[BFD, LD, AArch64, 2/3] Add --force-bti to enable BTI and to select BTI enabled PLTs
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147
148 #define ARCH_SIZE NN
149
150 #if ARCH_SIZE == 64
151 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
152 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
153 #define HOWTO64(...) HOWTO (__VA_ARGS__)
154 #define HOWTO32(...) EMPTY_HOWTO (0)
155 #define LOG_FILE_ALIGN 3
156 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
166 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
167 #endif
168
169 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
170 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
219 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
220
221 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
222 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
244
245 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
246 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
258
259 #define ELIMINATE_COPY_RELOCS 1
260
261 /* Return size of a relocation entry. HTAB is the bfd's
262 elf_aarch64_link_hash_entry. */
263 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
264
265 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
266 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
267 #define PLT_ENTRY_SIZE (32)
268 #define PLT_SMALL_ENTRY_SIZE (16)
269 #define PLT_TLSDESC_ENTRY_SIZE (32)
270 /* PLT sizes with BTI insn. */
271 #define PLT_BTI_ENTRY_SIZE (36)
272 #define PLT_BTI_SMALL_ENTRY_SIZE (20)
273 #define PLT_BTI_TLSDESC_ENTRY_SIZE (36)
274
275 /* Encoding of the nop instruction. */
276 #define INSN_NOP 0xd503201f
277
278 #define aarch64_compute_jump_table_size(htab) \
279 (((htab)->root.srelplt == NULL) ? 0 \
280 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
281
282 /* The first entry in a procedure linkage table looks like this
283 if the distance between the PLTGOT and the PLT is < 4GB use
284 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
285 in x16 and needs to work out PLTGOT[1] by using an address of
286 [x16,#-GOT_ENTRY_SIZE]. */
287 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
288 {
289 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
290 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
291 #if ARCH_SIZE == 64
292 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
293 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
294 #else
295 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
296 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
297 #endif
298 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
299 0x1f, 0x20, 0x03, 0xd5, /* nop */
300 0x1f, 0x20, 0x03, 0xd5, /* nop */
301 0x1f, 0x20, 0x03, 0xd5, /* nop */
302 };
303
304 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_BTI_ENTRY_SIZE] =
305 {
306 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
307 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
308 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
309 #if ARCH_SIZE == 64
310 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
311 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
312 #else
313 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
314 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
315 #endif
316 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
317 0x1f, 0x20, 0x03, 0xd5, /* nop */
318 0x1f, 0x20, 0x03, 0xd5, /* nop */
319 0x1f, 0x20, 0x03, 0xd5, /* nop */
320 };
321
322 /* Per function entry in a procedure linkage table looks like this
323 if the distance between the PLTGOT and the PLT is < 4GB use
324 these PLT entries. Use BTI versions of the PLTs when enabled. */
325 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
326 {
327 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
328 #if ARCH_SIZE == 64
329 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
330 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
331 #else
332 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
333 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
334 #endif
335 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
336 };
337
338 static const bfd_byte
339 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
340 {
341 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
342 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
343 #if ARCH_SIZE == 64
344 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
345 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
346 #else
347 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
348 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
349 #endif
350 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
351 };
352
353 static const bfd_byte
354 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
355 {
356 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
357 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
358 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
359 #if ARCH_SIZE == 64
360 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
361 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
362 #else
363 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
364 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
365 #endif
366 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
367 0x1f, 0x20, 0x03, 0xd5, /* nop */
368 0x1f, 0x20, 0x03, 0xd5, /* nop */
369 };
370
371 static const bfd_byte
372 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_BTI_TLSDESC_ENTRY_SIZE] =
373 {
374 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
375 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
376 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
377 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
378 #if ARCH_SIZE == 64
379 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
380 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
381 #else
382 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
383 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
384 #endif
385 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
386 0x1f, 0x20, 0x03, 0xd5, /* nop */
387 0x1f, 0x20, 0x03, 0xd5, /* nop */
388 };
389
390 #define elf_info_to_howto elfNN_aarch64_info_to_howto
391 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
392
393 #define AARCH64_ELF_ABI_VERSION 0
394
395 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
396 #define ALL_ONES (~ (bfd_vma) 0)
397
398 /* Indexed by the bfd interal reloc enumerators.
399 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
400 in reloc.c. */
401
402 static reloc_howto_type elfNN_aarch64_howto_table[] =
403 {
404 EMPTY_HOWTO (0),
405
406 /* Basic data relocations. */
407
408 /* Deprecated, but retained for backwards compatibility. */
409 HOWTO64 (R_AARCH64_NULL, /* type */
410 0, /* rightshift */
411 3, /* size (0 = byte, 1 = short, 2 = long) */
412 0, /* bitsize */
413 FALSE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_dont, /* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 "R_AARCH64_NULL", /* name */
418 FALSE, /* partial_inplace */
419 0, /* src_mask */
420 0, /* dst_mask */
421 FALSE), /* pcrel_offset */
422 HOWTO (R_AARCH64_NONE, /* type */
423 0, /* rightshift */
424 3, /* size (0 = byte, 1 = short, 2 = long) */
425 0, /* bitsize */
426 FALSE, /* pc_relative */
427 0, /* bitpos */
428 complain_overflow_dont, /* complain_on_overflow */
429 bfd_elf_generic_reloc, /* special_function */
430 "R_AARCH64_NONE", /* name */
431 FALSE, /* partial_inplace */
432 0, /* src_mask */
433 0, /* dst_mask */
434 FALSE), /* pcrel_offset */
435
436 /* .xword: (S+A) */
437 HOWTO64 (AARCH64_R (ABS64), /* type */
438 0, /* rightshift */
439 4, /* size (4 = long long) */
440 64, /* bitsize */
441 FALSE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_unsigned, /* complain_on_overflow */
444 bfd_elf_generic_reloc, /* special_function */
445 AARCH64_R_STR (ABS64), /* name */
446 FALSE, /* partial_inplace */
447 ALL_ONES, /* src_mask */
448 ALL_ONES, /* dst_mask */
449 FALSE), /* pcrel_offset */
450
451 /* .word: (S+A) */
452 HOWTO (AARCH64_R (ABS32), /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_unsigned, /* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 AARCH64_R_STR (ABS32), /* name */
461 FALSE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* .half: (S+A) */
467 HOWTO (AARCH64_R (ABS16), /* type */
468 0, /* rightshift */
469 1, /* size (0 = byte, 1 = short, 2 = long) */
470 16, /* bitsize */
471 FALSE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_unsigned, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* special_function */
475 AARCH64_R_STR (ABS16), /* name */
476 FALSE, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
480
481 /* .xword: (S+A-P) */
482 HOWTO64 (AARCH64_R (PREL64), /* type */
483 0, /* rightshift */
484 4, /* size (4 = long long) */
485 64, /* bitsize */
486 TRUE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_signed, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 AARCH64_R_STR (PREL64), /* name */
491 FALSE, /* partial_inplace */
492 ALL_ONES, /* src_mask */
493 ALL_ONES, /* dst_mask */
494 TRUE), /* pcrel_offset */
495
496 /* .word: (S+A-P) */
497 HOWTO (AARCH64_R (PREL32), /* type */
498 0, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 32, /* bitsize */
501 TRUE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_signed, /* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 AARCH64_R_STR (PREL32), /* name */
506 FALSE, /* partial_inplace */
507 0xffffffff, /* src_mask */
508 0xffffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
510
511 /* .half: (S+A-P) */
512 HOWTO (AARCH64_R (PREL16), /* type */
513 0, /* rightshift */
514 1, /* size (0 = byte, 1 = short, 2 = long) */
515 16, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed, /* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 AARCH64_R_STR (PREL16), /* name */
521 FALSE, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 /* Group relocations to create a 16, 32, 48 or 64 bit
527 unsigned data or abs address inline. */
528
529 /* MOVZ: ((S+A) >> 0) & 0xffff */
530 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
531 0, /* rightshift */
532 2, /* size (0 = byte, 1 = short, 2 = long) */
533 16, /* bitsize */
534 FALSE, /* pc_relative */
535 0, /* bitpos */
536 complain_overflow_unsigned, /* complain_on_overflow */
537 bfd_elf_generic_reloc, /* special_function */
538 AARCH64_R_STR (MOVW_UABS_G0), /* name */
539 FALSE, /* partial_inplace */
540 0xffff, /* src_mask */
541 0xffff, /* dst_mask */
542 FALSE), /* pcrel_offset */
543
544 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
545 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 16, /* bitsize */
549 FALSE, /* pc_relative */
550 0, /* bitpos */
551 complain_overflow_dont, /* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
554 FALSE, /* partial_inplace */
555 0xffff, /* src_mask */
556 0xffff, /* dst_mask */
557 FALSE), /* pcrel_offset */
558
559 /* MOVZ: ((S+A) >> 16) & 0xffff */
560 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
561 16, /* rightshift */
562 2, /* size (0 = byte, 1 = short, 2 = long) */
563 16, /* bitsize */
564 FALSE, /* pc_relative */
565 0, /* bitpos */
566 complain_overflow_unsigned, /* complain_on_overflow */
567 bfd_elf_generic_reloc, /* special_function */
568 AARCH64_R_STR (MOVW_UABS_G1), /* name */
569 FALSE, /* partial_inplace */
570 0xffff, /* src_mask */
571 0xffff, /* dst_mask */
572 FALSE), /* pcrel_offset */
573
574 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
575 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
576 16, /* rightshift */
577 2, /* size (0 = byte, 1 = short, 2 = long) */
578 16, /* bitsize */
579 FALSE, /* pc_relative */
580 0, /* bitpos */
581 complain_overflow_dont, /* complain_on_overflow */
582 bfd_elf_generic_reloc, /* special_function */
583 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
584 FALSE, /* partial_inplace */
585 0xffff, /* src_mask */
586 0xffff, /* dst_mask */
587 FALSE), /* pcrel_offset */
588
589 /* MOVZ: ((S+A) >> 32) & 0xffff */
590 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
591 32, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
593 16, /* bitsize */
594 FALSE, /* pc_relative */
595 0, /* bitpos */
596 complain_overflow_unsigned, /* complain_on_overflow */
597 bfd_elf_generic_reloc, /* special_function */
598 AARCH64_R_STR (MOVW_UABS_G2), /* name */
599 FALSE, /* partial_inplace */
600 0xffff, /* src_mask */
601 0xffff, /* dst_mask */
602 FALSE), /* pcrel_offset */
603
604 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
605 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
606 32, /* rightshift */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
608 16, /* bitsize */
609 FALSE, /* pc_relative */
610 0, /* bitpos */
611 complain_overflow_dont, /* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
614 FALSE, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619 /* MOVZ: ((S+A) >> 48) & 0xffff */
620 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
621 48, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 16, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_unsigned, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 AARCH64_R_STR (MOVW_UABS_G3), /* name */
629 FALSE, /* partial_inplace */
630 0xffff, /* src_mask */
631 0xffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
635 signed data or abs address inline. Will change instruction
636 to MOVN or MOVZ depending on sign of calculated value. */
637
638 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
639 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 17, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_signed, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_SABS_G0), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
655 16, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 17, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_signed, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_SABS_G1), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
669 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
670 32, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 17, /* bitsize */
673 FALSE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (MOVW_SABS_G2), /* name */
678 FALSE, /* partial_inplace */
679 0xffff, /* src_mask */
680 0xffff, /* dst_mask */
681 FALSE), /* pcrel_offset */
682
683 /* Group relocations to create a 16, 32, 48 or 64 bit
684 PC relative address inline. */
685
686 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
687 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
688 0, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 17, /* bitsize */
691 TRUE, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_signed, /* complain_on_overflow */
694 bfd_elf_generic_reloc, /* special_function */
695 AARCH64_R_STR (MOVW_PREL_G0), /* name */
696 FALSE, /* partial_inplace */
697 0xffff, /* src_mask */
698 0xffff, /* dst_mask */
699 TRUE), /* pcrel_offset */
700
701 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
702 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
703 0, /* rightshift */
704 2, /* size (0 = byte, 1 = short, 2 = long) */
705 16, /* bitsize */
706 TRUE, /* pc_relative */
707 0, /* bitpos */
708 complain_overflow_dont, /* complain_on_overflow */
709 bfd_elf_generic_reloc, /* special_function */
710 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
711 FALSE, /* partial_inplace */
712 0xffff, /* src_mask */
713 0xffff, /* dst_mask */
714 TRUE), /* pcrel_offset */
715
716 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
717 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
718 16, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 17, /* bitsize */
721 TRUE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_signed, /* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 AARCH64_R_STR (MOVW_PREL_G1), /* name */
726 FALSE, /* partial_inplace */
727 0xffff, /* src_mask */
728 0xffff, /* dst_mask */
729 TRUE), /* pcrel_offset */
730
731 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
732 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
733 16, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_dont, /* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
741 FALSE, /* partial_inplace */
742 0xffff, /* src_mask */
743 0xffff, /* dst_mask */
744 TRUE), /* pcrel_offset */
745
746 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
747 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
748 32, /* rightshift */
749 2, /* size (0 = byte, 1 = short, 2 = long) */
750 17, /* bitsize */
751 TRUE, /* pc_relative */
752 0, /* bitpos */
753 complain_overflow_signed, /* complain_on_overflow */
754 bfd_elf_generic_reloc, /* special_function */
755 AARCH64_R_STR (MOVW_PREL_G2), /* name */
756 FALSE, /* partial_inplace */
757 0xffff, /* src_mask */
758 0xffff, /* dst_mask */
759 TRUE), /* pcrel_offset */
760
761 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
762 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
763 32, /* rightshift */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
765 16, /* bitsize */
766 TRUE, /* pc_relative */
767 0, /* bitpos */
768 complain_overflow_dont, /* complain_on_overflow */
769 bfd_elf_generic_reloc, /* special_function */
770 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
771 FALSE, /* partial_inplace */
772 0xffff, /* src_mask */
773 0xffff, /* dst_mask */
774 TRUE), /* pcrel_offset */
775
776 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
777 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
778 48, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont, /* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 AARCH64_R_STR (MOVW_PREL_G3), /* name */
786 FALSE, /* partial_inplace */
787 0xffff, /* src_mask */
788 0xffff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
792 addresses: PG(x) is (x & ~0xfff). */
793
794 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
795 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
796 2, /* rightshift */
797 2, /* size (0 = byte, 1 = short, 2 = long) */
798 19, /* bitsize */
799 TRUE, /* pc_relative */
800 0, /* bitpos */
801 complain_overflow_signed, /* complain_on_overflow */
802 bfd_elf_generic_reloc, /* special_function */
803 AARCH64_R_STR (LD_PREL_LO19), /* name */
804 FALSE, /* partial_inplace */
805 0x7ffff, /* src_mask */
806 0x7ffff, /* dst_mask */
807 TRUE), /* pcrel_offset */
808
809 /* ADR: (S+A-P) & 0x1fffff */
810 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
811 0, /* rightshift */
812 2, /* size (0 = byte, 1 = short, 2 = long) */
813 21, /* bitsize */
814 TRUE, /* pc_relative */
815 0, /* bitpos */
816 complain_overflow_signed, /* complain_on_overflow */
817 bfd_elf_generic_reloc, /* special_function */
818 AARCH64_R_STR (ADR_PREL_LO21), /* name */
819 FALSE, /* partial_inplace */
820 0x1fffff, /* src_mask */
821 0x1fffff, /* dst_mask */
822 TRUE), /* pcrel_offset */
823
824 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
825 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
826 12, /* rightshift */
827 2, /* size (0 = byte, 1 = short, 2 = long) */
828 21, /* bitsize */
829 TRUE, /* pc_relative */
830 0, /* bitpos */
831 complain_overflow_signed, /* complain_on_overflow */
832 bfd_elf_generic_reloc, /* special_function */
833 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
834 FALSE, /* partial_inplace */
835 0x1fffff, /* src_mask */
836 0x1fffff, /* dst_mask */
837 TRUE), /* pcrel_offset */
838
839 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
840 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
841 12, /* rightshift */
842 2, /* size (0 = byte, 1 = short, 2 = long) */
843 21, /* bitsize */
844 TRUE, /* pc_relative */
845 0, /* bitpos */
846 complain_overflow_dont, /* complain_on_overflow */
847 bfd_elf_generic_reloc, /* special_function */
848 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
849 FALSE, /* partial_inplace */
850 0x1fffff, /* src_mask */
851 0x1fffff, /* dst_mask */
852 TRUE), /* pcrel_offset */
853
854 /* ADD: (S+A) & 0xfff [no overflow check] */
855 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
856 0, /* rightshift */
857 2, /* size (0 = byte, 1 = short, 2 = long) */
858 12, /* bitsize */
859 FALSE, /* pc_relative */
860 10, /* bitpos */
861 complain_overflow_dont, /* complain_on_overflow */
862 bfd_elf_generic_reloc, /* special_function */
863 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
864 FALSE, /* partial_inplace */
865 0x3ffc00, /* src_mask */
866 0x3ffc00, /* dst_mask */
867 FALSE), /* pcrel_offset */
868
869 /* LD/ST8: (S+A) & 0xfff */
870 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 12, /* bitsize */
874 FALSE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont, /* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
879 FALSE, /* partial_inplace */
880 0xfff, /* src_mask */
881 0xfff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Relocations for control-flow instructions. */
885
886 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
887 HOWTO (AARCH64_R (TSTBR14), /* type */
888 2, /* rightshift */
889 2, /* size (0 = byte, 1 = short, 2 = long) */
890 14, /* bitsize */
891 TRUE, /* pc_relative */
892 0, /* bitpos */
893 complain_overflow_signed, /* complain_on_overflow */
894 bfd_elf_generic_reloc, /* special_function */
895 AARCH64_R_STR (TSTBR14), /* name */
896 FALSE, /* partial_inplace */
897 0x3fff, /* src_mask */
898 0x3fff, /* dst_mask */
899 TRUE), /* pcrel_offset */
900
901 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
902 HOWTO (AARCH64_R (CONDBR19), /* type */
903 2, /* rightshift */
904 2, /* size (0 = byte, 1 = short, 2 = long) */
905 19, /* bitsize */
906 TRUE, /* pc_relative */
907 0, /* bitpos */
908 complain_overflow_signed, /* complain_on_overflow */
909 bfd_elf_generic_reloc, /* special_function */
910 AARCH64_R_STR (CONDBR19), /* name */
911 FALSE, /* partial_inplace */
912 0x7ffff, /* src_mask */
913 0x7ffff, /* dst_mask */
914 TRUE), /* pcrel_offset */
915
916 /* B: ((S+A-P) >> 2) & 0x3ffffff */
917 HOWTO (AARCH64_R (JUMP26), /* type */
918 2, /* rightshift */
919 2, /* size (0 = byte, 1 = short, 2 = long) */
920 26, /* bitsize */
921 TRUE, /* pc_relative */
922 0, /* bitpos */
923 complain_overflow_signed, /* complain_on_overflow */
924 bfd_elf_generic_reloc, /* special_function */
925 AARCH64_R_STR (JUMP26), /* name */
926 FALSE, /* partial_inplace */
927 0x3ffffff, /* src_mask */
928 0x3ffffff, /* dst_mask */
929 TRUE), /* pcrel_offset */
930
931 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
932 HOWTO (AARCH64_R (CALL26), /* type */
933 2, /* rightshift */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
935 26, /* bitsize */
936 TRUE, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_signed, /* complain_on_overflow */
939 bfd_elf_generic_reloc, /* special_function */
940 AARCH64_R_STR (CALL26), /* name */
941 FALSE, /* partial_inplace */
942 0x3ffffff, /* src_mask */
943 0x3ffffff, /* dst_mask */
944 TRUE), /* pcrel_offset */
945
946 /* LD/ST16: (S+A) & 0xffe */
947 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
948 1, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 12, /* bitsize */
951 FALSE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont, /* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
956 FALSE, /* partial_inplace */
957 0xffe, /* src_mask */
958 0xffe, /* dst_mask */
959 FALSE), /* pcrel_offset */
960
961 /* LD/ST32: (S+A) & 0xffc */
962 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
963 2, /* rightshift */
964 2, /* size (0 = byte, 1 = short, 2 = long) */
965 12, /* bitsize */
966 FALSE, /* pc_relative */
967 0, /* bitpos */
968 complain_overflow_dont, /* complain_on_overflow */
969 bfd_elf_generic_reloc, /* special_function */
970 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
971 FALSE, /* partial_inplace */
972 0xffc, /* src_mask */
973 0xffc, /* dst_mask */
974 FALSE), /* pcrel_offset */
975
976 /* LD/ST64: (S+A) & 0xff8 */
977 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
978 3, /* rightshift */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
980 12, /* bitsize */
981 FALSE, /* pc_relative */
982 0, /* bitpos */
983 complain_overflow_dont, /* complain_on_overflow */
984 bfd_elf_generic_reloc, /* special_function */
985 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
986 FALSE, /* partial_inplace */
987 0xff8, /* src_mask */
988 0xff8, /* dst_mask */
989 FALSE), /* pcrel_offset */
990
991 /* LD/ST128: (S+A) & 0xff0 */
992 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
993 4, /* rightshift */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
995 12, /* bitsize */
996 FALSE, /* pc_relative */
997 0, /* bitpos */
998 complain_overflow_dont, /* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1001 FALSE, /* partial_inplace */
1002 0xff0, /* src_mask */
1003 0xff0, /* dst_mask */
1004 FALSE), /* pcrel_offset */
1005
1006 /* Set a load-literal immediate field to bits
1007 0x1FFFFC of G(S)-P */
1008 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1009 2, /* rightshift */
1010 2, /* size (0 = byte,1 = short,2 = long) */
1011 19, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_signed, /* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
1016 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1017 FALSE, /* partial_inplace */
1018 0xffffe0, /* src_mask */
1019 0xffffe0, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
1022 /* Get to the page for the GOT entry for the symbol
1023 (G(S) - P) using an ADRP instruction. */
1024 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1025 12, /* rightshift */
1026 2, /* size (0 = byte, 1 = short, 2 = long) */
1027 21, /* bitsize */
1028 TRUE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 bfd_elf_generic_reloc, /* special_function */
1032 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1033 FALSE, /* partial_inplace */
1034 0x1fffff, /* src_mask */
1035 0x1fffff, /* dst_mask */
1036 TRUE), /* pcrel_offset */
1037
1038 /* LD64: GOT offset G(S) & 0xff8 */
1039 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1040 3, /* rightshift */
1041 2, /* size (0 = byte, 1 = short, 2 = long) */
1042 12, /* bitsize */
1043 FALSE, /* pc_relative */
1044 0, /* bitpos */
1045 complain_overflow_dont, /* complain_on_overflow */
1046 bfd_elf_generic_reloc, /* special_function */
1047 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1048 FALSE, /* partial_inplace */
1049 0xff8, /* src_mask */
1050 0xff8, /* dst_mask */
1051 FALSE), /* pcrel_offset */
1052
1053 /* LD32: GOT offset G(S) & 0xffc */
1054 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1055 2, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 12, /* bitsize */
1058 FALSE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont, /* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1063 FALSE, /* partial_inplace */
1064 0xffc, /* src_mask */
1065 0xffc, /* dst_mask */
1066 FALSE), /* pcrel_offset */
1067
1068 /* Lower 16 bits of GOT offset for the symbol. */
1069 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1070 0, /* rightshift */
1071 2, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont, /* complain_on_overflow */
1076 bfd_elf_generic_reloc, /* special_function */
1077 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1078 FALSE, /* partial_inplace */
1079 0xffff, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Higher 16 bits of GOT offset for the symbol. */
1084 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1085 16, /* rightshift */
1086 2, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_unsigned, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1093 FALSE, /* partial_inplace */
1094 0xffff, /* src_mask */
1095 0xffff, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* LD64: GOT offset for the symbol. */
1099 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1100 3, /* rightshift */
1101 2, /* size (0 = byte, 1 = short, 2 = long) */
1102 12, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_unsigned, /* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1108 FALSE, /* partial_inplace */
1109 0x7ff8, /* src_mask */
1110 0x7ff8, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* LD32: GOT offset to the page address of GOT table.
1114 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1115 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1116 2, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 12, /* bitsize */
1119 FALSE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_unsigned, /* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1124 FALSE, /* partial_inplace */
1125 0x5ffc, /* src_mask */
1126 0x5ffc, /* dst_mask */
1127 FALSE), /* pcrel_offset */
1128
1129 /* LD64: GOT offset to the page address of GOT table.
1130 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1131 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1132 3, /* rightshift */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1134 12, /* bitsize */
1135 FALSE, /* pc_relative */
1136 0, /* bitpos */
1137 complain_overflow_unsigned, /* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1140 FALSE, /* partial_inplace */
1141 0x7ff8, /* src_mask */
1142 0x7ff8, /* dst_mask */
1143 FALSE), /* pcrel_offset */
1144
1145 /* Get to the page for the GOT entry for the symbol
1146 (G(S) - P) using an ADRP instruction. */
1147 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1148 12, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 21, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont, /* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1156 FALSE, /* partial_inplace */
1157 0x1fffff, /* src_mask */
1158 0x1fffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 21, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont, /* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1170 FALSE, /* partial_inplace */
1171 0x1fffff, /* src_mask */
1172 0x1fffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1176 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 12, /* bitsize */
1180 FALSE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont, /* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1185 FALSE, /* partial_inplace */
1186 0xfff, /* src_mask */
1187 0xfff, /* dst_mask */
1188 FALSE), /* pcrel_offset */
1189
1190 /* Lower 16 bits of GOT offset to tls_index. */
1191 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1192 0, /* rightshift */
1193 2, /* size (0 = byte, 1 = short, 2 = long) */
1194 16, /* bitsize */
1195 FALSE, /* pc_relative */
1196 0, /* bitpos */
1197 complain_overflow_dont, /* complain_on_overflow */
1198 bfd_elf_generic_reloc, /* special_function */
1199 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1200 FALSE, /* partial_inplace */
1201 0xffff, /* src_mask */
1202 0xffff, /* dst_mask */
1203 FALSE), /* pcrel_offset */
1204
1205 /* Higher 16 bits of GOT offset to tls_index. */
1206 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1207 16, /* rightshift */
1208 2, /* size (0 = byte, 1 = short, 2 = long) */
1209 16, /* bitsize */
1210 FALSE, /* pc_relative */
1211 0, /* bitpos */
1212 complain_overflow_unsigned, /* complain_on_overflow */
1213 bfd_elf_generic_reloc, /* special_function */
1214 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1215 FALSE, /* partial_inplace */
1216 0xffff, /* src_mask */
1217 0xffff, /* dst_mask */
1218 FALSE), /* pcrel_offset */
1219
1220 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1221 12, /* rightshift */
1222 2, /* size (0 = byte, 1 = short, 2 = long) */
1223 21, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_dont, /* complain_on_overflow */
1227 bfd_elf_generic_reloc, /* special_function */
1228 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1229 FALSE, /* partial_inplace */
1230 0x1fffff, /* src_mask */
1231 0x1fffff, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1235 3, /* rightshift */
1236 2, /* size (0 = byte, 1 = short, 2 = long) */
1237 12, /* bitsize */
1238 FALSE, /* pc_relative */
1239 0, /* bitpos */
1240 complain_overflow_dont, /* complain_on_overflow */
1241 bfd_elf_generic_reloc, /* special_function */
1242 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1243 FALSE, /* partial_inplace */
1244 0xff8, /* src_mask */
1245 0xff8, /* dst_mask */
1246 FALSE), /* pcrel_offset */
1247
1248 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1249 2, /* rightshift */
1250 2, /* size (0 = byte, 1 = short, 2 = long) */
1251 12, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_dont, /* complain_on_overflow */
1255 bfd_elf_generic_reloc, /* special_function */
1256 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1257 FALSE, /* partial_inplace */
1258 0xffc, /* src_mask */
1259 0xffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1263 2, /* rightshift */
1264 2, /* size (0 = byte, 1 = short, 2 = long) */
1265 19, /* bitsize */
1266 FALSE, /* pc_relative */
1267 0, /* bitpos */
1268 complain_overflow_dont, /* complain_on_overflow */
1269 bfd_elf_generic_reloc, /* special_function */
1270 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1271 FALSE, /* partial_inplace */
1272 0x1ffffc, /* src_mask */
1273 0x1ffffc, /* dst_mask */
1274 FALSE), /* pcrel_offset */
1275
1276 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont, /* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1285 FALSE, /* partial_inplace */
1286 0xffff, /* src_mask */
1287 0xffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1291 16, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_unsigned, /* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1299 FALSE, /* partial_inplace */
1300 0xffff, /* src_mask */
1301 0xffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1305 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1306 12, /* rightshift */
1307 2, /* size (0 = byte, 1 = short, 2 = long) */
1308 12, /* bitsize */
1309 FALSE, /* pc_relative */
1310 0, /* bitpos */
1311 complain_overflow_unsigned, /* complain_on_overflow */
1312 bfd_elf_generic_reloc, /* special_function */
1313 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1314 FALSE, /* partial_inplace */
1315 0xfff, /* src_mask */
1316 0xfff, /* dst_mask */
1317 FALSE), /* pcrel_offset */
1318
1319 /* Unsigned 12 bit byte offset to module TLS base address. */
1320 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1321 0, /* rightshift */
1322 2, /* size (0 = byte, 1 = short, 2 = long) */
1323 12, /* bitsize */
1324 FALSE, /* pc_relative */
1325 0, /* bitpos */
1326 complain_overflow_unsigned, /* complain_on_overflow */
1327 bfd_elf_generic_reloc, /* special_function */
1328 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1329 FALSE, /* partial_inplace */
1330 0xfff, /* src_mask */
1331 0xfff, /* dst_mask */
1332 FALSE), /* pcrel_offset */
1333
1334 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1335 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1336 0, /* rightshift */
1337 2, /* size (0 = byte, 1 = short, 2 = long) */
1338 12, /* bitsize */
1339 FALSE, /* pc_relative */
1340 0, /* bitpos */
1341 complain_overflow_dont, /* complain_on_overflow */
1342 bfd_elf_generic_reloc, /* special_function */
1343 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1344 FALSE, /* partial_inplace */
1345 0xfff, /* src_mask */
1346 0xfff, /* dst_mask */
1347 FALSE), /* pcrel_offset */
1348
1349 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1350 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1351 0, /* rightshift */
1352 2, /* size (0 = byte, 1 = short, 2 = long) */
1353 12, /* bitsize */
1354 FALSE, /* pc_relative */
1355 0, /* bitpos */
1356 complain_overflow_dont, /* complain_on_overflow */
1357 bfd_elf_generic_reloc, /* special_function */
1358 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1359 FALSE, /* partial_inplace */
1360 0xfff, /* src_mask */
1361 0xfff, /* dst_mask */
1362 FALSE), /* pcrel_offset */
1363
1364 /* Get to the page for the GOT entry for the symbol
1365 (G(S) - P) using an ADRP instruction. */
1366 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1367 12, /* rightshift */
1368 2, /* size (0 = byte, 1 = short, 2 = long) */
1369 21, /* bitsize */
1370 TRUE, /* pc_relative */
1371 0, /* bitpos */
1372 complain_overflow_signed, /* complain_on_overflow */
1373 bfd_elf_generic_reloc, /* special_function */
1374 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1375 FALSE, /* partial_inplace */
1376 0x1fffff, /* src_mask */
1377 0x1fffff, /* dst_mask */
1378 TRUE), /* pcrel_offset */
1379
1380 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1381 0, /* rightshift */
1382 2, /* size (0 = byte, 1 = short, 2 = long) */
1383 21, /* bitsize */
1384 TRUE, /* pc_relative */
1385 0, /* bitpos */
1386 complain_overflow_signed, /* complain_on_overflow */
1387 bfd_elf_generic_reloc, /* special_function */
1388 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1389 FALSE, /* partial_inplace */
1390 0x1fffff, /* src_mask */
1391 0x1fffff, /* dst_mask */
1392 TRUE), /* pcrel_offset */
1393
1394 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1395 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1396 1, /* rightshift */
1397 2, /* size (0 = byte, 1 = short, 2 = long) */
1398 11, /* bitsize */
1399 FALSE, /* pc_relative */
1400 10, /* bitpos */
1401 complain_overflow_unsigned, /* complain_on_overflow */
1402 bfd_elf_generic_reloc, /* special_function */
1403 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1404 FALSE, /* partial_inplace */
1405 0x1ffc00, /* src_mask */
1406 0x1ffc00, /* dst_mask */
1407 FALSE), /* pcrel_offset */
1408
1409 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1410 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1411 1, /* rightshift */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1413 11, /* bitsize */
1414 FALSE, /* pc_relative */
1415 10, /* bitpos */
1416 complain_overflow_dont, /* complain_on_overflow */
1417 bfd_elf_generic_reloc, /* special_function */
1418 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1419 FALSE, /* partial_inplace */
1420 0x1ffc00, /* src_mask */
1421 0x1ffc00, /* dst_mask */
1422 FALSE), /* pcrel_offset */
1423
1424 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1425 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1426 2, /* rightshift */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1428 10, /* bitsize */
1429 FALSE, /* pc_relative */
1430 10, /* bitpos */
1431 complain_overflow_unsigned, /* complain_on_overflow */
1432 bfd_elf_generic_reloc, /* special_function */
1433 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1434 FALSE, /* partial_inplace */
1435 0x3ffc00, /* src_mask */
1436 0x3ffc00, /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1440 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1441 2, /* rightshift */
1442 2, /* size (0 = byte, 1 = short, 2 = long) */
1443 10, /* bitsize */
1444 FALSE, /* pc_relative */
1445 10, /* bitpos */
1446 complain_overflow_dont, /* complain_on_overflow */
1447 bfd_elf_generic_reloc, /* special_function */
1448 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1449 FALSE, /* partial_inplace */
1450 0xffc00, /* src_mask */
1451 0xffc00, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1455 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1456 3, /* rightshift */
1457 2, /* size (0 = byte, 1 = short, 2 = long) */
1458 9, /* bitsize */
1459 FALSE, /* pc_relative */
1460 10, /* bitpos */
1461 complain_overflow_unsigned, /* complain_on_overflow */
1462 bfd_elf_generic_reloc, /* special_function */
1463 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1464 FALSE, /* partial_inplace */
1465 0x3ffc00, /* src_mask */
1466 0x3ffc00, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1470 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1471 3, /* rightshift */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1473 9, /* bitsize */
1474 FALSE, /* pc_relative */
1475 10, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1479 FALSE, /* partial_inplace */
1480 0x7fc00, /* src_mask */
1481 0x7fc00, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1485 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1486 0, /* rightshift */
1487 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 12, /* bitsize */
1489 FALSE, /* pc_relative */
1490 10, /* bitpos */
1491 complain_overflow_unsigned, /* complain_on_overflow */
1492 bfd_elf_generic_reloc, /* special_function */
1493 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1494 FALSE, /* partial_inplace */
1495 0x3ffc00, /* src_mask */
1496 0x3ffc00, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1500 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 12, /* bitsize */
1504 FALSE, /* pc_relative */
1505 10, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1509 FALSE, /* partial_inplace */
1510 0x3ffc00, /* src_mask */
1511 0x3ffc00, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1515 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1516 0, /* rightshift */
1517 2, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_unsigned, /* complain_on_overflow */
1522 bfd_elf_generic_reloc, /* special_function */
1523 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1524 FALSE, /* partial_inplace */
1525 0xffff, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1530 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1531 0, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1539 FALSE, /* partial_inplace */
1540 0xffff, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1545 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1546 16, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_unsigned, /* complain_on_overflow */
1552 bfd_elf_generic_reloc, /* special_function */
1553 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1554 FALSE, /* partial_inplace */
1555 0xffff, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1560 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1561 16, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_dont, /* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1569 FALSE, /* partial_inplace */
1570 0xffff, /* src_mask */
1571 0xffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1575 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1576 32, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_unsigned, /* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1584 FALSE, /* partial_inplace */
1585 0xffff, /* src_mask */
1586 0xffff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1590 32, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 16, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_unsigned, /* complain_on_overflow */
1596 bfd_elf_generic_reloc, /* special_function */
1597 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1598 FALSE, /* partial_inplace */
1599 0xffff, /* src_mask */
1600 0xffff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602
1603 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1604 16, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 16, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
1609 complain_overflow_dont, /* complain_on_overflow */
1610 bfd_elf_generic_reloc, /* special_function */
1611 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1612 FALSE, /* partial_inplace */
1613 0xffff, /* src_mask */
1614 0xffff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
1616
1617 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1618 16, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 16, /* bitsize */
1621 FALSE, /* pc_relative */
1622 0, /* bitpos */
1623 complain_overflow_dont, /* complain_on_overflow */
1624 bfd_elf_generic_reloc, /* special_function */
1625 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1626 FALSE, /* partial_inplace */
1627 0xffff, /* src_mask */
1628 0xffff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
1630
1631 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 16, /* bitsize */
1635 FALSE, /* pc_relative */
1636 0, /* bitpos */
1637 complain_overflow_dont, /* complain_on_overflow */
1638 bfd_elf_generic_reloc, /* special_function */
1639 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1640 FALSE, /* partial_inplace */
1641 0xffff, /* src_mask */
1642 0xffff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
1644
1645 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 16, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_dont, /* complain_on_overflow */
1652 bfd_elf_generic_reloc, /* special_function */
1653 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1654 FALSE, /* partial_inplace */
1655 0xffff, /* src_mask */
1656 0xffff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1660 12, /* rightshift */
1661 2, /* size (0 = byte, 1 = short, 2 = long) */
1662 12, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_unsigned, /* complain_on_overflow */
1666 bfd_elf_generic_reloc, /* special_function */
1667 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1668 FALSE, /* partial_inplace */
1669 0xfff, /* src_mask */
1670 0xfff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1674 0, /* rightshift */
1675 2, /* size (0 = byte, 1 = short, 2 = long) */
1676 12, /* bitsize */
1677 FALSE, /* pc_relative */
1678 0, /* bitpos */
1679 complain_overflow_unsigned, /* complain_on_overflow */
1680 bfd_elf_generic_reloc, /* special_function */
1681 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1682 FALSE, /* partial_inplace */
1683 0xfff, /* src_mask */
1684 0xfff, /* dst_mask */
1685 FALSE), /* pcrel_offset */
1686
1687 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1688 0, /* rightshift */
1689 2, /* size (0 = byte, 1 = short, 2 = long) */
1690 12, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_dont, /* complain_on_overflow */
1694 bfd_elf_generic_reloc, /* special_function */
1695 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1696 FALSE, /* partial_inplace */
1697 0xfff, /* src_mask */
1698 0xfff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1702 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1703 1, /* rightshift */
1704 2, /* size (0 = byte, 1 = short, 2 = long) */
1705 11, /* bitsize */
1706 FALSE, /* pc_relative */
1707 10, /* bitpos */
1708 complain_overflow_unsigned, /* complain_on_overflow */
1709 bfd_elf_generic_reloc, /* special_function */
1710 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1711 FALSE, /* partial_inplace */
1712 0x1ffc00, /* src_mask */
1713 0x1ffc00, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1717 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1718 1, /* rightshift */
1719 2, /* size (0 = byte, 1 = short, 2 = long) */
1720 11, /* bitsize */
1721 FALSE, /* pc_relative */
1722 10, /* bitpos */
1723 complain_overflow_dont, /* complain_on_overflow */
1724 bfd_elf_generic_reloc, /* special_function */
1725 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1726 FALSE, /* partial_inplace */
1727 0x1ffc00, /* src_mask */
1728 0x1ffc00, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1732 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1733 2, /* rightshift */
1734 2, /* size (0 = byte, 1 = short, 2 = long) */
1735 10, /* bitsize */
1736 FALSE, /* pc_relative */
1737 10, /* bitpos */
1738 complain_overflow_unsigned, /* complain_on_overflow */
1739 bfd_elf_generic_reloc, /* special_function */
1740 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1741 FALSE, /* partial_inplace */
1742 0xffc00, /* src_mask */
1743 0xffc00, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1747 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1748 2, /* rightshift */
1749 2, /* size (0 = byte, 1 = short, 2 = long) */
1750 10, /* bitsize */
1751 FALSE, /* pc_relative */
1752 10, /* bitpos */
1753 complain_overflow_dont, /* complain_on_overflow */
1754 bfd_elf_generic_reloc, /* special_function */
1755 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1756 FALSE, /* partial_inplace */
1757 0xffc00, /* src_mask */
1758 0xffc00, /* dst_mask */
1759 FALSE), /* pcrel_offset */
1760
1761 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1762 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1763 3, /* rightshift */
1764 2, /* size (0 = byte, 1 = short, 2 = long) */
1765 9, /* bitsize */
1766 FALSE, /* pc_relative */
1767 10, /* bitpos */
1768 complain_overflow_unsigned, /* complain_on_overflow */
1769 bfd_elf_generic_reloc, /* special_function */
1770 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1771 FALSE, /* partial_inplace */
1772 0x7fc00, /* src_mask */
1773 0x7fc00, /* dst_mask */
1774 FALSE), /* pcrel_offset */
1775
1776 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1777 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1778 3, /* rightshift */
1779 2, /* size (0 = byte, 1 = short, 2 = long) */
1780 9, /* bitsize */
1781 FALSE, /* pc_relative */
1782 10, /* bitpos */
1783 complain_overflow_dont, /* complain_on_overflow */
1784 bfd_elf_generic_reloc, /* special_function */
1785 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1786 FALSE, /* partial_inplace */
1787 0x7fc00, /* src_mask */
1788 0x7fc00, /* dst_mask */
1789 FALSE), /* pcrel_offset */
1790
1791 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1792 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1793 0, /* rightshift */
1794 2, /* size (0 = byte, 1 = short, 2 = long) */
1795 12, /* bitsize */
1796 FALSE, /* pc_relative */
1797 10, /* bitpos */
1798 complain_overflow_unsigned, /* complain_on_overflow */
1799 bfd_elf_generic_reloc, /* special_function */
1800 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1801 FALSE, /* partial_inplace */
1802 0x3ffc00, /* src_mask */
1803 0x3ffc00, /* dst_mask */
1804 FALSE), /* pcrel_offset */
1805
1806 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1807 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1808 0, /* rightshift */
1809 2, /* size (0 = byte, 1 = short, 2 = long) */
1810 12, /* bitsize */
1811 FALSE, /* pc_relative */
1812 10, /* bitpos */
1813 complain_overflow_dont, /* complain_on_overflow */
1814 bfd_elf_generic_reloc, /* special_function */
1815 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1816 FALSE, /* partial_inplace */
1817 0x3ffc00, /* src_mask */
1818 0x3ffc00, /* dst_mask */
1819 FALSE), /* pcrel_offset */
1820
1821 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1822 2, /* rightshift */
1823 2, /* size (0 = byte, 1 = short, 2 = long) */
1824 19, /* bitsize */
1825 TRUE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 bfd_elf_generic_reloc, /* special_function */
1829 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1830 FALSE, /* partial_inplace */
1831 0x0ffffe0, /* src_mask */
1832 0x0ffffe0, /* dst_mask */
1833 TRUE), /* pcrel_offset */
1834
1835 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1836 0, /* rightshift */
1837 2, /* size (0 = byte, 1 = short, 2 = long) */
1838 21, /* bitsize */
1839 TRUE, /* pc_relative */
1840 0, /* bitpos */
1841 complain_overflow_dont, /* complain_on_overflow */
1842 bfd_elf_generic_reloc, /* special_function */
1843 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1844 FALSE, /* partial_inplace */
1845 0x1fffff, /* src_mask */
1846 0x1fffff, /* dst_mask */
1847 TRUE), /* pcrel_offset */
1848
1849 /* Get to the page for the GOT entry for the symbol
1850 (G(S) - P) using an ADRP instruction. */
1851 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1852 12, /* rightshift */
1853 2, /* size (0 = byte, 1 = short, 2 = long) */
1854 21, /* bitsize */
1855 TRUE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 bfd_elf_generic_reloc, /* special_function */
1859 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1860 FALSE, /* partial_inplace */
1861 0x1fffff, /* src_mask */
1862 0x1fffff, /* dst_mask */
1863 TRUE), /* pcrel_offset */
1864
1865 /* LD64: GOT offset G(S) & 0xff8. */
1866 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1867 3, /* rightshift */
1868 2, /* size (0 = byte, 1 = short, 2 = long) */
1869 12, /* bitsize */
1870 FALSE, /* pc_relative */
1871 0, /* bitpos */
1872 complain_overflow_dont, /* complain_on_overflow */
1873 bfd_elf_generic_reloc, /* special_function */
1874 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1875 FALSE, /* partial_inplace */
1876 0xff8, /* src_mask */
1877 0xff8, /* dst_mask */
1878 FALSE), /* pcrel_offset */
1879
1880 /* LD32: GOT offset G(S) & 0xffc. */
1881 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1882 2, /* rightshift */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1884 12, /* bitsize */
1885 FALSE, /* pc_relative */
1886 0, /* bitpos */
1887 complain_overflow_dont, /* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1890 FALSE, /* partial_inplace */
1891 0xffc, /* src_mask */
1892 0xffc, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1894
1895 /* ADD: GOT offset G(S) & 0xfff. */
1896 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1897 0, /* rightshift */
1898 2, /* size (0 = byte, 1 = short, 2 = long) */
1899 12, /* bitsize */
1900 FALSE, /* pc_relative */
1901 0, /* bitpos */
1902 complain_overflow_dont,/* complain_on_overflow */
1903 bfd_elf_generic_reloc, /* special_function */
1904 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1905 FALSE, /* partial_inplace */
1906 0xfff, /* src_mask */
1907 0xfff, /* dst_mask */
1908 FALSE), /* pcrel_offset */
1909
1910 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1911 16, /* rightshift */
1912 2, /* size (0 = byte, 1 = short, 2 = long) */
1913 12, /* bitsize */
1914 FALSE, /* pc_relative */
1915 0, /* bitpos */
1916 complain_overflow_unsigned, /* complain_on_overflow */
1917 bfd_elf_generic_reloc, /* special_function */
1918 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1919 FALSE, /* partial_inplace */
1920 0xffff, /* src_mask */
1921 0xffff, /* dst_mask */
1922 FALSE), /* pcrel_offset */
1923
1924 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1925 0, /* rightshift */
1926 2, /* size (0 = byte, 1 = short, 2 = long) */
1927 12, /* bitsize */
1928 FALSE, /* pc_relative */
1929 0, /* bitpos */
1930 complain_overflow_dont, /* complain_on_overflow */
1931 bfd_elf_generic_reloc, /* special_function */
1932 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1933 FALSE, /* partial_inplace */
1934 0xffff, /* src_mask */
1935 0xffff, /* dst_mask */
1936 FALSE), /* pcrel_offset */
1937
1938 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1939 0, /* rightshift */
1940 2, /* size (0 = byte, 1 = short, 2 = long) */
1941 12, /* bitsize */
1942 FALSE, /* pc_relative */
1943 0, /* bitpos */
1944 complain_overflow_dont, /* complain_on_overflow */
1945 bfd_elf_generic_reloc, /* special_function */
1946 AARCH64_R_STR (TLSDESC_LDR), /* name */
1947 FALSE, /* partial_inplace */
1948 0x0, /* src_mask */
1949 0x0, /* dst_mask */
1950 FALSE), /* pcrel_offset */
1951
1952 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1953 0, /* rightshift */
1954 2, /* size (0 = byte, 1 = short, 2 = long) */
1955 12, /* bitsize */
1956 FALSE, /* pc_relative */
1957 0, /* bitpos */
1958 complain_overflow_dont, /* complain_on_overflow */
1959 bfd_elf_generic_reloc, /* special_function */
1960 AARCH64_R_STR (TLSDESC_ADD), /* name */
1961 FALSE, /* partial_inplace */
1962 0x0, /* src_mask */
1963 0x0, /* dst_mask */
1964 FALSE), /* pcrel_offset */
1965
1966 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1967 0, /* rightshift */
1968 2, /* size (0 = byte, 1 = short, 2 = long) */
1969 0, /* bitsize */
1970 FALSE, /* pc_relative */
1971 0, /* bitpos */
1972 complain_overflow_dont, /* complain_on_overflow */
1973 bfd_elf_generic_reloc, /* special_function */
1974 AARCH64_R_STR (TLSDESC_CALL), /* name */
1975 FALSE, /* partial_inplace */
1976 0x0, /* src_mask */
1977 0x0, /* dst_mask */
1978 FALSE), /* pcrel_offset */
1979
1980 HOWTO (AARCH64_R (COPY), /* type */
1981 0, /* rightshift */
1982 2, /* size (0 = byte, 1 = short, 2 = long) */
1983 64, /* bitsize */
1984 FALSE, /* pc_relative */
1985 0, /* bitpos */
1986 complain_overflow_bitfield, /* complain_on_overflow */
1987 bfd_elf_generic_reloc, /* special_function */
1988 AARCH64_R_STR (COPY), /* name */
1989 TRUE, /* partial_inplace */
1990 0xffffffff, /* src_mask */
1991 0xffffffff, /* dst_mask */
1992 FALSE), /* pcrel_offset */
1993
1994 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1995 0, /* rightshift */
1996 2, /* size (0 = byte, 1 = short, 2 = long) */
1997 64, /* bitsize */
1998 FALSE, /* pc_relative */
1999 0, /* bitpos */
2000 complain_overflow_bitfield, /* complain_on_overflow */
2001 bfd_elf_generic_reloc, /* special_function */
2002 AARCH64_R_STR (GLOB_DAT), /* name */
2003 TRUE, /* partial_inplace */
2004 0xffffffff, /* src_mask */
2005 0xffffffff, /* dst_mask */
2006 FALSE), /* pcrel_offset */
2007
2008 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2009 0, /* rightshift */
2010 2, /* size (0 = byte, 1 = short, 2 = long) */
2011 64, /* bitsize */
2012 FALSE, /* pc_relative */
2013 0, /* bitpos */
2014 complain_overflow_bitfield, /* complain_on_overflow */
2015 bfd_elf_generic_reloc, /* special_function */
2016 AARCH64_R_STR (JUMP_SLOT), /* name */
2017 TRUE, /* partial_inplace */
2018 0xffffffff, /* src_mask */
2019 0xffffffff, /* dst_mask */
2020 FALSE), /* pcrel_offset */
2021
2022 HOWTO (AARCH64_R (RELATIVE), /* type */
2023 0, /* rightshift */
2024 2, /* size (0 = byte, 1 = short, 2 = long) */
2025 64, /* bitsize */
2026 FALSE, /* pc_relative */
2027 0, /* bitpos */
2028 complain_overflow_bitfield, /* complain_on_overflow */
2029 bfd_elf_generic_reloc, /* special_function */
2030 AARCH64_R_STR (RELATIVE), /* name */
2031 TRUE, /* partial_inplace */
2032 ALL_ONES, /* src_mask */
2033 ALL_ONES, /* dst_mask */
2034 FALSE), /* pcrel_offset */
2035
2036 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2037 0, /* rightshift */
2038 2, /* size (0 = byte, 1 = short, 2 = long) */
2039 64, /* bitsize */
2040 FALSE, /* pc_relative */
2041 0, /* bitpos */
2042 complain_overflow_dont, /* complain_on_overflow */
2043 bfd_elf_generic_reloc, /* special_function */
2044 #if ARCH_SIZE == 64
2045 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2046 #else
2047 AARCH64_R_STR (TLS_DTPMOD), /* name */
2048 #endif
2049 FALSE, /* partial_inplace */
2050 0, /* src_mask */
2051 ALL_ONES, /* dst_mask */
2052 FALSE), /* pc_reloffset */
2053
2054 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2055 0, /* rightshift */
2056 2, /* size (0 = byte, 1 = short, 2 = long) */
2057 64, /* bitsize */
2058 FALSE, /* pc_relative */
2059 0, /* bitpos */
2060 complain_overflow_dont, /* complain_on_overflow */
2061 bfd_elf_generic_reloc, /* special_function */
2062 #if ARCH_SIZE == 64
2063 AARCH64_R_STR (TLS_DTPREL64), /* name */
2064 #else
2065 AARCH64_R_STR (TLS_DTPREL), /* name */
2066 #endif
2067 FALSE, /* partial_inplace */
2068 0, /* src_mask */
2069 ALL_ONES, /* dst_mask */
2070 FALSE), /* pcrel_offset */
2071
2072 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2073 0, /* rightshift */
2074 2, /* size (0 = byte, 1 = short, 2 = long) */
2075 64, /* bitsize */
2076 FALSE, /* pc_relative */
2077 0, /* bitpos */
2078 complain_overflow_dont, /* complain_on_overflow */
2079 bfd_elf_generic_reloc, /* special_function */
2080 #if ARCH_SIZE == 64
2081 AARCH64_R_STR (TLS_TPREL64), /* name */
2082 #else
2083 AARCH64_R_STR (TLS_TPREL), /* name */
2084 #endif
2085 FALSE, /* partial_inplace */
2086 0, /* src_mask */
2087 ALL_ONES, /* dst_mask */
2088 FALSE), /* pcrel_offset */
2089
2090 HOWTO (AARCH64_R (TLSDESC), /* type */
2091 0, /* rightshift */
2092 2, /* size (0 = byte, 1 = short, 2 = long) */
2093 64, /* bitsize */
2094 FALSE, /* pc_relative */
2095 0, /* bitpos */
2096 complain_overflow_dont, /* complain_on_overflow */
2097 bfd_elf_generic_reloc, /* special_function */
2098 AARCH64_R_STR (TLSDESC), /* name */
2099 FALSE, /* partial_inplace */
2100 0, /* src_mask */
2101 ALL_ONES, /* dst_mask */
2102 FALSE), /* pcrel_offset */
2103
2104 HOWTO (AARCH64_R (IRELATIVE), /* type */
2105 0, /* rightshift */
2106 2, /* size (0 = byte, 1 = short, 2 = long) */
2107 64, /* bitsize */
2108 FALSE, /* pc_relative */
2109 0, /* bitpos */
2110 complain_overflow_bitfield, /* complain_on_overflow */
2111 bfd_elf_generic_reloc, /* special_function */
2112 AARCH64_R_STR (IRELATIVE), /* name */
2113 FALSE, /* partial_inplace */
2114 0, /* src_mask */
2115 ALL_ONES, /* dst_mask */
2116 FALSE), /* pcrel_offset */
2117
2118 EMPTY_HOWTO (0),
2119 };
2120
2121 static reloc_howto_type elfNN_aarch64_howto_none =
2122 HOWTO (R_AARCH64_NONE, /* type */
2123 0, /* rightshift */
2124 3, /* size (0 = byte, 1 = short, 2 = long) */
2125 0, /* bitsize */
2126 FALSE, /* pc_relative */
2127 0, /* bitpos */
2128 complain_overflow_dont,/* complain_on_overflow */
2129 bfd_elf_generic_reloc, /* special_function */
2130 "R_AARCH64_NONE", /* name */
2131 FALSE, /* partial_inplace */
2132 0, /* src_mask */
2133 0, /* dst_mask */
2134 FALSE); /* pcrel_offset */
2135
2136 /* Given HOWTO, return the bfd internal relocation enumerator. */
2137
2138 static bfd_reloc_code_real_type
2139 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2140 {
2141 const int size
2142 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2143 const ptrdiff_t offset
2144 = howto - elfNN_aarch64_howto_table;
2145
2146 if (offset > 0 && offset < size - 1)
2147 return BFD_RELOC_AARCH64_RELOC_START + offset;
2148
2149 if (howto == &elfNN_aarch64_howto_none)
2150 return BFD_RELOC_AARCH64_NONE;
2151
2152 return BFD_RELOC_AARCH64_RELOC_START;
2153 }
2154
2155 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2156
2157 static bfd_reloc_code_real_type
2158 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2159 {
2160 static bfd_boolean initialized_p = FALSE;
2161 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2162 static unsigned int offsets[R_AARCH64_end];
2163
2164 if (!initialized_p)
2165 {
2166 unsigned int i;
2167
2168 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2169 if (elfNN_aarch64_howto_table[i].type != 0)
2170 offsets[elfNN_aarch64_howto_table[i].type] = i;
2171
2172 initialized_p = TRUE;
2173 }
2174
2175 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2176 return BFD_RELOC_AARCH64_NONE;
2177
2178 /* PR 17512: file: b371e70a. */
2179 if (r_type >= R_AARCH64_end)
2180 {
2181 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2182 abfd, r_type);
2183 bfd_set_error (bfd_error_bad_value);
2184 return BFD_RELOC_AARCH64_NONE;
2185 }
2186
2187 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2188 }
2189
2190 struct elf_aarch64_reloc_map
2191 {
2192 bfd_reloc_code_real_type from;
2193 bfd_reloc_code_real_type to;
2194 };
2195
2196 /* Map bfd generic reloc to AArch64-specific reloc. */
2197 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2198 {
2199 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2200
2201 /* Basic data relocations. */
2202 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2203 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2204 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2205 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2206 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2207 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2208 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2209 };
2210
2211 /* Given the bfd internal relocation enumerator in CODE, return the
2212 corresponding howto entry. */
2213
2214 static reloc_howto_type *
2215 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2216 {
2217 unsigned int i;
2218
2219 /* Convert bfd generic reloc to AArch64-specific reloc. */
2220 if (code < BFD_RELOC_AARCH64_RELOC_START
2221 || code > BFD_RELOC_AARCH64_RELOC_END)
2222 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2223 if (elf_aarch64_reloc_map[i].from == code)
2224 {
2225 code = elf_aarch64_reloc_map[i].to;
2226 break;
2227 }
2228
2229 if (code > BFD_RELOC_AARCH64_RELOC_START
2230 && code < BFD_RELOC_AARCH64_RELOC_END)
2231 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2232 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2233
2234 if (code == BFD_RELOC_AARCH64_NONE)
2235 return &elfNN_aarch64_howto_none;
2236
2237 return NULL;
2238 }
2239
2240 static reloc_howto_type *
2241 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2242 {
2243 bfd_reloc_code_real_type val;
2244 reloc_howto_type *howto;
2245
2246 #if ARCH_SIZE == 32
2247 if (r_type > 256)
2248 {
2249 bfd_set_error (bfd_error_bad_value);
2250 return NULL;
2251 }
2252 #endif
2253
2254 if (r_type == R_AARCH64_NONE)
2255 return &elfNN_aarch64_howto_none;
2256
2257 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2258 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2259
2260 if (howto != NULL)
2261 return howto;
2262
2263 bfd_set_error (bfd_error_bad_value);
2264 return NULL;
2265 }
2266
2267 static bfd_boolean
2268 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2269 Elf_Internal_Rela *elf_reloc)
2270 {
2271 unsigned int r_type;
2272
2273 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2274 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2275
2276 if (bfd_reloc->howto == NULL)
2277 {
2278 /* xgettext:c-format */
2279 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2280 return FALSE;
2281 }
2282 return TRUE;
2283 }
2284
2285 static reloc_howto_type *
2286 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2287 bfd_reloc_code_real_type code)
2288 {
2289 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2290
2291 if (howto != NULL)
2292 return howto;
2293
2294 bfd_set_error (bfd_error_bad_value);
2295 return NULL;
2296 }
2297
2298 static reloc_howto_type *
2299 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2300 const char *r_name)
2301 {
2302 unsigned int i;
2303
2304 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2305 if (elfNN_aarch64_howto_table[i].name != NULL
2306 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2307 return &elfNN_aarch64_howto_table[i];
2308
2309 return NULL;
2310 }
2311
2312 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2313 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2314 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2315 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2316
2317 /* The linker script knows the section names for placement.
2318 The entry_names are used to do simple name mangling on the stubs.
2319 Given a function name, and its type, the stub can be found. The
2320 name can be changed. The only requirement is the %s be present. */
2321 #define STUB_ENTRY_NAME "__%s_veneer"
2322
2323 /* The name of the dynamic interpreter. This is put in the .interp
2324 section. */
2325 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2326
2327 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2328 (((1 << 25) - 1) << 2)
2329 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2330 (-((1 << 25) << 2))
2331
2332 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2333 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2334
2335 static int
2336 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2337 {
2338 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2339 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2340 }
2341
2342 static int
2343 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2344 {
2345 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2346 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2347 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2348 }
2349
2350 static const uint32_t aarch64_adrp_branch_stub [] =
2351 {
2352 0x90000010, /* adrp ip0, X */
2353 /* R_AARCH64_ADR_HI21_PCREL(X) */
2354 0x91000210, /* add ip0, ip0, :lo12:X */
2355 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2356 0xd61f0200, /* br ip0 */
2357 };
2358
2359 static const uint32_t aarch64_long_branch_stub[] =
2360 {
2361 #if ARCH_SIZE == 64
2362 0x58000090, /* ldr ip0, 1f */
2363 #else
2364 0x18000090, /* ldr wip0, 1f */
2365 #endif
2366 0x10000011, /* adr ip1, #0 */
2367 0x8b110210, /* add ip0, ip0, ip1 */
2368 0xd61f0200, /* br ip0 */
2369 0x00000000, /* 1: .xword or .word
2370 R_AARCH64_PRELNN(X) + 12
2371 */
2372 0x00000000,
2373 };
2374
2375 static const uint32_t aarch64_erratum_835769_stub[] =
2376 {
2377 0x00000000, /* Placeholder for multiply accumulate. */
2378 0x14000000, /* b <label> */
2379 };
2380
2381 static const uint32_t aarch64_erratum_843419_stub[] =
2382 {
2383 0x00000000, /* Placeholder for LDR instruction. */
2384 0x14000000, /* b <label> */
2385 };
2386
2387 /* Section name for stubs is the associated section name plus this
2388 string. */
2389 #define STUB_SUFFIX ".stub"
2390
2391 enum elf_aarch64_stub_type
2392 {
2393 aarch64_stub_none,
2394 aarch64_stub_adrp_branch,
2395 aarch64_stub_long_branch,
2396 aarch64_stub_erratum_835769_veneer,
2397 aarch64_stub_erratum_843419_veneer,
2398 };
2399
2400 struct elf_aarch64_stub_hash_entry
2401 {
2402 /* Base hash table entry structure. */
2403 struct bfd_hash_entry root;
2404
2405 /* The stub section. */
2406 asection *stub_sec;
2407
2408 /* Offset within stub_sec of the beginning of this stub. */
2409 bfd_vma stub_offset;
2410
2411 /* Given the symbol's value and its section we can determine its final
2412 value when building the stubs (so the stub knows where to jump). */
2413 bfd_vma target_value;
2414 asection *target_section;
2415
2416 enum elf_aarch64_stub_type stub_type;
2417
2418 /* The symbol table entry, if any, that this was derived from. */
2419 struct elf_aarch64_link_hash_entry *h;
2420
2421 /* Destination symbol type */
2422 unsigned char st_type;
2423
2424 /* Where this stub is being called from, or, in the case of combined
2425 stub sections, the first input section in the group. */
2426 asection *id_sec;
2427
2428 /* The name for the local symbol at the start of this stub. The
2429 stub name in the hash table has to be unique; this does not, so
2430 it can be friendlier. */
2431 char *output_name;
2432
2433 /* The instruction which caused this stub to be generated (only valid for
2434 erratum 835769 workaround stubs at present). */
2435 uint32_t veneered_insn;
2436
2437 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2438 bfd_vma adrp_offset;
2439 };
2440
2441 /* Used to build a map of a section. This is required for mixed-endian
2442 code/data. */
2443
2444 typedef struct elf_elf_section_map
2445 {
2446 bfd_vma vma;
2447 char type;
2448 }
2449 elf_aarch64_section_map;
2450
2451
2452 typedef struct _aarch64_elf_section_data
2453 {
2454 struct bfd_elf_section_data elf;
2455 unsigned int mapcount;
2456 unsigned int mapsize;
2457 elf_aarch64_section_map *map;
2458 }
2459 _aarch64_elf_section_data;
2460
2461 #define elf_aarch64_section_data(sec) \
2462 ((_aarch64_elf_section_data *) elf_section_data (sec))
2463
2464 /* The size of the thread control block which is defined to be two pointers. */
2465 #define TCB_SIZE (ARCH_SIZE/8)*2
2466
2467 struct elf_aarch64_local_symbol
2468 {
2469 unsigned int got_type;
2470 bfd_signed_vma got_refcount;
2471 bfd_vma got_offset;
2472
2473 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2474 offset is from the end of the jump table and reserved entries
2475 within the PLTGOT.
2476
2477 The magic value (bfd_vma) -1 indicates that an offset has not be
2478 allocated. */
2479 bfd_vma tlsdesc_got_jump_table_offset;
2480 };
2481
2482 struct elf_aarch64_obj_tdata
2483 {
2484 struct elf_obj_tdata root;
2485
2486 /* local symbol descriptors */
2487 struct elf_aarch64_local_symbol *locals;
2488
2489 /* Zero to warn when linking objects with incompatible enum sizes. */
2490 int no_enum_size_warning;
2491
2492 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2493 int no_wchar_size_warning;
2494
2495 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2496 uint32_t gnu_and_prop;
2497
2498 /* Zero to warn when linking objects with incompatible
2499 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2500 int no_bti_warn;
2501
2502 /* PLT type based on security. */
2503 aarch64_plt_type plt_type;
2504 };
2505
2506 #define elf_aarch64_tdata(bfd) \
2507 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2508
2509 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2510
2511 #define is_aarch64_elf(bfd) \
2512 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2513 && elf_tdata (bfd) != NULL \
2514 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2515
2516 static bfd_boolean
2517 elfNN_aarch64_mkobject (bfd *abfd)
2518 {
2519 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2520 AARCH64_ELF_DATA);
2521 }
2522
2523 #define elf_aarch64_hash_entry(ent) \
2524 ((struct elf_aarch64_link_hash_entry *)(ent))
2525
2526 #define GOT_UNKNOWN 0
2527 #define GOT_NORMAL 1
2528 #define GOT_TLS_GD 2
2529 #define GOT_TLS_IE 4
2530 #define GOT_TLSDESC_GD 8
2531
2532 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2533
2534 /* AArch64 ELF linker hash entry. */
2535 struct elf_aarch64_link_hash_entry
2536 {
2537 struct elf_link_hash_entry root;
2538
2539 /* Track dynamic relocs copied for this symbol. */
2540 struct elf_dyn_relocs *dyn_relocs;
2541
2542 /* Since PLT entries have variable size, we need to record the
2543 index into .got.plt instead of recomputing it from the PLT
2544 offset. */
2545 bfd_signed_vma plt_got_offset;
2546
2547 /* Bit mask representing the type of GOT entry(s) if any required by
2548 this symbol. */
2549 unsigned int got_type;
2550
2551 /* A pointer to the most recently used stub hash entry against this
2552 symbol. */
2553 struct elf_aarch64_stub_hash_entry *stub_cache;
2554
2555 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2556 is from the end of the jump table and reserved entries within the PLTGOT.
2557
2558 The magic value (bfd_vma) -1 indicates that an offset has not
2559 be allocated. */
2560 bfd_vma tlsdesc_got_jump_table_offset;
2561 };
2562
2563 static unsigned int
2564 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2565 bfd *abfd,
2566 unsigned long r_symndx)
2567 {
2568 if (h)
2569 return elf_aarch64_hash_entry (h)->got_type;
2570
2571 if (! elf_aarch64_locals (abfd))
2572 return GOT_UNKNOWN;
2573
2574 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2575 }
2576
2577 /* Get the AArch64 elf linker hash table from a link_info structure. */
2578 #define elf_aarch64_hash_table(info) \
2579 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2580
2581 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2582 ((struct elf_aarch64_stub_hash_entry *) \
2583 bfd_hash_lookup ((table), (string), (create), (copy)))
2584
2585 /* AArch64 ELF linker hash table. */
2586 struct elf_aarch64_link_hash_table
2587 {
2588 /* The main hash table. */
2589 struct elf_link_hash_table root;
2590
2591 /* Nonzero to force PIC branch veneers. */
2592 int pic_veneer;
2593
2594 /* Fix erratum 835769. */
2595 int fix_erratum_835769;
2596
2597 /* Fix erratum 843419. */
2598 int fix_erratum_843419;
2599
2600 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2601 int fix_erratum_843419_adr;
2602
2603 /* Don't apply link-time values for dynamic relocations. */
2604 int no_apply_dynamic_relocs;
2605
2606 /* The number of bytes in the initial entry in the PLT. */
2607 bfd_size_type plt_header_size;
2608
2609 /* The bytes of the initial PLT entry. */
2610 const bfd_byte *plt0_entry;
2611
2612 /* The number of bytes in the subsequent PLT entries. */
2613 bfd_size_type plt_entry_size;
2614
2615 /* The bytes of the subsequent PLT entry. */
2616 const bfd_byte *plt_entry;
2617
2618 /* Small local sym cache. */
2619 struct sym_cache sym_cache;
2620
2621 /* For convenience in allocate_dynrelocs. */
2622 bfd *obfd;
2623
2624 /* The amount of space used by the reserved portion of the sgotplt
2625 section, plus whatever space is used by the jump slots. */
2626 bfd_vma sgotplt_jump_table_size;
2627
2628 /* The stub hash table. */
2629 struct bfd_hash_table stub_hash_table;
2630
2631 /* Linker stub bfd. */
2632 bfd *stub_bfd;
2633
2634 /* Linker call-backs. */
2635 asection *(*add_stub_section) (const char *, asection *);
2636 void (*layout_sections_again) (void);
2637
2638 /* Array to keep track of which stub sections have been created, and
2639 information on stub grouping. */
2640 struct map_stub
2641 {
2642 /* This is the section to which stubs in the group will be
2643 attached. */
2644 asection *link_sec;
2645 /* The stub section. */
2646 asection *stub_sec;
2647 } *stub_group;
2648
2649 /* Assorted information used by elfNN_aarch64_size_stubs. */
2650 unsigned int bfd_count;
2651 unsigned int top_index;
2652 asection **input_list;
2653
2654 /* The offset into splt of the PLT entry for the TLS descriptor
2655 resolver. Special values are 0, if not necessary (or not found
2656 to be necessary yet), and -1 if needed but not determined
2657 yet. */
2658 bfd_vma tlsdesc_plt;
2659
2660 /* The number of bytes in the PLT enty for the TLS descriptor. */
2661 bfd_size_type tlsdesc_plt_entry_size;
2662
2663 /* The GOT offset for the lazy trampoline. Communicated to the
2664 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2665 indicates an offset is not allocated. */
2666 bfd_vma dt_tlsdesc_got;
2667
2668 /* Used by local STT_GNU_IFUNC symbols. */
2669 htab_t loc_hash_table;
2670 void * loc_hash_memory;
2671 };
2672
2673 /* Create an entry in an AArch64 ELF linker hash table. */
2674
2675 static struct bfd_hash_entry *
2676 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2677 struct bfd_hash_table *table,
2678 const char *string)
2679 {
2680 struct elf_aarch64_link_hash_entry *ret =
2681 (struct elf_aarch64_link_hash_entry *) entry;
2682
2683 /* Allocate the structure if it has not already been allocated by a
2684 subclass. */
2685 if (ret == NULL)
2686 ret = bfd_hash_allocate (table,
2687 sizeof (struct elf_aarch64_link_hash_entry));
2688 if (ret == NULL)
2689 return (struct bfd_hash_entry *) ret;
2690
2691 /* Call the allocation method of the superclass. */
2692 ret = ((struct elf_aarch64_link_hash_entry *)
2693 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2694 table, string));
2695 if (ret != NULL)
2696 {
2697 ret->dyn_relocs = NULL;
2698 ret->got_type = GOT_UNKNOWN;
2699 ret->plt_got_offset = (bfd_vma) - 1;
2700 ret->stub_cache = NULL;
2701 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2702 }
2703
2704 return (struct bfd_hash_entry *) ret;
2705 }
2706
2707 /* Initialize an entry in the stub hash table. */
2708
2709 static struct bfd_hash_entry *
2710 stub_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table, const char *string)
2712 {
2713 /* Allocate the structure if it has not already been allocated by a
2714 subclass. */
2715 if (entry == NULL)
2716 {
2717 entry = bfd_hash_allocate (table,
2718 sizeof (struct
2719 elf_aarch64_stub_hash_entry));
2720 if (entry == NULL)
2721 return entry;
2722 }
2723
2724 /* Call the allocation method of the superclass. */
2725 entry = bfd_hash_newfunc (entry, table, string);
2726 if (entry != NULL)
2727 {
2728 struct elf_aarch64_stub_hash_entry *eh;
2729
2730 /* Initialize the local fields. */
2731 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2732 eh->adrp_offset = 0;
2733 eh->stub_sec = NULL;
2734 eh->stub_offset = 0;
2735 eh->target_value = 0;
2736 eh->target_section = NULL;
2737 eh->stub_type = aarch64_stub_none;
2738 eh->h = NULL;
2739 eh->id_sec = NULL;
2740 }
2741
2742 return entry;
2743 }
2744
2745 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2746 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2747 as global symbol. We reuse indx and dynstr_index for local symbol
2748 hash since they aren't used by global symbols in this backend. */
2749
2750 static hashval_t
2751 elfNN_aarch64_local_htab_hash (const void *ptr)
2752 {
2753 struct elf_link_hash_entry *h
2754 = (struct elf_link_hash_entry *) ptr;
2755 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2756 }
2757
2758 /* Compare local hash entries. */
2759
2760 static int
2761 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2762 {
2763 struct elf_link_hash_entry *h1
2764 = (struct elf_link_hash_entry *) ptr1;
2765 struct elf_link_hash_entry *h2
2766 = (struct elf_link_hash_entry *) ptr2;
2767
2768 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2769 }
2770
2771 /* Find and/or create a hash entry for local symbol. */
2772
2773 static struct elf_link_hash_entry *
2774 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2775 bfd *abfd, const Elf_Internal_Rela *rel,
2776 bfd_boolean create)
2777 {
2778 struct elf_aarch64_link_hash_entry e, *ret;
2779 asection *sec = abfd->sections;
2780 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2781 ELFNN_R_SYM (rel->r_info));
2782 void **slot;
2783
2784 e.root.indx = sec->id;
2785 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2786 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2787 create ? INSERT : NO_INSERT);
2788
2789 if (!slot)
2790 return NULL;
2791
2792 if (*slot)
2793 {
2794 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2795 return &ret->root;
2796 }
2797
2798 ret = (struct elf_aarch64_link_hash_entry *)
2799 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2800 sizeof (struct elf_aarch64_link_hash_entry));
2801 if (ret)
2802 {
2803 memset (ret, 0, sizeof (*ret));
2804 ret->root.indx = sec->id;
2805 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2806 ret->root.dynindx = -1;
2807 *slot = ret;
2808 }
2809 return &ret->root;
2810 }
2811
2812 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2813
2814 static void
2815 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2816 struct elf_link_hash_entry *dir,
2817 struct elf_link_hash_entry *ind)
2818 {
2819 struct elf_aarch64_link_hash_entry *edir, *eind;
2820
2821 edir = (struct elf_aarch64_link_hash_entry *) dir;
2822 eind = (struct elf_aarch64_link_hash_entry *) ind;
2823
2824 if (eind->dyn_relocs != NULL)
2825 {
2826 if (edir->dyn_relocs != NULL)
2827 {
2828 struct elf_dyn_relocs **pp;
2829 struct elf_dyn_relocs *p;
2830
2831 /* Add reloc counts against the indirect sym to the direct sym
2832 list. Merge any entries against the same section. */
2833 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2834 {
2835 struct elf_dyn_relocs *q;
2836
2837 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2838 if (q->sec == p->sec)
2839 {
2840 q->pc_count += p->pc_count;
2841 q->count += p->count;
2842 *pp = p->next;
2843 break;
2844 }
2845 if (q == NULL)
2846 pp = &p->next;
2847 }
2848 *pp = edir->dyn_relocs;
2849 }
2850
2851 edir->dyn_relocs = eind->dyn_relocs;
2852 eind->dyn_relocs = NULL;
2853 }
2854
2855 if (ind->root.type == bfd_link_hash_indirect)
2856 {
2857 /* Copy over PLT info. */
2858 if (dir->got.refcount <= 0)
2859 {
2860 edir->got_type = eind->got_type;
2861 eind->got_type = GOT_UNKNOWN;
2862 }
2863 }
2864
2865 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2866 }
2867
2868 /* Destroy an AArch64 elf linker hash table. */
2869
2870 static void
2871 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2872 {
2873 struct elf_aarch64_link_hash_table *ret
2874 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2875
2876 if (ret->loc_hash_table)
2877 htab_delete (ret->loc_hash_table);
2878 if (ret->loc_hash_memory)
2879 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2880
2881 bfd_hash_table_free (&ret->stub_hash_table);
2882 _bfd_elf_link_hash_table_free (obfd);
2883 }
2884
2885 /* Create an AArch64 elf linker hash table. */
2886
2887 static struct bfd_link_hash_table *
2888 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2889 {
2890 struct elf_aarch64_link_hash_table *ret;
2891 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2892
2893 ret = bfd_zmalloc (amt);
2894 if (ret == NULL)
2895 return NULL;
2896
2897 if (!_bfd_elf_link_hash_table_init
2898 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2899 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2900 {
2901 free (ret);
2902 return NULL;
2903 }
2904
2905 ret->plt_header_size = PLT_ENTRY_SIZE;
2906 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2907 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2908 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2909 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2910 ret->obfd = abfd;
2911 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2912
2913 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2914 sizeof (struct elf_aarch64_stub_hash_entry)))
2915 {
2916 _bfd_elf_link_hash_table_free (abfd);
2917 return NULL;
2918 }
2919
2920 ret->loc_hash_table = htab_try_create (1024,
2921 elfNN_aarch64_local_htab_hash,
2922 elfNN_aarch64_local_htab_eq,
2923 NULL);
2924 ret->loc_hash_memory = objalloc_create ();
2925 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2926 {
2927 elfNN_aarch64_link_hash_table_free (abfd);
2928 return NULL;
2929 }
2930 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2931
2932 return &ret->root.root;
2933 }
2934
2935 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2936
2937 static bfd_boolean
2938 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2939 bfd_vma offset, bfd_vma value)
2940 {
2941 reloc_howto_type *howto;
2942 bfd_vma place;
2943
2944 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2945 place = (input_section->output_section->vma + input_section->output_offset
2946 + offset);
2947
2948 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2949 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2950 return _bfd_aarch64_elf_put_addend (input_bfd,
2951 input_section->contents + offset, r_type,
2952 howto, value) == bfd_reloc_ok;
2953 }
2954
2955 static enum elf_aarch64_stub_type
2956 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2957 {
2958 if (aarch64_valid_for_adrp_p (value, place))
2959 return aarch64_stub_adrp_branch;
2960 return aarch64_stub_long_branch;
2961 }
2962
2963 /* Determine the type of stub needed, if any, for a call. */
2964
2965 static enum elf_aarch64_stub_type
2966 aarch64_type_of_stub (asection *input_sec,
2967 const Elf_Internal_Rela *rel,
2968 asection *sym_sec,
2969 unsigned char st_type,
2970 bfd_vma destination)
2971 {
2972 bfd_vma location;
2973 bfd_signed_vma branch_offset;
2974 unsigned int r_type;
2975 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2976
2977 if (st_type != STT_FUNC
2978 && (sym_sec == input_sec))
2979 return stub_type;
2980
2981 /* Determine where the call point is. */
2982 location = (input_sec->output_offset
2983 + input_sec->output_section->vma + rel->r_offset);
2984
2985 branch_offset = (bfd_signed_vma) (destination - location);
2986
2987 r_type = ELFNN_R_TYPE (rel->r_info);
2988
2989 /* We don't want to redirect any old unconditional jump in this way,
2990 only one which is being used for a sibcall, where it is
2991 acceptable for the IP0 and IP1 registers to be clobbered. */
2992 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2993 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2994 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2995 {
2996 stub_type = aarch64_stub_long_branch;
2997 }
2998
2999 return stub_type;
3000 }
3001
3002 /* Build a name for an entry in the stub hash table. */
3003
3004 static char *
3005 elfNN_aarch64_stub_name (const asection *input_section,
3006 const asection *sym_sec,
3007 const struct elf_aarch64_link_hash_entry *hash,
3008 const Elf_Internal_Rela *rel)
3009 {
3010 char *stub_name;
3011 bfd_size_type len;
3012
3013 if (hash)
3014 {
3015 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3016 stub_name = bfd_malloc (len);
3017 if (stub_name != NULL)
3018 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3019 (unsigned int) input_section->id,
3020 hash->root.root.root.string,
3021 rel->r_addend);
3022 }
3023 else
3024 {
3025 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3026 stub_name = bfd_malloc (len);
3027 if (stub_name != NULL)
3028 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3029 (unsigned int) input_section->id,
3030 (unsigned int) sym_sec->id,
3031 (unsigned int) ELFNN_R_SYM (rel->r_info),
3032 rel->r_addend);
3033 }
3034
3035 return stub_name;
3036 }
3037
3038 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3039 executable PLT slots where the executable never takes the address of those
3040 functions, the function symbols are not added to the hash table. */
3041
3042 static bfd_boolean
3043 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3044 {
3045 if (h->plt.offset != (bfd_vma) -1
3046 && !h->def_regular
3047 && !h->pointer_equality_needed)
3048 return FALSE;
3049
3050 return _bfd_elf_hash_symbol (h);
3051 }
3052
3053
3054 /* Look up an entry in the stub hash. Stub entries are cached because
3055 creating the stub name takes a bit of time. */
3056
3057 static struct elf_aarch64_stub_hash_entry *
3058 elfNN_aarch64_get_stub_entry (const asection *input_section,
3059 const asection *sym_sec,
3060 struct elf_link_hash_entry *hash,
3061 const Elf_Internal_Rela *rel,
3062 struct elf_aarch64_link_hash_table *htab)
3063 {
3064 struct elf_aarch64_stub_hash_entry *stub_entry;
3065 struct elf_aarch64_link_hash_entry *h =
3066 (struct elf_aarch64_link_hash_entry *) hash;
3067 const asection *id_sec;
3068
3069 if ((input_section->flags & SEC_CODE) == 0)
3070 return NULL;
3071
3072 /* If this input section is part of a group of sections sharing one
3073 stub section, then use the id of the first section in the group.
3074 Stub names need to include a section id, as there may well be
3075 more than one stub used to reach say, printf, and we need to
3076 distinguish between them. */
3077 id_sec = htab->stub_group[input_section->id].link_sec;
3078
3079 if (h != NULL && h->stub_cache != NULL
3080 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3081 {
3082 stub_entry = h->stub_cache;
3083 }
3084 else
3085 {
3086 char *stub_name;
3087
3088 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3089 if (stub_name == NULL)
3090 return NULL;
3091
3092 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3093 stub_name, FALSE, FALSE);
3094 if (h != NULL)
3095 h->stub_cache = stub_entry;
3096
3097 free (stub_name);
3098 }
3099
3100 return stub_entry;
3101 }
3102
3103
3104 /* Create a stub section. */
3105
3106 static asection *
3107 _bfd_aarch64_create_stub_section (asection *section,
3108 struct elf_aarch64_link_hash_table *htab)
3109 {
3110 size_t namelen;
3111 bfd_size_type len;
3112 char *s_name;
3113
3114 namelen = strlen (section->name);
3115 len = namelen + sizeof (STUB_SUFFIX);
3116 s_name = bfd_alloc (htab->stub_bfd, len);
3117 if (s_name == NULL)
3118 return NULL;
3119
3120 memcpy (s_name, section->name, namelen);
3121 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3122 return (*htab->add_stub_section) (s_name, section);
3123 }
3124
3125
3126 /* Find or create a stub section for a link section.
3127
3128 Fix or create the stub section used to collect stubs attached to
3129 the specified link section. */
3130
3131 static asection *
3132 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3133 struct elf_aarch64_link_hash_table *htab)
3134 {
3135 if (htab->stub_group[link_section->id].stub_sec == NULL)
3136 htab->stub_group[link_section->id].stub_sec
3137 = _bfd_aarch64_create_stub_section (link_section, htab);
3138 return htab->stub_group[link_section->id].stub_sec;
3139 }
3140
3141
3142 /* Find or create a stub section in the stub group for an input
3143 section. */
3144
3145 static asection *
3146 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3147 struct elf_aarch64_link_hash_table *htab)
3148 {
3149 asection *link_sec = htab->stub_group[section->id].link_sec;
3150 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3151 }
3152
3153
3154 /* Add a new stub entry in the stub group associated with an input
3155 section to the stub hash. Not all fields of the new stub entry are
3156 initialised. */
3157
3158 static struct elf_aarch64_stub_hash_entry *
3159 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3160 asection *section,
3161 struct elf_aarch64_link_hash_table *htab)
3162 {
3163 asection *link_sec;
3164 asection *stub_sec;
3165 struct elf_aarch64_stub_hash_entry *stub_entry;
3166
3167 link_sec = htab->stub_group[section->id].link_sec;
3168 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3169
3170 /* Enter this entry into the linker stub hash table. */
3171 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3172 TRUE, FALSE);
3173 if (stub_entry == NULL)
3174 {
3175 /* xgettext:c-format */
3176 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3177 section->owner, stub_name);
3178 return NULL;
3179 }
3180
3181 stub_entry->stub_sec = stub_sec;
3182 stub_entry->stub_offset = 0;
3183 stub_entry->id_sec = link_sec;
3184
3185 return stub_entry;
3186 }
3187
3188 /* Add a new stub entry in the final stub section to the stub hash.
3189 Not all fields of the new stub entry are initialised. */
3190
3191 static struct elf_aarch64_stub_hash_entry *
3192 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3193 asection *link_section,
3194 struct elf_aarch64_link_hash_table *htab)
3195 {
3196 asection *stub_sec;
3197 struct elf_aarch64_stub_hash_entry *stub_entry;
3198
3199 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3200 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3201 TRUE, FALSE);
3202 if (stub_entry == NULL)
3203 {
3204 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3205 return NULL;
3206 }
3207
3208 stub_entry->stub_sec = stub_sec;
3209 stub_entry->stub_offset = 0;
3210 stub_entry->id_sec = link_section;
3211
3212 return stub_entry;
3213 }
3214
3215
3216 static bfd_boolean
3217 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3218 void *in_arg ATTRIBUTE_UNUSED)
3219 {
3220 struct elf_aarch64_stub_hash_entry *stub_entry;
3221 asection *stub_sec;
3222 bfd *stub_bfd;
3223 bfd_byte *loc;
3224 bfd_vma sym_value;
3225 bfd_vma veneered_insn_loc;
3226 bfd_vma veneer_entry_loc;
3227 bfd_signed_vma branch_offset = 0;
3228 unsigned int template_size;
3229 const uint32_t *template;
3230 unsigned int i;
3231
3232 /* Massage our args to the form they really have. */
3233 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3234
3235 stub_sec = stub_entry->stub_sec;
3236
3237 /* Make a note of the offset within the stubs for this entry. */
3238 stub_entry->stub_offset = stub_sec->size;
3239 loc = stub_sec->contents + stub_entry->stub_offset;
3240
3241 stub_bfd = stub_sec->owner;
3242
3243 /* This is the address of the stub destination. */
3244 sym_value = (stub_entry->target_value
3245 + stub_entry->target_section->output_offset
3246 + stub_entry->target_section->output_section->vma);
3247
3248 if (stub_entry->stub_type == aarch64_stub_long_branch)
3249 {
3250 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3251 + stub_sec->output_offset);
3252
3253 /* See if we can relax the stub. */
3254 if (aarch64_valid_for_adrp_p (sym_value, place))
3255 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3256 }
3257
3258 switch (stub_entry->stub_type)
3259 {
3260 case aarch64_stub_adrp_branch:
3261 template = aarch64_adrp_branch_stub;
3262 template_size = sizeof (aarch64_adrp_branch_stub);
3263 break;
3264 case aarch64_stub_long_branch:
3265 template = aarch64_long_branch_stub;
3266 template_size = sizeof (aarch64_long_branch_stub);
3267 break;
3268 case aarch64_stub_erratum_835769_veneer:
3269 template = aarch64_erratum_835769_stub;
3270 template_size = sizeof (aarch64_erratum_835769_stub);
3271 break;
3272 case aarch64_stub_erratum_843419_veneer:
3273 template = aarch64_erratum_843419_stub;
3274 template_size = sizeof (aarch64_erratum_843419_stub);
3275 break;
3276 default:
3277 abort ();
3278 }
3279
3280 for (i = 0; i < (template_size / sizeof template[0]); i++)
3281 {
3282 bfd_putl32 (template[i], loc);
3283 loc += 4;
3284 }
3285
3286 template_size = (template_size + 7) & ~7;
3287 stub_sec->size += template_size;
3288
3289 switch (stub_entry->stub_type)
3290 {
3291 case aarch64_stub_adrp_branch:
3292 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3293 stub_entry->stub_offset, sym_value))
3294 /* The stub would not have been relaxed if the offset was out
3295 of range. */
3296 BFD_FAIL ();
3297
3298 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3299 stub_entry->stub_offset + 4, sym_value))
3300 BFD_FAIL ();
3301 break;
3302
3303 case aarch64_stub_long_branch:
3304 /* We want the value relative to the address 12 bytes back from the
3305 value itself. */
3306 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3307 stub_entry->stub_offset + 16, sym_value + 12))
3308 BFD_FAIL ();
3309 break;
3310
3311 case aarch64_stub_erratum_835769_veneer:
3312 veneered_insn_loc = stub_entry->target_section->output_section->vma
3313 + stub_entry->target_section->output_offset
3314 + stub_entry->target_value;
3315 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3316 + stub_entry->stub_sec->output_offset
3317 + stub_entry->stub_offset;
3318 branch_offset = veneered_insn_loc - veneer_entry_loc;
3319 branch_offset >>= 2;
3320 branch_offset &= 0x3ffffff;
3321 bfd_putl32 (stub_entry->veneered_insn,
3322 stub_sec->contents + stub_entry->stub_offset);
3323 bfd_putl32 (template[1] | branch_offset,
3324 stub_sec->contents + stub_entry->stub_offset + 4);
3325 break;
3326
3327 case aarch64_stub_erratum_843419_veneer:
3328 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3329 stub_entry->stub_offset + 4, sym_value + 4))
3330 BFD_FAIL ();
3331 break;
3332
3333 default:
3334 abort ();
3335 }
3336
3337 return TRUE;
3338 }
3339
3340 /* As above, but don't actually build the stub. Just bump offset so
3341 we know stub section sizes. */
3342
3343 static bfd_boolean
3344 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3345 void *in_arg ATTRIBUTE_UNUSED)
3346 {
3347 struct elf_aarch64_stub_hash_entry *stub_entry;
3348 int size;
3349
3350 /* Massage our args to the form they really have. */
3351 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3352
3353 switch (stub_entry->stub_type)
3354 {
3355 case aarch64_stub_adrp_branch:
3356 size = sizeof (aarch64_adrp_branch_stub);
3357 break;
3358 case aarch64_stub_long_branch:
3359 size = sizeof (aarch64_long_branch_stub);
3360 break;
3361 case aarch64_stub_erratum_835769_veneer:
3362 size = sizeof (aarch64_erratum_835769_stub);
3363 break;
3364 case aarch64_stub_erratum_843419_veneer:
3365 size = sizeof (aarch64_erratum_843419_stub);
3366 break;
3367 default:
3368 abort ();
3369 }
3370
3371 size = (size + 7) & ~7;
3372 stub_entry->stub_sec->size += size;
3373 return TRUE;
3374 }
3375
3376 /* External entry points for sizing and building linker stubs. */
3377
3378 /* Set up various things so that we can make a list of input sections
3379 for each output section included in the link. Returns -1 on error,
3380 0 when no stubs will be needed, and 1 on success. */
3381
3382 int
3383 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3384 struct bfd_link_info *info)
3385 {
3386 bfd *input_bfd;
3387 unsigned int bfd_count;
3388 unsigned int top_id, top_index;
3389 asection *section;
3390 asection **input_list, **list;
3391 bfd_size_type amt;
3392 struct elf_aarch64_link_hash_table *htab =
3393 elf_aarch64_hash_table (info);
3394
3395 if (!is_elf_hash_table (htab))
3396 return 0;
3397
3398 /* Count the number of input BFDs and find the top input section id. */
3399 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3400 input_bfd != NULL; input_bfd = input_bfd->link.next)
3401 {
3402 bfd_count += 1;
3403 for (section = input_bfd->sections;
3404 section != NULL; section = section->next)
3405 {
3406 if (top_id < section->id)
3407 top_id = section->id;
3408 }
3409 }
3410 htab->bfd_count = bfd_count;
3411
3412 amt = sizeof (struct map_stub) * (top_id + 1);
3413 htab->stub_group = bfd_zmalloc (amt);
3414 if (htab->stub_group == NULL)
3415 return -1;
3416
3417 /* We can't use output_bfd->section_count here to find the top output
3418 section index as some sections may have been removed, and
3419 _bfd_strip_section_from_output doesn't renumber the indices. */
3420 for (section = output_bfd->sections, top_index = 0;
3421 section != NULL; section = section->next)
3422 {
3423 if (top_index < section->index)
3424 top_index = section->index;
3425 }
3426
3427 htab->top_index = top_index;
3428 amt = sizeof (asection *) * (top_index + 1);
3429 input_list = bfd_malloc (amt);
3430 htab->input_list = input_list;
3431 if (input_list == NULL)
3432 return -1;
3433
3434 /* For sections we aren't interested in, mark their entries with a
3435 value we can check later. */
3436 list = input_list + top_index;
3437 do
3438 *list = bfd_abs_section_ptr;
3439 while (list-- != input_list);
3440
3441 for (section = output_bfd->sections;
3442 section != NULL; section = section->next)
3443 {
3444 if ((section->flags & SEC_CODE) != 0)
3445 input_list[section->index] = NULL;
3446 }
3447
3448 return 1;
3449 }
3450
3451 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3452 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3453
3454 /* The linker repeatedly calls this function for each input section,
3455 in the order that input sections are linked into output sections.
3456 Build lists of input sections to determine groupings between which
3457 we may insert linker stubs. */
3458
3459 void
3460 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3461 {
3462 struct elf_aarch64_link_hash_table *htab =
3463 elf_aarch64_hash_table (info);
3464
3465 if (isec->output_section->index <= htab->top_index)
3466 {
3467 asection **list = htab->input_list + isec->output_section->index;
3468
3469 if (*list != bfd_abs_section_ptr)
3470 {
3471 /* Steal the link_sec pointer for our list. */
3472 /* This happens to make the list in reverse order,
3473 which is what we want. */
3474 PREV_SEC (isec) = *list;
3475 *list = isec;
3476 }
3477 }
3478 }
3479
3480 /* See whether we can group stub sections together. Grouping stub
3481 sections may result in fewer stubs. More importantly, we need to
3482 put all .init* and .fini* stubs at the beginning of the .init or
3483 .fini output sections respectively, because glibc splits the
3484 _init and _fini functions into multiple parts. Putting a stub in
3485 the middle of a function is not a good idea. */
3486
3487 static void
3488 group_sections (struct elf_aarch64_link_hash_table *htab,
3489 bfd_size_type stub_group_size,
3490 bfd_boolean stubs_always_before_branch)
3491 {
3492 asection **list = htab->input_list + htab->top_index;
3493
3494 do
3495 {
3496 asection *tail = *list;
3497
3498 if (tail == bfd_abs_section_ptr)
3499 continue;
3500
3501 while (tail != NULL)
3502 {
3503 asection *curr;
3504 asection *prev;
3505 bfd_size_type total;
3506
3507 curr = tail;
3508 total = tail->size;
3509 while ((prev = PREV_SEC (curr)) != NULL
3510 && ((total += curr->output_offset - prev->output_offset)
3511 < stub_group_size))
3512 curr = prev;
3513
3514 /* OK, the size from the start of CURR to the end is less
3515 than stub_group_size and thus can be handled by one stub
3516 section. (Or the tail section is itself larger than
3517 stub_group_size, in which case we may be toast.)
3518 We should really be keeping track of the total size of
3519 stubs added here, as stubs contribute to the final output
3520 section size. */
3521 do
3522 {
3523 prev = PREV_SEC (tail);
3524 /* Set up this stub group. */
3525 htab->stub_group[tail->id].link_sec = curr;
3526 }
3527 while (tail != curr && (tail = prev) != NULL);
3528
3529 /* But wait, there's more! Input sections up to stub_group_size
3530 bytes before the stub section can be handled by it too. */
3531 if (!stubs_always_before_branch)
3532 {
3533 total = 0;
3534 while (prev != NULL
3535 && ((total += tail->output_offset - prev->output_offset)
3536 < stub_group_size))
3537 {
3538 tail = prev;
3539 prev = PREV_SEC (tail);
3540 htab->stub_group[tail->id].link_sec = curr;
3541 }
3542 }
3543 tail = prev;
3544 }
3545 }
3546 while (list-- != htab->input_list);
3547
3548 free (htab->input_list);
3549 }
3550
3551 #undef PREV_SEC
3552
3553 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3554
3555 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3556 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3557 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3558 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3559 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3560 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3561
3562 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3563 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3564 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3565 #define AARCH64_ZR 0x1f
3566
3567 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3568 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3569
3570 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3571 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3572 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3573 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3574 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3575 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3576 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3577 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3578 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3579 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3580 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3581 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3582 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3583 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3584 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3585 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3586 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3587 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3588
3589 /* Classify an INSN if it is indeed a load/store.
3590
3591 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3592
3593 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3594 is set equal to RT.
3595
3596 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3597
3598 static bfd_boolean
3599 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3600 bfd_boolean *pair, bfd_boolean *load)
3601 {
3602 uint32_t opcode;
3603 unsigned int r;
3604 uint32_t opc = 0;
3605 uint32_t v = 0;
3606 uint32_t opc_v = 0;
3607
3608 /* Bail out quickly if INSN doesn't fall into the load-store
3609 encoding space. */
3610 if (!AARCH64_LDST (insn))
3611 return FALSE;
3612
3613 *pair = FALSE;
3614 *load = FALSE;
3615 if (AARCH64_LDST_EX (insn))
3616 {
3617 *rt = AARCH64_RT (insn);
3618 *rt2 = *rt;
3619 if (AARCH64_BIT (insn, 21) == 1)
3620 {
3621 *pair = TRUE;
3622 *rt2 = AARCH64_RT2 (insn);
3623 }
3624 *load = AARCH64_LD (insn);
3625 return TRUE;
3626 }
3627 else if (AARCH64_LDST_NAP (insn)
3628 || AARCH64_LDSTP_PI (insn)
3629 || AARCH64_LDSTP_O (insn)
3630 || AARCH64_LDSTP_PRE (insn))
3631 {
3632 *pair = TRUE;
3633 *rt = AARCH64_RT (insn);
3634 *rt2 = AARCH64_RT2 (insn);
3635 *load = AARCH64_LD (insn);
3636 return TRUE;
3637 }
3638 else if (AARCH64_LDST_PCREL (insn)
3639 || AARCH64_LDST_UI (insn)
3640 || AARCH64_LDST_PIIMM (insn)
3641 || AARCH64_LDST_U (insn)
3642 || AARCH64_LDST_PREIMM (insn)
3643 || AARCH64_LDST_RO (insn)
3644 || AARCH64_LDST_UIMM (insn))
3645 {
3646 *rt = AARCH64_RT (insn);
3647 *rt2 = *rt;
3648 if (AARCH64_LDST_PCREL (insn))
3649 *load = TRUE;
3650 opc = AARCH64_BITS (insn, 22, 2);
3651 v = AARCH64_BIT (insn, 26);
3652 opc_v = opc | (v << 2);
3653 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3654 || opc_v == 5 || opc_v == 7);
3655 return TRUE;
3656 }
3657 else if (AARCH64_LDST_SIMD_M (insn)
3658 || AARCH64_LDST_SIMD_M_PI (insn))
3659 {
3660 *rt = AARCH64_RT (insn);
3661 *load = AARCH64_BIT (insn, 22);
3662 opcode = (insn >> 12) & 0xf;
3663 switch (opcode)
3664 {
3665 case 0:
3666 case 2:
3667 *rt2 = *rt + 3;
3668 break;
3669
3670 case 4:
3671 case 6:
3672 *rt2 = *rt + 2;
3673 break;
3674
3675 case 7:
3676 *rt2 = *rt;
3677 break;
3678
3679 case 8:
3680 case 10:
3681 *rt2 = *rt + 1;
3682 break;
3683
3684 default:
3685 return FALSE;
3686 }
3687 return TRUE;
3688 }
3689 else if (AARCH64_LDST_SIMD_S (insn)
3690 || AARCH64_LDST_SIMD_S_PI (insn))
3691 {
3692 *rt = AARCH64_RT (insn);
3693 r = (insn >> 21) & 1;
3694 *load = AARCH64_BIT (insn, 22);
3695 opcode = (insn >> 13) & 0x7;
3696 switch (opcode)
3697 {
3698 case 0:
3699 case 2:
3700 case 4:
3701 *rt2 = *rt + r;
3702 break;
3703
3704 case 1:
3705 case 3:
3706 case 5:
3707 *rt2 = *rt + (r == 0 ? 2 : 3);
3708 break;
3709
3710 case 6:
3711 *rt2 = *rt + r;
3712 break;
3713
3714 case 7:
3715 *rt2 = *rt + (r == 0 ? 2 : 3);
3716 break;
3717
3718 default:
3719 return FALSE;
3720 }
3721 return TRUE;
3722 }
3723
3724 return FALSE;
3725 }
3726
3727 /* Return TRUE if INSN is multiply-accumulate. */
3728
3729 static bfd_boolean
3730 aarch64_mlxl_p (uint32_t insn)
3731 {
3732 uint32_t op31 = AARCH64_OP31 (insn);
3733
3734 if (AARCH64_MAC (insn)
3735 && (op31 == 0 || op31 == 1 || op31 == 5)
3736 /* Exclude MUL instructions which are encoded as a multiple accumulate
3737 with RA = XZR. */
3738 && AARCH64_RA (insn) != AARCH64_ZR)
3739 return TRUE;
3740
3741 return FALSE;
3742 }
3743
3744 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3745 it is possible for a 64-bit multiply-accumulate instruction to generate an
3746 incorrect result. The details are quite complex and hard to
3747 determine statically, since branches in the code may exist in some
3748 circumstances, but all cases end with a memory (load, store, or
3749 prefetch) instruction followed immediately by the multiply-accumulate
3750 operation. We employ a linker patching technique, by moving the potentially
3751 affected multiply-accumulate instruction into a patch region and replacing
3752 the original instruction with a branch to the patch. This function checks
3753 if INSN_1 is the memory operation followed by a multiply-accumulate
3754 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3755 if INSN_1 and INSN_2 are safe. */
3756
3757 static bfd_boolean
3758 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3759 {
3760 uint32_t rt;
3761 uint32_t rt2;
3762 uint32_t rn;
3763 uint32_t rm;
3764 uint32_t ra;
3765 bfd_boolean pair;
3766 bfd_boolean load;
3767
3768 if (aarch64_mlxl_p (insn_2)
3769 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3770 {
3771 /* Any SIMD memory op is independent of the subsequent MLA
3772 by definition of the erratum. */
3773 if (AARCH64_BIT (insn_1, 26))
3774 return TRUE;
3775
3776 /* If not SIMD, check for integer memory ops and MLA relationship. */
3777 rn = AARCH64_RN (insn_2);
3778 ra = AARCH64_RA (insn_2);
3779 rm = AARCH64_RM (insn_2);
3780
3781 /* If this is a load and there's a true(RAW) dependency, we are safe
3782 and this is not an erratum sequence. */
3783 if (load &&
3784 (rt == rn || rt == rm || rt == ra
3785 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3786 return FALSE;
3787
3788 /* We conservatively put out stubs for all other cases (including
3789 writebacks). */
3790 return TRUE;
3791 }
3792
3793 return FALSE;
3794 }
3795
3796 /* Used to order a list of mapping symbols by address. */
3797
3798 static int
3799 elf_aarch64_compare_mapping (const void *a, const void *b)
3800 {
3801 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3802 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3803
3804 if (amap->vma > bmap->vma)
3805 return 1;
3806 else if (amap->vma < bmap->vma)
3807 return -1;
3808 else if (amap->type > bmap->type)
3809 /* Ensure results do not depend on the host qsort for objects with
3810 multiple mapping symbols at the same address by sorting on type
3811 after vma. */
3812 return 1;
3813 else if (amap->type < bmap->type)
3814 return -1;
3815 else
3816 return 0;
3817 }
3818
3819
3820 static char *
3821 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3822 {
3823 char *stub_name = (char *) bfd_malloc
3824 (strlen ("__erratum_835769_veneer_") + 16);
3825 if (stub_name != NULL)
3826 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3827 return stub_name;
3828 }
3829
3830 /* Scan for Cortex-A53 erratum 835769 sequence.
3831
3832 Return TRUE else FALSE on abnormal termination. */
3833
3834 static bfd_boolean
3835 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3836 struct bfd_link_info *info,
3837 unsigned int *num_fixes_p)
3838 {
3839 asection *section;
3840 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3841 unsigned int num_fixes = *num_fixes_p;
3842
3843 if (htab == NULL)
3844 return TRUE;
3845
3846 for (section = input_bfd->sections;
3847 section != NULL;
3848 section = section->next)
3849 {
3850 bfd_byte *contents = NULL;
3851 struct _aarch64_elf_section_data *sec_data;
3852 unsigned int span;
3853
3854 if (elf_section_type (section) != SHT_PROGBITS
3855 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3856 || (section->flags & SEC_EXCLUDE) != 0
3857 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3858 || (section->output_section == bfd_abs_section_ptr))
3859 continue;
3860
3861 if (elf_section_data (section)->this_hdr.contents != NULL)
3862 contents = elf_section_data (section)->this_hdr.contents;
3863 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3864 return FALSE;
3865
3866 sec_data = elf_aarch64_section_data (section);
3867
3868 qsort (sec_data->map, sec_data->mapcount,
3869 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3870
3871 for (span = 0; span < sec_data->mapcount; span++)
3872 {
3873 unsigned int span_start = sec_data->map[span].vma;
3874 unsigned int span_end = ((span == sec_data->mapcount - 1)
3875 ? sec_data->map[0].vma + section->size
3876 : sec_data->map[span + 1].vma);
3877 unsigned int i;
3878 char span_type = sec_data->map[span].type;
3879
3880 if (span_type == 'd')
3881 continue;
3882
3883 for (i = span_start; i + 4 < span_end; i += 4)
3884 {
3885 uint32_t insn_1 = bfd_getl32 (contents + i);
3886 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3887
3888 if (aarch64_erratum_sequence (insn_1, insn_2))
3889 {
3890 struct elf_aarch64_stub_hash_entry *stub_entry;
3891 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3892 if (! stub_name)
3893 return FALSE;
3894
3895 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3896 section,
3897 htab);
3898 if (! stub_entry)
3899 return FALSE;
3900
3901 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3902 stub_entry->target_section = section;
3903 stub_entry->target_value = i + 4;
3904 stub_entry->veneered_insn = insn_2;
3905 stub_entry->output_name = stub_name;
3906 num_fixes++;
3907 }
3908 }
3909 }
3910 if (elf_section_data (section)->this_hdr.contents == NULL)
3911 free (contents);
3912 }
3913
3914 *num_fixes_p = num_fixes;
3915
3916 return TRUE;
3917 }
3918
3919
3920 /* Test if instruction INSN is ADRP. */
3921
3922 static bfd_boolean
3923 _bfd_aarch64_adrp_p (uint32_t insn)
3924 {
3925 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3926 }
3927
3928
3929 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3930
3931 static bfd_boolean
3932 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3933 uint32_t insn_3)
3934 {
3935 uint32_t rt;
3936 uint32_t rt2;
3937 bfd_boolean pair;
3938 bfd_boolean load;
3939
3940 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3941 && (!pair
3942 || (pair && !load))
3943 && AARCH64_LDST_UIMM (insn_3)
3944 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3945 }
3946
3947
3948 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3949
3950 Return TRUE if section CONTENTS at offset I contains one of the
3951 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3952 seen set P_VENEER_I to the offset of the final LOAD/STORE
3953 instruction in the sequence.
3954 */
3955
3956 static bfd_boolean
3957 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3958 bfd_vma i, bfd_vma span_end,
3959 bfd_vma *p_veneer_i)
3960 {
3961 uint32_t insn_1 = bfd_getl32 (contents + i);
3962
3963 if (!_bfd_aarch64_adrp_p (insn_1))
3964 return FALSE;
3965
3966 if (span_end < i + 12)
3967 return FALSE;
3968
3969 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3970 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3971
3972 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3973 return FALSE;
3974
3975 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3976 {
3977 *p_veneer_i = i + 8;
3978 return TRUE;
3979 }
3980
3981 if (span_end < i + 16)
3982 return FALSE;
3983
3984 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3985
3986 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3987 {
3988 *p_veneer_i = i + 12;
3989 return TRUE;
3990 }
3991
3992 return FALSE;
3993 }
3994
3995
3996 /* Resize all stub sections. */
3997
3998 static void
3999 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4000 {
4001 asection *section;
4002
4003 /* OK, we've added some stubs. Find out the new size of the
4004 stub sections. */
4005 for (section = htab->stub_bfd->sections;
4006 section != NULL; section = section->next)
4007 {
4008 /* Ignore non-stub sections. */
4009 if (!strstr (section->name, STUB_SUFFIX))
4010 continue;
4011 section->size = 0;
4012 }
4013
4014 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4015
4016 for (section = htab->stub_bfd->sections;
4017 section != NULL; section = section->next)
4018 {
4019 if (!strstr (section->name, STUB_SUFFIX))
4020 continue;
4021
4022 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4023 as long branch stubs contain a 64-bit address. */
4024 if (section->size)
4025 section->size += 8;
4026
4027 /* Ensure all stub sections have a size which is a multiple of
4028 4096. This is important in order to ensure that the insertion
4029 of stub sections does not in itself move existing code around
4030 in such a way that new errata sequences are created. */
4031 if (htab->fix_erratum_843419)
4032 if (section->size)
4033 section->size = BFD_ALIGN (section->size, 0x1000);
4034 }
4035 }
4036
4037 /* Construct an erratum 843419 workaround stub name. */
4038
4039 static char *
4040 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4041 bfd_vma offset)
4042 {
4043 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4044 char *stub_name = bfd_malloc (len);
4045
4046 if (stub_name != NULL)
4047 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4048 input_section->owner->id,
4049 input_section->id,
4050 offset);
4051 return stub_name;
4052 }
4053
4054 /* Build a stub_entry structure describing an 843419 fixup.
4055
4056 The stub_entry constructed is populated with the bit pattern INSN
4057 of the instruction located at OFFSET within input SECTION.
4058
4059 Returns TRUE on success. */
4060
4061 static bfd_boolean
4062 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4063 bfd_vma adrp_offset,
4064 bfd_vma ldst_offset,
4065 asection *section,
4066 struct bfd_link_info *info)
4067 {
4068 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4069 char *stub_name;
4070 struct elf_aarch64_stub_hash_entry *stub_entry;
4071
4072 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4073 if (stub_name == NULL)
4074 return FALSE;
4075 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4076 FALSE, FALSE);
4077 if (stub_entry)
4078 {
4079 free (stub_name);
4080 return TRUE;
4081 }
4082
4083 /* We always place an 843419 workaround veneer in the stub section
4084 attached to the input section in which an erratum sequence has
4085 been found. This ensures that later in the link process (in
4086 elfNN_aarch64_write_section) when we copy the veneered
4087 instruction from the input section into the stub section the
4088 copied instruction will have had any relocations applied to it.
4089 If we placed workaround veneers in any other stub section then we
4090 could not assume that all relocations have been processed on the
4091 corresponding input section at the point we output the stub
4092 section. */
4093
4094 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4095 if (stub_entry == NULL)
4096 {
4097 free (stub_name);
4098 return FALSE;
4099 }
4100
4101 stub_entry->adrp_offset = adrp_offset;
4102 stub_entry->target_value = ldst_offset;
4103 stub_entry->target_section = section;
4104 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4105 stub_entry->veneered_insn = insn;
4106 stub_entry->output_name = stub_name;
4107
4108 return TRUE;
4109 }
4110
4111
4112 /* Scan an input section looking for the signature of erratum 843419.
4113
4114 Scans input SECTION in INPUT_BFD looking for erratum 843419
4115 signatures, for each signature found a stub_entry is created
4116 describing the location of the erratum for subsequent fixup.
4117
4118 Return TRUE on successful scan, FALSE on failure to scan.
4119 */
4120
4121 static bfd_boolean
4122 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4123 struct bfd_link_info *info)
4124 {
4125 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4126
4127 if (htab == NULL)
4128 return TRUE;
4129
4130 if (elf_section_type (section) != SHT_PROGBITS
4131 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4132 || (section->flags & SEC_EXCLUDE) != 0
4133 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4134 || (section->output_section == bfd_abs_section_ptr))
4135 return TRUE;
4136
4137 do
4138 {
4139 bfd_byte *contents = NULL;
4140 struct _aarch64_elf_section_data *sec_data;
4141 unsigned int span;
4142
4143 if (elf_section_data (section)->this_hdr.contents != NULL)
4144 contents = elf_section_data (section)->this_hdr.contents;
4145 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4146 return FALSE;
4147
4148 sec_data = elf_aarch64_section_data (section);
4149
4150 qsort (sec_data->map, sec_data->mapcount,
4151 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4152
4153 for (span = 0; span < sec_data->mapcount; span++)
4154 {
4155 unsigned int span_start = sec_data->map[span].vma;
4156 unsigned int span_end = ((span == sec_data->mapcount - 1)
4157 ? sec_data->map[0].vma + section->size
4158 : sec_data->map[span + 1].vma);
4159 unsigned int i;
4160 char span_type = sec_data->map[span].type;
4161
4162 if (span_type == 'd')
4163 continue;
4164
4165 for (i = span_start; i + 8 < span_end; i += 4)
4166 {
4167 bfd_vma vma = (section->output_section->vma
4168 + section->output_offset
4169 + i);
4170 bfd_vma veneer_i;
4171
4172 if (_bfd_aarch64_erratum_843419_p
4173 (contents, vma, i, span_end, &veneer_i))
4174 {
4175 uint32_t insn = bfd_getl32 (contents + veneer_i);
4176
4177 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4178 section, info))
4179 return FALSE;
4180 }
4181 }
4182 }
4183
4184 if (elf_section_data (section)->this_hdr.contents == NULL)
4185 free (contents);
4186 }
4187 while (0);
4188
4189 return TRUE;
4190 }
4191
4192
4193 /* Determine and set the size of the stub section for a final link.
4194
4195 The basic idea here is to examine all the relocations looking for
4196 PC-relative calls to a target that is unreachable with a "bl"
4197 instruction. */
4198
4199 bfd_boolean
4200 elfNN_aarch64_size_stubs (bfd *output_bfd,
4201 bfd *stub_bfd,
4202 struct bfd_link_info *info,
4203 bfd_signed_vma group_size,
4204 asection * (*add_stub_section) (const char *,
4205 asection *),
4206 void (*layout_sections_again) (void))
4207 {
4208 bfd_size_type stub_group_size;
4209 bfd_boolean stubs_always_before_branch;
4210 bfd_boolean stub_changed = FALSE;
4211 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4212 unsigned int num_erratum_835769_fixes = 0;
4213
4214 /* Propagate mach to stub bfd, because it may not have been
4215 finalized when we created stub_bfd. */
4216 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4217 bfd_get_mach (output_bfd));
4218
4219 /* Stash our params away. */
4220 htab->stub_bfd = stub_bfd;
4221 htab->add_stub_section = add_stub_section;
4222 htab->layout_sections_again = layout_sections_again;
4223 stubs_always_before_branch = group_size < 0;
4224 if (group_size < 0)
4225 stub_group_size = -group_size;
4226 else
4227 stub_group_size = group_size;
4228
4229 if (stub_group_size == 1)
4230 {
4231 /* Default values. */
4232 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4233 stub_group_size = 127 * 1024 * 1024;
4234 }
4235
4236 group_sections (htab, stub_group_size, stubs_always_before_branch);
4237
4238 (*htab->layout_sections_again) ();
4239
4240 if (htab->fix_erratum_835769)
4241 {
4242 bfd *input_bfd;
4243
4244 for (input_bfd = info->input_bfds;
4245 input_bfd != NULL; input_bfd = input_bfd->link.next)
4246 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4247 &num_erratum_835769_fixes))
4248 return FALSE;
4249
4250 _bfd_aarch64_resize_stubs (htab);
4251 (*htab->layout_sections_again) ();
4252 }
4253
4254 if (htab->fix_erratum_843419)
4255 {
4256 bfd *input_bfd;
4257
4258 for (input_bfd = info->input_bfds;
4259 input_bfd != NULL;
4260 input_bfd = input_bfd->link.next)
4261 {
4262 asection *section;
4263
4264 for (section = input_bfd->sections;
4265 section != NULL;
4266 section = section->next)
4267 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4268 return FALSE;
4269 }
4270
4271 _bfd_aarch64_resize_stubs (htab);
4272 (*htab->layout_sections_again) ();
4273 }
4274
4275 while (1)
4276 {
4277 bfd *input_bfd;
4278
4279 for (input_bfd = info->input_bfds;
4280 input_bfd != NULL; input_bfd = input_bfd->link.next)
4281 {
4282 Elf_Internal_Shdr *symtab_hdr;
4283 asection *section;
4284 Elf_Internal_Sym *local_syms = NULL;
4285
4286 /* We'll need the symbol table in a second. */
4287 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4288 if (symtab_hdr->sh_info == 0)
4289 continue;
4290
4291 /* Walk over each section attached to the input bfd. */
4292 for (section = input_bfd->sections;
4293 section != NULL; section = section->next)
4294 {
4295 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4296
4297 /* If there aren't any relocs, then there's nothing more
4298 to do. */
4299 if ((section->flags & SEC_RELOC) == 0
4300 || section->reloc_count == 0
4301 || (section->flags & SEC_CODE) == 0)
4302 continue;
4303
4304 /* If this section is a link-once section that will be
4305 discarded, then don't create any stubs. */
4306 if (section->output_section == NULL
4307 || section->output_section->owner != output_bfd)
4308 continue;
4309
4310 /* Get the relocs. */
4311 internal_relocs
4312 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4313 NULL, info->keep_memory);
4314 if (internal_relocs == NULL)
4315 goto error_ret_free_local;
4316
4317 /* Now examine each relocation. */
4318 irela = internal_relocs;
4319 irelaend = irela + section->reloc_count;
4320 for (; irela < irelaend; irela++)
4321 {
4322 unsigned int r_type, r_indx;
4323 enum elf_aarch64_stub_type stub_type;
4324 struct elf_aarch64_stub_hash_entry *stub_entry;
4325 asection *sym_sec;
4326 bfd_vma sym_value;
4327 bfd_vma destination;
4328 struct elf_aarch64_link_hash_entry *hash;
4329 const char *sym_name;
4330 char *stub_name;
4331 const asection *id_sec;
4332 unsigned char st_type;
4333 bfd_size_type len;
4334
4335 r_type = ELFNN_R_TYPE (irela->r_info);
4336 r_indx = ELFNN_R_SYM (irela->r_info);
4337
4338 if (r_type >= (unsigned int) R_AARCH64_end)
4339 {
4340 bfd_set_error (bfd_error_bad_value);
4341 error_ret_free_internal:
4342 if (elf_section_data (section)->relocs == NULL)
4343 free (internal_relocs);
4344 goto error_ret_free_local;
4345 }
4346
4347 /* Only look for stubs on unconditional branch and
4348 branch and link instructions. */
4349 if (r_type != (unsigned int) AARCH64_R (CALL26)
4350 && r_type != (unsigned int) AARCH64_R (JUMP26))
4351 continue;
4352
4353 /* Now determine the call target, its name, value,
4354 section. */
4355 sym_sec = NULL;
4356 sym_value = 0;
4357 destination = 0;
4358 hash = NULL;
4359 sym_name = NULL;
4360 if (r_indx < symtab_hdr->sh_info)
4361 {
4362 /* It's a local symbol. */
4363 Elf_Internal_Sym *sym;
4364 Elf_Internal_Shdr *hdr;
4365
4366 if (local_syms == NULL)
4367 {
4368 local_syms
4369 = (Elf_Internal_Sym *) symtab_hdr->contents;
4370 if (local_syms == NULL)
4371 local_syms
4372 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4373 symtab_hdr->sh_info, 0,
4374 NULL, NULL, NULL);
4375 if (local_syms == NULL)
4376 goto error_ret_free_internal;
4377 }
4378
4379 sym = local_syms + r_indx;
4380 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4381 sym_sec = hdr->bfd_section;
4382 if (!sym_sec)
4383 /* This is an undefined symbol. It can never
4384 be resolved. */
4385 continue;
4386
4387 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4388 sym_value = sym->st_value;
4389 destination = (sym_value + irela->r_addend
4390 + sym_sec->output_offset
4391 + sym_sec->output_section->vma);
4392 st_type = ELF_ST_TYPE (sym->st_info);
4393 sym_name
4394 = bfd_elf_string_from_elf_section (input_bfd,
4395 symtab_hdr->sh_link,
4396 sym->st_name);
4397 }
4398 else
4399 {
4400 int e_indx;
4401
4402 e_indx = r_indx - symtab_hdr->sh_info;
4403 hash = ((struct elf_aarch64_link_hash_entry *)
4404 elf_sym_hashes (input_bfd)[e_indx]);
4405
4406 while (hash->root.root.type == bfd_link_hash_indirect
4407 || hash->root.root.type == bfd_link_hash_warning)
4408 hash = ((struct elf_aarch64_link_hash_entry *)
4409 hash->root.root.u.i.link);
4410
4411 if (hash->root.root.type == bfd_link_hash_defined
4412 || hash->root.root.type == bfd_link_hash_defweak)
4413 {
4414 struct elf_aarch64_link_hash_table *globals =
4415 elf_aarch64_hash_table (info);
4416 sym_sec = hash->root.root.u.def.section;
4417 sym_value = hash->root.root.u.def.value;
4418 /* For a destination in a shared library,
4419 use the PLT stub as target address to
4420 decide whether a branch stub is
4421 needed. */
4422 if (globals->root.splt != NULL && hash != NULL
4423 && hash->root.plt.offset != (bfd_vma) - 1)
4424 {
4425 sym_sec = globals->root.splt;
4426 sym_value = hash->root.plt.offset;
4427 if (sym_sec->output_section != NULL)
4428 destination = (sym_value
4429 + sym_sec->output_offset
4430 +
4431 sym_sec->output_section->vma);
4432 }
4433 else if (sym_sec->output_section != NULL)
4434 destination = (sym_value + irela->r_addend
4435 + sym_sec->output_offset
4436 + sym_sec->output_section->vma);
4437 }
4438 else if (hash->root.root.type == bfd_link_hash_undefined
4439 || (hash->root.root.type
4440 == bfd_link_hash_undefweak))
4441 {
4442 /* For a shared library, use the PLT stub as
4443 target address to decide whether a long
4444 branch stub is needed.
4445 For absolute code, they cannot be handled. */
4446 struct elf_aarch64_link_hash_table *globals =
4447 elf_aarch64_hash_table (info);
4448
4449 if (globals->root.splt != NULL && hash != NULL
4450 && hash->root.plt.offset != (bfd_vma) - 1)
4451 {
4452 sym_sec = globals->root.splt;
4453 sym_value = hash->root.plt.offset;
4454 if (sym_sec->output_section != NULL)
4455 destination = (sym_value
4456 + sym_sec->output_offset
4457 +
4458 sym_sec->output_section->vma);
4459 }
4460 else
4461 continue;
4462 }
4463 else
4464 {
4465 bfd_set_error (bfd_error_bad_value);
4466 goto error_ret_free_internal;
4467 }
4468 st_type = ELF_ST_TYPE (hash->root.type);
4469 sym_name = hash->root.root.root.string;
4470 }
4471
4472 /* Determine what (if any) linker stub is needed. */
4473 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4474 st_type, destination);
4475 if (stub_type == aarch64_stub_none)
4476 continue;
4477
4478 /* Support for grouping stub sections. */
4479 id_sec = htab->stub_group[section->id].link_sec;
4480
4481 /* Get the name of this stub. */
4482 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4483 irela);
4484 if (!stub_name)
4485 goto error_ret_free_internal;
4486
4487 stub_entry =
4488 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4489 stub_name, FALSE, FALSE);
4490 if (stub_entry != NULL)
4491 {
4492 /* The proper stub has already been created. */
4493 free (stub_name);
4494 /* Always update this stub's target since it may have
4495 changed after layout. */
4496 stub_entry->target_value = sym_value + irela->r_addend;
4497 continue;
4498 }
4499
4500 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4501 (stub_name, section, htab);
4502 if (stub_entry == NULL)
4503 {
4504 free (stub_name);
4505 goto error_ret_free_internal;
4506 }
4507
4508 stub_entry->target_value = sym_value + irela->r_addend;
4509 stub_entry->target_section = sym_sec;
4510 stub_entry->stub_type = stub_type;
4511 stub_entry->h = hash;
4512 stub_entry->st_type = st_type;
4513
4514 if (sym_name == NULL)
4515 sym_name = "unnamed";
4516 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4517 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4518 if (stub_entry->output_name == NULL)
4519 {
4520 free (stub_name);
4521 goto error_ret_free_internal;
4522 }
4523
4524 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4525 sym_name);
4526
4527 stub_changed = TRUE;
4528 }
4529
4530 /* We're done with the internal relocs, free them. */
4531 if (elf_section_data (section)->relocs == NULL)
4532 free (internal_relocs);
4533 }
4534 }
4535
4536 if (!stub_changed)
4537 break;
4538
4539 _bfd_aarch64_resize_stubs (htab);
4540
4541 /* Ask the linker to do its stuff. */
4542 (*htab->layout_sections_again) ();
4543 stub_changed = FALSE;
4544 }
4545
4546 return TRUE;
4547
4548 error_ret_free_local:
4549 return FALSE;
4550 }
4551
4552 /* Build all the stubs associated with the current output file. The
4553 stubs are kept in a hash table attached to the main linker hash
4554 table. We also set up the .plt entries for statically linked PIC
4555 functions here. This function is called via aarch64_elf_finish in the
4556 linker. */
4557
4558 bfd_boolean
4559 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4560 {
4561 asection *stub_sec;
4562 struct bfd_hash_table *table;
4563 struct elf_aarch64_link_hash_table *htab;
4564
4565 htab = elf_aarch64_hash_table (info);
4566
4567 for (stub_sec = htab->stub_bfd->sections;
4568 stub_sec != NULL; stub_sec = stub_sec->next)
4569 {
4570 bfd_size_type size;
4571
4572 /* Ignore non-stub sections. */
4573 if (!strstr (stub_sec->name, STUB_SUFFIX))
4574 continue;
4575
4576 /* Allocate memory to hold the linker stubs. */
4577 size = stub_sec->size;
4578 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4579 if (stub_sec->contents == NULL && size != 0)
4580 return FALSE;
4581 stub_sec->size = 0;
4582
4583 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4584 aligned, as long branch stubs contain a 64-bit address. */
4585 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4586 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4587 stub_sec->size += 8;
4588 }
4589
4590 /* Build the stubs as directed by the stub hash table. */
4591 table = &htab->stub_hash_table;
4592 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4593
4594 return TRUE;
4595 }
4596
4597
4598 /* Add an entry to the code/data map for section SEC. */
4599
4600 static void
4601 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4602 {
4603 struct _aarch64_elf_section_data *sec_data =
4604 elf_aarch64_section_data (sec);
4605 unsigned int newidx;
4606
4607 if (sec_data->map == NULL)
4608 {
4609 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4610 sec_data->mapcount = 0;
4611 sec_data->mapsize = 1;
4612 }
4613
4614 newidx = sec_data->mapcount++;
4615
4616 if (sec_data->mapcount > sec_data->mapsize)
4617 {
4618 sec_data->mapsize *= 2;
4619 sec_data->map = bfd_realloc_or_free
4620 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4621 }
4622
4623 if (sec_data->map)
4624 {
4625 sec_data->map[newidx].vma = vma;
4626 sec_data->map[newidx].type = type;
4627 }
4628 }
4629
4630
4631 /* Initialise maps of insn/data for input BFDs. */
4632 void
4633 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4634 {
4635 Elf_Internal_Sym *isymbuf;
4636 Elf_Internal_Shdr *hdr;
4637 unsigned int i, localsyms;
4638
4639 /* Make sure that we are dealing with an AArch64 elf binary. */
4640 if (!is_aarch64_elf (abfd))
4641 return;
4642
4643 if ((abfd->flags & DYNAMIC) != 0)
4644 return;
4645
4646 hdr = &elf_symtab_hdr (abfd);
4647 localsyms = hdr->sh_info;
4648
4649 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4650 should contain the number of local symbols, which should come before any
4651 global symbols. Mapping symbols are always local. */
4652 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4653
4654 /* No internal symbols read? Skip this BFD. */
4655 if (isymbuf == NULL)
4656 return;
4657
4658 for (i = 0; i < localsyms; i++)
4659 {
4660 Elf_Internal_Sym *isym = &isymbuf[i];
4661 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4662 const char *name;
4663
4664 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4665 {
4666 name = bfd_elf_string_from_elf_section (abfd,
4667 hdr->sh_link,
4668 isym->st_name);
4669
4670 if (bfd_is_aarch64_special_symbol_name
4671 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4672 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4673 }
4674 }
4675 }
4676
4677 static void
4678 setup_plt_values (struct bfd_link_info *link_info,
4679 aarch64_plt_type plt_type)
4680 {
4681 struct elf_aarch64_link_hash_table *globals;
4682 globals = elf_aarch64_hash_table (link_info);
4683
4684 if (plt_type == PLT_BTI)
4685 {
4686 globals->plt_header_size = PLT_BTI_ENTRY_SIZE;
4687 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4688 globals->tlsdesc_plt_entry_size = PLT_BTI_TLSDESC_ENTRY_SIZE;
4689
4690 /* Only in ET_EXEC we need PLTn with BTI. */
4691 if (bfd_link_pde (link_info))
4692 {
4693 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4694 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4695 }
4696 }
4697 }
4698
4699 /* Set option values needed during linking. */
4700 void
4701 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4702 struct bfd_link_info *link_info,
4703 int no_enum_warn,
4704 int no_wchar_warn, int pic_veneer,
4705 int fix_erratum_835769,
4706 int fix_erratum_843419,
4707 int no_apply_dynamic_relocs,
4708 aarch64_bti_pac_info bp_info)
4709 {
4710 struct elf_aarch64_link_hash_table *globals;
4711
4712 globals = elf_aarch64_hash_table (link_info);
4713 globals->pic_veneer = pic_veneer;
4714 globals->fix_erratum_835769 = fix_erratum_835769;
4715 globals->fix_erratum_843419 = fix_erratum_843419;
4716 globals->fix_erratum_843419_adr = TRUE;
4717 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4718
4719 BFD_ASSERT (is_aarch64_elf (output_bfd));
4720 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4721 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4722
4723 switch (bp_info.bti_type)
4724 {
4725 case BTI_WARN:
4726 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4727 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4728 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4729 break;
4730
4731 default:
4732 break;
4733 }
4734 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4735 setup_plt_values (link_info, bp_info.plt_type);
4736 }
4737
4738 static bfd_vma
4739 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4740 struct elf_aarch64_link_hash_table
4741 *globals, struct bfd_link_info *info,
4742 bfd_vma value, bfd *output_bfd,
4743 bfd_boolean *unresolved_reloc_p)
4744 {
4745 bfd_vma off = (bfd_vma) - 1;
4746 asection *basegot = globals->root.sgot;
4747 bfd_boolean dyn = globals->root.dynamic_sections_created;
4748
4749 if (h != NULL)
4750 {
4751 BFD_ASSERT (basegot != NULL);
4752 off = h->got.offset;
4753 BFD_ASSERT (off != (bfd_vma) - 1);
4754 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4755 || (bfd_link_pic (info)
4756 && SYMBOL_REFERENCES_LOCAL (info, h))
4757 || (ELF_ST_VISIBILITY (h->other)
4758 && h->root.type == bfd_link_hash_undefweak))
4759 {
4760 /* This is actually a static link, or it is a -Bsymbolic link
4761 and the symbol is defined locally. We must initialize this
4762 entry in the global offset table. Since the offset must
4763 always be a multiple of 8 (4 in the case of ILP32), we use
4764 the least significant bit to record whether we have
4765 initialized it already.
4766 When doing a dynamic link, we create a .rel(a).got relocation
4767 entry to initialize the value. This is done in the
4768 finish_dynamic_symbol routine. */
4769 if ((off & 1) != 0)
4770 off &= ~1;
4771 else
4772 {
4773 bfd_put_NN (output_bfd, value, basegot->contents + off);
4774 h->got.offset |= 1;
4775 }
4776 }
4777 else
4778 *unresolved_reloc_p = FALSE;
4779
4780 off = off + basegot->output_section->vma + basegot->output_offset;
4781 }
4782
4783 return off;
4784 }
4785
4786 /* Change R_TYPE to a more efficient access model where possible,
4787 return the new reloc type. */
4788
4789 static bfd_reloc_code_real_type
4790 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4791 struct elf_link_hash_entry *h)
4792 {
4793 bfd_boolean is_local = h == NULL;
4794
4795 switch (r_type)
4796 {
4797 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4798 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4799 return (is_local
4800 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4801 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4802
4803 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4804 return (is_local
4805 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4806 : r_type);
4807
4808 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4809 return (is_local
4810 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4811 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4812
4813 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4814 return (is_local
4815 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4816 : BFD_RELOC_AARCH64_NONE);
4817
4818 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4819 return (is_local
4820 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4821 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4822
4823 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4824 return (is_local
4825 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4826 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4827
4828 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4829 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4830 return (is_local
4831 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4832 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4833
4834 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4835 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4836
4837 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4838 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4839
4840 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4841 return r_type;
4842
4843 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4844 return (is_local
4845 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4846 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4847
4848 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4849 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4850 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4851 /* Instructions with these relocations will become NOPs. */
4852 return BFD_RELOC_AARCH64_NONE;
4853
4854 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4855 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4856 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4857 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4858
4859 #if ARCH_SIZE == 64
4860 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4861 return is_local
4862 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4863 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4864
4865 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4866 return is_local
4867 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4868 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4869 #endif
4870
4871 default:
4872 break;
4873 }
4874
4875 return r_type;
4876 }
4877
4878 static unsigned int
4879 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4880 {
4881 switch (r_type)
4882 {
4883 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4884 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4885 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4886 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4887 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4888 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4889 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4890 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4891 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4892 return GOT_NORMAL;
4893
4894 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4895 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4896 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4897 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4898 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4899 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4900 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4901 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4902 return GOT_TLS_GD;
4903
4904 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4905 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4906 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4907 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4908 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4909 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4910 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4911 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4912 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4913 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4914 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4915 return GOT_TLSDESC_GD;
4916
4917 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4918 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4919 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4920 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4921 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4922 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4923 return GOT_TLS_IE;
4924
4925 default:
4926 break;
4927 }
4928 return GOT_UNKNOWN;
4929 }
4930
4931 static bfd_boolean
4932 aarch64_can_relax_tls (bfd *input_bfd,
4933 struct bfd_link_info *info,
4934 bfd_reloc_code_real_type r_type,
4935 struct elf_link_hash_entry *h,
4936 unsigned long r_symndx)
4937 {
4938 unsigned int symbol_got_type;
4939 unsigned int reloc_got_type;
4940
4941 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4942 return FALSE;
4943
4944 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4945 reloc_got_type = aarch64_reloc_got_type (r_type);
4946
4947 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4948 return TRUE;
4949
4950 if (!bfd_link_executable (info))
4951 return FALSE;
4952
4953 if (h && h->root.type == bfd_link_hash_undefweak)
4954 return FALSE;
4955
4956 return TRUE;
4957 }
4958
4959 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4960 enumerator. */
4961
4962 static bfd_reloc_code_real_type
4963 aarch64_tls_transition (bfd *input_bfd,
4964 struct bfd_link_info *info,
4965 unsigned int r_type,
4966 struct elf_link_hash_entry *h,
4967 unsigned long r_symndx)
4968 {
4969 bfd_reloc_code_real_type bfd_r_type
4970 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
4971
4972 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4973 return bfd_r_type;
4974
4975 return aarch64_tls_transition_without_check (bfd_r_type, h);
4976 }
4977
4978 /* Return the base VMA address which should be subtracted from real addresses
4979 when resolving R_AARCH64_TLS_DTPREL relocation. */
4980
4981 static bfd_vma
4982 dtpoff_base (struct bfd_link_info *info)
4983 {
4984 /* If tls_sec is NULL, we should have signalled an error already. */
4985 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4986 return elf_hash_table (info)->tls_sec->vma;
4987 }
4988
4989 /* Return the base VMA address which should be subtracted from real addresses
4990 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4991
4992 static bfd_vma
4993 tpoff_base (struct bfd_link_info *info)
4994 {
4995 struct elf_link_hash_table *htab = elf_hash_table (info);
4996
4997 /* If tls_sec is NULL, we should have signalled an error already. */
4998 BFD_ASSERT (htab->tls_sec != NULL);
4999
5000 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5001 htab->tls_sec->alignment_power);
5002 return htab->tls_sec->vma - base;
5003 }
5004
5005 static bfd_vma *
5006 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5007 unsigned long r_symndx)
5008 {
5009 /* Calculate the address of the GOT entry for symbol
5010 referred to in h. */
5011 if (h != NULL)
5012 return &h->got.offset;
5013 else
5014 {
5015 /* local symbol */
5016 struct elf_aarch64_local_symbol *l;
5017
5018 l = elf_aarch64_locals (input_bfd);
5019 return &l[r_symndx].got_offset;
5020 }
5021 }
5022
5023 static void
5024 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5025 unsigned long r_symndx)
5026 {
5027 bfd_vma *p;
5028 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5029 *p |= 1;
5030 }
5031
5032 static int
5033 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5034 unsigned long r_symndx)
5035 {
5036 bfd_vma value;
5037 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5038 return value & 1;
5039 }
5040
5041 static bfd_vma
5042 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5043 unsigned long r_symndx)
5044 {
5045 bfd_vma value;
5046 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5047 value &= ~1;
5048 return value;
5049 }
5050
5051 static bfd_vma *
5052 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5053 unsigned long r_symndx)
5054 {
5055 /* Calculate the address of the GOT entry for symbol
5056 referred to in h. */
5057 if (h != NULL)
5058 {
5059 struct elf_aarch64_link_hash_entry *eh;
5060 eh = (struct elf_aarch64_link_hash_entry *) h;
5061 return &eh->tlsdesc_got_jump_table_offset;
5062 }
5063 else
5064 {
5065 /* local symbol */
5066 struct elf_aarch64_local_symbol *l;
5067
5068 l = elf_aarch64_locals (input_bfd);
5069 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5070 }
5071 }
5072
5073 static void
5074 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5075 unsigned long r_symndx)
5076 {
5077 bfd_vma *p;
5078 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5079 *p |= 1;
5080 }
5081
5082 static int
5083 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5084 struct elf_link_hash_entry *h,
5085 unsigned long r_symndx)
5086 {
5087 bfd_vma value;
5088 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5089 return value & 1;
5090 }
5091
5092 static bfd_vma
5093 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5094 unsigned long r_symndx)
5095 {
5096 bfd_vma value;
5097 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5098 value &= ~1;
5099 return value;
5100 }
5101
5102 /* Data for make_branch_to_erratum_835769_stub(). */
5103
5104 struct erratum_835769_branch_to_stub_data
5105 {
5106 struct bfd_link_info *info;
5107 asection *output_section;
5108 bfd_byte *contents;
5109 };
5110
5111 /* Helper to insert branches to erratum 835769 stubs in the right
5112 places for a particular section. */
5113
5114 static bfd_boolean
5115 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5116 void *in_arg)
5117 {
5118 struct elf_aarch64_stub_hash_entry *stub_entry;
5119 struct erratum_835769_branch_to_stub_data *data;
5120 bfd_byte *contents;
5121 unsigned long branch_insn = 0;
5122 bfd_vma veneered_insn_loc, veneer_entry_loc;
5123 bfd_signed_vma branch_offset;
5124 unsigned int target;
5125 bfd *abfd;
5126
5127 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5128 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5129
5130 if (stub_entry->target_section != data->output_section
5131 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5132 return TRUE;
5133
5134 contents = data->contents;
5135 veneered_insn_loc = stub_entry->target_section->output_section->vma
5136 + stub_entry->target_section->output_offset
5137 + stub_entry->target_value;
5138 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5139 + stub_entry->stub_sec->output_offset
5140 + stub_entry->stub_offset;
5141 branch_offset = veneer_entry_loc - veneered_insn_loc;
5142
5143 abfd = stub_entry->target_section->owner;
5144 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5145 _bfd_error_handler
5146 (_("%pB: error: erratum 835769 stub out "
5147 "of range (input file too large)"), abfd);
5148
5149 target = stub_entry->target_value;
5150 branch_insn = 0x14000000;
5151 branch_offset >>= 2;
5152 branch_offset &= 0x3ffffff;
5153 branch_insn |= branch_offset;
5154 bfd_putl32 (branch_insn, &contents[target]);
5155
5156 return TRUE;
5157 }
5158
5159
5160 static bfd_boolean
5161 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5162 void *in_arg)
5163 {
5164 struct elf_aarch64_stub_hash_entry *stub_entry
5165 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5166 struct erratum_835769_branch_to_stub_data *data
5167 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5168 struct bfd_link_info *info;
5169 struct elf_aarch64_link_hash_table *htab;
5170 bfd_byte *contents;
5171 asection *section;
5172 bfd *abfd;
5173 bfd_vma place;
5174 uint32_t insn;
5175
5176 info = data->info;
5177 contents = data->contents;
5178 section = data->output_section;
5179
5180 htab = elf_aarch64_hash_table (info);
5181
5182 if (stub_entry->target_section != section
5183 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5184 return TRUE;
5185
5186 insn = bfd_getl32 (contents + stub_entry->target_value);
5187 bfd_putl32 (insn,
5188 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5189
5190 place = (section->output_section->vma + section->output_offset
5191 + stub_entry->adrp_offset);
5192 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5193
5194 if (!_bfd_aarch64_adrp_p (insn))
5195 abort ();
5196
5197 bfd_signed_vma imm =
5198 (_bfd_aarch64_sign_extend
5199 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5200 - (place & 0xfff));
5201
5202 if (htab->fix_erratum_843419_adr
5203 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5204 {
5205 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5206 | AARCH64_RT (insn));
5207 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5208 }
5209 else
5210 {
5211 bfd_vma veneered_insn_loc;
5212 bfd_vma veneer_entry_loc;
5213 bfd_signed_vma branch_offset;
5214 uint32_t branch_insn;
5215
5216 veneered_insn_loc = stub_entry->target_section->output_section->vma
5217 + stub_entry->target_section->output_offset
5218 + stub_entry->target_value;
5219 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5220 + stub_entry->stub_sec->output_offset
5221 + stub_entry->stub_offset;
5222 branch_offset = veneer_entry_loc - veneered_insn_loc;
5223
5224 abfd = stub_entry->target_section->owner;
5225 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5226 _bfd_error_handler
5227 (_("%pB: error: erratum 843419 stub out "
5228 "of range (input file too large)"), abfd);
5229
5230 branch_insn = 0x14000000;
5231 branch_offset >>= 2;
5232 branch_offset &= 0x3ffffff;
5233 branch_insn |= branch_offset;
5234 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5235 }
5236 return TRUE;
5237 }
5238
5239
5240 static bfd_boolean
5241 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5242 struct bfd_link_info *link_info,
5243 asection *sec,
5244 bfd_byte *contents)
5245
5246 {
5247 struct elf_aarch64_link_hash_table *globals =
5248 elf_aarch64_hash_table (link_info);
5249
5250 if (globals == NULL)
5251 return FALSE;
5252
5253 /* Fix code to point to erratum 835769 stubs. */
5254 if (globals->fix_erratum_835769)
5255 {
5256 struct erratum_835769_branch_to_stub_data data;
5257
5258 data.info = link_info;
5259 data.output_section = sec;
5260 data.contents = contents;
5261 bfd_hash_traverse (&globals->stub_hash_table,
5262 make_branch_to_erratum_835769_stub, &data);
5263 }
5264
5265 if (globals->fix_erratum_843419)
5266 {
5267 struct erratum_835769_branch_to_stub_data data;
5268
5269 data.info = link_info;
5270 data.output_section = sec;
5271 data.contents = contents;
5272 bfd_hash_traverse (&globals->stub_hash_table,
5273 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5274 }
5275
5276 return FALSE;
5277 }
5278
5279 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5280
5281 static bfd_boolean
5282 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5283 {
5284 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5285 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5286 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5287 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5288 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5289 }
5290
5291 /* Perform a relocation as part of a final link. The input relocation type
5292 should be TLS relaxed. */
5293
5294 static bfd_reloc_status_type
5295 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5296 bfd *input_bfd,
5297 bfd *output_bfd,
5298 asection *input_section,
5299 bfd_byte *contents,
5300 Elf_Internal_Rela *rel,
5301 bfd_vma value,
5302 struct bfd_link_info *info,
5303 asection *sym_sec,
5304 struct elf_link_hash_entry *h,
5305 bfd_boolean *unresolved_reloc_p,
5306 bfd_boolean save_addend,
5307 bfd_vma *saved_addend,
5308 Elf_Internal_Sym *sym)
5309 {
5310 Elf_Internal_Shdr *symtab_hdr;
5311 unsigned int r_type = howto->type;
5312 bfd_reloc_code_real_type bfd_r_type
5313 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5314 unsigned long r_symndx;
5315 bfd_byte *hit_data = contents + rel->r_offset;
5316 bfd_vma place, off, got_entry_addr = 0;
5317 bfd_signed_vma signed_addend;
5318 struct elf_aarch64_link_hash_table *globals;
5319 bfd_boolean weak_undef_p;
5320 bfd_boolean relative_reloc;
5321 asection *base_got;
5322 bfd_vma orig_value = value;
5323 bfd_boolean resolved_to_zero;
5324 bfd_boolean abs_symbol_p;
5325
5326 globals = elf_aarch64_hash_table (info);
5327
5328 symtab_hdr = &elf_symtab_hdr (input_bfd);
5329
5330 BFD_ASSERT (is_aarch64_elf (input_bfd));
5331
5332 r_symndx = ELFNN_R_SYM (rel->r_info);
5333
5334 place = input_section->output_section->vma
5335 + input_section->output_offset + rel->r_offset;
5336
5337 /* Get addend, accumulating the addend for consecutive relocs
5338 which refer to the same offset. */
5339 signed_addend = saved_addend ? *saved_addend : 0;
5340 signed_addend += rel->r_addend;
5341
5342 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5343 : bfd_is_und_section (sym_sec));
5344 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5345
5346
5347 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5348 it here if it is defined in a non-shared object. */
5349 if (h != NULL
5350 && h->type == STT_GNU_IFUNC
5351 && h->def_regular)
5352 {
5353 asection *plt;
5354 const char *name;
5355 bfd_vma addend = 0;
5356
5357 if ((input_section->flags & SEC_ALLOC) == 0)
5358 {
5359 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5360 STT_GNU_IFUNC symbol as STT_FUNC. */
5361 if (elf_section_type (input_section) == SHT_NOTE)
5362 goto skip_ifunc;
5363
5364 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5365 sections because such sections are not SEC_ALLOC and
5366 thus ld.so will not process them. */
5367 if ((input_section->flags & SEC_DEBUGGING) != 0)
5368 return bfd_reloc_ok;
5369
5370 if (h->root.root.string)
5371 name = h->root.root.string;
5372 else
5373 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5374 _bfd_error_handler
5375 /* xgettext:c-format */
5376 (_("%pB(%pA+%#" PRIx64 "): "
5377 "unresolvable %s relocation against symbol `%s'"),
5378 input_bfd, input_section, (uint64_t) rel->r_offset,
5379 howto->name, name);
5380 bfd_set_error (bfd_error_bad_value);
5381 return bfd_reloc_notsupported;
5382 }
5383 else if (h->plt.offset == (bfd_vma) -1)
5384 goto bad_ifunc_reloc;
5385
5386 /* STT_GNU_IFUNC symbol must go through PLT. */
5387 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5388 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5389
5390 switch (bfd_r_type)
5391 {
5392 default:
5393 bad_ifunc_reloc:
5394 if (h->root.root.string)
5395 name = h->root.root.string;
5396 else
5397 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5398 NULL);
5399 _bfd_error_handler
5400 /* xgettext:c-format */
5401 (_("%pB: relocation %s against STT_GNU_IFUNC "
5402 "symbol `%s' isn't handled by %s"), input_bfd,
5403 howto->name, name, __FUNCTION__);
5404 bfd_set_error (bfd_error_bad_value);
5405 return bfd_reloc_notsupported;
5406
5407 case BFD_RELOC_AARCH64_NN:
5408 if (rel->r_addend != 0)
5409 {
5410 if (h->root.root.string)
5411 name = h->root.root.string;
5412 else
5413 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5414 sym, NULL);
5415 _bfd_error_handler
5416 /* xgettext:c-format */
5417 (_("%pB: relocation %s against STT_GNU_IFUNC "
5418 "symbol `%s' has non-zero addend: %" PRId64),
5419 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5420 bfd_set_error (bfd_error_bad_value);
5421 return bfd_reloc_notsupported;
5422 }
5423
5424 /* Generate dynamic relocation only when there is a
5425 non-GOT reference in a shared object. */
5426 if (bfd_link_pic (info) && h->non_got_ref)
5427 {
5428 Elf_Internal_Rela outrel;
5429 asection *sreloc;
5430
5431 /* Need a dynamic relocation to get the real function
5432 address. */
5433 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5434 info,
5435 input_section,
5436 rel->r_offset);
5437 if (outrel.r_offset == (bfd_vma) -1
5438 || outrel.r_offset == (bfd_vma) -2)
5439 abort ();
5440
5441 outrel.r_offset += (input_section->output_section->vma
5442 + input_section->output_offset);
5443
5444 if (h->dynindx == -1
5445 || h->forced_local
5446 || bfd_link_executable (info))
5447 {
5448 /* This symbol is resolved locally. */
5449 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5450 outrel.r_addend = (h->root.u.def.value
5451 + h->root.u.def.section->output_section->vma
5452 + h->root.u.def.section->output_offset);
5453 }
5454 else
5455 {
5456 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5457 outrel.r_addend = 0;
5458 }
5459
5460 sreloc = globals->root.irelifunc;
5461 elf_append_rela (output_bfd, sreloc, &outrel);
5462
5463 /* If this reloc is against an external symbol, we
5464 do not want to fiddle with the addend. Otherwise,
5465 we need to include the symbol value so that it
5466 becomes an addend for the dynamic reloc. For an
5467 internal symbol, we have updated addend. */
5468 return bfd_reloc_ok;
5469 }
5470 /* FALLTHROUGH */
5471 case BFD_RELOC_AARCH64_CALL26:
5472 case BFD_RELOC_AARCH64_JUMP26:
5473 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5474 signed_addend,
5475 weak_undef_p);
5476 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5477 howto, value);
5478 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5479 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5480 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5481 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5482 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5483 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5484 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5485 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5486 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5487 base_got = globals->root.sgot;
5488 off = h->got.offset;
5489
5490 if (base_got == NULL)
5491 abort ();
5492
5493 if (off == (bfd_vma) -1)
5494 {
5495 bfd_vma plt_index;
5496
5497 /* We can't use h->got.offset here to save state, or
5498 even just remember the offset, as finish_dynamic_symbol
5499 would use that as offset into .got. */
5500
5501 if (globals->root.splt != NULL)
5502 {
5503 plt_index = ((h->plt.offset - globals->plt_header_size) /
5504 globals->plt_entry_size);
5505 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5506 base_got = globals->root.sgotplt;
5507 }
5508 else
5509 {
5510 plt_index = h->plt.offset / globals->plt_entry_size;
5511 off = plt_index * GOT_ENTRY_SIZE;
5512 base_got = globals->root.igotplt;
5513 }
5514
5515 if (h->dynindx == -1
5516 || h->forced_local
5517 || info->symbolic)
5518 {
5519 /* This references the local definition. We must
5520 initialize this entry in the global offset table.
5521 Since the offset must always be a multiple of 8,
5522 we use the least significant bit to record
5523 whether we have initialized it already.
5524
5525 When doing a dynamic link, we create a .rela.got
5526 relocation entry to initialize the value. This
5527 is done in the finish_dynamic_symbol routine. */
5528 if ((off & 1) != 0)
5529 off &= ~1;
5530 else
5531 {
5532 bfd_put_NN (output_bfd, value,
5533 base_got->contents + off);
5534 /* Note that this is harmless as -1 | 1 still is -1. */
5535 h->got.offset |= 1;
5536 }
5537 }
5538 value = (base_got->output_section->vma
5539 + base_got->output_offset + off);
5540 }
5541 else
5542 value = aarch64_calculate_got_entry_vma (h, globals, info,
5543 value, output_bfd,
5544 unresolved_reloc_p);
5545
5546 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5547 addend = (globals->root.sgot->output_section->vma
5548 + globals->root.sgot->output_offset);
5549
5550 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5551 addend, weak_undef_p);
5552 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5553 case BFD_RELOC_AARCH64_ADD_LO12:
5554 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5555 break;
5556 }
5557 }
5558
5559 skip_ifunc:
5560 resolved_to_zero = (h != NULL
5561 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5562
5563 switch (bfd_r_type)
5564 {
5565 case BFD_RELOC_AARCH64_NONE:
5566 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5567 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5568 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5569 *unresolved_reloc_p = FALSE;
5570 return bfd_reloc_ok;
5571
5572 case BFD_RELOC_AARCH64_NN:
5573
5574 /* When generating a shared object or relocatable executable, these
5575 relocations are copied into the output file to be resolved at
5576 run time. */
5577 if (((bfd_link_pic (info)
5578 || globals->root.is_relocatable_executable)
5579 && (input_section->flags & SEC_ALLOC)
5580 && (h == NULL
5581 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5582 && !resolved_to_zero)
5583 || h->root.type != bfd_link_hash_undefweak))
5584 /* Or we are creating an executable, we may need to keep relocations
5585 for symbols satisfied by a dynamic library if we manage to avoid
5586 copy relocs for the symbol. */
5587 || (ELIMINATE_COPY_RELOCS
5588 && !bfd_link_pic (info)
5589 && h != NULL
5590 && (input_section->flags & SEC_ALLOC)
5591 && h->dynindx != -1
5592 && !h->non_got_ref
5593 && ((h->def_dynamic
5594 && !h->def_regular)
5595 || h->root.type == bfd_link_hash_undefweak
5596 || h->root.type == bfd_link_hash_undefined)))
5597 {
5598 Elf_Internal_Rela outrel;
5599 bfd_byte *loc;
5600 bfd_boolean skip, relocate;
5601 asection *sreloc;
5602
5603 *unresolved_reloc_p = FALSE;
5604
5605 skip = FALSE;
5606 relocate = FALSE;
5607
5608 outrel.r_addend = signed_addend;
5609 outrel.r_offset =
5610 _bfd_elf_section_offset (output_bfd, info, input_section,
5611 rel->r_offset);
5612 if (outrel.r_offset == (bfd_vma) - 1)
5613 skip = TRUE;
5614 else if (outrel.r_offset == (bfd_vma) - 2)
5615 {
5616 skip = TRUE;
5617 relocate = TRUE;
5618 }
5619 else if (abs_symbol_p)
5620 {
5621 /* Local absolute symbol. */
5622 skip = (h->forced_local || (h->dynindx == -1));
5623 relocate = skip;
5624 }
5625
5626 outrel.r_offset += (input_section->output_section->vma
5627 + input_section->output_offset);
5628
5629 if (skip)
5630 memset (&outrel, 0, sizeof outrel);
5631 else if (h != NULL
5632 && h->dynindx != -1
5633 && (!bfd_link_pic (info)
5634 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5635 || !h->def_regular))
5636 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5637 else
5638 {
5639 int symbol;
5640
5641 /* On SVR4-ish systems, the dynamic loader cannot
5642 relocate the text and data segments independently,
5643 so the symbol does not matter. */
5644 symbol = 0;
5645 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5646 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5647 outrel.r_addend += value;
5648 }
5649
5650 sreloc = elf_section_data (input_section)->sreloc;
5651 if (sreloc == NULL || sreloc->contents == NULL)
5652 return bfd_reloc_notsupported;
5653
5654 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5655 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5656
5657 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5658 {
5659 /* Sanity to check that we have previously allocated
5660 sufficient space in the relocation section for the
5661 number of relocations we actually want to emit. */
5662 abort ();
5663 }
5664
5665 /* If this reloc is against an external symbol, we do not want to
5666 fiddle with the addend. Otherwise, we need to include the symbol
5667 value so that it becomes an addend for the dynamic reloc. */
5668 if (!relocate)
5669 return bfd_reloc_ok;
5670
5671 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5672 contents, rel->r_offset, value,
5673 signed_addend);
5674 }
5675 else
5676 value += signed_addend;
5677 break;
5678
5679 case BFD_RELOC_AARCH64_CALL26:
5680 case BFD_RELOC_AARCH64_JUMP26:
5681 {
5682 asection *splt = globals->root.splt;
5683 bfd_boolean via_plt_p =
5684 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5685
5686 /* A call to an undefined weak symbol is converted to a jump to
5687 the next instruction unless a PLT entry will be created.
5688 The jump to the next instruction is optimized as a NOP.
5689 Do the same for local undefined symbols. */
5690 if (weak_undef_p && ! via_plt_p)
5691 {
5692 bfd_putl32 (INSN_NOP, hit_data);
5693 return bfd_reloc_ok;
5694 }
5695
5696 /* If the call goes through a PLT entry, make sure to
5697 check distance to the right destination address. */
5698 if (via_plt_p)
5699 value = (splt->output_section->vma
5700 + splt->output_offset + h->plt.offset);
5701
5702 /* Check if a stub has to be inserted because the destination
5703 is too far away. */
5704 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5705
5706 /* If the branch destination is directed to plt stub, "value" will be
5707 the final destination, otherwise we should plus signed_addend, it may
5708 contain non-zero value, for example call to local function symbol
5709 which are turned into "sec_sym + sec_off", and sec_off is kept in
5710 signed_addend. */
5711 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5712 place))
5713 /* The target is out of reach, so redirect the branch to
5714 the local stub for this function. */
5715 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5716 rel, globals);
5717 if (stub_entry != NULL)
5718 {
5719 value = (stub_entry->stub_offset
5720 + stub_entry->stub_sec->output_offset
5721 + stub_entry->stub_sec->output_section->vma);
5722
5723 /* We have redirected the destination to stub entry address,
5724 so ignore any addend record in the original rela entry. */
5725 signed_addend = 0;
5726 }
5727 }
5728 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5729 signed_addend, weak_undef_p);
5730 *unresolved_reloc_p = FALSE;
5731 break;
5732
5733 case BFD_RELOC_AARCH64_16_PCREL:
5734 case BFD_RELOC_AARCH64_32_PCREL:
5735 case BFD_RELOC_AARCH64_64_PCREL:
5736 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5737 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5738 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5739 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5740 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5741 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5742 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5743 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5744 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5745 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5746 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5747 if (bfd_link_pic (info)
5748 && (input_section->flags & SEC_ALLOC) != 0
5749 && (input_section->flags & SEC_READONLY) != 0
5750 && !SYMBOL_REFERENCES_LOCAL (info, h))
5751 {
5752 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5753
5754 _bfd_error_handler
5755 /* xgettext:c-format */
5756 (_("%pB: relocation %s against symbol `%s' which may bind "
5757 "externally can not be used when making a shared object; "
5758 "recompile with -fPIC"),
5759 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5760 h->root.root.string);
5761 bfd_set_error (bfd_error_bad_value);
5762 return bfd_reloc_notsupported;
5763 }
5764 /* Fall through. */
5765
5766 case BFD_RELOC_AARCH64_16:
5767 #if ARCH_SIZE == 64
5768 case BFD_RELOC_AARCH64_32:
5769 #endif
5770 case BFD_RELOC_AARCH64_ADD_LO12:
5771 case BFD_RELOC_AARCH64_BRANCH19:
5772 case BFD_RELOC_AARCH64_LDST128_LO12:
5773 case BFD_RELOC_AARCH64_LDST16_LO12:
5774 case BFD_RELOC_AARCH64_LDST32_LO12:
5775 case BFD_RELOC_AARCH64_LDST64_LO12:
5776 case BFD_RELOC_AARCH64_LDST8_LO12:
5777 case BFD_RELOC_AARCH64_MOVW_G0:
5778 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5779 case BFD_RELOC_AARCH64_MOVW_G0_S:
5780 case BFD_RELOC_AARCH64_MOVW_G1:
5781 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5782 case BFD_RELOC_AARCH64_MOVW_G1_S:
5783 case BFD_RELOC_AARCH64_MOVW_G2:
5784 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5785 case BFD_RELOC_AARCH64_MOVW_G2_S:
5786 case BFD_RELOC_AARCH64_MOVW_G3:
5787 case BFD_RELOC_AARCH64_TSTBR14:
5788 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5789 signed_addend, weak_undef_p);
5790 break;
5791
5792 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5793 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5794 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5795 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5796 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5797 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5798 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5799 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5800 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5801 if (globals->root.sgot == NULL)
5802 BFD_ASSERT (h != NULL);
5803
5804 relative_reloc = FALSE;
5805 if (h != NULL)
5806 {
5807 bfd_vma addend = 0;
5808
5809 /* If a symbol is not dynamic and is not undefined weak, bind it
5810 locally and generate a RELATIVE relocation under PIC mode.
5811
5812 NOTE: one symbol may be referenced by several relocations, we
5813 should only generate one RELATIVE relocation for that symbol.
5814 Therefore, check GOT offset mark first. */
5815 if (h->dynindx == -1
5816 && !h->forced_local
5817 && h->root.type != bfd_link_hash_undefweak
5818 && bfd_link_pic (info)
5819 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5820 relative_reloc = TRUE;
5821
5822 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5823 output_bfd,
5824 unresolved_reloc_p);
5825 /* Record the GOT entry address which will be used when generating
5826 RELATIVE relocation. */
5827 if (relative_reloc)
5828 got_entry_addr = value;
5829
5830 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5831 addend = (globals->root.sgot->output_section->vma
5832 + globals->root.sgot->output_offset);
5833 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5834 addend, weak_undef_p);
5835 }
5836 else
5837 {
5838 bfd_vma addend = 0;
5839 struct elf_aarch64_local_symbol *locals
5840 = elf_aarch64_locals (input_bfd);
5841
5842 if (locals == NULL)
5843 {
5844 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5845 _bfd_error_handler
5846 /* xgettext:c-format */
5847 (_("%pB: local symbol descriptor table be NULL when applying "
5848 "relocation %s against local symbol"),
5849 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5850 abort ();
5851 }
5852
5853 off = symbol_got_offset (input_bfd, h, r_symndx);
5854 base_got = globals->root.sgot;
5855 got_entry_addr = (base_got->output_section->vma
5856 + base_got->output_offset + off);
5857
5858 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5859 {
5860 bfd_put_64 (output_bfd, value, base_got->contents + off);
5861
5862 /* For local symbol, we have done absolute relocation in static
5863 linking stage. While for shared library, we need to update the
5864 content of GOT entry according to the shared object's runtime
5865 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5866 for dynamic linker. */
5867 if (bfd_link_pic (info))
5868 relative_reloc = TRUE;
5869
5870 symbol_got_offset_mark (input_bfd, h, r_symndx);
5871 }
5872
5873 /* Update the relocation value to GOT entry addr as we have transformed
5874 the direct data access into indirect data access through GOT. */
5875 value = got_entry_addr;
5876
5877 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5878 addend = base_got->output_section->vma + base_got->output_offset;
5879
5880 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5881 addend, weak_undef_p);
5882 }
5883
5884 if (relative_reloc)
5885 {
5886 asection *s;
5887 Elf_Internal_Rela outrel;
5888
5889 s = globals->root.srelgot;
5890 if (s == NULL)
5891 abort ();
5892
5893 outrel.r_offset = got_entry_addr;
5894 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5895 outrel.r_addend = orig_value;
5896 elf_append_rela (output_bfd, s, &outrel);
5897 }
5898 break;
5899
5900 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5901 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5902 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5903 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5904 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5905 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5906 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5907 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5908 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5909 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5910 if (globals->root.sgot == NULL)
5911 return bfd_reloc_notsupported;
5912
5913 value = (symbol_got_offset (input_bfd, h, r_symndx)
5914 + globals->root.sgot->output_section->vma
5915 + globals->root.sgot->output_offset);
5916
5917 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5918 0, weak_undef_p);
5919 *unresolved_reloc_p = FALSE;
5920 break;
5921
5922 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5923 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5924 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5925 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5926 if (globals->root.sgot == NULL)
5927 return bfd_reloc_notsupported;
5928
5929 value = symbol_got_offset (input_bfd, h, r_symndx);
5930 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5931 0, weak_undef_p);
5932 *unresolved_reloc_p = FALSE;
5933 break;
5934
5935 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5936 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5937 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5938 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5939 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5940 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5941 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5942 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5943 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5944 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5945 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5946 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5947 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5948 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5949 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5950 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5951 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5952 signed_addend - dtpoff_base (info),
5953 weak_undef_p);
5954 break;
5955
5956 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5957 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5958 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5959 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
5960 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5961 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
5962 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5963 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
5964 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5965 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
5966 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5967 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5968 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5969 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5970 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5971 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5972 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5973 signed_addend - tpoff_base (info),
5974 weak_undef_p);
5975 *unresolved_reloc_p = FALSE;
5976 break;
5977
5978 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5979 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5980 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5981 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5982 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5983 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5984 if (globals->root.sgot == NULL)
5985 return bfd_reloc_notsupported;
5986 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5987 + globals->root.sgotplt->output_section->vma
5988 + globals->root.sgotplt->output_offset
5989 + globals->sgotplt_jump_table_size);
5990
5991 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5992 0, weak_undef_p);
5993 *unresolved_reloc_p = FALSE;
5994 break;
5995
5996 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5997 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5998 if (globals->root.sgot == NULL)
5999 return bfd_reloc_notsupported;
6000
6001 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6002 + globals->root.sgotplt->output_section->vma
6003 + globals->root.sgotplt->output_offset
6004 + globals->sgotplt_jump_table_size);
6005
6006 value -= (globals->root.sgot->output_section->vma
6007 + globals->root.sgot->output_offset);
6008
6009 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
6010 0, weak_undef_p);
6011 *unresolved_reloc_p = FALSE;
6012 break;
6013
6014 default:
6015 return bfd_reloc_notsupported;
6016 }
6017
6018 if (saved_addend)
6019 *saved_addend = value;
6020
6021 /* Only apply the final relocation in a sequence. */
6022 if (save_addend)
6023 return bfd_reloc_continue;
6024
6025 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6026 howto, value);
6027 }
6028
6029 /* LP64 and ILP32 operates on x- and w-registers respectively.
6030 Next definitions take into account the difference between
6031 corresponding machine codes. R means x-register if the target
6032 arch is LP64, and w-register if the target is ILP32. */
6033
6034 #if ARCH_SIZE == 64
6035 # define add_R0_R0 (0x91000000)
6036 # define add_R0_R0_R1 (0x8b000020)
6037 # define add_R0_R1 (0x91400020)
6038 # define ldr_R0 (0x58000000)
6039 # define ldr_R0_mask(i) (i & 0xffffffe0)
6040 # define ldr_R0_x0 (0xf9400000)
6041 # define ldr_hw_R0 (0xf2a00000)
6042 # define movk_R0 (0xf2800000)
6043 # define movz_R0 (0xd2a00000)
6044 # define movz_hw_R0 (0xd2c00000)
6045 #else /*ARCH_SIZE == 32 */
6046 # define add_R0_R0 (0x11000000)
6047 # define add_R0_R0_R1 (0x0b000020)
6048 # define add_R0_R1 (0x11400020)
6049 # define ldr_R0 (0x18000000)
6050 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6051 # define ldr_R0_x0 (0xb9400000)
6052 # define ldr_hw_R0 (0x72a00000)
6053 # define movk_R0 (0x72800000)
6054 # define movz_R0 (0x52a00000)
6055 # define movz_hw_R0 (0x52c00000)
6056 #endif
6057
6058 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6059 it is used to identify the stub information to reset. */
6060
6061 struct erratum_843419_branch_to_stub_clear_data
6062 {
6063 bfd_vma adrp_offset;
6064 asection *output_section;
6065 };
6066
6067 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6068 section inside IN_ARG matches. The clearing is done by setting the
6069 stub_type to none. */
6070
6071 static bfd_boolean
6072 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6073 void *in_arg)
6074 {
6075 struct elf_aarch64_stub_hash_entry *stub_entry
6076 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6077 struct erratum_843419_branch_to_stub_clear_data *data
6078 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6079
6080 if (stub_entry->target_section != data->output_section
6081 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6082 || stub_entry->adrp_offset != data->adrp_offset)
6083 return TRUE;
6084
6085 /* Change the stub type instead of removing the entry, removing from the hash
6086 table would be slower and we have already reserved the memory for the entry
6087 so there wouldn't be much gain. Changing the stub also keeps around a
6088 record of what was there before. */
6089 stub_entry->stub_type = aarch64_stub_none;
6090
6091 /* We're done and there could have been only one matching stub at that
6092 particular offset, so abort further traversal. */
6093 return FALSE;
6094 }
6095
6096 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6097 sequence. In this case the erratum no longer applies and we need to remove
6098 the entry from the pending stub generation. This clears matching adrp insn
6099 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6100
6101 static void
6102 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6103 bfd_vma adrp_offset, asection *input_section)
6104 {
6105 if (globals->fix_erratum_843419)
6106 {
6107 struct erratum_843419_branch_to_stub_clear_data data;
6108 data.adrp_offset = adrp_offset;
6109 data.output_section = input_section;
6110
6111 bfd_hash_traverse (&globals->stub_hash_table,
6112 _bfd_aarch64_erratum_843419_clear_stub, &data);
6113 }
6114 }
6115
6116 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6117 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6118 link.
6119
6120 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6121 is to then call final_link_relocate. Return other values in the
6122 case of error. */
6123
6124 static bfd_reloc_status_type
6125 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6126 bfd *input_bfd, asection *input_section,
6127 bfd_byte *contents, Elf_Internal_Rela *rel,
6128 struct elf_link_hash_entry *h)
6129 {
6130 bfd_boolean is_local = h == NULL;
6131 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6132 unsigned long insn;
6133
6134 BFD_ASSERT (globals && input_bfd && contents && rel);
6135
6136 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6137 {
6138 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6139 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6140 if (is_local)
6141 {
6142 /* GD->LE relaxation:
6143 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6144 or
6145 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6146
6147 Where R is x for LP64, and w for ILP32. */
6148 bfd_putl32 (movz_R0, contents + rel->r_offset);
6149 /* We have relaxed the adrp into a mov, we may have to clear any
6150 pending erratum fixes. */
6151 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6152 return bfd_reloc_continue;
6153 }
6154 else
6155 {
6156 /* GD->IE relaxation:
6157 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6158 or
6159 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6160 */
6161 return bfd_reloc_continue;
6162 }
6163
6164 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6165 BFD_ASSERT (0);
6166 break;
6167
6168 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6169 if (is_local)
6170 {
6171 /* Tiny TLSDESC->LE relaxation:
6172 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6173 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6174 .tlsdesccall var
6175 blr x1 => nop
6176
6177 Where R is x for LP64, and w for ILP32. */
6178 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6179 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6180
6181 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6182 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6183 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6184
6185 bfd_putl32 (movz_R0, contents + rel->r_offset);
6186 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6187 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6188 return bfd_reloc_continue;
6189 }
6190 else
6191 {
6192 /* Tiny TLSDESC->IE relaxation:
6193 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6194 adr x0, :tlsdesc:var => nop
6195 .tlsdesccall var
6196 blr x1 => nop
6197 */
6198 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6199 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6200
6201 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6202 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6203
6204 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6205 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6206 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6207 return bfd_reloc_continue;
6208 }
6209
6210 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6211 if (is_local)
6212 {
6213 /* Tiny GD->LE relaxation:
6214 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6215 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6216 nop => add R0, R0, #:tprel_lo12_nc:x
6217
6218 Where R is x for LP64, and x for Ilp32. */
6219
6220 /* First kill the tls_get_addr reloc on the bl instruction. */
6221 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6222
6223 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6224 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6225 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6226
6227 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6228 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6229 rel[1].r_offset = rel->r_offset + 8;
6230
6231 /* Move the current relocation to the second instruction in
6232 the sequence. */
6233 rel->r_offset += 4;
6234 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6235 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6236 return bfd_reloc_continue;
6237 }
6238 else
6239 {
6240 /* Tiny GD->IE relaxation:
6241 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6242 bl __tls_get_addr => mrs x1, tpidr_el0
6243 nop => add R0, R0, R1
6244
6245 Where R is x for LP64, and w for Ilp32. */
6246
6247 /* First kill the tls_get_addr reloc on the bl instruction. */
6248 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6249 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6250
6251 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6252 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6253 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6254 return bfd_reloc_continue;
6255 }
6256
6257 #if ARCH_SIZE == 64
6258 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6259 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6260 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6261 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6262
6263 if (is_local)
6264 {
6265 /* Large GD->LE relaxation:
6266 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6267 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6268 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6269 bl __tls_get_addr => mrs x1, tpidr_el0
6270 nop => add x0, x0, x1
6271 */
6272 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6273 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6274 rel[2].r_offset = rel->r_offset + 8;
6275
6276 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6277 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6278 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6279 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6280 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6281 }
6282 else
6283 {
6284 /* Large GD->IE relaxation:
6285 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6286 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6287 add x0, gp, x0 => ldr x0, [gp, x0]
6288 bl __tls_get_addr => mrs x1, tpidr_el0
6289 nop => add x0, x0, x1
6290 */
6291 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6292 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6293 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6294 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6295 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6296 }
6297 return bfd_reloc_continue;
6298
6299 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6300 return bfd_reloc_continue;
6301 #endif
6302
6303 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6304 return bfd_reloc_continue;
6305
6306 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6307 if (is_local)
6308 {
6309 /* GD->LE relaxation:
6310 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6311
6312 Where R is x for lp64 mode, and w for ILP32 mode. */
6313 bfd_putl32 (movk_R0, contents + rel->r_offset);
6314 return bfd_reloc_continue;
6315 }
6316 else
6317 {
6318 /* GD->IE relaxation:
6319 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6320
6321 Where R is x for lp64 mode, and w for ILP32 mode. */
6322 insn = bfd_getl32 (contents + rel->r_offset);
6323 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6324 return bfd_reloc_continue;
6325 }
6326
6327 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6328 if (is_local)
6329 {
6330 /* GD->LE relaxation
6331 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6332 bl __tls_get_addr => mrs x1, tpidr_el0
6333 nop => add R0, R1, R0
6334
6335 Where R is x for lp64 mode, and w for ILP32 mode. */
6336
6337 /* First kill the tls_get_addr reloc on the bl instruction. */
6338 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6339 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6340
6341 bfd_putl32 (movk_R0, contents + rel->r_offset);
6342 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6343 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6344 return bfd_reloc_continue;
6345 }
6346 else
6347 {
6348 /* GD->IE relaxation
6349 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6350 BL __tls_get_addr => mrs x1, tpidr_el0
6351 R_AARCH64_CALL26
6352 NOP => add R0, R1, R0
6353
6354 Where R is x for lp64 mode, and w for ilp32 mode. */
6355
6356 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6357
6358 /* Remove the relocation on the BL instruction. */
6359 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6360
6361 /* We choose to fixup the BL and NOP instructions using the
6362 offset from the second relocation to allow flexibility in
6363 scheduling instructions between the ADD and BL. */
6364 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6365 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6366 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6367 return bfd_reloc_continue;
6368 }
6369
6370 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6371 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6372 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6373 /* GD->IE/LE relaxation:
6374 add x0, x0, #:tlsdesc_lo12:var => nop
6375 blr xd => nop
6376 */
6377 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6378 return bfd_reloc_ok;
6379
6380 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6381 if (is_local)
6382 {
6383 /* GD->LE relaxation:
6384 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6385
6386 Where R is x for lp64 mode, and w for ILP32 mode. */
6387 bfd_putl32 (movk_R0, contents + rel->r_offset);
6388 return bfd_reloc_continue;
6389 }
6390 else
6391 {
6392 /* GD->IE relaxation:
6393 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6394
6395 Where R is x for lp64 mode, and w for ILP32 mode. */
6396 insn = bfd_getl32 (contents + rel->r_offset);
6397 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6398 return bfd_reloc_ok;
6399 }
6400
6401 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6402 /* GD->LE relaxation:
6403 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6404 GD->IE relaxation:
6405 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6406
6407 Where R is x for lp64 mode, and w for ILP32 mode. */
6408 if (is_local)
6409 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6410 return bfd_reloc_continue;
6411
6412 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6413 if (is_local)
6414 {
6415 /* GD->LE relaxation:
6416 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6417
6418 Where R is x for lp64 mode, and w for ILP32 mode. */
6419 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6420 return bfd_reloc_continue;
6421 }
6422 else
6423 {
6424 /* GD->IE relaxation:
6425 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6426
6427 Where R is x for lp64 mode, and w for ILP32 mode. */
6428 insn = bfd_getl32 (contents + rel->r_offset);
6429 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6430 return bfd_reloc_continue;
6431 }
6432
6433 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6434 /* IE->LE relaxation:
6435 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6436
6437 Where R is x for lp64 mode, and w for ILP32 mode. */
6438 if (is_local)
6439 {
6440 insn = bfd_getl32 (contents + rel->r_offset);
6441 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6442 /* We have relaxed the adrp into a mov, we may have to clear any
6443 pending erratum fixes. */
6444 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6445 }
6446 return bfd_reloc_continue;
6447
6448 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6449 /* IE->LE relaxation:
6450 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6451
6452 Where R is x for lp64 mode, and w for ILP32 mode. */
6453 if (is_local)
6454 {
6455 insn = bfd_getl32 (contents + rel->r_offset);
6456 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6457 }
6458 return bfd_reloc_continue;
6459
6460 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6461 /* LD->LE relaxation (tiny):
6462 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6463 bl __tls_get_addr => add R0, R0, TCB_SIZE
6464
6465 Where R is x for lp64 mode, and w for ilp32 mode. */
6466 if (is_local)
6467 {
6468 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6469 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6470 /* No need of CALL26 relocation for tls_get_addr. */
6471 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6472 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6473 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6474 contents + rel->r_offset + 4);
6475 return bfd_reloc_ok;
6476 }
6477 return bfd_reloc_continue;
6478
6479 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6480 /* LD->LE relaxation (small):
6481 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6482 */
6483 if (is_local)
6484 {
6485 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6486 return bfd_reloc_ok;
6487 }
6488 return bfd_reloc_continue;
6489
6490 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6491 /* LD->LE relaxation (small):
6492 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6493 bl __tls_get_addr => nop
6494
6495 Where R is x for lp64 mode, and w for ilp32 mode. */
6496 if (is_local)
6497 {
6498 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6499 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6500 /* No need of CALL26 relocation for tls_get_addr. */
6501 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6502 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6503 contents + rel->r_offset + 0);
6504 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6505 return bfd_reloc_ok;
6506 }
6507 return bfd_reloc_continue;
6508
6509 default:
6510 return bfd_reloc_continue;
6511 }
6512
6513 return bfd_reloc_ok;
6514 }
6515
6516 /* Relocate an AArch64 ELF section. */
6517
6518 static bfd_boolean
6519 elfNN_aarch64_relocate_section (bfd *output_bfd,
6520 struct bfd_link_info *info,
6521 bfd *input_bfd,
6522 asection *input_section,
6523 bfd_byte *contents,
6524 Elf_Internal_Rela *relocs,
6525 Elf_Internal_Sym *local_syms,
6526 asection **local_sections)
6527 {
6528 Elf_Internal_Shdr *symtab_hdr;
6529 struct elf_link_hash_entry **sym_hashes;
6530 Elf_Internal_Rela *rel;
6531 Elf_Internal_Rela *relend;
6532 const char *name;
6533 struct elf_aarch64_link_hash_table *globals;
6534 bfd_boolean save_addend = FALSE;
6535 bfd_vma addend = 0;
6536
6537 globals = elf_aarch64_hash_table (info);
6538
6539 symtab_hdr = &elf_symtab_hdr (input_bfd);
6540 sym_hashes = elf_sym_hashes (input_bfd);
6541
6542 rel = relocs;
6543 relend = relocs + input_section->reloc_count;
6544 for (; rel < relend; rel++)
6545 {
6546 unsigned int r_type;
6547 bfd_reloc_code_real_type bfd_r_type;
6548 bfd_reloc_code_real_type relaxed_bfd_r_type;
6549 reloc_howto_type *howto;
6550 unsigned long r_symndx;
6551 Elf_Internal_Sym *sym;
6552 asection *sec;
6553 struct elf_link_hash_entry *h;
6554 bfd_vma relocation;
6555 bfd_reloc_status_type r;
6556 arelent bfd_reloc;
6557 char sym_type;
6558 bfd_boolean unresolved_reloc = FALSE;
6559 char *error_message = NULL;
6560
6561 r_symndx = ELFNN_R_SYM (rel->r_info);
6562 r_type = ELFNN_R_TYPE (rel->r_info);
6563
6564 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6565 howto = bfd_reloc.howto;
6566
6567 if (howto == NULL)
6568 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6569
6570 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6571
6572 h = NULL;
6573 sym = NULL;
6574 sec = NULL;
6575
6576 if (r_symndx < symtab_hdr->sh_info)
6577 {
6578 sym = local_syms + r_symndx;
6579 sym_type = ELFNN_ST_TYPE (sym->st_info);
6580 sec = local_sections[r_symndx];
6581
6582 /* An object file might have a reference to a local
6583 undefined symbol. This is a daft object file, but we
6584 should at least do something about it. */
6585 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6586 && bfd_is_und_section (sec)
6587 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6588 (*info->callbacks->undefined_symbol)
6589 (info, bfd_elf_string_from_elf_section
6590 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6591 input_bfd, input_section, rel->r_offset, TRUE);
6592
6593 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6594
6595 /* Relocate against local STT_GNU_IFUNC symbol. */
6596 if (!bfd_link_relocatable (info)
6597 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6598 {
6599 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6600 rel, FALSE);
6601 if (h == NULL)
6602 abort ();
6603
6604 /* Set STT_GNU_IFUNC symbol value. */
6605 h->root.u.def.value = sym->st_value;
6606 h->root.u.def.section = sec;
6607 }
6608 }
6609 else
6610 {
6611 bfd_boolean warned, ignored;
6612
6613 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6614 r_symndx, symtab_hdr, sym_hashes,
6615 h, sec, relocation,
6616 unresolved_reloc, warned, ignored);
6617
6618 sym_type = h->type;
6619 }
6620
6621 if (sec != NULL && discarded_section (sec))
6622 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6623 rel, 1, relend, howto, 0, contents);
6624
6625 if (bfd_link_relocatable (info))
6626 continue;
6627
6628 if (h != NULL)
6629 name = h->root.root.string;
6630 else
6631 {
6632 name = (bfd_elf_string_from_elf_section
6633 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6634 if (name == NULL || *name == '\0')
6635 name = bfd_section_name (input_bfd, sec);
6636 }
6637
6638 if (r_symndx != 0
6639 && r_type != R_AARCH64_NONE
6640 && r_type != R_AARCH64_NULL
6641 && (h == NULL
6642 || h->root.type == bfd_link_hash_defined
6643 || h->root.type == bfd_link_hash_defweak)
6644 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6645 {
6646 _bfd_error_handler
6647 ((sym_type == STT_TLS
6648 /* xgettext:c-format */
6649 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6650 /* xgettext:c-format */
6651 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6652 input_bfd,
6653 input_section, (uint64_t) rel->r_offset, howto->name, name);
6654 }
6655
6656 /* We relax only if we can see that there can be a valid transition
6657 from a reloc type to another.
6658 We call elfNN_aarch64_final_link_relocate unless we're completely
6659 done, i.e., the relaxation produced the final output we want. */
6660
6661 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6662 h, r_symndx);
6663 if (relaxed_bfd_r_type != bfd_r_type)
6664 {
6665 bfd_r_type = relaxed_bfd_r_type;
6666 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6667 BFD_ASSERT (howto != NULL);
6668 r_type = howto->type;
6669 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6670 contents, rel, h);
6671 unresolved_reloc = 0;
6672 }
6673 else
6674 r = bfd_reloc_continue;
6675
6676 /* There may be multiple consecutive relocations for the
6677 same offset. In that case we are supposed to treat the
6678 output of each relocation as the addend for the next. */
6679 if (rel + 1 < relend
6680 && rel->r_offset == rel[1].r_offset
6681 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6682 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6683 save_addend = TRUE;
6684 else
6685 save_addend = FALSE;
6686
6687 if (r == bfd_reloc_continue)
6688 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6689 input_section, contents, rel,
6690 relocation, info, sec,
6691 h, &unresolved_reloc,
6692 save_addend, &addend, sym);
6693
6694 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6695 {
6696 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6697 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6698 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6699 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6700 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6701 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6702 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6703 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6704 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6705 {
6706 bfd_boolean need_relocs = FALSE;
6707 bfd_byte *loc;
6708 int indx;
6709 bfd_vma off;
6710
6711 off = symbol_got_offset (input_bfd, h, r_symndx);
6712 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6713
6714 need_relocs =
6715 (!bfd_link_executable (info) || indx != 0) &&
6716 (h == NULL
6717 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6718 || h->root.type != bfd_link_hash_undefweak);
6719
6720 BFD_ASSERT (globals->root.srelgot != NULL);
6721
6722 if (need_relocs)
6723 {
6724 Elf_Internal_Rela rela;
6725 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6726 rela.r_addend = 0;
6727 rela.r_offset = globals->root.sgot->output_section->vma +
6728 globals->root.sgot->output_offset + off;
6729
6730
6731 loc = globals->root.srelgot->contents;
6732 loc += globals->root.srelgot->reloc_count++
6733 * RELOC_SIZE (htab);
6734 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6735
6736 bfd_reloc_code_real_type real_type =
6737 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6738
6739 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6740 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6741 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6742 {
6743 /* For local dynamic, don't generate DTPREL in any case.
6744 Initialize the DTPREL slot into zero, so we get module
6745 base address when invoke runtime TLS resolver. */
6746 bfd_put_NN (output_bfd, 0,
6747 globals->root.sgot->contents + off
6748 + GOT_ENTRY_SIZE);
6749 }
6750 else if (indx == 0)
6751 {
6752 bfd_put_NN (output_bfd,
6753 relocation - dtpoff_base (info),
6754 globals->root.sgot->contents + off
6755 + GOT_ENTRY_SIZE);
6756 }
6757 else
6758 {
6759 /* This TLS symbol is global. We emit a
6760 relocation to fixup the tls offset at load
6761 time. */
6762 rela.r_info =
6763 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6764 rela.r_addend = 0;
6765 rela.r_offset =
6766 (globals->root.sgot->output_section->vma
6767 + globals->root.sgot->output_offset + off
6768 + GOT_ENTRY_SIZE);
6769
6770 loc = globals->root.srelgot->contents;
6771 loc += globals->root.srelgot->reloc_count++
6772 * RELOC_SIZE (globals);
6773 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6774 bfd_put_NN (output_bfd, (bfd_vma) 0,
6775 globals->root.sgot->contents + off
6776 + GOT_ENTRY_SIZE);
6777 }
6778 }
6779 else
6780 {
6781 bfd_put_NN (output_bfd, (bfd_vma) 1,
6782 globals->root.sgot->contents + off);
6783 bfd_put_NN (output_bfd,
6784 relocation - dtpoff_base (info),
6785 globals->root.sgot->contents + off
6786 + GOT_ENTRY_SIZE);
6787 }
6788
6789 symbol_got_offset_mark (input_bfd, h, r_symndx);
6790 }
6791 break;
6792
6793 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6794 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6795 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6796 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6797 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6798 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6799 {
6800 bfd_boolean need_relocs = FALSE;
6801 bfd_byte *loc;
6802 int indx;
6803 bfd_vma off;
6804
6805 off = symbol_got_offset (input_bfd, h, r_symndx);
6806
6807 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6808
6809 need_relocs =
6810 (!bfd_link_executable (info) || indx != 0) &&
6811 (h == NULL
6812 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6813 || h->root.type != bfd_link_hash_undefweak);
6814
6815 BFD_ASSERT (globals->root.srelgot != NULL);
6816
6817 if (need_relocs)
6818 {
6819 Elf_Internal_Rela rela;
6820
6821 if (indx == 0)
6822 rela.r_addend = relocation - dtpoff_base (info);
6823 else
6824 rela.r_addend = 0;
6825
6826 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6827 rela.r_offset = globals->root.sgot->output_section->vma +
6828 globals->root.sgot->output_offset + off;
6829
6830 loc = globals->root.srelgot->contents;
6831 loc += globals->root.srelgot->reloc_count++
6832 * RELOC_SIZE (htab);
6833
6834 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6835
6836 bfd_put_NN (output_bfd, rela.r_addend,
6837 globals->root.sgot->contents + off);
6838 }
6839 else
6840 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6841 globals->root.sgot->contents + off);
6842
6843 symbol_got_offset_mark (input_bfd, h, r_symndx);
6844 }
6845 break;
6846
6847 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6848 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6849 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6850 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6851 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6852 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6853 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6854 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6855 {
6856 bfd_boolean need_relocs = FALSE;
6857 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6858 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6859
6860 need_relocs = (h == NULL
6861 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6862 || h->root.type != bfd_link_hash_undefweak);
6863
6864 BFD_ASSERT (globals->root.srelgot != NULL);
6865 BFD_ASSERT (globals->root.sgot != NULL);
6866
6867 if (need_relocs)
6868 {
6869 bfd_byte *loc;
6870 Elf_Internal_Rela rela;
6871 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6872
6873 rela.r_addend = 0;
6874 rela.r_offset = (globals->root.sgotplt->output_section->vma
6875 + globals->root.sgotplt->output_offset
6876 + off + globals->sgotplt_jump_table_size);
6877
6878 if (indx == 0)
6879 rela.r_addend = relocation - dtpoff_base (info);
6880
6881 /* Allocate the next available slot in the PLT reloc
6882 section to hold our R_AARCH64_TLSDESC, the next
6883 available slot is determined from reloc_count,
6884 which we step. But note, reloc_count was
6885 artifically moved down while allocating slots for
6886 real PLT relocs such that all of the PLT relocs
6887 will fit above the initial reloc_count and the
6888 extra stuff will fit below. */
6889 loc = globals->root.srelplt->contents;
6890 loc += globals->root.srelplt->reloc_count++
6891 * RELOC_SIZE (globals);
6892
6893 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6894
6895 bfd_put_NN (output_bfd, (bfd_vma) 0,
6896 globals->root.sgotplt->contents + off +
6897 globals->sgotplt_jump_table_size);
6898 bfd_put_NN (output_bfd, (bfd_vma) 0,
6899 globals->root.sgotplt->contents + off +
6900 globals->sgotplt_jump_table_size +
6901 GOT_ENTRY_SIZE);
6902 }
6903
6904 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6905 }
6906 break;
6907 default:
6908 break;
6909 }
6910
6911 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6912 because such sections are not SEC_ALLOC and thus ld.so will
6913 not process them. */
6914 if (unresolved_reloc
6915 && !((input_section->flags & SEC_DEBUGGING) != 0
6916 && h->def_dynamic)
6917 && _bfd_elf_section_offset (output_bfd, info, input_section,
6918 +rel->r_offset) != (bfd_vma) - 1)
6919 {
6920 _bfd_error_handler
6921 /* xgettext:c-format */
6922 (_("%pB(%pA+%#" PRIx64 "): "
6923 "unresolvable %s relocation against symbol `%s'"),
6924 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
6925 h->root.root.string);
6926 return FALSE;
6927 }
6928
6929 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6930 {
6931 bfd_reloc_code_real_type real_r_type
6932 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6933
6934 switch (r)
6935 {
6936 case bfd_reloc_overflow:
6937 (*info->callbacks->reloc_overflow)
6938 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6939 input_bfd, input_section, rel->r_offset);
6940 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6941 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6942 {
6943 (*info->callbacks->warning)
6944 (info,
6945 _("too many GOT entries for -fpic, "
6946 "please recompile with -fPIC"),
6947 name, input_bfd, input_section, rel->r_offset);
6948 return FALSE;
6949 }
6950 /* Overflow can occur when a variable is referenced with a type
6951 that has a larger alignment than the type with which it was
6952 declared. eg:
6953 file1.c: extern int foo; int a (void) { return foo; }
6954 file2.c: char bar, foo, baz;
6955 If the variable is placed into a data section at an offset
6956 that is incompatible with the larger alignment requirement
6957 overflow will occur. (Strictly speaking this is not overflow
6958 but rather an alignment problem, but the bfd_reloc_ error
6959 enum does not have a value to cover that situation).
6960
6961 Try to catch this situation here and provide a more helpful
6962 error message to the user. */
6963 if (addend & ((1 << howto->rightshift) - 1)
6964 /* FIXME: Are we testing all of the appropriate reloc
6965 types here ? */
6966 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6967 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6968 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6969 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6970 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6971 {
6972 info->callbacks->warning
6973 (info, _("one possible cause of this error is that the \
6974 symbol is being referenced in the indicated code as if it had a larger \
6975 alignment than was declared where it was defined"),
6976 name, input_bfd, input_section, rel->r_offset);
6977 }
6978 break;
6979
6980 case bfd_reloc_undefined:
6981 (*info->callbacks->undefined_symbol)
6982 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6983 break;
6984
6985 case bfd_reloc_outofrange:
6986 error_message = _("out of range");
6987 goto common_error;
6988
6989 case bfd_reloc_notsupported:
6990 error_message = _("unsupported relocation");
6991 goto common_error;
6992
6993 case bfd_reloc_dangerous:
6994 /* error_message should already be set. */
6995 goto common_error;
6996
6997 default:
6998 error_message = _("unknown error");
6999 /* Fall through. */
7000
7001 common_error:
7002 BFD_ASSERT (error_message != NULL);
7003 (*info->callbacks->reloc_dangerous)
7004 (info, error_message, input_bfd, input_section, rel->r_offset);
7005 break;
7006 }
7007 }
7008
7009 if (!save_addend)
7010 addend = 0;
7011 }
7012
7013 return TRUE;
7014 }
7015
7016 /* Set the right machine number. */
7017
7018 static bfd_boolean
7019 elfNN_aarch64_object_p (bfd *abfd)
7020 {
7021 #if ARCH_SIZE == 32
7022 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7023 #else
7024 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7025 #endif
7026 return TRUE;
7027 }
7028
7029 /* Function to keep AArch64 specific flags in the ELF header. */
7030
7031 static bfd_boolean
7032 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7033 {
7034 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7035 {
7036 }
7037 else
7038 {
7039 elf_elfheader (abfd)->e_flags = flags;
7040 elf_flags_init (abfd) = TRUE;
7041 }
7042
7043 return TRUE;
7044 }
7045
7046 /* Merge backend specific data from an object file to the output
7047 object file when linking. */
7048
7049 static bfd_boolean
7050 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7051 {
7052 bfd *obfd = info->output_bfd;
7053 flagword out_flags;
7054 flagword in_flags;
7055 bfd_boolean flags_compatible = TRUE;
7056 asection *sec;
7057
7058 /* Check if we have the same endianess. */
7059 if (!_bfd_generic_verify_endian_match (ibfd, info))
7060 return FALSE;
7061
7062 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7063 return TRUE;
7064
7065 /* The input BFD must have had its flags initialised. */
7066 /* The following seems bogus to me -- The flags are initialized in
7067 the assembler but I don't think an elf_flags_init field is
7068 written into the object. */
7069 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7070
7071 in_flags = elf_elfheader (ibfd)->e_flags;
7072 out_flags = elf_elfheader (obfd)->e_flags;
7073
7074 if (!elf_flags_init (obfd))
7075 {
7076 /* If the input is the default architecture and had the default
7077 flags then do not bother setting the flags for the output
7078 architecture, instead allow future merges to do this. If no
7079 future merges ever set these flags then they will retain their
7080 uninitialised values, which surprise surprise, correspond
7081 to the default values. */
7082 if (bfd_get_arch_info (ibfd)->the_default
7083 && elf_elfheader (ibfd)->e_flags == 0)
7084 return TRUE;
7085
7086 elf_flags_init (obfd) = TRUE;
7087 elf_elfheader (obfd)->e_flags = in_flags;
7088
7089 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7090 && bfd_get_arch_info (obfd)->the_default)
7091 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7092 bfd_get_mach (ibfd));
7093
7094 return TRUE;
7095 }
7096
7097 /* Identical flags must be compatible. */
7098 if (in_flags == out_flags)
7099 return TRUE;
7100
7101 /* Check to see if the input BFD actually contains any sections. If
7102 not, its flags may not have been initialised either, but it
7103 cannot actually cause any incompatiblity. Do not short-circuit
7104 dynamic objects; their section list may be emptied by
7105 elf_link_add_object_symbols.
7106
7107 Also check to see if there are no code sections in the input.
7108 In this case there is no need to check for code specific flags.
7109 XXX - do we need to worry about floating-point format compatability
7110 in data sections ? */
7111 if (!(ibfd->flags & DYNAMIC))
7112 {
7113 bfd_boolean null_input_bfd = TRUE;
7114 bfd_boolean only_data_sections = TRUE;
7115
7116 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7117 {
7118 if ((bfd_get_section_flags (ibfd, sec)
7119 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7120 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7121 only_data_sections = FALSE;
7122
7123 null_input_bfd = FALSE;
7124 break;
7125 }
7126
7127 if (null_input_bfd || only_data_sections)
7128 return TRUE;
7129 }
7130
7131 return flags_compatible;
7132 }
7133
7134 /* Display the flags field. */
7135
7136 static bfd_boolean
7137 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7138 {
7139 FILE *file = (FILE *) ptr;
7140 unsigned long flags;
7141
7142 BFD_ASSERT (abfd != NULL && ptr != NULL);
7143
7144 /* Print normal ELF private data. */
7145 _bfd_elf_print_private_bfd_data (abfd, ptr);
7146
7147 flags = elf_elfheader (abfd)->e_flags;
7148 /* Ignore init flag - it may not be set, despite the flags field
7149 containing valid data. */
7150
7151 /* xgettext:c-format */
7152 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7153
7154 if (flags)
7155 fprintf (file, _("<Unrecognised flag bits set>"));
7156
7157 fputc ('\n', file);
7158
7159 return TRUE;
7160 }
7161
7162 /* Find dynamic relocs for H that apply to read-only sections. */
7163
7164 static asection *
7165 readonly_dynrelocs (struct elf_link_hash_entry *h)
7166 {
7167 struct elf_dyn_relocs *p;
7168
7169 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7170 {
7171 asection *s = p->sec->output_section;
7172
7173 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7174 return p->sec;
7175 }
7176 return NULL;
7177 }
7178
7179 /* Return true if we need copy relocation against EH. */
7180
7181 static bfd_boolean
7182 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7183 {
7184 struct elf_dyn_relocs *p;
7185 asection *s;
7186
7187 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7188 {
7189 /* If there is any pc-relative reference, we need to keep copy relocation
7190 to avoid propagating the relocation into runtime that current glibc
7191 does not support. */
7192 if (p->pc_count)
7193 return TRUE;
7194
7195 s = p->sec->output_section;
7196 /* Need copy relocation if it's against read-only section. */
7197 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7198 return TRUE;
7199 }
7200
7201 return FALSE;
7202 }
7203
7204 /* Adjust a symbol defined by a dynamic object and referenced by a
7205 regular object. The current definition is in some section of the
7206 dynamic object, but we're not including those sections. We have to
7207 change the definition to something the rest of the link can
7208 understand. */
7209
7210 static bfd_boolean
7211 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7212 struct elf_link_hash_entry *h)
7213 {
7214 struct elf_aarch64_link_hash_table *htab;
7215 asection *s, *srel;
7216
7217 /* If this is a function, put it in the procedure linkage table. We
7218 will fill in the contents of the procedure linkage table later,
7219 when we know the address of the .got section. */
7220 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7221 {
7222 if (h->plt.refcount <= 0
7223 || (h->type != STT_GNU_IFUNC
7224 && (SYMBOL_CALLS_LOCAL (info, h)
7225 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7226 && h->root.type == bfd_link_hash_undefweak))))
7227 {
7228 /* This case can occur if we saw a CALL26 reloc in
7229 an input file, but the symbol wasn't referred to
7230 by a dynamic object or all references were
7231 garbage collected. In which case we can end up
7232 resolving. */
7233 h->plt.offset = (bfd_vma) - 1;
7234 h->needs_plt = 0;
7235 }
7236
7237 return TRUE;
7238 }
7239 else
7240 /* Otherwise, reset to -1. */
7241 h->plt.offset = (bfd_vma) - 1;
7242
7243
7244 /* If this is a weak symbol, and there is a real definition, the
7245 processor independent code will have arranged for us to see the
7246 real definition first, and we can just use the same value. */
7247 if (h->is_weakalias)
7248 {
7249 struct elf_link_hash_entry *def = weakdef (h);
7250 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7251 h->root.u.def.section = def->root.u.def.section;
7252 h->root.u.def.value = def->root.u.def.value;
7253 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7254 h->non_got_ref = def->non_got_ref;
7255 return TRUE;
7256 }
7257
7258 /* If we are creating a shared library, we must presume that the
7259 only references to the symbol are via the global offset table.
7260 For such cases we need not do anything here; the relocations will
7261 be handled correctly by relocate_section. */
7262 if (bfd_link_pic (info))
7263 return TRUE;
7264
7265 /* If there are no references to this symbol that do not use the
7266 GOT, we don't need to generate a copy reloc. */
7267 if (!h->non_got_ref)
7268 return TRUE;
7269
7270 /* If -z nocopyreloc was given, we won't generate them either. */
7271 if (info->nocopyreloc)
7272 {
7273 h->non_got_ref = 0;
7274 return TRUE;
7275 }
7276
7277 if (ELIMINATE_COPY_RELOCS)
7278 {
7279 struct elf_aarch64_link_hash_entry *eh;
7280 /* If we don't find any dynamic relocs in read-only sections, then
7281 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7282 eh = (struct elf_aarch64_link_hash_entry *) h;
7283 if (!need_copy_relocation_p (eh))
7284 {
7285 h->non_got_ref = 0;
7286 return TRUE;
7287 }
7288 }
7289
7290 /* We must allocate the symbol in our .dynbss section, which will
7291 become part of the .bss section of the executable. There will be
7292 an entry for this symbol in the .dynsym section. The dynamic
7293 object will contain position independent code, so all references
7294 from the dynamic object to this symbol will go through the global
7295 offset table. The dynamic linker will use the .dynsym entry to
7296 determine the address it must put in the global offset table, so
7297 both the dynamic object and the regular object will refer to the
7298 same memory location for the variable. */
7299
7300 htab = elf_aarch64_hash_table (info);
7301
7302 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7303 to copy the initial value out of the dynamic object and into the
7304 runtime process image. */
7305 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7306 {
7307 s = htab->root.sdynrelro;
7308 srel = htab->root.sreldynrelro;
7309 }
7310 else
7311 {
7312 s = htab->root.sdynbss;
7313 srel = htab->root.srelbss;
7314 }
7315 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7316 {
7317 srel->size += RELOC_SIZE (htab);
7318 h->needs_copy = 1;
7319 }
7320
7321 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7322
7323 }
7324
7325 static bfd_boolean
7326 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7327 {
7328 struct elf_aarch64_local_symbol *locals;
7329 locals = elf_aarch64_locals (abfd);
7330 if (locals == NULL)
7331 {
7332 locals = (struct elf_aarch64_local_symbol *)
7333 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7334 if (locals == NULL)
7335 return FALSE;
7336 elf_aarch64_locals (abfd) = locals;
7337 }
7338 return TRUE;
7339 }
7340
7341 /* Create the .got section to hold the global offset table. */
7342
7343 static bfd_boolean
7344 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7345 {
7346 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7347 flagword flags;
7348 asection *s;
7349 struct elf_link_hash_entry *h;
7350 struct elf_link_hash_table *htab = elf_hash_table (info);
7351
7352 /* This function may be called more than once. */
7353 if (htab->sgot != NULL)
7354 return TRUE;
7355
7356 flags = bed->dynamic_sec_flags;
7357
7358 s = bfd_make_section_anyway_with_flags (abfd,
7359 (bed->rela_plts_and_copies_p
7360 ? ".rela.got" : ".rel.got"),
7361 (bed->dynamic_sec_flags
7362 | SEC_READONLY));
7363 if (s == NULL
7364 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7365 return FALSE;
7366 htab->srelgot = s;
7367
7368 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7369 if (s == NULL
7370 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7371 return FALSE;
7372 htab->sgot = s;
7373 htab->sgot->size += GOT_ENTRY_SIZE;
7374
7375 if (bed->want_got_sym)
7376 {
7377 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7378 (or .got.plt) section. We don't do this in the linker script
7379 because we don't want to define the symbol if we are not creating
7380 a global offset table. */
7381 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7382 "_GLOBAL_OFFSET_TABLE_");
7383 elf_hash_table (info)->hgot = h;
7384 if (h == NULL)
7385 return FALSE;
7386 }
7387
7388 if (bed->want_got_plt)
7389 {
7390 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7391 if (s == NULL
7392 || !bfd_set_section_alignment (abfd, s,
7393 bed->s->log_file_align))
7394 return FALSE;
7395 htab->sgotplt = s;
7396 }
7397
7398 /* The first bit of the global offset table is the header. */
7399 s->size += bed->got_header_size;
7400
7401 return TRUE;
7402 }
7403
7404 /* Look through the relocs for a section during the first phase. */
7405
7406 static bfd_boolean
7407 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7408 asection *sec, const Elf_Internal_Rela *relocs)
7409 {
7410 Elf_Internal_Shdr *symtab_hdr;
7411 struct elf_link_hash_entry **sym_hashes;
7412 const Elf_Internal_Rela *rel;
7413 const Elf_Internal_Rela *rel_end;
7414 asection *sreloc;
7415
7416 struct elf_aarch64_link_hash_table *htab;
7417
7418 if (bfd_link_relocatable (info))
7419 return TRUE;
7420
7421 BFD_ASSERT (is_aarch64_elf (abfd));
7422
7423 htab = elf_aarch64_hash_table (info);
7424 sreloc = NULL;
7425
7426 symtab_hdr = &elf_symtab_hdr (abfd);
7427 sym_hashes = elf_sym_hashes (abfd);
7428
7429 rel_end = relocs + sec->reloc_count;
7430 for (rel = relocs; rel < rel_end; rel++)
7431 {
7432 struct elf_link_hash_entry *h;
7433 unsigned int r_symndx;
7434 unsigned int r_type;
7435 bfd_reloc_code_real_type bfd_r_type;
7436 Elf_Internal_Sym *isym;
7437
7438 r_symndx = ELFNN_R_SYM (rel->r_info);
7439 r_type = ELFNN_R_TYPE (rel->r_info);
7440
7441 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7442 {
7443 /* xgettext:c-format */
7444 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7445 return FALSE;
7446 }
7447
7448 if (r_symndx < symtab_hdr->sh_info)
7449 {
7450 /* A local symbol. */
7451 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7452 abfd, r_symndx);
7453 if (isym == NULL)
7454 return FALSE;
7455
7456 /* Check relocation against local STT_GNU_IFUNC symbol. */
7457 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7458 {
7459 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7460 TRUE);
7461 if (h == NULL)
7462 return FALSE;
7463
7464 /* Fake a STT_GNU_IFUNC symbol. */
7465 h->type = STT_GNU_IFUNC;
7466 h->def_regular = 1;
7467 h->ref_regular = 1;
7468 h->forced_local = 1;
7469 h->root.type = bfd_link_hash_defined;
7470 }
7471 else
7472 h = NULL;
7473 }
7474 else
7475 {
7476 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7477 while (h->root.type == bfd_link_hash_indirect
7478 || h->root.type == bfd_link_hash_warning)
7479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7480 }
7481
7482 /* Could be done earlier, if h were already available. */
7483 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7484
7485 if (h != NULL)
7486 {
7487 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7488 This shows up in particular in an R_AARCH64_PREL64 in large model
7489 when calculating the pc-relative address to .got section which is
7490 used to initialize the gp register. */
7491 if (h->root.root.string
7492 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7493 {
7494 if (htab->root.dynobj == NULL)
7495 htab->root.dynobj = abfd;
7496
7497 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7498 return FALSE;
7499
7500 BFD_ASSERT (h == htab->root.hgot);
7501 }
7502
7503 /* Create the ifunc sections for static executables. If we
7504 never see an indirect function symbol nor we are building
7505 a static executable, those sections will be empty and
7506 won't appear in output. */
7507 switch (bfd_r_type)
7508 {
7509 default:
7510 break;
7511
7512 case BFD_RELOC_AARCH64_ADD_LO12:
7513 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7514 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7515 case BFD_RELOC_AARCH64_CALL26:
7516 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7517 case BFD_RELOC_AARCH64_JUMP26:
7518 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7519 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7520 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7521 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7522 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7523 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7524 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7525 case BFD_RELOC_AARCH64_NN:
7526 if (htab->root.dynobj == NULL)
7527 htab->root.dynobj = abfd;
7528 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7529 return FALSE;
7530 break;
7531 }
7532
7533 /* It is referenced by a non-shared object. */
7534 h->ref_regular = 1;
7535 }
7536
7537 switch (bfd_r_type)
7538 {
7539 case BFD_RELOC_AARCH64_16:
7540 #if ARCH_SIZE == 64
7541 case BFD_RELOC_AARCH64_32:
7542 #endif
7543 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7544 {
7545 if (h != NULL
7546 /* This is an absolute symbol. It represents a value instead
7547 of an address. */
7548 && (bfd_is_abs_symbol (&h->root)
7549 /* This is an undefined symbol. */
7550 || h->root.type == bfd_link_hash_undefined))
7551 break;
7552
7553 /* For local symbols, defined global symbols in a non-ABS section,
7554 it is assumed that the value is an address. */
7555 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7556 _bfd_error_handler
7557 /* xgettext:c-format */
7558 (_("%pB: relocation %s against `%s' can not be used when making "
7559 "a shared object"),
7560 abfd, elfNN_aarch64_howto_table[howto_index].name,
7561 (h) ? h->root.root.string : "a local symbol");
7562 bfd_set_error (bfd_error_bad_value);
7563 return FALSE;
7564 }
7565 else
7566 break;
7567
7568 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7569 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7570 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7571 case BFD_RELOC_AARCH64_MOVW_G3:
7572 if (bfd_link_pic (info))
7573 {
7574 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7575 _bfd_error_handler
7576 /* xgettext:c-format */
7577 (_("%pB: relocation %s against `%s' can not be used when making "
7578 "a shared object; recompile with -fPIC"),
7579 abfd, elfNN_aarch64_howto_table[howto_index].name,
7580 (h) ? h->root.root.string : "a local symbol");
7581 bfd_set_error (bfd_error_bad_value);
7582 return FALSE;
7583 }
7584 /* Fall through. */
7585
7586 case BFD_RELOC_AARCH64_16_PCREL:
7587 case BFD_RELOC_AARCH64_32_PCREL:
7588 case BFD_RELOC_AARCH64_64_PCREL:
7589 case BFD_RELOC_AARCH64_ADD_LO12:
7590 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7591 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7592 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7593 case BFD_RELOC_AARCH64_LDST128_LO12:
7594 case BFD_RELOC_AARCH64_LDST16_LO12:
7595 case BFD_RELOC_AARCH64_LDST32_LO12:
7596 case BFD_RELOC_AARCH64_LDST64_LO12:
7597 case BFD_RELOC_AARCH64_LDST8_LO12:
7598 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7599 if (h == NULL || bfd_link_pic (info))
7600 break;
7601 /* Fall through. */
7602
7603 case BFD_RELOC_AARCH64_NN:
7604
7605 /* We don't need to handle relocs into sections not going into
7606 the "real" output. */
7607 if ((sec->flags & SEC_ALLOC) == 0)
7608 break;
7609
7610 if (h != NULL)
7611 {
7612 if (!bfd_link_pic (info))
7613 h->non_got_ref = 1;
7614
7615 h->plt.refcount += 1;
7616 h->pointer_equality_needed = 1;
7617 }
7618
7619 /* No need to do anything if we're not creating a shared
7620 object. */
7621 if (!(bfd_link_pic (info)
7622 /* If on the other hand, we are creating an executable, we
7623 may need to keep relocations for symbols satisfied by a
7624 dynamic library if we manage to avoid copy relocs for the
7625 symbol.
7626
7627 NOTE: Currently, there is no support of copy relocs
7628 elimination on pc-relative relocation types, because there is
7629 no dynamic relocation support for them in glibc. We still
7630 record the dynamic symbol reference for them. This is
7631 because one symbol may be referenced by both absolute
7632 relocation (for example, BFD_RELOC_AARCH64_NN) and
7633 pc-relative relocation. We need full symbol reference
7634 information to make correct decision later in
7635 elfNN_aarch64_adjust_dynamic_symbol. */
7636 || (ELIMINATE_COPY_RELOCS
7637 && !bfd_link_pic (info)
7638 && h != NULL
7639 && (h->root.type == bfd_link_hash_defweak
7640 || !h->def_regular))))
7641 break;
7642
7643 {
7644 struct elf_dyn_relocs *p;
7645 struct elf_dyn_relocs **head;
7646 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7647
7648 /* We must copy these reloc types into the output file.
7649 Create a reloc section in dynobj and make room for
7650 this reloc. */
7651 if (sreloc == NULL)
7652 {
7653 if (htab->root.dynobj == NULL)
7654 htab->root.dynobj = abfd;
7655
7656 sreloc = _bfd_elf_make_dynamic_reloc_section
7657 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7658
7659 if (sreloc == NULL)
7660 return FALSE;
7661 }
7662
7663 /* If this is a global symbol, we count the number of
7664 relocations we need for this symbol. */
7665 if (h != NULL)
7666 {
7667 struct elf_aarch64_link_hash_entry *eh;
7668 eh = (struct elf_aarch64_link_hash_entry *) h;
7669 head = &eh->dyn_relocs;
7670 }
7671 else
7672 {
7673 /* Track dynamic relocs needed for local syms too.
7674 We really need local syms available to do this
7675 easily. Oh well. */
7676
7677 asection *s;
7678 void **vpp;
7679
7680 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7681 abfd, r_symndx);
7682 if (isym == NULL)
7683 return FALSE;
7684
7685 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7686 if (s == NULL)
7687 s = sec;
7688
7689 /* Beware of type punned pointers vs strict aliasing
7690 rules. */
7691 vpp = &(elf_section_data (s)->local_dynrel);
7692 head = (struct elf_dyn_relocs **) vpp;
7693 }
7694
7695 p = *head;
7696 if (p == NULL || p->sec != sec)
7697 {
7698 bfd_size_type amt = sizeof *p;
7699 p = ((struct elf_dyn_relocs *)
7700 bfd_zalloc (htab->root.dynobj, amt));
7701 if (p == NULL)
7702 return FALSE;
7703 p->next = *head;
7704 *head = p;
7705 p->sec = sec;
7706 }
7707
7708 p->count += 1;
7709
7710 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7711 p->pc_count += 1;
7712 }
7713 break;
7714
7715 /* RR: We probably want to keep a consistency check that
7716 there are no dangling GOT_PAGE relocs. */
7717 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7718 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7719 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7720 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7721 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7722 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7723 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7724 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7725 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7726 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7727 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7728 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7729 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7730 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7731 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7732 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7733 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7734 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7735 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7736 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7737 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7738 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7739 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7740 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7741 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7742 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7743 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7744 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7745 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7746 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7747 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7748 {
7749 unsigned got_type;
7750 unsigned old_got_type;
7751
7752 got_type = aarch64_reloc_got_type (bfd_r_type);
7753
7754 if (h)
7755 {
7756 h->got.refcount += 1;
7757 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7758 }
7759 else
7760 {
7761 struct elf_aarch64_local_symbol *locals;
7762
7763 if (!elfNN_aarch64_allocate_local_symbols
7764 (abfd, symtab_hdr->sh_info))
7765 return FALSE;
7766
7767 locals = elf_aarch64_locals (abfd);
7768 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7769 locals[r_symndx].got_refcount += 1;
7770 old_got_type = locals[r_symndx].got_type;
7771 }
7772
7773 /* If a variable is accessed with both general dynamic TLS
7774 methods, two slots may be created. */
7775 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7776 got_type |= old_got_type;
7777
7778 /* We will already have issued an error message if there
7779 is a TLS/non-TLS mismatch, based on the symbol type.
7780 So just combine any TLS types needed. */
7781 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7782 && got_type != GOT_NORMAL)
7783 got_type |= old_got_type;
7784
7785 /* If the symbol is accessed by both IE and GD methods, we
7786 are able to relax. Turn off the GD flag, without
7787 messing up with any other kind of TLS types that may be
7788 involved. */
7789 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7790 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7791
7792 if (old_got_type != got_type)
7793 {
7794 if (h != NULL)
7795 elf_aarch64_hash_entry (h)->got_type = got_type;
7796 else
7797 {
7798 struct elf_aarch64_local_symbol *locals;
7799 locals = elf_aarch64_locals (abfd);
7800 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7801 locals[r_symndx].got_type = got_type;
7802 }
7803 }
7804
7805 if (htab->root.dynobj == NULL)
7806 htab->root.dynobj = abfd;
7807 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7808 return FALSE;
7809 break;
7810 }
7811
7812 case BFD_RELOC_AARCH64_CALL26:
7813 case BFD_RELOC_AARCH64_JUMP26:
7814 /* If this is a local symbol then we resolve it
7815 directly without creating a PLT entry. */
7816 if (h == NULL)
7817 continue;
7818
7819 h->needs_plt = 1;
7820 if (h->plt.refcount <= 0)
7821 h->plt.refcount = 1;
7822 else
7823 h->plt.refcount += 1;
7824 break;
7825
7826 default:
7827 break;
7828 }
7829 }
7830
7831 return TRUE;
7832 }
7833
7834 /* Treat mapping symbols as special target symbols. */
7835
7836 static bfd_boolean
7837 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7838 asymbol *sym)
7839 {
7840 return bfd_is_aarch64_special_symbol_name (sym->name,
7841 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7842 }
7843
7844 /* This is a copy of elf_find_function () from elf.c except that
7845 AArch64 mapping symbols are ignored when looking for function names. */
7846
7847 static bfd_boolean
7848 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7849 asymbol **symbols,
7850 asection *section,
7851 bfd_vma offset,
7852 const char **filename_ptr,
7853 const char **functionname_ptr)
7854 {
7855 const char *filename = NULL;
7856 asymbol *func = NULL;
7857 bfd_vma low_func = 0;
7858 asymbol **p;
7859
7860 for (p = symbols; *p != NULL; p++)
7861 {
7862 elf_symbol_type *q;
7863
7864 q = (elf_symbol_type *) * p;
7865
7866 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7867 {
7868 default:
7869 break;
7870 case STT_FILE:
7871 filename = bfd_asymbol_name (&q->symbol);
7872 break;
7873 case STT_FUNC:
7874 case STT_NOTYPE:
7875 /* Skip mapping symbols. */
7876 if ((q->symbol.flags & BSF_LOCAL)
7877 && (bfd_is_aarch64_special_symbol_name
7878 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7879 continue;
7880 /* Fall through. */
7881 if (bfd_get_section (&q->symbol) == section
7882 && q->symbol.value >= low_func && q->symbol.value <= offset)
7883 {
7884 func = (asymbol *) q;
7885 low_func = q->symbol.value;
7886 }
7887 break;
7888 }
7889 }
7890
7891 if (func == NULL)
7892 return FALSE;
7893
7894 if (filename_ptr)
7895 *filename_ptr = filename;
7896 if (functionname_ptr)
7897 *functionname_ptr = bfd_asymbol_name (func);
7898
7899 return TRUE;
7900 }
7901
7902
7903 /* Find the nearest line to a particular section and offset, for error
7904 reporting. This code is a duplicate of the code in elf.c, except
7905 that it uses aarch64_elf_find_function. */
7906
7907 static bfd_boolean
7908 elfNN_aarch64_find_nearest_line (bfd *abfd,
7909 asymbol **symbols,
7910 asection *section,
7911 bfd_vma offset,
7912 const char **filename_ptr,
7913 const char **functionname_ptr,
7914 unsigned int *line_ptr,
7915 unsigned int *discriminator_ptr)
7916 {
7917 bfd_boolean found = FALSE;
7918
7919 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7920 filename_ptr, functionname_ptr,
7921 line_ptr, discriminator_ptr,
7922 dwarf_debug_sections, 0,
7923 &elf_tdata (abfd)->dwarf2_find_line_info))
7924 {
7925 if (!*functionname_ptr)
7926 aarch64_elf_find_function (abfd, symbols, section, offset,
7927 *filename_ptr ? NULL : filename_ptr,
7928 functionname_ptr);
7929
7930 return TRUE;
7931 }
7932
7933 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7934 toolchain uses DWARF1. */
7935
7936 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7937 &found, filename_ptr,
7938 functionname_ptr, line_ptr,
7939 &elf_tdata (abfd)->line_info))
7940 return FALSE;
7941
7942 if (found && (*functionname_ptr || *line_ptr))
7943 return TRUE;
7944
7945 if (symbols == NULL)
7946 return FALSE;
7947
7948 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7949 filename_ptr, functionname_ptr))
7950 return FALSE;
7951
7952 *line_ptr = 0;
7953 return TRUE;
7954 }
7955
7956 static bfd_boolean
7957 elfNN_aarch64_find_inliner_info (bfd *abfd,
7958 const char **filename_ptr,
7959 const char **functionname_ptr,
7960 unsigned int *line_ptr)
7961 {
7962 bfd_boolean found;
7963 found = _bfd_dwarf2_find_inliner_info
7964 (abfd, filename_ptr,
7965 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7966 return found;
7967 }
7968
7969
7970 static void
7971 elfNN_aarch64_post_process_headers (bfd *abfd,
7972 struct bfd_link_info *link_info)
7973 {
7974 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7975
7976 i_ehdrp = elf_elfheader (abfd);
7977 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7978
7979 _bfd_elf_post_process_headers (abfd, link_info);
7980 }
7981
7982 static enum elf_reloc_type_class
7983 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7984 const asection *rel_sec ATTRIBUTE_UNUSED,
7985 const Elf_Internal_Rela *rela)
7986 {
7987 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7988
7989 if (htab->root.dynsym != NULL
7990 && htab->root.dynsym->contents != NULL)
7991 {
7992 /* Check relocation against STT_GNU_IFUNC symbol if there are
7993 dynamic symbols. */
7994 bfd *abfd = info->output_bfd;
7995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7996 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7997 if (r_symndx != STN_UNDEF)
7998 {
7999 Elf_Internal_Sym sym;
8000 if (!bed->s->swap_symbol_in (abfd,
8001 (htab->root.dynsym->contents
8002 + r_symndx * bed->s->sizeof_sym),
8003 0, &sym))
8004 {
8005 /* xgettext:c-format */
8006 _bfd_error_handler (_("%pB symbol number %lu references"
8007 " nonexistent SHT_SYMTAB_SHNDX section"),
8008 abfd, r_symndx);
8009 /* Ideally an error class should be returned here. */
8010 }
8011 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8012 return reloc_class_ifunc;
8013 }
8014 }
8015
8016 switch ((int) ELFNN_R_TYPE (rela->r_info))
8017 {
8018 case AARCH64_R (IRELATIVE):
8019 return reloc_class_ifunc;
8020 case AARCH64_R (RELATIVE):
8021 return reloc_class_relative;
8022 case AARCH64_R (JUMP_SLOT):
8023 return reloc_class_plt;
8024 case AARCH64_R (COPY):
8025 return reloc_class_copy;
8026 default:
8027 return reloc_class_normal;
8028 }
8029 }
8030
8031 /* Handle an AArch64 specific section when reading an object file. This is
8032 called when bfd_section_from_shdr finds a section with an unknown
8033 type. */
8034
8035 static bfd_boolean
8036 elfNN_aarch64_section_from_shdr (bfd *abfd,
8037 Elf_Internal_Shdr *hdr,
8038 const char *name, int shindex)
8039 {
8040 /* There ought to be a place to keep ELF backend specific flags, but
8041 at the moment there isn't one. We just keep track of the
8042 sections by their name, instead. Fortunately, the ABI gives
8043 names for all the AArch64 specific sections, so we will probably get
8044 away with this. */
8045 switch (hdr->sh_type)
8046 {
8047 case SHT_AARCH64_ATTRIBUTES:
8048 break;
8049
8050 default:
8051 return FALSE;
8052 }
8053
8054 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8055 return FALSE;
8056
8057 return TRUE;
8058 }
8059
8060 /* A structure used to record a list of sections, independently
8061 of the next and prev fields in the asection structure. */
8062 typedef struct section_list
8063 {
8064 asection *sec;
8065 struct section_list *next;
8066 struct section_list *prev;
8067 }
8068 section_list;
8069
8070 /* Unfortunately we need to keep a list of sections for which
8071 an _aarch64_elf_section_data structure has been allocated. This
8072 is because it is possible for functions like elfNN_aarch64_write_section
8073 to be called on a section which has had an elf_data_structure
8074 allocated for it (and so the used_by_bfd field is valid) but
8075 for which the AArch64 extended version of this structure - the
8076 _aarch64_elf_section_data structure - has not been allocated. */
8077 static section_list *sections_with_aarch64_elf_section_data = NULL;
8078
8079 static void
8080 record_section_with_aarch64_elf_section_data (asection *sec)
8081 {
8082 struct section_list *entry;
8083
8084 entry = bfd_malloc (sizeof (*entry));
8085 if (entry == NULL)
8086 return;
8087 entry->sec = sec;
8088 entry->next = sections_with_aarch64_elf_section_data;
8089 entry->prev = NULL;
8090 if (entry->next != NULL)
8091 entry->next->prev = entry;
8092 sections_with_aarch64_elf_section_data = entry;
8093 }
8094
8095 static struct section_list *
8096 find_aarch64_elf_section_entry (asection *sec)
8097 {
8098 struct section_list *entry;
8099 static struct section_list *last_entry = NULL;
8100
8101 /* This is a short cut for the typical case where the sections are added
8102 to the sections_with_aarch64_elf_section_data list in forward order and
8103 then looked up here in backwards order. This makes a real difference
8104 to the ld-srec/sec64k.exp linker test. */
8105 entry = sections_with_aarch64_elf_section_data;
8106 if (last_entry != NULL)
8107 {
8108 if (last_entry->sec == sec)
8109 entry = last_entry;
8110 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8111 entry = last_entry->next;
8112 }
8113
8114 for (; entry; entry = entry->next)
8115 if (entry->sec == sec)
8116 break;
8117
8118 if (entry)
8119 /* Record the entry prior to this one - it is the entry we are
8120 most likely to want to locate next time. Also this way if we
8121 have been called from
8122 unrecord_section_with_aarch64_elf_section_data () we will not
8123 be caching a pointer that is about to be freed. */
8124 last_entry = entry->prev;
8125
8126 return entry;
8127 }
8128
8129 static void
8130 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8131 {
8132 struct section_list *entry;
8133
8134 entry = find_aarch64_elf_section_entry (sec);
8135
8136 if (entry)
8137 {
8138 if (entry->prev != NULL)
8139 entry->prev->next = entry->next;
8140 if (entry->next != NULL)
8141 entry->next->prev = entry->prev;
8142 if (entry == sections_with_aarch64_elf_section_data)
8143 sections_with_aarch64_elf_section_data = entry->next;
8144 free (entry);
8145 }
8146 }
8147
8148
8149 typedef struct
8150 {
8151 void *finfo;
8152 struct bfd_link_info *info;
8153 asection *sec;
8154 int sec_shndx;
8155 int (*func) (void *, const char *, Elf_Internal_Sym *,
8156 asection *, struct elf_link_hash_entry *);
8157 } output_arch_syminfo;
8158
8159 enum map_symbol_type
8160 {
8161 AARCH64_MAP_INSN,
8162 AARCH64_MAP_DATA
8163 };
8164
8165
8166 /* Output a single mapping symbol. */
8167
8168 static bfd_boolean
8169 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8170 enum map_symbol_type type, bfd_vma offset)
8171 {
8172 static const char *names[2] = { "$x", "$d" };
8173 Elf_Internal_Sym sym;
8174
8175 sym.st_value = (osi->sec->output_section->vma
8176 + osi->sec->output_offset + offset);
8177 sym.st_size = 0;
8178 sym.st_other = 0;
8179 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8180 sym.st_shndx = osi->sec_shndx;
8181 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8182 }
8183
8184 /* Output a single local symbol for a generated stub. */
8185
8186 static bfd_boolean
8187 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8188 bfd_vma offset, bfd_vma size)
8189 {
8190 Elf_Internal_Sym sym;
8191
8192 sym.st_value = (osi->sec->output_section->vma
8193 + osi->sec->output_offset + offset);
8194 sym.st_size = size;
8195 sym.st_other = 0;
8196 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8197 sym.st_shndx = osi->sec_shndx;
8198 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8199 }
8200
8201 static bfd_boolean
8202 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8203 {
8204 struct elf_aarch64_stub_hash_entry *stub_entry;
8205 asection *stub_sec;
8206 bfd_vma addr;
8207 char *stub_name;
8208 output_arch_syminfo *osi;
8209
8210 /* Massage our args to the form they really have. */
8211 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8212 osi = (output_arch_syminfo *) in_arg;
8213
8214 stub_sec = stub_entry->stub_sec;
8215
8216 /* Ensure this stub is attached to the current section being
8217 processed. */
8218 if (stub_sec != osi->sec)
8219 return TRUE;
8220
8221 addr = (bfd_vma) stub_entry->stub_offset;
8222
8223 stub_name = stub_entry->output_name;
8224
8225 switch (stub_entry->stub_type)
8226 {
8227 case aarch64_stub_adrp_branch:
8228 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8229 sizeof (aarch64_adrp_branch_stub)))
8230 return FALSE;
8231 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8232 return FALSE;
8233 break;
8234 case aarch64_stub_long_branch:
8235 if (!elfNN_aarch64_output_stub_sym
8236 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8237 return FALSE;
8238 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8239 return FALSE;
8240 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8241 return FALSE;
8242 break;
8243 case aarch64_stub_erratum_835769_veneer:
8244 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8245 sizeof (aarch64_erratum_835769_stub)))
8246 return FALSE;
8247 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8248 return FALSE;
8249 break;
8250 case aarch64_stub_erratum_843419_veneer:
8251 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8252 sizeof (aarch64_erratum_843419_stub)))
8253 return FALSE;
8254 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8255 return FALSE;
8256 break;
8257 case aarch64_stub_none:
8258 break;
8259
8260 default:
8261 abort ();
8262 }
8263
8264 return TRUE;
8265 }
8266
8267 /* Output mapping symbols for linker generated sections. */
8268
8269 static bfd_boolean
8270 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8271 struct bfd_link_info *info,
8272 void *finfo,
8273 int (*func) (void *, const char *,
8274 Elf_Internal_Sym *,
8275 asection *,
8276 struct elf_link_hash_entry
8277 *))
8278 {
8279 output_arch_syminfo osi;
8280 struct elf_aarch64_link_hash_table *htab;
8281
8282 htab = elf_aarch64_hash_table (info);
8283
8284 osi.finfo = finfo;
8285 osi.info = info;
8286 osi.func = func;
8287
8288 /* Long calls stubs. */
8289 if (htab->stub_bfd && htab->stub_bfd->sections)
8290 {
8291 asection *stub_sec;
8292
8293 for (stub_sec = htab->stub_bfd->sections;
8294 stub_sec != NULL; stub_sec = stub_sec->next)
8295 {
8296 /* Ignore non-stub sections. */
8297 if (!strstr (stub_sec->name, STUB_SUFFIX))
8298 continue;
8299
8300 osi.sec = stub_sec;
8301
8302 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8303 (output_bfd, osi.sec->output_section);
8304
8305 /* The first instruction in a stub is always a branch. */
8306 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8307 return FALSE;
8308
8309 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8310 &osi);
8311 }
8312 }
8313
8314 /* Finally, output mapping symbols for the PLT. */
8315 if (!htab->root.splt || htab->root.splt->size == 0)
8316 return TRUE;
8317
8318 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8319 (output_bfd, htab->root.splt->output_section);
8320 osi.sec = htab->root.splt;
8321
8322 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8323
8324 return TRUE;
8325
8326 }
8327
8328 /* Allocate target specific section data. */
8329
8330 static bfd_boolean
8331 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8332 {
8333 if (!sec->used_by_bfd)
8334 {
8335 _aarch64_elf_section_data *sdata;
8336 bfd_size_type amt = sizeof (*sdata);
8337
8338 sdata = bfd_zalloc (abfd, amt);
8339 if (sdata == NULL)
8340 return FALSE;
8341 sec->used_by_bfd = sdata;
8342 }
8343
8344 record_section_with_aarch64_elf_section_data (sec);
8345
8346 return _bfd_elf_new_section_hook (abfd, sec);
8347 }
8348
8349
8350 static void
8351 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8352 asection *sec,
8353 void *ignore ATTRIBUTE_UNUSED)
8354 {
8355 unrecord_section_with_aarch64_elf_section_data (sec);
8356 }
8357
8358 static bfd_boolean
8359 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8360 {
8361 if (abfd->sections)
8362 bfd_map_over_sections (abfd,
8363 unrecord_section_via_map_over_sections, NULL);
8364
8365 return _bfd_elf_close_and_cleanup (abfd);
8366 }
8367
8368 static bfd_boolean
8369 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8370 {
8371 if (abfd->sections)
8372 bfd_map_over_sections (abfd,
8373 unrecord_section_via_map_over_sections, NULL);
8374
8375 return _bfd_free_cached_info (abfd);
8376 }
8377
8378 /* Create dynamic sections. This is different from the ARM backend in that
8379 the got, plt, gotplt and their relocation sections are all created in the
8380 standard part of the bfd elf backend. */
8381
8382 static bfd_boolean
8383 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8384 struct bfd_link_info *info)
8385 {
8386 /* We need to create .got section. */
8387 if (!aarch64_elf_create_got_section (dynobj, info))
8388 return FALSE;
8389
8390 return _bfd_elf_create_dynamic_sections (dynobj, info);
8391 }
8392
8393
8394 /* Allocate space in .plt, .got and associated reloc sections for
8395 dynamic relocs. */
8396
8397 static bfd_boolean
8398 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8399 {
8400 struct bfd_link_info *info;
8401 struct elf_aarch64_link_hash_table *htab;
8402 struct elf_aarch64_link_hash_entry *eh;
8403 struct elf_dyn_relocs *p;
8404
8405 /* An example of a bfd_link_hash_indirect symbol is versioned
8406 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8407 -> __gxx_personality_v0(bfd_link_hash_defined)
8408
8409 There is no need to process bfd_link_hash_indirect symbols here
8410 because we will also be presented with the concrete instance of
8411 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8412 called to copy all relevant data from the generic to the concrete
8413 symbol instance. */
8414 if (h->root.type == bfd_link_hash_indirect)
8415 return TRUE;
8416
8417 if (h->root.type == bfd_link_hash_warning)
8418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8419
8420 info = (struct bfd_link_info *) inf;
8421 htab = elf_aarch64_hash_table (info);
8422
8423 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8424 here if it is defined and referenced in a non-shared object. */
8425 if (h->type == STT_GNU_IFUNC
8426 && h->def_regular)
8427 return TRUE;
8428 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8429 {
8430 /* Make sure this symbol is output as a dynamic symbol.
8431 Undefined weak syms won't yet be marked as dynamic. */
8432 if (h->dynindx == -1 && !h->forced_local
8433 && h->root.type == bfd_link_hash_undefweak)
8434 {
8435 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8436 return FALSE;
8437 }
8438
8439 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8440 {
8441 asection *s = htab->root.splt;
8442
8443 /* If this is the first .plt entry, make room for the special
8444 first entry. */
8445 if (s->size == 0)
8446 s->size += htab->plt_header_size;
8447
8448 h->plt.offset = s->size;
8449
8450 /* If this symbol is not defined in a regular file, and we are
8451 not generating a shared library, then set the symbol to this
8452 location in the .plt. This is required to make function
8453 pointers compare as equal between the normal executable and
8454 the shared library. */
8455 if (!bfd_link_pic (info) && !h->def_regular)
8456 {
8457 h->root.u.def.section = s;
8458 h->root.u.def.value = h->plt.offset;
8459 }
8460
8461 /* Make room for this entry. For now we only create the
8462 small model PLT entries. We later need to find a way
8463 of relaxing into these from the large model PLT entries. */
8464 s->size += htab->plt_entry_size;
8465
8466 /* We also need to make an entry in the .got.plt section, which
8467 will be placed in the .got section by the linker script. */
8468 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8469
8470 /* We also need to make an entry in the .rela.plt section. */
8471 htab->root.srelplt->size += RELOC_SIZE (htab);
8472
8473 /* We need to ensure that all GOT entries that serve the PLT
8474 are consecutive with the special GOT slots [0] [1] and
8475 [2]. Any addtional relocations, such as
8476 R_AARCH64_TLSDESC, must be placed after the PLT related
8477 entries. We abuse the reloc_count such that during
8478 sizing we adjust reloc_count to indicate the number of
8479 PLT related reserved entries. In subsequent phases when
8480 filling in the contents of the reloc entries, PLT related
8481 entries are placed by computing their PLT index (0
8482 .. reloc_count). While other none PLT relocs are placed
8483 at the slot indicated by reloc_count and reloc_count is
8484 updated. */
8485
8486 htab->root.srelplt->reloc_count++;
8487 }
8488 else
8489 {
8490 h->plt.offset = (bfd_vma) - 1;
8491 h->needs_plt = 0;
8492 }
8493 }
8494 else
8495 {
8496 h->plt.offset = (bfd_vma) - 1;
8497 h->needs_plt = 0;
8498 }
8499
8500 eh = (struct elf_aarch64_link_hash_entry *) h;
8501 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8502
8503 if (h->got.refcount > 0)
8504 {
8505 bfd_boolean dyn;
8506 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8507
8508 h->got.offset = (bfd_vma) - 1;
8509
8510 dyn = htab->root.dynamic_sections_created;
8511
8512 /* Make sure this symbol is output as a dynamic symbol.
8513 Undefined weak syms won't yet be marked as dynamic. */
8514 if (dyn && h->dynindx == -1 && !h->forced_local
8515 && h->root.type == bfd_link_hash_undefweak)
8516 {
8517 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8518 return FALSE;
8519 }
8520
8521 if (got_type == GOT_UNKNOWN)
8522 {
8523 }
8524 else if (got_type == GOT_NORMAL)
8525 {
8526 h->got.offset = htab->root.sgot->size;
8527 htab->root.sgot->size += GOT_ENTRY_SIZE;
8528 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8529 || h->root.type != bfd_link_hash_undefweak)
8530 && (bfd_link_pic (info)
8531 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8532 /* Undefined weak symbol in static PIE resolves to 0 without
8533 any dynamic relocations. */
8534 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8535 {
8536 htab->root.srelgot->size += RELOC_SIZE (htab);
8537 }
8538 }
8539 else
8540 {
8541 int indx;
8542 if (got_type & GOT_TLSDESC_GD)
8543 {
8544 eh->tlsdesc_got_jump_table_offset =
8545 (htab->root.sgotplt->size
8546 - aarch64_compute_jump_table_size (htab));
8547 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8548 h->got.offset = (bfd_vma) - 2;
8549 }
8550
8551 if (got_type & GOT_TLS_GD)
8552 {
8553 h->got.offset = htab->root.sgot->size;
8554 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8555 }
8556
8557 if (got_type & GOT_TLS_IE)
8558 {
8559 h->got.offset = htab->root.sgot->size;
8560 htab->root.sgot->size += GOT_ENTRY_SIZE;
8561 }
8562
8563 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8564 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8565 || h->root.type != bfd_link_hash_undefweak)
8566 && (!bfd_link_executable (info)
8567 || indx != 0
8568 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8569 {
8570 if (got_type & GOT_TLSDESC_GD)
8571 {
8572 htab->root.srelplt->size += RELOC_SIZE (htab);
8573 /* Note reloc_count not incremented here! We have
8574 already adjusted reloc_count for this relocation
8575 type. */
8576
8577 /* TLSDESC PLT is now needed, but not yet determined. */
8578 htab->tlsdesc_plt = (bfd_vma) - 1;
8579 }
8580
8581 if (got_type & GOT_TLS_GD)
8582 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8583
8584 if (got_type & GOT_TLS_IE)
8585 htab->root.srelgot->size += RELOC_SIZE (htab);
8586 }
8587 }
8588 }
8589 else
8590 {
8591 h->got.offset = (bfd_vma) - 1;
8592 }
8593
8594 if (eh->dyn_relocs == NULL)
8595 return TRUE;
8596
8597 /* In the shared -Bsymbolic case, discard space allocated for
8598 dynamic pc-relative relocs against symbols which turn out to be
8599 defined in regular objects. For the normal shared case, discard
8600 space for pc-relative relocs that have become local due to symbol
8601 visibility changes. */
8602
8603 if (bfd_link_pic (info))
8604 {
8605 /* Relocs that use pc_count are those that appear on a call
8606 insn, or certain REL relocs that can generated via assembly.
8607 We want calls to protected symbols to resolve directly to the
8608 function rather than going via the plt. If people want
8609 function pointer comparisons to work as expected then they
8610 should avoid writing weird assembly. */
8611 if (SYMBOL_CALLS_LOCAL (info, h))
8612 {
8613 struct elf_dyn_relocs **pp;
8614
8615 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8616 {
8617 p->count -= p->pc_count;
8618 p->pc_count = 0;
8619 if (p->count == 0)
8620 *pp = p->next;
8621 else
8622 pp = &p->next;
8623 }
8624 }
8625
8626 /* Also discard relocs on undefined weak syms with non-default
8627 visibility. */
8628 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8629 {
8630 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8631 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8632 eh->dyn_relocs = NULL;
8633
8634 /* Make sure undefined weak symbols are output as a dynamic
8635 symbol in PIEs. */
8636 else if (h->dynindx == -1
8637 && !h->forced_local
8638 && h->root.type == bfd_link_hash_undefweak
8639 && !bfd_elf_link_record_dynamic_symbol (info, h))
8640 return FALSE;
8641 }
8642
8643 }
8644 else if (ELIMINATE_COPY_RELOCS)
8645 {
8646 /* For the non-shared case, discard space for relocs against
8647 symbols which turn out to need copy relocs or are not
8648 dynamic. */
8649
8650 if (!h->non_got_ref
8651 && ((h->def_dynamic
8652 && !h->def_regular)
8653 || (htab->root.dynamic_sections_created
8654 && (h->root.type == bfd_link_hash_undefweak
8655 || h->root.type == bfd_link_hash_undefined))))
8656 {
8657 /* Make sure this symbol is output as a dynamic symbol.
8658 Undefined weak syms won't yet be marked as dynamic. */
8659 if (h->dynindx == -1
8660 && !h->forced_local
8661 && h->root.type == bfd_link_hash_undefweak
8662 && !bfd_elf_link_record_dynamic_symbol (info, h))
8663 return FALSE;
8664
8665 /* If that succeeded, we know we'll be keeping all the
8666 relocs. */
8667 if (h->dynindx != -1)
8668 goto keep;
8669 }
8670
8671 eh->dyn_relocs = NULL;
8672
8673 keep:;
8674 }
8675
8676 /* Finally, allocate space. */
8677 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8678 {
8679 asection *sreloc;
8680
8681 sreloc = elf_section_data (p->sec)->sreloc;
8682
8683 BFD_ASSERT (sreloc != NULL);
8684
8685 sreloc->size += p->count * RELOC_SIZE (htab);
8686 }
8687
8688 return TRUE;
8689 }
8690
8691 /* Allocate space in .plt, .got and associated reloc sections for
8692 ifunc dynamic relocs. */
8693
8694 static bfd_boolean
8695 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8696 void *inf)
8697 {
8698 struct bfd_link_info *info;
8699 struct elf_aarch64_link_hash_table *htab;
8700 struct elf_aarch64_link_hash_entry *eh;
8701
8702 /* An example of a bfd_link_hash_indirect symbol is versioned
8703 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8704 -> __gxx_personality_v0(bfd_link_hash_defined)
8705
8706 There is no need to process bfd_link_hash_indirect symbols here
8707 because we will also be presented with the concrete instance of
8708 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8709 called to copy all relevant data from the generic to the concrete
8710 symbol instance. */
8711 if (h->root.type == bfd_link_hash_indirect)
8712 return TRUE;
8713
8714 if (h->root.type == bfd_link_hash_warning)
8715 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8716
8717 info = (struct bfd_link_info *) inf;
8718 htab = elf_aarch64_hash_table (info);
8719
8720 eh = (struct elf_aarch64_link_hash_entry *) h;
8721
8722 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8723 here if it is defined and referenced in a non-shared object. */
8724 if (h->type == STT_GNU_IFUNC
8725 && h->def_regular)
8726 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8727 &eh->dyn_relocs,
8728 NULL,
8729 htab->plt_entry_size,
8730 htab->plt_header_size,
8731 GOT_ENTRY_SIZE,
8732 FALSE);
8733 return TRUE;
8734 }
8735
8736 /* Allocate space in .plt, .got and associated reloc sections for
8737 local dynamic relocs. */
8738
8739 static bfd_boolean
8740 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8741 {
8742 struct elf_link_hash_entry *h
8743 = (struct elf_link_hash_entry *) *slot;
8744
8745 if (h->type != STT_GNU_IFUNC
8746 || !h->def_regular
8747 || !h->ref_regular
8748 || !h->forced_local
8749 || h->root.type != bfd_link_hash_defined)
8750 abort ();
8751
8752 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8753 }
8754
8755 /* Allocate space in .plt, .got and associated reloc sections for
8756 local ifunc dynamic relocs. */
8757
8758 static bfd_boolean
8759 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8760 {
8761 struct elf_link_hash_entry *h
8762 = (struct elf_link_hash_entry *) *slot;
8763
8764 if (h->type != STT_GNU_IFUNC
8765 || !h->def_regular
8766 || !h->ref_regular
8767 || !h->forced_local
8768 || h->root.type != bfd_link_hash_defined)
8769 abort ();
8770
8771 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8772 }
8773
8774 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8775 read-only sections. */
8776
8777 static bfd_boolean
8778 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8779 {
8780 asection *sec;
8781
8782 if (h->root.type == bfd_link_hash_indirect)
8783 return TRUE;
8784
8785 sec = readonly_dynrelocs (h);
8786 if (sec != NULL)
8787 {
8788 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8789
8790 info->flags |= DF_TEXTREL;
8791 info->callbacks->minfo
8792 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8793 sec->owner, h->root.root.string, sec);
8794
8795 /* Not an error, just cut short the traversal. */
8796 return FALSE;
8797 }
8798 return TRUE;
8799 }
8800
8801 /* This is the most important function of all . Innocuosly named
8802 though ! */
8803
8804 static bfd_boolean
8805 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8806 struct bfd_link_info *info)
8807 {
8808 struct elf_aarch64_link_hash_table *htab;
8809 bfd *dynobj;
8810 asection *s;
8811 bfd_boolean relocs;
8812 bfd *ibfd;
8813
8814 htab = elf_aarch64_hash_table ((info));
8815 dynobj = htab->root.dynobj;
8816
8817 BFD_ASSERT (dynobj != NULL);
8818
8819 if (htab->root.dynamic_sections_created)
8820 {
8821 if (bfd_link_executable (info) && !info->nointerp)
8822 {
8823 s = bfd_get_linker_section (dynobj, ".interp");
8824 if (s == NULL)
8825 abort ();
8826 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8827 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8828 }
8829 }
8830
8831 /* Set up .got offsets for local syms, and space for local dynamic
8832 relocs. */
8833 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8834 {
8835 struct elf_aarch64_local_symbol *locals = NULL;
8836 Elf_Internal_Shdr *symtab_hdr;
8837 asection *srel;
8838 unsigned int i;
8839
8840 if (!is_aarch64_elf (ibfd))
8841 continue;
8842
8843 for (s = ibfd->sections; s != NULL; s = s->next)
8844 {
8845 struct elf_dyn_relocs *p;
8846
8847 for (p = (struct elf_dyn_relocs *)
8848 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8849 {
8850 if (!bfd_is_abs_section (p->sec)
8851 && bfd_is_abs_section (p->sec->output_section))
8852 {
8853 /* Input section has been discarded, either because
8854 it is a copy of a linkonce section or due to
8855 linker script /DISCARD/, so we'll be discarding
8856 the relocs too. */
8857 }
8858 else if (p->count != 0)
8859 {
8860 srel = elf_section_data (p->sec)->sreloc;
8861 srel->size += p->count * RELOC_SIZE (htab);
8862 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8863 info->flags |= DF_TEXTREL;
8864 }
8865 }
8866 }
8867
8868 locals = elf_aarch64_locals (ibfd);
8869 if (!locals)
8870 continue;
8871
8872 symtab_hdr = &elf_symtab_hdr (ibfd);
8873 srel = htab->root.srelgot;
8874 for (i = 0; i < symtab_hdr->sh_info; i++)
8875 {
8876 locals[i].got_offset = (bfd_vma) - 1;
8877 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8878 if (locals[i].got_refcount > 0)
8879 {
8880 unsigned got_type = locals[i].got_type;
8881 if (got_type & GOT_TLSDESC_GD)
8882 {
8883 locals[i].tlsdesc_got_jump_table_offset =
8884 (htab->root.sgotplt->size
8885 - aarch64_compute_jump_table_size (htab));
8886 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8887 locals[i].got_offset = (bfd_vma) - 2;
8888 }
8889
8890 if (got_type & GOT_TLS_GD)
8891 {
8892 locals[i].got_offset = htab->root.sgot->size;
8893 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8894 }
8895
8896 if (got_type & GOT_TLS_IE
8897 || got_type & GOT_NORMAL)
8898 {
8899 locals[i].got_offset = htab->root.sgot->size;
8900 htab->root.sgot->size += GOT_ENTRY_SIZE;
8901 }
8902
8903 if (got_type == GOT_UNKNOWN)
8904 {
8905 }
8906
8907 if (bfd_link_pic (info))
8908 {
8909 if (got_type & GOT_TLSDESC_GD)
8910 {
8911 htab->root.srelplt->size += RELOC_SIZE (htab);
8912 /* Note RELOC_COUNT not incremented here! */
8913 htab->tlsdesc_plt = (bfd_vma) - 1;
8914 }
8915
8916 if (got_type & GOT_TLS_GD)
8917 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8918
8919 if (got_type & GOT_TLS_IE
8920 || got_type & GOT_NORMAL)
8921 htab->root.srelgot->size += RELOC_SIZE (htab);
8922 }
8923 }
8924 else
8925 {
8926 locals[i].got_refcount = (bfd_vma) - 1;
8927 }
8928 }
8929 }
8930
8931
8932 /* Allocate global sym .plt and .got entries, and space for global
8933 sym dynamic relocs. */
8934 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8935 info);
8936
8937 /* Allocate global ifunc sym .plt and .got entries, and space for global
8938 ifunc sym dynamic relocs. */
8939 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8940 info);
8941
8942 /* Allocate .plt and .got entries, and space for local symbols. */
8943 htab_traverse (htab->loc_hash_table,
8944 elfNN_aarch64_allocate_local_dynrelocs,
8945 info);
8946
8947 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8948 htab_traverse (htab->loc_hash_table,
8949 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8950 info);
8951
8952 /* For every jump slot reserved in the sgotplt, reloc_count is
8953 incremented. However, when we reserve space for TLS descriptors,
8954 it's not incremented, so in order to compute the space reserved
8955 for them, it suffices to multiply the reloc count by the jump
8956 slot size. */
8957
8958 if (htab->root.srelplt)
8959 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8960
8961 if (htab->tlsdesc_plt)
8962 {
8963 if (htab->root.splt->size == 0)
8964 htab->root.splt->size += htab->plt_header_size;
8965
8966 htab->tlsdesc_plt = htab->root.splt->size;
8967 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
8968
8969 /* If we're not using lazy TLS relocations, don't generate the
8970 GOT entry required. */
8971 if (!(info->flags & DF_BIND_NOW))
8972 {
8973 htab->dt_tlsdesc_got = htab->root.sgot->size;
8974 htab->root.sgot->size += GOT_ENTRY_SIZE;
8975 }
8976 }
8977
8978 /* Init mapping symbols information to use later to distingush between
8979 code and data while scanning for errata. */
8980 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8981 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8982 {
8983 if (!is_aarch64_elf (ibfd))
8984 continue;
8985 bfd_elfNN_aarch64_init_maps (ibfd);
8986 }
8987
8988 /* We now have determined the sizes of the various dynamic sections.
8989 Allocate memory for them. */
8990 relocs = FALSE;
8991 for (s = dynobj->sections; s != NULL; s = s->next)
8992 {
8993 if ((s->flags & SEC_LINKER_CREATED) == 0)
8994 continue;
8995
8996 if (s == htab->root.splt
8997 || s == htab->root.sgot
8998 || s == htab->root.sgotplt
8999 || s == htab->root.iplt
9000 || s == htab->root.igotplt
9001 || s == htab->root.sdynbss
9002 || s == htab->root.sdynrelro)
9003 {
9004 /* Strip this section if we don't need it; see the
9005 comment below. */
9006 }
9007 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
9008 {
9009 if (s->size != 0 && s != htab->root.srelplt)
9010 relocs = TRUE;
9011
9012 /* We use the reloc_count field as a counter if we need
9013 to copy relocs into the output file. */
9014 if (s != htab->root.srelplt)
9015 s->reloc_count = 0;
9016 }
9017 else
9018 {
9019 /* It's not one of our sections, so don't allocate space. */
9020 continue;
9021 }
9022
9023 if (s->size == 0)
9024 {
9025 /* If we don't need this section, strip it from the
9026 output file. This is mostly to handle .rela.bss and
9027 .rela.plt. We must create both sections in
9028 create_dynamic_sections, because they must be created
9029 before the linker maps input sections to output
9030 sections. The linker does that before
9031 adjust_dynamic_symbol is called, and it is that
9032 function which decides whether anything needs to go
9033 into these sections. */
9034 s->flags |= SEC_EXCLUDE;
9035 continue;
9036 }
9037
9038 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9039 continue;
9040
9041 /* Allocate memory for the section contents. We use bfd_zalloc
9042 here in case unused entries are not reclaimed before the
9043 section's contents are written out. This should not happen,
9044 but this way if it does, we get a R_AARCH64_NONE reloc instead
9045 of garbage. */
9046 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9047 if (s->contents == NULL)
9048 return FALSE;
9049 }
9050
9051 if (htab->root.dynamic_sections_created)
9052 {
9053 /* Add some entries to the .dynamic section. We fill in the
9054 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9055 must add the entries now so that we get the correct size for
9056 the .dynamic section. The DT_DEBUG entry is filled in by the
9057 dynamic linker and used by the debugger. */
9058 #define add_dynamic_entry(TAG, VAL) \
9059 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9060
9061 if (bfd_link_executable (info))
9062 {
9063 if (!add_dynamic_entry (DT_DEBUG, 0))
9064 return FALSE;
9065 }
9066
9067 if (htab->root.splt->size != 0)
9068 {
9069 if (!add_dynamic_entry (DT_PLTGOT, 0)
9070 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9071 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9072 || !add_dynamic_entry (DT_JMPREL, 0))
9073 return FALSE;
9074
9075 if (htab->tlsdesc_plt
9076 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9077 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9078 return FALSE;
9079
9080 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9081 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9082 return FALSE;
9083 }
9084
9085 if (relocs)
9086 {
9087 if (!add_dynamic_entry (DT_RELA, 0)
9088 || !add_dynamic_entry (DT_RELASZ, 0)
9089 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9090 return FALSE;
9091
9092 /* If any dynamic relocs apply to a read-only section,
9093 then we need a DT_TEXTREL entry. */
9094 if ((info->flags & DF_TEXTREL) == 0)
9095 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9096
9097 if ((info->flags & DF_TEXTREL) != 0)
9098 {
9099 if (!add_dynamic_entry (DT_TEXTREL, 0))
9100 return FALSE;
9101 }
9102 }
9103 }
9104 #undef add_dynamic_entry
9105
9106 return TRUE;
9107 }
9108
9109 static inline void
9110 elf_aarch64_update_plt_entry (bfd *output_bfd,
9111 bfd_reloc_code_real_type r_type,
9112 bfd_byte *plt_entry, bfd_vma value)
9113 {
9114 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9115
9116 /* FIXME: We should check the return value from this function call. */
9117 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9118 }
9119
9120 static void
9121 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9122 struct elf_aarch64_link_hash_table
9123 *htab, bfd *output_bfd,
9124 struct bfd_link_info *info)
9125 {
9126 bfd_byte *plt_entry;
9127 bfd_vma plt_index;
9128 bfd_vma got_offset;
9129 bfd_vma gotplt_entry_address;
9130 bfd_vma plt_entry_address;
9131 Elf_Internal_Rela rela;
9132 bfd_byte *loc;
9133 asection *plt, *gotplt, *relplt;
9134
9135 /* When building a static executable, use .iplt, .igot.plt and
9136 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9137 if (htab->root.splt != NULL)
9138 {
9139 plt = htab->root.splt;
9140 gotplt = htab->root.sgotplt;
9141 relplt = htab->root.srelplt;
9142 }
9143 else
9144 {
9145 plt = htab->root.iplt;
9146 gotplt = htab->root.igotplt;
9147 relplt = htab->root.irelplt;
9148 }
9149
9150 /* Get the index in the procedure linkage table which
9151 corresponds to this symbol. This is the index of this symbol
9152 in all the symbols for which we are making plt entries. The
9153 first entry in the procedure linkage table is reserved.
9154
9155 Get the offset into the .got table of the entry that
9156 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9157 bytes. The first three are reserved for the dynamic linker.
9158
9159 For static executables, we don't reserve anything. */
9160
9161 if (plt == htab->root.splt)
9162 {
9163 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9164 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9165 }
9166 else
9167 {
9168 plt_index = h->plt.offset / htab->plt_entry_size;
9169 got_offset = plt_index * GOT_ENTRY_SIZE;
9170 }
9171
9172 plt_entry = plt->contents + h->plt.offset;
9173 plt_entry_address = plt->output_section->vma
9174 + plt->output_offset + h->plt.offset;
9175 gotplt_entry_address = gotplt->output_section->vma +
9176 gotplt->output_offset + got_offset;
9177
9178 /* Copy in the boiler-plate for the PLTn entry. */
9179 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9180
9181 /* First instruction in BTI enabled PLT stub is a BTI
9182 instruction so skip it. */
9183 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9184 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9185 plt_entry = plt_entry + 4;
9186
9187 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9188 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9189 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9190 plt_entry,
9191 PG (gotplt_entry_address) -
9192 PG (plt_entry_address));
9193
9194 /* Fill in the lo12 bits for the load from the pltgot. */
9195 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9196 plt_entry + 4,
9197 PG_OFFSET (gotplt_entry_address));
9198
9199 /* Fill in the lo12 bits for the add from the pltgot entry. */
9200 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9201 plt_entry + 8,
9202 PG_OFFSET (gotplt_entry_address));
9203
9204 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9205 bfd_put_NN (output_bfd,
9206 plt->output_section->vma + plt->output_offset,
9207 gotplt->contents + got_offset);
9208
9209 rela.r_offset = gotplt_entry_address;
9210
9211 if (h->dynindx == -1
9212 || ((bfd_link_executable (info)
9213 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9214 && h->def_regular
9215 && h->type == STT_GNU_IFUNC))
9216 {
9217 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9218 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9219 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9220 rela.r_addend = (h->root.u.def.value
9221 + h->root.u.def.section->output_section->vma
9222 + h->root.u.def.section->output_offset);
9223 }
9224 else
9225 {
9226 /* Fill in the entry in the .rela.plt section. */
9227 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9228 rela.r_addend = 0;
9229 }
9230
9231 /* Compute the relocation entry to used based on PLT index and do
9232 not adjust reloc_count. The reloc_count has already been adjusted
9233 to account for this entry. */
9234 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9235 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9236 }
9237
9238 /* Size sections even though they're not dynamic. We use it to setup
9239 _TLS_MODULE_BASE_, if needed. */
9240
9241 static bfd_boolean
9242 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9243 struct bfd_link_info *info)
9244 {
9245 asection *tls_sec;
9246
9247 if (bfd_link_relocatable (info))
9248 return TRUE;
9249
9250 tls_sec = elf_hash_table (info)->tls_sec;
9251
9252 if (tls_sec)
9253 {
9254 struct elf_link_hash_entry *tlsbase;
9255
9256 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9257 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9258
9259 if (tlsbase)
9260 {
9261 struct bfd_link_hash_entry *h = NULL;
9262 const struct elf_backend_data *bed =
9263 get_elf_backend_data (output_bfd);
9264
9265 if (!(_bfd_generic_link_add_one_symbol
9266 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9267 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9268 return FALSE;
9269
9270 tlsbase->type = STT_TLS;
9271 tlsbase = (struct elf_link_hash_entry *) h;
9272 tlsbase->def_regular = 1;
9273 tlsbase->other = STV_HIDDEN;
9274 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9275 }
9276 }
9277
9278 return TRUE;
9279 }
9280
9281 /* Finish up dynamic symbol handling. We set the contents of various
9282 dynamic sections here. */
9283
9284 static bfd_boolean
9285 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9286 struct bfd_link_info *info,
9287 struct elf_link_hash_entry *h,
9288 Elf_Internal_Sym *sym)
9289 {
9290 struct elf_aarch64_link_hash_table *htab;
9291 htab = elf_aarch64_hash_table (info);
9292
9293 if (h->plt.offset != (bfd_vma) - 1)
9294 {
9295 asection *plt, *gotplt, *relplt;
9296
9297 /* This symbol has an entry in the procedure linkage table. Set
9298 it up. */
9299
9300 /* When building a static executable, use .iplt, .igot.plt and
9301 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9302 if (htab->root.splt != NULL)
9303 {
9304 plt = htab->root.splt;
9305 gotplt = htab->root.sgotplt;
9306 relplt = htab->root.srelplt;
9307 }
9308 else
9309 {
9310 plt = htab->root.iplt;
9311 gotplt = htab->root.igotplt;
9312 relplt = htab->root.irelplt;
9313 }
9314
9315 /* This symbol has an entry in the procedure linkage table. Set
9316 it up. */
9317 if ((h->dynindx == -1
9318 && !((h->forced_local || bfd_link_executable (info))
9319 && h->def_regular
9320 && h->type == STT_GNU_IFUNC))
9321 || plt == NULL
9322 || gotplt == NULL
9323 || relplt == NULL)
9324 return FALSE;
9325
9326 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9327 if (!h->def_regular)
9328 {
9329 /* Mark the symbol as undefined, rather than as defined in
9330 the .plt section. */
9331 sym->st_shndx = SHN_UNDEF;
9332 /* If the symbol is weak we need to clear the value.
9333 Otherwise, the PLT entry would provide a definition for
9334 the symbol even if the symbol wasn't defined anywhere,
9335 and so the symbol would never be NULL. Leave the value if
9336 there were any relocations where pointer equality matters
9337 (this is a clue for the dynamic linker, to make function
9338 pointer comparisons work between an application and shared
9339 library). */
9340 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9341 sym->st_value = 0;
9342 }
9343 }
9344
9345 if (h->got.offset != (bfd_vma) - 1
9346 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9347 /* Undefined weak symbol in static PIE resolves to 0 without
9348 any dynamic relocations. */
9349 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9350 {
9351 Elf_Internal_Rela rela;
9352 bfd_byte *loc;
9353
9354 /* This symbol has an entry in the global offset table. Set it
9355 up. */
9356 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9357 abort ();
9358
9359 rela.r_offset = (htab->root.sgot->output_section->vma
9360 + htab->root.sgot->output_offset
9361 + (h->got.offset & ~(bfd_vma) 1));
9362
9363 if (h->def_regular
9364 && h->type == STT_GNU_IFUNC)
9365 {
9366 if (bfd_link_pic (info))
9367 {
9368 /* Generate R_AARCH64_GLOB_DAT. */
9369 goto do_glob_dat;
9370 }
9371 else
9372 {
9373 asection *plt;
9374
9375 if (!h->pointer_equality_needed)
9376 abort ();
9377
9378 /* For non-shared object, we can't use .got.plt, which
9379 contains the real function address if we need pointer
9380 equality. We load the GOT entry with the PLT entry. */
9381 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9382 bfd_put_NN (output_bfd, (plt->output_section->vma
9383 + plt->output_offset
9384 + h->plt.offset),
9385 htab->root.sgot->contents
9386 + (h->got.offset & ~(bfd_vma) 1));
9387 return TRUE;
9388 }
9389 }
9390 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9391 {
9392 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9393 return FALSE;
9394
9395 BFD_ASSERT ((h->got.offset & 1) != 0);
9396 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9397 rela.r_addend = (h->root.u.def.value
9398 + h->root.u.def.section->output_section->vma
9399 + h->root.u.def.section->output_offset);
9400 }
9401 else
9402 {
9403 do_glob_dat:
9404 BFD_ASSERT ((h->got.offset & 1) == 0);
9405 bfd_put_NN (output_bfd, (bfd_vma) 0,
9406 htab->root.sgot->contents + h->got.offset);
9407 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9408 rela.r_addend = 0;
9409 }
9410
9411 loc = htab->root.srelgot->contents;
9412 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9413 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9414 }
9415
9416 if (h->needs_copy)
9417 {
9418 Elf_Internal_Rela rela;
9419 asection *s;
9420 bfd_byte *loc;
9421
9422 /* This symbol needs a copy reloc. Set it up. */
9423 if (h->dynindx == -1
9424 || (h->root.type != bfd_link_hash_defined
9425 && h->root.type != bfd_link_hash_defweak)
9426 || htab->root.srelbss == NULL)
9427 abort ();
9428
9429 rela.r_offset = (h->root.u.def.value
9430 + h->root.u.def.section->output_section->vma
9431 + h->root.u.def.section->output_offset);
9432 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9433 rela.r_addend = 0;
9434 if (h->root.u.def.section == htab->root.sdynrelro)
9435 s = htab->root.sreldynrelro;
9436 else
9437 s = htab->root.srelbss;
9438 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9439 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9440 }
9441
9442 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9443 be NULL for local symbols. */
9444 if (sym != NULL
9445 && (h == elf_hash_table (info)->hdynamic
9446 || h == elf_hash_table (info)->hgot))
9447 sym->st_shndx = SHN_ABS;
9448
9449 return TRUE;
9450 }
9451
9452 /* Finish up local dynamic symbol handling. We set the contents of
9453 various dynamic sections here. */
9454
9455 static bfd_boolean
9456 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9457 {
9458 struct elf_link_hash_entry *h
9459 = (struct elf_link_hash_entry *) *slot;
9460 struct bfd_link_info *info
9461 = (struct bfd_link_info *) inf;
9462
9463 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9464 info, h, NULL);
9465 }
9466
9467 static void
9468 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9469 struct elf_aarch64_link_hash_table
9470 *htab)
9471 {
9472 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9473 small and large plts and at the minute just generates
9474 the small PLT. */
9475
9476 /* PLT0 of the small PLT looks like this in ELF64 -
9477 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9478 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9479 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9480 // symbol resolver
9481 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9482 // GOTPLT entry for this.
9483 br x17
9484 PLT0 will be slightly different in ELF32 due to different got entry
9485 size. */
9486 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9487 bfd_vma plt_base;
9488
9489
9490 memcpy (htab->root.splt->contents, htab->plt0_entry,
9491 htab->plt_header_size);
9492 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9493 htab->plt_header_size;
9494
9495 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9496 + htab->root.sgotplt->output_offset
9497 + GOT_ENTRY_SIZE * 2);
9498
9499 plt_base = htab->root.splt->output_section->vma +
9500 htab->root.splt->output_offset;
9501
9502 /* First instruction in BTI enabled PLT stub is a BTI
9503 instruction so skip it. */
9504 bfd_byte *plt0_entry = htab->root.splt->contents;
9505 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9506 plt0_entry = plt0_entry + 4;
9507
9508 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9509 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9510 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9511 plt0_entry + 4,
9512 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9513
9514 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9515 plt0_entry + 8,
9516 PG_OFFSET (plt_got_2nd_ent));
9517
9518 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9519 plt0_entry + 12,
9520 PG_OFFSET (plt_got_2nd_ent));
9521 }
9522
9523 static bfd_boolean
9524 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9525 struct bfd_link_info *info)
9526 {
9527 struct elf_aarch64_link_hash_table *htab;
9528 bfd *dynobj;
9529 asection *sdyn;
9530
9531 htab = elf_aarch64_hash_table (info);
9532 dynobj = htab->root.dynobj;
9533 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9534
9535 if (htab->root.dynamic_sections_created)
9536 {
9537 ElfNN_External_Dyn *dyncon, *dynconend;
9538
9539 if (sdyn == NULL || htab->root.sgot == NULL)
9540 abort ();
9541
9542 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9543 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9544 for (; dyncon < dynconend; dyncon++)
9545 {
9546 Elf_Internal_Dyn dyn;
9547 asection *s;
9548
9549 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9550
9551 switch (dyn.d_tag)
9552 {
9553 default:
9554 continue;
9555
9556 case DT_PLTGOT:
9557 s = htab->root.sgotplt;
9558 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9559 break;
9560
9561 case DT_JMPREL:
9562 s = htab->root.srelplt;
9563 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9564 break;
9565
9566 case DT_PLTRELSZ:
9567 s = htab->root.srelplt;
9568 dyn.d_un.d_val = s->size;
9569 break;
9570
9571 case DT_TLSDESC_PLT:
9572 s = htab->root.splt;
9573 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9574 + htab->tlsdesc_plt;
9575 break;
9576
9577 case DT_TLSDESC_GOT:
9578 s = htab->root.sgot;
9579 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9580 + htab->dt_tlsdesc_got;
9581 break;
9582 }
9583
9584 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9585 }
9586
9587 }
9588
9589 /* Fill in the special first entry in the procedure linkage table. */
9590 if (htab->root.splt && htab->root.splt->size > 0)
9591 {
9592 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9593
9594 elf_section_data (htab->root.splt->output_section)->
9595 this_hdr.sh_entsize = htab->plt_entry_size;
9596
9597
9598 if (htab->tlsdesc_plt)
9599 {
9600 bfd_put_NN (output_bfd, (bfd_vma) 0,
9601 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9602
9603 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9604 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9605
9606 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9607 if (type == PLT_BTI)
9608 {
9609 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9610 htab->tlsdesc_plt_entry_size = PLT_BTI_TLSDESC_ENTRY_SIZE;
9611 }
9612
9613 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9614 entry, htab->tlsdesc_plt_entry_size);
9615
9616 {
9617 bfd_vma adrp1_addr =
9618 htab->root.splt->output_section->vma
9619 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9620
9621 bfd_vma adrp2_addr = adrp1_addr + 4;
9622
9623 bfd_vma got_addr =
9624 htab->root.sgot->output_section->vma
9625 + htab->root.sgot->output_offset;
9626
9627 bfd_vma pltgot_addr =
9628 htab->root.sgotplt->output_section->vma
9629 + htab->root.sgotplt->output_offset;
9630
9631 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9632
9633 bfd_byte *plt_entry =
9634 htab->root.splt->contents + htab->tlsdesc_plt;
9635
9636 /* First instruction in BTI enabled PLT stub is a BTI
9637 instruction so skip it. */
9638 if (type & PLT_BTI)
9639 {
9640 plt_entry = plt_entry + 4;
9641 adrp1_addr = adrp1_addr + 4;
9642 adrp2_addr = adrp2_addr + 4;
9643 }
9644
9645 /* adrp x2, DT_TLSDESC_GOT */
9646 elf_aarch64_update_plt_entry (output_bfd,
9647 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9648 plt_entry + 4,
9649 (PG (dt_tlsdesc_got)
9650 - PG (adrp1_addr)));
9651
9652 /* adrp x3, 0 */
9653 elf_aarch64_update_plt_entry (output_bfd,
9654 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9655 plt_entry + 8,
9656 (PG (pltgot_addr)
9657 - PG (adrp2_addr)));
9658
9659 /* ldr x2, [x2, #0] */
9660 elf_aarch64_update_plt_entry (output_bfd,
9661 BFD_RELOC_AARCH64_LDSTNN_LO12,
9662 plt_entry + 12,
9663 PG_OFFSET (dt_tlsdesc_got));
9664
9665 /* add x3, x3, 0 */
9666 elf_aarch64_update_plt_entry (output_bfd,
9667 BFD_RELOC_AARCH64_ADD_LO12,
9668 plt_entry + 16,
9669 PG_OFFSET (pltgot_addr));
9670 }
9671 }
9672 }
9673
9674 if (htab->root.sgotplt)
9675 {
9676 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9677 {
9678 _bfd_error_handler
9679 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9680 return FALSE;
9681 }
9682
9683 /* Fill in the first three entries in the global offset table. */
9684 if (htab->root.sgotplt->size > 0)
9685 {
9686 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9687
9688 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9689 bfd_put_NN (output_bfd,
9690 (bfd_vma) 0,
9691 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9692 bfd_put_NN (output_bfd,
9693 (bfd_vma) 0,
9694 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9695 }
9696
9697 if (htab->root.sgot)
9698 {
9699 if (htab->root.sgot->size > 0)
9700 {
9701 bfd_vma addr =
9702 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9703 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9704 }
9705 }
9706
9707 elf_section_data (htab->root.sgotplt->output_section)->
9708 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9709 }
9710
9711 if (htab->root.sgot && htab->root.sgot->size > 0)
9712 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9713 = GOT_ENTRY_SIZE;
9714
9715 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9716 htab_traverse (htab->loc_hash_table,
9717 elfNN_aarch64_finish_local_dynamic_symbol,
9718 info);
9719
9720 return TRUE;
9721 }
9722
9723 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9724 static aarch64_plt_type
9725 get_plt_type (bfd *abfd)
9726 {
9727 aarch64_plt_type ret = PLT_NORMAL;
9728 bfd_byte *contents, *extdyn, *extdynend;
9729 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9730 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9731 return ret;
9732 extdyn = contents;
9733 extdynend = contents + sec->size;
9734 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9735 {
9736 Elf_Internal_Dyn dyn;
9737 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9738
9739 /* Let's check the processor specific dynamic array tags. */
9740 bfd_vma tag = dyn.d_tag;
9741 if (tag < DT_LOPROC || tag > DT_HIPROC)
9742 continue;
9743
9744 switch (tag)
9745 {
9746 case DT_AARCH64_BTI_PLT:
9747 ret = PLT_BTI;
9748 break;
9749
9750 default: break;
9751 }
9752 }
9753 free (contents);
9754 return ret;
9755 }
9756
9757 static long
9758 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9759 long symcount,
9760 asymbol **syms,
9761 long dynsymcount,
9762 asymbol **dynsyms,
9763 asymbol **ret)
9764 {
9765 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9766 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9767 dynsymcount, dynsyms, ret);
9768 }
9769
9770 /* Return address for Ith PLT stub in section PLT, for relocation REL
9771 or (bfd_vma) -1 if it should not be included. */
9772
9773 static bfd_vma
9774 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9775 const arelent *rel ATTRIBUTE_UNUSED)
9776 {
9777 size_t plt0_size = PLT_ENTRY_SIZE;
9778 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9779
9780 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9781 {
9782 plt0_size = PLT_BTI_ENTRY_SIZE;
9783 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9784 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9785 }
9786 return plt->vma + plt0_size + i * pltn_size;
9787 }
9788
9789 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9790 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9791 It also allows a period initiated suffix to be added to the symbol, ie:
9792 "$[adtx]\.[:sym_char]+". */
9793
9794 static bfd_boolean
9795 is_aarch64_mapping_symbol (const char * name)
9796 {
9797 return name != NULL /* Paranoia. */
9798 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9799 the mapping symbols could have acquired a prefix.
9800 We do not support this here, since such symbols no
9801 longer conform to the ARM ELF ABI. */
9802 && (name[1] == 'd' || name[1] == 'x')
9803 && (name[2] == 0 || name[2] == '.');
9804 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9805 any characters that follow the period are legal characters for the body
9806 of a symbol's name. For now we just assume that this is the case. */
9807 }
9808
9809 /* Make sure that mapping symbols in object files are not removed via the
9810 "strip --strip-unneeded" tool. These symbols might needed in order to
9811 correctly generate linked files. Once an object file has been linked,
9812 it should be safe to remove them. */
9813
9814 static void
9815 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9816 {
9817 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9818 && sym->section != bfd_abs_section_ptr
9819 && is_aarch64_mapping_symbol (sym->name))
9820 sym->flags |= BSF_KEEP;
9821 }
9822
9823 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9824 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9825 for the effect of GNU properties of the output_bfd. */
9826 static bfd *
9827 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9828 {
9829 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9830 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9831 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9832 elf_aarch64_tdata (info->output_bfd)->plt_type
9833 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9834 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9835 return pbfd;
9836 }
9837
9838 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9839 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9840 for the effect of GNU properties of the output_bfd. */
9841 static bfd_boolean
9842 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9843 bfd *abfd,
9844 elf_property *aprop,
9845 elf_property *bprop)
9846 {
9847 uint32_t prop
9848 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9849
9850 /* If output has been marked with BTI using command line argument, give out
9851 warning if necessary. */
9852 if ((prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9853 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9854 {
9855 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9856 || (bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9857 /* If either property is NULL, it means its bfd did not have any
9858 property. */
9859 || !aprop || !bprop)
9860 {
9861 _bfd_error_handler (_("warning: BTI turned on by --force-bti when "
9862 "all inputs do not have BTI in NOTE section."));
9863 }
9864 }
9865
9866 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9867 bprop, prop);
9868 }
9869
9870 /* We use this so we can override certain functions
9871 (though currently we don't). */
9872
9873 const struct elf_size_info elfNN_aarch64_size_info =
9874 {
9875 sizeof (ElfNN_External_Ehdr),
9876 sizeof (ElfNN_External_Phdr),
9877 sizeof (ElfNN_External_Shdr),
9878 sizeof (ElfNN_External_Rel),
9879 sizeof (ElfNN_External_Rela),
9880 sizeof (ElfNN_External_Sym),
9881 sizeof (ElfNN_External_Dyn),
9882 sizeof (Elf_External_Note),
9883 4, /* Hash table entry size. */
9884 1, /* Internal relocs per external relocs. */
9885 ARCH_SIZE, /* Arch size. */
9886 LOG_FILE_ALIGN, /* Log_file_align. */
9887 ELFCLASSNN, EV_CURRENT,
9888 bfd_elfNN_write_out_phdrs,
9889 bfd_elfNN_write_shdrs_and_ehdr,
9890 bfd_elfNN_checksum_contents,
9891 bfd_elfNN_write_relocs,
9892 bfd_elfNN_swap_symbol_in,
9893 bfd_elfNN_swap_symbol_out,
9894 bfd_elfNN_slurp_reloc_table,
9895 bfd_elfNN_slurp_symbol_table,
9896 bfd_elfNN_swap_dyn_in,
9897 bfd_elfNN_swap_dyn_out,
9898 bfd_elfNN_swap_reloc_in,
9899 bfd_elfNN_swap_reloc_out,
9900 bfd_elfNN_swap_reloca_in,
9901 bfd_elfNN_swap_reloca_out
9902 };
9903
9904 #define ELF_ARCH bfd_arch_aarch64
9905 #define ELF_MACHINE_CODE EM_AARCH64
9906 #define ELF_MAXPAGESIZE 0x10000
9907 #define ELF_MINPAGESIZE 0x1000
9908 #define ELF_COMMONPAGESIZE 0x1000
9909
9910 #define bfd_elfNN_close_and_cleanup \
9911 elfNN_aarch64_close_and_cleanup
9912
9913 #define bfd_elfNN_bfd_free_cached_info \
9914 elfNN_aarch64_bfd_free_cached_info
9915
9916 #define bfd_elfNN_bfd_is_target_special_symbol \
9917 elfNN_aarch64_is_target_special_symbol
9918
9919 #define bfd_elfNN_bfd_link_hash_table_create \
9920 elfNN_aarch64_link_hash_table_create
9921
9922 #define bfd_elfNN_bfd_merge_private_bfd_data \
9923 elfNN_aarch64_merge_private_bfd_data
9924
9925 #define bfd_elfNN_bfd_print_private_bfd_data \
9926 elfNN_aarch64_print_private_bfd_data
9927
9928 #define bfd_elfNN_bfd_reloc_type_lookup \
9929 elfNN_aarch64_reloc_type_lookup
9930
9931 #define bfd_elfNN_bfd_reloc_name_lookup \
9932 elfNN_aarch64_reloc_name_lookup
9933
9934 #define bfd_elfNN_bfd_set_private_flags \
9935 elfNN_aarch64_set_private_flags
9936
9937 #define bfd_elfNN_find_inliner_info \
9938 elfNN_aarch64_find_inliner_info
9939
9940 #define bfd_elfNN_find_nearest_line \
9941 elfNN_aarch64_find_nearest_line
9942
9943 #define bfd_elfNN_get_synthetic_symtab \
9944 elfNN_aarch64_get_synthetic_symtab
9945
9946 #define bfd_elfNN_mkobject \
9947 elfNN_aarch64_mkobject
9948
9949 #define bfd_elfNN_new_section_hook \
9950 elfNN_aarch64_new_section_hook
9951
9952 #define elf_backend_adjust_dynamic_symbol \
9953 elfNN_aarch64_adjust_dynamic_symbol
9954
9955 #define elf_backend_always_size_sections \
9956 elfNN_aarch64_always_size_sections
9957
9958 #define elf_backend_check_relocs \
9959 elfNN_aarch64_check_relocs
9960
9961 #define elf_backend_copy_indirect_symbol \
9962 elfNN_aarch64_copy_indirect_symbol
9963
9964 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9965 to them in our hash. */
9966 #define elf_backend_create_dynamic_sections \
9967 elfNN_aarch64_create_dynamic_sections
9968
9969 #define elf_backend_init_index_section \
9970 _bfd_elf_init_2_index_sections
9971
9972 #define elf_backend_finish_dynamic_sections \
9973 elfNN_aarch64_finish_dynamic_sections
9974
9975 #define elf_backend_finish_dynamic_symbol \
9976 elfNN_aarch64_finish_dynamic_symbol
9977
9978 #define elf_backend_object_p \
9979 elfNN_aarch64_object_p
9980
9981 #define elf_backend_output_arch_local_syms \
9982 elfNN_aarch64_output_arch_local_syms
9983
9984 #define elf_backend_plt_sym_val \
9985 elfNN_aarch64_plt_sym_val
9986
9987 #define elf_backend_post_process_headers \
9988 elfNN_aarch64_post_process_headers
9989
9990 #define elf_backend_relocate_section \
9991 elfNN_aarch64_relocate_section
9992
9993 #define elf_backend_reloc_type_class \
9994 elfNN_aarch64_reloc_type_class
9995
9996 #define elf_backend_section_from_shdr \
9997 elfNN_aarch64_section_from_shdr
9998
9999 #define elf_backend_size_dynamic_sections \
10000 elfNN_aarch64_size_dynamic_sections
10001
10002 #define elf_backend_size_info \
10003 elfNN_aarch64_size_info
10004
10005 #define elf_backend_write_section \
10006 elfNN_aarch64_write_section
10007
10008 #define elf_backend_symbol_processing \
10009 elfNN_aarch64_backend_symbol_processing
10010
10011 #define elf_backend_setup_gnu_properties \
10012 elfNN_aarch64_link_setup_gnu_properties
10013
10014 #define elf_backend_merge_gnu_properties \
10015 elfNN_aarch64_merge_gnu_properties
10016
10017 #define elf_backend_can_refcount 1
10018 #define elf_backend_can_gc_sections 1
10019 #define elf_backend_plt_readonly 1
10020 #define elf_backend_want_got_plt 1
10021 #define elf_backend_want_plt_sym 0
10022 #define elf_backend_want_dynrelro 1
10023 #define elf_backend_may_use_rel_p 0
10024 #define elf_backend_may_use_rela_p 1
10025 #define elf_backend_default_use_rela_p 1
10026 #define elf_backend_rela_normal 1
10027 #define elf_backend_dtrel_excludes_plt 1
10028 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10029 #define elf_backend_default_execstack 0
10030 #define elf_backend_extern_protected_data 1
10031 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10032
10033 #undef elf_backend_obj_attrs_section
10034 #define elf_backend_obj_attrs_section ".ARM.attributes"
10035
10036 #include "elfNN-target.h"
10037
10038 /* CloudABI support. */
10039
10040 #undef TARGET_LITTLE_SYM
10041 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10042 #undef TARGET_LITTLE_NAME
10043 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10044 #undef TARGET_BIG_SYM
10045 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10046 #undef TARGET_BIG_NAME
10047 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10048
10049 #undef ELF_OSABI
10050 #define ELF_OSABI ELFOSABI_CLOUDABI
10051
10052 #undef elfNN_bed
10053 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10054
10055 #include "elfNN-target.h"
This page took 0.225503 seconds and 5 git commands to generate.