b84c8ba7635406f721a37b83f435069ac76e3ec0
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
212 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
213
214 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
215 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
237
238 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
239 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
251
252 #define ELIMINATE_COPY_RELOCS 1
253
254 /* Return size of a relocation entry. HTAB is the bfd's
255 elf_aarch64_link_hash_entry. */
256 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
257
258 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
259 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
260 #define PLT_ENTRY_SIZE (32)
261 #define PLT_SMALL_ENTRY_SIZE (16)
262 #define PLT_TLSDESC_ENTRY_SIZE (32)
263
264 /* Encoding of the nop instruction. */
265 #define INSN_NOP 0xd503201f
266
267 #define aarch64_compute_jump_table_size(htab) \
268 (((htab)->root.srelplt == NULL) ? 0 \
269 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
270
271 /* The first entry in a procedure linkage table looks like this
272 if the distance between the PLTGOT and the PLT is < 4GB use
273 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
274 in x16 and needs to work out PLTGOT[1] by using an address of
275 [x16,#-GOT_ENTRY_SIZE]. */
276 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
277 {
278 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
279 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
280 #if ARCH_SIZE == 64
281 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
282 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
283 #else
284 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
285 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
286 #endif
287 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
288 0x1f, 0x20, 0x03, 0xd5, /* nop */
289 0x1f, 0x20, 0x03, 0xd5, /* nop */
290 0x1f, 0x20, 0x03, 0xd5, /* nop */
291 };
292
293 /* Per function entry in a procedure linkage table looks like this
294 if the distance between the PLTGOT and the PLT is < 4GB use
295 these PLT entries. */
296 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
297 {
298 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
299 #if ARCH_SIZE == 64
300 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
301 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
302 #else
303 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
304 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
305 #endif
306 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
307 };
308
309 static const bfd_byte
310 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
311 {
312 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
313 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
314 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
315 #if ARCH_SIZE == 64
316 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
318 #else
319 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
320 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
321 #endif
322 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
323 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 0x1f, 0x20, 0x03, 0xd5, /* nop */
325 };
326
327 #define elf_info_to_howto elfNN_aarch64_info_to_howto
328 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
329
330 #define AARCH64_ELF_ABI_VERSION 0
331
332 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
333 #define ALL_ONES (~ (bfd_vma) 0)
334
335 /* Indexed by the bfd interal reloc enumerators.
336 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
337 in reloc.c. */
338
339 static reloc_howto_type elfNN_aarch64_howto_table[] =
340 {
341 EMPTY_HOWTO (0),
342
343 /* Basic data relocations. */
344
345 /* Deprecated, but retained for backwards compatibility. */
346 HOWTO64 (R_AARCH64_NULL, /* type */
347 0, /* rightshift */
348 3, /* size (0 = byte, 1 = short, 2 = long) */
349 0, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_dont, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
354 "R_AARCH64_NULL", /* name */
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
357 0, /* dst_mask */
358 FALSE), /* pcrel_offset */
359 HOWTO (R_AARCH64_NONE, /* type */
360 0, /* rightshift */
361 3, /* size (0 = byte, 1 = short, 2 = long) */
362 0, /* bitsize */
363 FALSE, /* pc_relative */
364 0, /* bitpos */
365 complain_overflow_dont, /* complain_on_overflow */
366 bfd_elf_generic_reloc, /* special_function */
367 "R_AARCH64_NONE", /* name */
368 FALSE, /* partial_inplace */
369 0, /* src_mask */
370 0, /* dst_mask */
371 FALSE), /* pcrel_offset */
372
373 /* .xword: (S+A) */
374 HOWTO64 (AARCH64_R (ABS64), /* type */
375 0, /* rightshift */
376 4, /* size (4 = long long) */
377 64, /* bitsize */
378 FALSE, /* pc_relative */
379 0, /* bitpos */
380 complain_overflow_unsigned, /* complain_on_overflow */
381 bfd_elf_generic_reloc, /* special_function */
382 AARCH64_R_STR (ABS64), /* name */
383 FALSE, /* partial_inplace */
384 ALL_ONES, /* src_mask */
385 ALL_ONES, /* dst_mask */
386 FALSE), /* pcrel_offset */
387
388 /* .word: (S+A) */
389 HOWTO (AARCH64_R (ABS32), /* type */
390 0, /* rightshift */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
392 32, /* bitsize */
393 FALSE, /* pc_relative */
394 0, /* bitpos */
395 complain_overflow_unsigned, /* complain_on_overflow */
396 bfd_elf_generic_reloc, /* special_function */
397 AARCH64_R_STR (ABS32), /* name */
398 FALSE, /* partial_inplace */
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
401 FALSE), /* pcrel_offset */
402
403 /* .half: (S+A) */
404 HOWTO (AARCH64_R (ABS16), /* type */
405 0, /* rightshift */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
407 16, /* bitsize */
408 FALSE, /* pc_relative */
409 0, /* bitpos */
410 complain_overflow_unsigned, /* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
412 AARCH64_R_STR (ABS16), /* name */
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
417
418 /* .xword: (S+A-P) */
419 HOWTO64 (AARCH64_R (PREL64), /* type */
420 0, /* rightshift */
421 4, /* size (4 = long long) */
422 64, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 AARCH64_R_STR (PREL64), /* name */
428 FALSE, /* partial_inplace */
429 ALL_ONES, /* src_mask */
430 ALL_ONES, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* .word: (S+A-P) */
434 HOWTO (AARCH64_R (PREL32), /* type */
435 0, /* rightshift */
436 2, /* size (0 = byte, 1 = short, 2 = long) */
437 32, /* bitsize */
438 TRUE, /* pc_relative */
439 0, /* bitpos */
440 complain_overflow_signed, /* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
442 AARCH64_R_STR (PREL32), /* name */
443 FALSE, /* partial_inplace */
444 0xffffffff, /* src_mask */
445 0xffffffff, /* dst_mask */
446 TRUE), /* pcrel_offset */
447
448 /* .half: (S+A-P) */
449 HOWTO (AARCH64_R (PREL16), /* type */
450 0, /* rightshift */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
452 16, /* bitsize */
453 TRUE, /* pc_relative */
454 0, /* bitpos */
455 complain_overflow_signed, /* complain_on_overflow */
456 bfd_elf_generic_reloc, /* special_function */
457 AARCH64_R_STR (PREL16), /* name */
458 FALSE, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 TRUE), /* pcrel_offset */
462
463 /* Group relocations to create a 16, 32, 48 or 64 bit
464 unsigned data or abs address inline. */
465
466 /* MOVZ: ((S+A) >> 0) & 0xffff */
467 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
468 0, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 16, /* bitsize */
471 FALSE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_unsigned, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* special_function */
475 AARCH64_R_STR (MOVW_UABS_G0), /* name */
476 FALSE, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
480
481 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
482 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
483 0, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 16, /* bitsize */
486 FALSE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_dont, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
491 FALSE, /* partial_inplace */
492 0xffff, /* src_mask */
493 0xffff, /* dst_mask */
494 FALSE), /* pcrel_offset */
495
496 /* MOVZ: ((S+A) >> 16) & 0xffff */
497 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
498 16, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_unsigned, /* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 AARCH64_R_STR (MOVW_UABS_G1), /* name */
506 FALSE, /* partial_inplace */
507 0xffff, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
512 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
513 16, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 16, /* bitsize */
516 FALSE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_dont, /* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
521 FALSE, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 FALSE), /* pcrel_offset */
525
526 /* MOVZ: ((S+A) >> 32) & 0xffff */
527 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
528 32, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 16, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_unsigned, /* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 AARCH64_R_STR (MOVW_UABS_G2), /* name */
536 FALSE, /* partial_inplace */
537 0xffff, /* src_mask */
538 0xffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
542 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
543 32, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 16, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
551 FALSE, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* MOVZ: ((S+A) >> 48) & 0xffff */
557 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
558 48, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 16, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_unsigned, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 AARCH64_R_STR (MOVW_UABS_G3), /* name */
566 FALSE, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
572 signed data or abs address inline. Will change instruction
573 to MOVN or MOVZ depending on sign of calculated value. */
574
575 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
576 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 17, /* bitsize */
580 FALSE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
584 AARCH64_R_STR (MOVW_SABS_G0), /* name */
585 FALSE, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 FALSE), /* pcrel_offset */
589
590 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
591 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
592 16, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 17, /* bitsize */
595 FALSE, /* pc_relative */
596 0, /* bitpos */
597 complain_overflow_signed, /* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 AARCH64_R_STR (MOVW_SABS_G1), /* name */
600 FALSE, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
606 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
607 32, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 17, /* bitsize */
610 FALSE, /* pc_relative */
611 0, /* bitpos */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 AARCH64_R_STR (MOVW_SABS_G2), /* name */
615 FALSE, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 /* Group relocations to create a 16, 32, 48 or 64 bit
621 PC relative address inline. */
622
623 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 17, /* bitsize */
628 TRUE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_signed, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_PREL_G0), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 TRUE), /* pcrel_offset */
637
638 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 TRUE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 TRUE), /* pcrel_offset */
652
653 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
655 16, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 17, /* bitsize */
658 TRUE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_signed, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_PREL_G1), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 TRUE), /* pcrel_offset */
667
668 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
669 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
670 16, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 16, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_dont, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
678 FALSE, /* partial_inplace */
679 0xffff, /* src_mask */
680 0xffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
684 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
685 32, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 17, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (MOVW_PREL_G2), /* name */
693 FALSE, /* partial_inplace */
694 0xffff, /* src_mask */
695 0xffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
698 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
699 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
700 32, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_dont, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
708 FALSE, /* partial_inplace */
709 0xffff, /* src_mask */
710 0xffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
714 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
715 48, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 16, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_dont, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
722 AARCH64_R_STR (MOVW_PREL_G3), /* name */
723 FALSE, /* partial_inplace */
724 0xffff, /* src_mask */
725 0xffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
729 addresses: PG(x) is (x & ~0xfff). */
730
731 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
732 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
733 2, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 19, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_signed, /* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 AARCH64_R_STR (LD_PREL_LO19), /* name */
741 FALSE, /* partial_inplace */
742 0x7ffff, /* src_mask */
743 0x7ffff, /* dst_mask */
744 TRUE), /* pcrel_offset */
745
746 /* ADR: (S+A-P) & 0x1fffff */
747 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
748 0, /* rightshift */
749 2, /* size (0 = byte, 1 = short, 2 = long) */
750 21, /* bitsize */
751 TRUE, /* pc_relative */
752 0, /* bitpos */
753 complain_overflow_signed, /* complain_on_overflow */
754 bfd_elf_generic_reloc, /* special_function */
755 AARCH64_R_STR (ADR_PREL_LO21), /* name */
756 FALSE, /* partial_inplace */
757 0x1fffff, /* src_mask */
758 0x1fffff, /* dst_mask */
759 TRUE), /* pcrel_offset */
760
761 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
762 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
763 12, /* rightshift */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
765 21, /* bitsize */
766 TRUE, /* pc_relative */
767 0, /* bitpos */
768 complain_overflow_signed, /* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
771 FALSE, /* partial_inplace */
772 0x1fffff, /* src_mask */
773 0x1fffff, /* dst_mask */
774 TRUE), /* pcrel_offset */
775
776 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
777 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
778 12, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 21, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont, /* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
786 FALSE, /* partial_inplace */
787 0x1fffff, /* src_mask */
788 0x1fffff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 /* ADD: (S+A) & 0xfff [no overflow check] */
792 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 12, /* bitsize */
796 FALSE, /* pc_relative */
797 10, /* bitpos */
798 complain_overflow_dont, /* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
801 FALSE, /* partial_inplace */
802 0x3ffc00, /* src_mask */
803 0x3ffc00, /* dst_mask */
804 FALSE), /* pcrel_offset */
805
806 /* LD/ST8: (S+A) & 0xfff */
807 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
808 0, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 12, /* bitsize */
811 FALSE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_dont, /* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
816 FALSE, /* partial_inplace */
817 0xfff, /* src_mask */
818 0xfff, /* dst_mask */
819 FALSE), /* pcrel_offset */
820
821 /* Relocations for control-flow instructions. */
822
823 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
824 HOWTO (AARCH64_R (TSTBR14), /* type */
825 2, /* rightshift */
826 2, /* size (0 = byte, 1 = short, 2 = long) */
827 14, /* bitsize */
828 TRUE, /* pc_relative */
829 0, /* bitpos */
830 complain_overflow_signed, /* complain_on_overflow */
831 bfd_elf_generic_reloc, /* special_function */
832 AARCH64_R_STR (TSTBR14), /* name */
833 FALSE, /* partial_inplace */
834 0x3fff, /* src_mask */
835 0x3fff, /* dst_mask */
836 TRUE), /* pcrel_offset */
837
838 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
839 HOWTO (AARCH64_R (CONDBR19), /* type */
840 2, /* rightshift */
841 2, /* size (0 = byte, 1 = short, 2 = long) */
842 19, /* bitsize */
843 TRUE, /* pc_relative */
844 0, /* bitpos */
845 complain_overflow_signed, /* complain_on_overflow */
846 bfd_elf_generic_reloc, /* special_function */
847 AARCH64_R_STR (CONDBR19), /* name */
848 FALSE, /* partial_inplace */
849 0x7ffff, /* src_mask */
850 0x7ffff, /* dst_mask */
851 TRUE), /* pcrel_offset */
852
853 /* B: ((S+A-P) >> 2) & 0x3ffffff */
854 HOWTO (AARCH64_R (JUMP26), /* type */
855 2, /* rightshift */
856 2, /* size (0 = byte, 1 = short, 2 = long) */
857 26, /* bitsize */
858 TRUE, /* pc_relative */
859 0, /* bitpos */
860 complain_overflow_signed, /* complain_on_overflow */
861 bfd_elf_generic_reloc, /* special_function */
862 AARCH64_R_STR (JUMP26), /* name */
863 FALSE, /* partial_inplace */
864 0x3ffffff, /* src_mask */
865 0x3ffffff, /* dst_mask */
866 TRUE), /* pcrel_offset */
867
868 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
869 HOWTO (AARCH64_R (CALL26), /* type */
870 2, /* rightshift */
871 2, /* size (0 = byte, 1 = short, 2 = long) */
872 26, /* bitsize */
873 TRUE, /* pc_relative */
874 0, /* bitpos */
875 complain_overflow_signed, /* complain_on_overflow */
876 bfd_elf_generic_reloc, /* special_function */
877 AARCH64_R_STR (CALL26), /* name */
878 FALSE, /* partial_inplace */
879 0x3ffffff, /* src_mask */
880 0x3ffffff, /* dst_mask */
881 TRUE), /* pcrel_offset */
882
883 /* LD/ST16: (S+A) & 0xffe */
884 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
885 1, /* rightshift */
886 2, /* size (0 = byte, 1 = short, 2 = long) */
887 12, /* bitsize */
888 FALSE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 bfd_elf_generic_reloc, /* special_function */
892 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
893 FALSE, /* partial_inplace */
894 0xffe, /* src_mask */
895 0xffe, /* dst_mask */
896 FALSE), /* pcrel_offset */
897
898 /* LD/ST32: (S+A) & 0xffc */
899 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
900 2, /* rightshift */
901 2, /* size (0 = byte, 1 = short, 2 = long) */
902 12, /* bitsize */
903 FALSE, /* pc_relative */
904 0, /* bitpos */
905 complain_overflow_dont, /* complain_on_overflow */
906 bfd_elf_generic_reloc, /* special_function */
907 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
908 FALSE, /* partial_inplace */
909 0xffc, /* src_mask */
910 0xffc, /* dst_mask */
911 FALSE), /* pcrel_offset */
912
913 /* LD/ST64: (S+A) & 0xff8 */
914 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
915 3, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 12, /* bitsize */
918 FALSE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont, /* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
923 FALSE, /* partial_inplace */
924 0xff8, /* src_mask */
925 0xff8, /* dst_mask */
926 FALSE), /* pcrel_offset */
927
928 /* LD/ST128: (S+A) & 0xff0 */
929 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
930 4, /* rightshift */
931 2, /* size (0 = byte, 1 = short, 2 = long) */
932 12, /* bitsize */
933 FALSE, /* pc_relative */
934 0, /* bitpos */
935 complain_overflow_dont, /* complain_on_overflow */
936 bfd_elf_generic_reloc, /* special_function */
937 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
938 FALSE, /* partial_inplace */
939 0xff0, /* src_mask */
940 0xff0, /* dst_mask */
941 FALSE), /* pcrel_offset */
942
943 /* Set a load-literal immediate field to bits
944 0x1FFFFC of G(S)-P */
945 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
946 2, /* rightshift */
947 2, /* size (0 = byte,1 = short,2 = long) */
948 19, /* bitsize */
949 TRUE, /* pc_relative */
950 0, /* bitpos */
951 complain_overflow_signed, /* complain_on_overflow */
952 bfd_elf_generic_reloc, /* special_function */
953 AARCH64_R_STR (GOT_LD_PREL19), /* name */
954 FALSE, /* partial_inplace */
955 0xffffe0, /* src_mask */
956 0xffffe0, /* dst_mask */
957 TRUE), /* pcrel_offset */
958
959 /* Get to the page for the GOT entry for the symbol
960 (G(S) - P) using an ADRP instruction. */
961 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
962 12, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 21, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont, /* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
970 FALSE, /* partial_inplace */
971 0x1fffff, /* src_mask */
972 0x1fffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 /* LD64: GOT offset G(S) & 0xff8 */
976 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
977 3, /* rightshift */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
979 12, /* bitsize */
980 FALSE, /* pc_relative */
981 0, /* bitpos */
982 complain_overflow_dont, /* complain_on_overflow */
983 bfd_elf_generic_reloc, /* special_function */
984 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
985 FALSE, /* partial_inplace */
986 0xff8, /* src_mask */
987 0xff8, /* dst_mask */
988 FALSE), /* pcrel_offset */
989
990 /* LD32: GOT offset G(S) & 0xffc */
991 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
992 2, /* rightshift */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
994 12, /* bitsize */
995 FALSE, /* pc_relative */
996 0, /* bitpos */
997 complain_overflow_dont, /* complain_on_overflow */
998 bfd_elf_generic_reloc, /* special_function */
999 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1000 FALSE, /* partial_inplace */
1001 0xffc, /* src_mask */
1002 0xffc, /* dst_mask */
1003 FALSE), /* pcrel_offset */
1004
1005 /* Lower 16 bits of GOT offset for the symbol. */
1006 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1007 0, /* rightshift */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 16, /* bitsize */
1010 FALSE, /* pc_relative */
1011 0, /* bitpos */
1012 complain_overflow_dont, /* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1015 FALSE, /* partial_inplace */
1016 0xffff, /* src_mask */
1017 0xffff, /* dst_mask */
1018 FALSE), /* pcrel_offset */
1019
1020 /* Higher 16 bits of GOT offset for the symbol. */
1021 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1022 16, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 16, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_unsigned, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
1035 /* LD64: GOT offset for the symbol. */
1036 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1037 3, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 12, /* bitsize */
1040 FALSE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_unsigned, /* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
1044 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1045 FALSE, /* partial_inplace */
1046 0x7ff8, /* src_mask */
1047 0x7ff8, /* dst_mask */
1048 FALSE), /* pcrel_offset */
1049
1050 /* LD32: GOT offset to the page address of GOT table.
1051 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1052 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1053 2, /* rightshift */
1054 2, /* size (0 = byte, 1 = short, 2 = long) */
1055 12, /* bitsize */
1056 FALSE, /* pc_relative */
1057 0, /* bitpos */
1058 complain_overflow_unsigned, /* complain_on_overflow */
1059 bfd_elf_generic_reloc, /* special_function */
1060 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1061 FALSE, /* partial_inplace */
1062 0x5ffc, /* src_mask */
1063 0x5ffc, /* dst_mask */
1064 FALSE), /* pcrel_offset */
1065
1066 /* LD64: GOT offset to the page address of GOT table.
1067 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1068 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1069 3, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 12, /* bitsize */
1072 FALSE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_unsigned, /* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1077 FALSE, /* partial_inplace */
1078 0x7ff8, /* src_mask */
1079 0x7ff8, /* dst_mask */
1080 FALSE), /* pcrel_offset */
1081
1082 /* Get to the page for the GOT entry for the symbol
1083 (G(S) - P) using an ADRP instruction. */
1084 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1085 12, /* rightshift */
1086 2, /* size (0 = byte, 1 = short, 2 = long) */
1087 21, /* bitsize */
1088 TRUE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_dont, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1093 FALSE, /* partial_inplace */
1094 0x1fffff, /* src_mask */
1095 0x1fffff, /* dst_mask */
1096 TRUE), /* pcrel_offset */
1097
1098 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1099 0, /* rightshift */
1100 2, /* size (0 = byte, 1 = short, 2 = long) */
1101 21, /* bitsize */
1102 TRUE, /* pc_relative */
1103 0, /* bitpos */
1104 complain_overflow_dont, /* complain_on_overflow */
1105 bfd_elf_generic_reloc, /* special_function */
1106 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1107 FALSE, /* partial_inplace */
1108 0x1fffff, /* src_mask */
1109 0x1fffff, /* dst_mask */
1110 TRUE), /* pcrel_offset */
1111
1112 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1113 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1114 0, /* rightshift */
1115 2, /* size (0 = byte, 1 = short, 2 = long) */
1116 12, /* bitsize */
1117 FALSE, /* pc_relative */
1118 0, /* bitpos */
1119 complain_overflow_dont, /* complain_on_overflow */
1120 bfd_elf_generic_reloc, /* special_function */
1121 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1122 FALSE, /* partial_inplace */
1123 0xfff, /* src_mask */
1124 0xfff, /* dst_mask */
1125 FALSE), /* pcrel_offset */
1126
1127 /* Lower 16 bits of GOT offset to tls_index. */
1128 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1129 0, /* rightshift */
1130 2, /* size (0 = byte, 1 = short, 2 = long) */
1131 16, /* bitsize */
1132 FALSE, /* pc_relative */
1133 0, /* bitpos */
1134 complain_overflow_dont, /* complain_on_overflow */
1135 bfd_elf_generic_reloc, /* special_function */
1136 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1137 FALSE, /* partial_inplace */
1138 0xffff, /* src_mask */
1139 0xffff, /* dst_mask */
1140 FALSE), /* pcrel_offset */
1141
1142 /* Higher 16 bits of GOT offset to tls_index. */
1143 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1144 16, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 16, /* bitsize */
1147 FALSE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_unsigned, /* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1152 FALSE, /* partial_inplace */
1153 0xffff, /* src_mask */
1154 0xffff, /* dst_mask */
1155 FALSE), /* pcrel_offset */
1156
1157 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1158 12, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 21, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1166 FALSE, /* partial_inplace */
1167 0x1fffff, /* src_mask */
1168 0x1fffff, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1172 3, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 12, /* bitsize */
1175 FALSE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont, /* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1180 FALSE, /* partial_inplace */
1181 0xff8, /* src_mask */
1182 0xff8, /* dst_mask */
1183 FALSE), /* pcrel_offset */
1184
1185 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1186 2, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 12, /* bitsize */
1189 FALSE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont, /* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1194 FALSE, /* partial_inplace */
1195 0xffc, /* src_mask */
1196 0xffc, /* dst_mask */
1197 FALSE), /* pcrel_offset */
1198
1199 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1200 2, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 19, /* bitsize */
1203 FALSE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont, /* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1208 FALSE, /* partial_inplace */
1209 0x1ffffc, /* src_mask */
1210 0x1ffffc, /* dst_mask */
1211 FALSE), /* pcrel_offset */
1212
1213 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 16, /* bitsize */
1217 FALSE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont, /* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1222 FALSE, /* partial_inplace */
1223 0xffff, /* src_mask */
1224 0xffff, /* dst_mask */
1225 FALSE), /* pcrel_offset */
1226
1227 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1228 16, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 16, /* bitsize */
1231 FALSE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_unsigned, /* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1236 FALSE, /* partial_inplace */
1237 0xffff, /* src_mask */
1238 0xffff, /* dst_mask */
1239 FALSE), /* pcrel_offset */
1240
1241 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1242 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1243 12, /* rightshift */
1244 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 12, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_unsigned, /* complain_on_overflow */
1249 bfd_elf_generic_reloc, /* special_function */
1250 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1251 FALSE, /* partial_inplace */
1252 0xfff, /* src_mask */
1253 0xfff, /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Unsigned 12 bit byte offset to module TLS base address. */
1257 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1258 0, /* rightshift */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1260 12, /* bitsize */
1261 FALSE, /* pc_relative */
1262 0, /* bitpos */
1263 complain_overflow_unsigned, /* complain_on_overflow */
1264 bfd_elf_generic_reloc, /* special_function */
1265 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1266 FALSE, /* partial_inplace */
1267 0xfff, /* src_mask */
1268 0xfff, /* dst_mask */
1269 FALSE), /* pcrel_offset */
1270
1271 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1272 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1273 0, /* rightshift */
1274 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 12, /* bitsize */
1276 FALSE, /* pc_relative */
1277 0, /* bitpos */
1278 complain_overflow_dont, /* complain_on_overflow */
1279 bfd_elf_generic_reloc, /* special_function */
1280 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1281 FALSE, /* partial_inplace */
1282 0xfff, /* src_mask */
1283 0xfff, /* dst_mask */
1284 FALSE), /* pcrel_offset */
1285
1286 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1287 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1288 0, /* rightshift */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1290 12, /* bitsize */
1291 FALSE, /* pc_relative */
1292 0, /* bitpos */
1293 complain_overflow_dont, /* complain_on_overflow */
1294 bfd_elf_generic_reloc, /* special_function */
1295 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1296 FALSE, /* partial_inplace */
1297 0xfff, /* src_mask */
1298 0xfff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1300
1301 /* Get to the page for the GOT entry for the symbol
1302 (G(S) - P) using an ADRP instruction. */
1303 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1304 12, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 21, /* bitsize */
1307 TRUE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_signed, /* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1312 FALSE, /* partial_inplace */
1313 0x1fffff, /* src_mask */
1314 0x1fffff, /* dst_mask */
1315 TRUE), /* pcrel_offset */
1316
1317 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 21, /* bitsize */
1321 TRUE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_signed, /* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1326 FALSE, /* partial_inplace */
1327 0x1fffff, /* src_mask */
1328 0x1fffff, /* dst_mask */
1329 TRUE), /* pcrel_offset */
1330
1331 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1332 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1333 1, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 11, /* bitsize */
1336 FALSE, /* pc_relative */
1337 10, /* bitpos */
1338 complain_overflow_unsigned, /* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1341 FALSE, /* partial_inplace */
1342 0x1ffc00, /* src_mask */
1343 0x1ffc00, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1347 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1348 1, /* rightshift */
1349 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 11, /* bitsize */
1351 FALSE, /* pc_relative */
1352 10, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 bfd_elf_generic_reloc, /* special_function */
1355 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1356 FALSE, /* partial_inplace */
1357 0x1ffc00, /* src_mask */
1358 0x1ffc00, /* dst_mask */
1359 FALSE), /* pcrel_offset */
1360
1361 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1362 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1363 2, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 10, /* bitsize */
1366 FALSE, /* pc_relative */
1367 10, /* bitpos */
1368 complain_overflow_unsigned, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1371 FALSE, /* partial_inplace */
1372 0x3ffc00, /* src_mask */
1373 0x3ffc00, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1377 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1378 2, /* rightshift */
1379 2, /* size (0 = byte, 1 = short, 2 = long) */
1380 10, /* bitsize */
1381 FALSE, /* pc_relative */
1382 10, /* bitpos */
1383 complain_overflow_dont, /* complain_on_overflow */
1384 bfd_elf_generic_reloc, /* special_function */
1385 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1386 FALSE, /* partial_inplace */
1387 0xffc00, /* src_mask */
1388 0xffc00, /* dst_mask */
1389 FALSE), /* pcrel_offset */
1390
1391 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1392 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1393 3, /* rightshift */
1394 2, /* size (0 = byte, 1 = short, 2 = long) */
1395 9, /* bitsize */
1396 FALSE, /* pc_relative */
1397 10, /* bitpos */
1398 complain_overflow_unsigned, /* complain_on_overflow */
1399 bfd_elf_generic_reloc, /* special_function */
1400 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1401 FALSE, /* partial_inplace */
1402 0x3ffc00, /* src_mask */
1403 0x3ffc00, /* dst_mask */
1404 FALSE), /* pcrel_offset */
1405
1406 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1407 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1408 3, /* rightshift */
1409 2, /* size (0 = byte, 1 = short, 2 = long) */
1410 9, /* bitsize */
1411 FALSE, /* pc_relative */
1412 10, /* bitpos */
1413 complain_overflow_dont, /* complain_on_overflow */
1414 bfd_elf_generic_reloc, /* special_function */
1415 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1416 FALSE, /* partial_inplace */
1417 0x7fc00, /* src_mask */
1418 0x7fc00, /* dst_mask */
1419 FALSE), /* pcrel_offset */
1420
1421 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1422 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1423 0, /* rightshift */
1424 2, /* size (0 = byte, 1 = short, 2 = long) */
1425 12, /* bitsize */
1426 FALSE, /* pc_relative */
1427 10, /* bitpos */
1428 complain_overflow_unsigned, /* complain_on_overflow */
1429 bfd_elf_generic_reloc, /* special_function */
1430 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1431 FALSE, /* partial_inplace */
1432 0x3ffc00, /* src_mask */
1433 0x3ffc00, /* dst_mask */
1434 FALSE), /* pcrel_offset */
1435
1436 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1437 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1438 0, /* rightshift */
1439 2, /* size (0 = byte, 1 = short, 2 = long) */
1440 12, /* bitsize */
1441 FALSE, /* pc_relative */
1442 10, /* bitpos */
1443 complain_overflow_dont, /* complain_on_overflow */
1444 bfd_elf_generic_reloc, /* special_function */
1445 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1446 FALSE, /* partial_inplace */
1447 0x3ffc00, /* src_mask */
1448 0x3ffc00, /* dst_mask */
1449 FALSE), /* pcrel_offset */
1450
1451 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1452 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1453 0, /* rightshift */
1454 2, /* size (0 = byte, 1 = short, 2 = long) */
1455 16, /* bitsize */
1456 FALSE, /* pc_relative */
1457 0, /* bitpos */
1458 complain_overflow_unsigned, /* complain_on_overflow */
1459 bfd_elf_generic_reloc, /* special_function */
1460 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1461 FALSE, /* partial_inplace */
1462 0xffff, /* src_mask */
1463 0xffff, /* dst_mask */
1464 FALSE), /* pcrel_offset */
1465
1466 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1467 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1468 0, /* rightshift */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1470 16, /* bitsize */
1471 FALSE, /* pc_relative */
1472 0, /* bitpos */
1473 complain_overflow_dont, /* complain_on_overflow */
1474 bfd_elf_generic_reloc, /* special_function */
1475 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1476 FALSE, /* partial_inplace */
1477 0xffff, /* src_mask */
1478 0xffff, /* dst_mask */
1479 FALSE), /* pcrel_offset */
1480
1481 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1482 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1483 16, /* rightshift */
1484 2, /* size (0 = byte, 1 = short, 2 = long) */
1485 16, /* bitsize */
1486 FALSE, /* pc_relative */
1487 0, /* bitpos */
1488 complain_overflow_unsigned, /* complain_on_overflow */
1489 bfd_elf_generic_reloc, /* special_function */
1490 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1491 FALSE, /* partial_inplace */
1492 0xffff, /* src_mask */
1493 0xffff, /* dst_mask */
1494 FALSE), /* pcrel_offset */
1495
1496 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1497 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1498 16, /* rightshift */
1499 2, /* size (0 = byte, 1 = short, 2 = long) */
1500 16, /* bitsize */
1501 FALSE, /* pc_relative */
1502 0, /* bitpos */
1503 complain_overflow_dont, /* complain_on_overflow */
1504 bfd_elf_generic_reloc, /* special_function */
1505 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1506 FALSE, /* partial_inplace */
1507 0xffff, /* src_mask */
1508 0xffff, /* dst_mask */
1509 FALSE), /* pcrel_offset */
1510
1511 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1512 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1513 32, /* rightshift */
1514 2, /* size (0 = byte, 1 = short, 2 = long) */
1515 16, /* bitsize */
1516 FALSE, /* pc_relative */
1517 0, /* bitpos */
1518 complain_overflow_unsigned, /* complain_on_overflow */
1519 bfd_elf_generic_reloc, /* special_function */
1520 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1521 FALSE, /* partial_inplace */
1522 0xffff, /* src_mask */
1523 0xffff, /* dst_mask */
1524 FALSE), /* pcrel_offset */
1525
1526 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1527 32, /* rightshift */
1528 2, /* size (0 = byte, 1 = short, 2 = long) */
1529 16, /* bitsize */
1530 FALSE, /* pc_relative */
1531 0, /* bitpos */
1532 complain_overflow_unsigned, /* complain_on_overflow */
1533 bfd_elf_generic_reloc, /* special_function */
1534 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1535 FALSE, /* partial_inplace */
1536 0xffff, /* src_mask */
1537 0xffff, /* dst_mask */
1538 FALSE), /* pcrel_offset */
1539
1540 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1541 16, /* rightshift */
1542 2, /* size (0 = byte, 1 = short, 2 = long) */
1543 16, /* bitsize */
1544 FALSE, /* pc_relative */
1545 0, /* bitpos */
1546 complain_overflow_dont, /* complain_on_overflow */
1547 bfd_elf_generic_reloc, /* special_function */
1548 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1549 FALSE, /* partial_inplace */
1550 0xffff, /* src_mask */
1551 0xffff, /* dst_mask */
1552 FALSE), /* pcrel_offset */
1553
1554 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1555 16, /* rightshift */
1556 2, /* size (0 = byte, 1 = short, 2 = long) */
1557 16, /* bitsize */
1558 FALSE, /* pc_relative */
1559 0, /* bitpos */
1560 complain_overflow_dont, /* complain_on_overflow */
1561 bfd_elf_generic_reloc, /* special_function */
1562 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1563 FALSE, /* partial_inplace */
1564 0xffff, /* src_mask */
1565 0xffff, /* dst_mask */
1566 FALSE), /* pcrel_offset */
1567
1568 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1569 0, /* rightshift */
1570 2, /* size (0 = byte, 1 = short, 2 = long) */
1571 16, /* bitsize */
1572 FALSE, /* pc_relative */
1573 0, /* bitpos */
1574 complain_overflow_dont, /* complain_on_overflow */
1575 bfd_elf_generic_reloc, /* special_function */
1576 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1577 FALSE, /* partial_inplace */
1578 0xffff, /* src_mask */
1579 0xffff, /* dst_mask */
1580 FALSE), /* pcrel_offset */
1581
1582 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1583 0, /* rightshift */
1584 2, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 bfd_elf_generic_reloc, /* special_function */
1590 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1591 FALSE, /* partial_inplace */
1592 0xffff, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1597 12, /* rightshift */
1598 2, /* size (0 = byte, 1 = short, 2 = long) */
1599 12, /* bitsize */
1600 FALSE, /* pc_relative */
1601 0, /* bitpos */
1602 complain_overflow_unsigned, /* complain_on_overflow */
1603 bfd_elf_generic_reloc, /* special_function */
1604 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1605 FALSE, /* partial_inplace */
1606 0xfff, /* src_mask */
1607 0xfff, /* dst_mask */
1608 FALSE), /* pcrel_offset */
1609
1610 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1611 0, /* rightshift */
1612 2, /* size (0 = byte, 1 = short, 2 = long) */
1613 12, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_unsigned, /* complain_on_overflow */
1617 bfd_elf_generic_reloc, /* special_function */
1618 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1619 FALSE, /* partial_inplace */
1620 0xfff, /* src_mask */
1621 0xfff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1625 0, /* rightshift */
1626 2, /* size (0 = byte, 1 = short, 2 = long) */
1627 12, /* bitsize */
1628 FALSE, /* pc_relative */
1629 0, /* bitpos */
1630 complain_overflow_dont, /* complain_on_overflow */
1631 bfd_elf_generic_reloc, /* special_function */
1632 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1633 FALSE, /* partial_inplace */
1634 0xfff, /* src_mask */
1635 0xfff, /* dst_mask */
1636 FALSE), /* pcrel_offset */
1637
1638 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1639 2, /* rightshift */
1640 2, /* size (0 = byte, 1 = short, 2 = long) */
1641 19, /* bitsize */
1642 TRUE, /* pc_relative */
1643 0, /* bitpos */
1644 complain_overflow_dont, /* complain_on_overflow */
1645 bfd_elf_generic_reloc, /* special_function */
1646 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1647 FALSE, /* partial_inplace */
1648 0x0ffffe0, /* src_mask */
1649 0x0ffffe0, /* dst_mask */
1650 TRUE), /* pcrel_offset */
1651
1652 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1653 0, /* rightshift */
1654 2, /* size (0 = byte, 1 = short, 2 = long) */
1655 21, /* bitsize */
1656 TRUE, /* pc_relative */
1657 0, /* bitpos */
1658 complain_overflow_dont, /* complain_on_overflow */
1659 bfd_elf_generic_reloc, /* special_function */
1660 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1661 FALSE, /* partial_inplace */
1662 0x1fffff, /* src_mask */
1663 0x1fffff, /* dst_mask */
1664 TRUE), /* pcrel_offset */
1665
1666 /* Get to the page for the GOT entry for the symbol
1667 (G(S) - P) using an ADRP instruction. */
1668 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1669 12, /* rightshift */
1670 2, /* size (0 = byte, 1 = short, 2 = long) */
1671 21, /* bitsize */
1672 TRUE, /* pc_relative */
1673 0, /* bitpos */
1674 complain_overflow_dont, /* complain_on_overflow */
1675 bfd_elf_generic_reloc, /* special_function */
1676 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1677 FALSE, /* partial_inplace */
1678 0x1fffff, /* src_mask */
1679 0x1fffff, /* dst_mask */
1680 TRUE), /* pcrel_offset */
1681
1682 /* LD64: GOT offset G(S) & 0xff8. */
1683 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1684 3, /* rightshift */
1685 2, /* size (0 = byte, 1 = short, 2 = long) */
1686 12, /* bitsize */
1687 FALSE, /* pc_relative */
1688 0, /* bitpos */
1689 complain_overflow_dont, /* complain_on_overflow */
1690 bfd_elf_generic_reloc, /* special_function */
1691 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1692 FALSE, /* partial_inplace */
1693 0xff8, /* src_mask */
1694 0xff8, /* dst_mask */
1695 FALSE), /* pcrel_offset */
1696
1697 /* LD32: GOT offset G(S) & 0xffc. */
1698 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1699 2, /* rightshift */
1700 2, /* size (0 = byte, 1 = short, 2 = long) */
1701 12, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_dont, /* complain_on_overflow */
1705 bfd_elf_generic_reloc, /* special_function */
1706 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1707 FALSE, /* partial_inplace */
1708 0xffc, /* src_mask */
1709 0xffc, /* dst_mask */
1710 FALSE), /* pcrel_offset */
1711
1712 /* ADD: GOT offset G(S) & 0xfff. */
1713 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1714 0, /* rightshift */
1715 2, /* size (0 = byte, 1 = short, 2 = long) */
1716 12, /* bitsize */
1717 FALSE, /* pc_relative */
1718 0, /* bitpos */
1719 complain_overflow_dont,/* complain_on_overflow */
1720 bfd_elf_generic_reloc, /* special_function */
1721 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1722 FALSE, /* partial_inplace */
1723 0xfff, /* src_mask */
1724 0xfff, /* dst_mask */
1725 FALSE), /* pcrel_offset */
1726
1727 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1728 16, /* rightshift */
1729 2, /* size (0 = byte, 1 = short, 2 = long) */
1730 12, /* bitsize */
1731 FALSE, /* pc_relative */
1732 0, /* bitpos */
1733 complain_overflow_unsigned, /* complain_on_overflow */
1734 bfd_elf_generic_reloc, /* special_function */
1735 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1736 FALSE, /* partial_inplace */
1737 0xffff, /* src_mask */
1738 0xffff, /* dst_mask */
1739 FALSE), /* pcrel_offset */
1740
1741 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1742 0, /* rightshift */
1743 2, /* size (0 = byte, 1 = short, 2 = long) */
1744 12, /* bitsize */
1745 FALSE, /* pc_relative */
1746 0, /* bitpos */
1747 complain_overflow_dont, /* complain_on_overflow */
1748 bfd_elf_generic_reloc, /* special_function */
1749 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1750 FALSE, /* partial_inplace */
1751 0xffff, /* src_mask */
1752 0xffff, /* dst_mask */
1753 FALSE), /* pcrel_offset */
1754
1755 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1756 0, /* rightshift */
1757 2, /* size (0 = byte, 1 = short, 2 = long) */
1758 12, /* bitsize */
1759 FALSE, /* pc_relative */
1760 0, /* bitpos */
1761 complain_overflow_dont, /* complain_on_overflow */
1762 bfd_elf_generic_reloc, /* special_function */
1763 AARCH64_R_STR (TLSDESC_LDR), /* name */
1764 FALSE, /* partial_inplace */
1765 0x0, /* src_mask */
1766 0x0, /* dst_mask */
1767 FALSE), /* pcrel_offset */
1768
1769 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1770 0, /* rightshift */
1771 2, /* size (0 = byte, 1 = short, 2 = long) */
1772 12, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont, /* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 AARCH64_R_STR (TLSDESC_ADD), /* name */
1778 FALSE, /* partial_inplace */
1779 0x0, /* src_mask */
1780 0x0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1784 0, /* rightshift */
1785 2, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont, /* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 AARCH64_R_STR (TLSDESC_CALL), /* name */
1792 FALSE, /* partial_inplace */
1793 0x0, /* src_mask */
1794 0x0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (AARCH64_R (COPY), /* type */
1798 0, /* rightshift */
1799 2, /* size (0 = byte, 1 = short, 2 = long) */
1800 64, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_bitfield, /* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 AARCH64_R_STR (COPY), /* name */
1806 TRUE, /* partial_inplace */
1807 0xffffffff, /* src_mask */
1808 0xffffffff, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1812 0, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 64, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_bitfield, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (GLOB_DAT), /* name */
1820 TRUE, /* partial_inplace */
1821 0xffffffff, /* src_mask */
1822 0xffffffff, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1826 0, /* rightshift */
1827 2, /* size (0 = byte, 1 = short, 2 = long) */
1828 64, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_bitfield, /* complain_on_overflow */
1832 bfd_elf_generic_reloc, /* special_function */
1833 AARCH64_R_STR (JUMP_SLOT), /* name */
1834 TRUE, /* partial_inplace */
1835 0xffffffff, /* src_mask */
1836 0xffffffff, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 HOWTO (AARCH64_R (RELATIVE), /* type */
1840 0, /* rightshift */
1841 2, /* size (0 = byte, 1 = short, 2 = long) */
1842 64, /* bitsize */
1843 FALSE, /* pc_relative */
1844 0, /* bitpos */
1845 complain_overflow_bitfield, /* complain_on_overflow */
1846 bfd_elf_generic_reloc, /* special_function */
1847 AARCH64_R_STR (RELATIVE), /* name */
1848 TRUE, /* partial_inplace */
1849 ALL_ONES, /* src_mask */
1850 ALL_ONES, /* dst_mask */
1851 FALSE), /* pcrel_offset */
1852
1853 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1854 0, /* rightshift */
1855 2, /* size (0 = byte, 1 = short, 2 = long) */
1856 64, /* bitsize */
1857 FALSE, /* pc_relative */
1858 0, /* bitpos */
1859 complain_overflow_dont, /* complain_on_overflow */
1860 bfd_elf_generic_reloc, /* special_function */
1861 #if ARCH_SIZE == 64
1862 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1863 #else
1864 AARCH64_R_STR (TLS_DTPMOD), /* name */
1865 #endif
1866 FALSE, /* partial_inplace */
1867 0, /* src_mask */
1868 ALL_ONES, /* dst_mask */
1869 FALSE), /* pc_reloffset */
1870
1871 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1872 0, /* rightshift */
1873 2, /* size (0 = byte, 1 = short, 2 = long) */
1874 64, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_dont, /* complain_on_overflow */
1878 bfd_elf_generic_reloc, /* special_function */
1879 #if ARCH_SIZE == 64
1880 AARCH64_R_STR (TLS_DTPREL64), /* name */
1881 #else
1882 AARCH64_R_STR (TLS_DTPREL), /* name */
1883 #endif
1884 FALSE, /* partial_inplace */
1885 0, /* src_mask */
1886 ALL_ONES, /* dst_mask */
1887 FALSE), /* pcrel_offset */
1888
1889 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1890 0, /* rightshift */
1891 2, /* size (0 = byte, 1 = short, 2 = long) */
1892 64, /* bitsize */
1893 FALSE, /* pc_relative */
1894 0, /* bitpos */
1895 complain_overflow_dont, /* complain_on_overflow */
1896 bfd_elf_generic_reloc, /* special_function */
1897 #if ARCH_SIZE == 64
1898 AARCH64_R_STR (TLS_TPREL64), /* name */
1899 #else
1900 AARCH64_R_STR (TLS_TPREL), /* name */
1901 #endif
1902 FALSE, /* partial_inplace */
1903 0, /* src_mask */
1904 ALL_ONES, /* dst_mask */
1905 FALSE), /* pcrel_offset */
1906
1907 HOWTO (AARCH64_R (TLSDESC), /* type */
1908 0, /* rightshift */
1909 2, /* size (0 = byte, 1 = short, 2 = long) */
1910 64, /* bitsize */
1911 FALSE, /* pc_relative */
1912 0, /* bitpos */
1913 complain_overflow_dont, /* complain_on_overflow */
1914 bfd_elf_generic_reloc, /* special_function */
1915 AARCH64_R_STR (TLSDESC), /* name */
1916 FALSE, /* partial_inplace */
1917 0, /* src_mask */
1918 ALL_ONES, /* dst_mask */
1919 FALSE), /* pcrel_offset */
1920
1921 HOWTO (AARCH64_R (IRELATIVE), /* type */
1922 0, /* rightshift */
1923 2, /* size (0 = byte, 1 = short, 2 = long) */
1924 64, /* bitsize */
1925 FALSE, /* pc_relative */
1926 0, /* bitpos */
1927 complain_overflow_bitfield, /* complain_on_overflow */
1928 bfd_elf_generic_reloc, /* special_function */
1929 AARCH64_R_STR (IRELATIVE), /* name */
1930 FALSE, /* partial_inplace */
1931 0, /* src_mask */
1932 ALL_ONES, /* dst_mask */
1933 FALSE), /* pcrel_offset */
1934
1935 EMPTY_HOWTO (0),
1936 };
1937
1938 static reloc_howto_type elfNN_aarch64_howto_none =
1939 HOWTO (R_AARCH64_NONE, /* type */
1940 0, /* rightshift */
1941 3, /* size (0 = byte, 1 = short, 2 = long) */
1942 0, /* bitsize */
1943 FALSE, /* pc_relative */
1944 0, /* bitpos */
1945 complain_overflow_dont,/* complain_on_overflow */
1946 bfd_elf_generic_reloc, /* special_function */
1947 "R_AARCH64_NONE", /* name */
1948 FALSE, /* partial_inplace */
1949 0, /* src_mask */
1950 0, /* dst_mask */
1951 FALSE); /* pcrel_offset */
1952
1953 /* Given HOWTO, return the bfd internal relocation enumerator. */
1954
1955 static bfd_reloc_code_real_type
1956 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1957 {
1958 const int size
1959 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1960 const ptrdiff_t offset
1961 = howto - elfNN_aarch64_howto_table;
1962
1963 if (offset > 0 && offset < size - 1)
1964 return BFD_RELOC_AARCH64_RELOC_START + offset;
1965
1966 if (howto == &elfNN_aarch64_howto_none)
1967 return BFD_RELOC_AARCH64_NONE;
1968
1969 return BFD_RELOC_AARCH64_RELOC_START;
1970 }
1971
1972 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1973
1974 static bfd_reloc_code_real_type
1975 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1976 {
1977 static bfd_boolean initialized_p = FALSE;
1978 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1979 static unsigned int offsets[R_AARCH64_end];
1980
1981 if (!initialized_p)
1982 {
1983 unsigned int i;
1984
1985 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1986 if (elfNN_aarch64_howto_table[i].type != 0)
1987 offsets[elfNN_aarch64_howto_table[i].type] = i;
1988
1989 initialized_p = TRUE;
1990 }
1991
1992 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1993 return BFD_RELOC_AARCH64_NONE;
1994
1995 /* PR 17512: file: b371e70a. */
1996 if (r_type >= R_AARCH64_end)
1997 {
1998 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1999 bfd_set_error (bfd_error_bad_value);
2000 return BFD_RELOC_AARCH64_NONE;
2001 }
2002
2003 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2004 }
2005
2006 struct elf_aarch64_reloc_map
2007 {
2008 bfd_reloc_code_real_type from;
2009 bfd_reloc_code_real_type to;
2010 };
2011
2012 /* Map bfd generic reloc to AArch64-specific reloc. */
2013 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2014 {
2015 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2016
2017 /* Basic data relocations. */
2018 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2019 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2020 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2021 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2022 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2023 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2024 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2025 };
2026
2027 /* Given the bfd internal relocation enumerator in CODE, return the
2028 corresponding howto entry. */
2029
2030 static reloc_howto_type *
2031 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2032 {
2033 unsigned int i;
2034
2035 /* Convert bfd generic reloc to AArch64-specific reloc. */
2036 if (code < BFD_RELOC_AARCH64_RELOC_START
2037 || code > BFD_RELOC_AARCH64_RELOC_END)
2038 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2039 if (elf_aarch64_reloc_map[i].from == code)
2040 {
2041 code = elf_aarch64_reloc_map[i].to;
2042 break;
2043 }
2044
2045 if (code > BFD_RELOC_AARCH64_RELOC_START
2046 && code < BFD_RELOC_AARCH64_RELOC_END)
2047 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2048 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2049
2050 if (code == BFD_RELOC_AARCH64_NONE)
2051 return &elfNN_aarch64_howto_none;
2052
2053 return NULL;
2054 }
2055
2056 static reloc_howto_type *
2057 elfNN_aarch64_howto_from_type (unsigned int r_type)
2058 {
2059 bfd_reloc_code_real_type val;
2060 reloc_howto_type *howto;
2061
2062 #if ARCH_SIZE == 32
2063 if (r_type > 256)
2064 {
2065 bfd_set_error (bfd_error_bad_value);
2066 return NULL;
2067 }
2068 #endif
2069
2070 if (r_type == R_AARCH64_NONE)
2071 return &elfNN_aarch64_howto_none;
2072
2073 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
2074 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2075
2076 if (howto != NULL)
2077 return howto;
2078
2079 bfd_set_error (bfd_error_bad_value);
2080 return NULL;
2081 }
2082
2083 static void
2084 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
2085 Elf_Internal_Rela *elf_reloc)
2086 {
2087 unsigned int r_type;
2088
2089 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2090 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
2091 }
2092
2093 static reloc_howto_type *
2094 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2095 bfd_reloc_code_real_type code)
2096 {
2097 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2098
2099 if (howto != NULL)
2100 return howto;
2101
2102 bfd_set_error (bfd_error_bad_value);
2103 return NULL;
2104 }
2105
2106 static reloc_howto_type *
2107 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2108 const char *r_name)
2109 {
2110 unsigned int i;
2111
2112 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2113 if (elfNN_aarch64_howto_table[i].name != NULL
2114 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2115 return &elfNN_aarch64_howto_table[i];
2116
2117 return NULL;
2118 }
2119
2120 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2121 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2122 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2123 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2124
2125 /* The linker script knows the section names for placement.
2126 The entry_names are used to do simple name mangling on the stubs.
2127 Given a function name, and its type, the stub can be found. The
2128 name can be changed. The only requirement is the %s be present. */
2129 #define STUB_ENTRY_NAME "__%s_veneer"
2130
2131 /* The name of the dynamic interpreter. This is put in the .interp
2132 section. */
2133 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2134
2135 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2136 (((1 << 25) - 1) << 2)
2137 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2138 (-((1 << 25) << 2))
2139
2140 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2141 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2142
2143 static int
2144 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2145 {
2146 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2147 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2148 }
2149
2150 static int
2151 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2152 {
2153 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2154 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2155 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2156 }
2157
2158 static const uint32_t aarch64_adrp_branch_stub [] =
2159 {
2160 0x90000010, /* adrp ip0, X */
2161 /* R_AARCH64_ADR_HI21_PCREL(X) */
2162 0x91000210, /* add ip0, ip0, :lo12:X */
2163 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2164 0xd61f0200, /* br ip0 */
2165 };
2166
2167 static const uint32_t aarch64_long_branch_stub[] =
2168 {
2169 #if ARCH_SIZE == 64
2170 0x58000090, /* ldr ip0, 1f */
2171 #else
2172 0x18000090, /* ldr wip0, 1f */
2173 #endif
2174 0x10000011, /* adr ip1, #0 */
2175 0x8b110210, /* add ip0, ip0, ip1 */
2176 0xd61f0200, /* br ip0 */
2177 0x00000000, /* 1: .xword or .word
2178 R_AARCH64_PRELNN(X) + 12
2179 */
2180 0x00000000,
2181 };
2182
2183 static const uint32_t aarch64_erratum_835769_stub[] =
2184 {
2185 0x00000000, /* Placeholder for multiply accumulate. */
2186 0x14000000, /* b <label> */
2187 };
2188
2189 static const uint32_t aarch64_erratum_843419_stub[] =
2190 {
2191 0x00000000, /* Placeholder for LDR instruction. */
2192 0x14000000, /* b <label> */
2193 };
2194
2195 /* Section name for stubs is the associated section name plus this
2196 string. */
2197 #define STUB_SUFFIX ".stub"
2198
2199 enum elf_aarch64_stub_type
2200 {
2201 aarch64_stub_none,
2202 aarch64_stub_adrp_branch,
2203 aarch64_stub_long_branch,
2204 aarch64_stub_erratum_835769_veneer,
2205 aarch64_stub_erratum_843419_veneer,
2206 };
2207
2208 struct elf_aarch64_stub_hash_entry
2209 {
2210 /* Base hash table entry structure. */
2211 struct bfd_hash_entry root;
2212
2213 /* The stub section. */
2214 asection *stub_sec;
2215
2216 /* Offset within stub_sec of the beginning of this stub. */
2217 bfd_vma stub_offset;
2218
2219 /* Given the symbol's value and its section we can determine its final
2220 value when building the stubs (so the stub knows where to jump). */
2221 bfd_vma target_value;
2222 asection *target_section;
2223
2224 enum elf_aarch64_stub_type stub_type;
2225
2226 /* The symbol table entry, if any, that this was derived from. */
2227 struct elf_aarch64_link_hash_entry *h;
2228
2229 /* Destination symbol type */
2230 unsigned char st_type;
2231
2232 /* Where this stub is being called from, or, in the case of combined
2233 stub sections, the first input section in the group. */
2234 asection *id_sec;
2235
2236 /* The name for the local symbol at the start of this stub. The
2237 stub name in the hash table has to be unique; this does not, so
2238 it can be friendlier. */
2239 char *output_name;
2240
2241 /* The instruction which caused this stub to be generated (only valid for
2242 erratum 835769 workaround stubs at present). */
2243 uint32_t veneered_insn;
2244
2245 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2246 bfd_vma adrp_offset;
2247 };
2248
2249 /* Used to build a map of a section. This is required for mixed-endian
2250 code/data. */
2251
2252 typedef struct elf_elf_section_map
2253 {
2254 bfd_vma vma;
2255 char type;
2256 }
2257 elf_aarch64_section_map;
2258
2259
2260 typedef struct _aarch64_elf_section_data
2261 {
2262 struct bfd_elf_section_data elf;
2263 unsigned int mapcount;
2264 unsigned int mapsize;
2265 elf_aarch64_section_map *map;
2266 }
2267 _aarch64_elf_section_data;
2268
2269 #define elf_aarch64_section_data(sec) \
2270 ((_aarch64_elf_section_data *) elf_section_data (sec))
2271
2272 /* The size of the thread control block which is defined to be two pointers. */
2273 #define TCB_SIZE (ARCH_SIZE/8)*2
2274
2275 struct elf_aarch64_local_symbol
2276 {
2277 unsigned int got_type;
2278 bfd_signed_vma got_refcount;
2279 bfd_vma got_offset;
2280
2281 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2282 offset is from the end of the jump table and reserved entries
2283 within the PLTGOT.
2284
2285 The magic value (bfd_vma) -1 indicates that an offset has not be
2286 allocated. */
2287 bfd_vma tlsdesc_got_jump_table_offset;
2288 };
2289
2290 struct elf_aarch64_obj_tdata
2291 {
2292 struct elf_obj_tdata root;
2293
2294 /* local symbol descriptors */
2295 struct elf_aarch64_local_symbol *locals;
2296
2297 /* Zero to warn when linking objects with incompatible enum sizes. */
2298 int no_enum_size_warning;
2299
2300 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2301 int no_wchar_size_warning;
2302 };
2303
2304 #define elf_aarch64_tdata(bfd) \
2305 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2306
2307 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2308
2309 #define is_aarch64_elf(bfd) \
2310 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2311 && elf_tdata (bfd) != NULL \
2312 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2313
2314 static bfd_boolean
2315 elfNN_aarch64_mkobject (bfd *abfd)
2316 {
2317 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2318 AARCH64_ELF_DATA);
2319 }
2320
2321 #define elf_aarch64_hash_entry(ent) \
2322 ((struct elf_aarch64_link_hash_entry *)(ent))
2323
2324 #define GOT_UNKNOWN 0
2325 #define GOT_NORMAL 1
2326 #define GOT_TLS_GD 2
2327 #define GOT_TLS_IE 4
2328 #define GOT_TLSDESC_GD 8
2329
2330 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2331
2332 /* AArch64 ELF linker hash entry. */
2333 struct elf_aarch64_link_hash_entry
2334 {
2335 struct elf_link_hash_entry root;
2336
2337 /* Track dynamic relocs copied for this symbol. */
2338 struct elf_dyn_relocs *dyn_relocs;
2339
2340 /* Since PLT entries have variable size, we need to record the
2341 index into .got.plt instead of recomputing it from the PLT
2342 offset. */
2343 bfd_signed_vma plt_got_offset;
2344
2345 /* Bit mask representing the type of GOT entry(s) if any required by
2346 this symbol. */
2347 unsigned int got_type;
2348
2349 /* A pointer to the most recently used stub hash entry against this
2350 symbol. */
2351 struct elf_aarch64_stub_hash_entry *stub_cache;
2352
2353 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2354 is from the end of the jump table and reserved entries within the PLTGOT.
2355
2356 The magic value (bfd_vma) -1 indicates that an offset has not
2357 be allocated. */
2358 bfd_vma tlsdesc_got_jump_table_offset;
2359 };
2360
2361 static unsigned int
2362 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2363 bfd *abfd,
2364 unsigned long r_symndx)
2365 {
2366 if (h)
2367 return elf_aarch64_hash_entry (h)->got_type;
2368
2369 if (! elf_aarch64_locals (abfd))
2370 return GOT_UNKNOWN;
2371
2372 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2373 }
2374
2375 /* Get the AArch64 elf linker hash table from a link_info structure. */
2376 #define elf_aarch64_hash_table(info) \
2377 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2378
2379 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2380 ((struct elf_aarch64_stub_hash_entry *) \
2381 bfd_hash_lookup ((table), (string), (create), (copy)))
2382
2383 /* AArch64 ELF linker hash table. */
2384 struct elf_aarch64_link_hash_table
2385 {
2386 /* The main hash table. */
2387 struct elf_link_hash_table root;
2388
2389 /* Nonzero to force PIC branch veneers. */
2390 int pic_veneer;
2391
2392 /* Fix erratum 835769. */
2393 int fix_erratum_835769;
2394
2395 /* Fix erratum 843419. */
2396 int fix_erratum_843419;
2397
2398 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2399 int fix_erratum_843419_adr;
2400
2401 /* Don't apply link-time values for dynamic relocations. */
2402 int no_apply_dynamic_relocs;
2403
2404 /* The number of bytes in the initial entry in the PLT. */
2405 bfd_size_type plt_header_size;
2406
2407 /* The number of bytes in the subsequent PLT etries. */
2408 bfd_size_type plt_entry_size;
2409
2410 /* Small local sym cache. */
2411 struct sym_cache sym_cache;
2412
2413 /* For convenience in allocate_dynrelocs. */
2414 bfd *obfd;
2415
2416 /* The amount of space used by the reserved portion of the sgotplt
2417 section, plus whatever space is used by the jump slots. */
2418 bfd_vma sgotplt_jump_table_size;
2419
2420 /* The stub hash table. */
2421 struct bfd_hash_table stub_hash_table;
2422
2423 /* Linker stub bfd. */
2424 bfd *stub_bfd;
2425
2426 /* Linker call-backs. */
2427 asection *(*add_stub_section) (const char *, asection *);
2428 void (*layout_sections_again) (void);
2429
2430 /* Array to keep track of which stub sections have been created, and
2431 information on stub grouping. */
2432 struct map_stub
2433 {
2434 /* This is the section to which stubs in the group will be
2435 attached. */
2436 asection *link_sec;
2437 /* The stub section. */
2438 asection *stub_sec;
2439 } *stub_group;
2440
2441 /* Assorted information used by elfNN_aarch64_size_stubs. */
2442 unsigned int bfd_count;
2443 unsigned int top_index;
2444 asection **input_list;
2445
2446 /* The offset into splt of the PLT entry for the TLS descriptor
2447 resolver. Special values are 0, if not necessary (or not found
2448 to be necessary yet), and -1 if needed but not determined
2449 yet. */
2450 bfd_vma tlsdesc_plt;
2451
2452 /* The GOT offset for the lazy trampoline. Communicated to the
2453 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2454 indicates an offset is not allocated. */
2455 bfd_vma dt_tlsdesc_got;
2456
2457 /* Used by local STT_GNU_IFUNC symbols. */
2458 htab_t loc_hash_table;
2459 void * loc_hash_memory;
2460 };
2461
2462 /* Create an entry in an AArch64 ELF linker hash table. */
2463
2464 static struct bfd_hash_entry *
2465 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2466 struct bfd_hash_table *table,
2467 const char *string)
2468 {
2469 struct elf_aarch64_link_hash_entry *ret =
2470 (struct elf_aarch64_link_hash_entry *) entry;
2471
2472 /* Allocate the structure if it has not already been allocated by a
2473 subclass. */
2474 if (ret == NULL)
2475 ret = bfd_hash_allocate (table,
2476 sizeof (struct elf_aarch64_link_hash_entry));
2477 if (ret == NULL)
2478 return (struct bfd_hash_entry *) ret;
2479
2480 /* Call the allocation method of the superclass. */
2481 ret = ((struct elf_aarch64_link_hash_entry *)
2482 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2483 table, string));
2484 if (ret != NULL)
2485 {
2486 ret->dyn_relocs = NULL;
2487 ret->got_type = GOT_UNKNOWN;
2488 ret->plt_got_offset = (bfd_vma) - 1;
2489 ret->stub_cache = NULL;
2490 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2491 }
2492
2493 return (struct bfd_hash_entry *) ret;
2494 }
2495
2496 /* Initialize an entry in the stub hash table. */
2497
2498 static struct bfd_hash_entry *
2499 stub_hash_newfunc (struct bfd_hash_entry *entry,
2500 struct bfd_hash_table *table, const char *string)
2501 {
2502 /* Allocate the structure if it has not already been allocated by a
2503 subclass. */
2504 if (entry == NULL)
2505 {
2506 entry = bfd_hash_allocate (table,
2507 sizeof (struct
2508 elf_aarch64_stub_hash_entry));
2509 if (entry == NULL)
2510 return entry;
2511 }
2512
2513 /* Call the allocation method of the superclass. */
2514 entry = bfd_hash_newfunc (entry, table, string);
2515 if (entry != NULL)
2516 {
2517 struct elf_aarch64_stub_hash_entry *eh;
2518
2519 /* Initialize the local fields. */
2520 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2521 eh->adrp_offset = 0;
2522 eh->stub_sec = NULL;
2523 eh->stub_offset = 0;
2524 eh->target_value = 0;
2525 eh->target_section = NULL;
2526 eh->stub_type = aarch64_stub_none;
2527 eh->h = NULL;
2528 eh->id_sec = NULL;
2529 }
2530
2531 return entry;
2532 }
2533
2534 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2535 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2536 as global symbol. We reuse indx and dynstr_index for local symbol
2537 hash since they aren't used by global symbols in this backend. */
2538
2539 static hashval_t
2540 elfNN_aarch64_local_htab_hash (const void *ptr)
2541 {
2542 struct elf_link_hash_entry *h
2543 = (struct elf_link_hash_entry *) ptr;
2544 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2545 }
2546
2547 /* Compare local hash entries. */
2548
2549 static int
2550 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2551 {
2552 struct elf_link_hash_entry *h1
2553 = (struct elf_link_hash_entry *) ptr1;
2554 struct elf_link_hash_entry *h2
2555 = (struct elf_link_hash_entry *) ptr2;
2556
2557 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2558 }
2559
2560 /* Find and/or create a hash entry for local symbol. */
2561
2562 static struct elf_link_hash_entry *
2563 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2564 bfd *abfd, const Elf_Internal_Rela *rel,
2565 bfd_boolean create)
2566 {
2567 struct elf_aarch64_link_hash_entry e, *ret;
2568 asection *sec = abfd->sections;
2569 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2570 ELFNN_R_SYM (rel->r_info));
2571 void **slot;
2572
2573 e.root.indx = sec->id;
2574 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2575 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2576 create ? INSERT : NO_INSERT);
2577
2578 if (!slot)
2579 return NULL;
2580
2581 if (*slot)
2582 {
2583 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2584 return &ret->root;
2585 }
2586
2587 ret = (struct elf_aarch64_link_hash_entry *)
2588 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2589 sizeof (struct elf_aarch64_link_hash_entry));
2590 if (ret)
2591 {
2592 memset (ret, 0, sizeof (*ret));
2593 ret->root.indx = sec->id;
2594 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2595 ret->root.dynindx = -1;
2596 *slot = ret;
2597 }
2598 return &ret->root;
2599 }
2600
2601 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2602
2603 static void
2604 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2605 struct elf_link_hash_entry *dir,
2606 struct elf_link_hash_entry *ind)
2607 {
2608 struct elf_aarch64_link_hash_entry *edir, *eind;
2609
2610 edir = (struct elf_aarch64_link_hash_entry *) dir;
2611 eind = (struct elf_aarch64_link_hash_entry *) ind;
2612
2613 if (eind->dyn_relocs != NULL)
2614 {
2615 if (edir->dyn_relocs != NULL)
2616 {
2617 struct elf_dyn_relocs **pp;
2618 struct elf_dyn_relocs *p;
2619
2620 /* Add reloc counts against the indirect sym to the direct sym
2621 list. Merge any entries against the same section. */
2622 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2623 {
2624 struct elf_dyn_relocs *q;
2625
2626 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2627 if (q->sec == p->sec)
2628 {
2629 q->pc_count += p->pc_count;
2630 q->count += p->count;
2631 *pp = p->next;
2632 break;
2633 }
2634 if (q == NULL)
2635 pp = &p->next;
2636 }
2637 *pp = edir->dyn_relocs;
2638 }
2639
2640 edir->dyn_relocs = eind->dyn_relocs;
2641 eind->dyn_relocs = NULL;
2642 }
2643
2644 if (ind->root.type == bfd_link_hash_indirect)
2645 {
2646 /* Copy over PLT info. */
2647 if (dir->got.refcount <= 0)
2648 {
2649 edir->got_type = eind->got_type;
2650 eind->got_type = GOT_UNKNOWN;
2651 }
2652 }
2653
2654 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2655 }
2656
2657 /* Destroy an AArch64 elf linker hash table. */
2658
2659 static void
2660 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2661 {
2662 struct elf_aarch64_link_hash_table *ret
2663 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2664
2665 if (ret->loc_hash_table)
2666 htab_delete (ret->loc_hash_table);
2667 if (ret->loc_hash_memory)
2668 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2669
2670 bfd_hash_table_free (&ret->stub_hash_table);
2671 _bfd_elf_link_hash_table_free (obfd);
2672 }
2673
2674 /* Create an AArch64 elf linker hash table. */
2675
2676 static struct bfd_link_hash_table *
2677 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2678 {
2679 struct elf_aarch64_link_hash_table *ret;
2680 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2681
2682 ret = bfd_zmalloc (amt);
2683 if (ret == NULL)
2684 return NULL;
2685
2686 if (!_bfd_elf_link_hash_table_init
2687 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2688 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2689 {
2690 free (ret);
2691 return NULL;
2692 }
2693
2694 ret->plt_header_size = PLT_ENTRY_SIZE;
2695 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2696 ret->obfd = abfd;
2697 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2698
2699 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2700 sizeof (struct elf_aarch64_stub_hash_entry)))
2701 {
2702 _bfd_elf_link_hash_table_free (abfd);
2703 return NULL;
2704 }
2705
2706 ret->loc_hash_table = htab_try_create (1024,
2707 elfNN_aarch64_local_htab_hash,
2708 elfNN_aarch64_local_htab_eq,
2709 NULL);
2710 ret->loc_hash_memory = objalloc_create ();
2711 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2712 {
2713 elfNN_aarch64_link_hash_table_free (abfd);
2714 return NULL;
2715 }
2716 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2717
2718 return &ret->root.root;
2719 }
2720
2721 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2722
2723 static bfd_boolean
2724 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2725 bfd_vma offset, bfd_vma value)
2726 {
2727 reloc_howto_type *howto;
2728 bfd_vma place;
2729
2730 howto = elfNN_aarch64_howto_from_type (r_type);
2731 place = (input_section->output_section->vma + input_section->output_offset
2732 + offset);
2733
2734 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2735 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2736 return _bfd_aarch64_elf_put_addend (input_bfd,
2737 input_section->contents + offset, r_type,
2738 howto, value) == bfd_reloc_ok;
2739 }
2740
2741 static enum elf_aarch64_stub_type
2742 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2743 {
2744 if (aarch64_valid_for_adrp_p (value, place))
2745 return aarch64_stub_adrp_branch;
2746 return aarch64_stub_long_branch;
2747 }
2748
2749 /* Determine the type of stub needed, if any, for a call. */
2750
2751 static enum elf_aarch64_stub_type
2752 aarch64_type_of_stub (asection *input_sec,
2753 const Elf_Internal_Rela *rel,
2754 asection *sym_sec,
2755 unsigned char st_type,
2756 bfd_vma destination)
2757 {
2758 bfd_vma location;
2759 bfd_signed_vma branch_offset;
2760 unsigned int r_type;
2761 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2762
2763 if (st_type != STT_FUNC
2764 && (sym_sec == input_sec))
2765 return stub_type;
2766
2767 /* Determine where the call point is. */
2768 location = (input_sec->output_offset
2769 + input_sec->output_section->vma + rel->r_offset);
2770
2771 branch_offset = (bfd_signed_vma) (destination - location);
2772
2773 r_type = ELFNN_R_TYPE (rel->r_info);
2774
2775 /* We don't want to redirect any old unconditional jump in this way,
2776 only one which is being used for a sibcall, where it is
2777 acceptable for the IP0 and IP1 registers to be clobbered. */
2778 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2779 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2780 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2781 {
2782 stub_type = aarch64_stub_long_branch;
2783 }
2784
2785 return stub_type;
2786 }
2787
2788 /* Build a name for an entry in the stub hash table. */
2789
2790 static char *
2791 elfNN_aarch64_stub_name (const asection *input_section,
2792 const asection *sym_sec,
2793 const struct elf_aarch64_link_hash_entry *hash,
2794 const Elf_Internal_Rela *rel)
2795 {
2796 char *stub_name;
2797 bfd_size_type len;
2798
2799 if (hash)
2800 {
2801 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2802 stub_name = bfd_malloc (len);
2803 if (stub_name != NULL)
2804 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2805 (unsigned int) input_section->id,
2806 hash->root.root.root.string,
2807 rel->r_addend);
2808 }
2809 else
2810 {
2811 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2812 stub_name = bfd_malloc (len);
2813 if (stub_name != NULL)
2814 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2815 (unsigned int) input_section->id,
2816 (unsigned int) sym_sec->id,
2817 (unsigned int) ELFNN_R_SYM (rel->r_info),
2818 rel->r_addend);
2819 }
2820
2821 return stub_name;
2822 }
2823
2824 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2825 executable PLT slots where the executable never takes the address of those
2826 functions, the function symbols are not added to the hash table. */
2827
2828 static bfd_boolean
2829 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2830 {
2831 if (h->plt.offset != (bfd_vma) -1
2832 && !h->def_regular
2833 && !h->pointer_equality_needed)
2834 return FALSE;
2835
2836 return _bfd_elf_hash_symbol (h);
2837 }
2838
2839
2840 /* Look up an entry in the stub hash. Stub entries are cached because
2841 creating the stub name takes a bit of time. */
2842
2843 static struct elf_aarch64_stub_hash_entry *
2844 elfNN_aarch64_get_stub_entry (const asection *input_section,
2845 const asection *sym_sec,
2846 struct elf_link_hash_entry *hash,
2847 const Elf_Internal_Rela *rel,
2848 struct elf_aarch64_link_hash_table *htab)
2849 {
2850 struct elf_aarch64_stub_hash_entry *stub_entry;
2851 struct elf_aarch64_link_hash_entry *h =
2852 (struct elf_aarch64_link_hash_entry *) hash;
2853 const asection *id_sec;
2854
2855 if ((input_section->flags & SEC_CODE) == 0)
2856 return NULL;
2857
2858 /* If this input section is part of a group of sections sharing one
2859 stub section, then use the id of the first section in the group.
2860 Stub names need to include a section id, as there may well be
2861 more than one stub used to reach say, printf, and we need to
2862 distinguish between them. */
2863 id_sec = htab->stub_group[input_section->id].link_sec;
2864
2865 if (h != NULL && h->stub_cache != NULL
2866 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2867 {
2868 stub_entry = h->stub_cache;
2869 }
2870 else
2871 {
2872 char *stub_name;
2873
2874 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2875 if (stub_name == NULL)
2876 return NULL;
2877
2878 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2879 stub_name, FALSE, FALSE);
2880 if (h != NULL)
2881 h->stub_cache = stub_entry;
2882
2883 free (stub_name);
2884 }
2885
2886 return stub_entry;
2887 }
2888
2889
2890 /* Create a stub section. */
2891
2892 static asection *
2893 _bfd_aarch64_create_stub_section (asection *section,
2894 struct elf_aarch64_link_hash_table *htab)
2895 {
2896 size_t namelen;
2897 bfd_size_type len;
2898 char *s_name;
2899
2900 namelen = strlen (section->name);
2901 len = namelen + sizeof (STUB_SUFFIX);
2902 s_name = bfd_alloc (htab->stub_bfd, len);
2903 if (s_name == NULL)
2904 return NULL;
2905
2906 memcpy (s_name, section->name, namelen);
2907 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2908 return (*htab->add_stub_section) (s_name, section);
2909 }
2910
2911
2912 /* Find or create a stub section for a link section.
2913
2914 Fix or create the stub section used to collect stubs attached to
2915 the specified link section. */
2916
2917 static asection *
2918 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2919 struct elf_aarch64_link_hash_table *htab)
2920 {
2921 if (htab->stub_group[link_section->id].stub_sec == NULL)
2922 htab->stub_group[link_section->id].stub_sec
2923 = _bfd_aarch64_create_stub_section (link_section, htab);
2924 return htab->stub_group[link_section->id].stub_sec;
2925 }
2926
2927
2928 /* Find or create a stub section in the stub group for an input
2929 section. */
2930
2931 static asection *
2932 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2933 struct elf_aarch64_link_hash_table *htab)
2934 {
2935 asection *link_sec = htab->stub_group[section->id].link_sec;
2936 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2937 }
2938
2939
2940 /* Add a new stub entry in the stub group associated with an input
2941 section to the stub hash. Not all fields of the new stub entry are
2942 initialised. */
2943
2944 static struct elf_aarch64_stub_hash_entry *
2945 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2946 asection *section,
2947 struct elf_aarch64_link_hash_table *htab)
2948 {
2949 asection *link_sec;
2950 asection *stub_sec;
2951 struct elf_aarch64_stub_hash_entry *stub_entry;
2952
2953 link_sec = htab->stub_group[section->id].link_sec;
2954 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2955
2956 /* Enter this entry into the linker stub hash table. */
2957 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2958 TRUE, FALSE);
2959 if (stub_entry == NULL)
2960 {
2961 /* xgettext:c-format */
2962 _bfd_error_handler (_("%B: cannot create stub entry %s"),
2963 section->owner, stub_name);
2964 return NULL;
2965 }
2966
2967 stub_entry->stub_sec = stub_sec;
2968 stub_entry->stub_offset = 0;
2969 stub_entry->id_sec = link_sec;
2970
2971 return stub_entry;
2972 }
2973
2974 /* Add a new stub entry in the final stub section to the stub hash.
2975 Not all fields of the new stub entry are initialised. */
2976
2977 static struct elf_aarch64_stub_hash_entry *
2978 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2979 asection *link_section,
2980 struct elf_aarch64_link_hash_table *htab)
2981 {
2982 asection *stub_sec;
2983 struct elf_aarch64_stub_hash_entry *stub_entry;
2984
2985 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2986 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2987 TRUE, FALSE);
2988 if (stub_entry == NULL)
2989 {
2990 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
2991 return NULL;
2992 }
2993
2994 stub_entry->stub_sec = stub_sec;
2995 stub_entry->stub_offset = 0;
2996 stub_entry->id_sec = link_section;
2997
2998 return stub_entry;
2999 }
3000
3001
3002 static bfd_boolean
3003 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3004 void *in_arg ATTRIBUTE_UNUSED)
3005 {
3006 struct elf_aarch64_stub_hash_entry *stub_entry;
3007 asection *stub_sec;
3008 bfd *stub_bfd;
3009 bfd_byte *loc;
3010 bfd_vma sym_value;
3011 bfd_vma veneered_insn_loc;
3012 bfd_vma veneer_entry_loc;
3013 bfd_signed_vma branch_offset = 0;
3014 unsigned int template_size;
3015 const uint32_t *template;
3016 unsigned int i;
3017
3018 /* Massage our args to the form they really have. */
3019 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3020
3021 stub_sec = stub_entry->stub_sec;
3022
3023 /* Make a note of the offset within the stubs for this entry. */
3024 stub_entry->stub_offset = stub_sec->size;
3025 loc = stub_sec->contents + stub_entry->stub_offset;
3026
3027 stub_bfd = stub_sec->owner;
3028
3029 /* This is the address of the stub destination. */
3030 sym_value = (stub_entry->target_value
3031 + stub_entry->target_section->output_offset
3032 + stub_entry->target_section->output_section->vma);
3033
3034 if (stub_entry->stub_type == aarch64_stub_long_branch)
3035 {
3036 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3037 + stub_sec->output_offset);
3038
3039 /* See if we can relax the stub. */
3040 if (aarch64_valid_for_adrp_p (sym_value, place))
3041 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3042 }
3043
3044 switch (stub_entry->stub_type)
3045 {
3046 case aarch64_stub_adrp_branch:
3047 template = aarch64_adrp_branch_stub;
3048 template_size = sizeof (aarch64_adrp_branch_stub);
3049 break;
3050 case aarch64_stub_long_branch:
3051 template = aarch64_long_branch_stub;
3052 template_size = sizeof (aarch64_long_branch_stub);
3053 break;
3054 case aarch64_stub_erratum_835769_veneer:
3055 template = aarch64_erratum_835769_stub;
3056 template_size = sizeof (aarch64_erratum_835769_stub);
3057 break;
3058 case aarch64_stub_erratum_843419_veneer:
3059 template = aarch64_erratum_843419_stub;
3060 template_size = sizeof (aarch64_erratum_843419_stub);
3061 break;
3062 default:
3063 abort ();
3064 }
3065
3066 for (i = 0; i < (template_size / sizeof template[0]); i++)
3067 {
3068 bfd_putl32 (template[i], loc);
3069 loc += 4;
3070 }
3071
3072 template_size = (template_size + 7) & ~7;
3073 stub_sec->size += template_size;
3074
3075 switch (stub_entry->stub_type)
3076 {
3077 case aarch64_stub_adrp_branch:
3078 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3079 stub_entry->stub_offset, sym_value))
3080 /* The stub would not have been relaxed if the offset was out
3081 of range. */
3082 BFD_FAIL ();
3083
3084 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3085 stub_entry->stub_offset + 4, sym_value))
3086 BFD_FAIL ();
3087 break;
3088
3089 case aarch64_stub_long_branch:
3090 /* We want the value relative to the address 12 bytes back from the
3091 value itself. */
3092 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3093 stub_entry->stub_offset + 16, sym_value + 12))
3094 BFD_FAIL ();
3095 break;
3096
3097 case aarch64_stub_erratum_835769_veneer:
3098 veneered_insn_loc = stub_entry->target_section->output_section->vma
3099 + stub_entry->target_section->output_offset
3100 + stub_entry->target_value;
3101 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3102 + stub_entry->stub_sec->output_offset
3103 + stub_entry->stub_offset;
3104 branch_offset = veneered_insn_loc - veneer_entry_loc;
3105 branch_offset >>= 2;
3106 branch_offset &= 0x3ffffff;
3107 bfd_putl32 (stub_entry->veneered_insn,
3108 stub_sec->contents + stub_entry->stub_offset);
3109 bfd_putl32 (template[1] | branch_offset,
3110 stub_sec->contents + stub_entry->stub_offset + 4);
3111 break;
3112
3113 case aarch64_stub_erratum_843419_veneer:
3114 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3115 stub_entry->stub_offset + 4, sym_value + 4))
3116 BFD_FAIL ();
3117 break;
3118
3119 default:
3120 abort ();
3121 }
3122
3123 return TRUE;
3124 }
3125
3126 /* As above, but don't actually build the stub. Just bump offset so
3127 we know stub section sizes. */
3128
3129 static bfd_boolean
3130 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3131 void *in_arg ATTRIBUTE_UNUSED)
3132 {
3133 struct elf_aarch64_stub_hash_entry *stub_entry;
3134 int size;
3135
3136 /* Massage our args to the form they really have. */
3137 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3138
3139 switch (stub_entry->stub_type)
3140 {
3141 case aarch64_stub_adrp_branch:
3142 size = sizeof (aarch64_adrp_branch_stub);
3143 break;
3144 case aarch64_stub_long_branch:
3145 size = sizeof (aarch64_long_branch_stub);
3146 break;
3147 case aarch64_stub_erratum_835769_veneer:
3148 size = sizeof (aarch64_erratum_835769_stub);
3149 break;
3150 case aarch64_stub_erratum_843419_veneer:
3151 size = sizeof (aarch64_erratum_843419_stub);
3152 break;
3153 default:
3154 abort ();
3155 }
3156
3157 size = (size + 7) & ~7;
3158 stub_entry->stub_sec->size += size;
3159 return TRUE;
3160 }
3161
3162 /* External entry points for sizing and building linker stubs. */
3163
3164 /* Set up various things so that we can make a list of input sections
3165 for each output section included in the link. Returns -1 on error,
3166 0 when no stubs will be needed, and 1 on success. */
3167
3168 int
3169 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3170 struct bfd_link_info *info)
3171 {
3172 bfd *input_bfd;
3173 unsigned int bfd_count;
3174 unsigned int top_id, top_index;
3175 asection *section;
3176 asection **input_list, **list;
3177 bfd_size_type amt;
3178 struct elf_aarch64_link_hash_table *htab =
3179 elf_aarch64_hash_table (info);
3180
3181 if (!is_elf_hash_table (htab))
3182 return 0;
3183
3184 /* Count the number of input BFDs and find the top input section id. */
3185 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3186 input_bfd != NULL; input_bfd = input_bfd->link.next)
3187 {
3188 bfd_count += 1;
3189 for (section = input_bfd->sections;
3190 section != NULL; section = section->next)
3191 {
3192 if (top_id < section->id)
3193 top_id = section->id;
3194 }
3195 }
3196 htab->bfd_count = bfd_count;
3197
3198 amt = sizeof (struct map_stub) * (top_id + 1);
3199 htab->stub_group = bfd_zmalloc (amt);
3200 if (htab->stub_group == NULL)
3201 return -1;
3202
3203 /* We can't use output_bfd->section_count here to find the top output
3204 section index as some sections may have been removed, and
3205 _bfd_strip_section_from_output doesn't renumber the indices. */
3206 for (section = output_bfd->sections, top_index = 0;
3207 section != NULL; section = section->next)
3208 {
3209 if (top_index < section->index)
3210 top_index = section->index;
3211 }
3212
3213 htab->top_index = top_index;
3214 amt = sizeof (asection *) * (top_index + 1);
3215 input_list = bfd_malloc (amt);
3216 htab->input_list = input_list;
3217 if (input_list == NULL)
3218 return -1;
3219
3220 /* For sections we aren't interested in, mark their entries with a
3221 value we can check later. */
3222 list = input_list + top_index;
3223 do
3224 *list = bfd_abs_section_ptr;
3225 while (list-- != input_list);
3226
3227 for (section = output_bfd->sections;
3228 section != NULL; section = section->next)
3229 {
3230 if ((section->flags & SEC_CODE) != 0)
3231 input_list[section->index] = NULL;
3232 }
3233
3234 return 1;
3235 }
3236
3237 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3238 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3239
3240 /* The linker repeatedly calls this function for each input section,
3241 in the order that input sections are linked into output sections.
3242 Build lists of input sections to determine groupings between which
3243 we may insert linker stubs. */
3244
3245 void
3246 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3247 {
3248 struct elf_aarch64_link_hash_table *htab =
3249 elf_aarch64_hash_table (info);
3250
3251 if (isec->output_section->index <= htab->top_index)
3252 {
3253 asection **list = htab->input_list + isec->output_section->index;
3254
3255 if (*list != bfd_abs_section_ptr)
3256 {
3257 /* Steal the link_sec pointer for our list. */
3258 /* This happens to make the list in reverse order,
3259 which is what we want. */
3260 PREV_SEC (isec) = *list;
3261 *list = isec;
3262 }
3263 }
3264 }
3265
3266 /* See whether we can group stub sections together. Grouping stub
3267 sections may result in fewer stubs. More importantly, we need to
3268 put all .init* and .fini* stubs at the beginning of the .init or
3269 .fini output sections respectively, because glibc splits the
3270 _init and _fini functions into multiple parts. Putting a stub in
3271 the middle of a function is not a good idea. */
3272
3273 static void
3274 group_sections (struct elf_aarch64_link_hash_table *htab,
3275 bfd_size_type stub_group_size,
3276 bfd_boolean stubs_always_before_branch)
3277 {
3278 asection **list = htab->input_list + htab->top_index;
3279
3280 do
3281 {
3282 asection *tail = *list;
3283
3284 if (tail == bfd_abs_section_ptr)
3285 continue;
3286
3287 while (tail != NULL)
3288 {
3289 asection *curr;
3290 asection *prev;
3291 bfd_size_type total;
3292
3293 curr = tail;
3294 total = tail->size;
3295 while ((prev = PREV_SEC (curr)) != NULL
3296 && ((total += curr->output_offset - prev->output_offset)
3297 < stub_group_size))
3298 curr = prev;
3299
3300 /* OK, the size from the start of CURR to the end is less
3301 than stub_group_size and thus can be handled by one stub
3302 section. (Or the tail section is itself larger than
3303 stub_group_size, in which case we may be toast.)
3304 We should really be keeping track of the total size of
3305 stubs added here, as stubs contribute to the final output
3306 section size. */
3307 do
3308 {
3309 prev = PREV_SEC (tail);
3310 /* Set up this stub group. */
3311 htab->stub_group[tail->id].link_sec = curr;
3312 }
3313 while (tail != curr && (tail = prev) != NULL);
3314
3315 /* But wait, there's more! Input sections up to stub_group_size
3316 bytes before the stub section can be handled by it too. */
3317 if (!stubs_always_before_branch)
3318 {
3319 total = 0;
3320 while (prev != NULL
3321 && ((total += tail->output_offset - prev->output_offset)
3322 < stub_group_size))
3323 {
3324 tail = prev;
3325 prev = PREV_SEC (tail);
3326 htab->stub_group[tail->id].link_sec = curr;
3327 }
3328 }
3329 tail = prev;
3330 }
3331 }
3332 while (list-- != htab->input_list);
3333
3334 free (htab->input_list);
3335 }
3336
3337 #undef PREV_SEC
3338
3339 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3340
3341 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3342 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3343 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3344 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3345 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3346 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3347
3348 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3349 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3350 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3351 #define AARCH64_ZR 0x1f
3352
3353 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3354 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3355
3356 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3357 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3358 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3359 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3360 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3361 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3362 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3363 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3364 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3365 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3366 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3367 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3368 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3369 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3370 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3371 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3372 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3373 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3374
3375 /* Classify an INSN if it is indeed a load/store.
3376
3377 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3378
3379 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3380 is set equal to RT.
3381
3382 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3383
3384 static bfd_boolean
3385 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3386 bfd_boolean *pair, bfd_boolean *load)
3387 {
3388 uint32_t opcode;
3389 unsigned int r;
3390 uint32_t opc = 0;
3391 uint32_t v = 0;
3392 uint32_t opc_v = 0;
3393
3394 /* Bail out quickly if INSN doesn't fall into the load-store
3395 encoding space. */
3396 if (!AARCH64_LDST (insn))
3397 return FALSE;
3398
3399 *pair = FALSE;
3400 *load = FALSE;
3401 if (AARCH64_LDST_EX (insn))
3402 {
3403 *rt = AARCH64_RT (insn);
3404 *rt2 = *rt;
3405 if (AARCH64_BIT (insn, 21) == 1)
3406 {
3407 *pair = TRUE;
3408 *rt2 = AARCH64_RT2 (insn);
3409 }
3410 *load = AARCH64_LD (insn);
3411 return TRUE;
3412 }
3413 else if (AARCH64_LDST_NAP (insn)
3414 || AARCH64_LDSTP_PI (insn)
3415 || AARCH64_LDSTP_O (insn)
3416 || AARCH64_LDSTP_PRE (insn))
3417 {
3418 *pair = TRUE;
3419 *rt = AARCH64_RT (insn);
3420 *rt2 = AARCH64_RT2 (insn);
3421 *load = AARCH64_LD (insn);
3422 return TRUE;
3423 }
3424 else if (AARCH64_LDST_PCREL (insn)
3425 || AARCH64_LDST_UI (insn)
3426 || AARCH64_LDST_PIIMM (insn)
3427 || AARCH64_LDST_U (insn)
3428 || AARCH64_LDST_PREIMM (insn)
3429 || AARCH64_LDST_RO (insn)
3430 || AARCH64_LDST_UIMM (insn))
3431 {
3432 *rt = AARCH64_RT (insn);
3433 *rt2 = *rt;
3434 if (AARCH64_LDST_PCREL (insn))
3435 *load = TRUE;
3436 opc = AARCH64_BITS (insn, 22, 2);
3437 v = AARCH64_BIT (insn, 26);
3438 opc_v = opc | (v << 2);
3439 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3440 || opc_v == 5 || opc_v == 7);
3441 return TRUE;
3442 }
3443 else if (AARCH64_LDST_SIMD_M (insn)
3444 || AARCH64_LDST_SIMD_M_PI (insn))
3445 {
3446 *rt = AARCH64_RT (insn);
3447 *load = AARCH64_BIT (insn, 22);
3448 opcode = (insn >> 12) & 0xf;
3449 switch (opcode)
3450 {
3451 case 0:
3452 case 2:
3453 *rt2 = *rt + 3;
3454 break;
3455
3456 case 4:
3457 case 6:
3458 *rt2 = *rt + 2;
3459 break;
3460
3461 case 7:
3462 *rt2 = *rt;
3463 break;
3464
3465 case 8:
3466 case 10:
3467 *rt2 = *rt + 1;
3468 break;
3469
3470 default:
3471 return FALSE;
3472 }
3473 return TRUE;
3474 }
3475 else if (AARCH64_LDST_SIMD_S (insn)
3476 || AARCH64_LDST_SIMD_S_PI (insn))
3477 {
3478 *rt = AARCH64_RT (insn);
3479 r = (insn >> 21) & 1;
3480 *load = AARCH64_BIT (insn, 22);
3481 opcode = (insn >> 13) & 0x7;
3482 switch (opcode)
3483 {
3484 case 0:
3485 case 2:
3486 case 4:
3487 *rt2 = *rt + r;
3488 break;
3489
3490 case 1:
3491 case 3:
3492 case 5:
3493 *rt2 = *rt + (r == 0 ? 2 : 3);
3494 break;
3495
3496 case 6:
3497 *rt2 = *rt + r;
3498 break;
3499
3500 case 7:
3501 *rt2 = *rt + (r == 0 ? 2 : 3);
3502 break;
3503
3504 default:
3505 return FALSE;
3506 }
3507 return TRUE;
3508 }
3509
3510 return FALSE;
3511 }
3512
3513 /* Return TRUE if INSN is multiply-accumulate. */
3514
3515 static bfd_boolean
3516 aarch64_mlxl_p (uint32_t insn)
3517 {
3518 uint32_t op31 = AARCH64_OP31 (insn);
3519
3520 if (AARCH64_MAC (insn)
3521 && (op31 == 0 || op31 == 1 || op31 == 5)
3522 /* Exclude MUL instructions which are encoded as a multiple accumulate
3523 with RA = XZR. */
3524 && AARCH64_RA (insn) != AARCH64_ZR)
3525 return TRUE;
3526
3527 return FALSE;
3528 }
3529
3530 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3531 it is possible for a 64-bit multiply-accumulate instruction to generate an
3532 incorrect result. The details are quite complex and hard to
3533 determine statically, since branches in the code may exist in some
3534 circumstances, but all cases end with a memory (load, store, or
3535 prefetch) instruction followed immediately by the multiply-accumulate
3536 operation. We employ a linker patching technique, by moving the potentially
3537 affected multiply-accumulate instruction into a patch region and replacing
3538 the original instruction with a branch to the patch. This function checks
3539 if INSN_1 is the memory operation followed by a multiply-accumulate
3540 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3541 if INSN_1 and INSN_2 are safe. */
3542
3543 static bfd_boolean
3544 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3545 {
3546 uint32_t rt;
3547 uint32_t rt2;
3548 uint32_t rn;
3549 uint32_t rm;
3550 uint32_t ra;
3551 bfd_boolean pair;
3552 bfd_boolean load;
3553
3554 if (aarch64_mlxl_p (insn_2)
3555 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3556 {
3557 /* Any SIMD memory op is independent of the subsequent MLA
3558 by definition of the erratum. */
3559 if (AARCH64_BIT (insn_1, 26))
3560 return TRUE;
3561
3562 /* If not SIMD, check for integer memory ops and MLA relationship. */
3563 rn = AARCH64_RN (insn_2);
3564 ra = AARCH64_RA (insn_2);
3565 rm = AARCH64_RM (insn_2);
3566
3567 /* If this is a load and there's a true(RAW) dependency, we are safe
3568 and this is not an erratum sequence. */
3569 if (load &&
3570 (rt == rn || rt == rm || rt == ra
3571 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3572 return FALSE;
3573
3574 /* We conservatively put out stubs for all other cases (including
3575 writebacks). */
3576 return TRUE;
3577 }
3578
3579 return FALSE;
3580 }
3581
3582 /* Used to order a list of mapping symbols by address. */
3583
3584 static int
3585 elf_aarch64_compare_mapping (const void *a, const void *b)
3586 {
3587 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3588 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3589
3590 if (amap->vma > bmap->vma)
3591 return 1;
3592 else if (amap->vma < bmap->vma)
3593 return -1;
3594 else if (amap->type > bmap->type)
3595 /* Ensure results do not depend on the host qsort for objects with
3596 multiple mapping symbols at the same address by sorting on type
3597 after vma. */
3598 return 1;
3599 else if (amap->type < bmap->type)
3600 return -1;
3601 else
3602 return 0;
3603 }
3604
3605
3606 static char *
3607 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3608 {
3609 char *stub_name = (char *) bfd_malloc
3610 (strlen ("__erratum_835769_veneer_") + 16);
3611 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3612 return stub_name;
3613 }
3614
3615 /* Scan for Cortex-A53 erratum 835769 sequence.
3616
3617 Return TRUE else FALSE on abnormal termination. */
3618
3619 static bfd_boolean
3620 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3621 struct bfd_link_info *info,
3622 unsigned int *num_fixes_p)
3623 {
3624 asection *section;
3625 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3626 unsigned int num_fixes = *num_fixes_p;
3627
3628 if (htab == NULL)
3629 return TRUE;
3630
3631 for (section = input_bfd->sections;
3632 section != NULL;
3633 section = section->next)
3634 {
3635 bfd_byte *contents = NULL;
3636 struct _aarch64_elf_section_data *sec_data;
3637 unsigned int span;
3638
3639 if (elf_section_type (section) != SHT_PROGBITS
3640 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3641 || (section->flags & SEC_EXCLUDE) != 0
3642 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3643 || (section->output_section == bfd_abs_section_ptr))
3644 continue;
3645
3646 if (elf_section_data (section)->this_hdr.contents != NULL)
3647 contents = elf_section_data (section)->this_hdr.contents;
3648 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3649 return FALSE;
3650
3651 sec_data = elf_aarch64_section_data (section);
3652
3653 qsort (sec_data->map, sec_data->mapcount,
3654 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3655
3656 for (span = 0; span < sec_data->mapcount; span++)
3657 {
3658 unsigned int span_start = sec_data->map[span].vma;
3659 unsigned int span_end = ((span == sec_data->mapcount - 1)
3660 ? sec_data->map[0].vma + section->size
3661 : sec_data->map[span + 1].vma);
3662 unsigned int i;
3663 char span_type = sec_data->map[span].type;
3664
3665 if (span_type == 'd')
3666 continue;
3667
3668 for (i = span_start; i + 4 < span_end; i += 4)
3669 {
3670 uint32_t insn_1 = bfd_getl32 (contents + i);
3671 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3672
3673 if (aarch64_erratum_sequence (insn_1, insn_2))
3674 {
3675 struct elf_aarch64_stub_hash_entry *stub_entry;
3676 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3677 if (! stub_name)
3678 return FALSE;
3679
3680 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3681 section,
3682 htab);
3683 if (! stub_entry)
3684 return FALSE;
3685
3686 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3687 stub_entry->target_section = section;
3688 stub_entry->target_value = i + 4;
3689 stub_entry->veneered_insn = insn_2;
3690 stub_entry->output_name = stub_name;
3691 num_fixes++;
3692 }
3693 }
3694 }
3695 if (elf_section_data (section)->this_hdr.contents == NULL)
3696 free (contents);
3697 }
3698
3699 *num_fixes_p = num_fixes;
3700
3701 return TRUE;
3702 }
3703
3704
3705 /* Test if instruction INSN is ADRP. */
3706
3707 static bfd_boolean
3708 _bfd_aarch64_adrp_p (uint32_t insn)
3709 {
3710 return ((insn & 0x9f000000) == 0x90000000);
3711 }
3712
3713
3714 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3715
3716 static bfd_boolean
3717 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3718 uint32_t insn_3)
3719 {
3720 uint32_t rt;
3721 uint32_t rt2;
3722 bfd_boolean pair;
3723 bfd_boolean load;
3724
3725 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3726 && (!pair
3727 || (pair && !load))
3728 && AARCH64_LDST_UIMM (insn_3)
3729 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3730 }
3731
3732
3733 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3734
3735 Return TRUE if section CONTENTS at offset I contains one of the
3736 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3737 seen set P_VENEER_I to the offset of the final LOAD/STORE
3738 instruction in the sequence.
3739 */
3740
3741 static bfd_boolean
3742 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3743 bfd_vma i, bfd_vma span_end,
3744 bfd_vma *p_veneer_i)
3745 {
3746 uint32_t insn_1 = bfd_getl32 (contents + i);
3747
3748 if (!_bfd_aarch64_adrp_p (insn_1))
3749 return FALSE;
3750
3751 if (span_end < i + 12)
3752 return FALSE;
3753
3754 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3755 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3756
3757 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3758 return FALSE;
3759
3760 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3761 {
3762 *p_veneer_i = i + 8;
3763 return TRUE;
3764 }
3765
3766 if (span_end < i + 16)
3767 return FALSE;
3768
3769 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3770
3771 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3772 {
3773 *p_veneer_i = i + 12;
3774 return TRUE;
3775 }
3776
3777 return FALSE;
3778 }
3779
3780
3781 /* Resize all stub sections. */
3782
3783 static void
3784 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3785 {
3786 asection *section;
3787
3788 /* OK, we've added some stubs. Find out the new size of the
3789 stub sections. */
3790 for (section = htab->stub_bfd->sections;
3791 section != NULL; section = section->next)
3792 {
3793 /* Ignore non-stub sections. */
3794 if (!strstr (section->name, STUB_SUFFIX))
3795 continue;
3796 section->size = 0;
3797 }
3798
3799 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3800
3801 for (section = htab->stub_bfd->sections;
3802 section != NULL; section = section->next)
3803 {
3804 if (!strstr (section->name, STUB_SUFFIX))
3805 continue;
3806
3807 if (section->size)
3808 section->size += 4;
3809
3810 /* Ensure all stub sections have a size which is a multiple of
3811 4096. This is important in order to ensure that the insertion
3812 of stub sections does not in itself move existing code around
3813 in such a way that new errata sequences are created. */
3814 if (htab->fix_erratum_843419)
3815 if (section->size)
3816 section->size = BFD_ALIGN (section->size, 0x1000);
3817 }
3818 }
3819
3820
3821 /* Construct an erratum 843419 workaround stub name.
3822 */
3823
3824 static char *
3825 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3826 bfd_vma offset)
3827 {
3828 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3829 char *stub_name = bfd_malloc (len);
3830
3831 if (stub_name != NULL)
3832 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3833 input_section->owner->id,
3834 input_section->id,
3835 offset);
3836 return stub_name;
3837 }
3838
3839 /* Build a stub_entry structure describing an 843419 fixup.
3840
3841 The stub_entry constructed is populated with the bit pattern INSN
3842 of the instruction located at OFFSET within input SECTION.
3843
3844 Returns TRUE on success. */
3845
3846 static bfd_boolean
3847 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3848 bfd_vma adrp_offset,
3849 bfd_vma ldst_offset,
3850 asection *section,
3851 struct bfd_link_info *info)
3852 {
3853 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3854 char *stub_name;
3855 struct elf_aarch64_stub_hash_entry *stub_entry;
3856
3857 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3858 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3859 FALSE, FALSE);
3860 if (stub_entry)
3861 {
3862 free (stub_name);
3863 return TRUE;
3864 }
3865
3866 /* We always place an 843419 workaround veneer in the stub section
3867 attached to the input section in which an erratum sequence has
3868 been found. This ensures that later in the link process (in
3869 elfNN_aarch64_write_section) when we copy the veneered
3870 instruction from the input section into the stub section the
3871 copied instruction will have had any relocations applied to it.
3872 If we placed workaround veneers in any other stub section then we
3873 could not assume that all relocations have been processed on the
3874 corresponding input section at the point we output the stub
3875 section.
3876 */
3877
3878 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3879 if (stub_entry == NULL)
3880 {
3881 free (stub_name);
3882 return FALSE;
3883 }
3884
3885 stub_entry->adrp_offset = adrp_offset;
3886 stub_entry->target_value = ldst_offset;
3887 stub_entry->target_section = section;
3888 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3889 stub_entry->veneered_insn = insn;
3890 stub_entry->output_name = stub_name;
3891
3892 return TRUE;
3893 }
3894
3895
3896 /* Scan an input section looking for the signature of erratum 843419.
3897
3898 Scans input SECTION in INPUT_BFD looking for erratum 843419
3899 signatures, for each signature found a stub_entry is created
3900 describing the location of the erratum for subsequent fixup.
3901
3902 Return TRUE on successful scan, FALSE on failure to scan.
3903 */
3904
3905 static bfd_boolean
3906 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3907 struct bfd_link_info *info)
3908 {
3909 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3910
3911 if (htab == NULL)
3912 return TRUE;
3913
3914 if (elf_section_type (section) != SHT_PROGBITS
3915 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3916 || (section->flags & SEC_EXCLUDE) != 0
3917 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3918 || (section->output_section == bfd_abs_section_ptr))
3919 return TRUE;
3920
3921 do
3922 {
3923 bfd_byte *contents = NULL;
3924 struct _aarch64_elf_section_data *sec_data;
3925 unsigned int span;
3926
3927 if (elf_section_data (section)->this_hdr.contents != NULL)
3928 contents = elf_section_data (section)->this_hdr.contents;
3929 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3930 return FALSE;
3931
3932 sec_data = elf_aarch64_section_data (section);
3933
3934 qsort (sec_data->map, sec_data->mapcount,
3935 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3936
3937 for (span = 0; span < sec_data->mapcount; span++)
3938 {
3939 unsigned int span_start = sec_data->map[span].vma;
3940 unsigned int span_end = ((span == sec_data->mapcount - 1)
3941 ? sec_data->map[0].vma + section->size
3942 : sec_data->map[span + 1].vma);
3943 unsigned int i;
3944 char span_type = sec_data->map[span].type;
3945
3946 if (span_type == 'd')
3947 continue;
3948
3949 for (i = span_start; i + 8 < span_end; i += 4)
3950 {
3951 bfd_vma vma = (section->output_section->vma
3952 + section->output_offset
3953 + i);
3954 bfd_vma veneer_i;
3955
3956 if (_bfd_aarch64_erratum_843419_p
3957 (contents, vma, i, span_end, &veneer_i))
3958 {
3959 uint32_t insn = bfd_getl32 (contents + veneer_i);
3960
3961 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3962 section, info))
3963 return FALSE;
3964 }
3965 }
3966 }
3967
3968 if (elf_section_data (section)->this_hdr.contents == NULL)
3969 free (contents);
3970 }
3971 while (0);
3972
3973 return TRUE;
3974 }
3975
3976
3977 /* Determine and set the size of the stub section for a final link.
3978
3979 The basic idea here is to examine all the relocations looking for
3980 PC-relative calls to a target that is unreachable with a "bl"
3981 instruction. */
3982
3983 bfd_boolean
3984 elfNN_aarch64_size_stubs (bfd *output_bfd,
3985 bfd *stub_bfd,
3986 struct bfd_link_info *info,
3987 bfd_signed_vma group_size,
3988 asection * (*add_stub_section) (const char *,
3989 asection *),
3990 void (*layout_sections_again) (void))
3991 {
3992 bfd_size_type stub_group_size;
3993 bfd_boolean stubs_always_before_branch;
3994 bfd_boolean stub_changed = FALSE;
3995 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3996 unsigned int num_erratum_835769_fixes = 0;
3997
3998 /* Propagate mach to stub bfd, because it may not have been
3999 finalized when we created stub_bfd. */
4000 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4001 bfd_get_mach (output_bfd));
4002
4003 /* Stash our params away. */
4004 htab->stub_bfd = stub_bfd;
4005 htab->add_stub_section = add_stub_section;
4006 htab->layout_sections_again = layout_sections_again;
4007 stubs_always_before_branch = group_size < 0;
4008 if (group_size < 0)
4009 stub_group_size = -group_size;
4010 else
4011 stub_group_size = group_size;
4012
4013 if (stub_group_size == 1)
4014 {
4015 /* Default values. */
4016 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4017 stub_group_size = 127 * 1024 * 1024;
4018 }
4019
4020 group_sections (htab, stub_group_size, stubs_always_before_branch);
4021
4022 (*htab->layout_sections_again) ();
4023
4024 if (htab->fix_erratum_835769)
4025 {
4026 bfd *input_bfd;
4027
4028 for (input_bfd = info->input_bfds;
4029 input_bfd != NULL; input_bfd = input_bfd->link.next)
4030 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4031 &num_erratum_835769_fixes))
4032 return FALSE;
4033
4034 _bfd_aarch64_resize_stubs (htab);
4035 (*htab->layout_sections_again) ();
4036 }
4037
4038 if (htab->fix_erratum_843419)
4039 {
4040 bfd *input_bfd;
4041
4042 for (input_bfd = info->input_bfds;
4043 input_bfd != NULL;
4044 input_bfd = input_bfd->link.next)
4045 {
4046 asection *section;
4047
4048 for (section = input_bfd->sections;
4049 section != NULL;
4050 section = section->next)
4051 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4052 return FALSE;
4053 }
4054
4055 _bfd_aarch64_resize_stubs (htab);
4056 (*htab->layout_sections_again) ();
4057 }
4058
4059 while (1)
4060 {
4061 bfd *input_bfd;
4062
4063 for (input_bfd = info->input_bfds;
4064 input_bfd != NULL; input_bfd = input_bfd->link.next)
4065 {
4066 Elf_Internal_Shdr *symtab_hdr;
4067 asection *section;
4068 Elf_Internal_Sym *local_syms = NULL;
4069
4070 /* We'll need the symbol table in a second. */
4071 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4072 if (symtab_hdr->sh_info == 0)
4073 continue;
4074
4075 /* Walk over each section attached to the input bfd. */
4076 for (section = input_bfd->sections;
4077 section != NULL; section = section->next)
4078 {
4079 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4080
4081 /* If there aren't any relocs, then there's nothing more
4082 to do. */
4083 if ((section->flags & SEC_RELOC) == 0
4084 || section->reloc_count == 0
4085 || (section->flags & SEC_CODE) == 0)
4086 continue;
4087
4088 /* If this section is a link-once section that will be
4089 discarded, then don't create any stubs. */
4090 if (section->output_section == NULL
4091 || section->output_section->owner != output_bfd)
4092 continue;
4093
4094 /* Get the relocs. */
4095 internal_relocs
4096 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4097 NULL, info->keep_memory);
4098 if (internal_relocs == NULL)
4099 goto error_ret_free_local;
4100
4101 /* Now examine each relocation. */
4102 irela = internal_relocs;
4103 irelaend = irela + section->reloc_count;
4104 for (; irela < irelaend; irela++)
4105 {
4106 unsigned int r_type, r_indx;
4107 enum elf_aarch64_stub_type stub_type;
4108 struct elf_aarch64_stub_hash_entry *stub_entry;
4109 asection *sym_sec;
4110 bfd_vma sym_value;
4111 bfd_vma destination;
4112 struct elf_aarch64_link_hash_entry *hash;
4113 const char *sym_name;
4114 char *stub_name;
4115 const asection *id_sec;
4116 unsigned char st_type;
4117 bfd_size_type len;
4118
4119 r_type = ELFNN_R_TYPE (irela->r_info);
4120 r_indx = ELFNN_R_SYM (irela->r_info);
4121
4122 if (r_type >= (unsigned int) R_AARCH64_end)
4123 {
4124 bfd_set_error (bfd_error_bad_value);
4125 error_ret_free_internal:
4126 if (elf_section_data (section)->relocs == NULL)
4127 free (internal_relocs);
4128 goto error_ret_free_local;
4129 }
4130
4131 /* Only look for stubs on unconditional branch and
4132 branch and link instructions. */
4133 if (r_type != (unsigned int) AARCH64_R (CALL26)
4134 && r_type != (unsigned int) AARCH64_R (JUMP26))
4135 continue;
4136
4137 /* Now determine the call target, its name, value,
4138 section. */
4139 sym_sec = NULL;
4140 sym_value = 0;
4141 destination = 0;
4142 hash = NULL;
4143 sym_name = NULL;
4144 if (r_indx < symtab_hdr->sh_info)
4145 {
4146 /* It's a local symbol. */
4147 Elf_Internal_Sym *sym;
4148 Elf_Internal_Shdr *hdr;
4149
4150 if (local_syms == NULL)
4151 {
4152 local_syms
4153 = (Elf_Internal_Sym *) symtab_hdr->contents;
4154 if (local_syms == NULL)
4155 local_syms
4156 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4157 symtab_hdr->sh_info, 0,
4158 NULL, NULL, NULL);
4159 if (local_syms == NULL)
4160 goto error_ret_free_internal;
4161 }
4162
4163 sym = local_syms + r_indx;
4164 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4165 sym_sec = hdr->bfd_section;
4166 if (!sym_sec)
4167 /* This is an undefined symbol. It can never
4168 be resolved. */
4169 continue;
4170
4171 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4172 sym_value = sym->st_value;
4173 destination = (sym_value + irela->r_addend
4174 + sym_sec->output_offset
4175 + sym_sec->output_section->vma);
4176 st_type = ELF_ST_TYPE (sym->st_info);
4177 sym_name
4178 = bfd_elf_string_from_elf_section (input_bfd,
4179 symtab_hdr->sh_link,
4180 sym->st_name);
4181 }
4182 else
4183 {
4184 int e_indx;
4185
4186 e_indx = r_indx - symtab_hdr->sh_info;
4187 hash = ((struct elf_aarch64_link_hash_entry *)
4188 elf_sym_hashes (input_bfd)[e_indx]);
4189
4190 while (hash->root.root.type == bfd_link_hash_indirect
4191 || hash->root.root.type == bfd_link_hash_warning)
4192 hash = ((struct elf_aarch64_link_hash_entry *)
4193 hash->root.root.u.i.link);
4194
4195 if (hash->root.root.type == bfd_link_hash_defined
4196 || hash->root.root.type == bfd_link_hash_defweak)
4197 {
4198 struct elf_aarch64_link_hash_table *globals =
4199 elf_aarch64_hash_table (info);
4200 sym_sec = hash->root.root.u.def.section;
4201 sym_value = hash->root.root.u.def.value;
4202 /* For a destination in a shared library,
4203 use the PLT stub as target address to
4204 decide whether a branch stub is
4205 needed. */
4206 if (globals->root.splt != NULL && hash != NULL
4207 && hash->root.plt.offset != (bfd_vma) - 1)
4208 {
4209 sym_sec = globals->root.splt;
4210 sym_value = hash->root.plt.offset;
4211 if (sym_sec->output_section != NULL)
4212 destination = (sym_value
4213 + sym_sec->output_offset
4214 +
4215 sym_sec->output_section->vma);
4216 }
4217 else if (sym_sec->output_section != NULL)
4218 destination = (sym_value + irela->r_addend
4219 + sym_sec->output_offset
4220 + sym_sec->output_section->vma);
4221 }
4222 else if (hash->root.root.type == bfd_link_hash_undefined
4223 || (hash->root.root.type
4224 == bfd_link_hash_undefweak))
4225 {
4226 /* For a shared library, use the PLT stub as
4227 target address to decide whether a long
4228 branch stub is needed.
4229 For absolute code, they cannot be handled. */
4230 struct elf_aarch64_link_hash_table *globals =
4231 elf_aarch64_hash_table (info);
4232
4233 if (globals->root.splt != NULL && hash != NULL
4234 && hash->root.plt.offset != (bfd_vma) - 1)
4235 {
4236 sym_sec = globals->root.splt;
4237 sym_value = hash->root.plt.offset;
4238 if (sym_sec->output_section != NULL)
4239 destination = (sym_value
4240 + sym_sec->output_offset
4241 +
4242 sym_sec->output_section->vma);
4243 }
4244 else
4245 continue;
4246 }
4247 else
4248 {
4249 bfd_set_error (bfd_error_bad_value);
4250 goto error_ret_free_internal;
4251 }
4252 st_type = ELF_ST_TYPE (hash->root.type);
4253 sym_name = hash->root.root.root.string;
4254 }
4255
4256 /* Determine what (if any) linker stub is needed. */
4257 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4258 st_type, destination);
4259 if (stub_type == aarch64_stub_none)
4260 continue;
4261
4262 /* Support for grouping stub sections. */
4263 id_sec = htab->stub_group[section->id].link_sec;
4264
4265 /* Get the name of this stub. */
4266 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4267 irela);
4268 if (!stub_name)
4269 goto error_ret_free_internal;
4270
4271 stub_entry =
4272 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4273 stub_name, FALSE, FALSE);
4274 if (stub_entry != NULL)
4275 {
4276 /* The proper stub has already been created. */
4277 free (stub_name);
4278 continue;
4279 }
4280
4281 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4282 (stub_name, section, htab);
4283 if (stub_entry == NULL)
4284 {
4285 free (stub_name);
4286 goto error_ret_free_internal;
4287 }
4288
4289 stub_entry->target_value = sym_value + irela->r_addend;
4290 stub_entry->target_section = sym_sec;
4291 stub_entry->stub_type = stub_type;
4292 stub_entry->h = hash;
4293 stub_entry->st_type = st_type;
4294
4295 if (sym_name == NULL)
4296 sym_name = "unnamed";
4297 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4298 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4299 if (stub_entry->output_name == NULL)
4300 {
4301 free (stub_name);
4302 goto error_ret_free_internal;
4303 }
4304
4305 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4306 sym_name);
4307
4308 stub_changed = TRUE;
4309 }
4310
4311 /* We're done with the internal relocs, free them. */
4312 if (elf_section_data (section)->relocs == NULL)
4313 free (internal_relocs);
4314 }
4315 }
4316
4317 if (!stub_changed)
4318 break;
4319
4320 _bfd_aarch64_resize_stubs (htab);
4321
4322 /* Ask the linker to do its stuff. */
4323 (*htab->layout_sections_again) ();
4324 stub_changed = FALSE;
4325 }
4326
4327 return TRUE;
4328
4329 error_ret_free_local:
4330 return FALSE;
4331 }
4332
4333 /* Build all the stubs associated with the current output file. The
4334 stubs are kept in a hash table attached to the main linker hash
4335 table. We also set up the .plt entries for statically linked PIC
4336 functions here. This function is called via aarch64_elf_finish in the
4337 linker. */
4338
4339 bfd_boolean
4340 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4341 {
4342 asection *stub_sec;
4343 struct bfd_hash_table *table;
4344 struct elf_aarch64_link_hash_table *htab;
4345
4346 htab = elf_aarch64_hash_table (info);
4347
4348 for (stub_sec = htab->stub_bfd->sections;
4349 stub_sec != NULL; stub_sec = stub_sec->next)
4350 {
4351 bfd_size_type size;
4352
4353 /* Ignore non-stub sections. */
4354 if (!strstr (stub_sec->name, STUB_SUFFIX))
4355 continue;
4356
4357 /* Allocate memory to hold the linker stubs. */
4358 size = stub_sec->size;
4359 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4360 if (stub_sec->contents == NULL && size != 0)
4361 return FALSE;
4362 stub_sec->size = 0;
4363
4364 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4365 stub_sec->size += 4;
4366 }
4367
4368 /* Build the stubs as directed by the stub hash table. */
4369 table = &htab->stub_hash_table;
4370 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4371
4372 return TRUE;
4373 }
4374
4375
4376 /* Add an entry to the code/data map for section SEC. */
4377
4378 static void
4379 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4380 {
4381 struct _aarch64_elf_section_data *sec_data =
4382 elf_aarch64_section_data (sec);
4383 unsigned int newidx;
4384
4385 if (sec_data->map == NULL)
4386 {
4387 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4388 sec_data->mapcount = 0;
4389 sec_data->mapsize = 1;
4390 }
4391
4392 newidx = sec_data->mapcount++;
4393
4394 if (sec_data->mapcount > sec_data->mapsize)
4395 {
4396 sec_data->mapsize *= 2;
4397 sec_data->map = bfd_realloc_or_free
4398 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4399 }
4400
4401 if (sec_data->map)
4402 {
4403 sec_data->map[newidx].vma = vma;
4404 sec_data->map[newidx].type = type;
4405 }
4406 }
4407
4408
4409 /* Initialise maps of insn/data for input BFDs. */
4410 void
4411 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4412 {
4413 Elf_Internal_Sym *isymbuf;
4414 Elf_Internal_Shdr *hdr;
4415 unsigned int i, localsyms;
4416
4417 /* Make sure that we are dealing with an AArch64 elf binary. */
4418 if (!is_aarch64_elf (abfd))
4419 return;
4420
4421 if ((abfd->flags & DYNAMIC) != 0)
4422 return;
4423
4424 hdr = &elf_symtab_hdr (abfd);
4425 localsyms = hdr->sh_info;
4426
4427 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4428 should contain the number of local symbols, which should come before any
4429 global symbols. Mapping symbols are always local. */
4430 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4431
4432 /* No internal symbols read? Skip this BFD. */
4433 if (isymbuf == NULL)
4434 return;
4435
4436 for (i = 0; i < localsyms; i++)
4437 {
4438 Elf_Internal_Sym *isym = &isymbuf[i];
4439 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4440 const char *name;
4441
4442 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4443 {
4444 name = bfd_elf_string_from_elf_section (abfd,
4445 hdr->sh_link,
4446 isym->st_name);
4447
4448 if (bfd_is_aarch64_special_symbol_name
4449 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4450 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4451 }
4452 }
4453 }
4454
4455 /* Set option values needed during linking. */
4456 void
4457 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4458 struct bfd_link_info *link_info,
4459 int no_enum_warn,
4460 int no_wchar_warn, int pic_veneer,
4461 int fix_erratum_835769,
4462 int fix_erratum_843419,
4463 int no_apply_dynamic_relocs)
4464 {
4465 struct elf_aarch64_link_hash_table *globals;
4466
4467 globals = elf_aarch64_hash_table (link_info);
4468 globals->pic_veneer = pic_veneer;
4469 globals->fix_erratum_835769 = fix_erratum_835769;
4470 globals->fix_erratum_843419 = fix_erratum_843419;
4471 globals->fix_erratum_843419_adr = TRUE;
4472 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4473
4474 BFD_ASSERT (is_aarch64_elf (output_bfd));
4475 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4476 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4477 }
4478
4479 static bfd_vma
4480 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4481 struct elf_aarch64_link_hash_table
4482 *globals, struct bfd_link_info *info,
4483 bfd_vma value, bfd *output_bfd,
4484 bfd_boolean *unresolved_reloc_p)
4485 {
4486 bfd_vma off = (bfd_vma) - 1;
4487 asection *basegot = globals->root.sgot;
4488 bfd_boolean dyn = globals->root.dynamic_sections_created;
4489
4490 if (h != NULL)
4491 {
4492 BFD_ASSERT (basegot != NULL);
4493 off = h->got.offset;
4494 BFD_ASSERT (off != (bfd_vma) - 1);
4495 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4496 || (bfd_link_pic (info)
4497 && SYMBOL_REFERENCES_LOCAL (info, h))
4498 || (ELF_ST_VISIBILITY (h->other)
4499 && h->root.type == bfd_link_hash_undefweak))
4500 {
4501 /* This is actually a static link, or it is a -Bsymbolic link
4502 and the symbol is defined locally. We must initialize this
4503 entry in the global offset table. Since the offset must
4504 always be a multiple of 8 (4 in the case of ILP32), we use
4505 the least significant bit to record whether we have
4506 initialized it already.
4507 When doing a dynamic link, we create a .rel(a).got relocation
4508 entry to initialize the value. This is done in the
4509 finish_dynamic_symbol routine. */
4510 if ((off & 1) != 0)
4511 off &= ~1;
4512 else
4513 {
4514 bfd_put_NN (output_bfd, value, basegot->contents + off);
4515 h->got.offset |= 1;
4516 }
4517 }
4518 else
4519 *unresolved_reloc_p = FALSE;
4520
4521 off = off + basegot->output_section->vma + basegot->output_offset;
4522 }
4523
4524 return off;
4525 }
4526
4527 /* Change R_TYPE to a more efficient access model where possible,
4528 return the new reloc type. */
4529
4530 static bfd_reloc_code_real_type
4531 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4532 struct elf_link_hash_entry *h)
4533 {
4534 bfd_boolean is_local = h == NULL;
4535
4536 switch (r_type)
4537 {
4538 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4539 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4540 return (is_local
4541 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4542 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4543
4544 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4545 return (is_local
4546 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4547 : r_type);
4548
4549 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4550 return (is_local
4551 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4552 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4553
4554 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4555 return (is_local
4556 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4557 : BFD_RELOC_AARCH64_NONE);
4558
4559 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4560 return (is_local
4561 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4562 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4563
4564 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4565 return (is_local
4566 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4567 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4568
4569 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4570 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4571 return (is_local
4572 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4573 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4574
4575 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4576 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4577
4578 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4579 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4580
4581 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4582 return r_type;
4583
4584 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4585 return (is_local
4586 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4587 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4588
4589 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4590 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4591 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4592 /* Instructions with these relocations will become NOPs. */
4593 return BFD_RELOC_AARCH64_NONE;
4594
4595 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4596 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4597 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4598 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4599
4600 #if ARCH_SIZE == 64
4601 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4602 return is_local
4603 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4604 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4605
4606 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4607 return is_local
4608 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4609 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4610 #endif
4611
4612 default:
4613 break;
4614 }
4615
4616 return r_type;
4617 }
4618
4619 static unsigned int
4620 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4621 {
4622 switch (r_type)
4623 {
4624 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4625 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4626 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4627 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4628 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4629 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4630 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4631 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4632 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4633 return GOT_NORMAL;
4634
4635 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4636 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4637 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4638 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4639 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4640 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4641 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4642 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4643 return GOT_TLS_GD;
4644
4645 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4646 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4647 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4648 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4649 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4650 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4651 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4652 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4653 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4654 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4655 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4656 return GOT_TLSDESC_GD;
4657
4658 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4659 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4660 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4661 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4662 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4663 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4664 return GOT_TLS_IE;
4665
4666 default:
4667 break;
4668 }
4669 return GOT_UNKNOWN;
4670 }
4671
4672 static bfd_boolean
4673 aarch64_can_relax_tls (bfd *input_bfd,
4674 struct bfd_link_info *info,
4675 bfd_reloc_code_real_type r_type,
4676 struct elf_link_hash_entry *h,
4677 unsigned long r_symndx)
4678 {
4679 unsigned int symbol_got_type;
4680 unsigned int reloc_got_type;
4681
4682 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4683 return FALSE;
4684
4685 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4686 reloc_got_type = aarch64_reloc_got_type (r_type);
4687
4688 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4689 return TRUE;
4690
4691 if (!bfd_link_executable (info))
4692 return FALSE;
4693
4694 if (h && h->root.type == bfd_link_hash_undefweak)
4695 return FALSE;
4696
4697 return TRUE;
4698 }
4699
4700 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4701 enumerator. */
4702
4703 static bfd_reloc_code_real_type
4704 aarch64_tls_transition (bfd *input_bfd,
4705 struct bfd_link_info *info,
4706 unsigned int r_type,
4707 struct elf_link_hash_entry *h,
4708 unsigned long r_symndx)
4709 {
4710 bfd_reloc_code_real_type bfd_r_type
4711 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4712
4713 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4714 return bfd_r_type;
4715
4716 return aarch64_tls_transition_without_check (bfd_r_type, h);
4717 }
4718
4719 /* Return the base VMA address which should be subtracted from real addresses
4720 when resolving R_AARCH64_TLS_DTPREL relocation. */
4721
4722 static bfd_vma
4723 dtpoff_base (struct bfd_link_info *info)
4724 {
4725 /* If tls_sec is NULL, we should have signalled an error already. */
4726 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4727 return elf_hash_table (info)->tls_sec->vma;
4728 }
4729
4730 /* Return the base VMA address which should be subtracted from real addresses
4731 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4732
4733 static bfd_vma
4734 tpoff_base (struct bfd_link_info *info)
4735 {
4736 struct elf_link_hash_table *htab = elf_hash_table (info);
4737
4738 /* If tls_sec is NULL, we should have signalled an error already. */
4739 BFD_ASSERT (htab->tls_sec != NULL);
4740
4741 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4742 htab->tls_sec->alignment_power);
4743 return htab->tls_sec->vma - base;
4744 }
4745
4746 static bfd_vma *
4747 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4748 unsigned long r_symndx)
4749 {
4750 /* Calculate the address of the GOT entry for symbol
4751 referred to in h. */
4752 if (h != NULL)
4753 return &h->got.offset;
4754 else
4755 {
4756 /* local symbol */
4757 struct elf_aarch64_local_symbol *l;
4758
4759 l = elf_aarch64_locals (input_bfd);
4760 return &l[r_symndx].got_offset;
4761 }
4762 }
4763
4764 static void
4765 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4766 unsigned long r_symndx)
4767 {
4768 bfd_vma *p;
4769 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4770 *p |= 1;
4771 }
4772
4773 static int
4774 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4775 unsigned long r_symndx)
4776 {
4777 bfd_vma value;
4778 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4779 return value & 1;
4780 }
4781
4782 static bfd_vma
4783 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4784 unsigned long r_symndx)
4785 {
4786 bfd_vma value;
4787 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4788 value &= ~1;
4789 return value;
4790 }
4791
4792 static bfd_vma *
4793 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4794 unsigned long r_symndx)
4795 {
4796 /* Calculate the address of the GOT entry for symbol
4797 referred to in h. */
4798 if (h != NULL)
4799 {
4800 struct elf_aarch64_link_hash_entry *eh;
4801 eh = (struct elf_aarch64_link_hash_entry *) h;
4802 return &eh->tlsdesc_got_jump_table_offset;
4803 }
4804 else
4805 {
4806 /* local symbol */
4807 struct elf_aarch64_local_symbol *l;
4808
4809 l = elf_aarch64_locals (input_bfd);
4810 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4811 }
4812 }
4813
4814 static void
4815 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4816 unsigned long r_symndx)
4817 {
4818 bfd_vma *p;
4819 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4820 *p |= 1;
4821 }
4822
4823 static int
4824 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4825 struct elf_link_hash_entry *h,
4826 unsigned long r_symndx)
4827 {
4828 bfd_vma value;
4829 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4830 return value & 1;
4831 }
4832
4833 static bfd_vma
4834 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4835 unsigned long r_symndx)
4836 {
4837 bfd_vma value;
4838 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4839 value &= ~1;
4840 return value;
4841 }
4842
4843 /* Data for make_branch_to_erratum_835769_stub(). */
4844
4845 struct erratum_835769_branch_to_stub_data
4846 {
4847 struct bfd_link_info *info;
4848 asection *output_section;
4849 bfd_byte *contents;
4850 };
4851
4852 /* Helper to insert branches to erratum 835769 stubs in the right
4853 places for a particular section. */
4854
4855 static bfd_boolean
4856 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4857 void *in_arg)
4858 {
4859 struct elf_aarch64_stub_hash_entry *stub_entry;
4860 struct erratum_835769_branch_to_stub_data *data;
4861 bfd_byte *contents;
4862 unsigned long branch_insn = 0;
4863 bfd_vma veneered_insn_loc, veneer_entry_loc;
4864 bfd_signed_vma branch_offset;
4865 unsigned int target;
4866 bfd *abfd;
4867
4868 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4869 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4870
4871 if (stub_entry->target_section != data->output_section
4872 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4873 return TRUE;
4874
4875 contents = data->contents;
4876 veneered_insn_loc = stub_entry->target_section->output_section->vma
4877 + stub_entry->target_section->output_offset
4878 + stub_entry->target_value;
4879 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4880 + stub_entry->stub_sec->output_offset
4881 + stub_entry->stub_offset;
4882 branch_offset = veneer_entry_loc - veneered_insn_loc;
4883
4884 abfd = stub_entry->target_section->owner;
4885 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4886 _bfd_error_handler
4887 (_("%B: error: Erratum 835769 stub out "
4888 "of range (input file too large)"), abfd);
4889
4890 target = stub_entry->target_value;
4891 branch_insn = 0x14000000;
4892 branch_offset >>= 2;
4893 branch_offset &= 0x3ffffff;
4894 branch_insn |= branch_offset;
4895 bfd_putl32 (branch_insn, &contents[target]);
4896
4897 return TRUE;
4898 }
4899
4900
4901 static bfd_boolean
4902 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4903 void *in_arg)
4904 {
4905 struct elf_aarch64_stub_hash_entry *stub_entry
4906 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4907 struct erratum_835769_branch_to_stub_data *data
4908 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4909 struct bfd_link_info *info;
4910 struct elf_aarch64_link_hash_table *htab;
4911 bfd_byte *contents;
4912 asection *section;
4913 bfd *abfd;
4914 bfd_vma place;
4915 uint32_t insn;
4916
4917 info = data->info;
4918 contents = data->contents;
4919 section = data->output_section;
4920
4921 htab = elf_aarch64_hash_table (info);
4922
4923 if (stub_entry->target_section != section
4924 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4925 return TRUE;
4926
4927 insn = bfd_getl32 (contents + stub_entry->target_value);
4928 bfd_putl32 (insn,
4929 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4930
4931 place = (section->output_section->vma + section->output_offset
4932 + stub_entry->adrp_offset);
4933 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4934
4935 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4936 abort ();
4937
4938 bfd_signed_vma imm =
4939 (_bfd_aarch64_sign_extend
4940 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4941 - (place & 0xfff));
4942
4943 if (htab->fix_erratum_843419_adr
4944 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4945 {
4946 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4947 | AARCH64_RT (insn));
4948 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4949 }
4950 else
4951 {
4952 bfd_vma veneered_insn_loc;
4953 bfd_vma veneer_entry_loc;
4954 bfd_signed_vma branch_offset;
4955 uint32_t branch_insn;
4956
4957 veneered_insn_loc = stub_entry->target_section->output_section->vma
4958 + stub_entry->target_section->output_offset
4959 + stub_entry->target_value;
4960 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4961 + stub_entry->stub_sec->output_offset
4962 + stub_entry->stub_offset;
4963 branch_offset = veneer_entry_loc - veneered_insn_loc;
4964
4965 abfd = stub_entry->target_section->owner;
4966 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4967 _bfd_error_handler
4968 (_("%B: error: Erratum 843419 stub out "
4969 "of range (input file too large)"), abfd);
4970
4971 branch_insn = 0x14000000;
4972 branch_offset >>= 2;
4973 branch_offset &= 0x3ffffff;
4974 branch_insn |= branch_offset;
4975 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4976 }
4977 return TRUE;
4978 }
4979
4980
4981 static bfd_boolean
4982 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4983 struct bfd_link_info *link_info,
4984 asection *sec,
4985 bfd_byte *contents)
4986
4987 {
4988 struct elf_aarch64_link_hash_table *globals =
4989 elf_aarch64_hash_table (link_info);
4990
4991 if (globals == NULL)
4992 return FALSE;
4993
4994 /* Fix code to point to erratum 835769 stubs. */
4995 if (globals->fix_erratum_835769)
4996 {
4997 struct erratum_835769_branch_to_stub_data data;
4998
4999 data.info = link_info;
5000 data.output_section = sec;
5001 data.contents = contents;
5002 bfd_hash_traverse (&globals->stub_hash_table,
5003 make_branch_to_erratum_835769_stub, &data);
5004 }
5005
5006 if (globals->fix_erratum_843419)
5007 {
5008 struct erratum_835769_branch_to_stub_data data;
5009
5010 data.info = link_info;
5011 data.output_section = sec;
5012 data.contents = contents;
5013 bfd_hash_traverse (&globals->stub_hash_table,
5014 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5015 }
5016
5017 return FALSE;
5018 }
5019
5020 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5021
5022 static bfd_boolean
5023 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5024 {
5025 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5026 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5027 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5028 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5029 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5030 }
5031
5032 /* Perform a relocation as part of a final link. The input relocation type
5033 should be TLS relaxed. */
5034
5035 static bfd_reloc_status_type
5036 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5037 bfd *input_bfd,
5038 bfd *output_bfd,
5039 asection *input_section,
5040 bfd_byte *contents,
5041 Elf_Internal_Rela *rel,
5042 bfd_vma value,
5043 struct bfd_link_info *info,
5044 asection *sym_sec,
5045 struct elf_link_hash_entry *h,
5046 bfd_boolean *unresolved_reloc_p,
5047 bfd_boolean save_addend,
5048 bfd_vma *saved_addend,
5049 Elf_Internal_Sym *sym)
5050 {
5051 Elf_Internal_Shdr *symtab_hdr;
5052 unsigned int r_type = howto->type;
5053 bfd_reloc_code_real_type bfd_r_type
5054 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5055 unsigned long r_symndx;
5056 bfd_byte *hit_data = contents + rel->r_offset;
5057 bfd_vma place, off, got_entry_addr = 0;
5058 bfd_signed_vma signed_addend;
5059 struct elf_aarch64_link_hash_table *globals;
5060 bfd_boolean weak_undef_p;
5061 bfd_boolean relative_reloc;
5062 asection *base_got;
5063 bfd_vma orig_value = value;
5064 bfd_boolean resolved_to_zero;
5065
5066 globals = elf_aarch64_hash_table (info);
5067
5068 symtab_hdr = &elf_symtab_hdr (input_bfd);
5069
5070 BFD_ASSERT (is_aarch64_elf (input_bfd));
5071
5072 r_symndx = ELFNN_R_SYM (rel->r_info);
5073
5074 place = input_section->output_section->vma
5075 + input_section->output_offset + rel->r_offset;
5076
5077 /* Get addend, accumulating the addend for consecutive relocs
5078 which refer to the same offset. */
5079 signed_addend = saved_addend ? *saved_addend : 0;
5080 signed_addend += rel->r_addend;
5081
5082 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5083 : bfd_is_und_section (sym_sec));
5084
5085 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5086 it here if it is defined in a non-shared object. */
5087 if (h != NULL
5088 && h->type == STT_GNU_IFUNC
5089 && h->def_regular)
5090 {
5091 asection *plt;
5092 const char *name;
5093 bfd_vma addend = 0;
5094
5095 if ((input_section->flags & SEC_ALLOC) == 0)
5096 {
5097 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5098 sections because such sections are not SEC_ALLOC and
5099 thus ld.so will not process them. */
5100 if ((input_section->flags & SEC_DEBUGGING) != 0)
5101 return bfd_reloc_ok;
5102
5103 if (h->root.root.string)
5104 name = h->root.root.string;
5105 else
5106 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5107 _bfd_error_handler
5108 /* xgettext:c-format */
5109 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
5110 input_bfd, input_section, rel->r_offset, howto->name, name);
5111 bfd_set_error (bfd_error_bad_value);
5112 return bfd_reloc_notsupported;
5113 }
5114 else if (h->plt.offset == (bfd_vma) -1)
5115 goto bad_ifunc_reloc;
5116
5117 /* STT_GNU_IFUNC symbol must go through PLT. */
5118 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5119 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5120
5121 switch (bfd_r_type)
5122 {
5123 default:
5124 bad_ifunc_reloc:
5125 if (h->root.root.string)
5126 name = h->root.root.string;
5127 else
5128 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5129 NULL);
5130 _bfd_error_handler
5131 /* xgettext:c-format */
5132 (_("%B: relocation %s against STT_GNU_IFUNC "
5133 "symbol `%s' isn't handled by %s"), input_bfd,
5134 howto->name, name, __FUNCTION__);
5135 bfd_set_error (bfd_error_bad_value);
5136 return bfd_reloc_notsupported;
5137
5138 case BFD_RELOC_AARCH64_NN:
5139 if (rel->r_addend != 0)
5140 {
5141 if (h->root.root.string)
5142 name = h->root.root.string;
5143 else
5144 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5145 sym, NULL);
5146 _bfd_error_handler
5147 /* xgettext:c-format */
5148 (_("%B: relocation %s against STT_GNU_IFUNC "
5149 "symbol `%s' has non-zero addend: %Ld"),
5150 input_bfd, howto->name, name, rel->r_addend);
5151 bfd_set_error (bfd_error_bad_value);
5152 return bfd_reloc_notsupported;
5153 }
5154
5155 /* Generate dynamic relocation only when there is a
5156 non-GOT reference in a shared object. */
5157 if (bfd_link_pic (info) && h->non_got_ref)
5158 {
5159 Elf_Internal_Rela outrel;
5160 asection *sreloc;
5161
5162 /* Need a dynamic relocation to get the real function
5163 address. */
5164 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5165 info,
5166 input_section,
5167 rel->r_offset);
5168 if (outrel.r_offset == (bfd_vma) -1
5169 || outrel.r_offset == (bfd_vma) -2)
5170 abort ();
5171
5172 outrel.r_offset += (input_section->output_section->vma
5173 + input_section->output_offset);
5174
5175 if (h->dynindx == -1
5176 || h->forced_local
5177 || bfd_link_executable (info))
5178 {
5179 /* This symbol is resolved locally. */
5180 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5181 outrel.r_addend = (h->root.u.def.value
5182 + h->root.u.def.section->output_section->vma
5183 + h->root.u.def.section->output_offset);
5184 }
5185 else
5186 {
5187 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5188 outrel.r_addend = 0;
5189 }
5190
5191 sreloc = globals->root.irelifunc;
5192 elf_append_rela (output_bfd, sreloc, &outrel);
5193
5194 /* If this reloc is against an external symbol, we
5195 do not want to fiddle with the addend. Otherwise,
5196 we need to include the symbol value so that it
5197 becomes an addend for the dynamic reloc. For an
5198 internal symbol, we have updated addend. */
5199 return bfd_reloc_ok;
5200 }
5201 /* FALLTHROUGH */
5202 case BFD_RELOC_AARCH64_CALL26:
5203 case BFD_RELOC_AARCH64_JUMP26:
5204 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5205 signed_addend,
5206 weak_undef_p);
5207 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5208 howto, value);
5209 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5210 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5211 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5212 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5213 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5214 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5215 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5216 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5217 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5218 base_got = globals->root.sgot;
5219 off = h->got.offset;
5220
5221 if (base_got == NULL)
5222 abort ();
5223
5224 if (off == (bfd_vma) -1)
5225 {
5226 bfd_vma plt_index;
5227
5228 /* We can't use h->got.offset here to save state, or
5229 even just remember the offset, as finish_dynamic_symbol
5230 would use that as offset into .got. */
5231
5232 if (globals->root.splt != NULL)
5233 {
5234 plt_index = ((h->plt.offset - globals->plt_header_size) /
5235 globals->plt_entry_size);
5236 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5237 base_got = globals->root.sgotplt;
5238 }
5239 else
5240 {
5241 plt_index = h->plt.offset / globals->plt_entry_size;
5242 off = plt_index * GOT_ENTRY_SIZE;
5243 base_got = globals->root.igotplt;
5244 }
5245
5246 if (h->dynindx == -1
5247 || h->forced_local
5248 || info->symbolic)
5249 {
5250 /* This references the local definition. We must
5251 initialize this entry in the global offset table.
5252 Since the offset must always be a multiple of 8,
5253 we use the least significant bit to record
5254 whether we have initialized it already.
5255
5256 When doing a dynamic link, we create a .rela.got
5257 relocation entry to initialize the value. This
5258 is done in the finish_dynamic_symbol routine. */
5259 if ((off & 1) != 0)
5260 off &= ~1;
5261 else
5262 {
5263 bfd_put_NN (output_bfd, value,
5264 base_got->contents + off);
5265 /* Note that this is harmless as -1 | 1 still is -1. */
5266 h->got.offset |= 1;
5267 }
5268 }
5269 value = (base_got->output_section->vma
5270 + base_got->output_offset + off);
5271 }
5272 else
5273 value = aarch64_calculate_got_entry_vma (h, globals, info,
5274 value, output_bfd,
5275 unresolved_reloc_p);
5276
5277 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5278 addend = (globals->root.sgot->output_section->vma
5279 + globals->root.sgot->output_offset);
5280
5281 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5282 addend, weak_undef_p);
5283 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5284 case BFD_RELOC_AARCH64_ADD_LO12:
5285 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5286 break;
5287 }
5288 }
5289
5290 resolved_to_zero = (h != NULL
5291 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5292
5293 switch (bfd_r_type)
5294 {
5295 case BFD_RELOC_AARCH64_NONE:
5296 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5297 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5298 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5299 *unresolved_reloc_p = FALSE;
5300 return bfd_reloc_ok;
5301
5302 case BFD_RELOC_AARCH64_NN:
5303
5304 /* When generating a shared object or relocatable executable, these
5305 relocations are copied into the output file to be resolved at
5306 run time. */
5307 if (((bfd_link_pic (info)
5308 || globals->root.is_relocatable_executable)
5309 && (input_section->flags & SEC_ALLOC)
5310 && (h == NULL
5311 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5312 && !resolved_to_zero)
5313 || h->root.type != bfd_link_hash_undefweak))
5314 /* Or we are creating an executable, we may need to keep relocations
5315 for symbols satisfied by a dynamic library if we manage to avoid
5316 copy relocs for the symbol. */
5317 || (ELIMINATE_COPY_RELOCS
5318 && !bfd_link_pic (info)
5319 && h != NULL
5320 && (input_section->flags & SEC_ALLOC)
5321 && h->dynindx != -1
5322 && !h->non_got_ref
5323 && ((h->def_dynamic
5324 && !h->def_regular)
5325 || h->root.type == bfd_link_hash_undefweak
5326 || h->root.type == bfd_link_hash_undefined)))
5327 {
5328 Elf_Internal_Rela outrel;
5329 bfd_byte *loc;
5330 bfd_boolean skip, relocate;
5331 asection *sreloc;
5332
5333 *unresolved_reloc_p = FALSE;
5334
5335 skip = FALSE;
5336 relocate = FALSE;
5337
5338 outrel.r_addend = signed_addend;
5339 outrel.r_offset =
5340 _bfd_elf_section_offset (output_bfd, info, input_section,
5341 rel->r_offset);
5342 if (outrel.r_offset == (bfd_vma) - 1)
5343 skip = TRUE;
5344 else if (outrel.r_offset == (bfd_vma) - 2)
5345 {
5346 skip = TRUE;
5347 relocate = TRUE;
5348 }
5349
5350 outrel.r_offset += (input_section->output_section->vma
5351 + input_section->output_offset);
5352
5353 if (skip)
5354 memset (&outrel, 0, sizeof outrel);
5355 else if (h != NULL
5356 && h->dynindx != -1
5357 && (!bfd_link_pic (info)
5358 || !(bfd_link_pie (info)
5359 || SYMBOLIC_BIND (info, h))
5360 || !h->def_regular))
5361 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5362 else
5363 {
5364 int symbol;
5365
5366 /* On SVR4-ish systems, the dynamic loader cannot
5367 relocate the text and data segments independently,
5368 so the symbol does not matter. */
5369 symbol = 0;
5370 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5371 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5372 outrel.r_addend += value;
5373 }
5374
5375 sreloc = elf_section_data (input_section)->sreloc;
5376 if (sreloc == NULL || sreloc->contents == NULL)
5377 return bfd_reloc_notsupported;
5378
5379 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5380 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5381
5382 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5383 {
5384 /* Sanity to check that we have previously allocated
5385 sufficient space in the relocation section for the
5386 number of relocations we actually want to emit. */
5387 abort ();
5388 }
5389
5390 /* If this reloc is against an external symbol, we do not want to
5391 fiddle with the addend. Otherwise, we need to include the symbol
5392 value so that it becomes an addend for the dynamic reloc. */
5393 if (!relocate)
5394 return bfd_reloc_ok;
5395
5396 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5397 contents, rel->r_offset, value,
5398 signed_addend);
5399 }
5400 else
5401 value += signed_addend;
5402 break;
5403
5404 case BFD_RELOC_AARCH64_CALL26:
5405 case BFD_RELOC_AARCH64_JUMP26:
5406 {
5407 asection *splt = globals->root.splt;
5408 bfd_boolean via_plt_p =
5409 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5410
5411 /* A call to an undefined weak symbol is converted to a jump to
5412 the next instruction unless a PLT entry will be created.
5413 The jump to the next instruction is optimized as a NOP.
5414 Do the same for local undefined symbols. */
5415 if (weak_undef_p && ! via_plt_p)
5416 {
5417 bfd_putl32 (INSN_NOP, hit_data);
5418 return bfd_reloc_ok;
5419 }
5420
5421 /* If the call goes through a PLT entry, make sure to
5422 check distance to the right destination address. */
5423 if (via_plt_p)
5424 value = (splt->output_section->vma
5425 + splt->output_offset + h->plt.offset);
5426
5427 /* Check if a stub has to be inserted because the destination
5428 is too far away. */
5429 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5430
5431 /* If the branch destination is directed to plt stub, "value" will be
5432 the final destination, otherwise we should plus signed_addend, it may
5433 contain non-zero value, for example call to local function symbol
5434 which are turned into "sec_sym + sec_off", and sec_off is kept in
5435 signed_addend. */
5436 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5437 place))
5438 /* The target is out of reach, so redirect the branch to
5439 the local stub for this function. */
5440 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5441 rel, globals);
5442 if (stub_entry != NULL)
5443 {
5444 value = (stub_entry->stub_offset
5445 + stub_entry->stub_sec->output_offset
5446 + stub_entry->stub_sec->output_section->vma);
5447
5448 /* We have redirected the destination to stub entry address,
5449 so ignore any addend record in the original rela entry. */
5450 signed_addend = 0;
5451 }
5452 }
5453 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5454 signed_addend, weak_undef_p);
5455 *unresolved_reloc_p = FALSE;
5456 break;
5457
5458 case BFD_RELOC_AARCH64_16_PCREL:
5459 case BFD_RELOC_AARCH64_32_PCREL:
5460 case BFD_RELOC_AARCH64_64_PCREL:
5461 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5462 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5463 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5464 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5465 if (bfd_link_pic (info)
5466 && (input_section->flags & SEC_ALLOC) != 0
5467 && (input_section->flags & SEC_READONLY) != 0
5468 && !SYMBOL_REFERENCES_LOCAL (info, h))
5469 {
5470 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5471
5472 _bfd_error_handler
5473 /* xgettext:c-format */
5474 (_("%B: relocation %s against symbol `%s' which may bind "
5475 "externally can not be used when making a shared object; "
5476 "recompile with -fPIC"),
5477 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5478 h->root.root.string);
5479 bfd_set_error (bfd_error_bad_value);
5480 return bfd_reloc_notsupported;
5481 }
5482 /* Fall through. */
5483
5484 case BFD_RELOC_AARCH64_16:
5485 #if ARCH_SIZE == 64
5486 case BFD_RELOC_AARCH64_32:
5487 #endif
5488 case BFD_RELOC_AARCH64_ADD_LO12:
5489 case BFD_RELOC_AARCH64_BRANCH19:
5490 case BFD_RELOC_AARCH64_LDST128_LO12:
5491 case BFD_RELOC_AARCH64_LDST16_LO12:
5492 case BFD_RELOC_AARCH64_LDST32_LO12:
5493 case BFD_RELOC_AARCH64_LDST64_LO12:
5494 case BFD_RELOC_AARCH64_LDST8_LO12:
5495 case BFD_RELOC_AARCH64_MOVW_G0:
5496 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5497 case BFD_RELOC_AARCH64_MOVW_G0_S:
5498 case BFD_RELOC_AARCH64_MOVW_G1:
5499 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5500 case BFD_RELOC_AARCH64_MOVW_G1_S:
5501 case BFD_RELOC_AARCH64_MOVW_G2:
5502 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5503 case BFD_RELOC_AARCH64_MOVW_G2_S:
5504 case BFD_RELOC_AARCH64_MOVW_G3:
5505 case BFD_RELOC_AARCH64_TSTBR14:
5506 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5507 signed_addend, weak_undef_p);
5508 break;
5509
5510 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5511 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5512 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5513 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5514 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5515 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5516 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5517 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5518 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5519 if (globals->root.sgot == NULL)
5520 BFD_ASSERT (h != NULL);
5521
5522 relative_reloc = FALSE;
5523 if (h != NULL)
5524 {
5525 bfd_vma addend = 0;
5526
5527 /* If a symbol is not dynamic and is not undefined weak, bind it
5528 locally and generate a RELATIVE relocation under PIC mode.
5529
5530 NOTE: one symbol may be referenced by several relocations, we
5531 should only generate one RELATIVE relocation for that symbol.
5532 Therefore, check GOT offset mark first. */
5533 if (h->dynindx == -1
5534 && !h->forced_local
5535 && h->root.type != bfd_link_hash_undefweak
5536 && bfd_link_pic (info)
5537 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5538 relative_reloc = TRUE;
5539
5540 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5541 output_bfd,
5542 unresolved_reloc_p);
5543 /* Record the GOT entry address which will be used when generating
5544 RELATIVE relocation. */
5545 if (relative_reloc)
5546 got_entry_addr = value;
5547
5548 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5549 addend = (globals->root.sgot->output_section->vma
5550 + globals->root.sgot->output_offset);
5551 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5552 addend, weak_undef_p);
5553 }
5554 else
5555 {
5556 bfd_vma addend = 0;
5557 struct elf_aarch64_local_symbol *locals
5558 = elf_aarch64_locals (input_bfd);
5559
5560 if (locals == NULL)
5561 {
5562 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5563 _bfd_error_handler
5564 /* xgettext:c-format */
5565 (_("%B: Local symbol descriptor table be NULL when applying "
5566 "relocation %s against local symbol"),
5567 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5568 abort ();
5569 }
5570
5571 off = symbol_got_offset (input_bfd, h, r_symndx);
5572 base_got = globals->root.sgot;
5573 got_entry_addr = (base_got->output_section->vma
5574 + base_got->output_offset + off);
5575
5576 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5577 {
5578 bfd_put_64 (output_bfd, value, base_got->contents + off);
5579
5580 /* For local symbol, we have done absolute relocation in static
5581 linking stage. While for shared library, we need to update the
5582 content of GOT entry according to the shared object's runtime
5583 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5584 for dynamic linker. */
5585 if (bfd_link_pic (info))
5586 relative_reloc = TRUE;
5587
5588 symbol_got_offset_mark (input_bfd, h, r_symndx);
5589 }
5590
5591 /* Update the relocation value to GOT entry addr as we have transformed
5592 the direct data access into indirect data access through GOT. */
5593 value = got_entry_addr;
5594
5595 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5596 addend = base_got->output_section->vma + base_got->output_offset;
5597
5598 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5599 addend, weak_undef_p);
5600 }
5601
5602 if (relative_reloc)
5603 {
5604 asection *s;
5605 Elf_Internal_Rela outrel;
5606
5607 s = globals->root.srelgot;
5608 if (s == NULL)
5609 abort ();
5610
5611 outrel.r_offset = got_entry_addr;
5612 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5613 outrel.r_addend = orig_value;
5614 elf_append_rela (output_bfd, s, &outrel);
5615 }
5616 break;
5617
5618 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5619 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5620 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5621 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5622 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5623 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5624 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5625 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5626 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5627 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5628 if (globals->root.sgot == NULL)
5629 return bfd_reloc_notsupported;
5630
5631 value = (symbol_got_offset (input_bfd, h, r_symndx)
5632 + globals->root.sgot->output_section->vma
5633 + globals->root.sgot->output_offset);
5634
5635 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5636 0, weak_undef_p);
5637 *unresolved_reloc_p = FALSE;
5638 break;
5639
5640 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5641 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5642 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5643 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5644 if (globals->root.sgot == NULL)
5645 return bfd_reloc_notsupported;
5646
5647 value = symbol_got_offset (input_bfd, h, r_symndx);
5648 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5649 0, weak_undef_p);
5650 *unresolved_reloc_p = FALSE;
5651 break;
5652
5653 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5654 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5655 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5656 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5657 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5658 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5659 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5660 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5661 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5662 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5663 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5664 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5665 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5666 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5667 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5668 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5669 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5670 signed_addend - dtpoff_base (info),
5671 weak_undef_p);
5672 break;
5673
5674 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5675 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5676 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5677 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5678 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5679 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5680 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5681 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5682 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5683 signed_addend - tpoff_base (info),
5684 weak_undef_p);
5685 *unresolved_reloc_p = FALSE;
5686 break;
5687
5688 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5689 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5690 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5691 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5692 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5693 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5694 if (globals->root.sgot == NULL)
5695 return bfd_reloc_notsupported;
5696 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5697 + globals->root.sgotplt->output_section->vma
5698 + globals->root.sgotplt->output_offset
5699 + globals->sgotplt_jump_table_size);
5700
5701 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5702 0, weak_undef_p);
5703 *unresolved_reloc_p = FALSE;
5704 break;
5705
5706 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5707 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5708 if (globals->root.sgot == NULL)
5709 return bfd_reloc_notsupported;
5710
5711 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5712 + globals->root.sgotplt->output_section->vma
5713 + globals->root.sgotplt->output_offset
5714 + globals->sgotplt_jump_table_size);
5715
5716 value -= (globals->root.sgot->output_section->vma
5717 + globals->root.sgot->output_offset);
5718
5719 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5720 0, weak_undef_p);
5721 *unresolved_reloc_p = FALSE;
5722 break;
5723
5724 default:
5725 return bfd_reloc_notsupported;
5726 }
5727
5728 if (saved_addend)
5729 *saved_addend = value;
5730
5731 /* Only apply the final relocation in a sequence. */
5732 if (save_addend)
5733 return bfd_reloc_continue;
5734
5735 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5736 howto, value);
5737 }
5738
5739 /* LP64 and ILP32 operates on x- and w-registers respectively.
5740 Next definitions take into account the difference between
5741 corresponding machine codes. R means x-register if the target
5742 arch is LP64, and w-register if the target is ILP32. */
5743
5744 #if ARCH_SIZE == 64
5745 # define add_R0_R0 (0x91000000)
5746 # define add_R0_R0_R1 (0x8b000020)
5747 # define add_R0_R1 (0x91400020)
5748 # define ldr_R0 (0x58000000)
5749 # define ldr_R0_mask(i) (i & 0xffffffe0)
5750 # define ldr_R0_x0 (0xf9400000)
5751 # define ldr_hw_R0 (0xf2a00000)
5752 # define movk_R0 (0xf2800000)
5753 # define movz_R0 (0xd2a00000)
5754 # define movz_hw_R0 (0xd2c00000)
5755 #else /*ARCH_SIZE == 32 */
5756 # define add_R0_R0 (0x11000000)
5757 # define add_R0_R0_R1 (0x0b000020)
5758 # define add_R0_R1 (0x11400020)
5759 # define ldr_R0 (0x18000000)
5760 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5761 # define ldr_R0_x0 (0xb9400000)
5762 # define ldr_hw_R0 (0x72a00000)
5763 # define movk_R0 (0x72800000)
5764 # define movz_R0 (0x52a00000)
5765 # define movz_hw_R0 (0x52c00000)
5766 #endif
5767
5768 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5769 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5770 link.
5771
5772 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5773 is to then call final_link_relocate. Return other values in the
5774 case of error. */
5775
5776 static bfd_reloc_status_type
5777 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5778 bfd *input_bfd, bfd_byte *contents,
5779 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5780 {
5781 bfd_boolean is_local = h == NULL;
5782 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5783 unsigned long insn;
5784
5785 BFD_ASSERT (globals && input_bfd && contents && rel);
5786
5787 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5788 {
5789 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5790 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5791 if (is_local)
5792 {
5793 /* GD->LE relaxation:
5794 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5795 or
5796 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5797
5798 Where R is x for LP64, and w for ILP32. */
5799 bfd_putl32 (movz_R0, contents + rel->r_offset);
5800 return bfd_reloc_continue;
5801 }
5802 else
5803 {
5804 /* GD->IE relaxation:
5805 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5806 or
5807 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5808 */
5809 return bfd_reloc_continue;
5810 }
5811
5812 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5813 BFD_ASSERT (0);
5814 break;
5815
5816 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5817 if (is_local)
5818 {
5819 /* Tiny TLSDESC->LE relaxation:
5820 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5821 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5822 .tlsdesccall var
5823 blr x1 => nop
5824
5825 Where R is x for LP64, and w for ILP32. */
5826 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5827 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5828
5829 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5830 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5831 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5832
5833 bfd_putl32 (movz_R0, contents + rel->r_offset);
5834 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
5835 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5836 return bfd_reloc_continue;
5837 }
5838 else
5839 {
5840 /* Tiny TLSDESC->IE relaxation:
5841 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5842 adr x0, :tlsdesc:var => nop
5843 .tlsdesccall var
5844 blr x1 => nop
5845 */
5846 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5847 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5848
5849 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5850 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5851
5852 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5853 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5854 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5855 return bfd_reloc_continue;
5856 }
5857
5858 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5859 if (is_local)
5860 {
5861 /* Tiny GD->LE relaxation:
5862 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5863 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
5864 nop => add R0, R0, #:tprel_lo12_nc:x
5865
5866 Where R is x for LP64, and x for Ilp32. */
5867
5868 /* First kill the tls_get_addr reloc on the bl instruction. */
5869 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5870
5871 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5872 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
5873 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
5874
5875 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5876 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5877 rel[1].r_offset = rel->r_offset + 8;
5878
5879 /* Move the current relocation to the second instruction in
5880 the sequence. */
5881 rel->r_offset += 4;
5882 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5883 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5884 return bfd_reloc_continue;
5885 }
5886 else
5887 {
5888 /* Tiny GD->IE relaxation:
5889 adr x0, :tlsgd:var => ldr R0, :gottprel:var
5890 bl __tls_get_addr => mrs x1, tpidr_el0
5891 nop => add R0, R0, R1
5892
5893 Where R is x for LP64, and w for Ilp32. */
5894
5895 /* First kill the tls_get_addr reloc on the bl instruction. */
5896 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5897 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5898
5899 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5900 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5901 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5902 return bfd_reloc_continue;
5903 }
5904
5905 #if ARCH_SIZE == 64
5906 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5907 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5908 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5909 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5910
5911 if (is_local)
5912 {
5913 /* Large GD->LE relaxation:
5914 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5915 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5916 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5917 bl __tls_get_addr => mrs x1, tpidr_el0
5918 nop => add x0, x0, x1
5919 */
5920 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5921 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5922 rel[2].r_offset = rel->r_offset + 8;
5923
5924 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
5925 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
5926 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
5927 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5928 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5929 }
5930 else
5931 {
5932 /* Large GD->IE relaxation:
5933 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5934 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5935 add x0, gp, x0 => ldr x0, [gp, x0]
5936 bl __tls_get_addr => mrs x1, tpidr_el0
5937 nop => add x0, x0, x1
5938 */
5939 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5940 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5941 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
5942 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5943 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5944 }
5945 return bfd_reloc_continue;
5946
5947 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5948 return bfd_reloc_continue;
5949 #endif
5950
5951 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5952 return bfd_reloc_continue;
5953
5954 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5955 if (is_local)
5956 {
5957 /* GD->LE relaxation:
5958 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5959
5960 Where R is x for lp64 mode, and w for ILP32 mode. */
5961 bfd_putl32 (movk_R0, contents + rel->r_offset);
5962 return bfd_reloc_continue;
5963 }
5964 else
5965 {
5966 /* GD->IE relaxation:
5967 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
5968
5969 Where R is x for lp64 mode, and w for ILP32 mode. */
5970 insn = bfd_getl32 (contents + rel->r_offset);
5971 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5972 return bfd_reloc_continue;
5973 }
5974
5975 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5976 if (is_local)
5977 {
5978 /* GD->LE relaxation
5979 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
5980 bl __tls_get_addr => mrs x1, tpidr_el0
5981 nop => add R0, R1, R0
5982
5983 Where R is x for lp64 mode, and w for ILP32 mode. */
5984
5985 /* First kill the tls_get_addr reloc on the bl instruction. */
5986 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5987 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5988
5989 bfd_putl32 (movk_R0, contents + rel->r_offset);
5990 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5991 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5992 return bfd_reloc_continue;
5993 }
5994 else
5995 {
5996 /* GD->IE relaxation
5997 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
5998 BL __tls_get_addr => mrs x1, tpidr_el0
5999 R_AARCH64_CALL26
6000 NOP => add R0, R1, R0
6001
6002 Where R is x for lp64 mode, and w for ilp32 mode. */
6003
6004 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6005
6006 /* Remove the relocation on the BL instruction. */
6007 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6008
6009 /* We choose to fixup the BL and NOP instructions using the
6010 offset from the second relocation to allow flexibility in
6011 scheduling instructions between the ADD and BL. */
6012 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6013 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6014 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6015 return bfd_reloc_continue;
6016 }
6017
6018 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6019 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6020 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6021 /* GD->IE/LE relaxation:
6022 add x0, x0, #:tlsdesc_lo12:var => nop
6023 blr xd => nop
6024 */
6025 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6026 return bfd_reloc_ok;
6027
6028 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6029 if (is_local)
6030 {
6031 /* GD->LE relaxation:
6032 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6033
6034 Where R is x for lp64 mode, and w for ILP32 mode. */
6035 bfd_putl32 (movk_R0, contents + rel->r_offset);
6036 return bfd_reloc_continue;
6037 }
6038 else
6039 {
6040 /* GD->IE relaxation:
6041 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6042
6043 Where R is x for lp64 mode, and w for ILP32 mode. */
6044 insn = bfd_getl32 (contents + rel->r_offset);
6045 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6046 return bfd_reloc_ok;
6047 }
6048
6049 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6050 /* GD->LE relaxation:
6051 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6052 GD->IE relaxation:
6053 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6054
6055 Where R is x for lp64 mode, and w for ILP32 mode. */
6056 if (is_local)
6057 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6058 return bfd_reloc_continue;
6059
6060 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6061 if (is_local)
6062 {
6063 /* GD->LE relaxation:
6064 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6065
6066 Where R is x for lp64 mode, and w for ILP32 mode. */
6067 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6068 return bfd_reloc_continue;
6069 }
6070 else
6071 {
6072 /* GD->IE relaxation:
6073 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6074
6075 Where R is x for lp64 mode, and w for ILP32 mode. */
6076 insn = bfd_getl32 (contents + rel->r_offset);
6077 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6078 return bfd_reloc_continue;
6079 }
6080
6081 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6082 /* IE->LE relaxation:
6083 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6084
6085 Where R is x for lp64 mode, and w for ILP32 mode. */
6086 if (is_local)
6087 {
6088 insn = bfd_getl32 (contents + rel->r_offset);
6089 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6090 }
6091 return bfd_reloc_continue;
6092
6093 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6094 /* IE->LE relaxation:
6095 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6096
6097 Where R is x for lp64 mode, and w for ILP32 mode. */
6098 if (is_local)
6099 {
6100 insn = bfd_getl32 (contents + rel->r_offset);
6101 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6102 }
6103 return bfd_reloc_continue;
6104
6105 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6106 /* LD->LE relaxation (tiny):
6107 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6108 bl __tls_get_addr => add R0, R0, TCB_SIZE
6109
6110 Where R is x for lp64 mode, and w for ilp32 mode. */
6111 if (is_local)
6112 {
6113 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6114 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6115 /* No need of CALL26 relocation for tls_get_addr. */
6116 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6117 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6118 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6119 contents + rel->r_offset + 4);
6120 return bfd_reloc_ok;
6121 }
6122 return bfd_reloc_continue;
6123
6124 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6125 /* LD->LE relaxation (small):
6126 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6127 */
6128 if (is_local)
6129 {
6130 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6131 return bfd_reloc_ok;
6132 }
6133 return bfd_reloc_continue;
6134
6135 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6136 /* LD->LE relaxation (small):
6137 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6138 bl __tls_get_addr => nop
6139
6140 Where R is x for lp64 mode, and w for ilp32 mode. */
6141 if (is_local)
6142 {
6143 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6144 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6145 /* No need of CALL26 relocation for tls_get_addr. */
6146 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6147 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6148 contents + rel->r_offset + 0);
6149 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6150 return bfd_reloc_ok;
6151 }
6152 return bfd_reloc_continue;
6153
6154 default:
6155 return bfd_reloc_continue;
6156 }
6157
6158 return bfd_reloc_ok;
6159 }
6160
6161 /* Relocate an AArch64 ELF section. */
6162
6163 static bfd_boolean
6164 elfNN_aarch64_relocate_section (bfd *output_bfd,
6165 struct bfd_link_info *info,
6166 bfd *input_bfd,
6167 asection *input_section,
6168 bfd_byte *contents,
6169 Elf_Internal_Rela *relocs,
6170 Elf_Internal_Sym *local_syms,
6171 asection **local_sections)
6172 {
6173 Elf_Internal_Shdr *symtab_hdr;
6174 struct elf_link_hash_entry **sym_hashes;
6175 Elf_Internal_Rela *rel;
6176 Elf_Internal_Rela *relend;
6177 const char *name;
6178 struct elf_aarch64_link_hash_table *globals;
6179 bfd_boolean save_addend = FALSE;
6180 bfd_vma addend = 0;
6181
6182 globals = elf_aarch64_hash_table (info);
6183
6184 symtab_hdr = &elf_symtab_hdr (input_bfd);
6185 sym_hashes = elf_sym_hashes (input_bfd);
6186
6187 rel = relocs;
6188 relend = relocs + input_section->reloc_count;
6189 for (; rel < relend; rel++)
6190 {
6191 unsigned int r_type;
6192 bfd_reloc_code_real_type bfd_r_type;
6193 bfd_reloc_code_real_type relaxed_bfd_r_type;
6194 reloc_howto_type *howto;
6195 unsigned long r_symndx;
6196 Elf_Internal_Sym *sym;
6197 asection *sec;
6198 struct elf_link_hash_entry *h;
6199 bfd_vma relocation;
6200 bfd_reloc_status_type r;
6201 arelent bfd_reloc;
6202 char sym_type;
6203 bfd_boolean unresolved_reloc = FALSE;
6204 char *error_message = NULL;
6205
6206 r_symndx = ELFNN_R_SYM (rel->r_info);
6207 r_type = ELFNN_R_TYPE (rel->r_info);
6208
6209 howto = bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6210
6211 if (howto == NULL)
6212 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6213
6214 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6215
6216 h = NULL;
6217 sym = NULL;
6218 sec = NULL;
6219
6220 if (r_symndx < symtab_hdr->sh_info)
6221 {
6222 sym = local_syms + r_symndx;
6223 sym_type = ELFNN_ST_TYPE (sym->st_info);
6224 sec = local_sections[r_symndx];
6225
6226 /* An object file might have a reference to a local
6227 undefined symbol. This is a daft object file, but we
6228 should at least do something about it. */
6229 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6230 && bfd_is_und_section (sec)
6231 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6232 (*info->callbacks->undefined_symbol)
6233 (info, bfd_elf_string_from_elf_section
6234 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6235 input_bfd, input_section, rel->r_offset, TRUE);
6236
6237 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6238
6239 /* Relocate against local STT_GNU_IFUNC symbol. */
6240 if (!bfd_link_relocatable (info)
6241 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6242 {
6243 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6244 rel, FALSE);
6245 if (h == NULL)
6246 abort ();
6247
6248 /* Set STT_GNU_IFUNC symbol value. */
6249 h->root.u.def.value = sym->st_value;
6250 h->root.u.def.section = sec;
6251 }
6252 }
6253 else
6254 {
6255 bfd_boolean warned, ignored;
6256
6257 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6258 r_symndx, symtab_hdr, sym_hashes,
6259 h, sec, relocation,
6260 unresolved_reloc, warned, ignored);
6261
6262 sym_type = h->type;
6263 }
6264
6265 if (sec != NULL && discarded_section (sec))
6266 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6267 rel, 1, relend, howto, 0, contents);
6268
6269 if (bfd_link_relocatable (info))
6270 continue;
6271
6272 if (h != NULL)
6273 name = h->root.root.string;
6274 else
6275 {
6276 name = (bfd_elf_string_from_elf_section
6277 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6278 if (name == NULL || *name == '\0')
6279 name = bfd_section_name (input_bfd, sec);
6280 }
6281
6282 if (r_symndx != 0
6283 && r_type != R_AARCH64_NONE
6284 && r_type != R_AARCH64_NULL
6285 && (h == NULL
6286 || h->root.type == bfd_link_hash_defined
6287 || h->root.type == bfd_link_hash_defweak)
6288 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6289 {
6290 _bfd_error_handler
6291 ((sym_type == STT_TLS
6292 /* xgettext:c-format */
6293 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
6294 /* xgettext:c-format */
6295 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
6296 input_bfd,
6297 input_section, rel->r_offset, howto->name, name);
6298 }
6299
6300 /* We relax only if we can see that there can be a valid transition
6301 from a reloc type to another.
6302 We call elfNN_aarch64_final_link_relocate unless we're completely
6303 done, i.e., the relaxation produced the final output we want. */
6304
6305 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6306 h, r_symndx);
6307 if (relaxed_bfd_r_type != bfd_r_type)
6308 {
6309 bfd_r_type = relaxed_bfd_r_type;
6310 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6311 BFD_ASSERT (howto != NULL);
6312 r_type = howto->type;
6313 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6314 unresolved_reloc = 0;
6315 }
6316 else
6317 r = bfd_reloc_continue;
6318
6319 /* There may be multiple consecutive relocations for the
6320 same offset. In that case we are supposed to treat the
6321 output of each relocation as the addend for the next. */
6322 if (rel + 1 < relend
6323 && rel->r_offset == rel[1].r_offset
6324 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6325 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6326 save_addend = TRUE;
6327 else
6328 save_addend = FALSE;
6329
6330 if (r == bfd_reloc_continue)
6331 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6332 input_section, contents, rel,
6333 relocation, info, sec,
6334 h, &unresolved_reloc,
6335 save_addend, &addend, sym);
6336
6337 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6338 {
6339 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6340 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6341 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6342 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6343 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6344 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6345 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6346 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6347 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6348 {
6349 bfd_boolean need_relocs = FALSE;
6350 bfd_byte *loc;
6351 int indx;
6352 bfd_vma off;
6353
6354 off = symbol_got_offset (input_bfd, h, r_symndx);
6355 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6356
6357 need_relocs =
6358 (!bfd_link_executable (info) || indx != 0) &&
6359 (h == NULL
6360 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6361 || h->root.type != bfd_link_hash_undefweak);
6362
6363 BFD_ASSERT (globals->root.srelgot != NULL);
6364
6365 if (need_relocs)
6366 {
6367 Elf_Internal_Rela rela;
6368 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6369 rela.r_addend = 0;
6370 rela.r_offset = globals->root.sgot->output_section->vma +
6371 globals->root.sgot->output_offset + off;
6372
6373
6374 loc = globals->root.srelgot->contents;
6375 loc += globals->root.srelgot->reloc_count++
6376 * RELOC_SIZE (htab);
6377 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6378
6379 bfd_reloc_code_real_type real_type =
6380 elfNN_aarch64_bfd_reloc_from_type (r_type);
6381
6382 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6383 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6384 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6385 {
6386 /* For local dynamic, don't generate DTPREL in any case.
6387 Initialize the DTPREL slot into zero, so we get module
6388 base address when invoke runtime TLS resolver. */
6389 bfd_put_NN (output_bfd, 0,
6390 globals->root.sgot->contents + off
6391 + GOT_ENTRY_SIZE);
6392 }
6393 else if (indx == 0)
6394 {
6395 bfd_put_NN (output_bfd,
6396 relocation - dtpoff_base (info),
6397 globals->root.sgot->contents + off
6398 + GOT_ENTRY_SIZE);
6399 }
6400 else
6401 {
6402 /* This TLS symbol is global. We emit a
6403 relocation to fixup the tls offset at load
6404 time. */
6405 rela.r_info =
6406 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6407 rela.r_addend = 0;
6408 rela.r_offset =
6409 (globals->root.sgot->output_section->vma
6410 + globals->root.sgot->output_offset + off
6411 + GOT_ENTRY_SIZE);
6412
6413 loc = globals->root.srelgot->contents;
6414 loc += globals->root.srelgot->reloc_count++
6415 * RELOC_SIZE (globals);
6416 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6417 bfd_put_NN (output_bfd, (bfd_vma) 0,
6418 globals->root.sgot->contents + off
6419 + GOT_ENTRY_SIZE);
6420 }
6421 }
6422 else
6423 {
6424 bfd_put_NN (output_bfd, (bfd_vma) 1,
6425 globals->root.sgot->contents + off);
6426 bfd_put_NN (output_bfd,
6427 relocation - dtpoff_base (info),
6428 globals->root.sgot->contents + off
6429 + GOT_ENTRY_SIZE);
6430 }
6431
6432 symbol_got_offset_mark (input_bfd, h, r_symndx);
6433 }
6434 break;
6435
6436 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6437 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6438 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6439 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6440 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6441 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6442 {
6443 bfd_boolean need_relocs = FALSE;
6444 bfd_byte *loc;
6445 int indx;
6446 bfd_vma off;
6447
6448 off = symbol_got_offset (input_bfd, h, r_symndx);
6449
6450 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6451
6452 need_relocs =
6453 (!bfd_link_executable (info) || indx != 0) &&
6454 (h == NULL
6455 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6456 || h->root.type != bfd_link_hash_undefweak);
6457
6458 BFD_ASSERT (globals->root.srelgot != NULL);
6459
6460 if (need_relocs)
6461 {
6462 Elf_Internal_Rela rela;
6463
6464 if (indx == 0)
6465 rela.r_addend = relocation - dtpoff_base (info);
6466 else
6467 rela.r_addend = 0;
6468
6469 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6470 rela.r_offset = globals->root.sgot->output_section->vma +
6471 globals->root.sgot->output_offset + off;
6472
6473 loc = globals->root.srelgot->contents;
6474 loc += globals->root.srelgot->reloc_count++
6475 * RELOC_SIZE (htab);
6476
6477 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6478
6479 bfd_put_NN (output_bfd, rela.r_addend,
6480 globals->root.sgot->contents + off);
6481 }
6482 else
6483 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6484 globals->root.sgot->contents + off);
6485
6486 symbol_got_offset_mark (input_bfd, h, r_symndx);
6487 }
6488 break;
6489
6490 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6491 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6492 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6493 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6494 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6495 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6496 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6497 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6498 {
6499 bfd_boolean need_relocs = FALSE;
6500 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6501 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6502
6503 need_relocs = (h == NULL
6504 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6505 || h->root.type != bfd_link_hash_undefweak);
6506
6507 BFD_ASSERT (globals->root.srelgot != NULL);
6508 BFD_ASSERT (globals->root.sgot != NULL);
6509
6510 if (need_relocs)
6511 {
6512 bfd_byte *loc;
6513 Elf_Internal_Rela rela;
6514 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6515
6516 rela.r_addend = 0;
6517 rela.r_offset = (globals->root.sgotplt->output_section->vma
6518 + globals->root.sgotplt->output_offset
6519 + off + globals->sgotplt_jump_table_size);
6520
6521 if (indx == 0)
6522 rela.r_addend = relocation - dtpoff_base (info);
6523
6524 /* Allocate the next available slot in the PLT reloc
6525 section to hold our R_AARCH64_TLSDESC, the next
6526 available slot is determined from reloc_count,
6527 which we step. But note, reloc_count was
6528 artifically moved down while allocating slots for
6529 real PLT relocs such that all of the PLT relocs
6530 will fit above the initial reloc_count and the
6531 extra stuff will fit below. */
6532 loc = globals->root.srelplt->contents;
6533 loc += globals->root.srelplt->reloc_count++
6534 * RELOC_SIZE (globals);
6535
6536 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6537
6538 bfd_put_NN (output_bfd, (bfd_vma) 0,
6539 globals->root.sgotplt->contents + off +
6540 globals->sgotplt_jump_table_size);
6541 bfd_put_NN (output_bfd, (bfd_vma) 0,
6542 globals->root.sgotplt->contents + off +
6543 globals->sgotplt_jump_table_size +
6544 GOT_ENTRY_SIZE);
6545 }
6546
6547 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6548 }
6549 break;
6550 default:
6551 break;
6552 }
6553
6554 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6555 because such sections are not SEC_ALLOC and thus ld.so will
6556 not process them. */
6557 if (unresolved_reloc
6558 && !((input_section->flags & SEC_DEBUGGING) != 0
6559 && h->def_dynamic)
6560 && _bfd_elf_section_offset (output_bfd, info, input_section,
6561 +rel->r_offset) != (bfd_vma) - 1)
6562 {
6563 _bfd_error_handler
6564 /* xgettext:c-format */
6565 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
6566 input_bfd, input_section, rel->r_offset, howto->name,
6567 h->root.root.string);
6568 return FALSE;
6569 }
6570
6571 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6572 {
6573 bfd_reloc_code_real_type real_r_type
6574 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6575
6576 switch (r)
6577 {
6578 case bfd_reloc_overflow:
6579 (*info->callbacks->reloc_overflow)
6580 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6581 input_bfd, input_section, rel->r_offset);
6582 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6583 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6584 {
6585 (*info->callbacks->warning)
6586 (info,
6587 _("Too many GOT entries for -fpic, "
6588 "please recompile with -fPIC"),
6589 name, input_bfd, input_section, rel->r_offset);
6590 return FALSE;
6591 }
6592 /* Overflow can occur when a variable is referenced with a type
6593 that has a larger alignment than the type with which it was
6594 declared. eg:
6595 file1.c: extern int foo; int a (void) { return foo; }
6596 file2.c: char bar, foo, baz;
6597 If the variable is placed into a data section at an offset
6598 that is incompatible with the larger alignment requirement
6599 overflow will occur. (Strictly speaking this is not overflow
6600 but rather an alignment problem, but the bfd_reloc_ error
6601 enum does not have a value to cover that situation).
6602
6603 Try to catch this situation here and provide a more helpful
6604 error message to the user. */
6605 if (addend & ((1 << howto->rightshift) - 1)
6606 /* FIXME: Are we testing all of the appropriate reloc
6607 types here ? */
6608 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6609 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6610 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6611 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6612 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6613 {
6614 info->callbacks->warning
6615 (info, _("One possible cause of this error is that the \
6616 symbol is being referenced in the indicated code as if it had a larger \
6617 alignment than was declared where it was defined."),
6618 name, input_bfd, input_section, rel->r_offset);
6619 }
6620 break;
6621
6622 case bfd_reloc_undefined:
6623 (*info->callbacks->undefined_symbol)
6624 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6625 break;
6626
6627 case bfd_reloc_outofrange:
6628 error_message = _("out of range");
6629 goto common_error;
6630
6631 case bfd_reloc_notsupported:
6632 error_message = _("unsupported relocation");
6633 goto common_error;
6634
6635 case bfd_reloc_dangerous:
6636 /* error_message should already be set. */
6637 goto common_error;
6638
6639 default:
6640 error_message = _("unknown error");
6641 /* Fall through. */
6642
6643 common_error:
6644 BFD_ASSERT (error_message != NULL);
6645 (*info->callbacks->reloc_dangerous)
6646 (info, error_message, input_bfd, input_section, rel->r_offset);
6647 break;
6648 }
6649 }
6650
6651 if (!save_addend)
6652 addend = 0;
6653 }
6654
6655 return TRUE;
6656 }
6657
6658 /* Set the right machine number. */
6659
6660 static bfd_boolean
6661 elfNN_aarch64_object_p (bfd *abfd)
6662 {
6663 #if ARCH_SIZE == 32
6664 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6665 #else
6666 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6667 #endif
6668 return TRUE;
6669 }
6670
6671 /* Function to keep AArch64 specific flags in the ELF header. */
6672
6673 static bfd_boolean
6674 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6675 {
6676 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6677 {
6678 }
6679 else
6680 {
6681 elf_elfheader (abfd)->e_flags = flags;
6682 elf_flags_init (abfd) = TRUE;
6683 }
6684
6685 return TRUE;
6686 }
6687
6688 /* Merge backend specific data from an object file to the output
6689 object file when linking. */
6690
6691 static bfd_boolean
6692 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6693 {
6694 bfd *obfd = info->output_bfd;
6695 flagword out_flags;
6696 flagword in_flags;
6697 bfd_boolean flags_compatible = TRUE;
6698 asection *sec;
6699
6700 /* Check if we have the same endianess. */
6701 if (!_bfd_generic_verify_endian_match (ibfd, info))
6702 return FALSE;
6703
6704 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6705 return TRUE;
6706
6707 /* The input BFD must have had its flags initialised. */
6708 /* The following seems bogus to me -- The flags are initialized in
6709 the assembler but I don't think an elf_flags_init field is
6710 written into the object. */
6711 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6712
6713 in_flags = elf_elfheader (ibfd)->e_flags;
6714 out_flags = elf_elfheader (obfd)->e_flags;
6715
6716 if (!elf_flags_init (obfd))
6717 {
6718 /* If the input is the default architecture and had the default
6719 flags then do not bother setting the flags for the output
6720 architecture, instead allow future merges to do this. If no
6721 future merges ever set these flags then they will retain their
6722 uninitialised values, which surprise surprise, correspond
6723 to the default values. */
6724 if (bfd_get_arch_info (ibfd)->the_default
6725 && elf_elfheader (ibfd)->e_flags == 0)
6726 return TRUE;
6727
6728 elf_flags_init (obfd) = TRUE;
6729 elf_elfheader (obfd)->e_flags = in_flags;
6730
6731 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6732 && bfd_get_arch_info (obfd)->the_default)
6733 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6734 bfd_get_mach (ibfd));
6735
6736 return TRUE;
6737 }
6738
6739 /* Identical flags must be compatible. */
6740 if (in_flags == out_flags)
6741 return TRUE;
6742
6743 /* Check to see if the input BFD actually contains any sections. If
6744 not, its flags may not have been initialised either, but it
6745 cannot actually cause any incompatiblity. Do not short-circuit
6746 dynamic objects; their section list may be emptied by
6747 elf_link_add_object_symbols.
6748
6749 Also check to see if there are no code sections in the input.
6750 In this case there is no need to check for code specific flags.
6751 XXX - do we need to worry about floating-point format compatability
6752 in data sections ? */
6753 if (!(ibfd->flags & DYNAMIC))
6754 {
6755 bfd_boolean null_input_bfd = TRUE;
6756 bfd_boolean only_data_sections = TRUE;
6757
6758 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6759 {
6760 if ((bfd_get_section_flags (ibfd, sec)
6761 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6762 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6763 only_data_sections = FALSE;
6764
6765 null_input_bfd = FALSE;
6766 break;
6767 }
6768
6769 if (null_input_bfd || only_data_sections)
6770 return TRUE;
6771 }
6772
6773 return flags_compatible;
6774 }
6775
6776 /* Display the flags field. */
6777
6778 static bfd_boolean
6779 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6780 {
6781 FILE *file = (FILE *) ptr;
6782 unsigned long flags;
6783
6784 BFD_ASSERT (abfd != NULL && ptr != NULL);
6785
6786 /* Print normal ELF private data. */
6787 _bfd_elf_print_private_bfd_data (abfd, ptr);
6788
6789 flags = elf_elfheader (abfd)->e_flags;
6790 /* Ignore init flag - it may not be set, despite the flags field
6791 containing valid data. */
6792
6793 /* xgettext:c-format */
6794 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6795
6796 if (flags)
6797 fprintf (file, _("<Unrecognised flag bits set>"));
6798
6799 fputc ('\n', file);
6800
6801 return TRUE;
6802 }
6803
6804 /* Find dynamic relocs for H that apply to read-only sections. */
6805
6806 static asection *
6807 readonly_dynrelocs (struct elf_link_hash_entry *h)
6808 {
6809 struct elf_dyn_relocs *p;
6810
6811 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
6812 {
6813 asection *s = p->sec->output_section;
6814
6815 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6816 return p->sec;
6817 }
6818 return NULL;
6819 }
6820
6821 /* Return true if we need copy relocation against EH. */
6822
6823 static bfd_boolean
6824 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
6825 {
6826 struct elf_dyn_relocs *p;
6827 asection *s;
6828
6829 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6830 {
6831 /* If there is any pc-relative reference, we need to keep copy relocation
6832 to avoid propagating the relocation into runtime that current glibc
6833 does not support. */
6834 if (p->pc_count)
6835 return TRUE;
6836
6837 s = p->sec->output_section;
6838 /* Need copy relocation if it's against read-only section. */
6839 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6840 return TRUE;
6841 }
6842
6843 return FALSE;
6844 }
6845
6846 /* Adjust a symbol defined by a dynamic object and referenced by a
6847 regular object. The current definition is in some section of the
6848 dynamic object, but we're not including those sections. We have to
6849 change the definition to something the rest of the link can
6850 understand. */
6851
6852 static bfd_boolean
6853 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6854 struct elf_link_hash_entry *h)
6855 {
6856 struct elf_aarch64_link_hash_table *htab;
6857 asection *s, *srel;
6858
6859 /* If this is a function, put it in the procedure linkage table. We
6860 will fill in the contents of the procedure linkage table later,
6861 when we know the address of the .got section. */
6862 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6863 {
6864 if (h->plt.refcount <= 0
6865 || (h->type != STT_GNU_IFUNC
6866 && (SYMBOL_CALLS_LOCAL (info, h)
6867 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6868 && h->root.type == bfd_link_hash_undefweak))))
6869 {
6870 /* This case can occur if we saw a CALL26 reloc in
6871 an input file, but the symbol wasn't referred to
6872 by a dynamic object or all references were
6873 garbage collected. In which case we can end up
6874 resolving. */
6875 h->plt.offset = (bfd_vma) - 1;
6876 h->needs_plt = 0;
6877 }
6878
6879 return TRUE;
6880 }
6881 else
6882 /* Otherwise, reset to -1. */
6883 h->plt.offset = (bfd_vma) - 1;
6884
6885
6886 /* If this is a weak symbol, and there is a real definition, the
6887 processor independent code will have arranged for us to see the
6888 real definition first, and we can just use the same value. */
6889 if (h->is_weakalias)
6890 {
6891 struct elf_link_hash_entry *def = weakdef (h);
6892 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6893 h->root.u.def.section = def->root.u.def.section;
6894 h->root.u.def.value = def->root.u.def.value;
6895 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6896 h->non_got_ref = def->non_got_ref;
6897 return TRUE;
6898 }
6899
6900 /* If we are creating a shared library, we must presume that the
6901 only references to the symbol are via the global offset table.
6902 For such cases we need not do anything here; the relocations will
6903 be handled correctly by relocate_section. */
6904 if (bfd_link_pic (info))
6905 return TRUE;
6906
6907 /* If there are no references to this symbol that do not use the
6908 GOT, we don't need to generate a copy reloc. */
6909 if (!h->non_got_ref)
6910 return TRUE;
6911
6912 /* If -z nocopyreloc was given, we won't generate them either. */
6913 if (info->nocopyreloc)
6914 {
6915 h->non_got_ref = 0;
6916 return TRUE;
6917 }
6918
6919 if (ELIMINATE_COPY_RELOCS)
6920 {
6921 struct elf_aarch64_link_hash_entry *eh;
6922 /* If we don't find any dynamic relocs in read-only sections, then
6923 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6924 eh = (struct elf_aarch64_link_hash_entry *) h;
6925 if (!need_copy_relocation_p (eh))
6926 {
6927 h->non_got_ref = 0;
6928 return TRUE;
6929 }
6930 }
6931
6932 /* We must allocate the symbol in our .dynbss section, which will
6933 become part of the .bss section of the executable. There will be
6934 an entry for this symbol in the .dynsym section. The dynamic
6935 object will contain position independent code, so all references
6936 from the dynamic object to this symbol will go through the global
6937 offset table. The dynamic linker will use the .dynsym entry to
6938 determine the address it must put in the global offset table, so
6939 both the dynamic object and the regular object will refer to the
6940 same memory location for the variable. */
6941
6942 htab = elf_aarch64_hash_table (info);
6943
6944 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6945 to copy the initial value out of the dynamic object and into the
6946 runtime process image. */
6947 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6948 {
6949 s = htab->root.sdynrelro;
6950 srel = htab->root.sreldynrelro;
6951 }
6952 else
6953 {
6954 s = htab->root.sdynbss;
6955 srel = htab->root.srelbss;
6956 }
6957 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6958 {
6959 srel->size += RELOC_SIZE (htab);
6960 h->needs_copy = 1;
6961 }
6962
6963 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6964
6965 }
6966
6967 static bfd_boolean
6968 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6969 {
6970 struct elf_aarch64_local_symbol *locals;
6971 locals = elf_aarch64_locals (abfd);
6972 if (locals == NULL)
6973 {
6974 locals = (struct elf_aarch64_local_symbol *)
6975 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6976 if (locals == NULL)
6977 return FALSE;
6978 elf_aarch64_locals (abfd) = locals;
6979 }
6980 return TRUE;
6981 }
6982
6983 /* Create the .got section to hold the global offset table. */
6984
6985 static bfd_boolean
6986 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6987 {
6988 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6989 flagword flags;
6990 asection *s;
6991 struct elf_link_hash_entry *h;
6992 struct elf_link_hash_table *htab = elf_hash_table (info);
6993
6994 /* This function may be called more than once. */
6995 if (htab->sgot != NULL)
6996 return TRUE;
6997
6998 flags = bed->dynamic_sec_flags;
6999
7000 s = bfd_make_section_anyway_with_flags (abfd,
7001 (bed->rela_plts_and_copies_p
7002 ? ".rela.got" : ".rel.got"),
7003 (bed->dynamic_sec_flags
7004 | SEC_READONLY));
7005 if (s == NULL
7006 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7007 return FALSE;
7008 htab->srelgot = s;
7009
7010 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7011 if (s == NULL
7012 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7013 return FALSE;
7014 htab->sgot = s;
7015 htab->sgot->size += GOT_ENTRY_SIZE;
7016
7017 if (bed->want_got_sym)
7018 {
7019 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7020 (or .got.plt) section. We don't do this in the linker script
7021 because we don't want to define the symbol if we are not creating
7022 a global offset table. */
7023 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7024 "_GLOBAL_OFFSET_TABLE_");
7025 elf_hash_table (info)->hgot = h;
7026 if (h == NULL)
7027 return FALSE;
7028 }
7029
7030 if (bed->want_got_plt)
7031 {
7032 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7033 if (s == NULL
7034 || !bfd_set_section_alignment (abfd, s,
7035 bed->s->log_file_align))
7036 return FALSE;
7037 htab->sgotplt = s;
7038 }
7039
7040 /* The first bit of the global offset table is the header. */
7041 s->size += bed->got_header_size;
7042
7043 return TRUE;
7044 }
7045
7046 /* Look through the relocs for a section during the first phase. */
7047
7048 static bfd_boolean
7049 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7050 asection *sec, const Elf_Internal_Rela *relocs)
7051 {
7052 Elf_Internal_Shdr *symtab_hdr;
7053 struct elf_link_hash_entry **sym_hashes;
7054 const Elf_Internal_Rela *rel;
7055 const Elf_Internal_Rela *rel_end;
7056 asection *sreloc;
7057
7058 struct elf_aarch64_link_hash_table *htab;
7059
7060 if (bfd_link_relocatable (info))
7061 return TRUE;
7062
7063 BFD_ASSERT (is_aarch64_elf (abfd));
7064
7065 htab = elf_aarch64_hash_table (info);
7066 sreloc = NULL;
7067
7068 symtab_hdr = &elf_symtab_hdr (abfd);
7069 sym_hashes = elf_sym_hashes (abfd);
7070
7071 rel_end = relocs + sec->reloc_count;
7072 for (rel = relocs; rel < rel_end; rel++)
7073 {
7074 struct elf_link_hash_entry *h;
7075 unsigned int r_symndx;
7076 unsigned int r_type;
7077 bfd_reloc_code_real_type bfd_r_type;
7078 Elf_Internal_Sym *isym;
7079
7080 r_symndx = ELFNN_R_SYM (rel->r_info);
7081 r_type = ELFNN_R_TYPE (rel->r_info);
7082
7083 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7084 {
7085 /* xgettext:c-format */
7086 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
7087 return FALSE;
7088 }
7089
7090 if (r_symndx < symtab_hdr->sh_info)
7091 {
7092 /* A local symbol. */
7093 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7094 abfd, r_symndx);
7095 if (isym == NULL)
7096 return FALSE;
7097
7098 /* Check relocation against local STT_GNU_IFUNC symbol. */
7099 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7100 {
7101 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7102 TRUE);
7103 if (h == NULL)
7104 return FALSE;
7105
7106 /* Fake a STT_GNU_IFUNC symbol. */
7107 h->type = STT_GNU_IFUNC;
7108 h->def_regular = 1;
7109 h->ref_regular = 1;
7110 h->forced_local = 1;
7111 h->root.type = bfd_link_hash_defined;
7112 }
7113 else
7114 h = NULL;
7115 }
7116 else
7117 {
7118 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7119 while (h->root.type == bfd_link_hash_indirect
7120 || h->root.type == bfd_link_hash_warning)
7121 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7122 }
7123
7124 /* Could be done earlier, if h were already available. */
7125 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7126
7127 if (h != NULL)
7128 {
7129 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7130 This shows up in particular in an R_AARCH64_PREL64 in large model
7131 when calculating the pc-relative address to .got section which is
7132 used to initialize the gp register. */
7133 if (h->root.root.string
7134 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7135 {
7136 if (htab->root.dynobj == NULL)
7137 htab->root.dynobj = abfd;
7138
7139 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7140 return FALSE;
7141
7142 BFD_ASSERT (h == htab->root.hgot);
7143 }
7144
7145 /* Create the ifunc sections for static executables. If we
7146 never see an indirect function symbol nor we are building
7147 a static executable, those sections will be empty and
7148 won't appear in output. */
7149 switch (bfd_r_type)
7150 {
7151 default:
7152 break;
7153
7154 case BFD_RELOC_AARCH64_ADD_LO12:
7155 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7156 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7157 case BFD_RELOC_AARCH64_CALL26:
7158 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7159 case BFD_RELOC_AARCH64_JUMP26:
7160 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7161 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7162 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7163 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7164 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7165 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7166 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7167 case BFD_RELOC_AARCH64_NN:
7168 if (htab->root.dynobj == NULL)
7169 htab->root.dynobj = abfd;
7170 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7171 return FALSE;
7172 break;
7173 }
7174
7175 /* It is referenced by a non-shared object. */
7176 h->ref_regular = 1;
7177 }
7178
7179 switch (bfd_r_type)
7180 {
7181 case BFD_RELOC_AARCH64_16:
7182 #if ARCH_SIZE == 64
7183 case BFD_RELOC_AARCH64_32:
7184 #endif
7185 if (bfd_link_pic (info)
7186 && (sec->flags & SEC_ALLOC) != 0
7187 && (sec->flags & SEC_READONLY) != 0)
7188 {
7189 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7190 _bfd_error_handler
7191 /* xgettext:c-format */
7192 (_("%B: relocation %s against `%s' can not be used when making "
7193 "a shared object"),
7194 abfd, elfNN_aarch64_howto_table[howto_index].name,
7195 (h) ? h->root.root.string : "a local symbol");
7196 bfd_set_error (bfd_error_bad_value);
7197 return FALSE;
7198 }
7199 else
7200 break;
7201
7202 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7203 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7204 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7205 case BFD_RELOC_AARCH64_MOVW_G3:
7206 if (bfd_link_pic (info))
7207 {
7208 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7209 _bfd_error_handler
7210 /* xgettext:c-format */
7211 (_("%B: relocation %s against `%s' can not be used when making "
7212 "a shared object; recompile with -fPIC"),
7213 abfd, elfNN_aarch64_howto_table[howto_index].name,
7214 (h) ? h->root.root.string : "a local symbol");
7215 bfd_set_error (bfd_error_bad_value);
7216 return FALSE;
7217 }
7218 /* Fall through. */
7219
7220 case BFD_RELOC_AARCH64_16_PCREL:
7221 case BFD_RELOC_AARCH64_32_PCREL:
7222 case BFD_RELOC_AARCH64_64_PCREL:
7223 case BFD_RELOC_AARCH64_ADD_LO12:
7224 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7225 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7226 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7227 case BFD_RELOC_AARCH64_LDST128_LO12:
7228 case BFD_RELOC_AARCH64_LDST16_LO12:
7229 case BFD_RELOC_AARCH64_LDST32_LO12:
7230 case BFD_RELOC_AARCH64_LDST64_LO12:
7231 case BFD_RELOC_AARCH64_LDST8_LO12:
7232 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7233 if (h == NULL || bfd_link_pic (info))
7234 break;
7235 /* Fall through. */
7236
7237 case BFD_RELOC_AARCH64_NN:
7238
7239 /* We don't need to handle relocs into sections not going into
7240 the "real" output. */
7241 if ((sec->flags & SEC_ALLOC) == 0)
7242 break;
7243
7244 if (h != NULL)
7245 {
7246 if (!bfd_link_pic (info))
7247 h->non_got_ref = 1;
7248
7249 h->plt.refcount += 1;
7250 h->pointer_equality_needed = 1;
7251 }
7252
7253 /* No need to do anything if we're not creating a shared
7254 object. */
7255 if (!(bfd_link_pic (info)
7256 /* If on the other hand, we are creating an executable, we
7257 may need to keep relocations for symbols satisfied by a
7258 dynamic library if we manage to avoid copy relocs for the
7259 symbol.
7260
7261 NOTE: Currently, there is no support of copy relocs
7262 elimination on pc-relative relocation types, because there is
7263 no dynamic relocation support for them in glibc. We still
7264 record the dynamic symbol reference for them. This is
7265 because one symbol may be referenced by both absolute
7266 relocation (for example, BFD_RELOC_AARCH64_NN) and
7267 pc-relative relocation. We need full symbol reference
7268 information to make correct decision later in
7269 elfNN_aarch64_adjust_dynamic_symbol. */
7270 || (ELIMINATE_COPY_RELOCS
7271 && !bfd_link_pic (info)
7272 && h != NULL
7273 && (h->root.type == bfd_link_hash_defweak
7274 || !h->def_regular))))
7275 break;
7276
7277 {
7278 struct elf_dyn_relocs *p;
7279 struct elf_dyn_relocs **head;
7280 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7281
7282 /* We must copy these reloc types into the output file.
7283 Create a reloc section in dynobj and make room for
7284 this reloc. */
7285 if (sreloc == NULL)
7286 {
7287 if (htab->root.dynobj == NULL)
7288 htab->root.dynobj = abfd;
7289
7290 sreloc = _bfd_elf_make_dynamic_reloc_section
7291 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7292
7293 if (sreloc == NULL)
7294 return FALSE;
7295 }
7296
7297 /* If this is a global symbol, we count the number of
7298 relocations we need for this symbol. */
7299 if (h != NULL)
7300 {
7301 struct elf_aarch64_link_hash_entry *eh;
7302 eh = (struct elf_aarch64_link_hash_entry *) h;
7303 head = &eh->dyn_relocs;
7304 }
7305 else
7306 {
7307 /* Track dynamic relocs needed for local syms too.
7308 We really need local syms available to do this
7309 easily. Oh well. */
7310
7311 asection *s;
7312 void **vpp;
7313
7314 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7315 abfd, r_symndx);
7316 if (isym == NULL)
7317 return FALSE;
7318
7319 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7320 if (s == NULL)
7321 s = sec;
7322
7323 /* Beware of type punned pointers vs strict aliasing
7324 rules. */
7325 vpp = &(elf_section_data (s)->local_dynrel);
7326 head = (struct elf_dyn_relocs **) vpp;
7327 }
7328
7329 p = *head;
7330 if (p == NULL || p->sec != sec)
7331 {
7332 bfd_size_type amt = sizeof *p;
7333 p = ((struct elf_dyn_relocs *)
7334 bfd_zalloc (htab->root.dynobj, amt));
7335 if (p == NULL)
7336 return FALSE;
7337 p->next = *head;
7338 *head = p;
7339 p->sec = sec;
7340 }
7341
7342 p->count += 1;
7343
7344 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7345 p->pc_count += 1;
7346 }
7347 break;
7348
7349 /* RR: We probably want to keep a consistency check that
7350 there are no dangling GOT_PAGE relocs. */
7351 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7352 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7353 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7354 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7355 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7356 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7357 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7358 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7359 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7360 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7361 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7362 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7363 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7364 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7365 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7366 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7367 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7368 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7369 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7370 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7371 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7372 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7373 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7374 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7375 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7376 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7377 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7378 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7379 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7380 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7381 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7382 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7383 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7384 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7385 {
7386 unsigned got_type;
7387 unsigned old_got_type;
7388
7389 got_type = aarch64_reloc_got_type (bfd_r_type);
7390
7391 if (h)
7392 {
7393 h->got.refcount += 1;
7394 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7395 }
7396 else
7397 {
7398 struct elf_aarch64_local_symbol *locals;
7399
7400 if (!elfNN_aarch64_allocate_local_symbols
7401 (abfd, symtab_hdr->sh_info))
7402 return FALSE;
7403
7404 locals = elf_aarch64_locals (abfd);
7405 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7406 locals[r_symndx].got_refcount += 1;
7407 old_got_type = locals[r_symndx].got_type;
7408 }
7409
7410 /* If a variable is accessed with both general dynamic TLS
7411 methods, two slots may be created. */
7412 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7413 got_type |= old_got_type;
7414
7415 /* We will already have issued an error message if there
7416 is a TLS/non-TLS mismatch, based on the symbol type.
7417 So just combine any TLS types needed. */
7418 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7419 && got_type != GOT_NORMAL)
7420 got_type |= old_got_type;
7421
7422 /* If the symbol is accessed by both IE and GD methods, we
7423 are able to relax. Turn off the GD flag, without
7424 messing up with any other kind of TLS types that may be
7425 involved. */
7426 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7427 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7428
7429 if (old_got_type != got_type)
7430 {
7431 if (h != NULL)
7432 elf_aarch64_hash_entry (h)->got_type = got_type;
7433 else
7434 {
7435 struct elf_aarch64_local_symbol *locals;
7436 locals = elf_aarch64_locals (abfd);
7437 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7438 locals[r_symndx].got_type = got_type;
7439 }
7440 }
7441
7442 if (htab->root.dynobj == NULL)
7443 htab->root.dynobj = abfd;
7444 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7445 return FALSE;
7446 break;
7447 }
7448
7449 case BFD_RELOC_AARCH64_CALL26:
7450 case BFD_RELOC_AARCH64_JUMP26:
7451 /* If this is a local symbol then we resolve it
7452 directly without creating a PLT entry. */
7453 if (h == NULL)
7454 continue;
7455
7456 h->needs_plt = 1;
7457 if (h->plt.refcount <= 0)
7458 h->plt.refcount = 1;
7459 else
7460 h->plt.refcount += 1;
7461 break;
7462
7463 default:
7464 break;
7465 }
7466 }
7467
7468 return TRUE;
7469 }
7470
7471 /* Treat mapping symbols as special target symbols. */
7472
7473 static bfd_boolean
7474 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7475 asymbol *sym)
7476 {
7477 return bfd_is_aarch64_special_symbol_name (sym->name,
7478 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7479 }
7480
7481 /* This is a copy of elf_find_function () from elf.c except that
7482 AArch64 mapping symbols are ignored when looking for function names. */
7483
7484 static bfd_boolean
7485 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7486 asymbol **symbols,
7487 asection *section,
7488 bfd_vma offset,
7489 const char **filename_ptr,
7490 const char **functionname_ptr)
7491 {
7492 const char *filename = NULL;
7493 asymbol *func = NULL;
7494 bfd_vma low_func = 0;
7495 asymbol **p;
7496
7497 for (p = symbols; *p != NULL; p++)
7498 {
7499 elf_symbol_type *q;
7500
7501 q = (elf_symbol_type *) * p;
7502
7503 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7504 {
7505 default:
7506 break;
7507 case STT_FILE:
7508 filename = bfd_asymbol_name (&q->symbol);
7509 break;
7510 case STT_FUNC:
7511 case STT_NOTYPE:
7512 /* Skip mapping symbols. */
7513 if ((q->symbol.flags & BSF_LOCAL)
7514 && (bfd_is_aarch64_special_symbol_name
7515 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7516 continue;
7517 /* Fall through. */
7518 if (bfd_get_section (&q->symbol) == section
7519 && q->symbol.value >= low_func && q->symbol.value <= offset)
7520 {
7521 func = (asymbol *) q;
7522 low_func = q->symbol.value;
7523 }
7524 break;
7525 }
7526 }
7527
7528 if (func == NULL)
7529 return FALSE;
7530
7531 if (filename_ptr)
7532 *filename_ptr = filename;
7533 if (functionname_ptr)
7534 *functionname_ptr = bfd_asymbol_name (func);
7535
7536 return TRUE;
7537 }
7538
7539
7540 /* Find the nearest line to a particular section and offset, for error
7541 reporting. This code is a duplicate of the code in elf.c, except
7542 that it uses aarch64_elf_find_function. */
7543
7544 static bfd_boolean
7545 elfNN_aarch64_find_nearest_line (bfd *abfd,
7546 asymbol **symbols,
7547 asection *section,
7548 bfd_vma offset,
7549 const char **filename_ptr,
7550 const char **functionname_ptr,
7551 unsigned int *line_ptr,
7552 unsigned int *discriminator_ptr)
7553 {
7554 bfd_boolean found = FALSE;
7555
7556 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7557 filename_ptr, functionname_ptr,
7558 line_ptr, discriminator_ptr,
7559 dwarf_debug_sections, 0,
7560 &elf_tdata (abfd)->dwarf2_find_line_info))
7561 {
7562 if (!*functionname_ptr)
7563 aarch64_elf_find_function (abfd, symbols, section, offset,
7564 *filename_ptr ? NULL : filename_ptr,
7565 functionname_ptr);
7566
7567 return TRUE;
7568 }
7569
7570 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7571 toolchain uses DWARF1. */
7572
7573 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7574 &found, filename_ptr,
7575 functionname_ptr, line_ptr,
7576 &elf_tdata (abfd)->line_info))
7577 return FALSE;
7578
7579 if (found && (*functionname_ptr || *line_ptr))
7580 return TRUE;
7581
7582 if (symbols == NULL)
7583 return FALSE;
7584
7585 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7586 filename_ptr, functionname_ptr))
7587 return FALSE;
7588
7589 *line_ptr = 0;
7590 return TRUE;
7591 }
7592
7593 static bfd_boolean
7594 elfNN_aarch64_find_inliner_info (bfd *abfd,
7595 const char **filename_ptr,
7596 const char **functionname_ptr,
7597 unsigned int *line_ptr)
7598 {
7599 bfd_boolean found;
7600 found = _bfd_dwarf2_find_inliner_info
7601 (abfd, filename_ptr,
7602 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7603 return found;
7604 }
7605
7606
7607 static void
7608 elfNN_aarch64_post_process_headers (bfd *abfd,
7609 struct bfd_link_info *link_info)
7610 {
7611 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7612
7613 i_ehdrp = elf_elfheader (abfd);
7614 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7615
7616 _bfd_elf_post_process_headers (abfd, link_info);
7617 }
7618
7619 static enum elf_reloc_type_class
7620 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7621 const asection *rel_sec ATTRIBUTE_UNUSED,
7622 const Elf_Internal_Rela *rela)
7623 {
7624 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7625
7626 if (htab->root.dynsym != NULL
7627 && htab->root.dynsym->contents != NULL)
7628 {
7629 /* Check relocation against STT_GNU_IFUNC symbol if there are
7630 dynamic symbols. */
7631 bfd *abfd = info->output_bfd;
7632 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7633 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7634 if (r_symndx != STN_UNDEF)
7635 {
7636 Elf_Internal_Sym sym;
7637 if (!bed->s->swap_symbol_in (abfd,
7638 (htab->root.dynsym->contents
7639 + r_symndx * bed->s->sizeof_sym),
7640 0, &sym))
7641 {
7642 /* xgettext:c-format */
7643 _bfd_error_handler (_("%B symbol number %lu references"
7644 " nonexistent SHT_SYMTAB_SHNDX section"),
7645 abfd, r_symndx);
7646 /* Ideally an error class should be returned here. */
7647 }
7648 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7649 return reloc_class_ifunc;
7650 }
7651 }
7652
7653 switch ((int) ELFNN_R_TYPE (rela->r_info))
7654 {
7655 case AARCH64_R (IRELATIVE):
7656 return reloc_class_ifunc;
7657 case AARCH64_R (RELATIVE):
7658 return reloc_class_relative;
7659 case AARCH64_R (JUMP_SLOT):
7660 return reloc_class_plt;
7661 case AARCH64_R (COPY):
7662 return reloc_class_copy;
7663 default:
7664 return reloc_class_normal;
7665 }
7666 }
7667
7668 /* Handle an AArch64 specific section when reading an object file. This is
7669 called when bfd_section_from_shdr finds a section with an unknown
7670 type. */
7671
7672 static bfd_boolean
7673 elfNN_aarch64_section_from_shdr (bfd *abfd,
7674 Elf_Internal_Shdr *hdr,
7675 const char *name, int shindex)
7676 {
7677 /* There ought to be a place to keep ELF backend specific flags, but
7678 at the moment there isn't one. We just keep track of the
7679 sections by their name, instead. Fortunately, the ABI gives
7680 names for all the AArch64 specific sections, so we will probably get
7681 away with this. */
7682 switch (hdr->sh_type)
7683 {
7684 case SHT_AARCH64_ATTRIBUTES:
7685 break;
7686
7687 default:
7688 return FALSE;
7689 }
7690
7691 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7692 return FALSE;
7693
7694 return TRUE;
7695 }
7696
7697 /* A structure used to record a list of sections, independently
7698 of the next and prev fields in the asection structure. */
7699 typedef struct section_list
7700 {
7701 asection *sec;
7702 struct section_list *next;
7703 struct section_list *prev;
7704 }
7705 section_list;
7706
7707 /* Unfortunately we need to keep a list of sections for which
7708 an _aarch64_elf_section_data structure has been allocated. This
7709 is because it is possible for functions like elfNN_aarch64_write_section
7710 to be called on a section which has had an elf_data_structure
7711 allocated for it (and so the used_by_bfd field is valid) but
7712 for which the AArch64 extended version of this structure - the
7713 _aarch64_elf_section_data structure - has not been allocated. */
7714 static section_list *sections_with_aarch64_elf_section_data = NULL;
7715
7716 static void
7717 record_section_with_aarch64_elf_section_data (asection *sec)
7718 {
7719 struct section_list *entry;
7720
7721 entry = bfd_malloc (sizeof (*entry));
7722 if (entry == NULL)
7723 return;
7724 entry->sec = sec;
7725 entry->next = sections_with_aarch64_elf_section_data;
7726 entry->prev = NULL;
7727 if (entry->next != NULL)
7728 entry->next->prev = entry;
7729 sections_with_aarch64_elf_section_data = entry;
7730 }
7731
7732 static struct section_list *
7733 find_aarch64_elf_section_entry (asection *sec)
7734 {
7735 struct section_list *entry;
7736 static struct section_list *last_entry = NULL;
7737
7738 /* This is a short cut for the typical case where the sections are added
7739 to the sections_with_aarch64_elf_section_data list in forward order and
7740 then looked up here in backwards order. This makes a real difference
7741 to the ld-srec/sec64k.exp linker test. */
7742 entry = sections_with_aarch64_elf_section_data;
7743 if (last_entry != NULL)
7744 {
7745 if (last_entry->sec == sec)
7746 entry = last_entry;
7747 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7748 entry = last_entry->next;
7749 }
7750
7751 for (; entry; entry = entry->next)
7752 if (entry->sec == sec)
7753 break;
7754
7755 if (entry)
7756 /* Record the entry prior to this one - it is the entry we are
7757 most likely to want to locate next time. Also this way if we
7758 have been called from
7759 unrecord_section_with_aarch64_elf_section_data () we will not
7760 be caching a pointer that is about to be freed. */
7761 last_entry = entry->prev;
7762
7763 return entry;
7764 }
7765
7766 static void
7767 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7768 {
7769 struct section_list *entry;
7770
7771 entry = find_aarch64_elf_section_entry (sec);
7772
7773 if (entry)
7774 {
7775 if (entry->prev != NULL)
7776 entry->prev->next = entry->next;
7777 if (entry->next != NULL)
7778 entry->next->prev = entry->prev;
7779 if (entry == sections_with_aarch64_elf_section_data)
7780 sections_with_aarch64_elf_section_data = entry->next;
7781 free (entry);
7782 }
7783 }
7784
7785
7786 typedef struct
7787 {
7788 void *finfo;
7789 struct bfd_link_info *info;
7790 asection *sec;
7791 int sec_shndx;
7792 int (*func) (void *, const char *, Elf_Internal_Sym *,
7793 asection *, struct elf_link_hash_entry *);
7794 } output_arch_syminfo;
7795
7796 enum map_symbol_type
7797 {
7798 AARCH64_MAP_INSN,
7799 AARCH64_MAP_DATA
7800 };
7801
7802
7803 /* Output a single mapping symbol. */
7804
7805 static bfd_boolean
7806 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7807 enum map_symbol_type type, bfd_vma offset)
7808 {
7809 static const char *names[2] = { "$x", "$d" };
7810 Elf_Internal_Sym sym;
7811
7812 sym.st_value = (osi->sec->output_section->vma
7813 + osi->sec->output_offset + offset);
7814 sym.st_size = 0;
7815 sym.st_other = 0;
7816 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7817 sym.st_shndx = osi->sec_shndx;
7818 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7819 }
7820
7821 /* Output a single local symbol for a generated stub. */
7822
7823 static bfd_boolean
7824 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7825 bfd_vma offset, bfd_vma size)
7826 {
7827 Elf_Internal_Sym sym;
7828
7829 sym.st_value = (osi->sec->output_section->vma
7830 + osi->sec->output_offset + offset);
7831 sym.st_size = size;
7832 sym.st_other = 0;
7833 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7834 sym.st_shndx = osi->sec_shndx;
7835 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7836 }
7837
7838 static bfd_boolean
7839 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7840 {
7841 struct elf_aarch64_stub_hash_entry *stub_entry;
7842 asection *stub_sec;
7843 bfd_vma addr;
7844 char *stub_name;
7845 output_arch_syminfo *osi;
7846
7847 /* Massage our args to the form they really have. */
7848 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7849 osi = (output_arch_syminfo *) in_arg;
7850
7851 stub_sec = stub_entry->stub_sec;
7852
7853 /* Ensure this stub is attached to the current section being
7854 processed. */
7855 if (stub_sec != osi->sec)
7856 return TRUE;
7857
7858 addr = (bfd_vma) stub_entry->stub_offset;
7859
7860 stub_name = stub_entry->output_name;
7861
7862 switch (stub_entry->stub_type)
7863 {
7864 case aarch64_stub_adrp_branch:
7865 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7866 sizeof (aarch64_adrp_branch_stub)))
7867 return FALSE;
7868 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7869 return FALSE;
7870 break;
7871 case aarch64_stub_long_branch:
7872 if (!elfNN_aarch64_output_stub_sym
7873 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7874 return FALSE;
7875 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7876 return FALSE;
7877 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7878 return FALSE;
7879 break;
7880 case aarch64_stub_erratum_835769_veneer:
7881 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7882 sizeof (aarch64_erratum_835769_stub)))
7883 return FALSE;
7884 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7885 return FALSE;
7886 break;
7887 case aarch64_stub_erratum_843419_veneer:
7888 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7889 sizeof (aarch64_erratum_843419_stub)))
7890 return FALSE;
7891 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7892 return FALSE;
7893 break;
7894
7895 default:
7896 abort ();
7897 }
7898
7899 return TRUE;
7900 }
7901
7902 /* Output mapping symbols for linker generated sections. */
7903
7904 static bfd_boolean
7905 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7906 struct bfd_link_info *info,
7907 void *finfo,
7908 int (*func) (void *, const char *,
7909 Elf_Internal_Sym *,
7910 asection *,
7911 struct elf_link_hash_entry
7912 *))
7913 {
7914 output_arch_syminfo osi;
7915 struct elf_aarch64_link_hash_table *htab;
7916
7917 htab = elf_aarch64_hash_table (info);
7918
7919 osi.finfo = finfo;
7920 osi.info = info;
7921 osi.func = func;
7922
7923 /* Long calls stubs. */
7924 if (htab->stub_bfd && htab->stub_bfd->sections)
7925 {
7926 asection *stub_sec;
7927
7928 for (stub_sec = htab->stub_bfd->sections;
7929 stub_sec != NULL; stub_sec = stub_sec->next)
7930 {
7931 /* Ignore non-stub sections. */
7932 if (!strstr (stub_sec->name, STUB_SUFFIX))
7933 continue;
7934
7935 osi.sec = stub_sec;
7936
7937 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7938 (output_bfd, osi.sec->output_section);
7939
7940 /* The first instruction in a stub is always a branch. */
7941 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7942 return FALSE;
7943
7944 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7945 &osi);
7946 }
7947 }
7948
7949 /* Finally, output mapping symbols for the PLT. */
7950 if (!htab->root.splt || htab->root.splt->size == 0)
7951 return TRUE;
7952
7953 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7954 (output_bfd, htab->root.splt->output_section);
7955 osi.sec = htab->root.splt;
7956
7957 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7958
7959 return TRUE;
7960
7961 }
7962
7963 /* Allocate target specific section data. */
7964
7965 static bfd_boolean
7966 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7967 {
7968 if (!sec->used_by_bfd)
7969 {
7970 _aarch64_elf_section_data *sdata;
7971 bfd_size_type amt = sizeof (*sdata);
7972
7973 sdata = bfd_zalloc (abfd, amt);
7974 if (sdata == NULL)
7975 return FALSE;
7976 sec->used_by_bfd = sdata;
7977 }
7978
7979 record_section_with_aarch64_elf_section_data (sec);
7980
7981 return _bfd_elf_new_section_hook (abfd, sec);
7982 }
7983
7984
7985 static void
7986 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7987 asection *sec,
7988 void *ignore ATTRIBUTE_UNUSED)
7989 {
7990 unrecord_section_with_aarch64_elf_section_data (sec);
7991 }
7992
7993 static bfd_boolean
7994 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7995 {
7996 if (abfd->sections)
7997 bfd_map_over_sections (abfd,
7998 unrecord_section_via_map_over_sections, NULL);
7999
8000 return _bfd_elf_close_and_cleanup (abfd);
8001 }
8002
8003 static bfd_boolean
8004 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8005 {
8006 if (abfd->sections)
8007 bfd_map_over_sections (abfd,
8008 unrecord_section_via_map_over_sections, NULL);
8009
8010 return _bfd_free_cached_info (abfd);
8011 }
8012
8013 /* Create dynamic sections. This is different from the ARM backend in that
8014 the got, plt, gotplt and their relocation sections are all created in the
8015 standard part of the bfd elf backend. */
8016
8017 static bfd_boolean
8018 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8019 struct bfd_link_info *info)
8020 {
8021 /* We need to create .got section. */
8022 if (!aarch64_elf_create_got_section (dynobj, info))
8023 return FALSE;
8024
8025 return _bfd_elf_create_dynamic_sections (dynobj, info);
8026 }
8027
8028
8029 /* Allocate space in .plt, .got and associated reloc sections for
8030 dynamic relocs. */
8031
8032 static bfd_boolean
8033 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8034 {
8035 struct bfd_link_info *info;
8036 struct elf_aarch64_link_hash_table *htab;
8037 struct elf_aarch64_link_hash_entry *eh;
8038 struct elf_dyn_relocs *p;
8039
8040 /* An example of a bfd_link_hash_indirect symbol is versioned
8041 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8042 -> __gxx_personality_v0(bfd_link_hash_defined)
8043
8044 There is no need to process bfd_link_hash_indirect symbols here
8045 because we will also be presented with the concrete instance of
8046 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8047 called to copy all relevant data from the generic to the concrete
8048 symbol instance. */
8049 if (h->root.type == bfd_link_hash_indirect)
8050 return TRUE;
8051
8052 if (h->root.type == bfd_link_hash_warning)
8053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8054
8055 info = (struct bfd_link_info *) inf;
8056 htab = elf_aarch64_hash_table (info);
8057
8058 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8059 here if it is defined and referenced in a non-shared object. */
8060 if (h->type == STT_GNU_IFUNC
8061 && h->def_regular)
8062 return TRUE;
8063 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8064 {
8065 /* Make sure this symbol is output as a dynamic symbol.
8066 Undefined weak syms won't yet be marked as dynamic. */
8067 if (h->dynindx == -1 && !h->forced_local
8068 && h->root.type == bfd_link_hash_undefweak)
8069 {
8070 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8071 return FALSE;
8072 }
8073
8074 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8075 {
8076 asection *s = htab->root.splt;
8077
8078 /* If this is the first .plt entry, make room for the special
8079 first entry. */
8080 if (s->size == 0)
8081 s->size += htab->plt_header_size;
8082
8083 h->plt.offset = s->size;
8084
8085 /* If this symbol is not defined in a regular file, and we are
8086 not generating a shared library, then set the symbol to this
8087 location in the .plt. This is required to make function
8088 pointers compare as equal between the normal executable and
8089 the shared library. */
8090 if (!bfd_link_pic (info) && !h->def_regular)
8091 {
8092 h->root.u.def.section = s;
8093 h->root.u.def.value = h->plt.offset;
8094 }
8095
8096 /* Make room for this entry. For now we only create the
8097 small model PLT entries. We later need to find a way
8098 of relaxing into these from the large model PLT entries. */
8099 s->size += PLT_SMALL_ENTRY_SIZE;
8100
8101 /* We also need to make an entry in the .got.plt section, which
8102 will be placed in the .got section by the linker script. */
8103 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8104
8105 /* We also need to make an entry in the .rela.plt section. */
8106 htab->root.srelplt->size += RELOC_SIZE (htab);
8107
8108 /* We need to ensure that all GOT entries that serve the PLT
8109 are consecutive with the special GOT slots [0] [1] and
8110 [2]. Any addtional relocations, such as
8111 R_AARCH64_TLSDESC, must be placed after the PLT related
8112 entries. We abuse the reloc_count such that during
8113 sizing we adjust reloc_count to indicate the number of
8114 PLT related reserved entries. In subsequent phases when
8115 filling in the contents of the reloc entries, PLT related
8116 entries are placed by computing their PLT index (0
8117 .. reloc_count). While other none PLT relocs are placed
8118 at the slot indicated by reloc_count and reloc_count is
8119 updated. */
8120
8121 htab->root.srelplt->reloc_count++;
8122 }
8123 else
8124 {
8125 h->plt.offset = (bfd_vma) - 1;
8126 h->needs_plt = 0;
8127 }
8128 }
8129 else
8130 {
8131 h->plt.offset = (bfd_vma) - 1;
8132 h->needs_plt = 0;
8133 }
8134
8135 eh = (struct elf_aarch64_link_hash_entry *) h;
8136 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8137
8138 if (h->got.refcount > 0)
8139 {
8140 bfd_boolean dyn;
8141 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8142
8143 h->got.offset = (bfd_vma) - 1;
8144
8145 dyn = htab->root.dynamic_sections_created;
8146
8147 /* Make sure this symbol is output as a dynamic symbol.
8148 Undefined weak syms won't yet be marked as dynamic. */
8149 if (dyn && h->dynindx == -1 && !h->forced_local
8150 && h->root.type == bfd_link_hash_undefweak)
8151 {
8152 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8153 return FALSE;
8154 }
8155
8156 if (got_type == GOT_UNKNOWN)
8157 {
8158 }
8159 else if (got_type == GOT_NORMAL)
8160 {
8161 h->got.offset = htab->root.sgot->size;
8162 htab->root.sgot->size += GOT_ENTRY_SIZE;
8163 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8164 || h->root.type != bfd_link_hash_undefweak)
8165 && (bfd_link_pic (info)
8166 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8167 /* Undefined weak symbol in static PIE resolves to 0 without
8168 any dynamic relocations. */
8169 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8170 {
8171 htab->root.srelgot->size += RELOC_SIZE (htab);
8172 }
8173 }
8174 else
8175 {
8176 int indx;
8177 if (got_type & GOT_TLSDESC_GD)
8178 {
8179 eh->tlsdesc_got_jump_table_offset =
8180 (htab->root.sgotplt->size
8181 - aarch64_compute_jump_table_size (htab));
8182 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8183 h->got.offset = (bfd_vma) - 2;
8184 }
8185
8186 if (got_type & GOT_TLS_GD)
8187 {
8188 h->got.offset = htab->root.sgot->size;
8189 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8190 }
8191
8192 if (got_type & GOT_TLS_IE)
8193 {
8194 h->got.offset = htab->root.sgot->size;
8195 htab->root.sgot->size += GOT_ENTRY_SIZE;
8196 }
8197
8198 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8199 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8200 || h->root.type != bfd_link_hash_undefweak)
8201 && (!bfd_link_executable (info)
8202 || indx != 0
8203 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8204 {
8205 if (got_type & GOT_TLSDESC_GD)
8206 {
8207 htab->root.srelplt->size += RELOC_SIZE (htab);
8208 /* Note reloc_count not incremented here! We have
8209 already adjusted reloc_count for this relocation
8210 type. */
8211
8212 /* TLSDESC PLT is now needed, but not yet determined. */
8213 htab->tlsdesc_plt = (bfd_vma) - 1;
8214 }
8215
8216 if (got_type & GOT_TLS_GD)
8217 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8218
8219 if (got_type & GOT_TLS_IE)
8220 htab->root.srelgot->size += RELOC_SIZE (htab);
8221 }
8222 }
8223 }
8224 else
8225 {
8226 h->got.offset = (bfd_vma) - 1;
8227 }
8228
8229 if (eh->dyn_relocs == NULL)
8230 return TRUE;
8231
8232 /* In the shared -Bsymbolic case, discard space allocated for
8233 dynamic pc-relative relocs against symbols which turn out to be
8234 defined in regular objects. For the normal shared case, discard
8235 space for pc-relative relocs that have become local due to symbol
8236 visibility changes. */
8237
8238 if (bfd_link_pic (info))
8239 {
8240 /* Relocs that use pc_count are those that appear on a call
8241 insn, or certain REL relocs that can generated via assembly.
8242 We want calls to protected symbols to resolve directly to the
8243 function rather than going via the plt. If people want
8244 function pointer comparisons to work as expected then they
8245 should avoid writing weird assembly. */
8246 if (SYMBOL_CALLS_LOCAL (info, h))
8247 {
8248 struct elf_dyn_relocs **pp;
8249
8250 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8251 {
8252 p->count -= p->pc_count;
8253 p->pc_count = 0;
8254 if (p->count == 0)
8255 *pp = p->next;
8256 else
8257 pp = &p->next;
8258 }
8259 }
8260
8261 /* Also discard relocs on undefined weak syms with non-default
8262 visibility. */
8263 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8264 {
8265 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8266 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8267 eh->dyn_relocs = NULL;
8268
8269 /* Make sure undefined weak symbols are output as a dynamic
8270 symbol in PIEs. */
8271 else if (h->dynindx == -1
8272 && !h->forced_local
8273 && h->root.type == bfd_link_hash_undefweak
8274 && !bfd_elf_link_record_dynamic_symbol (info, h))
8275 return FALSE;
8276 }
8277
8278 }
8279 else if (ELIMINATE_COPY_RELOCS)
8280 {
8281 /* For the non-shared case, discard space for relocs against
8282 symbols which turn out to need copy relocs or are not
8283 dynamic. */
8284
8285 if (!h->non_got_ref
8286 && ((h->def_dynamic
8287 && !h->def_regular)
8288 || (htab->root.dynamic_sections_created
8289 && (h->root.type == bfd_link_hash_undefweak
8290 || h->root.type == bfd_link_hash_undefined))))
8291 {
8292 /* Make sure this symbol is output as a dynamic symbol.
8293 Undefined weak syms won't yet be marked as dynamic. */
8294 if (h->dynindx == -1
8295 && !h->forced_local
8296 && h->root.type == bfd_link_hash_undefweak
8297 && !bfd_elf_link_record_dynamic_symbol (info, h))
8298 return FALSE;
8299
8300 /* If that succeeded, we know we'll be keeping all the
8301 relocs. */
8302 if (h->dynindx != -1)
8303 goto keep;
8304 }
8305
8306 eh->dyn_relocs = NULL;
8307
8308 keep:;
8309 }
8310
8311 /* Finally, allocate space. */
8312 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8313 {
8314 asection *sreloc;
8315
8316 sreloc = elf_section_data (p->sec)->sreloc;
8317
8318 BFD_ASSERT (sreloc != NULL);
8319
8320 sreloc->size += p->count * RELOC_SIZE (htab);
8321 }
8322
8323 return TRUE;
8324 }
8325
8326 /* Allocate space in .plt, .got and associated reloc sections for
8327 ifunc dynamic relocs. */
8328
8329 static bfd_boolean
8330 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8331 void *inf)
8332 {
8333 struct bfd_link_info *info;
8334 struct elf_aarch64_link_hash_table *htab;
8335 struct elf_aarch64_link_hash_entry *eh;
8336
8337 /* An example of a bfd_link_hash_indirect symbol is versioned
8338 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8339 -> __gxx_personality_v0(bfd_link_hash_defined)
8340
8341 There is no need to process bfd_link_hash_indirect symbols here
8342 because we will also be presented with the concrete instance of
8343 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8344 called to copy all relevant data from the generic to the concrete
8345 symbol instance. */
8346 if (h->root.type == bfd_link_hash_indirect)
8347 return TRUE;
8348
8349 if (h->root.type == bfd_link_hash_warning)
8350 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8351
8352 info = (struct bfd_link_info *) inf;
8353 htab = elf_aarch64_hash_table (info);
8354
8355 eh = (struct elf_aarch64_link_hash_entry *) h;
8356
8357 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8358 here if it is defined and referenced in a non-shared object. */
8359 if (h->type == STT_GNU_IFUNC
8360 && h->def_regular)
8361 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8362 &eh->dyn_relocs,
8363 NULL,
8364 htab->plt_entry_size,
8365 htab->plt_header_size,
8366 GOT_ENTRY_SIZE,
8367 FALSE);
8368 return TRUE;
8369 }
8370
8371 /* Allocate space in .plt, .got and associated reloc sections for
8372 local dynamic relocs. */
8373
8374 static bfd_boolean
8375 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8376 {
8377 struct elf_link_hash_entry *h
8378 = (struct elf_link_hash_entry *) *slot;
8379
8380 if (h->type != STT_GNU_IFUNC
8381 || !h->def_regular
8382 || !h->ref_regular
8383 || !h->forced_local
8384 || h->root.type != bfd_link_hash_defined)
8385 abort ();
8386
8387 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8388 }
8389
8390 /* Allocate space in .plt, .got and associated reloc sections for
8391 local ifunc dynamic relocs. */
8392
8393 static bfd_boolean
8394 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8395 {
8396 struct elf_link_hash_entry *h
8397 = (struct elf_link_hash_entry *) *slot;
8398
8399 if (h->type != STT_GNU_IFUNC
8400 || !h->def_regular
8401 || !h->ref_regular
8402 || !h->forced_local
8403 || h->root.type != bfd_link_hash_defined)
8404 abort ();
8405
8406 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8407 }
8408
8409 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8410 read-only sections. */
8411
8412 static bfd_boolean
8413 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8414 {
8415 asection *sec;
8416
8417 if (h->root.type == bfd_link_hash_indirect)
8418 return TRUE;
8419
8420 sec = readonly_dynrelocs (h);
8421 if (sec != NULL)
8422 {
8423 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8424
8425 info->flags |= DF_TEXTREL;
8426 info->callbacks->minfo
8427 (_("%B: dynamic relocation against `%T' in read-only section `%A'\n"),
8428 sec->owner, h->root.root.string, sec);
8429
8430 /* Not an error, just cut short the traversal. */
8431 return FALSE;
8432 }
8433 return TRUE;
8434 }
8435
8436 /* This is the most important function of all . Innocuosly named
8437 though ! */
8438
8439 static bfd_boolean
8440 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8441 struct bfd_link_info *info)
8442 {
8443 struct elf_aarch64_link_hash_table *htab;
8444 bfd *dynobj;
8445 asection *s;
8446 bfd_boolean relocs;
8447 bfd *ibfd;
8448
8449 htab = elf_aarch64_hash_table ((info));
8450 dynobj = htab->root.dynobj;
8451
8452 BFD_ASSERT (dynobj != NULL);
8453
8454 if (htab->root.dynamic_sections_created)
8455 {
8456 if (bfd_link_executable (info) && !info->nointerp)
8457 {
8458 s = bfd_get_linker_section (dynobj, ".interp");
8459 if (s == NULL)
8460 abort ();
8461 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8462 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8463 }
8464 }
8465
8466 /* Set up .got offsets for local syms, and space for local dynamic
8467 relocs. */
8468 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8469 {
8470 struct elf_aarch64_local_symbol *locals = NULL;
8471 Elf_Internal_Shdr *symtab_hdr;
8472 asection *srel;
8473 unsigned int i;
8474
8475 if (!is_aarch64_elf (ibfd))
8476 continue;
8477
8478 for (s = ibfd->sections; s != NULL; s = s->next)
8479 {
8480 struct elf_dyn_relocs *p;
8481
8482 for (p = (struct elf_dyn_relocs *)
8483 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8484 {
8485 if (!bfd_is_abs_section (p->sec)
8486 && bfd_is_abs_section (p->sec->output_section))
8487 {
8488 /* Input section has been discarded, either because
8489 it is a copy of a linkonce section or due to
8490 linker script /DISCARD/, so we'll be discarding
8491 the relocs too. */
8492 }
8493 else if (p->count != 0)
8494 {
8495 srel = elf_section_data (p->sec)->sreloc;
8496 srel->size += p->count * RELOC_SIZE (htab);
8497 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8498 info->flags |= DF_TEXTREL;
8499 }
8500 }
8501 }
8502
8503 locals = elf_aarch64_locals (ibfd);
8504 if (!locals)
8505 continue;
8506
8507 symtab_hdr = &elf_symtab_hdr (ibfd);
8508 srel = htab->root.srelgot;
8509 for (i = 0; i < symtab_hdr->sh_info; i++)
8510 {
8511 locals[i].got_offset = (bfd_vma) - 1;
8512 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8513 if (locals[i].got_refcount > 0)
8514 {
8515 unsigned got_type = locals[i].got_type;
8516 if (got_type & GOT_TLSDESC_GD)
8517 {
8518 locals[i].tlsdesc_got_jump_table_offset =
8519 (htab->root.sgotplt->size
8520 - aarch64_compute_jump_table_size (htab));
8521 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8522 locals[i].got_offset = (bfd_vma) - 2;
8523 }
8524
8525 if (got_type & GOT_TLS_GD)
8526 {
8527 locals[i].got_offset = htab->root.sgot->size;
8528 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8529 }
8530
8531 if (got_type & GOT_TLS_IE
8532 || got_type & GOT_NORMAL)
8533 {
8534 locals[i].got_offset = htab->root.sgot->size;
8535 htab->root.sgot->size += GOT_ENTRY_SIZE;
8536 }
8537
8538 if (got_type == GOT_UNKNOWN)
8539 {
8540 }
8541
8542 if (bfd_link_pic (info))
8543 {
8544 if (got_type & GOT_TLSDESC_GD)
8545 {
8546 htab->root.srelplt->size += RELOC_SIZE (htab);
8547 /* Note RELOC_COUNT not incremented here! */
8548 htab->tlsdesc_plt = (bfd_vma) - 1;
8549 }
8550
8551 if (got_type & GOT_TLS_GD)
8552 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8553
8554 if (got_type & GOT_TLS_IE
8555 || got_type & GOT_NORMAL)
8556 htab->root.srelgot->size += RELOC_SIZE (htab);
8557 }
8558 }
8559 else
8560 {
8561 locals[i].got_refcount = (bfd_vma) - 1;
8562 }
8563 }
8564 }
8565
8566
8567 /* Allocate global sym .plt and .got entries, and space for global
8568 sym dynamic relocs. */
8569 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8570 info);
8571
8572 /* Allocate global ifunc sym .plt and .got entries, and space for global
8573 ifunc sym dynamic relocs. */
8574 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8575 info);
8576
8577 /* Allocate .plt and .got entries, and space for local symbols. */
8578 htab_traverse (htab->loc_hash_table,
8579 elfNN_aarch64_allocate_local_dynrelocs,
8580 info);
8581
8582 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8583 htab_traverse (htab->loc_hash_table,
8584 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8585 info);
8586
8587 /* For every jump slot reserved in the sgotplt, reloc_count is
8588 incremented. However, when we reserve space for TLS descriptors,
8589 it's not incremented, so in order to compute the space reserved
8590 for them, it suffices to multiply the reloc count by the jump
8591 slot size. */
8592
8593 if (htab->root.srelplt)
8594 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8595
8596 if (htab->tlsdesc_plt)
8597 {
8598 if (htab->root.splt->size == 0)
8599 htab->root.splt->size += PLT_ENTRY_SIZE;
8600
8601 htab->tlsdesc_plt = htab->root.splt->size;
8602 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8603
8604 /* If we're not using lazy TLS relocations, don't generate the
8605 GOT entry required. */
8606 if (!(info->flags & DF_BIND_NOW))
8607 {
8608 htab->dt_tlsdesc_got = htab->root.sgot->size;
8609 htab->root.sgot->size += GOT_ENTRY_SIZE;
8610 }
8611 }
8612
8613 /* Init mapping symbols information to use later to distingush between
8614 code and data while scanning for errata. */
8615 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8616 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8617 {
8618 if (!is_aarch64_elf (ibfd))
8619 continue;
8620 bfd_elfNN_aarch64_init_maps (ibfd);
8621 }
8622
8623 /* We now have determined the sizes of the various dynamic sections.
8624 Allocate memory for them. */
8625 relocs = FALSE;
8626 for (s = dynobj->sections; s != NULL; s = s->next)
8627 {
8628 if ((s->flags & SEC_LINKER_CREATED) == 0)
8629 continue;
8630
8631 if (s == htab->root.splt
8632 || s == htab->root.sgot
8633 || s == htab->root.sgotplt
8634 || s == htab->root.iplt
8635 || s == htab->root.igotplt
8636 || s == htab->root.sdynbss
8637 || s == htab->root.sdynrelro)
8638 {
8639 /* Strip this section if we don't need it; see the
8640 comment below. */
8641 }
8642 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8643 {
8644 if (s->size != 0 && s != htab->root.srelplt)
8645 relocs = TRUE;
8646
8647 /* We use the reloc_count field as a counter if we need
8648 to copy relocs into the output file. */
8649 if (s != htab->root.srelplt)
8650 s->reloc_count = 0;
8651 }
8652 else
8653 {
8654 /* It's not one of our sections, so don't allocate space. */
8655 continue;
8656 }
8657
8658 if (s->size == 0)
8659 {
8660 /* If we don't need this section, strip it from the
8661 output file. This is mostly to handle .rela.bss and
8662 .rela.plt. We must create both sections in
8663 create_dynamic_sections, because they must be created
8664 before the linker maps input sections to output
8665 sections. The linker does that before
8666 adjust_dynamic_symbol is called, and it is that
8667 function which decides whether anything needs to go
8668 into these sections. */
8669 s->flags |= SEC_EXCLUDE;
8670 continue;
8671 }
8672
8673 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8674 continue;
8675
8676 /* Allocate memory for the section contents. We use bfd_zalloc
8677 here in case unused entries are not reclaimed before the
8678 section's contents are written out. This should not happen,
8679 but this way if it does, we get a R_AARCH64_NONE reloc instead
8680 of garbage. */
8681 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8682 if (s->contents == NULL)
8683 return FALSE;
8684 }
8685
8686 if (htab->root.dynamic_sections_created)
8687 {
8688 /* Add some entries to the .dynamic section. We fill in the
8689 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8690 must add the entries now so that we get the correct size for
8691 the .dynamic section. The DT_DEBUG entry is filled in by the
8692 dynamic linker and used by the debugger. */
8693 #define add_dynamic_entry(TAG, VAL) \
8694 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8695
8696 if (bfd_link_executable (info))
8697 {
8698 if (!add_dynamic_entry (DT_DEBUG, 0))
8699 return FALSE;
8700 }
8701
8702 if (htab->root.splt->size != 0)
8703 {
8704 if (!add_dynamic_entry (DT_PLTGOT, 0)
8705 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8706 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8707 || !add_dynamic_entry (DT_JMPREL, 0))
8708 return FALSE;
8709
8710 if (htab->tlsdesc_plt
8711 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8712 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8713 return FALSE;
8714 }
8715
8716 if (relocs)
8717 {
8718 if (!add_dynamic_entry (DT_RELA, 0)
8719 || !add_dynamic_entry (DT_RELASZ, 0)
8720 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8721 return FALSE;
8722
8723 /* If any dynamic relocs apply to a read-only section,
8724 then we need a DT_TEXTREL entry. */
8725 if ((info->flags & DF_TEXTREL) == 0)
8726 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
8727
8728 if ((info->flags & DF_TEXTREL) != 0)
8729 {
8730 if (!add_dynamic_entry (DT_TEXTREL, 0))
8731 return FALSE;
8732 }
8733 }
8734 }
8735 #undef add_dynamic_entry
8736
8737 return TRUE;
8738 }
8739
8740 static inline void
8741 elf_aarch64_update_plt_entry (bfd *output_bfd,
8742 bfd_reloc_code_real_type r_type,
8743 bfd_byte *plt_entry, bfd_vma value)
8744 {
8745 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8746
8747 /* FIXME: We should check the return value from this function call. */
8748 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8749 }
8750
8751 static void
8752 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8753 struct elf_aarch64_link_hash_table
8754 *htab, bfd *output_bfd,
8755 struct bfd_link_info *info)
8756 {
8757 bfd_byte *plt_entry;
8758 bfd_vma plt_index;
8759 bfd_vma got_offset;
8760 bfd_vma gotplt_entry_address;
8761 bfd_vma plt_entry_address;
8762 Elf_Internal_Rela rela;
8763 bfd_byte *loc;
8764 asection *plt, *gotplt, *relplt;
8765
8766 /* When building a static executable, use .iplt, .igot.plt and
8767 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8768 if (htab->root.splt != NULL)
8769 {
8770 plt = htab->root.splt;
8771 gotplt = htab->root.sgotplt;
8772 relplt = htab->root.srelplt;
8773 }
8774 else
8775 {
8776 plt = htab->root.iplt;
8777 gotplt = htab->root.igotplt;
8778 relplt = htab->root.irelplt;
8779 }
8780
8781 /* Get the index in the procedure linkage table which
8782 corresponds to this symbol. This is the index of this symbol
8783 in all the symbols for which we are making plt entries. The
8784 first entry in the procedure linkage table is reserved.
8785
8786 Get the offset into the .got table of the entry that
8787 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8788 bytes. The first three are reserved for the dynamic linker.
8789
8790 For static executables, we don't reserve anything. */
8791
8792 if (plt == htab->root.splt)
8793 {
8794 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8795 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8796 }
8797 else
8798 {
8799 plt_index = h->plt.offset / htab->plt_entry_size;
8800 got_offset = plt_index * GOT_ENTRY_SIZE;
8801 }
8802
8803 plt_entry = plt->contents + h->plt.offset;
8804 plt_entry_address = plt->output_section->vma
8805 + plt->output_offset + h->plt.offset;
8806 gotplt_entry_address = gotplt->output_section->vma +
8807 gotplt->output_offset + got_offset;
8808
8809 /* Copy in the boiler-plate for the PLTn entry. */
8810 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8811
8812 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8813 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8814 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8815 plt_entry,
8816 PG (gotplt_entry_address) -
8817 PG (plt_entry_address));
8818
8819 /* Fill in the lo12 bits for the load from the pltgot. */
8820 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8821 plt_entry + 4,
8822 PG_OFFSET (gotplt_entry_address));
8823
8824 /* Fill in the lo12 bits for the add from the pltgot entry. */
8825 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8826 plt_entry + 8,
8827 PG_OFFSET (gotplt_entry_address));
8828
8829 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8830 bfd_put_NN (output_bfd,
8831 plt->output_section->vma + plt->output_offset,
8832 gotplt->contents + got_offset);
8833
8834 rela.r_offset = gotplt_entry_address;
8835
8836 if (h->dynindx == -1
8837 || ((bfd_link_executable (info)
8838 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8839 && h->def_regular
8840 && h->type == STT_GNU_IFUNC))
8841 {
8842 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8843 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8844 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8845 rela.r_addend = (h->root.u.def.value
8846 + h->root.u.def.section->output_section->vma
8847 + h->root.u.def.section->output_offset);
8848 }
8849 else
8850 {
8851 /* Fill in the entry in the .rela.plt section. */
8852 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8853 rela.r_addend = 0;
8854 }
8855
8856 /* Compute the relocation entry to used based on PLT index and do
8857 not adjust reloc_count. The reloc_count has already been adjusted
8858 to account for this entry. */
8859 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8860 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8861 }
8862
8863 /* Size sections even though they're not dynamic. We use it to setup
8864 _TLS_MODULE_BASE_, if needed. */
8865
8866 static bfd_boolean
8867 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8868 struct bfd_link_info *info)
8869 {
8870 asection *tls_sec;
8871
8872 if (bfd_link_relocatable (info))
8873 return TRUE;
8874
8875 tls_sec = elf_hash_table (info)->tls_sec;
8876
8877 if (tls_sec)
8878 {
8879 struct elf_link_hash_entry *tlsbase;
8880
8881 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8882 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8883
8884 if (tlsbase)
8885 {
8886 struct bfd_link_hash_entry *h = NULL;
8887 const struct elf_backend_data *bed =
8888 get_elf_backend_data (output_bfd);
8889
8890 if (!(_bfd_generic_link_add_one_symbol
8891 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8892 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8893 return FALSE;
8894
8895 tlsbase->type = STT_TLS;
8896 tlsbase = (struct elf_link_hash_entry *) h;
8897 tlsbase->def_regular = 1;
8898 tlsbase->other = STV_HIDDEN;
8899 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8900 }
8901 }
8902
8903 return TRUE;
8904 }
8905
8906 /* Finish up dynamic symbol handling. We set the contents of various
8907 dynamic sections here. */
8908
8909 static bfd_boolean
8910 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8911 struct bfd_link_info *info,
8912 struct elf_link_hash_entry *h,
8913 Elf_Internal_Sym *sym)
8914 {
8915 struct elf_aarch64_link_hash_table *htab;
8916 htab = elf_aarch64_hash_table (info);
8917
8918 if (h->plt.offset != (bfd_vma) - 1)
8919 {
8920 asection *plt, *gotplt, *relplt;
8921
8922 /* This symbol has an entry in the procedure linkage table. Set
8923 it up. */
8924
8925 /* When building a static executable, use .iplt, .igot.plt and
8926 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8927 if (htab->root.splt != NULL)
8928 {
8929 plt = htab->root.splt;
8930 gotplt = htab->root.sgotplt;
8931 relplt = htab->root.srelplt;
8932 }
8933 else
8934 {
8935 plt = htab->root.iplt;
8936 gotplt = htab->root.igotplt;
8937 relplt = htab->root.irelplt;
8938 }
8939
8940 /* This symbol has an entry in the procedure linkage table. Set
8941 it up. */
8942 if ((h->dynindx == -1
8943 && !((h->forced_local || bfd_link_executable (info))
8944 && h->def_regular
8945 && h->type == STT_GNU_IFUNC))
8946 || plt == NULL
8947 || gotplt == NULL
8948 || relplt == NULL)
8949 return FALSE;
8950
8951 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8952 if (!h->def_regular)
8953 {
8954 /* Mark the symbol as undefined, rather than as defined in
8955 the .plt section. */
8956 sym->st_shndx = SHN_UNDEF;
8957 /* If the symbol is weak we need to clear the value.
8958 Otherwise, the PLT entry would provide a definition for
8959 the symbol even if the symbol wasn't defined anywhere,
8960 and so the symbol would never be NULL. Leave the value if
8961 there were any relocations where pointer equality matters
8962 (this is a clue for the dynamic linker, to make function
8963 pointer comparisons work between an application and shared
8964 library). */
8965 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8966 sym->st_value = 0;
8967 }
8968 }
8969
8970 if (h->got.offset != (bfd_vma) - 1
8971 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
8972 /* Undefined weak symbol in static PIE resolves to 0 without
8973 any dynamic relocations. */
8974 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8975 {
8976 Elf_Internal_Rela rela;
8977 bfd_byte *loc;
8978
8979 /* This symbol has an entry in the global offset table. Set it
8980 up. */
8981 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8982 abort ();
8983
8984 rela.r_offset = (htab->root.sgot->output_section->vma
8985 + htab->root.sgot->output_offset
8986 + (h->got.offset & ~(bfd_vma) 1));
8987
8988 if (h->def_regular
8989 && h->type == STT_GNU_IFUNC)
8990 {
8991 if (bfd_link_pic (info))
8992 {
8993 /* Generate R_AARCH64_GLOB_DAT. */
8994 goto do_glob_dat;
8995 }
8996 else
8997 {
8998 asection *plt;
8999
9000 if (!h->pointer_equality_needed)
9001 abort ();
9002
9003 /* For non-shared object, we can't use .got.plt, which
9004 contains the real function address if we need pointer
9005 equality. We load the GOT entry with the PLT entry. */
9006 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9007 bfd_put_NN (output_bfd, (plt->output_section->vma
9008 + plt->output_offset
9009 + h->plt.offset),
9010 htab->root.sgot->contents
9011 + (h->got.offset & ~(bfd_vma) 1));
9012 return TRUE;
9013 }
9014 }
9015 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9016 {
9017 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9018 return FALSE;
9019
9020 BFD_ASSERT ((h->got.offset & 1) != 0);
9021 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9022 rela.r_addend = (h->root.u.def.value
9023 + h->root.u.def.section->output_section->vma
9024 + h->root.u.def.section->output_offset);
9025 }
9026 else
9027 {
9028 do_glob_dat:
9029 BFD_ASSERT ((h->got.offset & 1) == 0);
9030 bfd_put_NN (output_bfd, (bfd_vma) 0,
9031 htab->root.sgot->contents + h->got.offset);
9032 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9033 rela.r_addend = 0;
9034 }
9035
9036 loc = htab->root.srelgot->contents;
9037 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9038 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9039 }
9040
9041 if (h->needs_copy)
9042 {
9043 Elf_Internal_Rela rela;
9044 asection *s;
9045 bfd_byte *loc;
9046
9047 /* This symbol needs a copy reloc. Set it up. */
9048 if (h->dynindx == -1
9049 || (h->root.type != bfd_link_hash_defined
9050 && h->root.type != bfd_link_hash_defweak)
9051 || htab->root.srelbss == NULL)
9052 abort ();
9053
9054 rela.r_offset = (h->root.u.def.value
9055 + h->root.u.def.section->output_section->vma
9056 + h->root.u.def.section->output_offset);
9057 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9058 rela.r_addend = 0;
9059 if (h->root.u.def.section == htab->root.sdynrelro)
9060 s = htab->root.sreldynrelro;
9061 else
9062 s = htab->root.srelbss;
9063 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9064 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9065 }
9066
9067 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9068 be NULL for local symbols. */
9069 if (sym != NULL
9070 && (h == elf_hash_table (info)->hdynamic
9071 || h == elf_hash_table (info)->hgot))
9072 sym->st_shndx = SHN_ABS;
9073
9074 return TRUE;
9075 }
9076
9077 /* Finish up local dynamic symbol handling. We set the contents of
9078 various dynamic sections here. */
9079
9080 static bfd_boolean
9081 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9082 {
9083 struct elf_link_hash_entry *h
9084 = (struct elf_link_hash_entry *) *slot;
9085 struct bfd_link_info *info
9086 = (struct bfd_link_info *) inf;
9087
9088 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9089 info, h, NULL);
9090 }
9091
9092 static void
9093 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9094 struct elf_aarch64_link_hash_table
9095 *htab)
9096 {
9097 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9098 small and large plts and at the minute just generates
9099 the small PLT. */
9100
9101 /* PLT0 of the small PLT looks like this in ELF64 -
9102 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9103 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9104 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9105 // symbol resolver
9106 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9107 // GOTPLT entry for this.
9108 br x17
9109 PLT0 will be slightly different in ELF32 due to different got entry
9110 size. */
9111 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9112 bfd_vma plt_base;
9113
9114
9115 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9116 PLT_ENTRY_SIZE);
9117 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9118 PLT_ENTRY_SIZE;
9119
9120 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9121 + htab->root.sgotplt->output_offset
9122 + GOT_ENTRY_SIZE * 2);
9123
9124 plt_base = htab->root.splt->output_section->vma +
9125 htab->root.splt->output_offset;
9126
9127 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9128 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9129 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9130 htab->root.splt->contents + 4,
9131 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9132
9133 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9134 htab->root.splt->contents + 8,
9135 PG_OFFSET (plt_got_2nd_ent));
9136
9137 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9138 htab->root.splt->contents + 12,
9139 PG_OFFSET (plt_got_2nd_ent));
9140 }
9141
9142 static bfd_boolean
9143 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9144 struct bfd_link_info *info)
9145 {
9146 struct elf_aarch64_link_hash_table *htab;
9147 bfd *dynobj;
9148 asection *sdyn;
9149
9150 htab = elf_aarch64_hash_table (info);
9151 dynobj = htab->root.dynobj;
9152 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9153
9154 if (htab->root.dynamic_sections_created)
9155 {
9156 ElfNN_External_Dyn *dyncon, *dynconend;
9157
9158 if (sdyn == NULL || htab->root.sgot == NULL)
9159 abort ();
9160
9161 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9162 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9163 for (; dyncon < dynconend; dyncon++)
9164 {
9165 Elf_Internal_Dyn dyn;
9166 asection *s;
9167
9168 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9169
9170 switch (dyn.d_tag)
9171 {
9172 default:
9173 continue;
9174
9175 case DT_PLTGOT:
9176 s = htab->root.sgotplt;
9177 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9178 break;
9179
9180 case DT_JMPREL:
9181 s = htab->root.srelplt;
9182 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9183 break;
9184
9185 case DT_PLTRELSZ:
9186 s = htab->root.srelplt;
9187 dyn.d_un.d_val = s->size;
9188 break;
9189
9190 case DT_TLSDESC_PLT:
9191 s = htab->root.splt;
9192 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9193 + htab->tlsdesc_plt;
9194 break;
9195
9196 case DT_TLSDESC_GOT:
9197 s = htab->root.sgot;
9198 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9199 + htab->dt_tlsdesc_got;
9200 break;
9201 }
9202
9203 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9204 }
9205
9206 }
9207
9208 /* Fill in the special first entry in the procedure linkage table. */
9209 if (htab->root.splt && htab->root.splt->size > 0)
9210 {
9211 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9212
9213 elf_section_data (htab->root.splt->output_section)->
9214 this_hdr.sh_entsize = htab->plt_entry_size;
9215
9216
9217 if (htab->tlsdesc_plt)
9218 {
9219 bfd_put_NN (output_bfd, (bfd_vma) 0,
9220 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9221
9222 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9223 elfNN_aarch64_tlsdesc_small_plt_entry,
9224 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9225
9226 {
9227 bfd_vma adrp1_addr =
9228 htab->root.splt->output_section->vma
9229 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9230
9231 bfd_vma adrp2_addr = adrp1_addr + 4;
9232
9233 bfd_vma got_addr =
9234 htab->root.sgot->output_section->vma
9235 + htab->root.sgot->output_offset;
9236
9237 bfd_vma pltgot_addr =
9238 htab->root.sgotplt->output_section->vma
9239 + htab->root.sgotplt->output_offset;
9240
9241 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9242
9243 bfd_byte *plt_entry =
9244 htab->root.splt->contents + htab->tlsdesc_plt;
9245
9246 /* adrp x2, DT_TLSDESC_GOT */
9247 elf_aarch64_update_plt_entry (output_bfd,
9248 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9249 plt_entry + 4,
9250 (PG (dt_tlsdesc_got)
9251 - PG (adrp1_addr)));
9252
9253 /* adrp x3, 0 */
9254 elf_aarch64_update_plt_entry (output_bfd,
9255 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9256 plt_entry + 8,
9257 (PG (pltgot_addr)
9258 - PG (adrp2_addr)));
9259
9260 /* ldr x2, [x2, #0] */
9261 elf_aarch64_update_plt_entry (output_bfd,
9262 BFD_RELOC_AARCH64_LDSTNN_LO12,
9263 plt_entry + 12,
9264 PG_OFFSET (dt_tlsdesc_got));
9265
9266 /* add x3, x3, 0 */
9267 elf_aarch64_update_plt_entry (output_bfd,
9268 BFD_RELOC_AARCH64_ADD_LO12,
9269 plt_entry + 16,
9270 PG_OFFSET (pltgot_addr));
9271 }
9272 }
9273 }
9274
9275 if (htab->root.sgotplt)
9276 {
9277 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9278 {
9279 _bfd_error_handler
9280 (_("discarded output section: `%A'"), htab->root.sgotplt);
9281 return FALSE;
9282 }
9283
9284 /* Fill in the first three entries in the global offset table. */
9285 if (htab->root.sgotplt->size > 0)
9286 {
9287 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9288
9289 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9290 bfd_put_NN (output_bfd,
9291 (bfd_vma) 0,
9292 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9293 bfd_put_NN (output_bfd,
9294 (bfd_vma) 0,
9295 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9296 }
9297
9298 if (htab->root.sgot)
9299 {
9300 if (htab->root.sgot->size > 0)
9301 {
9302 bfd_vma addr =
9303 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9304 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9305 }
9306 }
9307
9308 elf_section_data (htab->root.sgotplt->output_section)->
9309 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9310 }
9311
9312 if (htab->root.sgot && htab->root.sgot->size > 0)
9313 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9314 = GOT_ENTRY_SIZE;
9315
9316 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9317 htab_traverse (htab->loc_hash_table,
9318 elfNN_aarch64_finish_local_dynamic_symbol,
9319 info);
9320
9321 return TRUE;
9322 }
9323
9324 /* Return address for Ith PLT stub in section PLT, for relocation REL
9325 or (bfd_vma) -1 if it should not be included. */
9326
9327 static bfd_vma
9328 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9329 const arelent *rel ATTRIBUTE_UNUSED)
9330 {
9331 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9332 }
9333
9334 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9335 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9336 It also allows a period initiated suffix to be added to the symbol, ie:
9337 "$[adtx]\.[:sym_char]+". */
9338
9339 static bfd_boolean
9340 is_aarch64_mapping_symbol (const char * name)
9341 {
9342 return name != NULL /* Paranoia. */
9343 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9344 the mapping symbols could have acquired a prefix.
9345 We do not support this here, since such symbols no
9346 longer conform to the ARM ELF ABI. */
9347 && (name[1] == 'd' || name[1] == 'x')
9348 && (name[2] == 0 || name[2] == '.');
9349 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9350 any characters that follow the period are legal characters for the body
9351 of a symbol's name. For now we just assume that this is the case. */
9352 }
9353
9354 /* Make sure that mapping symbols in object files are not removed via the
9355 "strip --strip-unneeded" tool. These symbols might needed in order to
9356 correctly generate linked files. Once an object file has been linked,
9357 it should be safe to remove them. */
9358
9359 static void
9360 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9361 {
9362 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9363 && sym->section != bfd_abs_section_ptr
9364 && is_aarch64_mapping_symbol (sym->name))
9365 sym->flags |= BSF_KEEP;
9366 }
9367
9368
9369 /* We use this so we can override certain functions
9370 (though currently we don't). */
9371
9372 const struct elf_size_info elfNN_aarch64_size_info =
9373 {
9374 sizeof (ElfNN_External_Ehdr),
9375 sizeof (ElfNN_External_Phdr),
9376 sizeof (ElfNN_External_Shdr),
9377 sizeof (ElfNN_External_Rel),
9378 sizeof (ElfNN_External_Rela),
9379 sizeof (ElfNN_External_Sym),
9380 sizeof (ElfNN_External_Dyn),
9381 sizeof (Elf_External_Note),
9382 4, /* Hash table entry size. */
9383 1, /* Internal relocs per external relocs. */
9384 ARCH_SIZE, /* Arch size. */
9385 LOG_FILE_ALIGN, /* Log_file_align. */
9386 ELFCLASSNN, EV_CURRENT,
9387 bfd_elfNN_write_out_phdrs,
9388 bfd_elfNN_write_shdrs_and_ehdr,
9389 bfd_elfNN_checksum_contents,
9390 bfd_elfNN_write_relocs,
9391 bfd_elfNN_swap_symbol_in,
9392 bfd_elfNN_swap_symbol_out,
9393 bfd_elfNN_slurp_reloc_table,
9394 bfd_elfNN_slurp_symbol_table,
9395 bfd_elfNN_swap_dyn_in,
9396 bfd_elfNN_swap_dyn_out,
9397 bfd_elfNN_swap_reloc_in,
9398 bfd_elfNN_swap_reloc_out,
9399 bfd_elfNN_swap_reloca_in,
9400 bfd_elfNN_swap_reloca_out
9401 };
9402
9403 #define ELF_ARCH bfd_arch_aarch64
9404 #define ELF_MACHINE_CODE EM_AARCH64
9405 #define ELF_MAXPAGESIZE 0x10000
9406 #define ELF_MINPAGESIZE 0x1000
9407 #define ELF_COMMONPAGESIZE 0x1000
9408
9409 #define bfd_elfNN_close_and_cleanup \
9410 elfNN_aarch64_close_and_cleanup
9411
9412 #define bfd_elfNN_bfd_free_cached_info \
9413 elfNN_aarch64_bfd_free_cached_info
9414
9415 #define bfd_elfNN_bfd_is_target_special_symbol \
9416 elfNN_aarch64_is_target_special_symbol
9417
9418 #define bfd_elfNN_bfd_link_hash_table_create \
9419 elfNN_aarch64_link_hash_table_create
9420
9421 #define bfd_elfNN_bfd_merge_private_bfd_data \
9422 elfNN_aarch64_merge_private_bfd_data
9423
9424 #define bfd_elfNN_bfd_print_private_bfd_data \
9425 elfNN_aarch64_print_private_bfd_data
9426
9427 #define bfd_elfNN_bfd_reloc_type_lookup \
9428 elfNN_aarch64_reloc_type_lookup
9429
9430 #define bfd_elfNN_bfd_reloc_name_lookup \
9431 elfNN_aarch64_reloc_name_lookup
9432
9433 #define bfd_elfNN_bfd_set_private_flags \
9434 elfNN_aarch64_set_private_flags
9435
9436 #define bfd_elfNN_find_inliner_info \
9437 elfNN_aarch64_find_inliner_info
9438
9439 #define bfd_elfNN_find_nearest_line \
9440 elfNN_aarch64_find_nearest_line
9441
9442 #define bfd_elfNN_mkobject \
9443 elfNN_aarch64_mkobject
9444
9445 #define bfd_elfNN_new_section_hook \
9446 elfNN_aarch64_new_section_hook
9447
9448 #define elf_backend_adjust_dynamic_symbol \
9449 elfNN_aarch64_adjust_dynamic_symbol
9450
9451 #define elf_backend_always_size_sections \
9452 elfNN_aarch64_always_size_sections
9453
9454 #define elf_backend_check_relocs \
9455 elfNN_aarch64_check_relocs
9456
9457 #define elf_backend_copy_indirect_symbol \
9458 elfNN_aarch64_copy_indirect_symbol
9459
9460 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9461 to them in our hash. */
9462 #define elf_backend_create_dynamic_sections \
9463 elfNN_aarch64_create_dynamic_sections
9464
9465 #define elf_backend_init_index_section \
9466 _bfd_elf_init_2_index_sections
9467
9468 #define elf_backend_finish_dynamic_sections \
9469 elfNN_aarch64_finish_dynamic_sections
9470
9471 #define elf_backend_finish_dynamic_symbol \
9472 elfNN_aarch64_finish_dynamic_symbol
9473
9474 #define elf_backend_object_p \
9475 elfNN_aarch64_object_p
9476
9477 #define elf_backend_output_arch_local_syms \
9478 elfNN_aarch64_output_arch_local_syms
9479
9480 #define elf_backend_plt_sym_val \
9481 elfNN_aarch64_plt_sym_val
9482
9483 #define elf_backend_post_process_headers \
9484 elfNN_aarch64_post_process_headers
9485
9486 #define elf_backend_relocate_section \
9487 elfNN_aarch64_relocate_section
9488
9489 #define elf_backend_reloc_type_class \
9490 elfNN_aarch64_reloc_type_class
9491
9492 #define elf_backend_section_from_shdr \
9493 elfNN_aarch64_section_from_shdr
9494
9495 #define elf_backend_size_dynamic_sections \
9496 elfNN_aarch64_size_dynamic_sections
9497
9498 #define elf_backend_size_info \
9499 elfNN_aarch64_size_info
9500
9501 #define elf_backend_write_section \
9502 elfNN_aarch64_write_section
9503
9504 #define elf_backend_symbol_processing \
9505 elfNN_aarch64_backend_symbol_processing
9506
9507 #define elf_backend_can_refcount 1
9508 #define elf_backend_can_gc_sections 1
9509 #define elf_backend_plt_readonly 1
9510 #define elf_backend_want_got_plt 1
9511 #define elf_backend_want_plt_sym 0
9512 #define elf_backend_want_dynrelro 1
9513 #define elf_backend_may_use_rel_p 0
9514 #define elf_backend_may_use_rela_p 1
9515 #define elf_backend_default_use_rela_p 1
9516 #define elf_backend_rela_normal 1
9517 #define elf_backend_dtrel_excludes_plt 1
9518 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9519 #define elf_backend_default_execstack 0
9520 #define elf_backend_extern_protected_data 1
9521 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9522
9523 #undef elf_backend_obj_attrs_section
9524 #define elf_backend_obj_attrs_section ".ARM.attributes"
9525
9526 #include "elfNN-target.h"
9527
9528 /* CloudABI support. */
9529
9530 #undef TARGET_LITTLE_SYM
9531 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9532 #undef TARGET_LITTLE_NAME
9533 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9534 #undef TARGET_BIG_SYM
9535 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9536 #undef TARGET_BIG_NAME
9537 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9538
9539 #undef ELF_OSABI
9540 #define ELF_OSABI ELFOSABI_CLOUDABI
9541
9542 #undef elfNN_bed
9543 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9544
9545 #include "elfNN-target.h"
This page took 0.229931 seconds and 4 git commands to generate.