Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147
148 #define ARCH_SIZE NN
149
150 #if ARCH_SIZE == 64
151 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
152 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
153 #define HOWTO64(...) HOWTO (__VA_ARGS__)
154 #define HOWTO32(...) EMPTY_HOWTO (0)
155 #define LOG_FILE_ALIGN 3
156 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
166 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
167 #endif
168
169 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
170 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
219 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
220
221 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
222 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
244
245 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
246 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
258
259 #define ELIMINATE_COPY_RELOCS 1
260
261 /* Return size of a relocation entry. HTAB is the bfd's
262 elf_aarch64_link_hash_entry. */
263 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
264
265 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
266 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
267 #define PLT_ENTRY_SIZE (32)
268 #define PLT_SMALL_ENTRY_SIZE (16)
269 #define PLT_TLSDESC_ENTRY_SIZE (32)
270
271 /* Encoding of the nop instruction. */
272 #define INSN_NOP 0xd503201f
273
274 #define aarch64_compute_jump_table_size(htab) \
275 (((htab)->root.srelplt == NULL) ? 0 \
276 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
277
278 /* The first entry in a procedure linkage table looks like this
279 if the distance between the PLTGOT and the PLT is < 4GB use
280 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
281 in x16 and needs to work out PLTGOT[1] by using an address of
282 [x16,#-GOT_ENTRY_SIZE]. */
283 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
284 {
285 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
286 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
287 #if ARCH_SIZE == 64
288 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
289 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
290 #else
291 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
292 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
293 #endif
294 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
295 0x1f, 0x20, 0x03, 0xd5, /* nop */
296 0x1f, 0x20, 0x03, 0xd5, /* nop */
297 0x1f, 0x20, 0x03, 0xd5, /* nop */
298 };
299
300 /* Per function entry in a procedure linkage table looks like this
301 if the distance between the PLTGOT and the PLT is < 4GB use
302 these PLT entries. */
303 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
304 {
305 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
306 #if ARCH_SIZE == 64
307 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
308 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
309 #else
310 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
311 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
312 #endif
313 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
314 };
315
316 static const bfd_byte
317 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
318 {
319 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
320 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
321 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
322 #if ARCH_SIZE == 64
323 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
324 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
325 #else
326 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
327 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
328 #endif
329 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
330 0x1f, 0x20, 0x03, 0xd5, /* nop */
331 0x1f, 0x20, 0x03, 0xd5, /* nop */
332 };
333
334 #define elf_info_to_howto elfNN_aarch64_info_to_howto
335 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
336
337 #define AARCH64_ELF_ABI_VERSION 0
338
339 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
340 #define ALL_ONES (~ (bfd_vma) 0)
341
342 /* Indexed by the bfd interal reloc enumerators.
343 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
344 in reloc.c. */
345
346 static reloc_howto_type elfNN_aarch64_howto_table[] =
347 {
348 EMPTY_HOWTO (0),
349
350 /* Basic data relocations. */
351
352 /* Deprecated, but retained for backwards compatibility. */
353 HOWTO64 (R_AARCH64_NULL, /* type */
354 0, /* rightshift */
355 3, /* size (0 = byte, 1 = short, 2 = long) */
356 0, /* bitsize */
357 FALSE, /* pc_relative */
358 0, /* bitpos */
359 complain_overflow_dont, /* complain_on_overflow */
360 bfd_elf_generic_reloc, /* special_function */
361 "R_AARCH64_NULL", /* name */
362 FALSE, /* partial_inplace */
363 0, /* src_mask */
364 0, /* dst_mask */
365 FALSE), /* pcrel_offset */
366 HOWTO (R_AARCH64_NONE, /* type */
367 0, /* rightshift */
368 3, /* size (0 = byte, 1 = short, 2 = long) */
369 0, /* bitsize */
370 FALSE, /* pc_relative */
371 0, /* bitpos */
372 complain_overflow_dont, /* complain_on_overflow */
373 bfd_elf_generic_reloc, /* special_function */
374 "R_AARCH64_NONE", /* name */
375 FALSE, /* partial_inplace */
376 0, /* src_mask */
377 0, /* dst_mask */
378 FALSE), /* pcrel_offset */
379
380 /* .xword: (S+A) */
381 HOWTO64 (AARCH64_R (ABS64), /* type */
382 0, /* rightshift */
383 4, /* size (4 = long long) */
384 64, /* bitsize */
385 FALSE, /* pc_relative */
386 0, /* bitpos */
387 complain_overflow_unsigned, /* complain_on_overflow */
388 bfd_elf_generic_reloc, /* special_function */
389 AARCH64_R_STR (ABS64), /* name */
390 FALSE, /* partial_inplace */
391 ALL_ONES, /* src_mask */
392 ALL_ONES, /* dst_mask */
393 FALSE), /* pcrel_offset */
394
395 /* .word: (S+A) */
396 HOWTO (AARCH64_R (ABS32), /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_unsigned, /* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 AARCH64_R_STR (ABS32), /* name */
405 FALSE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 /* .half: (S+A) */
411 HOWTO (AARCH64_R (ABS16), /* type */
412 0, /* rightshift */
413 1, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 FALSE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_unsigned, /* complain_on_overflow */
418 bfd_elf_generic_reloc, /* special_function */
419 AARCH64_R_STR (ABS16), /* name */
420 FALSE, /* partial_inplace */
421 0xffff, /* src_mask */
422 0xffff, /* dst_mask */
423 FALSE), /* pcrel_offset */
424
425 /* .xword: (S+A-P) */
426 HOWTO64 (AARCH64_R (PREL64), /* type */
427 0, /* rightshift */
428 4, /* size (4 = long long) */
429 64, /* bitsize */
430 TRUE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_signed, /* complain_on_overflow */
433 bfd_elf_generic_reloc, /* special_function */
434 AARCH64_R_STR (PREL64), /* name */
435 FALSE, /* partial_inplace */
436 ALL_ONES, /* src_mask */
437 ALL_ONES, /* dst_mask */
438 TRUE), /* pcrel_offset */
439
440 /* .word: (S+A-P) */
441 HOWTO (AARCH64_R (PREL32), /* type */
442 0, /* rightshift */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
444 32, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_signed, /* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 AARCH64_R_STR (PREL32), /* name */
450 FALSE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 /* .half: (S+A-P) */
456 HOWTO (AARCH64_R (PREL16), /* type */
457 0, /* rightshift */
458 1, /* size (0 = byte, 1 = short, 2 = long) */
459 16, /* bitsize */
460 TRUE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_signed, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 AARCH64_R_STR (PREL16), /* name */
465 FALSE, /* partial_inplace */
466 0xffff, /* src_mask */
467 0xffff, /* dst_mask */
468 TRUE), /* pcrel_offset */
469
470 /* Group relocations to create a 16, 32, 48 or 64 bit
471 unsigned data or abs address inline. */
472
473 /* MOVZ: ((S+A) >> 0) & 0xffff */
474 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
475 0, /* rightshift */
476 2, /* size (0 = byte, 1 = short, 2 = long) */
477 16, /* bitsize */
478 FALSE, /* pc_relative */
479 0, /* bitpos */
480 complain_overflow_unsigned, /* complain_on_overflow */
481 bfd_elf_generic_reloc, /* special_function */
482 AARCH64_R_STR (MOVW_UABS_G0), /* name */
483 FALSE, /* partial_inplace */
484 0xffff, /* src_mask */
485 0xffff, /* dst_mask */
486 FALSE), /* pcrel_offset */
487
488 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
489 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
490 0, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 16, /* bitsize */
493 FALSE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_dont, /* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
498 FALSE, /* partial_inplace */
499 0xffff, /* src_mask */
500 0xffff, /* dst_mask */
501 FALSE), /* pcrel_offset */
502
503 /* MOVZ: ((S+A) >> 16) & 0xffff */
504 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
505 16, /* rightshift */
506 2, /* size (0 = byte, 1 = short, 2 = long) */
507 16, /* bitsize */
508 FALSE, /* pc_relative */
509 0, /* bitpos */
510 complain_overflow_unsigned, /* complain_on_overflow */
511 bfd_elf_generic_reloc, /* special_function */
512 AARCH64_R_STR (MOVW_UABS_G1), /* name */
513 FALSE, /* partial_inplace */
514 0xffff, /* src_mask */
515 0xffff, /* dst_mask */
516 FALSE), /* pcrel_offset */
517
518 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
519 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
520 16, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 16, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 bfd_elf_generic_reloc, /* special_function */
527 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
528 FALSE, /* partial_inplace */
529 0xffff, /* src_mask */
530 0xffff, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* MOVZ: ((S+A) >> 32) & 0xffff */
534 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
535 32, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 16, /* bitsize */
538 FALSE, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_unsigned, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 AARCH64_R_STR (MOVW_UABS_G2), /* name */
543 FALSE, /* partial_inplace */
544 0xffff, /* src_mask */
545 0xffff, /* dst_mask */
546 FALSE), /* pcrel_offset */
547
548 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
549 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
550 32, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 16, /* bitsize */
553 FALSE, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_dont, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
558 FALSE, /* partial_inplace */
559 0xffff, /* src_mask */
560 0xffff, /* dst_mask */
561 FALSE), /* pcrel_offset */
562
563 /* MOVZ: ((S+A) >> 48) & 0xffff */
564 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
565 48, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G3), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
579 signed data or abs address inline. Will change instruction
580 to MOVN or MOVZ depending on sign of calculated value. */
581
582 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
583 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 17, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_signed, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 AARCH64_R_STR (MOVW_SABS_G0), /* name */
592 FALSE, /* partial_inplace */
593 0xffff, /* src_mask */
594 0xffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
598 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
599 16, /* rightshift */
600 2, /* size (0 = byte, 1 = short, 2 = long) */
601 17, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_signed, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 AARCH64_R_STR (MOVW_SABS_G1), /* name */
607 FALSE, /* partial_inplace */
608 0xffff, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
613 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
614 32, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 17, /* bitsize */
617 FALSE, /* pc_relative */
618 0, /* bitpos */
619 complain_overflow_signed, /* complain_on_overflow */
620 bfd_elf_generic_reloc, /* special_function */
621 AARCH64_R_STR (MOVW_SABS_G2), /* name */
622 FALSE, /* partial_inplace */
623 0xffff, /* src_mask */
624 0xffff, /* dst_mask */
625 FALSE), /* pcrel_offset */
626
627 /* Group relocations to create a 16, 32, 48 or 64 bit
628 PC relative address inline. */
629
630 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
631 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
632 0, /* rightshift */
633 2, /* size (0 = byte, 1 = short, 2 = long) */
634 17, /* bitsize */
635 TRUE, /* pc_relative */
636 0, /* bitpos */
637 complain_overflow_signed, /* complain_on_overflow */
638 bfd_elf_generic_reloc, /* special_function */
639 AARCH64_R_STR (MOVW_PREL_G0), /* name */
640 FALSE, /* partial_inplace */
641 0xffff, /* src_mask */
642 0xffff, /* dst_mask */
643 TRUE), /* pcrel_offset */
644
645 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
646 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
647 0, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 16, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_dont, /* complain_on_overflow */
653 bfd_elf_generic_reloc, /* special_function */
654 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
655 FALSE, /* partial_inplace */
656 0xffff, /* src_mask */
657 0xffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
661 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
662 16, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 17, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 AARCH64_R_STR (MOVW_PREL_G1), /* name */
670 FALSE, /* partial_inplace */
671 0xffff, /* src_mask */
672 0xffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
676 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
677 16, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 16, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_dont, /* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
685 FALSE, /* partial_inplace */
686 0xffff, /* src_mask */
687 0xffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
689
690 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
691 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
692 32, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 17, /* bitsize */
695 TRUE, /* pc_relative */
696 0, /* bitpos */
697 complain_overflow_signed, /* complain_on_overflow */
698 bfd_elf_generic_reloc, /* special_function */
699 AARCH64_R_STR (MOVW_PREL_G2), /* name */
700 FALSE, /* partial_inplace */
701 0xffff, /* src_mask */
702 0xffff, /* dst_mask */
703 TRUE), /* pcrel_offset */
704
705 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
706 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
707 32, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 16, /* bitsize */
710 TRUE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_dont, /* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
715 FALSE, /* partial_inplace */
716 0xffff, /* src_mask */
717 0xffff, /* dst_mask */
718 TRUE), /* pcrel_offset */
719
720 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
721 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
722 48, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_dont, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G3), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
736 addresses: PG(x) is (x & ~0xfff). */
737
738 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
739 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
740 2, /* rightshift */
741 2, /* size (0 = byte, 1 = short, 2 = long) */
742 19, /* bitsize */
743 TRUE, /* pc_relative */
744 0, /* bitpos */
745 complain_overflow_signed, /* complain_on_overflow */
746 bfd_elf_generic_reloc, /* special_function */
747 AARCH64_R_STR (LD_PREL_LO19), /* name */
748 FALSE, /* partial_inplace */
749 0x7ffff, /* src_mask */
750 0x7ffff, /* dst_mask */
751 TRUE), /* pcrel_offset */
752
753 /* ADR: (S+A-P) & 0x1fffff */
754 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
755 0, /* rightshift */
756 2, /* size (0 = byte, 1 = short, 2 = long) */
757 21, /* bitsize */
758 TRUE, /* pc_relative */
759 0, /* bitpos */
760 complain_overflow_signed, /* complain_on_overflow */
761 bfd_elf_generic_reloc, /* special_function */
762 AARCH64_R_STR (ADR_PREL_LO21), /* name */
763 FALSE, /* partial_inplace */
764 0x1fffff, /* src_mask */
765 0x1fffff, /* dst_mask */
766 TRUE), /* pcrel_offset */
767
768 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
769 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
770 12, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 21, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_signed, /* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
778 FALSE, /* partial_inplace */
779 0x1fffff, /* src_mask */
780 0x1fffff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
784 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
785 12, /* rightshift */
786 2, /* size (0 = byte, 1 = short, 2 = long) */
787 21, /* bitsize */
788 TRUE, /* pc_relative */
789 0, /* bitpos */
790 complain_overflow_dont, /* complain_on_overflow */
791 bfd_elf_generic_reloc, /* special_function */
792 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
793 FALSE, /* partial_inplace */
794 0x1fffff, /* src_mask */
795 0x1fffff, /* dst_mask */
796 TRUE), /* pcrel_offset */
797
798 /* ADD: (S+A) & 0xfff [no overflow check] */
799 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
800 0, /* rightshift */
801 2, /* size (0 = byte, 1 = short, 2 = long) */
802 12, /* bitsize */
803 FALSE, /* pc_relative */
804 10, /* bitpos */
805 complain_overflow_dont, /* complain_on_overflow */
806 bfd_elf_generic_reloc, /* special_function */
807 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
808 FALSE, /* partial_inplace */
809 0x3ffc00, /* src_mask */
810 0x3ffc00, /* dst_mask */
811 FALSE), /* pcrel_offset */
812
813 /* LD/ST8: (S+A) & 0xfff */
814 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
815 0, /* rightshift */
816 2, /* size (0 = byte, 1 = short, 2 = long) */
817 12, /* bitsize */
818 FALSE, /* pc_relative */
819 0, /* bitpos */
820 complain_overflow_dont, /* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
823 FALSE, /* partial_inplace */
824 0xfff, /* src_mask */
825 0xfff, /* dst_mask */
826 FALSE), /* pcrel_offset */
827
828 /* Relocations for control-flow instructions. */
829
830 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
831 HOWTO (AARCH64_R (TSTBR14), /* type */
832 2, /* rightshift */
833 2, /* size (0 = byte, 1 = short, 2 = long) */
834 14, /* bitsize */
835 TRUE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_signed, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 AARCH64_R_STR (TSTBR14), /* name */
840 FALSE, /* partial_inplace */
841 0x3fff, /* src_mask */
842 0x3fff, /* dst_mask */
843 TRUE), /* pcrel_offset */
844
845 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
846 HOWTO (AARCH64_R (CONDBR19), /* type */
847 2, /* rightshift */
848 2, /* size (0 = byte, 1 = short, 2 = long) */
849 19, /* bitsize */
850 TRUE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_signed, /* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 AARCH64_R_STR (CONDBR19), /* name */
855 FALSE, /* partial_inplace */
856 0x7ffff, /* src_mask */
857 0x7ffff, /* dst_mask */
858 TRUE), /* pcrel_offset */
859
860 /* B: ((S+A-P) >> 2) & 0x3ffffff */
861 HOWTO (AARCH64_R (JUMP26), /* type */
862 2, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 26, /* bitsize */
865 TRUE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_signed, /* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 AARCH64_R_STR (JUMP26), /* name */
870 FALSE, /* partial_inplace */
871 0x3ffffff, /* src_mask */
872 0x3ffffff, /* dst_mask */
873 TRUE), /* pcrel_offset */
874
875 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
876 HOWTO (AARCH64_R (CALL26), /* type */
877 2, /* rightshift */
878 2, /* size (0 = byte, 1 = short, 2 = long) */
879 26, /* bitsize */
880 TRUE, /* pc_relative */
881 0, /* bitpos */
882 complain_overflow_signed, /* complain_on_overflow */
883 bfd_elf_generic_reloc, /* special_function */
884 AARCH64_R_STR (CALL26), /* name */
885 FALSE, /* partial_inplace */
886 0x3ffffff, /* src_mask */
887 0x3ffffff, /* dst_mask */
888 TRUE), /* pcrel_offset */
889
890 /* LD/ST16: (S+A) & 0xffe */
891 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
892 1, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 12, /* bitsize */
895 FALSE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont, /* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
900 FALSE, /* partial_inplace */
901 0xffe, /* src_mask */
902 0xffe, /* dst_mask */
903 FALSE), /* pcrel_offset */
904
905 /* LD/ST32: (S+A) & 0xffc */
906 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
907 2, /* rightshift */
908 2, /* size (0 = byte, 1 = short, 2 = long) */
909 12, /* bitsize */
910 FALSE, /* pc_relative */
911 0, /* bitpos */
912 complain_overflow_dont, /* complain_on_overflow */
913 bfd_elf_generic_reloc, /* special_function */
914 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
915 FALSE, /* partial_inplace */
916 0xffc, /* src_mask */
917 0xffc, /* dst_mask */
918 FALSE), /* pcrel_offset */
919
920 /* LD/ST64: (S+A) & 0xff8 */
921 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
922 3, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 12, /* bitsize */
925 FALSE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_dont, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
930 FALSE, /* partial_inplace */
931 0xff8, /* src_mask */
932 0xff8, /* dst_mask */
933 FALSE), /* pcrel_offset */
934
935 /* LD/ST128: (S+A) & 0xff0 */
936 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
937 4, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 12, /* bitsize */
940 FALSE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
945 FALSE, /* partial_inplace */
946 0xff0, /* src_mask */
947 0xff0, /* dst_mask */
948 FALSE), /* pcrel_offset */
949
950 /* Set a load-literal immediate field to bits
951 0x1FFFFC of G(S)-P */
952 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
953 2, /* rightshift */
954 2, /* size (0 = byte,1 = short,2 = long) */
955 19, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_signed, /* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 AARCH64_R_STR (GOT_LD_PREL19), /* name */
961 FALSE, /* partial_inplace */
962 0xffffe0, /* src_mask */
963 0xffffe0, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
966 /* Get to the page for the GOT entry for the symbol
967 (G(S) - P) using an ADRP instruction. */
968 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
969 12, /* rightshift */
970 2, /* size (0 = byte, 1 = short, 2 = long) */
971 21, /* bitsize */
972 TRUE, /* pc_relative */
973 0, /* bitpos */
974 complain_overflow_dont, /* complain_on_overflow */
975 bfd_elf_generic_reloc, /* special_function */
976 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
977 FALSE, /* partial_inplace */
978 0x1fffff, /* src_mask */
979 0x1fffff, /* dst_mask */
980 TRUE), /* pcrel_offset */
981
982 /* LD64: GOT offset G(S) & 0xff8 */
983 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
984 3, /* rightshift */
985 2, /* size (0 = byte, 1 = short, 2 = long) */
986 12, /* bitsize */
987 FALSE, /* pc_relative */
988 0, /* bitpos */
989 complain_overflow_dont, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
992 FALSE, /* partial_inplace */
993 0xff8, /* src_mask */
994 0xff8, /* dst_mask */
995 FALSE), /* pcrel_offset */
996
997 /* LD32: GOT offset G(S) & 0xffc */
998 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
999 2, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 12, /* bitsize */
1002 FALSE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont, /* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1007 FALSE, /* partial_inplace */
1008 0xffc, /* src_mask */
1009 0xffc, /* dst_mask */
1010 FALSE), /* pcrel_offset */
1011
1012 /* Lower 16 bits of GOT offset for the symbol. */
1013 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1014 0, /* rightshift */
1015 2, /* size (0 = byte, 1 = short, 2 = long) */
1016 16, /* bitsize */
1017 FALSE, /* pc_relative */
1018 0, /* bitpos */
1019 complain_overflow_dont, /* complain_on_overflow */
1020 bfd_elf_generic_reloc, /* special_function */
1021 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1022 FALSE, /* partial_inplace */
1023 0xffff, /* src_mask */
1024 0xffff, /* dst_mask */
1025 FALSE), /* pcrel_offset */
1026
1027 /* Higher 16 bits of GOT offset for the symbol. */
1028 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1029 16, /* rightshift */
1030 2, /* size (0 = byte, 1 = short, 2 = long) */
1031 16, /* bitsize */
1032 FALSE, /* pc_relative */
1033 0, /* bitpos */
1034 complain_overflow_unsigned, /* complain_on_overflow */
1035 bfd_elf_generic_reloc, /* special_function */
1036 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1037 FALSE, /* partial_inplace */
1038 0xffff, /* src_mask */
1039 0xffff, /* dst_mask */
1040 FALSE), /* pcrel_offset */
1041
1042 /* LD64: GOT offset for the symbol. */
1043 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1044 3, /* rightshift */
1045 2, /* size (0 = byte, 1 = short, 2 = long) */
1046 12, /* bitsize */
1047 FALSE, /* pc_relative */
1048 0, /* bitpos */
1049 complain_overflow_unsigned, /* complain_on_overflow */
1050 bfd_elf_generic_reloc, /* special_function */
1051 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1052 FALSE, /* partial_inplace */
1053 0x7ff8, /* src_mask */
1054 0x7ff8, /* dst_mask */
1055 FALSE), /* pcrel_offset */
1056
1057 /* LD32: GOT offset to the page address of GOT table.
1058 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1059 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1060 2, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 12, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_unsigned, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1068 FALSE, /* partial_inplace */
1069 0x5ffc, /* src_mask */
1070 0x5ffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* LD64: GOT offset to the page address of GOT table.
1074 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1075 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1076 3, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 12, /* bitsize */
1079 FALSE, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_unsigned, /* complain_on_overflow */
1082 bfd_elf_generic_reloc, /* special_function */
1083 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1084 FALSE, /* partial_inplace */
1085 0x7ff8, /* src_mask */
1086 0x7ff8, /* dst_mask */
1087 FALSE), /* pcrel_offset */
1088
1089 /* Get to the page for the GOT entry for the symbol
1090 (G(S) - P) using an ADRP instruction. */
1091 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1092 12, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 21, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont, /* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1114 FALSE, /* partial_inplace */
1115 0x1fffff, /* src_mask */
1116 0x1fffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1120 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 12, /* bitsize */
1124 FALSE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont, /* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
1128 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1129 FALSE, /* partial_inplace */
1130 0xfff, /* src_mask */
1131 0xfff, /* dst_mask */
1132 FALSE), /* pcrel_offset */
1133
1134 /* Lower 16 bits of GOT offset to tls_index. */
1135 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1136 0, /* rightshift */
1137 2, /* size (0 = byte, 1 = short, 2 = long) */
1138 16, /* bitsize */
1139 FALSE, /* pc_relative */
1140 0, /* bitpos */
1141 complain_overflow_dont, /* complain_on_overflow */
1142 bfd_elf_generic_reloc, /* special_function */
1143 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1144 FALSE, /* partial_inplace */
1145 0xffff, /* src_mask */
1146 0xffff, /* dst_mask */
1147 FALSE), /* pcrel_offset */
1148
1149 /* Higher 16 bits of GOT offset to tls_index. */
1150 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1151 16, /* rightshift */
1152 2, /* size (0 = byte, 1 = short, 2 = long) */
1153 16, /* bitsize */
1154 FALSE, /* pc_relative */
1155 0, /* bitpos */
1156 complain_overflow_unsigned, /* complain_on_overflow */
1157 bfd_elf_generic_reloc, /* special_function */
1158 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1159 FALSE, /* partial_inplace */
1160 0xffff, /* src_mask */
1161 0xffff, /* dst_mask */
1162 FALSE), /* pcrel_offset */
1163
1164 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1165 12, /* rightshift */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1167 21, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_dont, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1173 FALSE, /* partial_inplace */
1174 0x1fffff, /* src_mask */
1175 0x1fffff, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1179 3, /* rightshift */
1180 2, /* size (0 = byte, 1 = short, 2 = long) */
1181 12, /* bitsize */
1182 FALSE, /* pc_relative */
1183 0, /* bitpos */
1184 complain_overflow_dont, /* complain_on_overflow */
1185 bfd_elf_generic_reloc, /* special_function */
1186 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1187 FALSE, /* partial_inplace */
1188 0xff8, /* src_mask */
1189 0xff8, /* dst_mask */
1190 FALSE), /* pcrel_offset */
1191
1192 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1193 2, /* rightshift */
1194 2, /* size (0 = byte, 1 = short, 2 = long) */
1195 12, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 bfd_elf_generic_reloc, /* special_function */
1200 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1201 FALSE, /* partial_inplace */
1202 0xffc, /* src_mask */
1203 0xffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1207 2, /* rightshift */
1208 2, /* size (0 = byte, 1 = short, 2 = long) */
1209 19, /* bitsize */
1210 FALSE, /* pc_relative */
1211 0, /* bitpos */
1212 complain_overflow_dont, /* complain_on_overflow */
1213 bfd_elf_generic_reloc, /* special_function */
1214 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1215 FALSE, /* partial_inplace */
1216 0x1ffffc, /* src_mask */
1217 0x1ffffc, /* dst_mask */
1218 FALSE), /* pcrel_offset */
1219
1220 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1221 0, /* rightshift */
1222 2, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_dont, /* complain_on_overflow */
1227 bfd_elf_generic_reloc, /* special_function */
1228 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1229 FALSE, /* partial_inplace */
1230 0xffff, /* src_mask */
1231 0xffff, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1235 16, /* rightshift */
1236 2, /* size (0 = byte, 1 = short, 2 = long) */
1237 16, /* bitsize */
1238 FALSE, /* pc_relative */
1239 0, /* bitpos */
1240 complain_overflow_unsigned, /* complain_on_overflow */
1241 bfd_elf_generic_reloc, /* special_function */
1242 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1243 FALSE, /* partial_inplace */
1244 0xffff, /* src_mask */
1245 0xffff, /* dst_mask */
1246 FALSE), /* pcrel_offset */
1247
1248 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1249 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1250 12, /* rightshift */
1251 2, /* size (0 = byte, 1 = short, 2 = long) */
1252 12, /* bitsize */
1253 FALSE, /* pc_relative */
1254 0, /* bitpos */
1255 complain_overflow_unsigned, /* complain_on_overflow */
1256 bfd_elf_generic_reloc, /* special_function */
1257 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1258 FALSE, /* partial_inplace */
1259 0xfff, /* src_mask */
1260 0xfff, /* dst_mask */
1261 FALSE), /* pcrel_offset */
1262
1263 /* Unsigned 12 bit byte offset to module TLS base address. */
1264 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 12, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_unsigned, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1273 FALSE, /* partial_inplace */
1274 0xfff, /* src_mask */
1275 0xfff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1279 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 12, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1288 FALSE, /* partial_inplace */
1289 0xfff, /* src_mask */
1290 0xfff, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1294 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 12, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont, /* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1303 FALSE, /* partial_inplace */
1304 0xfff, /* src_mask */
1305 0xfff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 /* Get to the page for the GOT entry for the symbol
1309 (G(S) - P) using an ADRP instruction. */
1310 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1311 12, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 21, /* bitsize */
1314 TRUE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_signed, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1319 FALSE, /* partial_inplace */
1320 0x1fffff, /* src_mask */
1321 0x1fffff, /* dst_mask */
1322 TRUE), /* pcrel_offset */
1323
1324 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1325 0, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 21, /* bitsize */
1328 TRUE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_signed, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1333 FALSE, /* partial_inplace */
1334 0x1fffff, /* src_mask */
1335 0x1fffff, /* dst_mask */
1336 TRUE), /* pcrel_offset */
1337
1338 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1339 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1340 1, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 11, /* bitsize */
1343 FALSE, /* pc_relative */
1344 10, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1348 FALSE, /* partial_inplace */
1349 0x1ffc00, /* src_mask */
1350 0x1ffc00, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1354 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1355 1, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 11, /* bitsize */
1358 FALSE, /* pc_relative */
1359 10, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1363 FALSE, /* partial_inplace */
1364 0x1ffc00, /* src_mask */
1365 0x1ffc00, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1369 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1370 2, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 10, /* bitsize */
1373 FALSE, /* pc_relative */
1374 10, /* bitpos */
1375 complain_overflow_unsigned, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1378 FALSE, /* partial_inplace */
1379 0x3ffc00, /* src_mask */
1380 0x3ffc00, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1384 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1385 2, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 10, /* bitsize */
1388 FALSE, /* pc_relative */
1389 10, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xffc00, /* src_mask */
1395 0xffc00, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1399 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1400 3, /* rightshift */
1401 2, /* size (0 = byte, 1 = short, 2 = long) */
1402 9, /* bitsize */
1403 FALSE, /* pc_relative */
1404 10, /* bitpos */
1405 complain_overflow_unsigned, /* complain_on_overflow */
1406 bfd_elf_generic_reloc, /* special_function */
1407 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1408 FALSE, /* partial_inplace */
1409 0x3ffc00, /* src_mask */
1410 0x3ffc00, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1414 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1415 3, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 9, /* bitsize */
1418 FALSE, /* pc_relative */
1419 10, /* bitpos */
1420 complain_overflow_dont, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1423 FALSE, /* partial_inplace */
1424 0x7fc00, /* src_mask */
1425 0x7fc00, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 12, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x3ffc00, /* src_mask */
1440 0x3ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 12, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x3ffc00, /* src_mask */
1455 0x3ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1459 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1460 0, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1468 FALSE, /* partial_inplace */
1469 0xffff, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1474 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffff, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1489 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1490 16, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1498 FALSE, /* partial_inplace */
1499 0xffff, /* src_mask */
1500 0xffff, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1504 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1505 16, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0xffff, /* src_mask */
1515 0xffff, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1520 32, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 16, /* bitsize */
1523 FALSE, /* pc_relative */
1524 0, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1528 FALSE, /* partial_inplace */
1529 0xffff, /* src_mask */
1530 0xffff, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1534 32, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 16, /* bitsize */
1537 FALSE, /* pc_relative */
1538 0, /* bitpos */
1539 complain_overflow_unsigned, /* complain_on_overflow */
1540 bfd_elf_generic_reloc, /* special_function */
1541 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1542 FALSE, /* partial_inplace */
1543 0xffff, /* src_mask */
1544 0xffff, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1546
1547 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1548 16, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 16, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_dont, /* complain_on_overflow */
1554 bfd_elf_generic_reloc, /* special_function */
1555 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1556 FALSE, /* partial_inplace */
1557 0xffff, /* src_mask */
1558 0xffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1560
1561 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1562 16, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 16, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_dont, /* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1570 FALSE, /* partial_inplace */
1571 0xffff, /* src_mask */
1572 0xffff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1574
1575 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1584 FALSE, /* partial_inplace */
1585 0xffff, /* src_mask */
1586 0xffff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 16, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_dont, /* complain_on_overflow */
1596 bfd_elf_generic_reloc, /* special_function */
1597 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1598 FALSE, /* partial_inplace */
1599 0xffff, /* src_mask */
1600 0xffff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602
1603 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1604 12, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 12, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
1609 complain_overflow_unsigned, /* complain_on_overflow */
1610 bfd_elf_generic_reloc, /* special_function */
1611 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1612 FALSE, /* partial_inplace */
1613 0xfff, /* src_mask */
1614 0xfff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
1616
1617 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
1622 0, /* bitpos */
1623 complain_overflow_unsigned, /* complain_on_overflow */
1624 bfd_elf_generic_reloc, /* special_function */
1625 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1626 FALSE, /* partial_inplace */
1627 0xfff, /* src_mask */
1628 0xfff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
1630
1631 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
1636 0, /* bitpos */
1637 complain_overflow_dont, /* complain_on_overflow */
1638 bfd_elf_generic_reloc, /* special_function */
1639 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1640 FALSE, /* partial_inplace */
1641 0xfff, /* src_mask */
1642 0xfff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
1644
1645 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1646 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1647 1, /* rightshift */
1648 2, /* size (0 = byte, 1 = short, 2 = long) */
1649 11, /* bitsize */
1650 FALSE, /* pc_relative */
1651 10, /* bitpos */
1652 complain_overflow_unsigned, /* complain_on_overflow */
1653 bfd_elf_generic_reloc, /* special_function */
1654 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1655 FALSE, /* partial_inplace */
1656 0x1ffc00, /* src_mask */
1657 0x1ffc00, /* dst_mask */
1658 FALSE), /* pcrel_offset */
1659
1660 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1661 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1662 1, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 11, /* bitsize */
1665 FALSE, /* pc_relative */
1666 10, /* bitpos */
1667 complain_overflow_dont, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1670 FALSE, /* partial_inplace */
1671 0x1ffc00, /* src_mask */
1672 0x1ffc00, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
1675 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1676 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1677 2, /* rightshift */
1678 2, /* size (0 = byte, 1 = short, 2 = long) */
1679 10, /* bitsize */
1680 FALSE, /* pc_relative */
1681 10, /* bitpos */
1682 complain_overflow_unsigned, /* complain_on_overflow */
1683 bfd_elf_generic_reloc, /* special_function */
1684 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1685 FALSE, /* partial_inplace */
1686 0xffc00, /* src_mask */
1687 0xffc00, /* dst_mask */
1688 FALSE), /* pcrel_offset */
1689
1690 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1691 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1692 2, /* rightshift */
1693 2, /* size (0 = byte, 1 = short, 2 = long) */
1694 10, /* bitsize */
1695 FALSE, /* pc_relative */
1696 10, /* bitpos */
1697 complain_overflow_dont, /* complain_on_overflow */
1698 bfd_elf_generic_reloc, /* special_function */
1699 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1700 FALSE, /* partial_inplace */
1701 0xffc00, /* src_mask */
1702 0xffc00, /* dst_mask */
1703 FALSE), /* pcrel_offset */
1704
1705 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1706 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1707 3, /* rightshift */
1708 2, /* size (0 = byte, 1 = short, 2 = long) */
1709 9, /* bitsize */
1710 FALSE, /* pc_relative */
1711 10, /* bitpos */
1712 complain_overflow_unsigned, /* complain_on_overflow */
1713 bfd_elf_generic_reloc, /* special_function */
1714 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1715 FALSE, /* partial_inplace */
1716 0x7fc00, /* src_mask */
1717 0x7fc00, /* dst_mask */
1718 FALSE), /* pcrel_offset */
1719
1720 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1721 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1722 3, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 9, /* bitsize */
1725 FALSE, /* pc_relative */
1726 10, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0x7fc00, /* src_mask */
1732 0x7fc00, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1737 0, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 12, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x3ffc00, /* src_mask */
1747 0x3ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 12, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x3ffc00, /* src_mask */
1762 0x3ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1766 2, /* rightshift */
1767 2, /* size (0 = byte, 1 = short, 2 = long) */
1768 19, /* bitsize */
1769 TRUE, /* pc_relative */
1770 0, /* bitpos */
1771 complain_overflow_dont, /* complain_on_overflow */
1772 bfd_elf_generic_reloc, /* special_function */
1773 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1774 FALSE, /* partial_inplace */
1775 0x0ffffe0, /* src_mask */
1776 0x0ffffe0, /* dst_mask */
1777 TRUE), /* pcrel_offset */
1778
1779 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1780 0, /* rightshift */
1781 2, /* size (0 = byte, 1 = short, 2 = long) */
1782 21, /* bitsize */
1783 TRUE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_dont, /* complain_on_overflow */
1786 bfd_elf_generic_reloc, /* special_function */
1787 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1788 FALSE, /* partial_inplace */
1789 0x1fffff, /* src_mask */
1790 0x1fffff, /* dst_mask */
1791 TRUE), /* pcrel_offset */
1792
1793 /* Get to the page for the GOT entry for the symbol
1794 (G(S) - P) using an ADRP instruction. */
1795 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1796 12, /* rightshift */
1797 2, /* size (0 = byte, 1 = short, 2 = long) */
1798 21, /* bitsize */
1799 TRUE, /* pc_relative */
1800 0, /* bitpos */
1801 complain_overflow_dont, /* complain_on_overflow */
1802 bfd_elf_generic_reloc, /* special_function */
1803 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1804 FALSE, /* partial_inplace */
1805 0x1fffff, /* src_mask */
1806 0x1fffff, /* dst_mask */
1807 TRUE), /* pcrel_offset */
1808
1809 /* LD64: GOT offset G(S) & 0xff8. */
1810 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1811 3, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 12, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_dont, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1819 FALSE, /* partial_inplace */
1820 0xff8, /* src_mask */
1821 0xff8, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* LD32: GOT offset G(S) & 0xffc. */
1825 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1826 2, /* rightshift */
1827 2, /* size (0 = byte, 1 = short, 2 = long) */
1828 12, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 bfd_elf_generic_reloc, /* special_function */
1833 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1834 FALSE, /* partial_inplace */
1835 0xffc, /* src_mask */
1836 0xffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* ADD: GOT offset G(S) & 0xfff. */
1840 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1841 0, /* rightshift */
1842 2, /* size (0 = byte, 1 = short, 2 = long) */
1843 12, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_dont,/* complain_on_overflow */
1847 bfd_elf_generic_reloc, /* special_function */
1848 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1849 FALSE, /* partial_inplace */
1850 0xfff, /* src_mask */
1851 0xfff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1855 16, /* rightshift */
1856 2, /* size (0 = byte, 1 = short, 2 = long) */
1857 12, /* bitsize */
1858 FALSE, /* pc_relative */
1859 0, /* bitpos */
1860 complain_overflow_unsigned, /* complain_on_overflow */
1861 bfd_elf_generic_reloc, /* special_function */
1862 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1863 FALSE, /* partial_inplace */
1864 0xffff, /* src_mask */
1865 0xffff, /* dst_mask */
1866 FALSE), /* pcrel_offset */
1867
1868 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 12, /* bitsize */
1872 FALSE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_dont, /* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1877 FALSE, /* partial_inplace */
1878 0xffff, /* src_mask */
1879 0xffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881
1882 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1883 0, /* rightshift */
1884 2, /* size (0 = byte, 1 = short, 2 = long) */
1885 12, /* bitsize */
1886 FALSE, /* pc_relative */
1887 0, /* bitpos */
1888 complain_overflow_dont, /* complain_on_overflow */
1889 bfd_elf_generic_reloc, /* special_function */
1890 AARCH64_R_STR (TLSDESC_LDR), /* name */
1891 FALSE, /* partial_inplace */
1892 0x0, /* src_mask */
1893 0x0, /* dst_mask */
1894 FALSE), /* pcrel_offset */
1895
1896 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1897 0, /* rightshift */
1898 2, /* size (0 = byte, 1 = short, 2 = long) */
1899 12, /* bitsize */
1900 FALSE, /* pc_relative */
1901 0, /* bitpos */
1902 complain_overflow_dont, /* complain_on_overflow */
1903 bfd_elf_generic_reloc, /* special_function */
1904 AARCH64_R_STR (TLSDESC_ADD), /* name */
1905 FALSE, /* partial_inplace */
1906 0x0, /* src_mask */
1907 0x0, /* dst_mask */
1908 FALSE), /* pcrel_offset */
1909
1910 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1911 0, /* rightshift */
1912 2, /* size (0 = byte, 1 = short, 2 = long) */
1913 0, /* bitsize */
1914 FALSE, /* pc_relative */
1915 0, /* bitpos */
1916 complain_overflow_dont, /* complain_on_overflow */
1917 bfd_elf_generic_reloc, /* special_function */
1918 AARCH64_R_STR (TLSDESC_CALL), /* name */
1919 FALSE, /* partial_inplace */
1920 0x0, /* src_mask */
1921 0x0, /* dst_mask */
1922 FALSE), /* pcrel_offset */
1923
1924 HOWTO (AARCH64_R (COPY), /* type */
1925 0, /* rightshift */
1926 2, /* size (0 = byte, 1 = short, 2 = long) */
1927 64, /* bitsize */
1928 FALSE, /* pc_relative */
1929 0, /* bitpos */
1930 complain_overflow_bitfield, /* complain_on_overflow */
1931 bfd_elf_generic_reloc, /* special_function */
1932 AARCH64_R_STR (COPY), /* name */
1933 TRUE, /* partial_inplace */
1934 0xffffffff, /* src_mask */
1935 0xffffffff, /* dst_mask */
1936 FALSE), /* pcrel_offset */
1937
1938 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1939 0, /* rightshift */
1940 2, /* size (0 = byte, 1 = short, 2 = long) */
1941 64, /* bitsize */
1942 FALSE, /* pc_relative */
1943 0, /* bitpos */
1944 complain_overflow_bitfield, /* complain_on_overflow */
1945 bfd_elf_generic_reloc, /* special_function */
1946 AARCH64_R_STR (GLOB_DAT), /* name */
1947 TRUE, /* partial_inplace */
1948 0xffffffff, /* src_mask */
1949 0xffffffff, /* dst_mask */
1950 FALSE), /* pcrel_offset */
1951
1952 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1953 0, /* rightshift */
1954 2, /* size (0 = byte, 1 = short, 2 = long) */
1955 64, /* bitsize */
1956 FALSE, /* pc_relative */
1957 0, /* bitpos */
1958 complain_overflow_bitfield, /* complain_on_overflow */
1959 bfd_elf_generic_reloc, /* special_function */
1960 AARCH64_R_STR (JUMP_SLOT), /* name */
1961 TRUE, /* partial_inplace */
1962 0xffffffff, /* src_mask */
1963 0xffffffff, /* dst_mask */
1964 FALSE), /* pcrel_offset */
1965
1966 HOWTO (AARCH64_R (RELATIVE), /* type */
1967 0, /* rightshift */
1968 2, /* size (0 = byte, 1 = short, 2 = long) */
1969 64, /* bitsize */
1970 FALSE, /* pc_relative */
1971 0, /* bitpos */
1972 complain_overflow_bitfield, /* complain_on_overflow */
1973 bfd_elf_generic_reloc, /* special_function */
1974 AARCH64_R_STR (RELATIVE), /* name */
1975 TRUE, /* partial_inplace */
1976 ALL_ONES, /* src_mask */
1977 ALL_ONES, /* dst_mask */
1978 FALSE), /* pcrel_offset */
1979
1980 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1981 0, /* rightshift */
1982 2, /* size (0 = byte, 1 = short, 2 = long) */
1983 64, /* bitsize */
1984 FALSE, /* pc_relative */
1985 0, /* bitpos */
1986 complain_overflow_dont, /* complain_on_overflow */
1987 bfd_elf_generic_reloc, /* special_function */
1988 #if ARCH_SIZE == 64
1989 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1990 #else
1991 AARCH64_R_STR (TLS_DTPMOD), /* name */
1992 #endif
1993 FALSE, /* partial_inplace */
1994 0, /* src_mask */
1995 ALL_ONES, /* dst_mask */
1996 FALSE), /* pc_reloffset */
1997
1998 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1999 0, /* rightshift */
2000 2, /* size (0 = byte, 1 = short, 2 = long) */
2001 64, /* bitsize */
2002 FALSE, /* pc_relative */
2003 0, /* bitpos */
2004 complain_overflow_dont, /* complain_on_overflow */
2005 bfd_elf_generic_reloc, /* special_function */
2006 #if ARCH_SIZE == 64
2007 AARCH64_R_STR (TLS_DTPREL64), /* name */
2008 #else
2009 AARCH64_R_STR (TLS_DTPREL), /* name */
2010 #endif
2011 FALSE, /* partial_inplace */
2012 0, /* src_mask */
2013 ALL_ONES, /* dst_mask */
2014 FALSE), /* pcrel_offset */
2015
2016 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2017 0, /* rightshift */
2018 2, /* size (0 = byte, 1 = short, 2 = long) */
2019 64, /* bitsize */
2020 FALSE, /* pc_relative */
2021 0, /* bitpos */
2022 complain_overflow_dont, /* complain_on_overflow */
2023 bfd_elf_generic_reloc, /* special_function */
2024 #if ARCH_SIZE == 64
2025 AARCH64_R_STR (TLS_TPREL64), /* name */
2026 #else
2027 AARCH64_R_STR (TLS_TPREL), /* name */
2028 #endif
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 ALL_ONES, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 HOWTO (AARCH64_R (TLSDESC), /* type */
2035 0, /* rightshift */
2036 2, /* size (0 = byte, 1 = short, 2 = long) */
2037 64, /* bitsize */
2038 FALSE, /* pc_relative */
2039 0, /* bitpos */
2040 complain_overflow_dont, /* complain_on_overflow */
2041 bfd_elf_generic_reloc, /* special_function */
2042 AARCH64_R_STR (TLSDESC), /* name */
2043 FALSE, /* partial_inplace */
2044 0, /* src_mask */
2045 ALL_ONES, /* dst_mask */
2046 FALSE), /* pcrel_offset */
2047
2048 HOWTO (AARCH64_R (IRELATIVE), /* type */
2049 0, /* rightshift */
2050 2, /* size (0 = byte, 1 = short, 2 = long) */
2051 64, /* bitsize */
2052 FALSE, /* pc_relative */
2053 0, /* bitpos */
2054 complain_overflow_bitfield, /* complain_on_overflow */
2055 bfd_elf_generic_reloc, /* special_function */
2056 AARCH64_R_STR (IRELATIVE), /* name */
2057 FALSE, /* partial_inplace */
2058 0, /* src_mask */
2059 ALL_ONES, /* dst_mask */
2060 FALSE), /* pcrel_offset */
2061
2062 EMPTY_HOWTO (0),
2063 };
2064
2065 static reloc_howto_type elfNN_aarch64_howto_none =
2066 HOWTO (R_AARCH64_NONE, /* type */
2067 0, /* rightshift */
2068 3, /* size (0 = byte, 1 = short, 2 = long) */
2069 0, /* bitsize */
2070 FALSE, /* pc_relative */
2071 0, /* bitpos */
2072 complain_overflow_dont,/* complain_on_overflow */
2073 bfd_elf_generic_reloc, /* special_function */
2074 "R_AARCH64_NONE", /* name */
2075 FALSE, /* partial_inplace */
2076 0, /* src_mask */
2077 0, /* dst_mask */
2078 FALSE); /* pcrel_offset */
2079
2080 /* Given HOWTO, return the bfd internal relocation enumerator. */
2081
2082 static bfd_reloc_code_real_type
2083 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2084 {
2085 const int size
2086 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2087 const ptrdiff_t offset
2088 = howto - elfNN_aarch64_howto_table;
2089
2090 if (offset > 0 && offset < size - 1)
2091 return BFD_RELOC_AARCH64_RELOC_START + offset;
2092
2093 if (howto == &elfNN_aarch64_howto_none)
2094 return BFD_RELOC_AARCH64_NONE;
2095
2096 return BFD_RELOC_AARCH64_RELOC_START;
2097 }
2098
2099 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2100
2101 static bfd_reloc_code_real_type
2102 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2103 {
2104 static bfd_boolean initialized_p = FALSE;
2105 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2106 static unsigned int offsets[R_AARCH64_end];
2107
2108 if (!initialized_p)
2109 {
2110 unsigned int i;
2111
2112 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2113 if (elfNN_aarch64_howto_table[i].type != 0)
2114 offsets[elfNN_aarch64_howto_table[i].type] = i;
2115
2116 initialized_p = TRUE;
2117 }
2118
2119 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2120 return BFD_RELOC_AARCH64_NONE;
2121
2122 /* PR 17512: file: b371e70a. */
2123 if (r_type >= R_AARCH64_end)
2124 {
2125 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2126 abfd, r_type);
2127 bfd_set_error (bfd_error_bad_value);
2128 return BFD_RELOC_AARCH64_NONE;
2129 }
2130
2131 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2132 }
2133
2134 struct elf_aarch64_reloc_map
2135 {
2136 bfd_reloc_code_real_type from;
2137 bfd_reloc_code_real_type to;
2138 };
2139
2140 /* Map bfd generic reloc to AArch64-specific reloc. */
2141 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2142 {
2143 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2144
2145 /* Basic data relocations. */
2146 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2147 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2148 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2149 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2150 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2151 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2152 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2153 };
2154
2155 /* Given the bfd internal relocation enumerator in CODE, return the
2156 corresponding howto entry. */
2157
2158 static reloc_howto_type *
2159 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2160 {
2161 unsigned int i;
2162
2163 /* Convert bfd generic reloc to AArch64-specific reloc. */
2164 if (code < BFD_RELOC_AARCH64_RELOC_START
2165 || code > BFD_RELOC_AARCH64_RELOC_END)
2166 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2167 if (elf_aarch64_reloc_map[i].from == code)
2168 {
2169 code = elf_aarch64_reloc_map[i].to;
2170 break;
2171 }
2172
2173 if (code > BFD_RELOC_AARCH64_RELOC_START
2174 && code < BFD_RELOC_AARCH64_RELOC_END)
2175 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2176 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2177
2178 if (code == BFD_RELOC_AARCH64_NONE)
2179 return &elfNN_aarch64_howto_none;
2180
2181 return NULL;
2182 }
2183
2184 static reloc_howto_type *
2185 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2186 {
2187 bfd_reloc_code_real_type val;
2188 reloc_howto_type *howto;
2189
2190 #if ARCH_SIZE == 32
2191 if (r_type > 256)
2192 {
2193 bfd_set_error (bfd_error_bad_value);
2194 return NULL;
2195 }
2196 #endif
2197
2198 if (r_type == R_AARCH64_NONE)
2199 return &elfNN_aarch64_howto_none;
2200
2201 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2202 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2203
2204 if (howto != NULL)
2205 return howto;
2206
2207 bfd_set_error (bfd_error_bad_value);
2208 return NULL;
2209 }
2210
2211 static bfd_boolean
2212 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2213 Elf_Internal_Rela *elf_reloc)
2214 {
2215 unsigned int r_type;
2216
2217 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2218 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2219
2220 if (bfd_reloc->howto == NULL)
2221 {
2222 /* xgettext:c-format */
2223 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2224 return FALSE;
2225 }
2226 return TRUE;
2227 }
2228
2229 static reloc_howto_type *
2230 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2231 bfd_reloc_code_real_type code)
2232 {
2233 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2234
2235 if (howto != NULL)
2236 return howto;
2237
2238 bfd_set_error (bfd_error_bad_value);
2239 return NULL;
2240 }
2241
2242 static reloc_howto_type *
2243 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2244 const char *r_name)
2245 {
2246 unsigned int i;
2247
2248 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2249 if (elfNN_aarch64_howto_table[i].name != NULL
2250 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2251 return &elfNN_aarch64_howto_table[i];
2252
2253 return NULL;
2254 }
2255
2256 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2257 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2258 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2259 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2260
2261 /* The linker script knows the section names for placement.
2262 The entry_names are used to do simple name mangling on the stubs.
2263 Given a function name, and its type, the stub can be found. The
2264 name can be changed. The only requirement is the %s be present. */
2265 #define STUB_ENTRY_NAME "__%s_veneer"
2266
2267 /* The name of the dynamic interpreter. This is put in the .interp
2268 section. */
2269 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2270
2271 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2272 (((1 << 25) - 1) << 2)
2273 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2274 (-((1 << 25) << 2))
2275
2276 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2277 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2278
2279 static int
2280 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2281 {
2282 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2283 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2284 }
2285
2286 static int
2287 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2288 {
2289 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2290 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2291 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2292 }
2293
2294 static const uint32_t aarch64_adrp_branch_stub [] =
2295 {
2296 0x90000010, /* adrp ip0, X */
2297 /* R_AARCH64_ADR_HI21_PCREL(X) */
2298 0x91000210, /* add ip0, ip0, :lo12:X */
2299 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2300 0xd61f0200, /* br ip0 */
2301 };
2302
2303 static const uint32_t aarch64_long_branch_stub[] =
2304 {
2305 #if ARCH_SIZE == 64
2306 0x58000090, /* ldr ip0, 1f */
2307 #else
2308 0x18000090, /* ldr wip0, 1f */
2309 #endif
2310 0x10000011, /* adr ip1, #0 */
2311 0x8b110210, /* add ip0, ip0, ip1 */
2312 0xd61f0200, /* br ip0 */
2313 0x00000000, /* 1: .xword or .word
2314 R_AARCH64_PRELNN(X) + 12
2315 */
2316 0x00000000,
2317 };
2318
2319 static const uint32_t aarch64_erratum_835769_stub[] =
2320 {
2321 0x00000000, /* Placeholder for multiply accumulate. */
2322 0x14000000, /* b <label> */
2323 };
2324
2325 static const uint32_t aarch64_erratum_843419_stub[] =
2326 {
2327 0x00000000, /* Placeholder for LDR instruction. */
2328 0x14000000, /* b <label> */
2329 };
2330
2331 /* Section name for stubs is the associated section name plus this
2332 string. */
2333 #define STUB_SUFFIX ".stub"
2334
2335 enum elf_aarch64_stub_type
2336 {
2337 aarch64_stub_none,
2338 aarch64_stub_adrp_branch,
2339 aarch64_stub_long_branch,
2340 aarch64_stub_erratum_835769_veneer,
2341 aarch64_stub_erratum_843419_veneer,
2342 };
2343
2344 struct elf_aarch64_stub_hash_entry
2345 {
2346 /* Base hash table entry structure. */
2347 struct bfd_hash_entry root;
2348
2349 /* The stub section. */
2350 asection *stub_sec;
2351
2352 /* Offset within stub_sec of the beginning of this stub. */
2353 bfd_vma stub_offset;
2354
2355 /* Given the symbol's value and its section we can determine its final
2356 value when building the stubs (so the stub knows where to jump). */
2357 bfd_vma target_value;
2358 asection *target_section;
2359
2360 enum elf_aarch64_stub_type stub_type;
2361
2362 /* The symbol table entry, if any, that this was derived from. */
2363 struct elf_aarch64_link_hash_entry *h;
2364
2365 /* Destination symbol type */
2366 unsigned char st_type;
2367
2368 /* Where this stub is being called from, or, in the case of combined
2369 stub sections, the first input section in the group. */
2370 asection *id_sec;
2371
2372 /* The name for the local symbol at the start of this stub. The
2373 stub name in the hash table has to be unique; this does not, so
2374 it can be friendlier. */
2375 char *output_name;
2376
2377 /* The instruction which caused this stub to be generated (only valid for
2378 erratum 835769 workaround stubs at present). */
2379 uint32_t veneered_insn;
2380
2381 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2382 bfd_vma adrp_offset;
2383 };
2384
2385 /* Used to build a map of a section. This is required for mixed-endian
2386 code/data. */
2387
2388 typedef struct elf_elf_section_map
2389 {
2390 bfd_vma vma;
2391 char type;
2392 }
2393 elf_aarch64_section_map;
2394
2395
2396 typedef struct _aarch64_elf_section_data
2397 {
2398 struct bfd_elf_section_data elf;
2399 unsigned int mapcount;
2400 unsigned int mapsize;
2401 elf_aarch64_section_map *map;
2402 }
2403 _aarch64_elf_section_data;
2404
2405 #define elf_aarch64_section_data(sec) \
2406 ((_aarch64_elf_section_data *) elf_section_data (sec))
2407
2408 /* The size of the thread control block which is defined to be two pointers. */
2409 #define TCB_SIZE (ARCH_SIZE/8)*2
2410
2411 struct elf_aarch64_local_symbol
2412 {
2413 unsigned int got_type;
2414 bfd_signed_vma got_refcount;
2415 bfd_vma got_offset;
2416
2417 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2418 offset is from the end of the jump table and reserved entries
2419 within the PLTGOT.
2420
2421 The magic value (bfd_vma) -1 indicates that an offset has not be
2422 allocated. */
2423 bfd_vma tlsdesc_got_jump_table_offset;
2424 };
2425
2426 struct elf_aarch64_obj_tdata
2427 {
2428 struct elf_obj_tdata root;
2429
2430 /* local symbol descriptors */
2431 struct elf_aarch64_local_symbol *locals;
2432
2433 /* Zero to warn when linking objects with incompatible enum sizes. */
2434 int no_enum_size_warning;
2435
2436 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2437 int no_wchar_size_warning;
2438 };
2439
2440 #define elf_aarch64_tdata(bfd) \
2441 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2442
2443 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2444
2445 #define is_aarch64_elf(bfd) \
2446 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2447 && elf_tdata (bfd) != NULL \
2448 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2449
2450 static bfd_boolean
2451 elfNN_aarch64_mkobject (bfd *abfd)
2452 {
2453 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2454 AARCH64_ELF_DATA);
2455 }
2456
2457 #define elf_aarch64_hash_entry(ent) \
2458 ((struct elf_aarch64_link_hash_entry *)(ent))
2459
2460 #define GOT_UNKNOWN 0
2461 #define GOT_NORMAL 1
2462 #define GOT_TLS_GD 2
2463 #define GOT_TLS_IE 4
2464 #define GOT_TLSDESC_GD 8
2465
2466 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2467
2468 /* AArch64 ELF linker hash entry. */
2469 struct elf_aarch64_link_hash_entry
2470 {
2471 struct elf_link_hash_entry root;
2472
2473 /* Track dynamic relocs copied for this symbol. */
2474 struct elf_dyn_relocs *dyn_relocs;
2475
2476 /* Since PLT entries have variable size, we need to record the
2477 index into .got.plt instead of recomputing it from the PLT
2478 offset. */
2479 bfd_signed_vma plt_got_offset;
2480
2481 /* Bit mask representing the type of GOT entry(s) if any required by
2482 this symbol. */
2483 unsigned int got_type;
2484
2485 /* A pointer to the most recently used stub hash entry against this
2486 symbol. */
2487 struct elf_aarch64_stub_hash_entry *stub_cache;
2488
2489 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2490 is from the end of the jump table and reserved entries within the PLTGOT.
2491
2492 The magic value (bfd_vma) -1 indicates that an offset has not
2493 be allocated. */
2494 bfd_vma tlsdesc_got_jump_table_offset;
2495 };
2496
2497 static unsigned int
2498 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2499 bfd *abfd,
2500 unsigned long r_symndx)
2501 {
2502 if (h)
2503 return elf_aarch64_hash_entry (h)->got_type;
2504
2505 if (! elf_aarch64_locals (abfd))
2506 return GOT_UNKNOWN;
2507
2508 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2509 }
2510
2511 /* Get the AArch64 elf linker hash table from a link_info structure. */
2512 #define elf_aarch64_hash_table(info) \
2513 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2514
2515 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2516 ((struct elf_aarch64_stub_hash_entry *) \
2517 bfd_hash_lookup ((table), (string), (create), (copy)))
2518
2519 /* AArch64 ELF linker hash table. */
2520 struct elf_aarch64_link_hash_table
2521 {
2522 /* The main hash table. */
2523 struct elf_link_hash_table root;
2524
2525 /* Nonzero to force PIC branch veneers. */
2526 int pic_veneer;
2527
2528 /* Fix erratum 835769. */
2529 int fix_erratum_835769;
2530
2531 /* Fix erratum 843419. */
2532 int fix_erratum_843419;
2533
2534 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2535 int fix_erratum_843419_adr;
2536
2537 /* Don't apply link-time values for dynamic relocations. */
2538 int no_apply_dynamic_relocs;
2539
2540 /* The number of bytes in the initial entry in the PLT. */
2541 bfd_size_type plt_header_size;
2542
2543 /* The number of bytes in the subsequent PLT etries. */
2544 bfd_size_type plt_entry_size;
2545
2546 /* Small local sym cache. */
2547 struct sym_cache sym_cache;
2548
2549 /* For convenience in allocate_dynrelocs. */
2550 bfd *obfd;
2551
2552 /* The amount of space used by the reserved portion of the sgotplt
2553 section, plus whatever space is used by the jump slots. */
2554 bfd_vma sgotplt_jump_table_size;
2555
2556 /* The stub hash table. */
2557 struct bfd_hash_table stub_hash_table;
2558
2559 /* Linker stub bfd. */
2560 bfd *stub_bfd;
2561
2562 /* Linker call-backs. */
2563 asection *(*add_stub_section) (const char *, asection *);
2564 void (*layout_sections_again) (void);
2565
2566 /* Array to keep track of which stub sections have been created, and
2567 information on stub grouping. */
2568 struct map_stub
2569 {
2570 /* This is the section to which stubs in the group will be
2571 attached. */
2572 asection *link_sec;
2573 /* The stub section. */
2574 asection *stub_sec;
2575 } *stub_group;
2576
2577 /* Assorted information used by elfNN_aarch64_size_stubs. */
2578 unsigned int bfd_count;
2579 unsigned int top_index;
2580 asection **input_list;
2581
2582 /* The offset into splt of the PLT entry for the TLS descriptor
2583 resolver. Special values are 0, if not necessary (or not found
2584 to be necessary yet), and -1 if needed but not determined
2585 yet. */
2586 bfd_vma tlsdesc_plt;
2587
2588 /* The GOT offset for the lazy trampoline. Communicated to the
2589 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2590 indicates an offset is not allocated. */
2591 bfd_vma dt_tlsdesc_got;
2592
2593 /* Used by local STT_GNU_IFUNC symbols. */
2594 htab_t loc_hash_table;
2595 void * loc_hash_memory;
2596 };
2597
2598 /* Create an entry in an AArch64 ELF linker hash table. */
2599
2600 static struct bfd_hash_entry *
2601 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2602 struct bfd_hash_table *table,
2603 const char *string)
2604 {
2605 struct elf_aarch64_link_hash_entry *ret =
2606 (struct elf_aarch64_link_hash_entry *) entry;
2607
2608 /* Allocate the structure if it has not already been allocated by a
2609 subclass. */
2610 if (ret == NULL)
2611 ret = bfd_hash_allocate (table,
2612 sizeof (struct elf_aarch64_link_hash_entry));
2613 if (ret == NULL)
2614 return (struct bfd_hash_entry *) ret;
2615
2616 /* Call the allocation method of the superclass. */
2617 ret = ((struct elf_aarch64_link_hash_entry *)
2618 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2619 table, string));
2620 if (ret != NULL)
2621 {
2622 ret->dyn_relocs = NULL;
2623 ret->got_type = GOT_UNKNOWN;
2624 ret->plt_got_offset = (bfd_vma) - 1;
2625 ret->stub_cache = NULL;
2626 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2627 }
2628
2629 return (struct bfd_hash_entry *) ret;
2630 }
2631
2632 /* Initialize an entry in the stub hash table. */
2633
2634 static struct bfd_hash_entry *
2635 stub_hash_newfunc (struct bfd_hash_entry *entry,
2636 struct bfd_hash_table *table, const char *string)
2637 {
2638 /* Allocate the structure if it has not already been allocated by a
2639 subclass. */
2640 if (entry == NULL)
2641 {
2642 entry = bfd_hash_allocate (table,
2643 sizeof (struct
2644 elf_aarch64_stub_hash_entry));
2645 if (entry == NULL)
2646 return entry;
2647 }
2648
2649 /* Call the allocation method of the superclass. */
2650 entry = bfd_hash_newfunc (entry, table, string);
2651 if (entry != NULL)
2652 {
2653 struct elf_aarch64_stub_hash_entry *eh;
2654
2655 /* Initialize the local fields. */
2656 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2657 eh->adrp_offset = 0;
2658 eh->stub_sec = NULL;
2659 eh->stub_offset = 0;
2660 eh->target_value = 0;
2661 eh->target_section = NULL;
2662 eh->stub_type = aarch64_stub_none;
2663 eh->h = NULL;
2664 eh->id_sec = NULL;
2665 }
2666
2667 return entry;
2668 }
2669
2670 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2671 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2672 as global symbol. We reuse indx and dynstr_index for local symbol
2673 hash since they aren't used by global symbols in this backend. */
2674
2675 static hashval_t
2676 elfNN_aarch64_local_htab_hash (const void *ptr)
2677 {
2678 struct elf_link_hash_entry *h
2679 = (struct elf_link_hash_entry *) ptr;
2680 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2681 }
2682
2683 /* Compare local hash entries. */
2684
2685 static int
2686 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2687 {
2688 struct elf_link_hash_entry *h1
2689 = (struct elf_link_hash_entry *) ptr1;
2690 struct elf_link_hash_entry *h2
2691 = (struct elf_link_hash_entry *) ptr2;
2692
2693 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2694 }
2695
2696 /* Find and/or create a hash entry for local symbol. */
2697
2698 static struct elf_link_hash_entry *
2699 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2700 bfd *abfd, const Elf_Internal_Rela *rel,
2701 bfd_boolean create)
2702 {
2703 struct elf_aarch64_link_hash_entry e, *ret;
2704 asection *sec = abfd->sections;
2705 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2706 ELFNN_R_SYM (rel->r_info));
2707 void **slot;
2708
2709 e.root.indx = sec->id;
2710 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2711 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2712 create ? INSERT : NO_INSERT);
2713
2714 if (!slot)
2715 return NULL;
2716
2717 if (*slot)
2718 {
2719 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2720 return &ret->root;
2721 }
2722
2723 ret = (struct elf_aarch64_link_hash_entry *)
2724 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2725 sizeof (struct elf_aarch64_link_hash_entry));
2726 if (ret)
2727 {
2728 memset (ret, 0, sizeof (*ret));
2729 ret->root.indx = sec->id;
2730 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2731 ret->root.dynindx = -1;
2732 *slot = ret;
2733 }
2734 return &ret->root;
2735 }
2736
2737 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2738
2739 static void
2740 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2741 struct elf_link_hash_entry *dir,
2742 struct elf_link_hash_entry *ind)
2743 {
2744 struct elf_aarch64_link_hash_entry *edir, *eind;
2745
2746 edir = (struct elf_aarch64_link_hash_entry *) dir;
2747 eind = (struct elf_aarch64_link_hash_entry *) ind;
2748
2749 if (eind->dyn_relocs != NULL)
2750 {
2751 if (edir->dyn_relocs != NULL)
2752 {
2753 struct elf_dyn_relocs **pp;
2754 struct elf_dyn_relocs *p;
2755
2756 /* Add reloc counts against the indirect sym to the direct sym
2757 list. Merge any entries against the same section. */
2758 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2759 {
2760 struct elf_dyn_relocs *q;
2761
2762 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2763 if (q->sec == p->sec)
2764 {
2765 q->pc_count += p->pc_count;
2766 q->count += p->count;
2767 *pp = p->next;
2768 break;
2769 }
2770 if (q == NULL)
2771 pp = &p->next;
2772 }
2773 *pp = edir->dyn_relocs;
2774 }
2775
2776 edir->dyn_relocs = eind->dyn_relocs;
2777 eind->dyn_relocs = NULL;
2778 }
2779
2780 if (ind->root.type == bfd_link_hash_indirect)
2781 {
2782 /* Copy over PLT info. */
2783 if (dir->got.refcount <= 0)
2784 {
2785 edir->got_type = eind->got_type;
2786 eind->got_type = GOT_UNKNOWN;
2787 }
2788 }
2789
2790 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2791 }
2792
2793 /* Destroy an AArch64 elf linker hash table. */
2794
2795 static void
2796 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2797 {
2798 struct elf_aarch64_link_hash_table *ret
2799 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2800
2801 if (ret->loc_hash_table)
2802 htab_delete (ret->loc_hash_table);
2803 if (ret->loc_hash_memory)
2804 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2805
2806 bfd_hash_table_free (&ret->stub_hash_table);
2807 _bfd_elf_link_hash_table_free (obfd);
2808 }
2809
2810 /* Create an AArch64 elf linker hash table. */
2811
2812 static struct bfd_link_hash_table *
2813 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2814 {
2815 struct elf_aarch64_link_hash_table *ret;
2816 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2817
2818 ret = bfd_zmalloc (amt);
2819 if (ret == NULL)
2820 return NULL;
2821
2822 if (!_bfd_elf_link_hash_table_init
2823 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2824 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2825 {
2826 free (ret);
2827 return NULL;
2828 }
2829
2830 ret->plt_header_size = PLT_ENTRY_SIZE;
2831 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2832 ret->obfd = abfd;
2833 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2834
2835 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2836 sizeof (struct elf_aarch64_stub_hash_entry)))
2837 {
2838 _bfd_elf_link_hash_table_free (abfd);
2839 return NULL;
2840 }
2841
2842 ret->loc_hash_table = htab_try_create (1024,
2843 elfNN_aarch64_local_htab_hash,
2844 elfNN_aarch64_local_htab_eq,
2845 NULL);
2846 ret->loc_hash_memory = objalloc_create ();
2847 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2848 {
2849 elfNN_aarch64_link_hash_table_free (abfd);
2850 return NULL;
2851 }
2852 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2853
2854 return &ret->root.root;
2855 }
2856
2857 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2858
2859 static bfd_boolean
2860 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2861 bfd_vma offset, bfd_vma value)
2862 {
2863 reloc_howto_type *howto;
2864 bfd_vma place;
2865
2866 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2867 place = (input_section->output_section->vma + input_section->output_offset
2868 + offset);
2869
2870 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2871 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2872 return _bfd_aarch64_elf_put_addend (input_bfd,
2873 input_section->contents + offset, r_type,
2874 howto, value) == bfd_reloc_ok;
2875 }
2876
2877 static enum elf_aarch64_stub_type
2878 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2879 {
2880 if (aarch64_valid_for_adrp_p (value, place))
2881 return aarch64_stub_adrp_branch;
2882 return aarch64_stub_long_branch;
2883 }
2884
2885 /* Determine the type of stub needed, if any, for a call. */
2886
2887 static enum elf_aarch64_stub_type
2888 aarch64_type_of_stub (asection *input_sec,
2889 const Elf_Internal_Rela *rel,
2890 asection *sym_sec,
2891 unsigned char st_type,
2892 bfd_vma destination)
2893 {
2894 bfd_vma location;
2895 bfd_signed_vma branch_offset;
2896 unsigned int r_type;
2897 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2898
2899 if (st_type != STT_FUNC
2900 && (sym_sec == input_sec))
2901 return stub_type;
2902
2903 /* Determine where the call point is. */
2904 location = (input_sec->output_offset
2905 + input_sec->output_section->vma + rel->r_offset);
2906
2907 branch_offset = (bfd_signed_vma) (destination - location);
2908
2909 r_type = ELFNN_R_TYPE (rel->r_info);
2910
2911 /* We don't want to redirect any old unconditional jump in this way,
2912 only one which is being used for a sibcall, where it is
2913 acceptable for the IP0 and IP1 registers to be clobbered. */
2914 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2915 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2916 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2917 {
2918 stub_type = aarch64_stub_long_branch;
2919 }
2920
2921 return stub_type;
2922 }
2923
2924 /* Build a name for an entry in the stub hash table. */
2925
2926 static char *
2927 elfNN_aarch64_stub_name (const asection *input_section,
2928 const asection *sym_sec,
2929 const struct elf_aarch64_link_hash_entry *hash,
2930 const Elf_Internal_Rela *rel)
2931 {
2932 char *stub_name;
2933 bfd_size_type len;
2934
2935 if (hash)
2936 {
2937 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2938 stub_name = bfd_malloc (len);
2939 if (stub_name != NULL)
2940 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2941 (unsigned int) input_section->id,
2942 hash->root.root.root.string,
2943 rel->r_addend);
2944 }
2945 else
2946 {
2947 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2948 stub_name = bfd_malloc (len);
2949 if (stub_name != NULL)
2950 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2951 (unsigned int) input_section->id,
2952 (unsigned int) sym_sec->id,
2953 (unsigned int) ELFNN_R_SYM (rel->r_info),
2954 rel->r_addend);
2955 }
2956
2957 return stub_name;
2958 }
2959
2960 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2961 executable PLT slots where the executable never takes the address of those
2962 functions, the function symbols are not added to the hash table. */
2963
2964 static bfd_boolean
2965 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2966 {
2967 if (h->plt.offset != (bfd_vma) -1
2968 && !h->def_regular
2969 && !h->pointer_equality_needed)
2970 return FALSE;
2971
2972 return _bfd_elf_hash_symbol (h);
2973 }
2974
2975
2976 /* Look up an entry in the stub hash. Stub entries are cached because
2977 creating the stub name takes a bit of time. */
2978
2979 static struct elf_aarch64_stub_hash_entry *
2980 elfNN_aarch64_get_stub_entry (const asection *input_section,
2981 const asection *sym_sec,
2982 struct elf_link_hash_entry *hash,
2983 const Elf_Internal_Rela *rel,
2984 struct elf_aarch64_link_hash_table *htab)
2985 {
2986 struct elf_aarch64_stub_hash_entry *stub_entry;
2987 struct elf_aarch64_link_hash_entry *h =
2988 (struct elf_aarch64_link_hash_entry *) hash;
2989 const asection *id_sec;
2990
2991 if ((input_section->flags & SEC_CODE) == 0)
2992 return NULL;
2993
2994 /* If this input section is part of a group of sections sharing one
2995 stub section, then use the id of the first section in the group.
2996 Stub names need to include a section id, as there may well be
2997 more than one stub used to reach say, printf, and we need to
2998 distinguish between them. */
2999 id_sec = htab->stub_group[input_section->id].link_sec;
3000
3001 if (h != NULL && h->stub_cache != NULL
3002 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3003 {
3004 stub_entry = h->stub_cache;
3005 }
3006 else
3007 {
3008 char *stub_name;
3009
3010 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3011 if (stub_name == NULL)
3012 return NULL;
3013
3014 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3015 stub_name, FALSE, FALSE);
3016 if (h != NULL)
3017 h->stub_cache = stub_entry;
3018
3019 free (stub_name);
3020 }
3021
3022 return stub_entry;
3023 }
3024
3025
3026 /* Create a stub section. */
3027
3028 static asection *
3029 _bfd_aarch64_create_stub_section (asection *section,
3030 struct elf_aarch64_link_hash_table *htab)
3031 {
3032 size_t namelen;
3033 bfd_size_type len;
3034 char *s_name;
3035
3036 namelen = strlen (section->name);
3037 len = namelen + sizeof (STUB_SUFFIX);
3038 s_name = bfd_alloc (htab->stub_bfd, len);
3039 if (s_name == NULL)
3040 return NULL;
3041
3042 memcpy (s_name, section->name, namelen);
3043 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3044 return (*htab->add_stub_section) (s_name, section);
3045 }
3046
3047
3048 /* Find or create a stub section for a link section.
3049
3050 Fix or create the stub section used to collect stubs attached to
3051 the specified link section. */
3052
3053 static asection *
3054 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3055 struct elf_aarch64_link_hash_table *htab)
3056 {
3057 if (htab->stub_group[link_section->id].stub_sec == NULL)
3058 htab->stub_group[link_section->id].stub_sec
3059 = _bfd_aarch64_create_stub_section (link_section, htab);
3060 return htab->stub_group[link_section->id].stub_sec;
3061 }
3062
3063
3064 /* Find or create a stub section in the stub group for an input
3065 section. */
3066
3067 static asection *
3068 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3069 struct elf_aarch64_link_hash_table *htab)
3070 {
3071 asection *link_sec = htab->stub_group[section->id].link_sec;
3072 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3073 }
3074
3075
3076 /* Add a new stub entry in the stub group associated with an input
3077 section to the stub hash. Not all fields of the new stub entry are
3078 initialised. */
3079
3080 static struct elf_aarch64_stub_hash_entry *
3081 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3082 asection *section,
3083 struct elf_aarch64_link_hash_table *htab)
3084 {
3085 asection *link_sec;
3086 asection *stub_sec;
3087 struct elf_aarch64_stub_hash_entry *stub_entry;
3088
3089 link_sec = htab->stub_group[section->id].link_sec;
3090 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3091
3092 /* Enter this entry into the linker stub hash table. */
3093 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3094 TRUE, FALSE);
3095 if (stub_entry == NULL)
3096 {
3097 /* xgettext:c-format */
3098 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3099 section->owner, stub_name);
3100 return NULL;
3101 }
3102
3103 stub_entry->stub_sec = stub_sec;
3104 stub_entry->stub_offset = 0;
3105 stub_entry->id_sec = link_sec;
3106
3107 return stub_entry;
3108 }
3109
3110 /* Add a new stub entry in the final stub section to the stub hash.
3111 Not all fields of the new stub entry are initialised. */
3112
3113 static struct elf_aarch64_stub_hash_entry *
3114 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3115 asection *link_section,
3116 struct elf_aarch64_link_hash_table *htab)
3117 {
3118 asection *stub_sec;
3119 struct elf_aarch64_stub_hash_entry *stub_entry;
3120
3121 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3122 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3123 TRUE, FALSE);
3124 if (stub_entry == NULL)
3125 {
3126 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3127 return NULL;
3128 }
3129
3130 stub_entry->stub_sec = stub_sec;
3131 stub_entry->stub_offset = 0;
3132 stub_entry->id_sec = link_section;
3133
3134 return stub_entry;
3135 }
3136
3137
3138 static bfd_boolean
3139 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3140 void *in_arg ATTRIBUTE_UNUSED)
3141 {
3142 struct elf_aarch64_stub_hash_entry *stub_entry;
3143 asection *stub_sec;
3144 bfd *stub_bfd;
3145 bfd_byte *loc;
3146 bfd_vma sym_value;
3147 bfd_vma veneered_insn_loc;
3148 bfd_vma veneer_entry_loc;
3149 bfd_signed_vma branch_offset = 0;
3150 unsigned int template_size;
3151 const uint32_t *template;
3152 unsigned int i;
3153
3154 /* Massage our args to the form they really have. */
3155 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3156
3157 stub_sec = stub_entry->stub_sec;
3158
3159 /* Make a note of the offset within the stubs for this entry. */
3160 stub_entry->stub_offset = stub_sec->size;
3161 loc = stub_sec->contents + stub_entry->stub_offset;
3162
3163 stub_bfd = stub_sec->owner;
3164
3165 /* This is the address of the stub destination. */
3166 sym_value = (stub_entry->target_value
3167 + stub_entry->target_section->output_offset
3168 + stub_entry->target_section->output_section->vma);
3169
3170 if (stub_entry->stub_type == aarch64_stub_long_branch)
3171 {
3172 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3173 + stub_sec->output_offset);
3174
3175 /* See if we can relax the stub. */
3176 if (aarch64_valid_for_adrp_p (sym_value, place))
3177 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3178 }
3179
3180 switch (stub_entry->stub_type)
3181 {
3182 case aarch64_stub_adrp_branch:
3183 template = aarch64_adrp_branch_stub;
3184 template_size = sizeof (aarch64_adrp_branch_stub);
3185 break;
3186 case aarch64_stub_long_branch:
3187 template = aarch64_long_branch_stub;
3188 template_size = sizeof (aarch64_long_branch_stub);
3189 break;
3190 case aarch64_stub_erratum_835769_veneer:
3191 template = aarch64_erratum_835769_stub;
3192 template_size = sizeof (aarch64_erratum_835769_stub);
3193 break;
3194 case aarch64_stub_erratum_843419_veneer:
3195 template = aarch64_erratum_843419_stub;
3196 template_size = sizeof (aarch64_erratum_843419_stub);
3197 break;
3198 default:
3199 abort ();
3200 }
3201
3202 for (i = 0; i < (template_size / sizeof template[0]); i++)
3203 {
3204 bfd_putl32 (template[i], loc);
3205 loc += 4;
3206 }
3207
3208 template_size = (template_size + 7) & ~7;
3209 stub_sec->size += template_size;
3210
3211 switch (stub_entry->stub_type)
3212 {
3213 case aarch64_stub_adrp_branch:
3214 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3215 stub_entry->stub_offset, sym_value))
3216 /* The stub would not have been relaxed if the offset was out
3217 of range. */
3218 BFD_FAIL ();
3219
3220 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3221 stub_entry->stub_offset + 4, sym_value))
3222 BFD_FAIL ();
3223 break;
3224
3225 case aarch64_stub_long_branch:
3226 /* We want the value relative to the address 12 bytes back from the
3227 value itself. */
3228 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3229 stub_entry->stub_offset + 16, sym_value + 12))
3230 BFD_FAIL ();
3231 break;
3232
3233 case aarch64_stub_erratum_835769_veneer:
3234 veneered_insn_loc = stub_entry->target_section->output_section->vma
3235 + stub_entry->target_section->output_offset
3236 + stub_entry->target_value;
3237 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3238 + stub_entry->stub_sec->output_offset
3239 + stub_entry->stub_offset;
3240 branch_offset = veneered_insn_loc - veneer_entry_loc;
3241 branch_offset >>= 2;
3242 branch_offset &= 0x3ffffff;
3243 bfd_putl32 (stub_entry->veneered_insn,
3244 stub_sec->contents + stub_entry->stub_offset);
3245 bfd_putl32 (template[1] | branch_offset,
3246 stub_sec->contents + stub_entry->stub_offset + 4);
3247 break;
3248
3249 case aarch64_stub_erratum_843419_veneer:
3250 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3251 stub_entry->stub_offset + 4, sym_value + 4))
3252 BFD_FAIL ();
3253 break;
3254
3255 default:
3256 abort ();
3257 }
3258
3259 return TRUE;
3260 }
3261
3262 /* As above, but don't actually build the stub. Just bump offset so
3263 we know stub section sizes. */
3264
3265 static bfd_boolean
3266 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3267 void *in_arg ATTRIBUTE_UNUSED)
3268 {
3269 struct elf_aarch64_stub_hash_entry *stub_entry;
3270 int size;
3271
3272 /* Massage our args to the form they really have. */
3273 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3274
3275 switch (stub_entry->stub_type)
3276 {
3277 case aarch64_stub_adrp_branch:
3278 size = sizeof (aarch64_adrp_branch_stub);
3279 break;
3280 case aarch64_stub_long_branch:
3281 size = sizeof (aarch64_long_branch_stub);
3282 break;
3283 case aarch64_stub_erratum_835769_veneer:
3284 size = sizeof (aarch64_erratum_835769_stub);
3285 break;
3286 case aarch64_stub_erratum_843419_veneer:
3287 size = sizeof (aarch64_erratum_843419_stub);
3288 break;
3289 default:
3290 abort ();
3291 }
3292
3293 size = (size + 7) & ~7;
3294 stub_entry->stub_sec->size += size;
3295 return TRUE;
3296 }
3297
3298 /* External entry points for sizing and building linker stubs. */
3299
3300 /* Set up various things so that we can make a list of input sections
3301 for each output section included in the link. Returns -1 on error,
3302 0 when no stubs will be needed, and 1 on success. */
3303
3304 int
3305 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3306 struct bfd_link_info *info)
3307 {
3308 bfd *input_bfd;
3309 unsigned int bfd_count;
3310 unsigned int top_id, top_index;
3311 asection *section;
3312 asection **input_list, **list;
3313 bfd_size_type amt;
3314 struct elf_aarch64_link_hash_table *htab =
3315 elf_aarch64_hash_table (info);
3316
3317 if (!is_elf_hash_table (htab))
3318 return 0;
3319
3320 /* Count the number of input BFDs and find the top input section id. */
3321 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3322 input_bfd != NULL; input_bfd = input_bfd->link.next)
3323 {
3324 bfd_count += 1;
3325 for (section = input_bfd->sections;
3326 section != NULL; section = section->next)
3327 {
3328 if (top_id < section->id)
3329 top_id = section->id;
3330 }
3331 }
3332 htab->bfd_count = bfd_count;
3333
3334 amt = sizeof (struct map_stub) * (top_id + 1);
3335 htab->stub_group = bfd_zmalloc (amt);
3336 if (htab->stub_group == NULL)
3337 return -1;
3338
3339 /* We can't use output_bfd->section_count here to find the top output
3340 section index as some sections may have been removed, and
3341 _bfd_strip_section_from_output doesn't renumber the indices. */
3342 for (section = output_bfd->sections, top_index = 0;
3343 section != NULL; section = section->next)
3344 {
3345 if (top_index < section->index)
3346 top_index = section->index;
3347 }
3348
3349 htab->top_index = top_index;
3350 amt = sizeof (asection *) * (top_index + 1);
3351 input_list = bfd_malloc (amt);
3352 htab->input_list = input_list;
3353 if (input_list == NULL)
3354 return -1;
3355
3356 /* For sections we aren't interested in, mark their entries with a
3357 value we can check later. */
3358 list = input_list + top_index;
3359 do
3360 *list = bfd_abs_section_ptr;
3361 while (list-- != input_list);
3362
3363 for (section = output_bfd->sections;
3364 section != NULL; section = section->next)
3365 {
3366 if ((section->flags & SEC_CODE) != 0)
3367 input_list[section->index] = NULL;
3368 }
3369
3370 return 1;
3371 }
3372
3373 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3374 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3375
3376 /* The linker repeatedly calls this function for each input section,
3377 in the order that input sections are linked into output sections.
3378 Build lists of input sections to determine groupings between which
3379 we may insert linker stubs. */
3380
3381 void
3382 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3383 {
3384 struct elf_aarch64_link_hash_table *htab =
3385 elf_aarch64_hash_table (info);
3386
3387 if (isec->output_section->index <= htab->top_index)
3388 {
3389 asection **list = htab->input_list + isec->output_section->index;
3390
3391 if (*list != bfd_abs_section_ptr)
3392 {
3393 /* Steal the link_sec pointer for our list. */
3394 /* This happens to make the list in reverse order,
3395 which is what we want. */
3396 PREV_SEC (isec) = *list;
3397 *list = isec;
3398 }
3399 }
3400 }
3401
3402 /* See whether we can group stub sections together. Grouping stub
3403 sections may result in fewer stubs. More importantly, we need to
3404 put all .init* and .fini* stubs at the beginning of the .init or
3405 .fini output sections respectively, because glibc splits the
3406 _init and _fini functions into multiple parts. Putting a stub in
3407 the middle of a function is not a good idea. */
3408
3409 static void
3410 group_sections (struct elf_aarch64_link_hash_table *htab,
3411 bfd_size_type stub_group_size,
3412 bfd_boolean stubs_always_before_branch)
3413 {
3414 asection **list = htab->input_list + htab->top_index;
3415
3416 do
3417 {
3418 asection *tail = *list;
3419
3420 if (tail == bfd_abs_section_ptr)
3421 continue;
3422
3423 while (tail != NULL)
3424 {
3425 asection *curr;
3426 asection *prev;
3427 bfd_size_type total;
3428
3429 curr = tail;
3430 total = tail->size;
3431 while ((prev = PREV_SEC (curr)) != NULL
3432 && ((total += curr->output_offset - prev->output_offset)
3433 < stub_group_size))
3434 curr = prev;
3435
3436 /* OK, the size from the start of CURR to the end is less
3437 than stub_group_size and thus can be handled by one stub
3438 section. (Or the tail section is itself larger than
3439 stub_group_size, in which case we may be toast.)
3440 We should really be keeping track of the total size of
3441 stubs added here, as stubs contribute to the final output
3442 section size. */
3443 do
3444 {
3445 prev = PREV_SEC (tail);
3446 /* Set up this stub group. */
3447 htab->stub_group[tail->id].link_sec = curr;
3448 }
3449 while (tail != curr && (tail = prev) != NULL);
3450
3451 /* But wait, there's more! Input sections up to stub_group_size
3452 bytes before the stub section can be handled by it too. */
3453 if (!stubs_always_before_branch)
3454 {
3455 total = 0;
3456 while (prev != NULL
3457 && ((total += tail->output_offset - prev->output_offset)
3458 < stub_group_size))
3459 {
3460 tail = prev;
3461 prev = PREV_SEC (tail);
3462 htab->stub_group[tail->id].link_sec = curr;
3463 }
3464 }
3465 tail = prev;
3466 }
3467 }
3468 while (list-- != htab->input_list);
3469
3470 free (htab->input_list);
3471 }
3472
3473 #undef PREV_SEC
3474
3475 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3476
3477 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3478 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3479 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3480 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3481 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3482 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3483
3484 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3485 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3486 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3487 #define AARCH64_ZR 0x1f
3488
3489 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3490 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3491
3492 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3493 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3494 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3495 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3496 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3497 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3498 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3499 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3500 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3501 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3502 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3503 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3504 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3505 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3506 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3507 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3508 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3509 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3510
3511 /* Classify an INSN if it is indeed a load/store.
3512
3513 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3514
3515 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3516 is set equal to RT.
3517
3518 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3519
3520 static bfd_boolean
3521 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3522 bfd_boolean *pair, bfd_boolean *load)
3523 {
3524 uint32_t opcode;
3525 unsigned int r;
3526 uint32_t opc = 0;
3527 uint32_t v = 0;
3528 uint32_t opc_v = 0;
3529
3530 /* Bail out quickly if INSN doesn't fall into the load-store
3531 encoding space. */
3532 if (!AARCH64_LDST (insn))
3533 return FALSE;
3534
3535 *pair = FALSE;
3536 *load = FALSE;
3537 if (AARCH64_LDST_EX (insn))
3538 {
3539 *rt = AARCH64_RT (insn);
3540 *rt2 = *rt;
3541 if (AARCH64_BIT (insn, 21) == 1)
3542 {
3543 *pair = TRUE;
3544 *rt2 = AARCH64_RT2 (insn);
3545 }
3546 *load = AARCH64_LD (insn);
3547 return TRUE;
3548 }
3549 else if (AARCH64_LDST_NAP (insn)
3550 || AARCH64_LDSTP_PI (insn)
3551 || AARCH64_LDSTP_O (insn)
3552 || AARCH64_LDSTP_PRE (insn))
3553 {
3554 *pair = TRUE;
3555 *rt = AARCH64_RT (insn);
3556 *rt2 = AARCH64_RT2 (insn);
3557 *load = AARCH64_LD (insn);
3558 return TRUE;
3559 }
3560 else if (AARCH64_LDST_PCREL (insn)
3561 || AARCH64_LDST_UI (insn)
3562 || AARCH64_LDST_PIIMM (insn)
3563 || AARCH64_LDST_U (insn)
3564 || AARCH64_LDST_PREIMM (insn)
3565 || AARCH64_LDST_RO (insn)
3566 || AARCH64_LDST_UIMM (insn))
3567 {
3568 *rt = AARCH64_RT (insn);
3569 *rt2 = *rt;
3570 if (AARCH64_LDST_PCREL (insn))
3571 *load = TRUE;
3572 opc = AARCH64_BITS (insn, 22, 2);
3573 v = AARCH64_BIT (insn, 26);
3574 opc_v = opc | (v << 2);
3575 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3576 || opc_v == 5 || opc_v == 7);
3577 return TRUE;
3578 }
3579 else if (AARCH64_LDST_SIMD_M (insn)
3580 || AARCH64_LDST_SIMD_M_PI (insn))
3581 {
3582 *rt = AARCH64_RT (insn);
3583 *load = AARCH64_BIT (insn, 22);
3584 opcode = (insn >> 12) & 0xf;
3585 switch (opcode)
3586 {
3587 case 0:
3588 case 2:
3589 *rt2 = *rt + 3;
3590 break;
3591
3592 case 4:
3593 case 6:
3594 *rt2 = *rt + 2;
3595 break;
3596
3597 case 7:
3598 *rt2 = *rt;
3599 break;
3600
3601 case 8:
3602 case 10:
3603 *rt2 = *rt + 1;
3604 break;
3605
3606 default:
3607 return FALSE;
3608 }
3609 return TRUE;
3610 }
3611 else if (AARCH64_LDST_SIMD_S (insn)
3612 || AARCH64_LDST_SIMD_S_PI (insn))
3613 {
3614 *rt = AARCH64_RT (insn);
3615 r = (insn >> 21) & 1;
3616 *load = AARCH64_BIT (insn, 22);
3617 opcode = (insn >> 13) & 0x7;
3618 switch (opcode)
3619 {
3620 case 0:
3621 case 2:
3622 case 4:
3623 *rt2 = *rt + r;
3624 break;
3625
3626 case 1:
3627 case 3:
3628 case 5:
3629 *rt2 = *rt + (r == 0 ? 2 : 3);
3630 break;
3631
3632 case 6:
3633 *rt2 = *rt + r;
3634 break;
3635
3636 case 7:
3637 *rt2 = *rt + (r == 0 ? 2 : 3);
3638 break;
3639
3640 default:
3641 return FALSE;
3642 }
3643 return TRUE;
3644 }
3645
3646 return FALSE;
3647 }
3648
3649 /* Return TRUE if INSN is multiply-accumulate. */
3650
3651 static bfd_boolean
3652 aarch64_mlxl_p (uint32_t insn)
3653 {
3654 uint32_t op31 = AARCH64_OP31 (insn);
3655
3656 if (AARCH64_MAC (insn)
3657 && (op31 == 0 || op31 == 1 || op31 == 5)
3658 /* Exclude MUL instructions which are encoded as a multiple accumulate
3659 with RA = XZR. */
3660 && AARCH64_RA (insn) != AARCH64_ZR)
3661 return TRUE;
3662
3663 return FALSE;
3664 }
3665
3666 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3667 it is possible for a 64-bit multiply-accumulate instruction to generate an
3668 incorrect result. The details are quite complex and hard to
3669 determine statically, since branches in the code may exist in some
3670 circumstances, but all cases end with a memory (load, store, or
3671 prefetch) instruction followed immediately by the multiply-accumulate
3672 operation. We employ a linker patching technique, by moving the potentially
3673 affected multiply-accumulate instruction into a patch region and replacing
3674 the original instruction with a branch to the patch. This function checks
3675 if INSN_1 is the memory operation followed by a multiply-accumulate
3676 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3677 if INSN_1 and INSN_2 are safe. */
3678
3679 static bfd_boolean
3680 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3681 {
3682 uint32_t rt;
3683 uint32_t rt2;
3684 uint32_t rn;
3685 uint32_t rm;
3686 uint32_t ra;
3687 bfd_boolean pair;
3688 bfd_boolean load;
3689
3690 if (aarch64_mlxl_p (insn_2)
3691 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3692 {
3693 /* Any SIMD memory op is independent of the subsequent MLA
3694 by definition of the erratum. */
3695 if (AARCH64_BIT (insn_1, 26))
3696 return TRUE;
3697
3698 /* If not SIMD, check for integer memory ops and MLA relationship. */
3699 rn = AARCH64_RN (insn_2);
3700 ra = AARCH64_RA (insn_2);
3701 rm = AARCH64_RM (insn_2);
3702
3703 /* If this is a load and there's a true(RAW) dependency, we are safe
3704 and this is not an erratum sequence. */
3705 if (load &&
3706 (rt == rn || rt == rm || rt == ra
3707 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3708 return FALSE;
3709
3710 /* We conservatively put out stubs for all other cases (including
3711 writebacks). */
3712 return TRUE;
3713 }
3714
3715 return FALSE;
3716 }
3717
3718 /* Used to order a list of mapping symbols by address. */
3719
3720 static int
3721 elf_aarch64_compare_mapping (const void *a, const void *b)
3722 {
3723 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3724 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3725
3726 if (amap->vma > bmap->vma)
3727 return 1;
3728 else if (amap->vma < bmap->vma)
3729 return -1;
3730 else if (amap->type > bmap->type)
3731 /* Ensure results do not depend on the host qsort for objects with
3732 multiple mapping symbols at the same address by sorting on type
3733 after vma. */
3734 return 1;
3735 else if (amap->type < bmap->type)
3736 return -1;
3737 else
3738 return 0;
3739 }
3740
3741
3742 static char *
3743 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3744 {
3745 char *stub_name = (char *) bfd_malloc
3746 (strlen ("__erratum_835769_veneer_") + 16);
3747 if (stub_name != NULL)
3748 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3749 return stub_name;
3750 }
3751
3752 /* Scan for Cortex-A53 erratum 835769 sequence.
3753
3754 Return TRUE else FALSE on abnormal termination. */
3755
3756 static bfd_boolean
3757 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3758 struct bfd_link_info *info,
3759 unsigned int *num_fixes_p)
3760 {
3761 asection *section;
3762 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3763 unsigned int num_fixes = *num_fixes_p;
3764
3765 if (htab == NULL)
3766 return TRUE;
3767
3768 for (section = input_bfd->sections;
3769 section != NULL;
3770 section = section->next)
3771 {
3772 bfd_byte *contents = NULL;
3773 struct _aarch64_elf_section_data *sec_data;
3774 unsigned int span;
3775
3776 if (elf_section_type (section) != SHT_PROGBITS
3777 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3778 || (section->flags & SEC_EXCLUDE) != 0
3779 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3780 || (section->output_section == bfd_abs_section_ptr))
3781 continue;
3782
3783 if (elf_section_data (section)->this_hdr.contents != NULL)
3784 contents = elf_section_data (section)->this_hdr.contents;
3785 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3786 return FALSE;
3787
3788 sec_data = elf_aarch64_section_data (section);
3789
3790 qsort (sec_data->map, sec_data->mapcount,
3791 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3792
3793 for (span = 0; span < sec_data->mapcount; span++)
3794 {
3795 unsigned int span_start = sec_data->map[span].vma;
3796 unsigned int span_end = ((span == sec_data->mapcount - 1)
3797 ? sec_data->map[0].vma + section->size
3798 : sec_data->map[span + 1].vma);
3799 unsigned int i;
3800 char span_type = sec_data->map[span].type;
3801
3802 if (span_type == 'd')
3803 continue;
3804
3805 for (i = span_start; i + 4 < span_end; i += 4)
3806 {
3807 uint32_t insn_1 = bfd_getl32 (contents + i);
3808 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3809
3810 if (aarch64_erratum_sequence (insn_1, insn_2))
3811 {
3812 struct elf_aarch64_stub_hash_entry *stub_entry;
3813 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3814 if (! stub_name)
3815 return FALSE;
3816
3817 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3818 section,
3819 htab);
3820 if (! stub_entry)
3821 return FALSE;
3822
3823 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3824 stub_entry->target_section = section;
3825 stub_entry->target_value = i + 4;
3826 stub_entry->veneered_insn = insn_2;
3827 stub_entry->output_name = stub_name;
3828 num_fixes++;
3829 }
3830 }
3831 }
3832 if (elf_section_data (section)->this_hdr.contents == NULL)
3833 free (contents);
3834 }
3835
3836 *num_fixes_p = num_fixes;
3837
3838 return TRUE;
3839 }
3840
3841
3842 /* Test if instruction INSN is ADRP. */
3843
3844 static bfd_boolean
3845 _bfd_aarch64_adrp_p (uint32_t insn)
3846 {
3847 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3848 }
3849
3850
3851 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3852
3853 static bfd_boolean
3854 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3855 uint32_t insn_3)
3856 {
3857 uint32_t rt;
3858 uint32_t rt2;
3859 bfd_boolean pair;
3860 bfd_boolean load;
3861
3862 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3863 && (!pair
3864 || (pair && !load))
3865 && AARCH64_LDST_UIMM (insn_3)
3866 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3867 }
3868
3869
3870 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3871
3872 Return TRUE if section CONTENTS at offset I contains one of the
3873 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3874 seen set P_VENEER_I to the offset of the final LOAD/STORE
3875 instruction in the sequence.
3876 */
3877
3878 static bfd_boolean
3879 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3880 bfd_vma i, bfd_vma span_end,
3881 bfd_vma *p_veneer_i)
3882 {
3883 uint32_t insn_1 = bfd_getl32 (contents + i);
3884
3885 if (!_bfd_aarch64_adrp_p (insn_1))
3886 return FALSE;
3887
3888 if (span_end < i + 12)
3889 return FALSE;
3890
3891 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3892 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3893
3894 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3895 return FALSE;
3896
3897 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3898 {
3899 *p_veneer_i = i + 8;
3900 return TRUE;
3901 }
3902
3903 if (span_end < i + 16)
3904 return FALSE;
3905
3906 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3907
3908 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3909 {
3910 *p_veneer_i = i + 12;
3911 return TRUE;
3912 }
3913
3914 return FALSE;
3915 }
3916
3917
3918 /* Resize all stub sections. */
3919
3920 static void
3921 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3922 {
3923 asection *section;
3924
3925 /* OK, we've added some stubs. Find out the new size of the
3926 stub sections. */
3927 for (section = htab->stub_bfd->sections;
3928 section != NULL; section = section->next)
3929 {
3930 /* Ignore non-stub sections. */
3931 if (!strstr (section->name, STUB_SUFFIX))
3932 continue;
3933 section->size = 0;
3934 }
3935
3936 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3937
3938 for (section = htab->stub_bfd->sections;
3939 section != NULL; section = section->next)
3940 {
3941 if (!strstr (section->name, STUB_SUFFIX))
3942 continue;
3943
3944 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
3945 as long branch stubs contain a 64-bit address. */
3946 if (section->size)
3947 section->size += 8;
3948
3949 /* Ensure all stub sections have a size which is a multiple of
3950 4096. This is important in order to ensure that the insertion
3951 of stub sections does not in itself move existing code around
3952 in such a way that new errata sequences are created. */
3953 if (htab->fix_erratum_843419)
3954 if (section->size)
3955 section->size = BFD_ALIGN (section->size, 0x1000);
3956 }
3957 }
3958
3959 /* Construct an erratum 843419 workaround stub name. */
3960
3961 static char *
3962 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3963 bfd_vma offset)
3964 {
3965 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3966 char *stub_name = bfd_malloc (len);
3967
3968 if (stub_name != NULL)
3969 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3970 input_section->owner->id,
3971 input_section->id,
3972 offset);
3973 return stub_name;
3974 }
3975
3976 /* Build a stub_entry structure describing an 843419 fixup.
3977
3978 The stub_entry constructed is populated with the bit pattern INSN
3979 of the instruction located at OFFSET within input SECTION.
3980
3981 Returns TRUE on success. */
3982
3983 static bfd_boolean
3984 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3985 bfd_vma adrp_offset,
3986 bfd_vma ldst_offset,
3987 asection *section,
3988 struct bfd_link_info *info)
3989 {
3990 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3991 char *stub_name;
3992 struct elf_aarch64_stub_hash_entry *stub_entry;
3993
3994 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3995 if (stub_name == NULL)
3996 return FALSE;
3997 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3998 FALSE, FALSE);
3999 if (stub_entry)
4000 {
4001 free (stub_name);
4002 return TRUE;
4003 }
4004
4005 /* We always place an 843419 workaround veneer in the stub section
4006 attached to the input section in which an erratum sequence has
4007 been found. This ensures that later in the link process (in
4008 elfNN_aarch64_write_section) when we copy the veneered
4009 instruction from the input section into the stub section the
4010 copied instruction will have had any relocations applied to it.
4011 If we placed workaround veneers in any other stub section then we
4012 could not assume that all relocations have been processed on the
4013 corresponding input section at the point we output the stub
4014 section. */
4015
4016 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4017 if (stub_entry == NULL)
4018 {
4019 free (stub_name);
4020 return FALSE;
4021 }
4022
4023 stub_entry->adrp_offset = adrp_offset;
4024 stub_entry->target_value = ldst_offset;
4025 stub_entry->target_section = section;
4026 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4027 stub_entry->veneered_insn = insn;
4028 stub_entry->output_name = stub_name;
4029
4030 return TRUE;
4031 }
4032
4033
4034 /* Scan an input section looking for the signature of erratum 843419.
4035
4036 Scans input SECTION in INPUT_BFD looking for erratum 843419
4037 signatures, for each signature found a stub_entry is created
4038 describing the location of the erratum for subsequent fixup.
4039
4040 Return TRUE on successful scan, FALSE on failure to scan.
4041 */
4042
4043 static bfd_boolean
4044 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4045 struct bfd_link_info *info)
4046 {
4047 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4048
4049 if (htab == NULL)
4050 return TRUE;
4051
4052 if (elf_section_type (section) != SHT_PROGBITS
4053 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4054 || (section->flags & SEC_EXCLUDE) != 0
4055 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4056 || (section->output_section == bfd_abs_section_ptr))
4057 return TRUE;
4058
4059 do
4060 {
4061 bfd_byte *contents = NULL;
4062 struct _aarch64_elf_section_data *sec_data;
4063 unsigned int span;
4064
4065 if (elf_section_data (section)->this_hdr.contents != NULL)
4066 contents = elf_section_data (section)->this_hdr.contents;
4067 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4068 return FALSE;
4069
4070 sec_data = elf_aarch64_section_data (section);
4071
4072 qsort (sec_data->map, sec_data->mapcount,
4073 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4074
4075 for (span = 0; span < sec_data->mapcount; span++)
4076 {
4077 unsigned int span_start = sec_data->map[span].vma;
4078 unsigned int span_end = ((span == sec_data->mapcount - 1)
4079 ? sec_data->map[0].vma + section->size
4080 : sec_data->map[span + 1].vma);
4081 unsigned int i;
4082 char span_type = sec_data->map[span].type;
4083
4084 if (span_type == 'd')
4085 continue;
4086
4087 for (i = span_start; i + 8 < span_end; i += 4)
4088 {
4089 bfd_vma vma = (section->output_section->vma
4090 + section->output_offset
4091 + i);
4092 bfd_vma veneer_i;
4093
4094 if (_bfd_aarch64_erratum_843419_p
4095 (contents, vma, i, span_end, &veneer_i))
4096 {
4097 uint32_t insn = bfd_getl32 (contents + veneer_i);
4098
4099 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4100 section, info))
4101 return FALSE;
4102 }
4103 }
4104 }
4105
4106 if (elf_section_data (section)->this_hdr.contents == NULL)
4107 free (contents);
4108 }
4109 while (0);
4110
4111 return TRUE;
4112 }
4113
4114
4115 /* Determine and set the size of the stub section for a final link.
4116
4117 The basic idea here is to examine all the relocations looking for
4118 PC-relative calls to a target that is unreachable with a "bl"
4119 instruction. */
4120
4121 bfd_boolean
4122 elfNN_aarch64_size_stubs (bfd *output_bfd,
4123 bfd *stub_bfd,
4124 struct bfd_link_info *info,
4125 bfd_signed_vma group_size,
4126 asection * (*add_stub_section) (const char *,
4127 asection *),
4128 void (*layout_sections_again) (void))
4129 {
4130 bfd_size_type stub_group_size;
4131 bfd_boolean stubs_always_before_branch;
4132 bfd_boolean stub_changed = FALSE;
4133 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4134 unsigned int num_erratum_835769_fixes = 0;
4135
4136 /* Propagate mach to stub bfd, because it may not have been
4137 finalized when we created stub_bfd. */
4138 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4139 bfd_get_mach (output_bfd));
4140
4141 /* Stash our params away. */
4142 htab->stub_bfd = stub_bfd;
4143 htab->add_stub_section = add_stub_section;
4144 htab->layout_sections_again = layout_sections_again;
4145 stubs_always_before_branch = group_size < 0;
4146 if (group_size < 0)
4147 stub_group_size = -group_size;
4148 else
4149 stub_group_size = group_size;
4150
4151 if (stub_group_size == 1)
4152 {
4153 /* Default values. */
4154 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4155 stub_group_size = 127 * 1024 * 1024;
4156 }
4157
4158 group_sections (htab, stub_group_size, stubs_always_before_branch);
4159
4160 (*htab->layout_sections_again) ();
4161
4162 if (htab->fix_erratum_835769)
4163 {
4164 bfd *input_bfd;
4165
4166 for (input_bfd = info->input_bfds;
4167 input_bfd != NULL; input_bfd = input_bfd->link.next)
4168 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4169 &num_erratum_835769_fixes))
4170 return FALSE;
4171
4172 _bfd_aarch64_resize_stubs (htab);
4173 (*htab->layout_sections_again) ();
4174 }
4175
4176 if (htab->fix_erratum_843419)
4177 {
4178 bfd *input_bfd;
4179
4180 for (input_bfd = info->input_bfds;
4181 input_bfd != NULL;
4182 input_bfd = input_bfd->link.next)
4183 {
4184 asection *section;
4185
4186 for (section = input_bfd->sections;
4187 section != NULL;
4188 section = section->next)
4189 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4190 return FALSE;
4191 }
4192
4193 _bfd_aarch64_resize_stubs (htab);
4194 (*htab->layout_sections_again) ();
4195 }
4196
4197 while (1)
4198 {
4199 bfd *input_bfd;
4200
4201 for (input_bfd = info->input_bfds;
4202 input_bfd != NULL; input_bfd = input_bfd->link.next)
4203 {
4204 Elf_Internal_Shdr *symtab_hdr;
4205 asection *section;
4206 Elf_Internal_Sym *local_syms = NULL;
4207
4208 /* We'll need the symbol table in a second. */
4209 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4210 if (symtab_hdr->sh_info == 0)
4211 continue;
4212
4213 /* Walk over each section attached to the input bfd. */
4214 for (section = input_bfd->sections;
4215 section != NULL; section = section->next)
4216 {
4217 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4218
4219 /* If there aren't any relocs, then there's nothing more
4220 to do. */
4221 if ((section->flags & SEC_RELOC) == 0
4222 || section->reloc_count == 0
4223 || (section->flags & SEC_CODE) == 0)
4224 continue;
4225
4226 /* If this section is a link-once section that will be
4227 discarded, then don't create any stubs. */
4228 if (section->output_section == NULL
4229 || section->output_section->owner != output_bfd)
4230 continue;
4231
4232 /* Get the relocs. */
4233 internal_relocs
4234 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4235 NULL, info->keep_memory);
4236 if (internal_relocs == NULL)
4237 goto error_ret_free_local;
4238
4239 /* Now examine each relocation. */
4240 irela = internal_relocs;
4241 irelaend = irela + section->reloc_count;
4242 for (; irela < irelaend; irela++)
4243 {
4244 unsigned int r_type, r_indx;
4245 enum elf_aarch64_stub_type stub_type;
4246 struct elf_aarch64_stub_hash_entry *stub_entry;
4247 asection *sym_sec;
4248 bfd_vma sym_value;
4249 bfd_vma destination;
4250 struct elf_aarch64_link_hash_entry *hash;
4251 const char *sym_name;
4252 char *stub_name;
4253 const asection *id_sec;
4254 unsigned char st_type;
4255 bfd_size_type len;
4256
4257 r_type = ELFNN_R_TYPE (irela->r_info);
4258 r_indx = ELFNN_R_SYM (irela->r_info);
4259
4260 if (r_type >= (unsigned int) R_AARCH64_end)
4261 {
4262 bfd_set_error (bfd_error_bad_value);
4263 error_ret_free_internal:
4264 if (elf_section_data (section)->relocs == NULL)
4265 free (internal_relocs);
4266 goto error_ret_free_local;
4267 }
4268
4269 /* Only look for stubs on unconditional branch and
4270 branch and link instructions. */
4271 if (r_type != (unsigned int) AARCH64_R (CALL26)
4272 && r_type != (unsigned int) AARCH64_R (JUMP26))
4273 continue;
4274
4275 /* Now determine the call target, its name, value,
4276 section. */
4277 sym_sec = NULL;
4278 sym_value = 0;
4279 destination = 0;
4280 hash = NULL;
4281 sym_name = NULL;
4282 if (r_indx < symtab_hdr->sh_info)
4283 {
4284 /* It's a local symbol. */
4285 Elf_Internal_Sym *sym;
4286 Elf_Internal_Shdr *hdr;
4287
4288 if (local_syms == NULL)
4289 {
4290 local_syms
4291 = (Elf_Internal_Sym *) symtab_hdr->contents;
4292 if (local_syms == NULL)
4293 local_syms
4294 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4295 symtab_hdr->sh_info, 0,
4296 NULL, NULL, NULL);
4297 if (local_syms == NULL)
4298 goto error_ret_free_internal;
4299 }
4300
4301 sym = local_syms + r_indx;
4302 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4303 sym_sec = hdr->bfd_section;
4304 if (!sym_sec)
4305 /* This is an undefined symbol. It can never
4306 be resolved. */
4307 continue;
4308
4309 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4310 sym_value = sym->st_value;
4311 destination = (sym_value + irela->r_addend
4312 + sym_sec->output_offset
4313 + sym_sec->output_section->vma);
4314 st_type = ELF_ST_TYPE (sym->st_info);
4315 sym_name
4316 = bfd_elf_string_from_elf_section (input_bfd,
4317 symtab_hdr->sh_link,
4318 sym->st_name);
4319 }
4320 else
4321 {
4322 int e_indx;
4323
4324 e_indx = r_indx - symtab_hdr->sh_info;
4325 hash = ((struct elf_aarch64_link_hash_entry *)
4326 elf_sym_hashes (input_bfd)[e_indx]);
4327
4328 while (hash->root.root.type == bfd_link_hash_indirect
4329 || hash->root.root.type == bfd_link_hash_warning)
4330 hash = ((struct elf_aarch64_link_hash_entry *)
4331 hash->root.root.u.i.link);
4332
4333 if (hash->root.root.type == bfd_link_hash_defined
4334 || hash->root.root.type == bfd_link_hash_defweak)
4335 {
4336 struct elf_aarch64_link_hash_table *globals =
4337 elf_aarch64_hash_table (info);
4338 sym_sec = hash->root.root.u.def.section;
4339 sym_value = hash->root.root.u.def.value;
4340 /* For a destination in a shared library,
4341 use the PLT stub as target address to
4342 decide whether a branch stub is
4343 needed. */
4344 if (globals->root.splt != NULL && hash != NULL
4345 && hash->root.plt.offset != (bfd_vma) - 1)
4346 {
4347 sym_sec = globals->root.splt;
4348 sym_value = hash->root.plt.offset;
4349 if (sym_sec->output_section != NULL)
4350 destination = (sym_value
4351 + sym_sec->output_offset
4352 +
4353 sym_sec->output_section->vma);
4354 }
4355 else if (sym_sec->output_section != NULL)
4356 destination = (sym_value + irela->r_addend
4357 + sym_sec->output_offset
4358 + sym_sec->output_section->vma);
4359 }
4360 else if (hash->root.root.type == bfd_link_hash_undefined
4361 || (hash->root.root.type
4362 == bfd_link_hash_undefweak))
4363 {
4364 /* For a shared library, use the PLT stub as
4365 target address to decide whether a long
4366 branch stub is needed.
4367 For absolute code, they cannot be handled. */
4368 struct elf_aarch64_link_hash_table *globals =
4369 elf_aarch64_hash_table (info);
4370
4371 if (globals->root.splt != NULL && hash != NULL
4372 && hash->root.plt.offset != (bfd_vma) - 1)
4373 {
4374 sym_sec = globals->root.splt;
4375 sym_value = hash->root.plt.offset;
4376 if (sym_sec->output_section != NULL)
4377 destination = (sym_value
4378 + sym_sec->output_offset
4379 +
4380 sym_sec->output_section->vma);
4381 }
4382 else
4383 continue;
4384 }
4385 else
4386 {
4387 bfd_set_error (bfd_error_bad_value);
4388 goto error_ret_free_internal;
4389 }
4390 st_type = ELF_ST_TYPE (hash->root.type);
4391 sym_name = hash->root.root.root.string;
4392 }
4393
4394 /* Determine what (if any) linker stub is needed. */
4395 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4396 st_type, destination);
4397 if (stub_type == aarch64_stub_none)
4398 continue;
4399
4400 /* Support for grouping stub sections. */
4401 id_sec = htab->stub_group[section->id].link_sec;
4402
4403 /* Get the name of this stub. */
4404 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4405 irela);
4406 if (!stub_name)
4407 goto error_ret_free_internal;
4408
4409 stub_entry =
4410 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4411 stub_name, FALSE, FALSE);
4412 if (stub_entry != NULL)
4413 {
4414 /* The proper stub has already been created. */
4415 free (stub_name);
4416 /* Always update this stub's target since it may have
4417 changed after layout. */
4418 stub_entry->target_value = sym_value + irela->r_addend;
4419 continue;
4420 }
4421
4422 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4423 (stub_name, section, htab);
4424 if (stub_entry == NULL)
4425 {
4426 free (stub_name);
4427 goto error_ret_free_internal;
4428 }
4429
4430 stub_entry->target_value = sym_value + irela->r_addend;
4431 stub_entry->target_section = sym_sec;
4432 stub_entry->stub_type = stub_type;
4433 stub_entry->h = hash;
4434 stub_entry->st_type = st_type;
4435
4436 if (sym_name == NULL)
4437 sym_name = "unnamed";
4438 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4439 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4440 if (stub_entry->output_name == NULL)
4441 {
4442 free (stub_name);
4443 goto error_ret_free_internal;
4444 }
4445
4446 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4447 sym_name);
4448
4449 stub_changed = TRUE;
4450 }
4451
4452 /* We're done with the internal relocs, free them. */
4453 if (elf_section_data (section)->relocs == NULL)
4454 free (internal_relocs);
4455 }
4456 }
4457
4458 if (!stub_changed)
4459 break;
4460
4461 _bfd_aarch64_resize_stubs (htab);
4462
4463 /* Ask the linker to do its stuff. */
4464 (*htab->layout_sections_again) ();
4465 stub_changed = FALSE;
4466 }
4467
4468 return TRUE;
4469
4470 error_ret_free_local:
4471 return FALSE;
4472 }
4473
4474 /* Build all the stubs associated with the current output file. The
4475 stubs are kept in a hash table attached to the main linker hash
4476 table. We also set up the .plt entries for statically linked PIC
4477 functions here. This function is called via aarch64_elf_finish in the
4478 linker. */
4479
4480 bfd_boolean
4481 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4482 {
4483 asection *stub_sec;
4484 struct bfd_hash_table *table;
4485 struct elf_aarch64_link_hash_table *htab;
4486
4487 htab = elf_aarch64_hash_table (info);
4488
4489 for (stub_sec = htab->stub_bfd->sections;
4490 stub_sec != NULL; stub_sec = stub_sec->next)
4491 {
4492 bfd_size_type size;
4493
4494 /* Ignore non-stub sections. */
4495 if (!strstr (stub_sec->name, STUB_SUFFIX))
4496 continue;
4497
4498 /* Allocate memory to hold the linker stubs. */
4499 size = stub_sec->size;
4500 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4501 if (stub_sec->contents == NULL && size != 0)
4502 return FALSE;
4503 stub_sec->size = 0;
4504
4505 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4506 aligned, as long branch stubs contain a 64-bit address. */
4507 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4508 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4509 stub_sec->size += 8;
4510 }
4511
4512 /* Build the stubs as directed by the stub hash table. */
4513 table = &htab->stub_hash_table;
4514 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4515
4516 return TRUE;
4517 }
4518
4519
4520 /* Add an entry to the code/data map for section SEC. */
4521
4522 static void
4523 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4524 {
4525 struct _aarch64_elf_section_data *sec_data =
4526 elf_aarch64_section_data (sec);
4527 unsigned int newidx;
4528
4529 if (sec_data->map == NULL)
4530 {
4531 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4532 sec_data->mapcount = 0;
4533 sec_data->mapsize = 1;
4534 }
4535
4536 newidx = sec_data->mapcount++;
4537
4538 if (sec_data->mapcount > sec_data->mapsize)
4539 {
4540 sec_data->mapsize *= 2;
4541 sec_data->map = bfd_realloc_or_free
4542 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4543 }
4544
4545 if (sec_data->map)
4546 {
4547 sec_data->map[newidx].vma = vma;
4548 sec_data->map[newidx].type = type;
4549 }
4550 }
4551
4552
4553 /* Initialise maps of insn/data for input BFDs. */
4554 void
4555 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4556 {
4557 Elf_Internal_Sym *isymbuf;
4558 Elf_Internal_Shdr *hdr;
4559 unsigned int i, localsyms;
4560
4561 /* Make sure that we are dealing with an AArch64 elf binary. */
4562 if (!is_aarch64_elf (abfd))
4563 return;
4564
4565 if ((abfd->flags & DYNAMIC) != 0)
4566 return;
4567
4568 hdr = &elf_symtab_hdr (abfd);
4569 localsyms = hdr->sh_info;
4570
4571 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4572 should contain the number of local symbols, which should come before any
4573 global symbols. Mapping symbols are always local. */
4574 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4575
4576 /* No internal symbols read? Skip this BFD. */
4577 if (isymbuf == NULL)
4578 return;
4579
4580 for (i = 0; i < localsyms; i++)
4581 {
4582 Elf_Internal_Sym *isym = &isymbuf[i];
4583 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4584 const char *name;
4585
4586 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4587 {
4588 name = bfd_elf_string_from_elf_section (abfd,
4589 hdr->sh_link,
4590 isym->st_name);
4591
4592 if (bfd_is_aarch64_special_symbol_name
4593 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4594 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4595 }
4596 }
4597 }
4598
4599 /* Set option values needed during linking. */
4600 void
4601 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4602 struct bfd_link_info *link_info,
4603 int no_enum_warn,
4604 int no_wchar_warn, int pic_veneer,
4605 int fix_erratum_835769,
4606 int fix_erratum_843419,
4607 int no_apply_dynamic_relocs)
4608 {
4609 struct elf_aarch64_link_hash_table *globals;
4610
4611 globals = elf_aarch64_hash_table (link_info);
4612 globals->pic_veneer = pic_veneer;
4613 globals->fix_erratum_835769 = fix_erratum_835769;
4614 globals->fix_erratum_843419 = fix_erratum_843419;
4615 globals->fix_erratum_843419_adr = TRUE;
4616 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4617
4618 BFD_ASSERT (is_aarch64_elf (output_bfd));
4619 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4620 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4621 }
4622
4623 static bfd_vma
4624 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4625 struct elf_aarch64_link_hash_table
4626 *globals, struct bfd_link_info *info,
4627 bfd_vma value, bfd *output_bfd,
4628 bfd_boolean *unresolved_reloc_p)
4629 {
4630 bfd_vma off = (bfd_vma) - 1;
4631 asection *basegot = globals->root.sgot;
4632 bfd_boolean dyn = globals->root.dynamic_sections_created;
4633
4634 if (h != NULL)
4635 {
4636 BFD_ASSERT (basegot != NULL);
4637 off = h->got.offset;
4638 BFD_ASSERT (off != (bfd_vma) - 1);
4639 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4640 || (bfd_link_pic (info)
4641 && SYMBOL_REFERENCES_LOCAL (info, h))
4642 || (ELF_ST_VISIBILITY (h->other)
4643 && h->root.type == bfd_link_hash_undefweak))
4644 {
4645 /* This is actually a static link, or it is a -Bsymbolic link
4646 and the symbol is defined locally. We must initialize this
4647 entry in the global offset table. Since the offset must
4648 always be a multiple of 8 (4 in the case of ILP32), we use
4649 the least significant bit to record whether we have
4650 initialized it already.
4651 When doing a dynamic link, we create a .rel(a).got relocation
4652 entry to initialize the value. This is done in the
4653 finish_dynamic_symbol routine. */
4654 if ((off & 1) != 0)
4655 off &= ~1;
4656 else
4657 {
4658 bfd_put_NN (output_bfd, value, basegot->contents + off);
4659 h->got.offset |= 1;
4660 }
4661 }
4662 else
4663 *unresolved_reloc_p = FALSE;
4664
4665 off = off + basegot->output_section->vma + basegot->output_offset;
4666 }
4667
4668 return off;
4669 }
4670
4671 /* Change R_TYPE to a more efficient access model where possible,
4672 return the new reloc type. */
4673
4674 static bfd_reloc_code_real_type
4675 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4676 struct elf_link_hash_entry *h)
4677 {
4678 bfd_boolean is_local = h == NULL;
4679
4680 switch (r_type)
4681 {
4682 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4683 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4684 return (is_local
4685 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4686 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4687
4688 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4689 return (is_local
4690 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4691 : r_type);
4692
4693 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4694 return (is_local
4695 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4696 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4697
4698 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4699 return (is_local
4700 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4701 : BFD_RELOC_AARCH64_NONE);
4702
4703 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4704 return (is_local
4705 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4706 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4707
4708 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4709 return (is_local
4710 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4711 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4712
4713 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4714 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4715 return (is_local
4716 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4717 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4718
4719 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4720 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4721
4722 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4723 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4724
4725 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4726 return r_type;
4727
4728 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4729 return (is_local
4730 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4731 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4732
4733 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4734 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4735 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4736 /* Instructions with these relocations will become NOPs. */
4737 return BFD_RELOC_AARCH64_NONE;
4738
4739 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4740 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4741 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4742 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4743
4744 #if ARCH_SIZE == 64
4745 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4746 return is_local
4747 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4748 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4749
4750 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4751 return is_local
4752 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4753 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4754 #endif
4755
4756 default:
4757 break;
4758 }
4759
4760 return r_type;
4761 }
4762
4763 static unsigned int
4764 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4765 {
4766 switch (r_type)
4767 {
4768 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4769 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4770 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4771 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4772 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4773 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4774 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4775 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4776 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4777 return GOT_NORMAL;
4778
4779 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4780 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4781 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4782 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4783 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4784 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4785 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4786 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4787 return GOT_TLS_GD;
4788
4789 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4790 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4791 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4792 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4793 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4794 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4795 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4796 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4797 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4798 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4799 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4800 return GOT_TLSDESC_GD;
4801
4802 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4803 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4804 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4805 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4806 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4807 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4808 return GOT_TLS_IE;
4809
4810 default:
4811 break;
4812 }
4813 return GOT_UNKNOWN;
4814 }
4815
4816 static bfd_boolean
4817 aarch64_can_relax_tls (bfd *input_bfd,
4818 struct bfd_link_info *info,
4819 bfd_reloc_code_real_type r_type,
4820 struct elf_link_hash_entry *h,
4821 unsigned long r_symndx)
4822 {
4823 unsigned int symbol_got_type;
4824 unsigned int reloc_got_type;
4825
4826 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4827 return FALSE;
4828
4829 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4830 reloc_got_type = aarch64_reloc_got_type (r_type);
4831
4832 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4833 return TRUE;
4834
4835 if (!bfd_link_executable (info))
4836 return FALSE;
4837
4838 if (h && h->root.type == bfd_link_hash_undefweak)
4839 return FALSE;
4840
4841 return TRUE;
4842 }
4843
4844 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4845 enumerator. */
4846
4847 static bfd_reloc_code_real_type
4848 aarch64_tls_transition (bfd *input_bfd,
4849 struct bfd_link_info *info,
4850 unsigned int r_type,
4851 struct elf_link_hash_entry *h,
4852 unsigned long r_symndx)
4853 {
4854 bfd_reloc_code_real_type bfd_r_type
4855 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
4856
4857 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4858 return bfd_r_type;
4859
4860 return aarch64_tls_transition_without_check (bfd_r_type, h);
4861 }
4862
4863 /* Return the base VMA address which should be subtracted from real addresses
4864 when resolving R_AARCH64_TLS_DTPREL relocation. */
4865
4866 static bfd_vma
4867 dtpoff_base (struct bfd_link_info *info)
4868 {
4869 /* If tls_sec is NULL, we should have signalled an error already. */
4870 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4871 return elf_hash_table (info)->tls_sec->vma;
4872 }
4873
4874 /* Return the base VMA address which should be subtracted from real addresses
4875 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4876
4877 static bfd_vma
4878 tpoff_base (struct bfd_link_info *info)
4879 {
4880 struct elf_link_hash_table *htab = elf_hash_table (info);
4881
4882 /* If tls_sec is NULL, we should have signalled an error already. */
4883 BFD_ASSERT (htab->tls_sec != NULL);
4884
4885 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4886 htab->tls_sec->alignment_power);
4887 return htab->tls_sec->vma - base;
4888 }
4889
4890 static bfd_vma *
4891 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4892 unsigned long r_symndx)
4893 {
4894 /* Calculate the address of the GOT entry for symbol
4895 referred to in h. */
4896 if (h != NULL)
4897 return &h->got.offset;
4898 else
4899 {
4900 /* local symbol */
4901 struct elf_aarch64_local_symbol *l;
4902
4903 l = elf_aarch64_locals (input_bfd);
4904 return &l[r_symndx].got_offset;
4905 }
4906 }
4907
4908 static void
4909 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4910 unsigned long r_symndx)
4911 {
4912 bfd_vma *p;
4913 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4914 *p |= 1;
4915 }
4916
4917 static int
4918 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4919 unsigned long r_symndx)
4920 {
4921 bfd_vma value;
4922 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4923 return value & 1;
4924 }
4925
4926 static bfd_vma
4927 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4928 unsigned long r_symndx)
4929 {
4930 bfd_vma value;
4931 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4932 value &= ~1;
4933 return value;
4934 }
4935
4936 static bfd_vma *
4937 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4938 unsigned long r_symndx)
4939 {
4940 /* Calculate the address of the GOT entry for symbol
4941 referred to in h. */
4942 if (h != NULL)
4943 {
4944 struct elf_aarch64_link_hash_entry *eh;
4945 eh = (struct elf_aarch64_link_hash_entry *) h;
4946 return &eh->tlsdesc_got_jump_table_offset;
4947 }
4948 else
4949 {
4950 /* local symbol */
4951 struct elf_aarch64_local_symbol *l;
4952
4953 l = elf_aarch64_locals (input_bfd);
4954 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4955 }
4956 }
4957
4958 static void
4959 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4960 unsigned long r_symndx)
4961 {
4962 bfd_vma *p;
4963 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4964 *p |= 1;
4965 }
4966
4967 static int
4968 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4969 struct elf_link_hash_entry *h,
4970 unsigned long r_symndx)
4971 {
4972 bfd_vma value;
4973 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4974 return value & 1;
4975 }
4976
4977 static bfd_vma
4978 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4979 unsigned long r_symndx)
4980 {
4981 bfd_vma value;
4982 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4983 value &= ~1;
4984 return value;
4985 }
4986
4987 /* Data for make_branch_to_erratum_835769_stub(). */
4988
4989 struct erratum_835769_branch_to_stub_data
4990 {
4991 struct bfd_link_info *info;
4992 asection *output_section;
4993 bfd_byte *contents;
4994 };
4995
4996 /* Helper to insert branches to erratum 835769 stubs in the right
4997 places for a particular section. */
4998
4999 static bfd_boolean
5000 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5001 void *in_arg)
5002 {
5003 struct elf_aarch64_stub_hash_entry *stub_entry;
5004 struct erratum_835769_branch_to_stub_data *data;
5005 bfd_byte *contents;
5006 unsigned long branch_insn = 0;
5007 bfd_vma veneered_insn_loc, veneer_entry_loc;
5008 bfd_signed_vma branch_offset;
5009 unsigned int target;
5010 bfd *abfd;
5011
5012 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5013 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5014
5015 if (stub_entry->target_section != data->output_section
5016 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5017 return TRUE;
5018
5019 contents = data->contents;
5020 veneered_insn_loc = stub_entry->target_section->output_section->vma
5021 + stub_entry->target_section->output_offset
5022 + stub_entry->target_value;
5023 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5024 + stub_entry->stub_sec->output_offset
5025 + stub_entry->stub_offset;
5026 branch_offset = veneer_entry_loc - veneered_insn_loc;
5027
5028 abfd = stub_entry->target_section->owner;
5029 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5030 _bfd_error_handler
5031 (_("%pB: error: erratum 835769 stub out "
5032 "of range (input file too large)"), abfd);
5033
5034 target = stub_entry->target_value;
5035 branch_insn = 0x14000000;
5036 branch_offset >>= 2;
5037 branch_offset &= 0x3ffffff;
5038 branch_insn |= branch_offset;
5039 bfd_putl32 (branch_insn, &contents[target]);
5040
5041 return TRUE;
5042 }
5043
5044
5045 static bfd_boolean
5046 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5047 void *in_arg)
5048 {
5049 struct elf_aarch64_stub_hash_entry *stub_entry
5050 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5051 struct erratum_835769_branch_to_stub_data *data
5052 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5053 struct bfd_link_info *info;
5054 struct elf_aarch64_link_hash_table *htab;
5055 bfd_byte *contents;
5056 asection *section;
5057 bfd *abfd;
5058 bfd_vma place;
5059 uint32_t insn;
5060
5061 info = data->info;
5062 contents = data->contents;
5063 section = data->output_section;
5064
5065 htab = elf_aarch64_hash_table (info);
5066
5067 if (stub_entry->target_section != section
5068 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5069 return TRUE;
5070
5071 insn = bfd_getl32 (contents + stub_entry->target_value);
5072 bfd_putl32 (insn,
5073 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5074
5075 place = (section->output_section->vma + section->output_offset
5076 + stub_entry->adrp_offset);
5077 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5078
5079 if (!_bfd_aarch64_adrp_p (insn))
5080 abort ();
5081
5082 bfd_signed_vma imm =
5083 (_bfd_aarch64_sign_extend
5084 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5085 - (place & 0xfff));
5086
5087 if (htab->fix_erratum_843419_adr
5088 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5089 {
5090 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5091 | AARCH64_RT (insn));
5092 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5093 }
5094 else
5095 {
5096 bfd_vma veneered_insn_loc;
5097 bfd_vma veneer_entry_loc;
5098 bfd_signed_vma branch_offset;
5099 uint32_t branch_insn;
5100
5101 veneered_insn_loc = stub_entry->target_section->output_section->vma
5102 + stub_entry->target_section->output_offset
5103 + stub_entry->target_value;
5104 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5105 + stub_entry->stub_sec->output_offset
5106 + stub_entry->stub_offset;
5107 branch_offset = veneer_entry_loc - veneered_insn_loc;
5108
5109 abfd = stub_entry->target_section->owner;
5110 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5111 _bfd_error_handler
5112 (_("%pB: error: erratum 843419 stub out "
5113 "of range (input file too large)"), abfd);
5114
5115 branch_insn = 0x14000000;
5116 branch_offset >>= 2;
5117 branch_offset &= 0x3ffffff;
5118 branch_insn |= branch_offset;
5119 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5120 }
5121 return TRUE;
5122 }
5123
5124
5125 static bfd_boolean
5126 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5127 struct bfd_link_info *link_info,
5128 asection *sec,
5129 bfd_byte *contents)
5130
5131 {
5132 struct elf_aarch64_link_hash_table *globals =
5133 elf_aarch64_hash_table (link_info);
5134
5135 if (globals == NULL)
5136 return FALSE;
5137
5138 /* Fix code to point to erratum 835769 stubs. */
5139 if (globals->fix_erratum_835769)
5140 {
5141 struct erratum_835769_branch_to_stub_data data;
5142
5143 data.info = link_info;
5144 data.output_section = sec;
5145 data.contents = contents;
5146 bfd_hash_traverse (&globals->stub_hash_table,
5147 make_branch_to_erratum_835769_stub, &data);
5148 }
5149
5150 if (globals->fix_erratum_843419)
5151 {
5152 struct erratum_835769_branch_to_stub_data data;
5153
5154 data.info = link_info;
5155 data.output_section = sec;
5156 data.contents = contents;
5157 bfd_hash_traverse (&globals->stub_hash_table,
5158 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5159 }
5160
5161 return FALSE;
5162 }
5163
5164 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5165
5166 static bfd_boolean
5167 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5168 {
5169 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5170 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5171 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5172 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5173 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5174 }
5175
5176 /* Perform a relocation as part of a final link. The input relocation type
5177 should be TLS relaxed. */
5178
5179 static bfd_reloc_status_type
5180 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5181 bfd *input_bfd,
5182 bfd *output_bfd,
5183 asection *input_section,
5184 bfd_byte *contents,
5185 Elf_Internal_Rela *rel,
5186 bfd_vma value,
5187 struct bfd_link_info *info,
5188 asection *sym_sec,
5189 struct elf_link_hash_entry *h,
5190 bfd_boolean *unresolved_reloc_p,
5191 bfd_boolean save_addend,
5192 bfd_vma *saved_addend,
5193 Elf_Internal_Sym *sym)
5194 {
5195 Elf_Internal_Shdr *symtab_hdr;
5196 unsigned int r_type = howto->type;
5197 bfd_reloc_code_real_type bfd_r_type
5198 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5199 unsigned long r_symndx;
5200 bfd_byte *hit_data = contents + rel->r_offset;
5201 bfd_vma place, off, got_entry_addr = 0;
5202 bfd_signed_vma signed_addend;
5203 struct elf_aarch64_link_hash_table *globals;
5204 bfd_boolean weak_undef_p;
5205 bfd_boolean relative_reloc;
5206 asection *base_got;
5207 bfd_vma orig_value = value;
5208 bfd_boolean resolved_to_zero;
5209 bfd_boolean abs_symbol_p;
5210
5211 globals = elf_aarch64_hash_table (info);
5212
5213 symtab_hdr = &elf_symtab_hdr (input_bfd);
5214
5215 BFD_ASSERT (is_aarch64_elf (input_bfd));
5216
5217 r_symndx = ELFNN_R_SYM (rel->r_info);
5218
5219 place = input_section->output_section->vma
5220 + input_section->output_offset + rel->r_offset;
5221
5222 /* Get addend, accumulating the addend for consecutive relocs
5223 which refer to the same offset. */
5224 signed_addend = saved_addend ? *saved_addend : 0;
5225 signed_addend += rel->r_addend;
5226
5227 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5228 : bfd_is_und_section (sym_sec));
5229 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5230
5231
5232 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5233 it here if it is defined in a non-shared object. */
5234 if (h != NULL
5235 && h->type == STT_GNU_IFUNC
5236 && h->def_regular)
5237 {
5238 asection *plt;
5239 const char *name;
5240 bfd_vma addend = 0;
5241
5242 if ((input_section->flags & SEC_ALLOC) == 0)
5243 {
5244 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5245 STT_GNU_IFUNC symbol as STT_FUNC. */
5246 if (elf_section_type (input_section) == SHT_NOTE)
5247 goto skip_ifunc;
5248
5249 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5250 sections because such sections are not SEC_ALLOC and
5251 thus ld.so will not process them. */
5252 if ((input_section->flags & SEC_DEBUGGING) != 0)
5253 return bfd_reloc_ok;
5254
5255 if (h->root.root.string)
5256 name = h->root.root.string;
5257 else
5258 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5259 _bfd_error_handler
5260 /* xgettext:c-format */
5261 (_("%pB(%pA+%#" PRIx64 "): "
5262 "unresolvable %s relocation against symbol `%s'"),
5263 input_bfd, input_section, (uint64_t) rel->r_offset,
5264 howto->name, name);
5265 bfd_set_error (bfd_error_bad_value);
5266 return bfd_reloc_notsupported;
5267 }
5268 else if (h->plt.offset == (bfd_vma) -1)
5269 goto bad_ifunc_reloc;
5270
5271 /* STT_GNU_IFUNC symbol must go through PLT. */
5272 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5273 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5274
5275 switch (bfd_r_type)
5276 {
5277 default:
5278 bad_ifunc_reloc:
5279 if (h->root.root.string)
5280 name = h->root.root.string;
5281 else
5282 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5283 NULL);
5284 _bfd_error_handler
5285 /* xgettext:c-format */
5286 (_("%pB: relocation %s against STT_GNU_IFUNC "
5287 "symbol `%s' isn't handled by %s"), input_bfd,
5288 howto->name, name, __FUNCTION__);
5289 bfd_set_error (bfd_error_bad_value);
5290 return bfd_reloc_notsupported;
5291
5292 case BFD_RELOC_AARCH64_NN:
5293 if (rel->r_addend != 0)
5294 {
5295 if (h->root.root.string)
5296 name = h->root.root.string;
5297 else
5298 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5299 sym, NULL);
5300 _bfd_error_handler
5301 /* xgettext:c-format */
5302 (_("%pB: relocation %s against STT_GNU_IFUNC "
5303 "symbol `%s' has non-zero addend: %" PRId64),
5304 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5305 bfd_set_error (bfd_error_bad_value);
5306 return bfd_reloc_notsupported;
5307 }
5308
5309 /* Generate dynamic relocation only when there is a
5310 non-GOT reference in a shared object. */
5311 if (bfd_link_pic (info) && h->non_got_ref)
5312 {
5313 Elf_Internal_Rela outrel;
5314 asection *sreloc;
5315
5316 /* Need a dynamic relocation to get the real function
5317 address. */
5318 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5319 info,
5320 input_section,
5321 rel->r_offset);
5322 if (outrel.r_offset == (bfd_vma) -1
5323 || outrel.r_offset == (bfd_vma) -2)
5324 abort ();
5325
5326 outrel.r_offset += (input_section->output_section->vma
5327 + input_section->output_offset);
5328
5329 if (h->dynindx == -1
5330 || h->forced_local
5331 || bfd_link_executable (info))
5332 {
5333 /* This symbol is resolved locally. */
5334 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5335 outrel.r_addend = (h->root.u.def.value
5336 + h->root.u.def.section->output_section->vma
5337 + h->root.u.def.section->output_offset);
5338 }
5339 else
5340 {
5341 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5342 outrel.r_addend = 0;
5343 }
5344
5345 sreloc = globals->root.irelifunc;
5346 elf_append_rela (output_bfd, sreloc, &outrel);
5347
5348 /* If this reloc is against an external symbol, we
5349 do not want to fiddle with the addend. Otherwise,
5350 we need to include the symbol value so that it
5351 becomes an addend for the dynamic reloc. For an
5352 internal symbol, we have updated addend. */
5353 return bfd_reloc_ok;
5354 }
5355 /* FALLTHROUGH */
5356 case BFD_RELOC_AARCH64_CALL26:
5357 case BFD_RELOC_AARCH64_JUMP26:
5358 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5359 signed_addend,
5360 weak_undef_p);
5361 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5362 howto, value);
5363 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5364 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5365 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5366 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5367 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5368 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5369 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5370 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5371 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5372 base_got = globals->root.sgot;
5373 off = h->got.offset;
5374
5375 if (base_got == NULL)
5376 abort ();
5377
5378 if (off == (bfd_vma) -1)
5379 {
5380 bfd_vma plt_index;
5381
5382 /* We can't use h->got.offset here to save state, or
5383 even just remember the offset, as finish_dynamic_symbol
5384 would use that as offset into .got. */
5385
5386 if (globals->root.splt != NULL)
5387 {
5388 plt_index = ((h->plt.offset - globals->plt_header_size) /
5389 globals->plt_entry_size);
5390 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5391 base_got = globals->root.sgotplt;
5392 }
5393 else
5394 {
5395 plt_index = h->plt.offset / globals->plt_entry_size;
5396 off = plt_index * GOT_ENTRY_SIZE;
5397 base_got = globals->root.igotplt;
5398 }
5399
5400 if (h->dynindx == -1
5401 || h->forced_local
5402 || info->symbolic)
5403 {
5404 /* This references the local definition. We must
5405 initialize this entry in the global offset table.
5406 Since the offset must always be a multiple of 8,
5407 we use the least significant bit to record
5408 whether we have initialized it already.
5409
5410 When doing a dynamic link, we create a .rela.got
5411 relocation entry to initialize the value. This
5412 is done in the finish_dynamic_symbol routine. */
5413 if ((off & 1) != 0)
5414 off &= ~1;
5415 else
5416 {
5417 bfd_put_NN (output_bfd, value,
5418 base_got->contents + off);
5419 /* Note that this is harmless as -1 | 1 still is -1. */
5420 h->got.offset |= 1;
5421 }
5422 }
5423 value = (base_got->output_section->vma
5424 + base_got->output_offset + off);
5425 }
5426 else
5427 value = aarch64_calculate_got_entry_vma (h, globals, info,
5428 value, output_bfd,
5429 unresolved_reloc_p);
5430
5431 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5432 addend = (globals->root.sgot->output_section->vma
5433 + globals->root.sgot->output_offset);
5434
5435 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5436 addend, weak_undef_p);
5437 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5438 case BFD_RELOC_AARCH64_ADD_LO12:
5439 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5440 break;
5441 }
5442 }
5443
5444 skip_ifunc:
5445 resolved_to_zero = (h != NULL
5446 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5447
5448 switch (bfd_r_type)
5449 {
5450 case BFD_RELOC_AARCH64_NONE:
5451 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5452 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5453 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5454 *unresolved_reloc_p = FALSE;
5455 return bfd_reloc_ok;
5456
5457 case BFD_RELOC_AARCH64_NN:
5458
5459 /* When generating a shared object or relocatable executable, these
5460 relocations are copied into the output file to be resolved at
5461 run time. */
5462 if (((bfd_link_pic (info)
5463 || globals->root.is_relocatable_executable)
5464 && (input_section->flags & SEC_ALLOC)
5465 && (h == NULL
5466 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5467 && !resolved_to_zero)
5468 || h->root.type != bfd_link_hash_undefweak))
5469 /* Or we are creating an executable, we may need to keep relocations
5470 for symbols satisfied by a dynamic library if we manage to avoid
5471 copy relocs for the symbol. */
5472 || (ELIMINATE_COPY_RELOCS
5473 && !bfd_link_pic (info)
5474 && h != NULL
5475 && (input_section->flags & SEC_ALLOC)
5476 && h->dynindx != -1
5477 && !h->non_got_ref
5478 && ((h->def_dynamic
5479 && !h->def_regular)
5480 || h->root.type == bfd_link_hash_undefweak
5481 || h->root.type == bfd_link_hash_undefined)))
5482 {
5483 Elf_Internal_Rela outrel;
5484 bfd_byte *loc;
5485 bfd_boolean skip, relocate;
5486 asection *sreloc;
5487
5488 *unresolved_reloc_p = FALSE;
5489
5490 skip = FALSE;
5491 relocate = FALSE;
5492
5493 outrel.r_addend = signed_addend;
5494 outrel.r_offset =
5495 _bfd_elf_section_offset (output_bfd, info, input_section,
5496 rel->r_offset);
5497 if (outrel.r_offset == (bfd_vma) - 1)
5498 skip = TRUE;
5499 else if (outrel.r_offset == (bfd_vma) - 2)
5500 {
5501 skip = TRUE;
5502 relocate = TRUE;
5503 }
5504 else if (abs_symbol_p)
5505 {
5506 /* Local absolute symbol. */
5507 skip = (h->forced_local || (h->dynindx == -1));
5508 relocate = skip;
5509 }
5510
5511 outrel.r_offset += (input_section->output_section->vma
5512 + input_section->output_offset);
5513
5514 if (skip)
5515 memset (&outrel, 0, sizeof outrel);
5516 else if (h != NULL
5517 && h->dynindx != -1
5518 && (!bfd_link_pic (info)
5519 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5520 || !h->def_regular))
5521 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5522 else
5523 {
5524 int symbol;
5525
5526 /* On SVR4-ish systems, the dynamic loader cannot
5527 relocate the text and data segments independently,
5528 so the symbol does not matter. */
5529 symbol = 0;
5530 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5531 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5532 outrel.r_addend += value;
5533 }
5534
5535 sreloc = elf_section_data (input_section)->sreloc;
5536 if (sreloc == NULL || sreloc->contents == NULL)
5537 return bfd_reloc_notsupported;
5538
5539 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5540 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5541
5542 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5543 {
5544 /* Sanity to check that we have previously allocated
5545 sufficient space in the relocation section for the
5546 number of relocations we actually want to emit. */
5547 abort ();
5548 }
5549
5550 /* If this reloc is against an external symbol, we do not want to
5551 fiddle with the addend. Otherwise, we need to include the symbol
5552 value so that it becomes an addend for the dynamic reloc. */
5553 if (!relocate)
5554 return bfd_reloc_ok;
5555
5556 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5557 contents, rel->r_offset, value,
5558 signed_addend);
5559 }
5560 else
5561 value += signed_addend;
5562 break;
5563
5564 case BFD_RELOC_AARCH64_CALL26:
5565 case BFD_RELOC_AARCH64_JUMP26:
5566 {
5567 asection *splt = globals->root.splt;
5568 bfd_boolean via_plt_p =
5569 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5570
5571 /* A call to an undefined weak symbol is converted to a jump to
5572 the next instruction unless a PLT entry will be created.
5573 The jump to the next instruction is optimized as a NOP.
5574 Do the same for local undefined symbols. */
5575 if (weak_undef_p && ! via_plt_p)
5576 {
5577 bfd_putl32 (INSN_NOP, hit_data);
5578 return bfd_reloc_ok;
5579 }
5580
5581 /* If the call goes through a PLT entry, make sure to
5582 check distance to the right destination address. */
5583 if (via_plt_p)
5584 value = (splt->output_section->vma
5585 + splt->output_offset + h->plt.offset);
5586
5587 /* Check if a stub has to be inserted because the destination
5588 is too far away. */
5589 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5590
5591 /* If the branch destination is directed to plt stub, "value" will be
5592 the final destination, otherwise we should plus signed_addend, it may
5593 contain non-zero value, for example call to local function symbol
5594 which are turned into "sec_sym + sec_off", and sec_off is kept in
5595 signed_addend. */
5596 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5597 place))
5598 /* The target is out of reach, so redirect the branch to
5599 the local stub for this function. */
5600 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5601 rel, globals);
5602 if (stub_entry != NULL)
5603 {
5604 value = (stub_entry->stub_offset
5605 + stub_entry->stub_sec->output_offset
5606 + stub_entry->stub_sec->output_section->vma);
5607
5608 /* We have redirected the destination to stub entry address,
5609 so ignore any addend record in the original rela entry. */
5610 signed_addend = 0;
5611 }
5612 }
5613 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5614 signed_addend, weak_undef_p);
5615 *unresolved_reloc_p = FALSE;
5616 break;
5617
5618 case BFD_RELOC_AARCH64_16_PCREL:
5619 case BFD_RELOC_AARCH64_32_PCREL:
5620 case BFD_RELOC_AARCH64_64_PCREL:
5621 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5622 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5623 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5624 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5625 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5626 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5627 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5628 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5629 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5630 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5631 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5632 if (bfd_link_pic (info)
5633 && (input_section->flags & SEC_ALLOC) != 0
5634 && (input_section->flags & SEC_READONLY) != 0
5635 && !SYMBOL_REFERENCES_LOCAL (info, h))
5636 {
5637 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5638
5639 _bfd_error_handler
5640 /* xgettext:c-format */
5641 (_("%pB: relocation %s against symbol `%s' which may bind "
5642 "externally can not be used when making a shared object; "
5643 "recompile with -fPIC"),
5644 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5645 h->root.root.string);
5646 bfd_set_error (bfd_error_bad_value);
5647 return bfd_reloc_notsupported;
5648 }
5649 /* Fall through. */
5650
5651 case BFD_RELOC_AARCH64_16:
5652 #if ARCH_SIZE == 64
5653 case BFD_RELOC_AARCH64_32:
5654 #endif
5655 case BFD_RELOC_AARCH64_ADD_LO12:
5656 case BFD_RELOC_AARCH64_BRANCH19:
5657 case BFD_RELOC_AARCH64_LDST128_LO12:
5658 case BFD_RELOC_AARCH64_LDST16_LO12:
5659 case BFD_RELOC_AARCH64_LDST32_LO12:
5660 case BFD_RELOC_AARCH64_LDST64_LO12:
5661 case BFD_RELOC_AARCH64_LDST8_LO12:
5662 case BFD_RELOC_AARCH64_MOVW_G0:
5663 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5664 case BFD_RELOC_AARCH64_MOVW_G0_S:
5665 case BFD_RELOC_AARCH64_MOVW_G1:
5666 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5667 case BFD_RELOC_AARCH64_MOVW_G1_S:
5668 case BFD_RELOC_AARCH64_MOVW_G2:
5669 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5670 case BFD_RELOC_AARCH64_MOVW_G2_S:
5671 case BFD_RELOC_AARCH64_MOVW_G3:
5672 case BFD_RELOC_AARCH64_TSTBR14:
5673 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5674 signed_addend, weak_undef_p);
5675 break;
5676
5677 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5678 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5679 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5680 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5681 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5682 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5683 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5684 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5685 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5686 if (globals->root.sgot == NULL)
5687 BFD_ASSERT (h != NULL);
5688
5689 relative_reloc = FALSE;
5690 if (h != NULL)
5691 {
5692 bfd_vma addend = 0;
5693
5694 /* If a symbol is not dynamic and is not undefined weak, bind it
5695 locally and generate a RELATIVE relocation under PIC mode.
5696
5697 NOTE: one symbol may be referenced by several relocations, we
5698 should only generate one RELATIVE relocation for that symbol.
5699 Therefore, check GOT offset mark first. */
5700 if (h->dynindx == -1
5701 && !h->forced_local
5702 && h->root.type != bfd_link_hash_undefweak
5703 && bfd_link_pic (info)
5704 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5705 relative_reloc = TRUE;
5706
5707 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5708 output_bfd,
5709 unresolved_reloc_p);
5710 /* Record the GOT entry address which will be used when generating
5711 RELATIVE relocation. */
5712 if (relative_reloc)
5713 got_entry_addr = value;
5714
5715 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5716 addend = (globals->root.sgot->output_section->vma
5717 + globals->root.sgot->output_offset);
5718 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5719 addend, weak_undef_p);
5720 }
5721 else
5722 {
5723 bfd_vma addend = 0;
5724 struct elf_aarch64_local_symbol *locals
5725 = elf_aarch64_locals (input_bfd);
5726
5727 if (locals == NULL)
5728 {
5729 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5730 _bfd_error_handler
5731 /* xgettext:c-format */
5732 (_("%pB: local symbol descriptor table be NULL when applying "
5733 "relocation %s against local symbol"),
5734 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5735 abort ();
5736 }
5737
5738 off = symbol_got_offset (input_bfd, h, r_symndx);
5739 base_got = globals->root.sgot;
5740 got_entry_addr = (base_got->output_section->vma
5741 + base_got->output_offset + off);
5742
5743 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5744 {
5745 bfd_put_64 (output_bfd, value, base_got->contents + off);
5746
5747 /* For local symbol, we have done absolute relocation in static
5748 linking stage. While for shared library, we need to update the
5749 content of GOT entry according to the shared object's runtime
5750 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5751 for dynamic linker. */
5752 if (bfd_link_pic (info))
5753 relative_reloc = TRUE;
5754
5755 symbol_got_offset_mark (input_bfd, h, r_symndx);
5756 }
5757
5758 /* Update the relocation value to GOT entry addr as we have transformed
5759 the direct data access into indirect data access through GOT. */
5760 value = got_entry_addr;
5761
5762 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5763 addend = base_got->output_section->vma + base_got->output_offset;
5764
5765 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5766 addend, weak_undef_p);
5767 }
5768
5769 if (relative_reloc)
5770 {
5771 asection *s;
5772 Elf_Internal_Rela outrel;
5773
5774 s = globals->root.srelgot;
5775 if (s == NULL)
5776 abort ();
5777
5778 outrel.r_offset = got_entry_addr;
5779 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5780 outrel.r_addend = orig_value;
5781 elf_append_rela (output_bfd, s, &outrel);
5782 }
5783 break;
5784
5785 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5786 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5787 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5788 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5789 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5790 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5791 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5792 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5793 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5794 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5795 if (globals->root.sgot == NULL)
5796 return bfd_reloc_notsupported;
5797
5798 value = (symbol_got_offset (input_bfd, h, r_symndx)
5799 + globals->root.sgot->output_section->vma
5800 + globals->root.sgot->output_offset);
5801
5802 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5803 0, weak_undef_p);
5804 *unresolved_reloc_p = FALSE;
5805 break;
5806
5807 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5808 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5809 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5810 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5811 if (globals->root.sgot == NULL)
5812 return bfd_reloc_notsupported;
5813
5814 value = symbol_got_offset (input_bfd, h, r_symndx);
5815 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5816 0, weak_undef_p);
5817 *unresolved_reloc_p = FALSE;
5818 break;
5819
5820 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5821 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5822 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5823 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5824 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5825 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5826 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5827 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5828 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5829 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5830 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5831 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5832 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5833 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5834 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5835 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5836 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5837 signed_addend - dtpoff_base (info),
5838 weak_undef_p);
5839 break;
5840
5841 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5842 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5843 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5844 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
5845 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5846 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
5847 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5848 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
5849 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5850 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
5851 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5852 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5853 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5854 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5855 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5856 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5857 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5858 signed_addend - tpoff_base (info),
5859 weak_undef_p);
5860 *unresolved_reloc_p = FALSE;
5861 break;
5862
5863 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5864 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5865 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5866 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5867 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5868 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5869 if (globals->root.sgot == NULL)
5870 return bfd_reloc_notsupported;
5871 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5872 + globals->root.sgotplt->output_section->vma
5873 + globals->root.sgotplt->output_offset
5874 + globals->sgotplt_jump_table_size);
5875
5876 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5877 0, weak_undef_p);
5878 *unresolved_reloc_p = FALSE;
5879 break;
5880
5881 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5882 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5883 if (globals->root.sgot == NULL)
5884 return bfd_reloc_notsupported;
5885
5886 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5887 + globals->root.sgotplt->output_section->vma
5888 + globals->root.sgotplt->output_offset
5889 + globals->sgotplt_jump_table_size);
5890
5891 value -= (globals->root.sgot->output_section->vma
5892 + globals->root.sgot->output_offset);
5893
5894 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5895 0, weak_undef_p);
5896 *unresolved_reloc_p = FALSE;
5897 break;
5898
5899 default:
5900 return bfd_reloc_notsupported;
5901 }
5902
5903 if (saved_addend)
5904 *saved_addend = value;
5905
5906 /* Only apply the final relocation in a sequence. */
5907 if (save_addend)
5908 return bfd_reloc_continue;
5909
5910 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5911 howto, value);
5912 }
5913
5914 /* LP64 and ILP32 operates on x- and w-registers respectively.
5915 Next definitions take into account the difference between
5916 corresponding machine codes. R means x-register if the target
5917 arch is LP64, and w-register if the target is ILP32. */
5918
5919 #if ARCH_SIZE == 64
5920 # define add_R0_R0 (0x91000000)
5921 # define add_R0_R0_R1 (0x8b000020)
5922 # define add_R0_R1 (0x91400020)
5923 # define ldr_R0 (0x58000000)
5924 # define ldr_R0_mask(i) (i & 0xffffffe0)
5925 # define ldr_R0_x0 (0xf9400000)
5926 # define ldr_hw_R0 (0xf2a00000)
5927 # define movk_R0 (0xf2800000)
5928 # define movz_R0 (0xd2a00000)
5929 # define movz_hw_R0 (0xd2c00000)
5930 #else /*ARCH_SIZE == 32 */
5931 # define add_R0_R0 (0x11000000)
5932 # define add_R0_R0_R1 (0x0b000020)
5933 # define add_R0_R1 (0x11400020)
5934 # define ldr_R0 (0x18000000)
5935 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5936 # define ldr_R0_x0 (0xb9400000)
5937 # define ldr_hw_R0 (0x72a00000)
5938 # define movk_R0 (0x72800000)
5939 # define movz_R0 (0x52a00000)
5940 # define movz_hw_R0 (0x52c00000)
5941 #endif
5942
5943 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
5944 it is used to identify the stub information to reset. */
5945
5946 struct erratum_843419_branch_to_stub_clear_data
5947 {
5948 bfd_vma adrp_offset;
5949 asection *output_section;
5950 };
5951
5952 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
5953 section inside IN_ARG matches. The clearing is done by setting the
5954 stub_type to none. */
5955
5956 static bfd_boolean
5957 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
5958 void *in_arg)
5959 {
5960 struct elf_aarch64_stub_hash_entry *stub_entry
5961 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5962 struct erratum_843419_branch_to_stub_clear_data *data
5963 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
5964
5965 if (stub_entry->target_section != data->output_section
5966 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
5967 || stub_entry->adrp_offset != data->adrp_offset)
5968 return TRUE;
5969
5970 /* Change the stub type instead of removing the entry, removing from the hash
5971 table would be slower and we have already reserved the memory for the entry
5972 so there wouldn't be much gain. Changing the stub also keeps around a
5973 record of what was there before. */
5974 stub_entry->stub_type = aarch64_stub_none;
5975
5976 /* We're done and there could have been only one matching stub at that
5977 particular offset, so abort further traversal. */
5978 return FALSE;
5979 }
5980
5981 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
5982 sequence. In this case the erratum no longer applies and we need to remove
5983 the entry from the pending stub generation. This clears matching adrp insn
5984 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
5985
5986 static void
5987 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
5988 bfd_vma adrp_offset, asection *input_section)
5989 {
5990 if (globals->fix_erratum_843419)
5991 {
5992 struct erratum_843419_branch_to_stub_clear_data data;
5993 data.adrp_offset = adrp_offset;
5994 data.output_section = input_section;
5995
5996 bfd_hash_traverse (&globals->stub_hash_table,
5997 _bfd_aarch64_erratum_843419_clear_stub, &data);
5998 }
5999 }
6000
6001 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6002 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6003 link.
6004
6005 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6006 is to then call final_link_relocate. Return other values in the
6007 case of error. */
6008
6009 static bfd_reloc_status_type
6010 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6011 bfd *input_bfd, asection *input_section,
6012 bfd_byte *contents, Elf_Internal_Rela *rel,
6013 struct elf_link_hash_entry *h)
6014 {
6015 bfd_boolean is_local = h == NULL;
6016 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6017 unsigned long insn;
6018
6019 BFD_ASSERT (globals && input_bfd && contents && rel);
6020
6021 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6022 {
6023 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6024 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6025 if (is_local)
6026 {
6027 /* GD->LE relaxation:
6028 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6029 or
6030 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6031
6032 Where R is x for LP64, and w for ILP32. */
6033 bfd_putl32 (movz_R0, contents + rel->r_offset);
6034 /* We have relaxed the adrp into a mov, we may have to clear any
6035 pending erratum fixes. */
6036 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6037 return bfd_reloc_continue;
6038 }
6039 else
6040 {
6041 /* GD->IE relaxation:
6042 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6043 or
6044 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6045 */
6046 return bfd_reloc_continue;
6047 }
6048
6049 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6050 BFD_ASSERT (0);
6051 break;
6052
6053 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6054 if (is_local)
6055 {
6056 /* Tiny TLSDESC->LE relaxation:
6057 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6058 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6059 .tlsdesccall var
6060 blr x1 => nop
6061
6062 Where R is x for LP64, and w for ILP32. */
6063 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6064 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6065
6066 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6067 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6068 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6069
6070 bfd_putl32 (movz_R0, contents + rel->r_offset);
6071 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6072 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6073 return bfd_reloc_continue;
6074 }
6075 else
6076 {
6077 /* Tiny TLSDESC->IE relaxation:
6078 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6079 adr x0, :tlsdesc:var => nop
6080 .tlsdesccall var
6081 blr x1 => nop
6082 */
6083 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6084 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6085
6086 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6087 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6088
6089 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6090 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6091 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6092 return bfd_reloc_continue;
6093 }
6094
6095 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6096 if (is_local)
6097 {
6098 /* Tiny GD->LE relaxation:
6099 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6100 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6101 nop => add R0, R0, #:tprel_lo12_nc:x
6102
6103 Where R is x for LP64, and x for Ilp32. */
6104
6105 /* First kill the tls_get_addr reloc on the bl instruction. */
6106 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6107
6108 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6109 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6110 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6111
6112 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6113 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6114 rel[1].r_offset = rel->r_offset + 8;
6115
6116 /* Move the current relocation to the second instruction in
6117 the sequence. */
6118 rel->r_offset += 4;
6119 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6120 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6121 return bfd_reloc_continue;
6122 }
6123 else
6124 {
6125 /* Tiny GD->IE relaxation:
6126 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6127 bl __tls_get_addr => mrs x1, tpidr_el0
6128 nop => add R0, R0, R1
6129
6130 Where R is x for LP64, and w for Ilp32. */
6131
6132 /* First kill the tls_get_addr reloc on the bl instruction. */
6133 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6134 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6135
6136 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6137 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6138 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6139 return bfd_reloc_continue;
6140 }
6141
6142 #if ARCH_SIZE == 64
6143 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6144 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6145 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6146 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6147
6148 if (is_local)
6149 {
6150 /* Large GD->LE relaxation:
6151 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6152 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6153 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6154 bl __tls_get_addr => mrs x1, tpidr_el0
6155 nop => add x0, x0, x1
6156 */
6157 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6158 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6159 rel[2].r_offset = rel->r_offset + 8;
6160
6161 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6162 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6163 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6164 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6165 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6166 }
6167 else
6168 {
6169 /* Large GD->IE relaxation:
6170 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6171 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6172 add x0, gp, x0 => ldr x0, [gp, x0]
6173 bl __tls_get_addr => mrs x1, tpidr_el0
6174 nop => add x0, x0, x1
6175 */
6176 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6177 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6178 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6179 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6180 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6181 }
6182 return bfd_reloc_continue;
6183
6184 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6185 return bfd_reloc_continue;
6186 #endif
6187
6188 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6189 return bfd_reloc_continue;
6190
6191 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6192 if (is_local)
6193 {
6194 /* GD->LE relaxation:
6195 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6196
6197 Where R is x for lp64 mode, and w for ILP32 mode. */
6198 bfd_putl32 (movk_R0, contents + rel->r_offset);
6199 return bfd_reloc_continue;
6200 }
6201 else
6202 {
6203 /* GD->IE relaxation:
6204 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6205
6206 Where R is x for lp64 mode, and w for ILP32 mode. */
6207 insn = bfd_getl32 (contents + rel->r_offset);
6208 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6209 return bfd_reloc_continue;
6210 }
6211
6212 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6213 if (is_local)
6214 {
6215 /* GD->LE relaxation
6216 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6217 bl __tls_get_addr => mrs x1, tpidr_el0
6218 nop => add R0, R1, R0
6219
6220 Where R is x for lp64 mode, and w for ILP32 mode. */
6221
6222 /* First kill the tls_get_addr reloc on the bl instruction. */
6223 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6224 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6225
6226 bfd_putl32 (movk_R0, contents + rel->r_offset);
6227 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6228 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6229 return bfd_reloc_continue;
6230 }
6231 else
6232 {
6233 /* GD->IE relaxation
6234 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6235 BL __tls_get_addr => mrs x1, tpidr_el0
6236 R_AARCH64_CALL26
6237 NOP => add R0, R1, R0
6238
6239 Where R is x for lp64 mode, and w for ilp32 mode. */
6240
6241 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6242
6243 /* Remove the relocation on the BL instruction. */
6244 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6245
6246 /* We choose to fixup the BL and NOP instructions using the
6247 offset from the second relocation to allow flexibility in
6248 scheduling instructions between the ADD and BL. */
6249 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6250 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6251 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6252 return bfd_reloc_continue;
6253 }
6254
6255 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6256 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6257 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6258 /* GD->IE/LE relaxation:
6259 add x0, x0, #:tlsdesc_lo12:var => nop
6260 blr xd => nop
6261 */
6262 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6263 return bfd_reloc_ok;
6264
6265 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6266 if (is_local)
6267 {
6268 /* GD->LE relaxation:
6269 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6270
6271 Where R is x for lp64 mode, and w for ILP32 mode. */
6272 bfd_putl32 (movk_R0, contents + rel->r_offset);
6273 return bfd_reloc_continue;
6274 }
6275 else
6276 {
6277 /* GD->IE relaxation:
6278 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6279
6280 Where R is x for lp64 mode, and w for ILP32 mode. */
6281 insn = bfd_getl32 (contents + rel->r_offset);
6282 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6283 return bfd_reloc_ok;
6284 }
6285
6286 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6287 /* GD->LE relaxation:
6288 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6289 GD->IE relaxation:
6290 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6291
6292 Where R is x for lp64 mode, and w for ILP32 mode. */
6293 if (is_local)
6294 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6295 return bfd_reloc_continue;
6296
6297 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6298 if (is_local)
6299 {
6300 /* GD->LE relaxation:
6301 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6302
6303 Where R is x for lp64 mode, and w for ILP32 mode. */
6304 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6305 return bfd_reloc_continue;
6306 }
6307 else
6308 {
6309 /* GD->IE relaxation:
6310 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6311
6312 Where R is x for lp64 mode, and w for ILP32 mode. */
6313 insn = bfd_getl32 (contents + rel->r_offset);
6314 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6315 return bfd_reloc_continue;
6316 }
6317
6318 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6319 /* IE->LE relaxation:
6320 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6321
6322 Where R is x for lp64 mode, and w for ILP32 mode. */
6323 if (is_local)
6324 {
6325 insn = bfd_getl32 (contents + rel->r_offset);
6326 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6327 /* We have relaxed the adrp into a mov, we may have to clear any
6328 pending erratum fixes. */
6329 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6330 }
6331 return bfd_reloc_continue;
6332
6333 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6334 /* IE->LE relaxation:
6335 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6336
6337 Where R is x for lp64 mode, and w for ILP32 mode. */
6338 if (is_local)
6339 {
6340 insn = bfd_getl32 (contents + rel->r_offset);
6341 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6342 }
6343 return bfd_reloc_continue;
6344
6345 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6346 /* LD->LE relaxation (tiny):
6347 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6348 bl __tls_get_addr => add R0, R0, TCB_SIZE
6349
6350 Where R is x for lp64 mode, and w for ilp32 mode. */
6351 if (is_local)
6352 {
6353 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6354 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6355 /* No need of CALL26 relocation for tls_get_addr. */
6356 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6357 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6358 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6359 contents + rel->r_offset + 4);
6360 return bfd_reloc_ok;
6361 }
6362 return bfd_reloc_continue;
6363
6364 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6365 /* LD->LE relaxation (small):
6366 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6367 */
6368 if (is_local)
6369 {
6370 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6371 return bfd_reloc_ok;
6372 }
6373 return bfd_reloc_continue;
6374
6375 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6376 /* LD->LE relaxation (small):
6377 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6378 bl __tls_get_addr => nop
6379
6380 Where R is x for lp64 mode, and w for ilp32 mode. */
6381 if (is_local)
6382 {
6383 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6384 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6385 /* No need of CALL26 relocation for tls_get_addr. */
6386 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6387 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6388 contents + rel->r_offset + 0);
6389 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6390 return bfd_reloc_ok;
6391 }
6392 return bfd_reloc_continue;
6393
6394 default:
6395 return bfd_reloc_continue;
6396 }
6397
6398 return bfd_reloc_ok;
6399 }
6400
6401 /* Relocate an AArch64 ELF section. */
6402
6403 static bfd_boolean
6404 elfNN_aarch64_relocate_section (bfd *output_bfd,
6405 struct bfd_link_info *info,
6406 bfd *input_bfd,
6407 asection *input_section,
6408 bfd_byte *contents,
6409 Elf_Internal_Rela *relocs,
6410 Elf_Internal_Sym *local_syms,
6411 asection **local_sections)
6412 {
6413 Elf_Internal_Shdr *symtab_hdr;
6414 struct elf_link_hash_entry **sym_hashes;
6415 Elf_Internal_Rela *rel;
6416 Elf_Internal_Rela *relend;
6417 const char *name;
6418 struct elf_aarch64_link_hash_table *globals;
6419 bfd_boolean save_addend = FALSE;
6420 bfd_vma addend = 0;
6421
6422 globals = elf_aarch64_hash_table (info);
6423
6424 symtab_hdr = &elf_symtab_hdr (input_bfd);
6425 sym_hashes = elf_sym_hashes (input_bfd);
6426
6427 rel = relocs;
6428 relend = relocs + input_section->reloc_count;
6429 for (; rel < relend; rel++)
6430 {
6431 unsigned int r_type;
6432 bfd_reloc_code_real_type bfd_r_type;
6433 bfd_reloc_code_real_type relaxed_bfd_r_type;
6434 reloc_howto_type *howto;
6435 unsigned long r_symndx;
6436 Elf_Internal_Sym *sym;
6437 asection *sec;
6438 struct elf_link_hash_entry *h;
6439 bfd_vma relocation;
6440 bfd_reloc_status_type r;
6441 arelent bfd_reloc;
6442 char sym_type;
6443 bfd_boolean unresolved_reloc = FALSE;
6444 char *error_message = NULL;
6445
6446 r_symndx = ELFNN_R_SYM (rel->r_info);
6447 r_type = ELFNN_R_TYPE (rel->r_info);
6448
6449 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6450 howto = bfd_reloc.howto;
6451
6452 if (howto == NULL)
6453 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6454
6455 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6456
6457 h = NULL;
6458 sym = NULL;
6459 sec = NULL;
6460
6461 if (r_symndx < symtab_hdr->sh_info)
6462 {
6463 sym = local_syms + r_symndx;
6464 sym_type = ELFNN_ST_TYPE (sym->st_info);
6465 sec = local_sections[r_symndx];
6466
6467 /* An object file might have a reference to a local
6468 undefined symbol. This is a daft object file, but we
6469 should at least do something about it. */
6470 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6471 && bfd_is_und_section (sec)
6472 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6473 (*info->callbacks->undefined_symbol)
6474 (info, bfd_elf_string_from_elf_section
6475 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6476 input_bfd, input_section, rel->r_offset, TRUE);
6477
6478 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6479
6480 /* Relocate against local STT_GNU_IFUNC symbol. */
6481 if (!bfd_link_relocatable (info)
6482 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6483 {
6484 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6485 rel, FALSE);
6486 if (h == NULL)
6487 abort ();
6488
6489 /* Set STT_GNU_IFUNC symbol value. */
6490 h->root.u.def.value = sym->st_value;
6491 h->root.u.def.section = sec;
6492 }
6493 }
6494 else
6495 {
6496 bfd_boolean warned, ignored;
6497
6498 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6499 r_symndx, symtab_hdr, sym_hashes,
6500 h, sec, relocation,
6501 unresolved_reloc, warned, ignored);
6502
6503 sym_type = h->type;
6504 }
6505
6506 if (sec != NULL && discarded_section (sec))
6507 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6508 rel, 1, relend, howto, 0, contents);
6509
6510 if (bfd_link_relocatable (info))
6511 continue;
6512
6513 if (h != NULL)
6514 name = h->root.root.string;
6515 else
6516 {
6517 name = (bfd_elf_string_from_elf_section
6518 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6519 if (name == NULL || *name == '\0')
6520 name = bfd_section_name (input_bfd, sec);
6521 }
6522
6523 if (r_symndx != 0
6524 && r_type != R_AARCH64_NONE
6525 && r_type != R_AARCH64_NULL
6526 && (h == NULL
6527 || h->root.type == bfd_link_hash_defined
6528 || h->root.type == bfd_link_hash_defweak)
6529 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6530 {
6531 _bfd_error_handler
6532 ((sym_type == STT_TLS
6533 /* xgettext:c-format */
6534 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6535 /* xgettext:c-format */
6536 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6537 input_bfd,
6538 input_section, (uint64_t) rel->r_offset, howto->name, name);
6539 }
6540
6541 /* We relax only if we can see that there can be a valid transition
6542 from a reloc type to another.
6543 We call elfNN_aarch64_final_link_relocate unless we're completely
6544 done, i.e., the relaxation produced the final output we want. */
6545
6546 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6547 h, r_symndx);
6548 if (relaxed_bfd_r_type != bfd_r_type)
6549 {
6550 bfd_r_type = relaxed_bfd_r_type;
6551 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6552 BFD_ASSERT (howto != NULL);
6553 r_type = howto->type;
6554 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6555 contents, rel, h);
6556 unresolved_reloc = 0;
6557 }
6558 else
6559 r = bfd_reloc_continue;
6560
6561 /* There may be multiple consecutive relocations for the
6562 same offset. In that case we are supposed to treat the
6563 output of each relocation as the addend for the next. */
6564 if (rel + 1 < relend
6565 && rel->r_offset == rel[1].r_offset
6566 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6567 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6568 save_addend = TRUE;
6569 else
6570 save_addend = FALSE;
6571
6572 if (r == bfd_reloc_continue)
6573 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6574 input_section, contents, rel,
6575 relocation, info, sec,
6576 h, &unresolved_reloc,
6577 save_addend, &addend, sym);
6578
6579 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6580 {
6581 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6582 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6583 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6584 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6585 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6586 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6587 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6588 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6589 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6590 {
6591 bfd_boolean need_relocs = FALSE;
6592 bfd_byte *loc;
6593 int indx;
6594 bfd_vma off;
6595
6596 off = symbol_got_offset (input_bfd, h, r_symndx);
6597 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6598
6599 need_relocs =
6600 (!bfd_link_executable (info) || indx != 0) &&
6601 (h == NULL
6602 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6603 || h->root.type != bfd_link_hash_undefweak);
6604
6605 BFD_ASSERT (globals->root.srelgot != NULL);
6606
6607 if (need_relocs)
6608 {
6609 Elf_Internal_Rela rela;
6610 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6611 rela.r_addend = 0;
6612 rela.r_offset = globals->root.sgot->output_section->vma +
6613 globals->root.sgot->output_offset + off;
6614
6615
6616 loc = globals->root.srelgot->contents;
6617 loc += globals->root.srelgot->reloc_count++
6618 * RELOC_SIZE (htab);
6619 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6620
6621 bfd_reloc_code_real_type real_type =
6622 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6623
6624 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6625 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6626 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6627 {
6628 /* For local dynamic, don't generate DTPREL in any case.
6629 Initialize the DTPREL slot into zero, so we get module
6630 base address when invoke runtime TLS resolver. */
6631 bfd_put_NN (output_bfd, 0,
6632 globals->root.sgot->contents + off
6633 + GOT_ENTRY_SIZE);
6634 }
6635 else if (indx == 0)
6636 {
6637 bfd_put_NN (output_bfd,
6638 relocation - dtpoff_base (info),
6639 globals->root.sgot->contents + off
6640 + GOT_ENTRY_SIZE);
6641 }
6642 else
6643 {
6644 /* This TLS symbol is global. We emit a
6645 relocation to fixup the tls offset at load
6646 time. */
6647 rela.r_info =
6648 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6649 rela.r_addend = 0;
6650 rela.r_offset =
6651 (globals->root.sgot->output_section->vma
6652 + globals->root.sgot->output_offset + off
6653 + GOT_ENTRY_SIZE);
6654
6655 loc = globals->root.srelgot->contents;
6656 loc += globals->root.srelgot->reloc_count++
6657 * RELOC_SIZE (globals);
6658 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6659 bfd_put_NN (output_bfd, (bfd_vma) 0,
6660 globals->root.sgot->contents + off
6661 + GOT_ENTRY_SIZE);
6662 }
6663 }
6664 else
6665 {
6666 bfd_put_NN (output_bfd, (bfd_vma) 1,
6667 globals->root.sgot->contents + off);
6668 bfd_put_NN (output_bfd,
6669 relocation - dtpoff_base (info),
6670 globals->root.sgot->contents + off
6671 + GOT_ENTRY_SIZE);
6672 }
6673
6674 symbol_got_offset_mark (input_bfd, h, r_symndx);
6675 }
6676 break;
6677
6678 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6679 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6680 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6681 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6682 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6683 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6684 {
6685 bfd_boolean need_relocs = FALSE;
6686 bfd_byte *loc;
6687 int indx;
6688 bfd_vma off;
6689
6690 off = symbol_got_offset (input_bfd, h, r_symndx);
6691
6692 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6693
6694 need_relocs =
6695 (!bfd_link_executable (info) || indx != 0) &&
6696 (h == NULL
6697 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6698 || h->root.type != bfd_link_hash_undefweak);
6699
6700 BFD_ASSERT (globals->root.srelgot != NULL);
6701
6702 if (need_relocs)
6703 {
6704 Elf_Internal_Rela rela;
6705
6706 if (indx == 0)
6707 rela.r_addend = relocation - dtpoff_base (info);
6708 else
6709 rela.r_addend = 0;
6710
6711 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6712 rela.r_offset = globals->root.sgot->output_section->vma +
6713 globals->root.sgot->output_offset + off;
6714
6715 loc = globals->root.srelgot->contents;
6716 loc += globals->root.srelgot->reloc_count++
6717 * RELOC_SIZE (htab);
6718
6719 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6720
6721 bfd_put_NN (output_bfd, rela.r_addend,
6722 globals->root.sgot->contents + off);
6723 }
6724 else
6725 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6726 globals->root.sgot->contents + off);
6727
6728 symbol_got_offset_mark (input_bfd, h, r_symndx);
6729 }
6730 break;
6731
6732 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6733 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6734 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6735 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6736 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6737 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6738 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6739 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6740 {
6741 bfd_boolean need_relocs = FALSE;
6742 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6743 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6744
6745 need_relocs = (h == NULL
6746 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6747 || h->root.type != bfd_link_hash_undefweak);
6748
6749 BFD_ASSERT (globals->root.srelgot != NULL);
6750 BFD_ASSERT (globals->root.sgot != NULL);
6751
6752 if (need_relocs)
6753 {
6754 bfd_byte *loc;
6755 Elf_Internal_Rela rela;
6756 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6757
6758 rela.r_addend = 0;
6759 rela.r_offset = (globals->root.sgotplt->output_section->vma
6760 + globals->root.sgotplt->output_offset
6761 + off + globals->sgotplt_jump_table_size);
6762
6763 if (indx == 0)
6764 rela.r_addend = relocation - dtpoff_base (info);
6765
6766 /* Allocate the next available slot in the PLT reloc
6767 section to hold our R_AARCH64_TLSDESC, the next
6768 available slot is determined from reloc_count,
6769 which we step. But note, reloc_count was
6770 artifically moved down while allocating slots for
6771 real PLT relocs such that all of the PLT relocs
6772 will fit above the initial reloc_count and the
6773 extra stuff will fit below. */
6774 loc = globals->root.srelplt->contents;
6775 loc += globals->root.srelplt->reloc_count++
6776 * RELOC_SIZE (globals);
6777
6778 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6779
6780 bfd_put_NN (output_bfd, (bfd_vma) 0,
6781 globals->root.sgotplt->contents + off +
6782 globals->sgotplt_jump_table_size);
6783 bfd_put_NN (output_bfd, (bfd_vma) 0,
6784 globals->root.sgotplt->contents + off +
6785 globals->sgotplt_jump_table_size +
6786 GOT_ENTRY_SIZE);
6787 }
6788
6789 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6790 }
6791 break;
6792 default:
6793 break;
6794 }
6795
6796 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6797 because such sections are not SEC_ALLOC and thus ld.so will
6798 not process them. */
6799 if (unresolved_reloc
6800 && !((input_section->flags & SEC_DEBUGGING) != 0
6801 && h->def_dynamic)
6802 && _bfd_elf_section_offset (output_bfd, info, input_section,
6803 +rel->r_offset) != (bfd_vma) - 1)
6804 {
6805 _bfd_error_handler
6806 /* xgettext:c-format */
6807 (_("%pB(%pA+%#" PRIx64 "): "
6808 "unresolvable %s relocation against symbol `%s'"),
6809 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
6810 h->root.root.string);
6811 return FALSE;
6812 }
6813
6814 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6815 {
6816 bfd_reloc_code_real_type real_r_type
6817 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6818
6819 switch (r)
6820 {
6821 case bfd_reloc_overflow:
6822 (*info->callbacks->reloc_overflow)
6823 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6824 input_bfd, input_section, rel->r_offset);
6825 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6826 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6827 {
6828 (*info->callbacks->warning)
6829 (info,
6830 _("too many GOT entries for -fpic, "
6831 "please recompile with -fPIC"),
6832 name, input_bfd, input_section, rel->r_offset);
6833 return FALSE;
6834 }
6835 /* Overflow can occur when a variable is referenced with a type
6836 that has a larger alignment than the type with which it was
6837 declared. eg:
6838 file1.c: extern int foo; int a (void) { return foo; }
6839 file2.c: char bar, foo, baz;
6840 If the variable is placed into a data section at an offset
6841 that is incompatible with the larger alignment requirement
6842 overflow will occur. (Strictly speaking this is not overflow
6843 but rather an alignment problem, but the bfd_reloc_ error
6844 enum does not have a value to cover that situation).
6845
6846 Try to catch this situation here and provide a more helpful
6847 error message to the user. */
6848 if (addend & ((1 << howto->rightshift) - 1)
6849 /* FIXME: Are we testing all of the appropriate reloc
6850 types here ? */
6851 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6852 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6853 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6854 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6855 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6856 {
6857 info->callbacks->warning
6858 (info, _("one possible cause of this error is that the \
6859 symbol is being referenced in the indicated code as if it had a larger \
6860 alignment than was declared where it was defined"),
6861 name, input_bfd, input_section, rel->r_offset);
6862 }
6863 break;
6864
6865 case bfd_reloc_undefined:
6866 (*info->callbacks->undefined_symbol)
6867 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6868 break;
6869
6870 case bfd_reloc_outofrange:
6871 error_message = _("out of range");
6872 goto common_error;
6873
6874 case bfd_reloc_notsupported:
6875 error_message = _("unsupported relocation");
6876 goto common_error;
6877
6878 case bfd_reloc_dangerous:
6879 /* error_message should already be set. */
6880 goto common_error;
6881
6882 default:
6883 error_message = _("unknown error");
6884 /* Fall through. */
6885
6886 common_error:
6887 BFD_ASSERT (error_message != NULL);
6888 (*info->callbacks->reloc_dangerous)
6889 (info, error_message, input_bfd, input_section, rel->r_offset);
6890 break;
6891 }
6892 }
6893
6894 if (!save_addend)
6895 addend = 0;
6896 }
6897
6898 return TRUE;
6899 }
6900
6901 /* Set the right machine number. */
6902
6903 static bfd_boolean
6904 elfNN_aarch64_object_p (bfd *abfd)
6905 {
6906 #if ARCH_SIZE == 32
6907 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6908 #else
6909 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6910 #endif
6911 return TRUE;
6912 }
6913
6914 /* Function to keep AArch64 specific flags in the ELF header. */
6915
6916 static bfd_boolean
6917 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6918 {
6919 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6920 {
6921 }
6922 else
6923 {
6924 elf_elfheader (abfd)->e_flags = flags;
6925 elf_flags_init (abfd) = TRUE;
6926 }
6927
6928 return TRUE;
6929 }
6930
6931 /* Merge backend specific data from an object file to the output
6932 object file when linking. */
6933
6934 static bfd_boolean
6935 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6936 {
6937 bfd *obfd = info->output_bfd;
6938 flagword out_flags;
6939 flagword in_flags;
6940 bfd_boolean flags_compatible = TRUE;
6941 asection *sec;
6942
6943 /* Check if we have the same endianess. */
6944 if (!_bfd_generic_verify_endian_match (ibfd, info))
6945 return FALSE;
6946
6947 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6948 return TRUE;
6949
6950 /* The input BFD must have had its flags initialised. */
6951 /* The following seems bogus to me -- The flags are initialized in
6952 the assembler but I don't think an elf_flags_init field is
6953 written into the object. */
6954 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6955
6956 in_flags = elf_elfheader (ibfd)->e_flags;
6957 out_flags = elf_elfheader (obfd)->e_flags;
6958
6959 if (!elf_flags_init (obfd))
6960 {
6961 /* If the input is the default architecture and had the default
6962 flags then do not bother setting the flags for the output
6963 architecture, instead allow future merges to do this. If no
6964 future merges ever set these flags then they will retain their
6965 uninitialised values, which surprise surprise, correspond
6966 to the default values. */
6967 if (bfd_get_arch_info (ibfd)->the_default
6968 && elf_elfheader (ibfd)->e_flags == 0)
6969 return TRUE;
6970
6971 elf_flags_init (obfd) = TRUE;
6972 elf_elfheader (obfd)->e_flags = in_flags;
6973
6974 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6975 && bfd_get_arch_info (obfd)->the_default)
6976 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6977 bfd_get_mach (ibfd));
6978
6979 return TRUE;
6980 }
6981
6982 /* Identical flags must be compatible. */
6983 if (in_flags == out_flags)
6984 return TRUE;
6985
6986 /* Check to see if the input BFD actually contains any sections. If
6987 not, its flags may not have been initialised either, but it
6988 cannot actually cause any incompatiblity. Do not short-circuit
6989 dynamic objects; their section list may be emptied by
6990 elf_link_add_object_symbols.
6991
6992 Also check to see if there are no code sections in the input.
6993 In this case there is no need to check for code specific flags.
6994 XXX - do we need to worry about floating-point format compatability
6995 in data sections ? */
6996 if (!(ibfd->flags & DYNAMIC))
6997 {
6998 bfd_boolean null_input_bfd = TRUE;
6999 bfd_boolean only_data_sections = TRUE;
7000
7001 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7002 {
7003 if ((bfd_get_section_flags (ibfd, sec)
7004 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7005 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7006 only_data_sections = FALSE;
7007
7008 null_input_bfd = FALSE;
7009 break;
7010 }
7011
7012 if (null_input_bfd || only_data_sections)
7013 return TRUE;
7014 }
7015
7016 return flags_compatible;
7017 }
7018
7019 /* Display the flags field. */
7020
7021 static bfd_boolean
7022 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7023 {
7024 FILE *file = (FILE *) ptr;
7025 unsigned long flags;
7026
7027 BFD_ASSERT (abfd != NULL && ptr != NULL);
7028
7029 /* Print normal ELF private data. */
7030 _bfd_elf_print_private_bfd_data (abfd, ptr);
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 /* Ignore init flag - it may not be set, despite the flags field
7034 containing valid data. */
7035
7036 /* xgettext:c-format */
7037 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7038
7039 if (flags)
7040 fprintf (file, _("<Unrecognised flag bits set>"));
7041
7042 fputc ('\n', file);
7043
7044 return TRUE;
7045 }
7046
7047 /* Find dynamic relocs for H that apply to read-only sections. */
7048
7049 static asection *
7050 readonly_dynrelocs (struct elf_link_hash_entry *h)
7051 {
7052 struct elf_dyn_relocs *p;
7053
7054 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7055 {
7056 asection *s = p->sec->output_section;
7057
7058 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7059 return p->sec;
7060 }
7061 return NULL;
7062 }
7063
7064 /* Return true if we need copy relocation against EH. */
7065
7066 static bfd_boolean
7067 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7068 {
7069 struct elf_dyn_relocs *p;
7070 asection *s;
7071
7072 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7073 {
7074 /* If there is any pc-relative reference, we need to keep copy relocation
7075 to avoid propagating the relocation into runtime that current glibc
7076 does not support. */
7077 if (p->pc_count)
7078 return TRUE;
7079
7080 s = p->sec->output_section;
7081 /* Need copy relocation if it's against read-only section. */
7082 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7083 return TRUE;
7084 }
7085
7086 return FALSE;
7087 }
7088
7089 /* Adjust a symbol defined by a dynamic object and referenced by a
7090 regular object. The current definition is in some section of the
7091 dynamic object, but we're not including those sections. We have to
7092 change the definition to something the rest of the link can
7093 understand. */
7094
7095 static bfd_boolean
7096 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7097 struct elf_link_hash_entry *h)
7098 {
7099 struct elf_aarch64_link_hash_table *htab;
7100 asection *s, *srel;
7101
7102 /* If this is a function, put it in the procedure linkage table. We
7103 will fill in the contents of the procedure linkage table later,
7104 when we know the address of the .got section. */
7105 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7106 {
7107 if (h->plt.refcount <= 0
7108 || (h->type != STT_GNU_IFUNC
7109 && (SYMBOL_CALLS_LOCAL (info, h)
7110 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7111 && h->root.type == bfd_link_hash_undefweak))))
7112 {
7113 /* This case can occur if we saw a CALL26 reloc in
7114 an input file, but the symbol wasn't referred to
7115 by a dynamic object or all references were
7116 garbage collected. In which case we can end up
7117 resolving. */
7118 h->plt.offset = (bfd_vma) - 1;
7119 h->needs_plt = 0;
7120 }
7121
7122 return TRUE;
7123 }
7124 else
7125 /* Otherwise, reset to -1. */
7126 h->plt.offset = (bfd_vma) - 1;
7127
7128
7129 /* If this is a weak symbol, and there is a real definition, the
7130 processor independent code will have arranged for us to see the
7131 real definition first, and we can just use the same value. */
7132 if (h->is_weakalias)
7133 {
7134 struct elf_link_hash_entry *def = weakdef (h);
7135 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7136 h->root.u.def.section = def->root.u.def.section;
7137 h->root.u.def.value = def->root.u.def.value;
7138 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7139 h->non_got_ref = def->non_got_ref;
7140 return TRUE;
7141 }
7142
7143 /* If we are creating a shared library, we must presume that the
7144 only references to the symbol are via the global offset table.
7145 For such cases we need not do anything here; the relocations will
7146 be handled correctly by relocate_section. */
7147 if (bfd_link_pic (info))
7148 return TRUE;
7149
7150 /* If there are no references to this symbol that do not use the
7151 GOT, we don't need to generate a copy reloc. */
7152 if (!h->non_got_ref)
7153 return TRUE;
7154
7155 /* If -z nocopyreloc was given, we won't generate them either. */
7156 if (info->nocopyreloc)
7157 {
7158 h->non_got_ref = 0;
7159 return TRUE;
7160 }
7161
7162 if (ELIMINATE_COPY_RELOCS)
7163 {
7164 struct elf_aarch64_link_hash_entry *eh;
7165 /* If we don't find any dynamic relocs in read-only sections, then
7166 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7167 eh = (struct elf_aarch64_link_hash_entry *) h;
7168 if (!need_copy_relocation_p (eh))
7169 {
7170 h->non_got_ref = 0;
7171 return TRUE;
7172 }
7173 }
7174
7175 /* We must allocate the symbol in our .dynbss section, which will
7176 become part of the .bss section of the executable. There will be
7177 an entry for this symbol in the .dynsym section. The dynamic
7178 object will contain position independent code, so all references
7179 from the dynamic object to this symbol will go through the global
7180 offset table. The dynamic linker will use the .dynsym entry to
7181 determine the address it must put in the global offset table, so
7182 both the dynamic object and the regular object will refer to the
7183 same memory location for the variable. */
7184
7185 htab = elf_aarch64_hash_table (info);
7186
7187 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7188 to copy the initial value out of the dynamic object and into the
7189 runtime process image. */
7190 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7191 {
7192 s = htab->root.sdynrelro;
7193 srel = htab->root.sreldynrelro;
7194 }
7195 else
7196 {
7197 s = htab->root.sdynbss;
7198 srel = htab->root.srelbss;
7199 }
7200 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7201 {
7202 srel->size += RELOC_SIZE (htab);
7203 h->needs_copy = 1;
7204 }
7205
7206 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7207
7208 }
7209
7210 static bfd_boolean
7211 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7212 {
7213 struct elf_aarch64_local_symbol *locals;
7214 locals = elf_aarch64_locals (abfd);
7215 if (locals == NULL)
7216 {
7217 locals = (struct elf_aarch64_local_symbol *)
7218 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7219 if (locals == NULL)
7220 return FALSE;
7221 elf_aarch64_locals (abfd) = locals;
7222 }
7223 return TRUE;
7224 }
7225
7226 /* Create the .got section to hold the global offset table. */
7227
7228 static bfd_boolean
7229 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7230 {
7231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7232 flagword flags;
7233 asection *s;
7234 struct elf_link_hash_entry *h;
7235 struct elf_link_hash_table *htab = elf_hash_table (info);
7236
7237 /* This function may be called more than once. */
7238 if (htab->sgot != NULL)
7239 return TRUE;
7240
7241 flags = bed->dynamic_sec_flags;
7242
7243 s = bfd_make_section_anyway_with_flags (abfd,
7244 (bed->rela_plts_and_copies_p
7245 ? ".rela.got" : ".rel.got"),
7246 (bed->dynamic_sec_flags
7247 | SEC_READONLY));
7248 if (s == NULL
7249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7250 return FALSE;
7251 htab->srelgot = s;
7252
7253 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7254 if (s == NULL
7255 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7256 return FALSE;
7257 htab->sgot = s;
7258 htab->sgot->size += GOT_ENTRY_SIZE;
7259
7260 if (bed->want_got_sym)
7261 {
7262 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7263 (or .got.plt) section. We don't do this in the linker script
7264 because we don't want to define the symbol if we are not creating
7265 a global offset table. */
7266 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7267 "_GLOBAL_OFFSET_TABLE_");
7268 elf_hash_table (info)->hgot = h;
7269 if (h == NULL)
7270 return FALSE;
7271 }
7272
7273 if (bed->want_got_plt)
7274 {
7275 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7276 if (s == NULL
7277 || !bfd_set_section_alignment (abfd, s,
7278 bed->s->log_file_align))
7279 return FALSE;
7280 htab->sgotplt = s;
7281 }
7282
7283 /* The first bit of the global offset table is the header. */
7284 s->size += bed->got_header_size;
7285
7286 return TRUE;
7287 }
7288
7289 /* Look through the relocs for a section during the first phase. */
7290
7291 static bfd_boolean
7292 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7293 asection *sec, const Elf_Internal_Rela *relocs)
7294 {
7295 Elf_Internal_Shdr *symtab_hdr;
7296 struct elf_link_hash_entry **sym_hashes;
7297 const Elf_Internal_Rela *rel;
7298 const Elf_Internal_Rela *rel_end;
7299 asection *sreloc;
7300
7301 struct elf_aarch64_link_hash_table *htab;
7302
7303 if (bfd_link_relocatable (info))
7304 return TRUE;
7305
7306 BFD_ASSERT (is_aarch64_elf (abfd));
7307
7308 htab = elf_aarch64_hash_table (info);
7309 sreloc = NULL;
7310
7311 symtab_hdr = &elf_symtab_hdr (abfd);
7312 sym_hashes = elf_sym_hashes (abfd);
7313
7314 rel_end = relocs + sec->reloc_count;
7315 for (rel = relocs; rel < rel_end; rel++)
7316 {
7317 struct elf_link_hash_entry *h;
7318 unsigned int r_symndx;
7319 unsigned int r_type;
7320 bfd_reloc_code_real_type bfd_r_type;
7321 Elf_Internal_Sym *isym;
7322
7323 r_symndx = ELFNN_R_SYM (rel->r_info);
7324 r_type = ELFNN_R_TYPE (rel->r_info);
7325
7326 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7327 {
7328 /* xgettext:c-format */
7329 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7330 return FALSE;
7331 }
7332
7333 if (r_symndx < symtab_hdr->sh_info)
7334 {
7335 /* A local symbol. */
7336 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7337 abfd, r_symndx);
7338 if (isym == NULL)
7339 return FALSE;
7340
7341 /* Check relocation against local STT_GNU_IFUNC symbol. */
7342 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7343 {
7344 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7345 TRUE);
7346 if (h == NULL)
7347 return FALSE;
7348
7349 /* Fake a STT_GNU_IFUNC symbol. */
7350 h->type = STT_GNU_IFUNC;
7351 h->def_regular = 1;
7352 h->ref_regular = 1;
7353 h->forced_local = 1;
7354 h->root.type = bfd_link_hash_defined;
7355 }
7356 else
7357 h = NULL;
7358 }
7359 else
7360 {
7361 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7362 while (h->root.type == bfd_link_hash_indirect
7363 || h->root.type == bfd_link_hash_warning)
7364 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7365 }
7366
7367 /* Could be done earlier, if h were already available. */
7368 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7369
7370 if (h != NULL)
7371 {
7372 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7373 This shows up in particular in an R_AARCH64_PREL64 in large model
7374 when calculating the pc-relative address to .got section which is
7375 used to initialize the gp register. */
7376 if (h->root.root.string
7377 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7378 {
7379 if (htab->root.dynobj == NULL)
7380 htab->root.dynobj = abfd;
7381
7382 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7383 return FALSE;
7384
7385 BFD_ASSERT (h == htab->root.hgot);
7386 }
7387
7388 /* Create the ifunc sections for static executables. If we
7389 never see an indirect function symbol nor we are building
7390 a static executable, those sections will be empty and
7391 won't appear in output. */
7392 switch (bfd_r_type)
7393 {
7394 default:
7395 break;
7396
7397 case BFD_RELOC_AARCH64_ADD_LO12:
7398 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7399 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7400 case BFD_RELOC_AARCH64_CALL26:
7401 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7402 case BFD_RELOC_AARCH64_JUMP26:
7403 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7404 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7405 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7406 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7407 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7408 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7409 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7410 case BFD_RELOC_AARCH64_NN:
7411 if (htab->root.dynobj == NULL)
7412 htab->root.dynobj = abfd;
7413 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7414 return FALSE;
7415 break;
7416 }
7417
7418 /* It is referenced by a non-shared object. */
7419 h->ref_regular = 1;
7420 }
7421
7422 switch (bfd_r_type)
7423 {
7424 case BFD_RELOC_AARCH64_16:
7425 #if ARCH_SIZE == 64
7426 case BFD_RELOC_AARCH64_32:
7427 #endif
7428 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7429 {
7430 if (h != NULL
7431 /* This is an absolute symbol. It represents a value instead
7432 of an address. */
7433 && (bfd_is_abs_symbol (&h->root)
7434 /* This is an undefined symbol. */
7435 || h->root.type == bfd_link_hash_undefined))
7436 break;
7437
7438 /* For local symbols, defined global symbols in a non-ABS section,
7439 it is assumed that the value is an address. */
7440 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7441 _bfd_error_handler
7442 /* xgettext:c-format */
7443 (_("%pB: relocation %s against `%s' can not be used when making "
7444 "a shared object"),
7445 abfd, elfNN_aarch64_howto_table[howto_index].name,
7446 (h) ? h->root.root.string : "a local symbol");
7447 bfd_set_error (bfd_error_bad_value);
7448 return FALSE;
7449 }
7450 else
7451 break;
7452
7453 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7454 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7455 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7456 case BFD_RELOC_AARCH64_MOVW_G3:
7457 if (bfd_link_pic (info))
7458 {
7459 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7460 _bfd_error_handler
7461 /* xgettext:c-format */
7462 (_("%pB: relocation %s against `%s' can not be used when making "
7463 "a shared object; recompile with -fPIC"),
7464 abfd, elfNN_aarch64_howto_table[howto_index].name,
7465 (h) ? h->root.root.string : "a local symbol");
7466 bfd_set_error (bfd_error_bad_value);
7467 return FALSE;
7468 }
7469 /* Fall through. */
7470
7471 case BFD_RELOC_AARCH64_16_PCREL:
7472 case BFD_RELOC_AARCH64_32_PCREL:
7473 case BFD_RELOC_AARCH64_64_PCREL:
7474 case BFD_RELOC_AARCH64_ADD_LO12:
7475 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7476 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7477 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7478 case BFD_RELOC_AARCH64_LDST128_LO12:
7479 case BFD_RELOC_AARCH64_LDST16_LO12:
7480 case BFD_RELOC_AARCH64_LDST32_LO12:
7481 case BFD_RELOC_AARCH64_LDST64_LO12:
7482 case BFD_RELOC_AARCH64_LDST8_LO12:
7483 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7484 if (h == NULL || bfd_link_pic (info))
7485 break;
7486 /* Fall through. */
7487
7488 case BFD_RELOC_AARCH64_NN:
7489
7490 /* We don't need to handle relocs into sections not going into
7491 the "real" output. */
7492 if ((sec->flags & SEC_ALLOC) == 0)
7493 break;
7494
7495 if (h != NULL)
7496 {
7497 if (!bfd_link_pic (info))
7498 h->non_got_ref = 1;
7499
7500 h->plt.refcount += 1;
7501 h->pointer_equality_needed = 1;
7502 }
7503
7504 /* No need to do anything if we're not creating a shared
7505 object. */
7506 if (!(bfd_link_pic (info)
7507 /* If on the other hand, we are creating an executable, we
7508 may need to keep relocations for symbols satisfied by a
7509 dynamic library if we manage to avoid copy relocs for the
7510 symbol.
7511
7512 NOTE: Currently, there is no support of copy relocs
7513 elimination on pc-relative relocation types, because there is
7514 no dynamic relocation support for them in glibc. We still
7515 record the dynamic symbol reference for them. This is
7516 because one symbol may be referenced by both absolute
7517 relocation (for example, BFD_RELOC_AARCH64_NN) and
7518 pc-relative relocation. We need full symbol reference
7519 information to make correct decision later in
7520 elfNN_aarch64_adjust_dynamic_symbol. */
7521 || (ELIMINATE_COPY_RELOCS
7522 && !bfd_link_pic (info)
7523 && h != NULL
7524 && (h->root.type == bfd_link_hash_defweak
7525 || !h->def_regular))))
7526 break;
7527
7528 {
7529 struct elf_dyn_relocs *p;
7530 struct elf_dyn_relocs **head;
7531 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7532
7533 /* We must copy these reloc types into the output file.
7534 Create a reloc section in dynobj and make room for
7535 this reloc. */
7536 if (sreloc == NULL)
7537 {
7538 if (htab->root.dynobj == NULL)
7539 htab->root.dynobj = abfd;
7540
7541 sreloc = _bfd_elf_make_dynamic_reloc_section
7542 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7543
7544 if (sreloc == NULL)
7545 return FALSE;
7546 }
7547
7548 /* If this is a global symbol, we count the number of
7549 relocations we need for this symbol. */
7550 if (h != NULL)
7551 {
7552 struct elf_aarch64_link_hash_entry *eh;
7553 eh = (struct elf_aarch64_link_hash_entry *) h;
7554 head = &eh->dyn_relocs;
7555 }
7556 else
7557 {
7558 /* Track dynamic relocs needed for local syms too.
7559 We really need local syms available to do this
7560 easily. Oh well. */
7561
7562 asection *s;
7563 void **vpp;
7564
7565 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7566 abfd, r_symndx);
7567 if (isym == NULL)
7568 return FALSE;
7569
7570 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7571 if (s == NULL)
7572 s = sec;
7573
7574 /* Beware of type punned pointers vs strict aliasing
7575 rules. */
7576 vpp = &(elf_section_data (s)->local_dynrel);
7577 head = (struct elf_dyn_relocs **) vpp;
7578 }
7579
7580 p = *head;
7581 if (p == NULL || p->sec != sec)
7582 {
7583 bfd_size_type amt = sizeof *p;
7584 p = ((struct elf_dyn_relocs *)
7585 bfd_zalloc (htab->root.dynobj, amt));
7586 if (p == NULL)
7587 return FALSE;
7588 p->next = *head;
7589 *head = p;
7590 p->sec = sec;
7591 }
7592
7593 p->count += 1;
7594
7595 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7596 p->pc_count += 1;
7597 }
7598 break;
7599
7600 /* RR: We probably want to keep a consistency check that
7601 there are no dangling GOT_PAGE relocs. */
7602 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7603 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7604 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7605 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7606 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7607 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7608 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7609 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7610 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7611 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7612 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7613 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7614 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7615 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7616 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7617 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7618 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7619 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7620 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7621 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7622 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7623 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7624 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7625 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7626 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7627 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7628 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7629 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7630 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7631 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7632 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7633 {
7634 unsigned got_type;
7635 unsigned old_got_type;
7636
7637 got_type = aarch64_reloc_got_type (bfd_r_type);
7638
7639 if (h)
7640 {
7641 h->got.refcount += 1;
7642 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7643 }
7644 else
7645 {
7646 struct elf_aarch64_local_symbol *locals;
7647
7648 if (!elfNN_aarch64_allocate_local_symbols
7649 (abfd, symtab_hdr->sh_info))
7650 return FALSE;
7651
7652 locals = elf_aarch64_locals (abfd);
7653 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7654 locals[r_symndx].got_refcount += 1;
7655 old_got_type = locals[r_symndx].got_type;
7656 }
7657
7658 /* If a variable is accessed with both general dynamic TLS
7659 methods, two slots may be created. */
7660 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7661 got_type |= old_got_type;
7662
7663 /* We will already have issued an error message if there
7664 is a TLS/non-TLS mismatch, based on the symbol type.
7665 So just combine any TLS types needed. */
7666 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7667 && got_type != GOT_NORMAL)
7668 got_type |= old_got_type;
7669
7670 /* If the symbol is accessed by both IE and GD methods, we
7671 are able to relax. Turn off the GD flag, without
7672 messing up with any other kind of TLS types that may be
7673 involved. */
7674 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7675 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7676
7677 if (old_got_type != got_type)
7678 {
7679 if (h != NULL)
7680 elf_aarch64_hash_entry (h)->got_type = got_type;
7681 else
7682 {
7683 struct elf_aarch64_local_symbol *locals;
7684 locals = elf_aarch64_locals (abfd);
7685 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7686 locals[r_symndx].got_type = got_type;
7687 }
7688 }
7689
7690 if (htab->root.dynobj == NULL)
7691 htab->root.dynobj = abfd;
7692 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7693 return FALSE;
7694 break;
7695 }
7696
7697 case BFD_RELOC_AARCH64_CALL26:
7698 case BFD_RELOC_AARCH64_JUMP26:
7699 /* If this is a local symbol then we resolve it
7700 directly without creating a PLT entry. */
7701 if (h == NULL)
7702 continue;
7703
7704 h->needs_plt = 1;
7705 if (h->plt.refcount <= 0)
7706 h->plt.refcount = 1;
7707 else
7708 h->plt.refcount += 1;
7709 break;
7710
7711 default:
7712 break;
7713 }
7714 }
7715
7716 return TRUE;
7717 }
7718
7719 /* Treat mapping symbols as special target symbols. */
7720
7721 static bfd_boolean
7722 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7723 asymbol *sym)
7724 {
7725 return bfd_is_aarch64_special_symbol_name (sym->name,
7726 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7727 }
7728
7729 /* This is a copy of elf_find_function () from elf.c except that
7730 AArch64 mapping symbols are ignored when looking for function names. */
7731
7732 static bfd_boolean
7733 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7734 asymbol **symbols,
7735 asection *section,
7736 bfd_vma offset,
7737 const char **filename_ptr,
7738 const char **functionname_ptr)
7739 {
7740 const char *filename = NULL;
7741 asymbol *func = NULL;
7742 bfd_vma low_func = 0;
7743 asymbol **p;
7744
7745 for (p = symbols; *p != NULL; p++)
7746 {
7747 elf_symbol_type *q;
7748
7749 q = (elf_symbol_type *) * p;
7750
7751 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7752 {
7753 default:
7754 break;
7755 case STT_FILE:
7756 filename = bfd_asymbol_name (&q->symbol);
7757 break;
7758 case STT_FUNC:
7759 case STT_NOTYPE:
7760 /* Skip mapping symbols. */
7761 if ((q->symbol.flags & BSF_LOCAL)
7762 && (bfd_is_aarch64_special_symbol_name
7763 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7764 continue;
7765 /* Fall through. */
7766 if (bfd_get_section (&q->symbol) == section
7767 && q->symbol.value >= low_func && q->symbol.value <= offset)
7768 {
7769 func = (asymbol *) q;
7770 low_func = q->symbol.value;
7771 }
7772 break;
7773 }
7774 }
7775
7776 if (func == NULL)
7777 return FALSE;
7778
7779 if (filename_ptr)
7780 *filename_ptr = filename;
7781 if (functionname_ptr)
7782 *functionname_ptr = bfd_asymbol_name (func);
7783
7784 return TRUE;
7785 }
7786
7787
7788 /* Find the nearest line to a particular section and offset, for error
7789 reporting. This code is a duplicate of the code in elf.c, except
7790 that it uses aarch64_elf_find_function. */
7791
7792 static bfd_boolean
7793 elfNN_aarch64_find_nearest_line (bfd *abfd,
7794 asymbol **symbols,
7795 asection *section,
7796 bfd_vma offset,
7797 const char **filename_ptr,
7798 const char **functionname_ptr,
7799 unsigned int *line_ptr,
7800 unsigned int *discriminator_ptr)
7801 {
7802 bfd_boolean found = FALSE;
7803
7804 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7805 filename_ptr, functionname_ptr,
7806 line_ptr, discriminator_ptr,
7807 dwarf_debug_sections, 0,
7808 &elf_tdata (abfd)->dwarf2_find_line_info))
7809 {
7810 if (!*functionname_ptr)
7811 aarch64_elf_find_function (abfd, symbols, section, offset,
7812 *filename_ptr ? NULL : filename_ptr,
7813 functionname_ptr);
7814
7815 return TRUE;
7816 }
7817
7818 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7819 toolchain uses DWARF1. */
7820
7821 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7822 &found, filename_ptr,
7823 functionname_ptr, line_ptr,
7824 &elf_tdata (abfd)->line_info))
7825 return FALSE;
7826
7827 if (found && (*functionname_ptr || *line_ptr))
7828 return TRUE;
7829
7830 if (symbols == NULL)
7831 return FALSE;
7832
7833 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7834 filename_ptr, functionname_ptr))
7835 return FALSE;
7836
7837 *line_ptr = 0;
7838 return TRUE;
7839 }
7840
7841 static bfd_boolean
7842 elfNN_aarch64_find_inliner_info (bfd *abfd,
7843 const char **filename_ptr,
7844 const char **functionname_ptr,
7845 unsigned int *line_ptr)
7846 {
7847 bfd_boolean found;
7848 found = _bfd_dwarf2_find_inliner_info
7849 (abfd, filename_ptr,
7850 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7851 return found;
7852 }
7853
7854
7855 static void
7856 elfNN_aarch64_post_process_headers (bfd *abfd,
7857 struct bfd_link_info *link_info)
7858 {
7859 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7860
7861 i_ehdrp = elf_elfheader (abfd);
7862 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7863
7864 _bfd_elf_post_process_headers (abfd, link_info);
7865 }
7866
7867 static enum elf_reloc_type_class
7868 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7869 const asection *rel_sec ATTRIBUTE_UNUSED,
7870 const Elf_Internal_Rela *rela)
7871 {
7872 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7873
7874 if (htab->root.dynsym != NULL
7875 && htab->root.dynsym->contents != NULL)
7876 {
7877 /* Check relocation against STT_GNU_IFUNC symbol if there are
7878 dynamic symbols. */
7879 bfd *abfd = info->output_bfd;
7880 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7881 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7882 if (r_symndx != STN_UNDEF)
7883 {
7884 Elf_Internal_Sym sym;
7885 if (!bed->s->swap_symbol_in (abfd,
7886 (htab->root.dynsym->contents
7887 + r_symndx * bed->s->sizeof_sym),
7888 0, &sym))
7889 {
7890 /* xgettext:c-format */
7891 _bfd_error_handler (_("%pB symbol number %lu references"
7892 " nonexistent SHT_SYMTAB_SHNDX section"),
7893 abfd, r_symndx);
7894 /* Ideally an error class should be returned here. */
7895 }
7896 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7897 return reloc_class_ifunc;
7898 }
7899 }
7900
7901 switch ((int) ELFNN_R_TYPE (rela->r_info))
7902 {
7903 case AARCH64_R (IRELATIVE):
7904 return reloc_class_ifunc;
7905 case AARCH64_R (RELATIVE):
7906 return reloc_class_relative;
7907 case AARCH64_R (JUMP_SLOT):
7908 return reloc_class_plt;
7909 case AARCH64_R (COPY):
7910 return reloc_class_copy;
7911 default:
7912 return reloc_class_normal;
7913 }
7914 }
7915
7916 /* Handle an AArch64 specific section when reading an object file. This is
7917 called when bfd_section_from_shdr finds a section with an unknown
7918 type. */
7919
7920 static bfd_boolean
7921 elfNN_aarch64_section_from_shdr (bfd *abfd,
7922 Elf_Internal_Shdr *hdr,
7923 const char *name, int shindex)
7924 {
7925 /* There ought to be a place to keep ELF backend specific flags, but
7926 at the moment there isn't one. We just keep track of the
7927 sections by their name, instead. Fortunately, the ABI gives
7928 names for all the AArch64 specific sections, so we will probably get
7929 away with this. */
7930 switch (hdr->sh_type)
7931 {
7932 case SHT_AARCH64_ATTRIBUTES:
7933 break;
7934
7935 default:
7936 return FALSE;
7937 }
7938
7939 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7940 return FALSE;
7941
7942 return TRUE;
7943 }
7944
7945 /* A structure used to record a list of sections, independently
7946 of the next and prev fields in the asection structure. */
7947 typedef struct section_list
7948 {
7949 asection *sec;
7950 struct section_list *next;
7951 struct section_list *prev;
7952 }
7953 section_list;
7954
7955 /* Unfortunately we need to keep a list of sections for which
7956 an _aarch64_elf_section_data structure has been allocated. This
7957 is because it is possible for functions like elfNN_aarch64_write_section
7958 to be called on a section which has had an elf_data_structure
7959 allocated for it (and so the used_by_bfd field is valid) but
7960 for which the AArch64 extended version of this structure - the
7961 _aarch64_elf_section_data structure - has not been allocated. */
7962 static section_list *sections_with_aarch64_elf_section_data = NULL;
7963
7964 static void
7965 record_section_with_aarch64_elf_section_data (asection *sec)
7966 {
7967 struct section_list *entry;
7968
7969 entry = bfd_malloc (sizeof (*entry));
7970 if (entry == NULL)
7971 return;
7972 entry->sec = sec;
7973 entry->next = sections_with_aarch64_elf_section_data;
7974 entry->prev = NULL;
7975 if (entry->next != NULL)
7976 entry->next->prev = entry;
7977 sections_with_aarch64_elf_section_data = entry;
7978 }
7979
7980 static struct section_list *
7981 find_aarch64_elf_section_entry (asection *sec)
7982 {
7983 struct section_list *entry;
7984 static struct section_list *last_entry = NULL;
7985
7986 /* This is a short cut for the typical case where the sections are added
7987 to the sections_with_aarch64_elf_section_data list in forward order and
7988 then looked up here in backwards order. This makes a real difference
7989 to the ld-srec/sec64k.exp linker test. */
7990 entry = sections_with_aarch64_elf_section_data;
7991 if (last_entry != NULL)
7992 {
7993 if (last_entry->sec == sec)
7994 entry = last_entry;
7995 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7996 entry = last_entry->next;
7997 }
7998
7999 for (; entry; entry = entry->next)
8000 if (entry->sec == sec)
8001 break;
8002
8003 if (entry)
8004 /* Record the entry prior to this one - it is the entry we are
8005 most likely to want to locate next time. Also this way if we
8006 have been called from
8007 unrecord_section_with_aarch64_elf_section_data () we will not
8008 be caching a pointer that is about to be freed. */
8009 last_entry = entry->prev;
8010
8011 return entry;
8012 }
8013
8014 static void
8015 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8016 {
8017 struct section_list *entry;
8018
8019 entry = find_aarch64_elf_section_entry (sec);
8020
8021 if (entry)
8022 {
8023 if (entry->prev != NULL)
8024 entry->prev->next = entry->next;
8025 if (entry->next != NULL)
8026 entry->next->prev = entry->prev;
8027 if (entry == sections_with_aarch64_elf_section_data)
8028 sections_with_aarch64_elf_section_data = entry->next;
8029 free (entry);
8030 }
8031 }
8032
8033
8034 typedef struct
8035 {
8036 void *finfo;
8037 struct bfd_link_info *info;
8038 asection *sec;
8039 int sec_shndx;
8040 int (*func) (void *, const char *, Elf_Internal_Sym *,
8041 asection *, struct elf_link_hash_entry *);
8042 } output_arch_syminfo;
8043
8044 enum map_symbol_type
8045 {
8046 AARCH64_MAP_INSN,
8047 AARCH64_MAP_DATA
8048 };
8049
8050
8051 /* Output a single mapping symbol. */
8052
8053 static bfd_boolean
8054 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8055 enum map_symbol_type type, bfd_vma offset)
8056 {
8057 static const char *names[2] = { "$x", "$d" };
8058 Elf_Internal_Sym sym;
8059
8060 sym.st_value = (osi->sec->output_section->vma
8061 + osi->sec->output_offset + offset);
8062 sym.st_size = 0;
8063 sym.st_other = 0;
8064 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8065 sym.st_shndx = osi->sec_shndx;
8066 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8067 }
8068
8069 /* Output a single local symbol for a generated stub. */
8070
8071 static bfd_boolean
8072 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8073 bfd_vma offset, bfd_vma size)
8074 {
8075 Elf_Internal_Sym sym;
8076
8077 sym.st_value = (osi->sec->output_section->vma
8078 + osi->sec->output_offset + offset);
8079 sym.st_size = size;
8080 sym.st_other = 0;
8081 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8082 sym.st_shndx = osi->sec_shndx;
8083 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8084 }
8085
8086 static bfd_boolean
8087 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8088 {
8089 struct elf_aarch64_stub_hash_entry *stub_entry;
8090 asection *stub_sec;
8091 bfd_vma addr;
8092 char *stub_name;
8093 output_arch_syminfo *osi;
8094
8095 /* Massage our args to the form they really have. */
8096 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8097 osi = (output_arch_syminfo *) in_arg;
8098
8099 stub_sec = stub_entry->stub_sec;
8100
8101 /* Ensure this stub is attached to the current section being
8102 processed. */
8103 if (stub_sec != osi->sec)
8104 return TRUE;
8105
8106 addr = (bfd_vma) stub_entry->stub_offset;
8107
8108 stub_name = stub_entry->output_name;
8109
8110 switch (stub_entry->stub_type)
8111 {
8112 case aarch64_stub_adrp_branch:
8113 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8114 sizeof (aarch64_adrp_branch_stub)))
8115 return FALSE;
8116 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8117 return FALSE;
8118 break;
8119 case aarch64_stub_long_branch:
8120 if (!elfNN_aarch64_output_stub_sym
8121 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8122 return FALSE;
8123 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8124 return FALSE;
8125 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8126 return FALSE;
8127 break;
8128 case aarch64_stub_erratum_835769_veneer:
8129 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8130 sizeof (aarch64_erratum_835769_stub)))
8131 return FALSE;
8132 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8133 return FALSE;
8134 break;
8135 case aarch64_stub_erratum_843419_veneer:
8136 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8137 sizeof (aarch64_erratum_843419_stub)))
8138 return FALSE;
8139 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8140 return FALSE;
8141 break;
8142 case aarch64_stub_none:
8143 break;
8144
8145 default:
8146 abort ();
8147 }
8148
8149 return TRUE;
8150 }
8151
8152 /* Output mapping symbols for linker generated sections. */
8153
8154 static bfd_boolean
8155 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8156 struct bfd_link_info *info,
8157 void *finfo,
8158 int (*func) (void *, const char *,
8159 Elf_Internal_Sym *,
8160 asection *,
8161 struct elf_link_hash_entry
8162 *))
8163 {
8164 output_arch_syminfo osi;
8165 struct elf_aarch64_link_hash_table *htab;
8166
8167 htab = elf_aarch64_hash_table (info);
8168
8169 osi.finfo = finfo;
8170 osi.info = info;
8171 osi.func = func;
8172
8173 /* Long calls stubs. */
8174 if (htab->stub_bfd && htab->stub_bfd->sections)
8175 {
8176 asection *stub_sec;
8177
8178 for (stub_sec = htab->stub_bfd->sections;
8179 stub_sec != NULL; stub_sec = stub_sec->next)
8180 {
8181 /* Ignore non-stub sections. */
8182 if (!strstr (stub_sec->name, STUB_SUFFIX))
8183 continue;
8184
8185 osi.sec = stub_sec;
8186
8187 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8188 (output_bfd, osi.sec->output_section);
8189
8190 /* The first instruction in a stub is always a branch. */
8191 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8192 return FALSE;
8193
8194 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8195 &osi);
8196 }
8197 }
8198
8199 /* Finally, output mapping symbols for the PLT. */
8200 if (!htab->root.splt || htab->root.splt->size == 0)
8201 return TRUE;
8202
8203 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8204 (output_bfd, htab->root.splt->output_section);
8205 osi.sec = htab->root.splt;
8206
8207 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8208
8209 return TRUE;
8210
8211 }
8212
8213 /* Allocate target specific section data. */
8214
8215 static bfd_boolean
8216 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8217 {
8218 if (!sec->used_by_bfd)
8219 {
8220 _aarch64_elf_section_data *sdata;
8221 bfd_size_type amt = sizeof (*sdata);
8222
8223 sdata = bfd_zalloc (abfd, amt);
8224 if (sdata == NULL)
8225 return FALSE;
8226 sec->used_by_bfd = sdata;
8227 }
8228
8229 record_section_with_aarch64_elf_section_data (sec);
8230
8231 return _bfd_elf_new_section_hook (abfd, sec);
8232 }
8233
8234
8235 static void
8236 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8237 asection *sec,
8238 void *ignore ATTRIBUTE_UNUSED)
8239 {
8240 unrecord_section_with_aarch64_elf_section_data (sec);
8241 }
8242
8243 static bfd_boolean
8244 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8245 {
8246 if (abfd->sections)
8247 bfd_map_over_sections (abfd,
8248 unrecord_section_via_map_over_sections, NULL);
8249
8250 return _bfd_elf_close_and_cleanup (abfd);
8251 }
8252
8253 static bfd_boolean
8254 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8255 {
8256 if (abfd->sections)
8257 bfd_map_over_sections (abfd,
8258 unrecord_section_via_map_over_sections, NULL);
8259
8260 return _bfd_free_cached_info (abfd);
8261 }
8262
8263 /* Create dynamic sections. This is different from the ARM backend in that
8264 the got, plt, gotplt and their relocation sections are all created in the
8265 standard part of the bfd elf backend. */
8266
8267 static bfd_boolean
8268 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8269 struct bfd_link_info *info)
8270 {
8271 /* We need to create .got section. */
8272 if (!aarch64_elf_create_got_section (dynobj, info))
8273 return FALSE;
8274
8275 return _bfd_elf_create_dynamic_sections (dynobj, info);
8276 }
8277
8278
8279 /* Allocate space in .plt, .got and associated reloc sections for
8280 dynamic relocs. */
8281
8282 static bfd_boolean
8283 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8284 {
8285 struct bfd_link_info *info;
8286 struct elf_aarch64_link_hash_table *htab;
8287 struct elf_aarch64_link_hash_entry *eh;
8288 struct elf_dyn_relocs *p;
8289
8290 /* An example of a bfd_link_hash_indirect symbol is versioned
8291 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8292 -> __gxx_personality_v0(bfd_link_hash_defined)
8293
8294 There is no need to process bfd_link_hash_indirect symbols here
8295 because we will also be presented with the concrete instance of
8296 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8297 called to copy all relevant data from the generic to the concrete
8298 symbol instance. */
8299 if (h->root.type == bfd_link_hash_indirect)
8300 return TRUE;
8301
8302 if (h->root.type == bfd_link_hash_warning)
8303 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8304
8305 info = (struct bfd_link_info *) inf;
8306 htab = elf_aarch64_hash_table (info);
8307
8308 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8309 here if it is defined and referenced in a non-shared object. */
8310 if (h->type == STT_GNU_IFUNC
8311 && h->def_regular)
8312 return TRUE;
8313 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8314 {
8315 /* Make sure this symbol is output as a dynamic symbol.
8316 Undefined weak syms won't yet be marked as dynamic. */
8317 if (h->dynindx == -1 && !h->forced_local
8318 && h->root.type == bfd_link_hash_undefweak)
8319 {
8320 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8321 return FALSE;
8322 }
8323
8324 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8325 {
8326 asection *s = htab->root.splt;
8327
8328 /* If this is the first .plt entry, make room for the special
8329 first entry. */
8330 if (s->size == 0)
8331 s->size += htab->plt_header_size;
8332
8333 h->plt.offset = s->size;
8334
8335 /* If this symbol is not defined in a regular file, and we are
8336 not generating a shared library, then set the symbol to this
8337 location in the .plt. This is required to make function
8338 pointers compare as equal between the normal executable and
8339 the shared library. */
8340 if (!bfd_link_pic (info) && !h->def_regular)
8341 {
8342 h->root.u.def.section = s;
8343 h->root.u.def.value = h->plt.offset;
8344 }
8345
8346 /* Make room for this entry. For now we only create the
8347 small model PLT entries. We later need to find a way
8348 of relaxing into these from the large model PLT entries. */
8349 s->size += PLT_SMALL_ENTRY_SIZE;
8350
8351 /* We also need to make an entry in the .got.plt section, which
8352 will be placed in the .got section by the linker script. */
8353 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8354
8355 /* We also need to make an entry in the .rela.plt section. */
8356 htab->root.srelplt->size += RELOC_SIZE (htab);
8357
8358 /* We need to ensure that all GOT entries that serve the PLT
8359 are consecutive with the special GOT slots [0] [1] and
8360 [2]. Any addtional relocations, such as
8361 R_AARCH64_TLSDESC, must be placed after the PLT related
8362 entries. We abuse the reloc_count such that during
8363 sizing we adjust reloc_count to indicate the number of
8364 PLT related reserved entries. In subsequent phases when
8365 filling in the contents of the reloc entries, PLT related
8366 entries are placed by computing their PLT index (0
8367 .. reloc_count). While other none PLT relocs are placed
8368 at the slot indicated by reloc_count and reloc_count is
8369 updated. */
8370
8371 htab->root.srelplt->reloc_count++;
8372 }
8373 else
8374 {
8375 h->plt.offset = (bfd_vma) - 1;
8376 h->needs_plt = 0;
8377 }
8378 }
8379 else
8380 {
8381 h->plt.offset = (bfd_vma) - 1;
8382 h->needs_plt = 0;
8383 }
8384
8385 eh = (struct elf_aarch64_link_hash_entry *) h;
8386 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8387
8388 if (h->got.refcount > 0)
8389 {
8390 bfd_boolean dyn;
8391 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8392
8393 h->got.offset = (bfd_vma) - 1;
8394
8395 dyn = htab->root.dynamic_sections_created;
8396
8397 /* Make sure this symbol is output as a dynamic symbol.
8398 Undefined weak syms won't yet be marked as dynamic. */
8399 if (dyn && h->dynindx == -1 && !h->forced_local
8400 && h->root.type == bfd_link_hash_undefweak)
8401 {
8402 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8403 return FALSE;
8404 }
8405
8406 if (got_type == GOT_UNKNOWN)
8407 {
8408 }
8409 else if (got_type == GOT_NORMAL)
8410 {
8411 h->got.offset = htab->root.sgot->size;
8412 htab->root.sgot->size += GOT_ENTRY_SIZE;
8413 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8414 || h->root.type != bfd_link_hash_undefweak)
8415 && (bfd_link_pic (info)
8416 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8417 /* Undefined weak symbol in static PIE resolves to 0 without
8418 any dynamic relocations. */
8419 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8420 {
8421 htab->root.srelgot->size += RELOC_SIZE (htab);
8422 }
8423 }
8424 else
8425 {
8426 int indx;
8427 if (got_type & GOT_TLSDESC_GD)
8428 {
8429 eh->tlsdesc_got_jump_table_offset =
8430 (htab->root.sgotplt->size
8431 - aarch64_compute_jump_table_size (htab));
8432 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8433 h->got.offset = (bfd_vma) - 2;
8434 }
8435
8436 if (got_type & GOT_TLS_GD)
8437 {
8438 h->got.offset = htab->root.sgot->size;
8439 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8440 }
8441
8442 if (got_type & GOT_TLS_IE)
8443 {
8444 h->got.offset = htab->root.sgot->size;
8445 htab->root.sgot->size += GOT_ENTRY_SIZE;
8446 }
8447
8448 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8449 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8450 || h->root.type != bfd_link_hash_undefweak)
8451 && (!bfd_link_executable (info)
8452 || indx != 0
8453 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8454 {
8455 if (got_type & GOT_TLSDESC_GD)
8456 {
8457 htab->root.srelplt->size += RELOC_SIZE (htab);
8458 /* Note reloc_count not incremented here! We have
8459 already adjusted reloc_count for this relocation
8460 type. */
8461
8462 /* TLSDESC PLT is now needed, but not yet determined. */
8463 htab->tlsdesc_plt = (bfd_vma) - 1;
8464 }
8465
8466 if (got_type & GOT_TLS_GD)
8467 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8468
8469 if (got_type & GOT_TLS_IE)
8470 htab->root.srelgot->size += RELOC_SIZE (htab);
8471 }
8472 }
8473 }
8474 else
8475 {
8476 h->got.offset = (bfd_vma) - 1;
8477 }
8478
8479 if (eh->dyn_relocs == NULL)
8480 return TRUE;
8481
8482 /* In the shared -Bsymbolic case, discard space allocated for
8483 dynamic pc-relative relocs against symbols which turn out to be
8484 defined in regular objects. For the normal shared case, discard
8485 space for pc-relative relocs that have become local due to symbol
8486 visibility changes. */
8487
8488 if (bfd_link_pic (info))
8489 {
8490 /* Relocs that use pc_count are those that appear on a call
8491 insn, or certain REL relocs that can generated via assembly.
8492 We want calls to protected symbols to resolve directly to the
8493 function rather than going via the plt. If people want
8494 function pointer comparisons to work as expected then they
8495 should avoid writing weird assembly. */
8496 if (SYMBOL_CALLS_LOCAL (info, h))
8497 {
8498 struct elf_dyn_relocs **pp;
8499
8500 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8501 {
8502 p->count -= p->pc_count;
8503 p->pc_count = 0;
8504 if (p->count == 0)
8505 *pp = p->next;
8506 else
8507 pp = &p->next;
8508 }
8509 }
8510
8511 /* Also discard relocs on undefined weak syms with non-default
8512 visibility. */
8513 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8514 {
8515 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8516 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8517 eh->dyn_relocs = NULL;
8518
8519 /* Make sure undefined weak symbols are output as a dynamic
8520 symbol in PIEs. */
8521 else if (h->dynindx == -1
8522 && !h->forced_local
8523 && h->root.type == bfd_link_hash_undefweak
8524 && !bfd_elf_link_record_dynamic_symbol (info, h))
8525 return FALSE;
8526 }
8527
8528 }
8529 else if (ELIMINATE_COPY_RELOCS)
8530 {
8531 /* For the non-shared case, discard space for relocs against
8532 symbols which turn out to need copy relocs or are not
8533 dynamic. */
8534
8535 if (!h->non_got_ref
8536 && ((h->def_dynamic
8537 && !h->def_regular)
8538 || (htab->root.dynamic_sections_created
8539 && (h->root.type == bfd_link_hash_undefweak
8540 || h->root.type == bfd_link_hash_undefined))))
8541 {
8542 /* Make sure this symbol is output as a dynamic symbol.
8543 Undefined weak syms won't yet be marked as dynamic. */
8544 if (h->dynindx == -1
8545 && !h->forced_local
8546 && h->root.type == bfd_link_hash_undefweak
8547 && !bfd_elf_link_record_dynamic_symbol (info, h))
8548 return FALSE;
8549
8550 /* If that succeeded, we know we'll be keeping all the
8551 relocs. */
8552 if (h->dynindx != -1)
8553 goto keep;
8554 }
8555
8556 eh->dyn_relocs = NULL;
8557
8558 keep:;
8559 }
8560
8561 /* Finally, allocate space. */
8562 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8563 {
8564 asection *sreloc;
8565
8566 sreloc = elf_section_data (p->sec)->sreloc;
8567
8568 BFD_ASSERT (sreloc != NULL);
8569
8570 sreloc->size += p->count * RELOC_SIZE (htab);
8571 }
8572
8573 return TRUE;
8574 }
8575
8576 /* Allocate space in .plt, .got and associated reloc sections for
8577 ifunc dynamic relocs. */
8578
8579 static bfd_boolean
8580 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8581 void *inf)
8582 {
8583 struct bfd_link_info *info;
8584 struct elf_aarch64_link_hash_table *htab;
8585 struct elf_aarch64_link_hash_entry *eh;
8586
8587 /* An example of a bfd_link_hash_indirect symbol is versioned
8588 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8589 -> __gxx_personality_v0(bfd_link_hash_defined)
8590
8591 There is no need to process bfd_link_hash_indirect symbols here
8592 because we will also be presented with the concrete instance of
8593 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8594 called to copy all relevant data from the generic to the concrete
8595 symbol instance. */
8596 if (h->root.type == bfd_link_hash_indirect)
8597 return TRUE;
8598
8599 if (h->root.type == bfd_link_hash_warning)
8600 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8601
8602 info = (struct bfd_link_info *) inf;
8603 htab = elf_aarch64_hash_table (info);
8604
8605 eh = (struct elf_aarch64_link_hash_entry *) h;
8606
8607 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8608 here if it is defined and referenced in a non-shared object. */
8609 if (h->type == STT_GNU_IFUNC
8610 && h->def_regular)
8611 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8612 &eh->dyn_relocs,
8613 NULL,
8614 htab->plt_entry_size,
8615 htab->plt_header_size,
8616 GOT_ENTRY_SIZE,
8617 FALSE);
8618 return TRUE;
8619 }
8620
8621 /* Allocate space in .plt, .got and associated reloc sections for
8622 local dynamic relocs. */
8623
8624 static bfd_boolean
8625 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8626 {
8627 struct elf_link_hash_entry *h
8628 = (struct elf_link_hash_entry *) *slot;
8629
8630 if (h->type != STT_GNU_IFUNC
8631 || !h->def_regular
8632 || !h->ref_regular
8633 || !h->forced_local
8634 || h->root.type != bfd_link_hash_defined)
8635 abort ();
8636
8637 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8638 }
8639
8640 /* Allocate space in .plt, .got and associated reloc sections for
8641 local ifunc dynamic relocs. */
8642
8643 static bfd_boolean
8644 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8645 {
8646 struct elf_link_hash_entry *h
8647 = (struct elf_link_hash_entry *) *slot;
8648
8649 if (h->type != STT_GNU_IFUNC
8650 || !h->def_regular
8651 || !h->ref_regular
8652 || !h->forced_local
8653 || h->root.type != bfd_link_hash_defined)
8654 abort ();
8655
8656 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8657 }
8658
8659 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8660 read-only sections. */
8661
8662 static bfd_boolean
8663 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8664 {
8665 asection *sec;
8666
8667 if (h->root.type == bfd_link_hash_indirect)
8668 return TRUE;
8669
8670 sec = readonly_dynrelocs (h);
8671 if (sec != NULL)
8672 {
8673 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8674
8675 info->flags |= DF_TEXTREL;
8676 info->callbacks->minfo
8677 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8678 sec->owner, h->root.root.string, sec);
8679
8680 /* Not an error, just cut short the traversal. */
8681 return FALSE;
8682 }
8683 return TRUE;
8684 }
8685
8686 /* This is the most important function of all . Innocuosly named
8687 though ! */
8688
8689 static bfd_boolean
8690 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8691 struct bfd_link_info *info)
8692 {
8693 struct elf_aarch64_link_hash_table *htab;
8694 bfd *dynobj;
8695 asection *s;
8696 bfd_boolean relocs;
8697 bfd *ibfd;
8698
8699 htab = elf_aarch64_hash_table ((info));
8700 dynobj = htab->root.dynobj;
8701
8702 BFD_ASSERT (dynobj != NULL);
8703
8704 if (htab->root.dynamic_sections_created)
8705 {
8706 if (bfd_link_executable (info) && !info->nointerp)
8707 {
8708 s = bfd_get_linker_section (dynobj, ".interp");
8709 if (s == NULL)
8710 abort ();
8711 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8712 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8713 }
8714 }
8715
8716 /* Set up .got offsets for local syms, and space for local dynamic
8717 relocs. */
8718 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8719 {
8720 struct elf_aarch64_local_symbol *locals = NULL;
8721 Elf_Internal_Shdr *symtab_hdr;
8722 asection *srel;
8723 unsigned int i;
8724
8725 if (!is_aarch64_elf (ibfd))
8726 continue;
8727
8728 for (s = ibfd->sections; s != NULL; s = s->next)
8729 {
8730 struct elf_dyn_relocs *p;
8731
8732 for (p = (struct elf_dyn_relocs *)
8733 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8734 {
8735 if (!bfd_is_abs_section (p->sec)
8736 && bfd_is_abs_section (p->sec->output_section))
8737 {
8738 /* Input section has been discarded, either because
8739 it is a copy of a linkonce section or due to
8740 linker script /DISCARD/, so we'll be discarding
8741 the relocs too. */
8742 }
8743 else if (p->count != 0)
8744 {
8745 srel = elf_section_data (p->sec)->sreloc;
8746 srel->size += p->count * RELOC_SIZE (htab);
8747 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8748 info->flags |= DF_TEXTREL;
8749 }
8750 }
8751 }
8752
8753 locals = elf_aarch64_locals (ibfd);
8754 if (!locals)
8755 continue;
8756
8757 symtab_hdr = &elf_symtab_hdr (ibfd);
8758 srel = htab->root.srelgot;
8759 for (i = 0; i < symtab_hdr->sh_info; i++)
8760 {
8761 locals[i].got_offset = (bfd_vma) - 1;
8762 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8763 if (locals[i].got_refcount > 0)
8764 {
8765 unsigned got_type = locals[i].got_type;
8766 if (got_type & GOT_TLSDESC_GD)
8767 {
8768 locals[i].tlsdesc_got_jump_table_offset =
8769 (htab->root.sgotplt->size
8770 - aarch64_compute_jump_table_size (htab));
8771 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8772 locals[i].got_offset = (bfd_vma) - 2;
8773 }
8774
8775 if (got_type & GOT_TLS_GD)
8776 {
8777 locals[i].got_offset = htab->root.sgot->size;
8778 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8779 }
8780
8781 if (got_type & GOT_TLS_IE
8782 || got_type & GOT_NORMAL)
8783 {
8784 locals[i].got_offset = htab->root.sgot->size;
8785 htab->root.sgot->size += GOT_ENTRY_SIZE;
8786 }
8787
8788 if (got_type == GOT_UNKNOWN)
8789 {
8790 }
8791
8792 if (bfd_link_pic (info))
8793 {
8794 if (got_type & GOT_TLSDESC_GD)
8795 {
8796 htab->root.srelplt->size += RELOC_SIZE (htab);
8797 /* Note RELOC_COUNT not incremented here! */
8798 htab->tlsdesc_plt = (bfd_vma) - 1;
8799 }
8800
8801 if (got_type & GOT_TLS_GD)
8802 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8803
8804 if (got_type & GOT_TLS_IE
8805 || got_type & GOT_NORMAL)
8806 htab->root.srelgot->size += RELOC_SIZE (htab);
8807 }
8808 }
8809 else
8810 {
8811 locals[i].got_refcount = (bfd_vma) - 1;
8812 }
8813 }
8814 }
8815
8816
8817 /* Allocate global sym .plt and .got entries, and space for global
8818 sym dynamic relocs. */
8819 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8820 info);
8821
8822 /* Allocate global ifunc sym .plt and .got entries, and space for global
8823 ifunc sym dynamic relocs. */
8824 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8825 info);
8826
8827 /* Allocate .plt and .got entries, and space for local symbols. */
8828 htab_traverse (htab->loc_hash_table,
8829 elfNN_aarch64_allocate_local_dynrelocs,
8830 info);
8831
8832 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8833 htab_traverse (htab->loc_hash_table,
8834 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8835 info);
8836
8837 /* For every jump slot reserved in the sgotplt, reloc_count is
8838 incremented. However, when we reserve space for TLS descriptors,
8839 it's not incremented, so in order to compute the space reserved
8840 for them, it suffices to multiply the reloc count by the jump
8841 slot size. */
8842
8843 if (htab->root.srelplt)
8844 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8845
8846 if (htab->tlsdesc_plt)
8847 {
8848 if (htab->root.splt->size == 0)
8849 htab->root.splt->size += PLT_ENTRY_SIZE;
8850
8851 htab->tlsdesc_plt = htab->root.splt->size;
8852 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8853
8854 /* If we're not using lazy TLS relocations, don't generate the
8855 GOT entry required. */
8856 if (!(info->flags & DF_BIND_NOW))
8857 {
8858 htab->dt_tlsdesc_got = htab->root.sgot->size;
8859 htab->root.sgot->size += GOT_ENTRY_SIZE;
8860 }
8861 }
8862
8863 /* Init mapping symbols information to use later to distingush between
8864 code and data while scanning for errata. */
8865 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8866 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8867 {
8868 if (!is_aarch64_elf (ibfd))
8869 continue;
8870 bfd_elfNN_aarch64_init_maps (ibfd);
8871 }
8872
8873 /* We now have determined the sizes of the various dynamic sections.
8874 Allocate memory for them. */
8875 relocs = FALSE;
8876 for (s = dynobj->sections; s != NULL; s = s->next)
8877 {
8878 if ((s->flags & SEC_LINKER_CREATED) == 0)
8879 continue;
8880
8881 if (s == htab->root.splt
8882 || s == htab->root.sgot
8883 || s == htab->root.sgotplt
8884 || s == htab->root.iplt
8885 || s == htab->root.igotplt
8886 || s == htab->root.sdynbss
8887 || s == htab->root.sdynrelro)
8888 {
8889 /* Strip this section if we don't need it; see the
8890 comment below. */
8891 }
8892 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8893 {
8894 if (s->size != 0 && s != htab->root.srelplt)
8895 relocs = TRUE;
8896
8897 /* We use the reloc_count field as a counter if we need
8898 to copy relocs into the output file. */
8899 if (s != htab->root.srelplt)
8900 s->reloc_count = 0;
8901 }
8902 else
8903 {
8904 /* It's not one of our sections, so don't allocate space. */
8905 continue;
8906 }
8907
8908 if (s->size == 0)
8909 {
8910 /* If we don't need this section, strip it from the
8911 output file. This is mostly to handle .rela.bss and
8912 .rela.plt. We must create both sections in
8913 create_dynamic_sections, because they must be created
8914 before the linker maps input sections to output
8915 sections. The linker does that before
8916 adjust_dynamic_symbol is called, and it is that
8917 function which decides whether anything needs to go
8918 into these sections. */
8919 s->flags |= SEC_EXCLUDE;
8920 continue;
8921 }
8922
8923 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8924 continue;
8925
8926 /* Allocate memory for the section contents. We use bfd_zalloc
8927 here in case unused entries are not reclaimed before the
8928 section's contents are written out. This should not happen,
8929 but this way if it does, we get a R_AARCH64_NONE reloc instead
8930 of garbage. */
8931 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8932 if (s->contents == NULL)
8933 return FALSE;
8934 }
8935
8936 if (htab->root.dynamic_sections_created)
8937 {
8938 /* Add some entries to the .dynamic section. We fill in the
8939 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8940 must add the entries now so that we get the correct size for
8941 the .dynamic section. The DT_DEBUG entry is filled in by the
8942 dynamic linker and used by the debugger. */
8943 #define add_dynamic_entry(TAG, VAL) \
8944 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8945
8946 if (bfd_link_executable (info))
8947 {
8948 if (!add_dynamic_entry (DT_DEBUG, 0))
8949 return FALSE;
8950 }
8951
8952 if (htab->root.splt->size != 0)
8953 {
8954 if (!add_dynamic_entry (DT_PLTGOT, 0)
8955 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8956 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8957 || !add_dynamic_entry (DT_JMPREL, 0))
8958 return FALSE;
8959
8960 if (htab->tlsdesc_plt
8961 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8962 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8963 return FALSE;
8964 }
8965
8966 if (relocs)
8967 {
8968 if (!add_dynamic_entry (DT_RELA, 0)
8969 || !add_dynamic_entry (DT_RELASZ, 0)
8970 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8971 return FALSE;
8972
8973 /* If any dynamic relocs apply to a read-only section,
8974 then we need a DT_TEXTREL entry. */
8975 if ((info->flags & DF_TEXTREL) == 0)
8976 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
8977
8978 if ((info->flags & DF_TEXTREL) != 0)
8979 {
8980 if (!add_dynamic_entry (DT_TEXTREL, 0))
8981 return FALSE;
8982 }
8983 }
8984 }
8985 #undef add_dynamic_entry
8986
8987 return TRUE;
8988 }
8989
8990 static inline void
8991 elf_aarch64_update_plt_entry (bfd *output_bfd,
8992 bfd_reloc_code_real_type r_type,
8993 bfd_byte *plt_entry, bfd_vma value)
8994 {
8995 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8996
8997 /* FIXME: We should check the return value from this function call. */
8998 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8999 }
9000
9001 static void
9002 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9003 struct elf_aarch64_link_hash_table
9004 *htab, bfd *output_bfd,
9005 struct bfd_link_info *info)
9006 {
9007 bfd_byte *plt_entry;
9008 bfd_vma plt_index;
9009 bfd_vma got_offset;
9010 bfd_vma gotplt_entry_address;
9011 bfd_vma plt_entry_address;
9012 Elf_Internal_Rela rela;
9013 bfd_byte *loc;
9014 asection *plt, *gotplt, *relplt;
9015
9016 /* When building a static executable, use .iplt, .igot.plt and
9017 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9018 if (htab->root.splt != NULL)
9019 {
9020 plt = htab->root.splt;
9021 gotplt = htab->root.sgotplt;
9022 relplt = htab->root.srelplt;
9023 }
9024 else
9025 {
9026 plt = htab->root.iplt;
9027 gotplt = htab->root.igotplt;
9028 relplt = htab->root.irelplt;
9029 }
9030
9031 /* Get the index in the procedure linkage table which
9032 corresponds to this symbol. This is the index of this symbol
9033 in all the symbols for which we are making plt entries. The
9034 first entry in the procedure linkage table is reserved.
9035
9036 Get the offset into the .got table of the entry that
9037 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9038 bytes. The first three are reserved for the dynamic linker.
9039
9040 For static executables, we don't reserve anything. */
9041
9042 if (plt == htab->root.splt)
9043 {
9044 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9045 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9046 }
9047 else
9048 {
9049 plt_index = h->plt.offset / htab->plt_entry_size;
9050 got_offset = plt_index * GOT_ENTRY_SIZE;
9051 }
9052
9053 plt_entry = plt->contents + h->plt.offset;
9054 plt_entry_address = plt->output_section->vma
9055 + plt->output_offset + h->plt.offset;
9056 gotplt_entry_address = gotplt->output_section->vma +
9057 gotplt->output_offset + got_offset;
9058
9059 /* Copy in the boiler-plate for the PLTn entry. */
9060 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
9061
9062 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9063 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9064 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9065 plt_entry,
9066 PG (gotplt_entry_address) -
9067 PG (plt_entry_address));
9068
9069 /* Fill in the lo12 bits for the load from the pltgot. */
9070 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9071 plt_entry + 4,
9072 PG_OFFSET (gotplt_entry_address));
9073
9074 /* Fill in the lo12 bits for the add from the pltgot entry. */
9075 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9076 plt_entry + 8,
9077 PG_OFFSET (gotplt_entry_address));
9078
9079 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9080 bfd_put_NN (output_bfd,
9081 plt->output_section->vma + plt->output_offset,
9082 gotplt->contents + got_offset);
9083
9084 rela.r_offset = gotplt_entry_address;
9085
9086 if (h->dynindx == -1
9087 || ((bfd_link_executable (info)
9088 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9089 && h->def_regular
9090 && h->type == STT_GNU_IFUNC))
9091 {
9092 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9093 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9094 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9095 rela.r_addend = (h->root.u.def.value
9096 + h->root.u.def.section->output_section->vma
9097 + h->root.u.def.section->output_offset);
9098 }
9099 else
9100 {
9101 /* Fill in the entry in the .rela.plt section. */
9102 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9103 rela.r_addend = 0;
9104 }
9105
9106 /* Compute the relocation entry to used based on PLT index and do
9107 not adjust reloc_count. The reloc_count has already been adjusted
9108 to account for this entry. */
9109 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9110 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9111 }
9112
9113 /* Size sections even though they're not dynamic. We use it to setup
9114 _TLS_MODULE_BASE_, if needed. */
9115
9116 static bfd_boolean
9117 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9118 struct bfd_link_info *info)
9119 {
9120 asection *tls_sec;
9121
9122 if (bfd_link_relocatable (info))
9123 return TRUE;
9124
9125 tls_sec = elf_hash_table (info)->tls_sec;
9126
9127 if (tls_sec)
9128 {
9129 struct elf_link_hash_entry *tlsbase;
9130
9131 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9132 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9133
9134 if (tlsbase)
9135 {
9136 struct bfd_link_hash_entry *h = NULL;
9137 const struct elf_backend_data *bed =
9138 get_elf_backend_data (output_bfd);
9139
9140 if (!(_bfd_generic_link_add_one_symbol
9141 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9142 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9143 return FALSE;
9144
9145 tlsbase->type = STT_TLS;
9146 tlsbase = (struct elf_link_hash_entry *) h;
9147 tlsbase->def_regular = 1;
9148 tlsbase->other = STV_HIDDEN;
9149 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9150 }
9151 }
9152
9153 return TRUE;
9154 }
9155
9156 /* Finish up dynamic symbol handling. We set the contents of various
9157 dynamic sections here. */
9158
9159 static bfd_boolean
9160 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9161 struct bfd_link_info *info,
9162 struct elf_link_hash_entry *h,
9163 Elf_Internal_Sym *sym)
9164 {
9165 struct elf_aarch64_link_hash_table *htab;
9166 htab = elf_aarch64_hash_table (info);
9167
9168 if (h->plt.offset != (bfd_vma) - 1)
9169 {
9170 asection *plt, *gotplt, *relplt;
9171
9172 /* This symbol has an entry in the procedure linkage table. Set
9173 it up. */
9174
9175 /* When building a static executable, use .iplt, .igot.plt and
9176 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9177 if (htab->root.splt != NULL)
9178 {
9179 plt = htab->root.splt;
9180 gotplt = htab->root.sgotplt;
9181 relplt = htab->root.srelplt;
9182 }
9183 else
9184 {
9185 plt = htab->root.iplt;
9186 gotplt = htab->root.igotplt;
9187 relplt = htab->root.irelplt;
9188 }
9189
9190 /* This symbol has an entry in the procedure linkage table. Set
9191 it up. */
9192 if ((h->dynindx == -1
9193 && !((h->forced_local || bfd_link_executable (info))
9194 && h->def_regular
9195 && h->type == STT_GNU_IFUNC))
9196 || plt == NULL
9197 || gotplt == NULL
9198 || relplt == NULL)
9199 return FALSE;
9200
9201 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9202 if (!h->def_regular)
9203 {
9204 /* Mark the symbol as undefined, rather than as defined in
9205 the .plt section. */
9206 sym->st_shndx = SHN_UNDEF;
9207 /* If the symbol is weak we need to clear the value.
9208 Otherwise, the PLT entry would provide a definition for
9209 the symbol even if the symbol wasn't defined anywhere,
9210 and so the symbol would never be NULL. Leave the value if
9211 there were any relocations where pointer equality matters
9212 (this is a clue for the dynamic linker, to make function
9213 pointer comparisons work between an application and shared
9214 library). */
9215 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9216 sym->st_value = 0;
9217 }
9218 }
9219
9220 if (h->got.offset != (bfd_vma) - 1
9221 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9222 /* Undefined weak symbol in static PIE resolves to 0 without
9223 any dynamic relocations. */
9224 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9225 {
9226 Elf_Internal_Rela rela;
9227 bfd_byte *loc;
9228
9229 /* This symbol has an entry in the global offset table. Set it
9230 up. */
9231 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9232 abort ();
9233
9234 rela.r_offset = (htab->root.sgot->output_section->vma
9235 + htab->root.sgot->output_offset
9236 + (h->got.offset & ~(bfd_vma) 1));
9237
9238 if (h->def_regular
9239 && h->type == STT_GNU_IFUNC)
9240 {
9241 if (bfd_link_pic (info))
9242 {
9243 /* Generate R_AARCH64_GLOB_DAT. */
9244 goto do_glob_dat;
9245 }
9246 else
9247 {
9248 asection *plt;
9249
9250 if (!h->pointer_equality_needed)
9251 abort ();
9252
9253 /* For non-shared object, we can't use .got.plt, which
9254 contains the real function address if we need pointer
9255 equality. We load the GOT entry with the PLT entry. */
9256 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9257 bfd_put_NN (output_bfd, (plt->output_section->vma
9258 + plt->output_offset
9259 + h->plt.offset),
9260 htab->root.sgot->contents
9261 + (h->got.offset & ~(bfd_vma) 1));
9262 return TRUE;
9263 }
9264 }
9265 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9266 {
9267 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9268 return FALSE;
9269
9270 BFD_ASSERT ((h->got.offset & 1) != 0);
9271 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9272 rela.r_addend = (h->root.u.def.value
9273 + h->root.u.def.section->output_section->vma
9274 + h->root.u.def.section->output_offset);
9275 }
9276 else
9277 {
9278 do_glob_dat:
9279 BFD_ASSERT ((h->got.offset & 1) == 0);
9280 bfd_put_NN (output_bfd, (bfd_vma) 0,
9281 htab->root.sgot->contents + h->got.offset);
9282 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9283 rela.r_addend = 0;
9284 }
9285
9286 loc = htab->root.srelgot->contents;
9287 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9288 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9289 }
9290
9291 if (h->needs_copy)
9292 {
9293 Elf_Internal_Rela rela;
9294 asection *s;
9295 bfd_byte *loc;
9296
9297 /* This symbol needs a copy reloc. Set it up. */
9298 if (h->dynindx == -1
9299 || (h->root.type != bfd_link_hash_defined
9300 && h->root.type != bfd_link_hash_defweak)
9301 || htab->root.srelbss == NULL)
9302 abort ();
9303
9304 rela.r_offset = (h->root.u.def.value
9305 + h->root.u.def.section->output_section->vma
9306 + h->root.u.def.section->output_offset);
9307 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9308 rela.r_addend = 0;
9309 if (h->root.u.def.section == htab->root.sdynrelro)
9310 s = htab->root.sreldynrelro;
9311 else
9312 s = htab->root.srelbss;
9313 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9314 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9315 }
9316
9317 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9318 be NULL for local symbols. */
9319 if (sym != NULL
9320 && (h == elf_hash_table (info)->hdynamic
9321 || h == elf_hash_table (info)->hgot))
9322 sym->st_shndx = SHN_ABS;
9323
9324 return TRUE;
9325 }
9326
9327 /* Finish up local dynamic symbol handling. We set the contents of
9328 various dynamic sections here. */
9329
9330 static bfd_boolean
9331 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9332 {
9333 struct elf_link_hash_entry *h
9334 = (struct elf_link_hash_entry *) *slot;
9335 struct bfd_link_info *info
9336 = (struct bfd_link_info *) inf;
9337
9338 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9339 info, h, NULL);
9340 }
9341
9342 static void
9343 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9344 struct elf_aarch64_link_hash_table
9345 *htab)
9346 {
9347 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9348 small and large plts and at the minute just generates
9349 the small PLT. */
9350
9351 /* PLT0 of the small PLT looks like this in ELF64 -
9352 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9353 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9354 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9355 // symbol resolver
9356 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9357 // GOTPLT entry for this.
9358 br x17
9359 PLT0 will be slightly different in ELF32 due to different got entry
9360 size. */
9361 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9362 bfd_vma plt_base;
9363
9364
9365 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9366 PLT_ENTRY_SIZE);
9367 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9368 PLT_ENTRY_SIZE;
9369
9370 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9371 + htab->root.sgotplt->output_offset
9372 + GOT_ENTRY_SIZE * 2);
9373
9374 plt_base = htab->root.splt->output_section->vma +
9375 htab->root.splt->output_offset;
9376
9377 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9378 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9379 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9380 htab->root.splt->contents + 4,
9381 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9382
9383 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9384 htab->root.splt->contents + 8,
9385 PG_OFFSET (plt_got_2nd_ent));
9386
9387 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9388 htab->root.splt->contents + 12,
9389 PG_OFFSET (plt_got_2nd_ent));
9390 }
9391
9392 static bfd_boolean
9393 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9394 struct bfd_link_info *info)
9395 {
9396 struct elf_aarch64_link_hash_table *htab;
9397 bfd *dynobj;
9398 asection *sdyn;
9399
9400 htab = elf_aarch64_hash_table (info);
9401 dynobj = htab->root.dynobj;
9402 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9403
9404 if (htab->root.dynamic_sections_created)
9405 {
9406 ElfNN_External_Dyn *dyncon, *dynconend;
9407
9408 if (sdyn == NULL || htab->root.sgot == NULL)
9409 abort ();
9410
9411 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9412 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9413 for (; dyncon < dynconend; dyncon++)
9414 {
9415 Elf_Internal_Dyn dyn;
9416 asection *s;
9417
9418 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9419
9420 switch (dyn.d_tag)
9421 {
9422 default:
9423 continue;
9424
9425 case DT_PLTGOT:
9426 s = htab->root.sgotplt;
9427 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9428 break;
9429
9430 case DT_JMPREL:
9431 s = htab->root.srelplt;
9432 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9433 break;
9434
9435 case DT_PLTRELSZ:
9436 s = htab->root.srelplt;
9437 dyn.d_un.d_val = s->size;
9438 break;
9439
9440 case DT_TLSDESC_PLT:
9441 s = htab->root.splt;
9442 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9443 + htab->tlsdesc_plt;
9444 break;
9445
9446 case DT_TLSDESC_GOT:
9447 s = htab->root.sgot;
9448 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9449 + htab->dt_tlsdesc_got;
9450 break;
9451 }
9452
9453 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9454 }
9455
9456 }
9457
9458 /* Fill in the special first entry in the procedure linkage table. */
9459 if (htab->root.splt && htab->root.splt->size > 0)
9460 {
9461 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9462
9463 elf_section_data (htab->root.splt->output_section)->
9464 this_hdr.sh_entsize = htab->plt_entry_size;
9465
9466
9467 if (htab->tlsdesc_plt)
9468 {
9469 bfd_put_NN (output_bfd, (bfd_vma) 0,
9470 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9471
9472 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9473 elfNN_aarch64_tlsdesc_small_plt_entry,
9474 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9475
9476 {
9477 bfd_vma adrp1_addr =
9478 htab->root.splt->output_section->vma
9479 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9480
9481 bfd_vma adrp2_addr = adrp1_addr + 4;
9482
9483 bfd_vma got_addr =
9484 htab->root.sgot->output_section->vma
9485 + htab->root.sgot->output_offset;
9486
9487 bfd_vma pltgot_addr =
9488 htab->root.sgotplt->output_section->vma
9489 + htab->root.sgotplt->output_offset;
9490
9491 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9492
9493 bfd_byte *plt_entry =
9494 htab->root.splt->contents + htab->tlsdesc_plt;
9495
9496 /* adrp x2, DT_TLSDESC_GOT */
9497 elf_aarch64_update_plt_entry (output_bfd,
9498 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9499 plt_entry + 4,
9500 (PG (dt_tlsdesc_got)
9501 - PG (adrp1_addr)));
9502
9503 /* adrp x3, 0 */
9504 elf_aarch64_update_plt_entry (output_bfd,
9505 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9506 plt_entry + 8,
9507 (PG (pltgot_addr)
9508 - PG (adrp2_addr)));
9509
9510 /* ldr x2, [x2, #0] */
9511 elf_aarch64_update_plt_entry (output_bfd,
9512 BFD_RELOC_AARCH64_LDSTNN_LO12,
9513 plt_entry + 12,
9514 PG_OFFSET (dt_tlsdesc_got));
9515
9516 /* add x3, x3, 0 */
9517 elf_aarch64_update_plt_entry (output_bfd,
9518 BFD_RELOC_AARCH64_ADD_LO12,
9519 plt_entry + 16,
9520 PG_OFFSET (pltgot_addr));
9521 }
9522 }
9523 }
9524
9525 if (htab->root.sgotplt)
9526 {
9527 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9528 {
9529 _bfd_error_handler
9530 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9531 return FALSE;
9532 }
9533
9534 /* Fill in the first three entries in the global offset table. */
9535 if (htab->root.sgotplt->size > 0)
9536 {
9537 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9538
9539 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9540 bfd_put_NN (output_bfd,
9541 (bfd_vma) 0,
9542 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9543 bfd_put_NN (output_bfd,
9544 (bfd_vma) 0,
9545 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9546 }
9547
9548 if (htab->root.sgot)
9549 {
9550 if (htab->root.sgot->size > 0)
9551 {
9552 bfd_vma addr =
9553 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9554 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9555 }
9556 }
9557
9558 elf_section_data (htab->root.sgotplt->output_section)->
9559 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9560 }
9561
9562 if (htab->root.sgot && htab->root.sgot->size > 0)
9563 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9564 = GOT_ENTRY_SIZE;
9565
9566 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9567 htab_traverse (htab->loc_hash_table,
9568 elfNN_aarch64_finish_local_dynamic_symbol,
9569 info);
9570
9571 return TRUE;
9572 }
9573
9574 /* Return address for Ith PLT stub in section PLT, for relocation REL
9575 or (bfd_vma) -1 if it should not be included. */
9576
9577 static bfd_vma
9578 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9579 const arelent *rel ATTRIBUTE_UNUSED)
9580 {
9581 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9582 }
9583
9584 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9585 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9586 It also allows a period initiated suffix to be added to the symbol, ie:
9587 "$[adtx]\.[:sym_char]+". */
9588
9589 static bfd_boolean
9590 is_aarch64_mapping_symbol (const char * name)
9591 {
9592 return name != NULL /* Paranoia. */
9593 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9594 the mapping symbols could have acquired a prefix.
9595 We do not support this here, since such symbols no
9596 longer conform to the ARM ELF ABI. */
9597 && (name[1] == 'd' || name[1] == 'x')
9598 && (name[2] == 0 || name[2] == '.');
9599 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9600 any characters that follow the period are legal characters for the body
9601 of a symbol's name. For now we just assume that this is the case. */
9602 }
9603
9604 /* Make sure that mapping symbols in object files are not removed via the
9605 "strip --strip-unneeded" tool. These symbols might needed in order to
9606 correctly generate linked files. Once an object file has been linked,
9607 it should be safe to remove them. */
9608
9609 static void
9610 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9611 {
9612 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9613 && sym->section != bfd_abs_section_ptr
9614 && is_aarch64_mapping_symbol (sym->name))
9615 sym->flags |= BSF_KEEP;
9616 }
9617
9618
9619 /* We use this so we can override certain functions
9620 (though currently we don't). */
9621
9622 const struct elf_size_info elfNN_aarch64_size_info =
9623 {
9624 sizeof (ElfNN_External_Ehdr),
9625 sizeof (ElfNN_External_Phdr),
9626 sizeof (ElfNN_External_Shdr),
9627 sizeof (ElfNN_External_Rel),
9628 sizeof (ElfNN_External_Rela),
9629 sizeof (ElfNN_External_Sym),
9630 sizeof (ElfNN_External_Dyn),
9631 sizeof (Elf_External_Note),
9632 4, /* Hash table entry size. */
9633 1, /* Internal relocs per external relocs. */
9634 ARCH_SIZE, /* Arch size. */
9635 LOG_FILE_ALIGN, /* Log_file_align. */
9636 ELFCLASSNN, EV_CURRENT,
9637 bfd_elfNN_write_out_phdrs,
9638 bfd_elfNN_write_shdrs_and_ehdr,
9639 bfd_elfNN_checksum_contents,
9640 bfd_elfNN_write_relocs,
9641 bfd_elfNN_swap_symbol_in,
9642 bfd_elfNN_swap_symbol_out,
9643 bfd_elfNN_slurp_reloc_table,
9644 bfd_elfNN_slurp_symbol_table,
9645 bfd_elfNN_swap_dyn_in,
9646 bfd_elfNN_swap_dyn_out,
9647 bfd_elfNN_swap_reloc_in,
9648 bfd_elfNN_swap_reloc_out,
9649 bfd_elfNN_swap_reloca_in,
9650 bfd_elfNN_swap_reloca_out
9651 };
9652
9653 #define ELF_ARCH bfd_arch_aarch64
9654 #define ELF_MACHINE_CODE EM_AARCH64
9655 #define ELF_MAXPAGESIZE 0x10000
9656 #define ELF_MINPAGESIZE 0x1000
9657 #define ELF_COMMONPAGESIZE 0x1000
9658
9659 #define bfd_elfNN_close_and_cleanup \
9660 elfNN_aarch64_close_and_cleanup
9661
9662 #define bfd_elfNN_bfd_free_cached_info \
9663 elfNN_aarch64_bfd_free_cached_info
9664
9665 #define bfd_elfNN_bfd_is_target_special_symbol \
9666 elfNN_aarch64_is_target_special_symbol
9667
9668 #define bfd_elfNN_bfd_link_hash_table_create \
9669 elfNN_aarch64_link_hash_table_create
9670
9671 #define bfd_elfNN_bfd_merge_private_bfd_data \
9672 elfNN_aarch64_merge_private_bfd_data
9673
9674 #define bfd_elfNN_bfd_print_private_bfd_data \
9675 elfNN_aarch64_print_private_bfd_data
9676
9677 #define bfd_elfNN_bfd_reloc_type_lookup \
9678 elfNN_aarch64_reloc_type_lookup
9679
9680 #define bfd_elfNN_bfd_reloc_name_lookup \
9681 elfNN_aarch64_reloc_name_lookup
9682
9683 #define bfd_elfNN_bfd_set_private_flags \
9684 elfNN_aarch64_set_private_flags
9685
9686 #define bfd_elfNN_find_inliner_info \
9687 elfNN_aarch64_find_inliner_info
9688
9689 #define bfd_elfNN_find_nearest_line \
9690 elfNN_aarch64_find_nearest_line
9691
9692 #define bfd_elfNN_mkobject \
9693 elfNN_aarch64_mkobject
9694
9695 #define bfd_elfNN_new_section_hook \
9696 elfNN_aarch64_new_section_hook
9697
9698 #define elf_backend_adjust_dynamic_symbol \
9699 elfNN_aarch64_adjust_dynamic_symbol
9700
9701 #define elf_backend_always_size_sections \
9702 elfNN_aarch64_always_size_sections
9703
9704 #define elf_backend_check_relocs \
9705 elfNN_aarch64_check_relocs
9706
9707 #define elf_backend_copy_indirect_symbol \
9708 elfNN_aarch64_copy_indirect_symbol
9709
9710 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9711 to them in our hash. */
9712 #define elf_backend_create_dynamic_sections \
9713 elfNN_aarch64_create_dynamic_sections
9714
9715 #define elf_backend_init_index_section \
9716 _bfd_elf_init_2_index_sections
9717
9718 #define elf_backend_finish_dynamic_sections \
9719 elfNN_aarch64_finish_dynamic_sections
9720
9721 #define elf_backend_finish_dynamic_symbol \
9722 elfNN_aarch64_finish_dynamic_symbol
9723
9724 #define elf_backend_object_p \
9725 elfNN_aarch64_object_p
9726
9727 #define elf_backend_output_arch_local_syms \
9728 elfNN_aarch64_output_arch_local_syms
9729
9730 #define elf_backend_plt_sym_val \
9731 elfNN_aarch64_plt_sym_val
9732
9733 #define elf_backend_post_process_headers \
9734 elfNN_aarch64_post_process_headers
9735
9736 #define elf_backend_relocate_section \
9737 elfNN_aarch64_relocate_section
9738
9739 #define elf_backend_reloc_type_class \
9740 elfNN_aarch64_reloc_type_class
9741
9742 #define elf_backend_section_from_shdr \
9743 elfNN_aarch64_section_from_shdr
9744
9745 #define elf_backend_size_dynamic_sections \
9746 elfNN_aarch64_size_dynamic_sections
9747
9748 #define elf_backend_size_info \
9749 elfNN_aarch64_size_info
9750
9751 #define elf_backend_write_section \
9752 elfNN_aarch64_write_section
9753
9754 #define elf_backend_symbol_processing \
9755 elfNN_aarch64_backend_symbol_processing
9756
9757 #define elf_backend_can_refcount 1
9758 #define elf_backend_can_gc_sections 1
9759 #define elf_backend_plt_readonly 1
9760 #define elf_backend_want_got_plt 1
9761 #define elf_backend_want_plt_sym 0
9762 #define elf_backend_want_dynrelro 1
9763 #define elf_backend_may_use_rel_p 0
9764 #define elf_backend_may_use_rela_p 1
9765 #define elf_backend_default_use_rela_p 1
9766 #define elf_backend_rela_normal 1
9767 #define elf_backend_dtrel_excludes_plt 1
9768 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9769 #define elf_backend_default_execstack 0
9770 #define elf_backend_extern_protected_data 1
9771 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9772
9773 #undef elf_backend_obj_attrs_section
9774 #define elf_backend_obj_attrs_section ".ARM.attributes"
9775
9776 #include "elfNN-target.h"
9777
9778 /* CloudABI support. */
9779
9780 #undef TARGET_LITTLE_SYM
9781 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9782 #undef TARGET_LITTLE_NAME
9783 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9784 #undef TARGET_BIG_SYM
9785 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9786 #undef TARGET_BIG_NAME
9787 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9788
9789 #undef ELF_OSABI
9790 #define ELF_OSABI ELFOSABI_CLOUDABI
9791
9792 #undef elfNN_bed
9793 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9794
9795 #include "elfNN-target.h"
This page took 0.317535 seconds and 4 git commands to generate.