCS)
6991 {
6992 struct elf_aarch64_link_hash_entry *eh;
6993 /* If we didn't find any dynamic relocs in read-only sections, then
6994 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6995 eh = (struct elf_aarch64_link_hash_entry *) h;
6996 if (!need_copy_relocation_p (eh))
6997 {
6998 h->non_got_ref = 0;
6999 return TRUE;
7000 }
7001 }
7002
7003 /* We must allocate the symbol in our .dynbss section, which will
7004 become part of the .bss section of the executable. There will be
7005 an entry for this symbol in the .dynsym section. The dynamic
7006 object will contain position independent code, so all references
7007 from the dynamic object to this symbol will go through the global
7008 offset table. The dynamic linker will use the .dynsym entry to
7009 determine the address it must put in the global offset table, so
7010 both the dynamic object and the regular object will refer to the
7011 same memory location for the variable. */
7012
7013 htab = elf_aarch64_hash_table (info);
7014
7015 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7016 to copy the initial value out of the dynamic object and into the
7017 runtime process image. */
7018 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7019 {
7020 s = htab->root.sdynrelro;
7021 srel = htab->root.sreldynrelro;
7022 }
7023 else
7024 {
7025 s = htab->root.sdynbss;
7026 srel = htab->root.srelbss;
7027 }
7028 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7029 {
7030 srel->size += RELOC_SIZE (htab);
7031 h->needs_copy = 1;
7032 }
7033
7034 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7035
7036 }
7037
7038 static bfd_boolean
7039 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7040 {
7041 struct elf_aarch64_local_symbol *locals;
7042 locals = elf_aarch64_locals (abfd);
7043 if (locals == NULL)
7044 {
7045 locals = (struct elf_aarch64_local_symbol *)
7046 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7047 if (locals == NULL)
7048 return FALSE;
7049 elf_aarch64_locals (abfd) = locals;
7050 }
7051 return TRUE;
7052 }
7053
7054 /* Create the .got section to hold the global offset table. */
7055
7056 static bfd_boolean
7057 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7058 {
7059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7060 flagword flags;
7061 asection *s;
7062 struct elf_link_hash_entry *h;
7063 struct elf_link_hash_table *htab = elf_hash_table (info);
7064
7065 /* This function may be called more than once. */
7066 if (htab->sgot != NULL)
7067 return TRUE;
7068
7069 flags = bed->dynamic_sec_flags;
7070
7071 s = bfd_make_section_anyway_with_flags (abfd,
7072 (bed->rela_plts_and_copies_p
7073 ? ".rela.got" : ".rel.got"),
7074 (bed->dynamic_sec_flags
7075 | SEC_READONLY));
7076 if (s == NULL
7077 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7078 return FALSE;
7079 htab->srelgot = s;
7080
7081 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7082 if (s == NULL
7083 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7084 return FALSE;
7085 htab->sgot = s;
7086 htab->sgot->size += GOT_ENTRY_SIZE;
7087
7088 if (bed->want_got_sym)
7089 {
7090 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7091 (or .got.plt) section. We don't do this in the linker script
7092 because we don't want to define the symbol if we are not creating
7093 a global offset table. */
7094 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7095 "_GLOBAL_OFFSET_TABLE_");
7096 elf_hash_table (info)->hgot = h;
7097 if (h == NULL)
7098 return FALSE;
7099 }
7100
7101 if (bed->want_got_plt)
7102 {
7103 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7104 if (s == NULL
7105 || !bfd_set_section_alignment (abfd, s,
7106 bed->s->log_file_align))
7107 return FALSE;
7108 htab->sgotplt = s;
7109 }
7110
7111 /* The first bit of the global offset table is the header. */
7112 s->size += bed->got_header_size;
7113
7114 return TRUE;
7115 }
7116
7117 /* Look through the relocs for a section during the first phase. */
7118
7119 static bfd_boolean
7120 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7121 asection *sec, const Elf_Internal_Rela *relocs)
7122 {
7123 Elf_Internal_Shdr *symtab_hdr;
7124 struct elf_link_hash_entry **sym_hashes;
7125 const Elf_Internal_Rela *rel;
7126 const Elf_Internal_Rela *rel_end;
7127 asection *sreloc;
7128
7129 struct elf_aarch64_link_hash_table *htab;
7130
7131 if (bfd_link_relocatable (info))
7132 return TRUE;
7133
7134 BFD_ASSERT (is_aarch64_elf (abfd));
7135
7136 htab = elf_aarch64_hash_table (info);
7137 sreloc = NULL;
7138
7139 symtab_hdr = &elf_symtab_hdr (abfd);
7140 sym_hashes = elf_sym_hashes (abfd);
7141
7142 rel_end = relocs + sec->reloc_count;
7143 for (rel = relocs; rel < rel_end; rel++)
7144 {
7145 struct elf_link_hash_entry *h;
7146 unsigned long r_symndx;
7147 unsigned int r_type;
7148 bfd_reloc_code_real_type bfd_r_type;
7149 Elf_Internal_Sym *isym;
7150
7151 r_symndx = ELFNN_R_SYM (rel->r_info);
7152 r_type = ELFNN_R_TYPE (rel->r_info);
7153
7154 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7155 {
7156 /* xgettext:c-format */
7157 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
7158 return FALSE;
7159 }
7160
7161 if (r_symndx < symtab_hdr->sh_info)
7162 {
7163 /* A local symbol. */
7164 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7165 abfd, r_symndx);
7166 if (isym == NULL)
7167 return FALSE;
7168
7169 /* Check relocation against local STT_GNU_IFUNC symbol. */
7170 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7171 {
7172 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7173 TRUE);
7174 if (h == NULL)
7175 return FALSE;
7176
7177 /* Fake a STT_GNU_IFUNC symbol. */
7178 h->type = STT_GNU_IFUNC;
7179 h->def_regular = 1;
7180 h->ref_regular = 1;
7181 h->forced_local = 1;
7182 h->root.type = bfd_link_hash_defined;
7183 }
7184 else
7185 h = NULL;
7186 }
7187 else
7188 {
7189 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7190 while (h->root.type == bfd_link_hash_indirect
7191 || h->root.type == bfd_link_hash_warning)
7192 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7193
7194 /* PR15323, ref flags aren't set for references in the same
7195 object. */
7196 h->root.non_ir_ref_regular = 1;
7197 }
7198
7199 /* Could be done earlier, if h were already available. */
7200 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7201
7202 if (h != NULL)
7203 {
7204 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7205 This shows up in particular in an R_AARCH64_PREL64 in large model
7206 when calculating the pc-relative address to .got section which is
7207 used to initialize the gp register. */
7208 if (h->root.root.string
7209 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7210 {
7211 if (htab->root.dynobj == NULL)
7212 htab->root.dynobj = abfd;
7213
7214 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7215 return FALSE;
7216
7217 BFD_ASSERT (h == htab->root.hgot);
7218 }
7219
7220 /* Create the ifunc sections for static executables. If we
7221 never see an indirect function symbol nor we are building
7222 a static executable, those sections will be empty and
7223 won't appear in output. */
7224 switch (bfd_r_type)
7225 {
7226 default:
7227 break;
7228
7229 case BFD_RELOC_AARCH64_ADD_LO12:
7230 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7231 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7232 case BFD_RELOC_AARCH64_CALL26:
7233 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7234 case BFD_RELOC_AARCH64_JUMP26:
7235 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7236 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7237 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7238 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7239 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7240 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7241 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7242 case BFD_RELOC_AARCH64_NN:
7243 if (htab->root.dynobj == NULL)
7244 htab->root.dynobj = abfd;
7245 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7246 return FALSE;
7247 break;
7248 }
7249
7250 /* It is referenced by a non-shared object. */
7251 h->ref_regular = 1;
7252 h->root.non_ir_ref_regular = 1;
7253 }
7254
7255 switch (bfd_r_type)
7256 {
7257 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7258 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7259 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7260 case BFD_RELOC_AARCH64_MOVW_G3:
7261 if (bfd_link_pic (info))
7262 {
7263 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7264 _bfd_error_handler
7265 /* xgettext:c-format */
7266 (_("%B: relocation %s against `%s' can not be used when making "
7267 "a shared object; recompile with -fPIC"),
7268 abfd, elfNN_aarch64_howto_table[howto_index].name,
7269 (h) ? h->root.root.string : "a local symbol");
7270 bfd_set_error (bfd_error_bad_value);
7271 return FALSE;
7272 }
7273 /* Fall through. */
7274
7275 case BFD_RELOC_AARCH64_16_PCREL:
7276 case BFD_RELOC_AARCH64_32_PCREL:
7277 case BFD_RELOC_AARCH64_64_PCREL:
7278 case BFD_RELOC_AARCH64_ADD_LO12:
7279 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7280 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7281 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7282 case BFD_RELOC_AARCH64_LDST128_LO12:
7283 case BFD_RELOC_AARCH64_LDST16_LO12:
7284 case BFD_RELOC_AARCH64_LDST32_LO12:
7285 case BFD_RELOC_AARCH64_LDST64_LO12:
7286 case BFD_RELOC_AARCH64_LDST8_LO12:
7287 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7288 if (h == NULL || bfd_link_pic (info))
7289 break;
7290 /* Fall through. */
7291
7292 case BFD_RELOC_AARCH64_NN:
7293
7294 /* We don't need to handle relocs into sections not going into
7295 the "real" output. */
7296 if ((sec->flags & SEC_ALLOC) == 0)
7297 break;
7298
7299 if (h != NULL)
7300 {
7301 if (!bfd_link_pic (info))
7302 h->non_got_ref = 1;
7303
7304 h->plt.refcount += 1;
7305 h->pointer_equality_needed = 1;
7306 }
7307
7308 /* No need to do anything if we're not creating a shared
7309 object. */
7310 if (!(bfd_link_pic (info)
7311 /* If on the other hand, we are creating an executable, we
7312 may need to keep relocations for symbols satisfied by a
7313 dynamic library if we manage to avoid copy relocs for the
7314 symbol.
7315
7316 NOTE: Currently, there is no support of copy relocs
7317 elimination on pc-relative relocation types, because there is
7318 no dynamic relocation support for them in glibc. We still
7319 record the dynamic symbol reference for them. This is
7320 because one symbol may be referenced by both absolute
7321 relocation (for example, BFD_RELOC_AARCH64_NN) and
7322 pc-relative relocation. We need full symbol reference
7323 information to make correct decision later in
7324 elfNN_aarch64_adjust_dynamic_symbol. */
7325 || (ELIMINATE_COPY_RELOCS
7326 && !bfd_link_pic (info)
7327 && h != NULL
7328 && (h->root.type == bfd_link_hash_defweak
7329 || !h->def_regular))))
7330 break;
7331
7332 {
7333 struct elf_dyn_relocs *p;
7334 struct elf_dyn_relocs **head;
7335 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7336
7337 /* We must copy these reloc types into the output file.
7338 Create a reloc section in dynobj and make room for
7339 this reloc. */
7340 if (sreloc == NULL)
7341 {
7342 if (htab->root.dynobj == NULL)
7343 htab->root.dynobj = abfd;
7344
7345 sreloc = _bfd_elf_make_dynamic_reloc_section
7346 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7347
7348 if (sreloc == NULL)
7349 return FALSE;
7350 }
7351
7352 /* If this is a global symbol, we count the number of
7353 relocations we need for this symbol. */
7354 if (h != NULL)
7355 {
7356 struct elf_aarch64_link_hash_entry *eh;
7357 eh = (struct elf_aarch64_link_hash_entry *) h;
7358 head = &eh->dyn_relocs;
7359 }
7360 else
7361 {
7362 /* Track dynamic relocs needed for local syms too.
7363 We really need local syms available to do this
7364 easily. Oh well. */
7365
7366 asection *s;
7367 void **vpp;
7368
7369 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7370 abfd, r_symndx);
7371 if (isym == NULL)
7372 return FALSE;
7373
7374 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7375 if (s == NULL)
7376 s = sec;
7377
7378 /* Beware of type punned pointers vs strict aliasing
7379 rules. */
7380 vpp = &(elf_section_data (s)->local_dynrel);
7381 head = (struct elf_dyn_relocs **) vpp;
7382 }
7383
7384 p = *head;
7385 if (p == NULL || p->sec != sec)
7386 {
7387 bfd_size_type amt = sizeof *p;
7388 p = ((struct elf_dyn_relocs *)
7389 bfd_zalloc (htab->root.dynobj, amt));
7390 if (p == NULL)
7391 return FALSE;
7392 p->next = *head;
7393 *head = p;
7394 p->sec = sec;
7395 }
7396
7397 p->count += 1;
7398
7399 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7400 p->pc_count += 1;
7401 }
7402 break;
7403
7404 /* RR: We probably want to keep a consistency check that
7405 there are no dangling GOT_PAGE relocs. */
7406 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7407 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7408 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7409 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7410 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7411 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7412 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7413 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7414 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7415 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7416 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7417 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7418 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7419 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7420 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7421 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7422 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7423 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7424 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7425 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7426 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7427 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7428 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7429 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7430 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7431 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7432 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7433 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7434 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7435 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7436 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7437 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7438 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7439 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7440 {
7441 unsigned got_type;
7442 unsigned old_got_type;
7443
7444 got_type = aarch64_reloc_got_type (bfd_r_type);
7445
7446 if (h)
7447 {
7448 h->got.refcount += 1;
7449 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7450 }
7451 else
7452 {
7453 struct elf_aarch64_local_symbol *locals;
7454
7455 if (!elfNN_aarch64_allocate_local_symbols
7456 (abfd, symtab_hdr->sh_info))
7457 return FALSE;
7458
7459 locals = elf_aarch64_locals (abfd);
7460 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7461 locals[r_symndx].got_refcount += 1;
7462 old_got_type = locals[r_symndx].got_type;
7463 }
7464
7465 /* If a variable is accessed with both general dynamic TLS
7466 methods, two slots may be created. */
7467 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7468 got_type |= old_got_type;
7469
7470 /* We will already have issued an error message if there
7471 is a TLS/non-TLS mismatch, based on the symbol type.
7472 So just combine any TLS types needed. */
7473 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7474 && got_type != GOT_NORMAL)
7475 got_type |= old_got_type;
7476
7477 /* If the symbol is accessed by both IE and GD methods, we
7478 are able to relax. Turn off the GD flag, without
7479 messing up with any other kind of TLS types that may be
7480 involved. */
7481 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7482 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7483
7484 if (old_got_type != got_type)
7485 {
7486 if (h != NULL)
7487 elf_aarch64_hash_entry (h)->got_type = got_type;
7488 else
7489 {
7490 struct elf_aarch64_local_symbol *locals;
7491 locals = elf_aarch64_locals (abfd);
7492 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7493 locals[r_symndx].got_type = got_type;
7494 }
7495 }
7496
7497 if (htab->root.dynobj == NULL)
7498 htab->root.dynobj = abfd;
7499 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7500 return FALSE;
7501 break;
7502 }
7503
7504 case BFD_RELOC_AARCH64_CALL26:
7505 case BFD_RELOC_AARCH64_JUMP26:
7506 /* If this is a local symbol then we resolve it
7507 directly without creating a PLT entry. */
7508 if (h == NULL)
7509 continue;
7510
7511 h->needs_plt = 1;
7512 if (h->plt.refcount <= 0)
7513 h->plt.refcount = 1;
7514 else
7515 h->plt.refcount += 1;
7516 break;
7517
7518 default:
7519 break;
7520 }
7521 }
7522
7523 return TRUE;
7524 }
7525
7526 /* Treat mapping symbols as special target symbols. */
7527
7528 static bfd_boolean
7529 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7530 asymbol *sym)
7531 {
7532 return bfd_is_aarch64_special_symbol_name (sym->name,
7533 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7534 }
7535
7536 /* This is a copy of elf_find_function () from elf.c except that
7537 AArch64 mapping symbols are ignored when looking for function names. */
7538
7539 static bfd_boolean
7540 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7541 asymbol **symbols,
7542 asection *section,
7543 bfd_vma offset,
7544 const char **filename_ptr,
7545 const char **functionname_ptr)
7546 {
7547 const char *filename = NULL;
7548 asymbol *func = NULL;
7549 bfd_vma low_func = 0;
7550 asymbol **p;
7551
7552 for (p = symbols; *p != NULL; p++)
7553 {
7554 elf_symbol_type *q;
7555
7556 q = (elf_symbol_type *) * p;
7557
7558 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7559 {
7560 default:
7561 break;
7562 case STT_FILE:
7563 filename = bfd_asymbol_name (&q->symbol);
7564 break;
7565 case STT_FUNC:
7566 case STT_NOTYPE:
7567 /* Skip mapping symbols. */
7568 if ((q->symbol.flags & BSF_LOCAL)
7569 && (bfd_is_aarch64_special_symbol_name
7570 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7571 continue;
7572 /* Fall through. */
7573 if (bfd_get_section (&q->symbol) == section
7574 && q->symbol.value >= low_func && q->symbol.value <= offset)
7575 {
7576 func = (asymbol *) q;
7577 low_func = q->symbol.value;
7578 }
7579 break;
7580 }
7581 }
7582
7583 if (func == NULL)
7584 return FALSE;
7585
7586 if (filename_ptr)
7587 *filename_ptr = filename;
7588 if (functionname_ptr)
7589 *functionname_ptr = bfd_asymbol_name (func);
7590
7591 return TRUE;
7592 }
7593
7594
7595 /* Find the nearest line to a particular section and offset, for error
7596 reporting. This code is a duplicate of the code in elf.c, except
7597 that it uses aarch64_elf_find_function. */
7598
7599 static bfd_boolean
7600 elfNN_aarch64_find_nearest_line (bfd *abfd,
7601 asymbol **symbols,
7602 asection *section,
7603 bfd_vma offset,
7604 const char **filename_ptr,
7605 const char **functionname_ptr,
7606 unsigned int *line_ptr,
7607 unsigned int *discriminator_ptr)
7608 {
7609 bfd_boolean found = FALSE;
7610
7611 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7612 filename_ptr, functionname_ptr,
7613 line_ptr, discriminator_ptr,
7614 dwarf_debug_sections, 0,
7615 &elf_tdata (abfd)->dwarf2_find_line_info))
7616 {
7617 if (!*functionname_ptr)
7618 aarch64_elf_find_function (abfd, symbols, section, offset,
7619 *filename_ptr ? NULL : filename_ptr,
7620 functionname_ptr);
7621
7622 return TRUE;
7623 }
7624
7625 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7626 toolchain uses DWARF1. */
7627
7628 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7629 &found, filename_ptr,
7630 functionname_ptr, line_ptr,
7631 &elf_tdata (abfd)->line_info))
7632 return FALSE;
7633
7634 if (found && (*functionname_ptr || *line_ptr))
7635 return TRUE;
7636
7637 if (symbols == NULL)
7638 return FALSE;
7639
7640 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7641 filename_ptr, functionname_ptr))
7642 return FALSE;
7643
7644 *line_ptr = 0;
7645 return TRUE;
7646 }
7647
7648 static bfd_boolean
7649 elfNN_aarch64_find_inliner_info (bfd *abfd,
7650 const char **filename_ptr,
7651 const char **functionname_ptr,
7652 unsigned int *line_ptr)
7653 {
7654 bfd_boolean found;
7655 found = _bfd_dwarf2_find_inliner_info
7656 (abfd, filename_ptr,
7657 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7658 return found;
7659 }
7660
7661
7662 static void
7663 elfNN_aarch64_post_process_headers (bfd *abfd,
7664 struct bfd_link_info *link_info)
7665 {
7666 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7667
7668 i_ehdrp = elf_elfheader (abfd);
7669 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7670
7671 _bfd_elf_post_process_headers (abfd, link_info);
7672 }
7673
7674 static enum elf_reloc_type_class
7675 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7676 const asection *rel_sec ATTRIBUTE_UNUSED,
7677 const Elf_Internal_Rela *rela)
7678 {
7679 switch ((int) ELFNN_R_TYPE (rela->r_info))
7680 {
7681 case AARCH64_R (RELATIVE):
7682 return reloc_class_relative;
7683 case AARCH64_R (JUMP_SLOT):
7684 return reloc_class_plt;
7685 case AARCH64_R (COPY):
7686 return reloc_class_copy;
7687 default:
7688 return reloc_class_normal;
7689 }
7690 }
7691
7692 /* Handle an AArch64 specific section when reading an object file. This is
7693 called when bfd_section_from_shdr finds a section with an unknown
7694 type. */
7695
7696 static bfd_boolean
7697 elfNN_aarch64_section_from_shdr (bfd *abfd,
7698 Elf_Internal_Shdr *hdr,
7699 const char *name, int shindex)
7700 {
7701 /* There ought to be a place to keep ELF backend specific flags, but
7702 at the moment there isn't one. We just keep track of the
7703 sections by their name, instead. Fortunately, the ABI gives
7704 names for all the AArch64 specific sections, so we will probably get
7705 away with this. */
7706 switch (hdr->sh_type)
7707 {
7708 case SHT_AARCH64_ATTRIBUTES:
7709 break;
7710
7711 default:
7712 return FALSE;
7713 }
7714
7715 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7716 return FALSE;
7717
7718 return TRUE;
7719 }
7720
7721 /* A structure used to record a list of sections, independently
7722 of the next and prev fields in the asection structure. */
7723 typedef struct section_list
7724 {
7725 asection *sec;
7726 struct section_list *next;
7727 struct section_list *prev;
7728 }
7729 section_list;
7730
7731 /* Unfortunately we need to keep a list of sections for which
7732 an _aarch64_elf_section_data structure has been allocated. This
7733 is because it is possible for functions like elfNN_aarch64_write_section
7734 to be called on a section which has had an elf_data_structure
7735 allocated for it (and so the used_by_bfd field is valid) but
7736 for which the AArch64 extended version of this structure - the
7737 _aarch64_elf_section_data structure - has not been allocated. */
7738 static section_list *sections_with_aarch64_elf_section_data = NULL;
7739
7740 static void
7741 record_section_with_aarch64_elf_section_data (asection *sec)
7742 {
7743 struct section_list *entry;
7744
7745 entry = bfd_malloc (sizeof (*entry));
7746 if (entry == NULL)
7747 return;
7748 entry->sec = sec;
7749 entry->next = sections_with_aarch64_elf_section_data;
7750 entry->prev = NULL;
7751 if (entry->next != NULL)
7752 entry->next->prev = entry;
7753 sections_with_aarch64_elf_section_data = entry;
7754 }
7755
7756 static struct section_list *
7757 find_aarch64_elf_section_entry (asection *sec)
7758 {
7759 struct section_list *entry;
7760 static struct section_list *last_entry = NULL;
7761
7762 /* This is a short cut for the typical case where the sections are added
7763 to the sections_with_aarch64_elf_section_data list in forward order and
7764 then looked up here in backwards order. This makes a real difference
7765 to the ld-srec/sec64k.exp linker test. */
7766 entry = sections_with_aarch64_elf_section_data;
7767 if (last_entry != NULL)
7768 {
7769 if (last_entry->sec == sec)
7770 entry = last_entry;
7771 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7772 entry = last_entry->next;
7773 }
7774
7775 for (; entry; entry = entry->next)
7776 if (entry->sec == sec)
7777 break;
7778
7779 if (entry)
7780 /* Record the entry prior to this one - it is the entry we are
7781 most likely to want to locate next time. Also this way if we
7782 have been called from
7783 unrecord_section_with_aarch64_elf_section_data () we will not
7784 be caching a pointer that is about to be freed. */
7785 last_entry = entry->prev;
7786
7787 return entry;
7788 }
7789
7790 static void
7791 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7792 {
7793 struct section_list *entry;
7794
7795 entry = find_aarch64_elf_section_entry (sec);
7796
7797 if (entry)
7798 {
7799 if (entry->prev != NULL)
7800 entry->prev->next = entry->next;
7801 if (entry->next != NULL)
7802 entry->next->prev = entry->prev;
7803 if (entry == sections_with_aarch64_elf_section_data)
7804 sections_with_aarch64_elf_section_data = entry->next;
7805 free (entry);
7806 }
7807 }
7808
7809
7810 typedef struct
7811 {
7812 void *finfo;
7813 struct bfd_link_info *info;
7814 asection *sec;
7815 int sec_shndx;
7816 int (*func) (void *, const char *, Elf_Internal_Sym *,
7817 asection *, struct elf_link_hash_entry *);
7818 } output_arch_syminfo;
7819
7820 enum map_symbol_type
7821 {
7822 AARCH64_MAP_INSN,
7823 AARCH64_MAP_DATA
7824 };
7825
7826
7827 /* Output a single mapping symbol. */
7828
7829 static bfd_boolean
7830 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7831 enum map_symbol_type type, bfd_vma offset)
7832 {
7833 static const char *names[2] = { "$x", "$d" };
7834 Elf_Internal_Sym sym;
7835
7836 sym.st_value = (osi->sec->output_section->vma
7837 + osi->sec->output_offset + offset);
7838 sym.st_size = 0;
7839 sym.st_other = 0;
7840 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7841 sym.st_shndx = osi->sec_shndx;
7842 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7843 }
7844
7845 /* Output a single local symbol for a generated stub. */
7846
7847 static bfd_boolean
7848 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7849 bfd_vma offset, bfd_vma size)
7850 {
7851 Elf_Internal_Sym sym;
7852
7853 sym.st_value = (osi->sec->output_section->vma
7854 + osi->sec->output_offset + offset);
7855 sym.st_size = size;
7856 sym.st_other = 0;
7857 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7858 sym.st_shndx = osi->sec_shndx;
7859 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7860 }
7861
7862 static bfd_boolean
7863 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7864 {
7865 struct elf_aarch64_stub_hash_entry *stub_entry;
7866 asection *stub_sec;
7867 bfd_vma addr;
7868 char *stub_name;
7869 output_arch_syminfo *osi;
7870
7871 /* Massage our args to the form they really have. */
7872 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7873 osi = (output_arch_syminfo *) in_arg;
7874
7875 stub_sec = stub_entry->stub_sec;
7876
7877 /* Ensure this stub is attached to the current section being
7878 processed. */
7879 if (stub_sec != osi->sec)
7880 return TRUE;
7881
7882 addr = (bfd_vma) stub_entry->stub_offset;
7883
7884 stub_name = stub_entry->output_name;
7885
7886 switch (stub_entry->stub_type)
7887 {
7888 case aarch64_stub_adrp_branch:
7889 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7890 sizeof (aarch64_adrp_branch_stub)))
7891 return FALSE;
7892 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7893 return FALSE;
7894 break;
7895 case aarch64_stub_long_branch:
7896 if (!elfNN_aarch64_output_stub_sym
7897 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7898 return FALSE;
7899 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7900 return FALSE;
7901 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7902 return FALSE;
7903 break;
7904 case aarch64_stub_erratum_835769_veneer:
7905 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7906 sizeof (aarch64_erratum_835769_stub)))
7907 return FALSE;
7908 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7909 return FALSE;
7910 break;
7911 case aarch64_stub_erratum_843419_veneer:
7912 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7913 sizeof (aarch64_erratum_843419_stub)))
7914 return FALSE;
7915 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7916 return FALSE;
7917 break;
7918
7919 default:
7920 abort ();
7921 }
7922
7923 return TRUE;
7924 }
7925
7926 /* Output mapping symbols for linker generated sections. */
7927
7928 static bfd_boolean
7929 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7930 struct bfd_link_info *info,
7931 void *finfo,
7932 int (*func) (void *, const char *,
7933 Elf_Internal_Sym *,
7934 asection *,
7935 struct elf_link_hash_entry
7936 *))
7937 {
7938 output_arch_syminfo osi;
7939 struct elf_aarch64_link_hash_table *htab;
7940
7941 htab = elf_aarch64_hash_table (info);
7942
7943 osi.finfo = finfo;
7944 osi.info = info;
7945 osi.func = func;
7946
7947 /* Long calls stubs. */
7948 if (htab->stub_bfd && htab->stub_bfd->sections)
7949 {
7950 asection *stub_sec;
7951
7952 for (stub_sec = htab->stub_bfd->sections;
7953 stub_sec != NULL; stub_sec = stub_sec->next)
7954 {
7955 /* Ignore non-stub sections. */
7956 if (!strstr (stub_sec->name, STUB_SUFFIX))
7957 continue;
7958
7959 osi.sec = stub_sec;
7960
7961 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7962 (output_bfd, osi.sec->output_section);
7963
7964 /* The first instruction in a stub is always a branch. */
7965 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7966 return FALSE;
7967
7968 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7969 &osi);
7970 }
7971 }
7972
7973 /* Finally, output mapping symbols for the PLT. */
7974 if (!htab->root.splt || htab->root.splt->size == 0)
7975 return TRUE;
7976
7977 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7978 (output_bfd, htab->root.splt->output_section);
7979 osi.sec = htab->root.splt;
7980
7981 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7982
7983 return TRUE;
7984
7985 }
7986
7987 /* Allocate target specific section data. */
7988
7989 static bfd_boolean
7990 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7991 {
7992 if (!sec->used_by_bfd)
7993 {
7994 _aarch64_elf_section_data *sdata;
7995 bfd_size_type amt = sizeof (*sdata);
7996
7997 sdata = bfd_zalloc (abfd, amt);
7998 if (sdata == NULL)
7999 return FALSE;
8000 sec->used_by_bfd = sdata;
8001 }
8002
8003 record_section_with_aarch64_elf_section_data (sec);
8004
8005 return _bfd_elf_new_section_hook (abfd, sec);
8006 }
8007
8008
8009 static void
8010 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8011 asection *sec,
8012 void *ignore ATTRIBUTE_UNUSED)
8013 {
8014 unrecord_section_with_aarch64_elf_section_data (sec);
8015 }
8016
8017 static bfd_boolean
8018 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8019 {
8020 if (abfd->sections)
8021 bfd_map_over_sections (abfd,
8022 unrecord_section_via_map_over_sections, NULL);
8023
8024 return _bfd_elf_close_and_cleanup (abfd);
8025 }
8026
8027 static bfd_boolean
8028 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8029 {
8030 if (abfd->sections)
8031 bfd_map_over_sections (abfd,
8032 unrecord_section_via_map_over_sections, NULL);
8033
8034 return _bfd_free_cached_info (abfd);
8035 }
8036
8037 /* Create dynamic sections. This is different from the ARM backend in that
8038 the got, plt, gotplt and their relocation sections are all created in the
8039 standard part of the bfd elf backend. */
8040
8041 static bfd_boolean
8042 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8043 struct bfd_link_info *info)
8044 {
8045 /* We need to create .got section. */
8046 if (!aarch64_elf_create_got_section (dynobj, info))
8047 return FALSE;
8048
8049 return _bfd_elf_create_dynamic_sections (dynobj, info);
8050 }
8051
8052
8053 /* Allocate space in .plt, .got and associated reloc sections for
8054 dynamic relocs. */
8055
8056 static bfd_boolean
8057 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8058 {
8059 struct bfd_link_info *info;
8060 struct elf_aarch64_link_hash_table *htab;
8061 struct elf_aarch64_link_hash_entry *eh;
8062 struct elf_dyn_relocs *p;
8063
8064 /* An example of a bfd_link_hash_indirect symbol is versioned
8065 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8066 -> __gxx_personality_v0(bfd_link_hash_defined)
8067
8068 There is no need to process bfd_link_hash_indirect symbols here
8069 because we will also be presented with the concrete instance of
8070 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8071 called to copy all relevant data from the generic to the concrete
8072 symbol instance. */
8073 if (h->root.type == bfd_link_hash_indirect)
8074 return TRUE;
8075
8076 if (h->root.type == bfd_link_hash_warning)
8077 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8078
8079 info = (struct bfd_link_info *) inf;
8080 htab = elf_aarch64_hash_table (info);
8081
8082 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8083 here if it is defined and referenced in a non-shared object. */
8084 if (h->type == STT_GNU_IFUNC
8085 && h->def_regular)
8086 return TRUE;
8087 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8088 {
8089 /* Make sure this symbol is output as a dynamic symbol.
8090 Undefined weak syms won't yet be marked as dynamic. */
8091 if (h->dynindx == -1 && !h->forced_local)
8092 {
8093 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8094 return FALSE;
8095 }
8096
8097 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8098 {
8099 asection *s = htab->root.splt;
8100
8101 /* If this is the first .plt entry, make room for the special
8102 first entry. */
8103 if (s->size == 0)
8104 s->size += htab->plt_header_size;
8105
8106 h->plt.offset = s->size;
8107
8108 /* If this symbol is not defined in a regular file, and we are
8109 not generating a shared library, then set the symbol to this
8110 location in the .plt. This is required to make function
8111 pointers compare as equal between the normal executable and
8112 the shared library. */
8113 if (!bfd_link_pic (info) && !h->def_regular)
8114 {
8115 h->root.u.def.section = s;
8116 h->root.u.def.value = h->plt.offset;
8117 }
8118
8119 /* Make room for this entry. For now we only create the
8120 small model PLT entries. We later need to find a way
8121 of relaxing into these from the large model PLT entries. */
8122 s->size += PLT_SMALL_ENTRY_SIZE;
8123
8124 /* We also need to make an entry in the .got.plt section, which
8125 will be placed in the .got section by the linker script. */
8126 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8127
8128 /* We also need to make an entry in the .rela.plt section. */
8129 htab->root.srelplt->size += RELOC_SIZE (htab);
8130
8131 /* We need to ensure that all GOT entries that serve the PLT
8132 are consecutive with the special GOT slots [0] [1] and
8133 [2]. Any addtional relocations, such as
8134 R_AARCH64_TLSDESC, must be placed after the PLT related
8135 entries. We abuse the reloc_count such that during
8136 sizing we adjust reloc_count to indicate the number of
8137 PLT related reserved entries. In subsequent phases when
8138 filling in the contents of the reloc entries, PLT related
8139 entries are placed by computing their PLT index (0
8140 .. reloc_count). While other none PLT relocs are placed
8141 at the slot indicated by reloc_count and reloc_count is
8142 updated. */
8143
8144 htab->root.srelplt->reloc_count++;
8145 }
8146 else
8147 {
8148 h->plt.offset = (bfd_vma) - 1;
8149 h->needs_plt = 0;
8150 }
8151 }
8152 else
8153 {
8154 h->plt.offset = (bfd_vma) - 1;
8155 h->needs_plt = 0;
8156 }
8157
8158 eh = (struct elf_aarch64_link_hash_entry *) h;
8159 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8160
8161 if (h->got.refcount > 0)
8162 {
8163 bfd_boolean dyn;
8164 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8165
8166 h->got.offset = (bfd_vma) - 1;
8167
8168 dyn = htab->root.dynamic_sections_created;
8169
8170 /* Make sure this symbol is output as a dynamic symbol.
8171 Undefined weak syms won't yet be marked as dynamic. */
8172 if (dyn && h->dynindx == -1 && !h->forced_local)
8173 {
8174 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8175 return FALSE;
8176 }
8177
8178 if (got_type == GOT_UNKNOWN)
8179 {
8180 }
8181 else if (got_type == GOT_NORMAL)
8182 {
8183 h->got.offset = htab->root.sgot->size;
8184 htab->root.sgot->size += GOT_ENTRY_SIZE;
8185 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8186 || h->root.type != bfd_link_hash_undefweak)
8187 && (bfd_link_pic (info)
8188 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8189 {
8190 htab->root.srelgot->size += RELOC_SIZE (htab);
8191 }
8192 }
8193 else
8194 {
8195 int indx;
8196 if (got_type & GOT_TLSDESC_GD)
8197 {
8198 eh->tlsdesc_got_jump_table_offset =
8199 (htab->root.sgotplt->size
8200 - aarch64_compute_jump_table_size (htab));
8201 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8202 h->got.offset = (bfd_vma) - 2;
8203 }
8204
8205 if (got_type & GOT_TLS_GD)
8206 {
8207 h->got.offset = htab->root.sgot->size;
8208 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8209 }
8210
8211 if (got_type & GOT_TLS_IE)
8212 {
8213 h->got.offset = htab->root.sgot->size;
8214 htab->root.sgot->size += GOT_ENTRY_SIZE;
8215 }
8216
8217 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8218 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8219 || h->root.type != bfd_link_hash_undefweak)
8220 && (bfd_link_pic (info)
8221 || indx != 0
8222 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8223 {
8224 if (got_type & GOT_TLSDESC_GD)
8225 {
8226 htab->root.srelplt->size += RELOC_SIZE (htab);
8227 /* Note reloc_count not incremented here! We have
8228 already adjusted reloc_count for this relocation
8229 type. */
8230
8231 /* TLSDESC PLT is now needed, but not yet determined. */
8232 htab->tlsdesc_plt = (bfd_vma) - 1;
8233 }
8234
8235 if (got_type & GOT_TLS_GD)
8236 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8237
8238 if (got_type & GOT_TLS_IE)
8239 htab->root.srelgot->size += RELOC_SIZE (htab);
8240 }
8241 }
8242 }
8243 else
8244 {
8245 h->got.offset = (bfd_vma) - 1;
8246 }
8247
8248 if (eh->dyn_relocs == NULL)
8249 return TRUE;
8250
8251 /* In the shared -Bsymbolic case, discard space allocated for
8252 dynamic pc-relative relocs against symbols which turn out to be
8253 defined in regular objects. For the normal shared case, discard
8254 space for pc-relative relocs that have become local due to symbol
8255 visibility changes. */
8256
8257 if (bfd_link_pic (info))
8258 {
8259 /* Relocs that use pc_count are those that appear on a call
8260 insn, or certain REL relocs that can generated via assembly.
8261 We want calls to protected symbols to resolve directly to the
8262 function rather than going via the plt. If people want
8263 function pointer comparisons to work as expected then they
8264 should avoid writing weird assembly. */
8265 if (SYMBOL_CALLS_LOCAL (info, h))
8266 {
8267 struct elf_dyn_relocs **pp;
8268
8269 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8270 {
8271 p->count -= p->pc_count;
8272 p->pc_count = 0;
8273 if (p->count == 0)
8274 *pp = p->next;
8275 else
8276 pp = &p->next;
8277 }
8278 }
8279
8280 /* Also discard relocs on undefined weak syms with non-default
8281 visibility. */
8282 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8283 {
8284 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8285 eh->dyn_relocs = NULL;
8286
8287 /* Make sure undefined weak symbols are output as a dynamic
8288 symbol in PIEs. */
8289 else if (h->dynindx == -1
8290 && !h->forced_local
8291 && !bfd_elf_link_record_dynamic_symbol (info, h))
8292 return FALSE;
8293 }
8294
8295 }
8296 else if (ELIMINATE_COPY_RELOCS)
8297 {
8298 /* For the non-shared case, discard space for relocs against
8299 symbols which turn out to need copy relocs or are not
8300 dynamic. */
8301
8302 if (!h->non_got_ref
8303 && ((h->def_dynamic
8304 && !h->def_regular)
8305 || (htab->root.dynamic_sections_created
8306 && (h->root.type == bfd_link_hash_undefweak
8307 || h->root.type == bfd_link_hash_undefined))))
8308 {
8309 /* Make sure this symbol is output as a dynamic symbol.
8310 Undefined weak syms won't yet be marked as dynamic. */
8311 if (h->dynindx == -1
8312 && !h->forced_local
8313 && !bfd_elf_link_record_dynamic_symbol (info, h))
8314 return FALSE;
8315
8316 /* If that succeeded, we know we'll be keeping all the
8317 relocs. */
8318 if (h->dynindx != -1)
8319 goto keep;
8320 }
8321
8322 eh->dyn_relocs = NULL;
8323
8324 keep:;
8325 }
8326
8327 /* Finally, allocate space. */
8328 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8329 {
8330 asection *sreloc;
8331
8332 sreloc = elf_section_data (p->sec)->sreloc;
8333
8334 BFD_ASSERT (sreloc != NULL);
8335
8336 sreloc->size += p->count * RELOC_SIZE (htab);
8337 }
8338
8339 return TRUE;
8340 }
8341
8342 /* Allocate space in .plt, .got and associated reloc sections for
8343 ifunc dynamic relocs. */
8344
8345 static bfd_boolean
8346 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8347 void *inf)
8348 {
8349 struct bfd_link_info *info;
8350 struct elf_aarch64_link_hash_table *htab;
8351 struct elf_aarch64_link_hash_entry *eh;
8352
8353 /* An example of a bfd_link_hash_indirect symbol is versioned
8354 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8355 -> __gxx_personality_v0(bfd_link_hash_defined)
8356
8357 There is no need to process bfd_link_hash_indirect symbols here
8358 because we will also be presented with the concrete instance of
8359 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8360 called to copy all relevant data from the generic to the concrete
8361 symbol instance. */
8362 if (h->root.type == bfd_link_hash_indirect)
8363 return TRUE;
8364
8365 if (h->root.type == bfd_link_hash_warning)
8366 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8367
8368 info = (struct bfd_link_info *) inf;
8369 htab = elf_aarch64_hash_table (info);
8370
8371 eh = (struct elf_aarch64_link_hash_entry *) h;
8372
8373 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8374 here if it is defined and referenced in a non-shared object. */
8375 if (h->type == STT_GNU_IFUNC
8376 && h->def_regular)
8377 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8378 &eh->dyn_relocs,
8379 NULL,
8380 htab->plt_entry_size,
8381 htab->plt_header_size,
8382 GOT_ENTRY_SIZE,
8383 FALSE);
8384 return TRUE;
8385 }
8386
8387 /* Allocate space in .plt, .got and associated reloc sections for
8388 local dynamic relocs. */
8389
8390 static bfd_boolean
8391 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8392 {
8393 struct elf_link_hash_entry *h
8394 = (struct elf_link_hash_entry *) *slot;
8395
8396 if (h->type != STT_GNU_IFUNC
8397 || !h->def_regular
8398 || !h->ref_regular
8399 || !h->forced_local
8400 || h->root.type != bfd_link_hash_defined)
8401 abort ();
8402
8403 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8404 }
8405
8406 /* Allocate space in .plt, .got and associated reloc sections for
8407 local ifunc dynamic relocs. */
8408
8409 static bfd_boolean
8410 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8411 {
8412 struct elf_link_hash_entry *h
8413 = (struct elf_link_hash_entry *) *slot;
8414
8415 if (h->type != STT_GNU_IFUNC
8416 || !h->def_regular
8417 || !h->ref_regular
8418 || !h->forced_local
8419 || h->root.type != bfd_link_hash_defined)
8420 abort ();
8421
8422 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8423 }
8424
8425 /* Find any dynamic relocs that apply to read-only sections. */
8426
8427 static bfd_boolean
8428 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8429 {
8430 struct elf_aarch64_link_hash_entry * eh;
8431 struct elf_dyn_relocs * p;
8432
8433 eh = (struct elf_aarch64_link_hash_entry *) h;
8434 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8435 {
8436 asection *s = p->sec;
8437
8438 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8439 {
8440 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8441
8442 info->flags |= DF_TEXTREL;
8443
8444 /* Not an error, just cut short the traversal. */
8445 return FALSE;
8446 }
8447 }
8448 return TRUE;
8449 }
8450
8451 /* This is the most important function of all . Innocuosly named
8452 though ! */
8453
8454 static bfd_boolean
8455 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8456 struct bfd_link_info *info)
8457 {
8458 struct elf_aarch64_link_hash_table *htab;
8459 bfd *dynobj;
8460 asection *s;
8461 bfd_boolean relocs;
8462 bfd *ibfd;
8463
8464 htab = elf_aarch64_hash_table ((info));
8465 dynobj = htab->root.dynobj;
8466
8467 BFD_ASSERT (dynobj != NULL);
8468
8469 if (htab->root.dynamic_sections_created)
8470 {
8471 if (bfd_link_executable (info) && !info->nointerp)
8472 {
8473 s = bfd_get_linker_section (dynobj, ".interp");
8474 if (s == NULL)
8475 abort ();
8476 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8477 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8478 }
8479 }
8480
8481 /* Set up .got offsets for local syms, and space for local dynamic
8482 relocs. */
8483 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8484 {
8485 struct elf_aarch64_local_symbol *locals = NULL;
8486 Elf_Internal_Shdr *symtab_hdr;
8487 asection *srel;
8488 unsigned int i;
8489
8490 if (!is_aarch64_elf (ibfd))
8491 continue;
8492
8493 for (s = ibfd->sections; s != NULL; s = s->next)
8494 {
8495 struct elf_dyn_relocs *p;
8496
8497 for (p = (struct elf_dyn_relocs *)
8498 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8499 {
8500 if (!bfd_is_abs_section (p->sec)
8501 && bfd_is_abs_section (p->sec->output_section))
8502 {
8503 /* Input section has been discarded, either because
8504 it is a copy of a linkonce section or due to
8505 linker script /DISCARD/, so we'll be discarding
8506 the relocs too. */
8507 }
8508 else if (p->count != 0)
8509 {
8510 srel = elf_section_data (p->sec)->sreloc;
8511 srel->size += p->count * RELOC_SIZE (htab);
8512 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8513 info->flags |= DF_TEXTREL;
8514 }
8515 }
8516 }
8517
8518 locals = elf_aarch64_locals (ibfd);
8519 if (!locals)
8520 continue;
8521
8522 symtab_hdr = &elf_symtab_hdr (ibfd);
8523 srel = htab->root.srelgot;
8524 for (i = 0; i < symtab_hdr->sh_info; i++)
8525 {
8526 locals[i].got_offset = (bfd_vma) - 1;
8527 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8528 if (locals[i].got_refcount > 0)
8529 {
8530 unsigned got_type = locals[i].got_type;
8531 if (got_type & GOT_TLSDESC_GD)
8532 {
8533 locals[i].tlsdesc_got_jump_table_offset =
8534 (htab->root.sgotplt->size
8535 - aarch64_compute_jump_table_size (htab));
8536 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8537 locals[i].got_offset = (bfd_vma) - 2;
8538 }
8539
8540 if (got_type & GOT_TLS_GD)
8541 {
8542 locals[i].got_offset = htab->root.sgot->size;
8543 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8544 }
8545
8546 if (got_type & GOT_TLS_IE
8547 || got_type & GOT_NORMAL)
8548 {
8549 locals[i].got_offset = htab->root.sgot->size;
8550 htab->root.sgot->size += GOT_ENTRY_SIZE;
8551 }
8552
8553 if (got_type == GOT_UNKNOWN)
8554 {
8555 }
8556
8557 if (bfd_link_pic (info))
8558 {
8559 if (got_type & GOT_TLSDESC_GD)
8560 {
8561 htab->root.srelplt->size += RELOC_SIZE (htab);
8562 /* Note RELOC_COUNT not incremented here! */
8563 htab->tlsdesc_plt = (bfd_vma) - 1;
8564 }
8565
8566 if (got_type & GOT_TLS_GD)
8567 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8568
8569 if (got_type & GOT_TLS_IE
8570 || got_type & GOT_NORMAL)
8571 htab->root.srelgot->size += RELOC_SIZE (htab);
8572 }
8573 }
8574 else
8575 {
8576 locals[i].got_refcount = (bfd_vma) - 1;
8577 }
8578 }
8579 }
8580
8581
8582 /* Allocate global sym .plt and .got entries, and space for global
8583 sym dynamic relocs. */
8584 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8585 info);
8586
8587 /* Allocate global ifunc sym .plt and .got entries, and space for global
8588 ifunc sym dynamic relocs. */
8589 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8590 info);
8591
8592 /* Allocate .plt and .got entries, and space for local symbols. */
8593 htab_traverse (htab->loc_hash_table,
8594 elfNN_aarch64_allocate_local_dynrelocs,
8595 info);
8596
8597 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8598 htab_traverse (htab->loc_hash_table,
8599 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8600 info);
8601
8602 /* For every jump slot reserved in the sgotplt, reloc_count is
8603 incremented. However, when we reserve space for TLS descriptors,
8604 it's not incremented, so in order to compute the space reserved
8605 for them, it suffices to multiply the reloc count by the jump
8606 slot size. */
8607
8608 if (htab->root.srelplt)
8609 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8610
8611 if (htab->tlsdesc_plt)
8612 {
8613 if (htab->root.splt->size == 0)
8614 htab->root.splt->size += PLT_ENTRY_SIZE;
8615
8616 htab->tlsdesc_plt = htab->root.splt->size;
8617 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8618
8619 /* If we're not using lazy TLS relocations, don't generate the
8620 GOT entry required. */
8621 if (!(info->flags & DF_BIND_NOW))
8622 {
8623 htab->dt_tlsdesc_got = htab->root.sgot->size;
8624 htab->root.sgot->size += GOT_ENTRY_SIZE;
8625 }
8626 }
8627
8628 /* Init mapping symbols information to use later to distingush between
8629 code and data while scanning for errata. */
8630 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8631 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8632 {
8633 if (!is_aarch64_elf (ibfd))
8634 continue;
8635 bfd_elfNN_aarch64_init_maps (ibfd);
8636 }
8637
8638 /* We now have determined the sizes of the various dynamic sections.
8639 Allocate memory for them. */
8640 relocs = FALSE;
8641 for (s = dynobj->sections; s != NULL; s = s->next)
8642 {
8643 if ((s->flags & SEC_LINKER_CREATED) == 0)
8644 continue;
8645
8646 if (s == htab->root.splt
8647 || s == htab->root.sgot
8648 || s == htab->root.sgotplt
8649 || s == htab->root.iplt
8650 || s == htab->root.igotplt
8651 || s == htab->root.sdynbss
8652 || s == htab->root.sdynrelro)
8653 {
8654 /* Strip this section if we don't need it; see the
8655 comment below. */
8656 }
8657 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8658 {
8659 if (s->size != 0 && s != htab->root.srelplt)
8660 relocs = TRUE;
8661
8662 /* We use the reloc_count field as a counter if we need
8663 to copy relocs into the output file. */
8664 if (s != htab->root.srelplt)
8665 s->reloc_count = 0;
8666 }
8667 else
8668 {
8669 /* It's not one of our sections, so don't allocate space. */
8670 continue;
8671 }
8672
8673 if (s->size == 0)
8674 {
8675 /* If we don't need this section, strip it from the
8676 output file. This is mostly to handle .rela.bss and
8677 .rela.plt. We must create both sections in
8678 create_dynamic_sections, because they must be created
8679 before the linker maps input sections to output
8680 sections. The linker does that before
8681 adjust_dynamic_symbol is called, and it is that
8682 function which decides whether anything needs to go
8683 into these sections. */
8684 s->flags |= SEC_EXCLUDE;
8685 continue;
8686 }
8687
8688 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8689 continue;
8690
8691 /* Allocate memory for the section contents. We use bfd_zalloc
8692 here in case unused entries are not reclaimed before the
8693 section's contents are written out. This should not happen,
8694 but this way if it does, we get a R_AARCH64_NONE reloc instead
8695 of garbage. */
8696 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8697 if (s->contents == NULL)
8698 return FALSE;
8699 }
8700
8701 if (htab->root.dynamic_sections_created)
8702 {
8703 /* Add some entries to the .dynamic section. We fill in the
8704 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8705 must add the entries now so that we get the correct size for
8706 the .dynamic section. The DT_DEBUG entry is filled in by the
8707 dynamic linker and used by the debugger. */
8708 #define add_dynamic_entry(TAG, VAL) \
8709 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8710
8711 if (bfd_link_executable (info))
8712 {
8713 if (!add_dynamic_entry (DT_DEBUG, 0))
8714 return FALSE;
8715 }
8716
8717 if (htab->root.splt->size != 0)
8718 {
8719 if (!add_dynamic_entry (DT_PLTGOT, 0)
8720 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8721 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8722 || !add_dynamic_entry (DT_JMPREL, 0))
8723 return FALSE;
8724
8725 if (htab->tlsdesc_plt
8726 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8727 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8728 return FALSE;
8729 }
8730
8731 if (relocs)
8732 {
8733 if (!add_dynamic_entry (DT_RELA, 0)
8734 || !add_dynamic_entry (DT_RELASZ, 0)
8735 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8736 return FALSE;
8737
8738 /* If any dynamic relocs apply to a read-only section,
8739 then we need a DT_TEXTREL entry. */
8740 if ((info->flags & DF_TEXTREL) == 0)
8741 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8742 info);
8743
8744 if ((info->flags & DF_TEXTREL) != 0)
8745 {
8746 if (!add_dynamic_entry (DT_TEXTREL, 0))
8747 return FALSE;
8748 }
8749 }
8750 }
8751 #undef add_dynamic_entry
8752
8753 return TRUE;
8754 }
8755
8756 static inline void
8757 elf_aarch64_update_plt_entry (bfd *output_bfd,
8758 bfd_reloc_code_real_type r_type,
8759 bfd_byte *plt_entry, bfd_vma value)
8760 {
8761 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8762
8763 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8764 }
8765
8766 static void
8767 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8768 struct elf_aarch64_link_hash_table
8769 *htab, bfd *output_bfd,
8770 struct bfd_link_info *info)
8771 {
8772 bfd_byte *plt_entry;
8773 bfd_vma plt_index;
8774 bfd_vma got_offset;
8775 bfd_vma gotplt_entry_address;
8776 bfd_vma plt_entry_address;
8777 Elf_Internal_Rela rela;
8778 bfd_byte *loc;
8779 asection *plt, *gotplt, *relplt;
8780
8781 /* When building a static executable, use .iplt, .igot.plt and
8782 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8783 if (htab->root.splt != NULL)
8784 {
8785 plt = htab->root.splt;
8786 gotplt = htab->root.sgotplt;
8787 relplt = htab->root.srelplt;
8788 }
8789 else
8790 {
8791 plt = htab->root.iplt;
8792 gotplt = htab->root.igotplt;
8793 relplt = htab->root.irelplt;
8794 }
8795
8796 /* Get the index in the procedure linkage table which
8797 corresponds to this symbol. This is the index of this symbol
8798 in all the symbols for which we are making plt entries. The
8799 first entry in the procedure linkage table is reserved.
8800
8801 Get the offset into the .got table of the entry that
8802 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8803 bytes. The first three are reserved for the dynamic linker.
8804
8805 For static executables, we don't reserve anything. */
8806
8807 if (plt == htab->root.splt)
8808 {
8809 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8810 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8811 }
8812 else
8813 {
8814 plt_index = h->plt.offset / htab->plt_entry_size;
8815 got_offset = plt_index * GOT_ENTRY_SIZE;
8816 }
8817
8818 plt_entry = plt->contents + h->plt.offset;
8819 plt_entry_address = plt->output_section->vma
8820 + plt->output_offset + h->plt.offset;
8821 gotplt_entry_address = gotplt->output_section->vma +
8822 gotplt->output_offset + got_offset;
8823
8824 /* Copy in the boiler-plate for the PLTn entry. */
8825 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8826
8827 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8828 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8829 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8830 plt_entry,
8831 PG (gotplt_entry_address) -
8832 PG (plt_entry_address));
8833
8834 /* Fill in the lo12 bits for the load from the pltgot. */
8835 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8836 plt_entry + 4,
8837 PG_OFFSET (gotplt_entry_address));
8838
8839 /* Fill in the lo12 bits for the add from the pltgot entry. */
8840 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8841 plt_entry + 8,
8842 PG_OFFSET (gotplt_entry_address));
8843
8844 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8845 bfd_put_NN (output_bfd,
8846 plt->output_section->vma + plt->output_offset,
8847 gotplt->contents + got_offset);
8848
8849 rela.r_offset = gotplt_entry_address;
8850
8851 if (h->dynindx == -1
8852 || ((bfd_link_executable (info)
8853 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8854 && h->def_regular
8855 && h->type == STT_GNU_IFUNC))
8856 {
8857 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8858 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8859 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8860 rela.r_addend = (h->root.u.def.value
8861 + h->root.u.def.section->output_section->vma
8862 + h->root.u.def.section->output_offset);
8863 }
8864 else
8865 {
8866 /* Fill in the entry in the .rela.plt section. */
8867 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8868 rela.r_addend = 0;
8869 }
8870
8871 /* Compute the relocation entry to used based on PLT index and do
8872 not adjust reloc_count. The reloc_count has already been adjusted
8873 to account for this entry. */
8874 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8875 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8876 }
8877
8878 /* Size sections even though they're not dynamic. We use it to setup
8879 _TLS_MODULE_BASE_, if needed. */
8880
8881 static bfd_boolean
8882 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8883 struct bfd_link_info *info)
8884 {
8885 asection *tls_sec;
8886
8887 if (bfd_link_relocatable (info))
8888 return TRUE;
8889
8890 tls_sec = elf_hash_table (info)->tls_sec;
8891
8892 if (tls_sec)
8893 {
8894 struct elf_link_hash_entry *tlsbase;
8895
8896 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8897 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8898
8899 if (tlsbase)
8900 {
8901 struct bfd_link_hash_entry *h = NULL;
8902 const struct elf_backend_data *bed =
8903 get_elf_backend_data (output_bfd);
8904
8905 if (!(_bfd_generic_link_add_one_symbol
8906 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8907 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8908 return FALSE;
8909
8910 tlsbase->type = STT_TLS;
8911 tlsbase = (struct elf_link_hash_entry *) h;
8912 tlsbase->def_regular = 1;
8913 tlsbase->other = STV_HIDDEN;
8914 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8915 }
8916 }
8917
8918 return TRUE;
8919 }
8920
8921 /* Finish up dynamic symbol handling. We set the contents of various
8922 dynamic sections here. */
8923
8924 static bfd_boolean
8925 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8926 struct bfd_link_info *info,
8927 struct elf_link_hash_entry *h,
8928 Elf_Internal_Sym *sym)
8929 {
8930 struct elf_aarch64_link_hash_table *htab;
8931 htab = elf_aarch64_hash_table (info);
8932
8933 if (h->plt.offset != (bfd_vma) - 1)
8934 {
8935 asection *plt, *gotplt, *relplt;
8936
8937 /* This symbol has an entry in the procedure linkage table. Set
8938 it up. */
8939
8940 /* When building a static executable, use .iplt, .igot.plt and
8941 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8942 if (htab->root.splt != NULL)
8943 {
8944 plt = htab->root.splt;
8945 gotplt = htab->root.sgotplt;
8946 relplt = htab->root.srelplt;
8947 }
8948 else
8949 {
8950 plt = htab->root.iplt;
8951 gotplt = htab->root.igotplt;
8952 relplt = htab->root.irelplt;
8953 }
8954
8955 /* This symbol has an entry in the procedure linkage table. Set
8956 it up. */
8957 if ((h->dynindx == -1
8958 && !((h->forced_local || bfd_link_executable (info))
8959 && h->def_regular
8960 && h->type == STT_GNU_IFUNC))
8961 || plt == NULL
8962 || gotplt == NULL
8963 || relplt == NULL)
8964 return FALSE;
8965
8966 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8967 if (!h->def_regular)
8968 {
8969 /* Mark the symbol as undefined, rather than as defined in
8970 the .plt section. */
8971 sym->st_shndx = SHN_UNDEF;
8972 /* If the symbol is weak we need to clear the value.
8973 Otherwise, the PLT entry would provide a definition for
8974 the symbol even if the symbol wasn't defined anywhere,
8975 and so the symbol would never be NULL. Leave the value if
8976 there were any relocations where pointer equality matters
8977 (this is a clue for the dynamic linker, to make function
8978 pointer comparisons work between an application and shared
8979 library). */
8980 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8981 sym->st_value = 0;
8982 }
8983 }
8984
8985 if (h->got.offset != (bfd_vma) - 1
8986 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8987 {
8988 Elf_Internal_Rela rela;
8989 bfd_byte *loc;
8990
8991 /* This symbol has an entry in the global offset table. Set it
8992 up. */
8993 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8994 abort ();
8995
8996 rela.r_offset = (htab->root.sgot->output_section->vma
8997 + htab->root.sgot->output_offset
8998 + (h->got.offset & ~(bfd_vma) 1));
8999
9000 if (h->def_regular
9001 && h->type == STT_GNU_IFUNC)
9002 {
9003 if (bfd_link_pic (info))
9004 {
9005 /* Generate R_AARCH64_GLOB_DAT. */
9006 goto do_glob_dat;
9007 }
9008 else
9009 {
9010 asection *plt;
9011
9012 if (!h->pointer_equality_needed)
9013 abort ();
9014
9015 /* For non-shared object, we can't use .got.plt, which
9016 contains the real function address if we need pointer
9017 equality. We load the GOT entry with the PLT entry. */
9018 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9019 bfd_put_NN (output_bfd, (plt->output_section->vma
9020 + plt->output_offset
9021 + h->plt.offset),
9022 htab->root.sgot->contents
9023 + (h->got.offset & ~(bfd_vma) 1));
9024 return TRUE;
9025 }
9026 }
9027 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9028 {
9029 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9030 return FALSE;
9031
9032 BFD_ASSERT ((h->got.offset & 1) != 0);
9033 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9034 rela.r_addend = (h->root.u.def.value
9035 + h->root.u.def.section->output_section->vma
9036 + h->root.u.def.section->output_offset);
9037 }
9038 else
9039 {
9040 do_glob_dat:
9041 BFD_ASSERT ((h->got.offset & 1) == 0);
9042 bfd_put_NN (output_bfd, (bfd_vma) 0,
9043 htab->root.sgot->contents + h->got.offset);
9044 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9045 rela.r_addend = 0;
9046 }
9047
9048 loc = htab->root.srelgot->contents;
9049 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9050 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9051 }
9052
9053 if (h->needs_copy)
9054 {
9055 Elf_Internal_Rela rela;
9056 asection *s;
9057 bfd_byte *loc;
9058
9059 /* This symbol needs a copy reloc. Set it up. */
9060 if (h->dynindx == -1
9061 || (h->root.type != bfd_link_hash_defined
9062 && h->root.type != bfd_link_hash_defweak)
9063 || htab->root.srelbss == NULL)
9064 abort ();
9065
9066 rela.r_offset = (h->root.u.def.value
9067 + h->root.u.def.section->output_section->vma
9068 + h->root.u.def.section->output_offset);
9069 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9070 rela.r_addend = 0;
9071 if (h->root.u.def.section == htab->root.sdynrelro)
9072 s = htab->root.sreldynrelro;
9073 else
9074 s = htab->root.srelbss;
9075 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9076 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9077 }
9078
9079 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9080 be NULL for local symbols. */
9081 if (sym != NULL
9082 && (h == elf_hash_table (info)->hdynamic
9083 || h == elf_hash_table (info)->hgot))
9084 sym->st_shndx = SHN_ABS;
9085
9086 return TRUE;
9087 }
9088
9089 /* Finish up local dynamic symbol handling. We set the contents of
9090 various dynamic sections here. */
9091
9092 static bfd_boolean
9093 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9094 {
9095 struct elf_link_hash_entry *h
9096 = (struct elf_link_hash_entry *) *slot;
9097 struct bfd_link_info *info
9098 = (struct bfd_link_info *) inf;
9099
9100 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9101 info, h, NULL);
9102 }
9103
9104 static void
9105 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9106 struct elf_aarch64_link_hash_table
9107 *htab)
9108 {
9109 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9110 small and large plts and at the minute just generates
9111 the small PLT. */
9112
9113 /* PLT0 of the small PLT looks like this in ELF64 -
9114 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9115 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9116 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9117 // symbol resolver
9118 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9119 // GOTPLT entry for this.
9120 br x17
9121 PLT0 will be slightly different in ELF32 due to different got entry
9122 size. */
9123 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9124 bfd_vma plt_base;
9125
9126
9127 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9128 PLT_ENTRY_SIZE);
9129 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9130 PLT_ENTRY_SIZE;
9131
9132 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9133 + htab->root.sgotplt->output_offset
9134 + GOT_ENTRY_SIZE * 2);
9135
9136 plt_base = htab->root.splt->output_section->vma +
9137 htab->root.splt->output_offset;
9138
9139 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9140 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9141 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9142 htab->root.splt->contents + 4,
9143 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9144
9145 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9146 htab->root.splt->contents + 8,
9147 PG_OFFSET (plt_got_2nd_ent));
9148
9149 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9150 htab->root.splt->contents + 12,
9151 PG_OFFSET (plt_got_2nd_ent));
9152 }
9153
9154 static bfd_boolean
9155 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9156 struct bfd_link_info *info)
9157 {
9158 struct elf_aarch64_link_hash_table *htab;
9159 bfd *dynobj;
9160 asection *sdyn;
9161
9162 htab = elf_aarch64_hash_table (info);
9163 dynobj = htab->root.dynobj;
9164 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9165
9166 if (htab->root.dynamic_sections_created)
9167 {
9168 ElfNN_External_Dyn *dyncon, *dynconend;
9169
9170 if (sdyn == NULL || htab->root.sgot == NULL)
9171 abort ();
9172
9173 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9174 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9175 for (; dyncon < dynconend; dyncon++)
9176 {
9177 Elf_Internal_Dyn dyn;
9178 asection *s;
9179
9180 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9181
9182 switch (dyn.d_tag)
9183 {
9184 default:
9185 continue;
9186
9187 case DT_PLTGOT:
9188 s = htab->root.sgotplt;
9189 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9190 break;
9191
9192 case DT_JMPREL:
9193 s = htab->root.srelplt;
9194 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9195 break;
9196
9197 case DT_PLTRELSZ:
9198 s = htab->root.srelplt;
9199 dyn.d_un.d_val = s->size;
9200 break;
9201
9202 case DT_TLSDESC_PLT:
9203 s = htab->root.splt;
9204 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9205 + htab->tlsdesc_plt;
9206 break;
9207
9208 case DT_TLSDESC_GOT:
9209 s = htab->root.sgot;
9210 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9211 + htab->dt_tlsdesc_got;
9212 break;
9213 }
9214
9215 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9216 }
9217
9218 }
9219
9220 /* Fill in the special first entry in the procedure linkage table. */
9221 if (htab->root.splt && htab->root.splt->size > 0)
9222 {
9223 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9224
9225 elf_section_data (htab->root.splt->output_section)->
9226 this_hdr.sh_entsize = htab->plt_entry_size;
9227
9228
9229 if (htab->tlsdesc_plt)
9230 {
9231 bfd_put_NN (output_bfd, (bfd_vma) 0,
9232 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9233
9234 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9235 elfNN_aarch64_tlsdesc_small_plt_entry,
9236 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9237
9238 {
9239 bfd_vma adrp1_addr =
9240 htab->root.splt->output_section->vma
9241 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9242
9243 bfd_vma adrp2_addr = adrp1_addr + 4;
9244
9245 bfd_vma got_addr =
9246 htab->root.sgot->output_section->vma
9247 + htab->root.sgot->output_offset;
9248
9249 bfd_vma pltgot_addr =
9250 htab->root.sgotplt->output_section->vma
9251 + htab->root.sgotplt->output_offset;
9252
9253 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9254
9255 bfd_byte *plt_entry =
9256 htab->root.splt->contents + htab->tlsdesc_plt;
9257
9258 /* adrp x2, DT_TLSDESC_GOT */
9259 elf_aarch64_update_plt_entry (output_bfd,
9260 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9261 plt_entry + 4,
9262 (PG (dt_tlsdesc_got)
9263 - PG (adrp1_addr)));
9264
9265 /* adrp x3, 0 */
9266 elf_aarch64_update_plt_entry (output_bfd,
9267 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9268 plt_entry + 8,
9269 (PG (pltgot_addr)
9270 - PG (adrp2_addr)));
9271
9272 /* ldr x2, [x2, #0] */
9273 elf_aarch64_update_plt_entry (output_bfd,
9274 BFD_RELOC_AARCH64_LDSTNN_LO12,
9275 plt_entry + 12,
9276 PG_OFFSET (dt_tlsdesc_got));
9277
9278 /* add x3, x3, 0 */
9279 elf_aarch64_update_plt_entry (output_bfd,
9280 BFD_RELOC_AARCH64_ADD_LO12,
9281 plt_entry + 16,
9282 PG_OFFSET (pltgot_addr));
9283 }
9284 }
9285 }
9286
9287 if (htab->root.sgotplt)
9288 {
9289 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9290 {
9291 _bfd_error_handler
9292 (_("discarded output section: `%A'"), htab->root.sgotplt);
9293 return FALSE;
9294 }
9295
9296 /* Fill in the first three entries in the global offset table. */
9297 if (htab->root.sgotplt->size > 0)
9298 {
9299 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9300
9301 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9302 bfd_put_NN (output_bfd,
9303 (bfd_vma) 0,
9304 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9305 bfd_put_NN (output_bfd,
9306 (bfd_vma) 0,
9307 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9308 }
9309
9310 if (htab->root.sgot)
9311 {
9312 if (htab->root.sgot->size > 0)
9313 {
9314 bfd_vma addr =
9315 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9316 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9317 }
9318 }
9319
9320 elf_section_data (htab->root.sgotplt->output_section)->
9321 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9322 }
9323
9324 if (htab->root.sgot && htab->root.sgot->size > 0)
9325 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9326 = GOT_ENTRY_SIZE;
9327
9328 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9329 htab_traverse (htab->loc_hash_table,
9330 elfNN_aarch64_finish_local_dynamic_symbol,
9331 info);
9332
9333 return TRUE;
9334 }
9335
9336 /* Return address for Ith PLT stub in section PLT, for relocation REL
9337 or (bfd_vma) -1 if it should not be included. */
9338
9339 static bfd_vma
9340 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9341 const arelent *rel ATTRIBUTE_UNUSED)
9342 {
9343 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9344 }
9345
9346 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9347 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9348 It also allows a period initiated suffix to be added to the symbol, ie:
9349 "$[adtx]\.[:sym_char]+". */
9350
9351 static bfd_boolean
9352 is_aarch64_mapping_symbol (const char * name)
9353 {
9354 return name != NULL /* Paranoia. */
9355 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9356 the mapping symbols could have acquired a prefix.
9357 We do not support this here, since such symbols no
9358 longer conform to the ARM ELF ABI. */
9359 && (name[1] == 'd' || name[1] == 'x')
9360 && (name[2] == 0 || name[2] == '.');
9361 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9362 any characters that follow the period are legal characters for the body
9363 of a symbol's name. For now we just assume that this is the case. */
9364 }
9365
9366 /* Make sure that mapping symbols in object files are not removed via the
9367 "strip --strip-unneeded" tool. These symbols might needed in order to
9368 correctly generate linked files. Once an object file has been linked,
9369 it should be safe to remove them. */
9370
9371 static void
9372 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9373 {
9374 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9375 && sym->section != bfd_abs_section_ptr
9376 && is_aarch64_mapping_symbol (sym->name))
9377 sym->flags |= BSF_KEEP;
9378 }
9379
9380
9381 /* We use this so we can override certain functions
9382 (though currently we don't). */
9383
9384 const struct elf_size_info elfNN_aarch64_size_info =
9385 {
9386 sizeof (ElfNN_External_Ehdr),
9387 sizeof (ElfNN_External_Phdr),
9388 sizeof (ElfNN_External_Shdr),
9389 sizeof (ElfNN_External_Rel),
9390 sizeof (ElfNN_External_Rela),
9391 sizeof (ElfNN_External_Sym),
9392 sizeof (ElfNN_External_Dyn),
9393 sizeof (Elf_External_Note),
9394 4, /* Hash table entry size. */
9395 1, /* Internal relocs per external relocs. */
9396 ARCH_SIZE, /* Arch size. */
9397 LOG_FILE_ALIGN, /* Log_file_align. */
9398 ELFCLASSNN, EV_CURRENT,
9399 bfd_elfNN_write_out_phdrs,
9400 bfd_elfNN_write_shdrs_and_ehdr,
9401 bfd_elfNN_checksum_contents,
9402 bfd_elfNN_write_relocs,
9403 bfd_elfNN_swap_symbol_in,
9404 bfd_elfNN_swap_symbol_out,
9405 bfd_elfNN_slurp_reloc_table,
9406 bfd_elfNN_slurp_symbol_table,
9407 bfd_elfNN_swap_dyn_in,
9408 bfd_elfNN_swap_dyn_out,
9409 bfd_elfNN_swap_reloc_in,
9410 bfd_elfNN_swap_reloc_out,
9411 bfd_elfNN_swap_reloca_in,
9412 bfd_elfNN_swap_reloca_out
9413 };
9414
9415 #define ELF_ARCH bfd_arch_aarch64
9416 #define ELF_MACHINE_CODE EM_AARCH64
9417 #define ELF_MAXPAGESIZE 0x10000
9418 #define ELF_MINPAGESIZE 0x1000
9419 #define ELF_COMMONPAGESIZE 0x1000
9420
9421 #define bfd_elfNN_close_and_cleanup \
9422 elfNN_aarch64_close_and_cleanup
9423
9424 #define bfd_elfNN_bfd_free_cached_info \
9425 elfNN_aarch64_bfd_free_cached_info
9426
9427 #define bfd_elfNN_bfd_is_target_special_symbol \
9428 elfNN_aarch64_is_target_special_symbol
9429
9430 #define bfd_elfNN_bfd_link_hash_table_create \
9431 elfNN_aarch64_link_hash_table_create
9432
9433 #define bfd_elfNN_bfd_merge_private_bfd_data \
9434 elfNN_aarch64_merge_private_bfd_data
9435
9436 #define bfd_elfNN_bfd_print_private_bfd_data \
9437 elfNN_aarch64_print_private_bfd_data
9438
9439 #define bfd_elfNN_bfd_reloc_type_lookup \
9440 elfNN_aarch64_reloc_type_lookup
9441
9442 #define bfd_elfNN_bfd_reloc_name_lookup \
9443 elfNN_aarch64_reloc_name_lookup
9444
9445 #define bfd_elfNN_bfd_set_private_flags \
9446 elfNN_aarch64_set_private_flags
9447
9448 #define bfd_elfNN_find_inliner_info \
9449 elfNN_aarch64_find_inliner_info
9450
9451 #define bfd_elfNN_find_nearest_line \
9452 elfNN_aarch64_find_nearest_line
9453
9454 #define bfd_elfNN_mkobject \
9455 elfNN_aarch64_mkobject
9456
9457 #define bfd_elfNN_new_section_hook \
9458 elfNN_aarch64_new_section_hook
9459
9460 #define elf_backend_adjust_dynamic_symbol \
9461 elfNN_aarch64_adjust_dynamic_symbol
9462
9463 #define elf_backend_always_size_sections \
9464 elfNN_aarch64_always_size_sections
9465
9466 #define elf_backend_check_relocs \
9467 elfNN_aarch64_check_relocs
9468
9469 #define elf_backend_copy_indirect_symbol \
9470 elfNN_aarch64_copy_indirect_symbol
9471
9472 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9473 to them in our hash. */
9474 #define elf_backend_create_dynamic_sections \
9475 elfNN_aarch64_create_dynamic_sections
9476
9477 #define elf_backend_init_index_section \
9478 _bfd_elf_init_2_index_sections
9479
9480 #define elf_backend_finish_dynamic_sections \
9481 elfNN_aarch64_finish_dynamic_sections
9482
9483 #define elf_backend_finish_dynamic_symbol \
9484 elfNN_aarch64_finish_dynamic_symbol
9485
9486 #define elf_backend_gc_sweep_hook \
9487 elfNN_aarch64_gc_sweep_hook
9488
9489 #define elf_backend_object_p \
9490 elfNN_aarch64_object_p
9491
9492 #define elf_backend_output_arch_local_syms \
9493 elfNN_aarch64_output_arch_local_syms
9494
9495 #define elf_backend_plt_sym_val \
9496 elfNN_aarch64_plt_sym_val
9497
9498 #define elf_backend_post_process_headers \
9499 elfNN_aarch64_post_process_headers
9500
9501 #define elf_backend_relocate_section \
9502 elfNN_aarch64_relocate_section
9503
9504 #define elf_backend_reloc_type_class \
9505 elfNN_aarch64_reloc_type_class
9506
9507 #define elf_backend_section_from_shdr \
9508 elfNN_aarch64_section_from_shdr
9509
9510 #define elf_backend_size_dynamic_sections \
9511 elfNN_aarch64_size_dynamic_sections
9512
9513 #define elf_backend_size_info \
9514 elfNN_aarch64_size_info
9515
9516 #define elf_backend_write_section \
9517 elfNN_aarch64_write_section
9518
9519 #define elf_backend_symbol_processing \
9520 elfNN_aarch64_backend_symbol_processing
9521
9522 #define elf_backend_can_refcount 1
9523 #define elf_backend_can_gc_sections 1
9524 #define elf_backend_plt_readonly 1
9525 #define elf_backend_want_got_plt 1
9526 #define elf_backend_want_plt_sym 0
9527 #define elf_backend_want_dynrelro 1
9528 #define elf_backend_may_use_rel_p 0
9529 #define elf_backend_may_use_rela_p 1
9530 #define elf_backend_default_use_rela_p 1
9531 #define elf_backend_rela_normal 1
9532 #define elf_backend_dtrel_excludes_plt 1
9533 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9534 #define elf_backend_default_execstack 0
9535 #define elf_backend_extern_protected_data 1
9536 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9537
9538 #undef elf_backend_obj_attrs_section
9539 #define elf_backend_obj_attrs_section ".ARM.attributes"
9540
9541 #include "elfNN-target.h"
9542
9543 /* CloudABI support. */
9544
9545 #undef TARGET_LITTLE_SYM
9546 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9547 #undef TARGET_LITTLE_NAME
9548 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9549 #undef TARGET_BIG_SYM
9550 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9551 #undef TARGET_BIG_NAME
9552 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9553
9554 #undef ELF_OSABI
9555 #define ELF_OSABI ELFOSABI_CLOUDABI
9556
9557 #undef elfNN_bed
9558 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9559
9560 #include "elfNN-target.h"
This page took 0.266281 seconds and 4 git commands to generate.